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Abstract

This dissertation develops a substitutional semantics for first-order (modal)
logic which, unlike truth-value semantics, allows a fine-grained analysis of the
semantical behaviour of the terms and predicates from which atomic formu-
lae are composed. Moreover, it proposes a nondenotational philosophical
foundation for the semantics of substitutional quantified (modal) logic.

Keywords: modality, predication, quantified modal logic, substitutional
quantification, substitutional semantics.
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I taught together with Peter at Tübingen (spring 2004), to audiences at
the University of St Andrews, in June 2004, at the ‘Kolloquium Logik und
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Introduction

The standard semantics for first-order languages is denotational semantics.
The basic intuition by which this semantics is underlain is captured by the
claim that language is about the world. Denotational semantics reflects this
idea as follows: names are taken to denote objects, predicates are viewed as
being satisfied by objects, or as being true of them, and true sentences are
regarded as providing accurate descriptions of the level of denotata of the
language. Tarski once gave the following rough characterization of the term
‘semantics’ which expresses that very intuition.

“Semantics is a discipline which, speaking loosely, deals with cer-
tain relations between expressions of a language and the objects
(or “states of affairs”) “referred to” by those expressions.”1

The intuition that language is about the world, the intuition of designation
as I shall call it, and denotational semantics are relatively natural (in par-
ticular with respect to atomic predications) when the portion of the object

1[Tarski, 1944] p. 345. (Charcterizations of this lax sort are rather frequent in Tarski’s
writings: “A characteristic feature of the semantical concepts is that they give expression
to certain relations between the expressions of language and the objects about which these
expressions speak”. (At page 252 of the English translation of the German translation.)
[Cechę charakterystyczną pojęć semantycznych stanowi ta okoliczność, że wyrażają one
pewne zależności między wyrażeniami języka a przedmiotami «o których w tych wyraże-
niach mowa» [Tarski, 1995 (1933)] p. 139.] Similarly: “We shall understand by semantics
the totality of considerations concerning those concepts which, roughly speaking, express
certain connexions between expressions of a language and the objects and states of af-
fairs referred to by these expressions.” (At page 401 of the English translation of the Ger-
man translation.) [[P]rzez semantykę będziemy rozumieli ogół rozważań, dotyczących tego
rodzaju pojęć, które – mówiąc ogólnikowo i niezbyt ściśle – wyrażają pewne związki między
wyrażeniami języka a przedmiotami [i stanami rzeczy]+, «o których w tych wyrażeniach
mowa». [Tarski, 1995 (1936)] p. 173.] The text enclosed in [ ]+ indicates that, interest-
ingly, the fragment “and states of affairs”—whose equivalent also occurs in the German
version—does not occur in the Polish original.)
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language whose semantics is to be elucidated is denoting and transparent.
But they lose much of their intuitive appeal when the semantic analysis of
statements is asked for which contain occurrences of nondenoting singular
terms, occurences of general terms which do not have a denotational exten-
sion, or occurrences of singular and general terms in intensional contexts,
irrespective of whether they are denotationless or not.

Let me discern, for the purpose of motivating my project, but three
kinds of philosophical problem which pertain to the transference of denota-
tional semantics to nondenoting (e.g., fictional) and intensional (e.g., modal)
language—the problems are ontological, semantical, and logical in nature.

First and foremost, the applied semantical denotational analysis of fic-
tional and modal truths such as ‘Ulysses is a man’ and ‘Tarski could have
been a violinist’, respectively, gives rise to an inflation of ontology—with fic-
tional objects (e.g., Ulysses), on the one hand, and possible objects of some
sort (for example, a possibile, say, a flesh-and-blood counterpart of Tarski,
or an actualistically acceptable surrogate, e.g., the haecceity of Tarski), on
the other hand, over which the quantifiers of the object language are taken
to range. Accordingly, applied denotational semanticists construe fictional
and modal truths of the object language as describing a fictional or modal
reality which is represented or constituted by more or less bizarre entities.
An obvious consequence of ontological inflation is the inflation of the ap-
plied denotational semanticist’s metaphysical agenda, since many questions
concerning the existence and the nature of these entities need then to be
addressed.

Second, the applied denotational analysis gives rise, as it seems, to prob-
lems concerning fictional and modal reference. In the former case the applied
denotational semanticist construes—perplexingly enough—nondenoting sin-
gular terms as denoting or, alternatively, as make-believedly denoting fic-
tional objects. (We shall return to these issues in Subsection 1.1.1.e.) In the
latter case he construes singular terms which occur in modal claims (e.g.,
‘Tarski could have been a violinist’) not as denoting the intuitively correct
denotata, that is, the denotata the speaker of the modal language naturally
takes himself to be talking about (e.g., Tarski), but as referring to things of a
different sort instead—to individual representatives, i.e., to possible objects
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(e.g., of the sort already mentioned) which are contained in the domains of
the intended Kripke-models and over which the quantifiers of the modal lan-
guage are taken to range. By contrast, according to the applied denotational
account of nonmodal and denoting discourse the intuition of designation is
not violated in this way, since there is no such shift of referents. For example,
on the denotational account of the truth of ‘Tarski is a logician’, ‘Tarski’ does
denote Tarski—and it is Tarski who is contained in the intended domain of
discourse. (We shall discuss the problem of modal reference more closely in
Subsection 1.1.2.h and 1.1.2.i.)

Thirdly, on the canonical interpretation of Kripke-models, which takes
the items in the intended domains of modal discourse to be possible in-
dividuals, denotational semantics does not only give rise to ontological in-
flation and reference problems. It also renders straightforward theorems
of constant domain systems of quantified modal logic problematic as the
philosophical debates concerning such well-known formulae like the Bar-
can Formula (BF), i.e., (∀x)2A → 2(∀x)A, the Converse Barcan Formula
(CBF), i.e., 2(∀x)A → (∀x)2A, and the necessitarian formula (NE), i.e.,
(∀x)2(∃y)(y = x), show. These formulae—or, more exactly, their dual
equivalents—are problematic as they require the applied denotational se-
manticist to consider the issues of possibilia, antiessentialist actualia, or ne-
cessitarianism. (These issues will be discussed in Subsection 1.1.2.d.)

Problems of this sort have motivated the rejection of constant domain sys-
tems and semantics and supported the development and acceptability of vary-
ing domain and free quantified modal logics. As is well-known, though, such
logics involve a certain amount of technical complication (concerning, e.g.,
the axiomatics or the completeness proofs). On the other hand, philosophers
who wish to retain the appealing technical simplicity of constant domain
semantics have found themselves forced to provide that semantics with ap-
plied interpretations which involve metaphysically problematic entities (e.g.,
contingently abstract objects).

Luckily, as one might think, there is an alternative to denotational se-
mantics: substitutional semantics. This sort of semantics is underlain by
the intuition of designation, too. However, it does not appeal to denotation
and satisfaction. Instead, it proceedes in terms of truth-value assignments
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to atomic sentences. This has many attractive consequences: no ontologi-
cal inflation, at least, with respect to the quantifiers of the object language;
no problems which pertain to the metaphysical nature of these inflata; no
problems with fictional or modal reference; no philosophical problems with
constant domain systems and no technical complications of modal logic. Ad-
ditionally, as is well-known, substitutional semantics does also have its ad-
vantages when quantification into quotational contexts is at stake. All these
advantages, I take it, are worth having.

But substitutional semantics has, as can be observed, a couple of disad-
vantages which are peculiar to it. As a consequence of the lack of satisfaction
and reference substitutional languages are not adequate for clarifying intu-
itions of de re modality. It is mainly for this reason—not for some argument
to the effect that there are only denumerably many names, but nondenumer-
ably many objects—that leading theorists of substitutional quantification
like Saul Kripke and Ruth Marcus have questioned the very philosophical
utility of substitutional semantics.

“[T]he intelligibility of substitutional quantification into a belief
or modal context is guaranteed provided the belief or modality is
intelligible when applied to a closed sentence. The reason is that,
in the theory of substitutional quantification [...], the truth con-
ditions of closed sentences always reduce to conditions on other
closed sentences. As Quine has pointed out, even for a context
as opaque as quotation, where no one thinks that satisfaction for
referential variables makes any immediate sense, substitutional
quantification is immediately intelligible. [...] it is the ability to
avoid all de re considerations and interpret quantifying into such
contexts solely in terms of de dicto [...] modality which has been a
principal motivation for interest in the use of substitutional quan-
tification in such contexts. The present writer, being primarily
interested in the question of de re modality, is less attracted to
substitutional quantification here, though of course I grant its
intelligibility.”2

2[Kripke, 1976] p. 375.
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For Ruth Marcus substitutional quantification

“has certain interesting uses in a semantics for fictional or mytho-
logical discourse and for discourse about putative possibilia freed
from commitment to mythical or possible objects. But it misses a
metaphysical point. Identity which is a feature of objects, cannot
be defined in such a semantics. Intersubstitutivity of syntacti-
cal items salva veritate does not generate objects, which must be
given if identity is to hold.”3

Clear enough, a philosopher who opts for substitutional semantics as the
right and proper tool for the semantical analysis of modal discourse won’t
find such theses like, say, the doctrines of rigid designation, the necessity
of identity or distinctness, essentialism, metaphysical necessity, or the nec-
essary a posteriori appealing. Similarly, he will view modal arguments for
the existence of necessary beings (e.g., God) or the identity or distinctness
of certain phenomena (e.g., mental and physical phenomena) with suspicion.
It is, as it seems to me, for de re intuitions, that denotational semanticists
reject substitutional semantics and vice versa.

There is a further, and related, reason why denotational and substitutional
semanticists alike might view substitutional semantics with dissatisfaction:
the lack of compositionality. Atomic sentences such as ‘Tarski is a logician’
certainly feel to be analysable in such a way that their truth-values be deter-
mined by the semantic values of their constituting terms. Moreover, it is nat-
ural to expect that the truthmaker of that sentence changes when ‘Tarski’ is
replaced by ‘Frege’. But on the traditional substitutional account the truth-
maker of all truths is, on the most straightforward applied interpretation, a
single undiscerning thing, the True. The problems concerning the nature of
the True and the False and other metaphysical problems notwithstanding,
the feeling is rather strong that doing semantics the substitutional way too
much is lost or left unexplained. Presumably, it is the lack of compositional-
ity with respect to atoms why denotational semantics has—in view of the lack
of suitably established alternatives—become standard among philosophers.
(These issues will be discussed in more detail in Section 1.2.)

3[Marcus, 1993 (1985/86)] p. 213.
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In effect, one might argue, as I think, that the advantages of substitu-
tional semantics (no ontological inflation with respect to the quantifiers of
the object language, no problems with fictional and modal reference and so
on) are rooted in a drawback, the lack of denotational compositionality; and
that, by contrast, the drawbacks of denotational semantics (ontological infla-
tion with respect to object language quantifiers, problems with fictional and
modal reference and so on) have their source in its advantage, the presence
of denotational compositionality. Chapter 1 will develop this “dialectic” in
more depth.

What is common to denotational and substitutional semantics is that the
assumption is made that language is being about the world and, moreover,
the assumption that denotational models and their substitutional counter-
parts represent the world as a level of reference. As I have indicated above
and as I shall argue in more detail below, these assumptions are intuitively
appealing—in particular with respect to atomic predications—when the por-
tion of the object language under consideration is wholly denotational and
nonintensional, but they become problematic, when this is not so.

In the case of fictional discourse both assumptions are clearly objection-
able. As far as the intuition of designation is concerned, a fictional truth like
‘Ulysses is a man’ is, intuitively, not about anything. Nor is it appealing,
in view of what has been already said, to assume that it is about the de-
notationalist’s fictional reality. In the case of modal discourse the situation
is slightly different. It is natural to assume that a modal truth like ‘Tarski
could have been a violinist’ is about something, i.e., about Tarski. However,
in view of the reasons mentioned above, it is objectionable to assume that
it is about the denotationalist’s modal reality. Of course, it will be also ob-
jectionable, for the reasons already given, to assume that these statements
appeal, in some sense, to the True.

The basic intuition which guides the project of this dissertation is the in-
tuition that a statement can be true without being about something. In my
oppinion, the usual denotationalist generalization of the intuition of designa-
tion to all portions of language is mistaken. In particular, I believe that the
semantics of fictional and modal (or, perhaps, intensional) language should
not be construed as being about some level of reference. Accordingly, I re-
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ject the suitability of intended denotational or substitutional models (in any
sense of ‘intended’) for the semantics of fictional and modal discourse.

The project has two main objectives, first, to explain how sentences can be
true without being true of something and, second, to provide this idea with
a formal underpinning. To achieve the letter objective, I shall propose—as
an alternative to standard substitutional semantics—an alternative substi-
tutional semantics for quantified (modal) logic, “associative substitutional
semantics” as I shall call it. This semantics retains, as we shall see, the
strengths of traditional substitutional semantics and—being compositional
also with respect to atomic formulae—avoids the intuitive weaknesses that
arise from the lack of compositionality. To meet the philosophical task, I
shall then propose an applied semantical interpretation of the associative
framework which dovetails with the intuition that guides the project.

Since the notion of compositionality involved in the formal and in the
applied associative framework to be presented will not be developed in terms
of denotation the reader who—unlike the author—believes in modality de re
and adheres to the doctrines which come with it (e.g., essentialism or the
necessary a posteriori) is not likely to find it satisfactory. At any rate, it will
be part of my project, though, to elucidate intutitions of modality de re and
the escorting doctrines from the perspective of the nondenotational theory
to be developed.

But how should fictional and modal language be understood, when it
is not viewed as being about a level of reference? Certainly, the intuition
of designation and the corresponding “descriptive” way of understanding
the relation between language and world is deeply entrenched in our minds;
perhaps so deeply that a suggestion to the effect that one may talk without
talking about something will be viewed as misguided to the degree to which
the very claim expressing this suggestion violates grammar. On the other
hand, it appears that “a robust sense of reality” (in more or less the Russellian
sense) simply dictates that a fictional truth like ‘Ulysses is a man’ is in no
way about anything. And it may seem that it is this sense of reality which is
also responsible for the received philosophical terminology which calls such
names like ‘Ulysses’ “nondenoting” or “denotation-less” terms. My proposal
is intended to be in accordance with this sense of reality.
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I wish to suggest that a fictional truth like ‘Ulysses is a man’ is better
understood as accurately “reflecting” the “meanings” of the terms which oc-
cur in it rather than being descriptive of some ontologically dubious level of
reference. Less roughly, on the theory which I shall attempt to develop, the
meanings of names are viewed as being specified by (partial or total) nom-
inal definitions and the meanings of predicates are regarded as being speci-
fied by meaning postulates of a certain sort. These definitions and postulates
serve to determine what I shall call the “sense-extensions” of the correspond-
ing names and predicates, respectively. Sense-extensions are, roughly, sets
of atomic sentences (of some natural language or, more generally, of some
language-like system). The sense-extension of a name will contain all the
atomic sentences that are built up out of that name in accordance with the
definitions and postulates; and, similarly, the sense-extension of a predicate
will contain all the atomic sentences that are built up out of that predicate
in accordance with these semantic rules as well. In this way, sense-extensions
encode, so to speak, the meaning (or the semantical essence) of names and
predicates. In fictional and in modal (or, maybe, intensional) discourse the
sense-extensions of the nonlogical vocabulary do the job denotata do in de-
noting and nonintensional discourse. The totality of the sense-extensions of
the names and predicates is, what I shall call “the level of sense”.

In the simplest case, an atomic sentence (e.g., ‘Ulysses is a man’) will be
said to be true just in case it is encoded in both the sense-extensions of the
names (here ‘Ulysses’) which are contained in that sentence and in the sense-
extension of that sentence’s predicate (‘... is a man’). Sentences which are
true in virtue of the sense-extensions of their consituting terms will be said
to be “true with respect to the level of sense”. Truth in fiction and modal
truth is, as I wish to suggest, truth with respect to the level of sense.

So far I have characterized the framework of sense-extensions only for the
case of fictional language. But what about modal language? Consider, the
modal statement ‘Tarski could have been a violinist’ again. Unlike in the
fictional case, it will be natural to think that this claim is about Tarski.
However, as mentioned above, this modal claim is, as denotational semanti-
cists construe it, implicitly about some representative of Tarski, rather than
about Tarski himself—like in the case of the nonmodal sentence ‘Tarski is a
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logician’. For, as I have already indicated above, on the denotational account
of the truth of this modal claim, the prima facie impression notwithstand-
ing, the intuitively correct referent of ‘Tarski’ (i.e., Tarski) and the ultimate
referent of the claim (i.e., an individual representative of Tarski) come apart.
In my oppinion, such observations encourage a different semantical perspec-
tive on the relation between modal language and reality, one which is not
prone to the perplexities of the denotationalist view of modal discourse. As
the reader might expect, my suggestion will be that we should view modal
discourse as being reflective, rather than descriptive. Rougly, when we talk
modally about Tarski, so my suggestion goes, we do not describe a modal
reality of any sort, rather we reflect the name ‘Tarski’ with respect to the
level of sense.

The text is divided into two parts. A part which motivates the theory
to be proposed (Chapter 1) and a part which presents it (the rest). The
presentation is splitted into two subparts, a technical portion (Chapters 2
and 3) which provides the formal framework of the theory and a philosoph-
ical portion (Chapters 4 and 5) which develops a nondenotational theory of
modality consonant with that framework.

Chapter 1, “Motivation”, discusses three ways of setting up the semantics
of quantified modal logic in truth-conditional terms: the denotational, the
substitutional, and the mixed way. It discusses, in more detail than has
been done in this introduction, the intuitions by which these approaches are
underlain and a couple of philosophical problems to which they give rise.
The discussion of that chapter helps to motivate both the formal framework
to be developed and its applied semantical interpretation.

Chapter 2, “Associative Substitutional Semantics”, proposes, as an al-
ternative to standard substitutional semantics, a model-theoretic semantics
for a modal substitutionally quantified first-order language with “substitu-
tional identity” which allows to explain the contribution of the terms and
predicates to the truth value of atomic formulae and which does not suggest
that the modal object language might be viewed as being about objects.
This framework modifies and extends the account of substitutional quantifi-
cation given in [Kripke, 1976]. The semantic values of terms and predicates
(the “associates” as I shall call them) are sets of certain atoms of the sub-
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stitutional base language. (These associates are the formal counterparts of
“sense-extensions”.) The chapter provides soundness and completeness re-
sults for various constant and varying substitution class axiom systems.

Chapter 3, “Constrained Associative Semantics”, imposes formal con-
straints on the admissibility of associative models. Also it introduces “aspec-
tualized” 2-ary predicates and suggests a solution to the problem of asym-
metrical essential relations which has been recently presented in [Fine, 1994]
in terms of the constrained associative framework.

Chapter 4, “Applied Associative Semantics”, provides an applied inter-
pretation of associative semantics developing it as a semantics for the level
of sense. The chapter introduces two modes of evaluating sentences— the
referential and the nonreferential mode—suggesting that denotational seman-
tics is at best an adequate semantics for truth with respect to the level of
reference —but only for the rather small portion of wholly referential and
transparent discourse. It explains the central notions of the applied asso-
ciative framework: the notion of sense-extension, the notion of the level of
sense, the principles which govern that level, the notion of truth with respect
of the level of sense, and the notion of definitional necessity. Moreover, the
chapter links ordinary modal truth with truth-in-an-associative-model prov-
ing a connecting theorem along the lines of [Chihara, 1998]. As a further
result, the chapter connects up the notion of truth with respect to the level
of sense with the notion of truth with respect to the level of reference by
proving the straightforward Level Connecting Theorem. The chapter closes
with a discussion of a couple of issues in the philosophy of quantified modal
logic and in the philosophy of language (e.g., the problem of primitive modal-
ity, ontological commitments, actualism and possibilia, necessitarianism, the
problem of transworld identity, truth in fiction, negative existentials, and
the prospects of modal existence and distinctness arguments in philosophical
theology and in the philosophy of mind, respectively) from the perspective
of the nonreferential theory.

Finally, Chapter 5, “Integrated Associative Semantics”, connects—taking
up a motif from Christopher Peacocke’s recent work on modality—the truth
conditions for statements of definitional necessity with the conditions for
modal knowledge by exploiting the principles which govern the level of sense.
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A brief discussion of how the nonreferential semanticist of the present ap-
proach can make sense of Kripke’s notion of a posteriori necessity concludes
the chapter.
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Chapter 1

Motivation

The purpose of this chapter is to motivate the framework of associative sub-
stitutional semantics (see Chapters 2 and 3) by isolating a couple of problems
which pertain to the standard formulations of denotational and substitutional
semantics of (modal) first-order logic. We shall discuss denotational seman-
tics first (Section 1.1), and then turn to substitutional semantics (Section
1.2) and to mixtures of the denotational and substitutional account (Section
1.3.). In the final section we shall highlight the main semantical features of
the associative framework against the background of these discussions.

1.1 Denotational Semantics

1.1.1 Nonmodal Denotational Semantics

1.1.1.a Formal Nonmodal Denotational Semantics

A nonmodal denotational first-order formal language Ld is a pair 〈Alph,Gram〉
where the first element is an uninterpreted first-order alphabet of a denu-
merable stock of individual terms (i.e., individual constants α, β, ... and in-
dividual variables x, y, ...), n-ary predicates ϕn, χn, ... logical constants (¬
for negation, ∧ for conjunction, ∨ for disjunction, → for the material con-
ditional, and ↔ for the material biconditional), referential quantifiers, the
universal referential quantifier, (∀x), and the particular referential quanti-
fier, (∃x), and parentheses (, and ). The second element of Ld is a grammar
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which generates the well-formed formulae of that language from Alph in the
standard way. A language whith identity, Ld=

will be obtained, when the
alphabet of Ld is supplemented with the identity predicate = and the gram-
mar with the usual formation rule. Ld is called “denotational” (hence the
superscript), since it will be later distinguished from a “substitutional” lan-
guage Ls which is syntactically identical to Ld, but which differs from that
language in that its quantifier symbols (Π instead of ∀, and Σ instead of ∃)
and the symbols for the variables (x, y, ... instead of the underlined deno-
tational counterparts) differ typographically. This typographical distinction
indicates that the referential and substitutional quantifiers (written (Πx)

and (Σx), respectively1) are intended to receive a different semantics and it
also helps to avoid ambiguities when languages are considered which contain
these two kinds of quantifier (see Section 1.3). Analogous remarks apply to
substitutional counterparts of Ld=

which use different symbols for identity
predicates.

The truth of the formulae of Ld is defined in terms of ordinary first-
order denotational models (or “Tarskian models” as we shall also say). A
denotational model T is a pair 〈D, v〉 whose first element, the domain, is
a non-empty (possibly nondenumerable) set of objects (notation: d1, d2, ...)
and whose second element is a valuation function which assigns elements ofD
to the individual constants of Ld and which assigns to the n-ary predicates of
that language n-tuples of elements of D . The valuation function v provides,
so to speak, a denotational link between the language and the objects in
the domain which are the denotata of the individual terms and sets of such
denotata which are extensions of the predicates of Ld. The notion of a
variable assignment δ and its variants for a model is defined in the usual
way. Truth in T for formulae of Ld is defined by the usual recursion. In the
simplest case, an atomic formula composed from an 1-ary predicate and a
constant, is true in T just in case the semantic value of the constant is an

1This way of writing the substiutional quantifiers is taken from [Kripke, 1976]. The
symbols are not exactly the ones used by Kripke since he uses unitalicized letters as
substitutional variables. (Since substitutional variables will play the more important role
in the present setting, we shall reserve the usual italic way of writing variables for the
substitutional case.)
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element of the value of the predicate.

It is one thing to use a model-theoretic semantics as a formal device to
model a formal language. It is another to use a model-theoretic semantics to
interpret a meaningful language (or language-like system). In the first case
we are concerned with formal semantics just in the way in which we provided
the formal language Ld with models. This way of doing semantics is usually
taken to be appropriate to explain what the validity of a formula comes to,
but it is typically regarded as inappropriate if the meanings of sentences of
interpreted languages are to be elucidated. What is crucial for that purpose
is applied semantics.2

1.1.1.b Applied Nonmodal Denotational Semantics

Unlike truth in T , truth simpliciter is usually regarded as a semantic prop-
erty of declarative sentences of interpreted or meaningful languages (e.g.,
natural languages like German or idealizations of such languages). Whether
a sentence of a natural language is true or false is naturally taken to de-
pend upon first, the meaning of the expressions from which that sentence is
composed and, second, upon the world. We may view all the sentences of a
natural and thus meaningful ordinary language as being generated from an
alphabet of that language by its grammar in a way analogous to Ld; and we
may take it, for simplicity, that for each sentence of the ordinary language
there is exactly one formula of Ld which symbolizes it accurately capturing
its logical form.

How is truth simpliciter related to truth in T ? According to the fun-
damental intuition by which denotational semantics is driven, meaningful
languages are about the world: the names of such languages are taken to
refer to objects in the world, the predicates are taken to be satisfied by them
and the sentences are taken to be true of them.

According to Tarski’s own philosophical remarks on the notion of satis-
faction, this intuition seems to be almost defining of the term ‘semantics’.
“Semantics is a discipline which, speaking loosely, deals with certain relations

2The distinction between pure (or formal) and applied semantics has been emphasized
most notably in [Plantinga, 1974]; see, in particular, section 7.4.
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between expressions of a language and the objects (or “states of affairs”) “re-
ferred to” by those expressions.”3 Tarski’s “semantic” concepts of denotation
and satisfaction correlate, so to speak, the object language and the objects
that language is about. Thus “the expression ‘the father of his country’
designates (denotes) George Washington” and “snow satisfies the sentential
function (the condition) ‘x is white’.” And, as Tarski points out, his defini-
tions of Convention T, satisfaction and truth simpliciter “refer not only to
sentences themselves, but also to objects «talked about» by these sentences,
or possibly to «states of affairs» described by them.”4

The intuition of designation, that is, the intuition that language is about
the world is mirrored in the way in which the connection between truth
simpliciter and truth in T is established. It is usually established in terms
of the notion of an intended model T ∗ = 〈D∗, v∗〉. The first element D∗

is the set of the real world objects over which ordinary language quantifies
(understood referentially) range and the second element v∗ is a reference
function which assigns referents, that is, objects from D∗, to the singular
terms of the natural language, and which assigns to the predicates of that
language tuples of referents as their actual extensions. The link between truth
simpliciter and truth in T is then captured by the following biconditional. A
natural language sentence is true simpliciter if and only if the formula A of
Ld which symbolizes that sentence and is suitably provided with its meaning
is true in the intended model T ∗.
The applied semantical interpretation of the nonmodal denotational frame-

work gives rise to a couple of problems, though.

1.1.1.c The Problem of Ontological Inflation

A central problem of denotational semantics is the problem of ontological
inflation. The denotationalist’s quantifier, of course, is the referential or ob-
jectual quantifier. This conception of quantification works in an intuitively
correct way when referring terms are under consideration. But it loses much
of its intuitive appeal when nondenoting terms are involved even in so un-
compromising nonfictional and nonmodal truths like
3[Tarski, 1944] p. 345.
4Ibid. (The variable in the quoted fragment is, of course, referential.)
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(1) ‘A statue of Venus is in the Louvre’.

For, on the straightforward construal, the denotational semanticist incurrs
an ontological commitment to a Greek goddess when he paraphrases (1) as
(∃x)(A statue of x is in the Louvre). As Ruth Marcus puts it:

“The standard [i.e., denotational] semantics inflates the mean-
ings of sentences it paraphrases, those, for example, that did not
originally have the existential import they acquire on such para-
phrase.”5

Part of the problem of ontological inflation then is to account for the nature
of the inflata.

1.1.1.d The Problem of Nonmodal Reference

A corollary of the problem of ontological inflation in nonficitional and non-
modal discourse is the problem of nonmodal reference. The problem consists
in the fact that, on an accurate paraphrase, the denotational semanticist
must construe occurrences of nondenoting names like ‘Venus’ in such out-
right truths like (1) as denoting some prima facie not intended referent.

1.1.1.e Denotational Semantics of Fiction

Related problems arise for the denotational semantics of fictional discourse.
It seems that a claim like, for example,

(2) ‘Laertes is the father of Ulysses’

is intuitively true; rather than false, or undetermined, or of no truth value.

Currently there seem to be basically two ways of explaining the truth
of such claims like (2): the “object theoretic” and the “pretence theoretic”

5[Marcus, 1993 (1972)] p. 82. The above example is Marcus’s. As Ede Zimmermann
suggested to me ‘The Louvre contains a statue of a Greek goddess’ would be a happier
example, since ‘Venus’ is obviously not a quantifier.
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approach.6 (Of course, both approaches may be mixed in some way, but we
shall be content to summarize the pure views.) Both approaches appeal to
the intuition of designation, but they do so in very different ways.

On the object theoretic approach, the intuition of designation is preserved
without modifications: fictional discourse is viewed as being descriptive of
some reality of fictional objects.7 Accordingly, (some version of) denotational
semantics is accepted as the proper tool of analysis for the semantics of
fictional discourse. Thus, for an object theorist, to accept the truth of (2) is
to incurr an ontological commitment to fictional objects of some sort to which
‘Laertes’ and ‘Ulysses’ are taken to refer. Usually such fictional objects will
be either, possibila of some sort or some abstract actually existing surrogates
for them. In this way the problem of ontological inflation finds its way into
fictional discourse.

Moreover, the problem of fictional reference, as we shall call it, arises.
It can be put as follows. The denotational semanticist of fiction construes
fictional names that occur in fictional stories as referring even though these
names do intuitively not refer. To put it paradoxically—nondenoting names
are viewed as being denoting. This problem has a connotation which is
slightly different from the problem of nonmodal reference. For the latter
problem arises in the context of intuitively referential discourse about ordi-
nary things like statues, wheras the latter arises in the context of intuitively
nonreferential discourse.

Pretence theoretic approaches to fictional discourse8 appeal to the intu-
ition of designation as well, but they do so only in an oblique way, namely
make-believedly. Very roughly, for the pretence theorists stories like, e.g., the
Homeric epics (i.e., the Iliad and the Odyssey) count as fiction if there is a
prescription in a game of make-believe (of pretence, or of imagination) which
requires the appreciators to pretend that there are objects such that names
6The terminology is taken from [Everett & Hofweber, 2000] p. xv. Their recommend-

able anthology [Everett & Hofweber, 2000] includes recent papers on the topic and an
extensive bibliography.
7Among the most prominent object theorists, more specifically, among those who have

provided book-length contributions are Terence Parsons (see his [Parsons, 1980]) and Ed-
ward Zalta (see [Zalta, 1988]).
8See, in particular, [Currie, 1990] and [Walton, 1990].
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like ‘Laertes’ and ‘Ulysses’ that occur in the texts of the epics directly refer
to those objects and that sentences like (2) describe them. A sentence like
(2) is then said to be true in a fiction just in case there is a prescription that
it is to be made-believe by the appreciators. It is save to claim, I think, that
pretence theorists are primarily concerned with what speakers say in utter-
ing such sentences like (2) rather than with what those sentences themselves
mean or which propositions they express. So the pretence theorist’s primary
subject is the fictional use of language, rather than the semantics of fictional
statements.

Edward Zalta, an object theorist, insists that sentences like (2) should be
viewed as being false, and that they are true only when prefixed with an ap-
propriate ‘in-the-fiction’-operator (like ‘In the epic Odyssey ...’). He argues
that pretence theorists should be able to account for the semantics of such
operators and seems to presuppose that an adequate account would treat
them as intensional operators along the usual denotational lines of possible
worlds semantics. But this would require a commitment to fictional objects.9

For in case a denotational account of the logical behaviour of fictional oper-
ators is called for to make them respectable, the pretence theorist of fiction
will have to face the problems of ontological inflation and fictional reference
as well.

It would be desirable, I believe, to have a theory of fictional discourse,
which, in contrast to pretence theory, accounts for the semantics of fictional
statements and which, in contrast to object theory, does so without appeal
to fictional objects. (I shall make suggestions—much later—in Chapter 4.)

1.1.2 Modal Denotational Semantics

1.1.2.a Formal Modal Denotational Semantics

To obtain a denotational first-order modal language Ld=2

we add the inten-
sional box-operator2 to the alphabet of Ld=

and the corresponding formation
rule to the grammar of that language.

9See [Kroon, 1992] p. 516, note 22.

7



A model of first-order modal denotational semantics (or possible worlds
semantics) is the usual kind of tuple K = 〈S,R,D, d, v〉, where S is a non-
empty set, R ⊆ S × S, D is a non-empty set, d is a function from S to
subsets of D, where D =

⋃
s∈S d(s). In view of the influential [Kripke, 1963],

we shall call such models, following common practice, “Kripke-models”.10

A Kripke-model which satisfies the constancy condition (i.e., d(s) = D for
every s ∈ S) is a constant domain Kripke-model; otherwise it is a varying
domain model. v is a function which takes each individual constant of Ld=2

to a member of D. Moreover, v takes pairs containing an n-place predicate
as their first member and an element of S as second member to n-tuples of
elements of D. The function δ takes each individual variable x, y, ... of Ld=2

to a member from D of the model K. Variants of δ are defined in the usual
way. Let j be a metavariable ranging over the individual terms of Ld=2

and
let the notion of a value of an individual term j with respect to the valuation
v of the model and the assignment δ, that is vδ(j) be defined as usual. Then
Kδ |=s ϕ

nj1...jn just in case 〈vδ(j1), ..., vδ(jn), s〉 ∈ v(ϕn) and so on in the
usual recursive way. In particular, Kδ |=s 2A if and only if Kδ |=t A for
every t ∈ S such that sRt. Among the philosophically prominent theorems
of constant domain systems are the following formulae:

BF (∀x)2A→ 2(∀x)A;
CBF 2(∀x)A→ (∀x)2A;
NE (∀x)2(∃y)y = x.

(We shall discuss these formulae shortly in Subsection 1.1.2.d.)

There are various alternatives to constant domain Kripke-models. If we
drop the constancy condition we obtain varying domain Kripke-models. We
may distinguish two subspecies of such models: monotonic and antimono-
tonic. The former satisfy the requirement that for all s, t ∈ S, if sRt then
d(s) ⊆ d(t), whereas the latter satisfy the condition that for all s, t ∈ S, if
sRt then d(t) ⊆ d(s). The choice of the model may lead to changes in the
evaluation clauses for the quantifiers and to the invalidation of the Barcan

10The standard reference for quantified modal logic is the textbook
[Hughes & Cresswell, 1996]. See also [Fitting & Mendelsohn, 1998].
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Formula (BF), its converse (CBF), and the formula NE formula. BF is in-
validated in case the model is not antimonotonic, CBF is invalidated when
the model is not monotonic, and when CBF is invalidated so is NE.

A further alternative to constant domain semantics does not consist in
modifying the interpretations of the members of the Kripke-model, but in
supplementing it with additional sets. A well-known alternative of this
kind is the semantics of disjunctive domain Kripke-models which takes up
elements from David Lewis’s counterpart theory.11 Counterpart-theoretic
Kripke-models reflect the view that every index is equipped with its own
domain of objects and that these domains never overlap. (Kripke-models of
this sort form the other extreme of constant domain Kripke-models which
say, in effect, that every index is equipped with exactly the same objects.)
In such models the function d assigns disjoint subsets of D to each world;
more exactly, d satisfies the condition that when s 6= t, then d(s) ∩ d(t) = ∅.
Crucially, counterpart-theoretic models involve a relation, C, which is called
“counterpart relation” as a further element. The counterpart relation C is a
relation on D. xCy says that object x is a counterpart of object y at another
index. C satisfies the constraint that if x and y are elements of d(s), then
xCy just in case x = y. Like R, C may be taken to exemplify various logi-
cal properties. Independently of its logical properties, C is usually taken to
satisfy the condition that every object has exactly one counterpart at every
index. The valuation clause for formulae which have 2 as their main logical
connective says that Kδ |=s 2A just in case Kζ |=t A for every t ∈ S such
that sRt and for every assignment ζ such that for every referential variable
x free in A, δ(x)Cζ(x) and ζ(x) ∈ d(t).12

11See [Lewis, 1983 (1968)].
12Hughes and Cresswell have shown that given, first, that C is an equivalence rela-
tion and, second, that every individual has a counterpart at every index the quantified
modal logic of counterpart theory coincides with the logic which validates BF. If C is
taken to be reflexive only, then simple K-theorems can be invalidated. See the discus-
sion in [Hughes & Cresswell, 1996] pp. 353-358 and the references therein. David Lewis,
however, prefers—in particular, because of considerations of expressive power—to use the
resources of counterpart theory and his possibilist doctrine of modal realism as developed
in [Lewis, 1986] directly without appeal to modal operators; see ibid. pp. 12-13.
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1.1.2.b Applied Modal Denotational Semantics: “Canonical”

But what is the connection between truth in K and modal truth? Just like
in the nonmodal case the truth of modal sentences of natural languages is
taken to be determined by two factors: the meanings of the expressions and
reality. But now the reality is “modal reality”.13

Usually this reality is taken to be represented by an intended Kripke-model
K∗ which is a tuple 〈S∗, s@, R∗, D∗, d∗, v∗〉. According to the “canonical”
articulation,14 such a model consists out of the following elements: S∗ is the
set of all possible worlds; s@ is the actual world, R∗ is a relation of accessibility
on the set of all possible worlds; D∗ is the set of all possible individuals;
d∗ is a domain function which assigns to each possible world a domain of
individuals which exist at that world, v∗ is a valuation function that assigns
to each name an individual from the set of all possible individuals and to
each predicate an extension at each possible world. The function δ assigns
to each individual variable an object from D∗ of the model K∗. A sentence
A is said to be true in K∗ just in case it is true in K∗ at s@ under δ. The link
between the absolute notion of truth simpliciter and the relative notion of
truth in K is then captured by the following claim: A sentence of regimented
ordinary modal language is true simpliciter if and only if the formula A
of Ld=2

which accurately symbolizes the sentence and is suitably provided
with its meaning is true in the intended Kripke-model K∗. In this way, the
relationship between Ld=2

and the intended Kripke-model K∗ corresponds
to the relation which obtains between ordinary modal language and modal
reality which is represented by K∗.

The denotationalist preservation of the intuition of designation with re-
spect to modal language is nicely reflected in the following passage:

“Modal language, as such, is directly about an independent real-
ity (...), and the relationship between the formal language and the
intended model exactly mirrors the relationship between ordinary
modal language and the reality that grounds modal truth.”15

13See, for example, [Menzel, 1990] p. 359.
14See [Plantinga, 1976] pp. 139-142 for the locus classicus.
15[Linsky & Zalta, 1994] p. 450. This quotation seems to reflect common sense. See also
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So whereas the applied denotational semanticist takes nonmodal language
to describe the actual world and the actual objects, he conceives of modal
language—according to the “canonical” account—as describing a reality as
represented (or constituted) by possible worlds and possible individuals.

1.1.2.c The Problem of Ontological Inflation: the Canonical Case

According to a plausible and widely shared assumption, the proponent of
a semantic theory is committed to the existence of those entities which are
involved in his account of truth.16 Taking it that S∗ contains other worlds
than the actual one and that D∗ need not contain only the actual individuals,
the canonical applied semanticst is committed to the existence of alternative
possible worlds and individuals.

Moreover, on the assumption that the speaker of the object language is
committed to the existence of the things over which the quantifiers of the
object language range, the speaker of the modal language is committed to
the existence of the items which are contained in the intended domain of
discourse of that language.

1.1.2.d Philosophical Issues in Denotational Quantified Modal Logic

The canonical articulation of first-order denotational modal semantics which
preserves the intuition of designation poses several well-known problems for
the philosophical interpretation of quantified modal logic. We shall first
consider constant domain semantics, in which the Barcan Formula (BF), its
converse (CBF), and the NE formula are all valid.

According to the canonical account, to endorse the truth of the formula
3(∃x)ϕx→ (∃x)3ϕx, which is equivalent to an instance of BF, and its an-
tecedent seems to involve an ontological commitment to the actual existence
of antiessentialist actualia as we shall call them. So, for example, when ϕ

[Stalnaker, 2003 (1997)] p. 169 (“Whatever one’s metaphysical beliefs about the reality
that modal discourse purports to describe, ...”).
16See, for instance, [Menzel, 1990] p. 363, [Linsky & Zalta, 1994] p. 38, or
[Chihara, 1998] pp. 2-3.
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is taken to have the meaning of ‘... is a harpy’, then, accepting that for-
mula and its antecedent, one will be committed to the view that among the
actually existing individuals there is one which is possibly a harpy. If this
individual is taken to be concrete, that view will be problematic, at least on
the assumption that every individual, has its fundamental kind properties
essentially.17

A further problem with the Barcan Formula is that its acceptance, for
example in the form of 3(∃x)A → (∃x)3A, seems to violate the intuition
that there might have been some possible individual which is distinct from
every actual individual (e.g., Prince William’s older sister).

Finally, the converse of the Barcan Formula, CBF, does allow for the
derivation of NE, i.e. (∀x)2(∃y)(y = x). According to the canonical reading,
this formula says, in effect, that everything does necessarily exist. The truth
of this claim—which amounts to a sort of necessitarianism, a view usually
attributed to Leibniz—violates the intuition that there are individuals (e.g.,
Prince William) which might not have existed.18

It is, in part, philosophical perplexities of this sort which have motivated
the development of varying domain axiom systems and semantics. However,
on the canonical reading such systems are problematic as well. Thus, for
example, to endorse the truth of 3(∃x)ϕx ∧ ¬(∃x)3ϕx, which is equivalent
to the negation of BF, leads to the acceptance of the claim that there is an
individual in the domain of some possible world which is not contained in the
domain of the actual world. If, for instance, ϕ is taken to mean ‘... is made
out of matter’, then one seems to be committed to the view that there is a
merely possible material individual which does not actually exist. On the
canonical reading, then, the rejection of BF seems to involve a commitment
to the existence of possibilia, that is, roughly, to things which there are, but
which are not actual. Clearly, since the intended domains of counterpart-
theoretic Kripke-semantics are disjoint, it will be obvious how possibilia can
sneak into the canonical interpretation of that semantics. (We shall deal with
possibilia and possibilism in more detail in Subsection 1.1.2.g.)

17A view to this effect seems to be endorsed in [Marcus, 1993 (1985/86)].
18For an illuminating discussion of the philosophical issues raised by the constant domain
theorems BF, CBF and NE see [Linsky & Zalta, 1994].
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No matter which sort of Kripke-semantics is chosen, there are problems
with the interpretation of certain kinds of modal formulae. For example, to
subscribe to the truth of a formula like (∃x)2ϕx where the predicate is taken
to have the meaning of ‘... is a man’, amounts, according to the canonical
interpretation, to the endorsement of an essentialist claim to the effect that
there is at least one actual individual which necessarily has the property
of being a man. The proponent of quantified modal logic, then, seems to
be committed to essentialism, the doctrine that things can have essential as
opposed to merely contingent properties.
As a corollary to the endorsement of essentialism, the advocates of such

de re necessities like (∃x)2ϕx, seem to be committed—in view of the usual
natural language interpretation of the box-operator—to the assumption that
there are statements or propositions which are true ofmetaphysical necessity ,
i.e., propositions which are true—as we might put it following [Fine, 1994]—
in virtue of the natures (or essence) of the objects they are about. (The
notion of metaphysical necessity will be discussed also in Subsections 4.2.13
and 4.5.3.)
Further problems which arise on the canonical interpretation of intended

Kripke-models in connection with de re modal claims (i.e., claims in which
the modal operators occur in the scope of a quantifier, such as (∃x)2ϕx, or
atomic sentences which are prefixed with these operators), are the problems
of the transworld identity of indivduals (i.e., the metaphysical problem of
explaining how one and the same individual can be contained in the domain of
different possible worlds and thereby exist at more than one world) and of the
transworld reidentification of individuals (i.e., the epistemological problem of
reidentifying an individual at various possible worlds).19 Needless to say, such
transworld problems do not arise when the Kripke-models are counterpart-
theoretic. (We shall return to transworld problems later in Chapter 4.)

1.1.2.e Applied Modal Denotational Semantics: “Paradigmatic”

The “paradigmatic” articulation of intended Kripke-models, as I shall call
it, differs from the canonical account only in that it is neutral on what the
19See, in particular, [Divers, 2002] ch. 16 (and the references therein) for a discussion
of the problems of transworld identity and reidentification.
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items contained in S∗ and D∗ are. Crucially, the elements of the latter set
are now possible objects, and these need not be individuals.

1.1.2.f The Problem of Ontological Inflation: the Paradigmatic
Case

On the assumption that a semantic theory is committed to the existence of
those entities which are involved in his account of truth, the paradigmatic
applied semanticist of intended Kripke-models is committed to the existence
of possible worlds of some (i.e., possibilist or actualist) sort and to possible
objects (i.e., to possibilia or, alternatively, to actualistically acceptable indi-
vidual representatives of some brand). (We shall say more on these entities
in the next Subsection.)

Moreover, on the assumption that the speaker of the object language is
committed to the existence of the things over which the quantifiers of the
object language range, the speaker incurrs an ontological commitment to the
items which are contained in the intended domain for the quantifiers of that
language—that is, to possible objects.

1.1.2.g Actualism and Possible Worlds

As I wish to understand the paradigmatic account, it does (i) not speak to
the question of whether the models should be construed in accordance with
possibilism or not, it is (ii) neutral on the question of whether the domains
should be constant; and it does (iii) not take a stance on the exact metaphys-
ical nature of possible worlds and possible objects contained in the intended
index sets and domains, respectively. Let me explain these points one after
another.

Possibilism. The metaphysical details of the paradigmatic articulation of
applied Kripke semantics can be spelled out in a possibilist or in an actualist
fashion. There seem to be at least three ways in the literature in which
the thesis of possibilism, that there are things that are not actual, can be
understood.20

20See [Linsky & Zalta, 1994] and [Menzel, 2000] for a survey.
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According to one of them, the “existence view”, as we might call it, we
need to distinguish between the things which there are and the things which
exist. On this way of understanding possibilism, then, to endorse possibilism
is to accept the thesis that there are things that do not exist. Possibilists of
this brand insist that the existential quantifier, (∃x), does not have existential
import and is to be read in the sense of ‘there is’. In order to be in a
position to express existence claims proper, they introduce an extra existence
predicate, E!. This predicate is primitive, has the meaning of ‘exists’, and its
extension may vary across possible worlds just like the extension of a usual
predicate does.

Unlike the advocates of the existence view of possibilism, the proponents
of the “actuality view”, as we might call it, construe the thesis of possibilism
as claiming that the existential quantifier, (∃x), does indeed have existential
import and thus allows for the expression of existence claims. However, they
take it that there are two groups of objects which exist. There are, on the one
hand, the existing objects which are actual, and the existing objects which are
not actual, on the other hand. Possibilists who endorse the actuality view
thus construe the thesis of possibilism as claiming that there are existent
things which are not actual.

There is a further way of understanding the thesis of possibilism, the “in-
dexical view” for short. On this view, to endorse that thesis, is to claim
that there are things that are parts of worlds other than the one we inhabit.
A view of this sort has been famously held by David Lewis. His worlds
are, roughly, universes of the same robust kind as ours which, however, are
spatiotemporally isolated from our universe. This view may be called “in-
dexical”, because its proponents take the word ‘actually’ to be an indexical
expression, taking its reference to be determined by the Lewisian world in
which it is uttered.

Given these three ways of construing the thesis of possibilism, we may
distinguish three kinds of possibilia: first, possibilia qua things that are but
do not exist; second, possibilia qua things that exist but are not actual; and,
thirdly, possibilia qua other-worldly things. The actualist refuses a commit-
ment to the first kind of possibilia, because—as I wish to understand him—he
does not find the distinction between ‘there is’ and ‘exists’ intelligible; he re-
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jects the second kind, because he takes existence to be just actual existence,
and he rejects Lewisian possibilia, because he thinks—for some reason—that
there is just one world of the Lewisian sort, to wit, ours.

Actualism may then be defined as the view which (unlike the existence
view of possibilism) takes the quantifiers to have existential import and which
(unlike the actuality view) takes existence to be actual existence, and which
(unlike the indexical view) takes it that unrestricted quantification just is
quantification over what is actual. Thus the thesis of actualism claims that
unrestrictedly everything that exists (or, equivalently, everything there is) is
actual.21

There is a certain distinction that actualists like to draw which might be
confused with a distinction made by possibilists who endorse the actuality
view. The distinction is the one between the things which exist and the things
which are actualized (in some sense or other). This actualist distinction does
not coincide with the possibilist’s distinction between the things which exist
and the things which are actual, for the former unlike the latter presumes, as
one might expect in view of the above definition of the actualist thesis, that
the word ‘exists’ is to be understood in the sense of actual existence. So the
actualist is free to claim that not every actually existing thing is actualized.22

Domains. On the paradigmatic account the choice of possibilism or actu-
alism is independent of one’s choice as to the variability of the domain of the
intended Kripke-model.

Thus, for instance, constant domain applied semantics may be used by
possibilists and actualists alike. For example, an actuality view possibilist
might take the domain D∗ of the constant model to contain both the things
which exist and the things which do actually exist and read NE, the for-
mula which is characteristic of constant domain axioms systems, as saying
that everything exists necessarily, but not as asserting that everything is

21Our formulation of the thesis of actualism is a slight modification of the definition
offered in [Linsky & Zalta, 1994] p. 434. It adds that ‘everything’ is to be understood in
the unrestricted sense explained above.
22This claim is usually made by actualists who find BF problematic, because it seems
to offend the intuition that there could be things distinct from the actual things.
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actual necessarily. By contrast, an actualist, for instance, the actualist of
[Linsky & Zalta, 1994],23 will view the domain as containing only actually
existing objects (more exactly, concrete objects, contingently nonconcrete ob-
jects, and necessarily nonconcrete objects). And he will say that NE claims
that everything does necessarily exist (in the actualist sense), but that not
everything is necessarily concrete.24

Similarly, varying domain intended Kripke-models may be deployed by
possibilists and actualists alike. So a possibilist who endorses the actuality
view might take D∗ to contain all the objects which exist. And he might take
d∗(s@) to contain all the objects which do actually exist. Given that d∗(s@)

is a proper subset of D∗, there will be existing objects, which do not actually
exist. By contrast, an actualist will avoid a commitment to nonactual objects.
He will claim that D∗ contains all the existing (i.e., actually existing) objects
(e.g., Plantingan haecceities) whereas d∗(s@) contains the existing objects
which are also actualized (e.g., the haecceities which are exemplified in the
actual world).25

Analogous remarks apply to intended Kripke-models with disjoint do-
mains. A possibilist might wish to say that only d∗(s@) contains existing,
actually existing, or this-worldly objects, whereas the other domains contain
possibilia of the corresponding sort. The actualist, on the other hand, might
employ such a semantics making a claim to the effect that all domains con-
tain actually existing objects but that only d∗(s@) contains the ones which
are actualized in some sense.

Preferences may vary. However, it will be uncontroversial that from a
purely technical point of view constant domain semantics and systems are
most appealing, since such systems are straightforward extensions of stan-
dard first-order logic and do neither involve changes of the first-order axioms
and rules, nor changes in modal rules and thus no complications of complete-
ness proofs.26

23Linsky and Zalta endorse possibilism; see [Linsky & Zalta, 1994] p. 431.
24See [Linsky & Zalta, 1994] p. 448.
25For Plantinga’s account see [Plantinga, 1974] and [Plantinga, 1976]. A formal un-
derpinning for this account which has been endorsed by Plantinga, is presented in
[Jager, 1982].
26For Timothy Williamson such complications even are “a warning sign of philosophical
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Possible Worlds and Possible Objects. As the previous discussion did al-
ready suggest, the paradigmatic articulation of intended Kripke-models is not
only neutral on the issue of possibilism vs. actualism. It is also neutral on the
question of what kind of thing the elements of S∗, the possible worlds, and
D∗, the possible objects are. According to current metaphysics of possible
worlds, possible worlds (or ways the world might have been) are taken to be
either concrete worlds of the same kind as ours or, alternatively, abstract rep-
resentations of ways our world might have been. Correspondingly, possible
objects are taken to be either concrete individuals, or alternatively, abstract
individual representatives of some sort. The ontological commitments which
denotational modal semanticists who adhere to intended Kripke-models in-
cur are reflected, more closely, in the truth conditions which they offer for
modal sentences. Consider, for example, the following accounts of the truth
conditions of a sentence like

(3) ‘Tarski could have been a violinist’:

(i). (3) is true just in case there is a maximal consistent state of affairs (i.e.,
a Plantingan world) in which the haecceity of Tarski, Tarski-eity, is coex-
emplified with the property of being a violinist.27 (ii). (3) is true exactly if
there is a maximal consistent set of propositions (i.e., an Adams-style world)
which contains the proposition that Tarski is a violinist.28 (iii). (3) is true
if and only if there is a possible world such that Tarski is concrete at that
world and is a violinist.29 (iv). (3) is true just in case there is a complete
complex property (e.g., a Stalnaker-style world) which would render ‘Tarski
is a violinist’ true if that property where instantiated by the actual world.30

(v). (3) is true just when there is at least one combinatorial rearrangement
of our physical world, e.g. an Armstrongian world, i.e., a rearrangement of
the actual individuals and their actually instantiated properties and relations

error” ([Williamson, 1998] p. 262).
27See [Plantinga, 1976].
28See [Adams, 1979 (1974)].
29See [Linsky & Zalta, 1994]. A view like this is also endorsed in [Williamson, 1998].
30See [Stalnaker, 2003 (1976)] p. 28.
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which renders ‘Tarski is a violinist’ true—more exactly, Armstrongian worlds
are rearrangements of possible atomic states of affairs.31 (vi). (3) is true if
and only if there is a concrete possible world which is of the same kind as
our universe, a mereological sum of concrete individuals, which is spatiotem-
porally isolated from our world and which has as its part a flesh-and-blood
individual which resembles Tarski in almost every detail and which is a vio-
linist in that universe.32

Of course, the exact explications of the metaphysical issues involved in
these accounts of the truth conditions of modal statements, e.g., concerning
the nature of possible objects, the constitution of possible worlds (i.e., the
problem of how possible worlds are built up by worldmaking elements, in
case they aren’t ontological simples) or, say, the way they represent (i.e., the
problem of how a world represents that something is true at it) do involve
much work indeed. However, for our purposes we need not go into these
issues any further.33

1.1.2.h The Problem of Modal Reference

The intuition of designation is preserved in Kripke’s transference of Tarskian
semantics from nonmodal to modal formal languages. As mentioned earlier,
the semanticist of intended Kripke-models views ordinary modal language
as describing a modal reality which is represented by possible worlds and
possible objects of some sort. Unlike in the nonmodal case, the intended
domains of discourse for modal language do not contain the individuals sin-
gular terms as used in modal talk are naturally taken to refer to. They
contain, at least on a paradigmatic construal (which does not take the items
in the intended domains to be individuals, as is the case on the canonical
account for Kripke-models which are not of the counterpart-theoretic sort)
representatives of these individuals. In effect, the denotational semanticists
of intended Kripke-models shift the referents of singular terms in modal dis-
course by letting the domains contain representatives of the natural referents

31See [Armstrong, 1989].
32See [Lewis, 1986].
33The reader might wish to consult [Divers, 2002] for an in-depth comparative study of
major realist approaches to the metaphysics of possible worlds.
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and not these referents themselves. We shall call this the problem of modal
reference. Here is a brief illustration.

Due to the intuition of designation, the name ‘Tarski’ in (3) should be
taken to refer outright to Tarski, however, as the above proposals concerning
the truth conditions of that sentence suggest, on the denotationalist account,
‘Tarski’ does not denote Tarski, but something different instead. So, accord-
ing to (i), ‘Tarski’ refers to Tarski-eity, not to Tarski. According to (ii),
‘Tarski’, presumably, refers to the corresponding component of the structured
proposition. That component will be the concept tarski not the person, if
the proposition is of a Fregean sort; in case the propositions is Russellian it
will be a constitutent of that proposition. However, one might doubt, given
the modal character of the sentence, whether that constitutent will be our
Tarski. In any event, the Russellian construal loses its appeal, when we re-
place ‘Tarski’ in (3) by ‘Holmes’.34 The referent of ‘Tarski’ would be the
name «Tarski» of the worldmaking language —maybe ‘Tarski’ itself, given
the worldmaking language is the language of (3)—in case the possible world
were taken to be a maximal consistent set of sentences, that is, a linguistic
ersatz possible world of some sort. According to the modal denotationalist,
who, like Linsky and Zalta, endorses (iii), the name ‘Tarski’ refers to a Tarski
who is concrete and a violinist in some other possible world. Interestingly
though, the account of the truth of a statement like ‘Tarski could not have
existed’ will construe ‘Tarski’ not as referring to our Tarski but a Tarski who
is abstract at some possible world. (Unfortunately, Linsky and Zalta are less
than entirely explicit on the nature of their worlds.) According to (iv), the
name ‘Tarski’ will refer to some constituent of a complete complex property
which would have been instantiated had the world been such that Tarski was
a violinist. According to (v), the name ‘Tarski’ refers to some constituent
of a rearrangement of the actual world which will be a Tarski which consti-
tutes a possible atomic state of affairs. Since this state of affairs is a possible
one, one might doubt whether this constituent is Tarski himself. This pro-
posal, however, loses much of its appeal once we realize that the referent of
‘Holmes’ in ‘Holmes could have been a violinist’ is a rearrangement of actual

34For a critical discussion of structured—in particular, Fregean and Russellian—
propositions see, for example, [Schiffer, 2003] ch. 1.
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individuals and properties of some sort. Finally, on the possibilist view (vi),
the name ‘Tarski’ does not refer to Tarski himself but to a flesh-and-blood
counterpart of him which in some other Lewisian world plays the violine.

So much for the illustration of the problem of modal reference. By con-
trast, as has been already noted, the denotational proposal is intuitively
correct for nonmodal claims like ‘Tarski is a logician’. For here ‘Tarski’ is
construed as referring to the intuitively correct referent, that is, to Tarski.

1.1.2.i Intended∗ Kripke-Models

As we have seen in the previous sections, the strategy of intended Kripke
models involves an inflation of ontology and gives rise to the problem of
modal reference.

However, luckily as one might think, there is a way of linking the truth
of modal formulae as relativized to Kripke-models to the notion of truth
simpliciter other than the one of intended Kripke-models. This way is the
strategy of intended∗, or Menzel-intended, Kripke-models which does not
involve a commitment to possible worlds and possible objects at all.35

A common feature of the possible worlds realist interpretations of quanti-
fied modal logic is that their intended Kripke-models are taken to represent
“modal reality” in virtue of the intrinsic properties of the items contained
in the intended index sets (i.e., possible worlds) and domains (i.e., possible
objects) contained in them. Intended∗ Kripke-models, by contrast, do not
represent in this way. According to this approach, formal Kripke-models
may represent outright without their domains containing the objects the

35This approach has been initiated, as far as I can see, in [Menzel, 1990]. It has been
pursued further in [Ray, 1996] and [Chihara, 1998]. See also [Zimmermann, 1999] for a
similar approach. Typically, adherents of intended∗ Kripke-models not only try to avoid
a commitment to the existence of possible worlds and possible objects but to much of a
contemporary metaphysician’s ontological inventory as well. Christopher Menzel’s ontol-
ogy is the least parsimonious, since it does not only involve the model-theoretic inventory
and individuals but also universals (i.e., n-adic properties). Greg Ray refuses the latter
and admits only the model-theorist’s set theoretic entities and individuals into his on-
tology whereas Charles Chihara seems to be even more parsimonious rejecting sets (and
mathematical enitities in general).
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modal language is implicitly construed as being about. Indeed, intended∗

Kripke-models are taken to be tuples of mathematical objects (e.g., pure
sets). Roughly, for any index of the intended∗ Kripke-model there is a bijec-
tive function from the domain of that index to the objects of the real world,
such that, given a natural language interpretation of the formal modal lan-
guage, it maps (i) for every predicate of the formal language the elements of
its extension for that index to the real world objects which have the property
that is designated by the natural language counterpart of that predicate,
and (ii) for every individual constant its referent which is contained in the
domain for that index to the real world referent of the name which is symbol-
ized by the constant. For any index, then, there is a purely set-theoretical
tuple—the bijection-tuple—built up from three items: the domain of that
index, the extensions of the predicates for that index, and the referents of
the constants for that index. Given some natural language interpretation of
the formal language, such a tuple represents via the bijection for that index
how the world would have been had such-and-such been the case.

What is relevant to representation, according to the Menzelian approach,
is thus the purely set-theoretic models, the mere tuples, not the intrinsic na-
tures of the objects contained in an intended domain. No possible worlds and
no possible objects are involved in this account. The only things appealed to
are the things which exist in the actual world and the mere model-theoretic
machinery.36 The proponent of intended∗ Kripke-models, thus, may justifi-
ably claim that he uses talk of possible worlds and possible objects as a mere
façon de parler that aids imagination.

Given the fact that the bijection-tuple for the distinguished index s@ ∈ S
is a purely mathematical object, there can be no single (standardly) intended
Kripke-model, because there will be infinitely many bijection-tuples which
are structurally isomorphic to the tuple for s@. In effect, a whole class of
intended∗ Kripke-models fulfills the task of a single intended Kripke model.
Moreover, given the fact that intended∗ Kripke-models are mathematical ob-
jects, they have no intrinsic bearing on the truth simpliciter of ordinary

36As has been already mentioned, the degree of ontological parsimony may differ from
theorist to theorist and so will the constituents of the actual world.
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modal statements such as (3), even though they deliver extensionally ade-
quate assignments of truth or falsity for them.37

Roughly, on this kind of approach a modal statement like (3) is true just
in case for some intended∗ Kripke-model there is an index s ∈ S for which
there is a bijection which results in a bijection-tuple for s which could be
the tuple for the index s@ and such that, if it had been, Tarski would have
been a violinist. Modality is thus not explained in terms of quantification
over possible worlds. According to accounts of this sort, an ordinary modal
sentence is said to be true simpliciter just in case its symbolization A endowed
with the meaning of the original sentence is true in the intended∗ Kripke-
model. In effect, for the modal denotationalist who adheres to intended∗

models the truth of modal statements is not grounded in modal reality which
is modeled by an intended model; for him it is grounded in the mere structure
of modal reality which is possibly represented by intended∗ Kripke-models.38

Proponents of intended Kripke-models are dissatisfied with the Menzelian
strategy for various reasons. Linsky and Zalta, for example, raise the fol-
lowing objections. First, the strategy of intended∗ Kripke-models gives up
the intuitive extensional characterization of necessity as truth in all possible
worlds. Second, it suggests that modal discourse is not about something
besides the structure of modal reality. Thus Linsky and Zalta write:

“Menzel [and so do his followers; B.W.] rejects the idea that
there is an ‘intended’ Kripke-model, which represents pieces of
the world itself as configured in a way which correctly reflects
modal reality. He gets by instead with a notion of intended∗

models, that is those Kripke-models (constructed out of pure sets)
that, roughly, would have been structurally isomorphic to the in-
tended model had there been one. This suffice, he argues, since
there is nothing more to modal truth than the structure they
capture. But surely there is something more to modal truth than
this; surely necessity and possibility are about something besides
the structure of intended∗ models, something which grounds mo-

37See [Menzel, 1990] p. 381.
38Cf. [Linsky & Zalta, 1994] p. 456, note 38.
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dal truth and which is modeled by an intended model. Men-
zel suggests that modal semantics need not try to say what this
something is.”39 Moreover, they add: “none of these intended∗

models are in fact genuine models of anything. At best they
have the property of being actual objects that possibly model
the structure of modal reality. But a model of the pure structure
of modal reality is not the same as a genuine model of modal
reality.”40

Thirdly, Linsky and Zalta object to an asymmetry in Menzel’s account ac-
cording to which intended Tarski-models are appropriate for the represen-
tation of the reality nonmodal discourse is about, but on which intended∗

Kripke-models—and not the intended ones—are considered to be adequate
for representing the reality modal language is about.

“With Menzel’s defense of Kripke-models we cannot say that
modal discourse is in part about the objects over which the quan-
tifiers range, at least not in the same way that we can say that
nonmodal language is about these objects.”41

Menzel acknowledges this very criticism writing:

“And if it is not, it is hard to see in what sense the [strategy of
intended∗ Kripke-models] accounts for modal truth at all.”42

Where does this criticism leave the applied semanticist of intended∗ mod-
els? The first objection is surely well-taken. But Menzel’s answer to this43

will be, prsumably, the usual modalist one. I.e., one which takes modal oper-
ators to be primitives and which claims—in agreement with the homophonic

39[Linsky & Zalta, 1994] p. 444; my emphasis (underlines).
40[Linsky & Zalta, 1994] p. 456, note 38; my emphasis (underlines).
41[Linsky & Zalta, 1994] p. 444. Let me note that Linsky and Zalta use ‘Kripke-model’
so as to refer to varying domain Kripke-models (cf. [Linsky & Zalta, 1994] p. 431). Our
use is therefore more general.
42[Menzel, 2000] p. 6 of the subdocument ‘Problems with the actualist accounts’.
43See [Menzel, 1990] p. 383 and p. 385.
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account—that their truth conditions can be stated in a way which is analo-
gous to the usual truth conditions for the truth functional connectives where,
roughly, the connective appears on both sides of the biconditional—as part
of the object language on the left-hand side and as part of the metalanguage
on the other. (We shall return to modalism later in Subsection 4.5.1.)

The second objection seems to aim at the fact that Menzel does not view
modal discourse as being about modal reality, but about something other
instead, about a structure of some sort. Now, there seem to be two pro-
posals in the passage as to what that structure could be (see the underlined
fragments): the structure of the intended∗ models on the one hand, and the
structure of modal reality on the other hand.

It will be natural, as it seems to me, to assume that according to Menzel’s
view, modal discourse is supposed to be outright about modal reality, but
that that reality is represented (by the intended∗ models) in such a way
that only its structure is relevant. So it might seem that the second kind of
structure is what is intended.

However, textual evidence (in particular the passage surrounding the first
underlined fragment and the quotation which states the third objection) and
Menzel’s agreement seem to suggest that the first sort of structure is the
intended one. If this is so, we may reinstantiate the problem of modal refer-
ence for the case of intended∗ Kripke-models as follows. On this approach,
even though there are no intended domains and no possible objects, ‘Tarski’
which occurrs in a modal claim like ‘Tarski could have been a violinist’ will
not refer to Tarski but instead to a pure set, a constituent of the intended∗

model, which possibly represents Tarski via some bijection. This reinstanti-
ation of the problem of modal reference might help to see what Linsky and
Zalta’s criticism aims at, for it seems that the level of denotation is shifted
from modal reality to its representative.

As for the third doubt, there is certainly an asymmetry of this sort in
Menzel’s approach. (Chihara avoids an asymmetry of this sort, assuming
that representation is intended∗ representation in both the modal and the
nonmodal case; see [Chihara, 1998] sect. 5. However, because of the objec-
tion from the previous paragraph, this move generates a problem of reference

25



in the nonmodal case. For then names which occur in nonmodal sentences
will be construed as referring to pure sets.)

Ironically, as it seems to me, there is a certain asymmetry in Linsky and
Zalta’s approach of intended models as well. For given, first, the shift of
referents in the domain of discourse for modal language (from the intuitive
denotata to their representatives) and, second, the fact that no such shift
takes place in the domain of nonmodal discourse, they do not seem to be
entitled to saying that modal and nonmodal language alike are “in the same
way” about the items over which the quantifiers range.

With regard to Menzel’s own comment on Linsky and Zalta’s objection,
I think that we should distinguish between that what a modal statement is
about (i.e., the subject of the modal claim) and the metaphysical ground of
the truth of modal statements. The proponents of intended∗ Kripke-models
seem to have an answer to the first point, but they owe us a response to
the second. In my oppinion, it is not obvious how the second point is to
be answered, since it is not clear at all what “the metaphysical ground of
modal truth”44 is intended to mean on that approach. Does it refer to the
ultimate truthmakers of modal truths? Does it refer to the feature of the
subject of a necessarily true proposition (e.g., its essence) in virtue of which
that proposition is true (i.e., the source of the necessity)? Or is it something
else? Whatever the ground of metaphysically modal truth is supposed to be,
the proponents of intended∗ Kripke-models do not provide us with a response
to this question. And it is hard to see, in view of their framework and, in
particular, their slim metaphysical inventory, how they could.

To sum up, as far as ontological commitments are concerned, the central
difference between the two denotationalist strategies of connecting up the
relative notion of truth in a Kripke-model to the absolute notion of modal
truth which have been proposed so far is that the strategy of intended∗

Kripke-models—unlike the account in terms of intended Kripke-models—
does not involve an ontology of possible worlds and objects. By contrast,
the adherents of intended Kripke-models are, perhaps, better off as regards
the question of the metaphysical ground of modal truth, as they may draw
on the intrinsic features of the objects contained in the intended domains.
44[Menzel, 1990] p. 385.
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Of course, I do not claim that these points of difference are exhaustive. But
they are the ones that are important for our purposes.

In any event, both accounts are taken to describe a modal reality as rep-
resented by Kripke-models and so both accounts incorporate the intuition of
designation. This intuition and its denotationalist adaptation are reflected
in a couple of philosophical theses of “Kripkean orthodoxy”.

1.1.2.j Modal Denotational Semantics and Philosophy

Several technical phenomena of standard denotational quantified modal logic
are mirrored in various well-known philosophical doctrines—largely due to
Saul Kripke (see [Kripke, 1980 (1972)])—whose plausibility is dependent upon
the intuition of designation as spelled out in terms of satisfaction and deno-
tation.

The simple stipulation, for instance, that (in the simplest setting) the
valuation function contained in a Kripke-model is to map the individual con-
stants to the element contained in its domain irrespectvely of which elements
are contained in the domain of an index, is mirrored in Kripke’s doctrine that
names are rigid designators, that is expressions whose referents do not vary
across possible worlds.

The truth conditions of claims of necessity de re are mirrored in the philo-
sophical doctrine of essentialism, that is, as I have mentioned above, the
doctrine that things may have accidental as well as essential properties (e.g.,
a person’s property of originating from certain gametes) and that, accord-
ingly, ‘necessity’ means ‘metaphysical necessity’.

The derivability of the formula (∀x)(∀y)((x = y) → 2(x = y)), in constant
and varying domain axiom systems, mirrors the doctrine of the necessity of
identity (see, in particular, [Marcus, 1993 (1961)] and [Kripke, 1980 (1972)]).
This doctrine, together with the doctrine of rigid designation, is pivotal for
the argument that there are a posteriori necessities like, for instance, the
proposition that Hesperus is necessarily identical with Phosphorus.

Granted that conceivability does entail possibility, the derivability of (∀x)
(∀y) (3(x = y) → (x = y)) which is equivalent to the necessity of distinct-
ness, i.e. (∀x)(∀y)(¬(x = y) → 2¬(x = y))), together with the doctrine
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of rigid designation formulated so as to apply to such terms like ‘pain’ and
‘C-fibre stimulation’ is essential for the success of antimaterialist arguments
in the philosophy of mind.45

A final example. The validity of such S5 theorems like 32A → 2A

and 2A → A had some impact on philosophical theology, since they allow,
given some prima facie plausible assumption to the effect that there possibly
is some necessary being which is God-like, to infer that such a being does
actually exist.46

If sound, modal arguments of this sort can teach us—as their denota-
tionalist proponents seem to assume—from the armchair, so to speak, what
things are “out there” in the real world.

1.1.3 Summary: Doubts about Denotational Seman-

tics

Denotational semantics incorporates the intuition of designation, i.e. the
intuition that language is about the world, in terms of denotation and satis-
faction. According to applied interpretations of the denotational framework,
fictional and modal truths are viewed as being descriptive of fictional and

45Consider, for example, the following scheme of a two-dimensionalist argument against
materialism which may be found in [Gendler & Hawthorne, 2002] at page 55:

1. A statement is superconceivable iff it is diagonally possible.
2. ‘Pain is not C-fibre stimulation’ is superconceivable.
3. ‘Pain is not C-fibre stimulation’ is diagonally possible iff it is possible.
4. Therefore ‘Pain is not C-fibre stimulation’ is possibly true.
5. Where a claim of disctinctness flanked by two rigid designators is possibly
true, it is necessarily true.
6. Therefore ‘Pain is not C-fibre stimulation’ is actually true.

For a recent antimaterialist argument which proceedes along such lines, see e.g.
[Chalmers, 2002]. See also the discussion in [Gendler & Hawthorne, 2002] and the ref-
erences therein.
46A modal ontological argument of this sort has been proposed most notably by Kurt
Gödel. For a recent rigorous discussion of this argument and references see, in particular,
[Fitting, 2002]. See also [Löffler, 2000] where a rich bibligraphy of the literature on modal
ontological arguments is provided that appeared until the year of its publication.
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modal reality, respectively. It has been argued that this conception gives rise
to a couple of problems.

The view that fictional truths are descriptive gives rise to ontological in-
flation and to the problem of fictional reference (see Subsection 1.1.1e). Even
the intuition that nonmodal and nonfictional language is descriptive is prob-
lematic on the denotational construal as straightforward paraphrases of such
sentences like ‘There is a statue of Venus in the Louvre’ suggest (see Subsec-
tions 1.1.1.c and 1.1.1.d).

The denotationalist view that modal language is descriptive of a modal
reality is responsible for the problem of ontological inflation (see Subsections
1.1.2.c and 1.1.2.f), for several philosophical perplexities about quantified
modal logic (see Subsection 1.1.2.d), and for the problem of modal reference
(see Subsection 1.1.2.h). On the approach of intended∗ Kripke-models, a
commitment to possible worlds and to possible objects is arguably avoided.
However, the problem of modal reference can be reinstantiated and it is not
clear how the problem of the ground of modal truth could be solved (see
Subsection 1.1.2.i).

Finally, denotational modal semantics, i.e., “Kripke semantics”, supports
several substantial—“Kripkean”—philosophical doctrines and modal argu-
ments, which to a certain extent are historically prepared by the success of
Kripke semantics. These doctrines are intelligible only when the intuition
of designation for modal language is preserved and spelled out in terms of
satisfaction and denotation (see Subsection 1.1.2.j).

1.2 Substitutional Semantics

1.2.1 Nonmodal Substitutional Semantics

There is a well-established but less popular alternative way of interpreting
quantification which does not construe the quantifiers of the object language
as denotational and which, therefore, does not give rise to the aforementioned
problems of ontological inflation and reference in modal (or more generally,
intensional) and fictional contexts: the so called “substitutional” interpreta-
tion of the quantifiers.
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Let Ls be a substitutional language which is just like Ld except that
the variables and the quantifiers are written in a different way. As I have
already mentioned in the beginning of the previous section, we use x, y, ...
as substitutional variables and write (Πx) and (Σx) for the substitutional
universal and existential quantifier, respectively. Substitutional quantifiers
receive a different interpretation.

The essentials of a substitutional semantics for a language like Ls are
nicely captured by Ruth Marcus as follows:

“On a substitutional semantics” of a first-order substitutional
language “a domain of objects is not specified. Variables do not
range over objects. They are place markers for substituends.
Satisfaction relative to objects is not defined. Atomic sentences
are assigned truth values. Truth for sentences built up out of the
sentential connectives [is] defined in the usual way. The quantifier
clauses in the truth definition say that

[1] (Πx)Ax is true just in case A(t) is true for all names t.

[2] (Σx)Ax is true just in case A(t) is true for at least one name
t.”47

The names or substituends which replace the substitutional variables may
be names in the sense of ‘proper name’, but they need not. They may be
expressions which belong to any syntactic category of the language, e.g., pred-
icates or sentences. If the class of substituends (i.e., the class of expressions
which may be substituted for the variables which the substitutional quanti-
fier binds) is a class of proper names or definite descriptions, the quantifier
will be nominal; if they are predicates, the quantifier will be predicative and
so on.

Let the class of substituends (or the substitution class) consist of the
two proper names ‘Pegasus’ and ‘Bucephalus’, and let Ax be ‘x is a winged
horse’. Then the substitution instances of [1] and [2], that is the A(t)s, will

47[Marcus, 1993 (1978)] p. 119; cf. also [Marcus, 1976] p. 47. The numbering is mine.
I have also replaced Marcus’s original symbols for the quantifiers with the notation from
[Kripke, 1976] which we shall use from now on.
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be ‘Pegasus is a winged horse’ and ‘Bucephalus is a winged horse’. On this
interpretation, then, [1] will be true just in case all its substitution instances
are true; and [2] will be true exactly if at least one substitution instance is
true. On this interpretation then, [1] will be false and [2] will be true.

Suppose now, the class of substituends contains predicates like ‘is a man’,
‘is a philosopher’ and so on and suppose that the substitutional variables
bound by the quantifiers are predicate variables, then a sentence like ‘(Σx)
(Plato x and Aristotle x)’ will be true just in case there is at least one
true substitution instance of it. In view of the way in which the class of
substituends is specified, that quantified sentence will be true, since among
the true substitution instances will be such sentences like ‘Plato is a man and
Aristotle is a man’ or ‘Plato is a philosopher and Aristotle is a philosopher’.

If the class of substituends is taken to contain sentences and the variables
bound by the quantifiers are sentential variables, then a quantified sentence
like ‘(Σx)(Aristotle thinks that x)’ will be true just in case it has at least
one substitution instance, like for example, ‘Aristotle thinks that Plato is a
philosopher’ which is true.

Finally, to take a somewhat artificial example which is traditionally at-
tributed to Stanisław Leśniewski,48 we may even assume that the class of
substituends contains parantheses ‘(’ and ‘)’ if the xs are parentheses quan-
tifiers, a sentence like ‘(Σx) x Plato is a man)’ will be true exactly if that
sentence has at least one true substitution instance, say ‘(Plato is a man)’
where the x is replaced by the left-hand parenthesis.

Since substitutional quantifiers do not have objectual domains the seman-
tics does not construe the truth of such a statement like ‘(Σx) (x is a winged
horse)’ as requiring a denotatum for the singular term which replaces the x.
According to substitutional semantics, a singular term like ‘Pegasus’ does nei-
ther refer to some denotatum, nor does the account of the truth of the above
statement involve a commitment to the existence of a fictional object. And,
as the examples of nonnominal quantifications such as ‘(Σx)(Plato x and
Aristotle x)’ and ‘(Σx)(Aristotle thinks that x)’ show, ontological commit-
ments to universals (e.g., the property of being a philosopher) or such things

48See, for instance, [Quine, 1969 (1968)] p. 106 or [Kripke, 1976] p. 329.
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like propositions (e.g., the proposition that Plato is a philosopher which is
expressed by the sentence ‘Plato is a philosopher’ and its translations into
other languages) are avoided.49

Finally, logical paraphrases like the one of ‘There is a statue of Venus in
the Louvre’ to ‘(Σx)(A statue of x is in the Louvre)’ (see Subsection 1.1.1.c)
are not compromising, since they do not ontologically inflate the meaning
of the original sentence. According to the substitutional account of object
language quantifiers, there is, therefore, no problem with fictional objects
and no problem of fictional reference.

Let me add that the substitutional account does also prove helpful in cases
of quantification into quotational contexts. When we take the variables which
are bound by the substitutional quantifiers to be sentential ones and assume
that the class of substituends for them contain sentences, a statement like,
for exampe, the formula ‘(Πx)(‘x’ is true just in case x)’ will be true in case
its substitution instances are all true.50

It is well-known that the substitution interpretation of the quantifiers is
usually taken not only to be helpful in cases of nondenoting occurrences of
singular terms (or, in cases in which some ontological commitment is prefer-
ably avoided) but also in cases in which singular terms occur in modal and
other referentially opaque (or nontransparent) contexts. We shall take up the
discussion of intensional, in particular, modal issues after the formal and the
applied substitutional semantics for simple nonmodal first-order languages
has been set up more thoroughly.

1.2.1.a Formal Nonmodal Substitutional Semantics

Ruth Barcan Marcus’s paper [Marcus, 1993 (1961)] is commonly regarded
as the widely read pioneering publication on substitutional quantification

49Examples like these may be found, for instance, in [Marcus, 1962] or
[Marcus, 1993 (1978)].
50For discussions of truth definitions in terms of substitutional quantification into quo-
tation contexts see, e.g. [Grover, 1973] and [Soames, 1999] pp. 86-92, where Tarski’s
remarks on this issue in [Tarski, 1995 (1933)] are discussed. For influential considerations
on substitutional truth theories see [Kripke, 1976].
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theory.51 For some reason, though, she never gave a formal presentation of
it.

A first formal semantics for a substitutional first-order language has been
proposed, as far as I know, in [Dunn & Belnap, 1968]. On their account
an interpretation, I, maps the atomic sentences of the language into {1, 0},
that is, the truth values 1 (= “true”) and 0 (= “false”). The valuation for
that interpretation, vI , for a closed formula A is then given by the following
clauses:

1. if A is an atomic sentence, vI(A) = I(A);

2. if A is ¬B, vI(A) = 1 iff vI(B) = 0;

3. if A is B ∧ C, vI(A) = 1 iff vI(B) = 1 and vI(C) = 1;

4. if A is (Πx)B(x), vI(A) = 1 iff vI(B(t)) = 1 for all names t.

Since the set of names is—as is standardly assumed—denumerably infinite,
it is assured that the truth conditions for the universal quantifier are not
equivalent with the truth conditions for conjunction. Otherwise, of course,
the introduction of that quantifier would make no semantical sense. A closed
formula is standardly valid just in case it is true in all interpretations I.52 It

51Indeed, Marcus’s paper seems to be the first one to promote the adoption of sub-
stitutional quantification in modal logic. The substitution interpretation of the quan-
tifiers seems to have been in the air long before, though. [Quine, 1969 (1965)] p. 63
attributes it to Leśniewski and [Leblanc, 1971] p. 165, note 3, to Bertrand Russell. Nei-
ther, though, gives textual evidence. In [Leblanc, 1973a], at page 2, a substitutional under-
standing of the quantifiers is located (without page references) in Wittgenstein’s Tractatus
(1921) and attributed to Ramsey and Carnap. See also the preface of [Leblanc, 1976]. In
[Leblanc, 2001], at page 124, the substitution interpretation of the quantifiers is located as
early as in Frege’s Begriffsschrift (1879). For further remarks on the “still unchronicled his-
tory” of substitutional semantics the reader is referred to the Appendix in [Leblanc, 2001].
52See [Dunn & Belnap, 1968] p. 179. Since I is a truth-value assignment to the atomic
formulae, substitutional semantics—in the sense specified by Ruth Marcus in the quoted
passage at the beginning of Section 1.2—is sometimes called “truth-value semantics”. This
terminology is preferred, e.g. by J. Michael Dunn, Hugues Leblanc and others. Leblanc’s
use of the term ‘substitutional semantics’, however, differs from Marcus’s usage (in the
initial characterization) as the following passage shows: “I shall study several [alternatives]
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will be noted that truth and validity are defined only for closed formulae of
the language.53

Dunn and Belnap’s semantics makes Marcus’s ideas somewhat more pre-
cise. In particular, it is more precise in that it explicitly states that the
truth-values of the atomic formulae are determined by truth-value assign-
ments. Marcus’s original ideas might be taken to suggest, as Dunn and
Belnap point out, that the truth-values of atomic sentences are determined
in the ordinary denotational way—this, however, would be inadequate for
atoms with nondenoting constants.54 Hugues Leblanc later offered a version
of the semantics which explicitly relativizes the truth-value assignment to a
(possibly empty) substitution class of individual constants.55

The authoritative theory of substitutional quantification has been pro-
posed by Saul Kripke in [Kripke, 1976]. Kripke suggests that substitutional
quantifiers should be regarded as being introduced by extending a given lan-
guage which is already interpreted to a new language. Roughly, Kripke takes

here, among them: substitutional semantics, truth-value semantics, and probabilistic se-
mantics. All three interpret the quantifiers substitutionally, i.e. all three rate a universal
(an existential) quantification true if, and only if, every one (at least one) of its substitu-
tion instances is true. As a result, the first, which retains models, retains only those which
are to be called Henkin models. The other two dispense with models entirely, truth-value
semantics using instead truth-value assignments (...) and probabilistic semantics using
probability functions. So reference, central to standard semantics, is no concern at all
to truth-value and probabilistic semantics; and truth, also central to standard semantics,
is but a marginal concern of probabilistic semantics.” ([Leblanc, 2001] p. 53. A Henkin
model is, in effect, a tuple 〈D, v〉 where for every element d of D there is an individual
constant α of Ld such that v(α) = d. According to Leblanc, such models are countable by
definition. See [Leblanc, 2001] p. 61.) In contrast to both Marcus’s usage and Leblanc’s
usage, we shall here refer with ‘substitutional semantics’ to truth-conditional semantics
which appeal exclusively to the substitution interpretation of the quantifiers. Thus, ac-
cording to our terminology, substitutional semantics is the union of what Marcus and
Leblanc, respectively, call by that term.
53Open formulae, thus, are standardly left without a semantic interpretation, since
this would be “merely a distracting complication” ([Dunn & Belnap, 1968] p. 179). In
particular, as Kripke suggests (see [Kripke, 1976] p. 330, note 4) an interpretation of open
formulae would play no role in the inductive definition of semantical terms.
54See [Dunn & Belnap, 1968] p. 182.
55See, e.g., [Leblanc, 1973b] p. 250.
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a base language and extends it into a new language by introducing substitu-
tional variables for the substitutional quantifiers, defining a substitution class
for the quantifiers in such a way that it contains only expressions of the base
language. Kripke, then, takes the atomic sentences of the extended language
to be all the sentences of the base language together with the formulae which
result from replacing members of the substitution class in the base language
with variables.

Given that truth has been defined for the sentences of the base language,
Kripke shows that the truth conditions for the sentences of the base language
together with the clauses for the formulae which contain the logical vocabu-
lary of the extended language determine the truth conditions for the extended
language.56 Since the substitution class is constrained to expressions of the
base language it does not contain expressions in which substitutional quan-
tifiers occur. For suppose this were not so and assume, moreover, that A is
(Πx)B(x) and has complexity n+1, and that B(t) is the result of replacing x
by a term t in B(x). In this case one cannot be sure that B(t) has complexity
≤ n, since it could be that t itself contained quantifiers and thus increased
complexity.57 By excluding such cases, Kripke’s extension strategy allows an
adequate inductive definition of truth for substitutional languages.58

The model-relative notions of truth, validity and logical consequence as
explicated in terms of denotational semantics can be related to their substi-
tutional conterparts as follows.

Let Ld be an ordinary denotational first-order language (without identity)
and let T = 〈D, v〉 be an ordinary denotational model constrained by the
following condition: for every element d of D there is an individual constant

56See [Kripke, 1976] pp. 330-331.
57See [Kripke, 1976] p. 331. If the base language does already contain quantifiers then
the quantifiers which are introduced to extend that language must be of a different variety
and must differ notationally. Kripke considers such an extension in [Kripke, 1976] section
4.
58Kripke’s proposal has become standard. For example, Marcus’s preferred ac-
count of the substitutional quantifier is the “minimal substitutional semantics” as pro-
posed by Dunn and Belnap with a base language that does not contain quantifiers
(see [Marcus, 1993 (1978)] p. 120, note 9). Kripke’s account is also endorsed in
[Copeland, 1982] and [Copeland, 1985].

35



α of Ld such that v(α) = d. (This is what Hugues Leblanc calls “Henkin
model”.) Correspondingly, let Ls be as before, with Ls

0 as base language
whose formulae are just the atomic sentences of Ls. Moreover, let IT be the
(minimal) substitutional analogue for T which is such that it assigns 1 to all
the atomic sentences of Ls whose Ld analogues are true in T and 0 to the
rest. Then a simple inductive proof will show that a sentence A of Ls is true
in IT just in case the Ld-counterpart of A is true in T .59

As for validity, let DC be a denotational and let SC be a substitutional
version of an uninterpreted first-order system without identity, let T = 〈D, v〉
be a denotational model and let I be a substitutional interpretation. More-
over, let validity for DC be defined as truth in all denotational models and
let validity for SC be truth under all substitutional interpretations. Then a
sentence of SC is valid just in case its DC analogue is valid. Similarly, for
the consequence relation.60 Moreover, weak and strong completeness results
for SC can be provided (for various sorts of SC) as well.61

Now, there is a well-known problem which is almost defining of substitu-
tional quantification: the problem of nondenumerable domains as we might
call it. The set of nominal constants of Ls and the set of individual constants
of Ld are supposed to be denumerably infinite whereas the domain D of T
may contain nondenumerably many objects. Let this be so. Then, assuming
that x is substitutional when it is bound by a substitutional quantifier and
an individual variable when it is bound by a referential quantifier, (Πx)A will
hold in I but its denotational analogue (∀x)A will not since it will be faslified
by a nameless object from D; and there must always be some such object,
since there is only a denumerable infinity of names. The condition which we
have imposed above, in order to relate the substitutional and the denota-
tional account of truth (i.e., for every element d of D there is an individual
constant a of Ld such that v(a) = d) just assured that D is denumerable.

The usual—and in my oppinion acceptable—reaction of the proponents of

59A proof of to this effect can be found in [Leblanc, 1973b] p. 249. It is straightforwardly
adapted to Kripke’s extension strategy.
60See [Kripke, 1976] pp. 336-337.
61See, for example, [Dunn & Belnap, 1968], [Leblanc, 1971], [Leblanc, 1976], and the
remarks in [Kripke, 1976] and [Davies, 1980].
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substitutional quantification is to appeal to the Löwenheim-Skolem theorem.
Thus, for example, Marcus suggests that

“the fact that every referential first-order language that has a
nondenumerable model must have a denumerable model gives lit-
tle advantage to the referential view.”62

On the assumption, then, that there are nondenumerably many things—
something, as Marcus assumes a nominalist being “diffident about nonde-
numerable collections”63 might wish to reject—the proponents of referential
quantification are in advantage since they need not support their view by
some such Löwenheim-Skolem argumentation.

There is a further, somewhat speculative, way suggested by W. V. Quine
and Saul Kripke in which the proponent of substitutional quantification
might wish to react to the problem of nondenumerable domains. He might
allow that there be nondenumerably many things but hope at the same time
that all the properties of the unnamed things that can be expressed in the
denotational language are shared by the named objects. If this is so, every
quantification which is expressible in that language will be true when referen-
tially construed just in case it is true when it is interpreted substitutionally.64

So on the assumption that there are nondenumerably many things and
that the unnamed objects differ in the properties which are expressible in
the referential language from the named ones, the proponents of referential
quantification do have an advantage. However, in view of the possibility
of some Löwenheim-Skolem argumentation this advantage is, in effect, not
decisive.

As a further alternative to a Löwenheim-Skolem argumentation one might
simply permit that the substitutional language be nondenumerable by just
62[Marcus, 1993 (1978)] p. 124. (The Downward Löwenheim-Skolem Theorem says, in
effect, that if a set of sentences of a denotational first-order language has a denotational
model at all, that is, an interpretation in which all the sentences in the set come out true,
then it has a model with a denumerably infinite domain. The Upward Löwenheim-Skolem
Theorem claims that if such a set of sentences has a model in any infinite cardinality, it
has models in every infinite cardinality.)
63Ibid.
64See [Quine, 1969 (1965)] p. 65.
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allowing, as is often done, for there to be nondenumerably many constants
(and, correspondingly, names). So, if every object in D is named, and
D is nondenumerable, the number of constants will be nondenumerable as
well.65 In accordance with this assumption, one may then assume that there
are nondenumerably many names of natural language. Presumably, being
infinite—even nondenumerable—these names won’t be utterances of names
or name-tokens, but types of names. One could then assume that there will
be name-types of this sort which do not have tokens. Some, however, might
find that idea counterintuitive.

1.2.1.b Applied Nonmodal Substitutional Semantics

Now, what kind of items does a formal substitutional interpretation involve?
In view of the previous summary of the evolution of substitutional semantics
we may construe the “standard” substitutional model for Ls, taking C to be
a class of substituends from the alphabet of the base language Ls

0 and Atm
to be the set of atomic sentences of Ls

0, as a tuple S = 〈{1, 0}, I〉 where I is
a map from Atm to {1, 0}.66 When A is a closed formula, then given S the
valuation v as relativized to C, vSC

, is defined by the recursion:

1. if A is an atomic sentence, vSC
(A) = I(A);

2. if A is ¬B, vSC
(A) = 1 iff vSC

(B) = 0;

3. if A is B ∧ C, vSC
(A) = 1 iff vSC

(B) = 1 and vSC
(C) = 1;

4. if A is (Πx)B(x), vSC
(A) = 1 iff vSC

(B(a)) = 1 for all names a.

65Cf., for example, the following passage form [Kripke, 1975] p. 705 which is suitable
for our context: “If L contains a name for each object in D, and a denotation relation
is defined (if D is nondenumerable, this means that L contains nondenumerably many
constants), the notion of satisfaction can (for most purposes) effectively be replaced by
that of truth: e.g., instead of talking of A(x) being satisfied by an object a, we can talk
of A(x) becoming true when the variable is replaced by a name of a.”(The italicized signs
and sequences thereof refer to Kripke’s use of them, but no confusion will arise from this
of course.)
66We thus deviate from the tradition of reserving the term ‘model’ for denotational
models.
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What, then, is the intended standard substitutional model S∗ = 〈{1∗, 0∗},
I∗〉? The answer is, as one might expect in view of the previous intuitive
remarks, that {1∗, 0∗} is the set of truth-values, 1∗ being the truth-value
“true” (or the True) and 0∗ being the truth-value “false” (or the False); and
that I∗ is a truth-value assignment (or a map from atomic sentences to the
True and the False, respectively).

The notion of truth of a closed formula A of Ls in a formal standard
substitutional model S is then linked to the notion of truth simpliciter of
an ordinary nonmodal sentence as follows: the ordinary sentence is true
simpliciter just in case its symbolization A, taken to have the meaning of
the original sentence, is true in the intended substitutional model S∗. But
what does this interpretation teach us about the connection between S and
reality?

The first question the applied semanticist will have to ask, so to speak
ex officio, is surely this: What kind of entity are the True and the False?
What is their nature? Moreover, what do the True and the False represent?
Suppose the True just is reality or, alternatively, represents reality. What
then is or represents the False?67

Second, taking it that a semantic theory is committed to the existence
of whatever kind of entity is involved in its account of truth (see Subsection
1.1.2.c), the applied semanticist of S-models will have to incur a commitment
to whatever 1∗ and 0∗ are. On the approach of intended∗ standard substi-
tutional models, there will be, presumably, no commitment to the True and
the False, but the question of what 1 and 0 represent will remain.

Thirdly, all true sentences will have the same “truthmaker”, that is for ex-
ample, 1∗ on the approach of intended models or, alternatively, 1 as represent-
ing something, which needs to be specified, via a bijection on the intended∗

67Clearly, a theorist who argues as follows misses the point of applied semantics: “There
are just two truth-values—true and false. What are they: mysterious Fregean objects,
properties, relations of correspondence and noncorrespondence? The answer is that it
does not matter what they are; there is nothing essential to them except that there are
exactly two of them.” ([Stalnaker, 1984] p. 2.) (The context of this passage is Stalnaker’s
discussion of the definition of propositions as functions from possible worlds into truth-
values—a definition Stalnaker, being an adherent of unstructured propositions, accepts.)
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account. Intuitively, however, the sentence ‘Plato is a philosopher’ changes
its truthmaker, when ‘Plato’ is replaced by ‘Aristotle’. We shall call this the
problem of truthmaker monism.

Furthermore, the undiscerning monolithic truthmaker will not only be
insensitive with respect to the change of the subjects of the sentences but
also with respect to the category of discourse in which the sentences occur.
Thus, fictional sentences like ‘Pegasus flies’ and nonfictional statements like
‘Aristotle is a philosopher’ will be true of the same portion of reality.

Finally, the account of the truth of atomic sentences is unsatisfactory
compared to the denotational approach. Thus the truth of, for instance,
‘Aristotle is a philosopher’ just cannot be explained further, for example, in
terms of Aristotle’s satisfying the predicate ‘... is a philosopher’. But clearly,
the sentence feels to be further analysable.

All these problems of standard substitutional semantics do have, as it
seems to me, the same source: the fact that the semantic values of atomic
sentences are not dertermined in a compositional way, i.e., the fact that the
semantic value of an atomic sentence does not depend upon the semantic
values of its constitutive terms. We shall call this problem, which subsumes
the aforementioned ones, the problem of noncompositionality .

The applied semantical interpretation of standard substitutional seman-
tics shares the problem of noncompositionality with the applied interpreta-
tion of the standard semantics of languages for propositional logic. It is this
coarseness of substitutional semantics, I think, which is a chief reason for
dissatisfaction with that kind of framework. In some sense, to accept the
standard substitutional framework is to make a step backwards in the evo-
lution of truth-conditional logical semantics, a step from the semantics of
first-order logic back to the semantics of propositional logic.

Moreover, what might make the substitutional semanticist feel even less
confident than the semanticist of propositional logic is the fact that the syn-
tactical generation of a sentence of his first-order substitutional language is
not mirrored semantically—an asymmetry of this sort does not arise in the
case of propositional semantics.

It should be mentioned, though, that proponents of substitutional seman-
tics might not perceive the lack of compositionality as a problem. Indeed,
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Huges Leblanc seems to view this as an advantage, since a substitution inter-
pretation of the quantifier is—to his mind—more natural and since substi-
tutional semantics is technically much simpler.68 Indeed, it is simpler. But I
doubt that this can outweigh the disadvantages we have discussed.69

A further and related reason for dissatisfaction with substitutional se-
mantics is the lack of reference for denoting singular terms. A crucial con-
sequence of this is the problem of the inexpressibility of identity claims.
Since the relation of identity is one which requires individuals as relata, and
since the models of the standard substitutional semantics do neither involve
objectual domains nor functions which assign objects to constants, identity
statements—more exactly, statements of referential identity—cannot be han-
dled on this semantics. It is for this reason that the substitutional language
Ls does not involve an identity predicate of this sort. The only notion of
identity which may be introduced into that language is a notion of “nonref-
erential identity” (symbolically: ‘I’) which given a standard substitutional
model, may be defined by the principle of substitutivity as follows.

If A is aIb, vSC
(A) = 1 iff for all sentences B1 and B2 where B2

is like B1 except for containing occurrences of the name b at one
or more places where B1 contains the name a, vSC

(B1) = 1 iff
vSC

(B2) = 1.70

With this notion of nonreferential (or substitutional) identity we may claim
that a sentence like ‘Santa Claus is Father Christmas’ (taking the ‘is’ to be
nonreferential) is true even though there will be no individual which will serve
as a subject for that sentence, that is, something it is about. In other words,

68See, e.g., [Leblanc, 1973a] p. 1 or [Leblanc, 1976] p. 1.
69Perhaps it should be also mentioned that Leblanc is mainly concerned with the tech-
nical development of truth-value semantics rather than with the philosophical issues as-
sociated with it. Indeed, in his monograph [Leblanc, 1976], which unifies much of his
technical work, he refers the philosophically interested reader to the writings of Marcus,
Quine and others (see page ix, note 2). No doubt, it is in part for this reason, that his
work in substitutional semantics has, unfortunately, not received much attention in general
philosophy.
70Cf. [Marcus, 1993 (1972)] p. 85. Here the Bs should, perhaps, better not contain the
predicate ‘I’ as Marcus misses to note.
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the substitutional identity of ‘Santa Claus’ and ‘Father Christmas’ does not
give us a referent; nor does the substitutional identity of ‘Ruth Marcus’ with
itself.71

In order to obtain a formal nonmodal language with nonreferential iden-
tity, we enrich Ls with the predicate ‘I’ and the appropriate formation rule
so as to obtain the substitutional language LsI

. The semantics for that lan-
guage is the semantics for Ls supplemented with the clause for ‘I’ displayed
above.

The fact that all singular terms, whether denoting or not, are construed
as nondenoting on substitutional semantics is often found counterintuitive,
since—at least on the descriptive picture of the relation between language
and reality—this construal appears to be correct for nondenoting names like
‘James Bond’ but not for denoting names like ‘Roger Moore’. Analogous
remarks apply to the substitutional semantics of predication and quantifi-
cation. Consequently, the ontological deflation achieved by substitutional
semantics is often felt much too sweeping.72 Let me call this the problem of
ontological deflation.

Finally, in view of the traditional Fregean assumption that all truths have
the same referent, the True73, one is naturally inclined to think that even
if names do not denote in substitutional semantics, the true sentences of
the language are intuitively understood as being about the world. What
is puzzling about standard substitutional semantics, then, is —so it seems
to me—that it construes sentences (in particular, the atomic ones) as being
descriptive of reality (in some sense) without also construing the denoting
singular terms and predicates which occur in them as being referring and as
having an appropriate extension, respectively. In any case it is not clear what
the substitutional semanticist’s picture of the relation between language and
world is, if there is one at all.
71Cf., [Marcus, 1993 (1985/86)] p. 213.
72See, for instance, [Parsons, 1980] p. 36: “My main reason for not taking substitutional
quantification seriously here is that it can be used just as well to avoid commitment to
anything at all. If I insist that there are cows, an anticowist can grant me the truth of
what I say, but hold that this does not really commit him to there being cows, since ‘there
are’ may be taken as merely substitutional.”
73See, for example, [Frege, 1994 (1892)] pp. 48 and 50.
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1.2.2 Modal Substitutional Semantics

1.2.2.a Formal Modal Substitutional Semantics

The literature on substitutional quantified modal logic does not abund. Cur-
rently available formal semantics for substitutional quantified modal lan-
guages may be found, e.g., in [Leblanc, 1973b], [Dunn, 1973], [Leblanc, 1976],
as well as in [Copeland, 1982] and [Copeland, 1985] where also some philo-
sophical issues pertaining to it are discussed. The contributions [Marcus,
1993 (1961)], [Marcus, 1976], [Marcus, 1993 (1985/86)], and [Kripke, 1976]74

deal mainly with the philosophical significance of modal substitutional se-
mantics.

To obtain a formal modal language with nonreferential identity we enrich
LsI
with the box-operator 2 (for “necessarily”) and the appropriate forma-

tion rule so as to obtain the modal substitutional language LsI2

.

The standard modal substiutional model for LsI2

will be a tuple R =

〈S,R, c, {1, 0}, I〉. We let C be a class of substituends constrained to the
individual constants from the alphabet of the base language LsI2

0 (= Ls
0) so

that the substitutional quantifiers will be nominal, and we let Atm be the set
of atomic sentences of LsI2

0 . The model contains the following components.
S is a set of indices s, t, ...; R ⊆ S × S; c : S → ℘(C), where c(s) = c(t) for
every s, t ∈ S; {1, 0} is a set; and I : Atm× S → {1, 0}. When A is a closed
formula of LsI2

, then given some R = 〈S,R, c, {1, 0}, I〉 and an index s ∈ S
the valuation v as relativized to C, vRC

, is defined by the recursion:

1. if A is an atomic sentence, vRC
(A, s) = I(A, s);

2. if A is aIb, vRC
(A) = 1 iff for all sentences B1 and B2 (both without

‘I’) where B2 is like B1 except for containing occurrences of the name
b at one or more places where B1 contains the name a, vRC

(B1) = 1 iff
vRC

(B2) = 1;

3. if A is ¬B, vRC
(A, s) = 1 iff vRC

(B, s) = 0;

4. if A is B ∧ C, vRC
(A, s) = 1 iff vRC

(B, s) = 1 and vRC
(C, s) = 1;

74See section 3, in particular, p. 350, note 20 and section 6, in particular, pp. 374-375.
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5. if A is (Πx)B(x), vRC
(A, s) = 1 iff vRC

(B(a), s) = 1 for all names a.

6. if A is 2B, vRC
(A, s) = 1 iff for all t ∈ S, vRC

(B, t) = 1.

A closed formula A is true in R just in case vRC
(A, s) = 1 for every s ∈ S;

and it is valid if it is true in all models.75

Among the theorems of constant substitution class systems will be the
following substitutional versions of BF, CBF, and NE:

SBF (Πx)2A→ 2(Πx)A;
CSBF 2(Πx)A→ (Πx)2A;
NSE (Πx)2(Σy)yIx.

When we drop the constancy condition we obtain varying substitution class
standard models in a way analogous to the denotational counterpart. SBF
will be invalid when the model is not antimonotonic and CSBF will be invalid
when the model is not monotonic. In the latter case NSE will be also invalid.

1.2.2.b Applied Modal Substitutional Semantics

Now, what is the connection between the notion of truth in R and the notion
of modal truth according to the substitutional view? The answer, most likely,
will be that a regimented sentence of ordinary modal language (with identity)
read substitutionally will be true simpliciter just in case the closed formula
A of LsI2

which is interpreted to have the meaning of the sentence is true in
the intended standard substitutional modal model R∗ = 〈S∗, s@, R∗, c∗, {1∗,
0∗}, I∗〉 (where the latter will be the case exactly if the symbolization is true
in R∗ at s@).

In a way analogous to the denotational case, the relationship between LsI2

and R∗ will be taken to mirror the relation which obtains between ordinary
modal language (with identity) taken substitutionally and modal reality.

But what does an intended model R∗ = 〈S∗, s@, R∗, c∗, {1∗, 0∗}, I∗〉 in-
volve on the “paradigmatic” substitutional account? Standardly, {1, 0}∗ and
75This is essentially the framework given in [Copeland, 1985] pp. 1-2. It differs in the
following respects: the language contains the predicate for nonreferential identity and it
is left open whether the substitution classes are constant and whether R = S × S.
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I∗ will be interpreted as in the nonmodal case (the former is the set of
truth-values and the latter a truth-value assignment); and S∗ and R∗ will
be interpreted just like in the denotational case as the set of possible worlds
(which includes the actual world s@) and a relation on that set. On the
denotational account d∗ has been interpreted as an assignment of possible
objects from D∗ to possible worlds. The substitutional counterpart of that
assignment, c∗, by contrast, assigns names of an ordinary modal language to
possible worlds. In this way the intended model R∗ represents modal reality
on the substitutional approach.76 In effect, the models of standard (modal)
substitutional semantics just are the usual “models” of ordinary (modal)
sentential (or propositional) calculi.

The entities involved in intended modal standard substitutional models
are possible worlds of some sort and besides this the True and the False
(or some surrogates). By contrast, intended∗ modal standard substitutional
models do not involve representatives of any such sort. Obviously, on either
accout of representation, possible objects are not involved.

Since there are no possible objects, the problem of ontological inflation
with respect to them and the problem of modal reference are avoided. More-
over, on the substitutional account, the philosophical issues concerning the
denotational interpretation of formulae such as BF, CBF, NE, or de re nec-
essary formulae (i.e., antiessentialist actualia, possibilia, necessitarianism, es-
sentialism, metaphysical necessity, transworld identity, transworld reidentifi-
cation and so on) do not arise.77

Furthermore, in view of the interpretation of the index-set, the substitu-
tional modal semanticist of intended models ontologically inflates his theory
with possible worlds. This inflation will force him to take a stance on the
problem of possibilism and actualism and the details concerning the meta-
physical nature of possible worlds. As the reader might expect, a suitable

76Hints at an informal interpretation of the set of indices in terms of possible worlds
may be found, e.g. in [Leblanc, 1973b], [Copeland, 1982] and [Copeland, 1985]. Copeland
seems to find this applied semantical interpretation acceptable whereas Leblanc rejects it
as we shall see shortly.
77We shall address these issues more extensively in Chapter 4 from the perspective of
the associative framework.
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adaptation of the strategy of intended∗ Kripke-models (see Subsection 1.1.2.i
above) to the case of modal standard substitutional models should help to
avoid a commitment to possible worlds.

Another strategy to avoid a commitment to possible worlds, is the line
taken by Hugues Leblanc in [Leblanc, 1973b]. According to his account of
substitutional modal semantics, the formal models do not contain a set of
indices and a relation on it as they do on the standard substitutional ac-
count. Instead, Leblanc’s models include a set of truth-value assignments
and a relation on them.78 However, this strategy does not seem to avoid a
commitment to possible worlds in and of itself. For it will be natural, as one
might argue, to identify each truth-value assignment contained in Leblanc’s
set with a (maximal) consistent set of sentences which these assignments map
to 1. An applied semanticist who adheres to the strategy of intended models,
then, is likely to interpret such sets—in the terminology of [Lewis, 1986]—as
linguistic ersatz possible worlds.

Let me close this discussion noting that a philosopher who, in spite of its
difficulties opts for a pure standard substitutional quantified modal logic as
the right and proper tool for the analysis of modal discourse will find neither
the doctrines of rigid designation, the necessity of identity, essentialism, or
the necessary a posteriori appealing, nor modal arguments for the existence
of necessary beings or the identity or distinctness of natural kinds feasible.

1.2.3 Summary: Doubts about Substitutional Seman-

tics

The aforementioned problems of applied standard substitutional semantics
(e.g., the problem of the nature and existence of the True and the False (or
their surrogates); the problem of what 1 and 0 represent on any account
of representation; the problem of truthmaker monism; the problem of an
insensitivity to the category of discourse; the problem of the unanalysed
truth of atomic sentences) are, in the end, consequences of the problem of
noncompositionality, which is due to the fact that in substitutional semantics

78See [Leblanc, 1973b] pp. 256-257. Cf. also [Dunn, 1973].
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the semantic values of atomic sentences do not depend upon the semantic
values of their constituents.

There are also problems which result from the referential inability of sub-
stitutional semantics. As a consequence, the denotational semanticist will
find it problematic that substitutianal languages cannot express claims of
referential identity and that the semantics for such languages leads to the
problem of ontological deflation. Moreover, given the lack of modality de re,
a denotationalist might miss the doctrines of Kripkean orthodoxy and the
means to set up modal existence and distinctness arguments.

Furthermore, the substitutional language, whether fictional or not, is con-
strued, in effect, as being descriptive of some reality which is represented in
some way by intended (or maybe intended∗) standard substitutional models,
even if its singular terms do not refer and its quantifiers do not range over
anything and thus do not have ontological import.

Finally, if there are only denumerably many names but nondenumer-
ably many objects, substitutional semantics needs to be supported by a
Löwenheim-Skolem argumentation.

We now turn to semantic frameworks which combine elements from deno-
tational and substitutional semantics.

1.3 Mixed Semantics

There is a natural way in which substitutional semanticists tend to react
to the problems of noncompositionality, the incapability of substitutional
languages to express referential identity and to the problem of ontological
deflation. The strategy is to supplement substitutional semantics with ele-
ments from denotational semantics.

According to the proposal made by Kripke in section 4 of [Kripke, 1976],
the substitutional semanticist may introduce substitutional quantifiers into
the referential language which already contains the referential quantifier, by
taking the latter language as a base language and extending it with substi-
tutional variables and quantifiers. In the resulting language both kinds of
quantifier may occur without conflict.
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By contrast, according to a less ecumenical account suggested by Ruth
Marcus in [Marcus, 1993 (1978)], the referential quantifier is taken to be a
special case of the substitutional. Here the semantics of substitutional quan-
tification is enriched with a substitution class of denoting constants that
define an objectual domain so as to achieve the effects of referential quantifi-
cation. We shall deal with both accounts in the rest of this section.

1.3.1 Nonmodal Mixed Semantics

Let me first summarize Kripke’s ideas concerning a mixed language which
contains both the substitutional and the referential quantifier.

Let the base language LKri
0 of the mixed Kripkean language LKri be just

Ld. However, in order to distinguish the two kinds of quantification we let
the individual terms be underlined. Thus if ϕn is an n-ary predicate of LKri

0

and o1, ..., on are the individual terms of that language (which can be either
individual constants α1, α2, ... or individual variables x1, x2, ..., then ϕno1...on

is an atomic formula of the base language. All atomic formulae of the base
language are formulae of that language and if A and B are formulae of the
base language, and x is an individual variable, then the following are also
formulae of the base language: ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B),
(∀x)A, (∃x)A. Nothing else is a formula of LKri

0 . Bound and free individual
variables are defined in the usual way.

We now extend the base language LKri
0 so as to yield LKri by adding the

substitutional quantifiers and the nominal substitutional variables x, x1, x2, ...,

y, ... bound by substitutional quantifiers.

Let ϕ̃ns be the n-ary predicates of LKri which just are the predicates of
the base language and let õ1, õ2, ... be the terms of LKri which can be either
individual terms of the base language or nominal substitutional variables. So
if ϕ̃n is an n-ary predicate of LKri and if õ1, ..., õn are the singular terms of
the specified sorts of that language, then ϕ̃nõ1...õn is an atomic formula of
the language LKri.

Then all atomic formulae of LKri are formulae of that language and if Ã
and B̃ are formulae of LKri, x is an individual variable and x is a nominal
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substitutional variable, then the following are also formulae of the base lan-
guage: ¬Ã, (Ã∧B̃), (Ã∨B̃), (Ã→ B̃), (Ã↔ B̃), (∀x)Ã, (∃x)Ã, (Πx)Ã, and
(Σx)Ã. Nothing else counts as a formula of LKri. Bound and free variables
are defined in the usual way.

Now, we let SKri be a mixed standard model 〈D, {1, 0}, v, I〉 for LKri,
where D is an ordinary non-empty domain of objects d1, d2, ...; v is a func-
tion which assigns semantic values to the individual constants from the sub-
stitution class C of individual constants α, β, ... of the base language LKri

0

and to the predicates of LKri. (Recall that these are all contained in the
alphabet of LKri

0 .) The assignments to predicates are slightly less ordinary
since the predicates may be complex.

Let Prdm be the set of all possibly complex predicates of LKri which are
built up from a predicate and from individual terms of LKri

0 . Such a predicate
will have the general form ϕn,mo1; ...; on, where the superscript n indicates the
arity of the predicate and the superscript m (where n ≥ m ≥ 1) indicates
the number of free (not necessarily distinct) individual variables occuring
among o1; ...; on. The semicolons indicate that the order of the individual
terms, in the general form, is arbitrary. Concrete instances of this general
form will contain no semicolons for in them the order of occurrence is not
arbitrary. The following predicates are, for instance, among the elements of
Prdm: ϕ1,1x, ϕ2,1xα, and ϕ3,2x1αx2. In effect, Prdm is the set of the atomic
formulae of LKri

0 with at least one free individual variable. The second part
of the definition of v then is:

v : Prdm → ℘(Dm).

The referential extensions of the three predicates listed above will be: v(ϕ1,1x)

⊆ D, v(ϕ2,1xα) ⊆ D, and v(ϕ3,2x1αx2) ⊆ D ×D. (Informally, we may take
them to mean, for example, ‘... is a man’, ‘... loves Mary’, and ‘... has the
choice between Mary and ...’, respectively.) In general the extension of a
predicate v(ϕn,mo1; ...; on), will be a set of m-tuples of the form {〈d1; ... ;
dm〉, ...}. When the semicolons occur in tuples they are meant to indicate
that their elements are ordered—in a way, though, which our semicolon no-
tation does not capture. (This is not to say, of course, that the order of the
elements contained in the tuples is arbitrary.)
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As for I, we let Atm be the set of all atomic sentences Ã of LKri which
contain exclusively individual constants that are assigned no object from D

and stipulate that I : Atm→ {1, 0}.
Let δ be an ordinary denotational variable assignment which assigns to

each individual variable x an object d from D. x-variants ζ of δ are defined
in the common way. Nominal substitutional variables are assigned no values.

Given some Kripke-style mixed model SKri = 〈D, {1, 0}, v, I〉 and some
assignment δ based on it, we let the õs be individual terms of LKri and
define the notion of the value of some õ with respect to SKri under δ, vδ(õ),
as follows.

1. If õ is an individual variable x then vδ(õ) = δ(õ).

2. If õ is an individual constant α then vδ(õ) = v(õ).

When õ is a nominal substitutional variable it does not receive a value.

We may now define the truth conditions for the formulae of LKri with
respect to SKri = 〈D, {1, 0}, v, I〉 under δ as follows:

1. SKri
δ |= ϕn,mõ1; ...; õn iff 〈vδ(õ1); ...; vδ(õm)〉 ∈ vδ(ϕ

n,mõ1; ...; õn). (For
example, SKri

δ |= ϕ3,2x1αx2 iff 〈vδ(x1), vδ(x2)〉 ∈ vδ(ϕ
3,2x1αx2).)

When Ã and B̃ do not contain free nominal substitutional variables x
then:

2. SKri
δ |= ¬Ã iff SKri

δ 6|= Ã.

3. SKri
δ |= Ã ∧ B̃ iff SKri

δ |= Ã and SKri
δ |= B̃.

4. SKri
δ |= (∀x)Ã iff for all x-variants ζ of δ: SKri

ζ |= Ã.

5. If Ã ∈ Atm then SKri
δ |= Ã iff I(Ã) = 1; otherwise SKri

δ 6|= Ã.

The last clause is reserved for the substitutional quantifier. If Ã is
a formula of LKri with at most one free occurrence of the nominal
substitutional variable x, then

6. SKri
δ |= (Πx)Ã iff for all individual constants α ∈ C: SKri

δ |= Ã′, where
Ã′ comes from Ã by replacing any free occurrences of x by α.
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The notion of truth in SKri for the closed formulae of LKri can be defined
in the ordinary way as truth in SKri under all assignments to the individual
variables.

Illustration: Consider, for instance, the mixed quantified formula (Σx)(∀y)
ϕ2,1xy, which will be true in the model exactly if there is an individual
constant α in C such that (∀y)ϕ2,1αy is true in the model. And this will be
so just in case the complex predicate ϕ2,1αy is true of every object from D

under any assignment to the individual variable y. For example, let ϕ2,1xy

have the meaning of the English predicate ‘... is admired by ...’, let D be the
set of all school boys and let C contain the names of comic heroes.

Consider next an even simpler formula like (Σx)ϕ1,0x? That formula will
be true in SKri under δ just in case for at least one individual constant
α ∈ C: SKri

δ |= ϕ1,0α. And this will be so if something to the effect of the
right-hand side of clause (1) will hold. But note that (Σx)ϕ1,0x, taken to
mean ‘There is at least one Hobbit’ and read substitutionally, won’t be true
on the original proposal. For ϕ1,0α won’t be true when α is interpreted as
‘Frodo’ (or receives the meaning of any other Hobbit-name) and assigned no
object from D. In such cases we take it that I maps ϕ1,0α to the True and
apply clause 5.

To obtain a semantics for ordinary statements of referential identity like
‘Bob Dylan is Robert Zimmerman’ the base language is extended so as to
contain the binary predicate ‘=’ and the appropriate formation rule; and the
semantics for this language, LKri= , is to be supplemented with the standard
truth conditions for such identity statements.

Similarly, to accommodate such sentences like ‘Santa Claus is Father
Christmas’ a nonreferential identity predicate, ‘I’, and the corresponding
truth clause may be added so as to obtain a semantics for LKriI .

In a language LKri=I
with the appropriate semantics both kinds of identity

predicate may, then, interact in one single sentence like, for instance, in
(Σx)(Σy)(∃x)(∃y)(xIy ∧ ¬(x = y)).

In [Marcus, 1993 (1978)] Ruth Marcus opposes Kripke’s proposal and sug-
gests a different view of the relation between substitutional and referential
quantification. On her view the substitutional account is the more general
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one and may be construed so as to capture the referential quantifier as a
special case. A formalization of Marcus’s ideas79 might be helpful as well.
Here is a suggestion.

Let LMar be just the purely substitutional language Ls and let the quan-
tifiers bind nominal variables. We stipulate that the base language LMar

0

does only contain atomic sentences of LMar which in turn results from the
base language when it is extended with the nominal variables and quanti-
fiers. To distinguish the denoting from the nondenoting nominal constants
we underline them.

A Marcus-style substitutional model SMar = 〈D, {1, 0}, v, I〉 for LMar

is just like SKri except for D being denumerable. In particular, C is a
substitution class of nominal constants α, β, ... of LMar

0 , where Cd is the
subset of C which contains the denoting constants α, β, ... ; and v an ordinary
denotational valuation function which is defined as usual, in particular, v :

Cd → D, where for every d ∈ D there is a nominal constant α ∈ Cd such
that v(α) = d.

We let δ be an ordinary denotational variable assignment based on SMar

which assigns to each nominal variable x an object d from D. x-variants
ζ of δ are defined in the usual way and so is the notion of the value of a
nominal term o of LMar (which may be either a denoting nominal constant

79“Now, suppose each of our denumerably infinite stock of names does refer to an object.
Let those objects make up our reference class: a domain. Under those conditions, we can
introduce a substitutional analogue of satisfaction of a formula relative to that domain.
If all the contexts in the interpreted language are transparent, then the substitutional
analogue of satisfaction converges with the referential definition of satisfaction. Under
those conditions the quantifiers can be read with existential import. I see the referential
quantifier as a limiting case. Substitutional quantification, together with a substitution
class of names that define a reference class of objects, yields a referential quantifier. If
our substitutional language allows wider substitution classes beyond the set of referring
names, then of course it is important to distinguish with an alternative notation those
cases of quantification where substituends are referring names, for it is those cases that
can be read back into English as ‘There is something such that’ and ‘Everything is such
that’. They have existential import.” ([Marcus, 1993 (1978)] pp. 120-121). In a footnote
to this passage Marcus adds: “If our substitution class of names is extended to include
nonreferring (syntactic) names as well, then it is for the denumerable subset of referring
names that the quantifiers are read with existential import.”
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or a nominal variable) with respect to SMar under δ, vδ(o).

We may then define truth for the formulae of LMar with respect to SMar =

〈D, {1, 0}, v, I〉 for LMar under δ as follows:

1. SMar
δ |= ϕno1...on iff 〈vδ(o1), ..., vδ(on)〉 ∈ vδ(ϕ

n).

For the complex cases we let the subformulae be underlined so as to
indicate that they exclusively contain occurrences of nominal terms
which have received a denotation.

2. SMar
δ |= ¬A iff SMar

δ 6|= A.

3. SMar
δ |= A ∧B iff SMar

δ |= A and SMar
δ |= B.

4. SMar
δ |= (Πxi)A iff for all x-variants ζ of δ: SMar

ζ |= A.

Formulae which contain nondenoting nominal constants receive the fol-
lowing truth conditions.

5. When α1, ..., αn ∈ C then the following holds: SMar
δ |= ϕnα1...αn iff

I(ϕnα1...αn) = 1; otherwise SMar
δ 6|= ϕnα1...αn.

For the complex cases we leave the subformulae without underlines in
order to indicate that they may contain occurrences of nondenoting
nominal terms.

6. SMar
δ |= ¬A iff SMar

δ 6|= A.

7. SMar
δ |= A ∧B iff SMar

δ |= A and SMar
δ |= B.

8. SMar
δ |= (Πxi)A iff for every α from C SMar

δ |= A′ where A′ results
when all the occurrences of xi in A are replaced by α.

The notion of truth in SMar for the closed formulae of the denoting por-
tion of LMar can be defined in the ordinary way as truth in SMar under all
variable assignments. In case C − Cd = ∅, truth in SMar under all variable
assignments and substitutional truth coincide for the closed formulae. Vari-
able assignments, of course, do nothing to define truth in SMar for the whole
of LMar.
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There are thus two ways of evaluating substitutionally quantified formulae
depending on whether it contains nondenoting nominal constants or not.
In the former case (e.g., ‘All boys admire James Bond’) is to be evaluated
according to clause 8, in the latter case (e.g., ‘All boys admire Sean Connery’)
clause 4 applies.

On this construal of Marcus’s account, then, every atomic formula which
contains at least one nondenoting nominal constant is to be evaluated by
purely substitutional means. By contrast, on our previous construal of
Kripke’s approach, only atomic formulae which contained exclusively non-
denoting terms were evaluated that way.

We may extend the Marcusian language to a language LMarI
with the

nonreferential identity predicate ‘I’ and amend the semantics with two kinds
of truth clause for identity statements. Formulae in which ‘I’ is flanked
exclusively by denoting nominal terms receive the usual referential truth
conditions; otherwise the truth conditions will be the substitutional ones.

The question to be asked now is which view on the relationship between
substitutional and referential quantification should be preferred, the Krip-
kean or the Marcusian? The central difference between these accounts is, in
my oppinion, that the latter account unlike the former requires support by
some reasoning to the effect of a Löwenheim-Skolem argument, since it cap-
tures only referential quantifiers whose domains are denumerable. And this
is an advantage of Kripke’s view. At any rate, in [Marcus, 1993 (1985/86)]
Ruth Marcus opts for an account with mixed quantifiers.80

1.3.2 Modal Mixed Semantics

To obtain modal versions of the languages LKri and LMar and their versions
with identity, they have to be enriched with the box-operator and the ap-
propriate formation rule. To obtain the semantics for the resulting modal
languages LKri2 and LMar2

and their identity extensions, the models SKri

and SMar are to be supplemented with the familiar sets. The resulting mod-
els RKri and RMar will both be tuples of the form 〈S,R,D, c, d, {1, 0}, I, v〉,
80See [Marcus, 1993 (1985/86)] p. 213. She thus seems to return to the view of
[Marcus, 1976] (see, in particular, page 48).
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but D will be denumerable in RMar. The clauses for the formulae with the
box as their main logical operator are the usual ones. As usual, there will be
much room for choice, for instance, concerning the logical properties of R or
the constancy of the model. We need not go more into this here. Instead,
let us consider the question of how the mixed substitutional semanticist can
make profit from his resources.

Here is a suggestion made by Ruth Marcus on how possibilia can be dis-
pensed with in a mixed Kripkean framework with varying domains. (Recall
that the problem of possibilia does not arise for semantics which employ
models with constant domains but only for varying domain semantics whose
models are set up in such a way as to invalidate the Barcan Formula.)

“Where the substitution class for the quantifiers are the names
assigned to the actual world, we can read the quantifiers objectu-
ally, or existentially. Indeed, we can reintroduce full fledged ref-
erence by associating a domain of objects with the actual world
and view our quantifiers as mixed: referential for this world and
substitutional otherwise. We can thus dispense with the artifice
of domains of possibilia.”81

First, let us assume that the modal language is LKri=I2

and the semantics
for this language will involve models RKri whose objectual domains and
nominal substitution classes co-vary and the appropriate truth clauses (which
might also involve a clause for the existence predicate).

Now, how should Marcus’s suggestion be understood? Presumably in a
way like this. Whenever a formula of a mixed language which contains a
quantifier that does not occur in the scope of a modal operator is to be eval-
uated at the index which represents the actual world, this quantifier is a ref-
erential one. Indeed, on this proposal the mixed formula 3(Σx)Ã∧¬(∃x)3Ã
of LKri=I2

which will be equivalent to the negation of the Barcan Formula
will give no rise to the existence of some possibile or some actualistically ac-
ceptable surrogate. But notice that according to this account, such formulae
like (∃x)3Ã will also be admitted for evaluation at the index for the actual
81[Marcus, 1976] p. 48.
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world. And since this is so, the proposal—on the canonical construal—must
provide answers to concerns of transworld identity and thus to metaphysical
questions concerning the nature of transworld individuals and epistemological
issues concerning their reidentification. The proponent of the paradigmatic
account of intended mixed models, by contrast, will have to address the is-
sue of how some individual representative does manage to represent one and
the same individual across different possible worlds. The intended∗ mixed
semanticist, too, will have to answer this question. Such complications of
transworld identity, I take it, will not encourage the advocate of pure substi-
tutional (modal) semantics to embrace the mixed proposal.

There is a further, rather straightforward way, in which such problems can
be avoided as well. We simply modify Marcus’s proposal (or her proposal
as understood above) so as to require that only those referential quantifiers
which occur in nonmodal formulae of LKri=I2

are to be evaluated at the
actual index in the denotational way and that these are the only referential
quantifiers. An analogous cure will also work for LMarI2

.

This crude therapy, though, causes a couple of unwanted side effects which
will not come as a surprise. First, since the intended (or intended∗) interpre-
tations of RKri and RMar will involve something like the True and the False
(or, in the intended∗ case, things represented by 1 and 0 via a bijection),
all the intuitive problems of noncompositionality which we have discussed in
Section 1.2 in the modal case do reappear (e.g., the problems of the nature
of the True and the False or truthmaker monism.)

A second side effect of this therapy which surely makes it unbearable for
Marcusians and Kripkeans alike, is that the doctrine of the necessity of refer-
ential identity can no longer be maintained in the usual denotational way. As
a consequence, then, Kripke’s necessary a posteriori and modal distinctness
(or identitiy) arguments will lose their appeal. Analogous remarks apply to
necessary existence and to modal existence arguments.

The mixed modal substitutional semanticist, therefore, has to face the fol-
lowing dilemma with respect to denoting constants: either accept the therapy
and the problems of noncompositionality, necessary referential identity, and
necessary existence; or reject it and incur a commitment to possible objects.
An argument which will support the latter choice is that possible objects (and

56



possible worlds) can be dispensed with in terms of intended∗ models (or some
other strategy). An argument which might be put forward in support of the
former option is that there is no obvious way to explain the ground of modal
truth. Either way, the mixed semanticist will have to face the problems of
noncompositionality for nondenoting constants.

Let me close this discussion of mixed semantics with a simple observa-
tion. It will have been noted that the work done by our Kripke-style and
Marcus-style models 〈D, {1, 0}, v, I〉 may be done, equally well, by an or-
dinary denotational model T = 〈D, v〉 letting, as is often done, v doing
the job of I and suppressing the appearance of {1, 0} in the model. The
models of mixed (modal) semantics thus are, in effect, ordinary denotational
(modal) models. As in the pure denotational and substitutional case the
mixed (modal) language is construed as being about a reality which consti-
tutes the level of denotation of the object language and which, in the mixed
case, is represented by ordinary denotational models.

1.3.3 Summary: Doubts about Mixed Semantics

The strategy of mixed semantics provides a solution to the problems of non-
compositionality, the problem of the inexpressibility of referential identity,
the problem of ontological deflation, and the problem of nondenumerable do-
mains for the denoting portion of the nonmodal mixed language. However,
the problems of noncompositionality reappear for the nonreferential portion
of the nonmodal mixed language.

When the semantics is extended so as to deal with a modal mixed lan-
guage, one has to decide whether modal formulae are to be evaluated by
substitutional or by denotational means. In the first case, the problems of
the substitutional modal semantics will be inherited, in the second case the
problems of denotational modal semantics will reappear.

1.4 Concluding Remarks: Semantic Intuitions

In view of the preceding discussion, it seems that the strengths of substitu-
tional semantics (no ontological inflation with respect to the quantifier of the
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object language, no problems with fictional and modal reference and so on)
are rooted in a drawback, the lack of compositionality and Tarskian satis-
faction. And, on the other hand, it appears that the disadvantages of deno-
tational semantics (ontological inflation, problems with fictional and modal
reference, etc.) are rooted in its strength, the presence of compositionality
and satisfaction.

My project will be to develop a substitutional semantics in which com-
positionality is present but Tarskian satisfaction and denotation is not. The
framework of associative substitutional semantics to be presented will retain
the positive aspects of substitutional semantics without involving the afore-
mentioned problems of noncompositionality. The semantics to be proposed is
primarily developed with fictional and modal language in mind. However, as
I shall argue in Chapter 4, it is also suitable for the referentially transparent
and denoting portion of language.

Associative substitutional semantics is a truth-conditional semantics. The-
orists working within the tradition of truth-conditional semantics typically
take the intuition of designation to be a necessary condition which must
be fulfilled by any truth-conditional semantics for natural language. This is
nicely expressed in an influential textbook on denotational (more specifically,
Montague) semantics as follows—I quote extensively as the passage helps to
see the characteristics of the present approach:

“A truth-conditional theory of semantics is one which adheres to
the following dictum: To know the meaning of a (declarative)
sentence is to know what the world would have to be like for the
sentence to be true. (...) It is clear that one of the central notions
of the truth-conditional approach is the relationship which some-
times holds between a sentence and the world. («The world» is
here simply intended to refer to the vast complex of things and
situations that sentences can be «about».) Many philosophers of
language—and many linguists also, for that matter— would con-
tend that it is an essential requirement of any semantic theory
that it specify the nature of this relationship. In support of this,
they cite the fact that a fundamental characteristic of natural
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language is that it can be used by human beings to communi-
cate about things in the world. Any theory which ignores this
essential property, it is argued, cannot be an adequate theory
of natural language. Examples would be theories which, in ef-
fect, give the meaning of a sentence by translating it into another
language, such as a system of semantic markers or some sort of
formal logic, where this language is not further interpreted by
specifying its connection to the world. The approach of Katz and
his co-workers seems to be of this sort ([Katz and Fodor, 1963];
[Katz and Postal, 1964]), as is that of [Jackendoff, 1972], and
of the framework known as Generative Semantics ([Lakoff, 1972];
[McCawley, 1973]; [Postal, 1970]). The point is controversial, and
we will not enter into a discussion of the issues and alternatives
here. We merely wish to emphasize that truth-conditional se-
mantics, in contrast to the other approaches mentioned, is based
squarely on the assumption that the proper business of seman-
tics is to specify how language connects with the world—in other
words, to explicate the inherent «aboutness» of language.”82

I also take it that the business of semantics is—in particular with respect to
elementary predication—to explain how language connects with the world—
‘world’ in the sense of ‘reality’. But—in the light of the discussion in this
chapter—I do not accept the view that it is a defining feature of truth-
conditional semantics that language must be viewed as being about some-
thing, that is, as being about the world as its level of reference, or equiva-

82[Dowty et al., 1981] pp. 4-5. (The bibliographical references for the citations are (in
alphabetical order): Ray Jackendoff. Semantic Interpretation in Generative Grammar,
The MIT Press, Cambridge Mass., 1972; Jerrold Katz and Jerry A. Fodor. The structure
of a semantic theory, Language, 39 (1963), pp. 170-210; Jerrold Katz and Jerry A. Fodor.
An Integrated Theory of Linguistic Descriptions, The MIT Press, Cambridge Mass., 1964;
George Lakoff. Linguistics and natural logic, in: D. Davidson & G. Harman (eds.) Se-
mantics for Natural Language, D. Reidel, Dordrecht, 1972, pp. 545-665; James McCawley.
Syntactic and logical arguments for semantic structures, in: O. Fujimura (ed.) Three Di-
mensions of Linguistic Theory, The TEC Corporation, Tokyo, 1973, pp. 259-376; and
Paul Postal. On coreferential complement subject deletion, Linguistic Inquiry, 14 (1970),
pp. 439-500.)
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lently, as being “externally significant”83, as is sometimes said.

The semantical framework I wish to present differs from standard truth-
conditional semantics in that it rejects the view that truth-conditional se-
mantics has to be based on some aboutness assumption. However, be-
ing truth-conditional, it differs from the alternative approaches mentioned
above in that it rests on the conviction that—in particular with respect to
predication—a semantic theory has to provide an account of the relation
between language and the world, if it is to be satisfactory.

I have already mentioned towards the end of the Introduction that what
is distinctive of the framework to be presented is that it rests on the intuition
of reflection as I call it, the intuition which supports the view that language
need not be about a level of denotata for its sentences to be true, and that a
sentence, e.g., an atomic one, can be true solely in virtue of the fact that it
accurately reflects—in a sense to be explained—the meanings of the name(s)
and the predicate from which it is composed. According to the account I shall
propose, the intution of reflection will be explicated in terms of the “sense-
extensions” of names and predicates (whose meanings are determined by the
semantic rules which govern them) and in terms of the notion of “truth with
respect to the level of sense” rather than in terms of (their) designations (in
case they have any) and “truth with respect to the level of reference” which
capture the intuition of designation.

The substitutional semantics to be presented is not only truth-conditional,
it is also model-theoretic. However, since it is not denotational, it is model-
theoretic in a nonstandard sense. I therefore reject the usual equation of
model-theoretic with denotational (or referential) semantics.84

It is now time to develop the semantics of this dissertation in more de-
tail. I shall first present the formal framework of “associative substitutional
83See [Larson & Segal, 1995] p. 5.
84A nice instance of the identification of model-theoretic with referential semantics can
be found, for example, in [Lewis, 1983 (1970)] at page 190: “My proposals are in the tra-
dition of referential, or model-theoretic, semantics descended from Frege, Tarski, Carnap
(in his later works), and recent work of Kripke and others on semantic foundations of in-
tensional logic.” (The emphasis is Lewis’s.) Clearly, this is a passage most denotationalists
are likely to endorse. Indeed, this equation can be attributed to standard substitutional
semanticists as well. Cf., for instance, the writings of Leblanc listed in the bibliography.
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semantics” (Chapters 2 and 3) and then provide it with an applied seman-
tical interpretation (Chapter 4) which captures the intuitions by which that
framework is underlain. Chapter 5, the final chapter, will put the semantics
into the perspective of modal epistemology. The reader who wants to learn
more about sense-extensions and the notion of truth with respect to the level
of sense without going through the technical material first, is referred directly
to Section 4.2.
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Chapter 2

Associative Substitutional
Semantics

2.1 Introduction

My aim in this chapter is to propose an alternative semantics for substi-
tutional quantified modal logic and to provide soundness and completeness
results for various constant and varying substitution class axiom systems
with “substitutional identity”.
The formal framework presented here extends and modifies the theory

of substitutional first-order quantification as proposed in [Kripke, 1976]. It
enriches Kripke’s original substitutional first-order language with a box-
operator and a binary predicate for substitutional identity. The substitu-
tion classes for the quantifiers and the variables are constrained to nominal
constants (or names for short).
The substitutional models of the modal semantics which will be suggested

here differ from the ones offered in [Copeland, 1985] primarily in that they do
not contain a valuation function which assigns truth values to sentences (of a
base language). Instead, the models contain a function which assigns certain
sets of atomic sentences of the base language—“associates” as I shall call
them—to both nominal constants and predicates as their semantic values.
The truth conditions for pure atomic sentences of the base language L0

(i.e., atomic sentences built up out of nominal constants and pure n-ary pred-
icates only) will be defined in terms of name and predicate associates. The
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semantics, therefore, explains how the semantic values of nominal constants
and predicates, respectively, contribute to the semantic value of atomic sen-
tences. It is mainly with respect to the compositionality of the truth condi-
tions for atomic sentences that this semantics differs from the substitutional
semantics which have been proposed hitherto. Truth conditions for the rest
of the formulae of the extended modal language L are then given inductively
in terms of the truth conditions of pure atomic sentences of L0.

The chapter is organized as follows. Section 2.2 sets up the language L for
first-order modal logic with substitutional identity. Section 2.3 introduces
“associative substitutional models” and gives a semantics for the sentences
of L. Section 2.4 extends this semantics to all formulae of that language.
In sections 2.5 through 2.7 completeness results for various axiom systems
(more exactly: systems with SFB, systems without SFB, and systems without
CSBF) are presented along largely familiar lines.

2.2 Substitutional Language

The substitutional language presented here extends the substitutional first-
order language discussed in [Kripke, 1976] by supplementing Kripke’s base
language with a predicate for substitutional identity and adding a box-
operator to the extended language.

2.2.1 Basic Language L0

Alphabet of L0

The alphabet of L0 comprises the following symbols:

1. substitutional nominal constants (or names): a, b, c, ...

2. n-ary predicates: F n, Gn, Hn, ... (n ≥ 1)

3. substitutional identity predicate: =̈
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Let α, β, ..., α1, β1, ... be metavariables ranging over name constants and let
ϕn, χn, ψn, ... be metavariables ranging over the “pure” n-ary predicates listed
under 2.

C is the set of all nominal constants of L0. P will be the set of all pure
predicates. So P does not contain =̈. We let C be denumerably infinite and
we let P be a finite set.1

Sentences of L0

The notion of a sentence of L0 is defined by the following clauses.

1. If α1, ..., αn are any nominal constants and ϕn is any predicate, then
ϕnα1...αn is a sentence of L0.

2. If α1 and α2 are any nominal constants, then α1=̈α2 is a sentence of
L0.

3. Nothing else is a sentence of L0.

Let Snt(L0) be the set of all sentences of L0. And let Atm be the set of
L0-sentences of kind 1, the set of “pure atomic L0-sentences”. (So Atm does
not contain the substitutional identity sentences of L0). We have Atm ⊆
Snt(L0).

Moreover, we define the sets Atm(α) and Atm(ϕn) as follows.

Atm(α) =df {A ∈ Atm: A contains at least one occurrence
of the nominal constant α}.

Atm(ϕn) =df {A ∈ Atm: A contains an occurrence of the
predicate ϕn}.

1The stipulation that P be finite is required by the axiomatization of substitutional
identity to be given later (in Subsection 2.5.4), for axiom =̈2 involves every member of P .
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2.2.2 Language L

Alphabet of L

The alphabet of L extends the alphabet of L0 by adding the following sym-
bols:

1. substitutional nominal variables: x, y, z, ...

2. substitutional universal quantifier: (Πx)

3. truth-functional connectives: ¬ (negation) and ∧ (conjunction)

4. intensional connective: 2 (necessity)

5. parentheses: (, )

V is the denumerable set of nominal variables. A nominal term of L is either
a nominal constant or a nominal variable. Let o, o1, ..., on, p, p1, ..., pn, q, ... be
metavariables ranging over nominal terms and let T be the denumerable set
of nominal terms.

Atomic Formulae of L

1. If o1, ..., on are nominal terms and ϕn is a predicate, then ϕno1...on is an
atomic formula of L. We call such formulae “pure atomic formulae”.

2. If o1 and o2 are nominal terms, then o1=̈o2 is an atomic formula of L.

3. Nothing else is an atomic formula of L.

Formulae of L

1. All atomic formulae of L are formulae of L.

2. If A is a formula of L, then so is ¬A.

3. If A and B are formulae of L, then so is A ∧B.

4. If A is a formula of L, and x any nominal variable, then (Πx)A is a
formula of L.
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5. If A is a formula of L, then so is 2A.

6. Nothing else is a formula of L.

Let Fml(L) be the set of all formulae of L.

Sentences of L

A formula of L which does not contain free variables is a sentence of L. Let
Snt(L) be the set of all sentences of L. So Atm ⊆ Snt(L0) ⊆ Snt(L) ⊆
Fml(L). Hence the sentences of L0 are the atomic sentences of L.

Other Connectives

1. (A ∨B) =df ¬(¬A ∧ ¬B)

2. (A→ B) =df ¬(A ∧ ¬B)

3. (A↔ B) =df (A→ B) ∧ (B → A)

4. (Σx)A =df ¬(Πx)¬A

5. 3A =df ¬2¬A

2.3 Associative Substitutional Semantics

On the present approach to the semantics of substitutionally quantified modal
logic the semantical evaluation of sentences of L is construed as being con-
cerned with names, predicates and their “associates”, rather than with ele-
ments of objectual domains and referential extensions.

2.3.1 Associative Substitutional Models

An associative substitutional model M for L is a 6-tuple

M = 〈S,R,C, c, P, v〉,

67



which is defined as follows.

1. S is a non-empty set of indices (notation: s, t, ...).

2. R ⊆ S × S.

3. C is a non-empty substitution class of nominal constants of L0 (and
thus of L).

4. c : S → ℘(C). c(s) is the substitution class for some s ∈ S and
C =

⋃
s∈S c(s).

5. P is the set of pure predicates of L0. Recall that P does not contain
=̈.

6. v is a (restricted) assignment which is defined as follows:

v : C × S → ℘(Atm) such that v(α, s) ⊆ Atm(α);

v : P × S → ℘(Atm) such that v(ϕn, s) ⊆ Atm(ϕn).

Terminology: v(α, s) is a local associate for a nominal constant α (or
its local name associate); v(ϕn, s) is a local associate for a predicate ϕn

(or its local predicate associate).

We can rigidify the valuations of the nominal constants and pure pred-
icates, respectively, by imposing the following rigidity conditions on
v:

(a) For any α ∈ C and any s, t ∈ S, v(α, s) = v(α, t).

(b) For any ϕn ∈ P and any s, t ∈ S, v(ϕn, s) = v(ϕn, t).

In view of these conditions we can distinguish four rigidity types of
models. We call models which satisfy the first condition name rigid
models or simply rigid models and models which satisfy the second
condition predicate rigid models. Models which satisfy both rigidity
conditions are strongly rigid models and models which satisfy neither
will be called nonrigid models.
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2.3.2 Associative Substitutional Models: Comments

1. It will be obvious that the substitutional models of this semantical
framework differ significantly from the substitutional models for (modal)
first-order languages which have been offered hitherto. They do not
contain truth-values and truth-value assignments to the atomic sen-
tences of some base language. Rather, nominal constants and predi-
cates are assigned semantic values of their own. The present semantics
thus is not a truth-value (or valuational) semantics.

2. The way in which associative substitutional models for an extensional
first-order language can be obtained is obvious. A model for such a
language will contain neither a frame nor the c function and the as-
signments of associates won’t be local. Thus a first-order associative
model will be a 3-tuple I = 〈C,P, v〉, where v is defined as follows

v : C → ℘(Atm) such that v(α) ⊆ Atm(α);

v : P → ℘(Atm) such that v(ϕn) ⊆ Atm(ϕn).

3. As usual, we distinguish two main kinds of substitutional model, con-
stant substitution class models and varying substitution class models.
Constant substitution class models satisfy the constancy condition that
c(s) = C for every s ∈ S whereas varying substitution class models do
not. As a consequence of constancy models of the former kind sat-
isfy the monotonicity condition, that is the requirement that for all
s, t ∈ S, if sRt, then c(s) ⊆ c(t); however, varying substitution class
models need not do this. The same applies, mutatis mutandis, to anti-
monotonicity (i.e., for all s, t ∈ S, if sRt, then c(t) ⊆ c(s)). We shall
later consider models of these kinds.

4. Since the domain of the valuation function v is a substitution class
rather than an objectual domain, we cannot regard from an intuitive
point of view the name associates as referents (or denotata) of the
nominal constants and the predicates as the denotational extensions of
predicates. On the present semantics there just are no denotata and
denotational extensions at all. Intuitively, we may conceive of the asso-
ciates as capturing the “senses” or, more exactly, the “sense-extensions”
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of names and predicates, respectively. These sense-extensions are de-
termined by the meanings of these nonlogical terms which in turn are
captured by nominal definitions and meaning postulates. (This will be
discussed in Chapters 3 and 4 in more detail.)

5. In what follows we shall deal almost exclusively with rigid models (as
specified in clause 2.3.1(5)). The reason for this is that a semantics
which is based on these models will resemble the usual denotational
semantics which are commonly used in discussions of quantified modal
logic and its philosophy most closely. In view of the considerations of
Chapter 1, the associative counterpart of the denotational semantics
for constant domain S5 systems with referential identity will be of par-
ticular interest, since it will highlight some metaphysically interesting
aspects of the associative framework. Models of the other three rigidity
types seem to be interesting for various reasons. In particular, nonrigid
models could be interesting, in view of their dynamic potential, from
an epistemic perspective on quantified modal logic. However, in the
present context, we shall not pursue such issues further.

6. For the purposes of an applied semantical interpretation of the associa-
tive framework admissibility constraints can be imposed on the models,
in particular on the valuation function v, so as to capture philosophi-
cal considerations concerning their applied semantical counterparts. A
proposal to this effect will be made in Chapter 3.

7. It will be noted that, unlike in denotational semantics, the semantic
values of distinct nominal constants and of distinct predicates, respec-
tively, can never be the same. (This fact does, of course, not depend
upon rigidity assumptions.) So the name associates of ‘Hesperus’ and
‘Phosphorus’ differ (whereas their denotata do not) and the predicate
associates of ‘... has a heart’ and ‘... has kidneys’ do not coincide
(although their usual referential extensions do). I shall return to this
observation in Chapter 4.

8. There is much room for modification and adaptation of associative
models. For example, they may be modified by letting the substitution
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classes (or P ) be non-nominal or adapted via supplementation of the
(first-order) models with further sets and functions in order to study
substitutional languages involving other intensional operators. In the
present context, though, we shall be concerned solely with the modal
language L and models of the sort specified above. Moreover, mixed
associative semantics can be construed adapting the ideas which have
been discussed in Section 1.3.

2.3.3 Truth at an Index in a Model

We now define the truth conditions for the sentences of L with respect to
some index s in an associative substitutional model M = 〈S,R,C, c, P, v〉.
We begin with the truth conditions of the sentences of the basic language
L0 which are contained in Atm (clause (1)). We then define truth for the
substitutional identity sentences of L0 (clause (2)). Having defined the truth
for all of L0 we recursively define the extended truth conditions for the rest
of the sentences of L (clauses (3)-(6)).

1. M |=s ϕ
nα1...αn iff (i) α1, ..., αn ∈ c(s) and (ii) ϕnα1...αn ∈ v(α1, s) ∩

... ∩ v(αn, s) ∩ v(ϕn, s); otherwiseM 6|=s ϕ
nα1...αn.

2. M |=s α1=̈α2 iff for all sentences B1 and B2 in Atm where B2 is like
B1 except for containing occurrences of the nominal constant α2 at one
or all places where B1 contains the nominal constant α1: M |=s B1 iff
M |=s B2.

3. M |=s ¬A iffM 6|=s A.

4. M |=s A ∧B iffM |=s A andM |=s B.

5. M |=s (Πx)A iff for all α ∈ c(s): M |=s A[α/x], where A[α/x] comes
from A by replacing any free occurrences of x in A by α.

6. M |=s 2A iff for all t ∈ S such that sRt: M |=t A.

Derivatively: 7. M |=s A ∨ B iff it is not the case that both M 6|=s A

and M 6|=s B; 8. M |=s A → B iff it is not the case that both M |=s A

and M 6|=s B; 9. M |=s (Σx)A iff for some α ∈ c(s): M |=s A[α/x]; 10.
M |=s 3A iff for some t ∈ S such that sRt: M |=t A.
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2.3.4 Truth at an Index in a Model: Comments

1. On the account of the truth conditions just given, the truth conditions
of every sentence always reduce to truth conditions on (pure atomic)
sentences. This puts the present semantics in an obvious contrast to
satisfaction semantics on which the truth conditions of all formulae
reduce to truth conditions on atomic formulae.

2. The first conjunct of the right hand side in clause 2.3.3(1) is trivially
satisfied once the model has a constant substitution class, that is, once
for any s ∈ S: c(s) = C. In particular, it will be satisfied trivially in
models in which R is total (i.e., R = S × S) and monotonicity holds
(i.e. for all s, t ∈ S, if sRt, then c(s) ⊆ c(t)).

3. Clause 2.3.3(1) may be relaxed so as to provide the resources for a non-
bivalent semantics. For example, we might say that an atomic sentence
is undecided, when it is contained in only one of the associates it takes
to make it true.

4. It will be noted that the account of the truth conditions of atomic sen-
tences which contain predicates of arity n ≥ 2 given in clause 2.3.3(1)
does not appeal to set-theoretic relations (i.e., sets of n-tuples of ob-
jects). Instead, the order in the semantic values of the predicates is
guaranteed by the syntactical order of their elements.

5. We illustrate the basic clause with two examples.

(a) Let M = 〈S,R,C, c, P, v〉 be a model based on any frame F =

〈S,R〉, and let s be some index in this model with the substitution
class c(s) = {a, b, d, e}. (Though every α ∈ C and every ϕn ∈ P

are assigned at any index in any model an association set, we
consider merely the associates for the elements of c(s) and for just
one predicate from P .) Let the name associates be v(a, s) = {Fa},
v(b, s) = {Fb}, v(c, s) = {Fc}, v(d, s) = ∅, v(e, s) = {Fe}. And
let the predicate associate for F be v(F, s) = {Fa, Fb, Fc, Fd}.
Now, since both a ∈ c(s) and Fa ∈ v(a, s) ∩ v(F, s), we have
M |=s Fa. Similarly we getM |=s Fb. Since Fc ∈ v(c, s)∩v(F, s)
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and c 6∈ c(s), we have M 6|=s Fc. Now although d ∈ c(s) we
have Fd 6∈ v(d, s) ∩ v(F, s), since v(d, s) = ∅. Thus M 6|=s Fd.
And finally, though e ∈ c(s) and Fe ∈ v(e, s) we have Fe 6∈
v(e, s) ∩ v(F, s) for v(e, s) ∩ v(F, s) = ∅. SoM 6|=s Fe.

(b) Let M = 〈S,R,C, c, P, v〉 be a rigid constant substitution class
model with a frame F = 〈S,R〉 where S = {s, t, u}, R = S × S,
C = {a, b} and c(s) = c(t) = c(u) = C. Let the associates at
s be v(G, s) = {Gab,Gba} and v(a, s) = v(b, s) = {Gab,Gba}.
Thus M |=s Gab and M |=s Gba. Let the associates for t
be v(G, t) = {Gab} and v(a, t) = v(b, t) = {Gab,Gba}. So
M |=t Gab. Let the associates for u be v(G, u) = {Gab} and
v(a, u) = v(b, u) = {Gab,Gba}. Thus M |=u Gab and M 6|=u

Gba. Consequently, by clause (6), for any index w ∈ S we have
M |=w 2Gab andM 6|=w 2Gba. (An example to the same effect
may be construed also for models that are nonrigid. To obtain
such an example we might alter the associates for u in the above
example as follows: v(G, u) = {Gab,Gba}, v(a, u) = {Gab,Gba}
and v(b, u) = {Gab}.)

6. Clause 2.3.3(2) can be stated directly in terms of associates. Let ϕn

be an arbitrary pure predicate, let α1 and α2 be nominal constants
(corresponding to α1 and α2 in that clause, respectively) which are not
necessarily distinct, and let γ1, ..., γn−1 be arbitrary nominal constants.
Then the clause will be: M |=s α1=̈α2 iff for all pure atomic sen-
tences ϕn(α1, γ1, ..., γn−1) and ϕn(α2, γ1, ..., γn−1) (which, simplifying
somewhat, we take to correspond to the B1s and B2s, respectively) the
following holds: ϕn(α1, γ1, ..., γn−1) ∈ v(α1, s)∩v(γ1, s)∩...∩v(γn−1, s)∩
v(ϕn, s) iff ϕn(α2, γ1, ..., γn−1) ∈ v(α2, s) ∩ v(γ1, s) ∩ ... ∩ v(γn−1, s) ∩
v(ϕn, s). In effect, clause 2.3.3(2) is an abbreviation of this clause.

7. As an alternative to the clause for substitutional identity, we might
have replaced clause 2.3.3(2) with the following condition:

2.3.3(2∗) M |=s α1=̈α2 iff for all sentences B1 and B2 in
Atm where B2 is like B1 except for containing occurrences

73



of the nominal constant α2 at one or all places where B1

contains the nominal constant α1: for all t ∈ S such that
sRt,M |=t B1 iffM |=t B2.

The interpretation of substitutional identity defined by clause 2.3.3(2∗)
amounts to what we might call the modal interpretation of substitu-
tional identity, since it requires the equivalence to hold with respect
to the indices which are accessible to the index of evaluation. In this
way the the interpretation of substitutional identity, when it is applied
in modal contexts, can be made dependent upon the properties of the
accessibility relation. (It is natural to assume that these properties are
just the ones which are involved in the interpretation of the modal op-
erators.) The following rigid model shows that our nonmodal interpre-
tation of substitutional identity, as presented in clause 2.3.3(2) are not
equivalent in general. Let M = 〈S,R,C, c, P, v〉 be a rigid constant
substitution class model with a frame F = 〈S,R〉 where S = {s, t},
R = {〈s, t〉}, C = {a, b} and c(s) = c(t) = C. Let the associates at s
be v(a, s) = {Fa}, v(b, s) = {Fb}, and v(F, s) = {Fa, Fb}. And let the
associates at t be v(a, t) = {Fa}, v(b, t) = {Fb}, and v(F, t) = {Fa}.
Now, according to the nonmodal interpretation of substitutional iden-
tity, that is, clause 2.3.3(3), we haveM |=s a=̈b. But according to the
modal interpretation (i.e., clause 2.3.3(2∗)),M 6|=s a=̈b. (In order for
that sentence to be true, R would have to be reflexive.) Accordingly,
these two interpretations will give rise to two different axiomatizations
of =̈. In what follows, we shall almost exclusively discuss the nonmodal
interpretation.

8. Independently of which rigidity type of model is selected and which in-
terpretation of substitutional identity is chosen, substitutional identity
turns out to be a contingent notion of identity unless further constraints
are imposed. We shall return to these issues in the discussion of the
validitiy of NSI in 2.3.8(6) below.

9. The clause for substitutional identity statements of ordinary substitu-
tional first-order languages interpreted in terms of first-order associa-
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tive models I = 〈C,P, v〉 receives the following shape:

I |= α1=̈α2 iff for all sentences B1 and B2 in Atm where
B2 is like B1 except for containing occurrences of the nom-
inal constant α2 at one or all places where B1 contains the
nominal constant α1: I |= B1 iff I |= B2.

10. It is obvious from clause 2.3.3(2) that the predicate =̈ is governed by
the (metalinguistic) principle of substitutivity. In this respect this con-
dition is similar to the usual clause for substitutional identity discussed
in the previous chapter. However, it is governed so only in a restricted
sense, since the clause does not turn upon all sentences of the substi-
tutional language, but exclusively upon its pure atomic sentences (and
so only upon the pure predicates). It is also in this respect in which
clause 2.3.3(2) differs from Marcus’s characterization which turns (as
it stands) on all sentences of the language and thus on sentences of
any complexity.2 Of course, substitutional identity (on any character-
ization) must not be confused with (referential) identity. The latter
is a relation that obtains between objects, that is, the semantic val-
ues of individual terms which themselves are members of an objectual
domain. By contrast, substitutional identity is a relation obtaining
between names (or more generally, as we shall see later between nom-
inal terms). Moreover, unlike =̈, the ordinary identity predicate =

is governed by Leibniz’s law, that is the (metaphysical) second-order
principle α1 = α2 ↔ (∀F )(Fα1 → Fα2) (the underlines are meant
to indicate that the constants are denoting). Finally, both predicates
differ also in their formal behaviour as will become apparent from the
axioms for =̈ given below in Subsection 2.5.3.

2See [Marcus, 1993 (1972)] p. 85. An alternative account of substitutional identity
which involves “identity-normal” truth-value assignments is given in [Leblanc, 1976] ch.
5. We cannot go into this here.
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2.3.5 Truth-Conditions Theorem for L-Sentences

We now prove, adapting Kripke’s original proof of a corresponding theorem
for a nonmodal language without substitutional identity,3 that, granted that
truth has been characterized for atomic L-sentences, the truth conditions for
the atomic portion of L together with clauses (2)-(6) determine the truth
conditions for all sentences of L. More precisely, we shall prove the following
theorem:

Truth-Conditions Theorem: Sentences. LetM = 〈S,R,C, c, P, v〉
be a model. Given the family Γ mapping any s ∈ S to the set
Γs of pure atomic L-sentences true at s inM, there is a unique
family Γ′ mapping any s ∈ S to the set of L-sentences true at s
inM satisfying clauses (2)-(6) and also coinciding with Γ on the
atomic portion of L.

This theorem claims two things, first, that there exists a certain family Γ′

satisfying certain conditions and, second, that this family is unique. We prove
both claims via induction on the complexity of L-sentences, where the com-
plexity of an L-sentence is defined as the number of the operators it contains.

Uniqueness of Γ′. We first show by induction on the complexity of a
sentence of L that any families Γ′ and Γ′′ coinciding with Γ on the atomic
portion of L and satisfying (2)-(6) coincide.

That is we prove by induction on n that if A has complexity n the following
holds: A ∈ Γ′s iff A ∈ Γ′′s .

Let A be an L-sentence of complexity = 0. Then, since every sentence of
complexity = 0 is in the atomic portion of L and Γ′ and Γ′′ coincide with Γ

on the atomic portion of L we have: A ∈ Γ′s iff A ∈ Γ′′s iff A ∈ Γs.

We now turn to the inductive cases. Let us assume for induction: if A has
complexity ≤ n, then A ∈ Γ′s iff A ∈ Γ′′s . For reasons of symmetry it suffices
to prove only one direction.

3See [Kripke, 1976] pp. 330-331.
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Let A be an L-sentence of complexity n + 1. Since the complexity of A
exceeds 0, A must contain an operator. (A is therefore not a sentence of
the atomic portion of L.) We confine ourselves to the cases A = (Πx)B and
A = 2B.

If A = (Πx)B, then for (→) if A ∈ Γ′s, i.e. (Πx)B ∈ Γ′s, by clause (5)
any sentence B[α/x] is in Γ′s, where B[α/x] comes from B by replacing free
occurrences of x by any name α ∈ c(s). Since any such B[α/x] has complexity
= n, we have by induction hypothesis B[α/x] ∈ Γ′′s . But then by (5) for Γ′′s ,
we get (Πx)B ∈ Γ′′s . Hence, if A ∈ Γ′s then A ∈ Γ′′s .

If A = 2B, then for (→) if A ∈ Γ′s, i.e. 2B ∈ Γ′s, by clause (6), for every
t ∈ S such that sRt: M |=t B; that is to say, for every t ∈ S such that sRt:
B ∈ Γ′t. Now, given that B is of complexity = n, the induction hypothesis
applies and so for every t ∈ S such that sRt: B ∈ Γ′′t . So, since Γ′′ satisfies
(6), 2B ∈ Γ′′s and hence A ∈ Γ′′s .

The cases A = ¬B and A = B ∧ C are proved in the same way. This
completes the proof of the uniqueness of any Γ′ coinciding with Γ on the
atomic portion of L and satisfying clauses (2)-(6).

Existence of Γ′. We now have to prove the existence of such a Γ′ coinciding
with Γ on the atomic portion of L and satisfying clauses (2)-(6).

LetM = 〈S,R,C, c, P, v〉 be a model and let (Γs)s∈S be the family of the
atomic L-sentences true at each s inM. Then, given (Γs)s∈S, we construct
a family (Γn

s )n∈ω
s∈S (= Γ′) of the L-sentences A of complexity ≤ n ∈ ω true at

each s inM which is already unique at s.
So for each s ∈ S and each n ∈ ω the family (Γn

s )n∈ω
s∈S has to satisfy the

following condition:

(∗) For every sentence A of complexity ≤ n: A ∈ Γn
s iff

1. A = ϕnα1...αn and both (i) α1, ..., αn ∈ c(s) and (ii) ϕnα1...αn ∈
v(α1, s) ∩ ... ∩ v(αn, s) ∩ v(ϕn, s); or

2. A = α1=̈α2 and for all pure atomic L0-sentences B1 and B2

where B2 is like B1 except for containing occurrences of the
nominal constant α2 at one or all places where B1 contains
the nominal constant α1: B1 ∈ Γn

s iff B2 ∈ Γn
s ; or
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3. A = ¬B and B 6∈ Γn
s ; or

4. A = (B ∧ C) and both B ∈ Γn
s and C ∈ Γn

s ; or

5. A = (Πx)B and for all α ∈ c(s), B[α/x] ∈ Γn
s where B[α/x]

comes from B by replacing any free occurrences of x by α;
or

6. A = 2B and for all t ∈ S, if sRt then B ∈ Γn
t .

To construct (Γn
s )n∈ω

s∈S we first define Γn
s for each s ∈ S inductively taking Γs

to be the set of atomic L-sentences true at s inM and taking the displayed
subformulae to be of complexity ≤ n as follows:

Γ0
s = Γs;

Γn+1
s = Γn

s ∪ {¬B : B 6∈ Γn
s where B is of complexity ≤ n} ∪

{(B ∧ C) : B ∈ Γn
s and C ∈ Γn

s} ∪ {(Πx)B : for all α ∈ c(s),
B[α/x] ∈ Γn

s} ∪ {2B : for all t ∈ S, if sRt then B ∈ Γn
t }.

We then define (Γn
s )n∈ω

s∈S as follows:

(Γn
s )n∈ω

s∈S =
⋃

s∈S Γn
s for each n ∈ ω.

To show that (Γn
s )n∈ω

s∈S satisfies condition (∗) we show that each Γn
s for each

s ∈ S does. The proof is by induction on n.

For n = 0 suppose A ∈ Γ0
s. Then A is either a pure atomic sentence or a

=̈-sentence. Since Γ0
s = Γs, A ∈ Γs. But, by the definition of Γs, this is so

just in case A is true at s inM; and so the clauses (1) and (2) follow.

For the rest we assume as an inductive hypothesis that for every sentence
A of complexity < n with n > 0: A ∈ Γn+1

s . Then for any A of complexity
= n + 1 the sentence A must be one of the following forms: ¬B, (B ∧ C),
(Πx)B, or 2B. In each case the subformulae are of complexity < n and
the hypothesis will apply. We may thus conclude that each clause of the
condition will be satisfied. This concludes the existence part.

The proofs of uniqueness and existence taken together establish the Truth-
Conditions Theorem for L-sentences.
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2.3.6 Truth in a Model

A sentence A of L is true in an associative model M = 〈S,R,C, c, P, v〉
(formally,M |= A) iff for every s ∈ S: M |=s A.

2.3.7 Validity in a Frame

As usual we say that a model 〈F , C, c, P, v〉 is based on the frame F , where
F = 〈S,R〉.
A formula A of L is valid in a frame for associative models (formally,

F |= A) iff it is true in all associative models based on that frame. Moreover,
F is a frame for a system Λ iff every theorem of Λ is valid in F .
Finally, a class CF of frames determines Λ iff for every formula A, A is

valid in every frame in CF iff it is a theorem of Λ.

2.3.8 Validity in a Frame: Illustrations

We now illustrate the semantics by considering the validity and the invalidity
of a couple of sentences with respect to the relevant kinds of associative sub-
stitutional model. The examples are the substitutional counterparts of the
formulae BF, CBF, NE and NI which play a prominent role in philosophical
discussions of the semantics of quantified modal logic.

1. Substitutional Barcan Formula SBF (i.e., (Πx)2A→ 2(Πx)A) and its
converse CSBF (i.e., 2(Πx)A → (Πx)2A). To prove the validity of
both schemes with respect to rigid constant substitution class models
letM be an arbitrary model of this kind and s any index in that model.
Now we have (i) M |=s (Πx)2A just in case, by 2.3.3(5), (ii) for all
α ∈ c(s) M |=s 2A[α/x], where A[α/x] comes from A by replacing
any free occurrences of x in A by α ∈ c(s); this holds just in case, by
2.3.3(6), (iii) for all α ∈ c(s): for all t ∈ S, if sRt, thenM |=t A[α/x].
This in turn holds iff, by the constancy condition which guarantees
that for all s, t ∈ S, c(s) = c(t) and an obvious step, (iv) for all t ∈ S:
for all α ∈ c(t), if sRt, then M |=t A[α/x]. This is the case iff, by a
first-order equivalence, (v) for all t ∈ S: if sRt, then for all α ∈ c(t)
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M |=t A[α/x]. This holds just in case, by 2.3.3(5), (vi) for all t ∈ S: if
sRt, thenM |=t (Πx)A. Finally, this is the case iff, by 2.3.3(6), (vii)
M |=s 2(Πx)A.

2. Invalidity of SBF with respect to rigid varying substitution class mod-
els. Consider the following countermodel. Let M = 〈S,R,C, c, P, v〉
be such a model based on a frame F = 〈S,R〉 with S = {s, t} and R =

{〈s, t〉}. Let C = {a, b} and let c(s) = {a} and c(t) = C. So this model
is not antimonotonic. Let the associates be v(a, s) = v(a, t) = {Fa},
v(b, t) = {Fb} and v(F, s) = v(F, t) = {Fa}. Since both a ∈ c(s) and
Fa ∈ v(a, s)∩v(F, s), we haveM |=s Fa. So we haveM |=s (Πx)2Fx.
This is so because every name in c(s) renders Fx true at any index
which is accessible to s when it replaces the x in Fx. And since both
a ∈ c(t) and Fa ∈ v(a, t) ∩ v(F, t), we haveM |=t Fa. But, although
b ∈ c(t) we have Fb 6∈ v(F, t) and so Fb 6∈ v(b, t)∩v(F, t). SoM 6|=t Fb.
Consequently, M 6|=s 2(Πx)Fx. Thus it is not the case that at every
index every name in the substitution class for that index renders Fx
true when it is substituted for x.

3. Invalidity of CSBF with respect to rigid varying substitution class
models. Consider the following countermodel of this sort. Let M =

〈S,R,C, c, P, v〉 be a model based on a frame F = 〈S,R〉 with S =

{s, t} and R = {〈s, t〉}. Let C = {a, b} and let c(s) = C and c(t) =

{b}. This model is obviously not monotonic. Let the associates be
v(a, s) = {Fa}, v(b, s) = v(b, t) = {Fb}, v(F, s) = {Fa, Fb} and
v(F, t) = {Fb}. Since both a ∈ c(s) and Fa ∈ v(a, s)∩v(F, s), we have
M |=s Fa. Similarly, we getM |=s Fb andM |=t Fb. Thus we have
M |=s 2(Πx)Fx. However, sinceM 6|=t Fa, we haveM 6|=s (Πx)2Fx.

4. We now show that the L-sentence (Πx)2(Σy)(y=̈x), NSE (Necessary
Substitutional Existence), is valid with respect to rigid constant mod-
els. Let M be an arbitrarily chosen rigid constant substitution class
model and let s be an arbitrary index in that model. To show that
M |=s (Πx)2(Σy)(y=̈x) we assume for reductio thatM 6|=s (Πx)2(Σy)

(y=̈x). Thus for some αi ∈ c(s): M 6|=s 2(Σy)(y=̈αi), where 2(Σy)
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(y=̈αi) comes from 2(Σy)(y=̈x) by replacing any free occurrences of
x in (Σy)(y=̈x) by αi. So for all αi ∈ c(s) there is some t ∈ S such
that sRt and M 6|=t (Σy)(y=̈αi) . Now since M is a constant sub-
stitution class model, monotonicity holds. That is any name in c(s)
will be contained in the substitution class c(t) of any t ∈ S such that
sRt. So since c(s) is nonempty c(t) must contain at least one name.
Let αi be that name. Thus for any αi ∈ c(s) there is some t ∈ S such
that sRt and M 6|=t αi=̈αi, where αi=̈αi results from (Σy)(y=̈αi) by
replacing any free occurrence of y in y=̈αi by αi. But then, by clause
2.3.3(2), it is not the case thatM |=t Bi iffM |=t Bi, which gives us a
contradiction. Since this holds for arbitrary constant rigid models and
arbitrary indices in these models we have the desired result.

5. NSE is invalid in rigid varying substitution class models. Let M =

〈S,R,C, c, P, v〉 be a model of this kind based on a frame F = 〈S,R〉
with S = {s, t} and R = {〈s, t〉}. Let C = {a} and let c(s) = C and
c(t) = ∅. So this model is not monotonic. This is all the information
we need to see that this is a countermodel to (Πx)2(Σy)(y=̈x). Since
c(t) = ∅, M 6|=t (Σy)(y=̈a). Thus M 6|=s 2(Σy)(y=̈a), by the truth
conditions for the box-operator. But then, by the truth clause for the
substitutional universal quantifier,M 6|=s (Πx)2(Σy)(y=̈x).

6. Necessary Substitutional Identity (NSI), α=̈β → 2(α=̈β), is invalid
on any rigid model. To verify this consider the following rigid con-
stant substitution class modelM = 〈S,R,C, c, P, v〉, where S = {s, t},
R = {〈s, t〉}, c(s) = c(t) = {a, b}, v(a, s) = v(a, t) = {Fa}, v(b, s) =

v(b, t) = {Fb}, v(F, s) = {Fa, Fb}, and v(F, t) = {Fa}. Obviously, by
clause 2.3.3(2)M |=s a=̈b, but, by clause 2.3.3(10), M |=s 3¬(a=̈b),
since, by clause 2.3.3(1), even thoughM |=s Fa iffM |=s Fb we have
M |=t Fa and M 6|=t Fb. (A similar situation can be construed for
rigid varying substitution class models. To see this consider a model
which is just like the previous one except for letting c(s) = {a, b},
c(t) = {a, b, c} and v(c, t) = {Fc}.) On the modal interpretation of sub-
stitutional identity as given in clause 2.3.3(2∗) (see comment 2.3.4(7))
we obtain for the previous constant model a different result: M 6|=s a=̈b
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andM |=s 3¬(a=̈b). The former sentence is false at s in that model
exactly because the latter is true at that index.

What would it take to ensure the validity of NSI? NSI will be valid
if it will be true in all models which guarantee the truth of α=̈β at
every index of evaluation and every index accessible from that index.
The following kind of model is of this sort. Let a static model be a
(constant or varying) associative modelM = 〈S,R,C, c, P, v〉 where

(a) R is (weakly) reflexive, that is, for all s, t ∈ S (where s and t need
not be distinct), if sRt then tRt;

(b) For any s ∈ S, for any two α1, α2 ∈ c(s), for any ϕn ∈ P , and for
all sentences B1 and B2 in Atm where ϕn is the predicate in these
sentences and B2 is like B1 except for containing occurrences of
the nominal constant α2 at one or all places where B1 contains
the nominal constant α1 the following holds: B1 ∈ v(α1, s) and
B2 ∈ v(α2, s) and B1, B2 ∈ v(ϕn, s).

To verify the validity of NSI with respect to static models, consider any
(constant or varying) static modelM = 〈S,R,C, c, P, v〉 and any index
s in that model. SupposeM |=s α=̈β andM 6|=s 2(α=̈β). Then, by
clause 2.3.3(6), there will be a t ∈ S such that if sRt then M |=t

¬(α=̈β). But since the model is static and thus (weakly) reflexive, we
also have,M |=t α=̈β and thus obtain a contradiction. Since the static
model was selected arbitrarily we may conclude that α=̈β → 2(α=̈β) is
valid with respect to static models based on (weakly) reflexive frames.

Every static model is strongly rigid. However, the fact that a model
is strongly rigid (see clause 2.3.1(6)) is not sufficient for the validity of
NSI as the following model shows. Consider the strongly rigid constant
model model M = 〈S,R,C, c, P, v〉 where S = {s, t}, R = {〈s, t〉},
C = {a, b} and c(s) = c(t) = C. Let the associates at s be v(a, s) =

{Fa}, v(b, s) = {Fb}, and v(F, s) = {Fa}. And let the associates at
t be v(a, t) = {Fa}, v(b, t) = {Fb}, and v(F, t) = {Fa}. Although
the model is strongly rigid we have, by clause 2.3.3(2), M 6|=s a=̈b

and M 6|=t a=̈b. And so, by clause 2.3.3(6), M 6|=s 2(a=̈b). Nor
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does the fact that a model is strongly rigid and satisfies condition
(b) give us the validity of NSI. To obtain such a model we modify
the previous one by adding Fb to v(F, s) = v(F, t) so as to obtain
v(F, s) = v(F, t) = {Fa, Fb}. Clearly, we have, by clause 2.3.3(2),
M |=s a=̈b andM |=t a=̈b. And so, by clause 2.3.3(6),M |=s 2(a=̈b).
However, sinceM 6|=t 2(a=̈b), NSI will not be true in that model. But
when we modify the previous model insisting that the accessibility re-
lation be (weakly) reflexive NSI will be true in the resulting model
as can be easily verified. M = 〈S,R,C, c, P, v〉 where S = {s, t},
R = {〈s, t〉, 〈t, t〉}, C = {a, b} and c(s) = c(t) = C. Let the asso-
ciates at s be v(a, s) = v(a, t) = {Fa}, v(b, s) = v(b, t) = {Fb}, and
v(F, s) = v(F, t) = {Fa, Fb}. (From this we may obtain the simplest
reflexive model in which NSI (with distinct nominal constants) is true
by letting s = t.) Constructions to this effect can be also provided in
terms of strongly rigid varying substitution class models.

Does it make a difference to the validity of NSI with respect to static
models when substitutional identity is interpreted modally? No, but
the evaluation is slightly less direct, since we have to look to other
indices in order to see whether a substitutional identity sentence is
true at a given index. Consider the previous static model. By clause
2.3.3(2∗), M |=s a=̈b, since for all t ∈ S such that sRt it is the case
that for all sentences B1 and B2 in Atm where B2 is like B1 except for
containing occurrences of the nominal constant α2 at one or all places
where B1 contains the nominal constant α1: for all u ∈ S such that
sRu,M |=u B1 iffM |=u B2. In an exactly analogous way we obtain
M |=t a=̈b. But then we see that, by clause 2.3.3(6), 2(a=̈b) will be
true at every index in that model. And since this will be so for all
static models, we may conclude that NSI is valid with respect to static
models which are based on (weakly) reflexive frames.

Clearly, static models run counter to intuitions, for they make all nom-
inal constants whatever substitutionally identical with each other, and,
what is more, they are to the effect that this is so at all indices. How-
ever, the fact that NSI is invalid with respect to rigid models does
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not mean that there is no reasonable way to impose constraints upon
them which guarantee that certain instances of NSI will hold. I shall
propose such constraints in Chapter 3, comment 3.2.4(7). See also the
discussion in the second half of Subsection 2.5.7 below (in particular
the passages arround clause 2.4.2.(2†)).

7. Observations corresponding to the ones just stated for NSI can be made
also for necessity of substitutional distinctness (NSD), i.e. ¬(α=̈β) →
2¬(α=̈β).

2.4 Associative Substitutional Semantics with

Variable Assignments

In this section a version of the semantics of the previous section is presented
according to which the clause for the substitutional quantifier is given in
terms of substitutional (x, s)-variants rather than (directly) in terms of the
nominal constants contained in a substitution class for an index. It will
become apparent that nothing of substance changes. However, it will be
convenient to have an account of truth conditions of this sort when we come
to discuss the soundness and completeness of axiomatic systems which allow
for instances of axioms which contain open formule (e.g., (Πx)Fx → Fy or
x=̈x).

The semantics to be presented in this section is one which is suitable
for normal axiom systems with SBF. We shall discuss such systems in the
next section. The semantics will need some modification, when we turn to
varying substitution class systems. A system which invalidates SBF will
be presented in Section 2.6 and a system which invalidates CSBF will be
discussed in Section 2.7.

2.4.1 Assignments to Nominal Variables

To obtain a semantics which handles open formulae we introduce the notion
of a nominal variable assignment σ based on a modal associative model which
assigns names to nominal variables relative to indices. More exactly, given
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some model M = 〈S,R,C, c, P, v〉 on which σ is based this assignment is
defined as follows.

σ : V × S → C

Thus for any x ∈ V and s ∈ S, σ(x, s) = α where α a name in C of that
model.

It is obvious that the semantic values of substitutional variables are lo-
cal in the same way in which the semantic values of names and predicates
are local. Moreover, it will be noted that the semantic values of variables
do not belong to the same “ontological category” as the ones assigned to
names and pure predicates. The former are assigned names, the latter sets
of pure atomic sentences. This puts the present semantics in contrast to
denotational semantics according to which the semantic values of individual
constants and individual variables belong to the same ontological category
(of not necessarily linguistic members of objectual domains).

When we are dealing with rigid models (see clause 2.3.1(6)), we have
to introduce rigid nominal variable assignments by requiring the following
rigidity condition to hold for nominal variable assignments σ with respect to
some rigid modelM = 〈S,R,C, c, P, v〉:

For all x ∈ V and for all s, t ∈ S: σ(x, s) = σ(x, t).

Let σ and τ be two nominal variable assignments for s ∈ S. σ and τ
are (x, s)-variants just in case for all nominal variables y except at most x,
τ(y, s) = σ(y, s). The variants will be rigidified in case the assignments are.

LetM = 〈S,R,C, c, P, v〉 be a model, s an index in S, and σ an assignment
in c(s). Then for any term o the term value of o with respect to v and σ,
vσ(o, s) is defined as follows.

vσ(o, s) =

 v(o, s) if o is a nominal constant
v(σ(o, s), s) if o is a nominal variable.

When we deal with rigid models the term values will be rigid as well. So if
M = 〈S,R,C, c, P, v〉 is a rigid model, s an index in S, and σ an assignment
in c(s). Then for any term o the rigid term value of o with respect to v and
σ, vσ(o, s), satisfies the following condition:
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For all terms o ∈ T and for all s, t ∈ S: vσ(o, s) = vσ(o, t).

From now on we indicate that a semantics is rigid merely by indicating that
the models are rigid.

2.4.2 Truth at an Index in a Model with Variable As-

signments

We define the conditions for truth at an index s in a modelM = 〈S,R,C, c, P, v〉
with respect to some variable assignment σ as follows.

1. Mσ |=s ϕ
no1...on iff (i) if o1, ..., on are nominal constants, then o1, ..., on

∈ c(s) and if they are nominal variables, then σ(o1, s), ..., σ(on, s) ∈
c(s) and (ii) ϕno1...on ∈ vσ(o1, s) ∩ ... ∩ vσ(on, s) ∩ v(ϕn, s); otherwise
Mσ 6|=s ϕ

no1...on.

2. Mσ |=s o1=̈o2 iff for all pure atomic formulae B1 and B2 where B2 is
like B1 except for containing occurrences of the term o2 at one or all
places where B1 contains the term o1: Mσ |=s B1 iffMσ |=s B2.

3. Mσ |=s ¬A iffMσ 6|=s A.

4. Mσ |=s A ∧B iffMσ |=s A andMσ |=s B.

5. Mσ |=s (Πx)A iff for every (x, s)-variant τ of σ: Mτ |=s A.

6. Mσ |=s 2A iff for all t ∈ S such that sRt: Mσ |=t A.

Derivatively: 7. Mσ |=s A ∨ B iff it is not the case that both Mσ 6|=s A

andMσ 6|=s B; 8. Mσ |=s A → B iff it is not the case that bothMσ |=s A

andMσ 6|=s B; 9. Mσ |=s (Σx)A iff for some (x, s)-variant τ of σ: Mτ |=s

A[α/x]; 10. Mσ |=s 3A iff for some t ∈ S such that sRt: Mσ |=t A.

2.4.3 Truth at an Index in a Model with Variable As-

signments: Comments

The comments made in Subsection 2.3.4, except for 2.3.4(1), also apply,
mutatis mutandis, to the notion of truth at an index in a model explained in
terms of variable assignments. Here are some further remarks.
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1. Unlike in Subsection 2.3.3, the truth conditions of all formulae do no
longer reduce to truth conditions for closed formulae (more precisely,
for closed pure atomic formulae). For closed formulae of L the notion
of truth at an index with respect to a associative model may now be
defined inductively, in a way which, in view of the underlying definition
of term values, differs slightly from the usual denotational definition,
as truth under all nominal variable assignments. Obviously, an account
of this sort cannot be given for a formal language which lacks nominal
constants. The way in which this kind of “nondenotational” definition
of truth can be stated for a nonmodal substitutional language and
nonmodal associative models I = 〈C,P, v〉 is obvious.

2. We might have offered a different account of truth conditions for the
pure atomic formulae by first giving a clause for pure atomic sentences
and then a clause for pure atomic formulae. The way I have in mind
would involve an account of term values along the following lines. Let
M = 〈S,R,C, c, P, v〉 be a rigid model, s an index in S, and σ a rigid
assignment in c(s). Then for any term o the rigid term value of o with
respect to v and σ, v∗σ(o, s), will be defined as follows:

v∗σ(o, s) =

 v(o, s) if o is a nominal constant
σ(o, s) if o is a nominal variable.

The clauses for the pure atomic sentences and formulae would then
take the following shape:

(1′) Where o1, ..., on are nominal constants: Mσ |=s ϕ
no1...on

iff (i) o1, ..., on ∈ c(s) and (ii) ϕno1, ..., on ∈ v∗σ(o1, s) ∩ ... ∩
v∗σ(on, s) ∩ v(ϕn, s); otherwiseMσ 6|=s ϕ

no1...on.

(2′) Where o1, ..., on are nominal variables and A(o1...on) is
an atomic formula of L possibly containing nominal con-
stants with o1, ..., on free: Mσ |=s A(o1...on) iff Mσ |=s

A([v∗σ(o1, s)/o1]...[v
∗
σ(on, s)/on]), where this formula is the re-

sult of replacing the free variables o1, ..., on in A(o1...on) by
the term values specified above. OtherwiseMσ 6|=s A(o1...on).
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On this account the truth conditions of all (open) formulae reduce to
truth conditions on closed sentences (more precisely, on pure atomic
sentences) just like in Subsection 2.3.3.4 The account given in the
previous section is more appealing than the one just given, not only
because it allows to define truth in a way similar to denotational se-
mantics, but also because it is less cumbersome, since it treats open
and closed pure atomic formulae in a single clause.

2.4.4 Truth-Conditions Theorem for L-Formulae

The proof of the following analogue of the Truth-Conditions Theorem for
sentences proceeds in essentially the same way as in Subsection 2.3.5.

Truth-Conditions Theorem: Formulae. LetM = 〈S,R,C, c, P, v〉
be an associative model. Given the family Γ mapping any s ∈ S
to the set Γs of atomic L-formulae true at s in M, there is a
unique family Γ′ mapping any s ∈ S to the set of L-formulae true
at s inM satisfying clauses (2)-(6) and also coinciding with Γ on
the atomic portion of L.

2.4.5 Truth in a Model with Variable Assignments

The introduction of nominal variable assignments allows us to state the con-
ditions for truth in a model in a way that parallels the usual denotational
definition.

A formula A of L is true in an associative substitutional model (formally,
M |= A) iff for every s ∈ S and every nominal variable assignment σ:
Mσ |=s A.

4A semantical interpretation of open formulae along these lines is suggested in
[Kripke, 1976] p. 330, note 4. “Of course a formula with free variables can be inter-
preted semantically by observing that it becomes true if such and such terms replace the
variables and false if other terms replace them. This, however, is merely a concept defined
in terms of truth for sentences; unlike satisfaction in the case of referential quantifiers, it
plays no role in the inductive definitions of semantical terms.”
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2.4.6 Validity in a Frame with Variable Assignments

The definition of validity (and the other terminology) remains the same as
in Subsection 2.3.7.

A formula A of L is valid in a frame for substitutional models (formally,
F |= A) iff it is true in all associative models based on that frame. In the
present setting we take these models to be rigid.

2.4.7 The Syntactical de nomine/de dicto Distinction

A formula A is said to be de dicto if no free nominal variable or nominal
constant occurs within the scope of a modal operator. A formula A is de
nomine if it is not de dicto.5 So, for instance, (Σx)2Fx, 3(Πx)2Fx and
3Fa will be de nomine, but 2(Σx)Fx will not.

We call formulae of the first sort “de nomine”, since it would be misleading
to call them “de re”. There just are no objectual domains of referents in the
present framework and thus no res on this semantics for the language to
be about. Indeed, the language is not even about names or associates. (It
might therefore be more appropriate to call de nomine formulae “ex nomine”,
since unlike the preposition ‘de’ the preposition ‘ex ’ hardly seemes to involve
connotations of aboutness. However, we shall stick to the first terminological
option, since it sounds more familiar.)

The intuitive motivation behind this shift of terminology will become more
apparent in Chapter 4, when the applied semantical interpretation of the
associative framework will be discussed. For the time being we shall say,
anticipating the terminology of that chapter, that the names and the pred-
icates do not denote anything but reflect the information included in their
associates. Roughly, a de nomine sentence like (Σx)2Fx says that there is
a nominal constant which is such that its associates and the associates of F
are arranged in such a way that Fx is rendered true at all accessible indices
once the constant is substituted for the variable. A de dicto sentence like
2(Σx)Fx says, that the sentence (Σx)Fx is true at all accessible indices. We

5This characterization of de dicto is an adaptation of Kit Fine’s “de dicto in the strict
sense” (see [Fine, 1978] p. 143) to our substitutional language.
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shall clarify this intuitive semantical distinction further in Subsection 2.5.7
after substitutional axiom systems with SFB have been specified.

2.5 Axiom Systems with SBF

Most of the discussion to follow in the rest of this chapter consists of stright-
forward adaptations of soundness and completeness results from denotational
modal semantics patterned along the exposition in [Hughes and Cresswell,
1996] to associative modal semantics. However, since the adaptations dif-
fer slightly from the denotational counterparts (for example, with respect to
the presence of substitutional identity and the construction of the canonical
models) the inclusion of the material to will be justified as I hope.

The present section discusses systems with =̈ and with SBF, Section 2.6
systems with =̈ but without SBF and Section 2.7 =̈-systems without CSBF.
We shall study these systems in terms of rigid models. Only the material
in which the differences mentioned above show up (with few exceptions) will
be included in the body of this chapter. The material common to both the
denotational and the associative framework are relegated to Appendix A
where it is included only to let the present study be self-contained.

2.5.1 Substitutability

A term o is substitutable for a nominal variable x in A (or, free for x in
A) provided there is no free occurrence of x in the scope of a substitutional
quantifier (Πy) or (Σy) whose y occurs in o. Here to say that a variable
occurs in a term is just to say that the variable and the term are identi-
cal. A consequence of this definition is that nominal constants are always
substitutable for every nominal variable.

2.5.2 Relettering, Agreement, and Replacement

Formulae A and B are bound alphabetic variants just in case they differ only
in that A contains a well formed subformula (Πx)C where B has (Πy)D and
C and D differ only in that C has x free exactly where D has y free. As
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usual we then let A[y/x] be the formula which results from taking a bound
alphabetic variant of a formula A in which no substitutional y-quantifier is
present and then replacing every free occurrence of x in the resulting variant
by y.

We adapt two familiar first-order principles to the present framework, the
modal principles of agreement (i.e. MSPA) and replacement (MSPR). The
versions of these principles involve rigid models.

MSPA

LetM = 〈S,R,C, c, P, v〉 be any rigid associative model for the
language L, let s ∈ S, and let σ and τ be rigid nominal variable
assignments in c(s) which agree on all the variables x free in
a formula A of the language (i.e., σ(x, s) = τ(x, s)), then the
following holds: Mσ |=s A iffMτ |=s A.

Proof of MSPA. The proof is rutine and proceedes by induction over the
complexity of A.6 We show that for all rigid variable assignments σ and τ in
c(s) ofM = 〈S,R,C, c, P, v〉 the following holds:

If σ(x, s) = τ(x, s) for the variables x free in A, then: Mσ |=s A

iffMτ |=s A.

We give the cases for pure atomic formulae, for substitutional identities,
substitutional universal quantifications, and necessities.

For A = ϕno1...on: Mσ |=s ϕ
no1...on iff, by clause 2.4.2(1), ϕno1...on ∈

vσ(o1, s)∩...∩vσ(on, s)∩v(ϕn, s); iff, by the assumption that σ(x, s) = τ(x, s)

for the variables x free in A, ϕno1...on ∈ vτ (o1, s) ∩ ... ∩ vτ (on, s) ∩ v(ϕn, s);
iff, by clause 2.4.2(1),Mτ |=s ϕ

no1...on.

For A = o1=̈o2: Mσ |=s o1=̈o2 iff, by clause 2.4.2(2), for all pure atomic
formulae B1 and B2 where B2 is like B1 except for containing occurrences of
the term o2 at one or all places where B1 contains the term o1: Mσ |=s B1

6Our proof of MSPA and the proof of MSPR to be given shortly are adaptations of
the proofs set out in [Friedrichsdorf, 1992] in terms of ordinary first-order denotational
models.
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iff Mσ |=s B2; iff, in view of the considerations in 2.3.4(5) as generalized
to terms o, p ∈ T , for all pure atomic formulae (which correspond to B1

and B2, respectively) ϕn(o1, p1, ..., pn−1) and ϕn(o2, p1, ..., pn−1) the following
holds: ϕn(o1, p1, ..., pn−1) ∈ vσ(o1, s) ∩ vσ(p1, s) ∩ ... ∩ vσ(pn−1, s) ∩ v(ϕn, s)

iff ϕn(o2, p1, ..., pn−1) ∈ vσ(o2, s) ∩ vσ(p1, s) ∩ ... ∩ vσ(pn−1, s) ∩ v(ϕn, s); iff,
by the condition that σ(x, s) = τ(x, s) for the variables x free in A, for all
pure atomic formulae ϕn(o1, p1, ..., pn−1) and ϕn(o2, p1, ..., pn−1) the following
holds: ϕn(o1, p1, ..., pn−1) ∈ vτ (o1, s)∩ vτ (p1, s)∩ ...∩ vτ (pn−1, s)∩ v(ϕn, s) iff
ϕn(o2, p1, ..., pn−1) ∈ vτ (o2, s) ∩ vτ (p1, s) ∩ ... ∩ vτ (pn−1, s) ∩ v(ϕn, s); iff, by
clause 2.4.2(2),Mτ |=s o1=̈o2.

For A = (Πx)B. Since the rigid assignments σ and τ agree on the free
variables in (Πx)B, their (x, s)-variants σ′ and τ ′, respectively, they agree on
the variables free in B, because σ′(x, s) = τ ′(x, s). We then have using the
induction hypothesis for B the following equivalences: Mσ |=s (Πx)B iff, by
clause 2.4.2(5), for every (x, s)-variant σ′ of σ: Mσ′ |=s A; iff, by induction
hypothesis, for every (x, s)-variant τ ′ of τ : Mτ ′ |=s A; iff, by clause 2.4.2(5),
Mτ |=s (Πx)B.

For A = 2B we obtain the following equivalences: Mσ |=s 2B iff, by
clause 2.4.2(6), for every t ∈ S, if sRt then Mσ |=t A; iff, by induction
hypothesis, for every t ∈ S, if sRt then Mτ |=t A; iff, by clause 2.4.2(6),
Mτ |=s 2B.

As a corollary to MSPA the following holds: where A contains no free
variables andM = 〈S,R,C, c, P, v〉 is a rigid model for L the following holds
for all assignments σ and τ in c(s): Mσ |=s A iffMτ |=s A.

In case the models and the assignments under discussion are rigid, MSPA
coincides with its nonmodal version SPA which can be obtained mutatis mu-
tandis. When the models are not rigid, the nonrigid version of the MSPA will
not so coincide, for then the assignments will be nonrigid and thus relativized
to the indices. Note that this is a point of difference between associative and
denotational modal semantics, since the latter does not need to introduce a
modal version of this principle. The same applies to MSPR. Here is a version
of this principle which appeals to rigid models:
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MSPR

Let A be any formula of the language L and let o be the nomi-
nal term of that language which is substitutable for the nominal
variable x in A, then for every rigid associative model M =

〈S,R,C, c, P, v〉, with s being an index in S, and for every rigid
nominal variable assignment σ in c(s) the following holds: Mσ |=s

A[o/x] iffMτ [vσ(o,s)/x] |=s A.

In other words, the formula A[o/x] is true under the assignment σ just in
case A is true under its (x, s)-variant τ which assigns to x the term value
of o under σ, that is, vσ(o, s). (Recall the convention, according to which
assignments and term values are rigid, in case the models are.)

Proof of MSPR. The proof again is a simple adaptation of the standard
result for denotational frameworks. It proceeds via induction on the com-
plexity of A. We show that the following relationship holds:

If o is a nominal term substitutable for x in A, then: Mσ |=s

A[o/x] iff Mτ [vσ(o,s)/x] |=s A. In this proof we shall abbreviate
τ [vσ(o, s)/x] by σ′.

We first need to verify that the following identity statement is true of all
terms o′: vσ(o′[o/x], s) = vσ′(o

′, s), where o′[o/x] is the result of substituting
o for x in o′. (Recall from 2.5.2 that to say that a variable occurs in a term
is just to say that the variable and the term are identical.)

The case in which o is a nominal constant α. Since the interpretation of
nominal constants is independent of variable assignments and since for any
nominal constant α we have it that α[o/x] = α the above identity statement
is true for constants.

The case in which o is a nominal variable y. We have to consider two
situations, one in which y is syntactically identical with x and one in which
it is not. In the first case, in which y = x, we have the following identities:
vσ(y[o/x], s) = vσ(o, s) = vσ′(x, s) = σ′(x, s) = σ′(y, s) = vσ′(y, s). In the
second case, in which y 6= x, we get y[x/o] = y and also σ(y, s) = σ′(y, s),
since σ′ is an (x, s)-variant of σ. Thus we have verified the required identity
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statement. We may now turn to the induction on the complexity of A. We
consider the cases where A is a pure atomic formula, a substitutional identity
formula, and a substitutional universal quantification, or a necessity.

A = ϕno1...on. From the identity statement we obtain the following iden-
tity: ϕno1...on[o/x] = ϕno1[o/x]...on[o/x] and then the following equivalences:
Mσ |=s ϕ

no1...on[o/x] iff, by clause 2.4.2(1), ϕno1...on[o/x] ∈ vσ(o1[o/x], s)∩
... ∩ vσ(on[o/x], s) ∩ v(ϕn, s); iff, by the identity statement, ϕno1...on[o/x] ∈
vσ′(o1, s) ∩ ... ∩ vσ′(on, s) ∩ v(ϕn, s); iff, by clause 2.4.2(1)Mσ′ |=s ϕ

no1...on.

A = o1=̈o2. In view of the identity statement we may claim that o1=̈o2[o/x]

= o1[o/x]=̈o2[o/x]. With this we obtain the following equivalences: Mσ |=s

o1=̈o2[o/x] iff, by clause 2.4.2(2), for all pure atomic formulae B1[o/x] and
B2[o/x] where B2[o/x] is like B1[o/x] except for containing occurrences of
the term o2[o/x] at one or all places where B1[o/x] contains the term o1[o/x]:
Mσ |=s B1[o/x] iff Mσ |=s B2[o/x]; iff, in view of 2.3.4(5) as general-
ized to terms o, p ∈ T , for all pure atomic formulae (which correspond
to B1[o/x] and B2[o/x], respectively) ϕn(o1[o/x], p1[o/x], ..., pn−1[o/x]) and
ϕn(o2[o/x], p1[o/x], ..., pn−1[o/x]) the following holds: ϕn(o1[o/x], p1[o/x], ...,
pn−1[o/x]) ∈ vσ(o1[o/x], s) ∩ vσ(p1[o/x], s) ∩ ... ∩ vσ(pn−1[o/x], s) ∩ v(ϕn, s)

iff ϕn(o2[o/x], p1[o/x], ..., pn−1[o/x]) ∈ vσ(o2[o/x], s) ∩ vσ(p1[o/x], s) ∩ ... ∩
vσ(pn−1[o/x], s) ∩ v(ϕn, s); iff, by the identity statement, for all pure atomic
formulae ϕn(o1, p1, ..., pn−1) and ϕn(o2, p1, ..., pn−1) the following holds:
ϕn(o1, p1, ..., pn−1) ∈ vσ′ (o1, s) ∩ vσ′(p1, s) ∩ ... ∩ vσ′(pn−1, s) ∩ v(ϕn, s) iff
ϕn(o2, p1, ..., pn−1) ∈ vσ′(o2, s) ∩ vσ′(p1, s) ∩ ... ∩ vσ′(pn−1, s) ∩ v(ϕn, s); iff,
by 2.4.2(2),Mσ′ |=s o1=̈o2.

A = (Πy)B. In case o is substitutable for x in A we have to distinguish
the case in which x is free in A and the case in which it is not. Consider the
case in which x is free in A. In this case we have the identity claiming that
(Πy)B = (Πy)B[o/x]. Using MSPA we obtain the following equivalences:
Mσ |=s (Πy)B[o/x] iff, by the identity just mentioned, Mσ |=s (Πy)B;
iff, by the inductive hypothesis, Mσ′ |=s (Πy)B. Now consider the case in
which x is not free in A. In this case y will be not identical with x and
so we have (Πy)B[o/x] = (Πy)(B[o/x]). From this we obtain using the
induction hypotheses for B and the assignments the following equivalences:
Mσ |=s (Πy)B[o/x] iff, by the identity just mentioned,Mσ |=s (Πy)(B[o/x]);
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iff, by 2.2.4(5), for every (y, s)-variant τ of σ: Mτ |=s B[o/x]; iff, by the
induction hypothesis, for every (y, s)-variant τ of σ: Mτ [vσ(o,s)/x] |=s B.
Since due to the assumption the nominal term o is substitutable for x in
(Πy)B, the variable y must be distinct from every other variable occurring
in o. For this reason vσ(o, s) = vτ (y, s). In view of the fact that y and x
are distinct, we obtain the following identity: τ [vσ(o, s)/x] = σ′[vτ (o, s)/y].
With its help we obtain the equivalences: Mσ |=s (Πy)B[o/x] iff, by the
identity just mentioned, for every (y, s)-variant τ of σ: Mσ′[vτ (o,s)/y] |=s B;
iff, by clause 2.4.2(5),Mσ′ |=s (Πy)B.

A = 2B. In case o is substitutable for x in 2B it is substitutable for x
in B as well. We get the following equivalences: Mσ |=s 2B[o/x] iff, by the
substitutability fact just mentioned,Mσ |=s 2(B[o/x]) iff, by clause 2.4.2(6),
for all t ∈ S, such that sRt: Mσ |=t B[o/x] iff, by the induction hypothesis,
for all t ∈ S, such that sRt: Mσ′ |=t B iff, by clause 2.4.2(6),Mσ′ |=s 2B.

2.5.3 Axiomatization

We now specify for the substitutional language L a series of modal substitu-
tional first-order logics with substitutional identity, SFOL=̈+Λ, where Λ is
a normal system of propositional modal logic. It is a peculiarity of L that it
contains only finitely many predicates (see Subsection 2.2.1). This restriction
has been imposed on the set of predicates in view of the second axiom for
substitutional identity to be given below.

Axioms

1. PC : Every truth-functional tautology.

2. Π1: Every formula of L of the form (Πx)A → A[o/x], where x a
nominal variable and o is a nominal term, o is free for x in A and
A[o/x] results from replacing each free occurrence of x in A by o.

3. =̈1: o=̈o, where o is any nominal term.

4. =̈2: Let ϕn be a pure n-ary predicate of L. Kn
ϕn(o1, o2) =df (Πz1)...

(Πzn−1)(Πzn)((ϕno1z2...zn ↔ ϕno2z2...zn)∧(ϕnz1o1...zn ↔ ϕnz1o2...zn)∧
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... ∧ (ϕnz1...zn−1o1 ↔ ϕnz1...zn−1o2)). Let ϕk1
1 , ..., ϕ

km
m be all the pure

predicates of L, where ϕi is ki-ary. KL(o1, o2) =df Kk1
ϕ1

(o1, o2) ∧ ... ∧
Kkm

ϕm
(o1, o2). Axiom: KL(o1, o2) ↔ o1=̈o2.7

5. S: Every formula of L of the form S. Where S is some axiom scheme
of

K: 2(A→ B) → (2A→ 2B)

D: 2A→ 3A

T: 2A→ A

B: A→ 23A

4: 2A→ 22A

5: 3A→ 23A

These familiar schemes axiomatize normal propositional modal systems
Λ, and thus the modal bases of SFOL=̈ + Λ systems.

Rules

We have the following rules of inference. (‘` A’ indicates that A is a theorem
of the system.)

1. Modus Ponens (MP) : if ` A and ` A→ B, then ` B.

2. Π2: if ` A→ B and x is not free in A, then ` A→ (Πx)B.

3. Necessitation (Nec): if ` A, then ` 2A.

7It is because of this axiom that in setting up our substitutional language we required
the set of pure predicates P to be finite. When substitutional identity is absent from
our language, we are free to assume that P is infinite. I am immensely indebited to
my supervisors, in particular to Ede Zimmermann, for spotting a mistake in an earlier
axiomatization and for pointing out to me that an axiom to this effect is needed.
If we were prepared to accept infinite conjunctions, the following axiom would be an
alternative: KL(B1 ↔ B2) ↔ o1=̈o2, where KL(B1 ↔ B2) is the (possibly infinite)
conjunction of all formulae of L of the form (B1 ↔ B2), where B1 and B2 are pure atoms
and where B2 is like B1 except for containing occurrences of the term o2 at one or all
places where B1 contains o1.
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Here are some derived rules which will be used in the proofs of completeness.

UG1: if ` A, then ` (Πx)A.
DR1: if ` C → D, then ` 2C → 2D.
DR2: if ` 3C → D, then ` C → 2D.

Some Theorems

1. T1: (Πx)(A→ B) → ((Πx)A→ (Πx)B)

2. T2: (Πx)(A→ B) → (A→ (Πx)B) provided x is not free in A

3. T3: ¬(Πx)¬(A[o/x] → (Πx)A) provided o is not free in (Πx)A

4. T4: ¬(Πx)¬A↔ (Σx)A

These theorems will be used in the completeness proofs.

2.5.4 Soundness of Λ+SBF=̈

The familiar soundness results for normal propositional systems together with
the following theorem show that whenever a normal propositional system Λ

is sound with respect to a certain class of frames, so is the corresponding
SFOL system Λ+SBF.

Theorem 2.5.4. Suppose that F is a frame for a normal propo-
sitional modal system Λ. Then F is a frame for the constant
substitution class system Λ+SBF.

Proof of Theorem 2.5.4. The proof is essentialy the same as the proof for the
denotational couterpart of that system (cf. [Hughes & Cresswell, 1996] pp.
247-248). However, since the axiomatization of substitutional identity differs
from that of its referential counterpart slight deviations are made necessary.
We let CM be the class of all SBF rigid models based on F and show that
each instance of the axiom schemata of Λ+SBF, viz. tautologies, S, Π1, =̈1,
=̈2, and SBF is true in every rigid model in CM based on F and that MP,
Nec, and Π2 are truth-preserving in every such model.
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1. We omit the proofs for the tautologies.

2. For each axiom schema S of Λ, we have to verify that if B is a formula
of L obtained by substituting formulae C1, ..., Cn of L for propositional
variables p1, ..., pn in some theorem A of Λ, then B is true in every
rigid model in CM. So suppose that B is not true in every such model,
i.e. that for some 〈F , C, c, P, v〉 ∈ CM and some s ∈ S in F ,M 6|=s B.
Now let 〈F , v′〉 be a model for propositional modal logic in which F
is precisely the same frame as in 〈F , C, c, P, v〉 and in which, for every
s ∈ S and every pi (1 ≤ i ≤ n), the truth value of pi at s in 〈F , v′〉
is the same as the truth value of Ci at s in 〈F , C, c, P, v〉. It can be
verified by induction that A is not true at s in 〈F , v′〉 and thus not true
in that model. But this means that A is not a theorem of Λ, since by
hypothesis F is a frame for Λ. Hence, if A is a theorem of Λ, B is true
in every rigid model in CM.

3. For Π1, suppose that for some s ∈ S in some rigid SBF associative
model and for some rigid nominal variable assignment σ based on that
model, Mσ |=s (Πx)A. Let τ be the rigid (x, s)-variant of σ such
that τ(x, s) = σ(y, s). So by clause 2.4.2(5) Mτ |=s A. So by MSPR
Mσ |=s A[o/x]. Consequently, every instance of Π1 is true in every
rigid SBF model and thus in every rigid model in CM.

4. For =̈1 suppose that for some s ∈ S in some rigid SBF associative model
and for some rigid assignment σ based on that model,Mσ |=s o=̈o. By
clause 2.4.2(2) for any model at all indices and all variable assignments,
Mσ |=s o1=̈o2 exactly if for all pure atomic formulae B1 and B2 where
B2 is like B1 except for containing occurrences of the term o2 at one
or all places where B1 contains the term o1: Mσ |=s B1 iffMσ |=s B2.
But in the case at hand there is no difference between B2 and B1 since
the former contains occurrences of the term o at one or all places where
B1 contains the term o. So we need not distinguish between B1 and B2

and may write B. Hence,Mσ |=s B iffMσ |=s B. Which is surely the
case and gives us, by clause 2.4.2(2), the required result.

5. For =̈2 suppose that for some s ∈ S in some rigid SBF associative model
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and for some rigid assignment σ based on it we haveMσ |=s KL(o1, o2).
Then, by the definition of that formula, Mσ |=s Kk1

ϕ1
(o1, o2) ∧ ... ∧

Kkm
ϕm

(o1, o2) for all the pure predicates ϕk1
1 , ..., ϕ

km
m of L, where ϕi is of

arity ki. Therefore, we have for each conjunct, where ϕn is a pure n-ary
predicate of L: Mσ |=s (Πz1) ... (Πzn−1) (Πzn)((ϕno1z2 ... zn ↔ ϕno2z2

... zn) ∧ (ϕnz1o1 ... zn ↔ ϕnz1o2 ... zn) ∧ ... ∧ (ϕnz1 ... zn−1o1 ↔ ϕnz1

... zn−1o2)). Let (Πz1)(Πz2)...(Πzn)A abbreviate that formula. Then,
by 2.4.2(5) Mσ |=s (Πz1)(Πz2)...(Πzn)A just in case for every (z1, s)-
variant τ1 of σ, Mτ1 |=s (Πz2)...(Πzn)A. And so on until Mτn−1 |=s

(Πzn)A exactly if for every (zn, s)-variant τn of τn−1,Mτn |=s A. Now
A is a formula of the form

∧
(B1 ↔ B2), that is, a finite conjunction of

all formulae of L of the form (B1 ↔ B2), where B1 and B2 are atomic
formulae built up out of the pure predicate ϕn and where B2 is like B1

except for containing occurrences of the term o2 at one or all places
where B1 contains o1. So for each such conjunct (B1 ↔ B2) we have,
Mτn |=s B1 ↔ B2. In other words, for all such atomic formulae B1 and
B2: Mτn |=s B1 iff Mτn |=s B2. By MSPA, this is so just in case for
all such atomic formulae B1 and B2: Mσ |=s B1 iffMσ |=s B2. Hence,
by clause 2.4.2(2) this means thatMσ |=s o1=̈o2. The other direction
is similar.

6. For SBF. Suppose for some s ∈ S in some rigid associative SBF model
and for some rigid variable assignment σ based on it we haveMσ |=s

(Πx)2A. Letting τ be any (x, s)-variant of σ and sRt we obtain by
clause 2.2.4(5),Mτ |=s 2A, and by clause 2.2.4(6)Mτ |=t A. In view
of the fact that this holds for all (x, s)-variants of σ and all t ∈ S

such that sRt we obtain, by 2.2.4(5),Mσ |=t (Πx)A and thenMσ |=s

2(Πx)A, by clause 2.2.4(6). SoMσ |=s (Πx)2A → 2(Πx)A. So SBF
is true in every rigid SBF model, and so in every model in CM. (In
case Λ contains the B scheme as a thesis, SFB will be derivable form
Λ and thus will not be included in the list of axioms.)

7. MP and Nec are truth preserving in a model for the same reasons as
in propositional modal systems.
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8. For Π2, assume that A → B is true in every model in CM. We have
to show that if this is so then A → (Πx)B (where x is not free in
A) is true in every model in CM as well. Suppose that for some model
M = 〈S,R,C, c, P, v〉 in CM, some s ∈ S, and some variable assignment
σ in c(s), the following holds: Mσ 6|=s A → (Πx)B. Then Mσ |=s A

and Mσ 6|=s (Πx)B. So there is some (x, s)-variant τ of σ such that
Mτ 6|=s B. Since x is not free in A we obtain, by MSPA,Mτ |=s A. So,
by the truth conditions for the material conditional, Mσ 6|=s A → B.
But this contradicts the assumption that A→ B is true in every rigid
model in CM.

This completes the proof of Theorem 2.5.4. An immediate consequence of
this theorem is that every theorem of K+SBF=̈ is valid on every frame.

2.5.5 Soundness of Λ+SBF=̈: Comments

1. On the modal interpretation of the truth conditions for substitutional
identity (see clause 2.3.3(2∗) in comment 2.3.4(7)) the validity of axiom
=̈1 requires that the accessibility relation in the rigidified model be
(weakly) reflexive. The simplest countermodel to that axiom will be
M = 〈S,R,C, c, P, v〉 based on an irreflexive frame where S = {s},
R = ∅, C = c(s) = {a}, P = {F} with F monadic, and v(a, s) =

v(F, s) = {Fa}. So axiom T should be among the axioms for the
necessity operator in this case.

2. The same observation applies to axiom =̈2. For the modal interpreta-
tion of the truth conditions for substitutional identity that axiom would
have to be modalized by inserting boxes in front of each biconditional
that occurs in KL(o1, o2) and o1=̈o2.

3. Neither NSI, i.e., o1=̈o2 → 2(o1=̈o2), nor NSD, ¬(o1=̈o2) → 2¬(o1=̈o2),
is valid on rigidified frames. It would take, e.g., static models to make
them valid (see 2.3.8(6)).

4. Unlike its denotationally interpreted counterpart, the following axiom
is not valid for rigid models:

100



=̈3 (o1=̈o2) → (A(o1) → A(o2)), where o1 and o2 are any
nominal terms and the possibly complex formula A(o2) differs
from A(o1) at most in having an occurrence of o2 at one or
more places where A(o1) has o1.

The reason for this is that in the inductive step for A = 2B the validity
of NSI is needed. When validity is analysed in terms of static models
the axiom can be incorporated. In the case of rigid models it can be
maintained given the obvious restriction.

5. The axiomatization of substitutional identity in substitutional coun-
terpart to an ordinary first-order axiom system with identity will be
given by the axioms =̈1, =̈2 and =̈3. The proofs for =̈1 and =̈2 are
adaptations of the proofs given in the previous section. To establish
the validity of =̈3 as contained in the axiomatization of a substitutional
first-order axiom system with =̈ we first prove the following claim as a
lemma.

For any first-order associative model I = 〈C,P, v〉 and any
variable assignment σ based on that model the following
holds: Iσ |= o1=̈o2 → (B(o1) → B(o2)) iff Iσ |= o1=̈o2 →
(C(o1) → C(o2)) where: B is of complexity n and C of com-
plexity n + 1; B(o2) is like B(o1) except for containing oc-
currences of the term o2 at one or all places where B(o1)

contains the term o1; and C(o2) is like C(o1) except for con-
taining occurrences of the term o2 at one or all places where
C(o1) contains the term o1.

We prove the lemma by induction on the complexity of B. We first
prove the lemma (by reductio) for B of complexity n = 0 and so for
C of complexity n+ 1. For complex Bs we then assume as hypothesis
that the result holds for B of complexity < n with n > 0. Having
shown this lemma we turn to the proof for the axiom =̈3. Here we
first prove the soundness for the atomic case. For the complex cases
we then assume as hypothesis that the result holds for instances of =̈3

with B of complexity < n with n > 0 and use the above lemma.
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2.5.6 Completeness of Λ+SBF=̈

We now show, following largely familiar lines that for any formula A which is
not a theorem of Λ+SBF=̈ it is possible to construct an canonical associative
model for Λ+SBF=̈ in which A is invalidated.

The proof differs slightly from the standard proof for a corresponding
system with referential identity, =, in that it is free of the complications
to which the presence of the referential identity predicate gives rise. When
referential identity is present the simple strategy of letting the canonical
denotations of individual terms be just themselves is no longer viable. In
reaction to this the domain D of an ordinary denotational canonical model
M = 〈S, R, D, d, v〉 is usually defined in terms of a relation ∼ on the set
T of individual terms o, p, ... of the, standardly extended, denotational
language with =, such that o ∼ p iff o = p ∈ s, for some s ∈ S. Since ∼
is an equivalence relation, for each o ∈ T the equivalence class [o] for o is
then defined to be the set {p ∈ T: o ∼ p} and D is taken to be the set of
all these equivalence classes [o]. Moreover, the strategy appeals to the part
of canonical model which is based on a cohesive subframe of its frame, since
in the cohesive part of the model every canonical index contains the same
referential identity formulae, which is shown by appealing to the necessity
of referential identity and distinctness.8 In view of the fact that the systems
for which we are going to prove completeness do not contain NSI and NSD
an analogue of this strategy is not viable for us. However, these systems do
not give rise to such complications anyway, for =̈ is not a referential identity
predicate. Moreover, as we shall see shortly, in associative canonical models
the interpretation of nominal terms takes an altogether different shape. Let
me add that this interpretation remains the same independently of whether
=̈ is present or not.

The indices of the associative canonical models to be presented will be,
as usual, maximal Λ+SBF=̈-consistent sets of formulae of L which have the
Π-property:

A set Θ has the Π-property iff for every formula A and every
8See [Hughes & Cresswell, 1996] pp. 315-317. For a survey on completeness proofs in

denotational quantified modal logic see [Garson, 2001].
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nominal variable x, there is some witnessing nominal term o such
that A[o/x] → (Πx)A ∈ Θ.

So if Γ is both maximal Λ+SBF=̈-consistent and has the Π-property then
there must be a witness o such that A[o/x] 6∈ Γ, in case (Πx)A 6∈ Γ . As
usual we call a nominal term o which ensures that (Πx)A(x) is false at s, a
‘term witness’.

Following the standard technique we consider not the language L itself,
but an expansion of it, L+, which contains, in addition to the terms of L, a
denumerably infinite set of new terms. So T+ = C+ ∪ V + will be the set of
L+-terms.

We assume the standard results about maximal consistent sets of formulae
with respect to some system S. We say that a set of formulae Γ is S-consistent
iff there is no finite set {A1, ..., An} ⊆ Γ such that `S ¬(A1∧...∧An). And we
say that a set Γ is maximal iff for every formula A: either A ∈ Γ or ¬A ∈ Γ.
We assume, omitting the well-known proof, the following to hold:

Theorem 2.5.6(1) (Lindenbaum’s Theorem). Any S-consistent
set of formulae Γ can be extended to a maximal S-consistent set
of formulae ∆.

We may prove the following theorem.

Theorem 2.5.6(2) (Π-property). If Θ is a consistent set of formu-
lae of L then there is a consistent set ∆ of formulae of L+ with
the Π-property such that Θ ⊆ ∆.

The proof is reproduced in Appendix A. By Lindenbaum’s Theorem, since ∆

is consistent and has the Π-property, it has a maximal consistent extension
Γ in L+ with the Π-property.

We can now prove the following existence theorem concerning maximal
consistent sets with the Π-property in modal systems.

Theorem 2.5.6(3) (Existence Theorem). If s is a maximal consis-
tent set of formulae in L+, and s has the Π-property, and A is a
formula such that 2A 6∈ s then there is a consistent set t of formu-
lae of L+ with the Π-property such that {B : 2B ∈ s}∪{¬A} ⊆ t.
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A reproduction of this proof can be found in Appendix A.

We shall now show that for each Λ+SBF=̈-consistent set Γ of formulae
of L+ an associative modelMΛ

Γ (for calligraphical reasons letting the super-
scripted Λ be an abbreviation of Λ+SBF=̈) can be constructed in which all
the formulae of Γ are true.

Let Γ be a Λ+SBF=̈-consistent set of L-formulae. We define a rigid asso-
ciative canonical model for L with the extension L+ to be a 6-tuple:

MΛ
Γ = 〈SΛ, RΛ, CΛ, cΛ, PΛ, vΛ〉

where:

1. SΛ is the set of maximal Λ+SBF=̈-consistent set of sets, i.e. canonical
indices, s, t, ... of L+-formulae which have the Π-property.

2. sRΛt iff {A : 2A ∈ s} ⊆ t iff for every formula 2A of L+: if 2A ∈ s,
then A ∈ t.

3. CΛ is C+.

4. cΛ : SΛ → ℘(CΛ). So cΛ(s) is the canonical substitution class for some
s ∈ SΛ.

5. PΛ = P .

6. vΛ is defined as follows:

vΛ : CΛ × SΛ → ℘(AtmΛ) such that vΛ(α, s) ⊆ AtmΛ(α);

vΛ : PΛ × SΛ → ℘(AtmΛ) such that vΛ(ϕn, s) ⊆ AtmΛ(ϕn),

where AtmΛ is the set of pure atomic L+
0 -sentences and where AtmΛ(α)

and AtmΛ(ϕn) are defined as follows:

AtmΛ(α) =df {A ∈ AtmΛ: A contains at least one oc-
currence of the nominal constant α};
AtmΛ(ϕn) =df {A ∈ AtmΛ: A contains an occurrence of
the predicate ϕn}.

We stipulate that for arbitrary α ∈ cΛ(s), ϕn ∈ PΛ, and s ∈ SΛ the
following condition holds with respect to vΛ:
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ϕnα1...αn ∈ vΛ(α1, s)∩...∩vΛ(αn, s)∩vΛ(ϕn, s) iff ϕnα1...αn ∈
s.

Alternatively, vΛ may be defined by putting for arbitrary α ∈ cΛ(s),
ϕn ∈ PΛ, and s ∈ SΛ:

vΛ(α, s) =df AtmΛ(α) ∩ s; and
vΛ(ϕn, s) =df AtmΛ(ϕn) ∩ s.

The condition is then met trivially.

Since the model is rigid it satisfies the following rigiditiy condition: for
all nominal constants α ∈ CΛ and for all indices s, t ∈ SΛ: vΛ(α, s) =

vΛ(α, t).

Given a rigid associative canonical model MΛ
Γ = 〈SΛ, RΛ, CΛ, cΛ, PΛ, vΛ〉 a

canonical variable assignment σΛ is defined as follows.

σΛ : V + × SΛ → CΛ

such that, where x is some member of V +, σΛ(x, s) is a nominal constant
α ∈ cΛ(s).

Let σΛ and τΛ be two canonical variable assignments for s ∈ SΛ. σΛ and
τΛ are canonical (x, s)-variants exactly if for all variables y except at most
x, τΛ(y, s) = σΛ(y, s).

LetMΛ
Γ = 〈SΛ, RΛ, CΛ, cΛ, PΛ, vΛ〉 be a rigid canonical model, s a index

in SΛ, and σΛ an assignment in cΛ(s). Then for any term o the canonical
term value of o with respect to vΛ and σΛ, vΛ

σΛ(o, s) is defined as follows.

vΛ
σΛ(o, s) =

 vΛ(o, s) if o is a nominal constant
vΛ(σΛ(o, s), s) if o is a nominal variable.

Since the model is rigid, the term values are rigid, too. So for any term o the
canonical rigid term value of o with respect to vΛ and σΛ, vΛ

σΛ(o, s), satisfies
the condition: for all terms o ∈ T+ and for all s, t ∈ SΛ: vΛ

σΛ(o, s) = vΛ
σΛ(o, t).

We can now prove the following theorem for rigid canonical models.
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Theorem 2.5.6(4). (Truth Theorem). For any s ∈ SΛ, and any
formula A ∈ L+: MΛ

Γ,σΛ |=s A iff A ∈ s.

(Recall that the superscripted Λ abbreviates Λ+SBF=̈.) The proof is by
induction on the construction of formulae.

(i) Pure atomic formulae. MΛ
Γ,σΛ |=s ϕ

no1...on iff, by clause 2.4.2(1), (a)
if o1, ..., on are nominal constants, then o1, ..., on ∈ cΛ(s) and if they are
nominal variables, then σΛ(o1, s), ..., σ

Λ(on, s) ∈ cΛ(s) and (b) ϕno1...on ∈
vΛ

σΛ(o1, s) ∩ ... ∩ vΛ
σΛ(on, s) ∩ vΛ(ϕn, s); iff, in view of the definition of vΛ and

the definition of canonical term values under σΛ, by 2.4.2(1), ϕno1...on ∈ s.

(ii) Substitutional identity formulae. MΛ
Γ,σΛ |=s o1=̈o2 iff, by clause

2.4.2(2), for all pure atomic formulae B1 and B2 where B2 is like B1 ex-
cept for containing occurrences of the term o2 at one or all places where B1

contains o1: MΛ
Γ,σΛ |=s B1 iffMΛ

Γ,σΛ |=s B2; iff, by induction hypothesis, for
all pure atomic formulae B1 and B2 where B2 is like B1 except for containing
occurrences of the term o2 at one or all places where B1 contains o1: B1 ∈ s
iff B2 ∈ s; iff for all B1 and B2: B1 ↔ B2 ∈ s; iff, by =̈2, o1=̈o2 ∈ s.

(iii) Negations. MΛ
Γ,σΛ |=s ¬A iff, by clause 2.4.2(3),MΛ

Γ,σΛ 6|=s A; iff, by
hypothesis, A 6∈ s; iff ¬A ∈ s.

(iv) Conjunctions. MΛ
Γ,σΛ |=s A ∧ B iff, by clause 2.4.2(4), MΛ

Γ,σΛ |=s A

andMΛ
Γ,σΛ |=s B; iff, by hypothesis, A ∈ s and B ∈ s; iff, by clause 2.4.2(4),

A ∧B ∈ s.

(v) Universal substitutional quantifications; first part. SupposeMΛ
Γ,σΛ 6|=s

(Πx)A. Then for some (x, s)-variant τΛ of σΛ,MΛ
Γ,τΛ 6|=s A. So, by MSPR,

for some term o in L+,MΛ
Γ,σΛ 6|=s A[o/x]. Then, by hypothesis, A[o/x] 6∈ s.

And so, by Π1, (Πx)A 6∈ s.

(vi) Universal substitutional quantifications; second part. Suppose (Πx)A 6∈
s. Then ¬(Πx)A ∈ s. So, since s has the Π-property in L+, there is some
o in L+ such that ¬A[o/x] ∈ s. So A[o/x] 6∈ s, and thus, by hypothesis,
MΛ

Γ,σΛ 6|=s A[o/x]. From this we conclude, by Π1,MΛ
Γ,σΛ 6|=s (Πx)A.

(vii) Necessity formulae; first part. Suppose 2A ∈ s and sRΛt. Then, by
the definition of RΛ, A ∈ t. So, by hypothesis,MΛ

Γ,σΛ |=t A. And since this
is so for every t such that sRΛt, by clause 2.4.2(6),MΛ

Γ,σΛ |=s 2A.
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(viii) Necessity formulae; second part. Suppose 2A 6∈ s. Then ¬2A ∈ s.
But then, by the Existence Theorem 2.5.6(3) and Lindenbaum’s Theorem
2.5.6(1), there is some t ∈ SΛ, such that sRΛt with the Π-property such that
¬A ∈ t. So A 6∈ t. Thus, by hypothesis,MΛ

Γ,σΛ 6|=t A. Since sRΛt, we obtain
by clause 2.4.2(6),MΛ

Γ,σΛ 6|=s 2A.

This completes the proof of the Truth Theorem 2.5.6(4).

Completeness follows immediately.

Theorem 2.5.6(5) (Completeness). If |=Λ A, then `Λ A, where Λ
is short for Λ+SBF=̈.

Proof of Theorem 2.5.6(5). Suppose 6`Λ A. So ¬A is Λ-consistent. By the
construction of canonical models ¬A will be a member of some index s of
the modelMΛ

{¬A} which is generated by {¬A}, that is, ¬A ∈ s. In view of
the Truth Theorem 2.5.6(4) we can conclude that MΛ

{¬A},σΛ |=s ¬A which
means thatMΛ

{¬A} |=Λ, and, thus 6|=Λ A.

2.5.7 The Model-Theoretic de nomine/de dicto Dis-

tinction

We shall discuss the intuitive semantical interpretation of the de nomine/de
dicto distinction suggested in Subsection 2.4.7 more formally by means of an
adaptation of a result from [Tichý, 1973]. Our discussion will follow the pre-
sentation of this result which has been given in [Hughes & Cresswell, 1996]
(pp. 251- 254).

We shall first show that it is not the case that in the constant substitution
class axiom system S5+SBF (without substitutional identity) all de nomine
formulae of L (minus substitutional identity) are equivalent to de dicto for-
mulae of that language. In order to parallel the denotational result for which
it is essential that the semantic values of the individual terms are constant
across the indices but the extensions of the predicates may vary, we assume
that the models are rigid (in the sense of clause 2.3.1(6)) and assume, ac-
cordingly, that the variable assignments, their variants and term values are
rigidified.

107



We now show that, unlike for de nomine formulae, for de dicto formulae
of our language without substitutional identity two rigid associative models
M1 = {S,R,C, c, P, v1} and M2 = {S,R,C, c, P, v2} which differ only in
which associate is assigned to a given predicate at a specific index t, are
equivalent from the point of view of another index s. So we may say that the
truth of de dicto formulae does not turn upon the local associates predicates
receive across different indices.

Illustration: Our rigid models M1 and M2 coincide in the following re-
spects: S = {s, t}, R = S × S, c(s) = c(t) = C = {α, β}, P = {ϕ, ψ}, where
both predicates are monadic, v1(α, s) = v1(α, t) = {ϕα} and v1(β, s) =

v1(β, t) = {ϕβ}, and, correspondingly, v2(α, s) = v2(α, t) = {ϕα} and
v2(β, s) = v2(β, t) = {ϕβ}. However, M1 and M2 differ in what asso-
ciates are assigned to the predicates. M1: v1(ψ, s) = v1(ψ, t) = ∅ and
v1(ϕ, s) = v1(ϕ, t) = {ϕα}. Whereas for M2: v2(ψ, s) = v2(ψ, t) = ∅, but
v2(ϕ, s) = {ϕα} and v2(ϕ, t) = {ϕβ}. Since M1 and M2 have the same
substitution classes the class of the variable assignments is the same in each
of them. The proof shows that in cases like these the difference between the
models can be detected only by a de nomine formula and not by a de dicto
formula.

Given a rigidified assignment σ1 we let, adapting the original strategy,
σ2 be its anti-assignment such that for every x ∈ V and for all s, t ∈ S,
σ1(x, s) 6= σ2(x, s). We now prove, sticking to the above example, the fol-
lowing theorem.

Theorem 2.5.7. If A is a de dicto formula of L (without substitu-
tional identity) and the models are rigidified thenM1

σ1 |=s A iff
M2

σ1 |=s A andM1
σ1 |=t A iffM2

σ2 |=t A.

The proof is by induction on the complexity of formulae.

A = ϕo. Since the predicate ψ receives the empty set as associate, the
theorem obviously holds for any pure atom A built up out of that predicate.
We therefore need to consider only the cases in which A is built up out of ϕ,
i.e., ϕo.

For the first conjunct of the theorem we obtain the following equivalences:
M1

σ1 |=s ϕo iff, by clause 2.4.2(1), ϕo ∈ v1
σ1(o, s)∩ v1(ϕ, s); iff, in view of the
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fact that σ1(o, s) = α and v1
σ1(o, s) = v1(α, s), ϕα ∈ v1

σ1(o, s) ∩ v1(ϕ, s); iff
ϕo ∈ v1

σ1(o, s) ∩ v2(ϕ, s); iff, by clause 2.4.2(1),M2
σ1 |=s ϕo.

For the second conjunct we have: M1
σ1 |=t ϕo iff, by clause 2.4.2(1),

ϕo ∈ v1
σ1(o, t)∩v1(ϕ, t); iff, in view of the fact that σ1(o, t) = α and v1

σ1(o, t) =

v1(α, t), ϕα ∈ v1
σ1(o, t)∩ v1(ϕ, t); iff, in view of the fact that σ2(o, t) = β and

v2
σ2(o, t) = v2(β, t), ϕo ∈ v2

σ2(o, t)∩v2(ϕ, t); iff, by clause 2.4.2(1),M2
σ2 |=t ϕo.

For the complex cases we assume as an inductive hypothesis that the
theorem holds for formulae of complexity < n and consider the cases for
formulae of complexity n. Here we omit the cases of negation and conjunction
and consider only the quantifier and the box cases.

A = (Πx)B. By the characterization of de dicto the following is the case:
if (Πx)B is de dicto then so is the subformula B. For the first conjunct of
the theorem we haveM1

σ1 |=s (Πx)B iff, by clause 2.4.2(5), for every (x, s)-
variant τ 1 of σ1: M1

τ1 |=s B. Since B is of complexity n − 1, the induction
hypothesis applies. So the latter is the case iff for every (x, s)-variant τ 1 of
σ1: M2

τ1 |=s B; iff, by clause 2.4.2(5),M2
σ1 |=s (Πx)B.

Second conjunct. M1
σ1 |=t (Πx)B iff, by clause 2.4.2(5), for every (x, t)-

variant τ 1 of σ1: M1
τ1 |=t B; iff, by the induction hypothesis, M2

τ2 |=t B.
Since every (x, t)-variant ρ of σ1 will be τ 2 for some (x, t)-variant τ 1 of σ1,
this will be the case iff for every (x, t)-variant ρ of σ2M2

ρ |=t B; iff, by clause
2.4.2(5),M2

σ2 |=t (Πx)B.

A = 2B. By the characterization of de dicto, if 2B is de dicto, then no
variable in B is free. So, by MSPA, recalling that the variants are rigidified,
the following two biconditionals hold: for every σ, τ , and u ∈ S: M1

σ |=s B

iff M1
τ |=s B and M2

σ |=s B iff M2
τ |=s B. Now for every u ∈ S, (1)

M1
σ1 |=u 2B iff (2) M1

σ1 |=s B and (3) M1
σ1 |=t B. By the induction

hypothesis (2) holds iff (4)M2
σ1 |=s B and (3) holds iff (5)M2

σ2 |=t B. Now,
since B does not contain free variables, (5) holds iff (6) M2

σ1 |=t B. Thus,
given the equivalences, (6) holds just in case (3) holds as well. So (2) and
(3) hold iff (4) and (5) hold. But (4) and (5) hold iff, for any u ∈ S (7)
M2

σ1 |=u 2B. So (1) holds just in case (7) does; and the theorem follows
immediately for u = s: (8)M2

σ1 |=s 2B. For the case u = t, (7) will hold, in
view of the fact that B does not contain free variables, iff (9)M2

σ2 |=t 2B.
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This concludes the proof of Theorem 2.5.7. We now use that result to
show that the de nomine modal formula (Σx)2ϕx is not equivalent in the
constant substitution class system S5+SBF to any de dicto formula.

We again stick to the models from our illustration. M1 = {S,R,C, c, P, v1}
and M2 = {S,R,C, c, P, v2} are both models for S5+SBF. We assume for
reductio that (Σx)2ϕx↔ A is a theorem of S5+SBF supposing that A is de
dicto.

But then, in view of the fact that the selected models are rigid S5+SBF
models, for every nominal variable assignment σ and for every index u the
following equivalences hold: M1

σ |=u (Σx)2ϕx iff M1
σ |=u A and M2

σ |=u

(Σx)2ϕx iff M2
σ |=u A. Now, since A is de dicto we obtain, by theorem

2.5.7, putting u = s the following equivalence: M1
σ |=s A iff M2

σ |=s A.
But then we have, in view of the above equivalences, M1

σ |=s (Σx)2ϕx

iff M2
σ |=s (Σx)2ϕx and thus a contradiction. For M1

σ |=s (Σx)2ϕx, but
M2

σ 6|=s (Σx)2ϕx. So the difference between both models cannot be detected
by a de dicto formula, but only by a de nomine formula. This shows that
the de nomine modal formula (Σx)2ϕx is not equivalent in the constant
substitution class system S5+SBF (and so in weaker systems) to any de
dicto formula.

Can a corresponding result for constant substitution class S5+SBF=̈ be
obtained along these lines? It is easy to see that, in the present setting,
the inductive step in which A is o1=̈o2 will not go through. In order to
prove a corresponding theorem for this system we would have to modify
both models so as to obtain the result for that inductive step. In view of
the truth conditions for substitutional identity formulae, such a modification
would require that at each index in each of the models both ϕα and ϕβ come
out true. Clearly, this modification would undermine the original strategy of
anti-assignments, which required that the models differ in such a way that
in the first model ϕα be in the local associates for ϕ at both indices whereas
in the second model ϕα be in the associate for ϕ at s whereas ϕβ be in
its associate at t. In effect, such a modification would make both models
collapse into a single one and would give us, contrary to what the strategy
intended, the truth of (Σx)2ϕx at s with respect to both models.

It might, therefore, seem that the model-theoretic characterization of de
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dicto formulae given by the Theorem 2.5.7 does not capture formulae of the
form o1=̈o2. Intuitively, though, formulae which are syntactically de dicto,
and thus formulae of that very form, should have this feature also model-
theoretically.

In order to adapt the strategy of anti-assignments also for formulae of the
form o1=̈o2 and to retain their de dicto character as captured by the theorem,
we observe that the interpretation of the predicate ϕ in both models differs
in the following respect. In the first model ϕ is, loosely speaking, essential
to α, since ϕα comes out true at every index at which α is contained in the
substitution class of that index, whereas in the second this is not so.

Let us call, anticipating the terminology of Chapter 3 (though not the
exact defintion to be given there) a predicate χn characteristic for a nominal
constant γi with respect to a rigid constant substitution class model M =

〈S,R,C, c, P, v〉 just in case for every χnγ1...γn ∈ Atm(χn) which is contained
in v(γi, u) at every u ∈ S χnγ1...γn is also contained in v(χn, u). The predicate
ϕ is clearly not characteristic for α in M2 = 〈S,R,C, c, P, v2〉, whereas it
is characteristic for it in M1 = 〈S,R,C, c, P, v1〉. Next we modify clause
2.4.2(2) as follows:

2.4.2(2†): Mσ |=s o1=̈o2 iff for all pure atomic formulae B1 and
B2 where B2 is like B1 except for containing occurrences of the
term o2 at one or all places where B1 contains the term o1 and
where the predicate in these formulae is characteristic for o1 and
o2, respectively: Mσ |=s B1 iffMσ |=s B2.

We now alter the two models used in the proof of the theorem letting
M′1 and M′2 coincide in the following respects: S = {s, t}, R = S × S,
c(s) = c(t) = C = {α, β}, P = {ϕ, ψ, χ, ω}, where all predicates are monadic,
v′1(α, s) = v1(α, t) = {ϕα, χα, ωα} and v′1(β, s) = v1(β, t) = {ϕβ, χβ, ωβ},
and, correspondingly, v′2(α, s) = v′2(α, t) = {ϕα, χα, ωα} and v′2(β, s) =

v′2(β, t) = {ϕβ, χβ, ωβ}. However, we let M′1 and M′2 differ with respect
to the interpretation of the predicates. M′1: v′1(ψ, s) = v′1(ψ, t) = ∅,
v′1(ϕ, s) = v′1(ϕ, t) = {ϕα}; and in addition to the original model we
let v′1(χ, s) = v′1(χ, t) = {χα, χβ}, and v′1(ω, s) = v′1(ω, t) = {ωα, ωβ}.
Whereas for M′2, we let as in the original model, v′2(ψ, s) = v′2(ψ, t) = ∅,
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v′2(ϕ, s) = {ϕα} and v′2(ϕ, t) = {ϕβ}, but require in addition to the original
model, v′2(χ, s) = v′2(χ, t) = {χα, χβ}, and v′2(ω, s) = v′2(ω, t) = {ωα, ωβ}.
So in effect the new models differ from the old ones in that they involve two
additional predicates χ and ω which are characteristic to both α and β.

In order to prove Theorem 2.5.7 we proceed in a way analogous to the proof
given above using the truth clauses from Subsection 2.2.4 except for applying
clause 2.4.2(2†) rather than 2.4.2(2) in the inductive step for A = o1=̈o2.

First conjunct. M′1
σ′1 |=s o1=̈o2 iff, by clause 2.4.2(2†), for all pure atomic

formulae B1 and B2 where B2 is like B1 except for containing occurrences
of the term o2 at one or all places where B1 contains the term o1 and
where the predicate in these formulae is characteristic for o1 and o2, re-
spectively: M′1

σ′1 |=s B1 iff M′1
σ′1 |=s B2 (where in this particular case

the predicate which occurs in the formulae is either χ or ω). This condi-
tion holds iff v′1σ′1(o1, s) = v′2σ′1(o1, s) and v′1σ′1(o2, s) = v′2σ′1(o2, s) as well as
v′1(χ, s) = v′2(χ, s) and v′1(ω, s) = v′2(ω, s). And so the above equivalence
will hold iff for all pure atomic formulae B1 and B2 where B2 is like B1 ex-
cept for containing occurrences of the term o2 at one or all places where B1

contains the term o1 and where the predicate in these formulae is character-
istic for o1 and o2, respectively: M′2

σ′1 |=s B1 iff M′2
σ′1 |=s B2; iff, by clause

2.4.2(2†),M′2
σ′1 |=s o1=̈o2.

Second conjunct. M′1
σ′1 |=t o1=̈o2 iff, by clause 2.4.2(2†), for all pure

atomic formulae B1 and B2 where B2 is like B1 except for containing oc-
currences of the term o2 at one or all places where B1 contains the term
o1 and where the predicate in these formulae is characteristic for o1 and o2,
respectively: M′1

σ′1 |=t B1 iff M′1
σ′1 |=t B2. (As before, the predicate which

occurs in the formulae is either χ or ω.) The condition holds iff, by the def-
inition of the notion of an anti-assignment and the fact that the predicates
are characteristic, v′1σ′1(o1, t) = v′2σ′2(o1, t) and v′1σ′1(o2, t) = v′2σ′2(o2, t) as well as
v′1(χ, s) = v′2(χ, s) and v′1(ω, s) = v′2(ω, s); iff for all pure atomic formulae
B1 and B2 where B2 is like B1 except for containing occurrences of the term
o2 at one or all places where B1 contains the term o1 and where the predicate
in these formulae is characteristic for o1 and o2, respectively: M′2

σ′2 |=t B1 iff
M′2

σ′2 |=t B2; iff, by clause 2.4.2(2†),M′2
σ′2 |=t o1=̈o2.
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2.6 Axiom Systems without SBF

2.6.1 Axiomatization

The systems we shall consider in this section are similar to the axiom systems
discussed in the previous section. The only difference is that they do not
contain SBF as a thesis (i.e., as an axiom or a theorem). We shall call these
new systems SFOL=̈+Λ-systems. Since any normal system Λ which contains
the axiom scheme B will have SBF as a theorem, we assume that Λ does not
contain B.

2.6.2 Associative Semantics without SBF

To give an account of truth in a model for a system SFOL=̈+Λ which does not
always validate SBF we shall employ rigid varying substitution class models.
A model of this kind, M = 〈S,R,C, c, P, v〉, is just the same kind of thing
as a constant substitution class model except for the fact that constancy
(i.e., the condition that c(s) = C for every s ∈ S) need not hold. We
assume that the models satisfy monotonicity (i.e., for all s, t ∈ S, if sRt then
c(s) ⊆ c(t)). However, since SBF has to be invalidated in every such model,
we require that these models violate antimonotonicity, that is, the condition
that for all s, t ∈ S, if sRt then c(t) ⊆ c(s). For this reason we shall call the
models for the semantics which invalidates SBF, non-antimonotonic models.
When R is symmetric SBF cannot be invalidated, since this feature of R and
monotonicity would make the model constant. We therefore require that the
frames be not symmetric (and thus frames invalidating the B scheme).

The clauses for truth at an index in a model remain the same as in Sub-
section 2.4.2, except for the clause for the substitutional universal quantifier.
Adapting the usual denotational strategy we replace clause 2.4.2(5) by the
following one:

2.4.2.(5′). Mσ |=s (Πx)A iff for every (x, s)-variant τ of σ such
that τ(x, s) ∈ c(s): Mτ |=s A.

This clause restricts the evaluation of quantified formulae at an index to
the nominal constants which are contained in the substitution class for that
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index. It will be noted that since the substitution class needs no longer to be
C at every index, the first conjunct of the clause for pure atomic formulae, i.e.,
clause 2.4.2(1), is not satisfied in the trivial way as in constant substitution
class models. So in evaluating the truth of pure atomic sentences at some
index s we now cannot always take for granted that the nominal constants
which occur in them are contained in c(s).

The definition of truth in a model given in Subsection 2.4.5 is now to be
replaced by the following definition, where the models, the variable assign-
ments and their variants are taken to be rigid.

2.4.5′. A formula A of L is true in an associative substitutional
model (formally,M |= A) iff for every s ∈ S,Mσ |=s A for every
substitutional variable assignment σ such that σ(x, s) ∈ c(s) for
every variable x.

Validity in a frame is then defined in terms of this account of truth in a
model in a way analogous to the definition given in Subsection 2.4.6.

2.6.3 Soundness without SBF

The proofs for the soundness of varying substitution class systems without
SFB are essentially the same as the proofs for the soundness of the SFB
systems presented in the previous section. The crucial point of difference is
that the proofs now use rigid models which are non-antimonotonic.

1. The proof that every theorem of SFOL=̈+Λ is true in every model in
which every instance of a theorem of Λ is true proceeds by induction
on the proofs of theorems of SFOL=̈+Λ. The truth in a model of every
substitution-instance of a theorem of Λ follows for the same reasons as
for systems with SBF.

2. The proof for Π1 is essentially the same as for the constant substitution
class system. Suppose that Mσ |=s (Πx)A and let τ be the (x, s)-
variant of σ such that τ(x, s) = σ(y, s). So since σ(y, s) ∈ s, τ(x, s) ∈ s.
And so, by the clause for the restricted universal quantifier 2.4.2(5′)
Mτ |=s A. And then, by MSPR, Mσ |=s A[o/x]. Hence Π1 is truth
preserving in all non-antimonotonic models.
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3. =̈1, =̈2, and MP preserve truth in non-antimonotonic models for the
same reasons as in models for systems with SBF.

4. For Nec suppose thatMσ 6|=s 2A for some s ∈ S, where σ(x, s) ∈ c(s)
for every x. Then for some t ∈ S such that sRt, Mσ 6|=t A. So
since sRt, monotonicity ensures that α ∈ c(t) for every x. Hence A is
false in that model as well. Note that if monotonicity fails, although
(Πx)Fx → Fy will be true at an index in some model, 2((Πx)Fx →
Fy) can be false at that index.

5. Π2 preserves, in the presence of MSPA, truth in every non-antimonotonic
model for the same reasons as in the semantics for systems with SBF.

Consequently, every theorem of SFOL=̈+Λ is valid according to the present
criterion. However, as the example presented in 2.3.8(2) shows, given the
obviuos adjustments to the semantics with variable assignments, SBF is not
always a theorem of SFOL=̈+Λ.

2.6.4 Completeness without SBF

The associative canonical models for systems without SBF are construed,
following the standard technique, using two languages, that is, L and L+,
where the latter has infinitely many fresh terms not in L.

We allow for variyng substitution classes by letting each index s in the
associative canonical model be a maximal consistent set of formulae of Ls

which contains all the terms of L and possibly some of the new terms of L+,
granted that there are infinitely many terms of L+ not in Ls.

Using the terminology of [Hughes & Cresswell, 1996] we say that where
A ⊆ B, A is an infinitely proper subset of B iff there are infinitely many
members of B not in A.

To say that a language L is an infinitely proper sublanguage of a language
L′ is to say that L and L′ contain the same predicates, and the terms of L
are an infinitely proper subset of the terms of L′.
We can prove the following existence theorem concerning maximal consis-

tent sets of the sort just described.
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Theorem 2.6.4(1) (Existence Theorem). If 2A 6∈ s then there is
a maximal consistent set t with the Π-property in a language Lt

containing Ls such that {B : 2B ∈ s} ∪ {¬A} ⊆ t.

A reproduction of the standard proof of this theorem can be found in Ap-
pendix A.

Let Γ be a SFOL=̈+Λ-consistent set of L-formulae. A rigid associative
canonical model for a system SFOL=̈+Λ in L with an extension L+ is a
6-tupleMΛ

Γ = 〈SΛ, RΛ, CΛ, cΛ, PΛ, vΛ〉, where

1. SΛ is the set of all maximal consistent sets s, t, u, ... with the Π-property
in some sublanguage Ls of L+ which contains all the terms of L and
perhaps some of the fresh terms from L+, under the provisio that there
are infinitely many terms of L+ which are not contained in Ls.

2. sRΛt iff {A : 2A ∈ s} ⊆ t iff for every formula 2A of L+: if 2A ∈ s,
then A ∈ t.

3. CΛ is C+, that is to say the set of nominal constants of L+
0 .

4. cΛ : SΛ → ℘(CΛ). So cΛ(s) is the set of nominal constants in Ls. Where
α ∈ c(s) then 2(ϕα → ϕα) ∈ s and so where sRΛt, ϕα → ϕα ∈ t

and thus α ∈ c(t), i.e. Ls is a sublanguage of Lt when sRΛt and so
monotonicity is satisfied.

5. PΛ = P .

6. vΛ is defined along the lines of Subsection 2.5.6. For arbitrary α ∈
cΛ(s), ϕn ∈ PΛ, and s ∈ SΛ:

vΛ(α, s) =df AtmΛ(α) ∩ s; and
vΛ(ϕn, s) =df AtmΛ(ϕn) ∩ s,

where AtmΛ is the set of pure atomic L+
0 -sentences and where AtmΛ(α)

and AtmΛ(ϕn) are defined as follows:

AtmΛ(α) =df {A ∈ AtmΛ: A contains at least one oc-
currence of the nominal constant α}
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AtmΛ(ϕn) =df {A ∈ AtmΛ: A contains an occurrence of
the predicate ϕn}.

In effect, everything except for the fact that the models are non-antimonotonic
remains as it was. Given an associative canonical modelMΛ

Γ = 〈SΛ, RΛ, CΛ,
cΛ, PΛ, vΛ〉 canonical variable assignments σΛ, their variants, and canonical
term values are defined in the same way as in Subsection 2.5.6. Again, we
assume that they and the canonical models under consideration are rigid.

We can now establish the following theorem concerning non-antimonotonic
varying substitution class canonical models.

Theorem 2.6.4(2) (Truth Theorem). For any s ∈ SΛ, and any
formula A ∈ L+: MΛ

Γ,σΛ |=s A iff A ∈ s.

(The superscripted Λ is short for SFOL=̈ + Λ.)

The proof is similar to the proof of theorem 2.5.6(4). But in making the
inductive steps one has to appreciate the fact that the indices in SΛ are all
in different sublanguages of L+.

(i) Pure atomic formulae. MΛ
Γ,σΛ |=s ϕ

no1...on iff, by clause 2.4.2(1), (a)
if the terms o1, ..., on are nominal constant, then o1, ..., on ∈ cΛ(s) and if they
are nominal variables, then σΛ(o1, s), ..., σ

Λ(on, s) ∈ cΛ(s) and (b) ϕno1...on ∈
vΛ

σΛ(o1, s) ∩ ... ∩ vΛ
σΛ(on, s) ∩ vΛ(ϕn, s); iff, in view of the definition of vΛ and

the definition of canonical term values under σΛ, by 2.4.2(1), ϕno1...on ∈ s.
(ii) Substitutional identity formulae. Again, the proof is essentially the

same. Suppose o1=̈o2 ∈ Ls. Then B1 ∈ Ls and B2 ∈ Ls for all pure atomic
formulae of Ls B1 and B2 in AtmΛ where B2 is like B1 except for containing
occurrences of the term o2 at one or all places where B1 contains the term
o1. And then MΛ

Γ,σΛ |=s o1=̈o2 iff for all pure atomic formulae B1 and B2

where B2 is like B1 except for containing occurrences of the term o2 at one
or all places where B1 contains o1: MΛ

Γ,σΛ |=s B1 iffMΛ
Γ,σΛ |=s B2; iff for all

B1 and B2: B1 ∈ s iff B2 ∈ s; iff for all B1 and B2: B1 ↔ B2 ∈ s; iff, by =̈2,
o1=̈o2 ∈ s.
(iii) Negations. Suppose ¬A ∈ Ls. Then A ∈ Ls. And thenMΛ

Γ,σΛ |=s ¬A;
iff MΛ

Γ,σΛ 6|=s A; iff A 6∈ s; iff ¬A ∈ s. It is vital that A ∈ Ls since first,
the induction hypothesis only applies to such formulae. Further, since s is
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maximal consistent only in Ls, it is only if A ∈ Ls that we can be sure that
if A 6∈ s then ¬A ∈ s.

(iv) Conjunctions. Suppose A ∧B ∈ Ls. Then A ∈ Ls and B ∈ Ls. Then
MΛ

Γ,σΛ |=s A ∧ B; iffMΛ
Γ,σΛ |=s A andMΛ

Γ,σΛ |=s B; iff A ∈ s and B ∈ s; iff
A ∧B ∈ s. Again, it is important that A, B, and A ∧B, all be in Ls.

(v) Universal substitutional quantifications; first part. Suppose (Πx)A ∈
Ls andMΛ

Γ,σΛ 6|=s (Πx)A. Then for some (x, s)-variant τΛ of σΛ, such that
τΛ(x, s) ∈ c(s),MΛ

Γ,τΛ 6|=s A. So by MSPR for some term o in L+,MΛ
Γ,σΛ 6|=s

A[o/x]. So A[o/x] 6∈ s. Now, A[o/x] ∈ Ls and so, by Π1, (Πx)A 6∈ s.

(vi) Universal substitutional quantifications; second part. Suppose (Πx)A

∈ Ls, but (Πx)A 6∈ s and so ¬(Πx)A ∈ s. Thus, since s has the Π-property
in Ls, there is some term o in Ls such that ¬A[o/x] ∈ s. Consequently,
A[o/x] 6∈ s. And since A[o/x] ∈ Ls,MΛ

Γ,σΛ 6|=s A[o/x]. So, since Π1 is valid,
MΛ

Γ,σΛ 6|=s (Πx)A.

(vii) Necessity formulae; first part. Suppose 2A ∈ s and sRΛt. Then
A ∈ t. So A ∈ Lt. And thusMΛ

Γ,σΛ |=t A. Since this is so for every t such
that sRΛt,MΛ

Γ,σΛ |=s 2A.

(viii) Necessity formulae; second part. Suppose 2A ∈ Ls but 2A 6∈ s.
Then since s is maximal consistent in Ls, ¬2A ∈ s. But then, by the
Existence Theorem 2.6.4(1) and Lindenbaum’s Theorem 2.5.6(1), there is
some t ∈ SΛ with the Π-property such that ¬A ∈ t. So ¬A ∈ t. So A 6∈ t.
But Lt is an extension of Ls and A ∈ Ls. So A ∈ Lt. SoMΛ

Γ,σΛ 6|=t A. But
sRΛt, and soMΛ

Γ,σΛ 6|=s 2A.

This completes the proof of the Truth Theorem 2.6.4(2). Completeness
follows just like in Theorem 2.5.6(5).

2.7 Axiom Systems without CSBF

2.7.1 Semantics without CSBF

CSBF is invalidated in models which do not satisfy monotonicity (see, for
instance, the countermodel in 2.3.8(3)).
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To set out a semantics for varying substitution class axiom systems with-
out CSBF we introduce a new predicate Ë for substitutional existence. This
predicate is impure and so does not belong to P . Its semantics is given by
the following clause:

2.7.1(1). Mσ |=s Ëo iffMσ |=s (Σx)o=̈x.

It is somewhat misleading to call Ë an existence predicate, since its truth
clause is not given in terms of the referential existential quantifier, referen-
tial identity and individuals. It will be obvious, therefore, that Ë has no
existential import, but we shall continue to speak of substitutional existence
in order to parallel the well-established terminology of denotational (modal)
semantics.

The notion of truth at an index in a model is defined just like in Subsection
2.4.2 except for being supplemented with clause 2.7.1(1). Truth in a model
is defined as in Subsection 2.4.5 and validity in a frame is explained using
that definition as in Subsection 2.4.6.

The notion of a variable assignment has beed defined (in Subsection 2.4.1)
in such a way as to allow for the case that σ(x, s) = α where α 6∈ c(s). This
means that a nominal variable can be assigned a name at an index which is
not contained in the substitution class for that very index.

The rest of the semantics for such systems is specified in the same way
as for systems without SBF. In particular, the clauses for the substitutional
quantifier are 2.4.2(5′) (see Subsection 2.6.2) and

2.4.2(9′). Mσ |=s (Σx)A iff for some (x, s)-variant τ of σ such
that τ(x, s) ∈ c(s): Mτ |=s A.

It is just this reading of the existential substitutional quantifier which is
involved in the clause for Ë given above.

We observe that in view of the fact that the quantifiers are constrained
to the substitution classes at indices, but variable assignments are not, Π1

is no longer valid. Consider a simple instance of that axiom, (Πx)Fx→ Fy,
and the rigid non-monotonic modelM = 〈S,R,C, c, P, v〉 where S = {s, t},
R = {〈s, t〉}, C = {a, b}, c(s) = C, c(t) = {a}, vσ(a, s) = vσ(a, t) = {Fa},
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vσ(b, s) = vσ(b, t) = {Fb}, v(F, s) = {Fa, Fb} and v(F, t) = {Fa}. Let
σ(y, t) = b. Clearly,Mσ |=t (Πx)Fx andMσ 6|=t Fy. So Π1 is invalidated.

Moreover, Nec is no longer truth preserving as this model shows. For
Mσ |=s (Πx)Fx→ Fy, butMσ 6|=s 2((Πx)Fx→ Fy).

Since we have the predicate for substitutional existence at our disposal we
may replace Π1 by

Π1Ë ((Πx)A ∧ Ëo) → A[o/x].

This axiom is valid as we shall see below and Nec regains the property of
being truth preserving.

2.7.2 Semantics without CSBF: Comments

1. Clause 2.7.1(1) is, in effect, an abbreviation of the following, somewhat
loosely stated, clause: Mσ |=s Ëo iff there is some term p, which is not
necessarily distinct from o, such that if p is a nominal constant then p ∈
c(s) and if p is a nominal variable then σ(p, s) ∈ c(s): ϕn(o, q1, ..., qn−1)

and ϕn(p, q1, ..., qn−1) (where ϕn is an arbitrary pure predicate and
q1, ..., qn−1 are arbitrary nominal terms), ϕn(o, q1, ..., qn−1) ∈ vσ(o, s) ∩
vσ(q1, s) ∩ ... ∩ vσ(qn−1, s) ∩ v(ϕn, s) iff ϕn(p, q1, ..., qn−1) ∈ vσ(p, s) ∩
vσ(q1, s) ∩ ... ∩ vσ(qn−1, s) ∩ v(ϕn, s).

2. The usual clause for the referential existence predicate E says that an
individual is an element of the extension of E at some index just in case
that individual is an element of the individual domain for that index.
In effect, a formula of the form Eo, where o is an individual term, is
said to be true at an index exactly if that term is assigned an element
of the individual domain, its denotatum, for that index. The predicate
E and denotational counterparts of such axioms like Π1Ë are used
by free logicians in order to tackle problems concerning the semantics
and the logic of sentences containing denotationless terms. Since in
the present semantical framework there just are no denotations at all,
there is, as it seems to me, no deep philosophical point in introducing Ë
and such systems like the ones presented below. We shall return to the
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problems of nondenoting terms and negative existentials in Chapter 4,
after the applied semantical interpretation of our framework has been
provided. Indeed, the present framework achieves, as I hope, something
free logicians seem, among other things, to be aiming at, namely to
defend the “purity” of first-order logic.9

2.7.3 Axiomatization

The replacement ofΠ1 withΠ1Ë gives rise to some changes in the axiom basis
of SFOL. In particular, Π2 can no longer be used in its present shape. The
following axiomatization recasts the one presented in [Hughes and Cresswell,
1996] on pages 293-295 in substitutional terms.

Axioms

Where Λ is any normal system of propositional modal logic, SFOL=̈Ë+Λ is
defined as follows.

1. Λ′: Any SFOL substitution-instance of a theorem of Λ is an axiom of
SFOLË+Λ.

2. Π1Ë: Where x is any nominal variable and o any nominal term, and A
any formula then ((Πx)A ∧ Ëo) → A[o/x] is an axiom of SFOLË+Λ.

3. Π→: (Πx)(A → B) → ((Πx)A → (Πx)B) (where A and B are any
formulae and x is any substitutional variable).

4. V Q: A↔ (Πx)A provided x is not free in A.

5. UË: (Πx)Ëx

6. =̈1 and =̈2 (see Subsection 2.5.3).

9For a recent survey on free logics see [Bencivenga, 2002].
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Rules

The rules are MP, Nec and the following ones:

1. UG: if ` A, then ` (Πx)A.

2. UG2Πn: if ` A1 → 2(A2 → ... → 2(An → 2B)...), then ` A1 →
2(A2 → ...→ 2(An → 2(Πx)B)...), where x is not free in A1, ..., An.

Theorems and Derived Rules

1. Π2: if ` A→ B and x is not free in A then ` A→ (Πx)B.

2. UG→: if ` A→ B then ` (Πx)A→ (Πx)B.

3. Eq: if ` A ↔ B and C[A] differs from C[B] only in having A at zero
or more places where C[B] has B then ` C[A] ↔ C[B].

4. Π1′: Where x and y are any nominal variables, and A is any formula
then ` (Πy)((Πx)A→ A[y/x]).

5. RBV : If A and B differ only in that A has free x where and only where
B has free y then ` (Πx)A↔ (Πy)B.

6. QR: ¬(Πy)¬(A[y/x] → (Πx)A).

7. V Q→: (Πx)(A→ B) → (A→ (Πx)B), where x is not free in A.

The first three rules are derivable from UG, VQ and Π→. Π1′ is derivable
using these rules. With their help RBV and QR can be proved. The proof of
the last theorem in this list uses Π→ and VQ. (See [Hughes & Cresswell, 1996]
pp. 293-295.)

2.7.4 Soundness without CSBF

We can easily verify that the axiomatization given above is sound with respect
to the definition of validity stated in Subsection 2.4.6. We shall confine
ourselves to the proofs of the axioms Π1Ë and UË and of the rule UG2Πn.
Because of the semantics Ë, the proofs of the axioms differ somewhat from
their denotational counterparts. The models considered are rigid.
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1. Proof for Π1Ë. The proof is by induction on the complexity of A. In
effect, the proof follows, mutatis mutandis, the general strategy outlined
in 2.5.5(5) which has been discussed in the context of the proof for
axiom =̈3. We proceed by reductio and consider only the case where
A is a pure atomic formula. SupposeMσ |=s (Πx)A,Mσ |=s Ëo, but
Mσ 6|=s A[o/x]. Let τ be the (x, s)-variant of σ such that τ(x, s) =

σ(y, s). Then, by MSPR, Mτ 6|=s A. Now Mσ |=s Ëo and so, by
2.7.1(1),Mσ |=s (Σx)o=̈x. And so, by 2.4.2.(9′), for some (x, s)-variant
ρ of σ such that ρ(x, s) ∈ c(s): Mρ |=s o=̈x. From this we obtain, in
view of clause 2.4.2(2), for some (x, s)-variant ρ of σ such that ρ(x, s) ∈
c(s): for all pure atomic formulae B(o) and B(x) where B(x) is like
B(o) except for containing occurrences of x at one or all places where
B(o) contains the term o: Mρ |=s B(o) iff Mρ |=s B(x). In order to
construct the contradiction we let ρ be τ , we let o be x and assume,
that B(o) is just the atomic formula A. From this we obtain, using
the fact that, Mτ 6|=s A the following: there is an (x, s)-variant of σ,
that is, τ , such that τ(x, s) ∈ c(s) andMτ 6|=s A. Consequently, it is
not the case that for every (x, s)-variant τ of σ such that τ(x, s) ∈ c(s)
Mτ |=s A. Which, by clause 2.4.2.(5′), gives us Mσ 6|=s (Πx)A and
thus the required contradiction. The inductive step for the case in
which A is a substitutional identity formula is similar. For the complex
cases we proceed using the strategy outlined in 2.5.5(5).

2. Proof for UË. Suppose Mσ 6|=s (Πx)Ëx. So, by clause 2.4.2.(5′), for
every (x, s)-variant τ of σ such that τ(x, s) ∈ c(s): Mτ 6|=s Ëx. Thus,
by clause 2.7.1(1),Mτ 6|=s (Σx)x=̈x which, in view of clause 2.4.2(2),
is absurd.

3. Proof for UG2Πn. The proof parallels the denotational proof (cf.
[Hughes & Cresswell, 1996] p. 295). Suppose Mσ |=s A1 → 2(A2 →
...→ 2(An → 2(Πx)B) ...). Then there is an R-chain s1, ..., sn+1 with
s = s1 andMσ |=si

Ai for 1 ≤ i ≤ n, andMσ 6|=sn+1 (Πx)B, and so for
some (x, s)-variant τ of σ with τ(x, sn+1) ∈ c(sn+1),Mτ 6|=sn+1 B. But
x is not free in A and so, by MSPA, bothMσ |=si

Ai andMτ |=si
Ai.

And soMτ 6|=s A1 → 2(A2 → ...→ 2(An → 2B)...).
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2.7.5 Completeness without CSBF

Following the standard procedure (see [Hughes & Cresswell, 1996] pp. 296-
301) we shall now prove completeness for some arbitrarily selected system
SFOL=̈Ë+Λ. We proceed as in Subsection 2.5.6 and assume that Θ is a
consistent set of L-formulae and that L is an infinitely proper sublanguage
of L+. Here, however, the elements of SΛ have to be maximal and are
required to have the 2Π-property in L+. Let ∆ be a set of formulae of L+.
∆ will have the 2Π-property in L+ just in case it satisfies the following two
conditions:

1. For every formula A of L+ and variable x there is some nominal term
o in L+ such that Ëo ∧ (A[o/x] → (Πx)A) ∈ ∆.

2. For all formulae of L+, B1, ..., Bn (n ≥ 0) and A, and every vari-
able x not free in B1, ..., Bn there is some term p in L+ such that
2(B1 → ... → 2(Bn → 2(Ëp → A[p/x]))...) → 2(B1 → ... →
2(Bn → 2(Πx)A)...) ∈ ∆.

We may now prove the following theorem:

Theorem 2.7.5(1) (2Π-property). If Θ is a consistent set of for-
mulae of L then there is a consistent set ∆ of formulae of L+ with
the 2Π-property, such that Θ ⊆ ∆.

The proof is standard and is relegated to Appendix A.

We can now also establish the following existence claim:

Theorem 2.7.5(2) (Existence Theorem). If s is a maximal con-
sistent set of formulae in L+, and s has the 2Π-property, and A
is a formula such that 2A 6∈ s, then there is a consistent set t
of formulae of L+ with the 2Π-property such that {B : 2B ∈
s} ∪ {¬A} ⊆ t.

The proof is reproduced in Appendix A.

Letting Γ be a SFOL=̈Ë+Λ-consistent set of L-formulae. We define
a rigid associative canonical model for L with the extension L+, MΛ

Γ =

124



〈SΛ, RΛ, CΛ, cΛ, PΛ, vΛ〉, as before taking the superscripted Λ to be short for
SFOL=̈Ë+Λ, just like in Subsection 2.5.6 except that we require that for
arbitrary α ∈ cΛ(s), ϕn ∈ P , and s ∈ S also the following condition to hold
with respect to vΛ:

Ëα ∈ s iff there is some β ∈ cΛ(s), where α and β need not be dis-
tinct, such that for all sentences in AtmΛ ϕn(α, γ1, ..., γn−1) and
ϕn(β, γ1, ..., γn−1) (where γ1, ..., γn−1 are arbitrary nominal con-
stants), ϕn(α, γ1, ..., γn−1) ∈ vΛ(α, s) ∩ vΛ(γ1, s)∩ ... ∩ vΛ(γn−1, s)

∩ vΛ(ϕn, s) iff ϕn(β, γ1, ..., γn−1) ∈ vΛ(β, s) ∩ vΛ(γ1, s) ∩ ... ∩
vΛ(γn−1, s) ∩ vΛ(ϕn, s).

This condition uses the observation made in 2.7.2(1). In effect, the right-
hand side of that condition is designed so as to ensure that the right-hand
side of clause 2.7.1.(1) is satisfied.

The canonical assignments to the variables, their variants, and term values
are defined as in Subsection 2.5.6 and are taken to be rigid.

We are now in a position to prove the following theorem.

Theorem 2.7.5(3) (Truth Theorem). For any s ∈ SΛ and any
formula A in L+,MΛ

Γ |=s A iff A ∈ s.

The proof differs from the proof of Truth Theorem 2.5.6(4) only with respect
to additional inductive step for substitutional existence formulae and with
respect to the inductive step for quantified formulae.

With respect to substitutional existence the following equivalences hold:
MΛ

Γ,σΛ |=s Ëo iff, by clause 2.7.1(1), MΛ
Γ,σΛ |=s (Σx)o=̈x; iff, by clause

2.4.2(9′), for some (x, s)-variant τΛ of σΛ such that τΛ(x, s) ∈ cΛ(s): MΛ
Γ,τΛ |=s

o=̈x; iff, by clause 2.4.2(2), for some (x, s)-variant τΛ of σΛ such that τΛ(x, s)

∈ cΛ(s): for all pure atomic formulae B(o) and B(x) where B(x) is like
B(o) except for containing occurrences of the variable x at one or all places
where B(o) contains the term o: MΛ

Γ,τΛ |=s B(o) iff MΛ
Γ,τΛ |=s B(x); iff,

by MSPR, letting σΛ be any (x, s)-variant of τΛ such that σΛ(x, s) ∈ cΛ(s)

which means that σΛ(x, s) = p for some term p in L+, for all pure atomic
formulae B(o) and B[p/x] where B[p/x] is like B(o) except for containing
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occurrences of the term p at one or all places where B(o) contains the term
o: MΛ

Γ,σΛ |=s B(o) iff MΛ
Γ,σΛ |=s B[p/x]; iff, making this abbreviation ex-

plicit, there is some term p, which is not necessarily distinct from o, such
that if p is a nominal constant then p ∈ cΛ(s) and if p is a nominal vari-
able then σΛ(p, s) ∈ cΛ(s): ϕn(o, q1, ..., qn−1) and ϕn(p, q1, ..., qn−1) (where ϕn

is an arbitrary pure predicate and q1, ..., qn−1 are arbitrary nominal terms),
ϕn(o, q1, ..., qn−1) ∈ vΛ

σΛ(o, s) ∩ vΛ
σΛ(q1, s) ∩ ... ∩ vΛ

σΛ(qn−1, s) ∩ vΛ(ϕn, s) iff
ϕn(p, q1, ..., qn−1) ∈ vΛ

σΛ(p, s)∩ vΛ
σΛ(q1, s)∩ ...∩ vΛ

σΛ(qn−1, s)∩ vΛ(ϕn, s); iff, by
the condition which has been imposed above on the definition of vΛ, Ëo ∈ s.
If (Πx)A 6∈ s, then by the 2Π-property there is some term o such that

Ëo ∈ s and A[o/x] 6∈ s. Thus, by hypothesis, MΛ
Γ,σΛ 6|=s A[o/x]. From this

we obtain, letting τΛ be the (x, s)-variant of σΛ with τΛ(x, s) = σΛ(y, s),
MΛ

τΛ 6|=s A. Now, since Ëo ∈ s, by the condition on vΛ there will be some
term in cΛ(s) which ensures that this is so. Let σΛ(y, s) be that term. But
then, by clause 2.4.2(5′),MΛ

Γ,σΛ 6|=s (Πx)A.

Now, suppose (Πx)A ∈ s and let τΛ be any (x, s)-variant of σΛ such
that τΛ(x, s) = σΛ(y, s) for some σΛ(y, s) ∈ cΛ(s). But then there will be
a nominal constant in cΛ(s) which will satisfy the condition for Ëo ∈ s

to hold. By Π1Ë, we then obtain A[o/x] ∈ s. And so, by hypothesis,
MΛ

Γ,σΛ |=s A[o/x]. From this we obtain, by MSPR, MΛ
Γ,τΛ |=s A and then,

by clause 2.4.2(5′),MΛ
Γ,σΛ |=s (Πx)A.

A consequence of this theorem is that the canonical model of SFOL=̈Ë+Λ

validates all and only theorems of SFOL=̈Ë + Λ. This is shown just like in
the case of theorem 2.5.6(5).
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Chapter 3

Constrained Associative
Semantics

3.1 Introduction

For the purposes of an applied semantical interpretation of the formal asso-
ciative framework we shall impose in this chapter admissibility constraints
on associative models, in particular, on the assignments of associates to nom-
inal constants and pure predicates. In Section 3.2 we explain what makes an
associative model admissible and natural. And in Section 3.3 we adjust the
semantics so as to see how the problem of essential asymmetrical relations as
recently considered in [Fine, 1994] could be solved in terms of the associative
framework.

3.2 Admissibility Constraints

We first introduce a couple of auxiliary notions and then say in terms of
these notions what admissible assignments are and what makes an associative
model admissible.

3.2.1 Auxiliary Notions

In order to explain the notion of an admissible assignment we introduce a
couple of auxiliary notions: defining associates and predicates for nominal
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constants, consequential/conforming predicates of a predicate with respect
to a nominal constant.

1. For every nominal constant α ∈ C there is a defining associate for the
nominal constant α, vdef (α), which is the set of all L0-sentences from
Atm(α) which we call “defining of” α. Note that vdef (α) is not local.
Defining name associates can be empty.

2. For every nominal constant α ∈ C which has a defining associate,
Def(α) ⊆ P is the set of all the pure predicates occurring in the sen-
tences in vdef (α). If Def(α) = {ϕ, χ, ψ, ...}, we say that ϕ, χ, ψ, ... are
the defining predicates for the nominal constant α.

3. Every pure predicate ϕ in P has a formal meaning postulate, Mp(ϕ),
associated with it. Mp(ϕ) is a sentence of L. Moreover, we put
Mp =def {Mp(ϕ) : ϕ ∈ P}. A meaning postulate for ϕ determines
(a) which predicates χ ∈ P are consequential upon ϕ with respect to
some nominal constant α and (b) which predicates χ ∈ P conform to
ϕ with respect to it.

(a) A predicate χ is consequential upon ϕ with respect to a nominal
constant α just in case, if ϕ...α... ∈ vdef (α), then χ...α... is deriv-
able givenMp. We assume that the relavant notion of derivability
is relativized to a suitably characterized meaning calculus which
involves the postulates in Mp. For example, if Fa ∈ vdef (a), then
Ga is derivable given Mp(F ) = (Πx)(Fx ↔ (Gx ∧ ¬Hx)). Thus
the predicateG is consequential upon F with respect to a. Accord-
ing toMp(F ), G is the only predicate in P which is consequential
upon F with respect to any nominal constant in C. It is natural
to require the calculus to guarantee that F be consequential upon
itself.

(b) A predicate χ conforms to ϕ with respect to a nominal constant
α just in case, if ϕ...α... ∈ vdef (α), then χ...α... is derivationally
consistent with Mp. So, for instance, if Fa ∈ vdef (a) and Mp(F )

is the L-sentence (Πx)(Fx ↔ (Gx ∧ ¬Hx)), then Ha is not con-
sistent withMp(F ). Consequently, H does not conform to F with
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respect to a. Thus according toMp(F ), all predicates in P except
for H conform to F with respect to any nominal constant in C.

3.2.2 Auxiliary Notions: Comments

Some comments on the auxiliary notions just introduced will now be in place.

1. Informally, we may view—until the applied semantical interpretation
will be provided in the next chapter—the defining associates for nomi-
nal constants as encoding the meanings of (denoting or denotationless)
proper names as specified by their nominal definitions. As for the pred-
icates which are defining of a nominal constant, we may view them as
stating what is definitionally individuative of those names. As men-
tioned above, we take it that every nominal constant has a defining
associate and thus a set of predicates which individuates it. In case
the defining associate of a constant is empty, so is, of course, the set
of its defining predicates. Anticipating the terminology to be intro-
duced in Chapter 4 we shall find it sometimes convenient, especially
when intuitive explanations are appropriate, to speak of the “sense-
extensions of names/predicates” rather than of associates for nominal
constants/predicates.

2. The explanations of the notions of a defining associates and of defining
predicates for a name resemble to a certain extent the characterization
of essence which has been recently suggested by Kit Fine.1 According
to Fine, “we may identify the being or the essence of x with the collec-
tion of propositions that are true in virtue of its identity (or with the
corresponding collection of essential properties)”.2 The passage which
is enclosed in brackets parallels, as I take it, the definition of the set
of defining predicates and the portion of the quotation which precedes
that passage parallels the notion of a defining associate for a nominal
constant. However, the differences are significant, whereas Fine deals

1See [Fine, 1995a] p. 275.
2This use of ‘essence’ corresponds to what we shall later call the ‘essence-set’ of an

object. See Subsection 3.3.3 below.
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(intuitively) with objects, properties, and essence (or real definition),
we deal (intuitively) with names, predicates, and meaning (or nomi-
nal definition). Moreover, whereas the propositions contained in Fine’s
collection of propositions are taken to be true, the sentences contained
in defining associates serve to explain truth. These contrasts will be
explained further in Chapter 4.

3. It will be noted that, in view of the fact that defining predicates are
atomic, also such trivial logical predicates like Fx∨¬Fx are not defining
of nominal constants. Furthermore, it will have been noted that the
predicates upon which a predicate can be consequential or to which
it may conform with respect to a nominal constant are the defining
predicates for that constant.

4. Informally, the meaning postulates can be taken to specify the actual
meanings of (partially) definable natural language predicates and their
analytic interrelations.3 In the present framework they help to deter-
mine in a purely syntactical way how the associates of nominal con-
stants and predicates are structured internally, i.e., which pure atomic
sentences they contain. The condition expressed by a meaning postu-
late for a predicate may be a necessary and sufficient one (as the one
given above), but it need not. Intuitively, it will be natural to hold,
for instance, that the postulate for ‘... is a bachelor’, say, will be of
the former kind, whereas the postulate for ‘... is red’ will state merely
some necessary condition.

5. The notion of derivability and consistency involved in the definition of
consequential and conforming predicates, respectively, can be specified
in various ways. One way would be to use a notion of derivability that is
relativized to a classical natural deduction system for the substitutional
language L (without substitutional identity) which is enriched by the
meaning postulates from Mp. For example, a sentence A from Atm(α)

will be in vcns(α), for some α ∈ C, just in case there is a derivation in
that system in which the elements from vdef (α, s) and the postulates

3See [Carnap, 1956 (1947)], Supplement B.
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for the defining predicates for α fromMp are the assumptions and A is
the conslusion. In case there is a derivation of ¬A, A is not contained
in vcns(α).4

3.2.3 Admissible Assignments

We distinguish admissible assignments to nominal constants and admissible
assignments to pure predicates.5

1. LetM = 〈S,R,C, c, P, v〉 be an associative substitutional model, let α
be any nominal constant in C and let s be any index in S. An associate
assignment to a nominal constant α at s is admissible just in case the
following conditions are satisfied:

(a) The resulting local associate v(α, s) for α contains the defining
associate for α, that is, vdef (α).

(b) The resulting local associate v(α, s) for α contains all sentences
from Atm(α) which are derivable from vdef (α) given the meaning
postulates Mp.

We now introduce some terminology. Let vcns(α) be that subset of all
the sentences from v(α, s) which contain occurrences of the predicates
χ from P which are consequential upon the predicates in Def(α) with
respect to α. We call vcns(α) the consequential associate for the nominal
constant α. Cns(α) is the set of all the predicates which occur in
the sentences of vcns(α) which are not already contained in Def(α).
We call these predicates the consequential predicates for α. So not
all predicates which are consequential upon a defining predicate with
respect to some nominal constant are consequential predicates for that

4An alternative way to explain the notion of derivability which is involved in the def-
inition of consequential/conforming predicates and associates might proceed, perhaps, in
terms of a purely syntactical and—for the present setting—nonconstructive adaptation
of a meaning calculus of the sort presented in [Kamlah & Lorenzen, 1996 (1967)]. Much
more needs to be said on this, though.
5I am indebited to Peter Schroeder-Heister for drawing my attention to an unintended

consequence of an earlier formulation of definition 3.2.3(1).
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constant. Obviously, this is so for the defining predicates themselves.
We call the set vchr(α) = vdef (α) ∪ vcns(α) the characteristic associate
for the nominal constant α and Chr(α) = Def(α) ∪Cns(α) the set of
the characteristic predicates for α. In effect, the constraint just stated
says that an assignment of a local associate for a nominal constant α at
an index s ∈ S, i.e. v(α, s), is admissible just in case vchr(α) ⊆ v(α, s).

2. Let M = 〈S,R,C, c, P, v〉 be an associative substitutional model, let
α be any nominal constant in C and let s be any index in S. Given
the notion of a characteristic associate for any α ∈ C we say that a
associate assignment to a predicate ϕ ∈ P at s is admissible just in
case the resulting local predicate associate v(ϕ, s) for ϕ contains all the
L0-sentences from Atm(ϕ) which are contained in the characteristic
associates vchr(α) for any α ∈ C.

In Subsection 3.2.5 below these notions will be used in the definition of the
notion of an admissible model.

3.2.4 Admissible Assignments: Comments

Before we state the definition of an admissible model, we introduce some fur-
ther terminology and give a couple of comments on admissible assignments.

1. We call a model M = 〈S,R,C, c, P, v〉 a diversifying model just in
case for some α ∈ C, some ϕn ∈ P and some s ∈ S: (i) vchr(α) ⊆
v(α, s) and vchr(α) 6= v(α, s); and (ii) vchr(α) 6= ⋃{v(ϕn, s) : ϕn ∈
Chr(α)}. A diversifying model thus involves assignments to nominal
constants which do not coincide with their characteristic associates
and the associates of their characteristic predicates. In other words,
diversifying models allow that atomic sentences which are not members
of characteristic associates can be true at their indices.

2. LetM = 〈S,R,C, c, P, v〉 be diversifying and let α be a nominal con-
stant in C and let s be an index in S. We define the definitionally
conforming local associate for a nominal constant α, vcnfd

(α, s) ⊆
v(α, s) − vchr(α), to be the set of sentences form Atm(α) which are
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derivationally consistent with vdef (α) given Mp. We call the predi-
cates which occur in the sentences from vcnfd

(α, s) and which are not
already contained in Chr(α) the definitionally conforming predicates
for α. These predicates form the set Cnfd(α) ⊆ P − Chr(α). So in
case vchr(α) 6= v(α, s), v(α, s) will be the set vchr(α) ∪ vcnf (α, s).

3. Intuitively, it may be controversial whether a predicate is a defining
or a consequential predicate of some name. It will be, presumably,
less controversial whether a predicate is characteristic or conforming.
For this reason it will be more convenient, in many cases, to avoid
speaking of the defining/consequential distinction and just to speak of
characteristic associates and predicates. This observation also suggests
an alternative account of conformity.

4. In order to obtain the notion of conformity which we shall use from
now on, we alter the definition just given slightly, by leaving it as it is
except for replacing the defining associate of α with its characteristic
associate vchr(α). Doing this, we obtain, in an exactly analogous way
a set, vcnfc(α, s), which we call the characteristically conforming local
associate for the nominal constant α. Similarly, we call the predicates
which occur in the sentences from vcnfc(α, s) and which are not already
contained in Chr(α), the characteristically conforming predicates for α.
These predicates form the set Cnfc(α) ⊆ P−Chr(α). (We observe that
vcnfc(α, s) and Cnfc(α) are smaller than their definitonally conforming
counterparts.)

5. It should be noted that the (characteristically) conforming predicates
for a nominal constant are only required to conform to the characteristic
predicates of that constant. They need not conform to each other. So
given some diversifying model, for any constant α and any index s,
v(α, s), i.e., vchr(α)∪ vcnfc(α, s) need not be a consistent set in view of
Mp.

6. Obviously conforming associates are local, whereas characteristic asso-
ciates are not. Unless the model is rigid, this locality will be responsible
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for the locality of the whole associate of a given nominal constant. We
shall return to this in Subsection 3.2.5 below.

7. As has been argued in Chapter 2 (see, in particular, the discussion in
comment 2.3.8(6)), the axiom NSI, i.e. (o1=̈o2) → 2(o1=̈o2), is invalid
on the semantics given in that chapter. But in view of the resources
of the constrained framework, there is an intuitively appealing way in
which the validity of that axiom can be obtained. We simply alter the
clause for substitutional identity as follows:

2.4.2(2‡) Mσ |=s o1=̈o2 iff for all pure atomic formulae B1

and B2 where (i) B2 is like B1 except for containing occur-
rences of the term o2 at one or all places where B1 contains
the term o1 and where (ii) B1 and B2 are contained in the
characteristic associates assigned to o1 and o2, respectively:
Mσ |=s B1 iffMσ |=s B2.

On the assumptions that the assignments to the nominal constants and
predicates involved in the models are admissible and that substitutional
identity formulae are to be evaluated according to clause 2.4.2(2‡), NSI
will be obviously valid. Similar remarks apply to NSD.

8. LetM = 〈S,R,C, c, P, v〉 be any model and let s be any index in it. We
cannot, in view of the definitions given above, take the union of all the
associates for the nominal constants for s together with the union of all
the associates for the predicates for s to be something like a Carnapian
state description, i.e., a consistent set which for any A ∈ Atm contains
either A or ¬A,6 for associates contain only pure atomic sentences and
can be, in view of Mp, inconsistent.

9. It will be instructive to consider an example which illustrates the ter-
minology introduced so far. For this purpose we use proper names
rather than nominal constants, ordinary elemantary predicates rather
than the elements of P and ordinary language counterparts of pure
atomic sentences. Let the defining associate for the name ‘Nicomachus’,

6Cf. [Carnap, 1956 (1947)].

134



vdef (Nicomachus), be {Nicomachus is a man, Nicomachus is a son of
Aristotle, ...}. (The defining associate for ‘Aristotle’ will not contain
the sentence ‘Nicomachus is a son of Aristotle’.) The set of defin-
ing predicates for ‘Nicomachus’, Def(Nicomachus), will be {is a man,
is a son of, is a son, ...}. The meaning postulate for ‘... is a man’
will be to the effect that, for example, the predicate ‘... is an or-
ganism’ is consequential upon it, the predicate ‘... is a philosopher’
conforms to it but is not consequential upon it, and ‘... is an artefact’
is neither consequential upon nor conforming to ‘... is a man’. Corre-
spondingly, we have the following kinds of associate for ‘Nicomachus’.
The consequential associate for that name, vcns(Nicomachus), will be
{Nicomachus is an organism, ...}; the characteristic associate for ‘Nico-
machus’, vchr(Nicomachus), will be the union of vdef (Nicomachus) and
vcns(Nicomachus), that is {Nicomachus is a man, Nicomachus is a son
of Aristotle, Nicomachus is a son, Nicomachus is an organism, ...}; the
conforming local associate for ‘Nicomachus’, vcnf (Nicomachus, s), will
be {Nicomachus is a philosopher, Nicomachus is married, Nicomachus
admires Aristotle, ...}. Since conforming predicates of a name are only
required to conform to its defining predicates. They need not conform
to each other. Thus, the conforming local associate for ‘Nicomachus’,
vcnf (Nicomachus, s), will also include the sentence ‘Nicomachus is a
navigator’, ‘Nicomachus is a bachelor’ and all the other conforming
atomic sentences of the language. It will be obvious what the con-
sequential, characteristic, and conforming predicates for ‘Nicomachus’
are. In view of definition 3.2.3(1) an assignment of a local associate to
‘Nicomachus’ will be admissible iff it contains the sentence ‘Nicomachus
is a man’ and all the other sentences from its defining associate, as
well as ‘Nicomachus is an organism’ and all the other sentences from
the consequential associate of that name. Moreover, the local asso-
ciate for ‘Nicomachus’ may contain further sentences from that name’s
conforming local associate, for instance, ‘Nicomachus is a philosopher’
or ‘Nicomachus admires Aristotle’. In view of definition 3.2.3(2) an
assignment of an associate to the predicate ‘... is a man’ will be admis-
sible just in case it contains, for instance, the sentences ‘Nicomachus
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is a man’ and ‘Aristotle is a man’ and so on. For if ‘Nicomachus’ and
‘Aristotle’ are contained in the substitution class for some index, the
constraint requires that the local associate for the predicate ‘... is a
man’ contain every pure atomic sentence built up from that predicate
which is contained in the characteristic associates for these names. It
will be inadmissible, if it contains, for example, ‘Athens is a man’, for
‘... is a man’ will neither be a characteristic predicate for ‘Athens’,
nor a predicate which conforms to the defining or to the characteristic
predicates for that name.

We are now ready to define the notion of an admissible model.

3.2.5 Admissible Models

A modelM = 〈S,R,C, c, P, v〉 is an admissible associative model just in case
it satisfies the conditions on admissible assignments 3.2.3(1) and 3.2.3(2).

According to 3.2.3(1) and 3.2.4(2), (characteristically) conforming asso-
ciates of nominal constants are local, whereas characteristic associates are
not. However, nothing prevents us from allowing that a conforming local
associate for a nominal constant be rigidified by stipulating that it be the
same across all indices. So we can assume that for every α ∈ C and for all
s, t ∈ S, vcnfc(α, s) = vcnfc(α, t) = vcnfc(α). Given this stipulation the whole
associate for α will be rigid, that is, for every α ∈ C and for all s, t ∈ S,
v(α, s) = v(α, t) = v(α), where v(α) is the set vchr(α) ∪ vcnfc(α). We call
an admissible model which satisfies this rigidity condition a rigid admissible
associative model.

The associative models for which we shall provide an applied semantical
interpretation in Chapter 4 will be admissible diversifying rigid constant
substitution class models with a total accessibility relation. We shall call
such models natural models.

3.3 Asymmetrical Essential Relations

We now turn to the problem of asymmetrical essential relations which arises
for constrained and unconstrained associative semantics alike and adjust the
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language L and the semantics so as to overcome that problem.

3.3.1 The Problem

According to Kit Fine, we may distinguish two kinds of modal account of
essential properties, a categorical and a conditional account. On the cate-
gorical variant an individual x has a property F essentially just in case it
is necessary that x has F (that is, 2Fx); on the conditional account, an
individual x has a property F essentially just in case it is necessary that x
has F if x exists (or, altenatively, just in case it is necessary that x has F
if it is identical to x). Fine has argued, to my mind convincingly, that such
accounts of essence in terms of de re necessity are inadequate, since they
suggest, among other inadequacies, that de re necessary statements contain-
ing relational predicates like, for example, 2Rab claim that the individual
denoted by a essentially bears relation R to the individual denoted by b and
conversely. (As the context suggests we take a and b to be individual con-
stants.) However, as Fine observes this symmetry is counterintuitive. To see
this let the values of a and b denote Socrates and the singleton {Socrates}
respectively, and let R be the relation of set-membership. Then 2Rab claims
that it is essential to Socrates that he is a member of {Socrates} and that it
is essential to {Socrates} that it contain Socrates as a member. But clearly,
as Fine insists, the latter claim is intuitively true whereas the former is not.7

“What makes it so easy to overlook this point is the confusion
of subject with source. One naturally supposes, given that a
subject-predicate proposition is necessary, that the subject of the
proposition is the source of the necessity. One naturally sup-
poses, for example, that what makes it necessary that singleton
2 contains (or has the property of containing) the number 2 is
something about the singleton. However, the concept of neces-
sity is indifferent to which of the many objects in a proposition is
taken to be its subject. The proposition that singleton 2 contains

7See [Fine, 1994] pp. 4-5.
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2 is necessary whether or not the number or the set is taken to
be the subject of the proposition.”8

The problem with the modal account of essence, thus, is that it explains the
concept of essence, a concept which is sensitive to variations in source, in
terms of the concept of de re necessity which is not. Fine therefore rejects
that account and, in response, revives the traditional definitional account of
that notion which, in effect, identifies essence with real definition.9

As a consequence of this proposal the order of explanation is reversed; the
notion of necessity is no longer treated as explanatory prior to the notion
of essence, rather necessity is explained in terms of essence. Roughly, a
proposition is now said to be metaphysically (or de re) necessary if it is true
in virtue of the essence or identity of objects.10

Crucially, Fine introduces an essentialist operator which unlike the neces-
sity operator (i.e., 2) is sensitive to variations in source. This essentialist
operator, 2x, which is taken to be a primitive notion reads ‘it is true in virtue
of the essence of object x that’.11 The subscript of the essentialist operator
indicates the source of the truth of essentialist claims. For example, letting
R have the meaning of ‘... is an element of ...’ and letting a denote Socrates
and b refer to {Socrates} the formula 2bRab, unlike 2Rab, makes it clear
that the essentialist claim which is symbolized by it owes its truth to the
essence of b rather then to the essence of a.

8[Fine, 1994] p. 9. The notion of proposition Fine has in mind is, as it seems, that of
a structured proposition of a Russellian sort.
9See, for example, [Fine, 1994] p. 14. According to Fine, real definition does not apply

to linguistic items, that is, the expressions of some language, but to the non-linguistic
items for which they stand. The distinction is nicely illustrated in the following passage.
“Thus the expression ‘the number of objects that are not self-identical’ may be taken
either as a definition of the numeral ‘0’ or as a real definition of the number 0. In the first
case, the identity ‘0 = the number of objects which are not self-identical’ is taken to be
true because of the meaning of the numeral ‘0’; and in the second case, it is taken to be
true because of the nature or essence of the number 0.”([Fine, 2002a] pp. 30-31).
10See [Fine, 1994] p. 9, bottom.
11Fine uses ‘essence’, ‘nature’, ‘identity’, and ‘being’ synonymously (cf. [Fine, 1995b]
p. 69, note 2.); and he uses ‘object’ in the wide sense of ‘entity’, rather than ‘individual’.
This is also observed in [Hale, 1996] p. 116, note 14.
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Due to the insensitivity of necessity (and thus the box-operator 2) to
variations in source, Fine not only rejects the modal account of essentialist
claims but he also rejects (referential) quantified modal logic as a proper
formal tool for the analysis of such claims. Instead, he develops a logic of
essence which treats formulae containing the essentialist operator and which
is not taken to be a fragment of a modal system, but a logic of its own right.12

However, we shall not discuss Fine’s systems and semantics here, rather we
shall be concerned with his diagnosis of the problem and the way in which
we can deal with asymmetrical essential relations in terms of the constrained
associative framework.

Needless to say, given the distinctions of the previous section, associa-
tive semantics must not be taken, intuitively, to treat asymmetrical essential
relations which obtain between objects in virtue of their essences. Rather,
as I wish to suggest, it should be taken to be concerned with asymmetrical
definitional relations which obtain between names in virtue of their sense-
extensions. Sense-extensions are, as I have already mentioned, the applied se-
mantical counterparts of associates. (Of course, the notion of sense-extension
is a philsophical term of art; but so is the notion of essence.)

3.3.2 A Proposal

Rather than viewing asymmetrical essential relations as arising from the in-
sensitivity of the notion of necessity to variation in source, we should view
asymmetrical essential relations as arising from the inability of binary pred-
icates to discern subject and object position in modal contexts.

Moreover, instead of refining the box-operator, we refine binary predicates.
To put it differently, rather than proposing an essentialist primitive and
developing a logic of essence, we stick to quantified modal logic and enrich its
alphabet with binary predicates which are subject-object sensitive in modal
contexts. With such “aspectualized” predicates at our disposal the modal
account of essentialist claims regains some of its plausibility. In what follows
we shall confine our discussion to aspectualizations of binary pure predicates.

12See [Fine, 1995c] and [Fine, 2000].
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I shall set up this proposal in terms of substitutional quantified modal
logic and constrained associative semantics. As a consequence, we discuss
the salient issues in terms of de nomine necessity and its ilk rather than in
de re terms. It will become apparent, however, that the strategy I am about
to develop is applicable to a suitably adjusted version of denotational modal
semantics. But only at the costs already discussed in Chapter 1.
A modal account of essential properties in terms of associative modal

semantics, no matter whether constrained or not, has to face the problem of
asymmetrical essential relations in essentially the same way as its counterpart
working within the framework of denotational modal semantics. Consider the
de nomine modal claim 2Rab. As before, let the binary predicate R be short
for ‘... is an element of ...’ and let a and b be the nominals ‘Socrates’ and ‘the
singleton Socrates’, respectively. For this claim to be true the name associate
for a would have to contain Rab at every index and so would b. But clearly
whereas the latter is fine, the former is not. Of course, in both constrained
and unconstrained associative semantics the truth of 2Rab can be blocked,
for example by not letting Rab be contained in the name associate for a in
the former, or by not letting it be contained in some local name associate
for a and/or R on the latter. However, if we impose such restrictions then
2Rab becomes false, which seems to be counterintuitive with respect to b.
What we want, intuitively, is that the claim 2Rab be true with respect to b
but not with respect to a.
As insinuated above, to handle the problem of asymmetric essential re-

lations we refine the apparatus of predication by introducing aspectualized
binary predicates. In effect, we will not only evaluate modal statements
composed out of a binary predicate ϕ2 itself but statements built up out of
its aspectualizations as well. These aspectualizations are binary predicates
which are sensitive to the subject/object distinction in modal contexts.
The introduction of such predicates requires a further refinement of asso-

ciative modal semantics.

Aspectualized Binary Predicates

To obtain the language L∗ which contains aspectualized binary predicates, we
introduce for a selected range of 2-ary pure predicates ϕ2 of L aspectualized
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binary predicates of the form ϕ2
1, ϕ

2
2, and ϕ

2
1,2 where

1. ϕ2
1xy reads ‘x stands in ϕ

2 to y insofar as x’s bearing ϕ2 to y is of
concern’;

2. ϕ2
2xy reads ‘y stands in ϕ

2 to x insofar as y’s bearing the converse of
ϕ2 to x is of concern’;

3. ϕ2
1,2xy reads ‘x stands in ϕ

2 to y insofar as x’s bearing ϕ2 to y is of
concern and y stands in ϕ2 to x insofar as y’s bearing the converse of
ϕ2 to x is of concern’. (We write ϕ∗2 for the converse of ϕ2.)

The subscripts indicate the argument place (or places) with respect to
which ϕ2 is aspectualized. It is easily verified what the aspectualizations for
our binary predicate R that abbreviates ‘... is an element of ...’ are. As the
reader will note, the utility of this enrichment of L would be less obvious if
that language did not contain a box-operator.

Predicate Inclusion

In order to give the truth conditions for atomic sentences which are built up
from aspectualized predicates we introduce the notion of predicate inclusion
which is rather natural and which has been already implicit in our account
of consequential predicates. We explain this notion in terms of the meaning
postulates in Mp as introduced in 3.2.1(3). First we give some intuitive
examples.

Consider the English predicate ‘... is the mother of — ’ (symbolically: ϕ2).
In virtue of its meaning, this predicate will include, among other predicates,
the following ones: the binary predicates ‘... is a parent of — ’ (symbolically:
χ2) and ‘— has ... as mother’, which is the converse of the predicate we have
chosen as our example, (symbolically: ϕ∗2) as well as the monadic predi-
cates ‘... is a mother’ (which we symbolize as ψ2−1

1 ) and ‘— has a mother’
(symbolically: ψ2−1

2 ). (A predicate may not only include predicates of equal
or lower arity but also of higher arity. For instance, the monadic predicate
‘... commits suicide’ will include the binary (reflexive) predicate ‘... kills
...’.) It was the purpose of introducing the formal meaning postulates Mp
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into the constrained framework in order to mirror such analytic relationships
between the pure predicates of English also between the predicates of our
formal language L. This is to hold for L∗ as well.

In general, the meaning postulate for a binary predicate ϕ2, Mp(ϕ2) ∈
Mp, will take the following shape:

(Πx)(Πy)(ϕ2xy → (χ2xy ∧ ...∧ϕ∗2yx∧ψ2−1
1 x∧ψ2−1

2 y ∧ψ2
1,2xy)).

The meaning postulates for its aspectualizations will be as follows:

(Πx)(Πy)(ϕ2
1xy → ψ2−1

1 x).

(Πx)(Πy)(ϕ2
2xy → ψ2−1

2 y).

(Πx)(Πy)(ϕ2
1,2xy → (ψ2−1

1 x ∧ ψ2−1
2 y)).

We define the notion of predicate inclusion, saying that a predicate is included
in another predicate just in case it occurs on the right-hand side of the
meaning postulate for the latter. It will be noted that every predicate which
is consequential upon another with respect to the defining associate for some
nominal constant is included in the defining predicate.13

Being monadic predicates the aspectualized predicates ψ2−1
1 and ψ2−1

2 are
aspectualized in a trivial sense. We shall take them to be syntactically iden-
tical to ordinary pure monadic predicates. So for example the predicate ψ2−1

1

and the predicate χ1 will be syntactically idenitcal symbolizations of ‘... is a
mother’. As a consequence, these predicates will have a single associate.

The definition of the notion of an admissible model for the language L∗ is
obtained in an exactly analogous way to the definition given in Subsection
3.2.5 by adding the meaning postulates for the aspectualized binary predi-
cates to Mp and adjusting the definition of an admissible assignment in the
obvious way.

13The account of predicate inclusion presented here is inspired, to a certain extent,
by Alan McMichael’s characterization of the notion of the inclusion of relations in
[McMichael, 1983] p. 83, which takes an altogether different form. I should like to thank
Ede Zimmermann for pointing out to me an inadequacy in my earlier account of predicate
inclusion.
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Aspectualized Binary Predicates: Truth Conditions

We state the truth conditions for pure atomic sentences which are built up
out of aspectualizations of 2-ary predicates ϕ2, that is ϕ2

1, ϕ
2
2, and ϕ

2
1,2 in

terms of the truth conditions for pure atoms built up out of the predicates
ψ2−1

i which are included in ϕ2.

Let M = 〈S,R,C, c, P, v〉 be a constant model and let s be an index in
that model, let ϕ2

1, ϕ
2
2, and ϕ

2
1,2 be the aspectualizations of some ϕ

2 of L∗,
and let ψ2−1

i be the predicates which are properly included in ϕ2, then the
truth conditions of such atomic sentences are defined as follows.

1. M |=s ϕ
2
1α1α2 iffM |=s ψ

2−1
1 α1.

2. M |=s ϕ
2
2α1α2 iffM |=s ψ

2−1
2 α2.

3. M |=s ϕ
2
1,2α1α2 iffM |=s ψ

2−1
1 α1 andM |=s ψ

2−1
2 α2.

Here, the right-hand sides are abbreviations of the equivalent claims in terms
of associates, intersection, and set-membership. So the the truth conditions
of such sentences are, just like the conditions for atomic =̈-senteces, not
inductively defined. We may add these clauses to the conditions for truth at
an index in a model without making any further changes. So, in particular,
pure atoms of the form ϕnα1...αn may be evaluated as usual.

To illustrate the effects of these conditions let R2 abbreviate the 2-ary
predicate ‘... is a set-member of ...’ and let F 2−1

1 and F 2−1
2 be short for

the 1-ary predicates ‘... is a set-member’ and ‘... has a set-member’, respec-
tively, which are included in R2. Moreover, let a abbreviate ‘Socrates’ and b
abbreviate ‘the singleton Socrates’.

Now suppose we are asked to evaluate the claim ‘a necessarily bears R
to b’. Given the aspectualization of binary predicates this claim may be
symbolized in four different ways: (i) 2R2ab, (ii) 2R2

1,2ab, (iii) 2R2
1ab, and

(iv) 2R2
2ab.

Each alternative will be evaluated in its own way. (i) will not be true ac-
cording to constrained semantics, since it will require that R2ab be contained
in the characteristic associates of both a and b. As we have noted this might
be correct for b, but it certainly is not for a. Alternative (ii), that is 2R2

1,2ab,
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will not be true either, for it would require that F 2−1
1 a and F 2−1

2 b be true at
every index and that would mean that 2F 2−1

1 a is true. But this seems to be
false, since, intuitively, ‘... is a set-member’ is not a characteristic predicate
of ‘Socrates’. For exactly this reason (iii) is false as well. However, alter-
native (iv), that is 2R2

2ab, seems to be unobjectionably true since 2F 2−1
2 b

symbolizes a straightforward de nomine necessary truth.

It seems that using 2 and aspectualized binary predicates, we may eas-
ily localize the “source” of the necessity by inspecting the subscripts of the
predicates. Consequently, given aspectualized predicates and a suitable dis-
ambiguation of the statement which is to be analysed there will be no danger
of confusing the subject and the “source” of the necessity, since now, loosely
speaking, the subscripts point to the subjects which are the bearers of the
“source” of the necessity.

The language L∗ and the adjustments in the semantics presented in this
section have been designed to tackle the specific problem of binary asym-
metrical essential relational predication. It should be possible to generalize
our strategy to such predications of arity > 2. Certainly, such cases are less
natural than the binary ones.

3.3.3 A Note on Fine’s Essentialist Operator

The basic primitive of Kit Fine’s essentialist systems, the essentialist operator
2x, which reads ‘it is true in virtue of the essence (or the nature or the being
or the identity) of the object x that’ or, equivalently, ‘the truth of proposition
P flows from the essence of the object x’ does not only perform the function of
being sensitive to variations of source. Fine’s operator achieves, deliberately
and somehow by the way, a certain ontological reduction.

“Although the form of the words ‘it is true in virtue of the identity
of x’ might appear to suggest an analysis of the operator into the
notions of the identity of an object and of a proposition being true
in virtue of the identity of an object, I do not wish to suggest such
an analysis. The notion should be taken to indicate an unanalysed
relation between an object and a proposition.”14

14[Fine, 1995a] p. 273, my emphasis.

144



In this simple way, a commitment to essences of objects is avoided by not
taking the expression ‘the essence of x’ which occurs in Fine’s operator as a
notion of its own right which might be taken to refer to essences. Rather, an
unanalysed relation is taken as basic.

It seems to me that Fine’s operator just does not feel primitive in the way
the negation operator ‘it is not the case that’ does.15 Nor does this reduction
seem to be one of the (broadly modalist) sort which reduces an ontologically
problematic notion to a less problematic one, for the relation of emanation
(or flowing) from an essence which is captured by Fine’s operator, seems to
be at least as problematic as the essence of some object which is referred to
by ‘the identity of x’. However, I shall not argue these points here.

My point is that the solution to the problem of asymmetrical essential re-
lations suggested in this section does neither involve perplexities concerning
intuitions of primitivity, essence, and emanation. On the present framework
all the work is done by the necessity operator 2 and aspectualized binary
predicates, that is, by notions which neither raise such perplexities, nor in-
volve essentialist commitments.

Intuitively, on the present approach, the “source” of a necessary statement
containing some name will not be the essence of the object denoted by that
name, rather it will be the nominal definition which determines the defining
(and derivatively, the characteristic) name associate for that name. (I shall
return to this in the next chapter.) So we cannot view claims of de nomine
necessity like 2Fa or 2R2

2ab as essentialist statements which say that cer-
tain objects have certain essential properties. Instead, we view claims of de
nomine necessity as expressing definitional properties of names (or, if one
prefers concepts to linguistic expressions, name concepts). (More on this in
Chapter 4.)

Accordingly, de nomine necessary truths like the above Fa or R2
2ab do not

“flow from” (or emanate from) the nature of objects in some unexplained

15Fine seems to have different intuitions. “I do not think of the subexpression ‘the
identity of Socrates’ as a significant grammatical component of the operator ‘it is true
in virtue of the identity of Socrates that’, just as I do not think of ‘not’ as a significant
grammatical component of the operator ‘it is not the case that’.” ([Fine, 1995b] p. 69,
note 2.)
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sense. Rather, a statement like Fa is a necessary truth in virtue of its be-
ing a member of the characteristic associate for the name a. Similarly, a
statement like R2

2ab is necessary, because F
2−1
2 b is a member of the charac-

teristic name associate for b. (Recall, F 2−1
2 is a predicate which is included

in R2.) According to the present proposal then, we need not invoke some
notion of emanation, for we can do with the notion of set-membership which
presumably is (and does not only sound) less problematic.

Of course, since there is no de re necessity in the present framework, there
is no metaphysical necessity (as essentialistically understood) either. What
we do have is de nomine necessity. Instead of saying that a proposition is a
metaphysical (or de re) necessity just in case it flows from the nature of some
object16, we say that a proposition is de nomine necessary in virtue of the
fact that, by the semantic rules as captured by the admissibility constraints,
it must be an element of the defining (and derivatively, the characteristic)
sense-extension for the salient name and of the sense-extension of the salient
predicate.17

Let me close these remarks with an exegetical observation. It is worth
noting that in his writings on essence Fine uses the terms ‘essence’ and
‘identity’ in two quite different senses. On the one hand, Fine uses the term
‘essence’ to indicate essence qua something in virtue of which the truths
about the entity which has that essence flow (“source-essence”, as I shall
call it). This is the unanalysed notion of essence which is involved in Fine’s
essentialist operator 2x. On the other hand, he uses ‘essence’ to refer to the
very class of truths which are true in virtue of—what we call—the source-
essence of some object x, that is {A : 2xA}.18 Let me dub the referent of
this second use the “essence-set” of an object. Of course, Fine cannot make
the notion of emanation more palatable by claiming that for a proposition
A to emanate from the essence of an object x is for it to be an element
of {A : 2xA}. For surely, this membership would be parasitic upon the
16See [Fine, 1994] p. 9, bottom.
17As noted above the propositions Fine seems to appeal to are Russellian propositions.
When the primary truth bearers are taken to be propositions and not linguistic items, the
present framework will naturally appeal to (neo-)Fregean propositions.
18See, for example, [Fine, 1995a] p. 275: “we may identify the being or the essence of x
with the collection of propositions that are true in virtue of its identity”.
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proposition’s flowing from the source-essence and thus upon the very notion
of emanation.
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Chapter 4

Applied Associative Semantics

4.1 Introduction

The semantics which we have discussed in the previous chapters, both in the
unconstrained version of Chapter 2 and in the constrained version of Chapter
3, was pure (or formal) semantics. The formal languages L (see Section 2.2)
and L∗ (see Subsection 3.3.2) are systems of uninterpreted symbols which
are entirely devoid of natural language meanings. Correspondingly, the asso-
ciative modal models, that is, structures of the form 〈S,R,C, c, P, v〉, which
we have employed to provide these formal languages with interpretations,
are purely set-theoretical entities, mere tuples of sets. More exactly, the ele-
ments of S and the elements contained in the tuples from R, the “indices”,
are mathematical entities, pure sets, as I shall assume.1 By contrast, the
elements of C, c(s), and P aren’t pure sets; they are sets of expressions of
1Some theorists assume that the elements of the sets from which the models of pure or

formal semantics are built up need not be taken to be mathematical entities, but may be
any kind of entity. So Plantinga, for example, suggests that the elements contained in the
index-set of a pure Kripke-model may be chessmen or numbers (see [Plantinga, 1974] p.
127) and Fitting and Mendelsohn allow that these elements can be “numbers, sets, goldfish
etc.” (see [Fitting & Mendelsohn, 1998] p. 12). To my mind the distinction between formal
and applied semantics (cf. [Plantinga, 1974] sect. 7.4) will be sharpened when we take
a less neutral attitude towards the metaphysical nature of the elements from which the
models of formal semantics are composed and insist that they be mathematical entities–
or to be more restrictive, require that they be (pure) sets. This would emphasize both
the mathematical nature of model-theory on the one hand, and the need for an applied
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L0, the base language of the language L (and its extension L∗). This feature
is distinctive of associative models.

So, since in pure semantics the formulae are devoid of natural language
meanings, and since the relation between its models and reality, which they
might be intended to represent, is left unspecified, the truth of a formula of
L∗ does not teach us anything about reality. What is needed, therefore, is a
link between the truth of a formula of L∗ at an index in an associative model,
and the real, absolute truth (i.e., truth simpliciter) of suitably regimented
sentences of ordinary (modal) language. Obviously, this link will explain how
the formal language is related to natural language, and the way in which
associative models are related to reality. It is the task of applied semantics,
as I understand it, to provide such a link.

So far, we have a good understanding of what truth of a closed formula at
an index in a model comes to. WhenM = 〈S,R, s@, C, c, P, v〉, where s@ ∈ S
is stipulated to be a distinguished index, is a natural associative model of
L∗, σ is a substitutional variable assignment, and A a closed formula of L∗,
then the following equivalences hold: (i) A is true in the modelM at index
s under the assignment σ (formally,Mσ |=s A) iff (ii) A is true in the model
M at index s under every assignment σ (formally, for every σ, Mσ |=s A);
iff (iii) A is true in the modelM at index s (formally, M |=s A). Our aim
now is to forge a link between the notion of truth at an index in a model
of a closed formula of L∗, i.e., (iii), and the notion of truth simpliciter for
sentences of ordinary (modal) language.

As the reader might expect, due to the lack of referential capacity of the
formal language, the notion of truth simpliciter, which is at stake here, won’t
be the usual referential notion. Correspondingly, ordinary language whose
sentences are true in the intended sense, must not be taken in a referential
way, it has to be treated nonreferentially. What the link will have to achieve,

semantical or intended interpretation of these models on the other hand. Thus rather
than allowing that the items in a pure model are numbers or goldfish, we should take
these items–respecting the set-theoretic nature of model-theory–to be pure sets (rather
than numbers or goldfish), which we may take to represent numbers or goldfish via a
suitable embedding of some sort. I admit, though, that the ontologically neutral way of
seeing pure models is perfectly intelligible and might be attractive for other reasons.
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therefore, is to connect up the formal language with “odinary language taken
nonreferentially” and to connect up associative models with the portion of
reality which they represent. Some brief introductory remarks concerning
this way of understanding language and the portion of reality which is rep-
resented by associative models will be helpful before the details are spelled
out. My remarks will be concerned with pure denotational semantics and
pure associative semantics and the intuitions by which their development is
guided.

The portion of reality which constrained associative models are intended
to represent is not the part of reality which can be conceived of as a level
of reference (or the level of denotata) of the object language. Rather, as
I wish to suggest, it is the part of reality which can be conceived of as
the level of sense (or, more exactly, the level of sense-extensions) of that
object languague. To get at the idea let me compare the relevant aspects of
denotational and associative semantics.

An ordinary first-order denotational model T of the simplest denotational
object language Ld is a pair 〈D, v〉 where D is a non-empty domain of objects
or individuals and v a valuation function which assigns objects from D to
the individual constants, sets of objects from D to 1-ary predicates, and sets
of n-tuples of objects from D to n-ary predicates with n ≥ 2. The sets are
the extensions of the predicates.

Such a semantics is called “denotational” or “referential”, because of the
intuition that when the language and the models are suitably informally inter-
preted the language may be conceived as being about the reality represented
by the models. The objects from D may be taken to be the things which
actually exist, the individual constants of Ld are then naturally interpreted
in terms of names which refer to (or denote) these things, the predicates are
interpreted in terms of natural language predicates which are satisfied by (or
true of) the denotata in their extensions, and the closed formulae of Ld are
taken to be sentences which describe the denotata. In sum the intuition un-
derlying denotational semantics is that the object language is about a level
of denotata (or that it is intentional with respect to it).

On the denotational view the truth simpliciter of natural language sen-
tences depends, roughly, on two factors: first, the meanings of the expressions
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which compose the sentences and, second, the extralinguistic facts, the level
of denotata of the language which that language serves to describe. We shall
call this notion of absolute truth truth simpliciter with respect to the level
of reference (or referential truth).

By contrast, the intuition by which associative semantics is guided is quite
different. Let me begin with the pure part. A first-order associative model
I of the simplest substitutional object language which can be obtained from
the modal language L∗ in the obvious way is a triple 〈C,P, v〉 where C is a
non-empty substitution class of nominal constants from the base language,
P a set of pure predicates of the base language, and v a valuation function
which assigns to each nominal constant from C a set of pure atomic sentences
of the base language which contain an occurrence of that name and which
assigns to each predicate from P a set of pure atomic sentences of the base
language which contain an occurrence of that very predicate. Since there is
no domain of denotata in the model of the object language, that language
cannot be taken to be about something. The language is not able to make
claims of (referential) existence and the names cannot be taken to refer to
items of which the open sentences of that language are true.

But what, then, is the idea by which associative substitutional semantics
is underlain? Roughly, it is the idea that C is a set of names of a natural lan-
guage, P a set of predicates of that language, and that the valuation function
v which provides names and predicates with associates should be taken as
assigning “sense-extensions”, as we shall call them, to the names and predi-
cates. These sense-extensions are determined by the actual meanings of the
names and predicates as specified by (partial or total) nominal definitions
and meaning postulates of the names and predicates, respectively. Roughly,
associates taken as sense-extensions are viewed as encoding a name’s or a
predicate’s combinatorial semantic nature by listing the atomic sentences
which can be meaningfully combined from the name or the predicate in view
of their meanings. Thus, what v assigns to names and predicates on this
interpretation are sense-extensions rather than referents and referential ex-
tensions, respectively. Just in the way we might take the actual referents
of names and the referential extensions of predicates to constitute the ac-
tual “level of reference” (or the “level of denotata”), we may take the actual
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sense-extensions of the names and predicates of the language to constitute
what might be called the (actual) “level of sense”.

Now, since the formal object language has no capacity to refer (or to de-
note), it would be inappropriate to interpret the ordinary object language as
describing a level of denotata. It is therefore necessary to take the sentences
of ordinary language nonreferentially. Understood in this way, a sentence of
a natural language will be true, if true, not because it accurately describes a
level of denotata of that language, but because it accurately reflects its level
of sense. Roughly, an atomic sentence of the object language taken nonref-
erentially reflects the level of sense accurately just in case the sentence is
contained in the sense-extension of the predicate and in the sense-extensions
of all the names which occur in it. A sentence which truly reflects the level
of sense will then be said to be true simpliciter with respect to that level.

Given a suitable applied semantical interpretation, associative models are
taken to represent the level of sense of natural language as understood non-
referentially. Tarskian models (or, maybe more appropriately, standard first-
order denotational models), on the other hand may be taken, given some
applied interpretation, to represent the level of reference of that language
when it is understood referentially.

On the associative view, then, the truth simpliciter of natural language
sentences depends, roughly, on two factors: first, the meanings of the ex-
pressions which compose the sentences and, second, their sense-extensions
comprising the level of sense of the language which is reflected by it. Accord-
ingly, we shall distinguish two notions of absolute truth, referential truth, on
the one hand, and truth with respect to the level of sense, on the other hand.

The chapter is organized as follows. Section 4.2 gives a detailed expla-
nation of the notions involved in the account of truth with respect to the
level of sense, Section 4.3 provides the link between the notion of truth at an
index in an associative model in terms of an adaptation of Charles Chihara’s
Fundamental Theorem to intended∗ natural models, and a link between truth
with respect to the level of sense and truth with respect to the level of refer-
ence is given in Section 4.4. The chapter closes with a discussion of a couple
of issues in the philosophy of quantified modal logic and the philosophy of
language, and a reflection on modal arguments in general (Section 4.5).
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4.2 Truth With Respect to the Level of Sense

According to the present semantical framework, truth with respect to the
level of reference is not the only notion of absolute truth. There is also
another notion of absolute truth: truth with respect to the level of sense.
Modal and fictional truth is, as I wish to suggest, truth with respect to that
level, rather than truth with respect to the level of reference. In this section
I shall explain the notions involved in the account of truth with respect to
the level of sense.

4.2.1 The Referential and the Nonreferential Mode of

Evaluation

Denotational semantics is guided by the intuition of designation and is thus

“based squarely on the assumption that the proper business of
semantics is to specify how language connects with the world—in
other words, to explicate the inherent «aboutness» of language.”2

Accordingly, denotational semanticists take “the world” to be something at
the level of reference of the object language, something which is described
by it.

No doubt the intuition of designation is deeply entrenched in our way of
viewing the relation between language and world. But it would be a mistake
to endow it with the status of a dogma. It would be a mistake, not only
because this would obstruct other ways in which assertoric discourse can
be understood. It would be a mistake, because an unrestricted compliance
with that intuition generates a lot of problems—in particular with respect
to fictional and modal discourse—as we have observed in Chapter 1.

That something is wrong with an unrestricted compliance with the intu-
ition of designation is nicely reflected by the usual perplexing formulations
which one frequently encounters in the literature on denotation failures and
related issues. Consider, for instance, the following arbitrarily selected frag-
ments which expose the influence of this intuition.
2[Dowty et al., 1981] p. 5.
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“Noman is not something, and hence, even though ‘Noman’ refers
to him, there is nothing that ‘Noman’ refers to.”3

A reaction:

“Indeed, he [i.e., the author of [Salmon, 1987]] uses ‘Noman’ as
the name for his possible twin brother. But, he concludes, that
doesn’t mean that Noman exists. Thus, Noman doesn’t exist but
we can name ‘him’.”4

Another passage is:

“I will be concerned with the question of why utterances of certain
empty names, such as ‘Santa Claus’ and ‘Father Xmass’ seem, in
at least some loose sense, to be about the same thing, even though
there is nothing in reality that they are about.”5

Such formulations of “speaking about things that don’t exist” formidably
suggest, I believe, that the referential mode of viewing the relation between
language and world is mistaken when it is applied tout court.

Clearly, such formulations won’t lose their paradoxical flavour, when more
or less curious denotata are introduced or when narrowed down notions of
reference are proposed to get the semantics right. One cannot, I believe,
satisfactorily solve the semantic problems of denotation failures and nonex-
istence by means of denotational semantical strategies. And, as it seems
to me, in view of make-believe theories (see Subsection 1.1.1.e), one cannot
solve semantical problems concerning the meaning of fictional and modal
sentences, by merely providing considerations about the use of sentences in
which nondenoting terms occur.

It seems to me that the intuition of reflection, i.e. the intuition that a
sentence may be true without being about something, is not entirely alien
to us and that it is in many cases rather natural. Take, for example, such
fictional truths like ‘Santa Claus has a white beard’ or ‘Ulysses is a man’—

3[Salmon, 1987] p. 94. According to Nathan Salmon, “reference preceeds existence”.
4[Linsky & Zalta, 1994] p. 454, note 26; my emphasis.
5[Everett, 2000] p. 37; my emphasis.
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intuitively (or pre-theoretically), we do not take ourselves to be talking about
Santa Claus or Ulysses, since there just are no such things to talk about.

Similarly, the intuition of reflection does also apply, I believe, to modal
language. For surely the truth of such modal claims like ‘Tarski could have
been a violinist’ does, intuitively, not appeal to, say, Tarski-counterparts or
Tarski-haecceities. In a way analogous to our pre-theoretical reluctance to
take ourselves to be talking about Santa Claus, we seem normally—not only
qua theorists— to be reluctant to take ourselves to be talking about possible
objects of some sort when we assent to the truth of modal claims.

In my oppinion, the denotationalist’s problems concerning modality, e.g.,
the inflation of ontology, the problem of modal reference, or the problems of
trans-world identity and reidentification are nothing but artefacts of denota-
tional modal semantics, a semantics which rests on a wrong-headed picture
of the relation between modal language and reality.

The framework of associative semantics is designed to equip the intuition
of reflection, with a formal underpinning. I wish to suggest that fictional and
modal sentences (or propositions) are sentences (propositions) which are true
without being about something. Rather than being about Santa Claus (or
about the name ‘Santa Claus’ or about the singular concept santa claus
expressed by that name), the sentence ‘Santa Claus has a white beard’ does
reflect the name ‘Santa Claus’ (or the concept it expresses) with respect
to the level of sense. Similarly, rather than being about Tarski (or, as a
denotationalist would suggest, being ultimately about some representative of
him), the modal sentence ‘Tarski could have been a violinist’ does accurately
reflect the name ‘Tarski’ (or the concept that name expresses) with respect
to the level of sense. On the present proposal, then, to talk modally about
Tarski is, in effect, to reflect the name ‘Tarski’ with respect to the level of
sense rather than to describe a modal reality of some sort. It is the burden of
this chapter to provide the associative framework with an applied semantical
interpretation.

In view of the denotationalist problems raised in Chapter 1, I wish to
suggest that we should distinguish two modes in which a sentence of natural
language may be evaluated: the referential and the nonreferential mode.
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On the referential mode of evaluation a sentence is read referentially. Here
the quantifiers and the identity predicate are taken to be referential and
then evaluated in the usual way according to the referential extensions of
the nonlogical vocabulary. This will be said to be the “descriptive” way of
viewing language.
By contrast, on the nonreferential mode of evaluation a natural language

sentence is read nonreferentially where the quantifiers and the identity pred-
icate are read substitutionally and then evaluated in accordance with what I
shall later call the “sense-extensions” of the nonlogical vocabulary. This will
be the “reflective” way of viewing language.
I take it that sentences in which denotationless terms occur or sentences

which are built up from predicates which lack a referential extension have to
be evaluated according to the nonreferential mode. And I take the same to
apply to the semantic evaluation of modal sentences (or, as I am inclined to
hope, to sentences which occur in intensional contexts in general).
Any natural language sentence can be evaluated, as I wish to suggest, in

the nonreferential mode. However, only a certain portion of natural language
sentences can be sensibly evaluated referentially. On the present theory, the
usual referential mode of evaluation is adequate solely for sentences which (i)
involve exclusively denoting singular terms and predicates which do indeed
have a referential extension, and (ii) which do not occur in modal (or, more
ambitiously, in intensional contexts). Sentences which satisfy these two con-
ditions comprise what we shall call the referential portion of the language in
question.
Let me now explain the fundamental notions of the applied semantical

interpretation of the associative framework. Of course, I do not claim that
the associative framework is the only framework which can be proposed to
articulate the intuition of reflection and, moreover, I do not claim that the
following proposal is the only way to explain the intuition that sentences can
be true without being about something within the associative framework.

4.2.2 The Meanings of Names

Not every name has a referent, but every name has, as we take it following
Frege, a meaning (or a sense). We assume, in a way similar to Searle, that
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the meaning of a name is specified by a list of definite descriptions and that
such a list provides the definition of the name. The meaning assigned to
a name will be the meaning of the definite descriptions which occur in the
list. For example, the meaning of the denoting name ‘Socrates’ is specified
by the list ‘the son of Sophroniscus, the son of Phaenarete, the husband of
Xantippe, the teacher of Plato, the man who saved the life of Alcibiades, ...’.
Similarly, the meaning of the nondenoting name ‘Ulysses’ is specified by the
list of definite descriptions ‘the son of Laertes, the husband of Penelope, the
father of Telemachus, the king of Ithaca, the man who killed Democoon, ...’.

Lists like these are naturally taken to reflect the actual uses of the names
in referential or nondedotational discourse. The list for ‘Socrates’ contains
the definite descriptions which we actually use to talk about Socrates; and
the definite descriptions for ‘Ulysses’ are the descriptions which can be ex-
tracted from the way in which Homer (or whoever wrote the Homeric epics)
employed that name in his ‘Ulysses’-statements. (Obviously, the term ‘de-
scription’ is somewhat misleading when it is used to account for the meanings
of nondenoting names, since it suggests that nondenoting names refer to ob-
jects and that their meanings are given in terms of descriptions which apply
to these objects.)

The definite descriptions which occur in a description list of a name each
provide a partial definition of the name and the whole list of such partial
definitions provides the name’s full definition. These definitions are linguistic
or nominal in the sense that they define something linguistic, that is a name,
in terms of something linguistic, that is a definite description.

Importantly, the meanings of denoting names and the meanings of nonde-
noting names differ in a certain significant respect. We shall take it, following
Kit Fine, that some of the partial definitions which occur in the list for de-
noting names may not only be regarded as being linguistic partial definitions
of names but as simultanously providing real definitions of their bearers.6

Let the defining meaning of a denoting name be specified by those definite

6Cf., for example, [Fine, 2002a] p. 16: “We may also talk of defining a non-linguistic
item by means of something linguistic. We may say, for example, that ‘the successor of 1’
is a definition of the number 2 rather than the numeral ‘2’. But in such cases we define the
object by defining, or by providing the means for defining, an expression for the object.”
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descriptions in the list for that name which may be taken to reflect the essen-
tial features of the name’s bearer. We shall call these descriptions defining
definite descriptions. Thus, the defining meaning of ‘Socrates’ is specified
by the defining list (i.e., the list of defining definite descriptions) ‘the son of
Sophroniscus, the son of Phaenarete, ...’.

An analogous account of defining meaning is not available for the mean-
ings of nondenoting names. For given the fact that nondenoting names do
not have bearers, no defining definite description occurring in the list of a
nondenoting name can be understood in this way. Thus, the defining definite
descriptions ‘the son of Sophroniscus’ or ‘the owner of the genetic code so-
and-so’ may be treated not only as providing a partial linguistic definition of
the name ‘Socrates’ but also as giving a partial real definition of the object
Socrates. By contrast, the defining definite description ‘the son of Laertes’
cannot, like all the other descriptions in the list for ‘Ulysses’, be plausibly
treated as a partial real definition of the bearer of that name since there is
no such thing like the Homeric Ulysses and thus no object to which a real
definition could apply. Consequently, the defining meanings of nondenoting
names cannot be specified in terms of linguistic definitions which qualify as
real definitions.

There seem to be (at least) two natural ways to explain what a defining
meaning of a nondenoting name is. According to one proposal, the defining
meanings just are the meanings of the nondenoting names and the defining
definite descriptions are just all the descriptions which occur in the list which
specifies these meanings. On this account of the defining meaning of a non-
denoting name, ‘the son of Laertes’ and ‘the man who killed Democoon’ alike
are defining descriptions of ‘Ulysses’.

On the second proposal, we may treat some of the definite descriptions
in the defining lists not as yielding partial real definitions of the beares of
nondenoting names, but as if the name had a bearer and as if the definite
descriptions provided such definitions. The defining meaning of a nondenot-
ing name will then be specified by those definite descriptions in the list for
that name which are treated as if they reflected the essential features of a
pretended bearer of that name. So on this account, preserving the analogy
with the denotational case, ‘the son of Laertes’ will be a defining definite
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description of ‘Ulysses’, but the description ‘the man who killed Democoon’
will not. Due to its explanatory simplicity, I am more attracted to the first
proposal.

On the present account, a name may be either a proper name or a definite
description. Thus only the meanings of proper names have been discussed
so far. But what about the meanings of definite descriptions? We shall
take it that the meaning of a definite description coincides with its defining
meaning. Thus the meaning of a definite description is specified by a defining
list which contains just that very description and no further descriptions. For
example, the meaning of the definite description ‘the husband of Penelope’ is
given by the list ‘the husband of Penelope’ which contains but one defining
description.

There is a further distinction which must be appreciated. We have to
distinguish the definite description which is to be defined from the defining
definite description, which serves to define it. The former is treated syntacti-
cally like a proper name and is not parsed further into its components. So, for
example, the definite description ‘the husband of Penelope’, qua definiendum,
is treated in the same way like ‘Ulysses’. In accordance with this assumption
we symbolize definite descriptions in L∗ with nominal constants and allow
that they be included in the substitution classes of associative models. (If
we did symbolize definite descriptions in iota-notation as (ıx)A and included
them in the substitution classes then the inductive proof of Subsection 2.3.5
would not go through, since the As might increase complexity.7)

Clearly, the (applied) associative semantic framework being nonreferential
does not give rise to problems of nondenoting definite descriptions which to
a considerable extent motivated Russell’s denotationalist theory of descrip-
tions. It is for this reason that we need not stick to the received tradition.
(It will be obvious, though, how the Russellian account could be adapted in
the associative framework.)

Now what about the defining definite descriptions of names (i.e., proper
names and definite descriptions)? They are to be viewed as implicitly prefixed
with an ‘is’, the ‘is’ of predication, so as to render a complex predicate which

7See [Kripke, 1976] p. 332.
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is built up from a pure predicate and proper names depending on the arity
of the pure predicate. (So if the predicate has arity n then the complex
predicate will be built up from n− 1 not necessarily distinct proper names.)
For example, the defining definite description ‘the husband of Penelope’ is
viewed as part of a complex predicate ‘... is the husband of Penelope’ which
is built up from the binary predicate ‘... is the husband of ...’ and the proper
name ‘Penelope’. In cases where the defining definite description is nested
like, for example, ‘the father of the husband of Penelope’ the corresponding
complex predicate will consist of the binary predicate ‘... is the father of ...’
and the definite description ‘the husband of Penelope’ which is treated like
a proper name. (It is easily verified that, in the example at hand, the nested
definite description, but not the embedded one is defining of ‘Laertes’.)

We assume that the lists of defining definite descriptions for a name are
complete. (The dots which occur in description lists of proper names are
meant to indicate that they are not regarded as being exhausted by the
defining descriptions which occur in them.) Furthermore, we assume that
not every description occuring in a defining list must be known to us (or
even knowable for us). And although we may disagree on the meanings of
proper names, the meaning of a proper name is, as I wish to assume following
Frege, an objective matter.

We close this Subsection stating a criterion for the semantic difference of
names: the meanings of names differ just in case their defining meanings
differ.

Thus, for example, the meaning of the proper name ‘Aphrodite’ does not
differ from that of ‘Venus’, since the defining meanings of both names are
specified by a single defining list, i.e., ‘the daughter of Zeus, the daughter of
Dione, the mother of Aeneas, ...’ on the first account of defining meanings
for nondenoting names, or, alternatively, ‘the daughter of Zeus, the daughter
of Dione, ...’ on the second account (so that ‘the mother of Aeneas’ will
not be included). In this sense we may say that ‘Aphrodite’ and ‘Venus’ are
synonymous. Like remarks apply to the meanings of denoting proper names.

By contrast, the defining meanings of definite descriptions, like for example
the defining lists for ‘the daughter of Zeus’ and ‘the daughter of Dione’ differ
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in meaning as they do not contain the same defining definite descriptions.
Similarly, for the meanings of denoting definite descriptions.

4.2.3 The Meanings of Names: Comments

A couple of comments will elucidate the meanings of names, as they shall be
understood here, further.

1. Defining Meanings and Real Definitions. In cases in which a partial
definition of a denoting name may be regarded as providing a par-
tial real definition of its bearer, the real definition will be said to be
linguistically reducible to the definition of the name, since the object
is partially defined in terms of the partial definition of the name of
that object.8 Thus all the real definitions which can thus be extracted
from the present account of the notion of defining meaning of denoting
names are linguistically reducible. In case there are nondenumerably
many objects but only denumerably many names, as one tradition-
ally assumes, not every object will have a name. And so not every
real definition will be linguistically reducible. The notion of a defining
meaning of a denoting name should not be confused with the notion
of real definition. A confusion of this sort will hardly arise in the case
of nondenoting names—at least when the word ‘nondenoting’ is taken
literally. In any event, our defining meanings are explained in terms of
linguistic nominal definitions, not in terms of real definitions.

2. Defining Meanings and Fregean Senses. Defining meanings differ from
Fregean senses in certain respects. First, they are complete lists of def-
inite descriptions rather than single (conjunctive) definite descriptions.
Moreover, these lists contain only defining definite descriptions. For
example, the list of defining descriptions for the denoting name ‘Aris-
totle’ does not contain the definite descriptions ‘the pupil of Plato, the
teacher of Alexander the Great’ by which Frege (as I understand him in
view of [Frege, 1994 (1892)] p. 42, note 2) would specify the meaning
of that name, since none of them (each being a so called “famous deeds

8I take this to be in agreement with [Fine, 2002a] p. 16.
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description”) is a defining definite description in the sense explicated
above. Finally, let me add that Frege’s characterization of the sense of
a term as the way it presents its denotation would be to coarse to be
applied to defining meanings as understood on the present account, for
the defining meanings of nondenoting names cannot be sensibely taken
to present denotata. (Of course, defining meanings of denoting names
can serve to determine the referents of denoting names).

3. “Frege’s Puzzle”. According to the criterion of the semantic difference
of names, the meanings of two names differ just in case they differ in
their defining meanings. Now, since the names ‘Hesperus‘ and ‘Phos-
phorus’ do not differ in their defining meanings for they are specified by
one and the same list of defining descriptions, these names do not have
different meanings. Where does this leave us with “Frege’s Puzzle”? In
a nutshell, the puzzle is that of giving an answer to the question of how
two identity statements with coreferential singular terms, for example,
the sentence ‘Hesperus is Hesperus’ (which reports a truism) and the
sentence ‘Hesperus is Phosphorus’ (which reports a discovery) could
differ in cognitive significance. Frege suggested that the singular terms
which occur in such identity statements do not only have referents but
do also have senses or meanings (for example, the sense of ‘Hesperus’
is given by, say, the definite description ‘the brightest object visible in
the evening sky’ and the sense of ‘Phosphorus’ by ‘the brightest object
visible in the morning sky’) and that the difference in cognitive signif-
icance of such identity statements corresponds to the difference in the
meanings of the singular terms. However, on the present nonreferen-
tial picture the difference in cognitive significance does not correspond
to the meanings of singular terms directly but to a difference in their
sense-extensions which are determined by defining meanings. I shall
explain the notion of a sense-extension and articulate my proposal for
a solution shortly.

4. Homonyms. “We must distinguish between homonyms, just as we
would distinguish the name of London (England) from the homony-
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mous name of London (Ontario)”.9 Homonyms of nondenoting names
are to be distinguished along similar lines. For example, the name
‘Aeneas’ as used in the Homeric Iliad is to be distinguished from its
homonym as used in Virgil’s Aeneid, or from its homonym as as used
in the union (intersection etc.) of both epics (and other pieces of lit-
erature). Clear enough, homonymic names may differ in their defining
meanings and will be distinguished accordingly when they do. In this
sense the defining meanings of ‘Venus (the goddess)’ and ‘Venus (the
planet)’ will differ.

5. Defining Meanings and Quotation-Names. As the defining lists which
specify the defining meanings of denoting names “linguistically reduce”
real definitions, the defining descriptions of denoting names will not
contain quotation-names. Thus, for example, the definite description
‘the bearer of the name ‘Socrates’ ’ won’t be defining of ‘Socrates’.
The case of nondenoting names is somewhat trickier, since their defin-
ing meanings cannot be viewed as reducing real definitions. On the
second account of their defining meanings, quotation-names may be
excluded in essentially the same way by the as if -strategy. But this
doesn’t work on the preferred first account. In this case it will be
simplest (though admittedly crude) to stipulate that defining definite
descriptions of nondenoting names which involve quotation-names be
viewed as implicitly forming monadic predicates. So let me assume,
for the sake of argument, that ‘the man called ‘Ulysses’ ’ is a defining
description of ‘Ulysses’. We may then view that defining description as
implicitly generating the monadic predicate (whose monadic character
does not surface though) ‘... is the man called ‘Ulysses’ ’.

6. Names with Empty Meanings. We shall allow that the meaning of
a name may be empty. Obviously, in such cases the list of definite
descriptions for the name will be empty. We may call names with
empty meanings, somewhat misleadingly, “meaningless names”. These
names should not be confused, of course, with what the denotationalist
usually calls “empty names” which are just denotationless names.

9[Lewis, 1983 (1978)] p. 265.
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7. Referentialism (or Millianism). It is disputable whether the doctrine of
Referenitialism (roughly, the assumption that the sole semantic func-
tion of a name is to refer to its bearer) is correct concerning the level
of reference. However, that doctrine is entirely irrelevant, when we
look to the level of sense. We may, therefore, remain agnostic about
it. As is well-known, Referentialism faces certain problems concerning
the meaning of nondenoting names (for, if the referent is all there is to
the meaning of a name, nondenoting names seem to be meaningless),
the semantics of negative existentials such as ‘Santa Claus does not
exist’, or Frege’s puzzle. (I shall make suggestions on how these prob-
lems could be addressed from the prespective of the present semantical
framework in Section 4.5 below.)

4.2.4 The Meanings of Predicates

We take the meanings of predicates to be specified by total and partial defi-
nitions, respectively. For instance, the predicate ‘... is a bachelor’ is, presum-
ably, totally defined by the explicit definition ‘Everything is such that it is
a bachelor just in case it is an unmarried adult man’, whereas the predicate
‘... is red’ is, presumably, only partially defined by ‘Something is red only if
it has a surface which emits light of wavelength such-and-such’. Again, we
shall assume that such definitions are objective.

4.2.5 The Sense-Extensions of Names

On the present approach the definitions of names and predicates do not
primarily serve for the purpose of fixing the reference of names and of de-
termining the extensions of predicates. Instead, their main purpose is to
determine the sense-extensions of names and predicates, respectively. Since
the notion of truth with respect to the level of sense is explained in terms
of sense-extensions, these items are vital to the present framework. Let me
explain the notion of the sense-extension of a name first.

I take it that every name, whether denoting or nondenoting, does not
only have a meaning but is also associated with a sense-extension which is
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determined by its meaning. Roughly, a sense-extension of a name is the
collection of all the syntactically simplest, that is, atomic, sentences of the
language which can be built up from that name in accordance with both the
defining meaning of that name and the meanings of the (pure) predicates of
the language. The atomic sentences in a name’s sense-extension may thus be
taken to encode the name’s meaning. More exactly, the sense-extension of a
name is a collection of atomic sentences of the language which is composed
from three subcollections: the defining sense-extension, the consequential
sense-extension, and the conforming sense-extension of the name. Let me
explain these components in turn.

The basic portion of a name’s sense-extension is its defining sense-extension.
This portion is determined solely by the name’s defining meaning. The defin-
ing sense-extension of a name is the collection of all the atomic sentences of
the language which we may view as resulting from a sentence forming pro-
cedure which first turns each description of the defining list of the name into
a (complex) predicate and then saturates the resulting predicate with that
very name. The resulting sentences are, as I shall choose to say, the name’s
defining conditions.10

Consider, for example, the name ‘Socrates’. The defining meaning of that
name is specified by its defining list of definite descriptions. Let the defin-
ing list of that name be ‘the son of Sophroniscus, the son of Phaenarete,
...’. The sentence forming procedure turns the defining description ‘the son
of Sophroniscus’ into the complex predicate (of the sort discussed one sec-
tion back) ‘... is the son of Sophroniscus’ and then saturates it yielding the
sentence ‘Socrates is the son of Sophroniscus’. Thus, the portion of the sense-
extension of ‘Socrates’ which is determined in this way will be the collection
{Socrates is the son of Sophroniscus, Socrates is the son of Phaenarete, ...}.
The pure predicates which occur in the defining sense-extension of a name are
the defining predicates for that name. Thus, the predicate ‘... is the son of
...’, for instance, will be among the predicates defining of ‘Socrates’. In other
words, the defining sense-extension of a name contains all the atomic sen-
tences of the language in which that name and its defining predicates occur.

10The terminology is borrowed from [Fine, 2002a] p. 17.
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These atomic sentences, that is, the name’s defining conditions, constitute,
so to speak, the name’s semantical essence.

Let me now explain the notion of a name’s consequential sense-extension.
This portion of a name’s sense-extension is determined by that name’s defin-
ing sense-extension and the meanings of the name’s defining predicates. The
consequential sense-extension of a name comprises all the atomic sentences
which must result from the atomic sentences contained in the defining-sense
extension in view of the meaning postulates of the defining predicates and
which are not already contained in the defining sense-extension of that name.
The predicates which occur in the sentences which are contained in the conse-
quential sense-extension of a name are that names consequential predicates.

Consider, for example, the predicate ‘... is the son of ...’ which is defining
of ‘Socrates’. The meaning of this predicate will be given by a definiton which
will involve, for instance, the predicates ‘... is a son of ...’, ‘... is a son’, ‘... is
male’, ‘... is a human being’ and further predicates which are consequential
for ‘Socrates’ in view of the meanings of the defining predicates of that name.
The consequential sense-extension of a name is thus the portion of the sense-
extension of a name which contains all the atomic sentences of the language
in which that name and its consequential predicates occur. For example, the
consequential sense-extension of ‘Socrates’ will be the collection {Socrates is
a son, Socrates is a man, Socrates is a human being, ...}.

Taken together the defining portion and the consequential portion of a
name’s sense-extension yield the name’s characteristic sense-extension. The
pure predicates occuring therein are the characteristic predicates of the name.
So the characteristic portion of the sense-extension of ‘Socrates’ will be
{Socrates is the son of Sophroniscus, Socrates is the son of Phaenarete,
Socrates is a son, Socrates is a man, Socrates is a human being, ...}.

Finally, let me turn to the portion of the sense-extenison of a name which
may be called the name’s conforming sense-extension. This portion of a
name’s sense-extension is determined by that name’s characteristic sense-
extension and by the meanings of the name’s characteristic predicates.

The conforming sense-extension of a name comprises all the atomic sen-
tences, not already contained in the characteristic sense-extension of that
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name, which are consistent in view of the meaning postulates of the char-
acteristic predicates of that name with the characteristic portion of that
name’s sense-extension. The predicates which occur in the sentences which
are contained in the conforming sense-extension of a name are that name’s
conforming predicates.

In view of the definition of the notion of a conforming predicate, it is
not relevant whether the conforming predicates of the name conform to each
other. What matters is whether they conform to the characteristic predicates
of the name. Thus, on the present construal of the applied associative frame-
work, the predicates ‘... is a philosopher’, ‘... is married’, ‘... saves the life of
...’, for example, are among the conforming predicates for ‘Socrates’. But so
are the predicates ‘... is a navigator’, ‘... is a bachelor’, ‘... kills ...’. This is so,
since all these predicates conform, given their definitions, to the character-
istic predicates of ‘Socrates’. The conforming portion of the sense-extension
of ‘Socrates’ will be {Socrates is a philosopher, Socrates is married, Socrates
saves the life of Alcibiades, Socrates is a navigator, Socrates is a bachelor,
Socrates kills Alcibiades, ...}.
In sum, the sense-extension of a name consists of its characteristic and

its conforming sense-extension. We might view the characteristic sense-
extenison of a denoting name as corresponding to the essential properties of
the individual it denotes and its conforming sense-extension as correspond-
ing to the contingent properties of that individual. This analogy, however,
has only a limited appeal since it does not apply to the sense-extensions of
nondenoting names.

The sense-extension of a nondenoting name is determined in a strictly
analogous way. What should be kept in mind is that, on the first account of
the meaning of nondenoting names, the meaning and the defining meaning of
the name coincide. So, for example, the defining sense-extension of ‘Ulysses’
will contain the sentence ‘Ulysses killed Democoon’, a sentence which would
naturally not be taken as defining of that name if it were denoting; and
which would, if it were, occur in the conforming sense-extension. On the
second account of the meaning of nondenoting names, the above sentence
will be classified in just this “natural” way, but now the defining definite
descriptions will be treated only as if they could be taken as real definitions.
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Given the above distinctions and terminology we may now state a prin-
ciple by which the sense-extension of any name, whether denoting or not, is
governed.

The Principle of Nominal Sense-Extension. For any name the
sense-extension of that name contains:

1. all the atomic sentences of the language which result from a
sentence forming procedure which transforms each descrip-
tion of the defining list into a defining condition for that
name (= defining sense-extension);

2. all the atomic sentences which, taking the meanings of the
defining predicates into account, must also be contained in
the name’s defining sense-extension (= consequential sense-
extension);

3. all the atomic sentences which, taken seperately, are not
ruled out as being contained in the name’s characteristic
sense-extension (= defining sense-extension + characteris-
tic sense-extension), when the meanings of the characteris-
tic predicates are taken into account (= conforming sense-
extension).

The Principle of Nominal Sense-Extension corresponds to the admissibility
constraints for the assignment of associates to nominal constants as defined
in Section 3.2 and makes explicit the intuition by which these constraints are
underlain.

In effect, we may view the sense-extension of a name as encoding the
name’s meaning by capturing its semantic nature in terms of the collection of
all the pure atomic, and thus the most basic, sentences containing that name
which result from or are compatible with that name’s defining conditions
in view of the meanings of the predicates of the language. Thus, on the
present account of the notion of the sense-extension of a name, a name’s
sense-extension cannot vary as to the number of the atomic sentences it
contains and to the predicates which occur in these sentences. Moreover, no
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two names have the same sense-extension, even though they can have the
same defining meanings.

The sense-extensions of unrestrictedly all the names, taken together, con-
stitute what we shall call the sense-spectrum of names. Given the invari-
ability of the sense-extensions of names the sense-spectrum of names will be
invariable as well.

4.2.6 The Sense-Extensions of Names: Comments

The following remarks will help to elucidate the notion of a name’s sense-
extension further.

1. Sense-Extensions and Denotata. On a referential account the object a
name denotes could be determined in a natural way by the referential
truth of the defining conditions which occur in the name’s defining
sense-extension.11 I am, of course, in agreement with this practice.
However, since my primary concern is not with referential truth but
with the notion of truth with respect to the level of sense, it is not
relevant whether these defining conditions are indeed referentially true.
In the present setting, these defining conditions serve to delimit the
name’s sense-extension, and sense-extensions are the items in terms of
which truth with respect to the level of sense is to be explained.

2. “Consequential” and “Conforming”. The notions of consequential and
conforming sense-extensions are explained in modal terms, that is, with
the help of such expressions like “must result from” (or “must be con-
tained”) and “is not ruled out” as being contained (or “can” be con-
tained) when the meaning of the defining or the characteristic predi-
cates, respectively, is taken into account. We take these modal notions
to be primitive and call them basic necessity and basic possibility , re-
spectively. Due to their involvement in the account of a name’s sense-
extension, they are explanatorily prior to the notion of definitional
modality with which the present theory is primarily concerned. (This
notion performs, in effect, a function which the notion of derivability

11Cf. [Fine, 2002a] p. 17.
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in view of Mp performed in formal associative semantics. It will be
elucidated further, in paricular, in Subsections 4.2.13 and 4.5.1.)

3. Sense-Extensions of Meaningless Names. Meaningless names are names
which have no defining meanings. Their defining sense-extensions are
therefore empty. Consequently, in view of the consistency of a defining
sense-extension of such a name, the sense-extension of a meaningless
name will be a very large conforming sense-extension. It will contain,
among other atomic sentences, sentences which are built up from the
considered meaningless name and such incompatible predicates like,
e.g., ‘... is a son’, ‘... is a daughter’, ‘... is a palace of ...’.

4. Defining Sense-Extensions and Finean Essence-Sets. This is an appro-
priate place to explain the notion of the defining sense-extension of
a name by distinguishing it from Finean essence-sets (see Subsection
3.3.3). The sentences which occur in an essence set of an object are
the ones which are referentially true in virtue of the essence of that
object. By contrast, the sentences which occur in the defining sense-
extension of a name, that is, its defining conditions, encode the defining
meaning of the name independently of whether they are referentially
true or not. Moreover, meaningless names have empty defining sense-
extensions; but since arguably every entity (whether linguistic or not)
will have an essence, the essence-set of any entity will never be empty.
This is a further reason why meaning and sense-extensions on the one
hand and essence and essence-sets on the other hand must not be con-
fused.

5. Sense-Extensions and “Frege’s Puzzle”. The names ‘Hesperus’ and
‘Phosphorus’ have the same meaning, but they have different sense-
extensions, since they do not have all atomic sentences in common.
On the present framework this accounts, as I wish to suggest, for the
difference in cognitive significance between the sentences ‘Hesperus is
Hesperus’ and ‘Hesperus is Phosphorus’. The sense-extensions of the
names which occur in the former sentence are the same, but the sen-
tences which occur in the latter are not. (Indeed, no sentence which
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occurs in the sense-extension of the former, does occur in the latter.)
In view of the truth conditions for formulae of substitutional identity
both sentences are true with respect to the level of sense when the
‘is’ is interpreted in terms of substitutional identity, since the former
sentence will be true with respect to the level of sense just in case the
latter is true with respect to that level as well. (For the notion of truth
with respect to the level of sense see Subsection 4.2.11 below.) We
may, in effect, distinguish the following kinds of semantic sameness of
names: sameness of (defining) meaning, sameness of sense-extension,
and substitutional identity.

6. The Sense-Extensions of Definite Descriptions. On the present con-
strual of the framework the defining sense-extension of a defintite de-
scription will contain but one defining condition. So for instance the
defining sense-extension of ‘the husband of Penelope’ will be {the hus-
band of Penelope is the husband of Penelope}. As explained in Subsec-
tion 4.2.2, the ‘is’ which occurs in the defining condition is the ‘is’ of
predication. It will be obvious how loosely specified and multifarious
the whole sense-extension of that description will be. Statements of
substitutional identity (e.g. ‘the husband of Penelope is Ulysses’) will
be true for the same reasons like in the cases in which the ‘is’ of sub-
stitutional identity is flanked by names which are both proper names.
Like remarks apply to denoting definite descriptions.

4.2.7 The Sense-Extensions of Predicates

Every name has a sense-extension associated with it and so does every pure
predicate. Roughly, the sense-extension of a predicate is a collection of atomic
sentences in which that predicate occurs, where the sentences are built up
in accordance with (i) the meaning of that predicate, (ii) the meanings of
the other predicates of the language, and (iii) the meanings of the names
of the language. In effect, we may view the sense-extension of a predicate
as encoding the predicate’s meaning in terms of a collection of the atomic
sentences which are built up from it.
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The sense-extensions of predicates are divided into two groups: the sense-
extensions of characteristic predicates on the one hand, and the sense-exten-
sions of the conforming predicates on the other hand.

The principle which governs the sense-extensions of predicates may be
stated as follows.

The Principle of Predicative Sense-Extension. For every name
and for every pure predicate the following holds.

1. If the predicate is a characteristic predicate of some name,
then the sense-extension of that predicate does contain all
the atomic sentences in which the name and the predicate
occur that are contained in the characteristic sense-extension
of that name.

2. If, on the other hand, the predicate is a conforming predi-
cate of some name, then for every sentence of the language
in which the predicate and that name occurs, the sense-
extension of that predicate does contain that sentence just
in case it is not ruled out by the meanings and the sense-
extensions of the other conforming predicates of that name.

The Principle of Predicative Sense-Extension mirror the admissibility con-
straints for the assignment of associates to predicates as defined in Subsection
3.2.3.

Let me illustrate the condition for conforming predicates first. The sense-
extension of the predicate ‘... is a bachelor’, for example, which is a conform-
ing predicate of ‘Socrates’, will contain the sentence ‘Socrates is a bachelor’,
given the definition of ‘... is a bachelor’ just in case the sentence ‘Socrates
is married’ is not already contained in the sense-extension of ‘... is married’,
and vice versa. In this way the sense-extension of a conforming predicate is
variable in view of the definition of the predicate and the sense-extensions
and definitions of the other conforming predicates. A conforming predicate
may thus have infinitely many alternative sense-extensions. They may vary
as to the number of atomic sentences they contain and to the names which
occur in them. Only one of these alternatives is the actual sense-extension.
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As things happen to be the sentence ‘Socrates is married’ is contained in the
actual sense-extension of the predicate ‘... is married’, the sentence ‘Pegasus
is married’ is not.

As for the condition on characteristic predicates, the sense-extension of
the predicate ‘... is a man’ which is characteristic of, for instance, ‘Socrates’,
‘Ulysses’, ‘Sophroniscus’, ‘Laertes’ and many more names, will be {Socrates
is a man, Ulysses is a man, Sophronsicus is a man, Laertes is a man, ...}.
In contrast to conforming predicates, the condition on the sense-extensions
of characteristic predicates does not allow for alternatives. The effect of the
condition is that the characteristic sense-extensions of all names taken to-
gether and the sense-extensions of all characteristic predicates taken together
coincide.

Taken together the actual sense-extensions of the conforming predicates
and the sense-extensions of the characteristic predicates constitute a collec-
tion of atomic sentences which do not rule out each other as contained in view
of the meanings of the names and pure predicates of the language. Let me call
this collection the sense-spectrum of predicates. Unlike the sense-spectrum
of names, the sense-spectrum of predicates does allow (on the present con-
strual) for variation; it may vary with respect to the actual sense-extensions
of the conforming predicates. Such variations give rise to alternative ways in
which the sense-spectrum of predicates could have been arranged.

4.2.8 The Sense-Extensions of Predicates: Comments

Sense-extensions of predicates differ significantly from the sense-extensions
of names. The following remarks emphasize and clarify this difference.

1. Sense-Extensions of Names and Sense-Extensions of Predicates. Sense-
extensions of names and sense-extensions of predicates differ (according
to the present construal) in the following respect.

The sense-extension of a name contains all the atomic sentences of
the language which result from the name’s defining meaning, that is,
the characteristic portion of its sense-extension, and all the atomic
sentences which, taken seperately, conform with that portion. Since the
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sentences in the conforming portion will not be compatible with each
other when the meanings of their predicates are taken into account, not
all the sentences in a name’s sense-extension will be compatible with
each other.

The sense-extension of a predicate, on the other hand, contains only
atomic sentences which are compatible with each other. This is so be-
cause the sense-extension of a predicate contains those atomic sentences
of the language which can be formed from that predicate in accordance
with (i) the meaning of that predicate, (ii) the meanings of the other
predicates of the language, and (iii) the meanings of the names of the
language. Let me illustrate this contrast with an example. Whereas
the sense-extension of the name ‘Socrates’ does contain the sentences
‘Socrates is married’ and ‘Socrates is a bachelor’, the sense-extension
of the predicate ‘... is a bachelor’ will, in view of the meaning of that
predicate, contain the sentence ‘Socrates is a bachelor’ if the sense-
extension of ‘... is married’ does not contain the sentence ‘Socrates is
married’ and vice versa.

2. The Actual Sense-Extensions of Predicates. Just like every predicate
of a natural language taken referentially has its actual referential ex-
tension, so every such predicate taken nonreferentially has its actual
sense-extension. Intuitively, we might take the sense-spectrum of pred-
icates to be a set of atomic sentences which, if they were referentially
true, would provide a sort of Carnapian state-description which would
accurately describe the actual world. (I say only “a sort of Carnapian
state-description”, since it will contain exclusively atomic sentences and
never negations thereof.) Alternatives to the sense-spectrum of pred-
icates, then, would yield inaccurate descriptions of the actual world.
My appeal to this denotationalist intuitions here is merely a heuris-
tic one. Sense-extensions are, of course, in no way state-descriptions,
for there is nothing they describe. This is so for such predicates like
‘... is a man’ which have besides a sense-extension also a referential
extension, as well as for such fictional predicates like ‘... is a fairy’.
(That sense-extensions cannot be sensibely viewed as descriptions will
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be particularly obvious for the sense-extensions of names, which, in
their conforming portion, contain sentences which are built up from
incompatible predicates. Consider, for instance, the example concern-
ing the sense-extension of ‘Socrates’ given in the previous comment.
There is nothing which is married and a bachelor at the same time,
and so nothing which the sense-extension of ‘Socrates’ could be taken
to describe.)

3. Hearts and Kidneys. According to applied denotational semantics, the
referential extensions of such predicates like ‘... has a heart’ and ‘... has
kidneys’ are the same. However, it is obvious that the sense-extensions
of these predicates are distinct. Indeed, no two different predicates
have the same sense-extensions (cf. comment 2.3.2(7)). In effect, like
denotational extensions of predicates, sense-extensions have clear iden-
tity criteria (i.e., they are identical exactly if they contain the same
members), but sense-extensions are finer. In this respect they perform
a function similar to properties.

Having explained what the sense-extensions of names and predicates are, we
are now in a position to explain what the level of sense is, which together
with the level of reference constitutes, as I wish to suggest, the reality to
which language is related.

4.2.9 The Level of Sense

The level of reference of a natural language is naturally taken to be the to-
tality of the actual denotata of names and the actual referential extensions of
predicates we take ourselves to be talking about when we use that language in
a referential way. Correspondingly, the level of sense, according to the present
proposal, is the totality of the actual sense-extensions of the names and the
predicates we may take ourselves as reflecting upon when we evaluate nat-
ural language sentences using them in a nonreferential way. (The difference
between “talking about” or “describing”, on the one hand, and “reflecting
upon”, on the other hand, will be clarified in the next Subsection.) More
exactly, the actual level of sense comprises two separate components: the
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sense-spectrum of names and the sense-spectrum of predicates. As a whole
the level of sense is governed by the Principles of Nominal and Predicative
Sense-Extension.

Modal discourse does not only concern the (actual) level of sense which
comprises the actual sense-extensions of (unrestrictedly) all the names and all
the predicates of the language, but also alternative ways in which that level
could have been rearranged. The fact that the level of sense could have been
arranged in various ways is captured by the following principle of plenitude.

The Principle of Rearrangement. The level of sense could have
been arranged in an alternative way just in case it did satisfy
the Principle of Nominal Sense-Extension and the Principle of
Predicative Sense-Extension when so arranged.

Here the ‘could have been’ expresses possibility in the basic sense of the word.
(See comment 4.2.6(2).) On the present construal these alternative ways will
differ only with respect to the sense-spectrum of predicates, more exactly
with respect to the sense-extensions of the conforming predicates, since the
sense-extensions of names and characteristic predicates are invariant.

4.2.10 Describing and Reflecting

Given its lack of the capacity to refer, a natural object language taken non-
referentially cannot be sensibly said to describe the level of reference of that
language. Similarly, it cannot be taken to describe the level of sense. That
level can only be described by a metalanguage for that object language that
is referentially understood. The object language itself, therefore, is better
said, as I wish to suggest, to reflect the level of sense and not to describe
it. Taken nonreferentially, the object language is “reflective” rather than
“descriptive”.

Due to this referential impotence, sentences of the object language as
nonreferentially understood, cannot be plausibly taken to give rise to any
kind of ontological commitment. Only the metalanguage of the semantic
theory for that object language may be understood in that way. This is a
further respect in which an object language taken nonreferentially differs from
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its referential interpretation. Understood referentially, the object language
will, indeed, be descriptive and ontologically committal.

In view of the discussion of Chapter 1, I wish to suggest that fictional
and modal language is naturally viewed as being reflective. Indeed, I wish to
suggest that, with respect to fictional and modal discourse, “talking about
something” is just a loose way of speaking for “reflecting sense-extensions”.
So when we purport to be talking about Santa Claus, we reflect upon the
level of sense with respect to the name ‘Santa Claus’ (or the concept santa
claus). (Of course, since every name has a sense-extension, we may also
reflect upon the level of sense with respect to a denoting name like ‘Tarski’.)
Similarly, our modal talk about Tarski is more adequately understood in
terms of reflection upon the various ways the level of sense could have been
arranged with respect to the name ‘Tarski’ (or the concept it expresses).

4.2.11 Truth with Respect to the Level of Sense

According to the standard, i.e., referential way of interpreting the semantics
of ordinary language assertoric sentences, an atomic sentence, for example,
one which consists of a monadic predicate and a proper name is true just in
case the predicate (or the open sentence) is satisfied by (or true of) the object
which is denoted by the proper name. For example, the sentence ‘Ulysses is
a man’ will be true just in case the predicate ‘... is a man’ is satisfied by the
denotatum of ‘Ulysses’.

The only way to accept the truth of ‘Ulysses is a man’ on the standard
referential account will be to admit some sort of fictional object to which
‘Ulysses’ is taken to refer. But such ontological inflation, which typical of
denotational semantics of fiction, inflates the metaphysical agenda and raises,
in my opinion, more questions than it purports to solve. There are two
venerable alternatives to treat such statements within denotational first-order
logic: first, one may declare such sentences to be false, second, one may attach
to them some nonclassical truth value. Obviously, both proposals run counter
to the intuition that that sentence is true. (Moreover, the Russellian strategy
of ruling ‘Ulysses is a man’ to be false treats that sentence in the same way
like such uncontroversially false sentences as ‘Ulysses is a woman’, without
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providing an account of the intuitive difference. The second alternative, on
the other hand, is runs not only counter to intuitions, but also complicates
logic. As I have noted in Subsection 1.1.1.e, there are also other reference
involving approaches, for example, of a pretence-theoretic sort. However,
such accounts give rise to the problems of reference and truth within the
context of pretence or fiction.)

According to the present theory, as will be sufficiently clear by now, there
is also a nonreferential way of interpreting natural language sentences. On
this theory (absolute) truth does not coincide with referential truth, for there
also is truth with respect to the level of sense. An atomic sentence is true with
respect to the level of sense if and only if it is contained in the sense-extensions
of all its constituent terms; or, to put it in other words, it is true with respect
to that level just in case all the sense-extensions of the constituent terms
coincide on that sentence. Read nonreferentially, the sentence ‘Ulysses is a
man’ will be true with respect to the level of sense just in case the sense-
extensions of the name ‘Ulysses’ and the predicate ‘... is a man’ coincide;
since, indeed, they do, the sentence is true with respect to the level of sense.
However, the sentence ‘Ulysses saved the life of Democoon’ is false with
respect to the level of sense, because the (actual) sense-extension of the
predicate ‘... saved the life of ...’ does not contain that sentence. Accordingly,
‘Ulysses is a man’ does accurately reflect the (actual) level of sense, but
‘Ulysses saved the life of Democoon’ does not. In this way, truth with respect
to the level of sense is a matter of meaning and of sense-extensions, rather
than meaning and referents. The sentence ‘Socrates is a man’, for instance,
is unlike the previous one referentially true when read referentially and true
with respect to the level of sense when viewed nonreferentially. (I shall argue
later, in Section 4.4, that both kinds of truth coincide, in effect, for nonmodal
sentences in which only denoting names occur.)

Modal discourse (and thought) is, as I wish to suggest, to be evaluated
nonreferentially. Modal statements are, if true, true only with respect to the
level of sense. On the present theory, a possibility statement like for instance
‘Socrates could have been a navigator’ taken nonreferentially will be said to
be true with respect to the level of sense simpliciter just in case that level
could have been such that the sense-extensions of ‘Socrates’ and of ‘... is a
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navigator’ did coincide on ‘Socrates is a navigator’. Similarly, ‘Agamemnon
is necessarily a man’ will be true simpliciter with respect to the level of sense
just in case no matter how the level of sense could have been arranged (in the
basic sense of ‘could’), the sense-extensions of ‘Agamemnon’ and ‘... is a man’
would coincide on ‘Agamemnon is a man’. On the present proposal, then,
sentences of the object language are not taken to describe the vicissitudes of
more or less bizarre denotata at more or less bizarre possible worlds; instead,
they are taken to reflect how the level of sense could have been arranged in
agreement with the Principle of Rearrangement.

4.2.12 From Sentences to Propositions

The notion of truth with respect to the level of sense has been explained in
terms of sense-extensions of natural language expressions (or more exactly,
in terms of expression types). But it is not mandatory to explain that notion
in terms of expressions of some natural language. Instead, we could have
explained it, in an analogous way, in terms of a language of thought and
mental representations. Moreover, there is also a nonlinguistic alternative.
We may explain the notion of truth with respect to the level of sense directly
in terms of concepts and structured propositions rather than in terms of their
linguistic counterparts.

We shall assume that for every atomic expression of a natural language
there is an atomic concept that is expressed by that expression. Following
common practice, we take it that the concept captures the content which
the expression expresses when it is freed from the accidental features of the
natural language to which it belongs. The concepts which we shall em-
ploy will be of a Fregean sort; and we shall follow the convention of using
English expressions written in capital letters to refer to them. So, for ex-
ample, the German predicate ‘... ist ein Mann’ and the English predicate
‘... is a man’ both express the predicative Fregean concept is a man. Sim-
ilarly, the German ‘Odysseus’ and the English ‘Ulysses’ express the name
concept ulysses. Sentences express Fregean propositions. The sentences
‘Odysseus ist ein Mann’ and ‘Ulysses is a man’, for instance, both express
the atomic Fregean proposition ulysses is a man. We shall assume that
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Fregean propositions are built up from atomic concepts in a sentence-like
way and that they cay be represented as ordered tuples of such concepts,
e.g., 〈ulysses, man〉. With respect to their metaphysical nature, we make
the common assumption that Fregean propositions and their constituents are
abstract, language-independent, and mind-independent entities.12 Let me be
more precise.

We shall assume that for any expression of a natural language there is a
counterpart in a system of Fregean propositions or thoughts. This system,
Th for short, is a modal first-order “language of concepts” 〈Lex,Gram〉
whose first element is a lexicon of atomic Fregean concepts containing name
concepts, predicative concepts, connective concepts, quantifier concepts, and
operator concepts. Gram generates from Lex well-formed (saturated and
unsaturated) Fregean propositions in a way analogous to the way in which a
formula of L or L∗ is composed.13 On the conceptual account of truth with
respect to the level of sense, these propositions will serve as truthbearers.

For simplicity, we stipulate that for every expression of a language there
is exactly one conceptual counterpart in the system of concepts which is
expressed (rather than denoted) by it. Examples: The name ‘Ulysses’ ex-
presses the name (or singular) concept ulysses, the predicate ‘... is a man’
expresses the predicative concept man, the connective ‘and’ expresses the
connective concept and, the quantifier ‘all’ expresses the quantifier concept
all, and the modal expression ‘necessarily’ expresses the operator concept
necessarily. So, for example, the sentence ‘Ulysses is necessarily a man’
expresses the proposition necessarily(man(ulysses)). We adopt the sim-
plifying convention that instead of writing man for the concept expressed by
‘... is a man’ and necessarily(man(ulysses)) for the thought expressed
by ‘Ulysses is necessarily a man’ we just write, simulating the superficial syn-
tactical structure of English predicates and sentences, is a man and ulysses
is necessarily a man, respectively.

In a way analogous to the linguistic case we assume that name concepts

12For a critical discussion of Fregean propositions and their rivals see, in particular,
[Schiffer, 2003] ch. 1. See also [Villanueva, 1998] for a representative anthology of recent
philosophical work on concepts.
13A language system of this sort is offered in [Peacocke, 1999] ch. 4.
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and predicative concepts have a definitional structure. And we take it that
this structure mirrors the meanings of names and predicates. For exam-
ple, the definitional structure of the name concept ulysses will be mirrored
by the list the son of laertes, the husband of penelope, the fa-
ther of telemachus, the king of ithaca, the man who killed

democoon, ...; and the definitional structure of the predicative concept is
a bachelor may be displayed by the list is a man, is adult, is not
married.

The notions of sense-extensions for name concepts, of sense-extensions of
predicative concepts, of the level of sense, and truth with respect to the level
of sense may now be explained in conceptual terms in a way strictly anal-
ogous to the linguistic account. So the proposition ulysses is a man will
be true with respect to the level of sense just in case the sense-extensions of
ulysses and is a man which encode, so to speak, the definitionally deter-
mined structure of these concepts coincide on that proposition.

We shall assume that propositions are the primary bearers of truth. Ac-
cordingly, we take it that the sentences ‘Odysseus ist ein Mann’ and ‘Ulysses
is a man’ owe their truth with respect to the level of sense to the truth of the
proposition ulysses is a man with respect to that level. On this assumption
then the conceptual account is more basic than the linguistic version. How-
ever, this assumption, to which we shall stick from now on, is not mandatory.
And, of course, it should be possible to adapt other views of the nature of
concepts and propositions than the Fregean to the conceptual account.

4.2.13 Definitional Necessity

Clearly, on the present framework, a sentence like (Σx)2Fx cannot be viewed
as claiming that some individual has a certain property necessarily or essen-
tially. For, as will be clear by now, the semantics does not explain the truth
of such sentences in terms of individuals (or, more broadly, objects), refer-
ence and satisfaction. Consequently, sentences like these do not symbolize de
re necessities. They symbolize de nomine necessities. And since a formula
like 2Fa does not symbolize a de re necessity, the box-operator does not
symbolize metaphysical necessity either. Associative semantics, therefore,

182



cannot be taken to model the logical behaviour of that notion. According
to the present framework, the modal operator symbolizes what we might
call definitional modality . The meanings of ‘definitionally necessary’ and
‘definitionally possible’ may be specified by the following conditions.

(Necessity) ‘It is definitionally necessary that A’ is true with re-
spect to the level of sense (i.e., the actual level of sense) just in
case no matter how the level of sense could have been arranged
(in the basic sense of ‘could’), A would be true with respect to it.

(Possibility) ‘It is definitionally possible that A’ is true with re-
spect to the level of sense just in case the level of sense could have
been arranged (in the basic sense of ‘could’) such that A was true
with respect to it.

It is important to note that it would be a mistake to equate definitional
necessity with conceptual necessity as usually understood. For example, ac-
cording to the present nonreferential approach to modality, the propositions
expressed by the sentences ‘All bachelors are unmarried’ and ‘Socrates is a
man’ are both definitional necessities; where the former is de dicto and the
latter is de nomine. These propositions are true with respect to the level of
sense in virtue of the sense-extensions of the names and predicates involved
in them (and, in case of the first sentence, also in virtue of the meaning of
logical vocabulary).

On the usual denotational account only the proposition expressed by the
former will qualify for the status of a conceptual necessity (i.e., a proposition
which is referentially true in virtue of the meaning of the logical constants and
the predicates involved in it). On the other hand, the proposition expressed
by the latter sentence, will be a metaphysical necessity de re, a proposition
which—on the usual essentialist account of such necessities—is referentially
true in virtue of the nature or the essence of the object Socrates.14 Defini-
tional necessity, therefore, must not be confused with metaphysical necessity
de re nor with conceptual necessity.

14See, for example, [Fine, 1994] p. 9. Cf. also [Lowe, 1999] p. 19, bottom.
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Moreover, definitional necessity must not be confused with the notion of
broadly logical necessity which is standardly equated with metaphysical ne-
cessity. On the standard account of this notion, it encompasses, for example,
(narrowly or strictly) logical, conceptual, and de re metaphysical necessity as
special cases.15 Fine’s essentialist account of metaphysical necessity is, as it
seems to me, the first proposal on which a definition of this notion is provided
that pays attention to questions of source. For him metaphysical necessities
(or broadly logical necessities) are those propositions which are true in virtue
of the natures of objects.16 Conceptual and logical necessity, for instance,
are regarded as special cases of metaphysical necessity. A proposition is said
to be a conceptual necessity if it is true in virtue of the nature of the con-
cepts involved in it. The reason why this is so is obvious. Since the notion
of definitional necessity is not explained in terms of objects and their prop-
erties, none of its special cases can be explained in that way. According to
the present approach, modal discourse is, properly understood, nonreferen-
tial and thus has no use for referential predication, referential quantification
and an ontology of individuals and their properties. Consequently, there is no
room for metaphysical necessity and essence or—more exactly—linguistically
irreducible real definitions. (For the latter see comment 4.2.3(1).)

We shall now make a couple of taxonomical remarks on definitional neces-
sity. Definitional necessity can be either de dicto, or de nomine—where in a
way analogous to the formal discussion of Subsection 2.5.7, the former sort
of definitional necessity, unlike the latter, does not turn upon other ways the
sense-spectrum of predicates could have been arranged.

We may view other notions of necessity, for instance, conceptual, logical
necessity, or the kind of necessity which pertains to such propositions like
the one expressed by ‘Socrates is a man’ as special cases of definitional ne-

15The standard reference on broadly logical necessity is [Plantinga, 1974] pp. 1-2.
Plantinga explains this notion by way of example and so does the tradition following him.
See, for example, [Forbes, 1985] pp. 1-2. For a recent discussion of this notion (in terms
of possible worlds) see, in particular, [Lowe, 1999], sections 3-6. The notion of broadly
logical necessity is standardly equated with that of metaphysical necessity. Some authors
seem to deviate from received terminology. In [Hale, 1996] p. 94 and [Chihara, 1998] p. 7,
for instance, ‘broadly logical necessity’ is used interchangeably with ‘conceptual necessity’.
16See [Fine, 1994] pp. 9-10 and [Fine, 2002b] p. 254.
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cessity. We may view them as being defined in terms of a restriction of the
notion of definitional necessity. For example, a proposition will be a logical
(conceptual) necessity if (i) it is a definitional necessity and if (ii) its truth
turns upon the meanings of the the logical terms (and the predicates) which
occur in it. (In this way logical necessity may be taken to be a special case of
conceptual necessity.) Conceptual (and hence logical) necessities may then
be subsumed under the notion of de dicto definitional necessity. By con-
trast, the kind of necessity in which a proposition like the one expressed by
‘Socrates is a man’ may be said to be necessary will fall under the notion of
definitional necessity de nomine. It is natural to assume that a proposition
is necessary in this sense if (i) it is a definitional necessity and if (ii) its truth
does in no substantial way turn upon the meanings of logical terms.17

In effect, the work done on denotational account by the notions of essence,
individuals and metaphysical necessity (and its special cases) is done, on
the present account, by the notions of nominal definition (for names and
predicates), sense-extension, and definitional necessity.

4.3 Truth at an Index in an Associative Model

and Truth With Respect to the Level of

Sense

The strategy I shall apply to connect up the relative notion of truth at an
index in an associative model and the absolute notion of truth simpliciter
with respect to the level of sense is adapted from the denotationalist tradi-
tion of intended∗ Kripke-models as pioneered in [Menzel, 1990] and modified
and developed further in [Ray, 1996] and [Chihara, 1998]. The strategy of

17[Fine, 2002b] p. 255 offers a different kind of definition of new notions of necessity
in terms of the restriction of an old one. For example, on his view a proposition may
be said to be a mathematical necessity if (i) it is a metaphysical necessity (along the
lines suggested in [Fine, 1994]) and if (ii) it is a mathematical truth (where the notion
of mathematical truth is hoped to be explicable in non-modal terms or, at least, without
appeal to further modal notions). I shall contrast the notion of definitional necessity with
Fine’s notion of metaphysical necessity further in Subsection 4.5.10.
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intended∗ models has a couple of features which, in my opinion, are desirable
for any account of the connection between model relative truth and absolute
truth.

One advantage is that it takes the mathematical nature of the models
of pure semantics seriously, since it endorses the view that they are purely
mathematical items whose constitution involves only mathematical objects.
This attitude towards pure models allows to appreciate the chasm between
model-theory and robust reality which has to be bridged. Second, this strat-
egy does, arguably, not involve a commitment to possible worlds (standardly
figuring in the index-set of the intended model) and possible objects (as con-
tained in the domain of discourse of the intended model) of any sort. Of
course, on a substitutional approach a commitment to possible objects is
avoided for other and, by now, obvious reasons. Thirdly, the strategy of
intended∗ models provides an explanation of how the models of pure seman-
tics do succeed to represent reality. I doubt that we learn something about
the way a pure model represents reality by just being told which entities are
contained in (the index set and) the domain of some intended model.

The strategy which we shall use to provide a link between truth at an index
in an associative model and the notion of truth with respect to the level of
sense is essentially the strategy proposed by Charles Chihara adapted to the
needs of the present nonreferential approach.18 Chihara’s account of model-
theoretic modal semantics differs from Menzel’s approach and Ray’s version
thereof in a couple of ways which need not concern us here.

The most noteworthy difference is that Menzel’s and Ray’s account is
explicitly representational in the sense of [Etchemendy, 1990].19 Chihara
rejects the correctness of Etchemendy’s classification of Tarskian first-order

18See [Chihara, 1998] ch. 7. Since a detailed discussion of Chihara’s work would lead us
to far away from our present concerns, the reader is urged to study that chapter in order
to appreciate the differences between Chihara’s proposal and my adaptation thereof.
19According to Chihara, the difference between representational and interpretational
semantics can be generally characterized as follows: “the former keeps the interpretation
of the language fixed and considers, by means of the models, different ways the world
could have been; whereas the latter keeps the world fixed and considers, by means of the
models, different interpretations of the language.” ([Chihara, 1998] p. 185).
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model theory as interpretational as incorrect and doubts that it is adequately
characterized as representational as well.20

On Chihara’s account of the Tarskian semantics of first-order logic21 de-
notational models “provide abstract [i.e., mathematical] representations of
different possible domains and extensions of predicates, without settling the
question of whether it is the meanings of the parameters [i.e., the nonlogical
vocabulary of the denotational first-order language] that are being held fixed,
while the different possible situations are up for consideration, or it is the
world that is being held fixed, while the different assignments of meanings
to the parameters are up for consideration.”22

First-order associative models involve no other entities than items of the
formal language itself and they do not represent some level of denotata. Note,
however, that Etchemendy’s originial distinction may be restated for first-
order associative semantics and the level of sense. As we shall see below,
Chihara’s account can be adapted to the framework of associative semantics
as well. The result of this adaptation will be the account of associative
first-order semantics I wish to endorse.
A clear advantage of Chihara’s proposal is that where Menzel and Ray

provide only a piecemeale inductive evidence for the link between relative
and absolute truth, Chihara proves a theorem (his “Fundamental Theorem”)
to this effect.
Chihara proves his theorem for a relatively complicated varying domain

axiom system which is in accordance with his endorsement of Serious Ac-
tualism (i.e., the thesis, which put in terms of possible worlds realism says,
that if an object has a property in a possible world, then it must exist in
that world).23 We shall adapt Chihara’s denotationalist Fundamental Theo-
rem for a constant (and hence very simple and appealing) substitution class
axiom system so as to provide a connection between the notions of truth in
a natural associative model of the formM = 〈S,R, s@, C, c, P, v〉 and truth
simpliciter with respect to the level of sense. In doing this we shall retain
Chihara’s terminology and notation as far as we can.
20See [Chihara, 1998] sect. 5.1 for the details.
21The essentials of Chihara’s account are, in effect, given in Subsection 4.4.2 below.
22[Chihara, 1998] p. 196.
23Cf. [Chihara, 1998] sect. 7.2.
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4.3.1 Natural Language Proto-Interpretations of L∗

We first provide the symbols of our formal language L∗ with meanings so that
the resulting meaningful formulae can be treated as expressing propositions
which are true or false simpliciter with respect to the level of sense. Let =
be a natural language proto-interpretation of L∗ be a meaning assignment,
which specifies the meanings of the symbols of that language as follows.

1. The truth functional connectives ¬,∧,∨,→, and ↔ have the truth
functional meanings of the corresponding English connectives ‘it is not
the case that’, ‘and’, ‘or’, ‘if ... then’, and ‘if and only if’, respectively.

2. The meanings of the modal operators 2 and 3 are given by the follow-
ing conditions:

(a) A formula 2A is true iff it is definitionally necessary that A is
true.

(b) A formula 3A is true iff it is definitionally possible that A is true.

The meanings of ‘definitionally necessary’ and ‘definitionally pos-
sible’ in turn are captured by the conditions (Necessity) and (Pos-
sibility) given in Subsection 4.2.13 above.

3. To give meaning to the substitutional quantifiers we select an English
predicate which delimits their substitution class to just those names
yielding a true sentence when substituted in an atomic open sentence
built up from that predicate. (Unlike Chihara, we assume that this de-
limiting predicate need not be monadic.) To achieve the widest possible
scope for the substitution classes, we let that predicate be, somewhat
trivially, the English predicate for self-identity—in the substitutional
(not the referential) sense of the word. If the substitution class is delim-
ited by ‘... is (substitutionally) self-identical with ...’, then the meaning
of (Πx)A is given by the condition: (Πx)A is true with respect to the
level of sense iff all names which are (substitutionally) self-identical are
such that they render A true with respect to the level of sense when
substituted for x in A.
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4. Each nominal constant is assigned the meaning of an English name
(i.e., a proper name or a definite description) which, trivially, is (sub-
stitutionally) self-identical.

5. Pure n-ary predicates (incl. aspectualized binary predicates) and the
predicate for =̈ are assigned the meanings of n-ary English predicates
and the meaning of identity in the substitutional sense of ‘... is identical
with ...’, respectively.

6. Nominal variables do not obtain English meanings. We take them to
perform a function like that of pronouns in open sentences (or sentential
functions) of English like, for instance, in ‘x is a man’.

4.3.2 Natural Language Proto-Interpretations of L∗:

Notation and Explanations

Next we adopt a couple of notational conventions for proto-interpretations.

1. If = is a natural language proto-interpretation of L∗ and C is a sub-
stitution class for the quantifiers, then ‘=(C)’ designates the English
predicate which delimits C according to =, in our case the predicate
‘... is (substitutionally) identical with ...’. In accordance with the in-
tuitions expressed in Subsection 4.2.1, the English identity predicate
is always substitutional when it is flanked by nondenoting names or
when it occurs in a modal context. In this way the “denotational sta-
tus” of the terms to which the English identity predicate applies or
the context in which that predicate occurs indicate how it has to be
understood. There is no extra word like ‘substitutionally identical’ in
ordinary English, just like there is no extra word ‘referentially identi-
cal’ in it. (Although there are no two different predicates for identity
in ordinary English there will presumably be two different concepts
which the single predicate may be taken to express.) We write ‘(sub-
stitutionally) identical’ and ‘(referentially) identical’ to indicate how
the identity predicate is to be understood, although, it will be always
clear when it must be understood substitutionally. (I shall argue later
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in Section 4.4 that in the “referential portion” of English the identity
predicate can be understood both ways.) Analogous remarks apply to
the quantifiers of English.

2. If α is a nominal constant of L∗, then ‘[α/=]’ designates the nominal
constant α taken to have the meaning assigned to it by =. Conse-
quently, the name and [α/=] have the same meaning, namely that of
the name. We say that [α/=] is the exact synonym of the name for
the nominal constant α. For example, if the meaning assigned to a
is the meaning of ‘Pegasus’, then the exact synonym of the name for
that constant, [a/=], will have the same meaning as ‘Pegasus’. Both
expressions express, as we take it, the concept pegasus.

3. If ϕn is a pure predicate of L∗, then ‘[ϕn/=]’ designates the predicate
ϕn taken to have the meaning assigned to it by =. Consequently, the
English predicate and [ϕn/=] have the same meaning; namely that of
the English predicate. We say that [ϕn/=] is the exact synonym of the
predicate for the formal predicate ϕn. So, for instance, if the meaning
assigned to F is the meaning of ‘... is white’ then the exact synonym of
the English predicate for F , that is [F/=], has the same meaning as ‘...
is white’. Moreover, both express the concept white. The expression
[=̈/=] is to be undestood analogously.

4. If A is a formula of L∗, then ‘[A/=]’ designates the formula A taken
to have the meaning assigned to it by =. For example, if the meaning
assigned to a is the meaning of ‘Pegasus’ and the meaning assigned to F
is the meaning of ‘... is white’, then the exact synonym of the sentence
for the pure atom Fa, [Fa/=], has the same meaning like ‘Pegasus is
white’. Both expressions express the proposition pegasus is white.

Instead of providing the symbols of L∗ with meanings of natural language ex-
pressions, we could have, equally well, introduced a conceptual analogue to =
which would assign to each symbol directly a concept together with a meaning
specifying condition given in terms of concepts. In order to obtain a broader
perspective, i.e., a picture which comprises both the linguistic and the con-
ceptual realm, we shall use the linguistic version of proto-interpretations, on
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the one hand, and consider conceptual sense-extensions of names and predi-
cates, on the other hand.

4.3.3 Natural Language Proto-Interpretations of L∗ and

Sense-Extensions

We now introduce sense-extensions for exact synonyms of names and predi-
cates.

1. ‘senext-[α/=]’ designates the sense-extension of [α/=], that is, the
sense-extension for the name concept which is expressed by the name
[α/=] is exactly synonymous with.

2. ‘senext-[ϕn/=]’ designates the sense-extension of [ϕn/=], i.e., the sense-
extension for the pure predicative concept which is expressed by the
English predicate [ϕn/=] is exactly synonymous with.

Since the meaning of a name and the meaning of its exact synonym are the
same and since the meaning of a name determines the sense-extension of that
name, the name and its exact synonym have the same sense-extension—to
wit, the sense-extension of the name. For example, the sense-extension of
‘Agamemnon’ and [a/=], where = assigns to a the meaning of ‘Agamemnon’
is {agamemnon is a man, agamemnon is a worrier, ...}. Analogously,
for English predicates and their exact synonyms.

4.3.4 Representation via Bijections

So far we have explained how the expressions of L∗ are related to natural
language. What we still need is an account of how natural associative models
(as characterized in Subsection 3.2.5) represent reality—more specifically, the
portion which is constituted by level of sense— and, speaking loosely, the
ways in which the level of sense could have been arranged.

Let = be a natural language proto-interpretation, letM = 〈S,R, s@, C, c, P,

v〉 be a natural (and hence, constant substitution class) associative model of
L∗, let C be the set of name concepts (more exactly, the self-identical ones),
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let P be the set of the predicative concepts, and let Atm be the pure atomic
propositions of the system Th presented in Subsection 4.2.12.

Moreover, suppose that, for some s ∈ S, the level of sense could have been
(in the basic sense of ‘could’) such that there was a bijective function for s,
fs, from c(s) (i.e., C which is

⋃
s∈S c(s)) to C, from P to P, and from Atm to

Atm such that:

1. For for each α ∈ c(s) and for every A ∈ Atm(α):

{ϕn...α..., ψn...α..., χn...α..., ...} ⊆ v(α, s)

iff
{fs(ϕ

n...α...), fs(ψ
n...α...), fs(χ

n...α...), ...} ⊆ senext-[α/=].

2. For each pure n-ary predicate ϕn ∈ P and for every A ∈ Atm(ϕ):

{ϕn...α1..., ϕ
n...α2..., ϕ

n...α3..., ...} ⊆ v(ϕn, s)

iff
{fs(ϕ

n...α1...), fs(ϕ
n...α2...), fs(ϕ

n...α3...), ...} ⊆ senext-[ϕn/=].

The ‘[α/=]’ in ‘senext-[α/=]’ expresses, so to speak, fs(α) and the ‘[ϕn/=]’
in ‘senext-[ϕn/=]’ expresses fs(ϕ

n).

Since fs is a bijection the sets on which this function operates have the
same cardinality. So C (P, Atm) will be finite (denumerable, nondenumer-
able) if C (P , Atm) is. Since on the present proposal P is finite P will be,
presumably, only a proper subset of the predicates of a natural (or mental)
language or of a language-like system of concepts.

4.3.5 Representation via Bijections: Conventions

In a way analogous to Chihara we view an associative bijection-tuple 〈c(s),
v(α, s), v(ϕn, s)〉= for some s in a model as representing via fs how the (ac-
tual) level of sense was, in so far as what was of concern were the substitution
classes of the quantifiers and the sense-extensions of the nominal constants
and predicates, respectively, when these are interpreted as specified by =.
So we say that 〈c(s), v(α, s), v(ϕn, s)〉= represents the level of sense via fs.

Mimicking Chihara’s practice, we take ‘the level of sense could have been
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(in the basic sense of ‘could’) such that there was a function fs via which
〈c(s), v(α, s), v(ϕn, s)〉= represented it’ to be short for the passage “for some
s ∈ S the level of sense could have been (in the basic sense of ‘could’) such
that there was a bijective function (...) ⊆ senext-[ϕn/=]” from the third
paragraph of the preceding section.

4.3.6 Natural Language Interpretations

Natural language interpretations are natural language proto-interpretations
= that conform to some natural modelM = 〈S,R, s@, C, c, P, v〉 of L∗.
For a proto-interpretation to conform to a (natural) model, the model

must accurately represent the sense-extensions of the names and predicates.
M = 〈S,R, s@, C, c, P, v〉 accurately represents the level of sense if it meets
the following three Chiharaian Menzel-style conditions.

The first condition imposed on the model ensures that there are no im-
possible bijection-tuples.

(C1) For every s ∈ S, the level of sense could have been (in the
basic sense of ‘could’) such that there was a bijection via which
the tuple 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

The second condition guarantees that there are enough bijection-tuples to
represent, loosely speaking, every possible way the level of sense could have
been arranged.

(C2) No matter how the level of sense had been arranged (i.e.,
necessarily in the basic sense), there would have been a bijection
via which the tuple 〈c(s), v(α, s), v(ϕn, s)〉= represented how it
were arranged for some s ∈ S.

Finally, the third condition aims to ensure that all the bijections which could
have represented (the actual way) the level of sense (is arranged), agree
with each other. To get at the idea behind this principle, suppose that
M = 〈S,R, s@, C, c, P, v〉 accurately represents the level of sense and that,
thus, there is a bijection fs@ which maps, say, the nominal constant a from
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c(s@) to a certain name concept, e.g. agamemnon, from C and which maps,
say, the monadic predicate F 1 from P to is a worrier from P. Then the
requirement is that a bijection gs for any other index s in that model does
not qualify as a representing function if it maps a to ajax (even if it still
maps F 1 to is a worrier). This condition of agreement, therefore, allows
us to study the behaviour of concepts through, loosely speaking, various ways
the level of sense could have been arranged. The condition may be stated in
more exact terms as follows.

(C3)
(a) For every s, s1, ..., sn ∈ S and for every α, α1, ..., αn ∈ c(s)

such that α1 ∈ c(s1), ..., αn ∈ c(sn): if α1, ..., αn ∈ c(s) then
it is not the case that the level of sense could have been (in
the basic sense of ‘could’) such that there was a bijection f1 via
which 〈c(s1), v(α, s1), v(ϕ

n, s1)〉= represented it, ..., the level of
sense could have been such that there was a bijection fn via
which 〈c(sn), v(α, sn), v(ϕn, sn)〉= represented it, such that, had
the level of sense been such that there was a bijection via which
〈c(s), v(α, s), v(ϕn, s)〉= represented it, it is not the case that
there would have also been a bijection g via which 〈c(s), v(α, s),
v(ϕn, s)〉= represented the level of sense, such that g(α1) = f1(α1),

..., g(αn) = fn(αn).

(b) For every representing bijection f1 for s1, ..., fn for sn, there
is a repesenting bijection g for s such that for every ϕn, ψn, χn, ... ∈
P : g(ϕn) = f1(ϕ

n), g(ψn) = f2(ψ
n), g(χn) = f3(χ

n), and so on
for every f -subscript n ≥ 1.

(c) For every representing bijection f1 for s1, ..., fn for sn, there
is a repesenting bijection g for s such that for everyA1, A2, A3, ... ∈
Atm: g(A1) = f1(A1), g(A2) = f2(A2), g(A3) = f3(A3), and so on
for every f -subscript n ≥ 1.

Chihara’s account involves a further constraint which captures the intuition
of Serious Actualism (roughly, if an object has a property in a possible world,
then it must exist in that world).24 As the reader might expect, on the present
24See [Chihara, 1998] pp. 235-36 and p. 238.
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framework we need not worry about possibilia and (serious) actualism, since
there are no objectual domains and, therefore, no room for individuals and
individual representatives. Moreover, since the substitution classes of nat-
ural models are constant, a situation which would motivate an associative
analogue of Serious Actualism does not arise. We shall return to actualism
later (in Subsection 4.5.5).

4.3.7 Truth With Respect to the Level of Sense Re-

stated

Having explained the notion of natural language interpretation, we may now
reformulate the notion of truth simpliciter with respect to the level of sense
(which has been previously stated for sentences of some suitably regimented
ordinary modal language or some language-like system in Subsection 4.2.12)
in terms of their exact synonyms, i.e., in terms of formulae of the formal
modal language L∗ which have received natural language interpretations.
This reformulation will allow us to isolate the connecting points between
which the link between the relative notion of truth at an index in a (natural)
associative model for formulae of L∗ and the absolute notion of truth sim-
pliciter of ordinary modal claims with respect to the level of sense will be
forged.

We shall assume that every expression of the modal language L∗ (except
for the nominal variables) has received a natural language interpretation and
that the interpreted nonlogical vocabulary, more exactly, the exact synonyms
of English names (i.e., proper names and definite descriptions) and predicates
have their sense-extensions and can be true or false with respect to the level of
sense. In order to provide the nominal variables which have hitherto received
no natural language interpretations with sense-extensions, we introduce the
notion of a natural language interpreted nominal (or substitutional) variable
assignment σ=(C) (the subscript indicates that the assignment is relative to
the substitution class as restricted by the delimiting English predicate =(C)).
σ=(C) assigns to every substitutional variable [x] of the natural language
interpreted formal language L∗ an English name, or more accurately its exact
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synonym. The sense-extension of that variable, σ=(C)[x] will then be the
sense-extension of that synonym.

We now can redefine the notion of truth simpliciter of sentences of a
modal natural language with respect to the level of sense in terms of truth
simpliciter of natural language interpreted formulae of the formal modal
language L∗ with respect to the level of sense under an interpreted nominal
variable assignment σ=(C) in a way analogous to the formal case in Subsection
2.4.2.

1. If A is an atomic formula of the formal modal language L∗ and o1, ..., on

are the n nominal terms occuring in A and ϕn is the predicate of that
formula, then [A/=] is true simpliciter with respect to the level of sense
under an interpreted nominal variable assignment σ=(C) just in case the
level of sense could have been (in the basic sense of ‘could’) such that
[A/=] was contained senext-[σ=(C)[o1]/=] through senext-[σ=(C)[on]/=]

and in senext-[ϕn/=].

2. If ¬A is a formula of the formal modal language L∗ then [¬A/=] is
true simpliciter with respect to the level of sense under an interpreted
nominal variable assignment σ=(C) just in case [A/=] is not true sim-
pliciter with respect to the level of sense under an interpreted nominal
variable assignment σ=(C).

And so on. In particular, the truth simpliciter of modal statements with
respect to the level of sense under an interpreted nominal variable assignment
σ=(C) will be characterized as follows:

(Necessity′). If 2A is a formula of the formal modal language
L∗, then [2A/=] is true simpliciter with respect to the level of
sense under an interpreted nominal variable assignment σ=(C) just
in case no matter how the level of sense could have been (i.e., nec-
essarily in the basic sense), [A/=] would be true simpliciter with
respect to it under an interpreted nominal variable assignment
σ=(C).

(Possibility′). If 3A is a formula of the formal modal language
L∗, then [3A/=] is true simpliciter with respect to the level of
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sense under an interpreted nominal variable assignment σ=(C) just
in case the level of sense could have been (in the basic sense of
‘could’) such that [A/=] was true simpliciter with respect to it
under an interpreted nominal variable assignment σ=(C).

Truth simpliciter with respect to the level of sense is then defined as truth
simpliciter with respect to every interpreted nominal variable assignment
σ=(C). So we may put the truth conditions for modal sentences of ordinary
language as follows:

(Necessity′′). If 2A is a closed formula of the formal modal
language L∗, then [2A/=] is true simpliciter with respect to the
level of sense (under every interpreted nominal variable assign-
ment σ=(C)) just in case no matter how the level of sense could
have been (in the basic sense of ‘could’) [A/=] would be true
simpliciter with respect to it (under every interpreted nominal
variable assignment σ=(C)).

(Possibility′′). If 3A is a closed formula of the formal modal
language L∗, then [3A/=] is true simpliciter with respect to the
level of sense (under an interpreted nominal variable assignment
σ=(C)) just in case the level of sense could have been (in the basic
sense of ‘could’) such that [A/=] was true simpliciter with respect
to it (under every interpreted nominal variable assignment σ=(C)).

(From now on we shall no longer indicate that the modal notions involved
in the right-hand side of the biconditionals are the basic ones.) This said
and done let us next isolate the points of connection between which the link
between the relative notion of truth at an index in an associative model and
the absolute notion of truth simpliciter with respect to the level of sense will
be fixed.

Recall, whenM = 〈S,R, s@, C, c, P, v〉 is a natural associative model of L∗

(where s@ ∈ S is stipulated to be a distinguished index), σ is a substitutional
variable assignment, and A is a closed formula of L∗, then the following
equivalences hold on the “relative side”: (i) Mσ |=s A iff (ii) for every
assignment σ,Mσ |=s A; iff (iii)M |=s A.
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Correspondingly, for the “absolute side”. When A is a closed formula
and [A/=] is A taken to have the meaning assigned to it by =, then we
have the following equivalences: (I) [A/=] is true simpliciter with respect
to the level of sense under an interpreted substitutional assignment σ=(C) iff
(II) [A/=] is true simpliciter with respect to the level of sense under every
interpreted substitutional assignment σ=(C); iff (III) [A/=] is true simpliciter
with respect to the level of sense.

The intended link is the link between (iii) and (III). It will be established
by a proof of a biconditional with the effect: (iii)M |=s A iff (III) [A/=] is
true simpliciter with respect to the level of sense. The way in which this is
will now be explained.

4.3.8 A Chihara-Style Connecting Theorem

We have interpreted the formal language L∗, along Chiharan lines, in terms
of two kinds of interpretation. On the one hand, we have interpreted the
expressions of L∗ in terms of natural language proto-interpretations = which
provided them with the meanings of natural language expressions. On the
other hand, we have interpreted L∗ in terms of (natural) associative models
which just are set-theoretic entities involving pure sets and expressions of the
base language L0. Given a proto-interpretation =, we may view these models
as representing via bijections how the level of sense could have been arranged
in so far as the substitution classes and the sense-extensions of the nominal
constants and predicates are of concern. Here we counted = as a natural
language interpretation, when the models did represent in conformity with
conditions (C1) through (C3).

What we still have to do, is to provide a link between the truth simpliciter
of sentences of ordinary modal language with respect to the level of sense and
the truth of a formula of the modal language L∗ at an index in a (natural)
associative model. As I have already explained, this will be accomplished
when we can prove a biconditional to the effect: (iii) M |=s A iff (III)
[A/=] is true simpliciter with respect to the level of sense. Now given the
equivalences from the previous section, this link will be established when
an analogous link between (i) and (I) is provided. We first fix an auxiliary
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link between (i) and (I) by proving our Chihara-style Connecting Theorem.
The desired link will then be captured by a corollary of that theorem—the
Chihara-style Principal Corollary.

The Chihara-Style Connecting Theorem. For every (natural) as-
sociative model M = 〈S,R, s@, C, c, P, v〉 of L∗ and for every
natural language proto-interpretation = conforming to M: for
every index s ∈ S, for every nominal constant α1, ..., αn ∈ C, and
for every formula A, if x1, ..., xn are the n nominal variables which
occur in A, then the following holds: Mσ |=s A iff for some index
t ∈ S, had the level of sense been such that there was a bijective
function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented
it, there would have been a representing bijective function g for t
such that some =(C)-assignment fulfilled the condition: [A/=] is
such that taking x1 to stand in for g(α1), ..., taking xn to stand
in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via
which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

As an immediate corollary to this theorem we obtain:

The Chihara-Style Principal Corollary . For s ∈ S, for any closed
formula A,M |=s A iff [A/=] is such that taking x1 to stand in
for g(α1), ..., taking xn to stand in for g(αn) results in a formula
that accurately reflects the level of sense had it been such that
there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

We may now simply retrive Chihara’s original proof of his Fundamental The-
orem25 in terms of the framework of associative modal semantics. The proof
is relegated to Appendix B.

25See [Chihara, 1998] pp. 239-259.
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4.4 Truth With Respect to the Level of Sense

and Truth With Respect to the Level of

Reference

Every natural language sentence can be evaluated nonreferentially. However,
only a certain portion of natural language sentences can be evaluated refer-
entially. On the present theory, the usual referential mode of evaluation is
adequate only for sentences which (i) involve exclusively denoting singular
terms and predicates which do have a referential extension, and which (ii)
do not occur in modal (or, perhaps, generally in intensional) contexts. In
Subsection 4.2.1 we have already dubbed this portion of a (natural) language
the referential portion of language.

In this section we shall be concerned with the (first-order fragment of the)
referential portion of natural language relating it to both the level of sense and
the level of reference. To obtain a picture of this interrelation, we shall first
state a simple connecting theorem for a substitutional first-order language.
After that we shall do the same for a denotational first-order language. With
these theorems at hand, we shall link the notion of truth with respect to
the level of sense to the notion of truth with respect to the level of reference
by proving what we shall call “the Level Connecting Theorem” (LCT). This
theorem claims, in effect, that a sentence of the referential portion of natural
language is true with respect to the level of sense just in case it is also
referentially true. As in Section 4.3 we shall consider the sense-extensions of
names and predicates in terms of the sense-extensions of the concepts they
express.

4.4.1 The Semantics of a Substitutional First-Order

Language

Let Ls=̈ be a substitutional first-order language with substitutional identity.
We obtain Ls=̈ from L∗ when we erase the box-operator and the correspond-
ing formation rule. Let I be an nonmodal constrained associative model for
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Ls=̈, a tuple 〈C,P, v〉. As before, let = be a nonreferential natural language
proto-interpretation, for Ls=̈. So = will lack a clause for the box.
Just like [α/=] is the nominal constant α of Ls=̈ taken to have the meaning

of an English name assigned to it by =, so [ϕn/=] is the n-ary predicate ϕn

of Ls=̈ taken to have the meaning of an English predicate assigned to it by
=. And as before [α/=] and [ϕn/=] are the exact synonyms of the English
name and predicate, respectively. Of course, for the LCT only the synonyms
of denoting names and predicates from the referential portion of language
will be relevant. As before we let ‘senext-[α/=]’ and ‘senext-[ϕn/=]’ denote
the sense-extensions of [α/=] and [ϕn/=], respectively.

We say that a natural language proto-interpretation = of Ls=̈ conforms to
I = 〈C,P, v〉 if and only if the following holds: there is a bijective function
f , from C to C, from P to P, and from Atm to Atm, such that

1. for each α ∈ C and for every A ∈ Atm(α):

{ϕn...α..., ψn...α..., χn...α..., ...} ⊆ v(α)

iff
{f(ϕn...α...), f(ψn...α...), f(χn...α...), ...} ⊆ senext-[α/=]; and

2. for each n-ary pure predicate ϕn ∈ P and for every A ∈ Atm(ϕn):

{ϕn...α1..., ϕ
n...α2..., ϕ

n...α3..., ...} ⊆ v(ϕn)

iff
{f(ϕn...α1...), f(ϕn...α2...), f(ϕn...α3...), ...} ⊆ senext-[ϕn/=].

So a natural language proto-interpretation = of Ls=̈ is called a conforming
natural language proto-interpretation if it determines a first-order associative
model.

We can then obtain, in a way which is similar but much simpler than
the proof of our Chihara-style Connecting Theorem (see Appendix B), the
following theorem.

Chiharan Nondenotational First-Order Connecting Theorem. For
every model I of Ls=̈, every = conforming to I, and every formula
A of Ls=̈: I |= A iff [A/=] is true with respect to the level of sense.
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The resulting applied associative semantics is, as I wish to suggest, not only
an adequate semantics for fictional language, but also perfectly appriopriate
for its referential portion.

4.4.2 The Semantics of a Denotational First-Order Lan-

guage

Let Ld= be an ordinary denotational first-order language with referential
identity of the kind discussed in Chapter 1. In what follows the metalinguis-
tic variables for the formulae of Ld= will be underlined in order to discern
them from the formulae of Ls=̈. So, for example, (∀x)(∃y)(x = y) is the
Ld=-counterpart for the Ls=̈-formula (Πx)(Σy)(x=̈y). Similarly A will be
the Ld=-counterpart of an Ls=̈-formula A. Let T be an ordinary first-order
denotational (or “Tarskian model”) for that language, i.e., an ordinary cou-
ple 〈D, v〉 consisting of a non-empty domain of denotata (i.e., pure sets) and
a denotational valuation function. Importantly, we stipulate that T be con-
strained by the following condition: for every element d of D there is an
individual constant α of Ld= such that v(α) = d. If D is nondenumerable,
there will be also nondenumerably many individual constants. In this case
the set of nominal constants of Ls=̈ will be stipulated to be nondenumerable
as well. We also assume that both languages have finitely many predicates.

Moreover, let =d be a referential natural language interpretation for Ld=

such that:

1. The logical connectives receive their usual truth functional meanings.

2. The meanings of the referential quantifiers are given by selecting an
English predicate, =d(D), which delimits their domain to just those
objects which satisfy that predicate. We take that predicate to have
the meaning of ‘... is (referentially) identical with ...’. The formula
(∀x)ϕx thus has the meaning of ‘Every x such that x is identical to x
is such that it is ϕ’.

3. Each individual constant α receives the meaning of a name or a rigidly
denoting definite description of an object that satisfies =d(D).
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4. Each predicate ϕn receives the meaning of an English predicate of arity
n. And = receives the meaning of ‘... is (referentially) identical to ...’.

In effect, the meaning assignments for the symbols of both languages coincide
except for the quantifers and the identity symbols.

In a way analogous to the nonreferential case, we let ‘[α/=d]’ denote α
with the meaning given to it by =d and we let ‘[ϕn/=d]’ denote ϕn with the
meaning given to it by =d. Again, for the referential portion of language,
only the synonyms of denoting names and predicates are of concern. We call
[α/=d] and [ϕn/=d] the referential exact synonyms of the English name and
predicate, respectively. Moreover, we let ‘refext-[α/=d]’ denote the referent of
the denoting English proper name or rigidly denoting definite description of
which [α/=d] is an exact referential synonym; similarly we let ‘refext-[ϕn/=d]’
denote the referential extension of the English predicate of which [ϕn/=d] is
an exact referential synonym.

We say that a referential natural language proto-interpretation =d of the
denotational language Ld= conforms to T = 〈D, v〉 if and only if the following
holds: There is a bijective function f , from D to the referential extension of
=d(D) such that:

1. for every individual constant α of Ld=, f(v(α)) = refext-[α/=d]; and

2. for every predicate ϕn of Ld=, and for every n-tuple of the denumerably
many members of D, 〈d1, ... , dn〉: 〈d1, ... , dn〉 ∈ v(ϕn) iff 〈f(d1), ... ,
f(dn)〉 ∈ refext-[ϕn/=d].

A referential natural language proto-interpretation =d of Ld= is called a con-
forming referential natural language proto-interpretation when it determines
a Tarskian model.26

We can then prove the following connecting theorem.

Chiharan Denotational First-Order Connecting Theorem. For
every model T of Ld=, every =d conforming to T , and every
formula A of Ld=: T |= A iff [A/=d] is true with respect to the
level of reference.

26See [Chihara, 1998] pp. 194-195.
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The proof is similar, but much simpler than the proof of Chihara’s original
Fundamental Theorem.

In this way we obtain an applied interpretation of ordinary denotational se-
mantics for the referential portion of natural language which employs intended∗,
rather than intended, Tarskian models. As I have already mentioned, I am
inclined to think that denotational semantics is adequate, if adequate at all
(recall, e.g., Marcus’s Venus problem discussed in Subsection 1.1.1.c.), only
for the referential portion of language.

4.4.3 The Level Connecting Theorem

In order to connect up the notion of truth with respect to the level of sense
and the notion of truth with respect to level of reference for the sentences of
the referential portion of language, we shall show the following theorem:

The Level Connecting Theorem. For every nonreferentially in-
terpreted sentence [A/=] and for every referentially interpreted
sentence [A/=d]: [A/=] is true with respect to the level of sense
iff [A/=d] is true with respect to the level of reference.

In effect, the Level Connecting Theorem (LCT) links the “absolute” right-
hand side of the Chiharan Nondenotational First-Order Connetcing Theorem
to the “absolute” right-hand side of the Chiharan Denotational First-Order
Connetcing Theorem. With this theorem established, we may conclude that
the following theorem holds as well.

Formal Level Connecting Theorem. For every model I of Ls=̈

and every closed formula A of Ls=̈, and for every denumerable
model T of Ld= and every closed formula A of Ld=: I |= A iff
T |= A.

To prove LCT, we shall appeal to the following principle of harmony which
imposes a constraint on the admissibility of assignments of semantic values
to the nonlogical vocabulary of the extensional portion of natural language
taken referentially and nonreferentially, respectively.
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The Principle of Correlation. Any denoting name and any pred-
icate of the referential portion of natural language is assigned
its actual sense-extension when it is taken nonreferentially just
in case it is also assigned its actual reference-extension when it
is taken referentially; where the assignment is such that for any
name and any predicate taken nonreferentially and referentially
respectively—or equivalently, for their corresponding nonreferen-
tial and referential exact synonyms—the following holds:

1. [α/=] is assigned senext-[α/=] iff [α/=d] is assigned refext-
[α/=d]; and

2. senext-[ϕn/=] = {ϕnα1...αn, ...} iff refext-[ϕn/=d] = {〈refext-
[α1/=d], ..., refext-[αn/=d]〉, ...}.

For example, according to the first part of the Correlation Principle, the
name ‘Socrates’ receives its actual referent (i.e., Socrates) just in case it also
receives its actual sense-extension (i.e. {socrates is the son of sophro-
niscus, socrates is a man, socrates saves the life of alcibiades,
socrates is a bachelor, socrates is married, ... }). And according
to the second part of the principle, the predicate ‘... saves the life of ...’ will
receive its actual reference-extension (i.e., {〈Socrates, Alcibiades〉, ...}) just
in case it also receives its actual sense-extension (i.e., {socrates saves the
live of alcibiades, ...}).
To show LCT, we first evaluate any assertoric sentence of the (first-order

fragment of the) referential portion of natural language according to the
referential and the nonreferential mode and then apply the Principle of Cor-
relation in a simple inductive proof of that theorem.

Let us first consider the evaluations. We begin with the nonreferential
mode of evaluation. We symbolize natural language expressions in the non-
referential formal language Ls=̈ so as to obtain formulae A. Next we provide
each of the constituent symbols of the resulting formula A with its nonref-
erential natural language interpretation = so as to obtain the nonreferential
exact synonym [A/=] of the natural language sentence which it symbolizes.

Every nonlogical term which occurs in [A/=] will receive its actual sense-
extension. An =-interpreted nominal constant α, that is, the nonreferential
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exact synonym [α/=], will receive the actual sense-extension of the name
which it is an exact synonym of, i.e., senext-[α/=].

Similarly, an =-interpreted predicate ϕn, that is, the nonreferential exact
synonym [ϕn/=], will receive the actual sense-extension of the natural lan-
guage predicate of which it is an exact synonym. Let ‘senext-[ϕn/=]’ denote
this sense-extension.

The truth conditions of nonreferentially natural language interpreted for-
mulae of Ls=̈ (where the pure atomic formulae of that language belong to
the base language of Ls=̈

0 ) are given (along the lines of Subsection 4.3.7) as
follows:

1. [ϕno1...on/=] will be true with respect to the level of sense under an
interpreted nominal variable assignment σ=(C) just in case [ϕno1...on/=]

is contained in senext-[σ=(C)[o1]/=] through senext-[σ=(C)[on]/=] and in
senext-[ϕn/=].

2. [o1=̈o2/=] will be true with respect to the level of sense under an inter-
preted nominal variable assignment σ=(C) just in case for every natural
language interpreted atomic formula [A2/=] which is just like [A1/=]

except for containing occurrences of [σ=(C)[o2]/=] where [A1/=] con-
tains occurrences of [σ=(C)[o1]/=] the following holds: [A1/=] is true
with respect to the level of sense under σ=(C) just in case [A2/=] is true
with respect to the level of sense under σ=(C).

3. [¬A/=] will be true with respect to the level of sense under an inter-
preted nominal variable assignment σ=(C) just in case [A/=] is not true
with respect to the level of sense under σ=(C).

4. [A ∧ B/=] will be true with respect to the level of sense under an
interpreted nominal variable assignment σ=(C) just in case both [A/=]

and [B/=] are true with respect to the level of sense under σ=(C).

5. [(Πx)A/=] will be true with respect to the level of sense under an
interpreted nominal variable assignment σ=(C) just in case for every
interpreted substitutional variant τ=(C) of σ=(C) [A′/=] is true with
respect to the level of sense under τ=(C).
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Let us now turn to the referential mode of evaluation. We symbolize the
natural language sentence in the referential formal language Ld= so as to
obtain a formula A. Next we provide each of the constituent symbols of the
resulting formula A with its referential natural language interpretation =d

so as to obtain the referential exact synonym [A/=d] of the natural language
sentence which it symbolizes.

Now every nonlogical term which occurs in [A/=d] will receive its actual
referential extension. An =d-interpreted individual constant α, that is the
referential exact synonym [α/=d], will receive the actual referent of the name
of which it is an exact synonym. Let ‘refext-[α/=d]’ denote this referent.

Similarly, an =d-interpreted predicate ϕn, that is the referential exact
synonym [ϕn/=d], will receive the actual referential extension of the natural
language predicate of which it is an exact synonym. Let ‘refext-[ϕn/=d]’
denote this extension.

We let a referential natural language interpreted variable assignment,
σ=d(D), be the referential analogue of σ=(C). Such an assignment is just a
natural language interpreted version of the usual denotational assignments.

The truth conditions of referentially natural language interpreted formulae
of Ld= are given as follows.

1. [ϕno1...on/=d] will be true with respect to the level of reference under
a denotational interpreted variable assignment σ=d(D) just in case the
n-tuple 〈refext-[σ=d(D)[o1]/=d], ..., refext-[σ=d(D)[on]/=d]]〉 is in refext-
[ϕn/=d].

2. [o1 = o2/=d] will be true with respect to the level of reference under a
denotational interpreted variable assignment σ=d(D) just in case refext-
[σ=d(D)[o1]/=d]] = refext-[σ=d(D)[o2]/=d]].

3. [¬A/=d] will be true with respect to the level of reference under a
denotational interpreted variable assignment σ=d(D) just in case [A/=d]

is not true with respect to the level of reference under σ=d(D).

4. [A ∧ B/=d] will be true with respect to the level of reference under a
denotational interpreted variable assignment σ=d(D) just in case both
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[A/=d] and [B/=d] are true with respect to the level of reference under
σ=d(D).

5. [(∀x)A/=d] will be true with respect to the level of reference under
a denotational interpreted variable assignment σ=d(D) just in case for
every interpreted denotational variant τ=d(D) of σ=d(D) [A/=d] is true
with respect to the level of reference under τ=d(D).

We can now prove the LCT using the Principle of Correlation via a straight-
forward induction on the complexity of formulae of Ls=̈ and Ld=, respectively.

Case 1: The natural language expression is an interpreted atomic for-
mula. Then [ϕno1...on/=] will be true with respect to the level of sense
under an interpreted nominal variable assignment σ=(C) iff [ϕno1...on/=] is
contained in senext-[σ=(C)[o1]/=] through senext-[σ=(C)[on]/=] and in senext-
[ϕn/=] (where o1 through on are nominal constants). But, in view of the
Principle of Correlation, the right-hand side will hold iff n-tuple 〈refext-
[σ=d(D)[o1]/=d], ..., refext-[σ=d(D) [on]/=d]]〉 is in refext-[ϕn/ =d] (where o1

through on are individual constants). And, given the relevant truth condi-
tions, this in turn will hold iff [ϕno1...on/=d] will be true with respect to
the level of reference under a denotational interpreted variable assignment
σ=d(D).

Case 2: The natural language sentence is an identity sentence. [o1 =

o2/=d] will be true with respect to the level of reference under a deno-
tational interpreted variable assignment σ=d(D) iff refext-[σ=d(D)[o1]/=d] =
refext-[σ=d(D)[o2]/=d], or equivalently, iff 〈refext-[σ=d(D)[o1]/=d], refext-[σ=d(D)

[o2]/=d]〉 ∈ refext-[= /=d]. But in view of the Principle of Correlation, the
right-hand side will hold iff senext-[σ=(C)[o1]/=] = senext-[σ=(C)[o2]/=] and
every predicate [ϕn/=] receives its actual sense-extension. By the Principle
of Correlation, the latter will hold exactly if every [ϕn/=d] receives its actual
referential extension. With respect to the actual level of sense this condi-
tion is trivially satisfied. So senext-[σ=(C)[o1]/=] = senext-[σ=(C)[o2]/=]] and
every [ϕn/=] has its actual sense-extension But this is the case just in case
for every natural language interpreted atomic formula [A2/=] which is just
like [A1/=] except for containing occurrences of [σ=(C)[o2]/=] where [A1/=]

contains occurrences of [σ=(C)[o1]/=] the following holds: [A1/=] is true with
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respect to the level of sense under σ=(C) just in case [A2/=] is true with re-
spect to the level of sense under σ=(C). And this will hold iff [o1=̈o2/=] is
true with respect to the level of sense under an interpreted nominal variable
assignment σ=(C).

Inductive hypothesis. Let LTC hold for formulae of Ls=̈ and Ld= respec-
tively of complexity < k, where k > 0. Then any formula complexity k
will be either a negation, a conjunction or a quantified (substitutionally or,
alternatively, referentially) formula.

Case 3: Negations. [¬A/=] will be true with respect to the level of sense
under an interpreted nominal variable assignment σ=(C) iff [A/=] is not true
with respect to the level of sense under σ=(C). By the inductive hypothesis,
this will be the case iff [A/=d] is not true with respect to the level of reference
under σ=d(D). Which will hold iff [¬A/=d] is true with respect to the level of
reference under a denotational interpreted variable assignment σ=d(D).

Case 4: Conjunctions. [A ∧ B/=] is true with respect to the level of
sense under an interpreted nominal variable assignment σ=(C) iff both [A/=]

and [B/=] are true with respect to the level of sense under σ=(C). By the
hypothesis, this will be the case exactly when both [A/=d] and [B/=d] are
true with respect to the level of reference under σ=d(D). And this is so iff [A∧
B/=d] will be true with respect to the level of reference under a denotational
interpreted variable assignment σ=d(D).

Case 5: Quantifications. [(Πx)A/=] is true with respect to the level of
sense under an interpreted nominal variable assignment σ=(C) iff for every
interpreted substitutional variant τ=(C) of σ=(C) [A′/=] is true with respect
to the level of sense under τ=(C); iff, by hypothesis, for every interpreted
denotational variant τ=d(D) of σ=d(D) [A/=d] is true with respect to the level
of reference under τ=d(D); iff [(∀x)A/=d] will be true with respect to the level
of reference under a denotational interpreted variable assignment σ=d(D).

The notion of truth simpliciter with respect to the level of sense for a
sentence is defined, in the way already mentioned, as truth simpliciter un-
der all interpreted substitutional variable assignments. The notion of truth
simpliciter with respect to the level of reference is defined in an analogous
way. With these definitions we can complete the proof of LCT. The Formal
LCT follows in the way already described.
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Let us conclude this section with an illustration of the claim that we may
evaluate natural language sentences in two ways, that is the referential and
the nonreferential mode. Consider, for example, the following sentences:

1. ‘Santa Claus is male’;
2. ‘Santa Claus is a goddess’;
3. ‘Lou Reed is male’;
4. ‘Lou Reed is a goddess’.

Naturally, interpreted nonreferentially (1) will be true with respect to the
level of sense and interpreted referentially, it will be false with respect to the
level of reference; (2) and (4) will be false with respect to both levels on the
appropriate interpretations; and (3) will be true with respect to both levels
on the appropriate interpretations.

In our discussion of the LCT we have been dealing exclusively with named
objects. Sentences about unnamed objects (such sentences will not be atomic,
nor will they involve atomic sentences of this sort) will be evaluated only ac-
cording to the referential mode. (But maybe it is not wholly absurd to
assume that every object has a name (in some non-Lagadonian sense27) or
that there is a name concept for every object. After all, we have endorsed the
common metaphysical assumption that Fregean concepts are mind- and lan-
guage independent abstract objects. If we did also declare that every object
has a concept associated with it (and that every concept is associated with
an, not necessarily tokened, expression-type that expresses it), all Fregean
propositions (or the sentences which express them) would be evaluable in the
nonreferential mode.)

4.4.4 Modal Contexts and Modal Environments

According to the semantic theory presented in this text, we may distinguish
two independent modes of semantic evaluation of natural language sentences:
the referential and the nonreferential mode. The present theory treats modal
discourse as a species of nonreferential discourse and suggests that sentences
27According to David Lewis’s Lagadonian method, we may treat every object as naming
itself (see [Lewis, 1986] p. 145).
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which occur in the context of modal discourse should be evaluated according
to the nonreferential mode (see Subsection 4.2.1).

It is important to appreciate the difference between sentences which occur
in the context of modal discourse and modal sentences. A sentence which
occurs in the context of modal discourse, for example, at some place in a
modal argument, does not need to be a modal sentence (one which contains
a modal operator) itself.

Let me make this distinction somewhat more precise. We say that a
sentence of natural language is a modal sentence if it is a sentence of the
modal portion of natural language and contains a modal operator; and we
say that a sentence occurs in the context of modal discourse if it is a sentence
of the modal portion of natural language. The present theory of modality
applies to the latter kind of sentences, not only to sentences of the former
sort.

We say that a sentence occurs in a modal context just in case it is a
subsentence of a sentence which contains a modal operator. Since a sentence
which contains a modal operator may be taken to be its own subsentence,
a modal sentence may be said to occur in a modal context itself. In order
not to confuse sentences which occur in modal contexts with sentences which
occur in the context of modal discourse, it might be helpful to replace talk of
sentences which occur in the context of modal discourse with talk of sentences
which occur in a modal environment.

On the present theory, then, sentences which occur in modal environments
are nonreferential and are to be evaluated according to the nonreferential
mode. This proposal, as I shall argue later in Subsection 4.5.12, has conse-
quences for the prospects of certain modal arguments.

4.5 Some Philosophical Consequences

We conclude this chapter with considerations of a couple of widely discussed
issues in the philosophy of quantified modal logic and the philosophy of lan-
guage from the perspective of the applied associative framework.
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4.5.1 On Analysing Modality

Do the absolute truth conditions given by (Necessity) and (Possibility), or
their primed versions from Subsection 4.3.7, provide analyses of the modal op-
erators (i.e., ‘definitionally necessarily’ and ‘definitionally possibly’) in more
basic terms? Recall that (Possibility′), for instance, makes the following
biconditional claim:

If 3A is a closed formula of the formal modal language L∗ then
[3A/=] is true simpliciter with respect to the level of sense iff
the level of sense could have been (in the basic sense of ‘could’)
such that [A/=] was true simpliciter with respect to it.

Letting A be some sentence of ordinary language this claim is tantamount
to (Possibility):

‘It is definitionally possible that A’ is true simpliciter with respect
to the level of sense iff the level of sense could have been (in the
basic sense of ‘could’) such that ‘A’ was true simpliciter with
respect to it.

To be sure these truth conditions do not provide extensional explanations of
these expressions in terms of quantification over possible worlds or, alterna-
tively, in terms of quantification over rearrangements of the level of sense.
The present proposal is, therefore, in opposition to theories which seek to
explain modal operators in terms of quantification.

Moreover, our truth conditions obviously do not provide an eliminative
analysis of definitional modality, an analysis, that is, whose right-hand side
does in no way involve modal notions.28

28Of course, this is not a distinctive feature of our approach. As is well-known, on
most quantificational accounts of modality, except perhaps for Lewis’s proposal, modal
notions are involved in these explanations. A common feature of ersatzist approaches is
that they involve modal notions in their explanations of what a possible world is. Thus,
for instance, Plantinga’s worlds are maximal states of affairs, Adams’s worlds are maximal
consistent sets, Stalnaker’s worlds are instantiable complex properties and Armstrong’s
worlds are built up from possible atomic states of affairs. (See Subsection 1.1.2.g.) For an
informative discussion of the possibility of giving a non-modal analysis of modal notions
within ersatzist frameworks see [Divers, 2002] ch. 11.
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Furthermore, (Possibility) and (Necessity) as well as their primed versions
do not provide a modalist treatment of definitional possibility (necessity).
(On the “classical” account of modalism, modalism is the view that modal
operators are primitive notions, that is, notions which cannot be explained in
more basic terms.29) This is so, since, on the present proposal, the primitive
notion of basic possibility serves to explain the notion of definitional possi-
bility. (The classical modalist explanation might be correct, as I am inclined
to think, for the notion of basic possibility.30)

29See [Fine, 1977] for the classical formulation. Our characterization of modalism is
taken from page 116.
30It is, maybe, worth noting that our account of definitional modality in terms of (Pos-
sibility) and (Necessity) (and their primed versions) can be neither subsumed under what
Christopher Peacocke has recently called “constraint modalism” nor under what he calls
“ontological modalism”:

“Constraint modalism is the doctrine that there are constraints involving the
notion of possibility which are explanatorily prior to whether a world is pos-
sible or not. A supporter of constraint modalism can consistently quantify
over possible worlds of an ersatz kind, and use such quantification in the
explanation of modal discourse, so long as the possible worlds he so uses are
conceived as derivative from the satisfaction of various constraints involv-
ing the notion of possibility. Ontological modalism, by contrast, states that
possible worlds have no part to play in the elucidation and understanding
of modal discourse. The ontological modalist will insist that ‘necessarily’ is
never in any way to be understood as a quantifier.” ([Peacocke, 1999] p. 156,
my italics).

Obviously, ontological modalism is a special case of modalism as “classically” under-
stood. (For ontological modalism see [Forbes, 1989] ch. 4. and the discussion thereof
in [Melia, 1992] and [Forbes, 1992]. Forbes’s earlier discussion of modalism, in which he
did not make use of quantification over modalistically introduced “possibilities” may be
found in [Forbes, 1985] ch. 4; for a discussion of this earlier account see, in particular,
[Chihara, 1998] ch. 4.)
Moreover, it will be noted that the ersatzist accounts mentioned in a footnote back are,
in principle, compatible with Peacocke’s constraint modalism. (In my opinion Peacocke’s
terminology is rather misleading. For Peacocke’s term ‘constraint modalism’ is, as it seems
to me, essentially another word for ‘principle-based theory of modality’ (which refers to
the theory he has developed in [Peacocke, 1999] and defended further in [Peacocke, 2002b])
and that theory is primarily concerned with providing a tie between the metaphysics and
the epistemology of modality rather than with the issue of whether modal operators are
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It will be noted that the absolute truth conditions for definitional necessity
as given by the versions of (Necessity) and (Possibility) do not have the
nonextensional form

‘Definitionally necessarily, A’ is true iff definitionally necessarily,
A.

‘Definitionally possibly, A’ is true iff definitionally possibly, A.

which is characteristic of homophonic accounts of (broadly logical) modality,
or alternatively, of model-theoretic accounts of (broadly logical) modality
which pursue the strategy of intended∗ Kripke-models.31 The truth condi-
tions of the present proposal do have a form which differs from the truth
conditions offered hitherto; they are neither quantificational nor modalist.

Moreover, we might add that our truth conditions are neither circular nor
infinitely regressive. For, on the one hand, definitional necessity is not ex-
plained in terms of definitional necessity and, on the other hand, the analysis
of that notion comes to an end at the primitive notion of basic possibility. In
this way the present account of definitional necessity is (as I hope) illuminat-
ing, even though it is not eliminative. We allow for a distinction between a
modal notion which is to be analysed and a (primitive) modal notion which
helps to analyse it. In this way we elucidate a nonbasic notion of modality
in terms of a basic one.32

primitives. I shall present the main ideas of Peacocke’s principle based account in Chapter
5.)
31For homophonic truth theories of necessity along these lines see, in particular,
[Davies, 1978], [Gupta, 1978], and [Peacocke, 1978]. The following claim of Menzel’s may
be taken as pars pro toto for the supporters of intended∗ Kripke-models: “if we are going
to take modality in the broadly logical sense at face value, then there is no reason to ask
for any more than a homophonic theory of modal truth conditions: for a modal statement
to be true—just as in the nonmodal case—is for things to be as the statement says.”
([Menzel, 1990] p. 385; see also ibid. p. 383.) Both of these approaches are in agreement
with classical modalism.
32As it seems to me, a suggestion like this allows, to view the merits of non-Lewisian
explanations of modality (i.e., accounts which do not involve genuine realist worlds)
more optimistically than David Lewis suggests (cf. his well-known remarks at page 85
of [Lewis, 1973]). (For a critical discussion of Lewis’s analysis of modality in terms of

214



Of course, if for some reason or other we decided to pursue an approach
along quantificational lines, we could have admitted quantification over al-
ternative ways the level of sense could have been arranged. After all, these
rearrangements would be just sets of atomic sentences of a natural (or men-
tal) language or, alternatively, atomic propositions of a language-like system
of concepts. Such an ontology, would be even more agreeable than the ontol-
ogy of what David Lewis calls “linguistic ersatzism”. For whereas linguistic
possible worlds represent various ways the world might have been, rearrange-
ments of the level of sense would not represent anything at all—they would
be sets of atomic sentences (or propositions) which just constitute the alter-
native levels. Unlike linguistic ersatz worlds, they would therefore not appeal
to something dubious they represent.33 As the reader will have noted, on the
construction offered in this chapter, the only kind of item that represents
are associative bijection-tuples. They represent how the (actual) level of
sense—being a set of atoms of some language-like system—could have been
arranged; and they do so in a precise, mathematically specified way.

4.5.2 On Modal Truth With Respect to the Level of

Sense

When the conditions on the conformity of natural language proto-interpretati-
ons themselves (see Subsection 4.3.6) are taken into account, the truth of
closed formulae which are prefixed with modal operators may be linked to
the modal truth of the exact synonyms of the formulae in the unprefixed
form with respect to the level of sense. Thus, from the Principal Corollary of
our Chihara-style Connecting Theorem, we may obtain a couple of corollar-

quantification over Lewisian worlds see, in particular, [Chihara, 1998] ch. 8, sect. 6 and
the references therein.)
Maybe Robert Stalnaker is right when he writes: “But it seems to me that modal
notions are basic notions, like truth and existence, which can be eliminated only at the
cost of distorting them. One clarifies such notions, not by reducing them to something
else, but by developing one’s theories in terms of them.” ([Stalnaker, 2003] p. 7.) From
the perspective of the present theory this dictum will be correct for basic modality.
33The differences between linguistic possible worlds and rearrangements of the level of
sense will be discussed further in Subsection 4.5.4 below.
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ies concerning the notion of modal truth simpliciter with respect to the level
of sense.34 Here we have to be aware of the distinction between definitional
modality (which will be below symbolized by boxes and diamonds) and basic
modality.

Chihara-style Connecting Theorem. For every natural associative
modelM = 〈S,R, s@, C, c, P, v〉 of L∗, for every natural language
proto-interpretation = which conforms toM the following holds:
for s ∈ S, any closed formula A of L∗ is such that M |=s A iff
[A/=] is such that taking x1 to stand in for g(α1), ..., taking xn to
stand in for g(αn) results in a formula that accurately reflects the
level of sense had it been such that there was a bijective function
via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

As a corollary to this we obtain:

(i) For every associative model M = 〈S,R, s@, C, c, P, v〉 of L∗,
for every natural language proto-interpretation = which conforms
toM the following holds: for any closed formula A of L∗ there is
a s ∈ S, such thatM |=s A iff there is a t ∈ S such that, had the
level of sense been such that there was a bijective function via
which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, then [A/=] would
have been true with respect to the level of sense.

The left-hand side of this corollary holds, in particular, just in case:

(A)M |=s@ 3A.

In view of (C1) the right-hand side of the corollary holds just in case:

(B) The level of sense could have been (in the basic sense of
‘could’) such that [A/=] was true with respect to the level of
sense.

But (B) will hold just in case:

34These corollaries and the reasoning to follow essentially parallel the considerations in
[Chihara, 1998] pp. 258-259.
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(C) It is basically possible that [A/=] is true with respect to the
level of sense.

So from (A) and (C) we obtain the following biconditional as a corollary to
corollary (a):

(ii)M |=s@ 3A iff it is basically possible that [A/=] is true with
respect to the level of sense.

In a similar way we also obtain:

(iii) M |=s@ 2A iff it is basically necessary that [A/=] is true
with respect to the level of sense.

(Here ‘basically necessary’ just means ‘no matter how the level of sense could
have been arranged (in the basic sense of ‘could’) ’.) In this way the model-
relative truth of closed formulae of L∗ which are prefixed by modal operators
is mirrored by absolute, basically modal truth of exact synonyms of the
originally unprefixed sentences of ordinary modal language with respect to
the level of sense.

4.5.3 On the Ground of Modal Truth

A theory of modality should not only give an account of the form of the truth
conditions of modal statements, it should also address the question of what,
if anything, is “the metaphysical ground of modal truth”?35 Proponents
of theories which appeal to intended Kripke-models are likely to locate the
metaphysical ground of modal truth in the reality which is modeled by them.
It is not clear, however, how the proponents of intended∗ Kripke-models are
to approach this issue. Indeed, neither of them addresses this metaphysical
question.36

35[Menzel, 1990] p. 385.
36Christopher Menzel, for example, confines himself to questions of the form of modal
truth conditions without considering questions of ground: “Freed from their [i.e., the
intended models’] grip in modal semantics, nothing deeper (and nothing less deep) than a
homophonic account of modal truth conditions—silent as it is on questions of the ground
of modal truth—is to be expected.” ([Menzel, 1990] ibid.
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Before we attempt to give an answer to the question of what grounds
definitional modality according to the present theory (which makes use of
intended∗ modal associative models), it will be helpful to distinguish a couple
of things concerning the “ground of modal truth”.

When we discuss the question of the ground of necessary truth in the
context of denotational theories, we should be aware of the distinction be-
tween that what a necessary proposition is intuitively taken to be about,
i.e., the subject of the proposition, on the one hand, and the source of that
proposition’s broadly logical (or, equivalently, metaphysical) necessity, on the
other hand.37 For example, whereas on the denotational view the statement
‘Necessarily, all bachelors are unmarried men’ which expresses a conceptual
necessity is about bachelors, the source of that truth will be located in the
meaning of the terms which figure in that statement. Similarly, any logical
necessity will be true solely in virtue of the meaning of the logical terms in-
volved in it, but the source of this necessity will not be taken to coincide with
the things it is about.38 Finally, a de re modal claim like ‘Socrates is nec-
essarily a man’ is—by the denotationalist’s lights—about Socrates, whereas
the source of that necessity is not Socrates or any old feature of him, but his
essence.

Moreover, with respect to denotational theories of modality, we have to be
aware of a further distinction, the distinction between the subject of a modal
truth and its ultimate truthmaker (or its constitutents). According to deno-
tational approaches along the lines of intended (or, altenatively, intended∗)
Kripke-models, the truthmakers of modal truths (or their constituents) are
the items which make up the models. So, for example, the subject of the
modal sentence ‘Socrates is necessarily a man’ will be—intuitively—Socrates,

37The difference between the subject and the source of metaphysically necessary state-
ments has been emphasized in [Fine, 1994].
38As I have already noted in Subsection 4.2.13, conceptual necessities and (narrow) log-
ical necessites are usually taken to be special cases of broadly logical (or metaphysical)
necessity. See, for example, [Plantinga, 1974] pp. 1-2, [Chihara, 1998] p. 7 (where, de-
viating somewhat from the usual terminology, broadly logical necessity is equated with
conceptual necessity) or [Fine, 1994] p. 9 (who gives an essentialist account of metaphys-
ical necessity). For a recent discussion of metaphysical necessity and its special cases see
also [Lowe, 1999] ch. 1. sections 4 and 5.
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but the ultimate truthmaker will be a representative of him (e.g., his haec-
ceity, a counterpart of him, or some pure set representing him via a bijec-
tion). (I write ‘intuitively’, since, as I have argued in Subsection 1.1.2.h,
on the denotationalist’s account the intuitive subject of the modal sentence
‘Socrates is necessarily a man’ (which in this case just is the intuitive referent
of ‘Socrates’) and the denotationalist’s referent (which is his representative)
come apart.)

These distinctions made, we may now turn to the question of the meta-
physical ground of modal truth. How is that question to be approached on
the present nondenotational account? Since modal language is viewed as
being reflective, it is not treated as being about anything at all. And since
the nonreferential mode of evaluation is adequate for modal language, the
question of subject does, on our approach, not arise for modal truths. In
effect, the question of ground reduces to the question of source. But what,
then, is the source of definitional necessity?

To get at an answer consider, for example, the absolute truth conditions
for the following de nomine definitional possibility.

‘Tarski could have been (in the definitional sense) a violinist’ is
true simpliciter with respect to the level of sense iff the level of
sense could have been (in the basic sense of ‘could’) such that the
sense-extensions of ‘Tarski’ and ‘... is a violinist’ did coincide on
‘Tarski is a violinist’.

(Mutatis mutandis, for the conceptual version.) That the right-hand side of
this truth condition holds is guaranteed by the Principle of Rearrangement
by which the level of sense is governed. In the case at hand, this principle will
require that the right-hand side holds just in case the level of sense could have
been (in the basic sense of ‘could’) arranged that way in accordance with the
Principle of Nominal Sense-Extension and the Principle of Predicative Sense-
Extension. These principles, however, require that the sense-extensions of
names and predicates be determined by their meanings. It is, therefore, the
meanings of the constituting nonlogical terms in which the truth of ‘Tarski
could have been (in the definitional sense) a violinist’ with respect to the
level of sense has its source.
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Similarly, the definitional necessity of the propositions expressed by ‘All
bachelors are male’ or ‘All rectangles are rectangles’ have their source in the
meanings of the terms involved. In the latter case the source of the necessity
will be the meaning of the logical vocabulary, in the former it will be also
the meaning of the nonlogical terms.

One might be tempted to ask what the source of the primitive notion of
basic modality is, which serves to explain definitional necessity. As I wish to
understand this notion, there are no sentences, whether natural or mental,
and there are no propositions that are necessary or possible in this sense.
This notion merely serves as a structuring device of the level of sense by de-
termining which atomic sentences of the language must or can be contained
in the sense-extensions of the nonlogical vocabulary (see, in particular, Sub-
section 4.2.5). In effect, this notion merely operates on sense-extensions.
According to this way of understanding basic possibility (necessity), there
just are no statements which are possibly (necessarily) true in this sense.
There is, therefore, no good reason to ask what the source of basic modal
truth is.

4.5.4 On Ontological Commitments

Since on the nonreferential mode of evaluation of existential claims of the
object language no referents are involved, this sort of evaluation cannot be
taken to give rise to any kind of ontological commitment. Only the quantifi-
cations of the metalanguage of the semantic theory for that object language
can be understood in this way. Like remarks, apply to the formal semantics
of the theory: the formal language L∗ is unable to express claims of refer-
ential existence, but the metalanguage used to study that language can be
taken to express such claims, at least, when its quantifiers are assumed (as
seems natural) to have existential import. A crucial difference between our
nonreferential theory and the referential theories is that we construe only
the language of the theorist in an ontologically committal way but not the
language (or the language-like system) of the speaker.

In Section 1.1. we have assumed that a semantic theory is committed
to the existence of those entities which are involved in its account of truth
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(see, in particular, Subsection 1.1.2.c). What kinds of ontological commit-
ment, then, does our theory involve? Well, on the formal side it appeals to
the entities of which constitute modal associative models, that is, pure sets,
the expressions of the formal language, and sets thereof. On the applied
side, as developed in terms of the strategy of intended∗ modal associative
models, the theory involves, first, the model-theoretic apparatus of associa-
tive models and, second, depending upon ones choice of the object language
(or language-like system), the expressions of that language (which may be
natural or mental), and the sense-extensions of the nonlogical expressions
of that language which amount to sets of pure atomic sentences. On the
conceptual construal of sense-extensions given in Section 4.3, the ontology
of the theory amounts to Fregean concepts, Fregean propositions and sets.
On a nominalist account it will involve expression-types and sentence-types
instead of concepts and propositions. In effect, expressions of some preferred
language-like system and sets is all the ontology needed in applied associative
semantics.

What about possible worlds? As the present theory proceeds squarely
in terms of intended∗ models, it is not committed to the existence of such
things. However, the theory is committed to the existence of the level of
sense. This level is, in effect, a set of sentences (or structured propositions)
of some language system. In this respect it involves an ontology very much
like that of linguistic ersatzism (in a broad sense of ‘linguistic’).39

(In view of our discussion of the level of sense in Section 4.2, it would be
a mistake to view the level of sense as a (broadly) linguistic ersatz world.
This would be so for several reasons. First, linguistic worlds are simply
maximally consistent sets, whereas the level of sense is a set of a rather
different sort. In particular, the level of sense is not consistent, since the
sense-extension of any name (and thus the sense-spectrum of names) is not
consistent. More exactly, for each name, given the meaning postulates of all
the predicates (not only of the ones characteristic for it), an atomic sentence
and a negation will be derivable from its sense-extension. Moreover, the
present theory, because of the intuition of reflection it is intended to capture,

39For an influential criticism of linguistic ersatzism (in a sense of ‘linguistic’ which is
less broad than ours), see [Lewis, 1986] sect. 3.2.
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is immune to the problems which are characteristic of linguistic ersatzism—in
particular, to problems concerning the descriptive power of the “worldmaking
language” as raised by David Lewis (e.g., the problem that there can be many
indiscernible possible individuals, but no two indiscernible descriptions, or
the problem that possibilities can outrun the means of describing them40).
In addition, the present theory is not prone to the more general problems of
intended Kripke-models discussed in Chapter 1, which the linguistic ersatzer
has to face (e.g., the problem of modal reference raised in Subsection 1.1.2.h).
However, unlike the denotational linguistic ersatzer our approach has the
disadvantage that, in view of our axiomatization of substitutional identity,
our language will contain only finitely many predicates, in case it includes
the predicate for substitutional identity.)

In my opinion the relatively modest ontological inventory of our applied
semantical framework (which will be more parsimpnious on the nominalist
than on the conceptualist account of sense-extensions) is an advantage of
the present theory. In contrast to the denotationalist approaches which use
intended Kripke-models, we need not care about such things like haecceities,
contingently nonconcrete objects, Lewisian (or other sorts of) counterparts,
about other sorts of possibilia or about possible worlds. And we do not
have to face all the metaphysical questions to which these entities give rise.
This does also apply to theories which proceed in terms of intended∗ Kripke-
models. However, unlike our approach, these theories have to face, besides
other difficulties (see Subsection 1.1.2.i), metaphysical problems, e.g., prob-
lems concerning the metaphysical grounds of modal truth or problems about
truth in fiction.

The advantages of ontological parsimony and a significantly narrowed
down metaphysical agenda are, of course, advantages which the present the-
ory also shares with theories that appeal to applied standard substitutional
semantics (or truth-value semantics). However, on the present framework
questions concerning the intended or the intended∗ interpretations of 1 and 0
do not arise. We simply need not be concerned with metaphysical questions
about the nature of the True and the False or with truthmaker monism (see
Subsection 1.2.3).
40See [Lewis, 1986] pp. 157-165 for the relevant discussion.
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4.5.5 On Actualism

The ontological commitments of the present semantic theory are intended to
be in agreement with actualism, i.e., the view captured by the thesis that
unrestrictedly everything that exists (or, equivalently, everything there is) is
actual (see Subsection 1.1.2.g).

We may claim that unrestrictedly all possible names and predicates (or
that unrestrictedly all possible name concepts and predicative concepts) do
actually exist even if not all of them are (or, even, can be) deployed. On that
assumption there will be no “alien” names and predicates. An idealizing
assumption of this sort, however, does not need to be endorsed. We may
be more modest and confine ourselves to the names (or name concepts) and
predicates (or predicative concepts) of some language (natural or mental) as
developed at a certain stage or, alternatively, to some suitable language-like
system of concepts.

The applied semantical framework presented in this chapter is a frame-
work for constant substitution class semantics. However, applied varying
substitution class semantics can be reconciled with actualism as well. In
general, we could stipulate that there be a substitution class which contains
unrestrictedly all names and that there be also substitution classes of names
which are subsets thereof which are restricted to some suitable parameter.
But whatever the motivation for an account of this sort might be, it will in-
volve, as it seems to me, complications (e.g., complications of representation,
since an additional condition on conformity might have to be imposed which
did in some sense correspond to the denotationalist’s intuition of Serious
Actualism) without philosophical gains.

4.5.6 On BF, CBF, and NE

We have mentioned in Chapter 1 that the technically simple—and, there-
fore, nice—constant domain systems run counter to certain modal intuitions
which actualists typically share, since such systems allow for the derivation
of theorems like BF, CBF, and NE.

Recall that, on the paradigmatic account, to endorse the truth of the
formula 3(∃x)ϕx→ (∃x)3ϕx, which is equivalent to an instance of BF, and

223



its antecedent is to accept the existence of at least one antiessentialist actuale.
So, for example, when ϕ is taken to have the meaning of ‘... is a harpy’, then,
accepting that formula and its antecedent, one will be committed to the view
that among the actually existing objects there is an object which is possibly
a harpy. But this would run counter to the intuition that the fundamental
kind properties of an object are essential to it. Moreover, the acceptance of
BF, again in the form of 3(∃x)A → (∃x)3A, seems to violate the intuition
of distinctness which says that there might have been some possible object
which is distinct from every actual object. CBF, on the other hand, allows
the derivation of NE, that is the formula (∀x)2(∃y)(y = x), which on the
paradigmatic reading violates the intuition that there are things which might
not have existed and thus leads to necessitarianism.

The only (to the best of my knowledge) presently available strategy of
reconciling constant domains with actualism, does invoke the actual existence
of contingently abstract (or nonconcrete) objects.41

With regard to the problem of antiessentialist actualia, BF and the ac-
tualist’s essentialist intuitions may be reconciled on this sort of account, by
claiming that the actuale is a contingently abstract object which is essentially
a harpy in every possible world where it is concrete.

Similarly, the intuition that there might have been some possible object
which is distinct from every actual object is recaptured by claiming that there
might have been a concrete object which is distinct from every object which
is actually concrete; where this object is a contingently abstract actuale.

Finally, the intuition that there are things which might not have existed
is rejected in favour of the Leibnizian view that everything there is exists of
necessity. However this antinecessitarian intuition is recaptured by claiming
that there are things which might not have been concrete. Thus, for ex-
ample, Linsky and Zalta are concrete at this world but at others they are
contingently abstract objects which cannot be found in spacetime there.42

41This strategy is due to [Linsky & Zalta, 1994]. For an exchange on this proposal see
[Tomberlin, 1996] and [Linsky & Zalta, 1996]. Essentially the same approach is proposed
in [Williamson, 1998].
42See, for example, [Linsky & Zalta, 1994] p. 448.
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I do not wish to discuss the plausibility of the assumption that there
are such things like contingently nonconcrete objects.43 My present point
is that either way the denotational modal semanticist is confronted with
the dilemma of either complicating quantified modal logic (for instance, by
admitting varying domains, introducing elements from free logic and so on),
or inflating ontolology (for example, by introducing a new category of being
like Linsky and Zalta do). Needless to say, theorists who combine the former
strategy with intended Kripke-models, do not only complicate logic, but also
inflate their ontology and metaphysical agenda.44 Actualists who endorse
the strategy of intended∗ models are better off, since they complicate logic
but do not inflate ontology.45 Neither option is appealing.

On the present approach to modal semantics, however, we may find a

43Let me only report some doubts. Since the solution to the problem of antiessentialist
actualia appeals to contingently abstract objects, it might, arguably be taken merely to
shift the problem. For more radical essentialists will surely insist that things are either
essentially concrete or essentially abstract and that, therefore, Linsky’s and Zalta’s re-
striction of the range of properties which may count as essential is somewhat ad hoc and
not supported by independent reasons. Moreover, even granting the intelligibility of their
assumption, it will be legitimate to ask how the concrete Linsky of the actual world differs,
exactly, from the Linsky who exists qua abstract object at another world w, or how the
latter differs at w from Zalta who exists qua abstract object at that world (irrespectively
of the difference which might obtain between them at other worlds). Finally, let me add
that it is not clear—as Linsky and Zalta do not discuss that question—what a possible
world is supposed to be on their and how their possible objects (e.g. the contingently ab-
stract ones) are metaphysically related to them. This incompleteness of their metaphysical
views surely makes their proposal less credible. For further criticism see [Divers, 2002] pp.
214-215.
44For the technical complications see [Hughes & Cresswell, 1996] and [Garson, 2001];
for philosophical discussion cf., in particular, [Linsky & Zalta, 1994] sect. 3 and
[Menzel, 2000].
45Menzel and Chihara both develop systems of S5 modal first-order free logics see
[Menzel, 1991] and [Chihara, 1998]. Interestingly, Menzel’s system involves a restriction
on the rule of necessitation: If ` A, then ` 2A, so long as A is provable without any
instance of t = t, for any individual term t. This blocks the derivation of necessitarianism.
In Chihara’s system neither BF and CBF is valid, and so is NE. In particular, 2(∃x)E!x
fails to be provable, since the domain at some index may be empty. Moreover, Chihara
has to add further axioms to his Serious Actualist system; see [Chihara, 1998] ch. 7, sect.
2.
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way out of this dilemma. We leave the denotationalist picture behind and
adopt a picture on which modal language is nonreferential. We take the
correct modal logic to be substitutional quantified modal logic. This logic—
given our affection for technical simplicity—will be a constant substitution
class system (which, to make matters even simpler, will preferably be S5,
for the accessibility relation may then be “dropped”). Consequently, we
do not discuss the troublesome denotationalist BF, CBF, and NE but their
substitutional counterparts.

So, to endorse SBF is not to accept the existence of some sort of antiessen-
tialist actualia, since on this modal semantics of the modal object language
there are no objects and thus no actualia of this sort at all. On the present
account the truth of the ordinary language counterpart of 3(Σx)ϕx →
(Σx)3ϕx with respect to the level of sense amounts to saying that (tak-
ing ϕ to have the meaning of ‘... is a harpy’) if the level of sense could have
been (in the basic sense of ‘could’) such that the sense-extension of some
name did coincide with the sense-extension of ‘... is a harpy’, then for some
name the level of sense could have been (in the basic sense of ‘could’) such
that its sense-extension did coincide with that of ‘... is a harpy’.

In defense of the intuition of distinctness we do not need to face the choice
between accepting necessitarianism like the inflators of ontology do, or reject
it like the complicators of logic. We may be entirely agnostic on this issue.
We may claim that it suffices that the names and predicates and the concepts
they express exist without caring about the modal status of this existence
claim.

How, then, is the intuition of distinctness to be dealt with on the present
approach? We do not need to claim that to say that there could have been
more (or fewer) things than there actually are just is to say that more (or
fewer) things, all of which exist of necessity, could have been concrete. My
preferred suggestion is, instead, that to say that there could have been more
things than there actually are is to claim that the sense-extensions of more
names (or name concepts, unrestrictedly all of which do actually exist and
unrestrictedly all of which are contained in the substitution class of the sub-
stitutional model) could have (in the basic sense of ‘could’) coincided with the
sense-extension of some relevant predicate (or predicative concept). Analo-
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gously, to say that there could have been fewer things than there actually
are is to claim that some name could have been such that its sense-extension
did not coincide with the sense-extension of some relevant predicate.

Now, what about NE? As already mentioned, we have no use for that for-
mula on the reflective picture of the relation of modal language and reality.
Instead we consider NSE. Clearly, given the fact that there are no objectual
domains according to the present semantics NSE, i.e., (Πx)2(Σy)(y=̈x), does
not claim that every object does necessarily exist. Rather it says that ev-
ery nominal constant is necessarily substitutionally identical to a nominal
constant (e.g., to itself). Here we have to bear in mind that substitutional
identity is a relation which (ultimately) obtains between nominal constants
in virtue of the logical equivalence of pure atomic sentences in which these
names occur. NSE will be true with respect to the level of sense just in case
unrestrictedly all names are such that no matter how the level of sense could
have been arranged (in the basic sense of ‘could’), there would be some name
to which they would be substitutionally identical. In effect, this claim re-
flects the relations which obtain between names (or name concepts) in virtue
of their sense-extensions; it does not make a necessitarian claim of any sort.
Now, since NSE is not objectionable, so is CSBF.

Of course, we may justify the intelligibility of BF, CBF, and NE by con-
sidering their substitutional counterparts in terms of the present framework
along the lines suggested by Linsky and Zalta. We may stipulate, adapt-
ing their recipe, that the predicate ‘... is concrete’ be not characteristic for
some suitably selected class of names. This will be another way of justifying
constant systems of quantified modal logic without inflating ontology.

4.5.7 On Possibilia

In substitutional modal semantics we consider SBF rather than BF. The re-
jection of SBF and thus to acceptance of the truth of the formula 3(Σx)ϕx∧
¬(Σx)3ϕx, which is equivalent to the negation of SBF, does in no way give
rise to perplexities concerning possibilia. If ϕ is taken to have the meaning of
‘... is a harpy’ and the rest of the symbols receives its usual natural language
interpretations, then the natural language counterpart of that formula says,
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in effect, that it is definitionally possible that something is a harpy and that
at the same time it is not the case that something is definitionally possibly a
harpy. This claim will be true with respect to the level of sense just in case if
the level of sense could have been (in the basic sense of ‘could’) such that the
sense-extension of some name did coincide with the sense-extension of ‘... is
a harpy’, then it is not the case that for some name the level of sense could
have been such that its sense-extension did coincide with the sense-extension
of ‘... is a harpy’.

Although the acceptance of the negation of the substitutional counterpart
of the Barcan Formula does not give rise to worries about possibilia, there is
no use in opting for varying substitution classes and the systems discussed in
Sections 2.6 and 2.7. The reason is, of course, that these systems and their
semantics are more complicated and that their metaphysical benefits can be
enjoyed already in the simpler constant substitution class framework. So
in contrast to the denotationalists who opt for varying domain frameworks,
we neither complicate logic,46 nor do we inflate ontology with actualistically
acceptable substitutes for possibilia.

It is obvious, as it seems to me, that most of the currently discussed philo-
sophical problems concerning quantification in modal contexts originate, in
the end, from the same source: the transplantation of denotational semantics
from first-order logic to first-order modal logic which has been carried out,
most influentially, in [Kripke, 1963]. The present semantical framework is
a model-theoretic alternative to denotational semantics of quantified modal
logic which provides us with all the benefits of constant systems and seman-
tics, I hope, without foisting metaphysical perplexities upon us. It seems to
me that the framework might also be taken to provide an alternative to free
logics, since considerations of reference get irrelevant and the axiomatization
need not involve the related complications.

4.5.8 On Truth in Fiction

Truth in fiction is not truth with respect to some level of denotata, it is
truth with respect to the level of sense. Fictional discourse, being reflective,
46See [Garson, 2001] for a survey.
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is to be evaluated in the nonreferential mode. So, on the present proposal,
fictional statements do neither describe a reality of fictional or other objects,
nor do they describe such a reality make-believedly. Accordingly, fictional
names do not refer outright, nor do they refer in some context of pretence.

On the present account, fictional truths accurately reflect the sense-exten-
sions of the names and predicates (or name concepts and predicative con-
cepts) involved in them. It will be obvious by now how the truth of, say,
‘Holmes lived at 221B Baker Street’ or ‘Holmes was a person of flesh and
blood’ is to be explained.47 Moreover, we may also see how the truth of a
mixed claim like ‘Sherlock Holmes isn’t more intelligent than Saul Kripke’
can be accounted for. We may proceed in the usual way purely nonrefer-
entially. Alternatively, we may adapt the associative framework to a mixed
semantics (see Section 1.3).

On the present proposal, then, the perplexing formulation “talking about
something that does not exist” is a loose expression for “reflecting the sense-
extensions of nondenoting names”.

4.5.9 On the Puzzle of Non-Existence

From the point of view of the present theory, we should insist that negative
existentials containing denotationless names be always evaluated according to
the nonreferential mode. A statement like ‘Santa Claus does not exist’ taken
substitutionally (formally: ¬(Σx) (x=̈a)) will, then, be false with respect to
the level of sense. In this way, viewing fictional language as reflective rather
than referential, we may remain ignorant about the puzzle of how the truth of
that senence taken referentially is to be explained. Clearly, this is one of the
problems which are particularly pressing for advocates of Referentialism (or
Millianism), roughly, the doctrine that the sole semantic function of a name
is to refer to its bearer.48 The reasons why a statement like ‘Round squares
do not exist’ is false with respect to the level of sense will be apparent.

47These examples are taken from [Lewis, 1983 (1978)].
48For recent proposals see, for example, [Everett, 2000] and [Taylor, 2000].
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4.5.10 On Essentialism and Metaphysical Necessity

To endorse the truth of a natural language sentence like, say, ‘Socrates is
necessarily a man’ (formally: 2Fa) with respect to the level of sense does
in no way involve a commitment to essentialism. Rather than claiming that
a particular individual, i.e. Socrates, has the property of being a man of
metaphysical necessity or essentially, the statement says that no matter how
the level of sense could have been (in the basic sense of ‘could’) the sense-
extensions of the name ‘Socrates’ (or the concept socrates) and the pred-
icate ‘... is a man’ (or is a man) would coincide on ‘Socrates is a man’ (or
the proposition socrates is a man). In this way ‘Socrates is a man’, taken
nonreferentially, expresses a definitionaly necessary proposition which is true
in virtue of the sense-extensions of the name and the predicate, rather than
a metaphysical necessity which is true in virtue of the essence of Socrates.

Let me close this section with a critical remark on Kit Fine’s essentialist
account of the notion of metaphysical necessity which he characterizes as
follows:

“Indeed, it seems that far from viewing essence as a special case
of metaphysical necessity, we should view metaphysical necessity
as a special case of essence. For each class of objects, be they con-
cepts or individuals or entities of some other kind, will give rise
to its own domain of necessary truths, the truths which flow from
the nature of the objects in question. The metaphysically neces-
sary truths can then be identified with the propositions which
are true in virtue of the nature of all objects whatever. Other
familiar concepts of necessity (though not all of them) can be
understood in a similar manner.”49

For Fine conceptual and logical necessity are special cases of metaphysical
necessity so understood.

“The conceptual necessities can be taken to be the propositions
which are true in virtue of the nature of all concepts; the logical

49[Fine, 1994] p. 9, my emphasis.
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necessities can be taken to be the propositions which are true in
virtue of the nature of all logical concepts.”50

Fine’s identification of the source of conceptual necessity with the essence
of concepts is open to the following objection.51 Suppose that concepts are
abstract entities of some kind or other. And suppose that they are essentially
abstract. Then something cannot be a concept unless it is abstract. If all
concepts are abstract entities so is, for instance, the concept bachelor.
Now, according to Fine, a proposition is a conceptual necessity just in case
it is true in virtue of the nature of concepts. But then the proposition that
the concept bachelor is an abstract entity will be a conceptual necessity,
for it will be true in virtue of the essence of the concept bachelor that the
concept bachelor is an abstract entity. The proposition that all bachelors
are unmarried or that if something is red then it is coloured, seem to be
good examples of conceptual necessities, but the proposition that the concept
bachelor is abstract does not seem to be much of a conceptual necessity.
It is clearly propositions of the former, analyticity related, kind that Fine
originally aimed at.

To make the point more perspicious, let me rephrase that argument for the
case of logical necessity. Suppose that concepts are language-independent en-
tities of some sort. And suppose that they are essentially language-independent.
Then something cannot be a concept unless it is language-independent. If
all concepts are language-independent entities so is, for instance, the concept
of logical conjunction, and. Now, according to Fine’s proposal, a proposi-
tion is a logical necessity just in case it is true in virtue of the nature of
logical concepts. But then the proposition that the concept and is language-
independent will be a logical necessity, for it will be true in virtue of the
essence of the concept and that the concept and is language-independent.
Clearly, the proposition that all concepts are concepts, say, is a logical ne-
cessity. But the proposition that the concept and is language-independent

50Ibid., my emphasis.
51In stating my objection I shall not pay attention to the the complexities which arise
from Fine’s claim that conceptual necessities are true in virtue of the nature of all con-
cepts, since these subtleties are irrelevant for the point I wish to make. See section 6 of
[Hale, 1996] for a discussion of these issues.
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is surely not. Again, it is the former kind of logical necessity (usually called
“narrow logical” necessity) which the essentialist definition aims at.

Of course, this kind of objection can be restated for any concept (e.g.
the concepts expressed by ‘red’, ‘number’, or ‘Socrates’) and any essential
property one might wish to apply to concepts (e.g. being mind-independent,
being productive, or existing of necessity).

The problem with Fine’s account is, as it seems to me, that it takes concep-
tual necessity to be a special case of metaphysical necessity (as understood
on the essentialist account). On the view expressed in the above passage,
conceptual necessities are those metaphysical necessities which flow from the
essence of objects of a certain kind—to wit, from the essence of concepts.52

Interestingly, Fine suggests to regard essence as “a kind of definition”53,
where the appropiate kind of definition for objects is real definition.54 This
sort of definition takes the ontological nature of the thing it defines into
account. But the ontological nature of concepts is clearly irrelevant for con-
ceptual necessity. What is relevant to conceptual necessity is meaning, not
essence. And meaning is not a special case of essence (just as linguistic
definition is not a special case of real definition). Accordingly, conceptual
necessity should not be viewed as a special case of metaphysical necessity as
understood on the essentialist construal.

In [Fine, 2002b] (at page 255) Fine offers a somewhat different account of
the special cases of metaphysical necessity.55 On this proposal the notion of
conceptual necessity can be defined via a restriction of the definition of meta-
physical necessity (as suggested in [Fine, 1994]) along the following lines. A
proposition may be said to be a conceptual (or, alternatively, logical) neces-
sity if (i) it is a metaphysical necessity and if (ii) it is a conceptual (logical)
truth—where the notion of conceptual (logical) truth is hoped to be explica-
ble in non-modal terms or, at least, without appeal to further modal notions.

52Clearly, concepts are treated as objects, where ‘object’ is obviously to be understood
in the sense of ‘entity’. This inclusive reading of ‘object’ is supported by the remarks in
[Hale, 1996] p. 116, note 14.
53Cf., for example, [Fine, 1994] p. 14 or [Fine, 1995a] p. 273.
54Cf. [Fine, 1995a] p. 275.
55We have encountered that proposal already in a footnote to Subsection 4.2.13.
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Clearly, on this restriction the proposition that the concept bachelor is ab-
stract (or the proposition that the concept and is mind-independent) will
not qualify for the status of a conceptual (logical) necessity, since condition
(ii) is not met. But—even granting that the restricting condition does not
involve modality in an illicit way—it is doubtful, as it seems to me, that this
way of defining conceptual (logical) necessity is satisfactory? For even if the
propositions expressed by ‘All bachelors are male’ or ‘All rectangles are rect-
angles’ meet the restricting conditions on conceptual and logical necessity,
respectively, they do not meet condition (i). As I have argued above, neither
is true in virtue of the essence (or real definition) of objects—in the case
under consideration—in virtue of the essence of concepts.56

Let me add a further worry. If correct, the conclusion of the previous argu-
mentation will have repercussions for Fine’s taxonomical views on necessity
as presented in [Fine, 2002b]. There he suggests that we should distinguish
three fundamental, mutually irreducible, kinds of necessity: metaphysical,
natural, and normative necessity. But if the above argumentation is sound,
there should be a further fundamental kind of necessity: conceptual neces-
sity. On our account, conceptual necessity may be viewed as a special case

56It is worth noting in this context that Fine frequently illustrates his essentialist views
in terms of an analogy between two pairs of notions: the couple essence and necessity on
the one hand, and the couple meaning and analyticity on the other hand (see, for example,
[Fine, 1994] pp. 10-11 or [Fine, 1995b] p. 56). On this analogy, essence applies to objects,
whereas meaning applies to terms and, furthermore, objects are defined in terms of real
definition, whereas terms are defined in terms of nominal definition (see [Fine, 1995a] p.
275). It seems to me that Fine could avoid the present criticism, if he pursued the more
traditional way of explaining conceptual necessity in terms of meaning. He could use
nominal definition as applied to terms under his “thick” conception of terms on which
terms amount to concepts (cf. [Fine, 1994] pp. 13-14), instead of explaining that notion
in terms of essence. However, this strategy will work only if both pairs of the analogy do
not collapse. But it is not clear from Fine’s writings that this is so: “(...) there exists a
certain analogy between defining a term and giving the essence of an object; for the one
results in a sentence which is true in virtue of the meaning of the term, while the other
results in a proposition which is true in virtue of the identity of the object. However, I
am inclined to think that the two cases are not merely parallel but are, at bottom, the
same.” ([Fine, 1994] p. 13, my emphasis). No doubt, to give in to this inclination would
be objectionable, for it would result in a conflation of nominal and real definiton. It is
presumably an inclination of this sort which is responsible for the problem exposed above.
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of definitional necessity along the lines suggested in Subsection 4.2.13; and
there are, unlike for Fine, no problems of this source related kind with it.

In the present setting I wish to remain agnostic on taxonomical issues
that go beyond the remarks made in this section. (I am inclined to think,
though, that there is no such thing like a substantial notion of natural or of
normative necessity. At best such notions should be viewed, as I tentatively
believe, as being relative forms of necessity which can be explained in terms
of definitional necessity. Where L is a set of propositions having the status
of natural (or, alternatively, normative or any other) laws, a proposition is
a natural (or normative or other) necessity, if it is entailed by L—where the
entailment is to be explained in terms of logical necessity which is a special
case of definitional necessity. As a consequence, the natural (normative or
other) necessity of the members of L becomes a trivial matter. Many writers,
though, think that an account of this “insubstantial” sort is in conflict with
intuitions.57 But, of course, these intuitions are the denotationalist’s ones.)

Let me close this section with a note on basic necessity. In view of the
remarks at the end of Subsection 4.5.3, it will be noted, that basic necessity
does not serve to define definitional necessity by way of restriction (e.g., in the
way definitional necessity defines logical necessity) or by way of relativization
(in the way logical necessity may be taken to define, say, natural necessity).

4.5.11 On Transworld Identity and Reidentification

The issue of transworld identity (i.e., on the canonical account of intended
Kripke-models, the issue of explaining how one and the same individual can
be contained in the domain of different possible worlds and thereby exist, in
some sense or other, at more than one world) does not arise on the present
approach. We do not need to care whether one representative represents the
same individual as another across worlds.

The evaluation of de nomine modal claims (i.e., claims in which modal
operators occur in the scope of a quantifier or atomic sentences which are
prefixed with these operators) does in no way involve objects. On the present
account a sentence like ‘Socrates is necessarily a man’ is true with respect to
57See, for instance, [Fine, 2002b].
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the level of sense, because no matter how it would be arranged, the sense-
extensions of ‘Socrates’ and ‘... is a man’ would coincide on ‘Socrates is a
man’. This account does in no way appeal to the fact that Socrates is a man
in more than one possible world (in which he exists). Moreover, since there
are no individuals and worlds in our framework, we need not be worried about
how individuals are to be represented across possible worlds. The discussions
of transworld identity (and counterpart-relations) simply need not concern
us.

Similarly, we need not worry how to reidentify individuals or surrogates
in more than one possible world. Instead, to put it in a somewhat sim-
plifying way, we reflect (perhaps along the lines discussed in Chapter 5) the
sense-extensions of names and predicates by exercising our knowledge of their
meanings and the rules by which their sense-extensions and the level of sense
are governed.58

4.5.12 On Modal Arguments

According to the present theory of modality, sentences which occur in modal
environments (see Subsection 4.4.4) are nonreferential and are to be evaluated
according to the nonreferential mode. This proposal has certain consequences
for the success of metaphysically motivated modal arguments.

For example, the conclusion of any modal version of the Ontological Argu-
ment being itself a nonmodal existence claim (i.e., ‘God exists’), will occur
in a modal environment. If such a conclusion is true, it will be true only
with respect to the level of sense. A claim of truth with respect to the level
of sense, though, will not be enough for the advocate of such an argument,
since the conclusion will not amount to a claim of referential existence.

Whatever ones views about modal existence arguments are, the assump-
tion that modal discourse is nonreferential, need not result in the view that

58See [Divers, 2002] ch. 16 (and the references therein) for a survey of ersatzist strategies
of dealing with the problems of transworld identity and reidentification. For a discussion of
the problem of transworld identity which does also deal with genuine realist and modalist
approaches see [Chihara, 1998] ch. 2. For Chihara’s own proposal see [Chihara, 1998] sect.
8.4.
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the conclusions of modal arguments have no ontological impact, for the Level
Connecting Theorem can allow to transform the conclusion of the modal ar-
gument, which we assume for the sake of argument to be true with respect
to the level of sense, into the desired claim of referential existence. However,
as has been argued in Subsection 4.4.3, this transition will be licensed just
in case the conclusion of the modal argument, which is a nonmodal existence
claim, turns out to be true with respect to the level of reference when it is
evaluated according to the referential mode. But for that existence claim to
be referentially true, there must be a suitable denotatum in the domain of
discourse which is responsible for the truth of that claim. And it is exactly
this fact which, to my mind, is at stake, and which is presupposed by the
denotationalist proponents of such arguments.

Similar remarks apply to modal arguments for the distinctness of certain
phenomena. Arguments for anti-materialism in the philosophy of mind, for
instance, purport to establish the distinctness of mental and physical phe-
nomena (e.g., pain and C-fibre stimulation, respectively). Such arguments
usually appeal to the thesis of the necessity of referential identity and involve
a step from the possibility of referential distinctness to referential distinct-
ness.59 According to the present account of modality, claims which occur
in modal arguments are embedded in a modal environment and are to be
evaluated according to the nonreferential mode. Consequently, these argu-
ments arrive, if sound, merely at a conclusion which amounts to a claim of
substitutional distinctness. Such arguments, therefore, do not give us the
referential distinctness the proponent of such an argument intends to estab-
lish. In order to obtain referential distinctness, he would have to argue, in
a nonmodal way, that the conclusion is also true according to the referential
mode of evaluation. If this were so he would be entitled to proceed, using
something to the effect of the Level Connecting Theorem, from the claim of
substitutional distinctness to the desired conclusion.

59For a survey on anti-materialist arguments and the role the notions of conceivability
and possibility play in them see, in particular, [Gendler & Hawthorne, 2002] subsection
3.3, section 4 and the references therein.
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Chapter 5

Integrated Associative
Semantics

5.1 Introduction

As a short epistemological coda to the previous chapters, I wish to discuss
how the main ideas, or at least the spirit, of Christopher Peacocke’s principle-
based account of modality can be adapted to our semantical framework.1

The only purpose of the discussion to follow, is to demonstrate how that
framework could be elucidated further. We shall, therefore, remain neutral
on Peacocke’s views and neither accept, nor reject them. Moreover, we shall
not discuss the merits of his account.2

Peacocke’s original motivation for his principle-based account of modality
is to meet what he calls the “Integration Challenge” for metaphysical modal-
ity, i.e., the task of connecting up the truth conditions for modal statements
with the conditions for modal knowledge. According to Peacocke, the pivotal
role in meeting this challenge is played by the theory of understanding for
metaphysical necessity (or, correspondingly, by the theory of the possession

1Peacocke’s principle-based account is presented, in its most actual form, in
[Peacocke, 1999] ch. 4 and developed further in [Peacocke, 2002c].
2For a critical discussion of Peacocke’s principle-based approach see, in particular,

[Rosen, 2002], [Williamson, 2002], and [Wright, 2002]. [Peacocke, 2002b] replies to these
contributions.
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of the concept of metaphysical necessity). He argues, in effect, that the very
possession of the concept of metaphysical necessity ensures that a thinker
can have knowledge of propositions which contain that concept. For Pea-
cocke the concept of metaphysical necessity belongs to the special category
of epistemically-individuated concepts, i.e., concepts which are individuated
in terms of conditions under which a thinker comes to know propositions (or,
equivalently, contents) which contain such concepts.3

The model which Peacocke favours for the account of the possession of the
concept of metaphysical necessity is the “model of implicitly known princi-
ples”:

“Under this treatment, grasp of some concept consists in hav-
ing tacit knowledge of a set of principles involving that concept,
where this set of principles plays a dual role, both metaphysical
and epistemological. First, the principles themselves fix the ex-
tension of the concept. For a content containing the concept to
be true is just for it to be counted as true by these principles.
That is a statement about the metaphysics of the domain. Sec-
ond, the thinker draws on his tacit knowledge of these principles,
and possibly other information, in evaluating contents containing
the concept as true or as false. If, in the process of evaluation,
the thinker uses the very principles that determine, at the level
of metaphysics, whether the content really is true or false, this
will be a way of coming to know those contents.”4

In the case of the concept of metaphysical necessity, the theory of possession
for that concept involves certain constraints, the “Principles of Possibility”, a
world-description must satisfy if it is to represent a genuine possibility. Taken
together, these principles fix the concept of metaphysical necessity. On the
metaphysical side a world-description represents a genuine possibility just in
case it satisfies all the Principles of Possibility. On the epistemological side,
to possess the concept of metaphysical necessity is to have tacit knowledge
of these principles, and to employ them correctly in evaluating modal claims.
3See [Peacocke, 1999] pp. 13-14.
4[Peacocke, 2002a] p. 637.
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In what follows I will first summarize Peacocke’s approach in more detail and
then sketch how the main ideas can be adapted to definitional necessity.

5.2 Exposition of Peacocke’s Principle-Based

Theory of Necessity

According to Peacocke’s account, a proposition is a metaphysical necessity
just in case it is true under all admissible assignments. In effect, the account
adapts the usual account of the notion of truth-functional truth (when the
assignments are viewed as models). Now, what is the language Peacocke for
which he formulates his semantical framework and what does he take to be
an admissible assignment?

Peacocke does not consider uninterpreted schematic expressions as the al-
phabet of the language of his semantic apparatus, but an alphabet of atomic
concepts. This alphabet contains singular concepts like socrates, n-ary
predicative concepts like bachelor, quantifier concepts like all, proposi-
tional operator concepts like not (for negation) or and (for conjunction).
Following Peacocke, we shall use as metavariables for singular concepts m,
m1, ...,mn and as metavariables for concepts in general C, C1, ..., Cn. We
shall refer to the language with this alphabet with ‘L’. The grammar of L
can then be given in the usual first-order way.5

A Peacocke-style assignment s is, as we shall take it,6 a quintuple <Ds, Us,

vals, propvals, exts>, where: Ds is a non-empty set of individuals a, b, ... for
which we shall use a, b, ... as metavariables; Us is a non-empty set of n-ary
universals P, Q, ... (i.e., of properties and relations) for which we shall
use P,Q, ... as metavariables; vals is a function from singular concepts into
elements of Ds; from n-ary predicative concepts into subsets of Dn

s , and so
forth; propvals is a function from n-ary concepts to elements of Us; and exts
is a function from universals to extensions of the right sort.

5We have offered a language system of this sort back in Subsection 4.2.12.
6Unfortunately, Peacocke does not give a formal presentation of his own. Our presen-

tation is patterned after the one presented in [Rosen, 2002].
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The elements assigned by vals are the semantic values of a given concept
C according to s, referred to as vals(C), i.e., individuals or sets of them. The
elements assigned by propvals are the property values of a given concept C
according to s, referred to as propvals(C), i.e., universals.
The extension of a property P according to s is abbreviated as exts(P ).

Let f stand for the extension of the appropriate kind. Peacocke stipulates
that vals(C) = f iff exts(propvals(C)) = f .7 The assignments are taken to be
total and comprehensive (i.e., they determine the extensions of all properties
and relations on which the actual semantic value of a given atomic concept
can depend).8

The truth of a Fregean proposition (or Thought) or, alternatively, a Rus-
sellian proposition A on an assignment s (formally: s |= A) is then defined
in the usual way. The truth condition for the simplest case of an atomic
Fregean proposition will be:

s |= Cm iff vals(m) ∈ vals(C).
Similarly, the truth conditions of a singular Russellian proposition, i.e.,

a proposition which is built up from n individuals and an n-ary universal
(e.g., the proposition expressed by the sentence ‘Russell is a philosopher’,
symbolized as Pa, and represented by the proposition tuple 〈Russell, the
property of being a philosopher〉) will be defined as follows:

s |= Pa iff a ∈ exts(propvals(C)), where propvals(C) = P .
On Peacocke’s account, there is for any given assignment s a corresponding

total world-description (or specification) w. A specification w is just the set
of propositions the assignment s counts as true. So where A stands for a
proposition of either the Fregean or the Russellian kind, a specification w
for any assignment s and proposition A is just the set {A : s |= A}. Such
specifications are not yet what Peacocke calls his ersatz possible worlds, for
these specifications are not by themselves genuine possibilities. This is so,
since for a specification to be a genuine possiblity, its elements must be
counted as true by an admissible assignment.9

7Cf. [Peacocke, 1999]: 128.
8Cf. [Peacocke, 1999]: 135.
9Let me just note that it is somewhat unclear whether Peacocke’s specifications repre-

sent worlds (cf., for instance, [Peacocke, 1999]: 125) or whether they are the worlds (cf.,
e.g., [Peacocke, 1999]: 126).
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According to Peacocke, there is nothing to this semantic framework as de-
veloped so far which prevents inadmissible assignments (e.g., an assignment
of the truth function for conjunction to the concept of disjunction). What
is needed, therefore, is an explanation of why such assignments are inadmis-
sible and why the corresponding specifications are not genuine. Peacocke’s
strategy is to characterize the admissibility of an assignment s in such a way
that for each genuine specification w∗ there is some admissible assignment s∗

which counts all the propositions A as true. Thus, a genuine specification w∗,
i.e., a Peacocke-style ersatz world, is a set {A : s∗ |= A}. (What is distinctive
of these ersatz worlds is that they are hybrid in that they involve Fregean as
well as Russellian propositions.)

An assignment is said to be admissible if it satisfies a number of con-
straints. These constraints are given in terms of the Principles of Possibility:

1. Unified Modal Extension Principle.
“An assignment s is admissible only if: for any concept C, the semantic
value of C according to s is the result of applying the same [semantic]
rule as is applied in the determination of the actual semantic value of
C.”10

2. Constitutive Principles.

(a) Kind Essence. If P is a property (e.g., the property of being
human) which is an object a’s (e.g., Socrates) fundamental kind,
then an assignment is inadmissible if it counts the proposition Pa
as false.11

(b) Individual Essence. In any case in which it is constitutive of the
object a (e.g., Socrates) that it bear R (e.g., being a son of) to
the object b (e.g., Sophroniscus), an assignment is inadmissible if

10[Peacocke, 1999] p. 136. The UMEP thus, first, constrains the extension a concept
may receive from an assignment and, second, extends the way in which the extension of a
concept is fixed in the actual world to genuine specifications (it does not extend the actual
extensions of concepts or properties to them).
11See [Peacocke, 1999]: 145.
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it both counts as true the proposition that a exists and counts the
proposition that Rab as false.12

3. Principle of Constrained Recombination. An assignment is admissible if
it respects the Unified Modal Extension Principle and the Constitutive
Principles.13

In effect, the Unified Modal Extension Principle is a constraint on admissi-
bility which ensures that admissible assignments respect the semantic nature
of concepts. Similarly, the Constitutive Principles guarantee that admissible
assignments respect the essences of entities at the level individuals, proper-
ties and relations.14 The Principle of Constrained Recombination is to the
effect that whichever assignment is not ruled out by these principles (be-
ing separately necessary and jointly sufficient for admissibility) qualifies as
admissible.

Having explained what is involved in an assignment’s being admissible and
a specification’s being genuinely possible, Peacocke states the contribution
made to truth conditions by the modal operators in terms of the following
characterizations (Chzns):

Chzn2: A proposition A is metaphysically necessary iff it is
true according to all admissible assignments.

Chzn3: A proposition A is metaphysically possible iff it is true
according to some admissible assignment.15

12See [Peacocke, 1999]: 146. Peacocke allows that the list of the constitutive principles
may be open-ended.
13See [Peacocke, 1999]: 149. Our Principle of Rearrangement resembles this principle
to some extent.
14See [Peacocke, 1999]: 148-149.
15Cf. [Peacocke, 1999]: 150. Given the correspondence between assignments and specifi-
cations, these characterizations can be stated, alternatively, in terms of genuinely possible
specifications. Let S∗ be the set of all admissible assignments s∗, let W ∗ be the set of all
genuinely possible specifications w∗ and let A be a proposition of either kind, then the
clauses may be recaptured as follows: Chzn′2: 2A iff A ∈

⋃
s∗∈S∗{A : s∗ |= A} iff A ∈ w∗

for all w∗ ∈ W ∗. Chzn′3: 3A iff A ∈ {A : s∗ |= A} for some s∗ ∈ S∗ iff A ∈ w∗ for some
w∗ ∈W ∗.
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So much for the metaphysical aspect of the Integration Challenge.

Let us now turn to the epistemological aspect. On Peacocke’s account it
is readily met as follows.

“Provided that any non-modal principles upon which she relies
are known, a thinker’s modal judgements reached by the proper
use of the implicit knowledge of the Principles of Possibility will,
in the nature of the case, be knowledge.”16

When implicit knowledge of the principles is guaranteed, the solution to
the Integration Challenge for the case of metaphysical necessity amounts to
putting both aspects together.

“The materials above permit formulation of a theory of possession
of the concept of metaphysical necessity in which the very Princi-
ples of Possibility which fix modal truth are also mentioned in an
account of the conditions under which modal contents are known,
by way of those principles being contents of the understander’s
tacit knowledge. It is because of this connection between truth,
understanding, and knowledge that the ordinary means we take
to establish modal truth do not fall short of reaching modal truth
and genuine modal knowledge.”17

In this way Peacocke’s principle-based account of modality meets the Inte-
gration Challenge, i.e., the challenge of linking up the truth conditions of
modal statements with the conditions for modal knowledge.

5.3 The Integration Challenge Met

How can the Integration Challenge for definitional necessity be met in the
spirit of Peacocke’s proposal? Well, this can be accomplished without much
ado. Recall that the truth conditions for statements of definitional necessity
have been given by (Necessity) which says:

16[Peacocke, 1999] p. 162.
17[Peacocke, 1999] p. 163.
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‘It is definitionally necessary that A’ is true simpliciter with re-
spect to the level of sense just in case no matter how the level of
sense could have been (in the basic sense of ‘could’) arranged ‘A’
would be true simpliciter with respect to the level of sense.

Recall, moreover, that the level of sense is governed by a couple of principles,
i.e., the Principle of Nominal Sense-Extension, the Principle of Predicative
Sense-Extension, and the Principle of Rearrangement. Since these principles
also determine how the level of sense could have been arranged, a statement
of definitional necessity cannot be true with respect to that level unless its
rearrangements satisfy these principles. So much for the metaphysical portion
of the challenge.
As regards the epistemological part we simply insist, adapting Peacocke’s

suggestion, that a thinker has implicit knowledge of these principles and,
moreover, take it for granted that if he employs these governing principles in
reaching modal judgements in an appropriate way he thereby gains knowledge
of definitional necessity. In this way the Integration Challenge for definitional
necessity can be met along the lines suggested by Peacocke.
There are numerous differences between Peacocke’s theory and ours. Among

the most important ways in which they differ are the following. First, our
account is concerned with definitional necessity, not with broadly logical (or
metaphysical) necessity. Second, our principles are openly modal in that they
involve the notion of basic possibility, whereas Peacocke is at pains to avoid
the use of modal idiom in the formulation of his Principles of Possibility.
Thirdly, unlike Peacocke’s account which (in the version he favours) appeals
to ersatz possible worlds, ours does not appeal to possible worlds at all. Also,
our account is, immune to the denotationalist’s problems concerning actu-
alism.18 Finally, our account of modal truth does not appeal to individuals
and universals.
The ordinary methods by which knowledge of definitional necessities is

achieved involve the means of argument and proof. Let me briefly illustrate
an application of that method with a sketch of a Kripke-style argument for
a simple instance of an a posteriori definitional necessity.
18For Peacocke’s accommodation of actualist intuitions into his principle-based approach
see [Peacocke, 2002c].
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5.4 Definitional Necessity A Posteriori

According to the present theory of modality, modal truth is truth with re-
spect to the level of sense. True a posteriori necessities are, therefore, truths
with respect to that level. In contrast to the demonstration of a priori defi-
nitional necessities, the demonstration of a posteriori definitional necessities
will appeal at some point to something like the Level Connecting Theorem
(see Subsection 4.4.3).

Suppose that we discover that Hesperus and Phosphorus are referentially
identical. Our knowledge of the truth expressed by ‘Hesperus and Phos-
phorus are (referentially) identical’ will thus be gained by a posteriori (or
empirical) means. By appeal to the Principle of Correlation and the Level
Connecting Theorem, which are both a priori, we then arrive at the truth
of ‘Hesperus and Phosphorus are (substitutionally) identical’ with respect to
the level of sense. From this we can reason by the relevant instance of the
necessity of substitutional identity (NSI), entering a modal environment, to
‘Necessarily, Hesperus is (substitutionally) identical to Phosphorus’.19 The
truth of this claim of definitional necessity with respect to the level of sense
will be guaranteed by the a priori principles which govern that level. However,
it should be noted that the last step of this argumentation will be licensed
only if we deviate from our official semantics for statements of substitutional
identity, for example, by evaluating them exclusively with respect to the char-
acteristic portions of the sense-extensions of ‘Hesperus’ and ‘Phosphorus’—
for otherwise NSI will not hold (see, in particular, comment 3.2.4(7)).

Moreover, if we assume, in a way analogous to Peacocke’s principle-based
approach to modality, that we have implicit knowledge of the principles which
govern the level of sense, we may also conclude that the judgement reached
in this way does indeed amount to knowledge.

By contrast, knowledge of a priori definitional necessities de nomine like
‘Necessarily, Santa Claus is (substitutionally) identical to Father Christmas’
which contain nondenoting names will be reached without appeal to the level

19The classical denotationalist argumentation of this sort is given in
[Kripke, 1980 (1972)] pp. 97-105; cf. also [Peacocke, 1999] p. 168.
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connecting theorem. This also applies to such a priori definitional necessi-
ties de dicto like, say, ‘Necessarily, every fairy has magic powers’ in which
predicates occur which do not have a referential extension.
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Appendix A
This appendix reproduces, in substitutional terms, the standard proofs which

have been omitted in Chapter 2. The exposition is taken from [Hughes & Cress-
well, 1996].

Proof of Theorem 2.5.6(2) (Π-property).

Once a set ∆ has the Π-property then any set (in the same language) of which
∆ is a subset still has the Π-property. By Lindenbaum’s Lemma then since ∆ is
consistent there is a maximal consistent set Γ such that ∆ ⊆ Γ, and so since ∆
has the Π-property so does Γ.

As usual we assume that all formulae of the form (Πx)A for any formula A of
L+ and any nominal variable x are enumerated. We then define a sequence of sets

∆0,∆1, ... etc. as follows:

∆0 is Θ

∆n+1 is ∆n ∪ {A[y/x] → (Πx)A}

where (Πx)A is the n + 1th formula in the enumeration of formulae of that form
and y is the first nominal variable not in ∆n or in A. Since ∆0 is in L and ∆n

has been formed from it by the addition of only n formulae there will be infinitely

many variables from L+ left over to provide such a witnessing y. We assume ∆n

to be consistent. We now show that ∆n+1 is consistent if ∆n is. Suppose ∆n+1 is

inconsistent. So there will be formulae B1, ..., Bn in ∆n such that both

(i) ` (B1 ∧ ... ∧Bn) → A[y/x]

and

(ii) ` (B1 ∧ ... ∧Bn) → ¬(Πx)A.

Since y does not occur in ∆n is not free in (B1 ∧ ... ∧Bn). So from (i) by Π2

(iii) ` (B1 ∧ ... ∧Bn) → (Πy)A[y/x].

Since y does not occur in A, (Πy)A[y/x] is a bound alphabetic variant of (Πx)A,
and so by the equivalence of both formulae,

(iv) ` (B1 ∧ ... ∧Bn) → (Πx)A.
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But by transposition and syllogism, (ii) and (iv) give

(v) ` ¬(B1 ∧ ... ∧Bn)

and (v) makes ∆n inconsistent which contradicts the assumption. So let ∆ be⋃
n≥0 ∆n. Clearly, ∆ is consistent and has the Π-property. This proves theorem
2.5.6(2) for variables. The reasoning for constants is similar.

Proof of Theorem 2.5.6(3) (Existence Theorem).

We define a sequence of formulae C0, C1, C2, ... etc. C0 is ¬A. Given Cn, formula

Cn+1 is defined as follows. Let (Πx)D be the n+ 1th formula of that form and let
o be the first nominal term such that

(?) {B : 2B ∈ s} ∪ {Cn ∧ (D[o/x] → (Πx)D)}

is consistent.

So let Cn+1 be Cn ∧ (D[o/x] → (Πx)D). We have to ensure that there always
will be a witness o satisfying (?). We use the following lemma which we state

without giving a proof (cf. [Hughes & Cresswell, 1996] p. 117),

(PC) Let Λ be any normal system of propositional modal logic, and

let Θ be an Λ-consistent set of formulae containing ¬2A. Then {B :
2B ∈ Θ} ∪ {¬A} is Λ-consistent.

By this lemma, {B : 2B ∈ s} ∪ {C0} is consistent, since C0 is ¬A. We now
show that provided {B : 2B ∈ s} ∪ {Cn} is consistent there will always be an
o which satisfies (?). Note that we cannot assume as we did in proving theorem

2.5.6(2) concerning the Π-property that o is a new nominal term, since, as we have
remarked above, all the nominal terms of L+ will already occur in {B : 2B ∈ s}.
However, it can be shown that there always will be an appropriate o.

So suppose for reductio there were no such o. Then for every nominal term o

of L+ there will exist some {2B1, ...,2Bk} ⊆ {B : 2B ∈ s} such that

` (B1 ∧ ... ∧Bk) → (Cn → ¬(D[o/x] → (Πx)D))

so, by DR1 and 2-distribution

(i) ` (2B1 ∧ ... ∧2Bk) → 2(Cn → ¬(D[o/x] → (Πx)D))
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But s is maximal consistent and

2B1, ...,2Bk ∈ s,

and so

2(Cn → ¬(D[o/x] → (Πx)D)) ∈ s.

Now this is so for every nominal term o and s has the Π-property.

So let z be some nominal variable not occurring in D or in Cn, and consider

(Πz)2(Cn → ¬(D[z/x] → (Πx)D)).

Since s has the Π-property there will be a term o such that

(ii) 2(Cn → ¬(D[o/x] → (Πx)D)) → (Πz)2(Cn → ¬(D[z/x] →
(Πx)D)) ∈ s.

But we already noted that for every term o 2(Cn → ¬(D[o/x] → (Πx)D)) ∈ s.

And so

(iii) (Πz)2(Cn → ¬(D[z/x] → (Πx)D)) ∈ s.

But s is maximal consistent in Λ+SBF=̈, a system which contains SBF as a thesis,
and so by SBF

(iv) 2(Πz)(Cn → ¬(D[z/x] → (Πx)D)) ∈ s.

Since z does not occur in Cn or D and thus is not free in Cn then by T2 we have

(v) 2(Cn → (Πz)¬(D[z/x] → (Πx)D)) ∈ s

But by T3,

` ¬(Πz)¬(D[z/x] → (Πx)D).

Thus 2¬Cn ∈ s and so ¬Cn ∈ {B : 2B ∈ s} which, in the light of the fact that
{B : 2B ∈ s} ⊆ t, would make t inconsistent.

Now let t be the union of {B : 2B ∈ s} and all the Cns. Since each set

{B : 2B ∈ s} ∪ {Cn} is consistent, and since

` Cm → Cn for m ≥ n,
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so is their union t. So t has all the properties we wanted it to have. This completes

the proof of theorem 2.5.6(3).

Proof of Theorem 2.6.4(1) (Existence Theorem).

We let Lt be an infinitely proper sublanguage of L+ such that Ls is an infinitely

proper sublanguage of Lt containing infinitely many of the terms of L+ which are

not contained in Ls. As s ∈ SΛ, Ls lacks infinitely many terms of L+. By theorem

2.5.6(3), then, {B : 2B ∈ s} ∪ {¬A} is consistent. Moreover, the formulae in
{B : 2B ∈ s} ∪ {¬A} are from Ls. And since Lt contains infinitely many terms

not in Ls, theorem 2.5.6(2) ensures that {B : 2B ∈ s} ∪ {¬A} has a consistent
extension t with the Π-property in Lt. By Lindenbaum’s Theorem 2.5.6(1), s has

an extension t which is maximal consistent.

Proof of Theorem 2.7.5(1) (2Π-property).

We form ∆ in a way similar to that used in the proof of theorem 2.5.6(2) as
the union of a sequence ∆0,∆1, ... etc.

∆0 = Θ.

Let T and Υ be two infinite disjoint sets of terms of L+ not in L, and assume the

terms of T and Υ are enumerated.

We now assume a double ordering of formulae of L+, an ordering of all formulae

of L+ which begin with a substitutional universal quantifier, and a further ordering

of the set Ω of all formulae of the form 2(C1 → ... → 2(Cj → 2(Πx)D)...) for
j ≥ 0, with x not free in C1, ..., Cj .

When (Πr)A is the n + 1th formula of L+ beginning with a substitutional

universal quantifier and 2(C1 → ...→ 2(Cj → 2(Πx)D)...) is the n+1th member
of Ω and y is the first variable in T and z is the first variable in Υ alien to ∆n or

in A or in C1, ..., Cj or in D, then ∆n+1 is

∆n∪{Ëy, A[y/r] → (Πr)A,2(C1 → ...→ 2(Cj → 2(Ëz → D[z/x])) →
2(C1 → ...→ 2(Cj → 2(Πx)D))}.

We show that ∆n+1 is consistent if ∆n is. So suppose ∆n+1 were not consistent.

Then for some B1, ..., Bk ∈ ∆n

(i) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A)) → 2(C1 → ... →
2(Cj → 2(Ëz → D[z/x])...)))
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and

(ii) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A))) → ¬2(C1 → ... →
2(Cj → 2(Πx)D)...).

Now z does not occur free in ∆n or in Ëy ∧ (A[y/r] → (Πr)A), and so from (i) by
UG2Πj+1

(iii) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A))) → 2(C1 → ... →
2(Cj → 2(Πz)(Ëz → D[z/x])))

and so by Π→,

(iv) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A))) → 2(C1 → ... →
2(Cj → 2((Πz)Ëz → (Πz)D[z/x]))).

So by K,

(v) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A))) → 2(C1 → ... →
2(Cj → (2(Πz)Ëz → 2(Πz)D[z/x]))).

Then by PC (i.e., (A→ (B → C)) ↔ (B → (A→ C)),

(vi) ` 2j(Πz)Ëz → ((B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A)) →
2(C1 → ...→ 2(Cj → 2(Πx)D[z/x]))).

So by RBV,

(vii) ` 2j(Πz)Ëz → ((B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A)) →
2(C1 → ...→ 2(Cj → 2(Πx)D))).

Now by UË and Nec,

(viii) ` (B1 ∧ ... ∧ Bk ∧ (Ëy ∧ (A[y/r] → (Πr)A))) → 2(Ci → ... →
2(Cj → 2(Πx)D)).

From (ii) and (viii) we get

` (B1 ∧ ... ∧Bk) → (Ëy → ¬(A[y/r] → (Πr)A))

by syllogism and obvious steps. Then by Π2

` (B1 ∧ ... ∧Bk) → (Πy)(Ëy → ¬(A[y/r] → (Πr)A)).
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So by Π→

` (B1 ∧ ... ∧Bk) → ((Πy)Ëy → (Πy)¬(A[y/r] → (Πr)A)).

So by UË

(ix) ` (B1 ∧ ... ∧Bk) → (Πy)¬(A[y/r] → (Πr)A).

Since y does not occur in A, by QR,

` ¬(Πy)¬(A[y/r] → (Πr)A).

But then from (ix)

` ¬(B1 ∧ ... ∧Bk).

But this contradicts the hypothesis that ∆n is consistent. Since each ∆n is con-

sistent ∆ is also consistent and has the 2Π-property. The reasoning for constants
is similar.

Proof of Theorem 2.7.5(2) (Existence Theorem).

We assume, as in the proof of theorem 2.7.5(1) that Ω is the set of all formulae
of the form 2(F1 → ...→ 2(Fj → 2(Πx)G))...), where x is not free in F1, ..., Fn.

We then define a sequence of formulae C1, C2, ... etc. as follows. C0 is ¬A.
Given Cn we define Cn+1 in the following way. We first define a formula C+

n , and

then show how to extend C+
n to Cn+1.

Let (Πx)D be the n+ 1th formula of that form and let o be the first term such
that

(?) {B : 2B ∈ s} ∪ {Cn ∧ (Ëo ∧ (D[o/x] → (Πx)D))}

is consistent.

Let C+
n be Cn ∧ Ëo∧ (D[o/x] → (Πx)D). We have to ensure that there always

will be a term o satisfying (?). Since C0 is ¬A, {B : 2B ∈ s} ∪ {C0} is consistent
according to lemma (PC) which has been already used in the proof of theorem
2.5.6(3) above. Given that {B : 2B ∈ s} ∪ {Cn} is consistent there always will be
a y which satisfies (?) and thus guarantees that {B : 2B ∈ s}∪{C+

n } is consistent.
To show this we cannot assume that o is a new term. Nevertheless we can show

that there always will be a suitable witness o. So suppose there were no such o.

Then for every term o of L+ there will exist some set {2B1, ...,2Bk} ⊆ s such

that
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` (B1 ∧ ... ∧Bk) → (Cn → (Ëo→ ¬(D[o/x] → (Πx)D))).

Then by DR1 and 2-distribution,

(i) ` (2B1 ∧ ... ∧2Bk) → 2(Cn → (Ëo→ ¬(D[o/x] → (Πx)D))).

But s is maximal consistent and 2B1, ...,2Bk ∈ s, and so 2(Cn → ¬(D[o/x] →
(Πx)D)) ∈ s. This is the case for every term o.

Now s has the 2Π-property, and so there will be a term o such that

(ii) 2(Cn → ((Ëo → ¬(D[o/x] → (Πx)D))) → 2(Πz)(Cn → (Ëo →
¬(D[z/x] → (Πx)D))) ∈ s,

where z is chosen so that it does not occur in Cn or in D. So, since, 2(Cn →
¬(D[o/x] → (Πx)D)) ∈ s for every o,

(iii) 2(Πz)(Cn → (Ëz → ¬(D[z/x] → (Πx)D))) ∈ s.

But s is maximal in SFOL=̈Ë + Λ and so,

(iv) 2(Πz)Ëz → 2(Πz)(Cn → ¬(D[z/x] → (Πx)D)) ∈ s.

So by UË and Nec,

(v) 2(Πz)(Cn → ¬(D[z/x] → (Πx)D)) ∈ s.

But z does not occur in Cn or D and so by VQ→

(vi) 2(Cn → (Πz)¬(D[z/x] → (Πx)D)) ∈ s.

But by QR

` ¬(Πz)¬(D[z/x] → (Πx)D)).

So ` 2¬Cn. But then 2¬Cn ∈ s and so ¬Cn ∈ {B : 2B ∈ s} which would
render {B : 2B ∈ s} ∪ {Cn} inconsistent. Consequently, {B : 2B ∈ s} ∪ {C+

n } is
consistent if {B : 2B ∈ s} ∪ {Cn} is.
The next step is to show how to extend C+

n to Cn+1. Let 2(F1 → ...→ 2(Fj →
2(Πx)G)...) be the nth formula in Ω and let p be the first nominal term such that

(∗) {B : 2B ∈ s} ∪ {C+
n ∧ (2(F1 → ... → 2(Fj → 2(Ëp →

G[p/x]))...) → 2(F1 → ...→ 2(Fj → 2(Πx)G)...))}
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is consistent.

Let Cn+1 be

C+
n ∧ (2(F1 → ... → 2(Fj → 2(Ëp → G[p/x]))...) → 2(F1 → ... →

2(Fj → 2(Πx)G)...)).

We may assume that x is not free in C+
n or in F1, ..., Fj since if it is we may choose

a bound alphabetic variant of (Πx)G in which the variable that replaces x is not
free in these formulae. So suppose there were no p satisfying (∗). Then for some
B1, ..., Bk ∈ {B : 2B ∈ s}

(i) ` (B1 ∧ ... ∧ Bk) → (C+
n → ¬(2(F1 → ... → 2(Fj → (Ëp →

G[p/x]))...) → 2(F1 → ...→ 2(Fj → (Πx)G)...))).

So

(ii) ` (B1 ∧ ... ∧ Bk) → (C+
n → 2(F1 → ... → 2(Fj → 2(Ëp →

G[p/x]))...))

and

(iii) ` (B1 ∧ ... ∧Bk) → (C+
n → ¬2(F1 → ...→ 2(Fj → (Πx)G)...)).

With DR1 and 2-distribution we get from (ii),

(iv) ` (2B1 ∧ ... ∧ 2Bk) → 2(C+
n → 2(F1 → ... → 2(Fj → 2(Ëp →

G[p/x]))...))

Now every formula 2B1, ...,2Bk is in s so we get

(v) 2(C+
n → 2(F1 → ...→ 2(Fj → 2(Ëp→ G[p/x]))...)) ∈ s.

from (iv). This is so for every term p.

Since s has the 2Π-property we also have

(vi) 2(C+
n → 2(F1 → ...→ 2(Fj → 2(Πx)G)...)) ∈ s.

So

(vii) C+
n → 2(F1 → ...→ 2(Fj → 2(Πx)G)...) ∈ {B : 2B ∈ s}.

254



But (vii) and (iii) would make {B : 2B ∈ s} ∪ {C+
n } inconsistent. Thus if {B :

2B ∈ s} ∪ {C+
n } is consistent, so is {B : 2B ∈ s} ∪ {Cn+1}. Since {B : 2B ∈

s} ∪ {C+
n } is consistent if {B : 2B ∈ s} ∪ {Cn} is then, given this result, {B :

2B ∈ s}∪{Cn+1} is consistent if {B : 2B ∈ s}∪{Cn} is. So {B : 2B ∈ s}∪{Cn}
is consistent for every n.

As before let t be the union of {B : 2B ∈ s} and all the Cns. So since each

{B : 2B ∈ s} ∪ {Cn} is consistent, and since

` Cm → Cn (for m ≥ n),

their union t is consistent as well.

By construction t has the 2Π-property and so theorem 2.7.5(2) is proved.
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Appendix B
We now prove our Chihara-style Connecting Theorem restating Chihara’s proof

of his Fundamental Theorem in terms of associative semantics.20 The models we

shall consider are natural associative models, and thus models which involve con-

stant substitution classes (see Subsection 3.2.5). In order to obtain the desired

result we need a couple of lemmas.

Lemma 1

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every n-ary predicate ϕn, and for every

α1, ..., αn ∈ c(s), had the (actual) level of sense been such that there
was a bijection via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, then
it would have been the case that for any representing function f of s,

(a) either {fs(ϕn...α...), fs(ψn...α...), fs(χn...α...), ...} ⊆ senext- [α/=]
or {fs(ϕn...α...), fs(ψn...α...), fs(χn...α...), ...} 6⊆ senext-[α/=]; and
(b) either {fs(ϕn...α1...), fs(ϕn...α2...), fs(ϕn...α3...), ...} ⊆ senext-[ϕn/

=] or {fs(ϕn...α1...), fs(ϕn...α2...), fs(ϕn...α3...), ...} 6⊆ senext-[ϕn/=].

Proof of Lemma 1. The proof is trivial.

Lemma 2

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every n-ary predicate ϕn, and for every

α1, ..., αn ∈ c(s), had the level of sense been such that there was a bi-
jection via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, then for any f
and g which were representing functions of s, (a) {fs(ϕn...α...), fs(ψn

...α...), fs(χn...α...), ...} ⊆ senext- [α/=] iff {gs(ϕn...α...), gs(ψn...α...),
gs(χn...α...), ...} ⊆ senext- [α/=]; and (b) {fs(ϕn...α1...), fs(ϕn...α2...),
fs(ϕn...α3...), ...} ⊆ senext-[ϕn/=] iff {gs(ϕn...α1...), gs(ϕn...α2...),
gs(ϕn...α3...), ...} ⊆ senext-[ϕn/=].

20See [Chihara, 1998] pp. 239-259.
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Proof of Lemma 2. Part (a). Had the level of sense been such that there was

a bijection via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, then since this tuple
represented the level of sense via both f and g, it would have been the case (by

the definiton of representation via bijections) that:

{ϕn...α..., ψn...α..., χn...α..., ...} ⊆ v(α, s) iff
{fs(ϕn...α...), fs(ψn...α...), fs(χn...α...), ...} ⊆ senext-[α/=];

and:

{ϕn...α..., ψn...α..., χn...α..., ...} ⊆ v(α, s) iff
{gs(ϕn...α...), gs(ψn...α...), gs(χn...α...), ...} ⊆ senext-[α/=].

Hence, had the level of sense been such that there was a bijection via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it, it would have been the case that:

{fs(ϕn...α...), fs(ψn...α...), fs(χn...α...), ...} ⊆ senext-[α/=] iff
{gs(ϕn...α...), gs(ψn...α...), gs(χn...α...), ...} ⊆ senext-[α/=].

Similarly for part (b). Had the level of sense been such that there was a bijection

via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, then since this tuple represented
the level of sense via both f and g, it would have been the case that:

{ϕn...α1..., ϕ
n...α2..., ϕ

n...α3..., ...} ⊆ v(ϕn, s) iff
{fs(ϕn...α1...), fs(ϕn...α2...), fs(ϕn...α3...), ...} ⊆ senext-[ϕn/=];

and

{ϕn...α1..., ϕ
n...α2..., ϕ

n...α3..., ...} ⊆ v(ϕn, s) iff
{gs(ϕn...α1...), gs(ϕn...α2...), gs(ϕn...α3...), ...} ⊆ senext-[ϕn/=].

Hence it would have been the case that

{fs(ϕn...α1...), fs(ϕn...α2...), fs(ϕn...α3...), ...} ⊆ senext-[ϕn/=] iff
{gs(ϕn...α1...), gs(ϕn...α2...), gs(ϕn...α3...), ...} ⊆ senext-[ϕn/=].

In effect, Lemma 2 says that had the level of sense been such that there was a

bijection via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, it would not make any
difference which bijection was the representing bijection of s.
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Lemma 3

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ c(s), and for every atomic
formula A, if x1, ..., xn are the n nominal variables that occur in A,

then the following holds:

If Mσ |=s A, then, for some t ∈ S, had the level of sense been

such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= rep-
resented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

If Mσ 6|=s A, then, for some t ∈ S, had the level of sense been

such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= rep-
resented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [¬A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Proof of Lemma 3. By hypothesis, A is an atomic formula, for instance ϕmo1...om,

where each nominal variable xk must occur among the o1, ..., om.

Now, had the level of sense been such that there was a bijection via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it, then, for every nominal constant α1, ..., αn ∈
c(s) and for every A ∈ Atm(α), for each α ∈ c(s):

{ϕn...α..., ψn...α..., χn...α..., ...} ⊆ v(α, s) iff
{fs(ϕn...α...), fs(ψn...α...), fs(χn...α...), ...} ⊆ senext-[α/=];

and for every n-ary pure predicate ϕn ∈ P and for every A ∈ Atm(ϕn), for each
ϕn ∈ P :

{ϕn...α1..., ϕ
n...α2..., ϕ

n...α3..., ...} ⊆ v(ϕn, s) iff
{fs(ϕn...α1...), fs(ϕn...α2...), fs(ϕn...α3...), ...} ⊆ senext-[ϕn/=].
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Moreover, from condition (C1), we know that, had the level of sense been such

that there was a bijection via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, there
would have been a representing function f for s.

We suppose that

(A)Mσ |=s A.

So:

(B) Had the level of sense been such that there was a bijection via

which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, there would have been
a representing bijection g for s such that [A/=] was true simpliciter
with respect to the level of sense under some interpreted substitutional

assignment σ=(C).

We may then infer (by existential generalization) that

(C) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing bijection g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [A/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Now, we assume that

(D)Mσ 6|=s A.

SoMσ |=s ¬A. So we can infer (using Lemma 1) that

(E) Had the level of sense been such that there was a bijection via

which 〈c(s), v(α, s), v(ϕn, s)〉= represented it, there would have been
a representing bijection g for s such that [¬A/=] was true simpliciter
with respect to the level of sense under some interpreted substitutional

assignment σ=(C).
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So

(F) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing bijection g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [¬A/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Lemma 4

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s1, s2 ∈ S, if there could be representing functions f1 and

f2 of s1 and s2 respectively, then if α1 ∈ c(s1)∩c(s2), f1(α1) = f2(α1);
and if α1, α2 ∈ c(s1), where α1 6= α2, then f1(α1) 6= f2(α2).

Proof of Lemma 4.

We assume that the antecedent is the case and that α1 ∈ c(s1) ∩ c(s2). (In the
present case c(s1) and c(s2) intersect since the substitution classes are constant.)
Then, had the level of sense been such that for s2 there was a bijection via which

〈c(s2), v(α, s2), v(ϕn, s2)〉= represented it, there would have been a representing
bijection g for s2 such that g(α1) = f1(α1) and g(α1) = f2(α1). From this it
follows that f1(α1) = f2(α1).

This time we assume that the antecedent is the case and that α1, α2 ∈ c(s1),
where α1 6= α2. So, had the level of sense been such that for s1 there was a

bijection via which 〈c(s1), v(α, s1), v(ϕn, s1)〉= represented it, there would have
been a representing bijection g for s1 such that g(α1) = f1(α1) and g(α2) = f2(α2).
Now, since α1 6= α2, it follows that g(α1) 6= g(α2) and hence that f1(α1) 6= f2(α2).

Similarly, for the predicates and pure atoms. Lemma 4 points out that, for any

s ∈ S there could not have been more than one representing function for s.
Moreover, it also says that the representing functions of s1 and s2 respectively

must agree on what they assign to any element the two substitution classes have

in common. Similarly, for P and Atm. From this the first two corollaries of the

lemma can easily be established.

260



Corollary 4.1.

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ C, and for every formula

A, if x1, ..., xn are the n nominal variables that occur in A, then the

following holds:

If, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [A/=] is such
that taking x1 to stand in for g(α1), ..., taking xn to stand in for g(αn)
results in a formula that accurately reflects the level of sense had it

been such that there was a bijective function via which 〈c(s), v(α, s),
v(ϕn, s)〉= represented it;

then it is not the case that, for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for

t such that some interpreted substitutional assignment σ=(C) did not

fulfill the condition: [A/=] is such that taking x1 to stand in for g(α1),
..., taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Corollary 4.2.

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ C, and for every formula

A, if x1, ..., xn are the n nominal variables that occur in A, then the

following holds:

If, for some t ∈ S, had the level of sense been such that there was

a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [A/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
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sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

then it is not the case that, for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [¬A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Lemma 5

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ c(s), and for every atomic
formula A, if x1, ..., xn are the n nominal variables that occur in A,

then the following holds:

Mσ |=s A if and only if, for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Proof of Lemma 5.

It follows directly from Lemma 3

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ c(s), and for every atomic
formula A, if x1, ..., xn are the n nominal variables that occur in A,

then the following holds:

If Mσ |=s A, then, for some t ∈ S, had the level of sense been

such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= rep-
resented it, there would have been a representing function g for t
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such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

If Mσ 6|=s A, then, for some t ∈ S, had the level of sense been

such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= rep-
resented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [¬A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

and Corollary 4.2

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ C, and for every formula

A, if x1, ..., xn are the n nominal variables that occur in A, then the

following holds:

If, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [A/=] is such
that taking x1 to stand in for g(α1), ... , taking xn to stand in

for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

then it is not the case that, for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [¬A/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.
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Lemma 6

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every s ∈ S, for every α1, ..., αn ∈ C, and for every formula

A, if x1, ..., xn are the n nominal variables that occur in A, then the

following holds:

Either, for some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [A/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

or, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬A/=] is such
that taking x1 to stand in for g(α1), ... , taking xn to stand in

for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Proof of Lemma 6.

The proof is by induction on the complexity of A. We begin as usual with the

case in which A has complexity 0. So A will be an atomic formula, say ϕmo1...om,

where each nominal variable xk must occur among the o1, ..., om.

Either (i) {α1, ..., αn} ⊆ c(s) or (ii) {α1, ..., αn} 6⊆ c(s).

Suppose first that (i). Now excluded middle applies to A in so far as either

Mσ |=s A orMσ 6|=s A.

SupposeMσ |=s A. Then, by Lemma 3, we have:

For some t ∈ S, had the level of sense been such that there was a bijec-
tion via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have
been a representing function g for t such that some interpreted substi-

tutional assignment σ=(C) fulfilled the condition: [A/=] is such that
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taking x1 to stand in for g(α1), ..., taking xn to stand in for g(αn) re-
sults in a formula that accurately reflects the level of sense had it been

such that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

SupposeMσ 6|=s A. Then, again by Lemma 3, we have:

For some t ∈ S, had the level of sense been such that there was a bijec-
tion via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have
been a representing function g for t such that some interpreted substi-

tutional assignment σ=(C) fulfilled the condition: [¬A/=] is such that
taking x1 to stand in for g(α1), ..., taking xn to stand in for g(αn) re-
sults in a formula that accurately reflects the level of sense had it been

such that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

Suppose, this time, that (ii), i.e., {α1, ..., αn} 6⊆ c(s). So we first assume that:

(A) It is not the case that, for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [A/=] is such that taking x1 to stand in for g(α1), ...
, taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Thus,

(B) For every t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that there was

no interpreted substitutional assignment σ=(C) fulfilled the condition:

[A/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

But the following holds:
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(C) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) existed.

So from (B) and (C), we get

(D) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) did not fulfil the condition: [A/=] is
such that taking x1 to stand in for g(α1), ... , taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Since A is atomic, it is obvius that such an interpreted substitutional assignment

σ=(C) did not fulfil the condition:

[A/=] is such that taking x1 to stand in for g(α1), ... , taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

only if it fulfilled the condition:

[¬A/=] is such that taking x1 to stand in for g(α1), ... , taking xn

to stand in for g(αn) results in a formula that accurately reflects the
level of sense had it been such that there was a bijective function via

which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Hence, if (A) is the case, the lemma holds. On the other hand, if (A) is not the

case, the lemma holds as well. So in either case, the lemma holds; so it holds for

k = 0.

We now take it as an inductive hypothesis that the lemma holds for formulae

of complexity less than k with k > 0. So for any formula A of complexity k, A
must be a formula of one of the following forms: 1. ¬B; 2. (C ∧D); 3. (C ∨D);
4. (C → D); 5. (C ↔ D); 6. (Πx)C; 7. (Σx)C; 8. 2C; 9. 3C. We shall consider
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each of these possibilities in the above order.

Case (1). A = ¬B. The subformula B is of complexity k − 1. So, by the
inductive hypothesis, we have:

(A) Either, for some t ∈ S, had the level of sense been such that there
was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [B/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

or, for some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [¬B/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Now suppose the first disjunct of (A) holds. Then:

(B) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬¬B/=] is
such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Clearly, if the second disjunct of (A) holds, the result follows as well.

Case (2). A = (C ∧D).

Both C and D have complexity < k. So it follows that:
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(A) Either, for some t ∈ S, had the level of sense been such that there
was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

or, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬C/=] is such
that taking x1 to stand in for g(α1), ... , taking xn to stand in

for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

and

(B) Either, for some t ∈ S, had the level of sense been such that there
was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [D/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

or, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬D/=] is
such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

First we suppose that the first disjuncts of (A) and (B) respectively hold. So
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(C) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and

for some u ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function h for u such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [D/=] is such
that taking x1 to stand in for h(α1), ... , taking xn to stand in

for h(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it

as well. Because of Lemma 4, the following obtains:

(D) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition:

[C/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and also:

[D/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and hence the condition:
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[(C ∧D)/=] is such that taking x1 to stand in for g(α1), ..., taking xn

to stand in for g(αn) results in a formula that accurately reflects the
level of sense had it been such that there was a bijective function via

which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Second, we assume that the first disjunct of (A) and the second disjunct of (B)

hold. Then, we can infer in the previous manner that:

(E) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition:

[C/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and, furthermore, the condition:

[¬D/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and thus the condition:

[¬(C ∧D)/=] is such that taking x1 to stand in for g(α1), ..., taking
xn to stand in for g(αn) results in a formula that accurately reflects
the level of sense had it been such that there was a bijective function

via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

In the remaining two cases, are handled analogusly. So we are done with case (2).

Cases (3)-(5). The proofs for the rest of logical connectives are similar.

Case (6). A = (Πx)C.

So let y be the first nominal variable not occurring in the subformula C. Then,

For some t ∈ S, had the level of sense been such that there was a bijec-
tion via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have
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been a representing function g for t such that some interpreted substi-

tutional assignment σ=(C) fulfilled the condition: [A/=] is such that
taking x1 to stand in for g(α1), ..., taking xn to stand in for g(αn) re-
sults in a formula that accurately reflects the level of sense had it been

such that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it,

iff

for all α ∈ c(s),for some t ∈ S, had the level of sense been such that

there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it,
there would have been a representing function g for t such that ev-

ery interpreted substitutional assignment σ=(C) fulfilled the condition:

[C ′/=] is such that taking y to stand in for g(α), taking x1 to stand in

for g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Now C ′ is a formula of complexity k − 1. Thus, for every α ∈ c(s), we have:

(A) Either, for some t ∈ S, had the level of sense been such that there
was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C ′/=]
is such that taking y to stand in for g(α), taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it;

or, for some t ∈ S, had the level of sense been such that there was a

bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬C ′/=] is such
that taking y to stand in for g(α), taking x1 to stand in for g(α1), ...
, taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Suppose that, for all α ∈ c(s), the first disjunct holds. That is,
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(B) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [C ′/=] is such
that taking y to stand in for g(α), taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Consequently,

(C) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [A/=] is such
that taking y to stand in for g(α), taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Assume this time that, for some α ∈ c(s), it is not the case that (B). Then, for
some α ∈ c(s) the lower disjunct of (A) must hold. So it follows that:

(D) For some α ∈ c(s), for some t ∈ S, had the level of sense been

such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= rep-
resented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [¬C ′/=] is such that taking y to stand in for g(α), tak-
ing x1 to stand in for g(α1), ..., taking xn to stand in for g(αn) results
in a formula that accurately reflects the level of sense had it been such

that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

Thus,

(E) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted
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substitutional assignment σ=(C) fulfilled the condition: [(Σx)¬C/=]
is such that taking y to stand in for g(α), taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Hence:

(F) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [¬A/=] is such
that taking y to stand in for g(α), taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Case (7). This case is similar to case (6).

Case (8). A = 2C. Since the subformula C is of complexity k − 1 then, by
inductive hypothesis, for every u ∈ S:

(A) Either, for some t ∈ S, had the level of sense been such that there
was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

or, for some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [¬C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.
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First, we assume that, for every u ∈ S,

(B) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

From this it follows

(C) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [2C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

However,

[2C/=] is such that taking x1 to stand in for g(α1), ... , taking xn

to stand in for g(αn) results in a formula that accurately reflects the
level of sense had it been such that there was a bijective function via

which 〈c(u), v(α, u), v(ϕn, u)〉= represented it.

only if

[2C/=] is such that taking x1 to stand in for g(α1), ..., taking xn

to stand in for g(αn) results in a formula that accurately reflects the
level of sense no matter how it may have been, and so, in particu-

lar, had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and we are done.

This time we take it that it is not the case that for every u ∈ S, do we have
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(D) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

By the inductive hypothesis it follows that, for some u ∈W :

(E) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [¬C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

Hence we can conclude, because of condition (C2), that:

(F) For some t ∈ S, had the level of sense been such that there was a
bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing function g for t such that some interpreted

substitutional assignment σ=(C) fulfilled the condition: [3¬C/=] is
such that taking x1 to stand in for g(α1), ..., taking xn to stand in for

g(αn) results in a formula that accurately reflects the level of sense no
matter how it may have been, and hence had it been such that there

was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented
it.

So the proof of case (8) is done.

Case (9). A = 3C. This case is similar to (8). This concludes the inductive

proof of Lemma 6.
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Chihara-Style Connecting Theorem.

For every natural associative model M = 〈S,R, s@, C, c, P, v〉 of L∗

and for every natural language proto-interpretation = conforming to
M: for every index s ∈ S, for every nominal constant α1, ..., αn ∈ C,
and for every formula A, if x1, ..., xn are the n nominal variables which

occur in A, then the following holds: Mσ |=s A iff for some index t ∈
S, had the level of sense been such that there was a bijective function

via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing bijective function g for t such that some

=(C)-assignment fulfilled the condition: [A/=] is such that taking x1

to stand in for g(α1), ..., taking xn to stand in for g(αn) results in
a formula that accurately reflects the level of sense had it been such

that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

Proof of the Chihara-style Connecting Theorem.

We prove this theorem, again following the steps of Chihara, by induction on

the complexity k of the formulae of L∗. Again we start with k = 0.

So A is atomic, say ϕmo1...om, where each nominal variable xk must occur

among the o1, ..., om.

In principle, there are two possibilities. Either all the members of the set

{α1, ..., αn} are members of c(s) or at least one member of the set {α1, ..., αn} is
not a member of c(s).

Suppose the former. In that case the theorem holds by Lemma 5. The latter

case is excluded by the fact that the (natural) models under consideration are

constant substitution class models. So the atomic case is done.

We take it as an inductive hypothesis that the theorem holds for all formulae

of complexity < k with k > 0. Then, for any formula A of complexity k, A must
be a formula of one of the forms given in the proof of Lemma 6.

Case (1). A = ¬B.

So B is of complexity k − 1. Hence, by the inductive hypothesis, we get:

(A) Mσ |=s B iff for some index t ∈ S, had the level of sense

been such that there was a bijective function via which the tuple
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〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a rep-
resenting bijective function g for t such that some =(C)-assignment
fulfilled the condition: [B/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Consequently,

(B) Mσ 6|=s B iff it is not the case that for some index t ∈ S, had

the level of sense been such that there was a bijective function via

which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing bijective function g for t such that some

=(C)-assignment fulfilled the condition: [B/=] is such that taking x1

to stand in for g(α1), ..., taking xn to stand in for g(αn) results in
a formula that accurately reflects the level of sense had it been such

that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

We then obtain from (B) and Lemma (6):

(C) If Mσ |=s ¬B, then for some index t ∈ S, had the level of

sense been such that there was a bijective function via which the

tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a
representing bijective function g for t such that some =(C)-assignment
fulfilled the condition: [¬B/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Now for the other direction. Suppose that:

(D) For some t ∈ S, had the level of sense been such that there

was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing function g for t such that some inter-

preted substitutional assignment σ=(C) fulfilled the condition: [¬B/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.
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Then, in because of Lemma 4, it follows that:

(E) It is not the case that for some t ∈ S, had the level of sense

been such that there was a bijection via which 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing function g for t

such that some interpreted substitutional assignment σ=(C) fulfilled

the condition: [B/=] is such that taking x1 to stand in for g(α1), ...,
taking xn to stand in for g(αn) results in a formula that accurately
reflects the level of sense had it been such that there was a bijective

function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

But then from (B) and (E) we get:

(F)Mσ 6|= B.

So:

(G)Mσ |= ¬B.

So we are done with Case (1).

Case (2). A = (C ∧D).

Both subformulae C and D are of complexity < k. So we get:

(A) Mσ |=s C iff for some index t ∈ S, had the level of sense

been such that there was a bijective function via which the tuple

〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a rep-
resenting bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it;

and

(B) Mσ |=s D iff for some index t ∈ S, had the level of sense

been such that there was a bijective function via which the tuple

〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a rep-
resenting bijective function g for t such that some =(C)-assignment
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fulfilled the condition: [D/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

But

(C)Mσ |=s (C ∧D) iffMσ |=s C andMσ |=s D.

So:

(D) Mσ |=s (C ∧ D) iff for some index t ∈ S, had the level of sense

been such that there was a bijective function via which the tuple

〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a rep-
resenting bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it,

and

for some index t ∈ S, had the level of sense been such that there

was a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing bijective function

g for t such that some =(C)-assignment fulfilled the condition: [D/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Because of Lemma 4, the right-hand side of the biconditional (D) holds iff:

(E) For some index t ∈ S, had the level of sense been such that

there was a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn,

t)〉= represented it, there would have been a representing bijective
function g for t such that some =(C)-assignment fulfilled the condition:
[C ∧D/=] is such that taking x1 to stand in for g(α1), ..., taking xn

to stand in for g(αn) results in a formula that accurately reflects the
level of sense had it been such that there was a bijective function via

which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.
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This concludes the step for Case (2).

Cases (3)-(5). Are similar to Case (2).

Case (6). A = (Πx)C.

Because of the definition of ‘true at s inM’, we may conclude, letting y be the
first nominal variable not occuring in C, that:

(A)Mσ |=s (Πx)C iff, for every nominal constant α of c(s), Mσ |=s

C ′.

Since C ′ is a formula of complexity < k, it follows by the inductive hypothesis

that:

(B) For every nominal constant α of c(s),Mσ |=s C
′ iff, for some index

t ∈ S, had the level of sense been such that there was a bijective func-
tion via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there
would have been a representing bijective function g for t such that

some =(C)-assignment fulfilled the condition: [C ′/=] is such that tak-
ing x1 to stand in for g(α1), ..., taking xn to stand in for g(αn) results
in a formula that accurately reflects the level of sense had it been such

that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

From this we get by an obvious inference:

(C) For every nominal constant α of c(s), Mσ |=s C
′ iff, for every

nominal constant α of c(s), and for some index t ∈ S, had the level

of sense been such that there was a bijective function via which the

tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a
representing bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C ′/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented it.

Moreover, the following holds as well:
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(D) For every nominal constant α of c(s), and for some index t ∈ S,

had the level of sense been such that there was a bijective function via

which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would
have been a representing bijective function g for t such that some

=(C)-assignment fulfilled the condition: [C ′/=] is such that taking x1

to stand in for g(α1), ..., taking xn to stand in for g(αn) results in
a formula that accurately reflects the level of sense had it been such

that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it

iff

for some index t ∈ S, had the level of sense been such that there was
a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉= repre-
sented it, there would have been a representing bijective function g for

t such that some =(C)-assignment fulfilled the condition: [(Πx)C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it

With (A), (C), and (D), we obtain the desired conclusion.

Case (7) is similar to (6).

Case (8). A = 2C.

Analogously, from the definition of ‘true at s inM’, we infer:

(A)Mσ |=s 2C iff, for every index u ∈ C such that sRu,Mσ |=u C.

Since C is a formula of complexity < k, it follows by hypothesis that:

(B) For every u ∈ S,Mσ |=u C iff, for every index t ∈ S, had the level
of sense been such that there was a bijective function via which the

tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a
representing bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(u), v(α, u), v(ϕn, u)〉= represented it.
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By an obvious inference we get from (B):

(C) For every index u ∈ S, Mσ |=u C iff, for every index u ∈ S,

and for every index t ∈ S, had the level of sense been such that there
was a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing bijective function

g for t such that some =(C)-assignment fulfilled the condition: [C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(u), v(α, u), v(ϕn, u)〉= represented it.

Moreover, the following holds:

(D) For every index u ∈ S, and for every index t ∈ S, had the level

of sense been such that there was a bijective function via which the

tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a
representing bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(u), v(α, u), v(ϕn, u)〉= represented it

iff

for every index t ∈ S, had the level of sense been such that there

was a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing bijective function

g for t such that some =(C)-assignment fulfilled the condition: [2C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand in

for g(αn) results in a formula that accurately reflects the level of sense
no matter how it may have been; and hence had it been such that there

was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉= represented
it.

Since an =(C)-assignment would fulfil the condition:

[2C/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense no matter how it may have been; and hence had it been such
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that there was a bijective function via which 〈c(s), v(α, s), v(ϕn, s)〉=
represented it.

only if it did fulfil the condition:

[2C/=] is such that taking x1 to stand in for g(α1), ..., taking xn to

stand in for g(αn) results in a formula that accurately reflects the level
of sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it,

we obtain from (D):

(E) For every index u ∈ S, and for every index t ∈ S, had the level

of sense been such that there was a bijective function via which the

tuple 〈c(t), v(α, t), v(ϕn, t)〉= represented it, there would have been a
representing bijective function g for t such that some =(C)-assignment
fulfilled the condition: [C/=] is such that taking x1 to stand in for

g(α1), ..., taking xn to stand in for g(αn) results in a formula that
accurately reflects the level of sense had it been such that there was

a bijective function via which 〈c(u), v(α, u), v(ϕn, u)〉= represented it

iff

for every index t ∈ S, had the level of sense been such that there

was a bijective function via which the tuple 〈c(t), v(α, t), v(ϕn, t)〉=
represented it, there would have been a representing bijective function

g for t such that some =(C)-assignment fulfilled the condition: [2C/=]
is such that taking x1 to stand in for g(α1), ..., taking xn to stand

in for g(αn) results in a formula that accurately reflects the level of
sense had it been such that there was a bijective function via which

〈c(s), v(α, s), v(ϕn, s)〉= represented it.

With (A), (C), and (E), we obtain the desired result for Case (8).

Case (9). A = 3C. This is similar to the previous case. This concludes the

proof of our Chihara-style Connecting Theorem. As a corollary to this we obtain

our Chihara-style Principal Corollary.
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drecht/Boston/London, 2002.

[Fitting & Mendelsohn, 1998] M. Fitting & R. L. Mendelsohn. First-order Modal

Logic, Kluwer, Dordrecht/Boston/London, 1998.

[Forbes, 1985] G. Forbes. The Metaphysics of Modality, Clarendon Press, Oxford,

1985.

[Forbes, 1989] G. Forbes. Languages of Possibility, Blackwell, Oxford, 1989.

[Forbes, 1992] G. Forbes. Melia on modalism, Philosophical Studies 68, 1992, 57-

63.

[Frege, 1994 (1892)] G. Frege. Sinn und Bedeutung. In G. Frege. Funktion, Be-

griff, Bedeutung, G. Patzig (ed.), pp. 40-65, Vandenhoek und Ruprecht,

Göttingen, 1994.

[Friedrichsdorf, 1992] U. Friedrichsdorf. Einführung in die klassische und inten-
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