Aus der Radiologischen Universitätsklinik Tübingen Department für Diagnostische und Interventionelle Radiologie Ärztlicher Direktor: Professor Dr. C.D. Claussen Sektion für Experimentelle Radiologie Leiter: Professor Dr. Dr. F. Schick

Die Möglichkeiten der MRT mit Perfusions- und Ventilationsmessungen bei der Lungendiagnostik jugendlicher Mukoviszidose-Patienten

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard-Karls-Universität zu Tübingen

> vorgelegt von Franka Zenneck aus Bristol

> > 2008

Dekan: Professor Dr. I.B. Autenrieth 1. Berichterstatter: Professor Dr. Dr. F. Schick 2. Berichterstatter: Professor Dr. M. Stern

Inhaltsverzeichnis

1	Ein	nleitung	7
	1.1	Epidemiologie und Charakterisierung der Mukoviszidose	7
	1.2	Übliche Diagnostik der Lungenbeteiligung bei Mukoviszidose	9
	1.3	Einsatz der MRT bei Mukoviszidose	10
	1.4	Ziele der Studie	10
	1.5 1.5.7 1.5.2 1.5.2 1. 1.5.2 1.5.2	Grundlagen der MRT und methodische Vorarbeiten1Spinecho-Sequenzen	11 11 12 12 13 13 13 13 14
2	Ma	terial und Methoden	21
	2.1 2.1.2 2.1.2 2.1.3	Studienteilnehmer 1 Patienten 2 Kontrollgruppe 3 Ethikantrag und Drittmittel	21 21 21 21
	2.2	Lungenfunktionsprüfung	22
	2.3	Klinische Parameter	23
	2.4	Röntgenthorax	24
	2.5	Magnetresonanztomograph	26
	2.6	Atemmaske und Atemgurt	27
	2.7 2.7.2 2.7.2 2. 2. 2. 2. 2. 2. 2. 2.	Ablauf der MRT und Sequenzparameter	27 28 30 31 32 33 34
	2.8	Auswertung der morphologischen Veränderungen	35
	2.9 2.9.2 2.9.2 2.9.2 2.9.2 2.9.2	Auswertung der funktionellen Messungen 1 Vertikale Zwerchfellmobilität 2 Protonendichte 3 Lungenvolumen 4 Sauerstoff-verstärkte Ventilationsbildgebung 5 Perfusionsbildgebung	36 36 37 41 42 45

	2.10	Bilddokumentation und Umgang mit Daten	47
	2.11	Statistik	47
3	Erg	jebnisse	. 49
	3.1 3.1. ⁻	Lungenfunktionsprüfung 1 Krankheitsverlauf anhand von FEV1%	49 51
	3.2	Klinische Parameter	52
	3.3 3.3. 3.3.2	Morphologie 1 MRT-Score 2 Crispin-Norman-Score	53 53 56
	3.4 3.4.2 3.4.2 3.4.2 3.4.2 3.4.2	Funktionelle Parameter 1 Vertikale Zwerchfellmobilität 2 Protonendichte 3 Lungenvolumen 4 Sauerstoff-verstärkte Ventilationsbildgebung 5 Perfusionsbildgebung	60 60 61 66 70 74
	3.5	Vergleich der Ergebnisse der MRT mit Röntgen und LFP	78
	3.6	Vergleich der verschiedenen MRT-Ergebnisse miteinander	80
	3.7 dem k	Vergleiche der MRT-Parameter mit dem Verlauf der FEV1-Werte un linischen Verlauf	nd 81
	3.8	Gegenüberstellung zweier Patienten	84
4	3.8 Dis	Gegenüberstellung zweier Patienten	84 . 91
4	3.8 Dis 4.1	Gegenüberstellung zweier Patienten kussion Morphologie	84 . 91 92
4	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.4 4.2.4 4.2.4	Gegenüberstellung zweier Patienten	84 . 91 92 93 93 94 96 97 98
4	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.2 4.2.3	Gegenüberstellung zweier Patienten	84 . 91 92 93 93 93 94 96 97 98 99
4	3.8 Dis 4.1 4.2 4.2.3 4.2.3 4.2.4 4.3 4.3	Gegenüberstellung zweier Patienten	84 . 91 92 93 93 93 93 94 97 98 99 100
4	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.3 4.3 4.3 4.4 Zus	Gegenüberstellung zweier Patienten	84 . 91 92 93 93 93 93 93 93 98 99 100 101
4 5 6	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.4 4.2.3 4.3 4.4 Zus Ani	Gegenüberstellung zweier Patienten	84 . 91 92 93 93 93 93 93 93 93 100 101 103
4 5 6	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2 4.3 4.4 Zus 6.1	Gegenüberstellung zweier Patienten	84 92 93 93 93 93 93 93 93 1.00 100 101 103 103
4 5 6	3.8 Dis 4.1 4.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2 4.3 4.4 Zus 6.1 6.1 6.2	Gegenüberstellung zweier Patienten	84 92 93 93 93 93 93 93 93 93 1.00 100 101 103 103 109

1 Einleitung

1.1 Epidemiologie und Charakterisierung der Mukoviszidose

Mukoviszidose (synonym: zystische Fibrose (CF)) ist die häufigste, tödlich verlaufende autosomal rezessive Erbkrankheit in Europa. Jeder zwanzigste Kaukasier ist ein heterozygoter, asymptomatischer Merkmalsträger. Die Homozygotenfrequenz beträgt ca. 1:2500, das heißt eines von 2500 Neugeborenen erkrankt an CF. Asiaten oder Afrikaner sind deutlich seltener von dieser Krankheit betroffen. Die häufigste Mutation, die bei ca. 70% der Patienten für die Erkrankung verantwortlich ist, ist ein Defekt im CF-Gen, genannt Delta-F-508. Mittlerweile sind etwa 300 weitere CF-Gen-Defekte bekannt, die aber sehr selten vorkommen. Das Proteinprodukt des CF-Gens ist CF-Transmembran-Regulator-Protein (CFTR), ein Chloridkanal der das apikalen Zellmembran. Das Fehlen beziehungsweise die Funktionsuntüchtigkeit dieses Kanals hat an mehreren Organen verschiedene, teilweise schwerwiegende Folgen. In der Lunge kommt es durch den Defekt des CFTR zu einer Zunahme der Viskosität des Bronchialsekrets und zu einer Sekretretention. Diese sind für eine chronische Obstruktion und rezidivierende Infektionen verantwortlich, die über vielfältige Entzündungsmechanismen zu einer fortschreitenden Destruktion der bronchialen Mukosa führen. Bronchiektasen und Bronchialkollaps sind die Folge der bronchialen Instabilität, die ihrerseits eine Mukostase begünstigen und das Infektionsrisiko erhöhen. Somit entsteht Circulus vitiosus aus Infektion. Entzündung und Gewebedestruktion, der kaum durchbrochen werden kann. Im Krankheitsverlauf kommt es früh zur Ausbildung lokaler emphysematischer Bezirke (air trapping), mukoid-putride Pföpfe (mucus plugging) verlegen Bronchiallumina und Atelektasen, Zysten und Bullae entstehen, sowie Bronchialwandverdickungen (Peribronchitis) und fibrotisch veränderte Lungenbezirke (1). Die häufigsten Erreger einer akuten Exazerbation als auch einer chronischen Besiedlung sind Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa

und Burkholderia cepacia, wobei die zwei Letztgenannten aufgrund ihrer Resistenzen besonders problematisch sind. Die zunehmende Uberblähung der Lunge bedingt eine Zwerchfelldepression und auch eine Veränderung des knöchernen Thorax mit verstärkter Kyphosierung der Brustwirbelsäule und einer Vorwölbung des Sternums. Durch die zystisch-fibrotische Degeneration des Lungenparenchyms (daher der Name der Erkrankung) wird der Gasaustausch stetig erschwert. Im weiteren Verlauf kann es zu Hämoptysen, Pneumothorax, pulmonaler Hypertonie mit Cor pulmonale und respiratorischer Insuffizienz kommen. Im oberen Respirationstrakt entwickeln sich häufig eine Pansinusitis und eine Polyposis der Nase. Auch im Pankreas entsteht zu visköses Sekret, das die Pankreasgänge verlegt und durch Entzündungsprozesse und Fibrose zu einer exokrinen und später einer endokrinen Pankreasinsuffizienz führt. Der Magen-Darm-Trakt ist häufig schon früh betroffen. So fallen Neugeborene teilweise durch einen Mekoniumileus auf und die Krankheit kann früh erkannt werden. Des Weiteren kommt es zu Störungen der Darmmotilität und gastroösophagealem Reflux. Die Veränderungen der Gallensekretion können eine Cholestase hervorrufen und später auch eine biliäre Zirrhose mit portaler Hypertension. Die Beteiligung der Lunge ist jedoch meist ausschlaggebend für die frühe Mortalität der CF-Patienten. Noch in den 60er Jahren verstarben die meisten Kinder im Vorschulalter, für ein heute geborenes CF-Kind wird die Lebenserwartung auf 45-50 Jahre geschätzt. Diese deutliche Verbesserung der Lebenserwartung und der Lebensqualität sind vor allem auf folgende Faktoren zurückzuführen:

- Konsequente antimikrobielle Behandlung, vor allem gegen den Problemkeim Pseudomonas aeruginosa
- Einführung mikroverkapselter, säurestabiler Pankreasenzyme, die eine hochkalorische Diät ermöglichen
- Bessere Betreuung in zentralen CF-Ambulanzen
- Möglichkeit einer Lungen- bzw. Herz-Lungen-Transplantation
- Verbesserung der Diagnostik die eine gezielte Therapie gestattet

1.2 Übliche Diagnostik der Lungenbeteiligung bei Mukoviszidose

Regelmäßig werden **Sputumanalysen** durchgeführt, um die Besiedlung der Lunge mit pathogenen Keimen und den Entzündungsstatus zu erfassen.

Die **Funktionen** der Lunge werden mit verschiedenen Verfahren überprüft. Die **Blutgasanalyse** dient der Beurteilung des Gasaustausches, denn im Rahmen einer beginnenden respiratorischen Insuffizienz kommt es zu Hyperkapnie und Hypoxie. Die **Lungenfunktionsprüfung** im Bodyplethysmographen wird zur Objektivierung der obstruktiven und restriktiven Ventilationsstörungen eingesetzt und gilt als Goldstandard zur Beurteilung des Krankheitsverlaufs der CF-Patienten. Mit dieser Methode können alle statischen und dynamischen Lungenvolumina gemessen werden, jedoch lässt sich keine Aussage darüber machen, welche Lungenregion betroffen ist. Das wäre aber entscheidend, da es bei den Patienten nicht zu einer einheitlichen Lungenschädigung kommt, sondern zu unterschiedlich stark betroffenen Abschnitten. Des Weiteren wird die **Ventilations-Perfusions-Szintigraphie** zur Detektion von regionalen Belüftungs- und Durchblutungsstörungen eingesetzt, wobei allerdings der Einsatz von radioaktiven Nukliden nötig ist, und nur eine zweidimensionale Ansicht mit niedriger Auflösung möglich ist.

Das Röntgenthoraxbild in zwei Ebenen ist momentan noch der Goldstandard zur Evaluierung der morphologischen Lungenveränderungen. Es ist schnell und mit relativ geringer Strahlenbelastung (ca. 0,05 mSv pro Thorax) durchführbar und auch nicht sehr teuer. Eine lange Tradition haben der radiologische Score nach Crispin und Norman (2) (siehe auch 2.4) und der klinisch-radiologische Score nach Shwachmann (3), die beide der individuellen Verlaufsbeurteilung dienen. Doch das Röntgenbild bietet nur eine zweidimensionale Ansicht und feine Veränderungen der Bronchien sind oft erst in späten Stadien erkennbar. In Studien wird zunehmend die hochauflösende neueren **Computertomographie** (HRCT) zur Beurteilung der morphologischen Veränderungen eingesetzt, sie zählt aber in den meisten Zentren nicht zur Standarddiagnostik bei CF-Patienten. Bhalla et al. (4) entwickelten 1991 als erste ein Scoring-System für die HRCT. Es konnte auch in mehreren Studien gezeigt werden (5-13), dass die HRCT dem Röntgen überlegen ist, da pathologische Veränderungen schon früher als im Röntgen detektiert werden können und zwischen irreversiblen und reversiblen Läsionen eher unterschieden werden kann. Außerdem ist es möglich auf exspiratorischen Aufnahmen Airtrapping qualitativ und quantitativ schon früh zu erkennen (14-19). Die HRCT eignet sich jedoch nicht als regelmäßige Kontrolluntersuchung, da die Strahlenbelastung von ca. 1-2 mSv pro Thorax relativ hoch ist, und Kinder eine viel höhere Strahlensensitivität als Erwachsene haben.

1.3 Einsatz der MRT bei Mukoviszidose

Die Magnetresonanztomographie der Lunge wurde bisher nur in wenigen klinischen Studien (20-27) als Diagnostik für CF-Patienten eingesetzt. Einerseits ist die Darstellung des Lungenparenchyms sehr schwierig (siehe 1.5.3), andererseits werden erst seit wenigen Jahren Studien zur Messung funktioneller Lungenparameter im MRT durchgeführt (siehe 1.5.4). Doch die MRT hat großes Potential in Zukunft stärker für die Diagnostik der Lungenbeteiligung bei Mukoviszidose eingesetzt zu werden. Wie schon unter 1.1 beschrieben sind die Lungenveränderungen der Patienten sehr vielfältig und es bedarf einer regelmäßigen und genauen Beurteilung, um mit gezielten Therapien die Prognose zu verbessern. Bisher mussten immer mehrere Untersuchungen, die teilweise mit nicht unerheblicher Strahlenbelastung einhergehen, angefordert werden, um ein umfassendes Bild von den morphologischen und funktionellen Veränderungen zu erhalten (siehe 1.2). Mit der MRT ist es jetzt möglich sowohl morphologische als auch funktionelle Lungenparameter in nur einer Untersuchung zu erfassen. Der größte Vorteil der MRT ist, dass sie ohne ionisierende Strahlung auskommt und Spätschäden durch häufige Anwendung somit nicht zu erwarten sind.

1.4 Ziele der Studie

Ziel dieser Pilotstudie war die Informationsgewinnung für die Planung weiterer klinischer oder diagnostischer Studien, die Erstellung eines MRT-Scores für die morphologischen Lungenveränderungen der CF-Patienten und die Bewertung der in vielen Fällen noch nicht etablierten Verfahren zur Messung der funktionellen Lungenparameter. Daraus ergaben sich folgende Fragestellungen:

- Sind Unterschiede zwischen den CF-Patienten und einer gesunden Kontrollgruppe in den funktionellen MRT-Untersuchungen messbar?
- Korrelieren die Ergebnisse der MRT-Untersuchung der Patienten mit den Goldstandards Röntgenthorax und Lungenfunktionsprüfung?
- Lässt sich mit den MRT-Daten etwas über den Verlauf bzw. die Prognose des einzelnen Patienten aussagen?

1.5 Grundlagen der MRT und methodische Vorarbeiten

Die Grundlagen der Spinecho- und Gradientenechosequenzen wurden hauptsächlich zwei Quellen entnommen (28, 29).

1.5.1 Spinecho-Sequenzen

Die Spinecho (SE) -Sequenz ist vor allem aus 2 Gründen die in der klinischen Routine am weitesten verbreitete Bildgebungssequenz:

- Gegenüber den statischen Grundfeldinhomogenitäten und anderen Ungenauigkeiten des MR-Systems ist sie relativ unempfindlich
- Durch geeignete Wahl der Parameter Repetitionszeit (TR) und Echozeit (TE) kann man T1-, T2- und protonengewichtete Aufnahmen mit hohem Weichteilkontrast erstellen

Turbo-Spinecho (TSE) –Sequenzen führen in der Regel zu verkürzten Messzeiten. Gleichzeitig sind die Kontraste und die Bildqualität ähnlich denen der konventionellen SE-Sequenzen, so dass sich zusätzliche Anwendungsmöglichkeiten wie zum Beispiel die Atemanhaltetechnik bei Thoraxaufnahmen ergeben.

Das Besondere dabei ist, dass jedes Echo eines Pulszuges eine andere Phasenkodierung erhält. Innerhalb der Repetitionszeit TR werden so viele Zeilen der Rohdatenmatrix aufgenommen wie der Pulszug Echos enthält. Dies wird als Turbofaktor bezeichnet.

1.5.1.1 Inversion-Recovery-Sequenzen

Mit Hilfe eines 180°-Impulses werden die Spins invertiert und relaxieren dann während der Inversionszeit TI. Falls der folgende 90° Anregungsimpuls gerade zu dem Zeitpunkt gesendet wird, wenn die Relaxationskurve einer T1-Spezies einen Nulldurchgang hat, wird das Signal dieses Gewebes unterdrückt.

1.5.2 Gradientenecho-Sequenzen

Die so genannte Gradientenechotechnik erlaubt kürzere Aufnahmezeiten als konventionelle SE-Sequenzen. Hierbei wird mit einem Winkel $\alpha < 90^{\circ}$ angeregt (Kleinwinkelanregung) und 180° Rephasierungspulse fehlen. Schnellbildsequenzen, die auf dem Prinzip der Kleinwinkelanregung beruhen und bei denen das Echosignal ausschließlich durch Gradientenumkehrung generiert wird, werden Gradientenecho (GRE) -Sequenzen genannt (28). Gegenüber Spinecho-Sequenzen haben Gradientenecho-Sequenzen einige bedeutende Vorteile:

- Kürzere Messdauer
- Besseres Signal-zu-Rauschen-Verhältnis pro Zeiteinheit
- 3D-Bildgebung in akzeptabler Messzeit
- Kleine SAR-Werte
- Starker T1- und/oder T2*-gewichteter Kontrast

GRE-Sequenzen sind aber auch empfindlicher gegenüber:

- Magnetischer Suszeptibilität und mikroskopischer Feldinhomogenitäten

1985 wurde von Haase et al. (30) eine "gespoilte" GRE-Sequenz vorgestellt die unter dem Akronym FLASH (fast low angle shot) bekannt wurde. Die Besonderheit liegt darin, dass nach der Datenakquisition die Quermagnetisierung durch den "spoiler" zerstört wird. Für eine FLASH-Sequenz in T1-Wichtung wählt man eine kurze TR und TE, sowie einen mittleren bis großen Winkel α . Um eine T2*-gewichtete Aufnahme zu machen stellt man eine lange TR, eine relativ lange TE und einen kleinen Winkel α ein.

1.5.2.1 T1-gewichtete Sequenzen

Um anatomische Strukturen zu beurteilen eigenen sich T1-gewichtete Spinechosequenzen. Hierbei wählt man eine kurze Repetitions- und Echozeit. Die kurze TE unterdrückt den T2-Einfluss.

1.5.2.2 T2*-gewichtete Sequenzen

Die Sensitivität gegenüber vielen pathologischen Läsionen ist in T2*-Wichtung größer. Teilweise werden Läsionen, die in T1-Wichtung nicht auszumachen sind, im T2*-Bild erst sichtbar. Deshalb ist die Charakterisierung einer pathologischen Läsion zuverlässiger, wenn man das Kontrastverhalten von T1 und T2* vergleicht. Man verwendet eine lange Repetitions- und Echozeit, wobei die lange TR den T1-Einfluss unterdrückt. Die spezifische Absorptionsrate (SAR) ist kleiner als bei T1-Messungen und somit ist die erlaubte Schichtenzahl größer. Da aber die Messdauer von der Repetitionszeit abhängt ist diese länger als bei T1-gewichteten Sequenzen.

1.5.2.3 Protonengewichtete Sequenzen

Bei Protonendichte (PD) -gewichteten Bildern sind die anatomischen Strukturen meist gut zu erkennen, obwohl der Kontrast zwischen verschiedenen Gewebearten nicht sehr groß ist. Wegen der hohen Auflösung und des guten Signal-zu-Rauschen-Verhältnisses (SNR) kann man PD-gewichtete Bilder als zusätzliches Mittel in der Diagnostik einsetzen. Beispielsweise bei Bildern der Wirbelsäule, bei denen sich die anatomischen Begrenzungen des Spinalkanals und der Bandscheiben klar abheben.

Eine kurze TE und eine lange TR werden eingestellt. Durch die lange TR wird der T1-Einfluss unterdrückt, durch die kurze TE der T2-Einfluss.

1.5.3 Erfahrungen mit der Darstellung des Lungenparenchyms

Seit Beginn der 80er Jahre werden Magnetresonanztomographen für klinische Untersuchungen eingesetzt. Zunächst wurde vor allem das Zentralnervensystem untersucht, aber inzwischen weitete sich das Indikationsspektrum der MRT auf alle Körperregionen aus. Lediglich die Lunge wurde bisher aus folgenden Gründen kaum routinemäßig im MRT untersucht. Die Darstellung des Lungenparenchyms in der MRT ist schwierig, da der große Luftgehalt und damit die geringe Spindichte zu einem sehr niedrigen Mess-Signal führen. Zusätzlich wird das Signal durch Suszeptibilitätseffekte frühzeitig gestört, die durch die vielen Luft-Gewebe-Grenzflächen hervorgerufen werden (31). Dadurch ist die T2*-Relaxationszeit extrem kurz, so dass bereits nach wenigen Millisekunden kein messbares Signal der normalen Lunge zu akquirieren ist. Hierbei sind die Effekte proportional zur Magnetfeldstärke des Gerätes. Erst mit der Einführung von Turbo-Spinecho-Seguenzen und auch Gradientenecho-Sequenzen (siehe 1.5.1 und 1.5.2) gelang es akzeptable Bilder erstellen. zu Neue Sequenzen besseren Darstellung des zur Lungenparenchyms wurden in den letzten Jahren untersucht von Biederer et al. (32, 33) (T1w GRE- und T2w TSE-Sequenz, volumetric interpolated breath-hold examination (VIBE) 3D GRE-Sequenz), Hatabu et al. (34) (PDw GRE-Sequenz) mit ultra kurzer TE <1ms), Kauczor et al. (35) (T1w FLASH GRE-Sequenz), Mai et al. (36) (IR-HASTE- und IR-TSE-Sequenz), Schäfer et al. (37) (PDw GRE-Sequenz), Semelka et al. (38) (VIBE 3D GRE-Sequenz) und Stock et al. (39) (PDw GRE-Sequenz mit ultra kurzer TE). Es zeigte sich, dass vor allem die PDw 3D GRE-Sequenz wesentlich zur Verbesserung des messbaren Signals beiträgt, wobei eine T2-gewichtete Seguenz zusätzlich wichtig ist, da sich beide ergänzen. Des Weiteren kommt es zu Bewegungsartefakten durch die Atmung und die Kontraktionen des Herzens, die jedoch mit Atem- und EKG-Triggerung minimiert werden können. Wir verwendeten eine PDw 3D GRE-Sequenz in Atemanhaltetechnik und eine T2w TSE-Sequenz ähnlich der von Biederer et al. (32, 33) mit Atemtriggerung zur Darstellung der Morphologie.

1.5.4 Funktionelle Bildgebung

Durch zunehmende Überblähung kommt es bei vielen CF-Patienten zu einer Zwerchfelldepression (siehe 1.1) mit einer eingeschränkten Zwerchfellmobilität. Diese Veränderung wurde bisher im Rahmen des Crispin-Norman-Scores (CNS) anhand eines Röntgenthorax erfasst. Das Röntgenbild in Inspiration stellt jedoch nur eine Momentaufnahme der Zwerchfellkuppen dar und ermöglicht keine Beurteilung der tatsächlichen Zwerchfelldynamik. In einigen Studien (40-45) konnte gezeigt werden, dass es mit der MRT möglich ist die Bewegungen des Zwerchfells während des gesamten Atemzyklus sichtbar zu machen und Unregelmäßigkeiten in der Bewegung zu erkennen wenn man die Messzeit sehr kurz hält und viele Bilder während des Atemzyklus aufnimmt. Es eignen sich vor allem true FISP (true fast imaging with steady precession) – und GRE-Sequenzen mit einer schnellen Bildaquisition. Wir verwendeten eine T1w GRE-Sequenz ähnlich der von Gierada et al. (41), jedoch nur in einer coronaren Ebene um die Messzeit kurz zu halten.

Airtrapping tritt schon früh bei CF-Patienten auf (15), beginnendes Airtrapping ist jedoch im Röntgenbild kaum sichtbar, und auch auf "normalen" HRCT-Bildern in Inspiration ist es kaum zu erfassen. In einer Studie am HRCT (14) konnte gezeigt werden, dass es Patienten mit unauffälligen inspiratorischen Aufnahmen gab, bei denen erst in exspiratorischen Aufnahmen Airtrapping durch unregelmäßige Zunahme der Dichte sichtbar wurde. Mit der MRT ist es möglich die Protonendichte der Lunge zu Messen. Unter Protonendichte verstehen wir die Signalintensität bei Protonendichte gewichteten Sequenzen, obwohl ein echter Protonendichtekontrast unter realen Messbedingungen nicht erreicht werden kann, wird dieser Begriff in dieser Arbeit weiter so verwendet. Vergleiche von inspiratorischen- und exspiratorischen Bildern erlauben Rückschlüsse auf fokales Airtrapping. Hatabu et al. (34) zeigten in einer Studie im MRT mit einer PDw GRE-Sequenz mit ultra kurzer TE, dass die Protonendichte in Exspiration zunimmt und aufgrund der kurzen TE das Signalzu-Rauschen-Verhältnis (SNR) relativ gut ist. Deshalb verwendeten wir eine Sequenz ähnlich der von Hatabu et al. (34). Bei den Vorarbeiten zu dieser Studie konnte bei zwei gesunden Probanden gezeigt werden, dass in Rückenlage die Dichte in Exspiration dorsal deutlich stärker zunahm als ventral. Nach Umlagerung in Bauchlage zeigte sich, wie zu erwarten, ventral eine stärkere Dichtezunahme als dorsal.

Die folgenden vier Bilder (Abb. 1 Dichtezunahme in Exspiration) der Probanden verdeutlichen diesen Effekt (hohe Dichte: rot, niedrige Dichte: blau).

Abb. 1 Dichtezunahme in Exspiration

Lungenvolumina werden klassischerweise mit der Bodyphlethysmographie bestimmt, doch O'Callaghan (46) erkannte schon 1987 das Potential der MRT auf diesem Feld. Es gab weitere Studien zu diesem Thema (45, 47, 48) in denen das Lungenvolumen mit hochaufgelösten 3D-Datensätzen aus schnellen GRE-Sequenzen berechnet wurde. In allen drei Studien zeigte sich durchweg eine sehr gute Korrelationen zwischen Lungenvolumina gemessen in Spirometrie und MRT. Wir verwendeten eine PDw FLASH 3D GRE-Sequenz, ähnlich der von Plathow et al. (47). Durch die zunehmende Fibrosierung und Überblähung der Lunge sinkt bei CF-Patienten im Verlauf die Vitalkapazität, wobei das Residualvolumen steigt.

Die Darstellung und Quantifizierung der Ventilation war lange nur mit der Szintigraphie möglich. Mittlerweile gibt es zwei neue Methoden, die es ermöglichen mit der MRT regionale Veränderungen der Belüftung sichtbar zu machen. Eine Möglichkeit ist der Einsatz von hochpolarisierten Edelgasen, hier gelang es 1996 MacFall, Kauczor und Ebert (49-51) mit hochpolarisiertem 3-Helium (³He) die Ventilation darzustellen. Weitere Studien mit Patienten (52-55) wurden zu diesem Thema durchgeführt und neben dem hochpolarisierten ³He, das nicht absorbiert wird, wurde das hochpolarisierte 129-Xenon (¹²⁹Xe) eingesetzt (56), das gut in Blut und fetthaltigen Geweben löslich ist. Bei diesen

Edelgasen wird die Anzahl der Spins künstlich erhöht indem man sie polarisiert, so dass das Gas direkt als Kontrastmittel wirkt. Die Gase sind ungiftig und werden über eine Atemmaske eingeatmet und ermöglichen es die Ventilation der Lunge mit guter Auflösung darzustellen. Diese eigentlich viel versprechende auch große Nachteile. Die Methode hat aber Herstellung dieser hochpolarisierten Edelgase ist sehr aufwendig und teuer, und der Magnetresonanztomograph muss auf die Resonanzfrequenz der Edelgase eingestellt werden, was in der klinischen Routine nicht so einfach möglich ist. Aus diesen Gründen haben wir uns für Ventilationsmessung mit 100 % Sauerstoff entschieden, die 1996 von Edelman et al. (57) beschrieben wurde. Dieser Ansatz zur Erfassung der Ventilation beruht auf der Messung der Signaländerung nach Inhalation von 100 % Sauerstoff in einer gängigen protonenbasierten MRT. Da der Partialdruck des Sauerstoffs in der Luft nur ca. 20 % beträgt, kann die paramagnetische Wirkung des molekularen Sauerstoffs auf die Protonenspins des Wasseranteils im Blut mit geeigneten Sequenzen gemessen werden, wenn über eine Atemmaske 100 % Sauerstoff inhaliert wird. Die Konzentration des gelösten Sauerstoffs in venösem Blut steigt etwa auf das Fünffache an und bewirkt eine Verkürzung der T1-Relaxationszeit (58). Wenn mit einer Inversion-Recovery-Sequenz (siehe 1.5.1.1) gemessen wird, die T1sensitiv ist, hängt die Änderung der Singnalintensität unter 100 % O₂ von der Inversionszeit ab. Bei Vorarbeiten zu dieser Studie untersuchten wir gesunde Probanden mit einer IR-TSE-Sequenz mit unterschiedlichen Inversionszeiten (TI= 300, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 2000 ms). Die folgenden zwei Grafiken (Abb. 2 SI-Änderung der Lunge bei unterschiedlicher TI, Abb. 3 SI-Änderung des Muskels bei unterschiedlicher TI) zeigen die SI-Änderung unter 100 % O₂ in einer ventralen- und dorsalen region of interest (ROI) des Lungengewebes und im Muskel bei einer Probandin. Bei 900 ms nimmt die SI ventral und dorsal in der Lunge gleichermaßen zu, wobei im Muskel noch keine Anderung eintritt. Die Kurve hat einen Nulldurchgang bei einer TI von ca. 700 ms, mit 900 ms liegt man folglich sicher über dem Nulldurchgang. Deshalb verwendeten wir eine IR-TSE-Sequenz, ähnlich der von Stock et al. (59), mit einer TI von 900 ms. Auch Ohno et al. (60) zeigten, dass um eine optimale

Zunahme der Signalintensität unter 100 % Sauerstoff zu erhalten, sich eine TI von 900 ms bis 1200 ms am besten eignet.

Abb. 2 SI-Änderung der Lunge bei unterschiedlicher TI

Abb. 3 SI-Änderung des Muskels bei unterschiedlicher TI

In der Umgebung der zu messenden Schicht werden die Spins invertiert, so dass die Blutgefäße in dieser Messung nicht sichtbar sind. Um die Ventilation sichtbar zu machen subtrahiert man ein Bild, bei dem Raumluft geatmet wurde von einem Bild unter 100 % O₂ in der gleichen Ebene. Bisher wurden zahlreiche Studien (24, 58-75) zur Machbarkeit und Anwendung dieser neuen Technik durchgeführt, doch größere Studien mit Patienten fehlen noch. Der große Vorteil bei dieser Methode liegt darin, dass Sauerstoff als Kontrastmittel überall verfügbar, sehr günstig und bei kurzer Anwendung ungefährlich für den Menschen ist. Darüber hinaus muss der Magnetresonanztomograph nicht umgestellt werden und die Messung der Ventilation wäre im Rahmen der klinischen Routine möglich.

Die Lungenperfusion wurde bisher unter Einsatz von Kontrastmittel in der CT oder MRT untersucht. Mai et al. (76-79) und Martirosian et al. (80) zeigten, dass es möglich ist die Perfusion der Lunge vollständig ohne Kontrastmittel in der

MRT darzustellen, was wir in unserer Studie auch anwandten. Diese Methode ist die arterial-spin-labeling (ASL) Technik und wurde ursprünglich zur Messung des zerebralen Blutflusses eingesetzt. Der Wasseranteil im Blut wird als frei verfügbarer Indikator verwendet. Die Protonenspins werden in der zu untersuchenden Schicht invertiert und geben zunächst kein Signal ab, die Spins des umgebenden Gewebes werden nicht invertiert. Nach der Zeit TI (in unserer Studie 900 ms) wird das Bild aufgenommen und durch das Einströmen von Blut aus der Umgebung, dessen Protonenspins nicht invertiert wurden, ist ein Signal messbar. Die Wahl der TI ist entscheidend für die SI, denn ist die TI zu kurz, fließt nicht genügend Blut aus der Umgebung nach, und ist sie zu lang, sind die Spins im Blut schon wieder relaxiert. Da sich in der zu messenden Schicht während der Zeit TI eine Grundmagnetisierung wieder aufbaut, muss man ein Subtraktionsbild erstellen um wirklich nur die Perfusion zu erhalten. Ein nicht selektives Bild in dem die Spins in der entsprechenden Schicht nicht invertiert sind wird von einem schichtselektiven Bild (das mit ASL-Technik aufgenommen wurde) in der gleichen Ebene subtrahiert. Wir haben eine schichtselektive IR-TSE-Sequenz verwendet, ähnlich der von Mai et al. (78), jedoch mit einer TI von 900 ms.

2 Material und Methoden

2.1 Studienteilnehmer

2.1.1 Patienten

Aus der CF Ambulanz wurden 80 Patienten über die Studie informiert und zur Teilnahme befragt. 23 Patienten (10 weiblich, 13 männlich) erklärten sich bereit an der Kernspinuntersuchung teilzunehmen, wobei bei einer Patientin die Messung wegen Klaustrophobie abgebrochen werden musste. Somit gingen 22 Patienten in die Auswertung ein. Das Alter der Patienten betrug 8 bis 36 Jahre (Median 15 Jahre) und der mediane Body Mass Index (BMI) der zehn erwachsenen Patienten betrug 20,6 (Interquartile-Range (IQR): 19,1 bis 24,0).

Alle Patienten absolvierten im Rahmen der Studie eine MRT und eine Lungenfunktionsprüfung.

Die Einschlusskriterien beinhalten:

- Patienten mit diagnostizierter Mukoviszidose
- Patienten ab 8 Jahren
- Schriftliche Einwilligung des Patienten bzw. seines gesetzlichen Vertreters nach vorangegangener schriftlicher und persönlicher Aufklärung
- Röntgenaufnahme des Thorax in zwei Ebenen (p.a. und seitlich)

Die Ausschlusskriterien beinhalten:

- Absolute oder relative Kontraindikationen gegen eine MRT (inkorporierte metallische Fremdkörper, Herzschrittmacher, Schwangerschaft)
- Klaustrophobie

2.1.2 Kontrollgruppe

Die Kontrollgruppe wurde so ausgewählt, dass sie möglichst gut mit dem Kollektiv der adulten Patienten (> 18 Jahre) übereinstimmt. Sie bestand aus 10 gesunden Probanden (7 weiblich, 3 männlich), alle im Alter von 23 Jahren mit einem BMI von 21,9 im Median (IQR: 20,0 bis 22,8). Ausschlusskriterien waren schon vorher bekannte Lungenerkrankungen, Rauchen und Kontraindikationen gegen eine MRT. Nach persönlicher Aufklärung wurde die schriftliche Einwilligung der Probanden eingeholt.

2.1.3 Ethikantrag und Drittmittel

Die Ethik-Kommision der medizinischen Fakultät der Eberhard-Kals-Universität hat die Durchführung der Studie am 19.04.2002 genehmigt und der Rekrutierung von Patienten und Probanden zugestimmt. Des Weiteren wurde die Studie vom Förderprogramm der medizinischen Fakultät zur Angewandten Klinischen Forschung (AKF) unterstützt. Der AKF-Antrag wurde am 29.01.2003 mit der Nummer 91-1-0 angenommen.

2.2 Lungenfunktionsprüfung

Alle Patienten und Probanden nahmen an einer Lungenfunktionsprüfung (LFP) in einem ganzkörper Bodyplethysmographen teil (*Masterlab-Body, Jaeger, Würzburg 1992*).

Abb. 4 Bodyplethysmograph

Die Untersuchungen wurden von zwei in der Methode erfahrenen medizinisch technischen Assistenten durchgeführt. 16 Patienten absolvierten am Tag der MRT auch die LFP, bei den übrigen 6 Patienten sowie den 10 Probanden fand diese aus terminlichen Gründen innerhalb einer Woche statt. Jedem Teilnehmer wurde erklärt wie der Test funktioniert und jeder hatte zwei Versuche. Der jeweils bessere Wert für das Residualvolumen (RV) [I], die inspiratorische Vitalkapazität (VC IN) [I] und das forcierte exspiratorische Volumen in einer Sekunde (FEV₁) [% Ist/Soll] wurde in die Datenbank übernommen. Das FEV₁ gilt als Indikator für obstruktive Lungenerkrankungen und es wird auch als prozentualer Anteil der Vitalkapazität (VC) angeben (58). Da bei Mukoviszidosepatienten aber nicht nur obstruktive, sondern auch restriktive Lungenveränderungen bestehen, würde die oft verminderte Vitalkapazität wieder zu besseren FEV₁-Werten [% VC] führen. Deshalb verwendeten wir, wie auch schon viele andere Studien (4, 5, 8, 10, 12, 13, 15, 16, 18, 20, 81-83) den FEV₁-Wert als prozentualen Anteil des Sollwertes.

Im Rahmen der kontinuierlichen Betreuung durch die Ambulanz der Kinderklinik unterziehen sich die Patienten in der Regel einmal im Jahr einer Lungenfunktionsprüfung. Um den Verlauf der Erkrankung abzubilden, wurden von jedem Patient die vier FEV₁-Werte [% Ist/Soll] der Jahre 2001 bis 2004 im Abstand von etwa einem Jahr dokumentiert, sowie ein Resultat ein halbes Jahr nach der Kernspinuntersuchung. Für Jeden Patienten wurden diese fünf Werte im Statistikprogramm eingetragen und die Steigung einer Ausgleichsgeraden berechnet nach der Formel: $y = m \cdot x + t$

Wobei die y-Achse dem FEV₁ entspricht, die x-Achse dem Jahr, und m ist die Steigung der Ausgleichsgeraden.

2.3 Klinische Parameter

Gemeinsam mit den Ärzten Frau Dr. med. Ziebach und Herr Prof. Dr. med. Stern aus der CF-Ambulanz des Departments für Kinderheilkunde und Jugendmedizin, die die Patienten schon seit vielen Jahren betreuen, wurden die relevanten klinischen Daten erhoben, welche den Krankheitsverlauf der Patienten darstellten. Hierbei wurde dokumentiert, ob eine Besiedelung mit den Problemkeimen Pseudomonas aeruginosa und Burkholderia cepacia besteht und ob eine Therapie mit Antibiotika konsequent durchgeführt wurde. Für die Konsequenz in der Antibiotikatherapie wurden Punkte von 0 (gar nicht konsequent) bis 3 (sehr konsequent) von den genannten Pädiatern vergeben. Des Weiteren beurteilten Sie ob der klinische Krankheitsverlauf stabil oder instabil war, und wenn er stabil war, ob das auf eine konsequente Therapie zurückzuführen war oder nicht.

2.4 Röntgenthorax

Bei den Mukoviszidosepatienten wird zur Kontrolle des Verlaufs etwa einmal pro Jahr, und auch bei akuten Beschwerden ein Röntgenthoraxbild erstellt. Die Röntgenaufnahmen wurden bei allen Patienten von medizinisch technischen Assistenten der Universitätsklinik Tübingen an dem Gerät Philipps Digital Diagnost in zwei Ebenen durchgeführt. Zwei erfahrene Radiologen beurteilten die Bilder im Consensus nach dem semigualitativen Scoring System (CNS), das Crispin und Norman 1974 für Mukoviszidosepatienten entwickelten (2). Bei diesem System werden für die radiologischen Veränderungen Punkte im Wert von null (nicht vorhanden), eins (vorhanden aber nicht ausgeprägt) und zwei (ausgeprägt) für die folgenden vier Lungenfelder vergeben: linkes Oberfeld (LOF), rechtes Oberfeld (ROF), linkes Unterfeld (LUF) und rechtes Unterfeld (RUF). Maximal ist eine Punktzahl von 38 erreichbar. Nicht von jedem Patienten war ein aktuelles Röntgenbild für den Vergleich mit den MRT-Bildern vorhanden, der Abstand der Röntgenaufnahmen zur MRT variierte von null bis 2676 Tage (Median 303 Tage). Aus diesem Grund wurde zur besseren Vergleichbarkeit für das Datum der Röntgenaufnahme ein Lungenfunktionstest aus den Akten gesucht der am gleichen Tag stattfand.

 Tabelle 1: Crispin Norman Score (CNS)

Kategorie	Scoring
Sternalvorwölbung	0-2
Brustkyphose	0-2
Zwerchfellabflachung	0-2
Bronchiale Linienschatten	0 – 2 (für alle vier Felder)
Fleckschatten	0 – 2 (für alle vier Felder)
Ringschatten	0 – 2 (für alle vier Felder)
Große Schatten	0 – 2 (für alle vier Felder)

Auf dem folgendem Bild (Abb. 5 Röntgenthorax zweier Patienten a) und b) sind die im CNS erfassten Kategorien Beispielhaft mit Pfeilen markiert.

Abb. 5 Röntgenthorax zweier Patienten a) und b)

- 1 = ausgeprägte Ringschatten
- 2 = ausgeprägte Linienschatten
- 3 = ausgeprägte Sternalvorwölbung
- 4 = Zwerchfellabflachung

- 5 = ausgeprägte Fleckschatten
- 6 = ausgeprägter großer Schatten
- 7 = Brustkyphose

2.5 Magnetresonanztomograph

Alle Patienten und Probanden wurden in dem Ganzkörperkernspintomograph Magnetom Sonata (Siemens, Erlangen, Deutschland), der eine Feldstärke von 1,5 Tesla (T) hat, untersucht. Die maximale Feldstärke des Gradientensystems beträgt 40 mT/m mit einer Anstiegsgeschwindigkeit bis zu 200 mT/m/ms. Für die Untersuchung des Thorax wurden die zwei 6-Kanalspulen Body Array anterior und posterior auf Höhe der Schultern so angelegt, dass auch die Lungenspitzen mit aufgenommen werden konnten.

2.6 Atemmaske und Atemgurt

Eine modifizierte Atemmaske wurde zur Ventilationsbildgebung eingesetzt. Diese bestand aus einem Sauerstoffreservoir der Firma *Ambu®*, in das über einen Schlauch 100 % Sauerstoff mit einer Flussmenge von 15l/min, geleitet wurde. Mai et al. zeigten in einer Studie, dass 15 l/min die optimale Flussmenge ist (69). Das Reservoir war über ein Patientenventil mit Ventilmembranen (Mark3) der Firma *Ambu®*, das nach jeder Untersuchung sterilisiert wurde, mit einer Patientenatemmaske der Firma *Rysch* verbunden. Es wurde abwechselnd 100 % Sauerstoff und normale Raumluft während der Untersuchung eingeatmet. Jeder Teilnehmer erhielt eine neue Patientenatemmaske, die der Größe der Person angepasst war (adult face mask, child/small adult face mask). Die Atemmaske wurde durch eine Gummihalterung am Hinterkopf befestigt, und der perfekte Sitz der Maske durch mehrmaliges Atmen überprüft.

Allen Teilnehmern wurde vor Beginn der Untersuchung ein Atemgurt unterhalb des Rippenbogens angelegt. Dadurch war es möglich atemgetriggerte Sequenzen zu messen. Das Atemsignal steigt bei Inspiration an und fällt bei Exspiration ab. Um Bewegungsartefakte zu minimieren, wählt man das Aquisitionsfenster typischerweise in der Exspiration.

2.7 Ablauf der MRT und Sequenzparameter

Die Kernspinuntersuchungen wurden im Zeitraum von März 2004 bis September 2004 von einer medizinisch technischen Assistentin (MTA) durchgeführt. Nachdem die Patienten bzw. Probanden durch einen Arzt aufgeklärt waren und schriftlich das Einverständnis dokumentiert war wurden sie in Rückenlage auf der Liege des Magnetresonanztomographen gelagert. Die Spule wurde angeschlossen und der Atemgurt angelegt. Eine Einzeluntersuchung dauerte etwa 40 Minuten. Zunächst wurde eine Übersichtsaufnahme des Thorax in mehreren Ebenen erstellt um die folgenden Sequenzen genau positionieren zu können.

2.7.1 Morphologische Bildgebung

Zur Beurteilung der Morphologie der Lunge wurde zuerst eine PDw FLASH 3D GRE-Sequenz aufgenommen. Wegen der kurzen Messzeit ist es möglich, die Untersuchung in Atemanhaltetechnik durchzuführen um so Bewegungsartefakte gering zu halten.

Art der Sequenz	PDw FLASH 3D GRE
Field of view (FOV)	350 mm
Matrix	128 x 256
Pixelgröße	1,7 x 1,4 mm
Schichtdicke	3 mm
Schichtanzahl	80
Repetitionszeit (TR)	2,84 ms
Echozeit (TE)	0,87 ms
Flip Winkel	5°
Scanzeit	18 s
Orientierung	Transversal
Atmung	Atemanhaltetechnik Inspiration

Tabelle 2: Sequenzparameter Morphologie PD

Anschließend wurde eine standardisierte T2w TSE-Sequenz durchgeführt. Da diese Sequenz eine längere Messdauer hat, wurden die Bilder durch Atemtriggerung in Exspiration aufgenommen.

Art der Sequenz	T2w TSE
Field of view (FOV)	400 mm
Matrix	256 x 256
Pixelgröße	1,6 x 1,6 mm
Schichtdicke	10 mm
Schichtanzahl	15
Repetitionszeit (TR)	Atemfrequenzabhängig
Echozeit (TE)	91 ms
Flip Winkel	150°
Turbofaktor	23
Scanzeit	Atemfrequenzabhängig
Orientierung	Coronar
Atmung	Atemtriggerung in Exspiration

Tabelle 3: Sequenzparameter Morphologie T2

2.7.2 Funktionelle Bildgebung

2.7.2.1 Vertikale Zwerchfellmobilität

Um die Beweglichkeit des Zwerchfells darzustellen wurde eine schnelle T1w 2D GRE-Sequenz mit 2,7 Bildern pro Sekunde verwendet. Die Teilnehmer wurden angewiesen während der Messung langsam zweimal maximal ein- und auszuatmen. Die Schicht wurde standardisiert in die coronare Ebene mit dem höchsten Punkt der Zwerchfellkuppel und der Lungenspitze gelegt, und in 15 Sekunden wurden 40 Bilder aufgenommen.

Art der Sequenz	T1w 2D GRE
Field of view (FOV)	400 mm
Matrix	192 x 256
Pixelgröße	2,1 x 1,6 mm
Schichtdicke	12 mm
Schichtanzahl	1
Repetitionszeit (TR)	3,5 ms
Echozeit (TE)	1,56 ms
Flip Winkel	25°
Scanzeit	15 s
Orientierung	Coronar
Atmung	Maximale Atemexkursion

 Tabelle 4: Sequenzparameter vertikale Zwerchfellmobilität

2.7.2.2 Protonendichte

Die Messung der Protonendichte zur Erfassung von Airtrapping wurde mit einer PDw FLASH 2D GRE-Sequenz mit sehr kurzer TE verwirklicht. Es wurden vier Serien mit je fünf Schichten aufgenommen, jeweils zwei Serien des rechtenund linken Lungenflügels in maximaler Inspiration und Exspiration.

Art der Sequenz	PDw FLASH 2D GRE
Field of view (FOV)	400 mm
Matrix	141 x 256
Pixelgröße	2,0 x 1,6 mm
Schichtdicke	15 mm
Schichtanzahl	5
Repetitionszeit (TR)	2,5 ms
Echozeit (TE)	0,84 ms
Flip Winkel	5°
Scanzeit	16 s
Orientierung	Sagittal
Atmung	Atemanhaltetechnik
	Inspiration/Exspiration

Tabelle 5: Sequenzparameter Protonendichte

2.7.2.3 Lungenvolumen

Zur Bestimmung der Lungenvolumina haben wir einen 3D-Datensatz aufgenommen mit einer sehr schnellen PDw FLASH 3D GRE-Sequenz. Diese Sequenz wurde in maximaler Inspiration und Exspiration gemessen, wozu die Teilnehmer jeweils maximal acht Sekunden lang die Luft anhalten mussten.

Art der Sequenz	PDw FLASH 3D GRE
Field of view (FOV)	340 mm
Matrix	70 x 128
Pixelgröße	3,3 x 2,7 mm
Schichtdicke	15 mm
Schichtanzahl	20
Repetitionszeit (TR)	2,42 ms
Echozeit (TE)	0,73 ms
Flip Winkel	5°
Scanzeit	10 s
Orientierung	Transversal
Atmung	Atemanhaltetechnik
	Inspiration/Exspiration

Tabelle 6: Sequenzparameter Lungenvolumen

2.7.2.4 Sauerstoff-verstärkte Ventilationsbildgebung

Vor dieser Messung wurde den Teilnehmern die unter 2.6 beschriebene Atemmaske angelegt. Für die Sauerstoff-verstärkte Ventilationsbildgebung verwendeten wir eine nicht selektive IR TSE-Sequenz. Zwei coronare-(posterior auf Höhe der Wirbelkörper, median auf Höhe der Hilusgefäße) sowie zwei sagittale Bildserien (rechts und links lateral der großen Gefäße) haben wir Beurteilung der Ventilation in verschiedenen zur Lungenregionen aufgenommen. Jeweils 15 Bilder pro Ebene wurden durch Atemtriggerung in Exspiration erstellt, wobei in zwei Atemzyklen nur ein Bild entstand. Während der ersten sieben Bilder einer Serie atmeten die Patienten und Probanden normale Raumluft durch das Ventil, danach wurde sofort 100 % Sauerstoff mit einer Flussmenge von 15 l/min für die folgenden acht Bilder aufgedreht.

Art der Sequenz	Nicht selektive IR TSE
Field of view (FOV)	400 mm
Matrix	64 x 128
Pixelgröße	6,3 x 3,1 mm
Schichtdicke	20 mm
Schichtanzahl	4
Repetitionszeit (TR)	Atemfrequenzabhängig
Echozeit (TE)	4,3 ms
Inversionszeit (TI)	900 ms
Flip Winkel	180°
Turbofaktor	73
Scanzeit	Atemfrequenzabhängig
Orientierung	Coronar/Sagittal
Atmung	Atemtriggerung in Exspiration

Tabelle 7: Sequenzparameter Ventilation

2.7.2.5 Perfusionsbildgebung

Die Perfusion wurde mit der unter 1.5.4 beschriebenen ASL-Technik mit einer schichtselektiven IR TSE-Sequenz dargestellt. Die Bilder wurden in exakt den gleichen Schichtpositionen aufgenommen wie in der vorangegangenen nicht selektiven Messung, aber mit lediglich zehn Bildern pro Ebene.

Art der Sequenz	Schichtselektive IR TSE
Field of view (FOV)	400 mm
Matrix	64 x 128
Pixelgröße	6,3 x 3,1 mm
Schichtdicke	20 mm
Schichtanzahl	4
Repetitionszeit (TR)	Atemfrequenzabhängig
Echozeit (TE)	4,3 ms
Inversionszeit (TI)	900 ms
Flip Winkel	180°
Turbofaktor	73
Scanzeit	Atemfrequenzabhängig
Orientierung	Coronar/Sagittal
Atmung	Atemtriggerung in Exspiration

 Tabelle 8: Sequenzparameter Perfusion

2.8 Auswertung der morphologischen Veränderungen

Um pathologische Veränderungen der Lunge zu erfassen, wurden die Aufnahmen der unter 2.7.1 beschriebenen Sequenzen herangezogen. Zwei erfahrene Radiologen befundeten alle Bilder am PACS (Picture Archiving and Communication System) im Consensus. Da für die MRT noch kein Scoring-System zur Bewertung der Lunge von Mukoviszidosepatienten existiert, haben wir ein eigenes semiquantitatives System verwendet ähnlich dem von Bhalla et al. (4) für die Computertomographie.

Kategorie	Scoring
Bronchiektasen	0-2 (nach Schweregrad der Veränderungen)
Peribronchitis	0-2 (nach Schweregrad der Veränderungen)
Azinäre Opazitäten	0-2 (nach prozentualem Auftreten)
Konsolidierungen	0-2 (nach prozentualem Auftreten)

Tabelle 9: MRT-Score

Die Bewertung der genannten Kategorien erfolgte für jeden der sechs Lungenlappen getrennt: linker Oberlappen (LOL), Lingula (LL), linker Unterlappen (LUL), rechter Oberlappen (ROL), rechter Mittellappen (RML), rechter Unterlappen (RUL). Der maximal erreichbare Gesamtscore betrug 48. Auf dem folgenden Bild (Abb. 6 MRT-Score) sind die vier im MRT-Score erfassten Kategorien beispielhaft mit Pfeilen markiert.

Abb. 6 MRT-Score

1 = Bronchiektasen

2 = Konsolidierung

- 3 = Peribronchitis und Mucus plugging
- 4 = Azinäre Opazitäten

2.9 Auswertung der funktionellen Messungen

Alle Bilder wurden an der Satellitenkonsole der Firma Siemens mit dem Programm syngo MR 2004V ausgewertet.

2.9.1 Vertikale Zwerchfellmobilität

Zur Auswertung der vertikalen Zwerchfellmobilität in der MRT gab es noch nicht viele Daten. Plathow et al. (45) untersuchten die Zwerchfell- und Brustwandbewegung in mehreren Schnittebenen und berechneten aus diesen Bildern auch das Lungenvolumen. Darüber hinaus führten auch Gierada et al. (41) Untersuchungen zur vertikalen Zwerchfellmobilität durch, wobei aus mehreren Schnittebenen die absolute Bewegung der Zwerchfellkuppel ermittelt wurde.
Aufgrund der begrenzten Messzeit wurde nur eine Schnittebene aufgenommen. In dieser coronaren Ebene wurde die relative Verkürzung des vertikalen Thoraxdurchmessers für beide Seiten berechnet. Mit der Funktion "Lineal" wurde an der Konsole die Distanz zwischen dem höchsten Punkt der Zwerchfellkuppel und dem höchsten Punkt der Lungenspitze beidseits in allen 40 Bildern gemessen. Der größte und der kleinste Wert wurden für die Inspiration bzw. Exspiration notiert. Die folgende Grafik (Abb. 7 Auswertung vertikale Zwerchfellmobilität) zeigt wie die Distanz bei maximaler Inspiration und Exspiration eingezeichnet wurde. Nach folgender Formel ließ sich dann Berechnen um wie viel Prozent sich der Thorax in Exspiration in vertikaler Richtung verkürzt hat:

Relative Thoraxverkürzung = $(1 - Ex/ln) \times 100$ (Gl. 1)Vertikale Thoraxlänge in Exspiration in [cm]: ExVertikale Thoraxlängen in Inspiration in [cm]: In

Abb. 7 Auswertung vertikale Zwerchfellmobilität

2.9.2 Protonendichte

Für das HRCT gab es schon mehrere Studien (14-16, 18, 19, 84) die zeigten, dass man durch Vergleiche der Protonendichte, in inspiratorischen- und exspiratorischen Aufnahmen, Airtrapping qualitativ und quantitativ erfassen kann. Hatabu et al. (34) zeigten bei Gesunden, dass es auch mit der MRT

möglich ist, die Zunahme der Dichte in Exspiration darzustellen. Wir werteten die Bilder für Probanden und Patienten quantitativ aus, und entwickelten für die Patienten einen semiquantitativen Airtrappingscore. Für die quantitative Auswertung wurden in jeder sagittalen Schicht in Inspiration und Exspiration die Lungenlappen als region of interest (ROI) eingezeichnet. Die Lungengefäße die einen Durchmesser größer als 0,5 cm hatten wurden dabei ausgespart, ebenso das Herz. Im linken Lungenflügel wurde die Lingula nicht einzeln gewertet, sondern als Teil des linken Oberlappens, da hier die Grenzen nur sehr schwer oder gar nicht erkennbar waren. Die Signalintensitäten (SI) der ROIs der einzelnen Lappen für jede Schicht, sowie die Standardabweichung (SD) wurden notiert. Es konnten nur drei der fünf sagittalen Schichten auf jeder Seite ausgewertet werden, da die weiteren Schichten so weit lateral lagen, dass hauptsächlich Thoraxwand zu erkennen war. Um das Hintergrundrauschen zu erfassen wurde eine kreisförmige ROI im linken oberen Bildrand eingezeichnet. Hierbei wurde darauf geachtet, dass keine Artefakte in Phasenkodierrichtung in die Messung mit eingeschlossen wurden. In Abb. 8 Quantitative Auswertung der SI in PDw-Sequenzen sieht man eine laterale und eine mediale Ebene des rechten Lungenflügels eines Probanden in Inspiration und Exspiration mit den eingezeichneten ROIs für die jeweiligen Lappen und einer kreisförmigen ROI für das Hintergrundrauschen, letztere hatte bei allen Analysen die gleiche Fläche von 3,5 cm².

Abb. 8 Quantitative Auswertung der SI in PDw-Sequenzen

Aus den einzelnen Schichten wurde für jeden der fünf Lappen das arithmetische Mittel der SI und der SD gebildet. Der gemittelte Wert der SI wurde durch das Hintergrundrauschen geteilt um so den Signal-zu-Rauschen-Quotient (SNR) zu erhalten. Die relative Signalzunahme von In- zu Exspiration wurde wie folgt berechnet:

Relative Dichtezunahme =
$$((SNR_{Ex} - SNR_{In})/SNR_{In}) \times 100$$
 (GI. 2)

Gemittelte SI geteilt durch Hintergrundrauschen in Exspiration: SNR_{Ex} Gemittelte SI geteilt durch Hintergrundrauschen in Inspiration: SNR_{In}

Der semiquantitative Airtrappingscore wurde von zwei erfahrenen Radiologen im Consensus erstellt. Inspiratorische- und exspiratorische Aufnahmen wurden verglichen und hypodense Zonen in den exspiratorischen Aufnahmen als Airtrapping bezeichnet. Jedem der fünf Lungenlappen wurden Werte von 0 bis 2 zugeordnet (Maximalscore 10). Airtrappingscore:

Kein Airtrapping: 0

Leichtes Airtrapping: 1

Schweres Airtrapping: 2

Die folgende Grafik (Abb. 9 Airtrapping-Score) zeigt den rechten und linken Lungenflügel einer Patientin mit ausgeprägtem Airtrapping (schwarze Pfeile) in allen Lungenlappen.

Abb. 9 Airtrapping-Score

2.9.3 Lungenvolumen

Bestimmung Die der Lungenvolumina erfolgte mithilfe eines Computerprogramms, das Herr Dr. Müller-Horvat mit Matlab[®] geschrieben hat. Dazu wurde in jedem der je 20 Bilder in Inspiration und Exspiration eine ROI über den rechten und linken Lungenflügel gezogen. Das Programm erkannte anhand von Graustufen, welche Pixel zur luftgefüllten Lunge gehören, und welche zum umliegenden Gewebe. Auch große Gefäße und Bronchien wurden dadurch ausgespart. Die folgende Abbildung (Abb. 10 Programm zur Berechnung des Lungenvolumens) zeigt die Benutzeroberfläche des Programms. Aus dem 3D-Datensatz konnte das Programm anhand der Anzahl der Voxel das Volumen berechnen, das für den rechten und linken Lungenflügel, sowie für die gesamte Lunge unten rechts angegeben wurde.

Abb. 10 Programm zur Berechnung des Lungenvolumens

Das somit erhaltene Lungenvolumen in maximaler Exspiration entspricht dem Residualvolumen und wurde direkt notiert. Um die Vitalkapazität zu erhalten, wurde das Residualvolumen von dem Volumen in maximaler Inspiration (entspricht der totalen Lungenkapazität TLC) abgezogen und anschließend der Wert notiert.

2.9.4 Sauerstoff-verstärkte Ventilationsbildgebung

Die Ventilation der Lunge, sichtbar gemacht durch 100 % O₂, wurde quantitativ ausgewertet und ein semiquantitativer Ventilations-Score für die Patienten erstellt. Da es bei einer nicht selektiven IR TSE-Sequenz nicht möglich ist die Lappengrenzen zu erkennen, wurden die Aufnahmen mit denen der schichtselektiven IR TSE-Sequenz verglichen, weil diese in der gleichen Schichtposition angefertigt wurden. Aufgrund der anatomischen Lage waren nicht alle Lappen in allen Ebenen angeschnitten, folgende ROIs konnten für die quantitative Auswertung eingezeichnet werden:

Schichtebene	Öberlappen	Mittellappen	Unterlappen
Coronar posterior			Х
Coronar medial	Х		Х
Sagittal rechts	Х	Х	Х
Sagittal links	Х		Х

 Tabelle 10:
 Lungenlappen
 Ventilation

In der folgenden Grafik (Abb. 11 Quantitative Auswertung der Ventilation) sind die drei eingezeichneten ROIs in der sagittalen Ebene der rechten Lunge bei einer Probandin zu sehen.

Abb. 11 Quantitative Auswertung der Ventilation

Die Signalintensitäten sowie die Standardabweichung aller 15 Bilder pro Schichtebene wurden notiert. Das arithmetische Mittel der SI der ersten sieben Bilder einer Serie stellt die SI unter Raumluft dar, das arithmetische Mittel der SI der Bilder 10 bis 15 die SI unter 100 % O₂. Da nach Bild sieben der Sauerstoff aufgedreht wurde, wurden die Bilder acht und neuen ausgelassen, weil der Sauerstoff eine bestimmte Zeit braucht um sich in der ganzen Lunge zu verteilen. Arnold et al. (58) bezeichneten diese Zeit als "wash in" und stellten fest, das sie ca. 50 Sekunden dauert. Etwa alle 16 Sekunden (abhängig von der Atemfrequenz) wurde ein Bild aufgezeichnet, und da zwei Bilder ausgelassen wurden hatte der Sauerstoff somit ca. 48 Sekunden "wash in" Zeit. Das folgende Diagramm (Abb. 12 Anfluten des Sauerstoffs bei einer Probandin) zeigt die Signalintensität im rechten Unterlappen (Ebene: coronar posterior) bei einer Probandin, nach Bild sieben (erste grüne Linie) wurde der Sauerstoff aufgedreht.

Abb. 12 Anfluten des Sauerstoffs bei einer Probandin

Um die relative Zunahme der SI unter 100 % Sauerstoff zu berechnen verwendeten wir die gleiche Formel wie Ohne et al. (73):

Arithmetisches Mittel der SI unter Raumluft: SIRaumluft

Arithmetisches Mittel der SI unter 100 % O2: SIO2

Um den semiquantitativen Ventilations-Score zu erstellen wurden nur die zwei sagittalen Ebenen betrachtet und ein Subtraktionsbild erstellt. Hierzu wurden die Bilder von eins bis sieben (unter Einfluss von Raumluft), sowie von 10 bis 15 (unter Einfluss von 100 % O₂) gemittelt und anschließend voneinander abgezogen. Diese zwei sagittalen Subtraktionsbilder wurden von zwei erfahrenen Radiologen im Consensus beurteilt. Jedem der fünf Lungenlappen wurde ein Punktwert von 0 bis 2 zugeordnet (Maximalscore 10):

Keine Ventialtionsdefekte: 0

Leichte Ventialtionsdefekte: 1

Schwere Ventialtionsdefekte: 2

Die folgende Grafik (Abb. 13 Ventilations-Score) zeigt das Subtraktionsbild eines Patienten mit schweren Ventilationsdefekten im rechten Oberlappen.

Abb. 13 Ventilations-Score

2.9.5 Perfusionsbildgebung

Die Perfusion der Lunge wurde quantitativ ausgewertet und für die CF-Patienten wurde ein semiquantitativer Perfusions-Score erstellt. Es wurden exakt die gleichen Ebenen wie bei der Ventilationsbildgebung untersucht. Von den zehn schichtselektiven Aufnahmen wurden nur artefaktfreie Bilder, auf denen die anatomischen Strukturen nicht verwischt waren, für die weitere Auswertung verwendet. Somit wurden etwa sieben Bilder pro Patient bzw. Proband in allen vier Ebenen gemittelt. Es wurde ein Subtraktionsbild erstellt, wobei das für die Ventilation gemittelte Bild unter Raumlufteinfluss (nicht selektiv) von dem gemittelten Perfusionsbild (schichtselektiv) abgezogen wurde. Um die Lungenperfusion zu quantifizieren wurden die Lungenlappen (dieselben wie bei der Ventilation, siehe Tabelle 10) als ROI in die Subtraktionsbilder eingezeichnet und die SI notiert, wobei Gefäße > 0,5 cm ausgespart wurden. In der folgenden Grafik (Abb. 14 Quantitative Auswertung der Perfusion) sind die drei eingezeichneten ROIs in der sagittalen Ebene der rechten Lunge bei einer Probandin zu sehen.

Abb. 14 Quantitative Auswertung der Perfusion

Die relative Zunahme der SI in der schichtselektiven Aufnahme wurde mit der Formel berechnet:

Relative SI-Zunahme = $((SI_{Perf} - SI_{Raumluft})/SI_{Raumluft}) \times 100$ (GI. 4)

Gemittelte SI der sieben Bilder unter Raumlufteinfluss bei nicht selektiver Sequenz: SI_{Raumluft}

SI des subtrahierten Bildes bei schichtselektiver Sequenz: SI_{Perf}

Zwei erfahrene Radiologen erstellten im Consensus den Perfusions-Score und vergaben für jeden der fünf Lungenlappen der zwei sagittalen Subtraktionsbilder Punkte von 0 bis 2 (Maximalscore 10):

Keine Perfusionsdefekte: 0

Leichte Perfusionsdefekte: 1

Schwere Perfusionsdefekte: 2

Die folgende Grafik (Abb. 15 Perfusions-Score) zeigt das Subtraktionsbild einer Patientin mit schweren Perfusionsdefekten im Bereich des rechten Oberlappens.

Abb. 15 Perfusions-Score

2.10 Bilddokumentation und Umgang mit Daten

Für die Auswertung wurden die MRT-Bilder permanent auf CD-Recordable Disks (*CD-R80, Philips*) gespeichert. Sämtliche Daten wurden in eine selbst erstellte *Microsoft Excel[®] 2003* Datenbank anonymisiert eingegeben und nicht an Dritte weitergegeben. Die Röntgenthoraxbilder der Patienten waren im PACS Archiv des Magic Web (Intranet der Universitätsklinik Tübingen) gespeichert. Für jeden Patienten und Probanden wurden auf einer Seite alle Parameter der Lungenfunktionsprüfung (LFP) ausgedruckt. Diese Blätter der LFP sowie die schriftlichen Einverständniserklärungen zur Teilnahme an der Studie wurden in einen Ordner geheftet und in einem verschlossenen Schrank aufbewahrt.

2.11 Statistik

Die statistische Auswertung der Ergebnisse wurde am Institut für Medizinische Biometrie der Universität Tübingen mit Hilfe von Herrn Dr. Reinhard Vonthein durchgeführt. Alle Berechnungen wurden mit der Software JMP^{\oplus}_{IN} Version 4.0.2 (SAS Institute Inc.) durchgeführt. Die Anwendung von statistischen Verfahren und Tests erfolgten nach den Grundsätzen für biometrische Auswertungen. Da in dieser Studie die Stichprobenzahl klein war, und keine Normalverteilung der Ergebnisse vorlag, wurde der Median (M) und die Interquantilspanne (IQR) angegeben. Zur Anwendung kamen daher nichtparametrische Testverfahren (z. B. Wilcoxon Test) mit einem deskriptiven Signifikanzniveau von p < 0,05. Um Beziehungen zwischen verschiedenen Parametern zu untersuchen wurde der Spearmansche Rangkorrelationskoeffizient berechnet (Spearman Rho). Ab einem Rangkorrelationskoeffizienten von r > 0,6 bzw. r < -0,6 spricht man von einer relevanten Korrelation.

3 Ergebnisse

3.1 Lungenfunktionsprüfung

Die LFP wurde von allen Probanden erfolgreich absolviert, bei zwei Patienten fehlte der Wert für das RV, bei einem für die VC. Das RV betrug bei den Probanden 1,0 bis 2,2 Liter (M: 1,4; IQR: 1,3 bis 2,0), bei den Patienten 0,7 bis 2,7 Liter (M: 1,2; IQR: 0,9 bis 2,1). Für die VC ergaben sich Werte von 3,6 bis 6,1 Litern (M: 4,3; IQR: 3,9 bis 5,2) bei den Probanden, und 0,9 bis 4,8 Litern (M: 2,4; IQR: 1,7 bis 3,5) bei den Patienten. Für einen Vergleich dieser beiden Parameter zwischen Patienten und Probanden haben wir nur die Werte der 10 erwachsenen Patienten (Alter \geq 18 Jahre) herangezogen, da die VC und das RV stark von dem Alter und der Körpergröße abhängen und alle zehn Probanden erwachsen waren. Die erwachsenen Patienten wiesen ein moderat erhöhtes RV gegenüber den Probanden auf von 0,9 bis 2,7 Litern (M: 2,1; IQR: 1,2 bis 2,5; p = 0,14) und eine deutlich erniedrigte VC von 2,2 bis 4,8 Litern (M: 3,7; IQR: 2,8 bis 3,9; p = 0,006) (Abb. 16, Abb. 17).

Abb. 16 Residualvolumen in der LFP

Abb. 17 Vitalkapazität in der LFP

Für das FEV₁ [% Ist/Soll] ergaben sich Werte von 92,5 bis 116,7 (M: 104,2; IQR: 100,2 bis 111,9) bei den Probanden, und 40,1 bis 104,4 (M: 77,8; IQR: 62,5 bis 91,6) bei den Patienten. Da das FEV₁ nicht von Alter oder Größe abhängig ist kann man für einen Vergleich der beiden Gruppen die Werte aller Patienten heranziehen.

In der folgenden Grafik (Abb. 18 FEV1 in der LFP) erkennt man, dass der Unterschied zwischen Probanden und Patienten sehr deutlich ist (p = 0,0002).

Abb. 18 FEV1 in der LFP

3.1.1 Krankheitsverlauf anhand von FEV₁%

Um den Krankheitsverlauf der Mukoviszidosepatienten darzustellen, haben wir das FEV₁ ab dem Jahr 2001 betrachtet. Wie unter 2.2 beschrieben, wurden fünf FEV₁-Werte im Jahresabstand dokumentiert, den letzten Wert erhielten wir ein halbes Jahr nach der Kernspinuntersuchung. Bei sieben Patienten waren weniger als fünf Verlaufsmessungen (minimal drei) vorhanden. Die Steigung der Ausgleichsgeraden zu Jahren (2001 bis 2005) variierte von -9,4 bis 3,9 [% FEV₁/Jahr] (M: -1,8; IQR: -5,3 bis -0,3). Die folgende Tabelle zeigt den prozentualen Verlauf der FEV₁-Werte, Alter und Geschlecht der Patienten, die Keimbesiedlung und die klinische Einschätzung der Pädiater zu jedem Patienten.

Patient	Alter	Geschlecht	FEV ₁ -	Chronische	Klinische
ID	(Jahre)		Verlauf	Keimbesiedlung	Einschätzung
Nummer			(%/Jahr)		
21	15	w	-9,43	Keine	Instabil
23	22	w	-3,13	P. aeruginosa	Instabil
24	35	m	-4,73	P. aeruginosa	Stabil
25	25	m	-1,46	Keine	Stabil
26	21	w	0,30	Keine	Stabil
27	18	m	-2,00	Keine	Stabil
29	12	m	-5,39	P. aeruginosa	Instabil
31	23	w	-7,95	B. cepacia	Instabil
32	11	w	-1,62	P. aeruginosa	Instabil
33	11	m	0,17	B. cepacia	Stabil
35	8	m	-0,51	Keine	Stabil
36	12	m	-5,24	Keine	Stabil
37	19	m	1,44	P. aeruginosa	Stabil
38	8	w	3,89	Keine	Instabil
39	14	w	-0,79	Keine	Stabil
40	18	m	1,02	Keine	Stabil
41	19	m	-6,63	P. aeruginosa, B.	Stabil
				cepacia	
42	10	w	-7,48	Keine	Stabil
43	8	w	-1,00	P. aeruginosa	Stabil
44	12	m	-4,32	Keine	Stabil
45	21	m	-2,88	Keine	Stabil
46	11	m	-1,20	Keine	Stabil

Tabelle 11: Übersicht über den FEV_1 -Verlauf, die Keimbesiedlung und die klinische Einschätzung (n = 22)

3.2 Klinische Parameter

Acht Patienten wiesen eine Besiedelung mit Pseudomonas aeruginosa auf, lediglich bei drei Patienten wurde Burkholderia cepacia nachgewiesen, wovon ein Patient beide Keime zeigte. Die Antibiotikatherapie führten die Patienten unterschiedlich konsequent durch. In der folgenden Tabelle ist die Verteilung der Patienten dargestellt, die Punkte von 0 bis 3 für eine konsequente Antibiotikatherapie wurden wie unter 2.3 beschrieben, vergeben.

Punkte für Konsequenz	0	1	2	3			
Anzahl der Patienten	2	7	7	6			

Tabelle 12: Konsequenz in der Antibiotikatherapie

Der klinische Krankheitsverlauf wurde von den Pädiatern bei sechs Patienten als instabil beurteilt. 16 Patienten zeigten bisher einen stabilen Verlauf, wobei dies nur bei acht Patienten auf die Therapie zurückgeführt wurde.

3.3 Morphologie

3.3.1 MRT-Score

Bei der Kontrollgruppe waren in der MRT keine pathologischen Lungenveränderungen sichtbar.

Der MRT-Score konnte erfolgreich für alle 22 Patienten erstellt werden, wobei alle Bilder der beiden Sequenzen zur Messung der morphologischen Veränderungen der Lunge beurteilt wurden. Es ergaben sich Scores von null bis 35 Punkte (M: 18,5; IQR: 6,8 bis 24,5). Insgesamt wurden 22 Patienten mit je sechs Lungenlappen untersucht, also 132 Lappen (100 %) für die in jeder Kategorie 0 bis 2 Punkte vergeben wurden. Zusätzlich wurde die Summe der vergebenen Punkte aller Patienten für jede Kategorie berechnet, um eine Aussage darüber zu treffen welche pathologische Veränderung die häufigste war. **Peribronchitis** war die häufigste Veränderung, die sich bei 21 Patienten (95,5 %) fand. 88 Lappen (66,7 %) mit einer Summe von 134 Punkten waren betroffen, davon am häufigsten die beiden Oberlappen.

	ROL	LOL	RML	LL	RUL	LUL	Summe
Patienten mit Peribronchitis	19	21	14	10	14	10	
Punktzahl aller Patienten	35	33	19	11	23	13	134
Median der Punktzahl	2	2	1	0	1	0	7

Tabelle 13: Peribronchitis nach Lappen aufgeteilt

Azinäre Opazitäten zeigten sich bei 17 Patienten (77,3%). 63 Lappen (47,7%) mit einer Summe von 93 Punkten waren betroffen, besonders die beiden Oberlappen.

				• • • • •			
	ROL	LOL	RML	LL	RUL	LUL	Summe
Patienten mit Azinären	14	15	7	8	11	8	
Opazitäten							
Punktzahl aller Patienten	25	21	10	10	17	10	93
Median der Punktzahl	1,5	1	0	0	0,5	0	4

Tabelle 14: Azinäre Opazitäten nach Lappen aufgeteilt

Bronchiektasen kamen bei 16 Patienten (72,7 %) in 58 Lappen (43,9 %) mit einer Summe von 83 Punkten vor. Wieder waren beide Oberlappen am stärksten betroffen.

Tabelle	15:	Bronchiektasen	nach Lac	pen aufgeteilt
lasono		Diomonitation	nuon Eup	pon durgotont

	ROL	LOL	RML	LL	RUL	LUL	Summe
Patienten mit Bronchiektasen	16	16	7	5	9	5	
Punktzahl aller Patienten	27	24	9	5	12	6	83
Median der Punktzahl	1,5	1	0	0	0	0	4

Konsolidierungen waren bei 17 Patienten (77,3 %) in 40 Lappen (30,3 %) erkennbar. Die Summe betrug 49 Punkte und die Läsionen waren fast gleichmäßig auf die oberen- und die mittleren Lappen verteilt.

	ROL	LOL	RML	LL	RUL	LUL	Summe
Patienten mit	9	7	9	8	4	3	
Konsolidierungen							
Punktzahl aller Patienten	13	9	10	9	4	4	49
Median der Punktzahl	0	0	0	0	0	0	2

Tabelle 16: Konsolidierungen nach Lappen aufgeteilt

Wie in der folgenden Grafik (Abb. 19 MRT-Score mit Aufteilung nach Lappen) gut zu erkennen ist, war, auf alle Kategorien bezogen, der rechte Oberlappen mit einer Summe von 100 Punkten am häufigsten von pathologischen Lungenveränderungen betroffen. Es folgen der linke Oberlappen mit 87 Punkten, der rechte Unterlappen mit 56 Punkten, der rechte Mittellappen mit 48 Punkten, die Lingula mit 35 Punkten und der linke Unterlappen mit 33 Punkten. Maximal könnten für einen Lappen 176 Punkte vergeben werden, wenn bei allen 22 Patienten in den vier Kategorien schwere Veränderungen vorlägen.

Abb. 19 MRT-Score mit Aufteilung nach Lappen

3.3.2 Crispin-Norman-Score

Von allen 22 Patienten wurden die Röntgenthoraxbilder beurteilt und der CNS erstellt. Die gesunden Probanden unterzogen sich selbstverständlich aus ethischen- und Strahlenschutzgründen keiner Röntgenuntersuchung. Es ergaben sich Scores von 0 bis 17 Punkten (M: 8; IQR: 1 bis 11,3) bei den Patienten. Die vier Kategorien bronchiale Linienschatten, Ringschatten, Fleckschatten und große Schatten wurden jeweils in den vier Lungenfeldern (linkes und rechtes Ober- und Unterfeld) mit Punkten von 0 bis 2 bewertet.

Somit wurden bei 22 Patienten insgesamt 88 Lungenfelder (100 %) untersucht. Zusätzlich wurde die Summe der vergebenen Punkte aller Patienten für die vier Kategorie berechnet, um eine Aussage darüber zu treffen welche pathologische Veränderung die häufigste war.

Bronchiale Linienschatten waren die häufigste pathologische Veränderung die auf den Röntgenbildern detektiert wurde. Bei 17 Patienten (77,3 %) fanden sie sich in 40 Lungenfeldern (45,5 %) mit insgesamt 46 Punkten. Das linke Unterfeld war am wenigsten betroffen.

	LOF	ROF	LUF	RUF	Summe
Patienten mit Bronchialen Linienschatten	8	11	7	14	
Punktzahl aller Patienten	10	14	7	15	46
Median der Punktzahl	0	0,5	0	1	2

Tabelle 17: Bronchiale Linienschatten nach Feldern aufgeteilt

Fleckschatten waren bei 15 Patienten (68,2 %) zu erkennen. 38 Lungenfelder (43,2 %) mit einer Summe von 46 Punkten waren betroffen, besonders die oberen Lungenfelder.

Tabelle 10. The choice and the choic	Tabelle 18	B: Fleckschatten	nach Feldern	aufgeteilt
--	------------	------------------	--------------	------------

	LOF	ROF	LUF	RUF	Summe
Patienten mit Fleckschatten	14	13	5	6	
Punktzahl aller Patienten	16	17	5	8	46
Median der Punktzahl	1	1	0	0	2

Ringschatten fanden sich ebenfalls bei 15 Patienten (68,2 %), jedoch nur in 35 Lungenfeldern (39,8 %) mit 36 Punkten. Abermals waren die oberen Lungenfelder stärker betroffen als die Unteren.

	LOF	ROF	LUF	RUF	Summe
Patienten mit Ringschatten	11	14	4	6	
Punktzahl aller Patienten	11	15	4	6	36
Median der Punktzahl	0,5	1	0	0	1,5

Tabelle 19: Ringschatten nach Feldern aufgeteilt

Große Schatten zeigten sich lediglich bei 5 Patienten (22,7 %) in 5 Lungenfeldern (5,7 %) mit einer Summe von 6 Punkten. Die oberen Lungenfelder zeigten wiederholt die meisten Veränderungen.

 Tabelle 20: Große Schatten nach Feldern aufgeteilt

	LOF	ROF	LUF	RUF	Summe
Patienten mit großen Schatten	2	2	0	1	
Punktzahl aller Patienten	3	2	0	1	6
Median der Punktzahl	0	0	0	0	0

Aus der folgenden Grafik (Abb. 20 CNS mit Aufteilung nach Lappen) kann man entnehmen, das dass rechte obere Lungenfeld am stärksten von pathologischen Veränderungen betroffen ist (Summe der Punkte 48). Es folgt das linke obere Lungenfeld mit 40 Punkten, das rechte untere Lungenfeld mit 30 Punkten und schließlich das linke untere Lungenfeld mit 16 Punkten. Für ein Lungenfeld könnten maximal 176 Punkte vergeben werden, wenn in den vier Kategorien bei allen 22 Patienten schwere Veränderungen vorlägen.

Abb. 20 CNS mit Aufteilung nach Lappen

Die Kategorien Sternalvorwölbung, Brustkyphose und Zwerchfellabflachung des CNS wurden nur einfach mit Punkten von 0 bis 2 bewertet. Zwerchfellabflachung war bei 12 Patienten (54,5 %) zu sehen, mit einem 13. 11 Patienten Gesamtpunktwert von (50 %) zeigten eine Sternalvorwölbung aber mit einem insgesamt höheren Punktwert von 15. Eine **Brustkyphose** fand sich nur bei 2 Patienten (9 %) in leichter Ausprägung, das heißt auch mit einem Punktwert von 2.

3.4 Funktionelle Parameter

3.4.1 Vertikale Zwerchfellmobilität

Bei 21 der 22 Patienten, sowie bei allen 10 Probanden wurde die vertikale Zwerchfellmobilität erfolgreich gemessen und ausgewertet. Die relative vertikale Thoraxverkürzung in Exspiration haben wir mit der in Gleichung 1 genannten Formel für den rechten und linken Hemithorax berechnet. Für die gesunden Probanden ergab sich eine relative Thoraxverkürzung rechts von 12,8 % bis 40,8 % (M: 25,8 %; IQR: 20,6 % bis 29,2 %) und links von 9,2 % bis 34,9 % (M: 19,5 %; IQR: 16,2 % bis 23,1 %). Die Patienten wiesen Werte von 11,0 % bis 40,5 % (M: 21,9 %; IQR: 17,4 % bis 26,0 %) rechts und 4,9 % bis 28,3 % (M: 19,3 %; IQR: 12,7 % bis 22,1 %) links auf. Der Unterschied zwischen Probanden und Patienten für die rechte und die linke Seite war nicht signifikant, doch die Patienten wiesen median geringere Werte auf.

Abb. 21 Vertikale Zwerchfellmobilität links

Abb. 22 Vertikale Zwerchfellmobilität rechts

3.4.2 Protonendichte

Bei allen Patienten und Probanden konnte die Protonendichte erfolgreich quantitativ ausgewertet werden.

In den nächsten beiden Abbildungen (Abb. 23 SNR in Inspiration, Abb. 24 SNR in Exspiration) sind der SNR (gemittelt über alle Lappen) in Inspiration und Exspiration bei Probanden und Patienten dargestellt. Für die Probanden ergaben sich Werte von 1,7 bis 3,0 (M: 2,2; IQR: 2,0 bis 2,6) in Inspiration und 3,9 bis 7,5 (M: 5,1; IQR: 4,2 bis 6,2) in Exspiration. Die Patienten zeigten in Inspiration geringfügig höhere Werte, von 1,5 bis 5,9 (M: 2,9; IQR: 2,1 bis 3,4), und in Exspiration etwas deutlicher niedrigere Werte als die Probanden, von 2,0 bis 9,0 (M: 4,3; IQR: 2,8 bis 5,7). Die Unterschiede zwischen Patienten und Probanden waren in Inspiration (p = 0,16) und Exspiration (p = 0,19) nicht signifikant.

Abb. 23 SNR in Inspiration

Abb. 24 SNR in Exspiration

Die relative Zunahme der Protonendichte in Exspiration wurde mit der in Gleichung 2 beschriebenen Formel berechnet und ist in der folgenden Grafik (Abb. 25 Relative Zunahme der Protonendichte) als Mittelwert für alle sagittalen Schichten dargestellt. Hier zeigte sich ein signifikanter Unterschied zwischen Patienten und Probanden (p = 0,0001). Die Probanden wiesen Werte von 72,7 % bis 189,3 % (M: 133,7 %; IQR: 105,5 % bis 149,2 %) auf, die Patienten lediglich von 18,4 % bis 173,5 % (M: 44,3 %; IQR: 32,4 % bis 69,6 %).

Abb. 25 Relative Zunahme der Protonendichte

Betrachtet man die relative Zunahme der Protonendiche in den fünf Lungenlappen separat ergibt sich auch für jeden einzelnen Lappen ein signifikanter Unterschied zwischen gesunden Probanden und Patienten, der am stärksten im rechten Oberlappen ausgeprägt ist.

Ebene	Patient	Proband	P-Wert
	M [%]; IQR [%]	M [%]; IQR [%]	
Sag. RUL	51,2; 33,2 bis 77,5	142,6; 101,2 bis 161,9	0,0004
Sag. RML	41,4; 22,9 bis 81,5	88,3; 55,3 bis 114,6	0,01
Sag. ROL	33,4; 17,4 bis 60,7	114,6; 81,9 bis 159,8	0,0001
Sag. LUL	50,8; 35,1 bis 92,9	180,4; 117,3 bis 197,4	0,0002
Sag. LOL	45,6; 31,5 bis 67,2	145,9; 92,5 bis 156,1	0,0004

Tabelle 21: Protonendichte quantitativ

Sag. = Sagittal

Die Zunahme der Protonendichte war nicht gleichmäßig auf alle Lungenlappen verteilt. Wie schon erwähnt nahm die Dichte in Exspiration aufgrund der Rückenlage stärker im dorsalen Teil der Lunge zu, der vor allem von rechtem und linkem Unterlappen gebildet wird.

Aus der folgenden Grafik (Abb. 26 Relative Zunahme der Protonendichte bei Patienten und Probanden) geht hervor, dass die Dichte bei Patienten und Probanden in den Unterlappen am stärksten zunahm. Die Patienten (Pat.) sind mit schwarzen Punkten gekennzeichnet, und die gesunden Probanden (Prob.) mit grünen Punkten.

Abb. 26 Relative Zunahme der Protonendichte bei Patienten und Probanden

Des Weiteren wurde für die Patienten der semiquantitative Airtrapping-Score erstellt. Bei den Probanden waren keinerlei hypodense Zonen in Exspiration erkennbar. Es ergaben sich Scores von 1 bis 9 (M: 4; IQR: 2 bis 5,5), wodurch deutlich wird, dass alle Patienten zumindest leichtes Airtrapping aufwiesen.

Die nächste Grafik (Abb. 27 Airtrappingscore der Patienten) zeigt die Verteilung des Airtrappings auf die fünf Lungenlappen, wobei auffällt, dass der rechte Mittellappen am wenigsten betroffen ist.

Abb. 27 Airtrappingscore der Patienten

3.4.3 Lungenvolumen

Die Vitalkapazität und das Residualvolumen konnten bei allen Patienten und Probanden mit dem unter 2.9.3 genannten Computerprogramm berechnet werden. Für die Probanden ergab sich eine VC von 3,48 bis 5,93 Liter (M: 4,43; IQR: 4,32 bis 5,52) und ein RV von 1,51 bis 3,4 Liter (M: 1,84; IQR: 1,71 bis 3,09). Die VC der Patienten betrug 0,44 bis 4,71 Liter (M: 1,84; IQR: 1,36 bis 2,75), das RV 0,55 bis 6,52 Liter (M: 1,59; IQR: 0,89 bis 3,41). Aus den unter 3.1 genannten Gründen wurden auch hier die Ergebnisse der zehn erwachsenen Patienten mit denen der Probanden verglichen. Auf der einen Seite zeigten die erwachsenen Patienten signifikant höhere Werte des Residualvolumens (P < 0,04), auf der anderen Seite signifikant niedrigere Werte der Vitalkapazität (P < 0,001).

Die zwei folgenden Grafiken (Abb. 28 MRT-Residualvolumen bei erwachsenen Patienten und Probanden, Abb. 29 MRT-Vitalkapazität bei erwachsenen Patienten und Probanden) verdeutlichen diese Unterschiede.

Abb. 28 MRT-Residualvolumen bei erwachsenen Patienten und Probanden

Abb. 29 MRT-Vitalkapazität bei erwachsenen Patienten und Probanden

Die Ergebnisse der Volumenmessung im MRT wurden mit denen der LFP verglichen, da die LFP den Goldstandard für Lungenvolumenmessungen darstellt. Das in der LFP gemessene RV wurde im MRT überschätzt. In der LFP ergab sich ein RV von 0,65 bis 2,7 Litern (M: 1,29; IQR: 0,99 bis 2,09) und im MRT von 0,55 bis 6,52 Litern (M: 1,82; IQR: 1,12 bis 3,23). Der Unterschied zwischen LFP und MRT war für das RV signifikant (P < 0,04).

Dagegen wurde die VC im MRT unterschätzt, wobei der Unterschied zwischen MRT und LFP nicht signifikant war. Die VC in der LFP variierte von 0,91 bis 6,14 Litern (M: 3,34; IQR: 2,19 bis 4,09) und in der MRT von 0,44 bis 5,93 Litern (M: 2,58; IQR: 1,67 bis 4,40).

Zur genaueren Überprüfung der Vergleichbarkeit der Volumenmessung im MRT und in der LFP wurde ein Bland-Altmann-Plot durchgeführt. Für das RV und die VC sind jeweils in den folgenden Grafiken (Abb. 30 Vergleichbarkeit der RV-Messung, Abb. 31 Vergleichbarkeit der VC-Messung) die mittlere Differenz und die zweifache Standardabweichung (SD) als rote Linie gekennzeichnet und es wird deutlich, dass praktisch alle Teilnehmer innerhalb der zweifachen SD liegen. In Tabelle 22 sind die Werte der mittleren Differenz, die Standardabweichung und der P-Wert beider Parameter aufgeführt.

	Mittlere Differenz LFP - MRT[I]	SD [I]	P-Wert
RV	- 0,63	0,69	< 0,0001
VC	0,26	0,75	0,06

 Tabelle 22: RV und VC in MRT und LFP

Abb. 30 Vergleichbarkeit der RV-Messung

Abb. 31 Vergleichbarkeit der VC-Messung

3.4.4 Sauerstoff-verstärkte Ventilationsbildgebung

Die O2 Messung wurde in vier Schichtebenen (je zwei coronare bzw. sagittale) bei allen zehn Probanden erfolgreich durchgeführt. Hierbei zeigten alle Messungen den Effekt des Sauerstoffes in Form einer Zunahme der SI. Bei allen Patienten wurden zwei coronare Messungen erstellt und bei 18 von 22 Patienten zusätzliche zwei sagittale Ebenen gemessen. Bei fünf Patienten konnte kein Sauerstoffeffekt nachgewiesen werden. Die relative SI-Zunahme unter 100 % O_2 Applikation ist in Tabelle 23 dargestellt. Es ergaben sich relevant niedrigere Werte bei CF-Patienten im Vergleich zu den gesunden Probanden (P < 0,05), lediglich der rechte Unterlappen (coronar medial und sagittal) und der rechte Mittellappen (sagittal) zeigen keinen signifikanten Unterschied.

Ebene	Patient	Proband	P-Wert
	M [%]; IQR [%]	M [%]; IQR [%]	
Cor. post. RUL	35,2; 22,6 bis 59,4	86,9; 61,5 bis 99,5	0,002
Cor. post. LUL	43,2; 23,0 bis 55,2	77,8; 57,3 bis 90,1	0,003
Cor. med. RUL	25,5; 11,5 bis 51,5	39,5; 22,8 bis 58,0	0,2
Cor. med. ROL	11,2; 3,9 bis 27,7	66,0; 37,1 bis 84,8	0,0005
Cor. med. LOL	18,3; 9,0 bis 39,7	62,0; 36,5 bis 84,4	0,002
Cor. med. LUL	18,0; 7,4 bis 32,8	45,7; 23,4 bis 62,1	0,01
Sag. RUL	51,3; 25,4 bis 75,7	60,0; 48,2 bis 91,8	0,3
Sag. RML	42,3; 24,0 bis 55,6	37,3; 27,6 bis 50,0	1
Sag. ROL	25,8; 12,8 bis 48,6	57,0; 47,7 bis 76,4	0,01
Sag. LUL	34,4; 22,5 bis 45,6	58,8; 41,1 bis 83,2	0,01
Sag. LOL	29,0; 16,4 bis 38,9	62,4; 41,2 bis 93,6	0,005

Tabelle 23: Ventilation quantitativ

Cor. = Coronar

Med. = Medial

Post. = Posterior

In den folgenden zwei Grafiken (Abb. 32 Ventilation quantitativ in den zwei coronaren Ebenen, Abb. 33 Ventilation quantitativ in den zwei sagittalen Ebenen) sind die Ergebnisse der quantitativen Auswertung der Ventilation auf die Lungenlappen bezogen dargestellt. Von den zwei coronaren Ebenen (medial und posterior) wiesen die Patienten die niedrigste SI-Zunahme im rechten Oberlappen auf. In den sagittalen Ebenen (links und rechts) war die SI-Zunahme der Patienten zwar insgesamt höher als in den coronaren Ebenen, für den rechten Oberlappen ergaben sich aber auch hier die niedrigsten Werte. Des Weiteren war die SI-Zunahme der gesunden Probanden nicht gleichmäßig in allen Lungenlappen. In der coronar medialen Ebene zeigte der rechte Unterlappen die geringste SI-Zunahme, in der sagittalen Ebene war es der rechte Mittellappen.

Abb. 32 Ventilation quantitativ in den zwei coronaren Ebenen

Abb. 33 Ventilation quantitativ in den zwei sagittalen Ebenen

Die Subtraktionsbilder der zwei sagittalen Ebenen konnten bei 16 Patienten erstellt werden. Für den Ventilations-Score ergaben sich Werte von 0 bis 6 Punkten (M: 2; IQR: 1 bis 3). In der folgenden Grafik (Abb. 34 Ventilations-Score der Patienten) sind die Ventilations-Scores der Patienten bezogen auf die fünf Lappen dargestellt.

Abb. 34 Ventilations-Score der Patienten

3.4.5 Perfusionsbildgebung

In der folgenden Tabelle ist die relative SI-Zunahme der Patienten und Probanden für alle Lappen dargestellt, sowie der Unterschied zwischen den beiden Gruppen. Die relative SI-Zunahme in der schichtselektiven Sequenz im Vergleich zur nicht selektiven Sequenz wurde mit der in Gleichung 4 genannten Formel berechnet. Deutlich wird hier, dass sich für alle Lungenlappen ein relevanter Unterschied (P < 0.05) zwischen Probanden und Patienten ergab.

 Tabelle 24: Perfusion quantitativ

Ebene	Patient	Proband	P-Wert
	M [%]; IQR [%]	M [%]; IQR [%]	
Cor. post. RUL	118,7; 73,3 bis 204,8	311,4; 257,8 bis 394,8	0,0003
Cor. post. LUL	105,3; 65,7 bis 170,2	270,2; 222,5 bis 313,0	0,0008
Cor. med. RUL	61,7; 26,1 bis 113,8	168,0; 108,0 bis 207,9	0,0008
Cor. med. ROL	44,2; 26,3 bis 76,3	197,0; 152,4 bis 242,2	0,0001
Cor. med. LOL	85,9; 28,5 bis 109,7	173,8; 149,7 bis 280,0	0,0002
Cor. med. LUL	40,9; 19,5 bis 76,0	101,0; 62,3 bis 155,4	0,004
Sag. RUL	137,0; 121,8 bis 166,4	344,0; 315,3 bis 387,4	0,0002
Sag. RML	119,9; 81,6 bis 133,5	162,4; 135,2 bis 197,7	0,008
Sag. ROL	97,6; 65,1 bis 155,6	199,8; 162,2 bis 274,7	0,0007
Sag. LUL	106,0; 83,9 bis 176,6	201,5; 143,5 bis 329,0	0,005
Sag. LOL	96,4; 72,3 bis 152,3	238,0; 143,4 bis 310,0	0,002
			1

Die Verteilung der quantitativen Ergebnisse bezogen auf die Lungenlappen ist in den folgenden zwei Grafiken (Abb. 35 Perfusion quantitativ in den zwei coronaren Ebenen, Abb. 36 Perfusion quantitativ in den zwei sagittalen Ebenen) dargestellt. In den coronaren Ebenen ergab sich für die Patienten im linken Unterlappen und im rechten Oberlappen der coronar medialen Ebene die niedrigste SI-Zunahme. Wiederholt zeigte sich in der sagittalen Ebene im rechten Oberlappen die geringste relative SI-Zunahme bei den Patienten. Darüber hinaus waren auch die Werte der gesunden Probanden in den einzelnen Lungenlappen verschieden. In dieser Gruppe dokumentierten wir die niedrigste relative SI-Zunahme im linken Unterlappen der coronar medialen Ebene und im rechten Mittellappen der sagittalen Ebene.

Abb. 35 Perfusion quantitativ in den zwei coronaren Ebenen

Abb. 36 Perfusion quantitativ in den zwei sagittalen Ebenen

Bei 16 Patienten wurde die Perfusion in den zwei sagittalen Subtraktionsbildern semiquantitativ ausgewertet. Es ergaben sich Scores von 0 bis 5 (M: 1,5; IQR: 0,3 bis 3). Die Verteilung der Perfusionsdefekte auf die Lappen ist in der nächsten Grafik (Abb. 37 Perfusions-Score der Patienten) dargestellt, der rechte Oberlappen war am stärksten von Perfusionsausfällen betroffen.

Abb. 37 Perfusions-Score der Patienten

3.5 Vergleich der Ergebnisse der MRT mit Röntgen und LFP

Für die Korrelationen mit den Goldstandards in der Mukoviszidosediagnostik (Röntgenthorax und Lungenfunktionsprüfung) wurden nur die Ergebnisse der Patienten verwendet. Die Scores für Airtrapping, Ventilation und Perfusion wurden immer als Gesamtscore aller fünf Lungenlappen betrachtet.

In der folgenden Tabelle (Tabelle 25) wurden die MRT-Parameter mit den Goldstandards CNS und FEV₁ korreliert und der Spearman Rho und der P-Wert angegeben. Eine relevante Korrelation ergab sich für den MRT-Score mit dem CNS, mit dem FEV₁ jedoch nur eine schwache Korrelation. Der CNS dagegen korrelierte besser mit dem FEV₁ (Spearman Rho: -0,72) als der MRT-Score.

Betrachtet man die gesamte vertikale Zwerchfellmobilität als Mittelwert der relativen Thoraxverkürzung rechts und links ergab sich keine relevante Korrelation. Die quantitativ ausgewertete relative Zunahme der Protonendichte in Exspiration (als Mittelwert aller fünf Lungenlappen) zeigte keine relevante Korrelation mit den Goldstandards. Dagegen zeigte der Airtrapping-Score eine relevante Korrelation mit dem CNS. Da die zwei letztgenannten Untersuchungen stark von der Mitarbeit der Teilnehmer abhängig waren, wurden die Ergebnisse der zehn erwachsenen Patienten separat betrachtet, und es ergaben sich starke Korrelationen vor allem mit dem FEV₁. Von den im MRT gemessenen Lungenvolumina korrelierte lediglich das RV schwach mit CNS und FEV₁, bei der VC zeigte sich kein starker Zusammenhang. Sowohl die quantitativ ausgewertete Ventilation (als Mittelwert der zwei sagittalen Ebenen), auch der Ventilations-Score korrelierten nicht relevant mit den als Goldstandards. Jedoch ergab sich für die quantitativ ausgewertete Perfusion (als Mittelwert der zwei sagittalen Ebenen) eine starke Korrelation mit dem CNS, aber nicht mit dem FEV₁.

	CNS	FEV ₁
	(Spearman Rho; P-Wert)	(Spearman Rho; P-Wert)
MRT-Score	0,91; 0,0001	-0,48; 0,02
Zwerchfellmobilität	-0,50; 0,02	0,30; 0,2
Protonendichte quant.	-0,17; 0,45	0,05; 0,82
Airtrapping-Score	0,67; 0,0008	-0,54; 0,01
RV (MRT)	0,58; 0,004	-0,51; 0,01
VC (MRT)	0,12; 0,63	0,06; 0,81
Ventilation quant.	0,09; 0,76	-0,26; 0,39
Ventilations-Score	0,39; 0,13	0,03; 0,9
Perfusion quant.	-0,77; 0,0009	0,06; 0,84
Perfusions-Score	0,54; 0,03	-0,06; 0,82

Tabelle 25: Korrelationen mit den Goldstandards

3.6 Vergleich der verschiedenen MRT-Ergebnisse miteinander

Die Ergebnisse der MRT-Untersuchung der Patienten ergaben auch untereinander relevante Korrelationen, die in Tabelle 26 dargestellt sind.

Der MRT-Score zeigte eine relevante Korrelation mit der quantitativ ausgewerteten Perfusion (als Mittelwert der zwei sagittalen Ebenen), dem Airtrapping-Score, dem Perfusions-Score und dem im MRT gemessenen Residualvolumen. Des Weiteren ergab sich für den Airtrapping-Score und das im MRT gemessene RV, sowie für die Protonendichte und der im MRT gemessenen VC, ein schwacher Zusammenhang. Die vertikale Zwerchfellmobilität (als Mittelwert der relativen Thoraxverkürzung rechts und links) und der Perfusions-Score zeigten eine relevante Korrelation, ebenso auch der Ventilations-Score mit dem Perfusions-Score.

Variable 1	Variable 2	Spearman Rho	P-Wert
MRT-Score	Perfusion quant.	-0,66	0,003
MRT-Score	Airtrapping-Score	0,63	0,002
MRT-Score	Perfusions-Score	0,61	0,01
MRT-Score	RV (MRT)	0,58	0,004
Airtrapping-Score	RV (MRT)	0,54	0,01
Protonendichte	VC (MRT)	0,54	0,008
Zwerchfellmobilität	Perfusions-Score	-0,62	0,01
Perfusions-Score	Ventilations-Score	0,69	0,007

 Tabelle 26:
 Korrelationen der MRT-Parameter untereinander

Darüber hinaus zeigten sich signifikante Unterschiede zwischen Patienten die mit dem pathogenen Keim Pseudomonas aeruginosa besiedelt waren und solchen die nicht betroffen waren. Die mit Pseudomonas aeruginosa besiedelten Patienten zeigten ein niedrigeres FEV_1 mit Werten von 40,1 bis 104,4 (M: 63,2; IQR: 45,9 bis 73,6) als die nicht besiedelten mit Werten von 56 bis 103,6 (M: 80,7; IQR: 69,6 bis 95,8). Der Unterschied war signifikant (P < 0,04). Auch der MRT-Score war signifikant höher bei Patienten mit diesem Keim (P < 0,02) bei einem Score von 12 bis 35 Punkten (M: 26; IQR: 13 bis 29) versus 0 bis 28 Punkten (M: 14; IQR: 2 bis 20) ohne den Keim (siehe Abb. 38 MRT-Score bei Patienten mit Pseudomonas aeruginosa).

Abb. 38 MRT-Score bei Patienten mit Pseudomonas aeruginosa

Da nur bei drei Patienten Burkholderia cepacia nachweisbar war, lässt sich hier kein aussagekräftiger Vergleich machen.

3.7 Vergleiche der MRT-Parameter mit dem Verlauf der FEV1-Werte und dem klinischen Verlauf

Um den Verlauf der FEV₁-Werte mit den MRT-Parametern zu korrelieren, wurde die Steigung der Ausgleichsgeraden (wie in 2.2 beschrieben) von jedem

Patienten herangezogen. Da sich der Schweregrad der Erkrankung von Kindern und erwachsenen Patienten deutlich unterscheidet, und die MRT-Untersuchung stark von der Mitarbeit der Teilnehmer abhängt, sind in den folgenden Tabellen die Korrelationen von Kindern und Erwachsenen getrennt aufgeführt.

Um mit einzubeziehen, dass der Krankheitsverlauf nicht allein durch morphologische Korrelate zu erklären ist, sondern eher durch die Kombination aus morphologischen und funktionellen Parametern, wurde zum MRT-Score der Airtrapping-Score (AT), der Perfusions-Score (Perf) und der Ventilations-Score (Vent) addiert. Tabelle 27 zeigt die Korrelationen des FEV₁-Verlaufs mit den MRT-Parametern, es wurde der Spearman Rho, der P-Wert und in Klammern die Patientenanzahl angegeben, da nicht bei allen Patienten die Scores für Airtrapping, Perfusion und Ventilation erstellt wurden.

Lediglich bei den erwachsenen Patienten ergaben sich relevante Korrelationen mit dem Verlauf der FEV₁-Werte. Die Summe aus MRT-Score und Airtrapping-Score zeigte eine relevante Korrelation, es konnte nicht bei allen erwachsenen Patienten ein Perfusions-/ und Ventilations-Score erstellt werden, so dass die Patientenanzahl bei diesen addierten Scores zu gering für eine Korrelation war. Des Weiteren ergab sich für Peribronchitis als Teil des MRT-Scores eine relevante Korrelation mit dem Verlauf. Die Vertikale Zwerchfellmobilität (als Mittelwert der relativen Thoraxverkürzung links und rechts) korrelierte ebenfalls relevant mit dem Verlauf. Ein positiver Zusammenhang mit dem Verlauf der FEV₁-Werte ergab sich für die quantitativ ausgewertete Zunahme der Protonendichte der Lunge (als Mittelwert aller fünf Lungenlappen), wobei einzelne Lappen noch besser korrelierten als der Gesamtwert. Der Airtrappingscore korrelierte relevant mit dem Verlauf, auch hier zeigte sich für einen Lappen (rechter Unterlappen) eine noch bessere Korrelation. Die im MRT gemessenen Lungenvolumina (RV und VC) korrelierten nicht relevant mit dem Verlauf. Sowohl die Ergebnisse der Sauerstoff-verstärkten Ventilation als auch die Ergebnisse der Perfusionsmessung zeigten keine relevante Korrelation mit dem Verlauf.

MRT-Parameter	Verlauf FEV ₁ Kind	Verlauf FEV ₁ Erwachsen
	(Spearman Rho; P-Wert)	(Spearman Rho; P-Wert)
	[Patientenanzahl]	[Patientenanzahl]
MRT-Score	-0,39; 0,21 [12]	-0,18; 0,60 [10]
MRT-Score + AT	-0,39; 0,21 [12]	-0,63; 0,07 [9]
MRT-Score + AT +	-0,30; 0,38 [11]	*
Perf		
MRT-Score + AT +	-0,48; 0,16 [10]	*
Perf + Vent		
CNS	-0,30; 0,34 [12]	-0,29; 0,42 [10]
Peribronchitis	-0,18; 0,56 [12]	-0,67; 0,03 [10]
(MRT-Score)		
Zwerchfellmobilität	0,47; 0,12 [12]	0,67; 0,03 [10]
Protonendichte	0,05; 0,88 [12]	0,73; 0,02 [10]
gesamt		
Protonendichte ROL	0,26; 0,42 [12]	0,84; 0,002 [10]
Protonendichte RUL	-0,01; 0,96 [12]	0,84; 0,002 [10]
Protonendichte LUL	-0,17; 0,60 [12]	0,81; 0,005 [10]
Protonendichte RML	0,05; 0,88 [12]	0,67; 0,03 [10]
Airtrapping-Score	-0,13; 0,68 [12]	-0,67; 0,047 [9]
Airtrapping-Score	-0,29; 0,37 [12]	-0,77; 0,01 [9]
RUL		

Tabelle 27: Korrelationen des FEV₁-Verlaufs mit den MRT-Parametern

* Patientenanzahl zu gering für eine Korrelation

Zur Kennzeichnung des klinischen Verlaufs wurden die Patienten von den Pädiatern in die Gruppen stabil und instabil eingeteilt. Es zeigte sich kein signifikanter Unterschied zwischen den beiden Gruppen bezogen auf den Verlauf der FEV₁-Werte. Auch die morphologischen Scores (CNS und MRT) sowie das FEV₁ waren nicht signifikant verschieden zwischen instabilen und stabilen Patienten. Darüber hinaus ergaben sich auch für die im MRT gemessenen funktionellen Parameter keinerlei signifikante Unterschiede.

3.8 Gegenüberstellung zweier Patienten

Der Krankheitsverlauf zeigt interindividuell eine hohe Variationsbreite. Um dies zu verdeutlichen sind hier beispielhaft die Bilder zweier Patienten Nummer 29 und 33 aufgezeigt. Patient 33 hatte bislang eine sehr geringe Lungenbeteilung. Er war zum Untersuchungszeitpunkt 11 Jahre alt, hatte einen CNS von 4 Punkten, ein FEV₁ von 102 %, einen MRT-Score von 12 Punkten und war im Verlauf der FEV₁-Werte stabil (Steigung +0,17).

Patient 29, nur ein Jahr älter (12 Jahre), zeigte aber bereits deutliche Lungenveränderungen. Sein CNS betrug 8 Punkte, das FEV₁ 63,3 %, der MRT-Score 20 Punkte und der Verlauf der FEV₁-Werte war mit einer Steigung von - 5,39 sehr instabil.

Die folgende Grafik (Abb. 39 Morphologische Veränderungen der Patienten 29 und 33 im MRT) zeigt die typischen Lungenveränderungen der CF-Patienten im MRT wie Peribronchitis, Azinäre Opazitäten und Bronchiektasen. Konsolidierungen sind bei beiden Patienten nicht erkennbar. Die deutlich ausgeprägten Läsionen bei Patient 29 (MRT-Score 20) im Gegensatz zu den leichten Veränderungen bei Patient 33 (MRT-Score 12) sind gut zu Unterscheiden. Patient 29 wies vor allem im rechten Oberlappen schwere pathologische Veränderungen auf.

Abb. 39 Morphologische Veränderungen der Patienten 29 und 33 im MRT

Im Röntgenbild ist dagegen die unterschiedliche Beeinträchtigung der beiden Patienten nicht eindeutig zu erkennen. Patient 29 hatte einen CNS von 8 Punkten, Patient 33 lediglich 4 Punkte. Vor allem bronchiale Linienschatten, Fleckschatten und Ringschatten sind im rechten oberen Lungenfeld beider Patienten sichtbar.

Abb. 40 Röntgenthorax der zwei Patienten

Die vertikale Zwerchfellmobilität von Patient 29 ist mit 17,9 % niedriger als bei Patient 33 mit 19,6 %. Das nächste Bild (Abb. 41 Zwerchfellmobilität der zwei Patienten) zeigt die Bewegungen der Zwerchfellkuppeln während eines Atemzyklus.

Abb. 41 Zwerchfellmobilität der zwei Patienten

Die Protonendichte in Exspiration nahm bei Patient 29 mit 52 % stärker zu, als bei Patient 33 (47%). Dies war nicht zu erwarten, denn Patient 29 hatte einen deutlich schlechteren Airtrapping-Score mit 8 Punkten, wohingegen Patient 33 nur 3 Punkte erhielt. Patient 29 wies in allen fünf Lungenlappen leichtes bis schweres Airtrapping auf.

Abb. 42 Dichtezunahme in Exspiration der rechten Lunge bei Patient 33 und 29

Im MRT unterschieden sich die Lungenvolumina der zwei Patienten deutlich voneinander. Patient 29 hatte ein Residualvolumen von 1,81 Litern und eine Vitalkapazität von 0,99 Litern, Patient 33 wies ein RV von 1,34 Litern und eine VC von 1,87 Litern auf. Das folgende Bild (Abb. 43 Lungenvolumen der zwei Patienten im MRT) zeigt die dreidimensionale Darstellung des Lungenvolumens in Inspiration (links) und Exspiration (rechts). Es ist deutlich sichtbar, dass bei Patient 29 in Exspiration ein größeres Residualvolumen vorliegt als bei Patient 33.

Abb. 43 Lungenvolumen der zwei Patienten im MRT

Die nächste Grafik (Abb. 44 Ventilation der zwei Patienten) zeigt die Subtraktionsbilder der Sauerstoff-verstärkten Ventilationsbildgebung (hier rot dargestellt) der beiden Patienten. Bei Patient 33 sieht man in der coronar posterioren Ebene leichte Ventilationsdefekte im linken oberen Bereich. Er hatte eine relative SI-Zunahme rechts von 40 % und links von 44 % bei einem Ventilations-Score von null Punkten. Patient 29 zeigte vor allem im rechten Oberlappen schwere Ventilationsdefekte in der sagittalen Ebene. Die relative SI-Zunahme betrug 13 % im ROL, 49 % im RML und 51 % im RUL bei einem Ventilations-Score von 4 Punkten.

Abb. 44 Ventilation der zwei Patienten

Die Perfusion der Lunge ist auf den nächsten Bildern (Abb. 45 Perfusion der zwei Patienten) als Subtraktionsbild farblich dargestellt. Übereinstimmend mit der Ventilation fällt bei Patient 33 ein leichter Perfusionsdefekt im linken oberen Bereich in der coronar posterioren Ebene auf. Die SI nahm rechts um 139 % und links um 169 % zu, bei einem Perfusions-Score von 2 Punkten. Ebenfalls deckungsgleich mit der Ventilation zeigte Patient 29 schwere Perfusionsdefekte vor allem im rechten Oberlappen in der sagittalen Ebene. Die relative SI-Zunahme betrug 42 % im ROL, 146% im RML und 167 % im RUL bei einem Perfusions-Score von 4 Punkten.

Abb. 45 Perfusion der zwei Patienten

Insgesamt fällt bei der Gegenüberstellung der zwei gleichaltrigen Patienten auf, dass die Lungenbeteiligung bei Patient 29 deutlich fortgeschrittener ist als bei Patient 33. Des Weiteren Stimmt die Lokalisation der morphologischen Veränderungen (bei Patient 29 überwiegend der rechte Oberlappen), gut mit den Defekten der funktionellen Untersuchungen der Ventilation und Perfusion, überein.

4 Diskussion

Es folgt eine kurze Zusammenfassung der wichtigsten Ergebnisse dieser Studie.

Die Auswertung des neu entwickelten MRT-Scores zur Beurteilung der morphologischen Veränderungen der Lunge ergab, dass bei den CF-Patienten die beiden Oberlappen am häufigsten von pathologischen Veränderungen betroffen waren. Von den vier Kategorien fand sich Peribronchitis bei den meisten Patienten. Auch die Röntgenthoraxbilder der Patienten wiesen in den Oberfeldern der Lunge mehr Veränderungen auf als in den Unterfeldern, am häufigsten bronchiale Linienschatten. Die Korrelation zwischen MRT-Score und CNS war mit r = 0,91 sehr gut.

Für die vertikale Zwerchfellmobilität ergab sich kein signifikanter Unterschied zwischen Patienten und Probanden, es wurde jedoch deutlich, dass die Zwerchfellmobilität rechts größer war als links.

Die Zunahme der Protonendichte in Exspiration war in Rückenlage im dorsalen Teil der Lunge stärker als im ventralen Teil, in Bauchlage verhielt es sich genau umgekehrt. Die relative Zunahme des SNR in Exspiration war bei den Patienten signifikant niedriger als bei den Probanden. Der Airtrapping-Score ergab, dass bei allen Patienten zumindest leichtes Airtrapping erkennbar war.

Bei den im MRT gemessenen Lungenvolumina zeigte sich, dass die erwachsenen Patienten ein signifikant höheres Residualvolumen und eine signifikant niedrigere Vitalkapazität aufwiesen als die gesunden Probanden. Die mittlere Differenz von MRT-Volumina und LFP war mit -0,63 (RV) und 0,26 (VC) sehr gering.

Bei der sauerstoffverstärkten MRT zeigte sich bei allen Probanden sowie bei 17 der 22 Patienten ein positiver Effekt, das heißt eine Zunahme der SI im Vergleich zur Messung mit Raumluft. Die relative Zunahme der SI war bei den Probanden bis auf den rechten Mittellappen höher, meist auch mit einem signifikanten Unterschied. Die deutlichste Differenz zeigte sich im rechten Oberlappen in der coronar medialen Ebene. Auch der Ventilations-Score der Patienten ergab, dass beide Oberlappen die meisten Defekte aufwiesen. Die Perfusionsmessung (ASL-Technik) konnte bei allen Probanden sowie 15 der 17 gemessenen Patienten erfolgreich durchgeführt werden. Die Unterschiede zwischen Patienten und Probanden waren in allen Lappen relevant, wobei die Probanden durchweg eine statistisch signifikant höhere relative SI-Zunahme zeigten. Die meisten Perfusionsdefekte fanden sich nach semiquantitativer Bewertung in den Oberlappen.

4.1 Morphologie

Die Darstellung des Lungenparenchyms in der MRT ist, wie schon in der Einleitung beschrieben, aus mehreren Gründen schwierig. Die zwei Sequenzen zur Beurteilung der Morphologie (PDw FLASH 3D GRE und T2w TSE) wurden so gewählt, dass Störfaktoren möglichst gering gehalten werden. Durch Einsatz einer kurzen TE in der PDw FLASH 3D GRE-Sequenz werden die Suszeptibilitätseffekte der Lungenoberfläche geringer störend und der Signalverlust durch T2* Relaxierung wird reduziert. Wegen der kurzen Messzeit war es möglich diese Sequenz in Atemanhaltetechnik zu messen, so dass Bewegungsartefakte kaum vorhanden waren. Bei der T2w TSE-Sequenz wandten wir Atemtriggerung in Exspiration an, da die Messzeit bei dieser Sequenz immer zu lang für die Atemanhaltetechnik ist, wenn man die ganze Lunge betrachten will. Artefakte entstanden trotzdem noch, vor allem durch die Pulsationen des Herzens. Um diese zu vermeiden, müsste man zusätzlich noch mit EKG-Triggerung messen was aber erheblich Messzeit verbraucht und in der praktischen Durchführung störanfällig ist (85). Um die verschiedenen Veränderungen der Lunge bei CF-Patienten gut beurteilen zu können sind beide Sequenzen nötig, da sie sich ergänzen. Die T2w TSE-Sequenz erzielt eine höhere inplane Ortsauflösung und erlaubt auch in der Lungenperipherie eine Darstellung von kleinen pathologischen Veränderungen (33). Da diese Sequenz in Exspiration gemessen wurde ist der Vergleich mit CT oder Röntgenbildern schwieriger, weil beide in der klinischen Routine in Inspiration aufgenommen werden. Die PDw FLASH 3D GRE-Seguenz ermöglicht in sehr kurzer Messzeit die Aufnahme eines 3D-Datensatzes und somit die Beurteilung der gesamten Lunge. Besonders gut werden die anatomischen Strukturen dargestellt, so dass Lappengrenzen und Pulmonalgefäße gut sichtbar sind.

Außerdem wurde diese Sequenz in Inspiration durchgeführt und erleichtert dadurch den Vergleich mit Röntgen- und CT-Bildern.

Der neu entwickelte MRT-Score konnte mit einem Arbeitsaufwand von ca. 10 Minuten pro Patient erstellt werden. Unser Ergebnis, dass Peribronchitis die häufigste pathologische Veränderung war, stimmt mit den Ergebnissen der Studien am HRCT von Bhalla et al., Helbich et al. und Demirkazik et al. überein (4, 5, 7). In den Oberlappen der Lunge zeigten sich, bezogen auf alle Kategorien am häufigsten Pathologien, was aber in anderen Studien nicht bestätigt wurde (7, 13). Rechter und linker Lungenflügel waren nicht signifikant unterschiedlich betroffen, wobei sich eine Tendenz zeigte, dass die rechte Lunge stärker betroffen war.

Die sehr gute Korrelation des MRT-Scores mit dem CNS (r = 0,91) ist wahrscheinlich dadurch zu erklären, dass der MRT-Score fast die gleichen Kategorien einbezieht wie der CNS. Auch Studien am HRCT zeigten gute Korrelation von HRCT-Scores und Röntgenscores (5, 8, 12). Die Differenzierung kleiner Läsionen ist jedoch in der MRT-Bildgebung aufgrund der fehlenden Überlagerung einfacher und besser möglich als in der Projektionsradiographie. Das in der LFP gemessene FEV₁ korrelierte mittelmäßig mit dem MRT-Score (r = -0,5), was in einigen Studien am HRCT bestätigt wurde (5, 12, 16, 86). Dadurch wird deutlich, dass lokale morphologische Veränderungen nicht sofort die globale Lungenfunktion beeinträchtigen (87). So gab es in unserem Kollektiv zum Beispiel drei Patienten die einen MRT-Score von zwei bis zwölf Punkten hatten, bei einem FEV₁ von über 100 %.

4.2 Funktionelle Parameter

4.2.1 Vertikale Zwerchfellmobilität

Um die dynamische Bewegung des Zwerchfells zu erfassen wurde eine schnelle T1w 2D GRE-Sequenz mit der man 2,7 Bilder pro Sekunde messen konnte verwendet. Dadurch war die Zwerchfellbewegung flüssig in den zwei Atemzyklen sichtbar. Wie schon unter 2.9.1 erwähnt konnte aus Messzeitgründen die Aufnahme nur in einer coronaren Ebene durchgeführt werden. Um die vertikale Zwerchfellmobilität noch genauer zu beurteilen, wären Messungen in mehreren Ebenen (44) oder mit einem 3D-Datensatz mit Rekonstruktion des Zwerchfells (40) nötig. Des Weiteren war diese Messung von der Mitarbeit der Teilnehmer abhängig, die die Anweisung bekamen, zweimal langsam maximal ein- und auszuatmen, jedoch war mit dem Atemgurt keine Kontrolle möglich, ob tatsächlich maximal geatmet wurde. Eine Messung der vertikalen Zwerchfellmobilität im CT wäre nicht vorstellbar, da, um die Bewegungen genau zu beurteilen, mindestens zwei komplette Atemzyklen nötig wären, was eine sehr hohe Strahlenbelastung im CT bedeuten würde.

Wie zu erwarten, fiel bei den CF-Patienten die relative Verkürzung des vertikalen Thoraxdurchmessers geringer aus als bei den gesunden Probanden, der Unterschied war jedoch nicht signifikant. Dies könnte ein Hinweis auf Airtrapping und damit verbunden eine Abflachung der Zwerchfelle mit geringerer Beweglichkeit bei den Patienten sein.

4.2.2 Protonendichte

Die Messung der Protonendichte in Inspiration und Exspiration erfolgte mit einer PDw FLASH 2D GRE-Sequenz ähnlich der von Hatabu et al. (34) mit sehr kurzer TE (siehe 4.1). Durch die Atemanhaltetechnik und die kurze Messzeit blieben Atembewegungsartefakte gering, und auch Pulsationsartefakte des Herzens waren kaum ausgeprägt obwohl keine EKG-Triggerung vorlag. Auf den Bildern war die Zunahme der Protonendichte in Exspiration deutlich sichtbar und Airtrapping bei den Patienten somit auch semiquantitativ erfassbar. Exspiratorische Aufnahmen die nahe am Residualvolumen gemessen wurden sind am besten geeignet um Airtrapping zu erfassen, da der Dichteunterschied zur inspiratorischen Aufnahme am größten ist (15). Deshalb hing diese Untersuchung von der Mitarbeit der Teilnehmer ab, doch wie schon erwähnt, war es während der Messung nicht möglich die Kooperation zu überprüfen. Es wäre ideal während der Messung eine Spirometrie durchzuführen, doch meines Wissens ist das im MRT bislang nicht möglich. Die gute Korrelation des RV mit dem guantitativen Airtrapping und der deutliche Unterschied zwischen SNR_{In} und SNR_{Ex} lassen aber auf eine gute Mitarbeit schließen.

Die Protonendichte in Exspiration nahm je nach Lagerung des Teilnehmers, in Rückenlage stärker dorsal- und in Bauchlage stärker ventral zu. Diesen Effekt haben Hatabu et al. (34) schon 1999 beschrieben und Bankier et al. (88) 2006 quantitativ untersucht. Auf den inspiratorischen Aufnahmen zeigten die CF-Patienten höhere Dichtewerte als die Probanden (jedoch nicht signifikant). Das wahrscheinlich auf die pathologischen Läsionen der ist Patienten zurückzuführen, die eine höhere Dichte aufweisen als normales Lungengewebe und nicht aus der ROI ausgespart wurden. Dagegen waren auf den exspiratorischen Bildern die Dichtewerte der CF-Patienten niedriger als die der Probanden, was auf Airtrapping hinweisen kann. Wichtiger ist aber die Betrachtung der relativen Zunahme der Dichte in Exspiration die bei den CF-Patienten deutlich niedriger war als bei den Probanden. Der Airtrapping-Score zeigte, dass alle Patienten zumindest leichte Veränderungen aufwiesen. Das bestätigt, dass Airtrapping eine sehr frühe Lungenveränderung bei CF-Patienten ist (18). Zum Beispiel wies ein Patient mit einem morphologischen MRT-Score von null Punkten leichtes Airtrapping in einem Lungenlappen auf. Kauczor et al. (19) beschrieben, dass fokales Airtrapping auch physiologisch sein könnte und die globale Lungenfunktion nicht beeinflusst. In einer Studie am HRCT mit Patienten mit milder Mukoviszidose zeigten Bonnel et al. (15), dass die Unterlappen stärker betroffen sind als Mittel- und Oberlappen. Dies konnten wir nicht bestätigen, denn in der semiquantitativen Auswertung der Patienten ist zwar der linke Unterlappen am schwersten betroffen, danach folgt jedoch der rechte Oberlappen. Die Protonendichte der Patienten nahm in Exspiration in den Unterlappen am stärksten zu, was wahrscheinlich, wie schon erwähnt, an der Lagerung (dorsal) der Teilnehmer lag.

Åhnlich wie in anderen Studien am HRCT (14-16, 19) ergab sich eine mittlere Korrelation des Airtrapping-Scores mit FEV₁ (r = -0,54; p < 0,01), sowie RV (r = 0,54; P < 0,01). Ein Zusammenhang dieser Parameter war zu erwarten, da das FEV₁ ein Parameter für Obstruktion ist, und Airtrapping durch Obstruktionen entsteht. Ausgeprägtes Airtrapping führt zu einem erhöhten RV, weil die Luft in den Alveolen auch bei maximaler Exspiration noch "gefangen" ist und nicht ausgeatmet werden kann.

4.2.3 Lungenvolumen

Durch Verwendung der sehr schnellen PDw FLASH 3D GRE-Sequenz zur Messung des Lungenvolumens war es auch den jüngsten Teilnehmern der Studie (acht Jahre) möglich, ist die Luft in maximaler Inspiration oder Exspiration (für max. 8 Sekunden) anzuhalten. Ob alle Teilnehmer wirklich maximal auf das Kommando geatmet haben konnte, wie schon beschrieben, nicht direkt kontrolliert werden, doch die geringe mittlere Differenz zur LFP (RV = -0.63 und VC = 0.26) wies auf eine gute Kooperation hin. Die Vermutung, dass die Mitarbeit gut war, kann auch auf die Messungen zur vertikalen Zwerchfellmobilität und der Protonendichte ausgeweitet werden, denn die Teilnehmer kannten die Reihenfolge des Studienprotokolls nicht im Detail und die Atemkommandos waren bei diesen Sequenzen die gleichen. Ein Problem bei dem Vergleich der MRT-Volumina mit der LFP sind jedoch die unterschiedlichen Bedingungen unter denen die Untersuchungen stattfanden. Die MRT-Untersuchung wurde in Rückenlage durchgeführt und es bestand kein Sichtkontakt zwischen MTA und Patient oder Proband. Die LFP fand im sitzen in einer Glaskabine statt, direkt neben der MTA, die Atemanweisungen gab. Plathow et al. (45) verglichen in einer Studie die im MRT gemessenen Lungenvolumina mit den Werten der LFP die in Rückenlage und im Sitzen durchgeführt wurde. Die LFP ergab in dieser Studie im Sitzen signifikant höhere Werte für VC und FEV₁ als in Rückenlage. Daraus kann man schließen, dass man in Rückenlage im Vergleich zur aufrechten Position nur submaximal einund ausatmen kann und somit die VC reduziert ist und das RV erhöht ist. Das könnte auch unsere Ergebnisse erklären, denn die VC im MRT war im Mittel niedriger als in der LFP (jedoch nicht signifikant). Dagegen ergaben sich für das RV im MRT signifikant höhere Werte als in der LFP. Außerdem könnte auch die Motivation der Teilnehmer eine andere sein, wenn sie durch die MTA direkt "beobachtet" werden wie es bei der LFP der Fall ist. Das Programm zur Berechnung der im MRT gemessenen Lungenvolumina bot auch Fehlerquellen, da die feinen Alveolarsepten der Lunge von dem Programm nicht einzeln erfasst werden konnten und somit zu dem Lungenvolumen hinzugerechnet wurden. Die gute Übereinstimmung mit den Ergebnissen der LFP sowie die

gute Bedienbarkeit sprechen für das Programm. Mit dem Programm ist es darüber hinaus auch ohne weiteres möglich das Volumen des rechten und linken Lungenflügels getrennt zu betrachten (siehe Abb. 10 Programm zur Berechnung des Lungenvolumens), was mit der LFP nicht machbar ist. Dies kann im Einzelfall von hoher klinischer Relevanz sein (z.B. präoperativ).

4.2.4 Sauerstoff-verstärkte Ventilationsbildgebung

Mit der IR TSE-Sequenz war es möglich den Effekt von molekularem Sauerstoff als Ventilationsgas sichtbar zu machen. Die Menge des im Blut gelösten Sauerstoffs hängt vom Ventilations-Perfusions-Verhältnis und von der Diffusionskapazität der Lunge ab, die beide bei CF-Patienten beeinträchtigt sein können. Daher ist zu erwarten, dass CF-Patienten eine niedrigere relative Zunahme der SI zeigen, als gesunde Probanden. Der beobachtete Signalunterschied resultiert hauptsächlich von dem paramagnetischen Effekt des gelösten Sauerstoffs, der die T1-Zeit verkürzt. So konnte in Studien (57, 59, 61) gezeigt werden, dass die T1-Zeit um etwa 100 bis 200 ms verkürzt wird, was wahrscheinlich der dominante Mechanismus ist, der den Signalunterschied ausmacht. Es ist aber nicht der einzige Mechanismus der beteiligt ist. Die Zunahme der Sauerstoffkonzentration beeinflusst auch die T2*-Zeit, denn durch die höhere O₂-Konzentration sinkt das Desoxyhämoglobin, und damit die Suszeptibilität des Blutes (68). Diese Zunahme der SI parallel zur Abnahme des paramagnetischen Desoxyhämoglobins wurde als blood oxygen leveldependent (BOLD) Effekt beschrieben (89). Mögliche Signalveränderungen die aus dem BOLD-Effekt resultieren, sollten in unserer Studie aber minimal sein, denn TSE-Sequenzen sind relativ unempfindlich gegenüber Suszeptibilitätseffekten (T2*) (68). Die von uns verwendete Sequenz hatte den Nachteil, dass die Bildakquisition relativ lange dauerte. Es wurde nur in der Exspirationsphase gemessen und es waren mindestens zwei Atemzyklen nötig um ein Bild zu erstellen. Um die 15 Bilder einer Schicht zu messen waren ca. vier Minuten nötig (abhängig von der Atemfrequenz). Nach Bild sieben wurde der Sauerstoff aufgedreht und Bild acht und neun wurden bei der Auswertung nicht mit einbezogen. Da ca. alle 16 Sekunden getriggert wurde, und zwei Bilder ausgelassen wurden, hatte der Sauerstoff etwa 48 Sekunden zum Anfluten

(wash in). Arnold et al. (58) und Dietrich et al. (90) fanden heraus, dass die wash in Zeit für Sauerstoff ca. 50 Sekunden beträgt. Somit war die Wartezeit lang genug um die Änderung der SI zwischen Raumluft und 100 % Sauerstoff darzustellen.

Bei fünf Patienten wurde unter 100 % O₂ keine Zunahme der SI oder teilweise sogar eine Abnahme beobachtet. Methodisch noch zu lösende Probleme, wie z.B. die Passform der Atemmaske sind zu diskutieren. Dass die Methode aber prinzipiell funktioniert wird deutlich, wenn man bedenkt dass bei allen 10 gesunden Probanden und bei 17 der 22 Patienten ein Effekt des Sauerstoffs zu messen war. Des Weiteren bestätigte sich, dass die Patienten (bis auf einen Lungenlappen) eine niedrigere relative SI-Zunahme (meist auch signifikant) als die Probanden zeigten. Die semiquantitative Auswertung ergab, dass bei den Patienten die Oberlappen am stärksten von Ventilationsdefekten betroffen sind, was auf einen Zusammenhang mit dem MRT-Score hinweist, denn auch die morphologischen Veränderungen fanden sich meist in den Oberlappen.

4.2.5 Perfusionsbildgebung

Die Perfusion der Lunge ohne Kontrastmittel im MRT darzustellen ist noch nicht lange möglich. Mai et al. sowie Martirosian et al. verwendeten dazu die *arterial spin labeling* Technik, die einfach durchzuführen ist und gute Ergebnisse liefert (76-80). Bisher fanden Studien zu dieser Methode nur an gesunden Probanden statt, und wir vermuteten, dass aufgrund der pathologischen Veränderungen der CF-Patienten ein Unterschied in der Perfusion der Lunge zwischen Probanden und Patienten vorhanden sein müsste. Allgemein war ein Unterschied zwischen dem schichtselektiven- und dem nicht selektiven Bild erkennbar, doch erst das subtrahierte Bild ließ eine Beurteilung der Perfusion zu. Da wir keine EKG-Triggerung verwendeten haben wir zehn schichtselektive Bilder aufgenommen, denn nicht auf allen Bildern waren die Gefäße bis in die Peripherie sichtbar. Die Messung musste mit Atemtriggerung durchgeführt werden, da die Messzeit für Atemanhaltetechnik zu lang war. Mai et al. (76) haben dagegen mit EKG-Triggerung in Diastole und Atemanhaltetechnik gemessen, um Artefakte gering zu halten und die Gefäße sicher darstellen zu können. Zur quantitativen Auswertung der Perfusion wurden die kompletten Lungenlappen als ROI eingezeichnet, nur Gefäße mit einem Durchmesser > 0,5 cm wurden ausgespart. Somit wurde also sowohl der Blutfluss der makroskopisch sichtbaren Gefäße gemessen, als auch die Perfusion der Kapillaren. Will man ausschließlich die Kapillarperfusion messen, müsste eine ROI in der Lungenperipherie eingezeichnet werden. Der Herzzyklus sollte keine Auswirkung auf die Kapillarperfusion haben, da hier das Blut konstant langsam fließt.

Auch mit unserer Auswertungsmethode beobachteten wir einen signifikanten Unterschied in der quantitativen Perfusion in allen Lungenlappen zwischen Probanden und CF-Patienten. Lediglich bei zwei Patienten ergab sich artefaktbedingt keine relative Zunahme der SI im schichtselektiven Bild. Die semiquantitative Auswertung zeigte, dass sich die meisten Perfusionsdefekte in den Oberlappen der Patienten befinden. Somit scheint die *arterial spin labeling* eine relativ robuste Technik zu sein und auch genau genug, um Unterschiede zwischen Patienten und Probanden im Subtraktionsbild deutlich sichtbar zu machen.

4.3 Unterschiede zwischen CF-Patienten und Probanden

Unsere erste Frage war, ob mit der MRT unter funktionellen Aspekten Unterschiede zwischen den CF-Patienten und einer gesunden Kontrollgruppe messbar sind. Die Messung der vertikalen Zwerchfellmobilität ergab keinen relevanten Unterschied zwischen Patienten und Probanden, was mehrere Ursachen haben könnte. Zunächst könnte die Überblähung der Lunge bei den Patienten noch nicht so weit fortgeschritten sein, dass es zu einer deutlichen Abflachung des Zwerchfells kommt. Des Weiteren könnte die singuläre Messebene (coronar, auf Höhe der Hilusgefäße), die pathologischen Atemexkursionen der Patienten nicht optimal abbilden. Schließlich hing die Untersuchung von der Mitarbeit der Teilnehmer ab, wobei eine Objektivierung hierbei nicht möglich war. Die weiteren funktionellen Parameter (Protonendichte, Lungenvolumen, Sauerstoff-verstärkte Ventilationsbildgebung,

Perfusionsbildgebung) wiesen, wie erwartet, deutliche Unterschiede zwischen CF-Patienten und gesunden Probanden auf.

4.4 MRT-Daten als Prognosefaktoren

Da der individuelle Krankheitsverlauf der Mukoviszidosepatienten sehr variabel ist, wäre es für die Behandlung sehr wichtig zu wissen, ob einzelne Parameter eine Aussage über den weiteren Verlauf zulassen. Wir haben die Änderung der FEV₁-Werte über einen Zeitraum von vier Jahren herangezogen und mit den Ergebnissen der MRT-Untersuchung korreliert. Ein mögliches Problem bei dieser Vorgehensweise war, dass nicht sicher ist, ob der Zeitraum (vier Jahre) lang genug ist um eine eindeutige Aussage über den weiteren klinischen Verlauf zu machen. So zeigten zum Beispiel de Jong et al. (91) und Helbich et al. (9) in Studien am HRCT, dass über einen Beobachtungszeitraum von zwei bis vier Jahren der HRCT-Score sich signifikant verschlechterte wobei sich die Lungenfunktionsparameter nicht signifikant veränderten. Da in dieser Studie die MRT-Untersuchung nur einmalig bei jedem Teilnehmer durchgeführt wurde, lässt sich keine Aussage darüber machen wie schnell sich die einzelnen Parameter verändern. Es zeigten sich einige gute Korrelationen der MRT-Parameter mit dem Verlauf der FEV₁-Werte (siehe Tabelle 27), jedoch nur bei den erwachsenen Patienten. Die Summe aus MRT-Score und Airtrapping-Peribronchitis (als Teil MRT-Scores), die Score. des vertikale Zwerchfellmobilität, die quantitativ bestimmte Protonendichte und der Airtrapping-Score wiesen relevante Korrelationen auf, so dass sie als Prognosefaktoren für den Krankheitsverlauf in Frage kommen. Cleveland et al. (92) führten eine Studie zur Ermittlung von Prognosefaktoren mit dem Röntgenologischen Brasfield-Score durch, und fanden neben Geschlecht und Alter, Bronchiektasen und Airtrapping als wichtige Faktoren. Welche Parameter sicher etwas über Verlauf und individuelle Prognose aussagen ist demnach noch nicht eindeutig geklärt, deshalb sind weitere Längsschnittstudien mit größerer Teilnehmerzahl nötig um diese Frage zu beantworten.

5 Zusammenfassung

Mukoviszidose ist eine der häufigsten autosomal-rezessiven Erbrankheiten in Europa, die vor allem aufgrund der Lungenbeteiligung schon früh zum Tode führt. Eine gute und umfassende Lungendiagnostik ist deshalb für Therapie und Betreuung der Patienten und somit auch für deren Lebenserwartung entscheidend. Die bisherigen Goldstandards Röntgenthorax und Lungenfunktionsprüfung sind unzureichend in der Erfassung früher und lokal begrenzter Veränderungen. Die schon in vielen Studien eingesetzte hochauflösende Computertomographie liefert gute Ergebnisse was frühe Läsionen des Lungenparenchyms betrifft, sie erscheint jedoch aufgrund der hohen Strahlenbelastung und der lebenslang regelmäßig notwendigen Untersuchungen ebenfalls nicht ideal.

Die MRT wurde bisher nicht routinemäßig zur Lungendiagnostik eingesetzt, denn erst mit der Einführung von schnellen TSE- und GRE- Sequenzen gelang eine gute Darstellung des Lungenparenchyms. Darüber hinaus ist es möglich auch funktionelle Lungenparameter mit der MRT zu erfassen. Zehn gesunde Probanden sowie 22 CF-Patienten unterzogen sich in dieser Studie einer LFP, der MRT-Untersuchung und bei den Patienten wurde ein Röntgenthorax angefertigt. Bei der LFP wurden die Ergebnisse der VC, des RV und des FEV₁ dokumentiert. Die morphologische Untersuchung erfolgte durch eine PDw FLASH 3D GRE und eine T2w TSE – Sequenz, aus denen der MRT-Score erstellt wurde. Die funktionelle Untersuchung umfasste die vertikale Zwerchfellmobilität (T1w 2D GRE), die Protonendichte (PDw FLASH 2D GRE), das Lungenvolumen (PDw FLASH 3D GRE), die sauerstoff-verstärkte Ventilationsbildgebung (nicht selektive IR TSE) und die Perfusionsbildgebung (Schichtselektive IR TSE).

Der MRT-Score erwies sich als gute Darstellung der aktuellen morphologischen Veränderungen, was die exzellente Korrelation mit dem CNS bestätigt. Darüber hinaus war es möglich im MRT frühe Läsionen zu detektieren, die auf dem Röntgenthoraxbild noch nicht erkennbar waren. Für die Beurteilung der Zwerchfellbeweglichkeit wäre eine 3D-Sequenz oder die Aufnahme von mehreren Schichten sinnvoll um die gesamte Bewegung während des

Atemzyklus nachzuvollziehen, denn in der gemessenen coronaren Ebene ergab sich kein signifikanter Unterschied zwischen Probanden und CF-Patienten. Die Zunahme der Protonendichte in Exspiration ist in Rückenlage dorsal stärker ausgeprägt als ventral und eignet sich zur quantifizierung des Airtrappings, was die deutliche Differenz zwischen den zwei Gruppen und die Korrelationen mit RV und FEV₁ bestätigen. Die im MRT bestimmten Lungenvolumina zeigten eine hohe Übereinstimmung mit der LFP, jedoch wurde das RV überschätzt und die VC unterschätzt, was aber durch die unterschiedliche Position (liegend sitzend) erklären ist. Sowohl sauerstoff-verstärkten zu bei der Ventilationsbildgebung, als auch bei der Perfusionsbildgebung zeigten sich meist signifikante Unterschiede zwischen gesunden Probanden und Patienten, es bleibt jedoch noch zu klären, warum es bei einigen wenigen Patienten nicht zu einer Zunahme der Signalintensität kam. Insgesamt müssen die sehr neuen Methoden zur Messung der funktionellen Parameter noch genauer Untersucht werden bevor sie in der klinischen Routine eingesetzt werden können.

Zusammenfassend sind also noch weitere Studien mit größeren Teilnehmerzahlen nötig um die MRT als Therapiemonitoring für CF-Patienten zu etablieren. Das wäre ein erstrebenswertes Ziel, denn nur mit der MRT ist es möglich, ohne Strahlenbelastung die lebenslang notwendigen Untersuchungen durchzuführen und dabei sowohl morphologische- als auch funktionelle Lungenparameter zu erfassen. Ob die MRT tatsächlich einmal als Therapiemonitoring für CF-Patienten dient, hängt jedoch auch von den Kosten einer solchen Untersuchung ab, die aber gut mit dem möglichen Nutzen abgewägt werden sollten.

6 Anhang

6.1 Literaturverzeichnis

- 1. Lentze M, Schulte F, Schaub J, Spranger J. Pädiatrie: Grundlagen und Praxis. Springer-Verlag 2001:987-997.
- 2. Chrispin AR, Norman AP. The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 1974; 2:101-105.
- 3. Shwachman H, Kulczycki LL. Long-term study of one hundred five patients with cystic fibrosis; studies made over a five- to fourteen-year period. AMA J Dis Child 1958; 96:6-15.
- 4. Bhalla M, Turcios N, Aponte V, et al. Cystic fibrosis: scoring system with thin-section CT. Radiology 1991; 179:783-788.
- 5. Demirkazik FB, Ariyurek OM, Ozcelik U, Gocmen A, Hassanabad HK, Kiper N. High resolution CT in children with cystic fibrosis: correlation with pulmonary functions and radiographic scores. Eur J Radiol 2001; 37:54-59.
- 6. Hansell DM, Strickland B. High-resolution computed tomography in pulmonary cystic fibrosis. Br J Radiol 1989; 62:1-5.
- Helbich T, Stiglbauer R, Breitenseher M, Eichler I, Gotz M, Schurawitzki H. [High-resolution computed tomography of the lung in young patients with cystic fibrosis]. Radiologe 1993; 33:142-146.
- 8. Helbich TH, Heinz-Peer G, Eichler I, et al. Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 1999; 213:537-544.
- 9. Helbich TH, Heinz-Peer G, Fleischmann D, et al. Evolution of CT findings in patients with cystic fibrosis. AJR Am J Roentgenol 1999; 173:81-88.
- 10. Marchant JM, Masel JP, Dickinson FL, Masters IB, Chang AB. Application of chest high-resolution computer tomography in young children with cystic fibrosis. Pediatr Pulmonol 2001; 31:24-29.
- 11. Robinson TE. High-resolution CT scanning: potential outcome measure. Curr Opin Pulm Med 2004; 10:537-541.
- 12. Santamaria F, Grillo G, Guidi G, et al. Cystic fibrosis: when should highresolution computed tomography of the chest Be obtained? Pediatrics 1998; 101:908-913.
- 13. Stiglbauer R, Schurawitzki H, Eichler I, Vergesslich KA, Gotz M. High resolution CT in children with cystic fibrosis. Acta Radiol 1992; 33:548-553.
- 14. Arakawa H, Webb WR. Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis. AJR Am J Roentgenol 1998; 170:1349-1353.
- 15. Bonnel AS, Song SM, Kesavarju K, et al. Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 2004; 38:396-405.
- 16. Brody AS, Klein JS, Molina PL, Quan J, Bean JA, Wilmott RW. Highresolution computed tomography in young patients with cystic fibrosis:

distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 2004; 145:32-38.

- 17. Dorlochter L, Nes H, Fluge G, Rosendahl K. High resolution CT in cystic fibrosis--the contribution of expiratory scans. Eur J Radiol 2003; 47:193-198.
- 18. Goris ML, Zhu HJ, Blankenberg F, Chan F, Robinson TE. An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 2003; 123:1655-1663.
- 19. Kauczor HU, Hast J, Heussel CP, Schlegel J, Mildenberger P, Thelen M. Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests. Eur Radiol 2000; 10:1539-1546.
- 20. Donnelly LF, MacFall JR, McAdams HP, et al. Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung--preliminary observations. Radiology 1999; 212:885-889.
- 21. Fiel SB, Friedman AC, Caroline DF, Radecki PD, Faerber E, Grumbach K. Magnetic resonance imaging in young adults with cystic fibrosis. Chest 1987; 91:181-184.
- 22. Gooding CA, Lallemand DP, Brasch RC, Wesbey GE, Davis B. Magnetic resonance imaging in cystic fibrosis. J Pediatr 1984; 105:384-388.
- 23. Hebestreit A, Schultz G, Trusen A, Hebestreit H. Follow-up of acute pulmonary complications in cystic fibrosis by magnetic resonance imaging: a pilot study. Acta Paediatr 2004; 93:414-416.
- 24. Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D. Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 2004; 51:1009-1016.
- 25. Kinsella D, Hamilton A, Goddard P, Duncan A, Carswell F. The role of magnetic resonance imaging in cystic fibrosis. Clin Radiol 1991; 44:23-26.
- 26. Wunsch R, Wunsch C. [Thoracic findings in pediatric patients with cystic fibrosis]. Radiologe 2003; 43:1103-1108.
- 27. Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D, Jakob PM. Quantitative perfusion mapping of the human lung using 1H spin labeling. J Magn Reson Imaging 2003; 18:260-265.
- 28. Reiser M, Semmler W. Magnetresonanztomographie. Springer-Verlag 2002.
- 29. Sequenztechniken. Applikations-Handbuch Magnetom Sonata. Siemens AG Medical Solutions Kernspintomographie 2001:B. 1-1 B. 5-10.
- 30. Haase A, Frahm J, Matthaei D. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 1986; 67:258-266.
- 31. Kauczor HU, Heussel CP, Schreiber WG, Kreitner KF. [New developments in MRI of the thorax]. Radiologe 2001; 41:279-287.
- 32. Biederer J, Graessner J, Heller M. Magnetic resonance imaging of the lung with a volumetric interpolated 3D-gradient echo sequence. Rofo 2001; 173:883-887.
- 33. Biederer J, Reuter M, Both M, et al. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and

T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol 2002; 12:378-384 Epub 2001 Nov 2027.

- 34. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB. T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 1999; 29:245-252.
- 35. Kauczor HU, Kreitner KF. MRI of the pulmonary parenchyma. Eur Radiol 1999; 9:1755-1764.
- 36. Mai VM, Knight-Scott J, Edelman RR, Chen Q, Keilholz-George S, Berr SS. 1H magnetic resonance imaging of human lung using inversion recovery turbo spin echo. J Magn Reson Imaging 2000; 11:616-621.
- 37. Schäfer JF, Vollmar J, Seemann MD, et al. Morphologische Differenzierung maligner und benigner solitärer Lungenrundherde mittels einer EKG-getriggerten Gradientenecho-Sequenz im Vergleich zur Spiral-CT. Fortschr Röntgenstr 2006; 178.
- 38. Semelka RC, Cem Balci N, Wilber KP, et al. Breath-hold 3D gradientecho MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. J Magn Reson Imaging 2000; 11:195-200.
- 39. Stock KW, Chen Q, Hatabu H, Edelman RR. Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging 1999; 17:997-1000.
- 40. Cluzel P, Šimilowski T, Čhartrand-Lefebvre C, Zelter M, Derenne JP, Grenier PA. Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology 2000; 215:574-583.
- 41. Gierada DS, Curtin JJ, Erickson SJ, Prost RW, Strandt JA, Goodman LR. Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology 1995; 194:879-884.
- 42. Kondo T, Kobayashi I, Taguchi Y, Hayama N, Tajiri S, Yanagimachi N. An analysis of the chest wall motions using the dynamic MRI in healthy elder subjects. Tokai J Exp Clin Med 2005; 30:15-20.
- 43. Kondo T, Kobayashi I, Taguchi Y, Ohta Y, Yanagimachi N. A dynamic analysis of chest wall motions with MRI in healthy young subjects. Respirology 2000; 5:19-25.
- 44. Plathow C, Fink C, Ley S, et al. Measurement of diaphragmatic length during the breathing cycle by dynamic MRI: comparison between healthy adults and patients with an intrathoracic tumor. Eur Radiol 2004; 14:1392-1399 Epub 2004 May 1391.
- 45. Plathow C, Ley S, Fink C, et al. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004; 39:202-209.
- 46. O'Callaghan C, Small P, Chapman B, et al. Determination of individual and total lung volumes using nuclear magnetic resonance echo-planar imaging. Ann Radiol (Paris) 1987; 30:470-472.

- 47. Plathow C, Schoebinger M, Fink C, et al. Evaluation of lung volumetry using dynamic three-dimensional magnetic resonance imaging. Invest Radiol 2005; 40:173-179.
- 48. Qanadli SD, Orvoen-Frija E, Lacombe P, Di Paola R, Bittoun J, Frija G. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging. J Comput Assist Tomogr 1999; 23:743-748.
- 49. Ebert M, Grossmann T, Heil W, et al. Nuclear magnetic resonance imaging with hyperpolarised helium-3. Lancet 1996; 347:1297-1299.
- 50. Kauczor HU, Hofmann D, Kreitner KF, et al. Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 1996; 201:564-568.
- 51. MacFall JR, Charles HC, Black RD, et al. Human lung air spaces: potential for MR imaging with hyperpolarized He-3. Radiology 1996; 200:553-558.
- 52. Eberle B, Markstaller K, Schreiber WG, Kauczor HU. Hyperpolarised gases in magnetic resonance: a new tool for functional imaging of the lung. Swiss Med Wkly 2001; 131:503-509.
- 53. Gast KK, Viallon M, Éberle B, et al. MRI in lung transplant recipients using hyperpolarized 3He: comparison with CT. J Magn Reson Imaging 2002; 15:268-274.
- 54. Kauczor HU. Hyperpolarized helium-3 gas magnetic resonance imaging of the lung. Top Magn Reson Imaging 2003; 14:223-230.
- 55. McAdams HP, Hatabu H, Donnelly LF, Chen Q, Tadamura E, MacFall JR. Novel techniques for MR imaging of pulmonary airspaces. Magn Reson Imaging Clin N Am 2000; 8:205-219.
- 56. Guenther D, Hanisch G, Kauczor HU. Functional MR imaging of pulmonary ventilation using hyperpolarized noble gases. Acta Radiol 2000; 41:519-528.
- 57. Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV. Noninvasive assessment of regional ventilation in the human lung using oxygenenhanced magnetic resonance imaging. Nat Med 1996; 2:1236-1239.
- 58. Arnold JF, Fidler F, Wang T, Pracht ED, Schmidt M, Jakob PM. Imaging lung function using rapid dynamic acquisition of T1-maps during oxygen enhancement. Magma 2004; 16:246-253 Epub 2004 Mar 2023.
- 59. Stock KW, Chen Q, Morrin M, Hatabu H, Edelman RR. Oxygenenhanced magnetic resonance ventilation imaging of the human lung at 0.2 and 1.5 T. J Magn Reson Imaging 1999; 9:838-841.
- 60. Ohno Y, Chen Q, Hatabu H. Oxygen-enhanced magnetic resonance ventilation imaging of lung. Eur J Radiol 2001; 37:164-171.
- 61. Chen Q, Jakob PM, Griswold MA, Levin DL, Hatabu H, Edelman RR. Oxygen enhanced MR ventilation imaging of the lung. Magma 1998; 7:153-161.
- 62. Chen Q, Levin DL, Kim D, et al. Pulmonary disorders: ventilationperfusion MR imaging with animal models. Radiology 1999; 213:871-879.
- 63. Hatabu H, Tadamura E, Chen Q, et al. Pulmonary ventilation: dynamic MRI with inhalation of molecular oxygen. Eur J Radiol 2001; 37:172-178.

- 64. Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A. Rapid quantitative lung (1)H T(1) mapping. J Magn Reson Imaging 2001; 14:795-799.
- 65. Kauczor HU, Chen XJ, van Beek EJ, Schreiber WG. Pulmonary ventilation imaged by magnetic resonance: at the doorstep of clinical application. Eur Respir J 2001; 17:1008-1023.
- 66. Kauczor HU, Hanke A, Van Beek EJ. Assessment of lung ventilation by MR imaging: current status and future perspectives. Eur Radiol 2002; 12:1962-1970 Epub 2002 May 1924.
- 67. Loffler R, Muller CJ, Peller M, et al. Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 2000; 43:860-866.
- 68. Mai VM, Chen Q, Bankier AA, Edelman RR. Multiple inversion recovery MR subtraction imaging of human ventilation from inhalation of room air and pure oxygen. Magn Reson Med 2000; 43:913-916.
- 69. Mai VM, Liu B, Li W, et al. Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging 2002; 16:37-41.
- 70. Mai VM, Tutton S, Prasad PV, et al. Computing oxygen-enhanced ventilation maps using correlation analysis. Magn Reson Med 2003; 49:591-594.
- 71. Nakagawa T, Sakuma H, Murashima S, Ishida N, Matsumura K, Takeda K. Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 2001; 14:419-424.
- 72. Ohno Y, Hatabu H, Takenaka D, Adachi S, Van Cauteren M, Sugimura K. Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol 2001; 177:185-194.
- 73. Ohno Y, Hatabu H, Takenaka D, Van Cauteren M, Fujii M, Sugimura K. Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 2002; 47:1139-1144.
- Ohno Y, Sugimura K, Hatabu H. Clinical oxygen-enhanced magnetic resonance imaging of the lung. Top Magn Reson Imaging 2003; 14:237-243.
- 75. Vaninbroukx J, Bosmans H, Sunaert S, et al. The use of ECG and respiratory triggering to improve the sensitivity of oxygen-enhanced proton MRI of lung ventilation. Eur Radiol 2003; 13:1260-1265 Epub 2002 Oct 1261.
- 76. Mai VM, Bankier AA, Prasad PV, et al. MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J Magn Reson Imaging 2001; 14:574-579.
- 77. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999; 9:483-487.
- 78. Mai VM, Hagspiel KD, Christopher JM, et al. Perfusion imaging of the human lung using flow-sensitive alternating inversion recovery with an extra radiofrequency pulse (FAIRER). Magn Reson Imaging 1999; 17:355-361.

- 79. Mai VM, Liu B, Polzin JA, et al. Ventilation-perfusion ratio of signal intensity in human lung using oxygen-enhanced and arterial spin labeling techniques. Magn Reson Med 2002; 48:341-350.
- 80. Martirosian P, Boss A, Fenchel M, et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. Magn Reson Med 2006; 55:1065-1074.
- 81. Edwards EA, Narang I, Li A, Hansell DM, Rosenthal M, Bush A. HRCT lung abnormalities are not a surrogate for exercise limitation in bronchiectasis. Eur Respir J 2004; 24:538-544.
- 82. Oikonomou A, Manavis J, Karagianni P, et al. Loss of FEV1 in cystic fibrosis: correlation with HRCT features. Eur Radiol 2002; 12:2229-2235 Epub 2002 Mar 2219.
- 83. Robinson TE, Leung AN, Northway WH, et al. Spirometer-triggered highresolution computed tomography and pulmonary function measurements during an acute exacerbation in patients with cystic fibrosis. J Pediatr 2001; 138:553-559.
- 84. Kauczor HU, Hast J, Heussel CP, Schlegel J, Mildenberger P, Thelen M. CT attenuation of paired HRCT scans obtained at full inspiratory/expiratory position: comparison with pulmonary function tests. Eur Radiol 2002; 12:2757-2763 Epub 2002 Jun 2714.
- 85. Schäfer JF. Detektion und Charakterisierung von Lungenrundherden mit der Magnetresonanztomographie mittels verschiedener nativer und Kontrastmittel-verstärkter Sequenztechniken unter Berücksichtigung morphologischer und perfusions-kinetischer Merkmale. Habilitationsschrift 2006.
- 86. Dakin CJ, Pereira JK, Henry RL, Wang H, Morton JR. Relationship between sputum inflammatory markers, lung function, and lung pathology on high-resolution computed tomography in children with cystic fibrosis. Pediatr Pulmonol 2002; 33:475-482.
- 87. Tiddens HA. Detecting early structural lung damage in cystic fibrosis. Pediatr Pulmonol 2002; 34:228-231.
- 88. Bankier AA, Storey P, Mai VM, Edelman RR, Chen Q. Gravity-dependent signal gradients on MR images of the lung in supine and prone positions: a comparison with isogravitational signal variability. J Magn Reson Imaging 2006; 23:115-122.
- 89. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87:9868-9872.
- 90. Dietrich O, Losert C, Attenberger U, et al. [Oxygen-enhanced MRI of the lung: optimized calculation of difference images.]. Radiologe 2006; 46:300-308.
- 91. de Jong PA, Nakano Y, Lequin MH, et al. Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 2004; 23:93-97.
- 92. Cleveland RH, Neish AS, Zurakowski D, Nichols DP, Wohl ME, Colin AA. Cystic fibrosis: predictors of accelerated decline and distribution of disease in 230 patients. AJR Am J Roentgenol 1998; 171:1311-1315.
| | - | | | |
|------------------|---|------------------|--|--|
| 2D | 2-dimensional | Р | Probablility | |
| 3D | 3-dimensional | Pat. | Patient | |
| Abb. | Abbildung | PD | Proton-density | |
| AKF | Angewandte klinische
Forschung | Perf. | Perfusion | |
| ASL | Arterial-spin-labeling | Post. | Posterior | |
| BMI | Body-mass-index | Prob. | Proband | |
| CF | Cystische Fibrose | Quant. | Quantitativ | |
| CFTR | Cystic-fibrosis-
transmembrane-regulator-
protein | R | Korrelationskoeffizient | |
| CNS | Crispin-Norman-Score | RF | Radiofrequenz | |
| Cor. | Coronar | RML | Rechter Mittellappen | |
| CT | Computertomographie | ROF | Rechtes Oberfeld | |
| EKG | Elektrokardiogramm | ROI | Region-of-interest | |
| Ex | Exspiration | ROL | Rechter Oberlappen | |
| FEV ₁ | Forciertes exspiratorisches
Volumen in 1 Sekunde | RUF | Rechtes Unterfeld | |
| FLASH | Fast-low-angle-shot | RUL | Rechter Unterlappen | |
| FOV | Field-of-view | RV | Residualvolumen | |
| GI. | Gleichung | Sag. | Sagittal | |
| GRE | Gradienten-echo | SAR | Spezifische
Absorptionsrate | |
| HRCT | High-resolution-computed-
tomographie | SD | Standard-deviation | |
| In | Inspiration | SE | Spinecho | |
| IQR | Interquartile-range | SI | Signalintensität | |
| IR | Inversion-recovery | SNR | Signal-to-noise-ratio | |
| LFP | Lungenfunktionsprüfung | Т | Tesla | |
| LL | Lingula | T ₁ | Longitudinale
Relaxationszeit | |
| LOF | Linkes Oberfeld | T ₂ | Transversale
Relaxationszeit | |
| LOL | Linker Oberlappen | T ₂ * | Transversale
Relaxationszeit bei
Magnetfeldinhomogenität | |
| LUF | Linkes Unterfeld | Tab. | Tabelle | |
| LUL | Linker Unterlappen | TE | Echozeit | |
| М | Median | TI | Inversionszeit | |
| Med. | Medial | TLC | Totale Lungenkapazität | |
| MR | Magnetresonanz | TR | Repetitionszeit | |
| MRT | Magnetresonanztomograph | TSE | Turbo-spinecho | |
| MTA | Medizinisch technische
Assistentin | VC | Vitalkapazität | |
| O_2 | Molekularer Sauerstoff | Vent | Ventilation | |

6.2 Abkürzungsverzeichnis

6.3 Abbildungsverzeichnis

Abb.	1 Dichtezunahme in Exspiration	16
Abb.	2 SI-Änderung der Lunge bei unterschiedlicher TI	18
Abb.	3 SI-Änderung des Muskels bei unterschiedlicher TI	19
Abb.	4 Bodyplethysmograph	22
Abb.	5 Röntgenthorax zweier Patienten a) und b)	26
Abb.	6 MRT-Score	36
Abb.	7 Auswertung vertikale Zwerchfellmobilität	37
Abb.	8 Quantitative Auswertung der SI in PDw-Sequenzen	39
Abb.	9 Airtrapping-Score	40
Abb.	10 Programm zur Berechnung des Lungenvolumens	41
Abb.	11 Quantitative Auswertung der Ventilation	43
Abb.	12 Anfluten des Sauerstoffs bei einer Probandin	44
Abb.	13 Ventilations-Score	45
Abb.	14 Quantitative Auswertung der Perfusion	46
Abb.	15 Perfusions-Score	47
Abb.	16 Residualvolumen in der LFP	49
Abb.	17 Vitalkapazität in der LFP	50
Abb.	18 FEV1 in der LFP	51
Abb.	19 MRT-Score mit Aufteilung nach Lappen	56
Abb.	20 CNS mit Aufteilung nach Lappen	59
Abb.	21 Vertikale Zwerchfellmobilität links	60
Abb.	22 Vertikale Zwerchfellmobilität rechts	61
Abb.	23 SNR in Inspiration	62
Abb.	24 SNR in Exspiration	62
Abb.	25 Belative Zunahme der Protonendichte	63
Abb.	26 Relative Zunahme der Protonendichte bei Patienten und Probanden	65
Abb.	27 Airtrappingscore der Patienten	66
Abb.	28 MRT-Residualvolumen bei erwachsenen Patienten und Probanden.	67
Abb.	29 MRT-Vitalkapazität bei erwachsenen Patienten und Probanden	68
Abb.	30 Vergleichbarkeit der RV-Messung	69
Abb.	31 Vergleichbarkeit der VC-Messung	70
Abb.	32 Ventilation quantitativ in den zwei coronaren Ebenen	72
Abb.	33 Ventilation quantitativ in den zwei sagittalen Ebenen	73
Abb.	34 Ventilations-Score der Patienten	74
Abb	35 Perfusion quantitativ in den zwei coronaren Ebenen	76
Abb	36 Perfusion quantitativ in den zwei sagittalen Ebenen	77
Abb	37 Perfusions-Score der Patienten	78
Abb.	38 MBT-Score bei Patienten mit Pseudomonas aeruginosa	81
Ahh	39 Morphologische Veränderungen der Patienten 29 und 33 im MBT	85
Ahh	40 Böntgenthorax der zwei Patienten	86
Ahh	41 Zwerchfellmobilität der zwei Patienten	87
Δhh	42 Dichtezunahme in Expiration der rechten Lunge bei Patient 33 und	29
, .00.	The biomozantannie in Exspiration der recitien Lunge ber ratient 55 und	87
Ahh	43 Lungenvolumen der zwei Patienten im MRT	88
Ahh	44 Ventilation der zwei Patienten	80
Δhh	15 Parfusion der zwei Patienten	00 00
ADD.	דט ו טוועטטוו עפו באיפו ו מנופוונפון	00

6.4 Tabellenverzeichnis

Tabelle 1: Crispin Norman Score (CNS)	. 25
Tabelle 2: Sequenzparameter Morphologie PD	. 28
Tabelle 3: Sequenzparameter Morphologie T2	. 29
Tabelle 4: Sequenzparameter vertikale Zwerchfellmobilität	. 30
Tabelle 5: Sequenzparameter Protonendichte	. 31
Tabelle 6: Sequenzparameter Lungenvolumen	. 32
Tabelle 7: Sequenzparameter Ventilation	. 33
Tabelle 8: Sequenzparameter Perfusion	. 34
Tabelle 9: MRT-Score	. 35
Tabelle 10: Lungenlappen Ventilation	. 42
Tabelle 11: Übersicht über den FEV ₁ -Verlauf, die Keimbesiedlung und die	
klinische Einschätzung (n = 22)	. 52
Tabelle 12: Konsequenz in der Antibiotikatherapie	. 53
Tabelle 13: Peribronchitis nach Lappen aufgeteilt	. 54
Tabelle 14: Azinäre Opazitäten nach Lappen aufgeteilt	. 54
Tabelle 15: Bronchiektasen nach Lappen aufgeteilt	. 54
Tabelle 16: Konsolidierungen nach Lappen aufgeteilt	. 55
Tabelle 17: Bronchiale Linienschatten nach Feldern aufgeteilt	. 57
Tabelle 18: Fleckschatten nach Feldern aufgeteilt	. 57
Tabelle 19: Ringschatten nach Feldern aufgeteilt	. 58
Tabelle 20: Große Schatten nach Feldern aufgeteilt	. 58
Tabelle 21: Protonendichte quantitativ	. 64
Tabelle 22: RV und VC in MRT und LFP	. 69
Tabelle 23: Ventilation quantitativ	. 71
Tabelle 24: Perfusion quantitativ	. 75
Tabelle 25: Korrelationen mit den Goldstandards	. 79
Tabelle 26: Korrelationen der MRT-Parameter untereinander	. 80
Tabelle 27: Korrelationen des FEV ₁ -Verlaufs mit den MRT-Parametern	. 83

7 Danksagung

Diese Dissertationsarbeit entstand in der Abteilung für Radiologische Diagnostik der Radiologischen Universitätsklinik Tübingen am Lehrstuhl von Herrn Prof. Dr. Claus D. Claussen.

Mein erster Dank gilt Herrn Prof. Dr. Dr. Fritz Schick für die freundliche Überlassung des Themas und für die kompetente Betreuung in seiner hilfsbereiten Art.

Mein größter Dank gilt Herrn Dr. Jürgen Schäfer, ohne den diese Studie nicht entstanden wäre. Seine immer neuen Ideen und die gute Betreuung haben mich sehr für diese Arbeit motiviert.

Besonderer Dank gilt auch Frau Susanne Schäfer, die durch Ihr Organisationstalent und Ihr Engagement wesentlich zur Durchführung der Studie beigetragen hat.

Für die Betreuung von Seiten der Kinderklinik möchte ich mich besonders bei Herrn Prof. Dr. Martin Stern und Frau Dr. Rita Ziebach bedanken, die mir bei Fragen zu den Patienten stets behilflich waren.

Bei Herrn Dr. Reinhard Vonthein vom Institut für Medizinische Biometrie möchte ich mich für die freundliche Beratung und die Hilfe bei allen statistischen Belangen bedanken.

Bedanken möchte ich mich auch bei Herrn Dr. Christian Müller-Horvat, der das Programm zur Berechnung des Lungenvolumens für diese Studie geschrieben hat und bei Fragen immer ein offenes Ohr hatte.

Des Weiteren gilt mein Dank Herrn Dr. Andreas Boss, Herrn Dr. Matthias Lichy, Herrn Dr. Burkhard Ludescher, Herrn Dr. Joachim Vollmar und Herrn Petros Martirosian, die mir immer mit guten Ratschlägen zur Seite standen.

Mein letzter Dank gilt meinem Lebensgefährten Frank Billes für die mentale Unterstützung und die Hilfe bei computertechnischen Fragen, sowie meinen Eltern und meinem Bruder für die Korrekturlesung.

8 Lebenslauf

Name:	Franka Zenneck
Geboren:	12.11.1980 in Bristol (Großbritannien)
Eltern:	Prof. Dr. Ulrich Zenneck
	Dr. Alice Zenneck (geb. Meyer)
Geschwister:	Dr. Jan Zenneck
1.4.1981	Umzug von Bristol nach Sinsheim
9/1987 — 7/1991	Theodor-Heuss-Grundschule Sinsheim
1.8.1991	Umzug nach Forchheim
9/1991 — 6/2000	Ehrenbürg-Gymnasium-Forchheim
30.6.2000	Zeugnis der Allgemeinen Hochschulreife
1.10.2000	Immatrikulation für Geoökologie an der Universität Bayreuth
31.3.2001	Exmatrikulation in Bayreuth
1.4.2001	Immatrikulation für Humanmedizin an der Eberhard-Karls- Universität Tübingen
24.3.2003	Physikum im Fach Humanmedizin
3/2005 — 7/2005	Auslandssemester (ERASMUS) an der Université-Victor- Segalen Bordeaux 2
8/2006 — 7/2007	Praktisches Jahr im Kreiskrankenhaus Böblingen
30.05.2008	Staatsexamen im Fach Humanmedizin