Aus dem Department für Augenheilkunde Tübingen Universitäts-Augenklinik Forschungsinstitut für Augenheilkunde Direktor: Professor. Dr. E. Zrenner

Korrektur von Rot- bzw. Grünanomalie mittels Farbfilter

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard-Karls-Universität zu Tübingen

vorgelegt von

Barbara Junger

aus

Memmingen

2009

Dekan:

Professor Dr. I. B. Autenrieth

1. Berichterstatter:	Privatdozentin Dr. A. Kurtenbach
2. Berichterstatter:	Professor Dr. J. Kremers

1	Ein	leitu	ng	1
	1.1	Das	Farbensehen	1
	1.2	Fart	ometrik	3
	1.3	Netz	zhaut Physiologie	5
	1.3	.1	Photorezeptoren beim Menschen	5
	1.3	.2	Signalfluss in der Netzhaut	8
	1.3	.3	Ganglienzellen	8
	1.3	.4	Postretinaler Informationsfluss	10
	1.3	.5	Die drei Subtypen des visuellen Systems	10
	1.4	Fart	osehstörungen und Häufigkeit	11
	1.4	.1	Protanopie und Deuteranopie	11
	1.4	.2	Protanomalie und Deuteranomalie	12
	1.4	.3	Inzidenz der Farbsehstörungen	14
	1.4	.4	Genetik der Farbsehstörungen	15
	1.5	Korr	ektur von Farbanomalien durch Filter	19
	1.6	Ziele	e	21
2	Met	thode	ən	22
2	Me t 2.1	thode Vers	en suchspersonen	22 22
2	Met 2.1 2.1	t hode Vers	en suchspersonen Einschlusskriterien	22 22 22
2	Met 2.1 2.1. 2.1.	t hode Vers .1 .2	en suchspersonen Einschlusskriterien Ausschlusskriterien	22 22 22
2	Met 2.1 2.1 2.1 2.1	thode Vers .1 .2 .3	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung	22 22 22 22 23
2	Met 2.1 2.1 2.1 2.1 2.1	thode Vers .1 .2 .3 .4	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung	22 22 22 22 23 23
2	Met 2.1 2.1 2.1 2.1 2.1 2.1	thode Vers .1 .2 .3 .4 .5	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung	22 22 22 22 23 23 23
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2	thode Vers .1 .2 .3 .4 .5 Vers	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung suchsaufbau	22 22 22 22 23 23 23 23 24
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3	thode Vers .1 .2 .3 .4 .5 Vers Die	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung suchsaufbau Farbfilter und ihre Anpassung	22 22 22 22 23 23 23 23 24 25
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers Die .1	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung suchsaufbau Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter	22 22 22 23 23 23 23 23 23 25
2	Met 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers Die .1 .2	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung Randomisierung Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter Kalibration	22 22 22 23 24 23 23 24 24 23 23 24 25 24 23 24 24 23 23 24 25 25 25 25 25 25 23 23 23 23 23 23 23
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.3 2.3 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers Die .1 .2 .3	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Randomisierung suchsaufbau Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter Kalibration Anpassung der Farbfilter mit dem Color Vision Test (CVT)	22 22 22 23
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3 2.3 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers .1 .1 .2 .3 Unte	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Augenuntersuchung Randomisierung Suchsaufbau Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter Kalibration Anpassung der Farbfilter mit dem Color Vision Test (CVT) ersuchung zum Testen der Farbfilter	22 22 22 23 23 23 23 23 24 25 25 28 28 28 28
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers .1 .2 .3 Unte	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Augenuntersuchung Randomisierung suchsaufbau Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter Kalibration Anpassung der Farbfilter mit dem Color Vision Test (CVT) ersuchung zum Testen der Farbfilter Ishihara-Tafeln	22 22 22 23 23 23 23 23 24 25 25 28 28 28 28 28 28 28
2	Met 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	thode Vers .1 .2 .3 .4 .5 Vers .1 .2 .1 .2 .1 .2	en suchspersonen Einschlusskriterien Ausschlusskriterien Einverständniserklärung Augenuntersuchung Augenuntersuchung Randomisierung suchsaufbau Farbfilter und ihre Anpassung Die Transmissionskurven der Farbfilter Kalibration Anpassung der Farbfilter mit dem Color Vision Test (CVT) ersuchung zum Testen der Farbfilter Ishihara-Tafeln Hardy-Rand-Rittler (HRR)	22 22 22 23 23 23 23 23 23 24 25 25 28 28 28 28 28 32 32 32

	2.4.4	4 k	Kontrast-Test	43
2.4.5 Das		5 [Das Anomaloskop	
	2	4.5.1	Das monokulare Anomaloskop	
	2	452	Binokulares Anomaloskop	49
	2.5	Statis	stische Auswertung der Ergebnisse	50
3	Fra	ehnis	se	51
Ŭ	3 1	Finte	ilung entsprechend dem Anomaloskonabaleich	51
	3.2	Filtor	annassung mit dem Color Vision Test (CVT)	51
	3.2	lehih		
	2.0		מוג	
	3.4 2.5			
	3.5	CAD		
	3.6	Kontr	ast-lest	
	3.7	Das r	nonokulare Anomaloskop	
	3.8	Das t	binokulare Anomaloskop	77
4	Disl	kussi	on	81
	4.1	Meth	odendiskussion und Fehlerdiskussion	84
	4.1.	1 (Color Vision Test (CVT)	84
	4.1.2	2 I	shihara-Tafeln	87
	4.1.3	3 A	AO-HRR-Tafeln	88
	4.1.4	4 (CAD	
	4.1.	5 ł	Kontrast-Test	90
	4.1.0	6 1	Monokulares und binokulares Anomaloskop	91
	4.2	Gene	ral Diskussion	96
5	Zus	amme	enfassung	99
6	Lite	raturv	/erzeichnis	
7	Anh	ang		XIII

1 Einleitung

Über das Sehen erhält der Mensch neunzig Prozent der Sinneseindrücke, folglich sind die Augen das wichtigste Sinnesorgan des Menschen. Viele der optischen Eindrücke werden nicht bewusst wahrgenommen, da ein Großteil aller Umwelteindrücke sofort wieder vergessen wird und so bleibt nur ein kleiner Teil der vielen Informationen, der tatsächlich bis ins Bewusstsein vordringt.

1.1 Das Farbensehen

Trifft elektromagnetische Strahlung in Wellenlängen von 380 bis 760nm auf die Retina, nehmen wir farbiges Licht wahr. Menschen sind fähig eine erstaunliche Farbenvielfalt zu unterscheiden. Aus der Variabilität der spektralen Zusammensetzung von Licht resultiert eine Farbskala von mehr als 100.000 Farben, deren Unterscheidung und Namensgebung einzig durch Erfahrung möglich ist. Trotz dieser Vielfalt beansprucht keine Kultur mehr als elf Farbennamen, um die Qualität einer jeder Farbe zu charakterisieren (Boynton, 1975).

Additives und subtraktives Farbensehen

Im 19. Jahrhundert entdeckten die Physiologen Young (Young, 1802), Helmholtz (Helmholtz, 1867) und Maxwell (Maxwell, 1855), dass alle Farben des sichtbaren Spektrums aus drei Grundfarben verschiedener Wellenlängen erzeugt werden können. Zu Beginn des 19. Jahrhunderts hatte sich Thomas Young davon überzeugt, dass es nur ein paar wenige Grundfarben bzw. Elementarfarben gibt. In seiner Theorie von 1802 schlug er Rot, Gelb und Blau vor und entschied sich später für Rot, Grün und Blau. Dieses physikalische Konzept der Trichromatizität ist etwa 50 Jahre später von dem schottischen Physiker James Clerk Maxwell bestätigt worden (Maxwell, 1855). Maxwell bewies, dass alle Farben aus drei nahezu beliebig wählbaren Grundfarben gemischt werden können, unter der Voraussetzung, dass sich die drei Ausgangsfarben nicht zu ähnlich sind.

1

Wenn auf die gleiche Netzhautstelle Licht verschiedener Wellenlängen fällt, kommt additives Farbensehen zustande (vgl. **Abbildung 1-1**). Sind diese Farben monochromatisch, so entstehen Farben, welche der Farbtönung eines anderen Bereichs des Spektrums oder dem nicht spektralen Bereich zwischen Rot und Blau (Purpur) entsprechen. Das kann mit Hilfe einer weißen Leinwand, auf die man drei Farben (Blau, Grün und Rot) überlappend projiziert, demonstriert werden. Durch additive Farbmischung entstehen Cyan, Magenta, Gelb und Weiß.

Abbildung 1-1: Additive Farbmischung: bei überlappender Projektion der Grundfarben Grün, Rot und Blau entstehen Gelb, Magenta und Cyan; Weiß resultiert bei Projektion aller drei Farben übereinander.

Subtraktive Farbmischung (vgl. **Abbildung 1-2**) bedeutet selektive Absorption von Wellenlängen, durch die physikalischen Mechanismen der Lichtabsorption und Lichtreflexion.

Abbildung 1-2: Subtraktive Farbmischung: Es entstehen Cyan, Magenta, Gelb und Schwarz.

Der deutsche Physiologe Hermann von Helmholtz postulierte, dass im Auge drei getrennte Rezeptoren bzw. Pigmente für die Grundfarben Blau, Grün und Rot vorhanden sind (Helmholtz, 1867). Helmholtz nahm an, dass die spezifischen Erregungen dieser drei Rezeptoren aufgrund ihrer Empfindlichkeit für unterschiedliche Wellenlängen die jeweiligen Farbsensationen entstehen lassen. Je nach Mischung dieser Farben ließen sich sämtliche anderen komponieren und wahrnehmen. Darauf basiert die Theorie des trichromatischen Sehens, laut der im menschlichen Auge drei verschiedene Zapfentypen für das gesamte Farbensehen zur Verfügung stehen.

Die konkurrierende Theorie dazu war die Gegenfarbentheorie, die nur wenige Jahre später von Hering vorgestellt wurde (Hering, 1878). Sie geht von drei antagonistischen Prozessen aus (Blau-Gelb-, Rot-Grün- sowie Hell-Dunkel-Antagonismus) über welche Farben bzw. Grautöne wahrgenommen werden können. Die vier Grundfarben sind jeweils in Gegenpaaren organisiert, Blau/Gelb (B/Y) und Rot/Grün (R/G). Die Partner in jedem Paar sind opponent, sie können nicht gleichzeitig wahrgenommen werden. Anders verhält es sich bei Farbkombinationen zwischen den Farbpartnern der beiden Paare. Aus der Kombination von Rot und Blau resultiert beispielsweise Violet, aber es ist nicht möglich, die zugrunde liegenden Farben der Farbkombination zu erkennen.

Auf den ersten Blick erscheinen die beiden Aussagen unvereinbar. Von Kries entwickelte 1882 die "Zonentheorie". Indem er erstmals die Farbverarbeitungsebene unterschied, gelang es ihm, beide Theorien zu vereinen. Erst viel später, 1957, wurde Farbopponenz quantitativ von Hurvich und Jameson beschrieben.

1.2 Farbmetrik

Nicht nur die Verarbeitungsebenen unterscheiden sich, sondern auch die Farbschattierungen. Jede Farbe wird über Farbton, Sättigung und Helligkeit definiert. Daraus ergibt sich eine Diskriminationsleistung von bis zu sieben Millionen Farbvalenzen. Trägt man Farbton, Sättigung und Helligkeit als Achsen in einem dreidimensionalen Koordinatensystem auf, so erhält man einen Farbraum, in dem sämtliche Farbenvalenzen dargestellt sind. Die Farbmetrik stellt das visuelle Ergebnis einer Farbbetrachtung mittels mathematischer Formeln dar.

3

Das CIE-System

1931 legte die **C**ommission Internationale de l'Eclairage (Internationale Beleuchtungskommission, CIE) als Basis für ein internationales farbmetrisches System drei Spektralfarben als Primärvalenzen fest, die so genannten Normfarbwerte. Aus der additiven Mischung von drei Normfarbwerten X(700nm, Rot), Y(546nm, Grün) und Z(435nm Blau) können alle anderen Farben erzeugt werden. So erhält man aus der Sinnesempfindung Farbe (F) Maßzahlen, die von Grassmann (Grassmann, 1853) mathematisch definiert wurden (Gleichungen 1 und 2):

(1)
$$f^*(F) = x^*(X) + y^*(Y) + z^*(Z)$$

die Buchstaben f*, x*, y*, z* sind Gewichtungsfaktoren. Für die additive Mischung der Farbe Weiß gilt Gleichung 2:

(2)
$$x^* + y^* + z^* = f^* = 1$$

Das geometrische Korrelat der Sinnesempfindung Farbe stellt die Normfarbtafel (vgl. **Abbildung 1-3**), wie sie in DIN 5033 realisiert ist, dar.

Abbildung 1-3: Normfarbtafel nach DIN 5033 mit dem Weißbereich um E. An der Basis befinden sich Purpurtöne. Die additive Mischung zweier beliebiger Farben liegt auf der Verbindungsgeraden zwischen ihnen, Komplementärfarben auf einer Geraden durch den Weißpunkt E.

Die Normfarbtafel wurde 1931 von Farbmetrikern festgelegt, um Farbmaßzahlen vergleichen zu können. Sie entsteht, wenn man durch den oben beschriebenen Farbraum mit Farbton, Sättigung und Helligkeit als Achsen eine senkrecht zur Helligkeitsachse verlaufende Ebene legt. Daraus resultiert eine Fläche mit sämtlichen Farben gleicher Helligkeit.

Für die farbmetrischen Erfassung dieser zweidimensionalen Fläche müssen die drei Normfarbwerte in zwei Normfarbwertanteile umgerechnet werden (Gleichung 3 und 4):

(3)
$$x = \frac{x}{x + y + z}$$
 (4) $y = \frac{y}{x + y + z}$

In der Mitte des Farbdreiecks befindet sich der Weißpunkt E mit den Koordinaten (0.33/0.33). Weiß entsteht durch additive Farbmischung von Komplementärfarben. Purpur nimmt eine besondere Stellung innerhalb des Farbdreiecks ein. Es entsteht durch additive Mischung monochromatischen Lichts von beiden Grenzen des Spektrums. Die additive Mischung zweier beliebiger Farben der Normfarbtafel ergibt eine Farbe, die sich auf der Geraden dazwischen befindet. Die Gleichung dieser Geraden wird metamere Gleichung genannt, da sie eine Sinnesempfindung beschreibt und nicht einen mathematischen Zusammenhang.

1.3 Netzhaut Physiologie

Die Fähigkeit zwischen Wellenlängen zu differenzieren, ermöglicht es, Farben zu sehen. Vorraussetzung dafür sind, wie zuvor beschrieben, mehrere Photorezeptoren mit unterschiedlichen spektralen Absorptionsmaxima.

1.3.1 Photorezeptoren beim Menschen

Das menschliche Auge besitzt zwei Rezeptorarten, Zapfen und Stäbchen. Es existieren ca. 120 Millionen Stäbchen, die somit in der Retina rund 20-mal häu-

Einleitung

figer vorkommen als Zapfen. Die Pigmente aller Rezeptoren setzen sich aus je einem Proteinanteil, dem Opsin, und einem Chromophor, dem 11-cis-Retinal, zusammen. In gegenseitiger Wechselwirkung bestimmen sie das spezifische Absorptionsverhalten des jeweiligen Pigments. Das Opsinmolekül (vgl. **Abbildung 1-4**) mit seinen sieben Helixes ist in die Lipiddoppelschicht der Zellmembran eingelagert. Die Helixes sind durch intra- und extrazelluläre Loops miteinander verbunden. Dadurch entsteht eine Tasche mit zentraler Bindungsstelle, welche sowohl bei den Zapfen als auch bei den Stäbchen auf Helix 7 lokalisiert ist (Sharpe et al., 1999).

Abbildung 1-4: Lage und Struktur der Opsinmoleküle (rechts), welche in die Zellmembran der Zapfenaußensegmente eingelagert sind (links) (nach Sharpe et al., 1999).

Stäbchen

Stäbchen besitzen Rhodopsin als Photopigment, dessen Absorptionsmaximum bei 500nm liegt. Der genetische Code befindet sich auf Chromosom 3 und wird somit autosomal vererbt (Nathans et al., 1992). Die Anzahl der Stäbchen nimmt ausgehend vom Rand der Fovea centralis, dem Netzhautzentrum, kontinuierlich zu, bis sie ihr Maximum bei 18° erreicht. In der Fovea gibt es keine Stäbchen. Durch ihre hohe Lichtempfindlichkeit sind die Stäbchen überwiegend für das Sehen bei Dämmerung verantwortlich.

Zapfen

Die Wellenlängendiskrimination als Fähigkeit Farben zu sehen und zu unterscheiden, wird durch Vergleich der Erregung in zwei Zapfentypen ermöglicht. Die verschiedenen Zapfen der menschlichen Retina, sind nach dem Bereich des Spektrums benannt, in dem ihre Lichtempfindlichkeit am größten ist: S-Zapfen (engl.: S = short) für den kurzenwelligen, M-Zapfen (engl.: M = middle) für den mittelwelligen und L-Zapfen (engl.: L = long) für den langwelligen Bereich. Die Absorptionsspektren der S-, M- und L-Zapfen-Pigmente weisen unterschiedliche Maxima auf. Die maximale Absorption der S-Zapfen findet bei etwa 440nm, die der M-Zapfen bei 530nm und die der L-Zapfen bei 560nm statt (Nathans et all., 1992; Sharpe et al., 1999; Schnapf et al., 1987; Bowmaker et al., 1980; Boynton, 1979). Die Absorptionskurven überlappen an den benachbarten Grenzen (vgl. **Abbildung 1-5**).

Abbildung 1-5: (A) Spektrale Empfindlichkeits- und (B) Absorptionskurven der Zapfenpigmente (nach Sharpe et al., 1999).

Die drei Zapfentypen enthalten jeweils unterschiedliche Photopigmente, deren Absorptionsverhalten eng an die Struktur gebunden ist. Nur etwa ein Zehntel aller Zapfen des menschlichen Auges sind S-Zapfen. In und um die Fovea centralis fehlen sie vollständig. Sie befinden sich vor allem in der benachbarten Region um die Fovea. Die übrigen Zapfen bestehen zu ca. einem Drittel aus Mund zu zwei Dritteln aus L-Zapfen. Diese sind überwiegend im Bereich der Fovea centralis lokalisiert, ihre Dichte nimmt mit zunehmender Distanz ab. Das Gen für das S-Zapfenpigment liegt auf Chromosom 7 und wird autosomal vererbt (Nathans et al., 1986a). Die Gene für die Photopigmente der M- und L- Zapfen sind auf dem X-Chromosom lokalisiert und werden X-chromosomal vererbt (Deeb et al., 1992; Nathans et al., 1986b).

1.3.2 Signalfluss in der Netzhaut

Die Photorezeptorsignale werden über die Zapfenbahn bzw. die Stäbchenbahn an Ganglienzellen weitergeleitet (Wässle and Boycott, 1991). Hierbei finden die ersten Schritte der Signalverarbeitung statt. Die Rezeptoren sind teils direkt über die Bipolarzellen, teils indirekt über Horizontal- und Amakrinzellen mit den Ganglienzellen verbunden, so dass man einen direkten von einem lateralen Signalfluss unterscheiden kann (Boycott und Kolb, 1973; Cajal 1933). Bestimmte Zelltypen reagieren auf Licht mit Depolarisation bzw. Hyperpolarisation, was so genannte ON- und OFF-Signale erzeugt (Schiller, 1992; Hartline, 1938; Hering, 1878). Mit Hilfe dieses komplexen Prozesses wird die Signalverarbeitung schon auf Retinaebene gewährleistet. ON-Kontakte werden über invaginierende Synapsen, OFF-Signale über basale, oberflächliche Synapsen gebildet (Gouras, 1971; Kolb, 1970).

1.3.3 Ganglienzellen

Bei adäquater Netzhautreizung führen meist mehrere Rezeptoren eines umschriebenen Retinabereichs zur Aktivitätsänderung einer Ganglienzelle. Dieser Netzhautbereich wird als rezeptives Feld (RF) bezeichnet. Die räumliche Ausdehnung des RFs nimmt in der Regel von der Fovea zur Netzhautperipherie zu. Die RFs benachbarter Neurone überlappen sich. Sie sind Ausdruck der Signalkonvergenz bzw. -divergenz der retinalen Nervenzellen.

Bei den Ganglienzellen gibt es zwei Hauptklassen, benannt nach ihrer Morphologie: "midget-Zellen" und "parasol-Zellen". Die midget (kleine) Ganglienzellen zeigen überwiegend ein tonisches Antwortverhalten und bilden ca. 80% der gesamten Ganglienzellen, 10% der Ganglienzellen sind parasol-Zellen mit überwiegend phasischem Antwortverhalten und die restlichen ca. 10% sind "diffuse" Zellen und gehören keiner der beiden Hauptklassen an. Bei den midget-Zellen

Einleitung

wird das RF in funktionell unterschiedliche Bereiche aufgeteilt. Sie sind meist "konzentrisch" organisiert: Das RF-Zentrum ist von einer ringförmigen RF-Peripherie umgeben, welche sich aus spezifischen Zapfentypen zusammensetzt (Zrenner, 1983; Gouras, 1968). RF-Zentrum und -Peripherie dieser Ganglienzellen beeinflussen sich antagonistisch, so dass Lichtreize verschiedener Wellenlängenzusammensetzung ein Farbopponenzsignal hervorrufen. Je nach spektraler Zusammensetzung eines auf das RF einfallenden Lichtreizes, resultieren unterschiedliche Erregungsmuster in der Ganglienzelle. Lange Wellenlängen können z. B. die Zelle im RF-Zentrum erregen ("+"), während Wellenlängen des mittleren Bereichs sie dort hemmen ("-"). Solch eine Zelle wird L+/Mgekennzeichnet. L-/M+, M+/L- und M-/L+ werden ebenfalls gefunden.

Ganglienzellen, deren Signale aus S-Zapfen stammen, gehören zu der "diffusen" Zellklasse und weisen keine räumliche Trennung von Zentrum und Peripherie auf. Die RFs der S-Zapfen sind etwa zehn Mal größer als die L/M-RFs (De Monasterio, 1978; De Monasterio et al., 1975; Gouras, 1968, 1967). Daher ist die visuelle Auflösung der S/Y-Ganglienzellen sowohl räumlich als auch zeitlich schlechter, als die des L/M-Systems (Ingling et al., 1983; Thoma et al., 1982, 1980).

Die zweite Hauptklasse der Ganglienzellen, die "parasol" Zellen ist morphologisch größer und zeigt meist ein phasisches, nicht opponentes Antwortverhalten (Gouras, 1968). Bei Lichtreizung werden die Signale aus dem RF additiv verknüpft, so dass sich ein spektral breitbandiges Signal ergibt. Die Ganglienzellen antworten auf jede Wellenlänge gleichgerichtet, davon etwa 65% mit Erregung, die Übrigen mit Hemmung (Hartline 1938). Sie gehören zu den bewegungsempfindlichen Neuronen, die besonders durch einen Hell-Dunkel-Kontrast aktiviert werden. Ihre Aktivität hängt von der Winkelgeschwindigkeit und Größe des bewegten Objektes ab. Teilweise sind die bewegungsempfindlichen Gangleinzellen zusätzlich richtungsempfindlich.

9

1.3.4 Postretinaler Informationsfluss

Die Axone der Ganglienzellen bilden den Sehnerv, bestehenden aus ca. einer Millionen Nervenfasern. Die Nervenfasern der nasalen Retinahälfte kreuzen im Chiasma opticum zur Gegenseite. Sie bilden zusammen mit den ungekreuzten Nervenfasern der temporalen Retinahälfte den Traktus Optikus und ziehen zu der ersten Umschaltstelle der Sehbahn im Gehirn, dem Corpus Geniculatum Laterale.

Das Corpus Geniculatum Laterale (CGL)

Im CGL werden die Ganglienzellaxone auf das 2. Neuron umgeschaltet. Das CGL besteht aus sechs Schichten: vier dorsalen parvozellulären und zwei ventralen magonzellulären Schichten (Leventhal et al., 1981; Minkowski, 1920). Zusätzlich gibt es eine sekundäre koniozelluläre Schicht (Dacey et. al, 2000; Dacey, 1999; Dacey & Lee, 1994).

Jedes Auge projiziert wie über das Chiasma opticum auch in das kontralateralen CGL, so dass drei der sechs Schichten zusätzlich Erregungsreize vom kontralateralen Auge erhalten. Die magnozellulären, parvozellulären und koniozellulären Zellen zeigen eine, der Retina analoge, funktionelle Trennung des visuellen Systems, welche durch räumliche Trennung unterstützt wird.

1.3.5 Die drei Subtypen des visuellen Systems

Die drei verschiedenen Ganglienzellen stellen das morphologische Korrelat dreier signalverarbeitender Sehsysteme dar, welche von der Ganglienzellschicht der Retina bis in den Sehkortex parallel verlaufen (De Lange, 1958). Die kleineren, überwiegend tonischen midget Ganglienzellen sind die erste neuronale Stufe des parvozellulären Systems, während die größeren phasischen parasol Zellen dem magnozellulären System unterstellt sind (Zrenner et al., 1990; Lennie 1980; Schiller et al., 1978, 1977; Gouras, 1969, 1968; Enroth-Cugell et al., 1966). Dazwischen befindet sich das koniozelluläre System, welches Blausignalimpulse weiterleitet. Das magnozelluläre System zeichnet sich durch hohe Leitungsgeschwindigkeit, hohe Kontrastempfindlichkeit, geringe Sehschärfe und Farbenblindheit aus (Derrington et al., 1984; Shapley et al., 1981). Damit ist es ideal für Bewegungswahrnehmung und perspektivisches Tiefensehen ausgestattet. Das evolutionär jüngere parvozelluläre System befähigt über Farbdiskrimination eine genaue Analyse der Umwelt (De Monasterio et al. 1975; De Valois et al., 1966).

1.4 Farbsehstörungen und Häufigkeit

Sogar normales Farbensehen kann zwischen zwei Individuen stark variieren. Gründe dafür sind Unterschiede in der optischen Dichte der Photo- bzw. Makulapigmente oder der Linsendichte oder auf genetischer Ebene Polymorphismen der normalen M- und L-Pigmente (vgl. Kapitel. 1.4.4). Die häufigsten Farbsehstörungen sind angeboren. Sie verschlechtern sich im Laufe eines Lebens üblicherweise nicht. Ihre Existenz wurde erstmals im 18. Jahrhundert von John Dalton beschreiben (Dalton, 1789), der selbst davon betroffen war. Vor ungefähr 200 Jahren - im Herbst 1794 - hielt er vor der Literarischen und Philosophischen Gesellschaft im britischen Manchester eine Vorlesung über sein Sehvermögen. Er beschrieb, dass er vor allem Scharlachrot mit Grün und Rosa mit Blau verwechseln würde. Auch könne er rotes Sigelwachs farblich nicht von Lorbeerblättern unterscheiden. Am meisten störe ihn, dass eine Pflanze, die er als Geranium zonale (Storchschnabel) bezeichnete, ihr Aussehen in Abhängigkeit von der Lichtquelle ändere. Die Blätter, von normal Farbsehenden als rosa bezeichnet, kamen Dalton im Tageslicht himmelblau vor, bei Kerzenschein allerdings eher gelb mit einem Rotstich.

1.4.1 Protanopie und Deuteranopie

Es gibt 2 Arten der Rot-Grün-Farbsehstörung, Protanopie und Deuteranopie. Protanope können rote Farben nicht erkennen und differenzieren. Sie sehen das Spektrum von den kurzen bis zu den langen Wellenlängen. Dazu gehört Blau, Neutral (der durchschnittliche Neutralpunkt befindet sich etwa bei 492nm) und Zitronengelb (vgl. **Abbildung 1-6**). Ihr Helligkeitsmaximum befindet sich bei 540nm, das Normalsichtiger bei 555nm. Farben aus dem langen Wellenlängenbereich erscheinen Protanopen dunkler als normal.

Abbildung 1-6: Sichtbares Spektrum von Protanopen, Deuteranopen und Tritanopen im Vergleich zu Normalen (nach Sharpe et al., 1999).

Ähnlich sehen Deuteranope im Spektrum Blau, Neutral (der durchschnittliche Neutralpunkt befindet sich bei ihnen um ca. 500nm) und Gelb, aber kein Grün. Außerdem gibt es in Ihrem Spektrum einen weiteren Neutralpunkt bei einem nichtspektralen Purpurrot, komplementär zur 500nm. Das Helligkeitsmaximum Deuteranoper befindet sich etwa bei 560nm. Dies hat im Gegensatz zu Protanopen keinen Einfluss auf die Helligkeitswahrnehmung im Vergleich zum Normalen.

Für beide, Protanope und Deuteranope ist die Sättigung des Spektrallichts in der Neutralzone null und nimmt von dort zu beiden Enden des Spektrums zu. Diese "Dichromaten" nutzen Sättigungs- und Helligkeitsunterschiede, um Farben zu identifizieren, so dass es seltener zu Farbverwechslungen kommt, als man erwarten würde.

1.4.2 Protanomalie und Deuteranomalie

Häufig werden Rot-Grün-Farbsehschwache auch fälschlich als Rot-Grün-Blinde bezeichnet. Sie sind nicht farbblind, sondern ihre Fähigkeit Farben im mittelund langwelligen Spektrum zu unterscheiden, ist gemindert, man spricht von einer Anomalie. Betrifft dies den Rotbereich, so heißt die Farbsehstörung Protanomalie, im grünen Bereich handelt es sich um eine Deuteranomalie. Beide Typen sind weiterhin in der Lage Rot und Grün zu unterscheiden. Sie werden auch als anomale Trichromaten bezeichnet, da sie aus den drei Grundfarben alle Farben erzeugen können, wobei sich die Intensität und Sättigung der Grundfarben von den normal farbsichtiger Personen unterscheidet.

Der Farbsinn kann unter anderem mit einem Anomaloskop untersucht werden (vgl. **Kapitel 3.6**). Hierbei handelt es sich um ein optisches Instrument, mit dem den Probanden zwei Halbfelder zum Abgleich präsentiert werden. Anomaloskope funktionieren nach dem Prinzip der additiven Farbmischung (vgl. **Kapitel 1.1.1**). Bei den so genannten RAYLEIGH matches (Rayleigh, 1881) soll ein mit einem Mischlicht erzeugtes gelbes Testlicht durch additive Mischung aus Rot und Grün abgeglichen werden.

Abbildung 1-7: Testfeld des Anomaloskops. RG, Rot-Grün-Mischlicht; G, Gelblicht. Bei idealem Farbabgleich der beiden Halbfelder verschwindet die Trennungslinie (nach Sharpe et al.,

1999).

Bereits 1881 hat Lord Rayleigh erkannt, dass bei Farbsehstörungen charakteristische Fehler auftauchen. Protanomale benötigen im Vergleich mehr Rot um Gelb aus Rot und Grün zu erzeugen und werden daher als Rot-Schwach bezeichnet. Entsprechend werden Deuteranomale Grün-Schwach genannt, da sie für die Gelbmischung mehr Grün benötigen. Das Spektrum Protanomaler ist im langen Wellenlängenbereich verkürzt, allerdings nicht so sehr wie bei Protanopen. Aber ihr maximaler Helligkeitswert befindet sich etwa in dem Bereich der Protanopie. Bei deuteranomalen Personen ist das Spektrum normal lang, und auch die Helligkeit befindet sich an normaler Stelle. Die maximale Rezeptorempfindlichkeit Protanomaler liegen bei 440nm, 543nm, 553nm, die Deuteranomaler bei 440nm, 560nm und 566nm (vgl. **Abbildung 1-8**).

Abbildung 1-8: Die häufigsten Anomalieformen resultieren aus Wellenlängenänderungen der Absorptionsmaxima, welche die Diskriminationsfähigkeit zwischen zwei Zapfentypen mindert. Betroffen sind entweder L- (Deuteranomalie) oder M- (Protanomalie) Zapfen.

Obwohl das Farbsehdefizit anomaler Trichromaten geringer ist als das von Dichromaten, ist der jeweilige Ausprägungsgrad sehr variabel. Die Spanne reicht von fast Normal bis hin zu Extremen, die dann der Dichromasie nahe kommen. Abhängig von der Ausprägung sind sich viele Personen ihrer Farbsehstörung gar nicht bewusst. Dennoch gibt es im Alltag Einschränkungen, die vor allem die Berufswahl betreffen. Berufe wie Pilot, Berufskraftfahrer, Lokführer oder Elektriker können nicht oder nur mit Einschränkung ausgeführt werden.

1.4.3 Inzidenz der Farbsehstörungen

Da Farbsehstörungen X-Chromosomal vererbt werden, sind fast ausschließlich Männer betroffen (Motulsky et al., 2001; Sharpe et al., 1999).

Interessanterweise variiert die Inzidenz für Farbsehstörungen in unterschiedlichen Populationen (Fletcher et al., 1985; Inuma et al., 1976; Cruz-Coke, 1964; Garth, 1933) (vgl. **Tabelle 1-1**). Europäer und Brahmanen haben deutlich häufiger Farbsehstörungen als Aborigines, Brasilianer, Bewohner der nordpazifischen Inseln oder Nordamerikaner (Zusammenfassung verschiedener Studien in Sharpe et al., 1999). Diese Unterschiede erklärt man sich mit vermindertem Selektionsdruck in bestimmten Populationen.

		-		
Geschlecht	Protan		Deutan	
	Anomalie	Anopie	Anomalie	Anopie
Männer	1,08	1,01	4,63	1,27
Frauen	0,03	0,02	0,36	0,01

Tabelle 1-1: Häufigkeit der Rot-Grün-Farbsehstörungen in Prozent bei Norwegern, Schweizern,Briten, Deutschen, Franzosen, Niederländern und Iranern (nach Sharpe et al., 1999).

1.4.4 Genetik der Farbsehstörungen

Dalton wusste zwar, dass sein Bruder bei der Wahrnehmung der Farben unter ähnlichen Problemen litt wie er und auch die Ärzte des 18. Jahrhunderts bemerkten, dass Farbenblindheit über Generationen hindurch in Familien weitergegeben wurde, aber von Vererbung oder Erbfaktoren war damals noch keine Rede. Der Chemiker Dalton mutmaßte in seinem schon oben erwähnten Vortrag, dass eine chemische Verunreinigung seiner Augen bzw. seines Glaskörpers, die Ursache der Farbsehschwäche sei. Er nahm an, dass darin eine hellblaue Substanz gelöst sei, die bevorzugt langwelliges Licht absorbiere. Um diese Hypothese prüfen zu lassen, beschloss er, nach seinem Tod seine Augen der Wissenschaft zur Verfügung zu stellen. Am 27. Juli 1844 starb Dalton im Alter von 78 Jahren, einen Tag darauf führte sein medizinischer Assistent Joseph Ransome die Autopsie durch. Die Analyse des Glaskörpers konnte zwar die Hypothese Daltons nicht bestätigen, aber Ransome hat Daltons Augen nicht weggeworfen und so konnte, 150 Jahre nach Daltons Tod, ein erneuter Versuch unternommen werden, die Ursache für Daltons Farbsehstörung zu finden.

Heute ist Genanalyse die häufigst gewählte Methode. Sie gehört zu den jüngsten Errungenschaften der genetischen Wissenschaft. 1986 entschlüsselten Nathans et al. (Nathans et al., 1986b) die Gene, welche die humanen Rot-Grün-Opsine codieren. Im Zuge dessen stellte sich heraus, dass die Rot- und GrünPigmente in ihrer Aminosäuresequenz zu 96% übereinstimmen, während mit dem Blaupigment bzw. Rhodopsin nur eine 40-44%ige Übereinstimmung vorliegt (vgl. **Abbildung 1-9**). Diese große Ähnlichkeit der Rot- und Grün-Pigmente wird mittels entwicklungsgeschichtlicher Aspekte erklärt. Da sowohl die Gene des Rot- als auch des Grün-Pigments auf dem langen Arm des X-Chromosom liegen, gab es der Theorie nach ursprünglich nur ein Pigmentgen, welches sich im Laufe der Evolution verdoppelt hat. Die beiden resultierenden Gene codieren heute Photopigmente mit unterschiedlichen spektralen Absorptionsmaxima.

Abbildung 1-9: Homologie zwischen M- und L-Zapfenpigmenten **(A)** sowie M- und S-Zapfenpigmenten **(B)**. Die das spektral turning beeinflussenden Aminosäuren sind hervorgehoben, ebenso Lysin312, die Bindungsstelle des Chromophors.

Die Rot- und Grün-Opsingene befinden sich in einer head-to-tail tandem Anordnung auf dem X-Chromosom (Vollrath et al., 1988), d. h. der Anfang des folgenden Exons (codierender Abschnitt) schließt sich ans Ende des vorangehenden Exons an. Die Rot-Grün-Photopigmentgene bestehen aus jeweils 6 codierenden Abschnitten, von denen der 1. und der 6. identisch sind.

Innerhalb der Aminosäuresequenz der menschlichen Pigmentgene gibt es Polmorphismen, d. h. an einer Stelle der Aminosäuresequenz existieren zwei oder mehr natürliche, ähnlich häufig vorkommende Varianten. Der häufigste Polymorphismus befindet sich an Stelle 180 in Exon 3 der Aminosäuresequenz für das Rot-Pigment. An dieser Stelle findet man entweder Alanin oder Serin. Der Austausch von Alanin durch Serin hat eine leichte Verschiebung des Spektralbereichs in Richtung Rot zu Folge (Neitz et al., 1998; Sharpe et al., 1998; Winderickx et al., 1993; Winderickx et al., 1992). Alle Personen mit diesem Polymorphismus haben weiterhin ein normales Farbsehvermögen, es ist als morphismus haben weiterhin ein normales Farbsehvermögen, es ist als Normvariante anzusehen.

Findet eine intragenetische Rekombination zwischen Rot- und Grün-Pigment-Genen statt, gehen Hybridgene hervor, welche für Hybridpigmente codieren. Diese lassen sich regelmäßig bei Personen mit verändertem Farbsehvermögen, aber auch bei einigen Normalen nachweisen. Die Hybridpigmente bewirken über Strukturänderungen eine Verschiebung der spektralen Empfindlichkeit unterschiedlich starken Ausmaßes. Die Präsenz von diesen zusätzlichen Hybridgenen verleitet zu der Annahme, dass einige Individuen über mehr als drei Zapfenpigmente verfügen. Winderickx et al. (Winderickx et al., 1992) nahmen sich diesem Thema an und stellten fest, dass immer nur eines der Gene und damit Pigmente in relevanter Anzahl vorkommt.

Mehrere Kopien der Rot- und Grün-Pigment-Gene sind häufig und ihre Gesamtzahl variiert interindividuell. Aber nur die ersten beiden Rot-Grün-Opsingene der Anordnung sind von genetischer Bedeutung, wobei, unabhängig von der Anzahl der jeweilig vorhandenen Gene, die Rot-Pigmente gegenüber den Grün-Pigmenten bevorzugt ausgebildet werden (Yamaguchi et al., 1997).

Rot/Grün-Farbsehstörungen

Eine Rot-Grün-Farbsehstörung resultiert aus Funktionsänderung oder -verlust eines der Zapfenphotopigmente. Im Falle der angeborenen Farbsehstörungen liegt die Ursache auf genetischer Basis. Die große Ähnlichkeit der DNA-Sequenzen von M- und L-Pigmentgenen führt gehäuft durch crossing-over zu nicht homologer Rekombination innerhalb eines Gens oder zwischen zwei Genen (Drummond-Borg et al, 1989; Nathans et al, 1986a). Dabei entstehen unterschiedlich lange Gensequenzen mit verändertem Codon. Durch Gendeletion kann es zum vollständigen Verlust einer Zapfenfunktion oder bei Bildung von Hybridpigmenten zur Verschiebung der spektralen Empfindlichkeit der Zapfenpigmente kommen (vgl. **Abbildung 1-10**). Phänotypisch resultiert bei Veränderung der spektralen Empfindlichkeit eine anomale Trichromasie, bei vollständigem Verlust eines der Zapfenpigmente eine Dichromasie, und im schwersten Fall mit nur einem funktionsfähigen Zapfenpigment eine Monochromasie.

Die Wahrscheinlichkeit eines crossing-overs am Anfang des Rot-Opsingens ist äußerst gering. Daher kommt es selten zum kompletten Verlust, häufiger entstehen Hybridgene. Diese bilden ein Pigment, dessen spektrale Absorption dem des Grün-Opsins ähnelt.

Abbildung 1-10: Beispiele für nicht-homologe Rekombination mit den möglichen Phänotypen. **(A)** normale Opsingengene. **(B)** Verlust bzw. Gewinn von Genen durch intergenetisches crossing-over. **(C)** und **(D)** Verlust bzw. Gewinn von Genen durch intragenetisches crossing-over unter Bildung von Hybridgenen. (Sharpe et al 1999).

Obwohl protanomal, findet man bei ihnen L- Zapfen-Pigmente, nur kommen diese in so geringer Zahl vor, dass daraus eine Rotschwäche resultiert. Statt ausreichender L-Zapfen-Pigmente haben Protanomale mindestens zwei verschiedene M-Pigmentgene, welche für zwei spektrale Subtypen kodieren. Eines dieser M-Pigmentgene kann ein Hybridgen sein.

Anders als Protanomale verfügen etwa zwei Drittel der Deuteranomalen über M-Pigmentgene, wobei der Grund für deren Funktionsverlust nicht eindeutig bestimmbar ist. Trotzdem haben auch sie mindestens zwei verschiedene L-Pigmentgene, welche entsprechend für zwei spektrale Subtypen kodieren.

John Daltons konservierte Augen wurden 1994, genau 150 Jahre nach seinem Tod, molekulargenetisch untersucht (Hunt et. al, 1995). Es fehlte das Grün-Opsingen, so dass das Mysterium um Daltons Farbsehstörung gelüftet werden konnte, er war grünblind.

1.5 Korrektur von Farbanomalien durch Filter

Schon 1947 kam Farnsworth (Farnsworth, 1947) zu der Erkenntnis, dass gestörtes Farbensehen von therapeutischen Maßnahmen wie Medikamente oder Übungen unbeeinflusst bleibt. Seitdem wurde eine Reihe verschiedener Vorschläge zur Therapie von Farbsehstörungen gemacht. Bis dato waren die Heilversuche bestenfalls erfolglos. Noch heute wird in China Elektroschocktherapie eingesetzt. Den Augen verabreicht man dabei wiederholt elektrische Impulse in der Hoffnung, dass das Farbensehen dadurch wiederhergestellt wird (Wado Doctors Group, 1990).

Die Idee, Farbfilter zur Therapie von Farbsinnstörungen einzusetzen, stammt ursprünglich von Maxwell (1855). Das Thema wurde über die Jahre im Auge behalten und mehrfach modifiziert (Piringer, 1973; Ahlenstiel et al., 1930; Roaf, 1924; Delboeuf et al., 1878), bis sich Seebeck (Seebeck, 1937) der Idee annahm. Er gab Farbenblinden erst einen roten, dann einen grünen Filter mit dem Ergebnis, dass die Probanden Rot von Grün durch den Vergleich der Helligkeiten unterscheiden konnten. Seither stecken vor allem westliche Industrienationen viel Engagement in die Entwicklung von Kontaktlinsen oder Brillengläsern mit Farbfiltern, sowohl im Rot/Grün-Bereich, als auch im Blau-Bereich (Zrenner et al., 1988). Aufgrund der hohen Inzidens und der Berufseinschränkungen liegt es nahe, dass viele der Betroffenen an Sehhilfen interessiert sind, die ihr Farbsehvermögen normalisieren.

Farbensehen wird grundsätzlich von zwei Faktoren bestimmt. Die Fähigkeit der Farbidentifikation und die der Farbdiskrimination. Das veränderte Farbensehen Anomaler ist Folge der abweichenden Empfindlichkeit eines der Zapfenpigmente. Deswegen ist ihre Farbidentifikations- und Farbdiskriminationsfähigkeit schlechter als die von Menschen mit normalem Farbsehvermögen. Die Zahl der unterscheidbaren Farbtöne ist durch die Lage der Primärvalenzen für die anomalen Trichromaten vorgegeben. Farbfilter zur Korrektur von Farbsehstörungen können nur die Farbvalenzen innerhalb des zur Verfügung stehenden Farbraumes umverteilen. Sinnvollerweise sollen die Farbabstände zwischen Farbvalenzen, deren Unterscheidung im täglichen Leben von besonderer Bedeutung ist (insbesondere Rot-Grün), vergrößert werden, um so die Farbunterscheidung zu erleichtern.

Die beste Farbunterscheidungsfähigkeit der Anomalen ist vor allem im blaugrünen Spektralbereich lokalisiert. Für das tägliche Leben ist dies relativ unbedeutend. Daher wird bei der Konstruktion von Korrekturfilter eine Spreizung des Farbraumes im rot-grünen Bereich zu Lasten des grün-blauen Bereichs angestrebt. Farbfilter können den Farbton durch eine selektive spektrale Modifikation des Farbstimulus ändern. Sie sind für bestimmte Wellenlängen durchlässiger. Die korrespondierenden Farben erscheinen intensiver und heller in einer Umgebung von Farben, die mehr oder weniger verdunkelt absorbiert werden. Farbfilter können außerdem die Sättigung beeinflussen. So kann durch Änderung der drei Einflussgrößen auf die Farbzusammensetzung (Farbe, Sättigung und Helligkeit) ein Anhalt zur Farbdifferenzierung gegeben werden.

Für diese Studie stellte die Firma Coloryte Hungary Rt. Farbfilter zur Verfügung. Dies sind mit einer Spezialbeschichtung versehen, die das Spektrum des durchfallenden Lichtes so bricht, dass sie einen ähnlichen Farbreiz wie bei Normalsichtigen erzeugt, während der Einfluss auf andere Bereiche des Spektrums gering gehalten wird (vgl. **Abbildung 1-11**). Dafür wird in Kauf genommen, dass jeder Filter einen Verlust an Helligkeit und damit Beeinflussung des Kontrastsehens, im Sinne verminderter Kontrastempfindung zu Folge hat.

Abbildung 1-11: Die Idee hinter den Filtern: Sie verschieben das Maximum der spektralen Absorption in den geringeren Wellenlängenbereich (hier die der M-Zapfen), um die Differenzierung zwischen Rot und Grün zu erleichtern (vgl. **Abbildung 1-8**).

Theoretisch soll sich der Adaptationszustand der Zapfen durch Tragen der Filter so ändern (die Empfindlichkeit der Zapfen passt sich an die geringere oder stärkere Lichtmenge an), dass die neu entstandene Situation interpretiert wird, als ob sich die Empfindlichkeit des anomalen Zapfen in die der normalen Zapfen verschoben hätte.

1.6 Ziele

Basierend auf der Idee, mittels Farbfilter eine Verschiebung der effektiven spektralen Empfindlichkeiten des veränderten Pigmentes zu erreichen, sind Farb-Brillengläser auf den Markt gebracht worden.

Ziel des Projektes war es:

- 1. Zu prüfen, ob bei farbanomalem Sehvermögen eine individuell angepasste Sehhilfe in der Lage ist, ein normales Farbensehen zu erzeugen.
- 2. Zu prüfen, ob die Herstellung eines bei der Testung normalen Farbsinns zu Lasten anderer visueller Leistungen vor allem des Kontrastsehens geht.
- 3. Zu prüfen, ob das binokulare Anomaloskop dem klinischem Anspruch gerecht wird.

2 Methoden

2.1 Versuchspersonen

Normalprobanden und Probanden mit angeborenen Farbsehstörungen wurden entweder über Aushänge rekrutiert oder waren von früheren Studien bekannt und mit einer erneuten Kontaktaufnahme einverstanden.

2.1.1 Einschlusskriterien

Alle Probanden waren zwischen 18 und 45 Jahren alt. Das durchschnittliche Alter der Normalprobanden betrug 24 Jahre, das der Protanomalen 29,8 Jahre und das der Deuteranomalen 32,25 Jahre.

Der Visus aller Probanden musste besser als 0,7 sein, damit sie an der Studie teilnehmen konnten. Falls nötig wurde das Refraktionsdefizit mit Brillengläsern ausgeglichen, um stets die optimale Sehschärfe zu erreichen. Die Probanden mit Farbsehstörungen mussten eine klinisch diagnostizierbare angeborene Farbsehstörung (Protanomalie oder Deutanomalie) aufweisen.

Tabelle	2-1:	Altersverteilung	und	Visusspanne	der	Probanden.	"SD"	(standard	deviation)	=
Standard	dabwe	eichung vom Dur	chscl	nnittsalter.						

	Normal	Protanomal	Deuteranomal
Anzahl (Probanden)	7	10	4
Alter in Jahren (SD)	24,00 (6,24)	29,80 (7,17)	32,25 (8,38)
Minimum – Maximum	19 – 35	22 – 44	25 – 40
Visusspanne			
rechtes Auge	1,0–1,6	0,8–1,6	1.0–1,6
linkes Auge	1–1,6	1–1,6	0,8–1,6

2.1.2 Ausschlusskriterien

Ausschlusskriterien waren anamnestisch andere Erkrankungen des Auges, außer einer angeborenen Störung des Farbsehens, sowie die Einnahme von Medikamenten, die das Farbensehen beeinträchtigen können.

2.1.3 Einverständniserklärung

Allen Probanden wurde ein Informationsblatt vorgelegt, das zu Ablauf, Zeitaufwand, Risiken sowie Nebenwirkungen, persönlicher Nutzen, Datenschutz und Teilnahme (vgl. **Anhang 1**) Stellung nahm. Dies musste von den Probanden durchgelesen werden, anschließend unterschrieben sie eine gesonderte Einverständniserklärung (vgl. **Anhang 2**).

2.1.4 Augenuntersuchung

Zur Überprüfung der Ein- und Ausschlusskriterien erfolgte zunächst eine ophthalmologische Untersuchung, um u. a. sicherzustellen, dass keine bisher unerkannten Erkrankungen der Augen vorlagen, welche die Studienergebnisse beeinflussen konnten. Außer der Visusprüfung wurden die vorderen und hinteren Augenabschnitte mittels Spaltlampe und Ophthalmoskop untersucht. Die abschließende Farbsinnuntersuchung fand mit Hilfe eines monokularen Anomaloskops statt. Im Anschluss wurde den Probanden der Ablauf der weiteren Untersuchung erklärt und das Informationsblatt ausgehändigt.

Die Versuchsteilnehmer wurden anhand der Ergebnisse der Anomaloskopuntersuchung in drei Gruppen eingeteilt, nämlich protanomales, deuteranomales und normales Farbensehen. Alle Personen, die mit beiden Augen über einen Anomalquotient (AQ) (vgl. **Kapitel. 2.3.5**) zwischen 0,7 und 1,4 verfügten, wurden als normal farbsichtig eingestuft, alle Probanden mit einem AQ von 0,7 oder weniger als protanomal und alle Probanden mit einem AQ zwischen 1,4 und 999 als deuteranomal.

2.1.5 Randomisierung

Um Effekte wie Lernen durch Wiederholung oder Müdigkeit bei langer Versuchsdauer auszuschließen, wurde die Reihenfolge von Filter und Fensterglas mittels Randomisierung festgelegt. Ursprünglich sollten je zwei Gruppen à zehn farbfehlsichtige Personen (Protanomal, Deuteranomal) und eine Sechsergruppe mit normalsichtigen Personen an der Studie teilnehmen. Die beiden 10er Gruppen wurden in einen 4er Block und sechs weitere 2er Blöcke eingeteilt. Für die Normalen wurden ausschließlich 2er Blöcke erstellt. Bei Letzteren schloss die Randomisierung zusätzlich die schwächsten Farbfilter zur Korrektur von Deuteranomalie (D10) bzw. Protanomalie (P10) ein. Diese Einteilung in kleine Blöcke ermöglichte bei vorzeitigem Abbruch der Studie die Auswertung der bereits vorhandenen Daten.

2.2 Versuchsaufbau

Die Studie sollte die Effekte von Farbfiltern auf normales bzw. anomales Farbsehvermögen sowie auf das Kontrastsehen erfassen. Dazu wurden fünf verschiedenen Farbsinntests und ein Test für Kontrastsehen ausgewählt, die nachfolgend näher erläutert werden.

Im ersten Schritt der Studie wurden den Probanden Farbfilter angepasst (vgl. **Kapitel 2.3**), die ihre Fähigkeit zur Unterscheidung von Farben verbessern sollten. Zur Untersuchung des Farbensehens absolvierten alle Probanden das vollständige Programm in gleicher Reihenfolge. Dieses beinhaltete zuerst zwei verschiede Tafelfolgen, welche eine grobe Beurteilung des Farbsehvermögens erlaubten (Ishihara- und HRR-Test). Daraufhin folgten zwei Computertests: einer zur Bestimmung der Farbdiskriminationsgrenze (CAD), der andere zur Bestimmung des Kontrastunterscheidungsvermögens (Kontrast-Test). Zum Schluss wurde der Rot-Grün-Sinn mittels zweier verschiedener Anomaloskope untersucht (binokulares und monokulares Anomaloskop).

Alle Probanden absolvierten diese Testreihe zweimal hintereinander, entweder mit den Filtern oder einem Fensterglas, welches keinerlei Einfluss auf das Sehvermögen nimmt.

In der Studie wurden immer beide Augen getestet. Die Erwartung einer Seitendifferenz bezüglich der Sehschärfe und des Farbensehens, wurden die Tests, welche eine genaue Diskriminationsauswertung zulassen, monokular durchgeführt. Aber monokulares Sehen geht z. B. zu Lasten des Pulfich-Phänomens, des räumlichen Sehens (Heron et al., 1995; Pulfrich, C., 1922a; 1922b; 1922c). Diese Überlegung führte dazu, dass die Tafeltests binokular getestet wurden, ebenso eines der Anomaloskope. Bei den beiden Computertests und dem zweiten Anomaloskop erfolgte die Testung monokular.

Abbildung 2-1: Filtergläser und Brillengestell mit schwarze Schaumstoffrändern an den Seiten, damit die Probanden sich der Filtereffekte möglichst wenig bewusst werden

2.3 Die Farbfilter und ihre Anpassung

In dieser Studie wurden Farbbrillengläser der Firma Coloryte untersucht. Die Idee dahinter war, dass mittels Verschiebung der effektiven spektralen Empfindlichkeiten eine Änderung im Absorptionsverhalten des anomalen Pigmentes erreicht werden konnte.

2.3.1 Die Transmissionskurven der Farbfilter

Zum Verständnis der Filtereffekte haben sowohl Coloryte, als auch im Rahmen dieser Studie die Transmissionskurven der Filter gemessen. Dafür wurde Weißlicht, als Referenzspektrum, durch die gemessenen Filterspektren dividiert. Auf dieser Grundlage konnte der prozentualen Lichtdurchlass (den Transmissionsgrad, 0.0-1.0) jedes Filters für jede Wellenlänge berechnet werden. Zur Ermittlung des Referenzspektrums wurden die Filter im parallelen Teil des Strahlengangs positioniert.

Das Spektrum der Xenon-Lampe, des Weißlichts, wurde zweimal vor und einmal nach den Filtermessungen gemessen. Diese drei Messungen wurden gemittelt und dienten danach als Referenz (100%) für die Transmissionsmessungen der Farbfilter.

Ein Satz bestand aus 10 verschiedenen Filtern mit unterschiedlichen Transmissionsspektra, die entweder für Protanope (P-Serie, fünf verschiedene Filterstärken: 10, 15, 20, 25, 30) oder Deuteranope (D-Serie, fünf verschiedene Filterstärken: 10, 15, 20, 25, 30) bestimmt waren. **Abbildung 2-2** (P10), **Abbildung 2-3** (P15), **Abbildung 2-4** (P30), **Abbildung 2-5** (D10) und **Abbildung 2-6** (D30) zeigen die Transmissionskurven der in dieser Studie eingesetzten Filter. Die anderen Filtertransmissionskurven sind als **Anhang 3** beigefügt.

Abbildung 2-2: Transmissionskurve P-10-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 2-3: Transmissionskurve P-15-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 2-4: Transmissionskurve P-30-Filter, (A) eigene Messung (B) Coloryte-Messung

Abbildung 2-5: Transmissionskurve D-10-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 2-6: Transmissionskurve D-30-Filter, (A) eigene Messung, (B) Coloryte-Messung

Je niedriger der Wert auf der Y-Achse, desto niedriger ist der prozentuale Transmissionsanteil. Die beiden Messungen stimmen gut überein. Allerdings erscheint die Transmission bzw. Absorption einzelner Wellenlängen für die selektive Verbesserung nur eines relativen kleinen Farbsehbereichs groß zu sein.

2.3.2 Kalibration

Vor der Anpassung der Farbfilter musste der Monitor kalibriert werden. Dazu wurde die mitgelieferte Software auf einen PC installiert. Streng nach Anleitung von Coloryte, sollte mit Hilfe eines Bildschirmkalibrierinstruments – MonitorSpyder – der Computer-Bildschirm auf folgende Werte eingestellt werden: Lichtintensität: 95 cd/m², maximaler Kontrast und Farbtemperatur: 6500 K°.

Für eine optimale Kalibration musste der Monitor gereinigt sein und alle direkt auf den Bildschirm einfallenden Lichter entfernt werden, da diese den Kalibrationsvorgang stören können. Der MonitorSpyder (vgl. **Abbildung 2-7**) leitete durch den Kalibrierungsprozess bis Lichtintensität, Kontrast und Farbtemperatur eingestellt sind.

Abbildung 2-7: Monitor Spyder am Bildschirm angebracht

2.3.3 Anpassung der Farbfilter mit dem Color Vision Test (CVT)

Wie oben beschrieben, sollten für die Probanden mit Farbsehstörung die bestmöglichen Farbfilter ausgewählt werden. Dies erfolgte mit einem speziell von Coloryte hergestellten Bildschirmtest, der zur Untersuchung der Farbfehlsichtigkeit und zur Erfolgskontrolle der zuvor empfohlenen Filter entwickelt wurde.

Prinzip

Die Messungen bestimmen die Farbdiskriminationsgrenze der jeweiligen Testperson. Das Farbdiskriminationsvermögen ist umso besser, je geringer die Farbdifferenzen sind, deren Unterscheidung gerade noch möglich ist. Es lassen sich sowohl die verschiedenen Farbsehstörungen (protan, deutan, tritan), als auch deren Ausprägung erfassen.

Dazu werden auf dem Monitor verschiedene Bilder angeboten, denen ein sechseckiger Hintergrund, in welchem ein andersfarbiges Landolt C (vgl. **Ab-bildung 2-13**) eingebettet ist, gemeinsam ist.

Abbildung 2-8: Bildtafeln des CVT.

Hintergrund und Landolt C setzen sich aus Abbildungspunkten unterschiedlicher Größe zusammen, die sich farblich unterscheiden und deren Helligkeit gleich ist, ähnlich den pseudoisochromatischen Tafeln. "Pseudoisochromatisch" bedeutet, scheinbar oder falsch gleiche Farben, da die zur Testung ausgewählten Farben in die Farbdiagrammzonen fallen, die Personen mit Farbsehdefizit nicht oder nur schwer unterscheiden können. Dieser Farbdiagrammbereich ist charakteristisch für das Farbsehvermögen des jeweiligen Probanden. Anhand der Ergebnisse schließt die mitgelieferte Software auf die Farbsehstörung. Anhand der Diskriminationsgrenze können die Korrekturfilter bestimmt werden.

Vorgeschlagene Korrekturgläser

Bei Rot-Grün-Farbsinnstörungen erscheint am Ende des Testdurchlaufs auf dem Monitor ein Fenster "Farbsichtprüfung mit Coloryte Gläsern" (vgl. **Abbildung 2-9**).

Methoden

Abbildung 2-9: (A) Monitorfeld der Testergebnisse für normales Farbensehvermögen und (B) Deuteranomalie vor der Filteranpassung und (C) nach der Filteranpassung. Im Feld links zu sehen sind die fünf Felder mit den Korrekturfiltern, rechts die graphische Darstellung.

Im Fall einer Deutan-Diagnose begann der folgende Testdurchlauf mit dem schwächsten Filtern (D10), welcher in einen Proberahmen eingesetzt wurde. Dazu musste angegeben werden, dass der D10-Filter getestet wird. In der nächsten Runde wurden die D15-Filter eingesetzt, dies wiederholte sich bis alle Filter getestet waren. Für die Wahl des besten Korrekturglases war das Messen der Blauachse nicht mehr erforderlich, da die Korrekturgläser auf diese keinen Einfluss haben sollten.

Im Fall einer Protan-Diagnose wurden entsprechend die Gläser P-10, P15, P20, P25 und P30 eingesetzt.

Da nicht alle Filter zu einer Farbsehverbesserung führten, wurde der Filter mit der stärksten Farbsehverbesserung ermittelt. Über die Messergebnisse konnte der Verlauf des Korrekturprozesses beurteilt werden. Sie sind als Zahlenkombination veranschaulicht.

Bedeutung der Zahlen

Am Ende eines Messzyklus erschien neben einem Balkendiagramm eine Zahlenkombination (vgl. **Abbildung 2-9**) welche die minimal unterscheidbare Farbdifferenz angibt. Je kleiner die Zahl, desto besser ist das Farbensehen. Der Empfindlichkeit der drei Farbrezeptoren ist jeweils eine Zahl zugeordnet. Sie stehen in einer Klammer. Die erste Zahl gibt die Empfindlichkeit des L-Rezeptors an, die zweite die des M-Rezeptors, die dritte die des S-Rezeptors. Vor der Klammer steht der Durchschnittswert aus allen drei. Er gibt einen groben Anhalt auf eine Farbsehstörung. Die Normwerte bewegen sich zwischen 10 und 20, im schlechtesten Fall nimmt eine der drei Zahlen in der Klammer den Wert 200 an.

Durchführung

Die Probanden sollten mit Mausklick die Öffnung im Landolt C benennen, falls sie diese nicht erkannten, gab es als Ausweichmöglichkeit ein Fragezeichen am Bildschirmrand. Wurde das Monitorbild vom Proband korrekt erkannt, erstellt die Software ein weiteres. So näherte sich die Farbe des Landolt Cs der des Hintergrundes an, bis der Proband nicht mehr fähig war das Symbol vom Hintergrund zu unterscheiden.

Der Test wurde binokular durchgeführt. Die Untersuchung dauerte 10 bis 15 Minuten, davon nahm die Diagnose etwa vier, die Wahl der entsprechenden Korrektionsgläser je zwei Minuten pro Glas in Anspruch.
2.4 Untersuchung zum Testen der Farbfilter

2.4.1 Ishihara-Tafeln

Die Ishihara-Tafeln gehören zu den pseudoisochromatischen Tests zur Diagnose von Farbfehlsichtigkeit. Mit ihnen sollte zuerst die jeweilige Farbdiskriminationsfähigkeit der Probanden überprüft werden. Dazu lagen Tafeln der Firma OCULUS "Ishihara's Tests for colour deficiency", Edition 2003, bestehend aus 38 Tafeln vor.

Prinzip

Dr. Shinobu Ishihara entwickelte die Tafeln 1917 zur Diagnose angeborener Rot/Grün-Farbsehstörungen. Mit Hilfe der Tafeln bietet sich eine einfache, schnelle und zuverlässige Methode, Farbsehstörungen im Rot/Grün-Bereich zu diagnostizieren und sie von Farbenblindheit abzugrenzen.

Seit damals sind regelmäßig neue Auflagen erschienen, bei denen jeweils Veränderungen bezüglich Farbe der Abbildungspunkte, Anzahl der Tafeln, usw. vorgenommen wurden. Das Prinzip der Original-Tafeln blieb jedoch erhalten. Während die Abbildungspunkte früherer Auflagen noch starke Variationen zeigten (Hardy et al, 1947), haben die neueren Exemplare kaum noch Unterschiede in Farbe und Konstanz der Testleistung (Birch, 1997b).

Der Ishihara-Test ist nicht geeignet, um Blau-Gelb-Farbsehstörungen und erworbene Dyschromatopsie, wie sie z. B. durch Optikusneuritis verursacht wird, zu diagnostizieren.

Bei den Ishihara-Tafeln sind farbige Sehzeichen (vgl. **Abbildung 2-10**) in einen andersfarbigen Hintergrund eingebettet. Die farbigen Flächen setzen sich aus helligkeitsgleichen, aber farbunterschiedlichen Punkten zusammen. Um die Sehzeichen zu erkennen, muss eine Farbdiskrimination erfolgen. Sehzeichenfarbe und Hintergrundfarbe sind so gewählt, dass sie beide auf derselben Ver-

wechslungsgeraden liegen und daher bei entsprechender Zapfenfunktionsstörung nicht unterscheidbar sind.

Abbildung 2-10: Ishihara-Tafeln Nr.1, Nr. 9, Nr. 23, Nr. 29 und Nr. 37.

Die Tafeln sind für die Benutzung bei Tageslicht konzipiert worden. Der Einfall direkten Sonnenlichtes oder elektrischen Lichtes kann die Ergebnisse durch Veränderung in der Farbschattierung verfälschen (Ishihara, S., 1917).

Bei der Tafelfolge der Firma OCULUS bestehen die ersten 21 der 38 Tafeln aus Zahlen vor andersfarbigen Hintergrund. Sie erlauben eine Einteilung in normales Farbsehvermögen oder Farbfehlsichtigkeit. Die Einteilung in protanomal oder deuteranomal wird in den Tafeln 22 bis 25 vorgenommen. Auf ihnen sind ebenfalls Zahlen zu erkennen. Die folgenden 13 Tafeln (26 bis 38) sind für Personen, die keine Zahlen lesen können. Sie zeigen geschlängelte Linien, welche zwischen zwei X zu verfolgen sind.

Normalsichtige sehen keine Zeichen auf den Tafeln 18 bis 21, 28 und 29. Tafel 1 und Tafel 38 werden von allen Personen erkannt und dienen der Kontrolle der Mitarbeit.

Durchführung

Aufgabe der Probanden war es, die Sehzeichen korrekt zu erkennen. Die Untersuchung fand in einem abgedunkelten Raum statt. Da der Betrachtungsabstand die Erkennung der Sehtafeln beeinflusst, hob sich der Proband die Tafeln rechtwinklig zur Blickrichtung in 75 cm Entfernung. Vor allem ein kleinerer Abstand könnte über räumliche Summation durch einen größeren Sehwinkel die Diskriminationsleistung verbessern. Um eine in Farbton, Sättigung und Helligkeit definierte Reproduktion zu erhalten, wurde eine standardisierte Beleuchtung (Normlicht D65 Sol-Source der Firma Gretag Macbeth) verwendet. Die Untersuchung erfolgte binokular. Die Tafeln, auf denen Zahlen abgebildet waren, durften je drei Sekunden gelesen werden, für das Nachzeichnen der Linien waren zehn Sekunden erlaubt. Die gesamte Untersuchung nahm etwa eine Minute in Anspruch.

Auswertung

Anhand der Ergebnisse in den Tafeln 1 bis 21 wurde das Farbsehvermögen eingeteilt. Wurden 17 oder mehr Tafeln korrekt gelesen, war der Farbsinn normal. Bei weniger als 14 richtig erkannten Tafeln, war der Farbsinn gestört. Wer auf den Tafeln 18 bis 21 Zahlen erkannte, sah anomal.

2.4.2 Hardy-Rand-Rittler (HRR)

Der HRR-Test gehört wie die Ishihara-Tafeln zu den pseudoisochromatischen Tests. Er diente hier zur Ergänzung der Farbsehtests (Birch, J., 1985). Verwendet wurden die HRR Pseudochromatic Plates der vierten Edition 2002 die von Neitz und Bailey überarbeitet wurden (Bailey et al., 2004), hergestellt für die Firma American Optical Company (AO-HRR).

Prinzip

Die HRR-Tafeln wurden 1954 von LeGrand Hardy, Gertrude Rand und Cathrine Rittler vorgestellt (Hardy et al., 1954a, 1954b), nachdem sie sich eingehend mit dem Ishihara-Test und dessen verschiedenen Ausgaben befasst hatten (Hardy et al., 1945).

In Form eines Buches bestehend aus 21 Farbtafeln, boten sie einen Test zur Diagnose aller drei Farbsehstörungen (Tritan, Protan, Deutan) an. Er ist in seiner Ursprungsform den Ishihara-Tafeln als Screeningtest in punkto Differenzierung zwischen anomaler Trichromasie und Dichromasie deutlich unterlegen. Dafür bietet er zusätzlich die Tritandiagnostik und eine genauere Schweregradeinteilung der zugrunde liegenden Farbsehstörung (Birch, 1997a; Birch, 1985). Die überarbeitete vierte Edition zeichnet sich zusätzlich durch ausreichende Spezifität aus (Dain, 2004) und wurde von Cole et al. (2006) sogar besser bewertet als der Ishihara-Test.

Der HRR-Test ist in vier Abschnitte mit drei Demonstrationstafeln, fünf Screeningtafeln, neun Tafeln zur Einteilung des Schweregrades und vier Tafeln für die Blau/Gelb-Farbsehstörungen-Diagnostik gegliedert.

Einzige Voraussetzung für die Testdurchführung ist eine ausreichende Beleuchtung. Der Test kann auch mit Analphabeten durchgeführt werden (Hardy et al., 1954a).

Anders als die Ishihara-Tafeln basieren die HRR-Tafeln auf der Grundlage, dass anomale Trichromaten in der für ihre Farbsehstörung charakteristischen Farbdiagrammzone bestimmte Farben nicht von Grau unterscheiden können. Alle Tafeln sind in vier Quadraten unterteilt. In einigen sind geometrische Zeichen abgebildet, die in Form und Helligkeit variieren. Als geometrische Sehzeichen dienen Kreis, Kreuz und Dreieck. Die Zeichen sind farbig, der Hintergrund ist in neutralem Grau gehalten.

Abbildung 2-11: HRR-Tafeln, Nr. 1, 6, 15, 20 und Nr. 23.

Die in dieser Studie eingesetzten HRR-Tafeln der American optical company sind eine neuere, überarbeitete Auflage. Die Neuerungen betreffen hauptsächliche die Gliederung. Es sind insgesamt 24 Tafeln, von denen die ersten vier Demonstrationszwecken dienen. Die nächsten zwei Tafeln werden zum Screening von Blau-Gelbstörungen verwendet. Tafeln 7 bis 10 dienen zum Screening von Rot-Grün-Farbsehstörungen. Letztlich erfolgt anhand der Tafeln 11 bis 20 die Einteilung in schwache, mittlere und ausgeprägte Rot-Grün-Farbsehstörung, und anhand der letzten vier Tafeln die Einteilung in mittlere bzw. starke Blau-Gelb-Farbsehstörung.

Durchführung

Die Durchführung entsprach der des Ishihara-Tests. Die Untersuchung fand in einem abgedunkelten Raum statt. Der Proband hob sich die Tafeln in 75 cm Entfernung, rechtwinklig zur seiner Sehachse. Auf die Tafeln wurde das Normlicht der Firma Gretag Macbeth eingestellt, so dass auch hier für alle Probanden die Lichtverhältnisse normiert waren.

Die Untersuchung erfolgte binokular, da keine Seitendifferenz bei monokularer Testung zu erwarten war. Die Probanden gaben an, welche Symbole zu sehen waren und wo sie sich befanden, dafür durften sie jeweils drei Sekunden pro Tafel aufwenden.

Auswertung

Normales Farbensehen:

Personen mit normalem Farbensehen erkannten alle sechs Screeningtafeln korrekt oder es erfolgte ein Fehler, der bei Wiederholung korrigiert wurde und alle folgenden Tafeln wurden korrekt benannt.

Gestörtes Farbensehen:

Nur ein Teil der Symbole auf den Tafeln 7 bis 20 wurden von Protanomalen korrekt erkannt, der andere Teil ist für die Deutandiagnose konzipiert. Anhand dieser Unterschiede konnte man auf die Art des Farbsehdefektes schließen. <u>Rot-Grün Störung</u>:

Ein Proband war protan, wenn die Anzahl der gesehenen Symbole der Protan-Reihe überwiegte. Deutan war er, wenn die Anzahl der gesehen Symbole der Deutan-Reihe überwiegte. War die Fehlerzahl in der Protan und Deutan-Reihe gleich, konnte die Farbsehstörung nicht näher klassifiziert werden.

Ausprägung:

Die letzte Tafelgruppe, in der eine falsche Antwort gegeben wurde, gab den Ausprägungsgrad der zugrunde liegenden Farbsehstörung an. Wurde beispielsweise die letzte falsche Antwort in den Tafeln 7 bis 10 oder 11 bis 15 gegeben und danach noch richtige Angaben gemacht, wies dies auf eine milde Farbsehstörung hin. Bei mittleren Farbsehstörungen kam es zu Fehlern in den Tafeln 16 bis 18, bei starken in den Tafeln 19 bis 20.

Für die Studie beinhaltete eine korrekte Antwort die Angabe der Anzahl, die Benennung und die Lokalisation der geometrischen Zeichen auf der Tafel. Wurden nicht alle Symbole gesehen, eines oder mehrere Symbole falsch benannt oder die Lokalisation falsch angegeben, so wurde dies als falsch gewertet. Die Einteilung erfolgte nach obigem Schema.

2.4.3 Color vision Assessment and Diagnosis (CAD)

Mit dem CAD wird die Farbdiskriminationsgrenze von Blau, Rot und Grün untersucht. Er wurde 1992 an der City University, London, England, von Jennifer Birch und John Barbur entwickelt.

Prinzip

Um die Sehschwellen der drei Farbrezeptoren bestimmen zu können, müssen besondere technische Vorrausetzungen erfüllt sein.

Technische Daten:

Der Test ist für einen hoch auflösenden, 19-inch non-interlaces, Farbmonitor mit einer Bildwiederholungsfrequenz von 60 Hz entwickelt worden. Die Auflösung von 1280x1024 Pixel ist mit 256×10^{10} Stufen pro Farbe erreicht worden. Auf dem Monitor erscheint ein uniformes graues Umfeld im Winkel von 20 x 16 Grad. Die Helligkeit beträgt 24 cd m⁻² und hat x- und y- Farbkoordinaten von 0,305 und 0,323. Das Hintergrundfeld besteht aus einem Schachbrettmuster, das sich im Zentrum des Monitors befindet und aus einer Distanz von einem Meter einen Winkel von 4 x 4 Grad hat. Jedes Karo des Schachbrettmusters umfasst zwölf Bogenminuten, die Distanz zweier aneinandergrenzender Karos beträgt fünf Bogenminuten. Um die Erkennung durch kleine Helligkeitsunterschiede zu vermeiden, wird die Helligkeit jedes einzelnen Feldes innerhalb eines vorgegebenen Bereichs variiert (Random-Luminance-Mask-Bereich, RLM). Sie ändert sich alle 50 ms und nimmt dabei zufällig einen von sieben möglichen Helligkeitswerten an. Der RLM-Bereich wird in Prozent der Hintergrundhelligkeit angegeben. Er wird vor Untersuchungsbeginn festgelegt.

Im Hintergrundfeld eingebettet erscheint ein kleineres farbiges Quadrat, das Testfeld, bestehend aus 25 Karos. Es bewegt sich diagonal von einer Ecke in die Gegenüberliegende. Die Schwelle für die Farbdiskrimination wird in 16 Richtungen gemessen, die im Farbdiagramm strahlenförmig von den Koordinaten des grauen Hintergrundfeldes ausgehen. Sie werden in unterschiedlicher Farbe und in zufälligen Schritten ausgewählt.

Jeder Stimulus wird 720 ms gezeigt. Für die Antwort stehen der Testperson 80 ms zur Verfügung, danach folgt der nächste Stimulus. Das RLM-Feld ist solange zu sehen, bis die Antwort gegeben wurde (Birch, J. et al, 1992).

Abbildung 2-12: Beispiele für das Umgebungs-, Hintergrund- und Testfeld (Rodriguez-Carmona et al., 2006).

Methoden

Abbildung 2-13: Maßdaten des Bildschirmbildes, mit dem Testfeld und Testquadrat.

Durchführung

Die Probanden sollten die Richtung des bewegten farbigen Feldes im grauen Umfeld angeben.

Abbildung 2-14: Bildschirmabfolge der bewegten Bilder mit dem kleineren farbigen Quadrat unter Angabe der zeitlichen Abfolge.

Dazu saßen die Probanden in einem schwarz abgedunkelten Raum mit einer Halogenleuchte als einziger Lichtquelle, um in einem hell adaptierten Zustand zu bleiben. Die Antworten wurden über eine Tastatur eingegeben. Auf dieser befanden sich fünf Knöpfe: vier für die Richtungsangabe und eine Wiederholungstaste. Die Probanden sollten einen der vier Knöpfe drücken, um die Richtung des Quadrates anzugeben. Die Wiederholungstaste sollte nur betätigt werden, wenn die Probanden unaufmerksam waren, da sich bei Wiederholung die Richtung des farbigen Quadrates ändert, so dass auch durch wiederholtes Sehen die Richtung nicht erraten werden konnte. Falls sie das Quadrat nicht erkannten oder dessen Richtung nicht benennen konnten, sollten sie auf einen der vier Richtungsknöpfe drücken und mit dem nächsten Stimulus weiter machen. Der CAD berücksichtigt eine Ratewahrscheinlichkeit von 25% und legt die Farbdiskriminationsschwelle erst nach entsprechen vielen Wiederholungen fest.

Gemäß Testvorgaben sollte eine Entfernung von einem Meter zum Bildschirm eingehalten werden. Bei optimaler Kopfhaltung fiel der Blick mittig auf den Bildschirm. Bei einer Testdauer von 15 bis 20 Minuten pro Auge wurde diese Haltung durch eine Kinnstütze unterstützt. Der Test wurde monokular durchgeführt.

Auswertung

Aus den Eingaben der Testpersonen wurde die zur Unterscheidung minimal nötige Farbdifferenz berechnet. Daraus resultierte eine Diskriminationsellipse mit drei Farbrichtungen: Rot, Grün und Blau.

Abbildung 2-15: CAD-Farbdiagramm, graue Linien begrenzen den auf einem Monitor darstellbaren Farbbereich. Innerhalb der grauen Ellipse bewegen sich die Ergebnisse der normal farbsichtigen Personen. Die blauen, roten und grünen Linien zeigen den Bereich in dem farbfehlsichtige Personen liegen.

Die Farbrichtungen sind durch die Farbauflösung des Monitors begrenzt. Man spricht von Gamut, welches als Dreieck innerhalb der möglichen Farbskala, z. B. des Farbdreiecks (vgl. **Abbildung 1-3**) liegt. Aus der Ellipse ergeben sich zwei Achsen und ein Winkel: die Major-Achse ist die sog. Hauptachse, sie sagt etwas über die Rot-Grün-Differenzierung, bzw. Verwechslung aus. Auf der "Minor-Achse", der Nebenachse finden sich die Ergebnisse der Blau-Diskrimination. Der Winkel (axis) ist der von der Hauptachse zur Horizontalen und entspricht der Achslage.

Typische Ergebnisse normaler Trichromaten zeigt **Abbildung 2-16**. Die Orientierung der Hauptachse ähnelt der von MacAdam (MacAdam, 1942). Die Ellipsen von normalen und anomalen Trichromaten unterscheiden sich in Größe und Hauptrichtung. Bei den Anomalen ist die Hauptachse entlang der Farbverwechslungsgeraden ausgerichtet. Der Ellipsenmittelpunkt entspricht etwa dem Weißpunkt.

Abbildung 2-16: Farbdiskriminationsschwelle von normalen Trichromaten, gemessen ohne RLM (o) und mit RLM 25% (□). Der graue Teststimulus hat die x,y-Koordinaten 0,305/0,323 und eine Helligkeit von 34CD m⁻². Zwischen diesen beiden Messungsarten lässt sich keine signifikante Änderung der Diskriminationsellipse feststellen (vgl. Birch, et al. 1992).

Von Änderungen der RLM–Amplitude bleibt die Ellipsengröße in einem großen Bereich über 25% unbeeinflusst. Die Daten der Deuteranopen sind in Abbildung 2-17a dargestellt. Ohne RLM korrespondiert die Hauptachse mit den isochromatischen Daten von Deuteranopen, da sie Farben anhand ihres Kontrasts differenzieren. Erst bei einem RLM von 25% wird das volle Ausmaß des Farbsehdefizits deutlich, da hier anope Personen nicht mehr den Kontrast zur Farberkennung heranziehen können. In diesem RLM-Bereich beinhaltet die isochromatische Zone den vollständigen Farbrange, der von dem Phosphorbildschirm angeboten werden kann. Die Zone wird durch die Tangenten der Diskriminationsellipse normal Farbsichtiger definiert (vgl. Abbildung 2-17b). Die korrespondierenden Daten der Protanopen zeigen eine deutlich stärkere Abhängigkeit vom RLM-Wert (vgl. Abbildung 2-18). Ohne RLM ist die Diskriminationsellipse ähnlich oder kleiner als die normale Diskriminationsellipse. Eine typische isochromatische Zone ist wieder bei dem RLM-Wert von 25% dargestellt. Die Hauptachse der Diskriminationsellipse korrespondiert mit der isochromatischen Zone von Protanopen. Bei den Protanopen erreicht die isochromatische Zone die Farbbegrenzung des Bildschirms nicht.

Abbildung 2-17: (A) Farbdiskriminationsschwelle eines Deuteranopen, die Konditionen entsprechen denen in Abbildung 2-19; o: RLM = 0%, \Box : RLM = 25%, und •: RLM = 25% bei normalem Farbensehen (vgl. Birch, et al. 1992). (B) die Farbdiskriminationsgrenzen des Phosphor-Bildschirms korrelieren mit der isochromatischen Zone des Deuteranopen. o: R/G/B-Phosphorgrenze bei 34 ± 25% CD m^{-2,} \Box : RLM = 25%, und •: RLM = 25% bei normalem Farbensehen (vgl. Birch, et al. 1992).

Abbildung 2-18: Farbdiskriminationsschwelle eines Protanopen, die Testbedingungen entsprechen denen in Abbildung 2-19. Ohne RLM (o) ist die Diskriminationsellipse der der Trichromaten (●) ähnlich, nur in einem RLM-Bereich, in dem Helligkeits-Kontrast-Unterschiede nicht zum Tragen kommen, ist die iso-chromatische Zone der Protanopen zu erkennen. Bei Protanopen reicht sie nicht bis an die Phosphorgrenzen bei einem RLM von 25% (□)(vgl. Birch, et al. 1992).

2.4.4 Kontrast-Test

Dieser Test ist der Vorläufer des CADs. Auch er wurde an der City University, London, England von John Barbur entwickelt. Damit wird die Kontrastempfindlichkeit untersucht.

Prinzip

Da die beiden Tests unter den gleichen technischen Vorraussetzungen entwickelt wurden, unterscheidet sich das Prinzip nicht wesentlich. Der Kontrast-Test findet auf dem gleichen Monitor statt. Die Monitorauflösung beträgt somit 1280x1024 Pixel mit 256x10¹⁰ Stufen pro Farbe. Auch Winkel, Helligkeit und Muster des uniformen grauen Hintergrundfelds stimmen überein. Der Unterschied zum CAD liegt in einem Testquadrat, das sich diagonal innerhalb des Hintergrundfeldes bewegt. Es ist grau, seine 25 Karos nehmen zufällige Helligkeitswerte innerhalb eines vorgegebenen Bereichs an. Der RLM-Bereich gibt den Kontrast zum Hintergrundfeld an. Er wird vor der Untersuchung festgelegt, in dieser Studie auf drei, sechs und neun Prozent der Hintergrundhelligkeit (Barbur, J.L., 1985).

Durchführung

Die Durchführung entsprach exakt der des CADs. Die Probanden sollten die Bewegungsrichtung des grauen Quadrates angeben. Um unter achromatischen Bedingungen zu testen, saßen die Probanden weiter im schwarz abgedunkelten Raum mit der Halogenlichtquelle. Die Tastatur für die Antworten war die gleiche. Bei Wiederholung änderte sich ebenfalls die Richtung des grauen Quadrates. Wieder sollte bei Nichterkennen einer der Richtungstasten gedrückt werden unter Berücksichtigung der Ratewahrscheinlichkeit von 25%, da auch die Helligkeitsdiskriminationsschwelle erst nach einigen Wiederholungen festlegt wurde. Die Entfernung zum Bildschirm betrug einen Meter. Die optimale Kopfhaltung wurde durch die Kinnstütze erreicht.

Dieser Test wurde monokular durchgeführt. Die Testdauer pro Auge betrug zwischen fünf und zehn Minuten.

Auswertung

Aus den eingegebenen Antworten wurde die zur Unterscheidung minimal nötige Kontrastdifferenz für drei RLM-Levels, also drei verschiedene Helligkeitsstufen berechnet.

2.4.5 Das Anomaloskop

Das monokulare Anomaloskop ist international standardisiert und befindet sich in täglichem klinischem Gebrauch, während das andere in die Studie aufgenommene Anomaloskop (binokulares Anomaloskop) in mehreren Parametern und in der Interpretation der Ergebnisse unterschieden werden muss.

2.4.5.1 Das monokulare Anomaloskop

Im Jahre 1907 wurde von Nagel das Anomaloskop vorgestellt, welches eine systematische Einteilung der Farbsinnstörungen erlaubte (Nagel, 1907). In dieser Studie wurde ein HCM-Anomaloskop der Firma OCULUS benutzt, das dem Nagel-Anomaloskop Typ I nachempfunden ist (Oculus, Wetzlar; Krastel et al. 1991).

Prinzip

Anomaloskoptests sind Spektralfarbentests. Sie prüfen den Rot-Grün-Sinn mit der Rayleigh-Gleichung. Die Gerätebedingung sind in DIN 6160 festgelegt: ein spektraler Grünreiz (548nm) und ein spektraler Rotreiz (666nm) werden aufeinander projiziert, so dass ihre additive Mischung einem spektralen Gelbreiz (589nm) gleicht.

Dieser Zusammenhang kann durch eine metamere Gleichung (Rayleigh-Gleichung) erfasst werden:

Grün (548nm) + Rot (666nm) "=" Gelb (589nm)

Das "="-Zeichen bedeutet subjektive Empfindungsgleichheit und steht in keinem Zusammenhang zum mathematischen "Gleichheits"-Zeichen.

Das kreisförmige Prüffeld mit einem Durchmesser von 2 Grad ist waagerecht geteilt. Die obere Hälfte zeigt die Rot-Grün-Mischung, die untere Hälfte das gelbe Vergleichslicht. Ziel ist es, durch Änderung der Intensität des Vergleichlichts und der Rot-Grün-Anteile des Mischlichts die Halbfelder in Helligkeit und Farbe exakt abzugleichen.

Das Rot-Grün-Mischungsverhältnis wird durch die Rot-Grün-Einstellung (R/G-Wert) auf der von Rayleigh definierten Skala von 0 (reines Grün) bis 73 (reines Rot) angegeben. Die Intensität des gelben Lichts, der Gelbwert (G-Wert), liegt im Bereich zwischen 0 (dunkel) und 35 (hell). Um Adaptation entgegenzuwirken (Verriest et al., 1974), wird in regelmäßigen Abständen weißes Licht dargeboten (Neutralstimmung).

Abbildung 2-19: Diagramm mit den typischen Untersuchungsergebnissen eines Nagel-Anomaloskops zur Erfassung von RAYLEIGH matches. Der Punkt innerhalb des Normalbereiches wird als Mittelnormgleichung bezeichnet. Die typischeren Werte von Protanopen, Deuteranopen und achromatischen Personen sind eingefügt. Außerdem sind die Normwertabweichungen der Personen mit einem Serin/Alanin-Polymorphismus dargestellt.

Kalibration

Aus zwei Gründen soll an dieser Stelle auf die Kalibration eingegangen werden: Einerseits beeinflusst sie das Messergebnis und andrerseits können die beiden verschiedenen Anomaloskope unter anderem anhand der Kalibration verglichen werden. Von besonderer Bedeutung ist die Kalibration der spektralen Farben (Rot, Grün, Gelb).

Moreland (1974) untersuchte den Einfluss von verändertem Mischungsverhältnis mittels Dichtefiltern und fand eine nicht-lineare spektrale Verschiebung durch fehlerhafte Berechnung des R/G-Quotienten. Da rotes Licht in einem Bereich liegt, in dem die Zapfenempfindlichkeit steil abfällt (vgl. **Abbildung 1-5**), verfälschten kleinste Änderungen der mittleren Wellenlänge die Messergebnisse. Für ein optimales Ergebnis ist also die genaue Kalibration des Rotlichts nötig. Die Wellenlänge von grünem Licht liegt innerhalb des Plateaus der Zapfenempfindlichkeit. Hier hat eine geringe Änderung der mittleren Wellenlänge keinen wesentlichen Einfluss auf die Ergebnisse. Entscheidend für die Berechnung des AQs ist auch die Halbwertsbreite der Primärfarben. Da sich das Rotlicht wie oben beschrieben im steilen Anteil der Absorptionskurven befindet, entspricht die wirksame Wellenlänge nicht der mittleren Wellenlänge, sondern ist zu einer kürzeren Wellenlänge hin verschoben. Deswegen verändert sich bei zunehmender Halbwertsbreite die Intensität und eine exakte Ermittlung des AQs ist nicht mehr möglich.

Ermittlung von Einstellbreite und Anomalquotient

Farbengleichheit konzentriert sich nicht auf einen Punkt, sondern liegt innerhalb eines Bereiches, in dem sich alle farblichen Übereinstimmungen befinden. Dieser Bereich, die Einstellbreite, wird durch wiederholte Messungen der Rot-Grün-Einstellung festgelegt und beschreibt die Rot-Grün-Unterschiedsempfindlichkeit quantitativ. Je größer die Einstellbreite ist, desto schwerer fällt die Unterscheidung von Rot und Grün.

Maßgebend ist die absolute Einstellbreite, die bei neutral gestimmtem Auge ermittelt wird (Beobachtungszeitraum des Farbfeldes für drei Sekunden (sec) im Wechsel mit dem neutralen Weißfeld). Für die relative Einstellbreite wird das Neutrallicht erst nach 15 sec angeboten. Die Ergebnisse fallen schlechter aus, da sich durch Gewöhnung (Verriest et al., 1974) die Einstellbreite vergrößert. Zur Ermittlung der Einstellbreite werden die Halbfelder erst in ihrer Helligkeit abgeglichen. Danach wird durch Veränderung des Mischlichts die Grenze in kleinen Schritten bestimmt, bis die Farbe vom Mischfeld und Gelbfeld übereinstimmen. Daraus ergeben sich zwei Grenzwerte, die in den so genannten Anomalguotienten umgerechnet werden können.

Der AQ charakterisiert als Zahlenwert das Rot-/Grün-Verhältnis des Prüflings im Verhältnis zur Mittelnormeinstellung.

Er berechnet sich wie folgt:

$$AQ = \frac{R_{N} \times G_{P}}{G_{N} \times R_{P}}$$

 R_N steht für den Rot-, G_N für den Grünanteil der Mittelnormgleichung und R_P für den Rot-, G_P für den Grünanteil des Probanden. Der AQ macht allerdings keine Angaben zur Helligkeit. Deshalb ist die Auflistung der Helligkeit des gelben Vergleichslichts für die Bewertung von Vorteil.

Der AQ der Mittelnormeinstellung beträgt 1,0 bei einem Gelb-Wert von 15 (+/-1). Bei normalen Farbtüchtigen liegt der AQ zwischen 0,7 und 1,4. Protanomale haben Anomalquotienten unter 0,7, Deuteranomale über 1,4 (Krastel, et al. 2004a; 2004b), meist mit veränderten Gelb-Werten.

Vorgehen bei Farbsehstörungen

Nach Ablehnung der Mittelnormeinstellung, z. B. "oben zu rot", wird dem Mischlicht mehr Grün beigefügt, bis der Proband die Mischung als übereinstimmend akzeptiert. Von deuteranomalen Personen akzeptierte Einstellungen des Mischlichts liegen bei ca. 15 bis 20 Skalenteilen. Auch ein Protanomaler lehnt die Mittelnormgleichung ab: "oben zu grün". Aufgrund seiner Rotschwäche muss dem Mischlicht mehr Rot zugefügt werden. Protanomale akzeptieren Einstellungen bei ca. 60 Skalenteilen. Bei ihnen ist durch den ausgeprägten Helligkeitsverlust in Richtung Rot für jede neue Einstellung des Mischlichts einen neuen Helligkeitsabgleich zwingend notwendig. Beim Mischlicht von 60 wird normalerweise ein Gelb-Wert von ca. 7 bis 9 Skalenteilen akzeptiert. Mit sinkendem AQ nimmt der Helligkeitsverlust zu.

Durchführung

Bei diesem Gerätetyp mit integrierter automatischer Neutralstimmung wurde das Licht durch Leuchtdioden erzeugt. Die Bedingungen für reproduzierbare, vergleichbare Ergebnisse sind nachfolgend aufgelistet. Die Abbildung des Prüffeldes wurde durch Drehen am Okular scharf gestellt. Ermittelt wurde die absolute Einstellbreite. Die Untersuchung fand monokular statt. Die R/G-Vorgabe erfolgte in Fünferschritten. Vom diskriminierbaren Bereich ausgehend wurden die Grenzen zum undiskriminierbarem Bereich bis auf eine Dezimalstelle genau vermessen und deren Reproduzierbarkeit durch Wiederholungen getestet.

Auswertung

Die RG- und Gelb-Werte wurden von einem angeschlossenen Computer mit der vom Hersteller gelieferten Oculus-Software erfasst und der AQ automatisch errechnet. Zusätzlich wurden die R/G- und Gelb-Werte bei Feldergleichheit vermerkt. Anhand des AQs erfolgte die Einteilung des Farbsehvermögens.

2.4.5.2 Binokulares Anomaloskop

Dieses Anomaloskop ANO 100 wurde von der Firma Medizinische Geräte in Staig-Steinberg zur Verfügung gestellt und hält sich an das Prinzip des Nagel Modells I.

In der Studie diente es der Ergänzung um die Filterwirkung auch bei binokularem Sehen zu erfassen. Außerdem sollte als Nebenaufgabe das Gerät selbst auf Tauglichkeit für den klinischen Alltag oder beim Optiker getestet werden.

Prinzip

Das Anomaloskop entspricht laut Hersteller DIN 6160. Daher soll hier nur auf die Unterschiede zum oben beschriebenen Anomaloskop von der Firma Oculus eingegangen werden.

Bei diesem Anomaloskop werden die Halbfelder bestehend aus Mischlicht und Vergleichslicht mit beiden Augen und ohne Okular betrachtet. Das Feld ist im Gegensatz dem Oculus-Anomaloskop nicht rund sondern queroval und in ein rechtes und linkes Halbfeld geteilt. Rechts befindet sich das Vergleichslicht, links das Mischlicht. Die Farbfelder werden mittels Leuchtdioden erzeugt. Da für dieses Modell keine Neutralstimmung vorgesehen ist, wird die relative Einstellbreite überprüft.

Durchführung

Die Probanden mussten einen Abstand von 45cm zur LED-Leuchte einhalten. Das Gerät verfügte über verschiedene Tasten, mit Hilfe derer die Probanden die Feldergleichheit einstellen konnten. Es sollte wie oben zuerst die Helligkeit der Gelbdiode angeglichen werden, bevor die Farbeinstellung vorgenommen wurde. Gelang dies, wurde die Taste "=" eingesetzt, woraufhin sich die Leuchtdioden abschalteten und im Display erschien das Ergebnis:

AQ = 1,06n = 3Min. = 37,2Max. = 40,7Beispielswerte eines normalen Farbsichtigen. AQ: Anomaliequotient; n: Anzahl der Durchgänge; Min: minimale Helligkeit; Max: maximale Helligkeit

Auswertung

Aus den Wiederholungen wurde ein Mittelwert errechnet, anhand dessen die Einteilung des zugrunde liegenden Farbsehvermögens vorgenommen wurde. Wurde nach Aufruf des Ergebnisses das "="-Zeichen erneut betätig, so erscheint je nach Wert des ermittelten AQ die Beurteilung: Patient ist farbnormal, oder deuteranomal, oder protanomal.

2.5 Statistische Auswertung der Ergebnisse

Die statistische Auswertung erfolgte deskriptiv, da die Studie nach einer geringen Probandenzahl in einem Arm abgebrochen werden musste (vgl. **Kapitel 3.2**).

3 Ergebnisse

Im Rahmen dieser Studie wurden 21 männliche Probanden untersucht.

3.1 Einteilung nach dem Anomaloskopabgleich

Von entscheidender Bedeutung für die Einteilung der Probanden in die drei Gruppen (Normal, Protanomal, Deuteranomal), war die vorhergegangene Anomaloskopuntersuchung, anhand derer sich der AQ des jeweiligen Probanden erfassen ließ und die Gruppenzuordung von statten ging. Insgesamt wurden sieben Trichromaten, zehn Protanomale und vier Deuteranomale eingeschlossen.

Der Color Vision Test von Coloryte wurde zur Filteranpassung herangezogen.

3.2 Filteranpassung mit dem Color Vision Test (CVT)

Anhand der Vorgaben von Coloryte erfolgte der CVT binokular. Als problematisch stellte sich gleich zu Beginn die Diagnose des Farbsehvermögens trotz entsprechender Anomaloskopergebnisse heraus.

Abbildung 3-1: Rayleigh matches am Oculus-Anomaloskop vor Beginn der Studie erstellt, eingetragen im standardisierten Diagramm (vgl. **Abbildung 2-19**). Die dunkleren Farben zeigen die Probanden, die an der Studie teilgenommen haben, die helleren diejenigen ohne Filteranpassung. Es war nicht möglich, alle Probanden in die jeweiligen Gruppen einzuteilen, folglich resultierte eine zusätzliche Gruppe, deren Probanden zwar in die Studie eingeschlossen, denen allerdings kein Filter angepasst werden konnte.

Tabelle 3-1: Ergebnisse des CVT mit Wiederholungsdurchgängen (bis max. zwei). N1, P5, P6, P10, D1, D2 und D4 wurden wiederholt nicht korrekt diagnostiziert. Ihre Reihenfolge in der Tabelle entspricht der Reihenfolge der Studienteilnahme. Der Zusatz OD/OS bei Proband D2 bedeutet, dass beide Augen im 2. Durchgang getrennt voneinander gemessen wurden mit demselben Resultat. "N" steht für Normalprobanden, "P" für Protanomale und "D" für Deuteranomale. Die Nummern "1 – 10" stehen für die Probandennummer in der entsprechenden Gruppe.

Proband	1. Durchgang	2. Durchgang	3. Durchgang	Diagnose korrekt
N2	normal	-	-	ја
N3	protan	normal	-	ја
N4	protan	protan	normal	ја
N5	normal	-	-	ја
N6	protan	normal	-	ја
N7	protan	protan	normal	ја
P1	protan	-	-	ја
P2	protan	-	-	ја
P3	protan	-	-	ја
P4	protan	-	-	ја
P7	protan	-	-	ја
P8	protan	-	-	ја
P9	protan	-	-	ја
D3	protan	deutan	-	ја
D1	normal	protan	normal	nein
P5	normal	normal	normal	nein
P6	normal	normal	normal	nein
N1	protan	protan	-	nein
D2	protan	protan (OD/OS)	-	nein
P10	normal	normal	normal	nein
D4	protan	protan	protan	nein

In die erste Gruppe wurden normal Farbsehtüchtige eingeteilt. Sie enthielt sechs Probanden (vgl. **Tabelle 3-1**). Die zweite Gruppe bestand aus sieben Protanomalen und die Dritte aus einem Deuteranomalen, da sich "Deuteranomalie" anhand des CVTs als schwer diagnostizierbar erwies. Bei falscher Diagnose ihres Farbsehvermögens absolvierten die Probanden ein bis zwei weitere Durchgänge. Wurde dann die richtige Diagnose gestellt, konnten die Probanden in die Studie aufgenommen werden. Sieben Probanden, darunter ein Trichromat (N1), drei Protanomale (P5, P6, P10) und drei Deuteranomale (D1, D2, D4), wurden, verglichen mit den Anomaloskopergebnissen, trotz wiederholter

Kalibration oder Änderung der Lichtverhältnisse falsch eingeteilt (vgl. Tabelle 3-2). Daher war es obsolet, einen passenden Filter zu finden.

		Range		Midpoint	Helligkeit		AQ
Proband	Auge	min	max		min	max	
D1	OD	16,9	18,0	17,5	14,1	14,5	4,03
	OS	17,7	18,0	17,9	14,2	15,4	3,77
	OD	45,2	47,2	46,2	12,0	13,2	0,66
P5	OS	46,9	47,8	47,4	12,0	12,8	0,64
De	OD	61,8	62,7	62,3	5,5	5,7	0,20
P0	OS	63,0	64,1	63,5	5,3	5,4	0,17
N1	OD	39,8	41,2	40,5	13,4	14,1	1,01
IN 1	OS	39,8	40,7	40,3	13,8	13,8	1,01
	OD	16,3	16,9	16,6	13,9	14,3	4,21
DZ	OS	16,9	17,2	17,1	13,4	14,5	4,03
D10	OD	59,0	60,4	59,7	5,5	6,0	0,25
PIU	OS	59,0	61,5	60,3	5,1	6,0	0,23
	OD	12,0	33,5	22,8	12,0	15,4	6,15
04	OS	14,6	29,8	22,2	13,1	13,7	5,23

Tabelle 3-2: Anomaloskopergebnisse der Probanden, bei denen keine Filteranpassung möglichwar. Die Midpoint-Ermittlung erfolgte rechnerisch, wobei auf eine Kommastelle gerundet wurde.

Allen sieben Protanomalen bekamen nur die Filter P15 oder P30 zugeordnet. Keinem wurden P10, P20 oder P25 empfohlen, obwohl einige der Probanden schwach (P8, P9) bzw. stark (P1, P2, P4, P7) protanomal waren.

Im Folgenden sollen die sechs Tests getrennt voneinander besprochen werden. Sie wurden je zweimal in der durch Randomsierung zugeteilten Reihenfolge absolviert (vgl. **Tabelle 3-3**).

Proband	Filter
N2	D10
N3	D10
N4	P10
N5	D10
N6	P10
N7	P10
P1	P30
P2	P15
P3	P30
P4	P30
P 7	P30
P 8	P15
P 9	P15
D3	D30

Tabelle 3-3: Filterzuordnung der anomalen Trichromaten und. Filter, die den Normalprobanden zugeteilt wurden.

Tabelle 3-4: Randomisierung der Durchgänge. "*" Bei P2 wurde unabsichtlich die durch Randomisierung vorgesehene Reihenfolge vertauscht. Da die Vertauschung auf einer Verwechslung beruhte, werden die Daten "per protocol", d. h. nach der absolvierten Reihenfolge ausgewertet.

Proband	1. Durchgang	2. Durchgang
N2	Filter	Fensterglas
N3	Fensterglas	Filter
N4	Fensterglas	Filter
N5	Filter	Fensterglas
N6	Filter	Fensterglas
N7	Fensterglas	Filter
P1	Fensterglas	Filter
P2	Fensterglas	Filter
P3	Filter	Fensterglas
P4	Filter	Fensterglas
P7	Fensterglas	Filter
P 8	Fensterglas	Filter
P 9	Filter	Fensterglas
D3	Fensterglas	Filter

Die Probanden, bei denen keine Filteranpassung möglich war, absolvierten die Testfolge nur mit Fensterglas, die Ergebnisse sind im Anhang (vgl. **Anhang 4**) beigefügt.

3.3 Ishihara

Die Auswertung des Ishihara-Tests bezog sich auf die Gesamtfehlerzahl des jeweiligen Probanden. Nur im Falle der Protanomalen wurden die Tafeln 22 bis 25 gesondert betrachtet, da diese die Farbsehschwächenausprägung bestimmen. Bei einigen (N6, P1 bis P10, D1, D2, D4) war keine exakte Einteilung der Farbenstörung möglich, so dass nur eine "Anomalie" diagnostiziert wurde. Die "Beurteilung" der Ergebnisse bezieht sich auf den Durchgang mit den Filtern und betrifft einerseits die Gesamtfehlerzahl (besser/gleich/schlechter), andererseits die Einteilung des Farbsehvermögens (falsch/richtig). "Gleichbleibendes Farbsehvermögen" konnte nur bei unveränderter Fehlerzahl <u>und</u> Einteilung diagnostiziert werden. Eine "Verbesserung" trat ein, wenn sich die Fehlerzahl verbesserte <u>und/oder</u> die Einteilung dem tatsächlichen Farbsehvermögen entsprach. Alle anderen Fälle wurden als "Verschlechterung" gewertet: mehr Fehler und falsche Einteilung, wie auch mehr Fehler, aber gleiche Einteilung.

Im Median machten Normale ohne Filter 0 Fehler, Protanomale 31 und Deuteranomale 31. Mit Filter hatten Normale 1 Fehler, Protanomale 30 und Deuteranomale 33 (vgl. **Abbildung 3-2**). Sowohl Normalprobanden als auch Deuteranomale machten im Median mehr Fehler mit Filter als ohne. Protanomale verbesserten ihr Ergebnis mit dem Farbfilter um einen Fehler.

Normale

Die Fehler aus beiden Durchgängen, absolviert von den Normalprobanden, ist **Tabelle 3-5** zu entnehmen.

					Beurte	eilung
Proband	ohne Filter		ohne Filter mit Filter		Fehlerzahl	Einteilung
N2 (D10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N3 (D10)	0 Fehler	normal	2 Fehler	anomal	schlechter	falsch
N4 (P10)	1 Fehler	normal	1 Fehler	normal	gleich	richtig
N5 (D10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N6 (P10)	2 Fehler	deutan	1 Fehler	normal	besser	richtig
N7 (P10)	0 Fehler	normal	1 Fehler	normal	schlechter	richtig

Tabelle 3-5: Fehler und Einteilung im Ishihara-Test bei Normalprobanden. Anhand der Beurteilung wurden die Ergebnisse gewertet (vgl. Text).

Den Probanden unterliefen maximal zwei Fehler. N2 bis N5 und N7 waren im Fensterdurchgang "normalsichtig", nur N6 musste als deuteranomal eingestuft werden. Im Filterdurchgang blieb das Farbsehvermögen von N2, N4, N5 gleich. Bei N3 und N7 vergrößerte sich die Fehlerzahl. N3 musste aufgrund des zusätzlichen Fehlers als "anomal" eingestuft werden. N6, der im Fensterglas-Durchgang deuteranomal war, verbesserte sich im Filter-Durchgang um einen Fehler und hatte damit wieder normales Farbsehvermögen.

Protanomale

Die Ergebnisse der Protanomalen mit Farbfilter oder mit Fensterglas sind **Abbildung 3-2** zu entnehmen. Von allen 38 vorhandenen Tafeln wurden bis zu 36 falsch erkannt. Dies betrifft folglich alle diagnostischen Tafeln, mit Ausnahme der ersten und der letzten, die für alle Personen erkennbar waren (vgl. 2.4.1). Eine solche oder ähnliche Gesamtfehlerzahl wurde von P1, P2, P3 und P4 verursacht (vgl. **Abbildung 3-2**).

Abbildung 3-2: Fehler der Protanomalen in den Tafeln 1 bis 36 mit Fensterglas bzw. mit Filter.

Da nur die Tafeln 22 bis 25 eine Differenzierung der vorliegenden Farbsehstörung erlauben, sind diese in **Tabelle 3-6** gesondert aufgeschlüsselt.

Proband	ohne Filter	mit Filter
P1 (P30)	4	4
P2 (P15)	4	4
P3 (P30)	4	4
P4 (P30)	4	4
P7 (P30)	4	4
P8 (P15)	0	0
P9 (P15)	0	0

Tabelle 3-6: Fehler in den Tafeln 22 bis 25 bei protanomalen Probanden.

Die Auswertung dieser vier Tafeln zeigt, dass alle Protanomalen in beiden Durchgängen die gleiche Fehleranzahl hatten, das Ergebnis blieb also gleich.

Die Bedeutung der Ergebnisse ist in **Tabelle 3-7** aufgeschlüsselt. "Anomal" bedeutet eine richtige Einstufung des Farbsehvermögens, das ohne Filter bei P3, P7 und P8 diagnostiziert wurde. P1, P2 und P4 waren der Einteilung nach stark deuteranomal, während P9 normal war. Nach der Filteranpassung blieb die Beurteilung von P3 gleich, P1, P2, P4 und P7 verbesserten sich. Auffallend ist, dass P8 und P9 unerwartet wenig Fehler unterlaufen sind, wobei das Ergebnis von P8 ohne Filter diagnostisch in Richtung rot-/grünschwach weist. P9 wurde mit einem unspezifischen Fehler in Tafel 17 als normal diagnostiziert. Mit Filter unterlief beiden ein zusätzlicher Fehler, dies änderte jedoch nichts an der Diagnose.

Zusammengefasst haben sich vier der sieben Probanden durch die Filter verbessert, das Ergebnis eines Probanden blieb gleich und zwei haben sich verschlechtert.

Tabelle 3-7: Fehler und Einteilung im Ishihara-Test der Protanomalen und des Deuteranomalen. "Stark Deutan" bedeutet: Die Zahlen auf den Tafeln 22 bis 25 können nur unvollständig gelesen werden.

					Beurte	eilung
Proband	ohn	e Filter	mit	t Filter	Fehlerzahl	Einteilung
P1 (P30)	36 Fehler	stark deutan	35 Fehler	stark deutan	besser	falsch
P2 (P15)	31 Fehler	stark deutan	23 Fehler	anomal	besser	richtig
P3 (P30)	31 Fehler	anomal	31 Fehler	anomal	gleich	richtig
P4 (P30)	35 Fehler	stark deutan	35 Fehler	anomal	besser	richtig
P7 (P30)	33 Fehler	anomal	30 Fehler	anomal	besser	richtig
P8 (P15)	04 Fehler	anomal	05 Fehler	anomal	schlechter	richtig
P9 (P15)	01 Fehler	normal	02 Fehler	anomal	schlechter	richtig
D3 (D30)	32 Fehler	deutan	33 Fehler	deutan	schlechter	richtig

Deuteranomale

Die Gesamtfehleranzahl in beiden Durchgängen ist **Tabelle 3-7** zu entnehmen. D3 unterlief mit Farbfilter ein zusätzlicher Fehler. Bei der Auswertung ergibt dies somit eine Deuteranomalie, die sich durch den Farbfilter weiter verschlechtert hat.

3.4 AO-HRR

Auch die AO-HRR-Tafeln wurden nach der Gesamtfehlerzahl in den Tafeln 1 bis 24 ausgewertet. Daran orientieren sich die Ergebnisse und Einteilung des Farbsehvermögens. Die Beurteilung gestaltet sich wie folgt: "Gleiches Farbsehvermögen" bedeutete: gleiche Fehlerzahl <u>und</u> Einstufung des Farbensehens. Von "Verbesserung" kann bei geringerer Fehlerzahl <u>und/oder</u> richtiger Einstufung des Farbensehens ausgegangen werden. Von einer "Verschlechterung" wird bei höherer Fehlerzahl <u>und/oder</u> falsch diagnostiziertem Farbensehen mit besonderem Augenmerk auf Letzterem geschlossen. Auf die Sonderfälle bei den protanomalen Probanden wird unten näher eingegangen. Für die Schwerergradeinteilung der Farbsehstörung bei den Protanomalen wurden die Tafeln 11 bis 20 gesondert beurteilt.

Im Median machten die Normalprobanden sowohl ohne als auch mit Filter keinen Fehler, Protanomale verbesserten sich von 7 auf 6 Fehlern und der Deuteranomale hatte in beiden Durchgängen 12 Fehler (vgl. **Abbildung 3-3**).

Abbildung 3-3: Median der Fehler von Normalen, Protanomalen und Deuteranomalen ohne und mit Filter.

Damit machten sowohl Normalprobanden als auch Deuteranomale mehr Fehler mit Filter als ohne. Protanomale hatten ohne Filter mehr Fehler als mit.

Normale

Tabelle 3-8 zeigt die Fehlerzahl und Beurteilung der Normalprobanden. Mit dem Fensterglas unterlief keinem ein Fehler. Mit Filter las nur N7 die Tafel 7 falsch. Die Resultate entsprechen dem Farbsehvermögen der Probanden, unbeeinflusst von Fensterglas bzw. Filter. Einzige Ausnahme stellt N7 dar, der mit Filter einen Fehler machte. Da dieser in einer der ersten 7 Tafeln erfolgte, konnte der Proband zwar weiterhin als normal Farbensehender eingestuft werden (vgl. **Kapitel 2.4.2**), dennoch wurde der Fehler im Filterdurchgang als Verschlechterung gewertet.

Tabelle 3-8:	Fehler und	Einteiluna	im HRR-	-Test bei	Normalen.
		Linconding		1001001	

					Beurte	eilung
Proband	ohne Filter		mit Filter		Fehlerzahl	Einteilung
N2 (D10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N3 (D10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N4 (P10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N5 (D10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N6 (P10)	0 Fehler	normal	0 Fehler	normal	gleich	richtig
N7 (P10)	0 Fehler	normal	1 Fehler	normal	schlechter	richtig

Protanomale

Die Fehleranzahl der Protanomalen ist in **Abbildung 3-4** dargestellt. Wieder wurden von den P1 bis P4 und P7 deutlich mehr Tafeln falsch erkannt, als von P8 bzw. P9. Maximal erfolgten mit Fensterglas 12 und mit Filtern 11 Fehler.

Abbildung 3-4: HRR-Ergebnisse in den Tafeln 1 bis 24 bei Protanomalen.

Anhand der Gesamtfehlerzahl blieb in den Filterdurchgängen ein Proband gleich, vier verbesserten sich und zwei verschlechterten sich. Hier ist die Aufschlüsselung der Tafeln 11 bis 20 von Interesse (vgl. **Abbildung 3-5**).

Abbildung 3-5: HRR-Ergebnisse der Tafeln 11 bis 20 bei Protanomalen.

Die Fehler dieser Abbildung verglichen mit denen der **Abbildung 3-4** variieren nur leicht. P1 hat zwar in beiden Abbildungen dasselbe Ergebnis, dies führte jedoch zu einer anderen Einteilung seines Farbsehvermögens, so dass er sich mit dem Farbfilter verbesserte. Führte die Filterwirkung zu einer "Anomalie"-Diagnose, wo vorher eine "Protan"-Diagnose gestellt wurde, so war dies als Verbesserung zu sehen.

				Beurte	eilung	
Proband	oh	ne Filter	n	mit Filter		Einteilung
P1 (P30)	07 Fehler	mittel protan	06 Fehler	schwach protan	besser	richtig
P2 (P15)	09 Fehler	schwach protan	06 Fehler	Anomalie	besser	richtig
P3 (P30)	12 Fehler	stark protan	11 Fehler	mittel protan	besser	richtig
P4 (P30)	06 Fehler	schwach protan	04 Fehler	schwach deutan	besser	falsch
P7 (P30)	09 Fehler	mittel deutan	10 Fehler	mittel protan	schlechter	richtig
P8 (P15)	00 Fehler	normal	01 Fehler	normal	schlechter	richtig
P9 (P15)	00 Fehler	normal	00 Fehler	normal	gleich	richtig
D3 (D30)	12 Fehler	stark deutan	12 Fehler	stark deutan	gleich	richtig

Tabelle 3-9: Fehler und Einteilung im HRR-Test der Protanomalen und des Deuteranomalen in den Tafeln 11 bis 20.

Hier kommt nun der zuvor angedeutete Sonderfall, P4 betreffend, zum Tragen. Sein Ergebnis im Filterdurchgang führte trotz geringerer Fehlerzahl zur falschen Diagnose, so dass dies zusätzlich zu den oben angesprochenen Kriterien als Verschlechterung gewertet wurde. Das Ergebnis von P7 wurde anhand der Fehlerzahl im Filterdurchgang als Verschlechterung angesehen, obwohl die Diagnose richtig war.

Insgesamt haben sich drei Protanomale mittels der Filter verbessert, drei haben sich verschlechtert und bei einem blieb das Ergebnis gleich.

Deuteranomale

Die Ergebnisse des Deuteranomalen sind in **Tabelle 3-9** mit aufgeführt. Die Gesamtfehlerzahl war in beiden Durchgängen die gleiche. Die ausgeprägte Deuteranomalie wurde durch den Filter nicht beeinflusst.

3.5 CAD

Bei dem CAD wurden die Testergebnisse nach der Haupt- (major-, Rot/Grün-) Achse, der Neben- (minor-, Blau-) Achse und der Achslage (axis, Winkel der Hauptachse zur Horizontalen) (vgl. **Kapitel 2.4.3**) ausgewertet. Eine Auswertung nach der Ellipsen-Fläche wäre prinzipiell von Interesse, doch zeigt eine Flächenänderung nicht die Richtung des Einflusses an. Das Gleiche gilt für die Auswertung nur einer Achse oder des Winkels. In nachfolgenden Abbildungen sind daher die Mediane der drei Gruppen von Hauptachse (vgl. **Abbildung 3-6**) und Achslage (vgl. **Abbildung 3-7**) zu sehen. Der Einfluss auf die Nebenachse (vgl. **Abbildung 3-8**) stellt eine Besonderheit dar, die in der Diskussion besprochen wird.

Abbildung 3-6: Mediane der Hauptachse bei Normalen, Protanomalen und Deuteranomalen.

Die Haupt- und die Nebenachse wurden nach ihrer "Chromaticity Distance" (CD), der Farbdistanz, also nach ihrer Länge ausgewertet. Je länger die Achse ist, d. h. je größer der Wert, desto schlechter ist das Farbunterscheidungsvermögen. Der Winkel, mit dem Normalwert 62,5°, kann maximal 180° sein. Ausgewertet wurde er nach der Differenz zum Normalwert. Je kleiner sie ist, desto näher ist das Farbensehen dem Normalen. In **Abbildung 3-6** ist zu sehen, dass sich im Filterdurchgang die Hauptachse der Normalen verlängert, bei den Protanomalen verkürzt sie sich und bei dem Deuteranomalen verkürzt sie sich nur in eine Richtung, während sie sich in die andere verlängert. Die Achslage der Normalen ändert sich nicht wesentlich, bei den Protanomalen wird sie größer und bei dem Deuteranomalen kleiner (vgl. **Abbildung 3-7**).

Abbildung 3-7: Mediane der Achslage bei Normalen, Protanomalen und Deuteranomalen.

Obwohl die Nebenachse durch die Filter nicht beeinträchtigt werden sollte, fiel ein Einfluss auf, welcher sich in den Medianen widerspiegelt (vgl. **Abbildung 3-8**). Die Nebenachse der Normalen und Protanomalen verlängern sich mit den Filtern, die des Deuteranomalen verlängert sich auf dem rechten und verkürzt sich auf dem linken Auge.

Normale

Tabelle 3-10 enthält die Ergebnisse der Normalen. Die schlechteren Werte desGlas- bzw. Filterdurchgangs sind grau unterlegt.

Die Hauptachsen (Rot/Grün) haben sich mit den Filtern bei fast allen Normalen, bis auf N5 (OD) verlängert. Damit hat sich ihr Farbdifferenzierungsvermögen verschlechtert. Besonders deutlich wird dies bei N6 und N7, die schon mit dem Fensterglas höhere Werte erzielten als alle anderen Probanden in den jeweils schlechteren Filterdurchgängen.

Auch die Nebenachse (Blau) hat sich im Filterdurchgang überwiegend verlängert, bei N3 und N5 jeweils auf dem linken Auge, bei N2, N4 und N7 auf beiden Augen, die Werte von N6 haben sich verbessert.

Die Veränderung der Achslage ist uneinheitlich. Mit Filter haben sich N2, N4 und N5 auf dem einen Auge verschlechtert, auf dem anderen verbessert.

		Hauptachse		Nebenachse		Achslage	
Proband	Auge	ohne Filter	mit Filter	ohne Filter	mit Filter	ohne Filter	mit Filter
N2 (D10)	OD	27,6280	29,3491	5,51618	5,96426	64,0°	57,0°
NZ (D10)	OS	20,8324	27,8564	4,49086	6,34259	67,5°	64,5°
N2 (D10)	OD	24,6453	28,2600	4,39705	4,34321	66,0°	66,0°
N 3 (D10)	OS	20,5951	27,5420	4,42838	4,81931	66,5°	65,0°
NA (D10)	OD	27,9439	37,7102	6,56570	7,46956	71,0°	67,5°
N4 (F10)	OS	29,4678	36,5216	7,37472	9,32907	69,5°	73,0°
N5 (D10)	OD	24,9270	21,1162	5,75728	4,77614	67,5°	72,0°
N3 (D10)	OS	23,1802	28,1769	5,68474	8,06710	67,0°	64,5°
N6 (D10)	OD	51,0690	60,8334	9,32976	7,92975	63,0°	66,0°
NO (P10)	OS	69,7531	79,5877	9,18164	7,90216	63,0°	63,0°
N7 (D10)	OD	43,7028	76,9147	5,09021	6,74527	60,5°	60,5°
	OS	46,8250	83,6760	6,60165	8,30973	59,5°	61,0°

 Tabelle 3-10: CAD-Ergebnisse beider Durchgänge von den Normalen, mit major- (Haupt) Achse), minor- (Neben) Achse und der Achslage (axis).

Geht man vom Durchschnitt der beiden Augen in den entsprechenden Durchgängen aus, haben die Filter die Achslage von N2 verbessert, die von N4 ist im etwa gleich geblieben, die von N5 hat sich verschlechtert. Die von N3 und N7 hat sich auf einem Auge verbessert, ist also dem Normwert noch näher gekommen, auf dem anderen Auge blieb sie gleich, d. h. im Durchschnitt hat sie sich etwas verbessert. Nur N6 hat sich etwas verschlechtert, da er mit den Filtern auf einem Auge gleiche Werte erzielen konnte, während das andere Auge schlechtere Testergebnisse erreichte (vgl. **Tabelle 3-11**).

Tabelle 3-11: Beurteilung des Filtereinflusses auf beide Achsen und den Ellipsenwinkel bei Normalen. Verschlechterung bedeutet bei der Haupt- bzw. Nebenachse größere Werte und damit verminderte Diskriminationsfähigkeit, bei der Achslage größere rechnerische Distanz zum Normwert (62,5°).

		Beurteilung						
Proband	Auge	Hauptachse	Nebenachse	Achslage				
N2 (D10)	OD	schlechter	schlechter	schlechter				
NZ (D10)	OS	schlechter	schlechter	besser				
N2 (D10)	OD	schlechter	besser	gleich				
N 3 (D10)	OS	schlechter	schlechter	besser				
NA (D10)	OD	schlechter	schlechter	besser				
N4 (F 10)	OS	schlechter	schlechter	schlechter				
N5 (D10)	OD	besser	besser	schlechter				
NJ (D10)	OS	schlechter	schlechter	besser				
N6 (D10)	OD	schlechter	besser	schlechter				
NO (F10)	OS	schlechter	besser	gleich				
N7 (D10)	OD	schlechter	schlechter	gleich				
N 7 (F10)	OS	schlechter	schlechter	besser				

Protanomale

Die Rot/Grün-Differenzierung von fünf (P1, P2 (vgl. **Abbildung 3-9** und vgl. **Abbildung 3-10**), P3, P4 (vgl. **Abbildung 3-11**), P7) Probanden hat sich auf mindestens einem Auge verbessert (vgl. **Tabelle 3-12**). Die von P1 und P7 ist auf dem linken Auge schlechter geworden. Nur P8 und P9, deren Hauptachsen sehr denen der Normalen ähneln, haben sich auf beiden Augen verschlechtert.

		Hauptachse		Nebenachse		Achslage	
Proband	Auge	ohne Filter	mit Filter	ohne Filter	mit Filter	ohne Filter	mit Filter
P1 (P30)	OD	98,5819	98,0428	33,8846	42,2207	28,5°	165,0°
	OS	93,6815	111,5850	33,8624	44,3493	30,0°	160,5°
P2 (P15)	OD	85,0402	72,0292	14,2642	22,2800	179,5°	168,5°
	OS	84,9952	71,1961	16,3672	20,1293	177,5°	171,0°
P3 (P30)	OD	101,0960	84,0881	33,4768	33,7430	3,0°	167,0°
	OS	96,7474	86,5475	30,9671	40,6192	10,5°	164,5°
P4 (P30)	OD	84,0499	78,4262	24,4925	28,9075	1,0°	168,0°
	OS	84,4727	69,4503	27,2472	32,1101	3,5°	178,5°
P7 (P30)	OD	85,1215	82,8790	28,8799	32,4193	0,0°	165,5°
	OS	85,5831	87,0799	29,1430	34,9211	177,5°	169,0°
P8 (P15)	OD	16,8630	20,4905	4,9173	9,5446	45,0°	71,5°
	OS	16,0438	20,6463	4,2561	9,8534	46,0°	69,0°
P9 (P15)	OD	31,6124	36,8695	8,0588	14,3525	45,5°	53,5°
	OS	31,6906	37,9974	8,5010	12,0752	49,5°	70,5°
D3 (D30)	OD	104,5220	93,0386	40,8134	47,4718	136,0°	165,0°
	OS	100.3880	103.2570	62.7355	56,3238	121.0°	160.5°

Tabelle 3-12: CAD-Ergebnisse beider Durchgänge der Protanomalen und des Deuteranomalen mit Hauptachse, Nebenachse und Achslage.

Abbildung 3-9: Länge und Lager der Hauptachse von P2, die Achslänge hat sich mit Filter verkürzt, die Achslage ist gleich geblieben.

Dagegen hat sich die Nebenachsenlänge bei allen Probanden mit Filtern verlängert, während sich der Ellipsenwinkel bei einer Hälfte (P2, P7 (OS), P8, P9) dem Normalwert angenähert hat und sich bei der anderen Hälfte verschlechtert hat. (P1, P3, P4 (vgl. **Abbildung 3-11**), P7 (OD)). Genauer betrachtet haben P8 und P9, die Probanden mit hohem AQ, wie schon in den vorhergehenden Tests eher normale als anomale Werte. P2 hat den Protanomalen entsprechende Werte. Ebenso verhält es sich bei P7 auf dem linken Auge, auf dem Rechten allerdings variiert die Achslage mit 0° ohne Filter bis 165,5° mit Filter, wobei der Wert im protanomalen Bereich liegt, ähnlich verhält es sich bei P1, P3 und P4.

Abbildung 3-10: Links: ohne Filter; rechts: mit Filter. Bei Vergleich der Zapfenempfindlichkeit von P2 fällt kein gravierender Unterschied zwischen den beiden Durchgängen auf.

Abbildung 3-11: Links: ohne Filter; rechts: mit Filter. Bei Vergleich der Zapfenempfindlichkeit von P3 ist der Unterschied im Rot/Grün-Bereich gering, im Blau-Bereich dafür eindeutig schlechter.
			Beurteilung	
Proband	Auge	Hauptachse	Nebenachse	Achslage
P1 (D20)	OD	besser	schlechter	schlechter
FI (F30)	OS	schlechter	schlechter	schlechter
D2 (D15)	OD	besser	schlechter	besser
FZ (F13)	OS	besser	schlechter	besser
D2 (D20)	OD	besser	schlechter	schlechter
P3 (P30)	OS	besser	schlechter	schlechter
D A (D20)	OD	besser	schlechter	schlechter
F4 (F30)	OS	besser	schlechter	schlechter
D7 (D20)	OD	besser	schlechter	schlechter
F1 (F30)	OS	schlechter	schlechter	besser
D9 (D15)	OD	schlechter	schlechter	besser
FO(F13)	OS	schlechter	schlechter	besser
DO (D15)	OD	schlechter	schlechter	besser
F9 (P15)	OS	schlechter	schlechter	besser

 Tabelle 3-13:
 Beurteilung des Filtereinflusses bei den Protanomalen.

Deuteranomale

Bei dem Deuteranomalen hat sich mit dem Filter sowohl die Hauptachse, als auch die Nebenachse auf einem Auge verbessert, auf dem anderen verschlechtert. Die Achslage hat sich auf beiden Augen in Richtung Protanomalie vergrößert und damit verschlechtert.

 Tabelle 3-14:
 Beurteilung des Filtereinflusses beim Deuteranomalen.

		Beurteilung					
Proband	Auge	Hauptachse	Nebenachse	Achslage			
D3 (D30)	OD	besser	schlechter	schlechter			
	OS	schlechter	besser	schlechter			

3.6 Kontrast-Test

Der Kontrast-Test wurde bei einem RLM (Random Luminance Mask) von 3% ausgewertet. Die Resultate bei 6% und 9% entsprechen denen des ausgewerteten RLMs, so dass sie keine zusätzlichen Erkenntnisse bringen, die näherer Betrachtung bedürfen. In **Abbildung 3-12** sind die Mediane der Helligkeitsschwellen der drei Gruppen zu sehen. Die Kontrastempfindlichkeit der Normalen und der Protanomalen hat sich demnach mit Filter im Median verschlechtert.

Bei dem Deuteranomalen hat es sich mit Filter auf dem rechten Auge verbessert, während es auf dem linken Auge schlechter wurde.

Abbildung 3-12: Median-Werte des Kontrasttest, monokular getestet, ohne und mit Filter.

Normale

In **Tabelle 3-15** sind die Schwellenwerte zu sehen, bei denen gerade noch ein Kontrast wahrgenommen wird.

Tabelle 3-15: RLM-Ergebnisse Normaler, monokular getestet, jeweils ohne und mit Filter. VonBedeutung für die Auswertung sind die Spalten RLM3 und deren Beurteilung.

		Ko	ntrast	Beurteilung
Proband	Auge	ohne	mit Filter	
N2 (D10)	OD	308,08	362,86	schlechter
NZ (D10)	OS	313,37	27,77	besser
N3 (D10)	OD	251,61	270,52	schlechter
	OS	222,69	265,93	schlechter
NA (P10)	OD	293,90	230,87	besser
N4 (F 10)	OS	330,81	394,08	schlechter
	OD	2,36	256,40	schlechter
NO (D10)	OS	23,59	291,26	schlechter
N6 (P10)	OD	219,33	280,25	schlechter
NO (P10)	OS	22,86	366,83	schlechter
N7 (D10)	OD	272,09	300,42	schlechter
	OS	298,95	344,93	schlechter

Motion

Die schlechteren Werte sind wieder grau unterlegt. Außerdem ist die Beurteilung in der jeweils folgenden Spalte angeschlossen. Höhere Werte bedeuten schlechtere Kontrastwahrnehmung, geringere bessere. Die Kontrastwahrnehmung aller Normalen hat sich mit Filter auf mindestens einem, meistens auf beiden Augen verschlechtert. N2 und N4 haben sich nur auf einem Auge verbessert. Die Probanden N2 (OS), N5 (OD und OS) und N6 (OS) zeigen große Veränderungen von 200 bis 350 Einheiten in die besseren und schlechteren Richtungen.

Protanomale

Die Ergebnisse der Protanomalen und des Deuteranomalen enthält **Tabelle 3-16**. Wie schon bei den Normalen haben sich auch bei den Protanomalen die Werte mit Filter auf mindestens einem der beiden Augen verschlechtert. Die Filter haben die Schwellenwerte von P1, P2 und P3 auf dem linken Auge verbessert, bei P8 auf dem Rechten. Auch hier sind die Werte eines Durchgangs sehr hoch, während im anderen Durchgang niedrige Schwellenwerte benötigt wurden (P2(OS) und P8(OD)). Eine deutliche Veränderung lösten die Filter auch bei P1 auf dem rechten Auge aus, er verschlechterte sich um über 200 Einheiten.

		Ko	ntrast	Beurteilung
Proband	Auge	ohne	mit Filter	
D1 (D30)	OD	344,46	592,11	schlechter
F 1 (F 30)	OS	432,87	353,45	besser
D2 (D15)	OD	187,54	239,42	schlechter
P2 (P15)	OS	196,95	25,98	besser
D2 (D20)	OD	348,78	413,52	schlechter
F3 (F30)	OS	40,76	35,27	besser
D4 (D20)	OD	210,01	217,41	schlechter
F4 (F30)	OS	218,13	224,54	schlechter
D7 (D20)	OD	223,60	332,01	schlechter
F1 (F30)	OS	298,33	334,99	schlechter
DO (D15)	OD	186,36	26,32	besser
FO (F15)	OS	172,80	343,73	schlechter
DO (D15)	OD	362,68	390,26	schlechter
F3 (F13)	OS	305,68	346,28	schlechter
D2 (D20)	OD	391,91	368,73	besser
D3 (D30)	OS	285,80	392,21	schlechter

 Tabelle 3-16: RLM-Ergebnisse Protanomaler und Deuteranomaler.

Deuteranomale

Die Werte sind **Tabelle 3-16** zu entnehmen. Wie schon bei den CAD-Hauptund Nebenachsen ist das Ergebnis ambivalent, die Filter haben den Wert des rechten Auges verbessert, den des Linken verschlechtert.

3.7 Das monokulare Anomaloskop

Um den Schweregrad der Farbsehstörung möglichst genau zu erfassen, wurde für die Auswertung des monokularen Anomaloskops der Midpoint errechnet. Dazu werden der minimale und der maximale Farbwert, bei denen gerade noch Farbgleichheit angegeben werden, herangezogen. So erhält man eine Gerade, auf deren Mitte sich der für die Auswertung herangezogene Midpoint (Rot/Grün-Wert) befindet. Dabei ist zu bedenken, dass normalsichtige Personen in der Rayleigh-Gleichung ein Rot-Grün-Mischungsverhältnis von etwa 40 haben (Heinsius, 1973). Bei vorliegendem Gerät bewegt sich der Normbereich zwischen 34 und 46 relativen Skaleneinheiten bei einem Helligkeitswert von 15 (+/-1). Zusätzlich wird der Anomaliequotient angegeben, einerseits um eine sichere Diagnose des Farbsehvermögens stellen zu können, andererseits erlaubt dies den Vergleich zwischen R/G-Werte von verschiedenen Geräten. Der AQ-Median der verschiedenen Gruppen aus mehrfach (drei bis fünf Mal) wiederholten Messungen ist in **Abbildung 3-13** dargestellt.

Abbildung 3-13: AQ-Median der drei Gruppen des rechten und linken Auges am monokularem Anomaloskop.

Die ersten beiden Balken geben jeweils die AQ-Ergebnisse des rechten Auges ohne bzw. mit Filter an, gefolgt von zwei Weiteren mit den Ergebnissen des linken Auges. Dieser Grafik ist zu entnehmen, dass die Filter die AQ-Werte aller drei Probandengruppen verschlechtert haben, so dass eine Farbsehstörung bzw. eine Verschlechterung der bereits vorhandenen Farbsehstörung die Folge war. Dies soll nachfolgend genauer beschrieben werden.

Normal

Die Untersuchungsergebnisse aller normal Farbsichtigen sind unter Angabe von Range (Einstellbreite), Midpoint (Rot/Grün-Wert), minimaler und maximaler Helligkeitseinstellung sowie Anomalquotient in **Tabelle 3-17** aufgeführt. Da die Einteilung des Farbsehvermögens international anhand des AQs erfolgt, wurde dieser an letzte Stelle gesetzt und die schlechteren Werte der beiden Durchgänge grau unterlegt.

			Rai	nge		Midp	point		Helli	gkeit		AQ	
		ohne	Filter	mit F	Filter	ilter ohne mit		ohne	Filter	mit F	Filter	ohne	mit
Proband	Auge	min	max	min	max			min	max	min	max		
	OD	38,6	41,5	10,6	11,7	40,05	11,15	13,9	14,6	10,8	10,8	1,08	7,14
NZ (D10)	OS	36,4	41,5	12,0	13,2	38,95	12,60	13,6	14,1	10,2	10,2	1,22	6,15
N3 (D10)	OD	38,1	39,8	13,5	15,5	38,95	14,50	12,9	14,8	10,1	10,8	1,11	5,36
N3 (D10)	OS	36,9	39,8	12,0	12,3	38,35	12,15	13,1	15,2	10,4	11,5	1,18	6,15
NA (P10)	OD	37,8	39,5	28,9	30,3	38,65	29,60	13,0	13,8	12,7	13,2	1,13	1,85
N 4 (F 10)	OS	39,2	40,9	30,1	31,2	40,04	30,65	12,2	12,9	12,9	13,2	1,04	1,73
N5 (D10)	OD	41,5	43,5	13,5	14,9	42,50	14,20	12,0	12,4	10,8	10,9	0,92	5,36
NO (D10)	OS	41,2	43,8	15,2	16,0	42,50	15,60	11,5	12,7	10,4	13,2	0,93	4,62
N6 (P10)	OD	43,2	45,5	33,2	34,1	44,35	33,65	11,6	12,4	12,2	12,7	0,83	1,45
NO (F 10)	OS	43,5	45,5	34,9	36,6	44,50	35,75	11,6	12,5	12,4	13,2	0,83	1,32
N7 (P10)	OD	40,7	41,2	32,1	32,1	40,95	32,10	13,2	13,6	13,6	14,1	0,96	1,55
	OS	40,9	40,9	31,8	31,8	40,90	31,80	13,1	13,6	14,3	14,5	0,95	1,57

 Tabelle 3-17:
 Ergebniswerte des monokularen Anomaloskop bei Normalen, getestet mit und ohne Filter, aufgelistet nach Range, Midpoint, Gelb-Wert (Helligkeit) und AQ.

Bei allen Normalen verschlechterten die Filter den AQ und den Midpoint. Besonders N2, N3 und N5 befinden sich mit Filter im deuteranomalen Farbbereich. Die Helligkeits-Werte mit Filter sind im Durchschnitt niedriger als die mit Fensterglas. Die graphische Darstellung der entsprechenden Midpoints zeigt Abbildung 3-14.

Abbildung 3-14: Midpiont-Werte des monokularen Anomaloskops, jeweils mit und ohne Filter getestet bei Normalen. Die exakten Werte sind **Tabelle 3-17** zu entnehmen.

Da sich normales Farbensehen in dem Bereich von 34 bis 46 relativen Einheiten bewegt, betrifft die Farbsehverschlechterung mittels Filter nicht nur den AQ, sondern auch den Midpoint. Letztlich haben die Filter bei fast allen Probanden deuteranomales Farbensehen hervorgerufen, mit Ausnahme von N6, dessen Ergebnisse sich nur an der Grenze zur Anomalie bewegen.

	rechtes Aug	e	linkes Auge		Beurteilung
Proband	ohne Filter	mit Filter	ohne Filter	mit Filter	
N2 (D10)	normal	deutan	normal	deutan	schlechter
N3 (D10)	normal	deutan	normal	deutan	schlechter
N4 (P10)	normal	deutan	normal	deutan	schlechter
N5 (D10)	normal	deutan	normal	deutan	schlechter
N6 (P10)	normal	deutan	normal	normal	schlechter
N7 (P10)	normal	deutan	normal	deutan	schlechter

 Tabelle 3-18:
 Wertung des binokularen Anomaloskop-Versuchs bei Normalprobanden.

Protanomal

Die Ergebnisse Protanomaler und Deuteranomaler sind in folgender Tabelle aufgeführt (vgl. **Tabelle 3-19**). "nv" steht für **n**ot **v**alid und bedeutet, dass keine Werte ermittelt werden konnten. Als Besonderheit wird hier zusätzlich die Helligkeitseinstellung besprochen, da sie sich signifikant ändert.

Bei der Bewertung ist zu beachten, dass P8 trotz zuvor diagnostizierter Protanomalie bei der Versuchsdurchführung mit Fensterglas mit beiden Augen normalsichtig war.

			Rai	nge		Midp	point		Helli	gkeit		Α	Q
		ohne	Filter	mit F	Filter	ohne	mit	ohne	Filter	mit l	Filter	ohne	mit
Proband	Auge	min	max	min	max			min	max	min	max		
D1 (D20)	OD	61,0	63,8	69,3	70,7	62,40	70,00	4,9	6,2	2,5	3,4	0,17	0,04
F (F 30)	OS	62,1	63,8	69,6	69,9	62,95	69,75	5,5	5,6	2,9	3,1	0,17	0,05
D2 (D15)	OD	60,1	62,4	59,8	67,7	61,25	63,75	5,6	6,0	44,1	44,3	0,21	0,18
FZ (F13)	OS	61,0	62,4	57,3	61,3	61,70	59,30	5,1	6,0	27,7	33,2	0,21	0,23
D2 (D30)	OD	53,2	55,0	61,0	62,4	54,10	61,70	10,4	10,4	8,3	9,2	0,41	0,21
F3 (F30)	OS	46,1	57,3	60,4	61,5	51,70	60,95	8,6	14,3	9,7	10,4	0,33	0,23
D A (D30)	OD	62,4	65,8	69,0	69,9	64,10	69,45	3,9	5,5	3,2	3,9	0,13	0,05
F4 (F30)	OS	66,1	67,6	63,8	70,4	66,85	67,10	3,6	4,4	2,5	7,4	0,10	0,07
D7 (D30)	OD	59,0	65,8	67,0	70,1	62,40	68,55	4,2	7,4	3,0	5,1	0,13	0,05
F 7 (F30)	OS	59,8	65,8	65,3	69,3	62,80	67,30	4,4	7,2	3,5	6,2	0,13	0,07
D2 (D15)	OD	44,9	46,1	nv	nv	45,50	nv	12,0	13,4	nv	nv	0,71	nv
10(113)	OS	45,5	45,8	nv	nv	45,65	nv	12,4	13,9	nv	nv	0,72	nv
PO (P15)	OD	44,1	47,2	nv	nv	45,65	nv	11,5	12,9	nv	nv	0,66	nv
13(115)	OS	47,2	47,8	nv	nv	47,50	nv	12,0	12,0	nv	nv	0,64	nv
	OD	15,7	16,9	9,9	11,5	16,30	10,70	13,1	13,1	13,4	15,7	4,41	8,76
DJ (D30)	OS	17,2	20,9	nv	nv	19,05	nv	12,7	13,2	nv	nv	3,94	nv

 Tabelle 3-19:
 Anomaloskopergebnisse der Protanomalen und des Deuteranomalen.

Die Filter führten insgesamt zu einer Verschlechterung des Farbsehvermögens, was an den erzielten AQ- und Midpoint-Werten ersichtlich wird. Nur P2 hat sich rechnerisch auf dem linken Auge etwas verbessert, auf Nachfrage hin konnte allerdings keine absolute Farbübereinstimmung eingestellt werden. Bei P8 und P9 bewirkten die Filter eine Unfähigkeit, die beiden Halbfelder farblich gleich zu stellen. Ein Filtereinfluss auf die Helligkeit der beiden Halbfelder ist unbestreitbar und **Tabelle 3.19** zu entnehmen. Besonders ausgeprägt ist ein solcher Einfluss bei P2, dessen "Filter"-AQ sich im ohne Filter erzielten Bereich bewegt,

der aber fast zehnmal mehr Helligkeitsanteile beanspruchte, um diese AQ-Ergebnisse zu erzielen. Bei den übrigen Probanden lagen die Helligkeitswerte etwa im oder knapp unter bzw. über dem Bereich der Helligkeitswerte ohne Filter.

An dieser Stelle soll explizit nochmals auf die Helligkeitseinstellung eingegangen werden. Wie in **Kapitel 2.3.5** beschrieben, muss erst der Helligkeitsgleichheit durchgeführt werden, um Farbengleichheit zu erreichen. Dies war beiden nicht möglich. P8 sah das untere Feld immer Braun und konnte dies durch Änderung des Vergleichslichtes und Drehen der Mischschraube nicht ändern, daher wurde bei diesen Probanden der Farbumschlag von Grün nach Gelb und von Gelb nach Rot festgehalten und der Helligkeitsabgleich separat durchgeführt. Dies ist **Tabelle 3-20** zu entnehmen.

			Farbum	schlag	Helligkeitsabgleich
Proband	Auge		grün -> gelb	gelb -> rot	
		AQ	3,62	0,37	1,41
P8 (P15)	OD	Mischlicht	18,30	49,50	33,80
		Vergleichslicht	20,30	20,30	21,40
		AQ	2,56	0,41	1,04
	OS	Mischlicht	23,50	54,70	39,20
		Vergleichslicht	20,10	20,10	27,70
		AQ	2,51	0,03	nv
	OD	Mischlicht	23,80	71,30	nv
DO (D15)		Vergleichslicht	14,80	14,80	nv
13(113)		ÂQ	5,81	0,01	nv
	OS	Mischlicht	12,60	72,10	nv
		Vergleichslicht	14,80	14,80	nv

Tabelle 3-20: Werte für Helligkeitsabgleich und Farbumschlag bei P8 und P9.

Die Ergebnisse aller anderen Protanomalen sind in **Abbildung 3-15** anhand des errechneten Midpoints dargestellt.

Abbildung 3-15: Midpoint der Protanomalen getrennt getestet, jeweils mit und ohne Filter.

Damit haben die Filter die Protanomalie von P1, P2, P3, P4 und P7 verstärkt, während bei P8 und P9 keine Einteilung möglich war, da sie die beiden Farbfelder des Anomaloskops nicht mehr abgleichen konnten (vgl. **Tabelle 3-21**). Es bleibt festzuhalten, dass die Filter das Farbensehen der Protanomalen insgesamt ungünstig beeinflusst haben.

	rechtes	Auge	linkes	Auge	Beurteilung
Proband	ohne Filter	mit Filter	ohne Filter	mit Filter	
P1 (P30)	protan	protan	protan	protan	schlechter
P2 (P15)	protan	nv	protan	nv	schlechter
P3 (P30)	protan	protan	protan	protan	schlechter
P4 (P30)	protan	protan	protan	protan	schlechter
P7 (P30)	protan	protan	protan	protan	schlechter
P8 (P15)	normal	nv	normal	nv	schlechter
P9 (P15)	protan	nv	protan	nv	schlechter

 Tabelle 3-21:
 Wertung binokularen Anomaloskop-Versuchs bei protanomalen Probanden.

Deuteranomal

Die Ergebnisse des deuteranomalen Probanden sind in **Tabelle 3-19** mit aufgeführt. Die Wirkung der Filter hat den AQ und folglich den Midpoint so verändert, dass der Proband die beiden Felder nur noch mit dem rechten Auge gleichstellen konnte. Der Helligkeitsabgleich lag nur um wenige Skalenteile höher als ohne Filter. Da es diesem Probanden trotz gutem Helligkeitsabgleich unmöglich war, Gelb einzustellen, blieb auch hier nur die Möglichkeit, den Farbumschlag dieses Mal von Grün nach Rot festzuhalten (vgl. **Tabelle 3-22)**.

		Farbumschlag
Proband	linkes Auge	grün -> rot
	AQ	2,96
D3 (D30)	Mischlicht	21,20
	Vergleichslicht	18,40

Tabelle 3-22: Werte für den Farbumschlag von Grün nach Rot.

Das Farbsehvermögen des Deuteranomalen wurde durch die Filter also deutlich verschlechtert (vgl. **Tabelle 3-23**).

Tabelle 3-23: Wertung binokularen Anomaloskop-Versuchs bei deuteranomalen Probanden.

	rechtes	Auge	linkes	Beurteilung	
Proband	ohne Filter	mit Filter	ohne Filter	mit Filter	
D3 (D30)	deutan	deutan	deutan	nv	schlechter

3.8 Das binokulare Anomaloskop

Auch hier wurde, bezogen auf die Farbwerte, der Midpoint errechnet. Bei diesem Gerät liegt die Mittelnormgleichung bei 40,4. Wie beim monokularen Anomaloskop wird im Folgenden besonders auf den AQ eingegangen. Der AQ-"Range" der Normalen, Protanomalen und des Deuteranomalen ist in **Abbildung 3-16** dargestellt. Er kam durch wiederholte Messungen mit sehr unterschiedlichen Ergebnissen zustande.

Abbildung 3-16: AQ-Range der drei Probandengruppen.

Bei allen Gruppen fallen deutlich höhere AQ-Werte in den Filterdurchgängen auf. Beim Deuteranomalen geht der Wert sogar bis ins Unendliche, verdeutlicht durch die Zahl 999.

Normale

In **Tabelle 3-24** sind die Ergebnisse mit minimalem und maximalem Farbwert (bei Farbgleichheit), Midpoint und Anomaliequotient bzw. dessen Range angegeben, da dieser sich bei Wiederholung als nicht reproduzierbar erwies. Bei Proband N7 stand das Leihgerät nicht mehr zur Verfügung. N2 wurde definitionsgemäß schon mit dem Fensterglas als deuteranomal diagnostiziert.

	Farbwert				Midp	point		AQ		
	ohne Filter		mit F	Filter	ohne	mit	ohne Filter		mit Filter	
Proband	min	max	min	max			min	max	min	max
N2 (D10)	33,5	35,9	16,8	20,2	34,70	18,50	1,37	1,43	3,53	3,73
N3 (D10)	34,1	37,6	17,8	22,8	35,85	20,30	1,14	1,27	3,21	3,54
N4 (P10)	36,3	39,7	31,4	34,5	38,0	32,95	1,13	1,19	1,50	1,60
N5 (D10)	36,0	38,3	17,5	22,8	37,15	20,15	1,15	1,19	3,07	3,44
N6 (P10)	37,2	40,7	32,4	35,5	38,95	33,95	1,05	1,17	1,35	1,43
N7 (P10)	Gera	at nich	t verfü	gbar						

Tabelle 3-24: Ergebniswerte des binokularen Anomaloskops mit und ohne Filter, aufgelistet nach Helligkeit, Midpoint und AQ bei Normalen.

Die Filter verändern den AQ und den Midpoint der Normalprobanden insofern, als dass sich alle in Richtung Deuteranomalie bewegten bzw. als Deuteranomal diagnostiziert wurden. Die Farbwertunterschiede des Midpoints liegen exemplarisch bei N5 über 17 Punkten, was angesichts des davon beeinflussten Anomaliequotienten zu gravierenden Änderungen des Farbensehens führte. So dass Filter das Farbsehvermögen aller Probanden verschlechterten.

Tabelle 3-25: Wertung des binokularen Anomaloskop-Versuchs bei Normalprobanden; nd =nicht durchgeführt.

Proband	ohne Filter	mit Filter	Beurteilung
N2 (D10)	deutan	deutan	schlechter
N3 (D10)	normal	deutan	schlechter
N4 (P10)	normal	deutan	schlechter
N5 (D10)	normal	deutan	schlechter
N6 (P10)	normal	deutan	schlechter
N7 (P10)	nd	nd	nd

Protanomale

Die Ergebnisse der Protanomalen sind in **Tabelle 3-26** zu sehen. Nur P4 und P7 konnten ohne Filter als protanomal diagnostiziert werden, zwei waren Normal (P8, P9), drei Deuteranomal (P1, P2, P3). Wie schon bei den Normalen fallen bei den Protanomalen sehr unterschiedliche Ergebnisse in den beiden Durchgängen auf.

		Farb	wert		Midp	point		A	Q	
	ohne	Filter	mit F	Filter	ohne	mit	ohne	Filter	mit F	ilter
Proband	min	max	min	max			min	max	min	max
P1 (P30)	30,9	40,7	39,8	44,4	35,80	42,10	1,27	1,65	0,78	0,91
P2 (P15)	29,4	39,1	39,5	40,7	34,25	40,10	1,29	1,67	0,97	1,01
P3 (P30)	10,7	44,4	33,0	55,6	27,55	44,30	0,78	2,41	0,69	1,07
P4 (P30)	56,0	60,6	11,9	40,9	58,30	26,40	0,29	0,37	0,95	2,33
P7 (P30)	39,7	59,8	24,3	60,9	49,75	42,60	0,48	1,02	0,43	0,80
P8 (P15)	39,5	41,1	30,9	32,3	40,30	31,60	1,02	0,99	1,56	1,58
P9 (P15)	42,3	47,8	32,8	35,9	45,05	34,35	0,72	0,84	1,38	1,44
D3 (D30)	10,6	30,8	0,0	5,6	20,70	2,80	3,06	7,13	30,10	999

Tabelle 3-26: Ergebnis am binokularen Anomaloskop bei Protanomalen und Deuteranomalen in beiden Durchgängen. Der AQ "999" beim Deuteranomalen bedeutet, dass die Halbfelder nicht gleichgestellt werden konnten, wie es für Deuteranope typisch ist.

Der sehr großen Range der AQ-Werte erschwert eine sinnvolle Auswertung. Nachfolgend werden deshalb lediglich die einzelnen Probanden besprochen: Bei P1 und P2 normalisierten die Filter das Farbensehen. P3 wurde protanomal. Dies entspricht seinem tatsächlichen Farbsehvermögen, so dass dies auch als Besserung gewertet wurde. Bei P4 hatte das Tragen der Filter eine Deuteranomalie zur Folge, also eine Verschlechterung. Ebenso wurden P8 und P9 deuteranomal. Bei P7 verschlechterte sich der AQ weiter in Richtung Anopie.

Tabelle	3-27:	Einteilung	des	Farbsehvermögens	ermittelt	am	binokularen	Anomaloskop	und
Wertung	•								

Proband	Farbsehvermögen ohne Filter	Farbsehvermögen mit Filter	Beurteilung
P1 (P30)	deutan	normal	besser
P2 (P15)	deutan	normal	besser
P3 (P30)	deutan	protan	besser
P4 (P30)	protan	deutan	schlechter
P7 (P30)	protan	protan	schlechter
P8 (P15)	normal	deutan	schlechter
P9 (P15)	normal	deutan	schlechter

Deuteranomal

Das Ergebnis des Deuteranomalen zeigte den deutlichsten Unterschied (vgl. **Tabelle 3-26**). Ohne Filter diagnostizierte das Gerät Deuteranomalie. Durch die Filter verschob sich die maximale Grenze des AQ-Werts ins Unendliche, was vollständiger Deuteranopie entspricht und somit als Verschlechterung anzusehen ist.

4 Diskussion

Hauptaufgabe war es, den Filtereffekt auf das Farbsehvermögen anomaler Trichromaten mittels Standardfarbsehtest zu untersuchen. Sofern vorhanden, sollte der Filtereinfluss auf das Kontrastsehen erfasst werden. Nebenbei wurde das binokulare Anomaloskop auf klinische Tauglichkeit gemäß DIN 6160 überprüft.

Dafür wurden 14 anomale Trichromaten (zehn Protanomale, vier Deuteranomale) nach ihren Anomaloskopabgleichen klassifiziert. Außerdem wurden sieben normal Farbsehtüchtige in die Studie aufgenommen, unter der theoretischen Annahme, dass der physikalische Shift der Absorptionsmaxima bei normalem Farbensehen zu einer Veränderung führt.

Durch das fehlerhaft diagnostizierte Farbsehvermögen des CVTs stellte sich gleich zu Beginn der Studie ein besonderes Problem. Im ersten Durchgang wurden nur neun der insgesamt 21 männlichen Probanden richtig eingestuft, davon waren sieben protanomal.

Von allen in die Studie aufgenommenen Probanden wurden im ersten CVT-Durchgang insgesamt 15 als protanomal diagnostiziert, inklusive des tatsächlichen Protanomalen. Somit wurden acht Probanden falsch eingestuft, darunter drei der vier Deuteranomalen. Trotz wiederholter Untersuchung und Kalibration des Monitors fielen aus oben genannten Gründen sieben Versuchspersonen aus der Studie.

Von herausragender Bedeutung für die Beurteilung des Farbensehens ist das monokulare Anomaloskop, mit dessen Hilfe gezeigt werden konnte, dass sich bei allen Probanden das Farbensehen mit Farbfiltern tendenziell bzw. eindeutig verschlechtert hat.

Auf das Kontrastunterscheidungsvermögen hatten die Filter ebenfalls einen nachteiligen Effekt.

Außerdem konnte diese Studie belegen, dass das binokulare Anomaloskop keine sichere, schnelle und effiziente Untersuchung des Farbensehens ermöglicht. Im Gegenteil, es hat sich bei der Diagnostik der Farbsehstörungen als fehlerhaft erwiesen und hatte nebenbei einen irritierenden Effekt auf die Probanden, die die beiden Halbfelder nur schwer gleichstellen konnten, was in deutlich längeren Untersuchungszeiten resultierte.

Diese Studie konnte insgesamt keinen signifikant verbessernden Effekt der Filter auf das Farbendifferenzierungsvermögen der protanomalen und deuteranomalen Probanden nachweisen.

15 Probanden mit Defekten des Rot-Grün-Farbensehens und sechs normal farbsichtige Probanden wurden phänotypisch untersucht. Im Folgenden wird auf Verfahrensdiskussion sowie eventuelle Messungenauigkeiten bei den Farbsichtuntersuchungen eingegangen.

Zu den nachfolgend erörterten Daten muss betont werden, dass die Messungen von verschiedenen, nicht kontrollierbaren Faktoren beeinflusst werden. Dazu gehören persönliche Verfassung, Konzentrationsvermögen und ähnliches.

Mittels Voruntersuchung konnten alle Farbsehstörungen eindeutig nachgewiesen und charakterisiert werden. Diesbezüglich erwiesen sich die Probanden P6 und P7 als problematisch. Sie lagen im Rahmen dieser Studie knapp an der Grenze zur Normalsichtigkeit bzw. darüber. Eine mögliche Erklärung dafür ist, dass diese Probanden über den Serin¹⁸⁰Alanin-Polymorphismus im Rotgen verfügen, welcher das Absorptionsmaximum eines Opsins um etwa 4nm in den roten Bereich verschieben kann (Asenjo et al., 1994; Sanocki et al., 1994; Sanocki et al., 1993; Merbs et al., 1992; Neitz et al., 1990), so dass fälschlicherweise Protanomalie diagnostiziert wird.

Wie bei jeder Messung gibt es auch bei der Durchführung psychophysischer Versuche eine ganze Reihe möglicher Fehlerquellen. Man unterscheidet zufällige von systematischen Fehlerquellen. Zufällige Fehlerquellen betreffen vor allem die Versuchsdurchführung, zum Beispiel bei der Positionierung der Versuchperson zum Bildschirm, der Farbtafel oder dem Anomaloskop. Eine veränderte Position kann einen veränderten Winkel und damit eine verfälschte Wahrnehmung des Testfeldes zur Folge haben. Daher wurde auf diesen Punkt besonders Wert gelegt. Die genaue Überprüfung, sowie die Befragung der Versuchperson gewährleisten eine sichere Positionierung.

Die Ranomisierung wurde vorgenommen, um anhand der zufällig zugeteilten Filterreihenfolge Fehlerquellen wie Lerneffekt oder Müdigkeit im zweiten Testdurchgang entgegen zu wirken.

Jahreszeitlichen Lichtschwankungen stellen eine weitere Fehlerquelle dar, die sich im Rahmen der Studiendurchführung ergeben haben. Daher wurden durch Abdunkeln des Raumes die Lichtverhältnisse konstant gehalten.

Auch das Tragen von Brillengläsern kann die Testergebnisse beeinflussen. Dies betrifft vor allem die Voruntersuchung, sowie die Filteranpassung mit dem CVT, da eine Tönung der Brillengläser sowohl den Kontrast als auch die Farbwahrnehmung verändern kann. Deswegen wurde den Probanden eine filterfreie Brille mit dem nötigen Refraktionsausgleich zur Verfügung gestellt.

Je länger die Untersuchung, desto größer ist die Gefahr für zufällige Fehler, da die Untersuchung die Konzentration des Probanden sehr beansprucht. Daher wurde auf Wunsch der Probanden auch während des Tests pausiert. Einzige Bedingung war, dass die Brille mit den Gläsern während der Pause nicht abgesetzt werden durfte.

Damit konnten die möglichen Fehler soweit beeinflusst werden, dass sie nur noch eine untergeordnete Rolle spielten.

4.1 Methodendiskussion und Fehlerdiskussion

4.1.1 Color Vision Test (CVT)

Der CVT von Coloryte wurde als Software zur Filteranpassung mitgeliefert. Wichtig war eine strenge Einhaltung des Messprotokolls und genaue Farb- und Temperaturkalibration des Monitors. Bei acht anomalen Trichromaten und damit nur bei 53,3% der farbsehgestörten Probanden konnten die entsprechenden Filter angepasst werden. Ingesamt wurden 66,6% aller Probanden richtig eingestuft. Dies unterscheidet sich von den von Coloryte (Wenzel, K. et al., 2003) erstellten Daten, in denen die Messergebnisse von insgesamt 1000 Untersuchten (darunter 800 farbfehlsichtige Personen) zu 95% mit den Ergebnissen im Anomaloskopabgleich übereinstimmten.

Als Quelle für systematische Fehler kommen insbesondere falsche Kalibration des Monitors sowie Programmfehler bei Erstellung des jeweils folgenden Monitorbildes in Betracht. Durch wiederholte Kalibration kann ein systematischer Fehler zwar nicht ausgeschlossen werden, gilt jedoch als unwahrscheinlich.

Bevor die automatische Berechnung des jeweils nachfolgenden Monitorbildes besprochen wird, muss auf die fehlende Validierung dieses Tests eingegangen werden. Obwohl das Testdesign des CVTs den isochromatischen Tafeln entspricht, musste er sich nie im Rahmen einer offiziellen Studie dem direkten Vergleich stellen. Folglich ist bezüglich seiner Validität, Varianz und Reproduzierbarkeit bis auf die von Coloryte ermittelten Daten nichts bekannt.

Auffallend ist, dass fünf der sieben normal farbsichtigen Personen im ersten Durchgang als protanomal diagnostiziert wurden, ebenso drei der vier Deuteranomalen, wobei der vierte Deuteranomale im zweiten Durchgang ebenfalls als protanomal diagnostiziert wurde. Das weist auf eine ungenaue Erstellung der Bildabfolge bezüglich Farbton, Sättigung und Helligkeit hin. Besonders problematisch war die Einstufung der Deuteranomalen, von denen einer im ersten Durchgang richtig diagnostiziert wurde und deshalb nur dieser Proband in die Studie aufgenommen werden konnte, obwohl alle deuteranomalen Versuchspersonen über einen ausreichenden AQ und Einstellbreite am Anomaloskop verfügten, um problemlos als deuteranomal diagnostiziert zu werden. In der Standardbildabfolge des CVTs gibt es nur ein Monitorbild für den Grünbereich in ausgeprägtem Farbton und Sättigung. Wenn der Proband dieses eine Bild nicht falsch benannte, führte dies zum Ergebnis protanomal oder normal. Ursächlich liegt ein systematischer Fehler nahe, welcher im Rahmen dieser Studie nicht ausgeschlossen werden konnte, da es sich um einen Programmfehler und nicht um einen Anwendungsfehler handelte.

In nachfolgender Tabelle (vgl. **Tabelle 4-1**) sollen die Werte des CVTs mit denen der Hauptachse, der Achslage und dem Bereich der Farbgleichheit (Einstellbreite) am monokularen Anomaloskop verglichen werden. Auch die Ergebnisse der Probanden, die nicht in die Studie aufgenommen werden konnten, aber dennoch einen Durchgang mit dem Fensterglas absolvierten, sind unten aufgeführt.

Die Normwerte des CVTs bewegen sich zwischen 10 und 20, maximal kann der Wert 200 sein. Die normale Einstellbreite des monokularen Anomaloskops befindet sich zwischen 34 und 46 relativen Einheiten. In der Tabelle sind alle Werte, die von der Norm abweichen, grau unterlegt. Diejenigen Kästchen, die beim CVT keine Werte enthalten, wurden normal eingestuft (Ausnahme: P1 und D3). **Tabelle 4-1:** Zusammenfassung der Ergebnisse des CVTs und die Einstellbreite im monokularen Anomaloskop. Die Werte außerhalb der Normgrenze sind grau unterlegt. "*": D3 war im ersten Durchgang des CVTs protan, ohne dass Zahlen erfasst wurden. Die Zahlenkombination wurde außerdem bei P1 nicht erfasst. "P" = Proband

				C\	/Т					Auge	Einstel	Ibreite
"P"	R ot	G rün	B lau	R	G	В	R	G	В	-	min	max
NO										OD	38,6	41,5
NZ					_					OS	36,4	41,5
N/2	21	12	15							OD	38,1	39,8
NS										OS	36,9	39,8
NA	27	15	21	21	12	17				OD	37,8	39,5
/14										OS	39,2	40,9
N5										OD	41,5	43,5
										OS	41,2	43,8
N6	27	12	17							OD	43,2	45,5
			-			-				OS	43,5	45,5
N7	27	12	34	21	12	17				OD	40,7	41,2
										OS	40,9	40,9
P1										OD	61	63,8
										OS	62,1	63,8
P2	29	12	17							OD	60,1	62,4
	_									OS	61,0	62,4
P3	53	12	12							OD	53,2	55 ,0
										OS	46,1	57,3
P4	35	12	15							OD	62,4	65,8
						r				OS	66,1	67,6
P7	27	12	17							OD	59,0	65,8
		10	4.0							OS	59,8	65,8
P8	23	12	12							OD	44,9	46,1
	04	40	40							05	45,5	45,8
P9	21	12	12								44,1	47,2
	4			40	004	40				05	47,2	47,8
D3	^			12	201	12					15,7	16,9
										03	17,2	20,9
D1											16,9	18,0
										05	45.2	10,0
P5											45,2	41,2
											40,9 61.9	47,0 62.7
P 6											63.0	64 1
	21	12	17	21	12	15					30.8	/1 2
N1	21	12	17	21	12	15				09	30,0 30,2	40.7
	27	12	12								16.3	16.0
D2	21	12	14			L				0.5	16.9	17.2
					[59.0	60.4
P10						I				05	59.0	61 5
	45	29	12	35	23	12	35	15	12		12 0	33.5
D4			. 2		20			.0		05	14.6	29.8
D3 D1 P5 P6 N1 D2 P10 D4	21 27 45	12 12 29	17 12 12	21	12	15	35	15	12	OSDOSDODOSODOSODOSODOSODOSOSODOSODOSOSODOSODOS	17,2 16,9 17,7 45,2 46,9 61,8 63,0 39,8 39,8 16,3 16,3 16,9 59,0 59,0 12,0 14,6	20,9 18,0 18,0 47,2 47,8 62,7 64,1 41,2 40,7 16,9 17,2 60,4 61,5 33,5 29,8

Bei allen Probanden, die vom CVT nicht als Normal diagnostiziert wurden, fallen erhöhten Rotwerte unabhängig von der Art der Farbsehstörung auf, obwohl die Einstellbreite der Normalen innerhalb des Normbereichs liegt und sich die der Deuteranomalen auch im deuteranomalen Bereich befindet. Bei den Protanomalen korreliert die Höhe des Rotwerts nicht mit den Grenzwerten der Einstellbreite. Bei P3 ist der Wert mit 53 deutlich erhöht, während der maximale Wert der Einstellbreite eher im niederen Bereich der Protanomalie anzusiedeln ist.

Zusammengefasst korrelieren die Ergebnisse des CVT nicht mit den Messergebnissen des CADs und des Anomaloskops und somit wird eine Farbsehstörung nicht zuverlässig diagnostiziert.

4.1.2 Ishihara-Tafeln

Die Ishihara-Tafeln gehören zu den Standardverfahren bei der Diagnostik von Farbsehstörungen. Insbesondere als Screeningverfahren befinden sie sich weltweit in Gebrauch. Ursächlich dafür ist unter anderem die hohe test-retest Reliabilität (Johnson, 1992) Aus diesem Grund wurde der Ishihara-Test in die Studie aufgenommen.

Es konnte gezeigt werden, dass die Filter bei allen drei Probandengruppen einen Effekt auf die absolute Fehlerzahl hatten. Demnach haben sich die Normalen mit Filter im Median um einen Fehler verschlechtert, ebenso der Deuteranomale. Anders verhält es sich bei den Protanomalen, diese haben sich um einen Fehler verbessert. Dennoch verbesserten die Filter das Farbsehvermögen der Gruppen nicht signifikant, anomale Trichromaten wurden nicht Normal. Allerdings hatten die Filter bei N2 die Diagnose "Anomalie" zur Folge. Umgekehrt verhält es sich bei N6, welcher ohne Filter noch als Deuteranomal diagnostiziert und mit Filter wieder Normal wurde, so dass hier das Farbdifferenzierungsvermögen entgegen der o. g. Annahme beeinflusst wurde. Die Filter hatten einen negativen Effekt bei den Normalen und dem Deuteranomalen. Auch bei den Protanomalen hat sich das Farbensehen nicht normalisiert, so dass die Filter nicht den gewünschten Effekt zur Folge hatten.

Als Quelle systematischer Fehler kommt die Beurteilung des Farbsehvermögens bei den Protanomalen in Frage. Keiner von ihnen wurde als protanomal diagnostiziert, sondern alle entweder als anomal oder als deutanomal. Wie von Neitz et al. (2000) beschrieben, gibt es bei dem Ishihara-Test eine deutliche Einschränkung im Bereich der Einteilung der Farbsehstörung, insbesondere des jeweiligen Typs und der Ausprägung. Hauptproblem ist die Tatsache, dass farbsehgestörte Personen fast alle Tafeln falsch benennen und es dadurch nicht möglich ist, eine korrekte Einteilung vorzunehmen.

4.1.3 AO-HRR-TafeIn

Der AO-HRR-Test hat sich in den letzten Jahrzehnten als Paralleltest zum Ishihara-Test durchgesetzt. In die Studie wurde er aufgenommen, weil er einerseits eine Differenzierung des Schweregrades der vorhandenen Farbsehstörung vornimmt und andererseits nach neueren Erkenntnissen den Ishihara-Tafeln in punkto Sensitivität bzw. Spezifität in nichts nachsteht bzw. sogar überlegen ist (Cole, 2006).

Ohne Filter wurden 78,6% der Probanden richtig diagnostiziert, nur bei P7 bis P9 war die Zuordnung ihrer Farbsehstörung falsch. Die Farbfilter änderten sowohl bei den Normalen als auch dem Deuteranomalen das Farbsehvermögen nicht. Bei drei Protanomalen verbesserten die Filter das Farbdifferenzierungsvermögen, allerdings hatten sie auch hier kein normales Farbensehen zur Folge, so dass die Verbesserung nicht signifikant war. Dem gegenüber stehen die drei Protanomalen, welche sich durch die Filter verschlechterten.

Damit konnte gezeigt werden, dass die Filter, zwar einen Einfluss auf das Farbensehen haben, der jedoch nicht zu normalem Farbensehen führt. Systematische Fehlerquellen sind vor allem in veränderter Druckqualität zu finden. Diese führt über veränderte Kontraste oder Farben zu verfälschten Ergebnissen. Der Druckvorgang selbst unterliegt strengen Vorschriften und ständiger Qualitätsprüfung, so dass der Druckvorgang als Fehlerquelle nahezu ausgeschlossen werden kann.

4.1.4 CAD

Der CAD ist ein vergleichsweise neuer Test, der sich im klinischen Alltag noch durchsetzen muss. Als Farbsehtest ist er zur Beurteilung des Farbdiskriminationsvermögens gut geeignet. Von Vorteil ist sicherlich die Möglichkeit, Rot/Grün-Farbensehen parallel mit Blau-Farbensehen untersuchen zu können, so dass ein Farbsehleistung in die drei Hauptrichtungen gleichzeitig gewährleistet ist. Außerdem gibt es anlässlich seines Aufbaus keine Einschränkung bei den zu untersuchenden Personen.

Anhand des CADs konnte gezeigt werden, dass, obwohl die Filter einen Einfluss auf das Farbsehvermögen aller drei Richtungen haben, dieser Einfluss in keiner Weise konstant ist.

Vor allem die Protanomalen haben sich mit Hilfe der Filter im Rot/Grün-Bereich verbessert. Mit den Ergebnissen im Blau-Bereich stimmt dies nicht überein. Diese Ergebnisse wurden nicht schlechter, wenn sich das Rot/Grün-Sehen verbesserte oder umgekehrt, und auch die Ergebnisse der Achslage verhielten sich nicht wie bei einer Verbesserung im Sinne einer Annäherung an den normalen Bereich. Während der Blau-Farbsehbereich nicht unbedingt von den Filtern tangiert wird, würde man erwarten dass sich bei besserer Differenzierung auf der Hauptachse (Rot/Grün-Bereich) auch der Winkel dieser zur Horizontalen (Achslage) in Richtung Normal bewegt, da dies Verbesserung eindeutig belegt. Die Normalen und der Deuteranomale haben sich insgesamt eher verschlechtert, obwohl der Filter laut Hersteller bei den Normalen keinen wesentlichen Einfluss auf das Farbsehvermögen hat.

Wie unter 3.5 beschrieben, ist die Nebenachsänderung bei einigen Probanden unerwartet. Schon in den Durchgängen mit dem Fensterglas sind diese Achswerte erhöht. Um auszuschließen, dass das Fensterglas doch einen Effekt auf die Farbsichtigkeit hatte, wurde in einem Messdurchgang bei einem Normalprobanden das Fensterglas mit einem Durchgang ohne jegliches Glas gemessen. Hier konnte kein Unterschied festgestellt werden.

	Hauptachse	Nebenachse	Achslage
ohne Fensterglas	0.0185625 CD	0.00384445 CD	66.5 deg
mit Fensterglas	0.0200419 CD	0.00360749 CD	64.5 deg

 Tabelle 4-2:
 Werte vom Probedurchgang mit Fensterglas, bzw. ohne Glas.

Als systemische Fehler kommen die Hauptachsergebnisse der Protanomalen im Fensterglasdurchgang in Betracht. Diese entsprechen nicht den erwarteten Werten für Protanomale, ebenso verhält es sich mit der Achslage. Als weitere Fehlerquelle stellten sich die Ergebnisse der Nebenachse heraus. Sie nahmen innerhalb der drei Gruppen ohne Filter sehr unterschiedliche Werte an, ohne dass ein beeinflussender Störfaktor erkennbar gewesen wäre. Der Zusammenhang ist unklar, da Störungen der Rot-Grün-Achse normalerweise nicht zu einer Verschlechterung des Blau-Sehens führen.

4.1.5 Kontrast-Test

Der Kontrast-Test ist wie der CAD ein relativ neuer Test, der sich erst noch etablieren muss. Seine Vorteile liegen in der einfachen Methodik und hohen Genauigkeit. Dies waren Gründe, den Test in die Studie aufzunehmen.

Mit dem Kontrast-Test konnte gezeigt werden, dass die Farbfilter auch das Kontrastunterscheidungvermögen beeinflussen. Wie zu erwarten wird durch die Farbbeschichtung der Filter das Kontrastsehen fast ausnahmslos (Ausnahme D3) verschlechtert. Da farbbeschichtete Brillengläser, wie es die Filter sind, zwangsläufig den Kontrast verringern, entspricht dies den Erwartungen, aber nicht den Vorgaben des Filterherstellers, laut dem durch Adaptation nur das Farbensehen beeinflusst wird. Wie sich im Lauf der Studie herausstellte, nahmen bei einigen Probanden die erzielten Ergebnisse sehr kleine Werte an (vgl. **Tabelle 3-20** und **Tabelle 3-21**), meistens nur auf einem Auge (N2, N6, P2, P8), selten auf beiden (N5) und einmal in beiden Durchgängen (P3 OS). Es ist nicht nachvollziehbar, wodurch das verursacht wird, ob an überdurchschnittlichem Kontrastunterscheidungsvermögen oder fehlerhafter Berechnung. Gegen letzteres spricht allerdings P3, der in beiden Durchgängen niedere Werte erzielte. Gegen das überdurchschnittliche Kontrastunterscheidungsvermögen spricht, dass die getrennt gemessenen Augen unterschiedliche Ergebnisse erzielten und ein solch differierendes Kontrastunterscheidungsvermögen zwischen den beiden Augen eines gesunden Individuums selten vorkommt.

4.1.6 Monokulares und binokulares Anomaloskop

Vor allem das monokulare Anomaloskop ist aus dem klinisch, diagnostischen Gebrauch nicht mehr wegzudenken. Als elegante und besonders effiziente Methode gehört es zu den Standardverfahren der Farbsehdiagnostik.

Anders verhält es sich mit dem binokularem Anomaloskop, das neu entwickelt wurde und im Rahmen dieser Studie auf klinische Tauglichkeit hin untersucht wurde.

Die Anomaloskopergebnisse wurden mit Hilfe des AQs miteinander verglichen und auf Besserung des Farbsehvermögens mittels Farbfiltern hin ausgewertet. Dies war der Fall, wenn sich der AQ im Normalbereich befand. Zusätzlich musste die Einstellbreite signifikant kleiner werden, um einen verbessernden Effekt nachweisen zu können.

Monokulares Anomaloskop

Wie schon zuvor kann mit dem monokularen Anomaloskop eine eindeutige Beeinflussung der Farbdifferenzierung mittels Filter nachgewiesen werden. Bezug nehmend auf den AQ verschlechtern die Farbfilter das Farbsehvermögen bei allen Probanden, mit Ausnahme von P2, dessen AQ ähnlich dem ohne Filter bleibt. Besonders bei den Normalen, die alle von normalem Farbensehen in eine durch die Filter erzeugte Deuteranomalie rutschten, kommt dieses Phänomen zum Ausdruck. Wobei anhand der zugeteilten Filter zu erwarten gewesen wäre, dass sich die eine Hälfte in Richtung Deuteranomalie bewegt, die andere hin zu Protanomalie. Eindrücklich ist das Ergebnis auch bei schwach Protanomalen, die mit den Filtern keine Gleichstellung der beiden Farbfelder mehr einstellen konnten. Ebenso verhält es sich mit dem linken Auge bei dem Deuteranomalen.

Die benötigten Gelbwerte haben sich analog der Kontrast-Test-Ergebnisse verändert. Fast alle Normalprobanden benötigten mit Filtern weniger Gelb-Werte, um die beiden Felder gleich zu stellen, ebenso P1, P3, P4 und P7, während alle anderen, in etwa in dem ohne Filter gemessenen Bereich lagen. Die Ausnahme stellt P2 dar, der eindeutig höhere Gelb-Werte benötigte, da ihm beide Felder laut eigener Angaben "immer zu braun waren". Der resultierende AQ entsprach dennoch etwa dem ohne Filter.

Binokulares Anomaloskop

Bereits die Diagnose des Farbensehvermögens ohne Filter war bei fast der Hälfte (42,9%) der Probanden falsch. So differierte der resultierende AQ von dem des besser validierten und reproduzierbaren monokularen Anomaloskop deutlich. Die Reproduzierbarkeit der AQ-Ergebnisse mit dem binokularen Anomaloskop war nicht gegeben, so dass angenommen wurde, dass sie innerhalb des minimalen bzw. maximalen ermittelten AQ-Wertes liegen. Das macht die Auswertung sehr schwierig. Entweder muss von den schlechtesten Werten in Bezug auf Farbfehlsichtigkeit ausgegangen werden oder von den Werten, die zuvor besser sind, aber nicht dem Farbensehvermögen der Probanden entsprechen. Wird von den schlechtesten Werten ausgegangen, so erwiesen sich P1 bis P3 als deuteranomal farbsehgestört, obwohl alle eine stark ausgeprägte Schwäche im Rotbereich haben. Nur P4 und P5 befinden sich tatsächlich im protanomalen Bereich. P8 und P9 wurde ein normaler AQ errechnet. Stimmiger ist der AQ bei den Normalen bzw. Deuteranomalen. Ihre Ergebnisse lassen darauf schließen, dass die Filter das Farbensehen verschlechtern.

Grundsätzlich ist festzuhalten, dass die Aufgabenbewältigung bei Anomaloskopversuchen interindividuell selbst bei strenger Einhaltung des Versuchsprotokolls verschieden ist. Die Ergebnisse hängen von der Konzentrationsfähigkeit des Probanden während der teilweise bis über vier Stunden dauernden Testzeit ab, ebenso wie von deren subjektiver Genauigkeit bei der Beurteilung eines "exakten Abgleichs". Einige Probanden mögen hierbei kritischer vorgegangen sein als andere oder folgten einer anderen Strategie. Es ist auch denkbar, dass einige der Probanden instrumentelle Artefakte als Hilfsmittel zur Problemlösung heranzogen.

Hinzu kommt, dass beim binokularen Anomaloskop im Gegensatz zum monokularen Anomaloskop keine Neutralstimmung in dem Versuchsablauf vorgesehen ist (vgl. **Kapitel 2.4.5.2**.).

Weiterhin schwankt beim binokularen Anomaloskop der vom Testfeld eingehaltene Abstand. Dadurch ist nicht immer gewährleistet, dass das Testbild auf der Retina in äquivalent großen Flächen repräsentiert wird. Mit abnehmender Entfernung zum Testfeld erscheint das Feld größer und kann somit auch Bereiche der Retina überdecken, in denen die Rezeptoren andere Morphologien als in der inneren Fovea, in welcher sie dicht gedrängt und folglich länger und schmäler als in peripheren Bereichen vorkommen (Curcio et al., 1991), aufweisen. Dies wirkt sich auf die optische Dichte der Pigmente in einer Zapfenzelle aus, was die typische Form der relativen Empfindlichkeitskurven ihrer Rezeptoren verändert (Pokorny et al., 1976). Bei einer hohen optischen Dichte der Opsinmoleküle in einem Zapfen, wird die Kurve verbreitert, bei einer geringen verschmälert. Liegen in der Retina Zapfen mit unterschiedlichen optischen Dichten ihrer Pigmente vor, so werden sie, obwohl ihre Absorptionsmaxima identisch sind, vom selben Reiz unterschiedlich stark erregt und leiten unterschiedliche Informationen an die postrezeptoralen Nervenzellen weiter. Diese werden von den verarbeitenden Systemen, ebenso wie die unterschiedlichen relativen Erregungszustände, die durch verschiedene Wellenlängen entstehen, miteinander verglichen. Auf diese Weise können variable Pigmentdichten der Zapfenzellen einer Retina zu besserem Farbdiskriminierungsvermögen beitragen (Neitz et al., 1999; Shevell et al., 1995).

Bei der Durchführung von Rayleighmatches kann zwischen Diskriminationsvermögen durch verschiedene Absorptionsmaxima der Pigmente und Diskriminationsvermögen durch Variabilität der optischen Pigmentdichte nicht unterschieden werden.

Wie oben angedeutet, stellt dies beim binokularen Anomaloskop ein besonderes Problem dar. Da es von der Herstellerfirma keine entsprechenden Vorgaben gibt, wurde die Untersuchung im Stehen durchgeführt und damit hing der Gesichts-LED-Feldabstand von der Körpergröße ab. Vor allem eine Verkleinerung der Prüffeldgröße führt zu einer deutlichen Zunahme der Farbsinnstörung.

Auch beim binokularen Anomaloskop soll auf die spektrale Kalibration näher eingegangen werden. Dazu wurde die spektrale Absorption der LED-Leuchte am Gerät gemessen (vgl. **Abbildung 4-2**).

Abbildung 4-1: Absorptionsspektren der Farbfelder (Grün, Gelb und Rot) am binokularen Anomloskop.

Die Schwerpunktswellenlängen für Rot, Grün und Gelb liegen bei 690nm, 560nm und 580nm, sind also in den längeren Wellenlängenbereich verschoben.

Wie bei der spektralen Kalibration des monokularen Anomaloskops besprochen, sind die Halbwertsbreiten besonders für die exakte Einstellung des Testfeldes wichtig. In **Abbildung 4-2** fällt insbesondere die Breitbandigkeit der Kurven auf, dies hat Einfluss auf die Halbwertsbreite, so ist sie für Rot ca. 80nm und liegt somit weit über den maximal zulässigen 30nm. Grün hat eine maximal zulässige Halbwertsbreite von 15nm, tatsächlich liegt sie bei 30nm und für Gelb sind maximal 15nm zugelassen, die mit 30nm um das Doppelte überschritten werden. Mit steigender Halbwertsbreite fehlt bei den Messungen der Helligkeitsverlust, dem insbesondere Protanomale unterliegen.

Für einen exakten Abgleich sind jedoch schmalgipfelige Absorptionskurven erforderlich. Die in DIN 6160 festgelegten Schwerpunktswellenlängen (Rot: 666+/- 6nm, Grün: 549+/-3nm, Gelb: 589+/-3nm) werden nicht eingehalten. Bei vorliegendem Gerät liegen sie bei 690nm (Rot), 560nm (Grün) und 580nm (Gelb). Insgesamt entspricht das binokulare Anomaloskop in keiner Weise der DIN-Norm. Besonders nachteilig wirkt sich die fehlende Neutralstimmung sowie die verschobenen Schwerpunktswellenlängen bzw. Absorptionskurven der LED-Leuchte aus.

4.2 Allgemeine Diskussion

Die vorliegende Arbeit zu Eigenschaften von Farbfiltern für Protanomale und Deuteranomale deckten sich mit Ergebnissen aus früheren Studien (Eperjesi et al., 2002; Schmidt, 1976; von Schelling, 1950). Es existieren zwei bekannte Produkte, die X-Chrom Linse von Dr. H. I. Zeltzer (Zeltzer, 1979; Zeltzer, 1975) und das ChromaGen System von D. Harris (Leeds, England), wobei es über letztere keine unabhängigen Studien gibt. Die überwiegende Mehrzahl der Studien zur X-Chrom Linse setzte die Filter monokular ein (Richter et al., 1984a; Richter et al., 1984b; Siegel, 1981; Ditmars et al., 1976; LaBissioniere, 1974; Mauthner, 1894), um über den interokulären Farbvergleich das Farbensehen zu verbessern. Als Test zur Erfassung der Filtereffekte wurden vor allem pseudoisochromatische Tafeln und Farbverwechslungstests eingesetzt. Alle Studien kommen zu dem Ergebnis, dass trotz registrierter Vorteile die resultierenden Nachteile, wie verminderte Kontrastwahrnehmung, Helligkeitsverlust und Visusminderung, überwiegen.

Die hier eingesetzten Filter sollten das Farbensehen mittels physikalischer Änderungen des Farbraumes verbessern, so dass sie binokular getestet wurden.

Anhand der Ergebnisse können die Farbfilter für einige wenige Protanomale von Vorteil sein, für den Großteil rufen sie allerdings mehr nachteilige Effekte hervor. Das vermeintlich bessere Abschneiden einiger Probanden betrifft zum einen die pseudoisochromatischen Tafeln, zum anderen den CAD. Allerdings sind gerade die pseudoisochromatischen Tafeln ungeeignet, um Farbfiltereffekte nachzuweisen (Taylor, 1982), da sie über verändertes Kontrast- und Helligkeitsempfinden eine Farbverwechslung zulassen, ohne dass ein echter Einfluss auf das Farbsehvermögen genommen wird.

Da der Test einen relativ großen Bereich des Farbraumes abdeckt, ist die Verbesserung der CAD-Ergebnissen eingehender zu betrachten. Vor allem im Hauptachsenbereich verbesserten sich einige Probanden mit den Filtern, auf die Achslage konnten die Filter keinen Einfluss nehmen, so dass dies keine echte Normalisierung des Farbensehens zu Folge hatte. Dies wird umso deutlicher, wenn gleichzeitig die Anomaloskopergebnisse betrachtet werden, anhand derer der negative Einfluss der Filter bei allen Probanden eindeutig belegt wurde.

Den Ergebnissen ist außerdem der Einfluss der Filter auf die Blau-Diskrimination zu entnehmen. Eine Spreizung des Rot/Grün-Farbbereichs zu Lasten des Blau-Bereichs hinsichtlich einer verminderten Empfindlichkeit konnte bei allen verwendeten Filtern nachgewiesen werden. Da dies keinen nachteiligen Effekt auf das Gesamtfarbsehvermögen hat, wird es in Kauf genommen,

Der erwartete Helligkeitsverlust durch die Farbbeschichtung hat sich im Kontrasttest bestätigt. Doch soll die selektive Verschiebung der Farbtöne durch Farbfilter den Farbfehlsichtigen auch nicht-vergleichend und ohne Kenntnis der Helligkeit eine Farberkennung ermöglichen. Beim direkten Farbvergleich ist es durchaus vorstellbar, dass die Änderung der Helligkeit bestimmter Farbvalenzen im Vergleich zur Farbton- und Sättigungsänderung überwiegt. Sehr wahrscheinlich stellt die farbabhängige Helligkeitsänderung für anomale Trichromaten die entscheidende Farberkennungshilfe dar.

Das Hauptproblem der Filter war, dass es nach wie vor wenig technischen Spielraum für den optimalen Filter gibt, so dass kleine technisch bedingte Ungenauigkeiten bei der Filterkonstruktion demnach nur zu ähnlicher oder sogar falscher Filterwirkung führen. Für eine optimale Filterwirkung benötigen Protanomale theoretisch Filter, die eine hohe Transmission im Bereich des roten Lichts zulassen, während grünes Licht absorbiert wird, bei Deuteranomalen sollte dies spiegelbildlich stattfinden.

Dies bedeutet, dass unter bestimmten, vorerst noch theoretischen Voraussetzungen, eine Besserung des Farbensehens erzielt werden kann, dazu wäre die exakte Programmierung des CVTs unbedingt nötig. Die Diagnose muss zuverlässig gestellt werden. Auch die Filter müssen bezüglich der Farbtransmission bzw. -absorption bearbeitet werden. Wünschenswert wäre ein längerer Untersuchungszeitraum, weiterhin ist zu überlegen, ob die Filter nicht nur monokular eingesetzt werden, um die eingehenden Signale aus beiden Augen miteinander zu vergleichen und anhand der Differenzen Farben leichter zu erkennen. Um nach Behebung der technischen Mängel einen verbessernden Effekt nachzuweisen zu können, müsste eine größere Probandenanzahl unter den hier vorgestellten Bedingungen getestet werden.

5 Zusammenfassung

Farbensehen ist ein physiologisches Vermögen basierend unter anderem auf Pigmentgenen, erzeugten Photopigmenten und deren Absorptionsspektren. Im Falle von Störungen des Rot- und Grüngenes resultiert fehlerhaftes Farbensehen im Sinne von anomaler Trichromasie, Dichromasie oder Blauzapfenmonochromasie. Zur Therapie der anomalen Trichromasie wurden korrigierende Farbfilter (Coloryte) mit Spezialbeschichtung entwickelt, deren Einfluss auf das Farbensehen Gegenstand dieser Studie war.

Mit Hilfe eines Farbsehtests (CVT) wurden die Filter individuell angepasst und daraufhin mittels sechs verschiedener Farb- und Kontrasttests (Ishiharatafeln, American Optical Hardy Rand and Rittler Test, Color vision Assessment in Diagnosis, Motion-Test und zwei verschiedene Anomaloskop-Tests) auf Veränderungen des Farbsehvermögen geprüft. Nach vollständig absolvierter Testreihe mit und ohne Filter in randomisierter Reihenfolge, konnten durch Vergleich der Ergebnisse die Filtereffekte bestimmt werden.

Die Ergebnisse zeigen, dass der Filteranpassungstest CVT Fehler beinhaltet, in deren Folge die Farbsehstörungsdiagnostik und damit auch die Filterzuteilung nicht korrekt funktioniert. Weiterhin zeigen die Testergebnisse nicht den gewünschten Effekt der Farbsehnormalisierung. Obwohl Protanomale teilweise von den Filtern profitiert haben, hat sich letztlich keiner von ihnen als normal Farbsehtüchtig erwiesen. Dagegen fiel ein nachteiliger Effekt der Filter im Blau-Bereich und bei der Kontrastwahrnehmung auf. Bei der partiellen Verbesserung des Farbsehvermögens einzelner Probanden muss damit eher von einer Helligkeits- bzw. Kontraständerung als Erkennungshilfe ausgegangen werden, als von einer selektiven Farbabsorptionsänderung.

Als Fazit bleibt festzuhalten, dass eine Korrektur der angeborenen Rot/Grün-Farbsehstörung auch weiterhin nicht möglich ist.

6 Literaturverzeichnis

Ahlenstiel, H., Sachs, E. & Streckfuß, H. (1930). Filtergebrauch bei Farbenblindheit. Archiv für Augenheilkunde, **102**, 271-307.

Asenjo, A.B., Rim, J. & Oprian, D.D. (1994). Molecular determinants of human red/green color discrimination. *Neuron*, **12**, 1131-1138.

Bailey, J.E., Neitz, M., Tait, D.M. & Neitz, J. (2004). Evaluation of an updated HRR color vision test. *Vis. Neurosci*, **21**, 431-436.

Barbur, J. L. & J. E. Saunders (1985). Displacement thresholds for motion detection under conditions of chromatic adaptation. *Ophthalmic Physiol Opt,* **5(1)**, 5-13.

Birch, J. (1997a). Clinical use of the American Optical Company (Hardy, Rand and

Rittler) pseudochromatic plates fort red-green color deficiency. *Ophthal Physiol Opt*, **17(3)**, 248-54.

Birch, J. (1997b). Efficiency of the Ishihara test for identifying red-green colour deficiency. *Ophthal Physiol Opt*, **17**, 403-408.

Birch, J. (1985). A practical guide for colour-vision examination: report of the standardization committee of the international research group on color vision deficiencies. *Ophthal Physiol Opt*, **5(3)**, 265–285.

Birch, J., Barbur, J.L., & Harlow, A.J. (1992). New method based on random luminance masking for measuring isochromatic zones using high resolution colour displays. *Ophthalmic Physiol Opt,* **12(2)**, 133-136.

Bowmaker, J.K., & Dartnall, H.J.A. (1980) Visual pigments of rods and cones in a human retina. *Journal of physiology* (London), **298**, 501-511.

Boycott, B.B., & Kolb, H. (1973). The horizontal cells of the rhesus monkey retina. *The Journal of Comparative Neurology*, **148**, 115-139.

Boynton, R.M. (1979). *Human Color Vision*. New York; Holt, Reinhart and Winston.

Boynton, R. M. (1975). Color, hue, and wavelength. In E. C. Carterette and M. P. Friedman (eds.), *Handbook of Perception*, **5**, Academic Press, New York.

Cajal, S. (1933). Die Retina der Wirbeltiere. Bergmann, Wiesbaden.

Calkins, D.J., & Sterling, P. (1999). Evidence that circuits for spatial and opponent color vision segregate at the first retinal synapse. *Neuron*, **24**, 313-321.

Calkins, D.J., Thornton, J.E., & Pugh, E.N. (1992). Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus. *Vision Research*, **32**, 2349-2367.

Cole, B.L., Lian, K.Y. & Lakkis, C. (2006). The new Richmond HRR pseudoisochromatic test for colour vison is better than the Ishihara test. *Clin Exp Optom,* **89**, 73-80.

Cruz-Coke, R. (1964). *Color blindness - an evolutionary approach*. Thomas, Springfield, Illinios.

Curicio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B. & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. *J Comp Neurol*, **312**, 610-624.

Dacey, D. M. (1999). Primate retina: cell types, circuits and color opponency. *Prog Retin Eye Res*, **18**(6), 737-63.

Dacey, D.M., Diller, L. C. et al. (2000). Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. *J Opt Soc Am A Opt Image Sci Vis,* **17**(3), 589-96.

Dacey, D.M. & Lee, B.B. (1994). The "blue-on" opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. *Nature*, **367**, 731-735.

Dain, S.J. (2004). Colorimetric analysis of four editions of the Hardy-Rand-Rittler pseudoisochromatic tests. *Vis Neurosci*, **21**, 437-443.

Dalton, J. (1789). Extraordinary facts relating to the vision of colors. *Memories of the Literary and Philosophical Society of Manchester*, **5**, 595-612.

Deep, S.S., Lindsey, D.T., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D.Y., & Motulsky, A.G. (1992). Genotype-phenotype relationships in human red/green color vision defects: molecular and psychophysical studies. *Am J Hum Genet*, **51**, 687-700.

De Lange, H. (1958). Research into the dynamic nature of the human foweacortex systems with intermittent and modulated light. *Journal of the optical society of America*, **84**, 784-789.

Delboeuf, J. & Spring, W. (1878). Le daltonisme. Recherches expérimentales et théoretiques. *Rev Scient France l'Etranger*, **23**, 889-904.

De Monasterio, F.M. (1978). Properties of concentircally organized X and Y ganglion cells of macaque retina. *Journal of Neurophysiology*, **41**, 1394-1417.

De Monasterio, F.M., & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey retina. *Journal of Physiology*, **251**, 167-195.

Derrington, A.M. & Lennie, P. (1984). Spatial and temproal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. *Journal of Physiology*, **357**, 219-240.

De Valois, R.L., Abramov, I. & Jacobs, G.H. (1966). Analysis of response patterns of LGN cells. *Journal of the optical society of America*, **56**, 966-977.

De Valois, R.L., DeValois, K.K., & Mahon, L.E. (2000a). Contribution of S opponent cells to color appearance. *PNAS*, **97**, 512-517.

Ditmars, D.L. & Keener, R.J. (1976). A contact lens for the treatment of color vision defects. *Military Med*, **141**, 319-322.

Drummond-Borg, M., Deeb, S.S., Motulsky, A.G. (1989). Molecular patterns of X-cromosome-linked color vision genes among 134 men of European ancestry. *Proceedings of the National Academy of Sciences USA*, **86**, 983-987.

Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. *Journal of physiology*, **187**, 517-552.

Eperjesi, F., Fowler, C.W. & Evans, B.J.W. (2002). Do tinted lenses or filters improve visual performace in low vision? A review of the literature. *Ophthal Physiol Opt*, **22**, 68-77.

Farnsworth, D. (1947) Investigation on corrective training of colour blindness. *Sight Sav Rev*, **17**, 194-200.

Fletcher, R., Voke, J. (1985). *Defective colour vision: fundamentals, diagnosis and management*. Adam Hilger, Bristol.

Garth, T. (1933). The incidence of color-blindness among races. *Science*, **77**, 333.

Gouras, P. (1971). The function of the midget system in primate color vision. *Vision Research*, **3** (suppl), 397-410.

Gouras, P. (1969). Antidromic response of orhtodromically identified ganglion cells in monkey retina. *Journal of Physiology*, **204**, 407-419.

Gouras, P. (1968). Identification of cone machanism in monkey ganglion cells. *Journal of Physiology*, **199**, 533-547.

Gouras, P. (1967). The effects of light-adaption on rod and cone receptive field organization of monkey ganglion cells. *Journal of Physiology*, **192**, 747-760.

Grassmann, H. (1853). Zur Theorie der Farbmischung. *Annalen der Physik*, **89**, 69-84.

Hardy, L.H., Rand, G. & Rittler, M.C. (1954). The H-R-R psydochromatic plates: I. A Test for the Detection, Classification and estimation of the Degree of Defective Color Vision. *Archives of Ophtalmology*, **51**, 216-228.

Hardy, L. H., Rand, G. & Rittler, M.C. (1954). The H-R-R polychromatic plates. II. Comparison of qualitative and quantitative classifications by H-R-R plates and other tests. *Archives of Ophthalmology*, **52(3)**, 353-68.

Hardy, L.H., Rand, G. & Rittler, M.C. (1947). The Ishihara test as a means of analysing defective colour vision. *J Gen Psychol.*, **36**, 70-106.

Hardy, L.H., Rand, G. & Rittler, M.C. (1945). Tests for the detection and analysis of color-blindness: I. An evaluation of the Ishihara test. *Archives of Ophtalmology*, **34**, 295-302.

Hartline, H.K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. *American Journal of Physiology*, **121**, 400-415.

Heinsius, E. (1973). *Farbsinnstörungen und ihre Prüfung in der Praxis.* 1. Auflage, Enke, Stuttgart.

Helmholtz, H.V. (1867). *Handbuch der Physiologischen Optik* (1. Auflage), Hamburg, Voss.

Hering, E. (1878). Zur Lehre vom Lichtsinn. Wien: Gerald und Söhne.

Heron, G., McQuaid, M. & Morrice, E. (1995). The Pulfrich effect in optometric practice. *Ophthalmic Physiol Opt*, **15(5)**, 425-9.

Hunt, D.M., Dulai, K.S., Bowmaker, J.K. & Mollon, J.D. (1995). The chemistry of John Dalton's color blindness. *Science*, **267**, *984-988*.

Hurvich, L.M., & Jameson, D. (1957). An opponent-process theory of color vision. *Pysiol Rev*, **64**, 384-404.

Ingling, C.R., & Martinez-Uriegas, E. (1983). The realationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. *Vision research*, **23**, 1495-1500.

Inuma, I., Handa, Y. (1976). A consideration of the racial incidence of congenital dyschromats in males and females. *Modern Problems in Ophtalmology*, **17**, 151-157.
Ishihara, S. (1917). *Test for Colour-blindness*. Handaya, Tokyo, Hongo Harukicho, 1st Edition.

Jameson, D., & Hurvich L.M. (1972). Sensitivity, contrast and afterimages. In *Handbook of Sensory Physiology*, Vol. VII/4: Edited by D Jameson and L. M. Hurvich, Springer, Berlin, 568-581.

Johnson, D. D. (1992). The Ishihara Test: on the prevention of job discrimination. *J Am Optom Assoc*, **63**(5), 352-60.

Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgie-impregnated cells. *Philosophical transactions of the Royal Society of London B*, **258**, 261-283.

Krastel, H., Grützner, P. & Berninger, T. (2004a). Keine Angst vor dem Anomaloskop: Untersuchungsempfehlungen für die Praxis. Heidelberg.

Krastel, H. & Grützner, P. (2004b). *Praxis der Untersuchung am Anomaloskop: Ein kurzer Leitfaden*. Heidelberg.

Krastel, H., Jaeger, W., Blankenagel, A. & Gerbert, M. (1991). Clinical application of the Heidelberg anomaloscope. *Doc Ophtalmol Proc Ser*, **54**, 135-150.

Krausenkopf, J.DR., Williams, M.B., & Heeley, D.W. (1982). Cardinal directions of color space. *Vision Research*, **22**, 1123-1131.

La Bissioniere, P.E. (1974). The X-Chrom lens. Int Contact Lens Clinic Quart, 4, 48-55.

Lennie, P. (1980). Parallel visuell pathways: A review. Vision Research, 20, 561-594.

Leventhal, A., Rodieck, R. & Dreher, B. (1981). Retinal ganglion cell classes in the old world monkey: Morphology and central projection. *Sience*, **213**, 1139-1142.

MacAdam, D. L. (1942). Visual sensitivities to colour differencences in daylight. *J. Opt. Soc. Am.* **32**, 247-274.

Maxwell, J.C. (1855). Experiments on colour, as perceived by the eye, with remarks on colour-blindness. *Transactions of the Royal Society*, Edinburgh, **21**, 275-298.

Merbs, S.L. & Nathans, J. (1992) Absorption specta of human cone pigments. *Nature*, **356**, 433-435.

Minkowski, M. (1920). Über den Verlauf, die Endigung und die zentrale Repräsentation von gekreuzten und ungekreuzten Sehnervenfasern bei einigen Säugetieren und beim Menschen. *Archives of Neurology and Psychiatry*, **6**, 201-252.

Moreland, J. D. (1974). Calibration problems with the Nagel anomaloscope. *Modern Problems of Ophthalmology*, **13(0)**, 14-8.

Motulsky, A.G. & Deep, S.S. (2001). Color vision and its genetics defects. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D.: *the metabolic and molecular bases of inherited disease*. **Vol 4**, 8th edn, 5955-5976. New York: McGraw-Hill.

Mauthner, L. (1894). Farbenlehre. 2nd Ed. Wiesbaden, Hrsg. Bergman, J.F., 146-147.

Nagel, W. A. (1907). Zwei Geräte für die augenärztliche Funktionsprüfung. Adaptometer und kleines Spektralphotometer (Anomaloskop). *Zeitschrift für Augenheilkunde*, **17**, 201-222.

Nathans, J., Davenport C. M., Maumenee, I.H., Lewis, R.A., Hejtmancik, J.F., Litt, M., Lovrien, E., Weleber, R., Bachynski, B., Zwas, F., Klingaman, R. & Fishman, G. (1989). Molecular genetics of human blue cone monochromacy. *Science*, **245(4920)**, 831-8.

Nathans, J., Mebs, S.L., Sung, C.-H., Weitz, C., & Wang, Y. (1992). Molecular Genetics of Human Visual Pigments. *Annu Rev Genet*, **26**, 403-424.

Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., & Hogness, D.S. (1986a). Molecular genetics of inherited variation in human color vision. *Science*, **232**, 203-210.

Nathans, J., Thomas, D. & Hogness, D.S. (1986b). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. *Science*, **232**, 192-202.

Neitz, J. & Jacobs, G.H. (1990). Polymorphism in normal color vision and its mexanism. *Vision Research*, **30(4)**, 621-636.

Neitz, J., Neitz, M., He, J.C. & Shevell, S.K. (1999). Trichromatic color vision with only two spectrally distinct photopigments. *Nature Neuroscience*, **2**, 884-888.

Neitz, M. & Neitz, J. (2000). Molecular genetics of color vision and color vision defects. *Arch Ophthalmol* **118(5)**, 691-700.

Neitz, M. & Neitz, J. (1998). Molecular genetics and the biological basis of color vision. In; Backhaus, W.G.K., Kliegl, R. & Werner, J.S. (eds.), *Color Vision: Perspecives from Different Disciplines.* Walter de Gruyter, Berlin. 101-109.

Piringer, F.A. (1973). *Lens material for reducing effective color vision*. US Patent No. 3, 731, 933.

Pokorny, J. & Smith, V.C. (1976). Effect of field size on red-green color mixture equations. *J Opt Soc Am*, **66(7)**, 705-708.

Pulfrich, C. (1922a). Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. *Die Naturwissenschaften*, **25**, 553-64.

Pulfrich, C. (1922b). Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie Fortsetzung. *Die Naturwissenschaften*, **26**, 570-74.

Pulfrich, C. (1922c). Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. *Die Naturwissenschaften*, **27**, 735-43.

Rayleigh, Lord (Strutt, R.J.) (1881). Experiments on colour. Nature, 25, 64-66.

Richter, S. & Adams, A.J. (1984a). Development of Quantitative Tools for Filter-Aided Dichromats. *Am J Optom Physiol Opt*, **61**, 246-255.

Richter, S. & Adams, A.J. (1984b). An experimantal Test of Filter-Aided dichromatic color Discrimination. *Am J Optom Physiol Opt*, **61**, 256-264.

Roaf, H.E. (1924). A simple device whereby some colour blind (hypochromatic vision) persons can recognise colour differences. *J Physiol*, **59(proc)**, xxix.

Rodriguez-Carmona, M., Kvansakul, J., Harlow, J.A., Köpcke, W., Schalch, W. & Barbur, J. (2006). The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and color vision. *Ophthal Physiol Opt,* **26**,137-147.

Sanocki, E., Lindsey, D.T., Winderickx, J., Teller, D.Y., Deep, S.S. & Motulsky, A.G. (1993). Serine/Alanine amino acid polymorphism of the L and M cone pigments; effects on Rayleigh matches amon deuteranopes, protanopes and color normal observers. *Vision Research*, **33**, 2139-2152.

Sanocki, E., Shevell, S.K. & Winderickx, J. (1994). Serine/Alanine amino acid polymorphism of the L-cone photopigment assessed by dual Rayleigh-type color matches. *Vision Research*, **34**, 377-382.

Schiller, P.H. (1992). The ON and OFF channels of the visual system. Trends in photoreceptors. *Nature*, **15**, 86-92.

Schiller, P.H., & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. *Journal of Neurophysiology*, **41**, 788-797.

Schiller, P.H., & Malpeli, J.G. (1977). Properties and tectal projection of monkey retinal ganglion cells. *Journal of Neurophysiology*, **40**, 428-445.

Schmidt, I. (1976). Visual aids for correction of red-green colur deficiencies. Can *J Optometry*, **38**, 38-47.

Schnapf, J.L., Kraft, T.W., & Baylor, D.A. (1987). Spectral sensitivity of juman cone photoreceptors. *Nature*, **325**, 439-441.

Seebeck, A. (1937) Über den bei manchen Personen vorkommenden Mangel an Farbsinn. *AnnIn Phys*, **42**, 177-233.

Shapley, R., Kaplan, E. & Soodak, R. (1981). Spatial summation and contrast sensitivity of x and y cells in the lateral geniculate nucleus of the macaque. *Nature*, **292**, 543-545.

Sharpe, L. T., Stockman, A., Jägle, H., & Nathans, J. (1999) Opsin genes, cone photopigments, color vision and color blindness. In: Gegenfurter, K. And Sharpe, L.T. (eds). *Color Vision: From Genes To Perception*. Pp. 3-51, Cambridge University Press, New York.

Sharpe, L. T., Stockman, A., Jägle, H., Knau, H., Klausen, G., Reitner, A. & Nathans, J. (1998). Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. *Journal of Neuroscience*, **18(23)**, 10053-10069.

Shevell S.K. & He, J.C. (1995). Phenotypes of anomalous trichromacy. In: Cavonius, C.R. (eds.). Kluver Academic Publishers, Dordrecht, *Color Vision Deficiencies* XIII, 45-58.

Siegel, I.M. (1981). The X-Chrom lens. On seeing Red. Survey Ophtalmol, 25, 312-324.

Stromeyer, C.F. III, Chaparro, A., Rodriguez, C., Chen, D., Hu, E., Kronauer, R.E. (1998). Short-wave cone signal in the red-green detection mechanism. *Vision Research*, **38**, 813-826.

Taylor, S.P. (1982). The X-Chrome lens – A case Study. *Ophthal Pysiol Opt*, **2(2)**, 165-170.

Teller, D.Y., & Pugh, E.N.Jr. (1983). Linking propositions in color vision. In *Color Vision: Physiology and Psychophysics*. Mollon, J., & Sharpe, L. (eds.). New York, Academic Press, 577-589.

Thoma, W., & Scheibner, H. (1982). Tritanopicsaturation and borderline distinctivity. *Documenta ophthalmologica proc. ser.*, **33**, 19-28.

Thoma, W., & Scheibner, H. (1980). Die spektrale tritanopische Sättingungfunktion beschreibt die spektrale Distinktibilität. *Farbe und Design*, **17**, 49-52.

Verriest, G. & Popescu M. P. (1974). "Umstimmung" of normal subjects of the Nagel anomaloscope. *Modern Problems in Ophthalmology*, **13**, 26-30.

Vollrath, D., Nathans, J. & Davis, R.W. (1988). Tandem array of human visual pigment genes at Xq28. *Sience*, **240**, 1669-1672.

Von Kries, J. (1882). Die Gesichtempfindung und ihre Analyse, In: Nagel, W. (Hrsg.): *Handbuch der Physiologie des Menschen*, Vieweg, Braunschweig, 109-282.

Von Schelling, H. (1950). A Method for Calculating the Effect of Filters on Color Vision. *J Opt Soc Am*, **40(7)**, 419-423.

Wado Doctors Group (1990). Yes, colorblindness can be cured. Herausgegeben von Wado Doctors Group 4-14, Mejiro 3-chrome, Toshima-ku, Tokio 171.

Wässle, H., & Boycott, B.B. (1991). Functional architecture of the mammalian retina. *Physiological Reviews*, **71**, 447-479.

Wenzel, K. & Ladunga, K. (2003). *Coloryte colour vision diagnosis and Enhancement System*. Budapest University of Technology and Economics, Coloryte Hungary, 1-12.

Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A.G., & Deeb, S.S. (1993). Haplotype diversity of the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. *Hum Mol Genet*, **2**, 1413-1421.

Winderickx, J., Battisti, L., Motulsky, A.G., & Deeb, S.S. (1992). Selective expression of human X chromosome-linked green opsin genes. *Proc Natl Acad Sci USA*, **89(20)**, 9710-9714.

Wooten, B.R., & Werner, J.S. (1979). Short-wave cone input to the red-green opponent channel. *Vision Research*, **19**, 1053-1054.

Yamaguchi, T., A. G. Motulsky, & Deeb, S.S. (1997). Visual pigment gene structure and expression in human retinae. *Hum Mol Genet*, **6(7)**, 981-90.

Young, T. (1802). On the theory of light and colours. *Philisophical Transactions* (London), **92**, 12-48.

Zeltzer, H.I. (1979). The X-Chrom manual. Boston; X-Chrom Corp.

Zeltzer, H.I. (1975). Use of modified X-Chrom for relief of light dazzlement and color blindness of a rod monochromat. *J Am Optom Assoc*, **50**, 813-816.

Zrenner, E. (1983). Neurophysiological aspects of color vision in primates. *Studies of brain function.* Springer, Berlin Heidelberg New York.

Zrenner, E., Abramov, I., Akita, M., Cowey, A., Livingstone, M., & Valberg, A. (1990). In: Visual Perseption: the neurophysiological foundations. Spillmann, L. & Werner, J. (eds.). Academic press, New York. *Color Perseption: Retina to cortex*, 163-204.

Zrenner, E., Magnussen, S. & Lorenz, B. (1988). Blauzapfenmonochromasie: Diagnose, genetische Beratung und optische Hilfsmittel. *Klinisches Monatsblatt Augenheilkunde*, **193**, 510-517.

7 Anhang

Anhang 1: Informationsblatt für Probanden

Universitäts-Augenklinik Tübingen Abteilung für Pathophysiologie des Sehens und Neuroophtalmologie PD Dr. Anne Kurtenbach Dr. med. Herbert Jägle cand. med. Barbara Junger Schleichstr. 12-16, 72076 Tübingen

Informationsblatt für Probanden

"Eigenschaften von Brillengläsern mit eingefügten Farbfiltern zur Korrektur von Protanomalie und Deuteranomalie"

Etwa 8% der männlichen Bevölkerung hat eine angeborene Rot-Grün-Farbsinnstörungen. Ursache ist eine Änderung in den Pigmentgenen auf dem X-Chromosom, welche zu einer Verschiebung der spektralen Empfindlichkeit entweder des Rot- oder des Grünpigmentes führt. Die Schwere dieser Störung variiert stark und reicht von geringer Farbastenopie bis zur vollständigen Verwechslung von Rot und Grün.

Ziel des Projektes ist es, zu prüfen, ob eine individuell angepasste Sehhilfe in der Lage ist ein normales Farbensehen zu erzeugen. Gleichzeitig soll geprüft werden, ob die Herstellung eines bei der Testung normalen Farbsinns zu Lasten anderer visueller Leistungen wie dem Kontrastsehen geht.

Ablauf der Untersuchung

Im ersten Schritt werden individuell für Sie zwei Brillengläser ausgewählt. Der weitere Ablauf gliedert sich in drei Teile. Zunächst wird Ihr Farbsinn mit Hilfe von zwei verschiedenen Farbtafeln untersucht. Auf diesen Tafeln sind farbige Zahlen bzw. Symbole in einem andersfarbigen Hintergrund eingebettet. Diese sollen von Ihnen benannt werden. Danach werden zwei Computertests durchführt, bei denen Sie auf einem Monitor ein bewegtes Feld vor einem andersfarbigen Umfeld erkennen sollen. Die Richtung der Bewegung geben Sie über eine Tastatur ein. Aus den Eingaben wird dann die zur Unterscheidung minimal nötige Farbdifferenz berechnet und im zweiten Durchgang das Kontrastsehen überprüft.

Im letzten Teil sollen Sie eine Mischung aus rotem und grünem Licht mit einem gelben Vergleichslicht vergleichen. Dies wird an zwei Geräten unterschiedlicher Hersteller stattfinden.

Diese Messungen werden mit jedem der beiden Gläser durchgeführt. Wenn Sie eine angeborene Rot-Grün-Störung haben, wird diese Auswahl von einem Computertest getroffen, sind Sie normal Farbensichtig, legt der Untersucher die Gläser fest.

Zeitaufwand

Eine individuelle Untersuchung umfasst mehrere Teile (siehe "Ablauf der Messungen" für eine detaillierte Beschreibung). Der Zeitaufwand für alle Untersuchungen beträgt ca. 3,5 - 4 Stunden. Die Untersuchungen können jederzeit unterbrochen werden und es werden kleine Pausen eingelegt. Jede einzelne Untersuchung dauert nicht länger als 20 Minuten.

Risiken und Nebenwirkungen

Es bestehen keine speziellen Risiken, insbesondere keine, die den weiteren Verlauf der vorliegenden Farbsehstörung beeinflussen.

Persönlicher Nutzen

Die geplanten Untersuchungen dienen der Gewinnung neuer wissenschaftlicher Erkenntnisse. Ein unmittelbarer diagnostischer und therapeutischer Nutzen für Sie ist unwahrscheinlich. Sollte der Fall eintreten, dass sich bei Ihnen durch die Studie Hinweise auf therapiebedürftige Veränderungen ergeben und diese Veränderungen noch nicht anderweitig klinisch bekannt sind, wird Ihnen geraten, sich zur Abklärung einer ausführlichen ärztlichen Untersuchung zu unterziehen.

Datenschutz

Die erhobenen Daten unterliegen grundsätzlich der ärztlichen Schweigepflicht. Auf Ihr Verlangen hin, muss Ihnen der Befund mitgeteilt werden. Dritte erhalten keinen Einblick in Originalunterlagen. Die Daten können in anonymisierter Form in wissenschaftlichen Veröffentlichungen zitiert werden.

Teilnahme

Die Teilnahme an der Studie ist vollkommen freiwillig. Sie können Ihr Einverständnis jederzeit ohne Angabe von Gründen und ohne Nachteile für Sie zurückziehen. Alle Untersuchungen können, auf Ihren Wunsch hin, jederzeit unterbrochen oder abgebrochen werden.

Anhang 2: Einverständniserklärung

Universitäts-Augenklinik Tübingen Abteilung für Pathophysiologie des Sehens und Neuroophtalmologie PD Dr. Anne Kurtenbach Dr. med. Herbert Jägle cand. med. Barbara Junger Schleichstr. 12-16, 72076 Tübingen

Einverständniserklärung

"Eigenschaften von Brillengläsern mit eingefügten Farbfiltern zur Korrektur von Protanomalie und Deuteranomalie"

Ich erkläre mich hiermit bereit, an der im Informationsblatt "Info-RGFilter-2004-06-01a" geschilderten Untersuchung teilzunehmen. Ich bin mir folgender Punkte bewusst:

- Die Studie dient ausschließlich der Gewinnung neuer wissenschaftlicher Erkenntnisse, ohne dass daraus unmittelbare therapeutische Konsequenzen folgen. Sollte der Fall eintreten, dass sich bei mir Untersuchungen Hinweise auf therapiebedürftige Veränderungen ergeben und diese Veränderungen noch nicht anderweitig klinisch bekannt sind, wird mir empfohlen, mich zur Abklärung einer ärztlichen Untersuchung zu unterziehen.
- Die erhobenen Daten unterliegen grundsätzlich der ärztlichen Schweigepflicht. Auf mein Verlangen hin, muss mir der Befund mitgeteilt werden. Dritte erhalten keinen Einblick in Originalunterlagen. Einer wissenschaftlichen Veröffentlichung meiner Daten in anonymisierter Form stimme ich zu.
- Die Teilnahme an der Studie ist vollkommen freiwillig. Ich kann mein Einverständnis jederzeit ohne Angabe von Gründen und ohne Nachteile für mich zurückziehen. Alle Untersuchungen können, auf meinen Wunsch hin, unterbrochen oder abgebrochen werden.

Über die Ziele, Untersuchungen und Risiken bin ich von Herrn/Frau ______aufgeklärt worden. Ich habe keine weiteren Fragen.

Name:	Vorname:
Geburtstag:	
Tübingen, den	Unterschrift:

Anhang 3: Transmissionkurven der in dieser Studie nicht verwendeten Filter.

Abbildung 7-1: Transmissionskurve P-20-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 7-2: Transmissionskurve P-25-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 7-3: Transmissionskurve D-15-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 7-4: Transmissionskurve D-20-Filter, (A) eigene Messung, (B) Coloryte-Messung

Abbildung 7-5: Transmissionskurve D-25-Filter, (A) eigene Messung, (B) Coloryte-Messung

Anhang 4: Ergebnisse der Probanden, bei denen keine Filterzuteilung möglich war.

Ishihara

Proband	Farbsehvermö	gen ohne Filter	Einteilung
D1	4 Fehler	normal	falsch
P5	6 Fehler	deutan	falsch
P6	20 Fehler	deutan	falsch
N1	0 Fehler	normal	richtig
D2	2 Fehler	normal	falsch
P10	33 Fehler	deutan	falsch
D4	35 Fehler	anop	falsch

AO-HRR

Proband	Farbsehvern	nögen ohne Filter	Einteilung
D1	4 Fehler	schwach deutan	richtig
P5	0 Fehler	normal	falsch
P6	5 Fehler	schwach deutan	falsch
N1	0 Fehler	normal	richtig
D2	1 Fehler	normal	falsch
P10	9 Fehler	mittel protan	richtig
D4	14 Fehler	stark deutan	richtig

CAD

Proband	Auge	Hauptachse	Nebenachse	Achslage
D1	OD	30,8930	14,52880	94,0°
	OS	26,2957	16,04950	93,5°
	OD	27,5947	6,22295	64,0°
PJ	OS	23,8687	6,19980	69,5°
DE	OD	nicht erfasst		[
PO	OS			
	OD	24,6933	4,06779	61,0°
N 1	OS	24,6384	5,76989	56,0°
	OD	96,7559	17,59570	154,5°
DZ	OS	115,1150	21,00570	159,0°
	OD	88,0948	29,63620	168,5°
PIU	OS	92,2483	24,52120	173,0°
	OD	104,5340	22,52420	142,0°
04	OS	103,8040	21,49270	145,5°

Kontrast-Test

	RLM (in % der Hintergrundhelligkeit)	3	6	12
Proband	Auge			
D1	OD	206,39	29,89	254,31
	OS	255,11	249,18	287,14
 D5	OD	157,54	129,54	216,04
F5	OS	163,99	203,76	213,56
 	OD	352,10	319,94	377,74
FO	OS	347,55	295,33	462,86
N1	OD	215,10	311,63	306,79
	OS	363,32	302,10	346,35
	OD	228,95	142,81	199,13
	OS	210,71	206,04	284,45
P10	OD	254,88	358,20	388,64
	OS	290,05	369,05	39,88
D4	OD	279,62	265,93	262,37
	OS	284,16	230,13	342,76

Monokulares Anomaloskop

		Range		Midpoint	Helligkeit		AQ	
Proband	Auge	min	max		min	max		Beurteilung
1ת	OD	16,9	18,0	17,45	14,1	14,5	4,03	deutan
	OS	17,7	18,0	17,90	14,2	15,4	3,77	deutan
	OD	45,2	47,2	46,20	12,0	13,2	0,66	protan
FJ	OS	46,9	47,8	47,35	12,0	12,8	0,64	protan
De	OD	61,8	62,7	62,25	5,5	5,7	0,20	protan
FU	OS	63,0	64,1	63,55	5,3	5,4	0,17	protan
N1	OD	39,8	41,2	40,50	13,4	14,1	1,01	normal
N 1	OS	39,8	40,7	40,25	13,8	13,8	1,01	normal
	OD	16,3	16,9	16,60	13,9	14,3	4,21	deutan
02	OS	16,9	17,2	17,05	13,4	14,5	4,03	deutan
	OD	59,0	60,4	59,70	5,5	6,0	0,25	protan
FIU	OS	59,0	61,5	60,25	5,1	6,0	0,23	protan
	OD	12,0	33,5	22,75	12,0	15,4	6,15	deutan
04	OS	14,6	29,8	22,20	13,1	13,7	5,23	deutan

Binokulares Anomaloskop

	Midpoint	Helligkeit		AQ		Beurteilung
Proband		min	max	min	max	
D1	23,45	22,0	24,9	2,59	2,81	deutan
P5	40,65	38,7	42,6	0,99	1,06	normal
P6	56,85	56,3	57,4	0,33	0,34	protan
N1	37,50	35,2	39,8	1,15	1,30	normal
D2	24,40	23,1	25,7	2,23	2,49	deutan
P10	51,30	38,9	63,7	0,26	0,43	protan
D4	Gerät nicht verfügbar					

Vielen Dank

Allen, die mir bei der Durchführung mit Rat und Tat beiseite gestanden, mir bei der Fertigstellung geholfen, oder sich als Versuchspersonen zur Verfügung gestellt haben. Ein besonderer Dank gilt meinen Eltern, die mir das Studium ermöglichten.

Curriculum vitae

Persönliche Daten:

Barbara Junger	
Geboren am 18. Ol	tober 1979 in Memmingen
Eltern:	Dr. med. Elisabeth Junger, geb. Urbanger; Ärztin
	Dr. med. Karl Junger; Chirurg und Unfallchirurg

Schulbildung:

1986 bis 1999:	Schulzeit in Reutlingen und Bruchsal
Mai 1999:	Abitur am Justus-Knecht-Gymnasium, Bruchsal

Studium:

2000 bis 2007:	Studium der Humanmedizin an der
	Eberhard-Karls-Universität Tübingen
März 2002:	Ärztliche Vorprüfung
März 2003:	Erster Abschnitt der ärztlichen Prüfung
August 2005:	Zweiter Abschnitt der ärztlichen Prüfung
Juni 2007:	Dritter Abschnitt der ärztlichen Prüfung
Seit Juni 2007:	Assistenzärztin in der Anästhesie