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ABSTRACT 
Dendritic cells (DCs) are antigen-presenting cells involved in the initiation of both innate and 

adaptive immunity and are thus critically important for the regulation of the immune response 

to pathogens. Furthermore, they also prevent potentially damaging immune responses being 

directed against the multitude of harmless antigens, to which the body is exposed daily. This 

role is particularly important in the intestine, where the local immune responses require a tight 

control, the outcome of which is in the most cases the induction of tolerance. Tolerant 

immunity connected to DCs can include down-regulation of their maturation, enhanced 

production of anti-inflamatory cytokines and/or driving cells into apoptosis. In addition, local 

T cell immunity is an important compartment of the specific intestinal immune system. DCs 

have the unique ability to activate naïve T cells. They can determine whether non-

responsiveness (tolerance) or an active immune response occurs, whether a type 1 or type 2 

response predominates. In the intestine, therefore, DCs are required to perform their dual roles 

very efficiently to protect the body from the dual threats of invading pathogens and unwanted 

inflammatory reactions.  

In the present study it was shown that nutrients, such as thymoquinone, Gum Arabic (GA), 

zinc (Zn2+), xanthohumol or thymol acted on different aspects of DC functions. Nutrients can 

stimulate (GA, Zn2+) or decrese (thymoquinone, thymol, xanthohumol) expression of 

maturation markers and/or cytokine production, influence DC phagocytotic capacity (GA), 

lead to activation of mitogen-activated protein kinases (MAPK, GA). 

Many of the nutrients studied turned out to be strong inducers of DC apoptosis. To determine 

the signalling pathways involved, DCs from both wild type and gene targeted mice lacking 

functional acidic sphingomyelinase (ASM-/-) were exposed to nutrients and different apoptosis 

markers assessed. Nutrient (Zn2+, xanthohumol, thymol)-induced apoptosis was triggered by 

acid sphingomyelinase activation, leading to ceramide formation and subsequent caspase 

activation, DNA fragmentation and cell membrane scrambling. In addition, regulation of Bcl-

2 family members is known to follow ceramide formation, and thus the involvement of Bcl-2 

proteins was tested in nutrient-treated DCs. Several nutrients (Zn2+, thymol) were shown to 

induce down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-xL. The nutrient-triggered 

cell suicidal death was virtually absent in DCs from ASM-/- mice. In DCs from both genotypes 

exogenously added C2-ceramide resulted in the induction of cell death, indicating that ceramide 

production could be a critical step in nutrient-induced DC death.  
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ZUSAMMENFASSUNG 
Dendritische Zellen (DZ) sind Antigen-präsentierende Zellen welche an der Aktivierung 
angeborener sowie adaptiver Immunität beteiligt sind und deshalb für die Steuerung der 
Immunantwort in Hinblick auf Pathogene äußerst wichtig sind. Darüber hinaus verhindern sie 
potentiell schädliche Immunantworten gegen eine Vielzahl von unbedenklichen Antigenen 
denen der Körper täglich ausgesetzt ist. Diese Aufgabe ist insbesondere im Darm wichtig, wo 
lokale Immunantworten eine strenge Kontrolle benötigen und in den meisten Fällen zu 
Induktion von Toleranz führen. Mit DZ verbundene Immuntoleranz kann eine 
Herunterregelung ihrer Reifung, eine verstärkte Produktion von anti-inflammatorischen 
Cytokinen und/oder eine Einleitung der Apoptose in den Zellen beinhalten. Darüber hinaus ist 
die lokale T-Zell-Immunität ein wichtiger Teil des spezifischen intestinalen Immunsystems. 
DZ haben die einzigartige Eigenschaft naive T-Zellen zu aktivieren. Sie bestimmen ob eine 
nicht-responsive (Toleranz) bzw. aktive Immunantwort eintritt bzw. eine Typ 1 oder Typ 2 
Antwort vorherrscht. Wegen ihrer dualen Rolle werden DZ im Darm benötigt, wo sie den 
Körper von der zweifachen Bedrohung durch eindringende Pathogene, sowie vor 
unerwünschten Entzündungsreaktionen schützen.  
In der vorliegenden Studie wurde gezeigt, dass Nährstoffe wie Thymoquinon, 
Gummiarabicum (GA), Zink (Zn2+), Xanthohumol bzw. Thymol auf verschiedene Aspekte der 
DC-Funktionen wirken. Nährstoffe können die Expression von Differenzierungsmerkmal sowie 
die Produktion von Zytokinen stimulieren (GA, Zn2+) bzw. vermindern (Thymoquinon, Thymol, 
Xanthohumol), das phagozytische Leistungsvermögen (GA) beeinflussen, sowie zur Aktivierung 
von mitogen-aktivierbaren Proteinkinasen (MAPK, GA) führen.  
Wie sich herausstellte, sind viele Nährstoffe starke Auslöser von Apoptose in DZ. Um die 
beteiligten Signalwege zu bestimmen wurden DZ von Wildtyp- bzw. von genmanipulierten 
Mäusen, welchen eine funktionelle saure (acid) Sphingomyelinase (ASM-/-) fehlt, verschiedenen 
Nährstoffen ausgesetzt und verschiedene Apoptosemarker bestimmt. Eine Nährstoff 
(Thymoquinon, Zn2+, Xanthohumol, Thymol)-induzierte Apoptose wurde durch Aktivierung 
der sauren Spingomyelase ausgelöst, was zur Bildung von Ceramid und in weitere Folge zu 
einer anschließenden Caspaseaktivierung, DNA-Fragmentierung und zur Ummodilierung der 
Zellmembran führt. Des Weiteren ist bekannt, dass die Regulation von Mitgliedern der Bcl-2 
Familie mit der Ceramidbildung einhergeht, weshalb die Beteiligung von Bcl-2 Proteinen in 
Nährstoff-behandelten DZ getestet wurde. Einige Nährstoffe (Zn2+, thymol) zeigten eine 
Verminderung der antiapoptotischen Proteine Bcl-2 und Bcl-xL. Ein durch Nährstoffe 
ausgelöster zellulärer Zelltod war in DZ von ASM-/- Mäusen nahezu nicht nachweisbar. In DZ 
beider Genotypen führte eine exogene Zugabe von C2-Ceramid zur Induktion des Zelltods, 
was darauf hinweist, dass die Ceramidproduktion ein kritischer Schritt im Nährstoff-
induzierten DZ-Zelltod darstellen könnte. 
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1. INTRODUCTION 

1.1. Adaptive immune system and innate immunity 

Immune systems in vertebrates are divided into two basic categories: innate and adaptive 

immunity.  

1.1.1. Innate immune system 
The innate immune system comprises white blood cells which are known as leukocytes and 

mechanisms that defend the host from infection by other organisms, in a non-specific manner. 

This means that the cells of the innate system recognize and respond to pathogens in a generic 

way. Innate immune system provides immediate defense against infection, and is found in all 

classes of plant and animal life (Rasmussen et al 2009).  

 

The major functions of the vertebrate innate immune system include (Janeway, Jr. 2001; 

Kumar et al 2009; Mogensen 2009): 

• Recruiting immune cells to sites of infection and inflammation, through the production 

of chemical factors, including specialized chemical mediators, called cytokines. 

• Activation of the complement cascade to identify bacteria, activate cells and to 

promote clearance of dead cells or antibody complexes. 

• The identification and removal of foreign substances present in organs, tissues, the 

blood and lymph, by specialized white blood cells. 

• Activation of the adaptive immune system through a process known as antigen 

presentation. 

 

The innate leukocytes include:  

• Natural killer cells (NK), Natural killer T cells (NK T) and T cell receptor γδ (TCR-

γδ) lymphocytes constitute particular populations of lymphocytes which play 

important roles in innate immunity and share similar functions upon activation, such 

as expansion, secretion of soluble factors (cytokines, chemokines) and cytolytic 

activity (Hamerman et al 2005; Lauwerys et al 2000; Vivier 2006). 

• Mast cells: are resident cells of several types of tissues which contain many granules 

rich in histamine and heparin. Although best known for their role in allergy and 

anaphylaxis, mast cells play an important protective role as well, being intimately 
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involved in wound healing and defense against pathogens (Galli et al 2008; Heib et al 

2008). 

• Eosinophils: are one of the immune system components responsible for combating 

infection and parasites in vertebrates. Along with mast cells, they also control 

mechanisms associated with allergy and asthma. They are granulocytes that develop 

during haematopoiesis in the bone marrow before migrating into blood (Blanchard and 

Rothenberg 2009; Trivedi and Lloyd 2007). 

• Basophils: contain large cytoplasmic granules, have many similar characteristics as 

mast cells such as: both cell types store histamine. Like all circulating granulocytes, 

basophils can be recruited out of the blood into a tissue when needed (Schwartz 2002). 

• The phagocytic cells including macrophages, neutrophils and dendritic cells: function 

within the immune system by identifying and eliminating pathogens that might cause 

infection (Aderem and Underhill 1999). 

 

1.1.2. Adaptive immune system 

The adaptive immune system is composed of highly specialized, systemic cells and processes 

that eliminate or prevent pathogenic challenges. The adaptive immune response provides the 

vertebrate immune system with the ability to recognize and remember specific pathogens (to 

generate immunity), and to mount stronger attacks each time the pathogen is encountered. It is 

called adaptive immunity because the body's immune system prepares itself for future 

challenges (Janeway, Jr. 2001). 

Lymphocytes (B and T) are the essential players in the adaptive immune response. The 

adaptive immune response takes longer to develop than the innate immune response. 

Specificity and memory are the distinguishing characteristics of the adaptive immune 

response. The adaptive immune system can provide a more effective protection against 

pathogens through their ability to recognize and remember an impressive number of antigens. 

Memory B and T cells provide the host with the ability to mount much more effective 

immune responses against secondary infections. Lymphocytes have specific antigen receptors 

(BCR on B cells and TCR on T cells) created by genetic rearrangements of variable areas 

during lymphocyte ontogeny. Thus, each naive lymphocyte has an antigen receptor with a 

unique specificity. They build a repertoire of polyclonal lymphocytes able to respond to a 

multitude of antigens. B cells contribute to the immune response by secreting antibodies 
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(humoral immunity), whereas T cells act primarily in cell-mediated immunity. T cells can be 

subdivided into T helper cells (CD4+, T cells expressing CD4 are known as CD4+ T cells) and 

T cytotoxic cells (CD8+, T cells expressing CD8 are CD8+ T cells ) (Dent and Kaplan 2008; 

Konig et al 2002).  

 

 

Figure A: Antigen presentation stimulates T cells to become either "cytotoxic" CD8+ 

cells or "helper" CD4+ cells. 

 

B cells recognize their antigens via their BCR. T cells cannot recognize the antigen without 

some assistance. The antigenic determinant must be presented by an appropriate major 

histocompatibility complex (MHC) molecule. Thus, they recognize their antigens through 

their TCR in the form of an MHC/ peptide complex. CD8+ T cells “see” their antigens in the 

form of a peptide/MHC class I complex, whereas CD4+ T cells recognize their antigens as a 

peptide/MHC class II complex. MHC class I molecules are expressed at the surface of all 

nucleated cells, whereas MHC class II molecules are expressed only by professional antigen-

presenting cells (APCs), such as dendritic cells (DCs) (Cruz, Jr. and Bergstresser 1990). 

It is important to note that the cells of the innate immune system are critical to the initiation of 

the adaptive immune response. Thus, APC activation is the first step in the induction of 

adaptive immunity. DCs generally absorb antigens from the environment, and once they are 

activated (mostly by microbial compounds), they mature and migrate to the adjacent 

lymphoid tissue. To be activated, T cells must not only recognize their specific antigen in the 

form of a peptide/MHC complex, they also need a costimulation signal that is provided by the 

activated APCs (Joffre et al 2009). 
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Once activated, naive T lymphocytes proliferate and differentiate into effector cells. CD8+ T 

cells become cytotoxic (CTL), at which point they can target infected cells. CD4+ T helper 

(Th) cells control the immune response by activating and regulating other cells such as 

macrophages and B cells (Williams et al 1991). 

 

1.2. Nature of DCs 

DCs are antigen-presenting cells that initiate and modulate the host immune responses by 

priming T cells (Steinman 271-96;Banchereau et al. 767-811) and controlling the activation of 

B cells (Banchereau and Steinman 245-52). DCs are responsible for: 1) induction of CD4+ T 

lymphocyte type 1 and type 2 subset differentiation (Alaniz et al. 3725-35;Maldonado-Lopez 

and Moser 275-82), 2) CD8+ T lymphocyte activation and enhancement of cytotoxic T 

lymphocyte activity (Smith et al. 1143-48) and 3) B lymphocyte maturation, Ig class-

switching and antibody production (Gerloni, Lo, and Zanetti 516-24;Macpherson, Kushnir, 

and Wykes 325-34). Their specialized capacities for acquiring, processing, retaining, and 

finally presenting peptides on major histocompatibility complex (MHC) molecules are critical 

properties that account in part for their superior role in antigen presentation (Trombetta and 

Mellman 975-1028). 

DCs are generated in the bone marrow and migrate as precursor cells to sites of potential 

entry of pathogens such as skin, respiratory tract, and lung, where they reside as immature 

cells in the epithelia of skin and mucosal tissues (Figure. 2). DCs issued from the bone 

marrow origin express myeloid markers CD13, CD33, and CD11c and have a common 

progenitor with monocytes/macrophages and granulocytes. They are involved in stimulating 

naïve T cells. In contrast, lymphoid DCs, which develop from thymic precursors participate in 

immune tolerance by eliminating auto-reactive T cells. 

Following antigen uptake (Figure. 2), immature DCs migrate to lymphoid organs via blood 

vessels. Immature DCs recognize pathogen-associated molecular patterns (PAMPs) of 

microbial products via pattern-recognition receptors (PRRs), including the families of Toll-

like receptor (TLR) and mannose-like receptors, and inflammatory compounds released by 

damaged tissues. Upon recognizing a pathogen, DC become mature, a phenotype manifested 

by their unique capacity to efficiently prime T cells by loss of endocytic and phagocytic 

receptors; increasing production of proinflammatory cytokines (IL-10, IL-6, IL-12, IL-4 and 

TNFα); increasing expression of co-stimulatory molecules (CD40, CD80, CD86, MHC class 
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II, and ICAM-1) (Lane and Brocker 308-13) and acquisition of the responsiveness to 

homeostatic chemokines, including CCL19 and CCL21 via upregulation of CCR7.  

Subsequently, DCs enter the draining lymph nodes in the T-cell-rich zone, present the 

processed antigens to T lymphocytes in an MHC-restricted fashion (Banchereau and Steinman 

245-52;Steinman 271-96) to induce their activation and differentiation into effector cells. 

After antigen presentation, mature DCs are programmed to undergo apoptosis. Some 

immature DCs can migrate directly into thymus and lymphoid tissues, where they participate 

actively in the T cell education/selection and the elimination of auto-reactive T cells, 

respectively. Activated T cells eliminate microbes, and B lymphocytes mature into plasma 

cells secreting antibody that neutralizes pathogens (Harizi and Gualde 2005).  

 

 

Figure B : DC biology: differentiation, migration, antigen presentation, and tolerance. 

(Harizi and Gualde 2005) 
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1.3. Interaction of DCs with NK, B and T cells 

DCs are now known to influence many different classes of lymphocytes (B, NK, NKT) and 

many types of T cell responses (Th1/Th2, regulatory T cells, peripheral T cell deletion) (Lutz 

and Schuler 2002).  

DCs activate naïve Th cells by: 1) the antigen-specific recognition of peptides in the context 

of MHC molecules on the DC by TCR; 2) co-stimulatory molecules CD80 and CD86 which 

bind to CD28 on the T cell (Linsley et al 1990) and direct T-cell differentiation into various 

subsets such as Th1 and Th2 by secreting polarizing cytokines which bind to their receptors 

on the T cell (Scott 1993). A given Th-cell subset is characterized by its cytokine-secretion 

profile which is intimately associated to the effector functions. Th1 cells mediate cellular 

immunity against intracellular bacteria and viruses by secreting cytokines such as IFN-γ and 

tumour necrosis factor-α (TNF-α), Th2 cells regulate humoral immunity and immunity 

against extracellular parasites by producing IL-4, IL-5 and IL-13 (Corthay 2006). 

 
Figure C: Schematic representation of DC-innate lymphocyte cross-talk in the activation 

of the immune response (Reschner et al 2008b) 
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The cross-talk between innate cells and DCs which leads to innate lymphocyte activation and 

DC maturation was found to be multi-directional, involving not only cell–cell contacts but 

also soluble factors. The final outcome of these cellular interactions may have a dramatic 

impact on the quality and strength of the down-stream immune responses. In addition to their 

role in induction of adaptive immune responses, DCs also activate natural killer (NK) cells 

(Fernandez et al 1999) and can produce large amounts of interferon upon encounter with viral 

pathogens (Kadowaki et al 2000), thus, providing a link between the adaptive and innate 

immune system. More recently, DC activating ability was extended to other cell types such as 

NK T or TCR-γδ cells (Takahashi et al 2002). Moreover, certain DC subsets share common 

developmental pathways with NK cells, suggesting that these cells could influence each other 

during differentiation (Marquez et al 1998). 

1.4. Tolerance immunity and Th1/Th2 balance drived by DCs 
Besides the essential immunostimulatory function of DCs, consolidated findings from the DC 

research field in the last 10 years have shown that DCs have an additional important function. 

They act as pivotal players in the peripheral tolerance network by active induction of T cells 

with immunosuppressive functions and regulation of T effector cell activity (Steinman et al 

1997). DCs can determine whether non-responsiveness (tolerance) or an active immune 

response occurs, whether a type 1 or type 2 response predominates, and they may control 

tissue specific homing of antigen specific effector cells. Non-responsiveness is not confined to 

self antigens but can also be induced to foreign antigens if they are delivered in a way that 

avoids activation of DCs (Hawiger et al 2001a).  

Data are now accumulating that mature DCs are potent APCs, but immature DCs have a 

crucial role in the maintenance of peripheral tolerance to self-antigens (Steinman and 

Nussenzweig 2002c), inducing regulatory T cells in vitro (Sallusto and Lanzavecchia 1999) 

and in vivo (Dhodapkar et al 2001), so that DCs are important mediators of peripheral 

immune tolerance and maintenance of immune homeostasis (Gad et al 2003).  

Regulatory T cells (Treg) are involved in the control of peripheral tolerance (Shevach et al 

2001) and the prevention of vigorous inflammatory reactions. Although the exact mechanisms 

by which Treg exert their suppressive functions are not yet elucidated, two major Treg 

subsets: a natural population that suppresses through cell-to-cell contact, and an induced 

population that secretes suppressive cytokines (e.g IL-10) have been demonstrated to play a 

role.  



 

8 
 

Interesingly, treatment of immature DCs with IL-10 in vitro induces an immunoregulatory 

phenotype that results in inhibition of CD4+ and CD8+ T lymphocyte reactivity in an antigen-

specific manner (Steinbrink et al 1997; Yang and Lattime 2003b). Among CD4+ T 

lymphocytes, both Th1 and Th2 responses can be inhibited by IL-10 treated DCs (Haase et al 

2002b). Similarly, IL-10 treated DCs mediate tolerance within CD8+ cytotoxic T 

lymphocytes. Moreover, IL-10 pretreatment effectively inhibits maturation of immature DCs. 

Upon lipopolysaccharide (LPS) stimulation, human and murine IL-10 treated DCs fail to 1) 

secrete proinflammatory cytokines including IL-1β , IL-6, IL-12p70, and TNF-α, 2) 

upregulate expression of costimulatory molecules such as CD40, CD80 and CD86 and 3) 

induce T-lymphocyte proliferation in allogeneic mixed lymphocyte reactions (Haase et al 

2002a; Yang and Lattime 2003a).  

1.5. Toll-like receptors (TLRs) 

TLRs are a class of proteins that play a key role in the innate immune system. They are single 

membrane-spanning non-catalytic receptors that recognize structurally conserved molecules 

derived from microbes. Once these microbes have reached physical barriers such as the skin 

or intestinal tract mucosa, they are recognized by TLRs which activates immune cell 

responses (Iwasaki and Medzhitov 2004). 

To date, 10 members of Toll-like receptors (TLRs) have been identified in human, and 13 in 

mice, and a series of genetic studies have revealed their respective ligands (Fig. 4) (Takeda 

and Akira 2005a). For example, LPS of Gram-negative bacteria is recognized by TLR4. 

TLR2, in concert with TLR1 or TLR6, recognizes various bacterial components, including 

peptidoglycan, lipopeptide and lipoprotein of Gram-positive bacteria and mycoplasma 

lipopeptide. In particular, TLR1/2 and TLR2/6 discriminate triacyl lipopeptide and diacyl 

lipopeptide, respectively. TLR3 recognizes double-stranded RNA (dsRNA) that is produced 

from many viruses during replication. TLR5 recognizes bacterial flagellin. Mouse TLR11 

recognizes yet unknown components of uropathogenic bacteria and a profilin-like molecule of 

the protozoan parasite Toxoplasma gondii. TLR7 recognizes synthetic imidazoquinoline-like 

molecules, guanosine analogs such as loxoribine, single-stranded RNA (ssRNA) derived from 

human immunodeficiency virus type I (HIV-1), vesicular stomatitis virus (VSV) and 

influenza virus, and certain siRNAs. While mouse TLR8, which shows the highest homology 

to TLR7, is thought to be nonfunctional, human TLR8 mediates the recognition of 

imidazoquinolines and ssRNA. TLR9 recognizes bacterial and viral CpG DNA motifs and 
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malaria pigment hemozoin (Iwasaki and Medzhitov 2004) (Coban et al 2005; Hemmi et al 

2000; Krug et al 2004).  

After recognition of microbial pathogens, TLRs trigger intracellular signaling pathways that 

result in the induction of inflammatory cytokines, type I interferon (IFN) and chemokines 

(Figure 4). Moreover, signaling from TLRs induces DC maturation with the upregulation of 

costimulatory molecules. Importantly, TLRs activate a common signaling pathway that 

culminates in the induction of inflammatory cytokines such as tumor necrosis factor (TNFα), 

IL-6, IL-1β and IL-12, as well as alternative pathways that induce appropriate effector 

responses against different types of pathogens (Akira and Takeda 2004). 

 

Figure D: TLR-mediated immune responses (Takeda and Akira 2005b) 

 

1.6. Subsets of conventional mouse DCs 
One aspect of DC biology that is rapidly evolving is the apparent diversity of DC subsets 

(Steinman 2007). DCs represent a multi-functional population of cells (Table 1) (Reschner et 

al 2008a). Conventional DC subsets described in mice include myeloid DCs (mDCs): CD11c+ 

CD8a-CD11b+and plasmacytoid DCs (pDCs): CD11cloB220+Ly6C-CD11b- (Colonna et al 

2004; Shortman and Naik 2007a). 

Part of these different DC subsets may also be explained by differences in the maturation 

stage of DCs and the local cytokine environment. The geographical localization of the DC 

subsets in secondary lymphoid tissues is distinct, myeloid derived DCs mainly migrate to or 
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reside in the marginal zone (a primary entry point for blood-born antigens), whereas the 

lymphoid DCs mainly reside in the T-cell areas. This supports distinct functions for the DC 

subsets, as shown in murine studies (Banchereau and Steinman 1998b; Liu 2001a). It is now 

well appreciated that the DC subset, its maturation state and the microenvironment or type of 

pathogen a DC encounters in the periphery, determine the type of immune response that is 

induced, ranging from a Th1 or Th2 response to immune tolerance (Liu 2001b). 

In mice, a small population of mDCs can express CD8 (Shortman and Naik 2007b). These 

CD8α+ DCs display immuno-regulatory or tolerogenic induction ability (Hawiger et al 

2001b; Kronin et al 1996b), but also exhibit the strongest ability to induce a Th1 response 

(Kronin et al 1996a; Maldonado-Lopez et al 1999) by secreting high amounts of the Th1 

polarising cytokine IL-12, in contrast to CD8- DC (den Haan et al 2000).  

 

Table 1: Populations of DCs in mice and humans. 

DC subsets 
Tissue 
distribution Species Immature phenotype 

Mature 
phenotype 

Bone marrow 
derived DC 

Dermis, airways, 
intestine, thymus, 
spleen, liver, 
lymphoid tissue 

Mouse CD11c+CD8α- CD11b+MHC-
II+ TLR-1–3+/−TLR-2,4–9+ 

CD83+ CCR7+ 
CD80++ 
CD86++ MHC-
II++ 

Human CD1a+ CD14-

CD11c++CD11b++ CD1c+

CD209+ MHC-II+ TLR-1, 
6+,3,8++ 

CD40+ 

Plasmacytoid 
DC 

Lymphoid organs, 
liver, lung, skin 

Mouse CD11c+/−B220+Ly-6C+CD11b- 
PDCA+ MHC-II+ TLR-2–9+ 

 

Human CD14-CD11c-CD123++ 
BDCA2+ ILT7+ MHC-II+

TLR-7,9++ 

 

CD8α+DC Thymus, spleen, 
lymph node, liver 

Mouse CD8α+CD4-CD11c++ CD11b 
CD205++-TLR-2–4,6,8,9+ 

 

Human Not identified  

Langerhans 
cells 

Mucosal epithelia, 
epidermis 

Mouse CD8α- CD11c+ CD205++ E-
cadherin+CD207+ 

E-cadherin +/− 

Human CD14+/−CD11c+CD1a+ E-
cadherin+CD207+CCR6+ 

 

DC, dendritic cells. +/−, low; ++, high. 
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1.7. Migration and Phagocytosis 

DCs have been shown to phagocytose a variety of materials, including microorganisms and 
latex beads (Reis e Sousa et al 1993a). The ability of DCs to phagocytose and process antigen 
is highly dependent upon the stage of DC differentiation (Reis e Sousa et al 1993b). Immature 
cells residing in the tissue are highly phagocytic and are less efficient at stimulating T 
lymphocytes via both receptor- and non-receptor-mediated mechanisms. DCs degrade 
antigens in endocytic vesicles to produce antigenic peptides capable of binding MHC. In 
response to danger signals, i.e. tissue damage, pathogen-derived products, or inflammatory 
products produced by neighboring tissue cells, DCs cease their endocytic activity (Sallusto et 
al 1995), increase their expression of MHC class II molecules (Cella et al 1997), and produce 
high levels of chemokines (Sallusto et al 1999). These considerable changes, collectively 
called maturation, occur while DCs migrate to lymphoid organs where they interact with B 
cells and antigen-specific CD4 T cells to initiate immune responses (Wallet et al 2005). 

DCs are highly mobile cells. After antigen capture, DCs migrate to T cell region of draining 
lymph nodes. DC migration is crucial for the initiation of immune responses and the link of 
innate immunity to adaptive responses. Microbes and pathogens affect DC migration, 
recruitment to tissues and their differentiation. Chemokines and chemokine receptors 
including CCL19 and CCL21 regulate DC trafficking and are under the control of cytokines 
produced by APCs and neighboring tissue cells (Randolph et al 2008). 
 

1.8. The mucosal immune system 
Most of our encounters with antigens or infectious agents occur at mucosal surfaces, which 
include the surface lining the gastrointestinal, respiratory and genitourinary tracts (Delves and 
Roitt 2000). Since nutrients are usually absorbed orally, they are thus ideally suited to 
influence the immune response at the “mucosal frontier” of the gastrointestinal tract, 
representing more than 300 m2. Well known for its nutrition function (digestion of food and 
the assimilation of the nutrients), the intestinal system is also able to protect us from the 
pathogenic microbes. It contains more than 100 million neurons, secretes at least 20 
neurotransmitters identical to those produced by the brain (serotonin, noradrenalin, dopamine, 
etc.), produces 70 to 85 % of the immune cells of the organism, lodges 100 000 billion 
bacteria. All these compounds, present locally, are in relationship to the whole of the 
organism (Delcenserie et al 2008). 
Although the immune response of the intestinal mucosa exhibits several features in common 
with the immune responses produced by other organs, it is characterized by certain distinctive 
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properties. The immune properties of the digestive mucosa are provided by the GALT (Gut-
associated lymphoid tissue). The GALT is composed of lymphoid aggregates, including the 
Peyer’s patches (located mainly in the small intestinal distal ileum), where induction of 
immune responses occurs, and mesenteric lymphoid nodes. In addition, there are large 
amounts of immune-competent cells in the lamina propria and the mucosal epithelium 
(Delcenserie et al 2008). 
The intestine also protects us from pathogens because its epithelium is covered by mucus and 
avoids any direct contact with the microorganisms.The intestinal immune system must 
encounter all antigens in order to determine which ones require an immune response and 
which ones can be safely tolerated (Delcenserie et al 2008). 
The intestinal immune system is the subject of complex regulation processes allowing the 
elimination of pathogenic microorganisms, while maintaining a tolerance towards food 
antigens and endogenous flora. Butyrate as well as other products resulting from colic 
fermentation, could take part in this regulation (Marteau et al 2004). 

1.9. Mucosal dendritic cells 
Mucosal DCs are assumed to play key roles in regulating immune responses in the antigen-
rich gastrointestinal environment. It has been shown that DCs, using their dendrites, act as 
guard cells in the intestinal lumen without disturbing the integrity of their tight surface 
junctions (Niess 2008). Mucosal DCs are a heterogeneous population that can either initiate 
(innate and adaptive) immune responses, or control intestinal inflammation and maintain 
tolerance (Nagler-Anderson 2001; Steinman and Nussenzweig 2002b). 
The intestinal innate and adaptive immune system has evolved in response to potent stimuli 
derived from constituents of the commensal microflora. In most cases these local immune 
responses achieve tolerance to the intestinal microflora and food antigens. Tolerance to 
intestinal self antigens, oral antigens and the commensal flora is achieved by interactions of 
DCs with regulatory and effector T cells. Local T cell immunity is an important compartment 
of the specific intestinal immune system. T cell reactivity is programmed during the initial 
stage of its activation by DCs (Medzhitov and Janeway, Jr. 1999). 
DCs reside in mucosal tissues or recirculate in the blood and lymphoid tissues (Iwasaki 2007). 
The lamina propria of the small and large intestine are effector sites of mucosal tissues. The 
local microenvironment influences the phenotype of DCs, and are characterized by a 
remarkable plasticity between DCs (Kelsall and Rescigno 2004). In the lamina propria of the 
small and large intestine, DCs are ideally situated to survey the constituents of the commensal 
microflora and monitor food antigens (Bjorck 2001). 
Defects in this regulation are supposed to lead to the several forms of inflammatory disease 
such as: Crohn's disease (CD) and ulcerative colitis (UC) (MacDonald and Monteleone 2005) 
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and hemorrhagic rectocolitis (HRC), a deregulation of the intestinal immune system would 
lead to an inadequate response against one or more endoluminal antigens. An imbalance 
between Th1 (IL-2, IFNγ, T N F α ) and Th2 responses (IL-4, IL-5, IL-10) was described in 
human and also in animal models (Zeitz et al 1990). This led to a chronic inflammatory 
answer characterized by the production of pro-inflammatory cytokines (IL-1, IL-6, TNFα). 
Thus, the cytokine profile plays an important role in the maintenance of intestinal immune 
homeostasis (Niess 2008). 

 

1.10. Cell death 
The mammalian immune system discriminates between modes of cell death: necrosis often 
results in inflammation and adaptive immunity, whereas apoptosis tends to be anti-
inflammatory and promote immune tolerance (Matsue and Takashima 1999). 
Apoptosis is characterized by plasma-membrane shrinkage, nuclear condensation, and 
nucleosomal DNA fragmentation (Matsue and Takashima 1999; Packham et al 1996). 

There are two canonical apoptosis pathways: intrinsic and extrinsic (Reuter et al 2008). 

1.10.1. Intrinsic apoptosis pathway 
It requires mitochondrial-specific signaling. Mitochondria initiate apoptosis through 
mitochondrial outer membrane permeabilization and the release of apoptogenic factors (e.g 
cytochrome c, AIF- apoptosis inducing factor) from the mitochondrial intermembrane space, 
leading to cell death through caspase-dependent and –independent pathways (Green and Reed 
1998a; Mohamad et al 2005). 
Caspases are known to mediate some of the apoptotic features, such as DNA fragmentation, 
chromatin condensation, membrane blebbing, cell shrinkage, and formation of membrane-
enclosed vesicles (apoptotic bodies). Signaling cascades can also affect the inner 
mitochondrial membrane permeability in apoptosis and necrosis. As a consequence, cells also 
exhibit a loss of electrical potential across the inner membrane which is quantifiable by means 
of potentiometric dyes (Marchetti et al 1996).  
Apoptosis is also regulated by caspase-independent mechanisms. For example, apoptosis has 
been induced by disrupting the mitochondrial function in the absence of caspase activities in 
nucleated cells (Green and Reed 1998b). Mitochondrial dysfunction, characterized by marked 
reduction in mitochondrial membrane potential (Δψm), is an early step of ongoing DC death 
that can be triggered by many cytotoxic stimuli (McLellan et al 2000; Nencioni et al 2006b; 
Vassiliou et al 2004a).  The participation of mitochondria in the regulation and amplification 
of the apoptotic cascade is regulated by proteins of the Bcl-2 family. Compelling evidence 
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indicates that mitochondria-related proteins of the Bcl-2 family are crucial DC death sensors 
(Nencioni et al 2006a; Nicolo et al 2001; Vassiliou et al 2004b), substantiating the importance 
of mitochondria in DC apoptosis.  
 

1.10.2. Extrinsic apoptosis pathway 
It is mediated by death receptors, such as the receptors for Fas and tumor necrosis factor 
(TNF)- related apoptosis-inducing ligand (TRAIL), and caspase-8, i.e. the major initiator 
caspase in this pathway. Several death receptors, including Fas, are expressed in DCs. 
However, DCs are known to be resistant to Fas-induced cell death through the constitutive 
expression of FLICE–like inhibitory protein (FLIP), a strong inhibitor of apoptosis initiated 
by death receptors (Willems et al 2000) 
 

1.10.3. Sphingomyelinase pathway 

 

Figure E: Signalling through sphingomyelinase pathway 
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The sphingomyelin pathway is a signal transduction system initiated by hydrolysis of plasma 

membrane phospholipid sphingomyelin to ceramide via a sphingomyelinase. 

Sphingophospholipid sphingomyelin (SM) is distributed almost throughout all subcellular 

membranes, although it is concentrated in the outer leaflet of the plasma membrane (Koval 

and Pagano 1991) and provides a barrier to the extracellular environment (Kolesnick 1991). 

Sphingomyelin degradation is catalyzed by sphingomyelinase (SMase) to phosphocholine and 

ceramide (N-acylsphingosine) upon cell stimulation (Pettus et al 2002). 

Two major SMases enzymes are known to induce ceramide formation: neutral SMase 

(NSMase) and acid SMase (ASMase). They are rapidly activated by diverse stress stimuli and 

promote an increase in cellular ceramide levels over a period of minutes to hours (Levade and 

Jaffrezou 1999). NSmase (pH optimum 7.4) was logically suggested to function at the plasma 

membrane (Dressler et al 1991; Haimovitz-Friedman et al 1994) and ASMase was originally 

considered to be a strictly lysosomal enzyme because of its pH optimum at 4.5–5.0 (Schutze 

et al 1992). 

1.10.4. Regulation of apoptosis by ceramide 
Ceramide, a product of sphingolipid metabolism, is a second messenger involved in 

regulating numerous cellular functions, including proliferation, differentiation, apoptosis, and 

cytokine release (Ballou et al 1996; Hannun and Obeid 1995). Ceramide is generated in 

response to various stress stimuli like death receptors (such as CD95, DR5, or TNF) 

triggering. Second, nonreceptor stimuli mediating cell death, such as irradiation, heat shock, 

cytotoxic drugs, H2O2, toxins, UV light, bacteria, and viruses can lead to ceramide formation. 

Finally, third, ceramide can be formed when the cell death is induced upon growth factor 

deprivation or the disruption of the cell's contact with its matrix (Carpinteiro et al 2008b; 

Grassme et al 2008a; Jana et al 2009b; Lang et al 2008b; Perrotta et al 2008a; Smith and 

Schuchman 2008a). 

Ceramide may also be converted back to SM by transfer of phosphorylcholine from 

phosphatidylcholine to ceramide via SM synthase (Hannun et al 2001). 

 

1.10.5. The Bcl-2 family: inhibitors and promoters of apoptosis 
The fate of a cell following an apoptotic stimulus may be determined by the balance of 

expression of various Bcl-2 family members, i.e., the pro- vs. the antiapoptotic members, and 

the degree of caspase activation attainable (Korsmeyer 1995). The expression of various Bcl-2 

members is regulated in a cell type- and stimulus-dependent manner. Survival signals up-

regulate the expression of Bcl-2 or Bcl-x whereas death signals downregulate their expression 
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and may concomitantly up-regulate Bax, Bad or other proapoptotic members (Chen et al 

1995). In mammalian systems, Bcl-2 and Bcl-xL are the main members of this family that 

inhibit apoptosis. These proteins are located predominantly at the outer mitochondrial 

membrane, endoplasmic reticulum, and nuclear membrane (Szegezdi et al 2009). 

The function of some Bcl-2 family members is also regulated at the post-translational level. 

Bcl-2 can be phosphorylated on serine residues which may either enhance or inhibit its 

antiapoptotic function (Haldar et al 1994; Haldar et al 1995). Bad, a proapoptotic member, is 

inactivated by phosphorylation in response to survival signals (Zha et al 1996). In the 

dephosphorylated state, Bad preferentially binds to and inhibits Bcl-2 function, thus 

promoting apoptosis (Murphy et al 2005). 

The interactions between the antiapoptotic members, e.g., Bcl-2 and Bcl-xL, with the 

proapoptotic members, e.g., Bax, Bak, and Bad have been demonstrated to be critical in 

determining the fate of the cell (Sedlak et al 1995; Yang et al 1995). 

Additionally, Bcl-2 was recently shown to be cleaved by caspase-3 in its loop domain to yield 

a fragment that is functionally and structurally similar to Bax and which further promotes the 

apoptotic cascade (Cheng et al 1997). 

 

1.10.6. Caspase activity 
Caspases, a unique family of cysteine-dependent aspartate specific proteases, play a pivotal 

role in cell death. The mammalian genome encodes fourteen distinct caspases, seven of which 

were shown to function in apoptosis (Chowdhury et al 2008). 

Initiator caspases are activated through dimerization facilitated at multi-protein complexes. 

Activation of caspase-9, the initiator caspase of the intrinsic pathway, while the apical caspase 

of the extrinsic apoptotic pathway caspase-8 is activated within the death-inducing signaling 

complex (DISC) (Ashkenazi and Dixit 1998; Boatright and Salvesen 2003b). On the other 

hand, activation of effector caspases, such as caspase-3 and -7 occurs upon their cleavage at 

specific internal aspartic acid residues by initiator caspases (Boatright and Salvesen 2003a). 

Downstream of this activational cascade, caspases cleave a variety of regulatory and structural 

proteins and important enzymes, ultimately leading to cell death (Gradzka 2006; Pop and 

Salvesen 2009).  

 

1.11. Nutrients 
The immune system acts to ensure tolerance to ‘self’, to food and other environmental 

components, and to commensal bacteria. The development of tolerance is the result of active 
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immune mechanisms requiring antigen-contact and acting in a T cell-dependent fashion (Faria 

and Weiner 2005; Powell 2006; Taylor et al 2006). Nutrition may be the source of antigens to 

which the immune system must become tolerant, provide factors, including nutrients, that 

themselves might modulate immune maturation and responses.  

In the intestine, a key requirement of DCs is to generate oral tolerance to food antigens, 

prevent potentially harmful immune responses against nonpathogenic antigens while 

preserving immunity to pathogens (Cerovic et al 2009; Rescigno et al 1998). DCs have access 

to the intestinal lumen and are thus exposed to the relatively high concentrations of nutrients 

in this body compartment (Edelman and Kasper 2008) resulting in the induction of ‘non-

inflammatory’ DC that released IL-10 and IL-6, but not IL-12, and promoted the polarization 

of T cells toward a Th2 phenotype (Rescigno et al 2001). An inappropriate immune response 

to microbial antigens of commensal microorganisms in genetically susceptible individuals 

may lead to chronic inflammatory diseases, such as Crohn's disease or ulcerative colitis (Silva 

2009) and the deranged function of the immune system in autoimmune disease (Rescigno et al 

2008).  

 

1.11.1. Thymoquinone 
Thymoquinone, a nutrient derived from Nigella sativa (Badary et al 2007; Khader et al 2009) 

exerts remarkable anticarcinogenic(Aggarwal et al 2008a; Ali and Blunden 2003b; Gali-

Muhtasib et al 2006; Gali-Muhtasib et al 2008c; Mohamed et al 2003; Salem 2005a) and anti-

inflammatory (El Gazzar et al 2006a; El Gazzar et al 2006c; El Gazzar et al 2007; El Gazzar 

2007; El Mezayen et al 2006; Salem 2005c; Sethi et al 2008b; Tekeoglu et al 2007) potency 

(Aggarwal et al 2008b; Ali and Blunden 2003a; Gali-Muhtasib, Roessner, and Schneider-

Stock 2006; Gali-Muhtasib et al 2008d; Salem 2005b). The anticarcinogenic effect is at least 

partially due to stimulation of tumor cell apoptosis (Gali-Muhtasib et al 2004b; Roepke et al 

2007c; Rooney and Ryan 2005a; Shoieb et al 2003a). Signaling involved in the proapoptotic 

effects of thymoquinone includes p53-(Gali-Muhtasib et al 2004a; Gali-Muhtasib et al 2008b; 

Roepke et al 2007b) and NFκB-  (Sethi et al 2008a) dependent gene expression, suppression 

of AKT and extracellular signal-regulated kinase (Yi et al 2008), decrease of reduced 

glutathion (Rooney and Ryan 2005b) and caspase activation (El Mahdy et al 2005; Rooney 

and Ryan 2005c). Moreover, thymoquinone influences the formation of prostaglandins and 

leukotrienes (El Gazzar et al 2006b). 

 

1.11.2. Gum Arabic 



 

18 
 

Gum Arabic (GA) is a water-soluble (Tiss et al 2001) polysaccharide based on branched chains 

of (1-3) linked β-D-galactopyranosyl units containing α-L-arabinofuranosyl, α-L-

rhamnopyranosyl, β-D-glucuronopyranosyl and 4-O-methyl-β-D-glucuronopyranosyl units 

(Deckwer et al 2006). It is fabricated from gummy exudates of Acacia Senegal (Younes et al 

1995). In the colon GA is fermented by microorganisms to short chain fatty acids {Phillips, 1998 

21 /id}. Its is considered one of the safest dietary fibers (Anderson 1986). 

In Middle Eastern countries GA is used in the treatment of patients with chronic kidney disease 

and end-stage-renal-disease (Al Majed et al 2002b). GA increases fecal nitrogen excretion 

{Bliss, 1996 46 /id} and decreases production of free oxygen radicals (Al Majed et al 2002a). 

Intestinal GA fermentation leads to the formation of several degradation products including 

short-chain fatty acids (Bliss 2004a). Accordingly, GA treatment may enhance serum butyrate 

concentrations (Matsumoto et al 2006a). 

In the intestine, GA may modify the function of the reabsorbing epithelial cells (Nasir et al 

2008b). At least in theory, GA may modify the function of intestinal DCs.  

 

1.11.3. Zn2+  
Zinc (Zn2+) is the second most prevalent trace element in the body, an essential structural 

component of a great number of proteins, including enzymes and transcription factors. It can 

act as a second messenger and neurotransmitter and is important for cell replication, tissue 

repair and growth (Murakami and Hirano 2008a). Zn2+ is an essential nutrient (Prasad 1995), 

which counteracts a variety of infectious diseases (Cuevas and Koyanagi 2005; Fischer-Walker 

and Black 2004) including malaria (Richard et al 2006c), diarrhea (Long et al 2006; Richard et al 

2006b), and respiratory infections (Coles et al 2007; Hambidge 2006; Richard et al 2006a). Zn2+ 

supplementation is considered particularly important in infants and children (Brown et al 2007; 

Georgieff 2007; Krebs and Hambidge 2007; Sheng et al 2006), pregnant women (Litonjua et al 

2006) and elderly (Prasad et al 2007) and has been proven beneficial in burns (Berger and 

Shenkin 2007). Zn2+ deficiency has been shown to predispose to bacterial and viral infection 

(Fischer-Walker and Black 2004; Fraker and King 2004; Prasad 1998a). Zn2+ depletion and Zn2+ 

supplementation influence functions of both innate and adaptive immunity (Hosea et al 2003b; 

Prasad 2000a); Ibs and Rink 2003b). 

Zn2+ depletion by the chelating agent TPEN (N,N,N´,N´-tetrakis (2-pyridylmethyl 

ethylendiamine) has been shown to upregulate DC surface expression of MHCII and CD86 

and to enhance CD4+ T cell stimulatory activity, effects reversed by addition of Zn2+ 

(Kitamura et al 2006d). On the other hand, LPS stimulation of DCs has led to a decrease in 
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intracellular free Zn2+ via alterations in Zn2+ transporter expression and this decrease is 

involved in DC maturation (Kitamura et al 2006c). Little is known, however, about the 

signaling involved. In other cell types, Zn2+ has been shown to activate a secretory 

sphingomyelinase leading to the formation of ceramide (Tabas 1999b). 

 

1.11.4. Xanthohumol 
Xanthohumol, a flavonoid from beer (Intelmann et al 2009; Keukeleire et al 2007; Kodama et 

al 2007), has been shown to elicit anti-inflammatory, antiangiogenic, anticancer, antibacterial, 

antifungal, antimalarial and antiviral effects (Cho et al 2008a). It may further favourably 

influence sleep disorders and menopausal symptoms in women (Guo et al 2006). The 

anticarcinogenic effect is thought to result from inhibition of cell proliferation and stimulation of 

apoptosis (Colgate et al 2007c; Dell'Eva et al 2007b; Diller et al 2005b; Gerhauser et al 2002a; 

Gerhauser 2005; Goto et al 2005c; Guerreiro et al 2007a; Harikumar et al 2009d; Ho et al 2008a; 

Larghero et al 2007a; Lust et al 2005a; Monteghirfo et al 2008b; Monteiro et al 2007a; Monteiro 

et al 2008a; Pan et al 2005c; Vanhoecke et al 2005c). The effect of xanthohumol on the immune 

response has been attributed to an influence on the function of lymphocytes (Choi et al 2009a; 

Harikumar et al 2009c; Wang et al 2004) or macrophages (Cho et al 2008b). 

In lymphocytes, immunosuppressive effects of xanthohumol were reported which include 

inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine (IL-2, IFN-

gamma and TNF-alpha) production, effects attributed to suppression of NF-kappaB (Gao et al 

2009). In contrast, xanthohumol treatment of mouse EL-4 T cells activated with phorbol 12-

myristate 13-acetate plus ionomycin, significantly increased IL-2 production through the 

enhancement of IL-2 promoter, NF-AT and AP-1 activity with no effect on NF-kappaB 

activity (Choi et al 2009b). In LPS- and IFN-γ- stimulated mouse macrophage RAW 264.7 

cells xanthohumol inhibited the production of NO by suppressing the expression of inducible 

NO synthase (iNOS) (Zhao et al 2003). In LPS-activated RAW264.7 cells xanthohumol was 

also shown to reduce the expression of the LPS receptor components such as TLR4 and MD2 

resulting in the suppression of NF-kappaB activation (Cho et al 2008c). In the IFN-gamma- 

stimulated RAW264.7 cells, the binding activity of STAT-1alpha and IRF-1 was inhibited by 

xanthohumol (Cho et al 2008d). 

 

1.11.5. Thymol 
Thymol is well known for its antimicrobial (Burt 2004a; Cervenka et al 2008b; Corbo et al 

2008a; Lee and Jin 2008b; Razzaghi-Abyaneh et al 2008b)and antifungal (Guo et al 2009) 
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potency. Little is known, however, about its effect on the host immune system. It has been shown 

to influence the generation of reactive oxygen species (Kim and Lee 2004; Szentandrassy et al 

2004) and, at higher concentrations, to induced DNA damage (Aydin et al 2005; Undeger et al 

2009b) and inhibit cell proliferation (Stammati et al 1999). In erythrocytes it protects against 

suicidal cell death (Mahmud et al 2009). 

 

 

2. AIMS OF THE STUDY 
Nutrition may be the source of antigens to which the immune system must become tolerant in 

intestinal lumen. They may bind to DCs, which can protrude between epithelial cells and sense 

the composition of the lumen, and induce DC response. Impaired maturation of DCs as well as 

enhanced anti-inflamatory cytokine secretion by DCs may drive immunity tolerogenic. In 

addition, induction of DC apoptosis is expected to weaken the immune response.  

The present study explored, whether the following nutrients: thymoquinone, GA, Zn2+, 

xanthohumol and thymol affect DC functions. Specifically, the following questions were 

addressed:  

1. How do nutrients influence DC maturation and cytokine secretion? 

2. How is DC survival affected by nutrients? 

3. Which signaling pathways are involved in DC apoptosis induced by nutrients? 

A special focus was made on acid sphingomyelinase/ceramide signaling pathway. 

 

3. MATERIAL AND METHODS 

3.1. Equipment 
• FACS calibur [Becton Dickinson, Heidelberg] 

• EXCITER Confocal Laser Scanning Microscope [Carl Zeiss MicroImaging GmbH, 

Germany] 

• Incubator [Heraeus, Hanau] 

• PH meter 761 Calimatic [Knick, Berlin] 

• Micrometer [Oditest, Kroeplin] 

• Cell strainer [BD falcon, Heidelberg] 

• Electronic hematology particle counter [Medical Diagnostics Marx, Butzbach] 

• QuadroMACS Separator, magnetic separation [Miltenyi Biotec, Bergisch Gladbach] 
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• Suspension culture plate 96w, 24w, F-bottom, with lid, sterile [Greiner bio-one, 

Frickenhausen] 

• FACS tubes, 1,3ml, PP, round bottom [Greiner bio-one, Frickenhausen] 

• Sterile filters [Millipore, Cork, Ireland] 

• Syringes, Omnifix-H, 1ml [B Braun, Melsungen] 

3.2. Mice 
• C57 BL/6N mice (Charles Rivers, Sulzfeld, Germany) 

• Acid sphingomyelinase ASM-/- and wild type mice (7-12 week old mice, a kind gift of 

Dr. Verena Jendrossek (University of Tübingen, Germany), originally obtained from 

Dr. R. Kolesnick (Sloan Kettering Cancer Memorial Center, NY, USA).) 

3.3. Chemicals 
• BD FACS Flow solution, BD FACS clean solution, BD FACS Rinse solution [Becton 

Dickinson, Heidelberg] 

• PBS (Phosphate buffer saline, tablets) [GIBCO, Karlsruhe] 

• FBS research grade EU- approved (fetal bovine serum) [Hyclone, Perbio, Bonn] 

• FACS buffer (1% FBS in PBS solution) 

• Annexin washing buffer (125mM NaCl, 10mM Hepes, 5mM CaCl2, pH 7.4) [GIBCO, 

Karlsruhe] 

• Steril medium: RPMI 1640 [GIBCO, Carlsbad, Germany] containing: 10 % FCS, 1 % 

penicillin/streptomycin, 1 % glutamine, 1 % non-essential amino acids (NEAA) and 

0.05 % β-mercaptoethanol 

• T cell isolation buffer (degassed): PBS, pH 7.2, supplemented with 0.5% bovine 

serum albumin and 2 mM EDTA. The buffer was degassed by applying vacuum or 

sonification. 

• Lipopolysaccharide [from Escherichia coli Sigma-Aldrich, Germany] 

• GM-CSF [Preprotech, Tebu-bio, Rocky Hill, NJ] 

• Thymoquinone, thymol, xanthohumol, zinc chloride [Sigma-Aldrich, Germany] 

• FITC-conjugated anti-mouse CD11c, PE-conjugated anti-mouse CD86, PE-conjugated 

rat anti-mouse I-A/I-E, PE-conjugated anti-mouse CD40, PE- conjugated anti mouse 

ICAM-1 (CD-54), anti-CD16/CD32, FITC-conjugated anti-mouse CD45, PE-

conjugated anti-mouse CD19,  FITC - labelled goat anti-mouse IgG antibody, FITC-

conjugated anti-mouse CD3e, PE-conjugated anti-mouse CD8 [BD Pharmingen, 

Heidelberg, Germany] 
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• Anti-ceramide antibodies [Mouse IgM, Alexis, Lörrach, Germany]  

• IL-6, IL-10, IL-12p70 and TNFα ELISA kits [BD PharMingen, Heidelberg, Germany] 

• FITC-conjugated dextran [Sigma-Aldrich, Taufkirchen, Germany] 

• Anti-phospho (p)-ERK, anti-ERK, anti-p-SAPK/JNK, anti-SAPK/JNK, α/ß- Tubulin 

[Cell Signaling, Danvers] 

• Anti p-p38, anti-p38, anti-Bcl-2, anti-Bcl-xL [Santa Cruz, Heidelberg, Germany] 

• Enhanced chemiluminescence (ECL) kit [Amersham, Freiburg, Germany] 

• Mouse Pan T isolation kits [Miltenyi Biotec, Bergisch Gladbach, Germany] 

• Annexin V fluos [Roche Diagnostic, Mannheim, Germany] 

• Propidium iodide (PI) [Sigma Aldrich, Taufkirchen, Germany] 

• Lysis buffer [Pierce, Rockford, USA] 

• Protease inhibitor cocktail [Sigma-Aldrich, Taufkirchen, Germany] 

• TBS  (Tris-Buffered Saline) [GIBCO, Karlsruhe] 

• Tween-20 [Sigma-Aldrich, Taufkirchen, Germany] 

• Formaldehyde solution [Sigma-Aldrich, Taufkirchen, Germany] 

• RNase A [Qiagen, Germany] 

• Caspase 8 and Caspase 3 kits [Biovision, California, USA] 

• Tetramethyl-rhodamine ethyl ester (TMRE, Molecular Probes, Leiden, Netherlands) 

3.4. DC culturing 
DCs were isolated from femurs and tibias of 8-12 weeks old mice as described by {Labeur, 

1999 2 /id}. Cells were then plated at a density of 2*106cells/10ml in 60-mm dish and 

cultured for 7 days in RPMI 1640 (GIBCO, Carlsbad, Germany) containing: 10 % FCS, 1 % 

penicillin/streptomycin, 1 % glutamine, 1 % non-essential amino acids (NEAA) and 0.05 % 

β-mercaptoethanol. Cultures were supplemented with GM-CSF (35 ng/mL, Preprotech, Tebu-

bio, Rocky Hill, NJ). Cultures were fed with fresh medium containing GM-CSF every 3 days. 

Nonadherent and loosely adherent cells were harvested after 7-8 days of culture. Most (80% 

or more) of the cells expressed CD11c, which is a marker for mouse DCs. DCs generated only 

in the presence of GM-CSF display an immature phenotype. To obtain mature DCs, LPS was 

added to the culture medium. Experiments were performed on DCs at days 7-10. DCs 

(5*105cells/3ml) were then treated with the following nutrients: 

• Gum Arabic (0.5%, 24h). 
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• LPS (from Escherichia coli, Sigma-Aldrich, Germany, 200 ng/ml, 24 h) in the 

absence or in the presence of different concentrations of thymoquinone (1-20 µM, 

Sigma-Aldrich, Germany)  

• Zn2+ (10-1000 µM, 24h, Sigma-Aldrich, Germany) 

• Thymol (2-100 µg/ml, 24h, Sigma-Aldrich, Germany) 

• Xanthohumol (2-50 µM, 24h, Sigma-Aldrich, Germany) 

 

3.5. Immunostaining and flow cytometry 
Surface expression of CD11c, CD86, MHC class II, CD54 and CD40 was determined by 

FACS analysis. To this end, cells (4 x 105) were incubated in 100 µl FACS buffer (PBS plus 

0.1% FCS) containing fluorochrome-conjugated antibodies at a concentration of 10 µg/ml. A 

total of 2 x 104 cells were analyzed. The following antibodies (all from BD Pharmingen, 

Heidelberg, Germany) were used for staining: FITC-conjugated anti-mouse CD11c, clone 

HL3 (Armenian Hamster IgG1, λ2), PE-conjugated anti-mouse CD86, clone GL1 (Rat IgG2a, 

κ), PE-conjugated rat anti-mouse I-A/I-E, clone M5/114.15.2 (IgG2b, κ), PE-conjugated anti-

mouse CD40 clone 3E2 (Rat IgG2a, κ) and PE- conjugated anti mouse ICAM-1 (CD-54), 

clone 3E2 (Armenian Hamster IgG1, κ). After incubating with the antibodies for 60 min at 

40C, the cells were washed twice and resuspended in FACS buffer for flow cytometry 

analysis. 

 

3.6. Cytokine quantification in cell supernatants 
DCs (1.66*105cells/ml) were treated for 24h with LPS (200 ng/ml) in the absence or in the 

presence of different concentrations of either thymoquinone (1-20 µM) or Zn2+ (10-1000 µM) 

or thymol (2-100 µg/ml) or xanthohumol (2-50 µM). Alternatively, DCs were treated for 24 h 

with Gum Arabic (0.5%). 

Cell culture supernatant was collected and stored at -20˚C until use for ELISA. For analysis of 

IL-6, IL-10, IL-12p70 and TNFα concentrations, commercially available ELISA kits (BD 

PharMingen, Heidelberg, Germany) were used according to the manufacturer’s protocol. 

 

3.7. DC phagocytosis assay 
DCs (1.66*105 cells/ml) were treated with either LPS (200 ng/ml, 24 h) or Gum Arabic (0.5%, 

24h). Cells were centrifuged at 1500 rpm, 5 min, then suspended in prewarmed serum-free 

RPMI 1640 medium, pulsed with FITC-conjugated dextran (Sigma-Aldrich, Taufkirchen, 
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Germany) at a final concentration of 1 mg/ml and incubated for 3h at 370C. Uptake was 

stopped by adding ice-cold PBS. Then the cells were washed three times with ice cold PBS 

supplemented with 5% FCS and 0.01% sodium azide before FACS analysis. DCs were 

analyzed for the uptake of FITC-dextran. 

 

3.8. Immunoblotting 
DCs (1.66*105 cells/ml) were either unpulsed (control) or pulsed with: 

• LPS or Gum Arabic for 10, 60 or 120 min  

• Zn2+ (100 µM, 24h) 

• Thymol (20 µg/ml, 24h) 

Cells (5*106 cells) were then snap-frozen in dry-ice ethanol bath. Cell pellets were thawed on 

ice and washed twice with PBS, then solubilized in lysis buffer (Pierce) containing protease 

inhibitor cocktail (Sigma-Aldrich, Taufkirchen, Germany. Samples were stored at -800C until 

use for western blotting.  

Cell lysates were separated by 10-12% SDS-PAGE and blotted on nitrocellulose membranes. 

The blots were blocked with 5% nonfat-milk in triethanolamine-buffered saline (TBS) and 

0.1% Tween-20  for 2hours. Then the blots were probed overnight with anti-phospho (p)-

ERK, anti-ERK, anti-p-SAPK/JNK, anti-SAPK/JNK, α/ß- Tubulin (Cell Signaling, Danvers), 

anti p-p38, anti-p38, anti-Bcl-2, anti-Bcl-xL (Santa Cruz, Heidelberg, Germany) antibodies 

diluted in 5% milk in TBS and 0.1% Tween-20, washed 5 times, probed with secondary 

antibodies conjugated with horseradish peroxidase for 1 h at room temperature, washed final 

5 times. Antibody binding was detected with the enhanced chemiluminescence (ECL) kit 

(Amersham, Freiburg, Germany). Densitometer scans of the blots were performed using 

Quantity One (BioRad, Munich, Germany).  

 

3.9. Isolation of T and B lymphocytes from the spleen 
Spleens from 8- to 12-week-old naive or GA- -treated (10%, 4 week long) C57BL/6 mice 

were removed aseptically, cut into pieces, a single-cell suspension of splenocytes was 

obtained through a cell strainer. All spleen cell preparations were resuspended in T cell 

isolation buffer (supplemented with 0.5% bovine serum albumin and 2 mM EDTA) and kept 

on ice. After blocking with anti-CD16/CD32, cells (4 x 105) were incubated in 100 µl FACS 

buffer (PBS plus 0.1% FCS) containing fluorochrome-conjugated antibodies at a 

concentration of 10 µg/ml. A total of 2 x 104 cells were analyzed. The following antibodies 

(BD Pharmingen, Heidelberg, Germany) were used for staining: FITC-conjugated anti-mouse 
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CD45, clone 30-F11 (Rat IgG2b, κ), PE-conjugated anti-mouse CD19, clone 1D3 (Rat IgG2a, 

κ) for 45 min, then cells were washed twice and resuspended in FACS buffer for flow 

cytometry analysis of mouse B cells. 

T lymphocytes from single-cell suspensions of spleen were isolated by the negative selection 

column method using the Mouse Pan T isolation kits (Miltenyi Biotec, Bergisch Gladbach, 

Germany) according to the manufacturer's protocol. Cells then were stained with FITC-

conjugated anti-mouse CD3e, clone 154-2C11 (Armenian Hamster IgG1, κ), PE-conjugated 

anti-mouse CD8, clone 53-6.7 (Rat IgG2a, κ) (BD pharmingen) for 60 min and the cells were 

washed twice and resuspended in FACS buffer for flow cytometry analysis.   

 

3.10. Phosphatidyl residue translocation 
Apoptotic cell membrane scrambling was evidenced from annexin V binding to 

phosphatidylserine (PS) at the cell surface. To this end, the percentage of PS- translocating 

cells was evaluated by staining with fluorescein isothiocyanate (FITC)-conjugated Annexin 

V. In brief 4 x105 cells were harvested and washed twice with Annexin washing buffer 

(AWB, 10 mM Hepes/NaOH, pH 7.4, 140 mM NaCl, 5 mM CaCl2). Cell pellet was 

resuspended in 100 µl of Annexin-V-Fluos labelling solution (Roche) (20µl Annexin-V-Fluos 

labelling reagent in 1 ml AWB), incubated for 15 min at room temperature. After washing 

with AWB, they were analyzed by flow cytometry.   

 

3.11. Ceramide formation 
For detection of ceramide formation mouse DCs were stained for 60 minutes at 37°C with 

anti-ceramide antibodies (Mouse IgM, Alexis) at a dilution of 1:10 in phosphate buffered 

saline (PBS) containing 0.1% fetal calf serum (FCS) {Lang, 2004 2508 /id}. After three 

washes with PBS/0.1% FCS, cells were stained with fluorscein isothiocyanate (FITC) - 

labelled goat anti-mouse IgG antibody at a dilution of 1:400 (Invitrogen, UK) in PBS/0.1% 

FCS for 30 min at 37°C. Unbound secondary antibodies were removed by washing the cells 

with PBS/0.1% FCS. Cells were then analyzed by flow cytometry (FACS Calibur, BD 

Biosciences). 

 

3.12. DNA fragmentation 
5x105 cells were fixed with 2% formaldehyde for 30 min on ice and then incubated with 70% 

ethanol for 15 min at 37°C. Cells were then treated with RNase A (40μg/ml) for 30 min at 
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37°C, washed and resuspended in 200µl PI (50 µg/ml, Sigma). DNA content of the samples 

was analyzed by flow cytometry (FACS Calibur, BD Biosciences). 

 

3.13. Measurements of mitochodrial membrane potential 
DCs (5*105cells/3ml) were either untreated or treated with xanthohumol (20μM, 24h). Cells  

were centrifuged at 1500 rpm, 5 min, then suspended in prewarmed PBS. The mitochondrial 

transmembrane potential was determined using  tetramethyl-rhodamine ethyl ester (TMRE, 40 

nM, Molecular Probes, Leiden, Netherlands) and then incubated for 30 min at 370C. Then the 

cells were washed twice with cold PBS before FACS analysis.  

 

3.14. Caspase 8 and Caspase 3 activation assay 
Caspase 8 and Caspase 3 activation was determined using kits (Biovision, California, USA) 

according to manufacturer’s instruction. Briefly 1x106 cells were washed twice with cold 

PBS, fixed and permeabilized with ‘Cytofix/Cytoperm’ solution and then by washing twice 

with ‘Perm/ Wash’ buffer. Then cells were stained with FITC conjugated anti-active Caspase 

8 or Caspase 3 antibody in ‘Perm/ Wash’ buffer for 60 min. After 2 washing steps, the cells 

were analyzed by flow cytometry (FACS Calibur, BD Biosciences). 

 

3.15. Immunocytochemistry 
DCs were either left untreated or treated for 24 h with either Zn2+ (100 µM) or thymol (20 

µg/ml) or xanthohumol (20 µM). DCs were then smeared onto glass slides, rinsed in PBS and 

fixed with 2% formaldehyde in PBS for 15 min at room temperature. After 3 washing steps 

with PBS for 5 min, slides were permeabilized and blocked in PBS containing 5% bovine 

serum albumin (BSA) and 0.3% Triton X-100 for 60 min and then incubated overnight at 40C 

with mouse monoclonal Abs to ceramide (Alexis Biochemicals) at 1:50 dilution in antibody 

dilution buffer (including PBS, 1%BSA and 0.3% Triton X-100). The slides were washed 

again three times for 5 min and then incubated with goat anti-mouse IgG-FITC (Alexis 

Biochemicals) in antibody dilution buffer for 90 min at 1:200 dilution at room temperature in 

dark. After three washing steps with high salt PBS (PBS with added NaCl to final 

concentration of 0.4M), nuclei were stained with DRAQ5 (10 µM, BioStatus Limitted, 

Shepshed Leicestershire, United Kingdom) in PBS containing 0.5%Triton X-100 for 60 min 

and washed final two times with PBS. Stained slides were mounted using Prolong® Gold 

antifade reagent (Invitrogen, Karlsruhe, Germany). Images were taken on a Zeiss LSM 5 
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EXCITER Confocal Laser Scanning Microscope (Carl Zeiss MicroImaging GmbH, Germany) 

with a ×63 Plan Apochromat objective. 

 

3.16. Statistics  
Data are provided as means ± SEM, n represents the number of independent experiments. All 

data were tested for significance using Student’s unpaired two-tailed t-test or ANOVA and 

only results with p < 0.05 were considered statistically significant. 

 

4. RESULTS 

4.1. Thymoquinone 
4.1.1. Thymoquinone inhibits maturation of LPS- stimulated DCs. 

Mouse bone marrow derived DCs were treated with LPS (200 ng/ml, 24h) in the absence and 

presence of thymoquinone (1 – 20 µM) and then surface expression of CD11c, CD86, MHC 

class II, CD54 and CD40 was determined by FACS analysis. LPS increased the percentage of 

CD11c+CD86+, CD11c+MHC class II+, CD11c+CD40+ expressing cells (Figure 1) and CD54 

expressing cells (Figure 2), effects all blunted in the presence of thymoquinone, suggesting 

that thymoquinone inhibits LPS- induced differentiation and maturation of DCs. 
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Figure 1: Effect of thymoquinone on LPS-induced CD86, MHC class II and CD40 
surface expression in mouse DCs 
A.-C. Original dot plots of CD11c+CD86+ (A), CD11c+MHC II+ (B), CD11c+CD40+ (C) in 
DCs cultured for 24 h without (control, 1st panel) or with LPS (200 ng/ml) in the absence (2d 
panel) and presence (3d - 6th panels) of thymoquinone (1, 5, 10, 20 µM). Numbers depict the 
percent of cells in the respective quadrants, acquired within the dead cell gate. 
D.-F. Arithmetic means ± SEM (n = 4-6 each) of CD86, MHC class II, and CD40 expression 
in DCs cultured without (control, white bar) and with LPS (200 ng/ml) in the absence of 
(dotted bar) or presence of (black bars) thymoquinone (1 -20 µM). * (p<0.05), ** (p<0.01) 
and *** (p<0.001) show differences between thymoquinone-untreated and -treated LPS-
stimulated DCs, ANOVA. 
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Figure 2: Effect of thymoquinone on LPS-induced CD54 surface expression in mouse 

DCs 

A. Representative FACS histograms depicting the expression of CD54 in DCs cultured for 24 

h without (control, 1st panel) or with LPS (200 ng/ml) in the absence (2d panel) and presence 

(3d - 6th panels) of thymoquinone (1, 5, 10, 20 µM). 

B. Arithmetic means ± SEM (n = 4-6 each) of CD54 expression in DCs cultured without 

(control, white bar) and with LPS (200 ng/ml) in the absence of (dotted bar) or presence of 

(black bars) thymoquinone (1 -20 µM). ** (p<0.01) and *** (p<0.001) show differences 

between thymoquinone-untreated and -treated LPS-stimulated DCs, ANOVA. 

 

4.1.2. Thymoquinone impairs cytokine secretion by LPS- stimulated DCs. 
We next examined IL-10, IL-12p70 as well as TNFα formation by ELISA. DCs were 

stimulated with LPS (200 ng/ml, 24 h) in the absence and presence of thymoquinone (1 – 20 

µM). As illustrated in Figure. 3, LPS stimulated the release of IL-10, IL-12p70 and TNFα. 

The effect of LPS on cytokine release was again significantly blunted in the presence of 

thymoquinone. The effect reached statistical significance at ≥ 1 μM thymoquinone.   
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Figure 3: Effect of thymoquinone on LPS-induced formation of IL-10, IL-12 and TNF-α 

in mouse DCs  

Concentrations of IL-10 (A), IL-12p70 (B) and TNF-α (C) in the supernatant of DCs cultured 

for 24 h without (control, white bars) and with LPS (200 ng/ml) in the absence of (dotted bar) 

or presence of (black bars) thymoquinone (1 -20 µM). The cytokine concentrations were 

determined by ELISA. Arithmetic means ± SEM were calculated from 4-9 independent 

experiments, each reflecting the mean of a duplicate measurement. * (p<0.05), ** (p<0.01) 

and *** (p<0.001) show differences between thymoquinone-untreated and -treated LPS-

stimulated DCs, ANOVA. 

4.1.3. Thymoquinone enhances percentage of annexin V-binding DCs. 
 

DC apoptosis is characterized by phosphatidylserine exposure at the cell surface, which is 

identified by annexin V-binding in FACS analysis. To explore whether thymoquinone 

stimulates DC apoptosis, annexin V-binding was determined in DCs stimulated with LPS (200 

ng/ml, 24 h) in the absence and presence of thymoquinone (1 – 20 µM). As illustrated in 

Figure. 4, LPS decreased the percentage of phospatidylserine exposing cells, an effect 

reversed by thymoquinine. The effect reached statistical significance at ≥ 5 μM 

thymoquinone.  
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Figure 4: Effect of thymoquinone and LPS on phosphatidylserine exposure at the 

surface of mouse DCs 

A. Representative FACS histograms depicting the expression of annexin V in DCs cultured 

for 24 h without (control, 1st panel) or with LPS (200 ng/ml) in the absence (2d panel) and 

presence (3d - 6th panels) of thymoquinone (1, 5, 10, 20 µM). 

B: Arithmetic means ± SEM (n = 4-6 each) of the percentage of annexin V-positive DCs 

following a 24 h culture without (control, white bar) and with LPS (200 ng/ml) in the absence 

of (dotted bar) or presence of (black bars) thymoquinone (1 -20 µM). ** (p<0.01) and *** 

(p<0.001) show differences between thymoquinone-untreated and -treated LPS-stimulated 

DCs, ANOVA. 

 

4.2. Gum Arabic 
4.2.1. GA enhances bone marrow-derived DC differentiation and maturation 

At day 8 the cultures of mouse DCs were supplemented with either LPS (200 ng/ml) or GA 

(0.5%) and stained for 24 h afterwards for MHC class II, CD86 and CD40 (Figure 5 and 

CD54 (ICAM-1) (Figure 6). Both LPS and GA increased the percentage of CD11c+MHC 

class II+ (Figure 5A, D), CD11c+CD86+ (Figure 5B, E), CD11c+CD40+ (Figure 5C, F) and 
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CD54 expressing (Figure 6) cells, indicating that, similarly to LPS, GA stimulates maturation 

and differentiation of DCs. 

 

 

Figure 5: Effect of LPS and GA treatment on MHC class II, CD86 and CD40 surface 

expression in DCs  
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A.-C. Original dot plots of CD11c+MHC class II+ (A), CD11c+CD86+ (B), CD11c+CD40+ (C) 

in DCs cultured for 24 h without (control, 1st panel) or with LPS (200 ng/ml, 2d panel) or 

Gum Arabic (GA, 0.5%, 3d panel). Numbers depict the percent of cells in the respective 

quadrants, acquired within the dead cell gate. 

 

D.-F.  Arithmetic means ± SEM (n = 6-7) of of MHC class II (D), CD86 (E) and CD40 (F) 

expression in DCs cultured without (control, white bar) or with LPS (200 ng/ml, dotted bar) 

or GA (0.5%, black bars) for 24 h. *** (p<0.001) show differences from untreated (control) 

DCs, ANOVA. 

 

 

Figure 6: Effect of LPS and GA treatment on CD54 surface expression in DCs  

A. Representative FACS histograms depicting the expression of CD54 in DCs cultured for 24 

h without (control, 1st panel) or with LPS (200 ng/ml, 2d panel) or Gum Arabic (GA, 0.5%, 3d 

panel).  
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B: Arithmetic means ± SEM (n = 6 each) of CD54 expression in DCs cultured without 

(control, white bar) or with LPS (200 ng/ml, dotted bar) or GA (0.5%, black bars) for 24 h. 

*** (p<0.001) show differences from untreated (control) DCs, ANOVA. 

4.2.2. GA enhances cytokine secretion in DCs 
Cytokine production was analyzed in LPS (200 ng/ml, 24 h)- or GA (0.5%, 24 h)-stimulated 

DCs. As illustrated in Figure 7, both LPS and GA stimulated the secretion of IL-10, IL-

12p70, IL-6 and TNFα. GA-stimulated DCs secreted more IL-10 than LPS-stimulated cells 

(Figure 7A) and in contrast, the effect of LPS on IL-12p70 (Figure 7B) and IL-6 (Figure 7C) 

production was significantly more pronounced than the effect of GA. 

 

Figure 7: Effect of LPS and GA treatment on the formation of IL-10, IL-12p70, IL-6 

and TNF-α 
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Concentrations of IL-10 (A), IL-12p70 (B), IL-6 (C) and TNF-α (D) in the supernatants of 

DCs cultured without (control, white bars) or with LPS (200 ng/ml, dotted bar) or GA (0.5%, 

black bars) for 24 h. The cytokine concentrations were determined by ELISA. Arithmetic 

means ± SEM were calculated from 6-8 independent experiments, each reflecting the mean of 

a duplicate measurement. * (p<0.05), ** (p<0.01) and *** (p<0.001) show differences from 

untreated (control) group, ###  (p<0.001) denotes differences between GA and LPS, ANOVA. 

 

4.2.3. GA decreases phagocytic capacity in DCs 
DC maturation is characterized by the loss of phagocytic capacity and LPS-induced 

maturation of DCs is known to down-regulate the FITC- dextran uptake {Nakahara, 2004 166 

/id}. Accordingly, the phagocytic capacity of unstimulated, LPS (200 ng/ml, 24 h)- or GA 

(0.5%, 24 h)- stimulated DCs was analyzed. As shown in Figure 8, FITC-dextran uptake was 

similarly impaired by GA and LPS, confirming that GA indeed promoted maturation of DCs. 

 

Figure 8: LPS and GA decrease phagocytic capacity of DCs 
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A. Representative FACS histograms depicting the percentage of the uptake of FITC-dextran 

after 3h in DCs cultured for 24 h without (control, 1st panel) or with LPS (200 ng/ml, 2d 

panel) or Gum Arabic (GA, 0.5%, 3d panel).  

B. Bar diagram representing mean percent (± SEM; n=4) of FITC-dextran uptake by DCs 

cultured without (control, white bars) and with LPS (200 ng/ml, dotted bar) or GA (0.5%, 

black bars) for 24 h. *** (p<0.001) show differences from untreated (control) group, 

ANOVA. 

 

4.2.4. Stimulation with GA leads to upregulation of extracellular signal-

regulated kinase (ERK1 and ERK2) in DCs 
LPS stimulation has been shown to activate mitogen-induced protein kinases (MAPKs) in 

DCs {Nakahara, 2004 166 /id;An, 2002 1452 /id}. To get insight into GA-induced signaling, 

we examined phosphorylation (and thus activation) status of ERK1/2, p38 and SAPK/JNK 

MAPKs in DCs stimulated with either LPS or GA (Figure. 9). LPS stimulation fostered p38, 

ERK1/2 and JNK activation, while GA strongly affected both ERK1 and ERK2 

phosphorylation. 
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Figure 9: GA enhances the phosphorylation of ERK1 and ERK2 in DCs  

A. DCs were stimulated with LPS (200 ng/ml) or GA (0.5%) for the indicated time: 10, 60, 

120 min or left untreated (control). Protein extracts were analyzed by direct Western blotting 
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using antibodies directed to phosphorylated (p) p38, p-ERK, p-SAPK/JNK. Equal protein 

loading was controlled by anti-p38, ERK, and SAPK/JNK antibodies. One representative 

experiment out of three is shown. 

B., C. Arithmetic means ± SEM (n = 3) of the abundance of phosphorylated ERK1 (left) and 

ERK2 (right) as the ratio to total ERK1 (ERK2) at 0 (control), 10, 60 and 120 min of 

incubation with either GA (0.5%, B) or LPS (C). * (p<0.05), ** (p<0.01) and *** (p<0.001) 

indicate significant difference from control, # (p<0.05) and ## (p<0.01) indicate significant 

difference from 10 min incubation point; ANOVA. 

 

4.2.5. GA treatment leads to a higher percentage of splenic CD8+ T cells and B cells 
Finally, T and B cells were isolated from spleen of naive or GA (10%, 4 weeks)-treated mice. 

The percentage of CD3+CD8+ T cells and CD45+CD19+ B cells was enhanced in mice treated 

with GA (Figure 10).  

 
Figure 10: GA increases the percentage of splenic CD8+ T cells and B cells  
A., B. Original dot plots of CD45+CD19+ B cells (A) and CD3+CD8+ T cells (B) in the 

spleens of mice untreated (control, 1st panel) or treated for 4 weeks with GA (10%, 2d panel). 



 

39 
 

Numbers depict the percent of cells in the respective quadrants, acquired within the 

mononuclear cell gate. 

C., D. Arithmetic means ± SEM (n = 4-9) of the percentage of CD19+CD45+ (C) and 

CD3+CD8+ T cells (D) in the spleen of mice untreated (control, white bar) or treated for 4 

weeks with GA (10%, black bar) *** (p<0.001) show differences from untreated (control) 

group (two-tailed unpaired t-test). 

 

4.3. Zn2+, xanthohumol and thymol 
4.3.1. Effect of Zn2+, xanthohumol and thymol on ceramide formation 

DCs were cultured from either wild type mice or mice lacking functional acid 

sphingomyelinase (ASM-/-). The cells were grown in GM-CSF containing media for 8 days 

and in the following exposed for 24 hours to either Zn2+ (100 µM) or xanthohumol (20 µM) 

or thymol (20 µg/ml). As illustrated in Figure 11, administration of these nutrients within 24 h 

stimulated ceramide formation in DCs from wild type mice but not in DCs from ASM-/- mice. 

The observation revealed a stimulating effect of the nutrients on the acid sphingomyelinase of 

wild type mice. Figure 12 shows the dose dependence of the effect of these nutrients on 

ceramide production. LPS, which leads to DC activation through TLR4, is known to result in 

enhanced DC survival by inhibition of DC apoptosis {Banchereau, 2000 50 /id}. Thus, the 

production of ceramide was slightly, but significantly, decreased by LPS treatment (100 nM, 

24 h). Immunocytochemical analysis confirmed enhanced ceramide production induced by 

either Zn2+ or xanthohumol or thymol in wild type but not in ASM-/- DCs as indicated in 

Figure 13. 
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Figure 11: Effect of Zn2+, xanthohumol and thymol on ceramide formation in DCs from 

wild type and ASM-/- mice 

A.-C. Histograms of anti-ceramide FITC-coupled-antibody binding as obtained by FACS 

analysis in a representative experiment on wild type (upper panels) and ASM-/- (lower panels) 

DCs which were either left untreated (control, dotted line) or incubated for 24 h with Zn2+ 

(100 µM, black line, A) or xanthohumol (20 µM, black line, B) or thymol (20 µg/ml, black 

line, C). 

D.-F. Arithmetic means (n = 4-6) of the percentage of wild type (left bars) and ASM-/- (right 

bars) DCs presenting ceramide at the cell surface. Ceramide formation is shown prior to 

(control, white bars) and 24h following (black bars) treatment with either Zn2+ (100 µM, D) 



 

41 
 

or xanthohumol (20 µM, E) or thymol (20 µg/ml, F). * (p<0.05) and ** (p<0.01) represent 

significant difference from wild type cells under control conditions and # (p<0.05), ## (p<0.01)  

represent difference between wild type and ASM-/- DCs, ANOVA. 

 

 

 

 

 

Figure 12: Dose dependence of the effect of Zn2+, xanthohumol and thymol on ceramide 

production  

Dose dependent effect of Zn2+ (A), xanthohumol (B) and thymol (C) on ceramide formation. 

Arithmetic means (n = 4-5) of the percentage of wild type DCs presenting ceramide at the cell 

surface. Ceramide formation is shown prior to (control, white bar) and 24h following (black 

bars) treatment with either Zn2+ (10-1000 µM,) or xanthohumol (2-50 µM,) or thymol (2-100 

µg/ml,) or LPS (100 nM, dotted bars). * (p<0.05), ** (p<0.01) and *** (p<0.001) represent 

significant difference from control condition, ANOVA. 
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Figure 13: Immunohistochemical analysis of nutrient -induced ceramide formation in 

wild type and ASM-/- DCs  

Immunohistochemistry of anti-ceramide FITC-coupled-antibody binding and nuclei staining 

in a representative experiment on wild type (left panels) and ASM-/- DCs (right panels) either 

untreated (control, 1st, 2nd panels) or incubated for 24 h with Zn2+ (100 µM, 3rd, 4th panels) or 

xanthohumol (20 µM, 5th, 6th panels) or thymol (20 µg/ml, 7th, 8th panels). 

4.3.2. Effect of Zn2+, xanthohumol and thymol on DNA fragmentation 
The experiments were performed to elucidate, whether Zn2+, xanthohumol and thymol lead to 

DNA fragmentation, a hallmark of apoptosis. As illustrated in Figure 14, the exposure to these 

nutrients was indeed followed by an increase of cells in the sub-G1 phase, indicating DNA 

fragmentation. Figure 15 shows the dose dependence of the nutrient effect on DNA 

fragmentation. Again, LPS-stimulated DCs showed a decreased DNA fragmentation if 

compared to unstimulated cells (Figure 15). The nutrients did not elicit DNA fragmentation in 

DCs derived from ASM-/- mice (Figure 14), indicating that ASM-mediated production of 

ceramide may trigger DNA fragmentation in DCs. 
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Figure 14: Effect of Zn2+, xanthohumol and thymol on DNA fragmentation in DCs from 

wild type and ASM-/- mice 

A.-C. Histograms of DNA content in sub-G1 fraction obtained by FACS analysis in a 

representative experiment on wild type (upper panels) and ASM-/- (lower panels) DCs either 

untreated (control, dotted line) or incubated for 24 h with Zn2+ (100 µM, black line, A) or 

xanthohumol (20 µM, black line, B) or thymol (20 µg/ml, black line, C). 

D.-F. Arithmetic means (n = 4-6) of the percentage of wild type (left bars) and ASM-/- (right 

bars) DCs with fragmented DNA. DNA fragmentation is shown prior to (control, white bars) 

and 24h following (black bars) treatment with either Zn2+ (100 µM, D) or xanthohumol (20 

µM, E) or thymol (20 µg/ml, F). ** (p<0.01) and *** (p<0.001) represent significant 

difference from wild type cells under control conditions and ## (p<0.01) and ### (p<0.001) 

represent difference between wild type and  ASM-/- DCs, ANOVA.  
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Figure 15: Dose  dependence of the effect of Zn2+, xanthohumol and thymol on DNA 
fragmentation 
Dose dependent effect of Zn2+ (A), xanthohumol (B) and thymol (C) on DNA fragmentation. 
Arithmetic means (n = 4-5) of the percentage of wild type DCs with fragmented DNA. DNA 
fragmentation is shown prior to (control, white bar) and 24 h following (black bars) treatment 
with either Zn2+ (10-1000 µM, A) or xanthohumol (2-50 µM, B) or thymol (2-100 µg/ml, C) 
or LPS (100 nM, dotted bars). * (p<0.05), ** (p<0.01) and *** (p<0.001) represent significant 
difference from control condition, ANOVA. 

4.3.3. Effect of xanthohumol and thymol on caspase 8 activity 
As ceramide is known to stimulate suicidal cell death, a following series was performed to 
elucidate the effect of nutrients on caspase activation. The administration of xanthohumol and 
thymol, but not Zn2+, was indeed followed by activation of caspase 8 in wild type DCs, an 
effect reaching statistical significance at the concentration of xanthohumol (20 µM, Figure 
16E) and thymol (50 µg/ml, Figure 16F). In contrast, no stimulation of caspase 8 activation 
was observed in DCs derived from ASM-/- mice (Figure 16A-D), indicating that the effect of 
xanthohumol and thymol on caspase 8 activation was next to stimulation of ceramide 
formation.    
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Figure 16: Effect of xanthohumol, thymol on caspase 8 activity 
A., B. Histograms of caspase 8 activity as obtained by FACS analysis in a representative 

experiment on wild type (upper panels) and ASM-/- (lower panels) DCs either untreated 
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(control, dotted line) or incubated for 24 h with either xanthohumol (20 µM, black line, A) or 

thymol (20 µg/ml, black line, B). 

C., D. Arithmetic means (n = 4-6) of the percentage of wild type (left bars) and ASM-/- (right 

bars) DCs with activated caspase 8. Caspase activation is shown prior to (control, white bars) 

and 24h following (black bars) treatment with either xanthohumol (20 µM, C) or thymol (20 

µg/ml, D). *** (p<0.001) represents significant difference from wild type cells under control 

conditions and ### (p<0.001) represents difference between wild type and ASM-/- DCs, 

ANOVA.  

E., F. Dose dependent effect of xanthohumol and thymol on caspase 8 activation. Arithmetic 

means (n = 4-6) of the percentage of wild type DCs with activated caspase 8. Caspase 8 

activity is shown prior to (control, white bar) and 24h following (black bars) treatment with 

either xanthohumol (2-50 µM, E) or thymol (2-100 µg/ml, F) or LPS (100 nM, dotted bars). 

*** (p<0.001) represents significant difference from control condition, ANOVA. 

 

4.3.4. Effect of xanthohumol and thymol on caspase 3 activity 
Similar to caspase 8, caspase 3 activity was activated by administration of xanthohumol and 

thymol in wild type DCs. Again, xanthohumol at concentrations of 20 µM (Figure 17E) or 

thymol of 20 µg/ml (Figure 17F) stimulated the caspase 3 only in wild type DCs but not in 

DCs from ASM-/- mice (Figure 17A-D). Thus, activation of caspase 3, similar to that of 

caspase 8, was significantly stimulated by xanthohumol and thymol by a mechanism requiring 

functional acid sphingomyelinase.  
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Figure 17: Effect of xanthohumol and thymol on caspase 3 activity 

A., B. Histograms of caspase 3 activity as obtained by FACS analysis in a representative 

experiment on wild type (upper panels) and ASM-/- (lower panels) DCs either untreated 
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(control, dotted line) or incubated for 24 h with either xanthohumol (20 µM, black line, A) or 

thymol (20 µg/ml, black line, B). 

C., D. Arithmetic means (n = 4-6) of the percentage of wild type (left bars) and ASM-/- (right 

bars) DCs with activated caspase 3. Caspase activation is shown prior to (control, white bars) 

and 24h following (black bars) treatment with either xanthohumol (20 µM, C) or thymol (20 

µg/ml, D). ** (p<0.01), *** (p<0.001) represent significant difference from wild type cells 

under control conditions and ### (p<0.001) represents difference between wild type and ASM-

/- DCs, ANOVA.  

E., F. Dose dependent effect of xanthohumol and thymol on caspase 3 activation. Arithmetic 

means (n = 4-6) of the percentage of wild type DCs with activated caspase 3. Caspase 3 

activity is shown prior to (control, white bar) and 24h following (black bars) treatment with 

either xanthohumol (2-50 µM, E) or thymol (2-100 µg/ml, F) or LPS (100 nM, dotted bars). 

*** (p<0.001) represent significant difference from control condition, ANOVA. 

 

4.3.5. Effect of Zn2+, xanthohumol and thymol on cell membrane 

scrambling 
A final series of experiments elucidated the effect of Zn2+, xanthohumol and thymol on 

phosphatidylserine exposure of the cell membrane. Cell membrane scrambling with break 

down of phosphatidylserine asymmetry is a further hallmark of apoptosis. The 

phosphatidylserine exposure at the cell surface was determined utilizing binding of FITC-

labelled annexin V. As shown in Figure 18 exposure of DCs to Zn2+, xanthohumol and thymol 

was followed by an increase of the percentage of annexin V binding cells in wild type but not 

in ASM-/- DCs. Figure 19 shows the dose dependence of the effect of these nutrients on 

annexin V binding. 
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Figure 18: Effect of Zn2+, xanthohumol and thymol on cell membrane scrambling 

A.-C. Histograms of annexin V binding as obtained by FACS analysis in a representative 

experiment on wild type (upper panels) and ASM-/- (lower panels) DCs either untreated 

(control, dotted line) or incubated for 24 h with Zn2+ (100 µM, black line, A) or xanthohumol 

(20 µM, black line, B) or thymol (20 µg/ml, black line, C).  

D.-F. Arithmetic means (n = 4-6) of the percentage of wild type (left bars) and ASM-/- (right 

bars) DCs with annexin V binding. Annexin V binding is shown prior to (control, white bars) 

and 24h following (black bars) treatment with either Zn2+ (100 µM, D) or xanthohumol (20 

µM, E) or thymol (20 µg/ml, F). ***(p<0.001) represents significant difference from wild 

type cells under control conditions and ###(p<0.001) represents difference between wild type 

and  ASM-/- DCs, ANOVA. 
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Figure 19: Dose dependence of the effect of Zn2+, xanthohumol and thymol on cell 

membrane scrambling 

Dose dependent effect of either Zn2+ (A) or xanthohumol (B) or thymol (C) on annexin V 

binding. Arithmetic means (n = 4-5) of the percentage of wild type DCs with annexin V 

binding. Annexin V binding is shown prior to (control, white bars) and 24h following (black 

bars) treatment with either Zn2+ (10-1000 µM, A) or xanthohumol (2-50 µM, B) or thymol (2-

100 µg/ml, C) or LPS (100 nM, dotted bars). *** (p<0.001) represents significant difference 

from control condition, ANOVA. 

4.3.6. Effect of C2-ceramide on DC apoptosis 
The effect of Zn2+, xanthohumol and thymol on DC apoptosis was mimicked by addition of 

10 μM C2-ceramide, which led within 24 hours to a marked stimulation of DC apoptosis in 

both wild type and ASM-/- DCs. As illustrated in Figure 20, administration of C2-ceramide 

stimulated DNA fragmentation, caspase 8 and 3 activity and membrane scrambling in DCs 

from both wild type and from ASM-/- mice.   
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Figure 20: Effect of C2-ceramide on DC apoptosis 

Arithmetic means (n = 3) of the percentage of wild type (left bars) and ASM-/- (right bars) 

DCs presenting DNA fragmentation (A), caspase 8 activity (B), caspase 3 activity (C) and 

membrane scrambling (D). Apoptotic DCs are shown prior to (control, white bars) and 24h 

following (black bars) treatment with C2-ceramide (10 µM). * (p<0.05) and ** (p<0.01) 

represent significant difference between control and treated cells, ANOVA. 

4.3.7. Effect of Zn2+ and thymol on Bcl-2 and Bcl-xL protein abundance 
In addition, to determine whether Zn2+, xanthohumol and thymol affect proteins of the 

Bcl-2 family, we examined the expression levels of anti-apoptotic Bcl-2 and Bcl-xL proteins 

by Western blot analysis. As shown in Figure 21, treatment of DCs with either Zn2+ or thymol 

(but not xanthohumol) resulted in reduction of the abundance of anti-apoptotic Bcl-2 and Bcl-

xL proteins in wild type but not in ASM-/- DCs.  
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Figure 21: Effect of Zn2+ and thymol on Bcl-2 and Bcl-xL protein abundance 
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A.,B. Original Western blot of DCs from wild type and ASM-/- mice, which were treated with 

either Zn2+ (100 µM, 24 h, A) or thymol (20 µg/ml, 24 h, B) or left untreated (control). 

Protein extracts were analyzed by direct Western blotting using antibodies directed to Bcl-2 or 

to Bcl-xL. Protein loading was controlled by anti-α/β-tubulin antibody.  

C.-F. Arithmetic mean ±SEM (n = 3) of ratio of Bcl-2:α/β-tubulin (C, D)or Bcl-xL:α/β-

tubulin (E, F) in wild type (left bars) and ASM-/- (right bars) DCs. The abundance of Bcl-2 or 

Bcl-xL is shown prior to (control, white bars) and 24h following (black bars) treatment with 

either Zn2+ (100 µM, C, E) or thymol (20 µg/ml, D, F). * (p<0.05) indicates significant 

difference between treated and untreated wild type DCs. #(p<0.05) and ##(p<0.01) indicate 

difference between wild type and ASM-/- DCs, ANOVA.  

 

4.3.8. Effect of xanthohumol on mitochodrial menbrane potential of DCs 
Mitochondrial dysfunction is characterized by a marked reduction in mitochondrial membrane 

potential (Δψm). Thus, we determined whether DCs treated with Zn2+, xanthohumol or 

thymol loose their mitochondrial potential. Flow cytometric analysis as indicated in Figure 

22, administration of xanthohumol (but not Zn2+ or thymol) led within 24 h to mitochondrial 

membrane depolarization in wild type DCs. However, xanthohumol led to the loss of 

mitochondrial potential also in ASM-/- DCs and thus, this effect of xanthohumol is not 

mediated by ASM-induced ceramide production.  

 

 

Figure 22: Effect of xanthohumol on mitochodrial menbrane potential of wild type DCs 

Arithmetic means (n = 4 each) of percent of wild type DCs with high mitochondrial 

membrane potential under control conditions (control, white bar) or after 24 h incubation with 
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xanthohumol (2-50 µM, black bars). * (p<0.05), *** (p<0.001) indicate significant difference 

from control group, ANOVA. 

 

 
 

Figure 23: Effect of xanthohumol and thymol on cytokine secretion in LPS- treated DCs 
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A., B. Arithmetic means (n = 4 each) of IL-10 secretion by LPS-stimulated (100 ng/ml, 24h) 

DCs untreated (grey bars) or treated (black bars) with either xanthohumol (2-50 µM, A) or 

thymol (2-100 µg/ml, B). * (p<0.05) and *** (p<0.001) indicate significant difference from 

LPS-stimulated DCs, ANOVA..  

C. Arithmetic means (n = 4 each) of the IL-12p70 formation in LPS-stimulated (100 ng/ml, 

24h) DCs untreated (grey bar) or treated with xanthohumol (2-50 µM, black bars). * (p<0.05), 

** (p<0.01) and *** (p<0.001) indicate significant difference from LPS-stimulated DCs, 

ANOVA.   

D. Arithmetic means (n = 4 each) of the TNFα formation in LPS-stimulated (100 ng/ml, 24h) 

DCs untreated (grey bar) or treated with thymol (2-100 µg/ml). *** (p<0.001) indicates 

significant difference from LPS-stimulated DCs, ANOVA.  

 

4.3.9. Xanthohumol and thymol impaired and Zn2+ enhanced cytokine 

secretion by LPS- stimulated DCs. 
 

We next examined whether Zn2+, xanthohumol and thymol influence the production of 

cytokines from DCs. IL-10, IL-12p70 as well as TNFα formation was analyzed by ELISA. 

DCs were stimulated with LPS (200 ng/ml, 24 h) in the absence and presence of either Zn2+ 

(50-1000 µM), xanthohumol (20 µM) or thymol (20 µg/ml). As illustrated in Figure 23, LPS-

induced release of IL-10 was significantly blunted by xanthohumol and thymol. Moreover, 

xanthohumol decreased the production of IL-12p70 and thymol decreased the production of 

TNFα in wild type DCs (Figure 23). In contrast, Zn2+ led to an enhanced production of IL-10 

(at concentrations 100 µM and 1 mM) and TNFα (100 and 300 µM Zn2+) (Figure 24).  
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Figure 24: Effect of Zn2+ on cytokine secretion by LPS- stimulated DCs 

Arithmetic means (n = 4 each) of IL-10 (A) and TNFα (B) secretion in LPS-stimulated (100 

ng/ml, 24h) untreated (grey bars) or treated with Zn2+ (50-1000 µM, black bars. * (p<0.05), 

** (p<0.01) and *** (p<0.001) indicate significant difference from LPS-stimulated DCs, 

ANOVA.  
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5. DICUSSION 
 

The present study has been performed to explore whether DC maturation and survival are 

affected by different nutrients, such as thymoquinone, GA, Zn2+, thymol and xanthohumol. GA 

was a powerful agent inducing DC maturation. On the other hand, thymoquinone, xanthohumol 

and thymol impaired secretion of several cytokines from LPS-stimulated DCs and 

thymoquinone inhibited the maturation of DCs. Moreover, Zn2+, thymol, xanthohumol and 

thymoquinone led to enhanced DC apoptosis that could suppress the immune response, an 

effect which, at least in theory, may contribute to the anti-inflammatory action of these 

nutrients (Cho et al 2008e).  

Triggering of DC apoptosis by Zn2+, xanthohumol and thymol was mediated by acid 

sphingomyelinase and subsequent formation of ceramide. Accordingly, genetic knockout of acid 

sphingomyelinase abrogates the proapoptotic effect of these nutrients. In the present 

experiments, the stimulation of apoptosis by the nutrients was indeed mimicked by 

administration of C2-ceramide. Ceramide has been shown to participate in the stimulation of 

cell death in a variety of cells including T-lymphocytes (Gulbins et al 1997), hepatocytes 

(Lang et al 2007), erythrocytes (Bentzen et al 2007; Lang et al 2006; Nicolay et al 2006) and 

pancreatic beta cells (Newsholme et al 2007).  

In human DCs it was shown that ceramide can induce cell death in the absence of serum and 

that pharmacological inhibition of neutral/alkaline ceramidases, which leads to accumulation 

of C2 ceramide, sensitizes DCs to ceramide-induced cell death (Franchi et al 2006a; Franchi 

et al 2006b). Antigen uptake and presentation by DCs could be inhibited by exogenously 

added or endogenously produced ceramides (Sallusto et al 1996). Sphingosine-1-phosphate 

(S1P), which is generated from ceramide by the consecutive actions of ceramidase and 

sphingosine kinase was found to be a counterplayer of ceramide which can potently induce 

cell proliferation (Huwiler and Pfeilschifter 2006). S1P was shown to mediate migration of 

mature murine DCs (Czeloth et al 2005). Moreover, inhibiting sphingosine kinase suppressed 

a Th1 polarization via the inhibition of immunostimulatory activity in murine DCs (Jung et al 

2007). Thus, a balance between ceramide and S1P may be decisive for DC responsiveness. 

Compelling evidence supports the importance of DC survival in the control of immune 

responses. Mature DCs are short-lived cells both in vitro and in vivo. The short life span of 

these cells could represent an important mechanism controlling the normal immune response 

and ensuring adequate space for the constant influx of fresh DCs loaded with different 

antigens (Josien et al 2000b; Seifarth et al 2008). DCs with an increased lifespan can induce 



 

59 
 

stronger immune responses and even autoimmunity (Josien et al 2000a; Wang et al 1999). On 

the other hand, premature apoptosis in DCs could impair the nascent T cell-dependent 

response and thus weaken the defense against infectious disease. DCs appear to exhibit 

mechanisms that counterbalance apoptotic stimuli that otherwise efficiently induce apoptosis 

in macrophages. Thus, mature DCs are relatively resistant to the proapoptotic action of TNFα 

(Leverkus et al 2000; Lundqvist et al 2002a) and CD95-mediated apoptosis (Ashany et al 

1999b). Their resistance is associated with the up-regulation of FLIP {Ashany, 1999 54 /id} 

and Bcl-xL (Lundqvist et al 2002b). 

5.1. Thymoquinone 
The present study reveals a completely novel effect of thymoquinone. The LPS-induced 

stimulation of CD86, CD54, CD40 and MHC class II expression in DCs is significantly 

blunted at higher concentrations of thymoquinone. A decrease of CD86 and CD40 is typical 

for a tolerogenic DC phenotype (Chorny et al 2006b). Accordingly, thymoquinone is expected 

to blunt the immune response to LPS.  

Similar to LPS-induced maturation, the LPS-induced release of IL-10, IL-12p70 and TNFα is 

blunted in the presence of thymoquinone. For a statistically significant blunting of cytokine 

release thymoquinone concentrations of as little as 1 µM are required. Thus, it appears that 

the cytokine release is particularly sensitive to thymoquinone. 

The exposure of LPS- treated DCs to thymoquinone led to an enhanced phosphatidylserine 

scrambling. The apoptotic potency of thymoquinone has previously been shown in tumor cells 

(Gali-Muhtasib et al 2004c; Roepke et al 2007a; Rooney and Ryan 2005d; Shoieb et al 2003b) 

and is assumed to account for the anticarcinogenic potency of the drug (Aggarwal et al 2008c; 

Ali and Blunden 2003c; Gali-Muhtasib, Roessner, and Schneider-Stock 2006; Gali-Muhtasib 

et al 2008a; Mohamed, Shoker, Bendjelloul, Mare, Alzrigh, Benghuzzi, and Desin 2003; 

Salem 2005d). The present data clarify that the thymoquinone induced apoptosis may 

similarly contribute to its anti-inflammatory potential. 

In conclusion, this present study reveals that thymoquinone inhibits LPS- induced DC 

maturation, cytokine formation and survival. The observations provide mechanisms most 

likely contributing to the known anti-inflammatory effect of this medically valuable nutrient. 

5.2. Gum Arabic 
The present study reveals a completely novel effect of GA, i.e. its ability to modify the 

maturation of dendritic cells (DCs). Similar to bacterial LPS, GA exposure leads to the 

upregulation of several maturation markers, such as CD86, CD54, CD40 and MHC II. 

Treatment with GA further stimulates the formation of IL-6, IL-10 and IL-12p70 as well as 
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TNFα. The formation of those cytokines can also be stimulated by LPS. Nevertheless, the 

effects of LPS and GA are markedly different. Whereas GA has a particularly strong effect on 

IL-10 formation, LPS is by far more effective on IL-6 and IL-12p70 formation. Notably, IL-

10 is a negative feedback inhibitor of exuberant T cell responses (Li and Flavell 2008a). High 

amounts of IL-10 may lead to tolerance since IL-10 can suppress T cells or lead to regulatory 

T cell differentiation; IL-10 can also act on DCs to decrease their function or make them 

tolerogenic (Steinman and Nussenzweig 2002a). Thus, GA may, unlike LPS, exert anti-

inflammatory effects.      

The in vivo effects of GA on the immune system may involve additional mechanisms beyond 

its direct effect on DCs. GA may influence the immune response by decreasing  the plasma 

concentration of 1,25(OH)2D3 (Nasir et al 2008a), a hormone produced in activated DCs and 

macrophages (Fritsche et al 2003; Hewison et al 2003a; Hewison et al 2003b). 1,25(OH)2D3 

can act directly on T cells, but antigen-presenting cells, and in particular DCs, appear to be 

primary targets for its tolerogenic properties (Adorini et al 2004). 1,25(OH)2D3 inhibits the 

differentiation and maturation of DCs as well as their capacity to secrete the Th1-polarizing 

cytokine IL-12 (Gauzzi et al 2005; Lyakh et al 2005; Penna et al 2007; van Etten and Mathieu 

2005). GA may further lead to the formation of short-chain fatty acids (Bliss 2004b) with 

subsequent increase of serum butyrate concentrations (Matsumoto et al 2006b). Butyrate has 

in turn been shown to inhibit the functional differentiation of DCs (Millard et al 2002; 

Saemann et al 2002; Wang et al 2008a). 

Our data demonstrates that stimulation by GA resulted in an increased activity of extracellular 

signal-regulated kinase ERK1/2. Enhanced activity of this MAPK fits well the observed high-

level secretion of IL-10 by GA-stimulated DCs, since it was reported that high-level of ERK 

phosphorylation is associated with IL-10 production (Xia et al 2005). 

In conclusion, this present study reveals that GA is a powerful stimulator of DC maturation and 

cytokine formation. Thus, GA is a novel nutrient with immunoregulatory potency.  

5.3. Zn2+  
The present study unravels novel effects of Zn2+, i.e. the stimulation of ceramide production in 

and suicidal death of DCs. The ability of Zn2+ to stimulate the sphingomyelinase has been shown 

before in other cell types (Tabas 1999a).  

Zn2+ is necessary for the normal function of the immune system. However a variety of in vivo 

and in vitro effects of Zn2+ on immune cells mainly depend on the Zn2+ concentration (Ibs and 

Rink 2003a; Murakami and Hirano 2008b). The concentrations of Zn2+ required to elicit the 

effects described in the present study are comparable with Zn2+ concentrations in blood, 
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which approaches 0.3 mg/l corresponding to approximately 50 µM (Massadeh et al 2009; 

VALLEE and GIBSON 1948). However, most of blood Zn2+ is bound to protein (Blindauer et 

al 2009) and thus, the plasma concentration of free Zn2+ is lower than that of total Zn2+. 

Intracellular Zn2+ concentrations were assessed to be in the femtomol/l range, indicating that 

the cells exert tight control over cytosolic Zn2+ concentrations (Outten and O'Halloran 2001). 

Zn2+ can lead to apoptosis in several cell systems. Thus, Zn2+ influx through Ca2+-permeable 

AMPA/kainate (Ca-A/K) channels triggers reactive oxygen species generation and is potently 

neurotoxic (Weiss and Sensi 2000). Accumulation of Zn2+ in postsynaptic neurons may 

contribute to the selective neuronal loss that is associated with certain acute conditions, 

including epilepsy and transient global ischaemia (Weiss et al 2000). Zn2+ was also shown to 

induce apopotitic death in lymphocytes, including T and B cells (Ibs and Rink 2003c; Telford 

and Fraker 1995).  

Exposure of mouse DCs to LPS leads to a decrease in the intracellular Zn2+ concentration 

(Kitamura et al 2006b). Moreover, artificially depleting the intracellular Zn2+ using a Zn2+ 

chelator triggers DC maturation. On the other hand, elevating Zn2+ levels suppresses the 

ability of DCs to respond to LPS. Zn2+ may suppress the surface expression of MHC class II 

because Zn2+ is required for the endocytosis of MHC class II expressed on the plasma 

membrane and Zn2+ inhibits MHC class II vesicle trafficking to the plasma membrane from 

the perinuclear region (Kitamura et al 2006a). Besides that higher concentrations of Zn2+ can 

induce apoptosis of DCs. And thus, by lowering intracellular Zn2+ level LPS may also 

contribute to an enhanced survival of DCs. Zn2+ was also reported to abrogate the LPS-

induced release of TNF-alpha and IL-1β in monocytes, an effect mediating by increase of 

intracellular cGMP levels (von Issendorff and Cheshnovsky 2005). High concentrations of 

Zn2+ thus predispose to bacterial and viral infections (Fischer-Walker and Black 2004; Fraker 

and King 2004; Prasad 1998b), which may, however, not be primarily due to the role of Zn2+ in 

DC function and survival, but may at least partially result from deranged function of 

lymphocytes (Hosea et al 2003a; Prasad 2000b). 

In conclusion, the present study reveals that Zn2+ stimulates ceramide formation and apoptotic 

death of DCs. The effect is expected to affect the immune response.  

5.4. Xanthohumol 
According to the present study, xanthohumol stimulates the acid sphingomyelinase in DCs 

leading to ceramide formation, caspase activation and stimulation of suicidal cell death.  

Xanthohumol has previously been shown to trigger apoptosis in a wide variety of cells 

including adipocytes (Yang et al 2007; Yang et al 2008), preadipocytes (Mendes et al 2008), 



 

62 
 

leukemia cells (Dell'Eva et al 2007a; Diller et al 2005a; Harikumar et al 2009b; Lust et al 

2005b), breast cancer cells (Gerhauser et al 2002b; Guerreiro et al 2007b; Monteiro et al 

2007b; Monteiro et al 2008b; Vanhoecke et al 2005b), prostate cancer (Colgate et al 2007b), 

hepatocellular carcinoma cells (Ho et al 2008b), colon cancer cells (Pan et al 2005b), 

Bcr/Abl-transformed cells (Monteghirfo et al 2008a), fibrosarcoma (Goto et al 2005b), 

Kaposi's sarcoma (Larghero et al 2007b).  An effect of xanthohumol on DC survival has never 

been reported. 

Xanthohumol is partially effective through activation of the death receptor- and mitochondrial 

pathway (Pan et al 2005a), nuclear factor-kappaB (NFκB) and p53 modulation (Albini and 

Pfeffer 2006; Colgate et al 2007a; Harikumar et al 2009a; Monteghirfo et al 2008c). 

Moreover, xanthohumol has been shown to inhibit diacylglycerol acyltransferase (Goto et al 

2005a) and to upregulate the function of the E-cadherin/catenin complex (Vanhoecke et al 

2005a). Xanthohumol may increase the cellular content of reactive oxidant species but at the 

same time may exert antioxidant activity (Vogel and Heilmann 2008). Moreover, xanthohumol 

has been shown to upregulate the detoxification enzyme NADPH-quinone oxidoreductase (Dietz 

et al 2005). An involvement of sphingomyelinase and/or ceramide in the effects of 

xanthohumol has not been published.  

In contrast to its proapoptotic effect on nucleated cells, xanthohumol protects erythrocytes 

against suicidal cell death (Quadri et al 2009), which is, similar to apoptosis of nucleated 

cells, stimulated by stimulation of sphingomyelinase and subsequent formation of ceramide 

(Brand et al 2008b; Lang et al 2008a; Sopjani et al 2008a; Sopjani et al 2008c; Wang et al 

2008b). The mechanisms accounting for the differences between nucleated cells and 

erythrocytes during suicidal death remain to be elucidated. Clearly, the suicidal death of 

erythrocytes lacking nuclei is not expected to be modified by transcription factors such as 

NFκB (Lang, Gulbins, Lerche, Huber, Kempe, and Foller 2008a). 

The xanthohumol-induced DC apoptosis does, of course, not rule out additional mechanisms 

contributing to the anti-inflammatory effect of this nutrient.  

In conclusion, xanthohumol stimulates ceramide formation and apoptotic death of DCs. The 

effect is expected to affect the immune response.  

5.5. Thymol 
Our study reveals that thymol stimulates the acid sphingomyelinase in DCs with subsequent 

formation of ceramide, caspase activation, down- regulating the expression of anti- apoptotic 

Bcl-2 and Bcl-xL proteins and finally triggering of suicidal cell death.  
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To the best of our knowledge, an effect of thymol on sphingomyelinase or on ceramide 

formation has never been shown before. Thymol has been shown to exert some antioxidant 

activity (Undeger et al 2009a) and to decrease the cytosolic Ca2+ activity (Suzuki et al 1987). 

Both effects would not be expected to induce cell death. In contrast, stimulation of 

sphingomyelinase and subsequent formation of ceramide are well known to induce apoptosis 

in a variety of cell types (Carpinteiro et al 2008a; Grassme et al 2008b; Jana et al 2009a; 

Lang, Gulbins, Lerche, Huber, Kempe, and Foller 2008a; Perrotta et al 2008b; Smith and 

Schuchman 2008b). 

The observation, that thymol stimulates caspases and suicidal cell death, is similarly novel. In 

erythrocytes thymol even protects against suicidal cell death (Mahmud, Mauro, Föller, and 

Lang 2009), which is induced by stimulation of sphingomyelinase and subsequent formation 

of ceramide (Brand et al 2008a; Lang, Gulbins, Lerche, Huber, Kempe, and Foller 2008a; 

Sopjani, Foller, Dreischer, and Lang 2008a; Sopjani et al 2008b; Wang, Mahmud, Foller, 

Biswas, Lang, Bohn, Gotz, and Lang 2008b). The present oberservations do not disclose the 

mechanisms underlying opposite effects of thymol on cell survival of erythrocytes and DCs. 

Clearly, the regulation of ceramide formation is distinct in DCs and erythrocytes. Moreover, 

the signaling of suicidal death is different between erythrocytes and nucleated cells, as 

erythrocytes lack mitochondria and nuclei, key players in apoptosis (Lang, Gulbins, Lerche, 

Huber, Kempe, and Foller 2008a).  

The thymol induced apoptosis is expected to weaken the immune response, an effect which, at 

least in theory, may limit its use in the treatment of infectious disease. However, the effect on 

pathogens may be more pronounced and thymol may thus favourably influence the course of 

infectious disease (Burt 2004b; Cervenka et al 2008a; Corbo et al 2008b; Lee and Jin 2008a; 

Razzaghi-Abyaneh et al 2008a). Nevertheless, the present observations provide a caveat on the 

use of thymol in infectious disease. On the other hand, the thymol induced apoptosis may 

exert some antiinflammatory action.   

In conclusion, thymol stimulates ceramide formation and apoptotic death of dendritic cells. 

The effect is expected to affect the immune response.
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