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Introduction 
 
Brain-Computer Interfaces (BCI) utilise neurophysiological signals originating in the 
brain to activate or deactivate external devices or computers (Donoghue 2002; 
Wolpaw, Birbaumer et al. 2002; Nicolelis 2003; Birbaumer and Cohen 2007). The 
neuronal signals can be recorded from inside the brain (invasive BCIs) or outside 
(non-invasive BCIs) of the brain. Most BCIs developed so far have used operant 
training of direct neuroelectric responses, Electroencephalography (EEG) waves, 
event-related potentials and brain oscillations (Birbaumer, Weber et al. 2006; 
Birbaumer and Cohen 2007). Compared to neuroelectric studies on regulation of brain 
activity, there have been fewer studies with metabolic signals from the brain (Sitaram, 
Caria et al. 2007; Weiskopf, Sitaram et al. 2007; Sitaram, Weiskopf et al. 2008). Near 
Infrared Spectroscopy (NIRS) and Functional magnetic resonance imaging (fMRI) 
present themselves as attractive methods of acquiring hemodynamic activity of the 
brain for a developing a BCI. In this study, we exploit NIRS and fMRI for the 
implementation of BCIs for the investigation of regulation of hemodynamic signals in 
the brain and their behavioural consequences. We propose that these methods could 
be used not only for communication and control in paralysis, but also as powerful 
tools for experiments in neuroscience and rehabilitation and treatment of neurological 
disorders. 
 
 
Research on operant training to self-regulate brain responses began with early studies 
on biofeedback of EEG and single cellular responses (Fetz 1969; Kamiya 1971). 
Subsequent to this work, many clinical applications were explored in human patients 
by the biofeedback of EEG oscillations and event-related potentials (Elbert, Rockstroh 
et al. 1980). In biofeedback, the subject receives visual or auditory on-line feedback 
of brain activity and tries to voluntarily modify a particular type of brainwave. The 
feedback signals contain both the information on the degree of success in controlling 
the signal and the reward. Self-regulation of brainwaves as described in the 
biofeedback literature was reported to have therapeutic effects on many psychiatric 
and neurological conditions but only a few studies passed rigorous clinical and 
experimental testing (Barber, Kamiya et al. 1971–78; Birbaumer and Kimmel 1979).  
 
There are two broad approaches in neuroscience for studying the interaction between 
brain and behaviour. The first category involves the manipulation of neural substrate 
itself (Moonen and Bandettini 2000; Feinberg and Farah 2003). Such an intervention 
might activate a brain area, perhaps by a lesion. An example is the 1861 observation of 
the link between language and left frontal lobe damage. The effects of stimulation of 
brain areas can also be studied. An example is Harvey Cushing’s study of human 
sensory cortex in the early 20th century. The second approach is observational in 
nature, relating a measure of neural function to behaviour. Hans Berger’s work in the 
early 1920s on the human electroencephalographic response is a good example. 
Tremendous advances and refinements to both approaches have taken place over the 
last century. For example, beyond the static lesions that have been the mainstay of 
neuroscience for many years it is now possible to temporarily and reversibly inactivate 
areas of the human cortex using transcranial magnetic stimulation (TMS). The 
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branch of observational methodology has also grown impressively in the last few 
decades, with the development of functional neuroimaging.  
 
Neurofeedback is in a unique position to combine these two approaches. It is in one 
sense a manipulative approach, as the subject is trained to voluntarily change the 
activity in a certain region of the brain to observe the ensuing changes in behaviour. 
However, it is in another sense an observation approach, as it incorporates the 
experimental paradigms routinely used in neuroimaging studies. To explain it in 
another way, traditionally neuroimaging studies treat brain activity as effect of 
stimulation on behaviour. For example, they evaluate the effects of stimuli (whether 
visual, auditory, tactile or a combination of these), motor execution, or a specified task 
performance on brain activity (Moonen and Bandettini 2000; Feinberg and Farah 
2003). In that sense brain activity is a dependent variable. In contrast, in 
neurofeedback studies, one studies the effect of voluntary controlled brain activity on 
behaviour. In that sense brain activity becomes an independent variable. Using EEG 
neurofeedback as an approach, studies have been previously carried out on slow 
cortical potentials (SCP) and their behavioural effects on lexical processing, motor 
action, emotional responses and musical performance  (Rockstroh, Elbert et al. 1990; 
Egner and Gruzelier 2003). Real-time NIRS and fMRI neurofeedback approaches 
have the added advantage of targeting a localized brain region, with high spatial 
resolution and a reasonable temporal resolution adequate for feedback  
 
 
NIRS utilizes light in the near infrared range (700 to 1000nm) to determine cerebral 
oxygenation, blood flow, and metabolic status of localized regions of the brain 
providing a signal analogous to the BOLD signal (Villringer and Chance 1997; 
Villringer and Obrig 2002; Hoshi 2007). The degree of increases in regional Cerebral 
Blood Flow (rCBF) exceeds that of increases in regional cerebral oxygen metabolic 
rate (rCMRO2) resulting in a decrease in deoxygenated haemoglobin in venous blood. 
Thus, increase in total haemoglobin and oxygenated haemoglobin with a decrease in 
deoxygenated haemoglobin is observed in activated areas during NIRS measurement. 
NIRS uses multiple pairs or channels of light sources and light detectors operating at 
two or more discrete wavelengths. NIRS provides spatially specific signals at high 
temporal resolution. NIRS instruments could be potentially portable and less 
expensive than fMRI and Positron Emission Tomography (PET). Subjects can be 
examined under normal conditions such as sitting in a chair, without their motion 
being severely restricted, making it suitable for implementing BCIs. However, the 
depth of brain tissue which can be measured is only 1-3 cm restricting its applications 
to higher level cortical regions. 
 
Functional magnetic resonance imaging (fMRI) relies on the measurement of task 
induced blood oxygen level-dependent (BOLD) response (Ogawa, Lee et al. 1990). 
Although BOLD is an indirect measure, there is growing evidence for a strong 
correlation between the BOLD signal and electrical brain activity. FMRI measures 
increases and decreases of paramagnetic load of blood-flow to activated poles of 
neurons, particularly to apical dendrites (Logothetis, Pauls et al. 2001; Logothetis 
2002; Logothetis 2003; Logothetis and Pfeuffer 2004; Logothetis 2008). Studies have 
characterized the relationship between localized increases in neuronal activity and the 
corresponding increase in BOLD, making it possible to interpret positive functional 
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responses in terms of neural activity. Recently, Amir Shmuel, Nikos Logothetis and 
colleagues have reported a tight coupling between negative BOLD response and 
decreases in neuronal activity (Shmuel, Augath et al. 2006). In both cases of increase 
and decrease in BOLD, a correlation with similar changes in local field potentials and 
multiunit activity have been found.  
 
Functional imaging offers non-invasive recording of the activity across the entire brain 
with high spatial resolution in the millimetre range. With innovations in high 
performance magnetic resonance scanners and computers, and developments in 
techniques for faster acquisition, processing and analysis of MR images, real-time 
fMRI has recently become a possibility. With improvements in real-time fMRI, a 
novel type of non-invasive BCI has emerged. Studies that have been reported so far  
(Posse, Binkofski et al. 2001; Yoo and Jolesz 2002; Weiskopf, Veit et al. 2003; 
deCharms, Christoff et al. 2004; Weiskopf, Mathiak et al. 2004; Yoo, Fairneny et al. 
2004; deCharms, Maeda et al. 2005; Caria, Veit et al. 2007) have demonstrated that 
human subjects using fMRI-BCI can learn self-regulation of localized brain regions. 
However,	
  most	
  of	
   these	
  studies	
  are	
  based	
  on	
  conventional	
  univariate	
  statistical	
  
parametric	
  mapping	
  (SPM)	
  by	
  measuring	
  brain	
  activity	
  from	
  many	
  thousands	
  of	
  
locations	
  repeatedly,	
  but	
   then	
  analyzing	
  each	
   location	
  separately.	
  Furthermore,	
  
the	
   previous	
   approaches	
   to	
   fMRI-­‐BCI	
   have	
   used	
   feedback	
   of	
   BOLD	
   activation	
  
from	
   single	
   regions	
   of	
   interest.	
   However,	
   it	
   is	
   often	
   difficult	
   to	
   find	
   individual	
  
sites	
   where	
   differences	
   in	
   BOLD	
   activations	
   corresponding	
   to	
   different	
   brain	
  
states	
   are	
   large	
   enough	
   to	
   allow	
   for	
   efficient	
   decoding.	
   In	
   contrast,	
   it	
   has	
   been	
  
shown	
  that	
  pattern-­‐based	
  methods	
  integrate	
  considerably	
  more	
  information	
  for	
  
detecting	
   the	
   brain	
   states	
   from	
  measurements	
   of	
   brain	
   activity.	
   In	
   the	
   present	
  
study,	
   we	
   incorporate	
   multivariate	
   pattern-­‐based	
   methods	
   for	
   real-­‐time	
  
recognition	
   of	
   brain	
   states	
   from	
   fMRI	
   and	
   NIRS	
   signals.	
   We	
   have	
   used	
   this	
  
method	
   to	
   classify	
   and	
   feedback	
   brain	
   responses	
   from	
   motor	
   imagery	
   and	
  
execution	
   with	
   NIRS	
   signals,	
   and	
   emotional	
   states	
   of	
   the	
   brain	
   (such	
   as	
  
happiness,	
  disgust	
  and	
  so	
  forth)	
  with	
  fMRI	
  signals,	
  respectively.	
  Furthermore,	
  the	
  
present	
   study	
   investigates	
   self-­‐regulation	
   of	
   brain	
   activity	
   of	
   emotionally	
  
relevant	
   brain	
   areas	
   such	
   as	
   the	
   anterior	
   insular	
   cortex	
   in	
   both	
   healthy	
  
individuals	
   and	
   psychopathic	
   criminals,	
   and	
  motor	
   related	
   brain	
   areas	
   such	
   as	
  
ventromedial	
  prefrontal	
  cortex	
  in	
  healthy	
  individuals	
  and	
  stroke	
  patients.	
  	
  
	
  
The fact that operant regulation of brain activity, even single cell responses is possible 
also in animals argues against the influence of cognitive factors such as explicit 
imagery on operant brain regulation. On the other hand in humans, imagery and 
cognitive processing is known to affect learning and physiological regulation. There 
are very few studies (Roberts, Birbaumer et al. 1989; Birbaumer, Elbert et al. 1990) 
evaluating the differential contribution of cognitive instructions on the effect of brain 
regulation. These studies suggest that instruction to imagine facilitates learning in the 
early stages, but feedback is more important for successful cortical regulation. 
Whether these results can be generalized to the regulation of subcortical structures, 
and additionally to the metabolic brain response remains an open question that will be 
investigated in this study. 
	
  
Chapter	
   1	
   provides	
   an	
   introduction	
   to	
   functional	
   Near	
   Infrared	
   Spectroscopy	
  
(fNIRS),	
  considering	
  the	
  theoretical	
  underpinning	
  of	
  fNIRS,	
  practical	
  issues	
  with	
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regard	
  to	
  signal	
  acquisition	
  and	
  analysis,	
  and	
  finally	
  its	
  applications	
  to	
  functional	
  
brain	
  imaging.	
  	
  
	
  
Chapter	
   2	
   describes	
   our	
   study	
   with	
   fNIRS	
   for	
   implementing	
   a	
   BCI	
   by	
   online	
  
classification	
   of	
   the	
   motor	
   imagery	
   signals.	
   We	
   describe	
   in	
   detail	
   the	
   signal	
  
acquisition,	
   pre-­‐processing,	
   analysis,	
   and	
   comparison	
   of	
   online	
   classification	
  
using	
   two	
   different	
   machine	
   learning	
   approaches,	
   namely,	
   support	
   vector	
  
machines	
  (SVM)	
  and	
  hidden	
  Markov	
  models	
  (HMM).	
  
	
  
Chapter	
   3	
   provides	
   an	
   in-­‐depth	
   presentation	
   of	
   fMRI-­‐BCIs	
   in	
   terms	
   of	
   the	
  
technological	
   advance	
   and	
   our	
   implementation,	
   and	
   the	
   results	
   of	
   our	
  
preliminary	
   studies	
  on	
   the	
   regulation	
  of	
   anterior	
   insula;	
   regulation	
  of	
   the	
   right	
  
inferior	
  frontal	
  gyrus	
  and	
  its	
  effect	
  on	
  language	
  processing;	
  and	
  the	
  regulation	
  of	
  
ventrolateral	
  premotor	
  cortex	
  with	
  motor	
  imagery.	
  	
  	
  
	
  
Chapter 4 presents our approach for online recognition of brain states by classifying 
fMRI signals using SVM, and the application of this approach to real-time detection 
and feedback of discrete emotional states of the brain. 
 
Chapter 5 is a presentation of our experimental investigation of the effects of 
volitional regulation of left anterior insula both in terms of cerebral reorganisation and 
behavioural effects in healthy individuals as well as in psychopathic criminals. 
 
Chapter 6 is the concluding chapter that contains a discussion of the Hemoneural 
hypothesis that could potentially explain how volitional regulation of BOLD signal 
from a circumscribed brain region could influence neural activation and behaviour.  
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Functional Near Infrared Spectroscopy  
 

Introduction 
Near Infrared Spectroscopy is emerging as a portable, affordable and non-invasive 
neuroimaging system suited for the development of brain-computer interfaces. 
Although fNIRS has been in use since the 1970s (Jobsis 1977) for clinical and 
scientific studies of tissue oxygenation, cerebral blood flow and metabolism, its use in 
BCIs has been more recent (Coyle, Ward et al. 2004; Sitaram, Hoshi et al. 2005; 
Naito, Michioka et al. 2007; Sitaram, Zhang et al. 2007). fNIRS technology has now 
progressed to an extent where a number of commercial instruments are available 
making it an accessible tool for functional neuroimaging, in general, and BCI 
development in particular. With exciting developments in portable fNIRS instruments 
incorporating wireless telemetry (Shiga, Yamamoto et al. 1997; Atsumori, Kiguchi et 
al. 2007; Kiguchi, Ichikawa et al. 2007), it is now possible to monitor brain activity 
from freely moving subjects (Hoshi 2007) thus enabling more dynamic experimental 
paradigms. The objective of this section is to provide an introduction to fNIRS.  
 

Basic Theory of NIRS 
It has been well known for many years in the field of medicine that the functional 
state of living tissue has influence on the properties of light passing through it. Since 
then, changes in optical properties of brain cells have been reported in cell cultures, 
brain cells and intact cortical tissue (Villringer and Chance 1997; Villringer and Obrig 
2002). Recently, functional near infrared spectroscopy (fNIRS), which assesses the 
physiological changes associated with brain activity non-invasively has become 
possible. As an introduction to how functional maps of brain activity are generated, 
we need to look:  

• the interaction of light with brain tissue which may be measured by optical 
methods (optical parameters), and 

• the physiological events associated with brain activity (physiological 
parameters). 

 

Interaction of light with brain tissue 
Photons that enter tissue may undergo the following major types of interaction: 
absorption and scattering. An optical device that consists of one or more light sources 
by which the tissue is irradiated and one or more light detectors that receives light 
after it has been transmitted or reflected from tissue could be used to measure the 
interaction. Light that travels through tissue is attenuated due to absorption and 
scattering. By analogy with a photometer, the attenuation of light in tissue could be 
expressed mathematically in a modified Beer-Lambert law.  
 
The Beer-Lambert Law states that the light attenuation is proportional to the 
concentration of the absorbing molecules. That is, 
 

A = ε x c x d 
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Where A is the light attenuation, ε is the molar absorption coefficient of the absorbing 
molecules, c is the concentration of the absorbing molecules, and d is the optical 
pathlength. 
 
However, this relationship assumes infinitesimal concentrations and disregards 
scattering. This assumption does not hold for spectroscopy in tissue. Scattering 
prolongs the pathlength of the light and thus the pathlength becomes longer than the 
distance between sending and receiving optodes. In order to account for the longer 
length, in a modified Beer-Lambert Law a differential pathfactor (DPF) B is 
introduced. Further, light may be lost due to scatter, not reaching the detector. 
Therefore, in second modification of the Beer-Lambert Law a term, G is introduced. 
Now, the modified law is: 
 

 A = ε x c x d x B + G 
 
Assuming constant B &G gives: 
 
  ∆A = ε x ∆c x d x B 
 
If the pathlength d x B can be determined, absolute changes in concentration can be 
calculated. For absolute measurements of the pathlength there are several types of 
optical approaches. One uses the measurement of the direct time of flight of a short 
(ps) light pulse traveling through tissue. In another approach the phase shift of a light 
source which is intensity-modulated at a certain frequency is measured. A third 
approach measures water absorption which, assuming a constant water concentration 
in tissue, should change with the pathlength of light. The above mentioned approaches 
for the determination of pathlength may also serve to measure light scattering (or 
changes in light scattering) as another optical parameter. 
 

Physiological changes during brain activity 
Regional brain activation is accompanied by increases in regional cerebral blood flow 
(rCBF) and the regional cerebral oxygen metabolic rate (rCMRO2). The degree of the 
increase in rCBF exceeds that of the increase in rCMRO (Fox and Raichle 1986) 
resulting in a decrease in deoxyhemoglobin (deoxy-Hb) in venous blood. Thus, 
increases in total hemoglobin (t-Hb) and oxyhemoglobin (oxy-Hb) with a decrease in 
deoxy-Hb are expected to be observed in activated areas in NIRS measurements. 
Studies have observed both no change in t-Hb with an increase in oxy-Hb and a 
reciprocal decrease in deoxy-Hb, and an increase or no change in deoxy-Hb 
accompanying increases in t-Hb and oxy-Hb (Hoshi 2007). Using a perfused rat brain 
model, Hoshi and colleagues, examined the direct effects of each change in CBF and 
CMRO2 on cerebral hemoglobin oxygenation to interpret NIRS signals.  They 
reported that the directions of changes in oxy-Hb are always the same as those of 
rCBF, whereas the direction of changes in deoxy-Hb is determined by changes in 
venous blood oxygenation and volume. Small changes in CBF are not accompanied 
by those in t-Hb. Thus, oxy-Hb is the most sensitive indicator of changes in rCBF in 
NIRS measurements.  
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NIRS signal acquisition techniques 
There are 3 techniques for NIRS signal acquisition: continuous wave spectroscopy, 
time-resolved spectroscopy and frequency-domain techniques (Villringer and Chance 
1997; Villringer and Obrig 2002).  
 
Continuous wave is the approach used in our current work. It uses a light source with 
discrete wavelengths. The light source may be a laser or a light emitting diode (LED). 
The optical parameter measured is attenuation. Commercially available CW-type 
instruments use a continuous wave of light as the source with discrete wavelengths – 
typically between 2 and 7, or a light source emitting across the entire spectrum. The 
only optical parameter measured is attenuation. The light source may be a laser or a 
LED (for the discrete wavelength approach) or a simple halogen lamp (for the 
continuous spectrum approach). The advantages of CW-approach are its simplicity 
and flexibility; also a very high signal-to-noise ration is achieved. A disadvantage is a 
strong contribution to the signal changes by superficial, extra cerebral structures. The 
separation of deep and superficial layers can be approximated by multiple source-
detector separations. 
 
Time resolved spectroscopy uses pulsed light source with a pulse duration in the order 
of picoseconds. In addition to the assessment of total light intensity, this technique 
assesses the distribution of photon arrival times. Based on this additional parameter, a 
multilayer depth resolution can be made. Further, by assessment of the individual 
differential path length factor, the quantification of the concentration changes can be 
improved.  
 
Since time-resolved measurements require rather demanding technology, frequency-
domain monitors have been developed to more easily assess the mean time of flight of 
photons. Instead of using pulsed light source the intensity of the injected light is 
sinusoidally modulated at a high frequency (100-150 MHz). The reflected light will 
also show this modulation. The phase delay of the modulation is proportional to the 
mean time of flight. This is called Phase-modulated Spectroscopy (PMS) or 
Frequency Domain NIRS System.  All of the above-mentioned approaches may be 
performed over one single site (one channel) or many sites (multi-channel).  
 
A portable NIRS instrument (for example: the HEO 200, from Omron Ltd. Inc., 
Tokyo, Japan) allows subjects to move about during measurement. It consists of a 
main unit and a probe unit. The main unit comprises a central processing unit (CPU), 
light emitting diode (LED) driver, amplifier, memory card interface, liquid crystal 
display, and power source. The probe unit moulded in black elastic silicon rubber, has 
a photodiode in the centre and two-wavelength (760 nm and 840 nm) near infrared 
LEDs on either side. A wireless system was combined with this portable NIRS system 
so that data could be seen in real time at a place distant from the subject. The 
instrument is connected to the transmitter of a wireless telemetry system by a RS232C 
cable. The NIRS instrument (8 x 16 x 4 cm) is as small as the transmitter of the 
wireless system. NIRS signals are sent by the wireless to the receiver, which is 
connected to a laptop computer on which data are displayed in real time. NIRS signals 
can be transmitted to a location at a maximum distance of 30 m outdoors and 10 m 
indoors.  
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NIRS signal analysis 
Unlike fMRI signal preprocessing and analysis methods that have been standardized 
under univariate statistical parametric mapping (SPM), fNIRS analysis has not yet 
seen the unification of methods. In the majority of studies, comparison of fNIRS 
mean signals between the resting and activation states has commonly been performed 
using a paired t-test (Hoshi 2007). Recently, a number of different types of analyses 
including model-based, event related and a combination of these have been reported 
in literature (Schroeter, Bucheler et al. 2004; Huppert, Hoge et al. 2006), (Plichta et 
al., 2007). Hoshi (Hoshi 2007) suggests that model-based methods, as used in fMRI 
and PET signal analysis, may not be directly suitable for fNIRS data because of the 
varying pattern of hemodynamic data with each measurement and the difficulty in 
deriving a proper hemodynamic response function. Furthermore, even under resting 
conditions, the Hb oxygenation state fluctuates ((Toronov, Franceschini et al. 2000) 
(Schroeter, Bucheler et al. 2004)). These fluctuations are divided into two types: one 
is systemic fluctuations related to physiological activities such as the systemic arterial 
pulse oscillations (1 Hz) and respiration (0.2 to 0.3 Hz), and the other is the slower 
Hb wave fluctuation of frequency 0.05 Hz, with varying temporal patterns across 
brain regions. Due to these fluctuations fNIRS signals not return to the original levels 
immediately after the activation state. Novel signal correction and analysis techniques 
need to be developed to overcome the current limitations. While commercial 
manufacturers of fNIRS instrument provide custom-built analysis software packages, 
a freely available data analysis program written by the Photon Migration Imaging Lab 
at the Massachusetts General Hospital in Boston allows for basic signal processing, 
linear modeling and image reconstruction of fNIRS data of brain function 
(http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm). 
 

Benefits and limitations of NIRS 
NIRS is completely non-invasive and potentially portable. Subjects can be examined 
under normal conditions such as sitting in a chair, without their motion being severely 
restricted. NIRS does not have the disadvantages of motion related artifacts that EEG 
has. The portable, telemetric version of the NIRS instrument enables activation 
studies on freely moving objects. For all these reasons, NIRS could be expected to 
make significant contributions to functional neuroimaging and BCI development.  
 
Currently, the major limitation NIRS concentration changes in Oxy-Hb cannot be 
quantified with CW-type instruments hindering NIRS from being widely employed in 
clinical medicine and research. Many different approaches to quantification have been 
tried, and the quantitative accuracy of time resolved spectroscopy (TRS)	
   and of 
phase-resolved spectroscopy (PRS)	
  has been established. However, the difficulty of 
quantification has not yet been completely overcome (Hoshi 2007). It is to be noted 
that it is not mandatory to know the absolute concentration changes for the 
development of BCIs, as relative changes can be used successfully in pattern 
classification of brain states and neurofeedback applications (Sitaram, Hoshi et al. 
2005; Sitaram, Zhang et al. 2007). 
 

Functional imaging with NIRS 
The advantages of NIRS, namely, high temporal resolution (less than 1s), non-
invasive measurement, portability and less motion restriction allowing monitoring in 
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natural environments, enable neuroimaging studies on subjects who have not been 
fully examined until now, such as children, the elderly, and patients with 
psychoneurological problems, as they are difficult to measure by other neuroimaging 
techniques, such as PET and fMRI. 
 
NIRS has been applied, in neonates and infants, to investigate evoked responses to 
visual, olfactory, and auditory stimulation, and passive knee movement (Hoshi 2007).  
Several research groups have examined task-related hemodynamic changes in 
psychiatric patients and found task-dependent abnormalities in frontal hemodynamics 
in schizophrenia (Shinba, Nagano et al. 2004) and depression (Suto, Fukuda et al. 
2004).  Such task-dependent abnormalities were also found in patients with 
Alzheimer’s disease (Fallgatter, Roesler et al. 1997; Hock, Villringer et al. 1997). 
Possibilities to monitor brain activity in the daily life environment open new 
dimensions in neuroimaging studies, as the study by Miyai colleagues (Miyai, Tanabe 
et al. 2001) showed by using 30-channel CW-type instrument to generate cortical 
activation patterns associated with human gait. This indicated that NIRS was useful 
for evaluating cerebral activation patterns during pathological movements and 
rehabilitation intervention.  
 
A portable single-channel NIRS instrument combined with a wireless telemetry 
system allows subjects to move during measurements as with portable 
electrocardiogram (ECG) and EEG instruments. The details of the portable NIRS 
instrument (HEO 200, Omron Ltd. Inc., Kyoto, Japan) have been reported by (Shiga, 
Yamamoto et al. 1997). This NIRS system makes it possible to monitor brain activity 
of freely moving subjects outside of laboratories (Hoshi et al., 2006).  
 
Since EEG, MEG, fMRI and PET measure different aspects of the brain function and 
have different merits and demerits, combined measurements with multiple modalities 
are expected to be complementary. As the optical characteristics of the NIRS system 
does not conflict with electrical or magnetic systems, a number of combined 
experiments have been reported. To investigate the neurovascular coupling in the 
human brain, NIRS is appropriate because its temporal resolution is high, and it can 
be combined with electrophysiological methods, such as EEG and MEG. 
Simultaneous measurements with NIRS and electrophysiological methods have also 
been employed for studies of higher brain functions (Horovitz and Gore 2004). NIRS 
can also be combined with TMS, much more easily than PET or fMRI, and has 
recently been employed this way to study the hemodynamic pattern due to stimulation 
(Noguchi, Watanabe et al. 2003; Mochizuki, Ugawa et al. 2006).  
 

BCI development with fNIRS 
The first experiments to use fNIRS for the purpose of developing BCIs was carried 
out separately by Sitaram and colleagues (Sitaram, Hoshi et al. 2005) Coyle and 
colleagues (Coyle, Ward et al. 2004), who studied the optical response to motor 
imagery in healthy subjects to demonstrate oxy-Hb concentration increases and 
deoxy-Hb concentration reductions in the contra-lateral hemisphere, as compared to 
the rest state. Sitaram and colleagues used overt and covert finger tapping of left and 
right hands to note that motor imagery produced similar but reduced activations in 
comparison to motor execution. Coyle and colleagues instructed subjects to imagine 
continually clenching and releasing a ball. The BCI system provided visual feedback 
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by means of a circle on the screen that shrunk and expanded with changes in 
hemoglobin concentration. An intensity threshold of the hemoglobin concentration 
from the contralateral optodes on the motor cortex (for comparison: near the C3/C4 
electrodes in an equivalent 10-20 system) was used to determine if the brain was in a 
rest or activation state.  
 
In a follow-up to the above experiments, Coyle and colleagues (Coyle, Ward et al. 
2007) used their custom-built fNIRS instrument to demonstrate a binary switching 
control called the ‘Mindswitch’, while Sitaram and colleagues (Sitaram, Zhang et al. 
2007) demonstrated that patterns of fNIRS signals during motor execution and 
imagery can be decoded with over 80% accuracy with two different machine learning 
algorithms. The Mindswitch operates in a synchronous mode, meaning that the 
system is active only during defined periods (Coyle, Ward et al. 2007), with the 
objective of establishing a binary yes or no signal for communication. The fNIRS 
signal used for this purpose was derived from a single channel on the left motor 
cortex elicited by imagined movement of the right hand. The protocol consisted of 
two options alternately presented to the user and highlighted by the controlling 
software. When the desired option is highlighted, the user performs motor imagery to 
enhance the oxy-HB signal in the motor cortex to indicate his choice. Subjects were 
instructed to imagine clenching a ball with their right hand while attending to the 
kinaesthetic experience of movement. Experiments with healthy subjects showed that 
the number of correct classifications to the total number of trials was on the average 
more than 80%.  
 
Sitaram and colleagues (Sitaram, Zhang et al. 2007) used a continuous wave, 
multichannel fNIRS instrument (OMM-1000 from Shimadzu Corporation, Japan) to 
measure oxy-HB and deoxy-HB concentration changes from 20-channels on the 
motor cortex in each hemisphere during motor execution and imagery. Acquired 
signals were processed to remove artifacts from heart beat and high frequency noise 
from muscle activity, and the time series of amplitude changes of oxygenated 
hemoglobin and deoxygenated hemoglobin in the period 2–10 s after stimulation for 
the motor task to start for each trial were extracted from the preprocessed data and fed 
to two different pattern classification systems, namely, Support Vector Machine 
(SVM) and Hidden Markov Model (HMM). Typically, most channels on the 
contralateral hemisphere showed activation by an increase in oxygenated hemoglobin 
and decrease in deoxygenated hemoglobin, while the channels on the ipsilateral 
hemisphere either showed a similar response but to a smaller extent, or in a reversed 
manner (increase in deoxygenated hemoglobin and decrease in oxygenated 
hemoglobin) potentially indicating inhibition. Topographic images reconstructed 
from oxy-HB and deoxy-HB concentration changes showed distinct patterns of 
activations (yellow and red pixels) and inhibitions (green and blue pixels) to left-hand 
and right-hand motor imagery, although inter-subject variability in the patterns were 
observed (Sitaram, Zhang et al. 2007). Finger tapping data were classified with better 
accuracy compared to motor imagery data by both classification techniques for all the 
subjects. Between the two pattern classification techniques, HMM performed better 
than SVM for both finger tapping and motor imagery tasks. The authors hypothesized 
that inconsistencies in imagery create difficulties for robust generalization in a 
classifier, and hence a probability network of HMM could perform better in these 
circumstances.  
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The first direct investigation of fNIRS-BCI in locked-in patients suffering from 
amyotropic lateral sclerosis (ALS) was performed by Naito and colleagues (Naito, 
Michioka et al. 2007). The study included 40 male and female ALS patients, among 
whom 17 were in totally locked-in state. Naito and colleagues applied single-channel 
two-wavelength (770nm and 840nm) measurement on each patient’s forehead to 
monitor changes in blood volume during the experiment. A simple ‘yes’ or ‘no’ 
binary communication method was employed where the subject was asked a question, 
and if the subjective answer to the question was ‘yes’ the patient indicated it by 
performing a mental calculation, singing fast or thinking. If the subjective answer was 
‘no’, the patient indicated it by relaxing. Instantaneous amplitude and phase of the 
fNIRS signal was then calculated and used as input to a discriminant analysis to 
classify between the two answers.  The discrimination of answers was reported to be 
successful for 70% of ALS patients not in the totally locked-in state, and 40% for 
totally locked-in patients. For the successful cases, the average rate of correct 
detection of answers was about 80%. The low applicability of the method to totally 
locked-in patients was attributed to the presence of only spontaneous low frequency 
oscillations with no brain responses specific to the questions. The authors suggested 
lack of motivation and low levels of brain activation as possible reasons for this 
problem, and highlighted the importance of maintaining a means of communication in 
ALS patients. In addition to its application for communication and control, fNIRS-
BCI is considered to be a potential approach for movement restoration in stroke and 
paralysis due to neuroanatomical specificity in measuring activations from the motor 
cortex. 
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Chapter 2 
 
 
 

Implementation of an fNIRS Brain-Computer Interface 
 

Introduction 
BCI can provide an alternative communication channel and environmental control 
capability to severely disabled persons. The quality of life depends on the possibility 
to communicate with the social environment. Disabled patients with appropriate 
physical care, and cognitive ability to communicate with a BCI, can continue to live 
with a reasonable quality of life over extended periods of time (Wolpaw, Birbaumer et 
al. 2000). Brain–computer interfaces have been developed with surface 
electroencephalogram (EEG), electrocorticogram (ECoG) and implanted electrodes  
(Birbaumer, Ghanayim et al. 1999; Wolpaw, Birbaumer et al. 2000; Nicolelis and 
Chapin 2002; Serruya, Hatsopoulos et al. 2002; Wolpaw, Birbaumer et al. 2002; 
Birbaumer, Hinterberger et al. 2003; Nicolelis 2003; Wolpaw 2004; Birbaumer 2006; 
Birbaumer 2006; Wolpaw, Loeb et al. 2006; Birbaumer and Cohen 2007). Surface 
EEG has many advantages: it is non-invasive, technically less demanding, and widely 
available at low cost. It has a long history of usage, and its mechanisms are well 
known. However, EEG has certain disadvantages: long-term application and fixation 
of electrodes are difficult, portable devices are artifact prone, and it has low spatial 
resolution. Other non-invasive methods of monitoring brain activity, such as 
magnetoencephalography (MEG), positron emission tomography (PET) and 
functional magnetic resonance imaging (fMRI) could in principle provide the basis for 
a BCI (Babiloni, Cincotti et al. 2001; Birbaumer and Cohen 2007; Sitaram, Caria et 
al. 2007; Weiskopf, Sitaram et al. 2007; Sitaram, Weiskopf et al. 2008).  
 
More recently, near-infrared spectroscopy (NIRS) promises flexibility of use, 
portability, metabolic specificity, good spatial resolution, localized information, high 
sensitivity in detecting small substance concentrations and affordability (Villringer 
and Obrig, 2002). NIRS has no doubt certain disadvantages. It is slow to operate 
because of the inherent latency of the hemodynamic response. The signal strength is 
affected by hair on the head. Furthermore, relative motion of the optodes on the hair 
may introduce motion artifacts and drifts in the hemodynamic signal. Nevertheless, 
NIRS’ ability to record localized brain activity with a spatial resolution in the order of 
centimeter (depending on the probe geometry) provides us with an excellent 
opportunity to control a variety of motor and cognitive activities in a BCI. The main 
goal of the present study was to ascertain the feasibility of using near-infrared 
spectroscopy for developing a BCI. We chose motor imagery of left-hand and right-
hand as the paradigm of BCI control as it has been shown to work well in previous 
research on EEG-based BCIs (Pfurtscheller, Guger et al. 2000; Pfurtscheller, Neuper 
et al. 2000; Pfurtscheller, Graimann et al. 2004; Pfurtscheller, Muller-Putz et al. 
2006). Our objective was to develop a viable set of methods for offline processing and 
classification of NIRS data, with the intention of incorporating them later on in an 
online BCI. To this end, we explored the use of two pattern recognition techniques, 
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Support Vector Machines (SVM) and Hidden Markov Model (HMM), for classifying 
NIRS signals. 
 

 
 
Figure 2.1: Architecture of the Near Infrared Spectroscopy BCI (NIRS-BCI).  Multi-
channel NIRS signals from both hemispheres are acquired in real-time, processed, 
classified online by either a support vector machine (SVM) or a Hidden Markov 
Model (HMM), and translated for driving the word speller application. 
 
It has been shown in electrophysiological studies (Beisteiner 1995) that brain 
activation during motor imagery (imagination of left and right hand movement) is 
similar to the activation during actual execution of movement. In the above study, 
changes of DC potentials between task execution and imagination were localized in 
central recordings (C3, Cz, C4) with larger amplitudes during execution of the task 
than when only imagining to do so. Primary motor cortex was active in both the tasks.  
Benaron et al. (Benaron, Hintz et al. 2000) demonstrated optical response resulting in 
the contralateral hemisphere around 5-8 s after the onset of movement. Sitaram et al. 
(Sitaram, Hoshi et al. 2005) and Coyle et al. (Coyle, Ward et al. 2004) reported 
similar optical response using slow NIRS signals during overt and covert hand 
movements. Pfurtscheller’s team have (Pfurtscheller, Guger et al. 2000; 
Pfurtscheller, Neuper et al. 2000; Pfurtscheller, Graimann et al. 2004; Pfurtscheller, 
Muller-Putz et al. 2006) reported a direct EEG-based BCI using motor imagery. It is 
important that for a BCI to be user-friendly, the mental task should be easy to learn. A 
BCI can be developed by classifying the NIRS response of the left hand motor 
imagery (or over movement) from that of the right hand imagery (or overt 
movement). In this way, a two-choice system can be developed, which can be used to 
develop a communication system, such as a word speller.  

 
We applied both SVM and HMM to the classification problem. SVMs are learning 
systems developed by (Vapnik 1998). SVM has been demonstrated to work well in a 
number of real-world applications including BCI (Blankertz, Curio et al. 2001). A 
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Markov model is a finite state machine which can be used to model a time series. 
HMMs were first successfully applied for speech recognition, and later in molecular  
biology for modeling the probabilistic profile of protein families (Rabiner 1989; 
Rabiner and Juang 1993). HMM has been successfully used in a BCI application for 
online classification of EEG signals acquired during left-hand and right-hand motor 
imagery (Obermaier, Guger et al. 1999; Obermaier, Guger et al. 2001). To our 
knowledge, this is the first time that SVM and HMM techniques have been used to 
classify NIRS signals for the development of a BCI. Here, we describe the 
experimental paradigm of motor imagery; method of signal acquisition; preliminary 
signal analysis to test whether there are significant patterns in the hemodynamic 
response to motor imagery; offline classification of the NIRS signal using two 
classification techniques (SVM and HMM); and finally the results of signal 
processing, analysis and classification. We end with a discussion of the application of 
these techniques to the online classification problem towards developing a 
communication system for completely paralysed patients, and further applications of 
NIRS-BCI to movement restoration after stroke.  
 

Materials and Methods 

Subjects 
Five healthy subjects (3 males and 2 females, mean age = 30) voluntarily participated 
in the study. None of the recruited subjects had neurological or psychiatric history, or 
was on medication. Each of them gave written informed consent for the experiment. 
The experiment was approved by the Ethical Committee of the Tokyo Institute of 
Psychiatry, Japan. 
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Experimental Procedure 

 
Figure 2.2: (a) Experimental paradigm for finger tapping and motor imagery for 
collecting NIRS signals from subjects. Each trial consisted of a baseline block of 8 s, 
a preparation block of 2s and motor task block of 10 s. Finger tapping and motor 
imagery data were collected in separate sessions. The type of task (left or right hand) 
was specified on the computer screen, in a pseudo-random manner. During the task, 
subjects performed 3-4 number of self-paced overt execution or imagination (as 
specified) of finger tapping of the specified hand within the 10 s duration of the task. 
(b) Multichannel NIRS optode arrangement on the scalp. The optodes were arranged 
on the left and right hemisphere on the subject’s head, above the motor cortex, 
around C3 (left hemisphere) and C4 (right hemisphere) areas (International 10-20 
System). A pair of illuminator and detector optodes formed one channel. Four 
illuminators and 4 detectors in the arrangement resulted in 10 channels.  
 
NIRS signals were collected from each subject performing both overt motor execution 
(finger tapping) and covert motor imagery with left hand and right hand. Figure 2.2(a) 
shows the schematic diagram of the protocol. During the experiment, the subject sat 
on a chair in a quiet room in front of a computer screen which displayed the stimuli. A 
single trial comprised of a baseline block, a preparation block and a motor task block, 
in that order. Each trial started with a baseline block during which the subject fixated 
on the cross displayed on the screen for 8 s. This was followed by a beep indicating 
the subject to get ready for the motor task. The preparation phase lasted for 2 s. 
Following this, the subject performed the motor task as indicated on the screen for a 
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period of 10 s. The type of motor task to be performed was indicated by the text on 
the computer screen - ‘LEFT’ for left-hand motor task and ‘RIGHT’ for right-hand 
task. During the finger tapping task, subjects performed 3-4 number of self-paced 
tapping of fingers of the specified hand within the 10 s duration of the task. During 
the motor imagery task, subjects performed equal number of self-paced imagination 
of finger tapping. 
 
Data for finger tapping and imagery were collected in two separate sessions. Each of 
left hand and right hand tasks for finger tapping and imagery was carried out for 
totally 80 trials, in four blocks of 20 trials each, with a rest period of 2 m between 
blocks.  
 

Signal Acquisition 
We used a multi-channel NIRS instrument (OMM-1000 from Shimadzu Corporation, 
Japan) for acquiring oxygenated hemoglobin and deoxygenated hemoglobin 
concentration changes during motor imagery. The system operated at three different 
wavelengths of 780nm, 805nm and 830nm, emitting an average power of 3 mW mm-

2.  
 
The illuminator and detector optodes were placed on the scalp. The detector optodes 
were avalanche photodiodes fixed at a distance of 2 cm from the illuminator optodes. 
The optodes were arranged on the left and right hemisphere on the subject’s head, 
above the motor cortex, around C3 (left hemisphere) and C4 (right hemisphere) areas 
(International 10-20 System). A pair of illuminator and detector optodes formed one 
channel. Four illuminators and 4 detectors in the arrangement resulted in 10 channels 
on each hemisphere, as shown by the dashed lines in the Figure 2.2(b). Near-infrared 
rays leave each illuminator, pass through the skull and the brain tissue of the cortex, 
and are received by the detector optodes. The photomultiplier cycles through all the 
illuminator-detector pairings to acquire data at every sampling period. The data were 
acquired at a sampling rate of 14Hz and digitized by the 16-bit analog to digital 
converter.  
 
The NIRS instrument was capable of storing the raw signal intensity values for each 
of the 3 wavelengths, the stimuli codes (1 for left hand task and 2 for right hand task), 
as well as the derived values of oxygenated and deoxygenated hemoglobin 
concentration changes for all time points in an output file in a pre-specified format. 
The signal preprocessing, analysis and classification programs were implemented to 
read the data from the file either in an offline mode or in an online mode.  
 

Preliminary Signal Analysis 
Our objective, in carrying out this preliminary analysis, was to observe the responses 
of oxygenated hemoglobin and deoxygenated hemoglobin at different channels on 
both hemispheres due to left hand and right hand imagery tasks. The intention was to 
check if there were significant patterns or trends in the data. Offline analysis was 
performed using a custom Matlab NIRS data analysis program (HomER version 4.0, 
available for public download and use at http://www.nmr.mgh.harvard.edu/PMI/). A 
caveat was that, the HomER toolkit accepted only the raw intensity data as input to 
compute the oxygenated hemoglobin and deoxygenated hemoglobin concentration 
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changes using the modified Beer Lambert equation (Villringer and Obrig 2002). For 
this reason, we could not use the hemoglobin concentration changes obtained from the 
NIRS instrument directly in this analysis. 
 
Preprocessing started with the raw intensity data from all channels being normalized 
to compute a relative (percent) change by dividing each value by the mean of the data.  
 

 
 
The intensity normalized data were then low-pass filtered using the Chebyshev Type 
II filter of order 3 with a cut-off frequency of 0.7 Hz and Pass-band (ripple) 
attenuation 0.5 dB. After filtering, a value of 1.0 was added to make the mean of the 
data equal to unity. The change in optical density, called delta-optical density, was 
then calculated for each wavelength as the negative logarithm of the normalized 
intensity.  
 

 
 
Following the calculation of delta-optical density, two different principal component 
analysis (PCA) filters were applied to the data. The first PCA filter corrected for 
motion in the data, i.e., subject head movement. The second PCA filter used the 
principal components of the baseline data to project out systemic physiology. The 
resulting covariance reduced delta-optical density was used to calculate the change in 
concentration (delta-concentration) from the modified Beer-Lambert law. For each of 
the two wavelengths, Lambda#1  = 780nm and Lambda#2 = 805nm, 2 simultaneous 
equations can be written to equate delta-optical density to oxygenated hemoglobin 
(HbO2) and deoxygenated (Hb) concentration  changes as below: 
 

 

 
 

where ε is the molar absorption coefficient for Hb and HbO2 at the two wavelengths 
specified and L is the optical path length.  Solving the two equations obtains the 
concentration changes for oxygenated and deoxygenated hemoglobin: 
 

 
 
We used a differential-pathlength factor of 6.0 and partial volume correction of 50, as 
can be set in the advanced filtering options of the toolbox. As the sampling rate for 
signal acquisition was 14 Hz, we obtained 140 delta-concentration values, each for 
oxygenated hemoglobin and deoxygenated hemoglobin, during a 10 s motor imagery 
task of each trial.  
 
The data were then block averaged after specifying the pre- (5) and post-stimulus 
(140) time points for averaging, multiple stimulus conditions (1 for left hand imagery, 
and 2 for right hand imagery), and their timings. Block averaging was performed on 
each condition (left hand and right hand imagery) separately, first on a single run and 
later on across all data files. Statistical effects analysis based on Analysis of Variance 
(ANOVA) was conducted on the hemodynamic responses. 
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Following averaging, for each of the conditions (left hand and right hand imagery), 
images of hemodynamic activations superimposed on the probe geometry were 
constructed.  Image reconstruction in HomER currently supports the back-projection 
methods and linear forward models created from semi-infinite (homogeneous) slab 
geometries. For details, please refer to the HomER User’s Guide (available for public 
download and use at http://www.nmr.mgh.harvard.edu/PMI/). We used the following 
values for the image reconstruction constants in HomER: absorption and scattering 
coefficients (10 and 0.2), voxel dimensions (Y: 4.00:0.40:4.00, X: -4.00:0.65:9.00), 
and reconstruction depth (2:2:2). The results of the signal analysis will be discussed 
under the Results section. 
 

Pattern Classification  
Pattern classification was performed on the raw signals obtained from the signal 
acquisition process after the signal preprocessing operations described below. We did 
not re-use the processed signals from the preliminary analysis (section 2.4) for pattern 
classification, as the intentions of the two methods were quite different. However, in 
future, some of the artifact removal techniques used in HomER, such as principal 
component analysis (PCA) for head motion correction and systemic physiological 
changes, could be employed to potentially improve classification accuracy. 
 
First, the acquired signals were processed to remove artifacts from heart beat and high 
frequency noise from muscle activity. We applied the Chebyshev type II filter (Parks 
1987) (Parks 1987)  that has a flat pass band, a moderate group delay, and an 
equiripple stop band. The filter was designed using “cheb2ord” and “cheby2” 
functions in Matlab (Mathworks, Inc., USA), using cut-off frequency at 0.7 Hz, stop 
frequency at 1 Hz, pass-band loss at no more than 6 dB, and  at least 50 dB of 
attenuation in the stop-band.  
 
Times series of amplitude changes of oxygenated hemoglobin and deoxygenated 
hemoglobin in the period 2-10 seconds after stimulation for the motor task to start for 
each trial were extracted from the preprocessed data and fed to the pattern 
classification system. In the following subsections, we shall describe the 
implementation of two different pattern classification techniques, namely, support 
vector machines and hidden Markov model. 

Support Vector Machine (SVM) 
The classification task is based on two separate sets of training data and testing data 
containing several instances of data. Each instance in the training set contains one 
target value, called the class label and several attributes or features. The goal of SVM 
is to produce a model which predicts target values in the testing set when only the 
attributes are given.  
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Figure 2.3: (a) As input to the pattern classifier, a feature vector Xt, containing the 
concentration values of the oxygenated hemoglobin and deoxygenated hemoglobin 
from the 20 channels of optodes from both hemisphere, was created for each trial 
duration of interest of the motor task (2-10 s in this case). For each trial period t, yt 
represents the type of task the subject performed, for example, left hand imagery 
(class = 1) and right hand imagery (class = -1). (b) In the formulation of the SVM, the 
input feature vector is mapped to a high dimensional feature space through a non-
linear transformation function. The SVM algorithm attempts to find a decision 
boundary or a separating hyperplane in the feature space. (c) Schematic diagram 
representing the HMM model for motor imagery. The HMM is designed as a left to 
right model, transitions being allowed from a state to itself and to any right neighbour 
state. Arrows from left to right indicate the allowed transitions of states. States 1 and 
5 were non-emitting, meaning that they do not result in any observations. 
Observations 2 and 4 were modelled using a single Gaussian while observation 3 was 
modelled using a mixture of 3 Gaussians. 
 
By formal notation, the classification problem involves determining a scalar class 
label yt from a measurement vector Xt. For classification of the NIRS data from 
multiple channels from both hemispheres, Xt represents the concentration values of 
oxygenated haemoglobin and deoxygenated haemoglobin from all the numbered 
channels (1-20) for the duration of the trial, specified by T (1 ≤ t ≤ T), and yt is the 
experimental value of the task for that time (Figure 2.3(a) ). For each trial period t, yt 
represents the type of task the subject was performing, for example, left hand imagery 
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(class = 1) and right hand imagery (class = -1). During the experimental procedure for 
collecting training data, as the subject performs alternating trials of left hand and right 
motor imagery, time-series of pre-processed oxygenated and deoxygenated 
haemoglobin concentration changes are organised as a vector Xt , and the class label 
yt is marked as + or – 1 according to the type of task. The present work is restricted to 
the binary classification problem (yt = ±1).  
 
In the formulation of the SVM, the input vector Xt is mapped to a high dimensional 
feature space, Zt, through a non-linear transformation function, g(.) so that Zt = g(Xt). 
The SVM algorithm attempts to find a decision boundary or a separating hyperplane 
in the feature space, given by the decision function: 
 

D(Zt) = (W· Z) + w0, 
 
where W defines the linear decision boundaries (Figure 2.3(b) ). The solution W that 
represents the hyperplane can be obtained by solving for the equation:  
 

yt[(W· Z) + w0] ≥ 1 
 
The solution is optimal when ||W||2+C·f(ξ)  is minimised under this constraint, where 
the parameter C>0, termed the regularisation constant, is chosen by the user. A large 
value of C corresponds to higher penalty for errors.  
 
We implemented the SVM classifier using the LibSVM package (Chang and Lin 
2001). The LibSVM package is a C++ implementation, providing various features for 
SVM classification: C- and ν-classification, one-class-classification, ε- and ν-
regression; linear, polynomial, radial basis function and sigmoidal kernels; and v-fold 
cross validation. Our implementation was carried out in the following steps: 
Transform the NIRS data into the format of the LibSVM software, 
Scale the data, 
Choose the type of kernel, 
Find the best penalty parameter and kernel parameters, 
Use the above parameters in the SVM model in 8 runs of 5-fold cross-validation to 
determine the classification accuracy. 

 
The training and testing sets were created as vectors of real numbers of oxygenated 
and deoxygenated haemoglobin concentration values from the 20 channels for each 
trial of left hand and right hand motor imagery tasks, as shown in Figure 2.3(a). The 
whole dataset was scaled before applying SVM. The main reason for scaling was to 
avoid attributes in greater numeric ranges from dominating those in smaller numeric 
ranges. As kernel values are obtained by the inner product of feature vectors, large 
attribute values may cause numerical problems. For these reasons, each attribute was 
scaled to a value in the range [-1, 1].   
 
We used the linear kernel for the present study. We used the default value of 1 for the 
penalty parameter C as set in the LibSVM toolkit. Next, we performed a 5-fold cross-
validation to determine the classification accuracy.  The cross-validation procedure is 
also known to prevent the over-fitting problem. We conducted 8 runs of 5-fold cross-
validation. In each run, the trials in the training dataset were randomly permutated and 
divided into 5 subsets of equal size. In each of the 5 folds, 4 subsets of data were used 
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for training, while one subset was used for testing (validation) and the classification 
accuracy was calculated based on it. After 8 runs of 5-fold cross-validation we 
obtained 40 test results (accuracy measures). We performed similar classification tests 
on overt finger tapping and covert motor imagery tasks, separately.  
 

Hidden Markov Model 
The HMM could be seen as a finite state automaton, containing s discrete states, 
emitting an observation vector (or output vector) at every time point that depends on 
the current state. Each observation vector is modelled using m Gaussian mixtures per 
state. The transition probabilities between states are defined using a transition matrix. 
The basic principles of HMM as applied to the NIRS signal classification problem 
will be discussed in this section. A detailed description of the method can be found in 
(Rabiner 1989).  
 
We used the Hidden Markov Model Toolkit (HTK) from the Department of 
Engineering of Cambridge University, United Kingdom for our implementation 
(Young, Woodland et al. 1993). Written in ANSI C, HTK is an integrated suite of 
tools for building and manipulating continuous density HMMs.  
 
Figure 2.3(c) is a schematic diagram representing our HMM model for motor 
imagery.  Left hand and right hand motor imagery were identically modelled as 
depicted, and the model parameters were subsequently estimated separately with 
respective data. We chose 5 states for the model based on previous HMM models for 
motor imagery classification (Obermaier, Guger et al. 2001)  and our own preliminary 
experiments with modelling. The HMM is designed as a left to right model, 
transitions being allowed from a state to itself and to any right neighbour state. 
Arrows from left to right indicate the allowed transitions of states. States 1 and 5 were 
non-emitting, meaning that they do not result in any observations. Observations 2 and 
4 were modelled using a single Gaussian while observation 3 was modelled using a 
mixture of 3 Gaussians.   
 
In this HMM model denoted by M, at each time t that a state j is entered, an 
observation vector ot is generated from the probability density bj(ot). Further, 
transition from state i to state j is also probabilistic and is governed by the discrete 
probability aij. The joint probability O generated by the model M moving through the 
state sequence X is calculated as the product of transition probabilities and output 
probabilities. For the state sequence X in Figure 2.3(c), 
 

P(O|M) = a12b2(o1)a22b2(o1)a33b3(o2)... 
 
The observation O is known and the state sequence X is hidden. Given that X is 
unknown, the required likelihood is computed by summing over all possible state 
sequences X = x(1),x(2),x(3),….,x(T), that is 

 

where x(o) is constrained to the model entry state and x(T+1) is constrained to the 
model exit state. Using the training samples for left hand or right hand motor imagery, 
the parameters, the a and {bj(ot)}, of the model for the respective task are determined 
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by an estimation procedure. To determine the parameters of the HMM model, the 
HTK uses the  Baum-Welch re-estimation procedure (Young, Woodland et al. 1993). 
To recognize an unknown trial data, the likelihood of each model generating the trial 
data (observation vector) is calculated using the Viterbi algorithm (Rabiner 1989; 
Rabiner and Juang 1993), and the most likely model identifies the data as resulting 
from left hand or right hand task.  
 
Our implementation of the HMM classifier comprised of the following steps: 

Transform the NIRS data into the format of the HTK software, 
Scale the data, 
Train 2 models of HMMs, one for left hand task and one for right hand task by 
computing the model parameters using the Baum-Welch re-estimation algorithm, 
Use the above models in 8 runs of 5-fold cross-validation to determine the 
classification accuracies. 

 
The training and testing sets were created as vectors of real numbers of oxygenated 
and deoxygenated haemoglobin concentration values, as per the format expected by 
the HTK software, from the 20 channels for each trial of left hand and right hand 
motor imagery tasks. With 80 trial examples of each pattern, viz., single trial data of 
left hand or right task, one HMM was trained for each type of task. For the purpose of 
comparison with SVM, we used the same evaluation methodology of 8 runs of 5-fold 
cross-validation.  We performed similar classification tests on overt finger tapping 
and covert motor imagery tasks, separately.  
 

Graphical user interface of the NIRS-BCI system 
Graphical User Interface (GUI, implemented in the C# language) was designed as a 
central control system of NIRS-BCI experiment, stimulus presentation and 
synchronization.  It also invokes the other internal subsystems of the software (Data 
Acquisition and Signal Analysis). 
 
There are two GUIs – Training and Speller.  At the start of the run, the experimenter 
will be able to choose one of the two options.  (see Figure 2.4 (a).)   
 
Training – Here the GUI instructs the user to imagine or move left or right hand in a 
certain order chosen by the experimenter and displays the NIRS feed back. 
 Speller – Here the trained user is presented with a moving cursor, which can be 
controlled to select letters and spell out a message. 

 

(a) 

(b) 
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Figure 2.4. (a) Start screen of the program. (b) Control tool bar showing the options 
Home/Reset, Start, Pause, Quit and Edit Configuration options. 

 
Once the Training or Speller GUI is started, the corresponding windows are opened.  
Common to both the windows is a tool bar (Figure 2.4(b)) which can be used to 
control the program.  The Configuration file, System.cfg, can be edited by clicking on 
the last button.  If the file doesn’t exist in the working directory, it will be created with 
default values, and then the experimenter will be prompted to edit it right away. 
 
The Training Mode has the following functions 
Read in the configuration 
Send a Beep to indicate start/end of a trial  
Display Right or Left stimulus on the screen. 
Control the Data Acquisition thread.  
Control the Signal Analysis subsystem and display the feedback results. 
 

 
Figure 2.5. Graphical user interface for the training stage.  Screen  indications. 
(a,b) Right/Left hand indication, (c) Feedback display during task, and  (d) Rest 
indication. 

 

(c) (d) 

(a) (b) 
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Results  

 
Figure 2.6: (a) Exemplary data from Subject-1 performing right hand finger tapping 
and motor imagery. Data displayed are averaged signals across a full session from 
channel 7 on the contralateral (left) hemisphere (close to the C3 electrode position as 
per the 10-20 system) for the duration 0-140 time points after stimulus presentation.  
Note that 140 time points are equal to 10 s of execution of the motor task at a 
sampling rate of 14 Hz. (b) Regressor model for right hand motor imagery task, based 
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on the timings of onset of stimuli for the task. The model was used for computing the 
Analysis of Variance (ANOVA) statistics and other measures in the HomER toolbox. 
 
To start with, we wanted to check if overt finger tapping and covert motor imagery 
produced qualitatively similar responses. Figure 2.6 (a) shows exemplary data from 
Subject-1 performing right hand finger tapping and motor imagery. Data displayed are 
averaged signals across a full session from channel 7 on the contralateral (left) 
hemisphere (close to the C3 electrode position as per the 10-20 system) for the 
duration 0-140 time points after stimulus presentation.  Note that 140 time points are 
equal to 10 s of execution of the motor task at a sampling rate of 14 Hz. Typically, 
concentration of oxygenated hemoglobin (red lines) increased and concentration of 
deoxygenated hemoglobin (blue lines) decreased during both finger tapping 
(continuous lines) and motor imagery (dashed lines) tasks. However, changes in 
concentration, both for oxygenated hemoglobin and deoxygenated hemoglobin, for 
finger tapping were greater than those for motor imagery. Applying the Analysis of 
Variance (ANOVA) on the data based on the regressor model (Figure 2.6 (b) ) in the 
HomER toolbox obtained significant activation for oxygenated and deoxygenated 
hemoglobin values, both for finger tapping and motor imagery, with P<0.001 and 
correlation coefficient R2=0.9.  
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Figure 2.7: (a) Hemodynamic response during motor imagery tasks at the ipsilateral 
hemisphere has substantial difference from that of the contralateral hemisphere. 
Exemplary data of averaged oxygenated and deoxygenated concentration changes for 
Subject-1, from channels on the left hemisphere (Ch 6) and right hemisphere (Ch 16), 
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while performing left hand and right hand motor imagery. Typically, channels on the 
contralateral hemisphere showed activation by an increase in oxygenated hemoglobin 
and decrease in deoxygenated hemoglobin, while the channels on the ipsilateral 
hemisphere either showed similar response but to a smaller extent, or in a reversed 
manner (increase in deoxygenated hemoglobin and decrease in oxygenated 
hemoglobin) potentially indicating inhibition. (b) Exemplary topographic images 
from Subject-1. Images were reconstructed by back-projection methods and linear 
forward models in the HomER toolkit from the averaged hemodynamic responses 
from both left and right hemispheres while Subject-1 performed left hand and right 
hand motor imagery tasks. The reconstructed images for oxygenated hemoglobin and 
deoxygenated hemoglobin are superimposed on the probe geometry, with x1-x8 
representing illuminator optodes and o1-o8 representing detector optodes. 
 
Next, we wanted to check if hemodynamic responses during motor imagery tasks in 
ipsilateral and contralateral hemispheres have substantial differences. Figure 2.7(a) 
illustrates exemplary data for Subject-1, from channels on the left hemisphere and 
right hemisphere, while performing left hand and right hand motor imagery. 
Typically, most channels on the contralateral hemisphere showed activation by an 
increase in oxygenated hemoglobin and decrease in deoxygenated hemoglobin, while 
the channels on the ipsilateral hemisphere either showed similar response but to a 
smaller extent, or in a reversed manner (increase in deoxygenated hemoglobin and 
decrease in oxygenated hemoglobin) potentially indicating inhibition.  
 
Figure 2.7(b) shows images reconstructed from the averaged hemodynamic responses 
from both left and right hemispheres while Subject-1 performed left hand and right 
hand motor imagery tasks. The reconstructed images for oxygenated hemoglobin and 
deoxygenated hemoglobin are superimposed on the probe geometry, with x1-x8 
representing illuminator optodes and o1-o8 representing detector optodes. Activations 
are shown by yellow and red pixels and inhibitions by blue and green pixels. We 
found inter-subject variability in activation, illustrated by the variability between 
reconstructed images for different subjects. 
 
The above analyses illustrated that there exist distinct patterns of hemodynamic 
responses as measured by NIRS to left hand and right hand motor imagery tasks 
which could be utilized in a pattern classifier towards developing a BCI. Table 2.1 
lists the mean and standard deviation of accuracy of classification of left hand motor 
task from right hand motor task, using SVM and HMM techniques, on the data 
collected from 5 healthy volunteers. For the purpose of comparison, we classified 
both finger tapping and motor imagery data, although the proposed BCI was intended 
to be operated by motor imagery alone.  
 

% Accuracy BY SVM 
(avg ~ STD) 

% Accuracy BY HMM 
(avg ~ STD) 

Subject 

Finger Tapping Motor Imagery Finger Tapping Motor Imagery 

Subject-1 94.27~4.99 75.62~3.42 94.76~3.01 91.29~8.88 

Subject-2 78.44~10.31 69.84~8.23 91.44~8.71 89.7~8.58 

Subject-3 79.37~10.85 71.45~8.11 92.78~4.93 91.76~6.53 
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Subject-4 93.81~5.63 74.87~3.56 93.83~4.94 79.14~12.36 

Subject-5 91.68~8.15 73.94~7.45 94.43~5.41 93.76~5.95 

TOTAL 87.5 73.1 93.4 89.1 

 
Table 2.1: Accuracy of Support Vector Machine (SVM) and Hidden Markov Model 
(HMM) classification of finger tapping and motor imagery tasks for 5 healthy 
volunteers.  
 
Finger tapping data were classified with better accuracy compared to motor imagery 
data, by both classification techniques for all the subjects. Average accuracy of 
classification across all the subjects for finger tapping, by SVM and HMM, were 
87.5% and 93.4%, respectively, as against 73.1% and 89.1% for motor imagery. 
Between the two pattern classification techniques, HMM performed better than SVM, 
for both finger tapping and motor imagery tasks. The accuracy of classification by 
HMM in comparison to SVM was greater by 5.9% for finger tapping, while the 
improvement was a striking 16% for motor imagery.  

Discussion 
Preliminary analysis of the NIRS signals collected during left hand and right hand 
motor imagery tasks indicated variation of the profile of the oxygenated and 
deoxygenated concentration changes from trial to trial. The dynamic nature of the 
signal could be due to inconsistency in the execution of motor imagery, especially 
when performed without any form of feedback. During overt finger tapping, the 
subject gets somatosensory and visual feedback of his/her own movement, while this 
is not so for the motor imagery task. A subject may start an imagination task at a 
different point in time in each trial. Further, he may perform the imagination at 
different tempos in different trials, creating considerable difficulties to the pattern 
recognition of the signal. This could be one of the reasons for the higher classification 
accuracy of finger tapping compared to motor imagery for both the classification 
techniques (SVM and HMM). With this consideration, we anticipated that a 
probability network like the HMM might model the dynamic nature of the 
hemodynamic time-series more effectively. Interestingly, this was confirmed by the 
greater improvement in classification accuracy by HMM for motor imagery (16% 
increase) compared to the improvement in accuracy for finger tapping (5.9% 
increase). Recently, Haihong and Cuntai (Haihong and Cuntai 2006) developed an 
improved method to address the above variations in the NIRS signal in response to 
motor imagery. The proposed technique uses a kernel-based model to represent 
variations in the hemodynamic signals of interest. Furthermore, a mathematical 
procedure was developed to locate the signals by estimating the parameters of the 
model. SVM was used on the located signals to differentiate left hand imagery from 
right hand imagery. The authors validated the method on simulated data as well as 
real data to obtain an error reduction of as much as 13%. This method can be 
potentially employed with HMM to improve classification accuracy even further. 
 
By foregone results, we have established that there exist distinct patterns of 
hemodynamic responses between left hand and right hand imagery, and that such 
patterns can indeed be classified offline with substantially greater than chance 
accuracy. Our results of high accuracy of offline pattern classification of NIRS signals 
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during motor imagery tasks, especially with the HMM classifier, indicate the potential 
use of such techniques to the further development of an online BCI system. Towards 
this end, we have implemented a NIRS-BCI system incorporating a word speller as a 
language support system for the disabled.  The system is written as a stand-alone 
application in C/C++, with C# used for development of the graphical user interface 
(GUI). The system comprises of four online modules: signal acquisition, signal 
processing, signal classification and word speller application with online feedback to 
the user. The signal acquisition module currently supports real-time data acquisition 
from 2 commercially available NIRS systems: OMM-1000 (Shimadzu Corporation, 
Japan) and Imagent System (ISS Inc., USA), through a serial port connection and two 
pluggable software components to support the differences in the data formats of the 
two instruments.  The signal processing module implements low and high pass 
filtering and temporal smoothing. The pattern classification module currently supports 
SVM and HMM techniques. The SVM classifier is based on the LibSVM C++ library 
(Chang and Lin), while the HMM classifier is based on the HTK library (Young, 
Woodland et al. 1993). The word speller interface provides a means to use NIRS 
responses created by left and right hand motor imagery to spell words by a 2-choice 
cursor control paradigm. The user has to use left or right hand imagery to move the 
cursor to the left or right respectively to select a box that contains the letter of choice. 
Feature vectors of oxygenated and deoxygenated hemoglobin values from all channels 
in a moving window of 4 s is used as input to the pattern classifier. The length of the 
moving window can be increased or decreased depending on the performance 
requirements of execution and the expertise of the user. In terms of operation, the 
word speller is quite similar to the language support system of the Thought 
Translation Device (TTD) (Kotchoubey, Strehl et al. 1999; Anokhin, Lutzenberger et 
al. 2000). 
 
A suitable training protocol needs to be developed to extend the offline pattern 
classification system to an active, online BCI system that drives the word speller 
application. In this regard, a 2-step procedure is being used. First, for each subject, 
parameters of the classifier (SVM or HMM) are estimated during offline training, and 
stored as a subject-specific model. This is necessary, as we have seen that there is 
great deal of variability between subjects in their hemodynamic response patterns. 
Next, subject-specific model parameters are loaded as the initial parameters of the 
classifier for online training. During online training on the word speller, the subject 
uses motor imagery to learn to control the cursor for selection of letters. At the end of 
each online training session, his model parameters are re-estimated based on the 
newly acquired data. This way, with each new training session the BCI would be re-
tuned to operate in an online mode. 
 
Until now, we have only considered a 2-choice BCI system operated by classifying 
left hand and right hand motor imagery. Potentially, such a system can be extended to 
3- or 4-choice operation by imagery of the legs, and simultaneous imagery of hands 
and legs. Furthermore, other paradigms of BCI control, such as the P300 
hemodynamic response could also be explored. Kennan et. al (Kennan, Horovitz et al. 
2002) reported simultaneous recording of event-related auditory oddball (P300) 
response using NIRS and surface EEG. A peak signal of oxygenated hemoglobin was 
observed around 6 s after the onset of the oddball stimulus. Many other studies that 
assessed motor and cognitive functions using NIRS (Hoshi and Tamura 1993; Kato, 
Kamei et al. 1993; Kleinschmidt, Obrig et al. 1996; Hoshi and Tamura 1997; Okada 
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1997; Hoshi, Oda et al. 2000; Hoshi, Kobayashi et al. 2001) may indicate how future 
BCIs could be developed.  
 
A major drawback of NIRS is the long time constants of the hemodynamic response 
making NIRS-BCI potentially very slow to operate. A fast NIRS signal (Franceschini, 
Toronov et al. 2000; Wolf, Wolf et al. 2002; Wolf, Wolf et al. 2003; Wolf, Wolf et al. 
2003) is reported to appear in the range of milliseconds after stimulation. The signal is 
generated by rapid changes in the optical properties of the cerebral tissue. These 
changes presumably are due to an alteration of the scattering properties of neuronal 
membranes, which occur simultaneously with electrical changes, cell swelling, and 
increased heat production. Thus the fast signal is believed to be directly related to 
neuronal activity, as EEG or MEG, in contrast to functional NIRS, fMRI (BOLD 
signal), PET detecting only the slow hemodynamic response to neuronal activity. 
However, the fast signal is more difficult to detect, because the optical changes are 
small and other physiological signals, such as the hemodynamic pulsativity due to the 
heart beat dominate. Therefore, the system has to be highly noise resistant. Many 
trials of the fast signal need to be averaged to improve signal-to-noise ratio. When the 
above limitations and problems have been sufficiently overcome, the fast signal could 
prove beneficial to BCI development. 
 
In this study, we have demonstrated the feasibility of a BCI using near infrared 
spectroscopy. Further work needs to be carried out to develop and test an online BCI 
system for the disabled. Novel signal processing methods need to be developed to 
exploit the NIRS signal. NIRS avoids the noise prominent in the electrical signals. It 
is less cumbersome to use, as there is no need to apply conductive gel. NIRS is non-
ionizing, and so suitable for long-term use. However, NIRS also has certain 
drawbacks. It is slow to operate because of the inherent latency of the hemodynamic 
response. The signal strength is affected by hair on the head (especially if the subject 
has thick dark hair). Furthermore, if the probes are not secured well, the relative 
motion of the optodes on the hair may introduce motion artifacts and drifts in the 
hemodynamic signal. In spite of these limitations, NIRS’s ability to localize brain 
activity 1-3 cm below the surface of cortex, with a spatial resolution in the range of 
cm could be an advantage in BCI development.  NIRS provides us with an excellent 
opportunity to use a variety of motor and cognitive activities to detect signals from 
specific regions of the cortex for the development of future BCIs.  
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Chapter 3 

 

 

Functional Magnetic Resonance Imaging Brain-
Computer Interface 

Introduction 
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which 
measures the task induced blood oxygen level-dependent (BOLD) changes correlating 
with neuronal activity in the brain (Logothetis 2007; Logothetis 2008). Further 
progress has been made in real-time fMRI since the first description of the method by 
Cox et al., (Cox, Jesmanowicz et al. 1995). In contrast to conventional fMRI which 
allows analysis of images only after the scan is finished, real-time fMRI allows 
simultaneous acquisition, analysis and visualization of whole brain images. With 
progress in real-time fMRI due to higher field MRI scanners, fast data acquisition 
sequences, improved real-time pre-processing and statistical analysis algorithms, and 
improved methods of visualization of brain activation and feedback to the subject, 
implementation of fMRI-BCI and neurofeedback became feasible. 

Architecture of fMRI-BCI  
An fMRI-BCI system is a closed loop system (figure 3.1), with the following major 
subsystems: signal acquisition, signal preprocessing, signal analysis and signal 
feedback. The subsystems are usually installed and executed in separate computers 
for optimising system performance, and are connected via a local area network 
(LAN). Whole brain images from healthy subjects or patients are acquired slice by 
slice employing an echo planar imaging (EPI) sequence. Greater the number of slices 
the brain is divided into, the longer is the time for acquisition of the images. As the 
real-time nature of fMRI-BCI requires rapid acquisition of whole brain images 
(typically in 1-2s), a tradeoff needs to be made between spatial and temporal 
resolution. In most of our studies, we have used 16-20 slices (Caria, Veit et al. 2007). 
An fMRI voxel of size ~3x3x5 mm3 contains millions of neurons. When neurons in 
an area become active, blood rich in oxygen flows to the area. The source of the 
fMRI signal is the difference in the magnetic properties of oxygenated blood from 
deoxygenated blood. The measured hemodynamic response due to the BOLD effect, 
which is the neurovascular response to brain activity, lags behind the neuronal 
activity by approximately 3-6s (Logothetis 2007; Logothetis 2008). Higher static 
magnetic field (B0) strengths and more sophisticated MRI pulse sequences are often 
used to increase the signal-to-noise ratio (SNR). The acquired images are then 
preprocessed to correct for head motion, compensate for signal dropouts and 
magnetic field distortions, and apply spatial smoothing. The signal analysis 
subsystem performs statistical analysis and generates functional maps using any of 
the following methods: subtraction of active and rest conditions, correlation analysis, 
multiple regression, General Linear Model (GLM) and pattern classification. 
Feedback can be presented to the subject by different modalities, including, acoustic 
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and visual; and with a variety of visualization methods, such as, functional maps, 
continuously updated curves of the mean activity in one or more selected region-of-
interest (ROI), varying activity levels in one or more ROIs using a graphical 
thermometer, and augmented interfaces such as Virtual Reality (VR). Feedback is 
presented at an interval that depends on the time involved for image acquisition and 
processing, based on the computational resources available and the efficiency of the 
algorithms with which they are implemented, thus directly affecting the performance 
of the system. A short interval is critical for learning voluntary control of brain 
activity (for example, 1.5s, (Caria, Veit et al. 2007)).  
 
 

 
 
Figure 3.1: An fMRI-BCI system is a closed loop system, with the following 
subsystems: signal acquisition, signal preprocessing, signal analysis and signal 
feedback. Whole brain images from healthy subjects or patients are acquired 
employing a conventional Echo Planar Imaging (EPI) sequence or any of its 
variants. The measured hemodynamic response due to the BOLD effect is 
preprocessed for correction of different artifacts, including, for head motion. The 
signal analysis subsystem performs statistical analysis and generates functional 
maps. Feedback can be presented to the subject by different modalities, including, 
acoustic and visual; and with a variety of visualization methods, such as, functional 
maps, continuously updated curves of the mean activity in one or more selected 
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region-of-interest (ROI), varying activity levels in one or more ROIs using a 
graphical thermometer, and even augmented interfaces such as Virtual Reality (VR). 
 
In the following subsections we will elaborate on each of the subsystems, explaining 
different algorithms and methods developed so far. We will consider technological 
and psychophysiological factors that affect and influence the performance and 
efficiency of the system.  

Signal Acquisition 
Conventional MRI has been a slow imaging modality where increases in imaging 
speed result in signal losses (Cohen 2001). The reason is that the MR signal is 
derived from the conversion of tissue magnetization to a radio signal, and the 
magnetization recovers rather slowly. This had limited the possibility of 
implementing a real-time MRI. Fortunately, over the last 20 years technical advances 
in imaging have enabled substantial reduction in acquisition time. The most 
significant speed advance came with the development of echo-planar imaging (EPI). 
EPI is capable of imaging the entire brain in 1-2s. At this sampling rate, fMRI can 
accurately follow the time course of brain activation.  
 
In a traditional fMRI experiment, images are reconstructed offline only after the 
experiment has been completed. Real-time fMRI, on which fMRI-BCI is based, 
requires the simultaneous reconstruction of the images with the acquisition of the MR 
signal. Cox’s group reported the first implementation of a real-time fMRI system 
using a whole-body 3T scanner (Bruker Instruments) (Cox, Jesmanowicz et al. 1995). 
In their implementation, the analog signal from the signal acquisition system was 
sent to a workstation for analog-to-digital conversion and image reconstruction. In 
our laboratory, we have modified the Siemens MR scanner’s image reconstruction 
software to allow online reconstruction of whole-brain images at the end of every 
repetition time (TR), and storage of these images in a pre-specified folder to be 
immediately retrieved for further processing, analysis and feedback by the fMRI-BCI 
system. The online image reconstruction software program was written in C++ based 
on the Image Reconstruction Environment (ICE) provided by Siemens. The 
RTExport system runs both on the 1.5T (Vision) and 3T (TIM Trio) Siemens 
scanners.  
 
Many factors influencing signal acquisition have important consequences for real-
time performance of fMRI-BCI: static magnetic field (B0) strength, spatial 
resolution, temporal resolution, echo time and magnetic field inhomogeneities. 
Although high spatial resolution is desired, increasing the spatial resolution decreases 
the SNR and increases the acquisition time, and hence a compromise needs to be 
made among these variables. Commonly in fMRI-BCI, 64x64 image matrices 
resulting in 3-4 mm in-plane resolution, and slice thickness of around 5 mm are used. 
For online processing after image acquisition, spatial filtering or averaging across a 
ROI helps improve SNR. Reduced spatial resolution could be beneficial, 
compensating for head motion, data complexity and inter-subject variability 
(Weiskopf, Scharnowski et al. 2004). A repetition time (TR) of 1500 ms has been 
used (Weiskopf, Veit et al. 2003; deCharms, Christoff et al. 2004) in real-time fMRI 
with single-shot EPI. It is advisable that fMRI-BCI studies choose the echo time (TE) 
close to the relaxation time (T2*) of the gray matter in the brain to maximize 
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functional sensitivity (Moonen and Bandettini 2000). This value is about 70 ms at 
1.5 T and 45 ms at 3 T.  
 
At the interface between tissue and air in the brain, in areas such as orbitofrontal 
cortex and temporal pole, a significant change in the local magnetic field is present 
over a short distance. Artifacts such as signal dropouts and geometric distortions 
(local shifts and compressions in the image) caused by magnetic field 
inhomogeneities potentially affect the performance of fMRI-BCI. Several methods 
have been developed for reducing susceptibility related signal losses in fMRI (for an 
overview see (Weiskopf, Hutton et al. 2007)). Weiskopf et al., (Weiskopf, Hutton et 
al. 2007) developed a theory supported by experimental evidence showing that 
susceptibility-induced gradients in the EPI readout direction cause severe signal 
losses. They have proposed a model to simulate EPI dropouts to make informed 
choice of scan parameters depending on the field inhomogenities in a region. Based 
on this insight, they developed an optimized EPI sequence for maximal BOLD 
sensitivity using a specific combination of an increased spatial resolution in the 
readout direction and a reduced echo time.  

Signal Preprocessing 
This component of the fMRI-BCI system retrieves the reconstructed images from the 
signal acquisition component via the LAN, and performs data preprocessing. 
Methods of signal preprocessing can be head motion artifact correction, respiratory 
and cardiac artifact correction, and spatial smoothing. 

Head Motion Correction 
Head motion is one of the largest sources of artifacts in fMRI. If two neighboring 
voxels differ in intrinsic brightness by 20%, then a motion of 10% of a voxel 
dimension can result in a 2% signal change – comparable to the BOLD signal change 
at 1.5T subsequent to neural activation (Bandettini, Wong et al. 1992). The motion 
artifacts can interfere with and reduce the detection of signal changes due to neural 
action or even simulate signal changes. Head motion can be reduced by padding and 
a bite bar to some extent only. Real-time fMRI feedback profits from robust online 
motion correction. Because the head moves as a whole, rigid body transformations (3 
for translation, 3 for rotation) can be estimated from a number of volume data points 
for motion correction. The short response latency (tens of seconds) of real-time fMRI 
makes it particularly sensitive to motion artifacts (Mathiak and Posse 2001). Motion 
correction in real-time requires efficient algorithms that can be executed on fMRI 
data sets within a single repetition time (TR). For neurofeedback applications, 
feedback of motion artifacts to the subjects and omitting rewards may discourage 
head movement. Two major types of head motion correction have been developed: 
retrospective and prospective methods. Both methods can be potentially applied to 
fMRI-BCI, when real-time adoptations of the methods are made feasible and 
implemented. Retrospective motion correction for real-time fMRI involves image 
registration soon after every volume of the fMRI data is acquired. Prospective 
methods correct for subject head motion even before image acquisition.  
 
Retrospective methods realign the time-series data to a reference image collected 
during the fMRI session. Conventional retrospective correction uses rigid body 
transformation normally consisting of 3 translational and 3 rotational parameters. 
Realignment parameters are typically estimated by optimizing a similarity measure 



 

 41 

based on voxel signal intensity values, quantifying the difference between a specific 
image in the time-series, and the reference (Tremblay, Tam et al. 2005). As an 
adaptation for real-time fMRI, Mathiak et al.,(Mathiak and Posse 2001) developed a 
real-time retrospective algorithm which performs a rigid body motion correction of a 
complete multislice EPI dataset within a single TR cycle. In this method, one of the 
first images is chosen as the reference image, and all subsequent images are realigned 
separately with respect to this image. The optimization criterion is to minimize the 
quadratic difference between the reference image and shifted image. In the 3-stage 
implementation of this technique, the reference gradient maps are first calculated, 
motion parameters are then estimated, and finally images are corrected for the 
estimated movement using re-slicing with linear interpolation. For selecting gradient 
maps, a set of estimation equations are used for the translational and rotational 
components for the 3 axes.  
 
Retrospective motion correction has a few drawbacks, including blurring due to 
interpolation and image transformations, potential misregistration due to local 
intensity changes from the BOLD signal, and the potential for introducing false-
positives or for false-negatives in the activation statistics (Ward, Riederer et al. 
2000). The retrospective motion correction method has been incorporated into a 
number of public-domain postprocessing software packages, including SPM, AIR, 
and AFNI. Turbo Brain-Voyager (TBV, Brain Innovation, Maastricht, Netherlands), 
a commercial software for real-time fMRI which is incorporated in our fMRI-BCI, 
has implemented a real-time version of retrospective motion correction. Figure 3.2 
shows estimated values of head motion in the 3 translational directions and 3 
rotational directions, as computed by TBV. 
 

 
 
Figure 3.2: Real-time functional maps during motor imagery of left and right hands. 
The functional maps are displayed using the Turbo Brain Voyager software (TBV; 
Brain Innovations, Maastricht). The TBV software allows orthographic and slice-
based display of functional activations. On the left panel, statistical maps of brain 
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activation are superimposed on the orthographic images (sagittal image  – top-left, 
coronal image – top-right, axial image – bottom-right) acquired by an EPI sequence. 
In this example, self-paced motor imagery of left hand and right hand resulted in 
activation in the right and left primary motor areas (ROI1- red rectangle and ROI2- 
green rectangle respectively), somatosensory areas, and supplementary motor area 
(SMA). The upper and middle right panels show the BOLD time courses in the ROI1 
and ROI2, respectively. Blocks of left hand imagery are colored red, right hand 
imagery green, and baseline grey. The lower right panel displays head motion 
parameter (3 translations and 3 rotations).  
 
 
Prospective methods correct for subject head motion before image acquisition by 
adjusting scanning parameters by tracking the moving anatomy (Tremblay, Tam et 
al. 2005). Ward et al., (Ward, Riederer et al. 2000) developed such a method by  
measuring rotation and translation for each of the sagittal, axial and coronal planes. 
This was achieved by incorporating a special type of sequence called orbital 
navigator echo sequence, a separate process applied before each cycle of acquisition 
of multislice fMRI signals. Immediately after their acquisition, the navigator signals 
are processed to determine motion in three degrees of rotation and three degrees of 
translation. The values of the rotations and translations detected are then used to 
adjust the gradient rotation matrix and the RF excitation frequency prior to the 
excitation of the subsequent imaging sequence. Any motion relative to the baseline 
determined from the navigator acquisitions at the start of the multislice cycle is used 
to correct all the images of that cycle. The time from the acquisition of the first 
navigator echo to alteration of the EPI acquisition can be less than 160ms. The results 
of applying the technique to volunteers demonstrated the feasibility of in-vivo 
correction of head-motion for real-time fMRI (Ward, Riederer et al. 2000).  

Physiological Noise Correction 
The magnetic field in the head changes during breathing because of the bulk motion 
of the thorax. Breathing patterns may change the fMRI signal more than the desirable 
BOLD response. Changes in the respiratory rhythm and volume can also change the 
CO2 level in the blood and cause BOLD signal fluctuations (Birn et al., 2006). The 
pulse is also known to cause artifacts. Techniques have been developed to remove 
cardio-respiratory artifacts during offline analysis (Josephs, Howseman et al. 1997; 
Glover, Li et al. 2000; Birn, Diamond et al. 2006), but they have not been adapted to 
online processing for real-time fMRI. Recently van Gelderen et al., (van Gelderen, de 
Zwart et al. 2007) reported a real-time shimming method to compensate for 
respiration induced fluctuations in the main magnetic field (B0 field). Future 
implementations of fMRI-BCI could potentially explore the use of these methods for 
correction of physiological artifacts and noise. This becomes even more important at 
higher static magnetic fields, because the relative contribution of physiology to the 
noise increases (Triantafyllou, Hoge et al. 2005). 

Signal Analysis 
While majority of work in fMRI-BCI have used conventional neuorimaging methods 
of univariate analysis, there is a growing interest in incorporating multivariate 
methods of pattern analysis using machine learning techniques in the emerging field 
of brain state detection. In this section, we will consider both methods as applied to 
fMRI-BCI.  
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Univariate Analysis 
Univariate methods seek to find out how a particular perceptual or cognitive state is 
encoded by measuring brain activity from many thousands of locations repeatedly, but 
then analyzing each location separately (Haynes and Rees 2006). If the responses at 
any brain location differ between two states, then it is possible to use measurements of 
the activity at that location to determine or decode the state. A commonly used 
method for detecting neuronal activity from fMRI time-series is correlation analysis. 
The method computes correlation coefficients between the time-series of the reference 
vector representing the expected hemodynamic response and the measurement vector 
of each voxel. A primary advantage of this method is that the reference vector can 
have an arbitrary shape best reflecting the hemodynamic response. Gembris et al., 
(Gembris, Taylor et al. 2000) presented a computationally efficient algorithm, 
implemented in the analysis software Functional Magnetic Resonance Imaging in 
Real-time (FIRE), which generates correlation coefficients on a “sliding-window” of 
the fMRI time-series. The basic concept of this method is to restrict the correlation 
computation to only the most recent data sets. According to this method, definition of 
the correlation coefficient in combination with detrending is given by the equation: 
 

    

        
where  is the measurement vector of one voxel that is updated at every time step,  
is the reference vector, and and  are detrending vectors. (For further details on 
implementation of this method the reader is referred to the article (Gembris, Taylor et 
al. 2000). Each new data set replaces the data set of the previously acquired sliding-
window buffer. This method reduces the load on memory and computational time, 
two important factors that critically affect the performance of fMRI-BCI. The authors 
tested the method in an experiment with 20 healthy participants in a paradigm 
comprising alternating baseline and visual stimulation blocks. The sliding window 
correlation method successfully identified the visual areas as being significantly 
active with voxels in this region crossing the threshold correlation coefficient of 70%.  
The method offers greater sensitivity of the correlation coefficients to changes in the 
signal response shape and amplitude with passing measurements. Another advantage 
of the sliding-window technique is its capability for quantifying physiological 
variability when combined with a technique called reference vector optimization 
(Gembris, Taylor et al. 2000). This method takes into account a realistic model of the 
hemodynamic response function to adapt the reference vector to the measured data 
and thus increases functional sensitivity.  
 
The general linear model (GLM) provides by far the most unified framework in the 
analysis of the fMRI data (Friston, Holmes et al. 1995). GLM can model multiple 
experimental and confounding effects simultaneously. Bagarinao et al., (Bagarinao, 
Matsuo et al. 2003) presented a method for real-time estimation of GLM coefficients. 
The observed fMRI data are considered a linear combination of L explanatory 
functions fi(.) and an error term:  
yk,s = bk,1f1(ts)+…+bk,1fL(ts)+ε k,s       
  
where yk,s is the observation of kth voxel at time ts, s=1..n are scan numbers, fs(.) are 
basis functions that span the fMRI responses for a given experiment, bk are 
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coefficients that need to be estimated and εk,s is the residual error or noise term. The 
method converts the basis functions or explanatory variables of a GLM into 
orthogonal functions using an algorithm called the Gram-Schmidt orthogonalization 
procedure. The coefficients of the orthogonal functions are then estimated using the 
orthogonality condition. (For further details on implementation of this method the 
reader is referred to the article (Bagarinao, Matsuo et al. 2003). In a conventional 
GLM analysis of fMRI data, multiple trials are required to identify significantly 
activated voxels with sufficient consistency. However, it is not possible to obtain 
many trials in an fMRI-BCI setting with its very need for identifying significantly 
active voxels in real-time. The advantage of the real-time GLM implementation is that 
estimates can be updated when new images data are available, making the approach 
suitable for fMRI-BCIs. Furthermore, with this approach it is not necessary to store 
the data as it is immediately used in computing the estimates, thus reducing the 
memory requirements. A similar approach is taken by the analysis software (TBV) 
running on our local fMRI-BCI setup at the University of Tuebingen which uses the 
recursive least squares regression algorithm (Pollock 1999) to incrementally update 
the GLM estimates.  
 
After identification of the significantly active voxels, either by the method of real-
time correlation or GLM analysis, their values are passed to the Signal Feedback 
subsystem at every time point for computation and presentation of the feedback to the 
participant.  

Multivariate Analysis 
Using univariate analysis it is often difficult to find individual locations where the 
difference between conditions are large enough to allow for efficient decoding. In 
contrast to the conventional analysis, recent work shows that the sensitivity of human 
neuroimaging may be improved by taking into account the spatial pattern of brain 
activity (Mitchell, Hutchinson et al. 2003; Davatzikos, Ruparel et al. 2005; Polyn, 
Natu et al. 2005; Norman, Polyn et al. 2006). Pattern-based methods use considerably 
more information for detecting the current state from measurements of brain activity. 
In the previous studies with fMRI-BCI, brain signals from only one or two regions of 
interest (ROI) were extracted for providing neurofeedback to the subject. A major 
argument for moving away from deriving feedback signals from single ROIs is that 
perceptual, cognitive or emotional activities generally recruit a distributed network of 
brain regions rather than single locations. Pattern-based methods not only use voxel-
intensities but also their spatiotemporal relationships. 
 
Several  studies have previously reported offline classification of fMRI signals using 
various pattern based methods such as multilayer neural networks (Norman, Polyn et 
al. 2006), Fisher Linear Discriminant (FLD) classifier (Mourao-Miranda, Bokde et al. 
2005) and Support Vector Machines (SVM).  LaConte et al., (Laconte, Peltier et al. 
2006) recently reported probably the first implementation of a real-time pattern 
classification system that could be applied to neurofeedback and BCI. The aim of the 
study was to first train a classification model based on early fMRI data, and thereafter 
to use the classifier to predict the brain state with each acquired image and alter the 
stimulus based on the estimated brain state. The authors modified the Siemens 
scanner’s Image Calculation Environment (ICE) to perform Support Vector Machine 
(SVM) classification during training and testing, and then transmitted the 
classification results to a stimulus display computer. To improve the efficiency of 
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classification the authors implemented a method for segmenting brain regions from 
non-brain regions with a combination of intensity thresholded mask and an additional 
variance mask to remove signals from the eye regions. For SVM classification, 
images from each scan were represented as a vector whose components were intensity 
values for each brain voxel at that time. The experimental condition associated with 
each vector was represented as a scalar class label. The SVM algorithm attempts to 
find a decision boundary as a separating hyperplane to discriminate between the two 
class labels. Once the SVM model was determined from the training images, 
independent testing images were classified into the specified labels. Percentage 
classification accuracy was reported as the ratio of number of correctly classified 
scans to the total number of scans. To test this approach the authors used an 
experimental task consisting of rapid button press blocks that alternatively used the 
left or right portion of the visual display. During the training runs an arrow in the 
center of the display pointed toward the left or right target acted as the cue. During the 
subsequent testing run, each acquired image was classified by the SVM model, and 
the arrow was updated in terms of its position and orientation based on the classifier’s 
left or right decision. With additional subjects, task instructions were changed to 
further examine pattern classification of mood, language and imagined motor tasks. 
The authors concluded that real-time pattern classification of brain states using fMRI 
data is possible; high prediction accuracies are attainable during sustained activation; 
and stimulus feedback based on pattern classification can respond to changes in brain 
states much earlier than the time-to-peak limitations of the BOLD response. The 
above approach is limited to two-class classification of brain states.  
 
We have recently implemented in our fMRI-BCI a multiclass pattern classification 
system offers the experimenter the flexibility of selecting either an SVM or a 
multilayer neural network classification algorithm (Sitaram 2007). Mourao-Miranda 
et al., (Mourao-Miranda, Bokde et al. 2005) carried out a comparison of two methods, 
SVM and Fisher Linear Discriminant classifier (FLD), for classifying multisubject 
data from an experiment involving a face matching and location matching task. They 
demonstrated that SVM outperforms FLD in classification accuracy as well as in the 
robustness of the spatial maps obtained. Further work needs to be carried out to 
rigorously compare the performance of existing pattern classification approaches to 
assess their suitability and efficacy for fMRI brain state classification.  

Signal Feedback 
Training to self-regulate a brain activity can be implemented by feedback of this 
specific brain signal (Schwartz and Associates 1995). In fMRI-BCI, feedback 
provides reward and information of the BOLD signal. Contingent feedback following 
the response with a minimum lag and at a high probability improves learning. FMRI-
BCI can operate both in a feedback mode for applications involving self-regulation 
and non-feedback mode for applications involving brain state detection (e.g., lie 
detection). In this section, we elaborate on the techniques used to date in identifying 
the feedback, in computing the feedback signal and eventually in presenting the 
feedback to the subject.  

Feedback Identification 
fMRI-BCI can take advantage of the high spatial resolution and whole brain coverage 
of fMRI to derive feedback from specific anatomical locations called regions of 
interest (ROI) (Weiskopf, Scharnowski et al. 2004). Feedback from circumscribed 
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brain regions necessitates the delineation of the target ROI by anatomical landmarks 
or by identifying functional activation elicited in a functional localizer experiment by 
presenting the subject a stimulus or instructing the subject to perform a mental task. 
Motor areas can be localized by overt finger tapping, covert movement imagery and 
observation of movement. Primary and higher visual areas can be localized by 
presenting distinct visual stimuli. For example, the higher visual areas like fusiform 
gyrus (FFA) and parahippocampal place area (PPA) can be localized by presenting 
images of faces and houses, respectively. Functional localizers can also be used to 
identify brain areas involved in higher cognitive and affective processing such as 
anterior cingulated cortex (Weiskopf, Veit et al. 2003) or the insula (Caria, Veit et al. 
2007). ROI is chosen by drawing a rectangular area on the functional map computed 
by the signal analysis software (e.g., TBV). To improve selection of ROIs, functional 
maps could be co-registered with previously acquired anatomical scans of the subject 
for accurate localization of ROI, when the region is too small to be located using the 
EPI images alone or too hard to localize consistently by functional localizers (e.g., 
amygdala). In contrast to selecting circumscribed brain regions by the ROI method 
employing univariate analysis, pattern-based methods (Laconte, Peltier et al. 2006) 
are able to extract brain activity from spatially distributed regions which dynamically 
interact while the subject learns to regulate a motor, cognitive or affective behavior.  

Feedback Computation 
After the feedback signal is identified, further processing needs to be carried out to 
arrive at a suitable representation of brain activity to be presented as feedback. By 
conventional univariate methods, effective signal change from an ROI is usually 
computed as a difference of the average BOLD signal between the activation block 
and the baseline block. Specificity of the signal can further be improved by designing 
a protocol that includes bidirectional control, that is, both up and down regulation of 
the activity in the ROI. Studies have used differential feedback (Weiskopf, 
Scharnowski et al. 2004) between two ROIs to subtract global signal changes. 
General effects of arousal and attention caused by the demands of the task or the state 
of the subject are thus canceled out leaving only the effects of increasing or 
decreasing the signal. A potential problem related to differential regulation of two 
ROIs is that subjects may learn to regulate only one ROI while keeping the second 
ROI constant. We have recently incorporated a correlation coefficient in the 
computation of feedback of two ROIs to prevent the above undesirable effect. We 
used the following equation to compute the magnitude of feedback when subjects 
were trained to increase BOLD in ROI1 while decreasing BOLD in ROI2 
simultaneously (i.e., negative correlation of the two time-series): 
Magnitude of feedback = (BOLDROI1 – BOLDROI2) * (1 –R)                                                              
where R  is the correlation coefficient of BOLD time-series in the two ROIs 
computed from a sliding window of past n (example, n=10) time points. If the subject 
learns to maintain a high BOLD in ROI1 compared to ROI2 and a negative 
correlation of the two ROIs he receives higher reward through feedback. However, 
the subject receives lesser reward if the difference between the BOLD values in the 
ROIs is negative, or if there is a positive correlation between the BOLD values in the 
two ROIs, or both.  
 
In designing the experimental protocol for fMRI-BCI, the time constants of the 
hemodynamic response and the time required for task switching need to be kept in 
mind. Most studies reported so far have used block designs with alternating rest 
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periods and regulation tasks. Duration for rest periods and regulation tasks is in the 
range of 15-60s. Shorter periods could be used for overt execution of motor tasks 
(like finger tapping) as they can be started and stopped quickly. Longer periods need 
to be used for mental imagery and emotional regulation tasks. A delay between brain 
activation and feedback of that activation in range of seconds is inevitable due to the 
hemodynamic delay and delay in image acquisition and processing. Hemodynamic 
coupling introduces a delay between neuronal activation and the BOLD signal 
changes (Moonen and Bandettini 2000), with the onset of signal changes delayed by 
around 3s and the peak signal change by 6s. Due to signal acquisition and processing 
an additional delay of around 1.5s is introduced. Fortunately, the delay in acquisition 
allows for temporal averaging of fMRI data to increase SNR and hence the reliability 
of feedback (Weiskopf, Scharnowski et al. 2004). 
 
The benefits of the high spatial resolution of the fMRI is lost if the feedback signal is 
obtained from too large an ROI that encompasses multiple disparate areas involved 
the target function. By averaging signals from individual voxels in a large ROI, the 
spatial information across the circumscribed region would be lost. To overcome this 
problem and to be able to compare results across subjects, we used small rectangular 
ROIs of a uniform size of 6x6 voxels (36 voxels) in our studies on self-regulation of 
interior insula (Caria, Veit et al. 2007). Another advantage of using smaller ROIs is 
in reducing the computational bottleneck in processing statistical information in a 
reduced number of voxels. The newly emerging real-time pattern-based feedback 
(Laconte, Peltier et al. 2006) is able to circumvent the necessity of specifying 
anatomical ROIs, thus providing a flexible method to account for inter-subject 
variability in brain size, shape and neural network.  

Feedback Presentation 
Although many feedback modalities (verbal, visual, auditory, olfactory and tactile) 
are possible, visual feedback has been the most frequently used method. A variety of 
visual stimuli have been employed by different researchers to indicate the required 
level of activation at different time points. Scrolling time series graphs and curves of 
BOLD activation of the ROI provide immediate information to the subject 
(Weiskopf, Veit et al. 2003; deCharms, Christoff et al. 2004). Yoo and Jolesz (Yoo 
and Jolesz 2002) used functional maps of the brain as feedback. Sitaram et al. 
(Sitaram, Caria et al. 2005) introduced the thermometer type of feedback (see figure 
3.1 for an illustration of different types of feedback) that shows varying levels of ROI 
activity as changing bars of a graphical thermometer. Positive BOLD activity with 
respect to baseline activity is shown in one color (red) to differentiate from negative 
BOLD activity (blue). We introduced virtual reality (VR) for feedback (Sitaram, 
Caria et al. 2005; Sitaram, Caria et al. 2006) which provides a playful and engaging 
environment to encourage the subject to continue with self-regulation training. In a 
recent application of fMRI-BCI, we used video-based feedback to train stroke 
patients to self-regulate ventromedial premotor cortex (Sitaram 2007). Laconte et al., 
(Laconte, Peltier et al. 2006) implemented a visual feedback updated from results of 
real-time pattern classification of left hand and right finger tapping (also see section 
on Multivariate Analysis). A target stimulus located about 10o to the left or right of 
the center indicated the fingers (left or right) to be tapped. The feedback consisted of 
an arrow in the central visual field oriented towards the target. The arrow position 
and orientation were updated after classification of the images as left or right from 
the volumes collected for previous 2s. Based on the brain-state classification, the 



 

 48 

arrow either continued in the current orientation or flipped its left-right orientation. 
After 30s, the target position was alternated and the arrow was re-centered, pointing 
to the new target.   
 

Preliminary Investigations 
 

Regulation of Anterior Insula in Healthy Individuals 

Background 
In the present group study we investigated whether healthy subjects can voluntarily 
gain control over right anterior insular activity by using fMRI-BCI. Cortical 
representation of smell and taste (Rolls 1996; Francis, Rolls et al. 1999; Rolls 2004), 
viscerosensation (Craig 2002), and pain perception (Coghill, Sang et al. 1999; 
Peyron, Laurent et al. 2000) converge in the insula and surrounding operculum. The 
activity of the insulae correlates with the subjective perception of emotional states 
(Craig 2002; Craig 2003). Studies on emotional perception showed that insula activity 
is correlating with the aversive valence of stimuli (Anders, Birbaumer et al. 2004). A 
review of PET and fMRI studies investigating the neuroanatomy of emotion (Phan, 
Wager et al. 2002) revealed that the anterior cingulate and insula were recruited 
during induction by emotional recall/imagery and during emotional tasks with 
cognitive demand. Awareness of salient emotionally stimuli increases right insula 
cortex activity (Critchley, Wiens et al. 2004) suggesting that this area is critical for 
the representation of bodily responses and interoception (Adam 1998). Therefore, 
volitional modulation of insula activity may be a valuable exploratory approach to 
study emotion regulation. Modulation of the insular activity with fMRI-BCI training 
might be relevant for the development of novel approaches for clinical treatment of 
social phobia or antisocial behaviour which have shown hyper-activity and 
hypoactivity, respectively, in the insular region (Veit, Flor et al. 2002; Birbaumer, 
Veit et al. 2005). 

Methods 
Fifteen healthy right-handed subjects participated in this study. Nine of them were 
trained to voluntarily control the local BOLD signal of the right anterior insular cortex 
using the fMRI-BCI system. The remaining six subjects participated in two different 
control conditions: 1) mental imagery of emotional episodes without any feedback, 2) 
non-contingent feedback.  

 
The selection of ROI1 – the right anterior insula– was anatomically based on the high 
resolution T1 structural scan. This ROI was a rectangular area encompassing 4×5 
voxels (~15×20 mm) on a single slice (5 mm). The reference ROI2 was a large 
background region of interest selected from a reference slice positioned distant from 
ROI1 encompassing the whole brain with the intent to cancel global effects and to 
average out any unspecific activation. During training, the mean BOLD signal from 
the regions of interest ROI1 and ROI2 was extracted. The first ten volumes of each 
session were excluded from statistical analysis to account for T1 equilibration effects. 
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For the feedback presentation the difference between the two ROI time-courses was 
calculated and normalized to the baseline. 
	
  
The training consisted of four feedback sessions followed by a ‘transfer’	
   session 
performed in 1 day. One feedback session consisted of four regulation blocks (22.5 s 
each) during which the subjects had to learn to increase the BOLD signal in insula 
alternating with five baseline blocks (22.5 s each) during which they had to return the 
activity to the baseline level. Each session lasted about 4 min and was repeated five 
times including the transfer session. During the feedback session the normalized 
average BOLD signal from the right anterior insula was presented to the subjects by 
means of thermometer bars. The thermometer was displayed during regulation and 
rest period. The regulation blocks were cued with a red arrow at the thermometer 
display while during rest blocks a cross hair was presented in the same position. 
Additionally, two different control experiments were conducted to verify that the 
effects of the self-regulation of the insular activity were due to fMRI feedback. Three 
subjects participated to each of the control experiments. The first control condition 
aimed to verify the specificity of the feedback information; the control group 
performed three sessions of the same experimental paradigm but received sham 
feedback. This sham feedback was not specific to any particular brain area but 
consisted of information from a large background ROI from the same subjects not 
encompassing the anterior insulae. The second control condition assessed the effects 
of repetitive use of mental imagery. Subjects were provided with the same instructions 
and same general strategies as before, the thermometer frame was present but no 
fMRI-BCI information was available (no bars were shown). Subjects performed three 
consecutive sessions during which they were asked to recall and evoke memories and 
imagery of personally relevant affective events. 
 

Results 
All participants were able to successfully regulate the BOLD signal in the right 
anterior insular cortex. Training resulted in a significantly increased activation cluster 
in the anterior portion of the right insula across sessions. Subjects reported the use of 
both positive and negative mental imagery. Positive strategies were focused on 
recalling themselves playing music, playing with daughter, engaging in sport 
activities, recall of holidays; while negative strategies were focused mostly on 
bringing back themselves in dangerous situations, anger states and while taking 
examinations. Linear regression across all sessions performed on the individually 
selected region of interest showed significant increase of activity in the target area 
[y=0.174+0.127, P<0.012]. The success of training is observed by comparing the time 
course of the selected area during the last session (see Figure 3.4, lower image) with 
the first session (see Figure 3.4, upper image). Percent signal change calculated in the 
ROI as difference between task and rest for each subject and then averaged across all 
the participants resulted in a clear monotonic increase across the first three sessions 
[repeated measures ANOVA, F(2,7)=10.32, P=0.001].  
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Figure 3.4. Single subject statistical maps (left) and BOLD time-courses (right) of the 
right anterior insula in the first (top) and in the last session (bottom). The selected 
ROI is delineated by the green box. Functional images are in the radiological 
convention and are not normalized. Statistical significance was based on t test 
comparing activation on each voxel during the regulation blocks with respect to the 
baseline blocks, with a threshold of P<0.05 false discovery rate (FDR) corrected for 
multiple comparisons. The time course of the BOLD activity (white line) is related to 
the ROI selected and is showing the progress during the regulation blocks (green) 
and the baseline blocks (gray). Number of volumes is in the x axis and magnitude 
signal in the y axis; these values are the raw output from the scanner. 
 
Random effects analysis on the experimental group confirmed an increased BOLD-
magnitude in the right anterior insular cortex over time (see Figure 3.5). 
 

 
Figure 3.5. Random effects analysis on the experimental group confirmed an 
increased BOLD–magnitude in the right anterior insular cortex over time course. 
SPM2 of the single sessions showed no significant activation during the first session 
in the target area; a significant activation cluster (t=4.50; P=0.001, uncorrected) 
during the second session (MNI coordinates: 39, 33, 0); and a highly significant 
activation cluster (t=10.23; P<0.001, uncorrected) during the third session located 
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(MNI coordinates: 36, 26, 6). Fixed effect analysis was also performed on the six 
subjects who completed the fourth session reporting a higher significant cluster 
(t=12.47, P<0.001, FEW-corrected; MNI coordinates: 36, 23, 5). All activation maps 
are projected on a single-subject T1 template at the coordinate z=5. 
 
Our results show that with fMRI-BCI a specific modulation of the right anterior insula 
is possible. This was achieved after a short training time. BOLD signal in the target 
ROI increased with the number of feedback sessions, indicating training effects and 
learning. 
 

Regulation of Ventrolateral Premotor Cortex in Healthy Individuals 
& Stroke Patients 
 

Background 
Stroke is a principal cause of long-term disability. Although various treatment options 
are available there is currently no universally accepted treatment, especially for those 
patients who show little or no functional recovery of upper limb motor function. The 
aim of this study was to assess the feasibility of fMRI-BCI feedback training as a new 
tool in stroke rehabilitation. Four healthy young adults and two chronic subcortical 
stroke patients participated in three days training by using fMRI-BCI based 
neurofeedback. Healthy subjects and patients were trained to learn to regulate their 
brain activity in the ventral premotor cortex (PMv). PMv is a secondary motor area 
that contributes to the control of upper limb and head movements, particularly for 
grasping and manipulating objects. Therefore, it could play a significant role in 
functional recovery after stroke. We investigated real-time feedback using virtual 
hands and video showing first-person perspective of arm movement to guide self-
regulation (unplublished).  

Methods 
 
Participants 
Two right-handed chronic stroke patients (both male, 63 and 68 years old) and four 
right-handed healthy young adults (3 male, 1 female, mean age 25.3 years) 
participated in the study. The stroke patients had a history of a single subcortical 
stroke in the left hemisphere at least 1 year before the study and showed good 
recovery of hand function. Written informed consent was obtained from all subjects 
according to the Declaration of Helsinki and the University of Tübingen Ethics 
Committee. 
 
Functional Localizer 
The fMRI setup used for real-time data processing was the same previously described 
earlier. In order to determine the location of the PMv, all subjects underwent two 
localizer sessions. These sessions consisted of a block-based paradigm in which 
blocks of rest (15s) were alternated with blocks of action observation or movement 
execution (30s). The region of interest was selected on-line, based on functional maps 
generated by Turbo-BrainVoyager during localizer sessions. In the first localizer 
session subjects were shown a video of a hand holding a coffee cup and moving it to 



 

 52 

the mouth. The video showed a right hand in first-person perspective (Figure 3.6). 
The right hand was chosen as the effector performing the action because all 
participants (healthy young adults and stroke patients) were right-handed and the right 
hand was also the paretic hand in the stroke patients. Therefore left PMv was the 
target ROI. First-person perspective was preferred based on the study by Jackson and 
colleagues (Jackson, Mavoori et al. 2006) suggesting that brain activity from the first-
person perspective is more tightly coupled to the sensory-motor system than from the 
third-person perspective. Participants were instructed to observe the presented action 
carefully. The second localizer was run in order to compare the activation induced by 
the video with activation related to executing a similar hand movement. Participants 
saw the instruction “Please move your right hand towards your mouth” and had to 
execute the movement repeatedly. Due to limited space within the MR scanner and 
also in order to avoid head movement, participants were instructed to make a short 
movement using their forearm only.  

 
Figure 3.6: Action observation localizer. First-person perspective. 

 
 
Feedback Training Protocol 
All participants underwent three sessions of fMRI-BCI feedback training. The healthy 
young adults were trained on three consecutive days. The stroke patients had one day 
of rest in between the second and the third training session due to restricted access to 
the MR scanner. Each fMRI-BCI feedback session consisted of 4 runs of self-
regulation training. During each run six activation blocks (45s) were alternated with 
baseline blocks (30s). The training was performed using a two different feedback 
scenarios: (1) a video feedback scenario with the same object-related hand movement 
as in the localizer (hand moving a coffee cup to the mouth, (Figure 3.7) and (2) as a 
control condition a feedback scenario showing a thermometer on which degree bars 
had to be increased. During the video feedback scenario participants saw a fixation 
cross on a static picture of a hand holding a coffee cup during the baseline. The 
beginning of a self-regulation block (activation block) was indicated by the 
disappearance of the fixation cross. In the thermometer feedback scenario subjects 
saw a fixation cross next to the thermometer during the baseline blocks and a red 
arrow (pointing upwards) next to the thermometer during the activation blocks.  
Participants were instructed on mental imagery strategies that potentially would have 
promoted self-regulation of the PMv. Instructions included kinesthetic feeling of the 
hand movement towards the mouth, lifting weights, moving an object from one place 
to another. During the first feedback training session participants were encouraged to 
explore different imagery strategies in order to find their own successful strategy. 
They were then asked to use this strategy throughout the remaining fMRI-BCI 
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feedback training. A further transfer session was also performed during which 
participants were instructed to perform the same task as during feedback but fMRI 
information was not provided and bars were not shown. The transfer session was 
performed to verify the efficacy of the feedback and to check whether training effects 
might persist beyond the experimental situation.  
 

 
Figure 3.7. Video feedback scenario. Left: baseline condition showing a static action 
observation picture with a fixation cross. Right: activation condition. Start of the 
feedback video is indicated by the disappearing of the fixation cross. 
 

Results 
We present exemplary data from a healthy subject and a stroke patient.  
 
Healthy young adult: Subject FB 
During the video feedback sessions FB showed brain activations in bilateral PMv, 
bilateral SMA, bilateral somatosensory cortex, bilateral medial frontal gyri, bilateral 
inferior frontal gyri (BA44), bilateral superior temporal gyri, bilateral superior medial 
and inferior temporal gyri, bilateral inferior parietal lobe and bilateral medial and 
superior occipital gyri (Figure 3.8a). Local maxima of brain activity in the left PMv 
were identified at Talairach coordinates [x, y, z]  [-42, -3, 48] and [-51, 6, 18]. Mean 
signal changes (%) for these two local maxima are depicted in Figure 3.8b-c. At both 
maxima the BOLD signal increased in all sessions compared to baseline and these 
signal changes (%) were quite stable over the 3 feedback training days.  
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Figure 3.8: a) Brain activations during video feedback sessions (main effect). b) 
Mean signal change (%) in the left PMv (-42 -3 48) for each of the 3 training days. c) 
Mean signal change (%) in the left PMv (-51 6 18) for each of the 3 training days. 
 
During the thermometer feedback sessions FB showed brain activations in the same 
areas as during the video feedback scenario: bilateral PMv, bilateral SMA, bilateral 
somatosensory cortex, bilateral medial frontal gyri, bilateral inferior frontal gyri 
(BA44), bilateral superior temporal gyri, bilateral superior medial and inferior 
temporal gyri, bilateral inferior parietal lobe and bilateral medial and superior 
occipital gyri. Local maxima of brain activity in the left PMv were identified at 
Talairach coordinates [-54, 3, 48] and [-48, 6, 21]. At both maxima the BOLD signal 
increased for all sessions compared to baseline and these signal changes (%) were 
quite stable over the 3 feedback training days.  
 
During the transfer scenario FB showed brain activations in bilateral PMv, bilateral 
PMd, bilateral SMA, bilateral primary motor cortex, bilateral somatosensory cortex, 
bilateral medial frontal gyri, bilateral inferior parietal lobe, bilateral superior temporal 
gyri, bilateral superior medial and inferior temporal gyri, and left medial and superior 
occipital gyri. A local maximum of brain activity in the left PMv was identified at 
Talairach coordinates [-48, 3, 15]. At this maximum the BOLD signal increased 
during both feedback training sessions compared to baseline. However, the signal 
change (%) was greater during the training session on day 2.  
 
Stroke patients. Patient WS 
During the video feedback scenario WS showed brain activations in bilateral PMv, 
bilateral PMd, left M1, bilateral somatosensory cortex, bilateral SMA, bilateral medial 
frontal gyri, bilateral inferior frontal gyri (BA44/BA45), bilateral inferior parietal lobe 
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(Figure 3.9a). Local maxima of brain activity in the left PMv were identified at 
Talairach coordinates [-57, -3, 21] and [-45, 3, 42]. Mean signal changes (%) for these 
local maxima are depicted in Figure 3.9b-c. At local maximum [-57, -3, 21] the 
BOLD signal increased substantially from the second to the third feedback training 
session. At [-45, 3, 42] a different pattern emerged: the largest BOLD signal change 
(%) occurred on day 2 of the feedback training.  
 

 
Figure 3.9: a) Brain activations during video feedback scenario (main effect).  b) 
Mean signal change (%) in the left PMv (-57 -3 21) for each of the 3 training days. c) 
Mean signal change (%) in the left PMv (-45 3 42) for each of the 3 training days. 
 
During the thermometer feedback scenario WS showed brain activations in the same 
areas as during the video feedback scenario: bilateral PMv, bilateral PMd, left M1, 
bilateral somatosensory cortex, bilateral SMA, bilateral medial frontal gyri, bilateral 
inferior parietal lobe. Local maxima of brain activity in the left PMv were identified at 
Talairach coordinates [-57, -3, 21] and [-48, 0, 36]. All training sessions showed 
increases of the BOLD signal compared to baseline. At [-57, -3, 21] the BOLD signal 
change (%) was lower during the second session than during the first session but was 
large during the third session. At [-48, 0, 36] the BOLD signal increased from session 
to session. 
 
During the transfer scenario WS showed brain activations in bilateral PMv, left M1, 
bilateral SMA, bilateral medial frontal gyri, bilateral inferior frontal gyri 
(BA44/BA45), left inferior parietal lobe, right middle and superior occipital gyri. A 
local maximum of brain activity in the left PMv was identified at Talairach 
coordinates [-51, 3, 45]. The BOLD signal increased during both transfer sessions 
compared to baseline but the increase was greater on day 3 of the training.  
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Discussion 
This pilot study provided first evidence that it is possible to learn to modulate brain 
activity in PMv. Participants learned to up-regulated PMv activity. However, the 
individual time courses of the self-regulation training followed different patterns. 
Some subjects learned to regulate PMv activity immediately, as indicated by a large 
BOLD percent signal change  in the PMv during the first session of the feedback 
training. Other subjects showed a progressive increase of the BOLD signal in PMv 
over the three following training sessions. Design of future fMRI-BCI feedback 
studies must take into account the inter-subject variability during regulation training. 
The length of the training might be calibrated individually in order to achieve 
maximal benefit, especially for stroke patients.  It is noteworthy that additional factors 
such as attention and fatigue can strongly influence neurofeedback training. 
 
Comparison of the patterns of mean BOLD percent signal change of different regions 
in the left PMv within each subject shows that the mean percent signal change is not 
homologous across slocal maxima in a single subject. This might be explained by the 
notion that PMv is somatotopically organized (Buccino, Binkofski et al. 2001). 
Whether differential BOLD signal modulation within PMv itself has any impact on 
behavioral and neurophysiological effects of the feedback training is currently 
unclear.  
 
Interestingly, almost all subjects showed bilateral PMv activation, and right PMv 
sometimes showed even a stronger activation. This result, even though at first glance 
might appear contradictory as the subjects were specifically instructed to image right 
hand actions only, in fact it is consistent with findings of previous neuroimaging 
studies. Bilateral PMv activation was found during precision grasping (Ehrsson, 
Fagergren et al. 2000; Ehrsson, Fagergren et al. 2001) and object manipulation 
(Binkofski, Buccino et al. 1999). Additionally two other studies demonstrated the 
existence of ipsilateral finger representations in PMv (Cramer 1999; Hanakawa, 
Parikh et al. 2005). Recently bilateral activation of PMv during precision grasping 
was confirmed by a TMS study. Davare et al. (Davare, Andres et al. 2006) found that 
both left and right PMv code hand posture during grasping movements with the right 
hand. They suggest that both PMv are active during an early phase of movement 
preparation. According to this suggestion the persistent bilateral PMv activation 
observed throughout the fMRI-BCI feedback training could be due to an early 
planning/programming component of the imaged action. Using a block design with 
repeated imagery of the action within a certain time period this early 
planning/programming component can show up as persistent activation. The 
relevance of the observed bilateral PMv activation for the outcome of the feedback 
training is unclear. 
 
These results might be also remarkable in the light of a number of behavioral studies 
demonstrating interference between action observation and action execution (Brass, 
Zysset et al. 2001; Castiello 2003). It has also been shown that observation of an 
action facilitates its subsequent execution (Craighero, Bello et al. 2002). Action 
observation is a prerequisite for the imitation of actions. Based on the large amount of 
evidence that action observation recruits the motor system in a similar fashion as 
action execution it has been suggested that action observation may be used to promote 
recovery of hand function after stroke by affecting cortical reorganization (Buccino, 
Solodkin et al. 2006). Overall the results of this pilot study, combining both a 
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sophisticated technique to directly enhance PMv activation and an ‘action 
observation’ strategy due to the peculiar feedback used, are promising and stimulating 
but more subjects need to be tested before conclusions can be drawn and furthermore 
specific behavioral tests might corroborate and confirm the efficacy of this novel 
approach. In chapter 2, we have demonstrated the application of NIRS for the 
development of BCIs. As NIRS is a more portable and affordable system, and as 
NIRS can access the premotor and motor cortical regions, future work should explore 
the application of NIRS-BCI for neurorehabilitation of stroke victims.  
 

Self-regulation of Right Inferior Frontal Gyrus and Language 
Processing 
 

Background 
There is evidence in favour of a central role of the left inferior frontal gyrus (IFG) in a 
number of linguistic tasks. Known as Broca’s area, this brain site has been postulated 
to be a crucial structure for syntactic and semantic processing (Friederici, Kotz et al. 
2003; Heim 2005). While the significance of the left hemisphere has been highlighted 
by a considerable amount of evidence, the functional role of the contralateral site of 
Broca’s area in speech processing still needs to be clarified. Some studies have 
indicated the recruitment of the right hemisphere during processing of emotional 
prosody (Kotz, Frisch et al. 2003; Friederici and Alter 2004). Clinical evidence has 
suggested that impairments of the left temporal-frontal network might allow 
contralateral areas to take over functions previously carried out by the homologues 
left-sided brain structures (Thulborn, Carpenter et al. 1999; Fernandez, Cardebat et al. 
2004). Based on the above consideration, we used fMRI-BCI to train subjects to 
achieve control over the level of activation recorded in the right IFG, aiming to 
investigate short-term effects of operant BOLD-training on linguistic performance 
(Rota, Sitaram et al. 2008).  
 

Methods  
Participants 
Twelve matched males, German native speakers (aged 24-30 years, mean age = 27), 
right handed according to the Edinburgh Handedness Inventory (Oldfield, 1971), 
participated in this study. Seven of them were trained to acquire control over the 
BOLD signal in the right IFG by means of real-time fMRI feedback. The remaining 
five were recruited as control subjects.  
 
Experimental procedure and data analysis 
The pars triangularis of the right IFG was chosen as the target region of interest 
(ROItarget) for the experimental group, and it was individually selected by means of a 
functional localizer run. The ROItarget was selected as a square region (6x6 voxels, ~ 
20x20 mm) centred on the area of activation. The mean location across subjects in 
MNI coordinates for the centre of the selected ROItarget was x = 51, y = 18, z = 6. A 
large reference slice (ROIcontrol) was used as control area in order to account for global 
changes of activity, and cancel out effects due to task-unspecific activation. During 
training, mean BOLD signal was extracted from the ROIs. The differential BOLD 
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response [(ROItarget – ROIcontrol) activation blocks - (ROItarget – ROIcontrol) baseline blocks] was 
transformed into the visual feedback of varying	
   graduations of a thermometer and 
presented in real-time (interval of 1.5s) to the subjects by means of video projection.  
 
The functional localizer 
We employed a linguistic task which was previously shown to reliably activate the 
pars triangularis of the right hemisphere (Dogil, Frese et al. 2004). This “prosody-
unrelated” task was adopted to avoid the risk of a facilitation effect, which might have 
been induced by performing a similar or strictly related task during both the localizer 
and the performance-evaluation phases. This task was carried out by the participants 
before the beginning of the training. The localizer session consisted of four activation 
blocks, separated by five baseline blocks, beginning and ending with a baseline block. 
Every block lasted for 50 s. The stimuli consisted of 20 balanced German sentences 
with three syntactic constituents and were presented visually as lines of text by means 
of video projection. During each activation block, 10 sentences (5 s each) were 
presented without an inter-stimuli interval. A total of 40 sentences were presented for 
the whole localizer session (total length of the session = 7.5 minutes). The subjects 
were instructed to read each sentence silently, to manipulate its word order, and to 
replace the subject noun phrase (NP) with a hyperonym (for details on this task see 
Dogil, Frese et al. 2004).  
 
Neurofeedback-training  
The training consisted of 4 BOLD-feedback sessions, each of which encompassed six 
activation blocks (50 s each) separated by five baseline blocks (30 s each), beginning 
and ending with a baseline block (length of each session = 8.5 minutes). During 
activation blocks, the subjects had to increase the level of activation recorded from the 
right IFG (BA 45). During baseline blocks, they were instructed to relax by 
performing mental imagery that could help them to relax, e.g., imagining themselves 
being on a beach with a vast expanse of blue water. For both types of blocks, subjects 
from the experimental group received real-time visual feedback of the differential 
BOLD signal detected in the ROItarget (BOLD detected in the ROItarget minus BOLD 
detected in the ROIcontrol). Control subjects received sham feedback based on signals 
taken from a different brain area that did not correlate with the cognitive processes 
engaged by the subjects. Areas that were used to extract sham-feedback included the 
parahippocampal place area (PPA) and the posterior cingulate cortex. The symbols 
“↑” and “+” were presented on the left side of the thermometer to signal the beginning 
of each activation or baseline block, respectively. 
 
Behavioural tasks 
Stimuli belonging to two behavioural tasks were divided into two balanced sets, each 
of which was performed either before or after the training, in a random way across 
subjects. At the end of the training-phase, subjects were instructed to focus on the 
same cognitive strategies previously successfully adopted, and to continuously up-
regulate BA 45 while carrying out the two tasks. No feedback on brain self-regulation 
was provided to the subject in this phase. Identification of emotional prosody was 
used to test short-term training effect on prosodic processing. This task consisted of 
four sets of German sentences belonging to the Tübingen Affect Battery (Breitenstein, 
Daum et al. 1996), describing happy, sad, angry or neutral scenarios, for a total of 16 
samples. Each sentence was read by a professional actress with sad, happy, angry and 
neutral emotional intonations, producing a total of 64 samples. The strings lasted 2 s 
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and were randomly presented. The participants listened to a sentence at once and were 
instructed to identify its emotional intonation in the shortest time possible, within a 4 
s limit. Prosody judgments were performed by button pressing (i.e. selecting from a 
four-button device the key corresponding to the intended emotional intonation). A 
fixed inter-trial interval of 12 seconds was chosen. At the end of the session, subjects 
were debriefed, and their ability to reliably hear and understand the aurally presented 
stimuli was confirmed.  
 
Speeded grammaticality judgments were used to test short-term training effects on 
syntactic processing. The stimuli consisted of 48 balanced German sentences 
belonging to three sets: ambiguous, incorrect and correct sentences. The sets of 
sentences were approximately the same length, and were randomly presented. In order 
to control for reading strategies the strings were provided to the subjects in a 
segmented and successive manner, and each word was presented visually for 400 ms 
by means of a video projection. The subjects could view just one word at a time and 
were instructed to perform grammaticality judgements (Meng and Bader 2000). The 
critical segment for deciding about grammatical correctness always appeared at the 
end of each string. After the presentation of the last segment, a question mark 
signalled to the subjects that they should judge the correctness of the preceding 
sentence. The judgment task was carried out by button pressing (i.e. right button for 
correct or pressing the left button for incorrect sentences). Subjects were instructed to 
carry out grammaticality judgment in the shortest time possible, within a 4 s limit. An 
inter-trial interval of 12 seconds was chosen.  
 

Results 
All experimental-group subjects achieved voluntary differential up-regulation of the 
activation-level recorded in the ROItarget, as required by the task. A progressive 
increase of the level of activation in the right BA 45 (mean center of activation in 
MNI coordinates = 51, 18, 6) across training sessions suggests a learning effect (r = 
0.98; N = 4 sessions, P = 0.01 one-tailed; linear regression). A similar but not 
significant trend was observed for the control group (r = 0.82; N = 4 sessions; P = 
0.08 one-tailed, linear regression).  Please see figure 3.10. 
 

 
Figure 3.10. Percentage of signal change locally recorded from the right BA 45 (MNI 
= 51, 18, 6) across training-sessions for both experimental and control groups. Bars 
show mean and error bars indicate mean+/- 1.0 standard error (SE). A significant 
increase of BOLD signal in the ROI (r = 0.98, N = 4 training-sessions, P = 0.01 one-
tailed, regression analysis) across sessions was detected for the experimental group 
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only, and suggests a learning effect. Significant differential activation of the ROItarget 
for session 4 versus session 1 was observed for the experimental group only (two-
tailed paired t test, N = 7, P = 0,021). 
 
 
Increased differential activation (calculated for up-regulation blocks versus rest) in the 
ROItarget across sessions was observed for the experimental group [repeated measures 
ANOVA, F(3,18) = 6.379, P = 0.004], but not for the control group [repeated 
measures ANOVA, F(3,12) = 0.216, P = 0.883]. Fixed-effects analyses on the 
experimental group showed an increased level of activation from session 1 for the 
experimental group only (N = 7, FWE corrected, no activation observed, P < 0.001) to 
session 4 (N = 7, FWE corrected, t = 6.96, P < 0.001). Random effects analyses on the 
experimental group confirmed the results of the fixed-effects analyses by showing an 
increased level of activation for the ROItarget from session 1 (ROI analysis, ROI = 
right BA 45, N = 7, no activation observed, P < 0.05, FDR corrected) to session 4 
(ROI analysis, N = 7, t = 3.43, P < 0.05 FDR corrected). Subjects reported strategies 
connected to speech, such as imagination of lecturing before a class of students, 
arguing scenes with colleagues, and debates. Other strategies included imagined 
singing, imagined recitation of poems, and recalling old conversations with friends.  
 

 
Figure	
  3.11.	
  Behavioural	
  effects	
  of	
  up-­regulation	
  of	
  the	
  right	
  BA	
  45:	
  experimental	
  
group.	
  The figure shows mean levels of accuracy for grammaticality judgments and 
identification of prosodic intonations preceding and following fMRI-BCI training. 
Significant improvement was observed for detection of affective intonations only (two-
sided Wilcoxon signed-rank test, P < 0.05). Bars show mean accuracy level, and 
error bars indicate mean +/- 1.0 SE. 
 
Experimental subjects succeeded in correctly identifying 70 ± 13 % (mean ± SD) of 
the affective prosodic stimuli before the beginning of the training, and 84 ± 15 % 
(mean ± SD) after it. Statistical analysis showed a significant difference between the 
two sets of scores (two-sided Wilcoxon signed-rank test, P = 0.017, see figure 3.11). 
Pre-training RTs were 3455.7 ms ± 317,2 ms (mean ± SD), and post-training RTs 
were 2926,3 ms ± 548.5 ms (mean ± SD)]. Statistical analyses showed a significant 
difference between the two sets of scores (two-sided Wilcoxon signed-rank test, P = 
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0.043). With respect to the grammaticality judgment task, experimental subjects 
achieved 49 % ± 26% (mean ± SD) of accuracy before the training and 41 % ± 29 % 
(mean ± SD) after it. Statistical analysis revealed no significant difference between 
the two levels of accuracy (two-sided Wilcoxon signed-rank test, P = 0.55). Pre-
training RTs were 1547.6 ms ± 357.4 ms (mean ± SD) and post-training RTs were 
1186.7 ms ± 558.9 ms (mean ± SD). Statistical analyses showed no significant 
difference between the two sets of scores (two-sided Wilcoxon signed-rank test, P = 
0.091). 
 

Discussion 
In this study (Rota, Sitaram et al. 2008), we tested the hypothesis that humans can 
learn to volitionally increase the BOLD-responses locally recorded in the pars 
triangularis of the right IFG. In all experimental subjects the level of activation 
restricted to the right BA 45 increased across training sessions. This result indicates a 
progressive learning effect, and suggests that real-time fMRI-biofeedback is a 
promising tool for non-invasively manipulating localized brain activity. Even though 
both control and experimental subjects were provided with the same strategy 
guidelines, their efficacy in up-regulating the ROItarget greatly differed. The 
unavailability of genuine feedback information made it impossible for the control 
group to evaluate the efficacy of the ongoing regulation process, thus presumably 
impeding the learning process.  The comparison of performances in the two tasks pre 
and post-training suggests that up-regulation of BA 45 correlates to a specific 
improvement in detecting and identifying emotional prosodic intonations. This effect 
was not observed for the control group. No significant differences in performance 
were measured for syntactic processing. These findings suggest that the right IFG 
plays an important function in mediating the understanding of a speaker’s emotional 
state and intentions. So far, the role played by the right hemisphere, and specifically 
by the right BA 45, with respect to language processing has been only marginally 
explored. The findings of our experiment are consistent with a number of studies that 
indicate the involvement of the right IFG in the processing of prosodic features for 
auditorily presented stimuli (Friederici and Alter, 2004; Kotz et al. 2003). Following 
these lines, fMRI-BCI training could potentially be used to stimulate and strengthen 
linguistic abilities connected to emotional processing. The possibility of facilitating 
the cognitive processing of emotional speech appears of particular interest for a 
number of clinical applications.  Clinical studies have shown that the identification of 
affective prosody is strongly impaired in schizophrenic patients. As reported by 
Hoekert and colleagues (Hoekert, Kahn et al. 2007), deficits in processing of 
emotional cues conveyed by speech are among the most pervasive disturbances in 
psychosis. Other clinical studies have shown that schizophrenia correlates with an 
abnormally reduced cerebral blood volume (Brambilla, Cerini et al. 2007), and 
hypofunctioning of the prefrontal cortices (Snitz, MacDonald et al. 2005). 
Furthermore, the recognition of emotion from prosodic stimuli is also compromised in 
patients suffering from major depression. As reported by Kan and co-workers (Kan, 
Mimura et al. 2004), depressed patients are biased in their interpretation of neutral 
emotions (for both prosody and faces), and tend to attribute a negative valence to 
them. Presumably, these brain sites could be targeted as loci of self-regulation, and 
neurofeedback aids could be employed as therapy to normalize hypofunctioning 
cortical networks.  
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Chapter 4 

 

 

Decoding Emotion States of the Brain from fMRI 
Signals 

 

Introduction 
An important question that confronts current research in neuroscience as well as in the 
treatment of neuropsychological disorders is whether it is possible to determine the 
emotional state of a person based on the measurement of his/her brain activity. 
Related questions are: 1) is it possible to perform such emotion detection 
automatically, by a computer or a machine, with minimal or no human intervention? 
and 2) is it possible to do this online, in real-time (milliseconds or seconds after the 
acquisition of the brain signals) as against after several minutes or days of offline 
processing?  Development of techniques that answer the above questions in the 
affirmative help not only to further the progress of affective neuroscience but also in 
the development of technologies, commercial products and services such as brain-
computer interfaces (BCIs), neurofeedback systems, clinical treatment of mental 
disorders including but not restricted to depression, schizophrenia, anxiety, 
psychopathy and social phobia, automatic detection of deception in criminals and 
persons endangering security, development of affective and socially competent 
computers, intelligent machines and robots that recognize and express emotions.  
 
Conventional neuroimaging methods seek to find out how a particular perceptual, 
motor, cognitive or emotional state is encoded in brain activity by measuring brain 
activity from many thousands of locations repeatedly, but then analyzing each 
location separately (Univariate analysis). If the responses at any brain location differ 
between two states, then it is possible to use measurements of the activity at that 
location to determine or decode the state. This is the basis of the Statistical Parametric 
Mapping (SPM) techniques currently in vogue in analyzing fMRI signals. In practice 
it is often difficult to find individual locations where the difference between 
conditions are large enough to allow for efficient decoding. The limitations extend to 
current fMRI-BCI and neurofeedback methods which use univariate methods albeit in 
real-time. In contrast to the conventional analysis, sensitivity of neuroimaging can be 
improved by using multivariate, pattern-based methods. Pattern-based methods use 
advanced machine learning techniques, such as multilayer neural networks, support 
vector machines and so forth to discriminate spatial, temporal and spectral patterns in 
a system, methods that have been previously successfully used in character 
recognition, speech recognition and image recognition applications. Such pattern-
based multivariate analysis has several advantages over conventional univariate 
analysis: 
 

 Weak information available from single locations can be accumulated 
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across many spatial locations.  
 Interaction between brain regions, as can be determined by 

simultaneously analyzing activity in multiple locations could have 
important information for decoding brain states. 

 Temporal evolution of activity in different regions and their 
interactions can be different for different brain functions thus 
providing information for recognizing them. 

 Conventional Neuroimaging uses preprocessing methods such as 
spatial smoothing, that might remove important information about 
the brain state. Multivariate methods which simultaneously analyse 
pattern of brain activity across multiple locations are able use this 
information more effectively. 

 Conventional methods typically average brain activity across multiple 
trials to improve statistical sensitivity. However, by computing 
average activity, information about the state of the brain at any 
given point in time is lost. In contrast, the pattern-based methods 
incorporate this temporal information in the analysis.  

 In summary, pattern-based methods use considerably more 
information for detecting the current state from measurements of 
brain activity.  

 
Another disadvantage of the existing fMRI-BCIs is in the method of selecting single 
regions of interest for providing feedback of activation to the participant or patient. In 
the previous studies with fMRI-BCI, brain signals from one or two regions of interest 
(ROI) were extracted for providing neurofeedback to the subject. While this approach 
has shown convincing evidence that volitional control of circumscribed brain regions 
results in behavioral changes, the system needs to be further improved for clinical 
applications. A major argument for moving away from deriving feedback signals 
from single ROIs is that perceptual, cognitive or emotional activities generally recruit 
a distributed network of brain regions rather than single locations. Furthermore, while 
activity in certain locations of the network could be facilitatory, activity in certain 
other locations could be inhibitory, thus maintaining a complex temporal interaction 
among the regions. As such representation of activity from one or two ROIs, merely 
combined with additive and subtractive contrasts, does not completely model the 
network dynamics of the desired brain state.  
 
Secondly, there is variation among individuals with regard to brain structure and 
activity. Extracting signals from spatially localized regions may lead to sub-optimal 
or even discordant feedback information for the desired behavioral training.  
 
An improved method for employing the whole network of activity with no 
assumption on the inhibitory or excitory effects of single ROIs needs to be 
implemented. Our proposed method makes no assumption about the functional 
localization and performance strategy used by the subject.  
 
Recently, there have been studies on the offline pattern-classification of brain states 
from fMRI signals using multilayer neural networks (MNN) (Norman, Polyn et al. 
2006), Fisher Linear Discriminant (FLD) classifier (Mourao-Miranda, Bokde et al. 
2005), Support Vector Machines (SVM) (LaConte, Strother et al. 2005). However, 
because they are computationally intensive and need constant human input during 
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modeling and analysis, they can not be directly applied to real-time fMRI including 
fMRI-BCI and neurofeedback applications. Until now only one implementation 
(Laconte, Peltier et al. 2006) of real-time fMRI pattern classification system using 
SVM has been reported. However, this implementation has 2 main drawbacks that 
limits its application to fMRI-BCI and neurofeedback systems. Firstly, the above 
method works based on spatial pattern of brain activity alone as input in 
discriminating different states of the brain and ignores the temporal pattern or time 
evolution of brain activity. The BOLD activations from previous time points were not 
used during classification or were averaged out removing useful information. This 
was done to reduce the large dimension of fMRI input. Greater the dimension of data 
input to the classifier, greater would be the time involved during training and online 
operation. To give an example, an Echo Planar Imaging (EPI) (used normally in real-
time fMRI measurements) employing  Field of View (FOV) of 212x 212 in the X and 
Y dimensions, and having 64x64 image matrix and 16 slices (thickness = 5mm) has 
in total 65,536 voxels (64x64x16), each voxel of resolution 3.3x3.3x5mm in the 
X,Y,Z directions. Data input of such a large dimension (>65,000) for every time point 
to an SVM for a real-time classification would be daunting in terms of memory and 
computational resources. BOLD signal has its onset after about 3s of the neural 
activity and reaches its peak after 6s of onset of activity, and comes down to zero 
after 10-12s of the onset. Considering the above, from 6-10s of past BOLD values 
could be useful brain state discrimination. However, if voxel activations from 
previous n time points are included, the size of input then increases n-fold increasing 
training time of the classifier and adversely affecting online performance even 
further.  
 

Method  
To overcome the above limitations, we have recently developed a real-time brain state 
detection system (Sitaram, Lee et al. 2008) based on the support vector machine 
(SVM) classification of whole-brain fMRI signals for each repetition time of 
acquisition (TR). The aim of the experiment was to investigate for the first time if a 
brain state detection system can be built to recognize emotional states of the brain 
from fMRI signals and whether the output from the real-time classifier could be used 
for providing feedback to the participant. The experiment was conducted in 3 stages:  
Stage 1: Acquisition of fMRI signals when participants are presented: a) Standard 
pictures from International Affective Picture System (IAPS) known to elicit discreet 
emotions: neutral, happy and disgust emotions. b) instructions to recall emotional 
episodes belonging to categories: neutral, happy and disgust. Classifier parameters are 
then estimated for each participant by using our custom developed SVM toolbox for 
fMRI data. 
Stage 2: Testing the classifier for each participant on new fMRI data acquired during 
a similar paradigm (as above) involving viewing of emotional pictures or recall of 
emotions.  
Stage 3: Neurofeedback training of emotional regulation using a thermometer 
feedback based on real-time brain state classification.  
 
Figures 4.1 and 4.2 show the experimental paradigm for emotional picture 
presentation and instructions for recall of emotional episodes.  
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Figure 4.1: Each run has 3 blocks of emotional picture presentation alternating with 
a fixation cross. Six pictures are presented in each block of emotion. Each picture 
will be shown for 6s. Students were asked to attend to each picture without moving 
their head and body. During fixation block students were required to count back from 
100 to 1. 
 

 
Figure 4.2: Each run has 3 blocks of emotional recall instructions alternating with a 
fixation cross. Instructions were given in English and German. In each recall block 
students were instructed to recall corresponding emotions (neutral, happy and 
disgust). During fixation block students were required to count back from 100 to 1. 
 
FMRI data acquired during the above experimental paradigm from each participant 
was corrected for head motion in real-time by performing realignment and smoothed 
to reduce noise. To reduce the large dimension of input to the classifier due to large 
number of voxels in the brain (64 x 64 x 16 = about 65,000), a feature extraction step 
was  performed. First, non-brain voxels were excluded with a thresholding method. 
Secondly, the Fisher Criterion (FC) (as shown in equation below) was used to select 
voxels which had higher discriminability for different emotional states compared to 
other voxels. This voxel selection method would reduce computational time and make 
the classifier more robust in the presence of noisy signals.  
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Classification was based on multivariate SVM to investigate which brain areas are 
associated in discriminating between different emotional states. SVM was used to 
discriminate between the following emotional states: neutral vs. happy, neutral vs. 
disgust, and happy vs. disgust. In addition, 5-fold cross validation was performed by 
dividing the whole data set into 5 separate permutations of a training set and a testing 
set, to each time test the accuracy of classification. In this process, the threshold of FC 
was selected which showed the lowest error rate and the lowest standard deviation of 
error. 
 
A new measure was developed to determine the discriminability of each voxel as 
obtained by the SVM method. This new measure was defined as the ratio of mutual 
information between a weighted voxel value and the designed label to the mutual 
information between the weighted sum of other voxels without the voxel in question 
and the designed label (as shown in the equation below). The weighting used in the 
above definition is obtained from the weight vector obtained due to SVM model 
training.  
 
 
 
where, 

 
To test the reliability of the SVM classification on new data, subjects were shown new 
sets of IAPS pictures invoking the different emotional states, and fMRI signals were 
collected in real-time using a custom-written Echo Planar Imaging (EPI) sequence 
developed in our institute for the purpose of real-time acquisition (1.5 s interval) and 
feedback for an fMRI Brain-Computer Interface. The real-time SVM classifier then 
determined the emotional state of the brain. Based on the classification result, a visual 
feedback was provided to the subject in the form of graphical thermometer with 
changing bars (see figure 4.3). 

 
 

: is the weight vector multiplied by the voxel vector for the  i-th 
component,     
 
 

:is the the predicted output of SVM. 
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Figure 4.3. Graphical thermometer that provides real-time feedback of the emotional 
state detected by multivariate SVM. 
 

Results  
The SVM offline pattern classifier could classify brain states from the participants 
with an average accuracy of around 90% (figure 4.4), while the real-time version 
tested on 4 participants showed an average accuracy of above 70% and maximum 
accuracy of 90%. The following bar chart shows the performance of the classifier. 
Remarkably, on a few participants, a classifier that was trained to discriminate 
emotional states elicited by pictures could also discriminate emotional states realized 
through recall  with about ~70% accuracy. This result suggests that there are common 
areas of activation between picture-based and recall-based emotion induction.  
 

 
Figure 4.4: Performance of the brain state classifier. 
 
We compared the activation patterns obtained using the univariate (GLM) method and 
multivariate (SVM) method of analysis. Figure 4.5 shows the difference of activations 
between the two methods. With the GLM maps, yellow/red voxels show significant 
activations and blue/green voxels show significant deactivations at the given contrast 
(e.g., Happy vs Neutral). With the SVM maps, yellow/red voxels show significant 
voxels that discriminate between the emotional states. Notice the different activation 
clusters that SVM uses for discrimination of emotional states. These areas might be 
coding the spatiotemporal information representing the brain state in a way that the 
voxel-wise GLM is not sensitive enough to detect. 
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Figure 
Figure 4.5. Differences in brain activation as obtained by the conventional univariate 
GLM analysis and the multivariate SVM analysis. 
 
This work shows for the first time that multiple emotional states elicited in an 
individual‘s brain (either by viewing emotional pictures or by recall of emotional 
episodes) can be recognized and discriminated in real-time from fMRI signals. 
Furthermore, this work demonstrates that a BCI can be developed using a pattern 
classifier to provide feedback from an entire neural network involved in a 
cognitive/emotional activity in contrast to previous single ROI methods. Most 
importantly, this work shows the difference between multivariate SVM based method 
and univariate GLM based method in identifying discrimating voxels between brain 
states. We anticipate clinical applications of this emotion  brain state detection 
technique, examples: neurorehabilitation of emotional disorders, in brain computer 
interfaces, and lie detection. 
 

Discussion 
Our work (Sitaram, Lee et al. 2008) demonstrates the application of real-time 
classification of emotion states in the brain from fMRI signals, and subsequently 
using the classification to provide feedback information to the subject to modulate his 
brain activity to enhance or reduce the effect or intensity of the brain state. Although, 
the method described below is limited to 3 discrete emotional states, the method is not 
inherently limited to these states, and could be extended to many more discrete and 
complex emotional states. 
 
Further, the method is not limited to classification training based on emotion inducing 
pictures or recall of personal emotional episodes. The method can be extended to 
include emotions induced by auditory, audio-visual, olfactory, gustatory, touch and 
pain stimuli. 
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Chapter 5 

 

 

Volitional Regulation of Anterior Insula in Healthy 
Individuals and Psychopathic Criminals 

 

Introduction 
The traditional approach to investigate neural processes underlying emotions involves 
the presentation of emotional stimuli to elicit brain activity. By using this approach, 
neuroimaging studies (Murphy, Nimmo-Smith et al. 2003; Wager, Phan et al. 2003; 
Phan, Fitzgerald et al. 2006) have provided increasing evidence for a role of the insula 
in a variety of brain processes such as viscerosensation, pain, motivation, emotion and 
cognition. However, the inverse question, which emotional response is elicited when a 
brain region is modulated, is not much explored. From	
  this	
  perspective,	
  in	
  order	
  to	
  
verify	
   the	
   functional	
   specificity	
   of	
   the	
   anterior	
   insula	
   in	
   emotional	
   processing	
  
fMRI-­‐BCI	
  presents	
  itself	
  as	
  a	
  novel	
  method.	
  
	
  

Neurobiology of Insula 
The areas of the insula, lateral orbitofrontal cortex and cingulate cortex represent the 
transition from allocortex to granular cortex identified as paralimbic cortex (Mesulam 
and Mufson 1982; Mesulam and Mufson 1982). The insula, named as limbic 
integration cortex (Augustine 1985) along with other paralimbic structures due to their 
localization in the brain between neocortex and limbic areas would integrate the 
internal and external milieu (Mesulam and Mufson 1982; Mesulam and Mufson 
1982). Anatomical evidences show that insula has connections with areas in the 
frontal parietal temporal lobes, cingulate gyrus, basal nuclei, amygdala, dorsal 
thalamus and other structures of the limbic system (Augustine 1985; Augustine 1996; 
Rolls 1996). Due to the multiplicity of its cortical and subcortical connections the 
insula is posited to have a manifold function as a visceral sensory, visceral motor, 
vestibular, somatosensory area. It has been hypothesized to have a key function in 
evaluating the emotional state of the organism (Reiman, Lane et al. 1997; Damasio, 
Grabowski et al. 2000). Specifically, it would be critical to the evaluation of the 
interoceptive emotional significance through the functional representation of 
homeostatic changes (Reiman, Fusselman et al. 1989; Craig 2002; Craig 2003). The 
anterior part of the insula is reported to be directly implicated in emotional 
processing, specifically during emotional recall, self-generated emotions (Reiman, 
Fusselman et al. 1989; Reiman, Lane et al. 1997; Damasio, Grabowski et al. 2000) 
and self induced anxiety (Kimbrell, George et al. 1999). Correlation	
  between	
  insula	
  
activity	
   and	
   perception	
   of	
   emotional	
   stimuli	
   has	
   been	
   extensively	
   described	
   in	
  
healthy	
   people	
   (Phillips,	
   Young	
   et	
   al.	
   1997;	
   Anders,	
   Birbaumer	
   et	
   al.	
   2004;	
  
Critchley,	
  Wiens	
  et	
  al.	
  2004;	
  Singer,	
  Seymour	
  et	
  al.	
  2004;	
  Wright,	
  He	
  et	
  al.	
  2004;	
  
Jackson,	
   Meltzoff	
   et	
   al.	
   2005). Neuroimaging studies reported bilateral but 
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asymmetric activation of the anterior insula with a bias to the left hemisphere both 
during self-induced negative emotion (Damasio 2000) and when participants were 
asked for verbal ratings of emotional valence during observation of negative 
emotional pictures (Anders, Birbaumer et al. 2004). Anticipatory anxiety, which is a 
combination of future-oriented cognitive state, negative affect and autonomic arousal 
was correlated with increased regional cerebral blood flow in the left insula and at a 
lower threshold in the right homologous area (Reiman, Fusselman et al. 1989; Chua, 
Krams et al. 1999). It has been shown that anticipation and observation of aversive 
stimuli is associated with increased insula activation in normal subjects (Reiman, 
Fusselman et al. 1989; Phillips, Young et al. 1997; Schienle, Stark et al. 2002) and 
recently in anxiety-prone subjects (Simmons, Strigo et al. 2006; Stein, Simmons et al. 
2007). These data suggested the hypothesis that insula hyperactivity might be a 
common feature in persons with elevated trait anxiety and therefore it might represent 
a neuroimaging marker for anxiety proneness (Paulus, Feinstein et al. 2004; Paulus 
and Stein 2006). Furthermore, anterior insula hyperactivity is observed in social 
phobia (Birbaumer, Veit et al. 2005) and panic disorders (Reiman, Fusselman et al. 
1989) while its hypoactivity is associated with lack of aversive anticipatory arousal in 
criminal psychopaths (Birbaumer, Veit et al. 2005).  
 
The insular cortex has been rarely investigated in humans using direct electrical 
cortical stimulation because of its anatomical localization covered by frontal, parietal 
and temporal opercular cortices and separated by a dense wall of vessels. The few 
studies conducted during the presurgical assessment of epilepsy reported 
somaesthethic symptoms, cardiovascular effects as well as viscero-motor, viscero-
sensitive sensations (Penfield and Faulk 1955; Wieser 1983; Oppenheimer, Gelb et al. 
1992; Ostrowsky, Isnard et al. 2000) and nociceptive responses (Ostrowsky, Isnard et 
al. 2000). The observed elicited sensations were mainly caused by the stimulation of 
the posterior part of the insula while the few stimulation sites in the anterior insular 
did not induce exteroceptive pain sensations but only viscerosensitive, visceromotor 
and autonomic reaction (Oppenheimer, Gelb et al. 1992; Ostrowsky, Isnard et al. 
2000). Furthermore,	
   the	
   few	
   lesional	
   studies	
   in	
   humans	
   available	
   reported 
impairment in recognizing both facial and vocal signals of disgust, and impaired 
experience of disgust as a consequence of left hemisphere damage affecting the insula 
and basal ganglia, including the striatum	
  (Calder, Keane et al. 2000). Similar findings 
have been observed in patients affected by the Huntington’s disease which also 
afflicts the insula and the striatum (Sprengelmeyer, Young et al. 1996). Therefore, the	
  
question,	
  which	
  emotional	
  response	
  is	
  induced	
  by	
  stimulation	
  of	
  anterior	
  insular	
  
activity	
  in	
  healthy	
  individuals	
  is	
  still	
  a	
  challenging	
  open	
  issue. 
 

Psychopathy 
Psychopathy is a personality disorder described by a constellation of affective, 
interpersonal and behavioral characteristics such as callousness, lack of empathy, 
egocentricity and impulsivity. Psychopaths engage in more criminal behavior and 
institutional misconduct than their non-psychopathic counterparts. Central to 
psychopathy is the deficient processing of emotions. These include shallowness and 
profound lack of remorse or empathy. Hare et al., (Hare, Hart et al. 1991) subsumed 
those features under the factor “emotional detachment”. Lykken (Lykken 1957), 
using questionnaires and electrodermal responses, investigated the hypothesis that 
psychopaths fail to develop anxiety. Lykken found reduced anxiety levels in the 
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subjective evaluations and low electrodermal responses to conditioned stimuli that 
were previously associated with shock in the autonomic indices. Cleckley (Cleckley 
1951, 1976?) suggested that psychopaths exhibit discordance in the linguistic and 
experiential components of emotion. Empirical evidence indicates that psychopathic 
individuals have less intense emotional reactions to many everyday situations than do 
non-psychopaths (Day and Wong 1996). Other investigators suggested that the 
inability of psychopaths to anticipate the negative consequences of their behavior 
results from an insufficient capacity to develop anticipatory fear (Hare 1978). Hence, 
psychopathy may be characterized by a faulty modulation of associative links 
between external stimuli and internal reactions (Patrick 1994; Patrick, Cuthbert et al. 
1994). Neuroimaging studies investigating the affective processing of psychopathy 
will potentially lead to an understanding of mechanisms and elements that maintain 
this disorder (Porter, 1996).  
 
The amygdala plays a central role in emotional processing, particularly in fear 
conditioning (Kim and Jung 2006). However, fear retention is not necessarily at the 
same site as fear learning, and hence it is unclear whether the amygdala is the 
permanent storage site for long-term fear memory. For example, fear retention is 
abolished if the amygdala is lesioned one day but not many days after inhibitory 
avoidance training, suggesting that long-term fear memory is not stored in amygdala 
(Liang, McGaugh et al. 1982; McGaugh, Martinez et al. 1982). From the point of 
view of efficacy of human neuroimaging studies, amygdala is a particularly difficult 
region as it is highly vulnerable to magnetic susceptibility artifacts including 
distortions and signal dropouts (Weiskopf, Scharnowski et al. 2004; Weiskopf, Klose 
et al. 2005; Weiskopf, Hutton et al. 2006). In addition to the amygdala, a network of 
structures that includes insula, anterior cingulate gyrus and medial prefrontal cortex is 
suggested as important in identifying the emotional significance of the stimulus, and 
regulate the affective state (Philips ML et al 2003; (Adolphs 2003; Adolphs 2003). 
The insula has afferent and efferent connections to the medial and orbitofrontal 
cortices, anterior cingulate and amygdala (Augustine 1996). Stein et al., (Stein, 
Simmons et al. 2007) maintain that insula may have been relatively neglected 
compared with amygdala, and suggest including insula within the sphere of inquiry.  
 
As mentioned earlier, Insula activation is associated with many emotional processes, 
including differential positive versus negative emotion processing (Buchel, Morris et 
al. 1998), (Morris, Ohman et al. 1998), (Morris, Friston et al. 1998), pain perception 
(Gelnar, Krauss et al. 1999; Peyron, Laurent et al. 2000), anticipation and viewing of 
aversive images (Phan, Fitzgerald et al. 2006), (Simmons, Matthews et al. 2004), and 
the making of judgements about emotions (Gorno-Tempini, Pradelli et al. 2001). The 
IES model of psychopathy (Blair, Peschardt et al. 2006) proposes that psychopathic 
individuals receive markedly reduced augmentation of the representation of the 
conditioned stimulus (CS) from the reciprocal connections of the amygdala and 
insula. This means that if the CS is the target stimulus, performance will be impaired 
in individuals with psychopathy relative to comparison individuals (i.e., a weaker 
representation should be less able to control behaviour). On the other hand, if the CS 
is a distracter to ongoing behaviour, performance will be superior in individuals with 
psychopathy relative to comparison individuals (i.e., a weaker representation will be a 
less of a competitor for the stimulus that should be controlling behaviour). 
Furthermore, human studies strongly suggest that the insula is instrumental in the 
detection and interpretation of certain internal bodily states (Crichley 2003; Crichley 
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2005). The construct of interoceptive awareness shares many features with anxiety 
sensitivity and phobia. Insula activity is elevated in persons prone to anxiety disorders 
(Simmons, Strigo et al. 2006) and social phobia (Veit, Flor et al. 2002), and as such 
may be a neuroimaging marker of these disorders. In contrast, a hypoactivity of insula 
is observed in psychopathic individuals (Veit, Flor et al. 2002, Birbaumer, 2005 #25), 
and could in turn act as a marker of psychopathy. 
 

Study Objectives 
In view of the above line of argument, we asked the following questions: could 
healthy individuals and psychopathic criminals be trained to regulate activity the 
BOLD activity in the insula using an fMRI-BCI, and does volitional increase of 
activity in insula have any effect on emotional processing? In addition, we 
investigated whether training to regulate the insular cortex changes the functional 
connectivity of the emotional network. Studying the functional interactions between 
brain regions involved in the regulation of emotion and the directions of these 
interactions will provide a deeper understanding of this brain function. Comparing the 
functional interactions between healthy individuals and those with psychopathology 
could give new insights in developing treatment.  

 

Methods 

Participants 
Two groups of participants took part in experiments carried out separately. Healthy 
individuals were first investigated to assess the behavioral effects of volitional 
regulation of anterior insula. In a second experiment, psychopathic criminals 
underwent a similar experimental protocol. As we could not match healthy 
individuals and psychopathic criminals for age, sex and background, we are not able 
to compare results across the two groups in any form of random effects or group 
analysis. As such, we would present the results of the two experiments separately. 
 

Experiment 1: Healthy Individuals 
Sixteen healthy right-handed subjects (9 female and 7 male; age range 23-40 years; 
mean age 27.50 years) participated in this study. Volunteers of both groups, namely, 
the experimental group (5 female and 4 male; age range 23-40 years; mean age 26.86 
years) and the control group (4 female and 3 male; age range 23-40 years; mean age 
28.0 years), had no history of neurological or psychiatric disorders including 
substance abuse/dependence and psychotropic medications. All were naive to 
neurofeedback and fMRI experiments. Written instructions were provided to all 
participants and informed written consent was obtained. This study was approved by 
the ethics committee of the Faculty of Medicine of the University of Tübingen.  
 

Experiment 2: Psychpathic Criminals 
Six psychopaths (Birbaumer, Sitaram et al. 2008) with criminal records participated 
in the study. The psychopaths consisted of offenders out on bail and waiting for their 
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trial or those out of jail and on parole, all of whom were screened from a larger 
sample using the Psychopathy Checklist-Revised (PCL-R) (Hare, 1991). The mean 
emotional detachment score was 14.25 (SD = 10.3, range = 7-21. These values are 
much lower than the scores for the American population of psychopaths but are in 
accordance with the lower values for the German norms (Ullrich 2003).  
 
None of the participants was taking psychoactive drugs. The psychopaths were paid 
€20 per hour and an extra sum proportional to their performance (maximum €10 per 
hour) during feedback training. The payments were made to ensure participation of this 
difficult-to-recruit group and also as a reward contingent on regulating brain activity. 
All participants signed informed consent and the study was approved by the local 
institutional review board and adhered to the Declaration of Helsinki.  

fMRI Data Acquisition 
Functional images were acquired on 3.0 T whole body scanner, with standard 12 
channels head coil (Siemens Magnetom Trio Tim, Siemens, Erlangen, Germany). A 
standard echo-planar imaging sequence was used (EPI; TR = 1.5 s, matrix size = 64 x 
64, echo time TE = 30 ms, flip angle α = 70°, bandwidth = 1.954 kHz/pixel). Sixteen 
slices (voxel size = 3.3 x 3.3 x 5.0 mm3, slice gap = 1 mm), AC/PC aligned in axial 
orientation were acquired. For superposition of functional maps upon brain anatomy a 
high-resolution T1-weighted structural scan of the whole brain was collected from each 
subject (MPRAGE, matrix size = 256 x 256, 160 partitions, 1 mm3 isotropic voxels, TR 
= 2300 ms, TE = 3.93 ms, TI = 1100 ms, α = 8°). In order to reduce head movement, 
two foam cushions were used to reduce unnecessary movement of the participant’s 
head. 

Experimental Protocol 
The target region of interest (named ROI1), left anterior insula, was delineated in a 
localizer session for each participant. A block-based paradigm was used for the 
localizer session consisting of 4 blocks (22.5s each) during which the subjects had to 
use mental imagery to recall emotionally relevant personal experiences alternating with 
5 resting blocks (22.5s each) during which they had to perform number counting in 
reverse order (for example, from 100 to 1). ROI1 was selected on the activation maps 
generated online during the task by means of the Turbo-BrainVoyager software 
(Goebel 2001) and stored for the following feedback training sessions. ROI1 consisted 
of a rectangular area encompassing 5 x 5 voxels (~20 x 20 mm) of the left anterior 
insula on a single slice of 5 mm thickness. The reference ROI (named ROI2) was 
another rectangular area selected from a slice positioned distant from ROI1 and selected 
to encompass a slice with the intent to cancel global changes in the BOLD signal. 
 

 
Figure 5.1.  Experimental design. A single run consisted of a 30s increase or 
decrease block followed by a 9s picture presentation block, that in turn was followed 
by a 12s rating block.  There were 5 runs in each session. During rating blocks 
participants were shown the Self-Assessment Manikin, SAM [49], which allows them 
to evaluate emotional valence and arousal. Both valence and arousal dimensions vary 
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along a 9-point scale. Selection of the subjective rating was performed by positioning 
a red outline on the chosen number on each of the two scales, presented in close 
succession. Subjects were provided with two buttons allowing movements of the 
cursor in the left and right direction. 
 
Each participant took part in 3 different types of protocols: a pretest on the first day; 3-4 
feedback runs per day after the pretest, for 2-3 days, depending on the availability of 
the subject; and a final day of 1-2 post-tests. Each feedback run consisted of 6 increase 
and 7 decrease blocks each of 30s duration. During the up- and down-regulation blocks 
subjects had to increase or decrease the BOLD response in the target ROI (left anterior 
insula) by watching the feedback presented in the form of an animated graphical 
thermometer. Normalized average BOLD signal from the left anterior insula was used 
to generate animated images of the varying thermometer bars. The up- and down-
regulation blocks were cued with red and blue colour backgrounds, respectively (Figure 
5.1). Each run of the feedback training took 6.75 minutes to complete. At the end of 
each training run monetary reward was computed and presented to the subject  
proportional to the aggregate valid differential BOLD increase or decrease at every time 
point with respect to the previous time points. A differential BOLD value is counted as 
valid only if there is a differential BOLD increase but not decrease during the increase 
condition, and a differential BOLD decrease but not increase during the decrease 
condition. Each valid differential increase and decrease of BOLD earned 10 European 
cents. Maximum reward for a feedback run was limited to 10 Euros.  
 
The pretest and post-test were similar in structure and only differed in the stimulus 
material used. The intent of the tests was to measure the effect of volitional regulation 
of the left anterior insula on aversive and neutral picture evaluation. Each session of the 
pretest or post-test consisted of five alternating up- and down-regulation runs. Each run 
consisted of a 30s up- or down-regulation block performed by watching the feedback of 
the moving thermometer bars as described before, followed by a 9s emotional picture 
presentation block, that in turn was followed by a 12s evaluation block (Figure 5.1). 
During picture presentation blocks, one emotional or neutral picture from the 
International Affective Picture System (IAPS; (Lang, Bradley et al. NIMH Center for 
the Study of Emotion and Attention 1997) was presented. During the evaluation blocks 
subjects had to rate the picture for valence and arousal using a button-based control 
device inside the MRI scanner. Pictures were rated in terms of subjective emotional 
valence and arousal using the Self-Assessment Manikin (SAM, (Bradley and Lang 
1994). The Self-Assessment Manikin is a non-verbal pictorial assessment for measuring 
pleasure, aversion and arousal associated with a person’s affective reaction to a variety 
of stimuli. Valence and arousal dimensions vary along a 9-point scale. Before the 
experiment, participants were briefed about the experimental tasks, SAM ratings, and 
were also trained on how to rate the pictures using the two buttons.  
 
During the picture rating blocks, subjects were shown the two SAM valence and 
arousal scales in close succession. Positioning a red outline on the chosen number on 
the scale denoted selection of the subjective rating. Subjects were provided with two 
buttons allowing movements of the cursor in the left and right direction. Cursor 
starting position was in the centre of the scale both for valence and arousal dimension. 
The pictures presented to the participants consisted of 20 aversive and 20 neutral 
pictures from IAPS (see Caria et al., in press for details). Valence and arousal ratings 
for aversive pictures were based on ratings from a large representative reference 
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sample (Lang, Bradley et al. NIMH Center for the Study of Emotion and Attention 
1997) with mean values of 3.26± 0.78SD and 4.93±0.47SD, respectively. Valence 
and arousal ratings for neutral pictures had mean values of 4.84± 0.32SD and 
2.33±0.40SD, respectively. Pictures were pseudo-randomized such that no significant 
difference in valence and arousal ratings was present between pictures after increase 
and decrease blocks and between sessions. Each session lasted about nine minutes.  

Off-line Data Analysis 

SPM Analysis 
Off-line image post-processing, SPM analysis and ROI analyses were performed using 
SPM5 (Wellcome Department of Imaging Neuroscience, London) and Brain Voyager 
QX (Brain Innovations, Maastricht, the Netherlands) statistical parametric mapping 
software package. During signal preprocessing, the functional EPI images were 
realigned spatially, normalized into Montreal Neurological Institute (MNI) space, and 
smoothed spatially (9-mm Gaussian kernel) and temporally (0.0039 Hz, 2.5 times the 
duration of the activation and baseline block) to remove high frequency artifacts. 
Hemodynamic response amplitudes were estimated using standard regressors, 
constructed by convolving a boxcar function representing the block duration, with a 
canonical hemodynamic response function using standard SPM5 or Brain Voyager QX 
parameters. Motion parameters were also included in the general linear model (GLM) 
as covariates to account for variance caused by head motion. Signal change during up-
regulation blocks with respect to the down-regulation blocks was evaluated. Areas 
showing training related changes were analysed with t-test comparison of BOLD 
magnitude over sessions.  
 

Region of Interest Analysis 
Hypothesis driven ROI analysis was performed using the ROI previously selected for 
each subject during the feedback training sessions. ROI time-series underwent the same 
preprocessing and model estimation using the General Linear Model (GLM) for whole 
brain analysis. The percent signal change during up-regulation blocks with respect to 
the down-regulation blocks was calculated for each session separately and then 
averaged across subjects. ROI analysis was also performed on the contralateral region 
positioned at the right anterior insular and a few other selected areas in emotional 
regulation. The training effect was evaluated by computing paired t-test on all subjects 
of percent signal changes in the target ROI session by session.   

Functional Connectivity Analysis 
Granger Causality Modeling (Granger 1969; Granger 1980) is a method originally 
developed in economics for causal interaction between multiple events from time-series 
data. Since then it has been applied in neuroscience research for analysing connectivity 
of neurons from their firing patterns, from local field potentials, from EEG data (Seth 
2005; Seth 2007). More recently, GCM has been applied in conjunction with Vector 
Autoregressive Models (VAR) to fMRI data also (Abler, Roebroeck et al. 2006), 
(Roebroeck, Formisano et al. 2005) to investigate directed influences between neuronal 
populations. The strength of the method exists in its data driven nature and its non-
reliance on a priori specification of a model. It is distinct from other approaches of 
effective connectivity, e.g. Dynamic Causal Modelling (DCM) (Kiebel, Kloppel et al. 
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2007), (Schlosser, Koch et al. 2007), (Van Horn and Ishai 2007) that aim at testing or 
contrasting specific hypotheses about neuronal interactions. Instead, GCM defines the 
existence and direction of influence from information in the data. Temporal precedence 
information is exploited to compute Granger causality maps that identify voxels that are 
sources or targets of directed influence from other voxels in the brain.  
 
GCM is usually implemented as linear autoregressive models that predict the evolution 
of time-series. Univariate autoregressive models describe a single time-series in terms 
of linear combinations of the past values (lags) of the time-series. Multivariate vector 
autoregressive (VAR) models include lags of multiple time-series. For our 
implementation, let us consider 2 fMRI time-series X1(t) and X2(t) of length T, from 2 
selected regions of the brain. Let us suppose that the temporal dynamics of the X1(t) 
and X2(t) can be described by a bivariate autoregressive model: 
 

  [ 

 where p is the maximum number of lags included in the model (the model order, 
p < T), A contains the estimated coefficients of the model, E1 and E2 are residuals for 
each time-series. If the variance of the prediction error E1 (or E2) is reduced by the 
inclusion of the X2 (or X1) terms in the first (or second) equation, then it is said that X2 
(or X1) Granger-causes X1 (or X2).  X2 Granger-causes X1 if all the coefficients in A12 
are significantly different from zero. This can be tested by performing a t-test or F-test 
of the null hypothesis that A12 = 0, with the assumption that X1 and X2 are covariance 
stationary. The magnitude of the Granger causality interaction can be estimated by 
taking the logarithm of the F-static. This concept can be extended to the multivariate 
case by estimating a multivariable VAR-model. In such a case, X2 Granger-causes X1 if 
knowing X2 reduces X1’s prediction error when the time-series of all other variables 
(brain regions) X3…XN are also taken into account. Multivariate analysis can improve 
robustness of the GCM results. For example, in a system in which X1 and X2 are both 
influenced by X3 but are otherwise independent, a bivariate model of X1 and X2 may 
wrongly indicate that there is causal relationship between X1 and X2. A multivariate 
model would not have such a false positive, as knowing X1 would not predict X2 in the 
context of X3. In this study, we incorporate the multivariate model for the above reason. 
Significant Granger causality interactions between variables can be represented as 
edges in a graph enabling graph-theoretic techniques to be used for further analysis and 
visualization.  
 
GCM analysis was carried out to evaluate the network dynamics during self-regulation 
during three different training sessions: a session of weak regulation, a session of 
intermediate ability to regulate, and a session of strongest regulation. The criterion for 
considering a regulation session as weak, intermediate and strong was the magnitude of 
percent BOLD increase in each session; greater the percent BOLD increase, stronger is 
considered the regulation. Time-series of ROIs that passed the height threshold of P= 
0.05 (Bonferroni corrected) and a cluster threshold of 50 voxels were used as input to 
the GCM analysis for each stage of regulation. We implemented a multivariate Granger 
Causality Model (GCM) by adapting the Causal Connectivity Matlab (Mathworks Inc., 
USA) Toolkit from (Seth 2005) to work with fMRI signals and our design protocols. 
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Multivariate GCM was applied to multiple time-series of selected ROIs (varying from 
5-10) at 3 different stages of regulation under consideration. 
 
Two important measures of connectivity, namely, causal density and causal flow are 
adapted from (Seth 2005; Seth 2007) for comparison of functional connectivity across 
feedback training sessions.  
 
Causal Density: The causal density (cd) of a functional network defined as the fraction 
of interactions among ROIs that are causally significant. Causal density is given by the 
relation cd = gc/(n(n-1)), where gc is the total number of causal connections observed 
and n is the network size. A set of unconnected ROIs will have low cd.   
 
Causal Flow: The causal flow (cf) of an ROI i in Granger-causality graph is defined as 
the difference between its outgoing connections and incoming connections. An ROI 
with highly positive cf exerts a strong causal influence over the network and so acts as a 
causal source. An ROI with a negative cf can be called a causal sink of the network.  
 

Statistical Analysis of Picture Ratings 
Ratings of the IAPS pictures presented after increase blocks were compared with the 
ratings of the pictures presented after decrease blocks across sessions using non-
parametric Wilkoxon Signed Ranks test. Local brain activity was compared between 
pictures presented after increase blocks with respect to those presented after decrease 
blocks across sessions.  
 

Results and Discussion 

Experiment 1: Healthy individuals 
The EG was guided by contingent BOLD feedback from the left anterior insula while 
the CG received a non-specific feedback corresponding to the BOLD activity of a 
large brain area. Both groups immediately after the modulation were required to 
observe and assess a selection of emotional pictures taken from the International 
Affective Picture System (IAPS) (Collins, Neelin et al. 1994) (Table. 5.1). The two 
groups of participants (EG n = 9, CG n = 7) underwent four fMRI-BCI scanning 
sessions in one day. Both ROI analysis and whole brain analysis showed a learned 
control of the left anterior insula activity in the EG only. The negative effect observed 
in the CG demonstrated the relevance of the contingent feedback to achieve control of 
the targeted brain area. Participants received written instructions of the experiment 
and guidelines for achieving control of the activity in the targeted brain. Experimental 
group reported that recalling positive and negative emotional personal episodes were 
used as strategies for successful regulation of insular activity. Control group reported 
using similar strategies but found them to be unsuccessful in consistently regulating 
the feedback signal.    
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Table 5.1. Clusters of significant signal increase other than insulae during activation 
blocks from random effects analysis in the last session. Clusters exceeding the 
threshold of P<0.001 uncorrected and with a spatial extent large than 10 voxels were 
considered. Coordinates are in MNI stereotaxic space (Collins, Neelin et al. 1994) 
and labelled anatomically according to Tzourio-Mazoyer et al. (Tzourio-Mazoyer, 
Landeau et al. 2002).  
 
 

Functional data 
Single subject analysis without smoothing and averaging shows learned modulation of 
the activity in the target area (Figure. 5.2). 
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Figure 5.2 Single subject training performance. Example of single subject BOLD 
time-course of the left targeted area during the first session (top) and the last session 
(bottom). Each time-course shows BOLD response during increase (red bar) and 
decrease blocks (blue bar), picture  presentation blocks after  increase (yellow bar) 
and after decrease (light blue), and rating blocks (grey). Scan number is represented 
on the x-axis and the raw magnitude BOLD signal is represented on the y-axis. 
Improvement in control to increase and decrease activation with training is evident 
even without spatial smoothing and averaging. 
  
ROI analysis in the EG showed a significant enhancement of the modulation of 
insular activity revealed by an increase across sessions of the percent BOLD signal 
change (F(3,19) = 129.86, P < 0.0001) in the this area (Figure 5.3). However, ROI 
analysis of the CG did not show increasing percent BOLD signal across sessions. 
Activity in the right anterior insula also showed increased percent signal change in the 
last session with respect to the first session (t(19) = 10.14, P < 0.001, two-tailed paired 
t-test), but the effect was lower than in the target area and did not increase 
monotonically (Figure 5.3).  
 

 
Figure 5.3. Brain activity in the left and right anterior insula in the experimental and 
control group during the task. % BOLD change in the experimental group and control 
group across training sessions. Percent signal change was calculated by computing 
the difference of the percent BOLD change of each time point during increase and 
decrease blocks for each participant, and these values were then averaged across all 
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the participants. % BOLD increases across sessions in the target area in the 
experimental group only trained with contingent feedback (F(3,19) = 129.86, P < 
0.0001, ANOVA). The control group trained with non-specific feedback showed an 
increase in the first two sessions only. Error bars represent standard deviations.  
 
A lateralization index (LI), intended to assess whether brain activation was 
predominantly in the left or right hemisphere during training, showed an increased 
activity in the left insula across training sessions with a lateralization index of 
0.46±0.27SD (t(8)  = 2.64, P = 0.015, two-tailed paired t-test) in the last session 
(Figure 5.4).  
 

 
Figure 5.4. Lateralization Index. The LI was calculated based on the normalized 
difference between percent BOLD change extracted from the left anterior insula and 
the right anterior insula for each participant and then averaged across all 
participants as follows: (%L-%R)/(%L+%R) (L = positive values ; R = negative 
values). Activity during training was increasingly shifting to the left across sessions 
and reached a mean lateralization index of 0.46±0.27SD in the last session. 
 
Random effect analysis of the whole brain activity during the modulation blocks 
confirmed ROI data analysis showing increased BOLD signal in the target area across 
sessions as indicator of learning.  Activation in the left [-36,13,-5] (t = 9.80, P < 0.001 
uncorrected) and in the right insula/ frontal operculum [43,13,-5] (t = 8.98, P < 0.001 
uncorrected) were the most active in the third and the fourth sessions (coordinates 
refer to peak of activation in Montreal Neurological Institute – MNI space (Collins, 
Neelin et al. 1994) (Figure 5.5a). Additional active brain areas in the last two sessions 
were the right middle cingulate gyrus [3, 33, 30] (t = 8.07, P < 0.001), the left 
superior temporal gyrus [-59, -36,20] (t = 6.97, P < 0.001) and the right 
supplementary motor area [7,7,70] (t = 6.57, P < 0.001). A significant activated 
cluster was also observed in the target ROI during the third and the fourth training 
session compared to the second and the first ([-43,25,0] left insula/frontal operculum, 
t = 3.70, P < 0.001 uncorrected) (Figure 5.5b).  
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Figure 5.5. Whole brain group analysis. a. Random effect analysis of the activity 
during the last two sessions at  P < 0.001 uncorrected: both left [-36, 13, -5] and 
right [43, 13, -5] insula/ frontal operculum show increased BOLD signal. Activations 
network shows additional active areas: the right middle cingulate gyrus [3, 33, 30], 
the left superior temporal gyrus [-59, -36,20] and the right supplementary motor area 
[7,7,70]. b. The contrast of the last training session with the first training session 
shows increased activity only in the left insula/frontal operculm [-43, 25, 0], the 
targeted brain region. 
 
Clusters of activity during the modulation blocks across all sessions were localized in 
the right anterior cingulate gyrus [7,20,35], the right supplementary motor area 
[3,13,70], the left superior temporal gyrus  [-53,-36,20] and the left middle frontal 
gyrus [-26,43,20] (Table 2). Region of interest analysis of these additional active areas 
(Table 2) did not show a BOLD signal increase over training sessions (F(3,19) = 0.49 P 
< 0.48,) emphasizing the specificity of the measured effect (Figure 5.6).  
 

 
Table 5.2. Additional active brain regions.   

 
The CG showed a small increase of BOLD signal activity in the left and right ROI 
during the first two sessions only. They both reached significance when the BOLD 
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amplitude was compared with respect to the first session (t(19) = 3.27, P < 0.004, left; 
t(19) = 5.12, P < 0.001, right). The analysis of the interaction effect of ROI time course 
per group reached significance (F(1,15) = 18,49, P < 0.001). 
 

 
Figure 5.6. ROI analysis of all significantly activated clusters from statistical maps, 
excluding left and right anterior insular region. No increase across sessions was 
observed during the feedback training. 
 

Behavioral data  
To exclude variability across subjects and pictures the ratings of the emotional 
pictures presented after increase blocks were compared to those presented after 
decrease blocks. The EG showed a difference of the aversive pictures ratings in the 
valence and arousal dimensions in the last session; valence reached significance (z = 
2.13, P = 0.033, Wilkoxon signed rank test) while arousal did not (z = 1.10, P = 
0.271) (Figure. 5.7).  
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Figure 5.7. Aversive pictures ratings. SAM valence (top) and arousal (bottom) ratings 
for aversive pictures for the experimental (Exp) and control group (Cont) (*  P < 0.05 
two-tailed). During the last two training sessions when the participants in the 
experimental group had acquired sufficient control, aversive pictures presented after 
the increase condition were rated as significantly more negative (lower valence) than 
after the decrease condition. 
 
A smaller significant difference of ratings only in the valence dimension was also 
measured in the third session (z = 2.02, P = 0.043). Valence ratings significantly 
decreased when pictures were presented after increase blocks with respect to decrease 
blocks in the last two sessions. Ratings of the neutral pictures were not significantly 
different in both dimensions (over all sessions (Figure. 5.8). During the third and the 
fourth training session when the EG had increased the activity in the left anterior 
insula, aversive pictures presented after the increase condition were perceived more 
negative than after the decrease condition (linear regression, P < 0.05) (Figure 5.9). 
Interestingly, the CG showed a trend to significance in valence and arousal ratings of 
aversive pictures during the second session (valence, z = 1.725, P = 0.084; arousal, z 
= 1.786, P = 0.088) (Figure 5.7). Differences of ratings of neutral pictures failed 
significance both in valence and arousal dimension across all sessions (Figure 5.8). 
 

 
Figure 5.8. Neutral pictures ratings. SAM valence (top) and arousal (bottom) ratings 
for neutral pictures. No significant differences were found comparing ratings of the 
pictures presented after increase blocks with those presented after decrease blocks. 
 
A correlation analysis was also conducted to show a relationship between BOLD 
percent signal change in the anterior insula and ratings of the emotional stimuli. 
Changes in valence ratings of the aversive pictures were significantly correlated with 
changes in the left anterior insula activity (F(1,33) = 4.90, P < 0.05); the correlation 
with the right anterior insula was almost significant (F(1,33) = 4.012, P = 0.053).  
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Figure 5.9 Single subject percentage difference ratings of aversive pictures. Single 
subject percentage difference index of SAM valence ratings for aversive pictures 
between increase and decrease blocks across sessions. Lower value indicates more 
aversion. Percentage difference of affective ratings between increase and decrease 
conditions could be a better indicator than actual values, as it rules out inter-subject 
variability and baseline drift during the experiment. 
 
The time course of the hemodynamic response both during regulation and emotional 
stimuli presentation blocks across sessions was analyzed for the purpose of correlating 
the volitional modulation of target brain activity and the behavioural effects. The 
amplitude of the BOLD signal in the targeted left anterior insula insular maintained 
higher BOLD levels in the subsequent picture presentation condition, indicating a 
prolonged effect on picture processing (Figure 5.10). This effect was greater in the 
last two training sessions compared to the first two (t(53) = 5.37, P < 0.0001).  
 

 
Figure 5.10.  Percentage BOLD signal change progression. Time-course of percent 
BOLD change computed as difference between increase and decrease conditions in 
the left anterior insula during the volitional control and aversive picture presentation 
conditions for first two training sessions (S1 and S2; yellow line) and last two training 
sessions (S3 and S4; red line). Percent difference of BOLD between volitional 
increase and decrease conditions in the region of interest maintained significantly 
larger values during subsequent picture presentation in the last two training sessions 
compared to the first two sessions indicating a clear effect of volitional control over 
emotional picture processing. 
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Experiment 1: Discussion 
Our findings demonstrate that subjects can achieve volitional control of the left 
anterior insula activity through an fMRI-BCI training. The learned control was 
specific for the target area and not an effect of general arousal and/or global 
unspecific brain activation as demonstrated by the inability of the control group to 
achieve volitional control due to the non-contingent feedback. Furthermore, we 
reported a modulation of the emotional response, specific to aversive stimuli but not 
to neutral stimuli, which correlated with the modulation of the left anterior insular 
activity. Although the contribution of the right homologous area for successful 
regulation is less significant, the similar pattern of activity indicates that the right 
insula could subserve a complementary function. Results in the control group are also 
quite intriguing. The small increase of BOLD signal in the left and right insula and a 
close to significant difference in valence ratings during the second session might 
suggest an effect generated by the adopted strategy. However, as here and previously 
demonstrated, mental imagery alone is not sufficient to achieve a focal and stable 
activity in the target area. A combination of mental strategies and real-time fMRI 
information drives subjects to achieve successful control (Caria, Veit et al. 2007). 

 

Experiment 2: Results 
 

Functional Data 
Psychopathic criminals learned to control BOLD–magnitude in the left anterior insula 
to different extents when compared among the participants (Birbaumer, Sitaram et al. 
2008). The ability to regulate differed among participants. Training resulted in a 
significantly increased activation cluster in the anterior portion of the left insula 
across sessions. Participants reported the following recall of emotional episodes and 
imageries during the regulation blocks: fight with the landlord, death of parents, 
experience in jail, memories of grand mother, and negative memories of a stay in a 
detention centre and pronouncement of judgement in the courtroom. Online analysis 
of each participant’s BOLD signal without smoothing and averaging clearly shows 
learned modulation of the activity in the targeted area. Figure 5.11 shows the results 
of online analysis of a subject in early and late training sessions, respectively. 
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Figure 5.11. Results of online analysis of self-regulation of left anterior insula from 
early and late training sessions, respectively.  Figures (a)-(b) show the transversal 
slices in which the left anterior insula, the target ROI (red rectangle), and reference 
ROI (large green rectangle) were selected, respectively. Difference between the 
BOLD signals of target ROI and the reference ROI was used to compute the feedback 
signal to improve the specificity of the signal from the target ROI by removing 
general effects of arousal on the BOLD signal. Figures (c)-(d) show corresponding 
views for a session when a stronger regulation was achieved. Figures (e)-(f) show 
time-courses of BOLD activation in the target and reference ROIs, respectively, for 
weak regulation. Figures (g)-(h) show similar time-courses for the strong regulation 
session. With feedback training subjects learn to regulate the target ROI by 
consistently increasing and decreasing the BOLD activity in time while maintaining 
the BOLD activity in the reference ROI  constant. 
 
We used the difference in the percent BOLD between volitional increase and decrease 
conditions rather than absolute values in order to rule out effects of baseline drift and 
inter-subject differences, and more importantly to arrive at a combined measure of 
volitional control. Continued training enhances the percent differential BOLD in the up-
regulation condition compared to the down-regulation condition. Percent BOLD 
difference increases with contingent feedback from an early weak regulation session, to 
an intermediate medium regulation session, to a late strong regulation session. Whole 
brain analysis for each participant showed an increased activated cluster in the ROI at a 
later session when the subject had learned to regulate strongly in comparison to an early 
session when self-regulation was not yet learned  (Figure 5.12). 
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Figure 5.12. Results of offline SPM analysis for representative subject AK. Statistical 
parametric maps showing the contrast up-regulation vs down-regulation during early 
and late sessions. Figures (a)-(b) show the transversal and coronal views of the 
contrast during an early session when the regulation was still weak. Figures (c)-(d) 
show the same views for a later session when a stronger regulation was achieved. Maps 
are all obtained at the same height threshold (P = 0.05, Bonferroni corrected). A 
precise, 3-dimensional ROI was delineated in the left anterior insula. Figures (e)-(f) 
show the time-series of BOLD signal and its event related average (ERA) in the ROI 
during weak regulation. The up- and down-regulation blocks are shown as alternating 
green and gray rectangles in the time-series. The ERA plots the percent BOLD change 
in the up-regulation block with respect to the down-regulation block after averaging 
across all the blocks of the session. The Figures (g)-(h) show similar plots for the 
stronger regulation.  
 
 
Figure 5.13 plots the percent BOLD increase and the network density (cd) for the three 
sessions for a representative subject AK. The plot shows that the performance of self-
regulation of a session is proportional to the causal density, i.e., the number of 
interactions that are causally significant of the brain network involved in the function of 
emotion regulation out of the total number of possible interactions among ROIs. The 
figure shows results of connectivity analysis for 3 different strengths of regulation. Left 
column of the figure contains schematic depictions of the directed influences among 
different ROIs; the right column shows bar charts of causal flow (cf) for the ROIs.  
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Figure 5.13. Bar chart showing percent BOLD increase in insula and the 
corresponding values for density of the functional connectivity of the network computed 
by the Granger Causality Mapping (GCM) method. As the strength of regulation 
increases, the density of the network (defined as the ratio of number of directed 
connections between regions to the total number of possible connections) also 
increases.  

 

Connectivity during weak regulation of insula 
Figures 5.14a and 5.14d show the brain network and the causal flow, respectively, 
during weak regulation. Regulation at this stage is driven by the posterior part of the 
brain, mainly involving the posterior cingulate which has significant directed influences 
to left insula, anterior cingulate cortex and hippocampus. The posterior cingulate is the 
major causal source in the weak regulation condition followed by the left medial 
prefrontal cortex. At this stage one can see a very sparse network involving interactions 
among very few ROIs in the emotional network indicated by the low causal density. 
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Figure 5.14. Representative results (from Subject AK) of functional connectivity 
analysis of self-regulation of insula. Figures (a)-(c) show directed influence maps 
(DIMS) and figures (d)-(f) show the bar charts of the causal flow (CF; defined as the 
net difference between outgoing and incoming connections) in the brain regions (the 
emotional network) involved in the self-regulation of insula. Figures are arranged from 
top to bottom in terms of their increasing strength of regulation: from weak regulation 
(top), intermediate regulation (middle) to strong regulation (bottom). It is clear that as 
the strength of regulation increases, the number of directed influences in the emotional 
network also increases as shown by the DIMs. During strong self-regulation, many 
regions in the emotional network, including medial prefrontal cortex (MPFC), right 
insula, anterior cingulate cortex (ACC), amygdala and posterior cingulate cortex are 
seen to become connected with insula. The CF diagrams of the weak regulation shows 
that the activations at this stage are driven predominantly from the posterior portion of 
the brain (especially by the posterior cingulate cortex) and that the causal flow in the 
left insula is close to zero. However, with increasing strength of regulation, insula and 
the anterior regions of the brain seem to drive the network activation to a greater 
extent as shown by their increasing causal flow.  
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Connectivity during intermediate regulation of insula 
Figures 5.14b and 5.14e show the brain network and the causal flow, respectively, 
during intermediate regulation. Regulation at this stage continues to be driven by the 
posterior cingulate which has significant directed influences to left insula, anterior 
cingulate cortex, medial prefrontal cortex and hippocampus. In addition, the 
hippocampus directs its influence to the left insula. The posterior cingulate is still the 
major causal source followed by hippocampus in the intermediate regulation condition. 
The causal density of the network has slightly increased compared to the weak 
regulation stage.  
 

Connectivity during strong regulation of insula 
Figures 5.14c and 5.14f show the brain network and the causal flow, respectively, 
during strong regulation. Now, the anterior portion of the brain drives the network, with 
left insula taking a major share. Left insula is the predominant causal source with 
directed influences to superior medial frontal cortex, right insula, medial prefrontal 
cortex and posterior cingulate.  Right insula and the posterior cingulate are the major 
causal sinks. At this stage, a great number of ROIs in the network (high causal density) 
have been recruited into the regulation function, mainly mediated by the left insula, 
superior medial frontal cortex and hippocampus. The anterior cingulate has reciprocal 
connections with hippocampus. New influences from midtemporal gyrus and amygdale 
towards insula are also observed. 
 
Behavioural data (figure 5.15) were assessed by comparing the valence and arousal 
ratings of aversive and neutral pictures presented after up-regulation blocks and those 
presented after down-regulation blocks to exclude variability across subjects. Ratings 
were collected once before the self-regulation training was started (Pretest) and twice 
after a predetermined number of training sessions were completed (Posttest1 and 
Posttest2).  
 
 

 
Figure 5.15. Behavioural results for subject AK.  Subject rated aversive and neutral 
pictures taken from the International Affective Picture System (IAPS) inside the scanner 
immediately after every up- and down-regulation block using the Self Assessment 
Manikin (SAM). Ratings were collected once before the self-regulation training was 
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started (Pretest) and twice after a predetermined number of training sessions were 
completed (Posttest1 and Posttest2). (a) Subject AK  aversive pictures as more negative 
(lower valence value) in the posttests compared to the pretest after up-regulation. (c) 
Inversely, subject AK rated versive pictures as less negative (higher valence value) in 
the posttests compared to the pretest after down-regulation. Aversive pictures were 
rated slightly more arousing after up-regulation than after down-regulation in the 
posttests compared to the pretests (a and c). No consistent differences were observed 
with arousal ratings for both aversive and neutral pictures (b and d).  
 

Experiment 2: Discussion 
The present study (Birbaumer, Sitaram et al. 2008) demonstrates for the first time that 
criminal psychopaths can learn volitional regulation of left anterior insula with the help 
of an fMRI Brain-Computer Interface developed in our laboratory (Sitaram, Caria et al. 
2007; Weiskopf, Sitaram et al. 2007; Sitaram, Weiskopf et al. 2008).  Subjects learned 
to regulate insula by employing negative emotional imageries taken from previous 
episodes in their lives, in conjunction with contingent feedback. Our previous studies 
with healthy volunteers (Caria, Veit et al. 2007) had already shown that learned control 
was specific to the target region, and not a result of general arousal and global 
unspecific brain activation, as demonstrated by a control group trained with a non-
contingent feedback. From another previous study, we had reported that regulation of 
left anterior insula modulates the emotional response specific to aversive picture stimuli 
but not neutral picture stimuli. Both studies had shown that mental imagery alone is not 
sufficient, and that real-time feedback of the BOLD signal extracted from the target 
region enhances subjects’ ability to achieve regulation. In the present study we have 
extended the experimental protocol by providing monetary reward after every session. 
Monetary reward was computed proportional to the percent BOLD increase in the 
target region to motivate these difficult-to-recruit experimental subjects to continue 
feedback training. We show that continued training enhances the percent differential 
BOLD in the up-regulation condition compared to the down-regulation condition. 
Remarkably, subjects with higher Psychopathic Checklist-Revised (PCL-R) scores are 
less successful at self-regulation than their lower PCL-R counterparts, supporting the 
existing notion that psychopaths are emotionally detached and have deficient emotional 
processing (Lykken 1957). 
 
Although, the statistical analysis of the ratings of valence and arousal of the aversive 
and neutral pictures from the International Affective Picture System (IAPS) did not turn 
up significant results, a trend similar to the previous study on healthy normals (Caria et 
al., in press) in the form of increased negativity (lower valence ratings) of aversive 
pictures compared to neutral pictures was apparent. We attribute the lack of 
significance to fewer experimental subjects and consequently a smaller rating data set 
substantially reducing the statistical power. Furthermore, not all criminal psychopaths 
achieved equal level of percent BOLD increase, potentially leading to inconsistent and 
diluted effects of regulation on emotional processing and hence picture ratings. This 
indicates the need for a future extended study involving more psychopathic subjects 
undergoing longer training and a more sensitive rating system for measurement of 
behavioral effects of regulation. 
 
The main purpose of the present study was not only to ascertain whether criminal 
psychopaths can learn to regulate the BOLD signal in the left anterior insula but also to 
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investigate the changes in functional connectivity in the brain of criminal psychopaths 
due to successful regulation. In particular, we wanted to compare the functional 
connectivity changes with varying strength of the regulation. To this end, we employed 
the multivariate Granger Causality Model (GCM) adapted from the Causal 
Connectivity Toolkit from Seth (Seth 2005) to work with fMRI data. Multivariate GCM 
was applied to time-series of 8-10 ROIs from the emotional network separately for 3 
different levels of regulation, namely, weak, intermediate and strong, determined based 
on the average percent BOLD increase in up-regulation blocks compared down-
regulation blocks. The results show that, firstly, the strength of regulation is 
proportional to the causal density of the network, in other words, the amount of 
‘connectedness’ of the functional network purportedly involved in the regulation 
process. Secondly, the results show that weak regulation is driven mainly from the 
posterior cingulate, which acts as the main causal source, while right insula and the 
posterior cingulate are the major causal sinks. As regulation gets stronger, the source of 
the network moves towards the anterior of the brain finally settling in the left anterior 
insula at the strongest regulation. During strong regulation, left insula directs its 
influence outwardly to superior medial frontal cortex, right insula, medial prefrontal 
cortex and posterior cingulate, indicated by the high value of causal flow. In addition, 
the hippocampus, amygdala and midtemporal gyrus are introduced into the causal 
network during strong regulation. Our results are supported by previous reports of 
emotional regulation and processing. Ochsner et al., (Ochsner, Ray et al. 2004) have 
shown that up- and down-regulating negative emotion recruited prefrontal and anterior 
cingulate regions implicated in cognitive control. Further, they reported that self-
focussed regulation recruited medial prefrontal regions implicated in internally focused 
processing, whereas situation-focussed regulation recruited lateral prefrontal regions 
implicated in externally focused processing. In our study, predominance of medial 
prefrontal activation and its involvement in the causal network, and in addition the self-
report of regulation strategies by subjects (e.g., fight with the landlord, death of parents, 
experience in jail, memories of grand mother, negative memories of a stay in a 
detention centre and pronouncement of judgement in the courtroom) indicate the 
employment of self-focussed imagery and thus further corroborate Ochsner’s (Ochsner, 
Ray et al. 2004) conclusion.  
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Chapter 6. 

 
 

Discussion 
 
In this thesis, we have presented first our technical implementation of metabolic 
brain-computer interfaces based on fNIRS and fMRI. We have demonstrated the 
capability of metabolic BCIs to decode brain states in real-time based on fNIRS and 
fMRI signals by the application of pattern recognition technology. We have shown 
preliminary results of applying fNIRS-BCI for brain state classification of motor 
imagery and execution (Sitaram, Hoshi et al. 2005; Sitaram, Zhang et al. 2007), and a 
word speller application as a potential technology to enable communication for 
locked-in patients. We have also demonstrated our new developments in real-time 
decoding and detection of multiple emotional states in the brain using fMRI signals 
(Sitaram, Lee et al. 2008). Subsequent to these technical developments, we have 
demonstrated three preliminary results of applying fMRI-BCI: 1) self-regulation of 
emotion with feedback from anterior insula in healthy individuals (Caria, Sitaram et 
al. 2006; Caria, Veit et al. 2007); 2) self-regulation of right inferior frontal gyrus and 
the influence of regulation on language processing of prosody in healthy individuals 
(Rota, Sitaram et al. 2008); and 3) self-regulation of ventrolateral premotor cortex in 
healthy individuals and stroke patients (in preparation). Encouraged by the above 
results, we conducted a more intensive study to investigate the emotional influences 
of self-regulation of anterior insula in a number of healthy individuals and 
psychopathic criminals (Birbaumer, Sitaram et al., 2008). Our results show that 
healthy individuals and psychopathic criminals can learn to regulate the BOLD 
response in the anterior insula by the help of mental imagery of emotional episodes in 
their lives aided by contingent feedback from the fMRI-BCI system. In the case of 
psychopathic criminals, we have also reported first evidence that the ability to self-
regulate is inversely proportional the severity of psychopathy. We have, shown that 
the immediate effect of up-regulation of the signal is to enhance the negative aspect 
(i.e., reduction in the valence dimension) of emotion. This specific effect of self-
regulation on emotion processing is also shown to be associated with a reorganisation 
of the functional network of emotion (involving insula, ACC, prefrontal cortex, 
hippocampus, etc.) with training, leading to an optimal network that utilizes cognitive 
resources in an efficient fashion in performing the regulation task.  
 
Logothetis (2008) pointed out that without simultaneous measurement of BOLD and 
neurophysiological response for the same area, it is impossible to conclude whether a 
BOLD increase or decrease is excitatory or inhibitory. In addition, a correct 
interpretation of the functional role of BOLD activity needs simulataneous recording 
of the relevant behaviour. FMRI-BCI is the method of choice to overcome this 
problem in human experiments because specific behaviour effects can be studied as 
dependent variable of a learned circumscribed BOLD response. Non-invasive 
experimentation with people in fMRI-BCI allows recording of EEG, ECoG and NIRS 
together with BOLD. 
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While this work has indicated the potential role that metabolic BCIs could play in 
neuroscientific research and clinical applications, it has, however, left one important 
question open. How do individuals learn to volitionally regulate the metabolic 
response from a circumscribed brain region, and how does this self-regulation 
influence behaviour. The hemo-neural hypothesis (Moore and Cao 2008) looks at the 
vascular and molecular processes involved in blood flow and oxygen consumption, 
and how these in turn lead to changes in neural activation and hence behaviour. We 
propose a model of regulation based on the hemo-neural hypothesis.  
 

Hemo-neural Model of Regulation 
The brain contains a rich and interdependent network of neurons, whose activity is 
well correlated with information processing (Moore and Cao 2008). The brain also 
contains a rich and interdependent vascular network, whose activity, i.e., blood flow, 
is typically well correlated with neural activity. The standard modern view of blood 
flow is that it serves a physiological function unrelated to information processing, 
such as bringing oxygen to active neurons, eliminating “waste” generated by neural 
activity, or regulating temperature. Realistic computational models of brain function 
do not include blood flow as a component, and neurophysiologists do not consider it 
as a regressor to explain variance in their data. In contrast to this position, the hemo-
neural hypothesis (Moore and Cao 2008) states that hemodynamics play a role in 
information processing, through modulation of neural activity by blood flow. This 
hypothesis predicts that the modulation of flow of blood to a brain region during 
neural activity provides a spatially and temporally correlated source of regulation, 
modulating the excitability of the local circuit. This shaping of the neural response 
will, in turn, impact representation and behavior. We do have evidence to support this 
hypothesis. 
 
Firstly, the vascular pathways that regulate blood flow are finely interleaved with 
neural architecture. These anatomical vascular patterns are not uniform, and in many 
cases reflect the information processing functionality of a given brain area. In the 
neocortex, capillary density shows specificity in the vertical dimension through 
enhanced concentration in specific layers, such as layer IV of primary sensory areas 
(Patel 1983; Zheng, LaMantia et al. 1991; Woolsey, Rovainen et al. 1996), in contrast 
to the flat laminar profile in the entorhinal cortex (Michaloudi, Grivas et al. 2005). 
Subcortical structures show similar apparent principles of distribution, as the striatum 
of the basal ganglia shows enhanced capillary density in the matrix as compared with 
the striosomes (Feekes and Cassell 2006). Hence, the anatomy and physiological 
regulatory mechanisms can position hemodynamic signals spatially and temporally to 
have an impact on neural activity.  
 
Secondly, when local populations of neurons are active, they recruit increased blood 
flow and volume to the activated region, a process known as “functional hyperemia” 
(Kong, Zheng et al. 2004; Hoge, Franceschini et al. 2005; Martin, Martindale et al. 
2006). Functional hyperemia can be induced and modulated by a variety of 
mechanisms. Relaxation of smooth muscles around arteries and arterioles leads to 
changes in blood flow and volume. Further, astrocytes are believed to be a primary 
route for detecting neural activity and engaging the vasculature. Recent evidence has 
also implicated neurons in the direct control of blood flow. In neocortex, interneurons 
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directly contact vascular processes. Intracellular electrical stimulation in vitro of 
interneurons adjacent to vessels can evoke dilation or constriction. Hence, there are 
known correlations between information processing and changes in blood flow. This 
suggests that the anatomy and physiology of these two networks are positioned to 
function synergistically in information processing. 
 
Thirdly, there could be mechanisms by which changes in hemodynamics in the 
normal range of function can impact neural activity. Moore and Cao (Moore and Cao 
2008) propose an alternative explanation for functional hyperemia, beyond an 
exclusively metabolic account. Functional hyperemia is spatially and temporally 
precisely directed to the neural processing. Under hemo-neural hypothesis, functional 
hyperemia is not the overdelivery of oxygenated blood for metabolism but rather the 
targeted regulation of neural processing. In support of this hypothesis, Moore and Cao 
(2008) describe evidence for different possible mechanisms: 1) direct hemo-neural 
interactions via diffusible messengers that freely cross the blood-brain barrier; 
mechanical engagement of blood on tissue; and temperature change due ion 
exchanges, and 2) indirect mechanisms such as astrocyte-mediated hemo-to-neural 
signaling. Further studies need to provide concrete evidence for the mechanisms 
suggested under this hypothesis. 
 
Under the hemo-neural hypothesis, blood flow would anticipate the acquisition of 
information, helping transform cortical circuits to more optimally represent the 
incoming sensory signals. In many cognitive paradigms, blood flow modulation 
occurs in anticipation of or independent of the receipt of sensory input. One example 
of a context in which hemo-neural modulation of cortical dynamics may impact 
information processing is through enhancement of evoked responses during selective 
attention (Moore and Cao, 2008). A wide variety of studies have shown that attention 
to a region of input space (e.g., a body area) is correlated with enhanced evoked 
action potential of cortical neurons with receptive fields overlapping the attended 
region (Bichot and Desimone 2006). These effects typically emerge 100 –500 ms after 
the onset of attentional focus (Khayat, Spekreijse et al. 2006). 
 
Moore and Cao (2008) suggest that there are several potential clinical implications of 
the prediction that functional hyperemia modulates neural activity. Diseases that 
impact the vasculature and cognitive function may in part be operating through a 
failure in hemo-neural interactions and the loss or alteration of neuromodulatory 
function that results. The negative outcome of stroke is commonly believed to arise 
only from localized cell death in the focus of the lesion and the metabolic losses and 
stresses associated with deprived flow. Under the hemo-neural hypothesis, the altered 
blood supply in itself, and the subsequent loss of normal functionality in a given 
neural circuit, may be cause behavioral symptoms. A prediction of the hemo-neural 
hypothesis is that decreased blood flow could induce an increase in the excitability of 
neural tissue and that this loss of a suppressive mechanism could contribute to this 
posttraumatic response.  
 
Based on the hemo-neural hypothesis, we propose that if participants learn to 
volitionally regulate the hemodynamic activity of a brain region by instrumental 
conditioning with contingent feedback, such a modulation would in turn change 
neural activity in the region. We further propose that this change in neural activation 
brought about indirectly by the modulation of hemodynamics in the region could also 
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change behavior. Future multimodal studies using fMRI, EEG and TMS should 
investigate the above hypotheses. 
 
 



 

 97 

References 
Abler, B., A. Roebroeck, et al. (2006). "Investigating directed influences between 

activated brain areas in a motor-response task using fMRI." Magn Reson 
Imaging 24(2): 181-5. 

Adam, G. (1998). Visceral perception: understanding internal cognition. New York, 
Plenum Press. 

Adolphs, R. (2003). "Cognitive neuroscience of human social behaviour." Nat Rev 
Neurosci 4(3): 165-78. 

Adolphs, R. (2003). "Investigating the cognitive neuroscience of social behavior." 
Neuropsychologia 41(2): 119-26. 

Anders, S., N. Birbaumer, et al. (2004). "Parietal somatosensory association cortex 
mediates affective blindsight." Nat Neurosci. 7(4): 339-40. Epub 2004 Mar 14. 

Anokhin, A. P., W. Lutzenberger, et al. (2000). "Complexity of electrocortical 
dynamics in children: developmental aspects." Dev Psychobiol. 36(1): 9-22. 

Atsumori, H., M. Kiguchi, et al. (2007). "Development of a multi-channel, portable 
optical topography system." Conf Proc IEEE Eng Med Biol Soc 2007: 3362-4. 

Augustine, J. R. (1985). "The insular lobe in primates including humans." Neurol. 
Res. 7: 2-10. 

Augustine, J. R. (1996). "Circuitry and functional aspects of the insular lobe in 
primates including humans." Brain Res Brain Res Rev 22(3): 229-44. 

Babiloni, F., F. Cincotti, et al. (2001). "Recognition of imagined hand movements 
with low resolution surface Laplacian and linear classifiers." Med Eng Phys 
23(5): 323-8. 

Bagarinao, E., K. Matsuo, et al. (2003). "Estimation of general linear model 
coefficients for real-time application." Neuroimage 19(2 Pt 1): 422-9. 

Bandettini, P. A., E. C. Wong, et al. (1992). "Time course EPI of human brain 
function during task activation." Magn Reson Med 25(2): 390-7. 

Barber, T. X., J. Kamiya, et al., Eds. (1971–78). Biofeedback and Self-Control. 
Chicago, Aldine Series. 

Beisteiner, R., Hollinger, P., Lindinger, G., Lang, W., Berthoz, A. (1995). "Mental 
representation of movements. Brain potentials associated with imagination of 
hand movements." Electroencephalogr Clin Neurophysiol(96): 183-193. 

Benaron, D. A., S. R. Hintz, et al. (2000). "Noninvasive functional imaging of human 
brain using light." J Cereb Blood Flow Metab 20(3): 469-77. 

Bichot, N. P. and R. Desimone (2006). "Finding a face in the crowd: parallel and 
serial neural mechanisms of visual selection." Prog Brain Res 155: 147-56. 

Binkofski, F., G. Buccino, et al. (1999). "Mirror agnosia and mirror ataxia constitute 
different parietal lobe disorders." Ann Neurol 46(1): 51-61. 

Birbaumer, N. (2006). "Brain-computer-interface research: Coming of age." Clin 
Neurophysiol. 117(3): 479-83. Epub 2006 Feb 2. 

Birbaumer, N. (2006). "Breaking the silence: brain-computer interfaces (BCI) for 
communication and motor control." Psychophysiology 43(6): 517-32. 

Birbaumer, N. and L. G. Cohen (2007). "Brain-computer interfaces: communication 
and restoration of movement in paralysis." J Physiol 579(Pt 3): 621-36. 

Birbaumer, N., T. Elbert, et al. (1990). "Slow potentials of the cerebral cortex and 
behavior." Physiol Rev. 70(1): 1-41. 

Birbaumer, N., N. Ghanayim, et al. (1999). "A spelling device for the paralysed." 
Nature. 398(6725): 297-8. 

Birbaumer, N., T. Hinterberger, et al. (2003). "The thought-translation device (TTD): 



 

 98 

neurobehavioral mechanisms and clinical outcome." IEEE Trans Neural Syst 
Rehabil Eng. 11(2): 120-3. 

Birbaumer, N. and H. Kimmel, Eds. (1979). Biofeedback and Self-regulation. 
Erlbaum, Hillsdale FL, USA. 

Birbaumer, N., R. Sitaram, et al. (2008). Operant conditioning of the anterior insula in 
criminal psychopaths Society for Neurosience, Washington Convention 
Center: Hall A-C. 

Birbaumer, N., R. Veit, et al. (2005). "Deficient fear conditioning in psychopathy: a 
functional magnetic resonance imaging study." Arch Gen Psychiatry. 62(7): 
799-805. 

Birbaumer, N., C. Weber, et al. (2006). "Physiological regulation of thinking: brain-
computer interface (BCI) research." Prog Brain Res 159: 369-91. 

Birn, R. M., J. B. Diamond, et al. (2006). "Separating respiratory-variation-related 
fluctuations from neuronal-activity-related fluctuations in fMRI." Neuroimage 
31(4): 1536-48. 

Blair, R. J., K. S. Peschardt, et al. (2006). "The development of psychopathy." J Child 
Psychol Psychiatry 47(3-4): 262-76. 

Blankertz, B., G. Curio, et al. (2001). Classifying single trail EEG: Toward brain 
computer interfacing. Cambridge, MA, MIT Press. 

Bradley, M. M. and P. J. Lang (1994). "Measuring emotion: the Self-Assessment 
Manikin and the Semantic Differential." J Behav Ther Exp Psychiatry 25(1): 
49-59. 

Brambilla, P., R. Cerini, et al. (2007). "Assessment of cerebral blood volume in 
schizophrenia: A magnetic resonance imaging study." J Psychiatr Res 41(6): 
502-10. 

Brass, M., S. Zysset, et al. (2001). "The inhibition of imitative response tendencies." 
Neuroimage 14(6): 1416-23. 

Breitenstein, C., I. Daum, et al. (1996). "Erfassung der Emotionswahrnehmung bei 
zentralnervösen Läsionen und Erkrankungen: Psychometrische Gütekriterien 
der "Tübinger Affekt Batterie"." Neurol & Rehab 2: 93-101. 

Buccino, G., F. Binkofski, et al. (2001). "Action observation activates premotor and 
parietal areas in a somatotopic manner: an fMRI study." Eur J Neurosci 13(2): 
400-4. 

Buccino, G., A. Solodkin, et al. (2006). "Functions of the mirror neuron system: 
implications for neurorehabilitation." Cogn Behav Neurol 19(1): 55-63. 

Buchel, C., J. Morris, et al. (1998). "Brain systems mediating aversive conditioning: 
an event-related fMRI study." Neuron 20(5): 947-57. 

Calder, A. J., J. Keane, et al. (2000). "Impaired recognition and experience of disgust 
following brain injury." Nat Neurosci 3(11): 1077-8. 

Caria, A., R. Sitaram, et al. (2006). Can We Learn to Increase Our Emotional 
Involvement? Real-Time fMRI of Anterior Cingulate Cortex During 
Emotional Processing. Human Brain Mapping, Florence, Italy. 

Caria, A., R. Veit, et al. (2007). "Regulation of anterior insular cortex activity using 
real-time fMRI." Neuroimage 35(3): 1238-46. 

Castiello, U. (2003). "Understanding other people's actions: intention and attention." J 
Exp Psychol Hum Percept Perform 29(2): 416-30. 

Chang, C. C. and C. J. Lin (2001). LIBSVM - A Library for Support Vector 
Machines. http://www.csie.ntu.edu.tw/cjlin/libsvm/. 

Chua, P., M. Krams, et al. (1999). "A functional anatomy of anticipatory anxiety." 
Neuroimage 9(6 Pt 1): 563-71. 



 

 99 

Cleckley, H. M. (1951). "The mask of sanity." Postgrad Med 9(3): 193-7. 
Coghill, R. C., C. N. Sang, et al. (1999). "Pain intensity processing within the human 

brain: a bilateral, distributed mechanism." J Neurophysiol 82(4): 1934-43. 
Cohen, M. S. (2001). "Real-time functional magnetic resonance imaging." Methods 

25(2): 201-20. 
Collins, D. L., P. Neelin, et al. (1994). "Automatic 3D intersubject registration of MR 

volumetric data in standardized Talairach space." J Comput Assist Tomogr 
18(2): 192-205. 

Cox, R. W., A. Jesmanowicz, et al. (1995). "Real-time functional magnetic resonance 
imaging." Magn Reson Med 33(2): 230-6. 

Coyle, S., T. Ward, et al. (2004). "On the Suitability of Near-Infrared Systems for 
Next Generation Brain Computer Interfaces." Physiological Measurement 25: 
815–822. 

Coyle, S. M., T. E. Ward, et al. (2007). "Brain-computer interface using a simplified 
functional near-infrared spectroscopy system." J Neural Eng 4(3): 219-26. 

Craig, A. D. (2002). "How do you feel? Interoception: the sense of the physiological 
condition of the body." Nat Rev Neurosci 3(8): 655-66. 

Craig, A. D. (2003). "Interoception: the sense of the physiological condition of the 
body." Curr Opin Neurobiol 13(4): 500-5. 

Craighero, L., A. Bello, et al. (2002). "Hand action preparation influences the 
responses to hand pictures." Neuropsychologia 40(5): 492-502. 

Cramer, S. C. (1999). "Stroke recovery. Lessons from functional MR imaging and 
other methods of human brain mapping." Phys Med Rehabil Clin N Am 10(4): 
875-86, ix. 

Critchley, H. D., S. Wiens, et al. (2004). "Neural systems supporting interoceptive 
awareness." Nat Neurosci 7(2): 189-95. 

Damasio, A. R. (2000). "Eighth C.U. Ariens Kappers Lecture. The fabric of the mind: 
a neurobiological perspective." Prog Brain Res 126: 457-67. 

Damasio, A. R., T. J. Grabowski, et al. (2000). "Subcortical and cortical brain activity 
during the feeling of self-generated emotions." Nat Neurosci 3(10): 1049-56. 

Davare, M., M. Andres, et al. (2006). "Dissociating the role of ventral and dorsal 
premotor cortex in precision grasping." J Neurosci 26(8): 2260-8. 

Davatzikos, C., K. Ruparel, et al. (2005). "Classifying spatial patterns of brain activity 
with machine learning methods: application to lie detection." Neuroimage 
28(3): 663-8. 

Day, R. and S. Wong (1996). "Anomalous perceptual asymmetries for negative 
emotional stimuli in the psychopath." J Abnorm Psychol 105(4): 648-52. 

deCharms, R. C., K. Christoff, et al. (2004). "Learned regulation of spatially localized 
brain activation using real-time fMRI." Neuroimage. 21(1): 436-43. 

deCharms, R. C., F. Maeda, et al. (2005). "Control over brain activation and pain 
learned by using real-time functional MRI." Proc Natl Acad Sci U S A. 
102(51): 18626-31. Epub 2005 Dec 13. 

Dogil, G., I. Frese, et al. (2004). "Where and how does grammatically geared 
processing take place-and why is Broca's area often involved. A coordinated 
fMRI/ERBP study of language processing." Brain Lang. 89(2): 337-45. 

Donoghue, J. P. (2002). "Connecting cortex to machines: recent advances in brain 
interfaces." Nat Neurosci. 5 Suppl: 1085-8. 

Egner, T. and J. H. Gruzelier (2003). "Ecological validity of neurofeedback: 
modulation of slow wave EEG enhances musical performance." Neuroreport. 
14(9): 1221-4. 



 

 100 

Ehrsson, H. H., A. Fagergren, et al. (2000). "Cortical activity in precision- versus 
power-grip tasks: an fMRI study." J Neurophysiol 83(1): 528-36. 

Ehrsson, H. H., E. Fagergren, et al. (2001). "Differential fronto-parietal activation 
depending on force used in a precision grip task: an fMRI study." J 
Neurophysiol 85(6): 2613-23. 

Elbert, T., B. Rockstroh, et al. (1980). "Biofeedback of slow cortical potentials. I." 
Electroencephalogr Clin Neurophysiol. 48(3): 293-301. 

Fallgatter, A. J., M. Roesler, et al. (1997). "Loss of functional hemispheric asymmetry 
in Alzheimer's dementia assessed with near-infrared spectroscopy." Brain Res 
Cogn Brain Res 6(1): 67-72. 

Feekes, J. A. and M. D. Cassell (2006). "The vascular supply of the functional 
compartments of the human striatum." Brain 129(Pt 8): 2189-201. 

Feinberg, T. E. and M. J. Farah, Eds. (2003). Behavioral Neurology and 
Neuropsychology. New York, McGraw-Hill. 

Fernandez, B., D. Cardebat, et al. (2004). "Functional MRI follow-up study of 
language processes in healthy subjects and during recovery in a case of 
aphasia." Stroke 35(9): 2171-6. 

Fetz, E. E. (1969). "Operant conditioning of cortical unit activity." Science 163(870): 
955-8. 

Fox, P. T. and M. E. Raichle (1986). "Focal physiological uncoupling of cerebral 
blood flow and oxidative metabolism during somatosensory stimulation in 
human subjects." Proc Natl Acad Sci U S A 83(4): 1140-4. 

Franceschini, M. A., V. Toronov, et al. (2000). "On-line optical imaging of the human 
brain with 160-ms temporal resolution." Optical Society of America. 

Francis, S., E. T. Rolls, et al. (1999). "The representation of pleasant touch in the 
brain and its relationship with taste and olfactory areas." Neuroreport 10(3): 
453-9. 

Friederici, A. D. and K. Alter (2004). "Lateralization of auditory language functions: 
a dynamic dual pathway model." Brain Lang 89(2): 267-76. 

Friederici, A. D., S. A. Kotz, et al. (2003). "Syntactic comprehension in Parkinson's 
disease: investigating early automatic and late integrational processes using 
event-related brain potentials." Neuropsychology 17(1): 133-42. 

Friston, K. J., A. P. Holmes, et al. (1995). "Analysis of fMRI time-series revisited." 
Neuroimage 2(1): 45-53. 

Gelnar, P. A., B. R. Krauss, et al. (1999). "A comparative fMRI study of cortical 
representations for thermal painful, vibrotactile, and motor performance 
tasks." Neuroimage 10(4): 460-82. 

Gembris, D., J. G. Taylor, et al. (2000). "Functional magnetic resonance imaging in 
real time (FIRE): sliding-window correlation analysis and reference-vector 
optimization." Magn Reson Med. 43(2): 259-68. 

Glover, G. H., T. Q. Li, et al. (2000). "Image-based method for retrospective 
correction of physiological motion effects in fMRI: RETROICOR." Magn 
Reson Med. 44(1): 162-7. 

Goebel, R. (2001). "Cortex-based real-time fMRI." Neuroimage 13(S129). 
Gorno-Tempini, M. L., S. Pradelli, et al. (2001). "Explicit and incidental facial 

expression processing: an fMRI study." Neuroimage 14(2): 465-73. 
Granger, C. (1969). "Investigating causal relations by econometric models 
and cross-spectral methods." Econometrica 37: 424–38. 
Granger, C. (1980). "Testing for causality: a personal viewpoint. J Econ Dyn 
Control."  2: 329 – 52. 



 

 101 

Haihong, Z. and G. Cuntai (2006). Kernel-based Signal Localization Method for 
NIRS  

Brain-computer Interfaces. International Conference on Pattern Recognition, Hong 
Kong. 

Hanakawa, T., S. Parikh, et al. (2005). "Finger and face representations in the 
ipsilateral precentral motor areas in humans." J Neurophysiol 93(5): 2950-8. 

Hare, R. D. (1978). "Psychopathy and electrodermal responses to nonsignal 
stimulation." Biol Psychol 6(4): 237-46. 

Hare, R. D., S. D. Hart, et al. (1991). "Psychopathy and the DSM-IV criteria for 
antisocial personality disorder." J Abnorm Psychol 100(3): 391-8. 

Haynes, J. D. and G. Rees (2006). "Decoding mental states from brain activity in 
humans." Nat Rev Neurosci 7(7): 523-34. 

Heim, S. (2005). "The structure and dynamics of normal language processing: insights 
from neuroimaging." Acta Neurobiol Exp (Wars) 65(1): 95-116. 

Hock, C., K. Villringer, et al. (1997). "A role for near infrared spectroscopy in 
psychiatry?" Adv Exp Med Biol 413: 105-23. 

Hoekert, M., R. S. Kahn, et al. (2007). "Impaired recognition and expression of 
emotional prosody in schizophrenia: review and meta-analysis." Schizophr 
Res 96(1-3): 135-45. 

Hoge, R. D., M. A. Franceschini, et al. (2005). "Simultaneous recording of task-
induced changes in blood oxygenation, volume, and flow using diffuse optical 
imaging and arterial spin-labeling MRI." Neuroimage 25(3): 701-7. 

Horovitz, S. G. and J. C. Gore (2004). "Simultaneous event-related potential and near-
infrared spectroscopic studies of semantic processing." Hum Brain Mapp 
22(2): 110-5. 

Hoshi, Y. (2007). "Functional near-infrared spectroscopy: current status and future 
prospects." J Biomed Opt 12(6): 062106. 

Hoshi, Y., N. Kobayashi, et al. (2001). "Interpretation of near-infrared spectroscopy 
signals: a study with a newly developed perfused rat brain model." J Appl 
Physiol 90(5): 1657-62. 

Hoshi, Y., I. Oda, et al. (2000). "Visuospatial imagery is a fruitful strategy for the 
digit span backward task: a study with near-infrared optical tomography." 
Brain Res Cogn Brain Res 9(3): 339-42. 

Hoshi, Y. and M. Tamura (1993). "Dynamic multichannel near-infrared optical 
imaging of human brain activity." J Appl Physiol 75(4): 1842-6. 

Hoshi, Y. and M. Tamura (1997). "Near-infrared optical detection of sequential brain 
activation in the prefrontal cortex during mental tasks." Neuroimage 5(4 Pt 1): 
292-7. 

Huppert, T. J., R. D. Hoge, et al. (2006). "A temporal comparison of BOLD, ASL, 
and NIRS hemodynamic responses to motor stimuli in adult humans." 
Neuroimage 29(2): 368-82. 

Jackson, A., J. Mavoori, et al. (2006). "Correlations between the same motor cortex 
cells and arm muscles during a trained task, free behavior and natural sleep in 
the macaque monkey." J Neurophysiol. 

Jackson, P. L., A. N. Meltzoff, et al. (2005). "How do we perceive the pain of others? 
A window into the neural processes involved in empathy." Neuroimage 24(3): 
771-9. 

Jobsis, F. F. (1977). "Non-invasive, infra-red monitoring of cerebral O2 sufficiency, 
bloodvolume, HbO2-Hb shifts and bloodflow." Acta Neurol Scand Suppl 64: 
452-3. 



 

 102 

Josephs, O., A. M. Howseman, et al. (1997). "Physiological noise modelling for 
multi-slice EPI fMRI using SPM." 

Kamiya, J. (1971). "Biofeedback Training in Voluntary Control of EEG Alpha 
Rhythms." Calif Med 115(3): 44. 

Kan, Y., M. Mimura, et al. (2004). "Recognition of emotion from moving facial and 
prosodic stimuli in depressed patients." J Neurol Neurosurg Psychiatry 75(12): 
1667-71. 

Kato, T., A. Kamei, et al. (1993). "Human visual cortical function during photic 
stimulation monitoring by means of near-infrared spectroscopy." J Cereb 
Blood Flow Metab 13(3): 516-20. 

Kennan, R. P., S. G. Horovitz, et al. (2002). "Simultaneous recording of event-related 
auditory oddball response using transcranial near infrared optical topography 
and surface EEG." Neuroimage 16(3 Pt 1): 587-92. 

Khayat, P. S., H. Spekreijse, et al. (2006). "Attention lights up new object 
representations before the old ones fade away." J Neurosci 26(1): 138-42. 

Kiebel, S. J., S. Kloppel, et al. (2007). "Dynamic causal modeling: a generative model 
of slice timing in fMRI." Neuroimage 34(4): 1487-96. 

Kiguchi, M., N. Ichikawa, et al. (2007). "Comparison of light intensity on the brain 
surface due to laser exposure during optical topography and solar irradiation." 
J Biomed Opt 12(6): 062108. 

Kim, J. J. and M. W. Jung (2006). "Neural circuits and mechanisms involved in 
Pavlovian fear conditioning: a critical review." Neurosci Biobehav Rev 30(2): 
188-202. 

Kimbrell, T. A., M. S. George, et al. (1999). "Regional brain activity during transient 
self-induced anxiety and anger in healthy adults." Biol Psychiatry 46(4): 454-
65. 

Kleinschmidt, A., H. Obrig, et al. (1996). "Simultaneous recording of cerebral blood 
oxygenation changes during human brain activation by magnetic resonance 
imaging and near-infrared spectroscopy." J Cereb Blood Flow Metab 16(5): 
817-26. 

Kong, Y., Y. Zheng, et al. (2004). "A model of the dynamic relationship between 
blood flow and volume changes during brain activation." J Cereb Blood Flow 
Metab 24(12): 1382-92. 

Kotchoubey, B., U. Strehl, et al. (1999). "Control of cortical excitability in epilepsy." 
Adv Neurol. 81: 281-90. 

Kotz, S. A., S. Frisch, et al. (2003). "Syntactic language processing: ERP lesion data 
on the role of the basal ganglia." J Int Neuropsychol Soc 9(7): 1053-60. 

LaConte, S., S. Strother, et al. (2005). "Support vector machines for temporal 
classification of block design fMRI data." Neuroimage. 26(2): 317-29. Epub 
2005 Mar 24. 

Laconte, S. M., S. J. Peltier, et al. (2006). "Real-time fMRI using brain-state 
classification." Hum Brain Mapp. 

Lang, P. J., M. M. Bradley, et al. (NIMH Center for the Study of Emotion and 
Attention 1997). International Affective Picture System (IAPS): Technical 
Manual and Affective Ratings, NIMH Center for the Study of Emotion and 
Attention. 

Liang, K. C., J. L. McGaugh, et al. (1982). "Post-training amygdaloid lesions impair 
retention of an inhibitory avoidance response." Behav Brain Res 4(3): 237-49. 

Logothetis, N. K. (2002). "The neural basis of the blood-oxygen-level-dependent 
functional magnetic resonance imaging signal." Philos Trans R Soc Lond B 



 

 103 

Biol Sci. 357(1424): 1003-37. 
Logothetis, N. K. (2003). "The underpinnings of the BOLD functional magnetic 

resonance imaging signal." J Neurosci. 23(10): 3963-71. 
Logothetis, N. K. (2007). "The ins and outs of fMRI signals." Nat Neurosci 10(10): 

1230-2. 
Logothetis, N. K. (2008). "What we can do and what we cannot do with fMRI." 

Nature 453(7197): 869-78. 
Logothetis, N. K., J. Pauls, et al. (2001). "Neurophysiological investigation of the 

basis of the fMRI signal." Nature. 412(6843): 150-7. 
Logothetis, N. K. and J. Pfeuffer (2004). "On the nature of the BOLD fMRI contrast 

mechanism." Magn Reson Imaging. 22(10): 1517-31. 
Lykken, D. T. (1957). "A study of anxiety in the sociopathic personality." J Abnorm 

Psychol 55(1): 6-10. 
Martin, C., J. Martindale, et al. (2006). "Investigating neural-hemodynamic coupling 

and the hemodynamic response function in the awake rat." Neuroimage 32(1): 
33-48. 

Mathiak, K. and S. Posse (2001). "Evaluation of motion and realignment for 
functional magnetic resonance imaging in real time." Magn Reson Med. 45(1): 
167-71. 

McGaugh, J. L., J. L. Martinez, Jr., et al. (1982). "Role of neurohormones as 
modulators of memory storage." Adv Biochem Psychopharmacol 33: 123-30. 

Meng, M. and M. Bader (2000). "Mode of disambiguation and garden path strength: 
an investigation of subject- object ambiguities in German." Lang Speech 43: 
43-74. 

Mesulam, M. and E. Mufson (1982). "Insula of the old world monkey. III: Efferent 
cortical output and comments on function." J. Comp. Neurol 212: 38-52. 

Mesulam, M. M. and E. J. Mufson (1982). "Insula of the old world monkey. I. 
Architectonics in the insulo-orbito-temporal component of the paralimbic 
brain." J. Comp. Neurol 212: 1-22. 

Michaloudi, H., I. Grivas, et al. (2005). "Areal and laminar variations in the 
vascularity of the visual, auditory, and entorhinal cortices of the developing rat 
brain." Brain Res Dev Brain Res 155(1): 60-70. 

Mitchell, T. M., R. Hutchinson, et al. (2003). "Classifying instantaneous cognitive 
states from FMRI data." AMIA Annu Symp Proc: 465-9. 

Miyai, I., H. C. Tanabe, et al. (2001). "Cortical mapping of gait in humans: a near-
infrared spectroscopic topography study." Neuroimage 14(5): 1186-92. 

Mochizuki, H., Y. Ugawa, et al. (2006). "Cortical hemoglobin-concentration changes 
under the coil induced by single-pulse TMS in humans: a simultaneous 
recording with near-infrared spectroscopy." Exp Brain Res 169(3): 302-10. 

Moonen, C. T. W. and P. A. Bandettini, Eds. (2000). Functional MRI. Berlin, 
Springer. 

Moore, C. I. and R. Cao (2008). "The hemo-neural hypothesis: on the role of blood 
flow in information processing." J Neurophysiol 99(5): 2035-47. 

Morris, J. S., K. J. Friston, et al. (1998). "A neuromodulatory role for the human 
amygdala in processing emotional facial expressions." Brain 121 ( Pt 1): 47-
57. 

Morris, J. S., A. Ohman, et al. (1998). "Conscious and unconscious emotional 
learning in the human amygdala." Nature 393(6684): 467-70. 

Mourao-Miranda, J., A. L. Bokde, et al. (2005). "Classifying brain states and 
determining the discriminating activation patterns: Support Vector Machine on 



 

 104 

functional MRI data." Neuroimage. 28(4): 980-95. Epub 2005 Nov 4. 
Murphy, F. C., I. Nimmo-Smith, et al. (2003). "Functional neuroanatomy of emotions: 

a meta-analysis." Cogn Affect Behav Neurosci 3(3): 207-33. 
Naito, M., Y. Michioka, et al. (2007). "A Communication Means for Totally Locked-

in ALS Patients Based 
on Changes in Cerebral Blood Volume Measured with 
Near-Infrared Light." IEICE TRANS. INF. & SYST. E90-D(No.7). 
Nicolelis, M. A. (2003). "Brain-machine interfaces to restore motor function and 

probe neural circuits." Nat Rev Neurosci. 4(5): 417-22. 
Nicolelis, M. A. and J. K. Chapin (2002). "Controlling robots with the mind." Sci Am. 

287(4): 46-53. 
Noguchi, Y., E. Watanabe, et al. (2003). "An event-related optical topography study 

of cortical activation induced by single-pulse transcranial magnetic 
stimulation." Neuroimage 19(1): 156-62. 

Norman, K. A., S. M. Polyn, et al. (2006). "Beyond mind-reading: multi-voxel pattern 
analysis of fMRI data." Trends Cogn Sci 10(9): 424-30. 

Obermaier, B., C. Guger, et al. (2001). "Hidden Markov models for online 
classification of single trial EEG data." Pattern Recognition Letters(22): 1299-
1309. 

Obermaier, B., C. Guger, et al. (1999). "Hidden Markov models used for the offline 
classification of EEG data." Biomed Tech (Berl) 44(6): 158-62. 

Ochsner, K. N., R. D. Ray, et al. (2004). "For better or for worse: neural systems 
supporting the cognitive down- and up-regulation of negative emotion." 
Neuroimage 23(2): 483-99. 

Ogawa, S., T. M. Lee, et al. (1990). "Brain magnetic-resonance-imaging with contrast 
dependent on blood oxygenation." Proceedings of National Academy of 
Science, USA 87: 9868--9872. 

Okada, M., Firbank, M., Schweiger, S., Arridge, M., Delpy, C.D. (1997). "Theoretical 
and experimental investigation of the near-infrared light propogation in a 
model of the adult head." Applied Optics 36(1): 21-31. 

Oppenheimer, S. M., A. Gelb, et al. (1992). "Cardiovascular effects of human insular 
cortex stimulation." Neurology 42(9): 1727-32. 

Ostrowsky, K., J. Isnard, et al. (2000). "Functional mapping of the insular cortex: 
clinical implication in temporal lobe epilepsy." Epilepsia 41(6): 681-6. 

Parks, T. W., Burrus, C.S. (1987). Digital Filter Design. New York, John Wiley & 
Sons. 

Patel, U. (1983). "Non-random distribution of blood vessels in the posterior region of 
the rat somatosensory cortex." Brain Res 289(1-2): 65-70. 

Patrick, C. J. (1994). "Emotion and psychopathy: startling new insights." 
Psychophysiology 31(4): 319-30. 

Patrick, C. J., B. N. Cuthbert, et al. (1994). "Emotion in the criminal psychopath: fear 
image processing." J Abnorm Psychol 103(3): 523-34. 

Paulus, M. P., J. S. Feinstein, et al. (2004). "Anterior cingulate activation in high trait 
anxious subjects is related to altered error processing during decision making." 
Biol Psychiatry 55(12): 1179-87. 

Paulus, M. P. and M. B. Stein (2006). "An insular view of anxiety." Biol Psychiatry 
60(4): 383-7. 

Penfield, W. and M. E. Faulk, Jr. (1955). "The insula; further observations on its 
function." Brain 78(4): 445-70. 

Peyron, R., B. Laurent, et al. (2000). "Functional imaging of brain responses to pain. 



 

 105 

A review and meta-analysis (2000)." Neurophysiol Clin 30(5): 263-88. 
Pfurtscheller, G., B. Graimann, et al. (2004). "Brain-computer communication based 

on the dynamics of brain oscillations." Suppl Clin Neurophysiol 57: 583-91. 
Pfurtscheller, G., C. Guger, et al. (2000). "Brain oscillations control hand orthosis in a 

tetraplegic." Neurosci Lett 292(3): 211-4. 
Pfurtscheller, G., G. R. Muller-Putz, et al. (2006). "15 years of BCI research at Graz 

University of Technology: current projects." IEEE Trans Neural Syst Rehabil 
Eng 14(2): 205-10. 

Pfurtscheller, G., C. Neuper, et al. (2000). "Current trends in Graz Brain-Computer 
Interface (BCI) research." IEEE Trans Rehabil Eng 8(2): 216-9. 

Phan, K. L., D. A. Fitzgerald, et al. (2006). "Association between amygdala 
hyperactivity to harsh faces and severity of social anxiety in generalized social 
phobia." Biol Psychiatry 59(5): 424-9. 

Phan, K. L., T. Wager, et al. (2002). "Functional neuroanatomy of emotion: a meta-
analysis of emotion activation studies in PET and fMRI." Neuroimage 16(2): 
331-48. 

Phillips, M. L., A. W. Young, et al. (1997). "A specific neural substrate for perceiving 
facial expressions of disgust." Nature 389(6650): 495-8. 

Pollock, D. S. G. (1999). A Handbook of Time-Series Analysis, Signal Processing 
and Dynamics. San Diego,CA, Academic Press. 

Polyn, S. M., V. S. Natu, et al. (2005). "Category-specific cortical activity precedes 
retrieval during memory search." Science 310(5756): 1963-6. 

Posse, S., F. Binkofski, et al. (2001). "A new approach to measure single-event related 
brain activity using real-time fMRI: feasibility of sensory, motor, and higher 
cognitive tasks." Hum Brain Mapp. 12(1): 25-41. 

Rabiner, L. and B. H. Juang (1993). Fundamentals of Speech Recognition. 
Englewoord Cliffs, NJ, Prentice-Hall. 

Rabiner, L. R. (1989). "A tutorial on hidden Markov models and selected applications 
in speech recognition." Proceedings of the IEEE 77(2): 257-286. 

Rabiner, L. R. (1989). "A tutorial on hidden Markov models and selected applications 
in speech recognition." Proceedings of the IEEE vol. 77(no. 2): pp. 257-286. 

Reiman, E. M., M. J. Fusselman, et al. (1989). "Neuroanatomical correlates of 
anticipatory anxiety." Science 243(4894 Pt 1): 1071-4. 

Reiman, E. M., R. D. Lane, et al. (1997). "Neuroanatomical correlates of externally 
and internally generated human emotion." Am J Psychiatry 154(7): 918-25. 

Roberts, L. E., N. Birbaumer, et al. (1989). "Self-report during feedback regulation of 
slow cortical potentials." Psychophysiology. 26(4): 392-403. 

Rockstroh, B., T. Elbert, et al. (1990). "Biofeedback-produced hemispheric 
asymmetry of slow cortical potentials and its behavioural effects." Int J 
Psychophysiol. 9(2): 151-65. 

Roebroeck, A., E. Formisano, et al. (2005). "Mapping directed influence over the 
brain using Granger causality and fMRI." Neuroimage 25(1): 230-42. 

Rolls, E. T. (1996). "The orbitofrontal cortex." Philos Trans R Soc Lond B Biol Sci 
351(1346): 1433-43; discussion 1443-4. 

Rolls, E. T. (2004). "The functions of the orbitofrontal cortex." Brain Cogn 55(1): 11-
29. 

Rota, G., R. Sitaram, et al. (2008). "Self-regulation of regional cortical activity using 
real-time fMRI: The right inferior frontal gyrus and linguistic processing." 
Hum Brain Mapp. 

Schienle, A., R. Stark, et al. (2002). "The insula is not specifically involved in disgust 



 

 106 

processing: an fMRI study." Neuroreport 13(16): 2023-6. 
Schlosser, R. G., K. Koch, et al. (2007). "Assessing the state space of the brain with 

fMRI: an integrative view of current methods." Pharmacopsychiatry 40 Suppl 
1: S85-92. 

Schroeter, M. L., M. M. Bucheler, et al. (2004). "Towards a standard analysis for 
functional near-infrared imaging." Neuroimage 21(1): 283-90. 

Schwartz, M. S. and Associates, Eds. (1995). Biofeedback: A Practitioner's Guide, 
Published by Guilford Press. 

Serruya, M. D., N. G. Hatsopoulos, et al. (2002). "Instant neural control of a 
movement signal." Nature 416(6877): 141-2. 

Seth, A. K. (2005). "Causal connectivity analysis of evolved neural networks during 
behavior." Network: Computation in Neural Systems 16: 35-55. 

Seth, A. K. (2007). "Distinguishing causal interactions in neural populations." Neural 
Comput. 19(4): 910-933. 

Shiga, T., K. Yamamoto, et al. (1997). "Study of an algorithm based on model 
experiments and diffusion 

theory for a portable tissue oximeter." J. Biomed. Opt. 2: 154–161. 
Shinba, T., M. Nagano, et al. (2004). "Near-infrared spectroscopy analysis of frontal 

lobe dysfunction in schizophrenia." Biol Psychiatry 55(2): 154-64. 
Shmuel, A., M. Augath, et al. (2006). "Negative functional MRI response correlates 

with decreases in neuronal activity in monkey visual area V1." Nat Neurosci. 
9(4): 569-77. Epub 2006 Mar 19. 

Simmons, A., S. C. Matthews, et al. (2004). "Anticipation of emotionally aversive 
visual stimuli activates right insula." Neuroreport 15(14): 2261-5. 

Simmons, A., I. Strigo, et al. (2006). "Anticipation of aversive visual stimuli is 
associated with increased insula activation in anxiety-prone subjects." Biol 
Psychiatry 60(4): 402-9. 

Singer, T., B. Seymour, et al. (2004). "Empathy for pain involves the affective but not 
sensory components of pain." Science 303(5661): 1157-62. 

Sitaram, R. (2007). fMRI Brain-Computer Interfaces. 15th Annual Conference of 
International Society for Neurofeedback & Research, Current Perspectives in 
Neuroscience: Neuroplasticity & Neurofeedback, San Diego (USA). 

Sitaram, R., A. Caria, et al. (2007). "fMRI Brain-Computer Interface: A Tool for 
Neuroscientific Research and Treatment." Computational Intelligence and 
Neuroscience 2007,Article ID 25487, 10 pages, 2007. 
doi:10.1155/2007/25487. 

Sitaram, R., A. Caria, et al. (2005). Real-time fMRI based Brain-computer Interface 
enhanced by Interactive Virtual Worlds. 45th Annual Meeting Society for 
Psychophysiological Research, Lisbon, Portugal. 

Sitaram, R., A. Caria, et al. (2006). "Functional Magnetic Resonance Imaging based 
BCI for 

Neurorehabilitation." 3rd International Brain-Computer Interface Workshop and 
Training Course. 

Sitaram, R., Y. Hoshi, et al., Eds. (2005). Near Infrared Spectroscopy based Brain-
Computer Interface. Fundamental Problems of Optoelectronics and 
Microelectronics II, Proceedings of the SPIE. 

Sitaram, R., S. Lee, et al. (2008). Real-time pattern classification and neurofeedback 
of emotion states in the brain in a fMRI brain-computer interface. Society for 
Neuroscience, Washington Convention Center: Hall A-C. 

Sitaram, R., S. Lee, et al. (2008). Real-time Classification of Emotional States in an 



 

 107 

fMRI Brain-Computer Interface. Society for Neuroscience, Washington DC. 
Sitaram, R., N. Weiskopf, et al. (2008). "fMRI brain-computer interfaces: A tutorial 

on methods and applications." IEEE Signal Processing Magazine, Special 
Issue on BCI. 

Sitaram, R., H. Zhang, et al. (2007). "Temporal classification of multichannel near-
infrared spectroscopy signals of motor imagery for developing a brain-
computer interface." Neuroimage 34(4): 1416-27. 

Snitz, B. E., A. MacDonald, 3rd, et al. (2005). "Lateral and medial hypofrontality in 
first-episode schizophrenia: functional activity in a medication-naive state and 
effects of short-term atypical antipsychotic treatment." Am J Psychiatry 
162(12): 2322-9. 

Sprengelmeyer, R., A. W. Young, et al. (1996). "Loss of disgust. Perception of faces 
and emotions in Huntington's disease." Brain 119 ( Pt 5): 1647-65. 

Stein, M. B., A. N. Simmons, et al. (2007). "Increased amygdala and insula activation 
during emotion processing in anxiety-prone subjects." Am J Psychiatry 
164(2): 318-27. 

Suto, T., M. Fukuda, et al. (2004). "Multichannel near-infrared spectroscopy in 
depression and schizophrenia: cognitive brain activation study." Biol 
Psychiatry 55(5): 501-11. 

Thulborn, K. R., P. A. Carpenter, et al. (1999). "Plasticity of language-related brain 
function during recovery from stroke." Stroke 30(4): 749-54. 

Toronov, V., M. A. Franceschini, et al. (2000). "Near-infrared study of fluctuations in 
cerebral hemodynamics during rest and motor stimulation: temporal analysis 
and spatial mapping." Med Phys 27(4): 801-15. 

Tremblay, M., F. Tam, et al. (2005). "Retrospective coregistration of functional 
magnetic resonance imaging data using external monitoring." Magn Reson 
Med 53(1): 141-9. 

Triantafyllou, C., R. D. Hoge, et al. (2005). "Comparison of physiological noise at 1.5 
T, 3 T and 7 T and optimization of fMRI acquisition parameters." Neuroimage 
26(1): 243-50. 

Tzourio-Mazoyer, N., B. Landeau, et al. (2002). "Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation of the MNI 
MRI single-subject brain." Neuroimage 15(1): 273-89. 

van Gelderen, P., J. A. de Zwart, et al. (2007). "Real-time shimming to compensate 
for respiration-induced B0 fluctuations." Magn Reson Med 57(2): 362-8. 

Van Horn, J. D. and A. Ishai (2007). "Mapping the human brain: new insights from 
FMRI data sharing." Neuroinformatics 5(3): 146-53. 

Vapnik, V. N. (1998). Statistical Learning Theory. New York, Wiley. 
Veit, R., H. Flor, et al. (2002). "Brain circuits involved in emotional learning in 

antisocial behavior and social phobia in humans." Neurosci Lett. 328(3): 233-
6. 

Villringer, A. and B. Chance (1997). "Non-invasive optical spectroscopy and imaging 
of human brain function." Trends Neurosci 20(10): 435-42. 

Villringer, A. and H. Obrig (2002). Near Infrared Spectroscopy and Imaging, Elsevier 
Science (USA). 

Villringer, A. and H. Obrig (2002). Near Infrared Spectroscopy and Imaging. In: 
Brain Mapping: The Methods, Elsevier Science (USA). 

Wager, T. D., K. L. Phan, et al. (2003). "Valence, gender, and lateralization of 
functional brain anatomy in emotion: a meta-analysis of findings from 
neuroimaging." Neuroimage 19(3): 513-31. 



 

 108 

Ward, H. A., S. J. Riederer, et al. (2000). "Prospective multiaxial motion correction 
for fMRI." Magn Reson Med 43(3): 459-69. 

Weiskopf, N., C. Hutton, et al. (2006). "Optimal EPI parameters for reduction of 
susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T 
and 1.5 T." Neuroimage 33(2): 493-504. 

Weiskopf, N., C. Hutton, et al. (2007). "Optimized EPI for fMRI studies of the 
orbitofrontal cortex: compensation of susceptibility-induced gradients in the 
readout direction." Magma 20(1): 39-49. 

Weiskopf, N., U. Klose, et al. (2005). "Single-shot compensation of image distortions 
and BOLD contrast optimization using multi-echo EPI for real-time fMRI." 
Neuroimage. 24(4): 1068-79. Epub 2004 Dec 8. 

Weiskopf, N., K. Mathiak, et al. (2004). "Principles of a brain-computer interface 
(BCI) based on real-time functional magnetic resonance imaging (fMRI)." 
IEEE Trans Biomed Eng 51(6): 966-70. 

Weiskopf, N., F. Scharnowski, et al. (2004). "Self-regulation of local brain activity 
using real-time functional magnetic resonance imaging (fMRI)." J Physiol 
Paris 98(4-6): 357-73. 

Weiskopf, N., R. Sitaram, et al. (2007). "Real-time functional magnetic resonance 
imaging: methods and applications." Magn Reson Imaging. 

Weiskopf, N., R. Sitaram, et al. (2007). "Real-time functional magnetic resonance 
imaging: methods and applications." Magn Reson Imaging 25(6): 989-1003. 

Weiskopf, N., R. Veit, et al. (2003). "Physiological self-regulation of regional brain 
activity using real-time functional magnetic resonance imaging (fMRI): 
methodology and exemplary data." Neuroimage. 19(3): 577-86. 

Wieser, H. (1983). Electroclinical features of the psychomotor seizure. Stuttgart, 
Gustav Fisher. 

Wolf, M., U. Wolf, et al. (2002). "Functional frequency-domain near-infrared 
spectroscopy detects fast neuronal signal in the motor cortex." Neuroimage 
17(4): 1868-75. 

Wolf, M., U. Wolf, et al. (2003). "Detection of the fast neuronal signal on the motor 
cortex using functional frequency domain near infrared spectroscopy." Adv 
Exp Med Biol 510: 193-7. 

Wolf, M., U. Wolf, et al. (2003). "Fast cerebral functional signal in the 100-ms range 
detected in the visual cortex by frequency-domain near-infrared 
spectrophotometry." Psychophysiology 40(4): 521-8. 

Wolpaw, J. R. (2004). "Brain-computer interfaces (BCIs) for communication and 
control: a mini-review." Suppl Clin Neurophysiol 57: 607-13. 

Wolpaw, J. R., N. Birbaumer, et al. (2000). "Brain-computer interface technology: a 
review of the first international meeting." IEEE Trans Rehabil Eng. 8(2): 164-
73. 

Wolpaw, J. R., N. Birbaumer, et al. (2002). "Brain-computer interfaces for 
communication and control." Clin Neurophysiol 113(6): 767-91. 

Wolpaw, J. R., N. Birbaumer, et al. (2002). "Brain-computer interfaces for 
communication and control." Clin Neurophysiol. 113(6): 767-91. 

Wolpaw, J. R., G. E. Loeb, et al. (2006). "BCI Meeting 2005--workshop on signals 
and recording methods." IEEE Trans Neural Syst Rehabil Eng 14(2): 138-41. 

Woolsey, T. A., C. M. Rovainen, et al. (1996). "Neuronal units linked to 
microvascular modules in cerebral cortex: response elements for imaging the 
brain." Cereb Cortex 6(5): 647-60. 

Wright, P., G. He, et al. (2004). "Disgust and the insula: fMRI responses to pictures of 



 

 109 

mutilation and contamination." Neuroreport 15(15): 2347-51. 
Yoo, S. S., T. Fairneny, et al. (2004). "Brain-computer interface using fMRI: spatial 

navigation by thoughts." Neuroreport. 15(10): 1591-5. 
Yoo, S. S. and F. A. Jolesz (2002). "Functional MRI for neurofeedback: feasibility 

study on a hand motor task." Neuroreport. 13(11): 1377-81. 
Young, S. J., P. C. Woodland, et al. (1993). HTK Version 1.5: User, Reference and 

Programmer Manual. Washington DC, Entropic Research Laboratories. 
Zheng, D., A. S. LaMantia, et al. (1991). "Specialized vascularization of the primate 

visual cortex." J Neurosci 11(8): 2622-9. 
 
 


