Aus der Medizinischen Universitätsklinik und Poliklinik Tübingen Abteilung Innere Medizin II Ärztlicher Direktor: Professor Dr. L. Kanz

Funktionelle Charakterisierung CD34, AC133 und CD164 selektierter, hämatopoetischer Stammzellpopulationen in vitro

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard-Karls-Universität zu Tübingen

vorgelegt von Gisa Urte Kristina Rathke aus Freiburg im Breisgau

2002

DekanProfessor Dr. C. D. Claussen1. Berichterstatter:Privatdozent Dr. W. Brugger2. Berichterstatter:Professor Dr. H. G. Rammensee

ii

für meine mutter Joh. 16, 22 iv

Inhaltsverzeichnis

1	Einl	eitung		1
	1.1	Wie si	nd hämatopoetische Stammzellen definiert?	1
		1.1.1	Morphologie und Immunphänotypisierung	1
		1.1.2	Funktion	6
	1.2	Klinis	che Anwendung hämatopoetischer Stammzellen	8
		1.2.1	Ansätze zur Optimierung	8
	1.3	Ziele d	ler Arbeit	12
		1.3.1	Etablierung des CAFC-Assays	12
		1.3.2	Vergleich von CD34 ^{pos} und AC133 ^{pos} selektierten Zellen in ex-	
			pandiertem und nicht expandiertem Zustand	12
		1.3.3	Charakterisierung CD34 ^{neg} Zellen mittels in vitro Zellkulturen	13
2	Mat	erial ur	nd Methoden	15
	2.1	Materi	alien	15
		2.1.1	Zusammensetzung der Puffer, Lösungen und Medien	19
	2.2	Metho	den	22
		2.2.1	Isolierung der Zellen	22
		2.2.2	Funktionelle Charakterisierung	26
		2.2.3	Statistik	28
3	Erge	ebnisse		31
	3.1	FACS-	Analyse der durch MACS isolierten Zellen	31

INHALTSVERZEICHNIS

	3.2	Etablie	erung des CAFC-Assays	32	
	3.3	Vergleich CD34 ^{pos} und AC133 ^{pos} Zellen			
		3.3.1	Vergleich nicht expandierter Zellen	36	
		3.3.2	Expansion	41	
	3.4	CD34 ^{<i>n</i>}	^{<i>ieg</i>} und CD164 ^{<i>pos/neg</i>} Subpopulationen \ldots \ldots \ldots \ldots	46	
		3.4.1	CFU	46	
		3.4.2	CAFC	47	
4	Disk	ussion		51	
	4.1	Metho	de	51	
	4.2	Vergle	ich AC133 ^{pos} und CD34 ^{pos} Zellen	54	
		4.2.1	Vergleich der CD34 ^{pos} versus AC133 ^{pos} Stammzellpopulationen		
			bezüglich der ex vivo Expansionsfähigkeit	56	
	4.3	CD34 ^{rr}	^{<i>ueg</i>} und CD164 ^{<i>pos/neg</i>} Subpopulationen	59	
5	Zusa	ammenf	fassung	63	
Da	Danksagung				
Le	Lebenslauf				

Tabellenverzeichnis

1.1	Phänotyp potentieller Stammzellenkandidaten; Abkürzungen siehe Kapi-	
	tel 1.1.2	3
1.2	Mögliche Lösungsansätze im Rahmen einer Stammzelltransplantation.	
	Tx bedeutet Transplantation	10
2.1	Materialien	15
3.1	CAFC pro 10 ⁵ CD34 ^{pos} Zellen; in Klammern Konfidenzintervalle. Mate-	
	rial: Leukapherisat	36
3.2	Colony forming cells (CFC)/ 500 Zellen . Material: Leukapherisat, $n = 4$.	
	Abkürzungen: BFU-E burst forming unit-erythropoietic; GFU-GM co-	
	lony forming unit-granulocyte/macrophage; SD Standardabweichung	37
3.3	CAFC pro 10 ⁵ AC133 ^{pos} Zellen; in Klammern Konfidenzintervalle. Ma-	
	terial: Leukapherisat	38
3.4	CAFC pro 10 ⁵ CD34 ^{pos} Zellen; in Klammern Konfidenzintervalle. Mate-	
	rial: Leukapherisat	38
3.5	Faktoren, um welche AC133 ^{pos} Zellen im Vergleich zu den CD34 ^{pos} Zel-	
	len mehr CAFC bilden. s signifikant, ns nicht signifikant, in Klammern	
	Konfidenzintervalle	39
3.6	Absolute Zellzahlen nach Expansion, Angabe in $10^4/ml$	41
3.7	CFC pro 500 eingesetzter Zellen, Material: Leukapherisat	42
3.8	CFC pro 1000 eingesetzter Zellen, Material: Leukapherisat	43

TABELLENVERZEICHNIS

3.9	CAFC pro 10^5 Zellen, in Klammern Konfidenzintervalle \ldots	44
3.10	Faktoren, um welche AC133 ^{pos} Zellen im Vergleich zu den CD34 ^{pos} Zel-	
	len mehr CAFC bilden, in Klammern Konfidenzintervalle. s signifikant,	
	ns nicht signifikant	45
3.11	Multiplikationsfaktor der expandierten Zellen im Vergleich nicht expan-	
	dierten (Tag 0) Zellen. s signifikant, ns nicht signifikant	45
3.12	CFC der CD34/CD164-charakterisierten Zellen. Angabe in CFC /einge-	
	setzte Zellen. Material: Knochenmark	46
3.13	CAFC pro 10 ⁵ Zellen, in Klammern Konfidenzintervalle. Material: Kno-	
	chenmark	50
4.1	Kulturbedingungen aus der Literatur HC Hydrocortison, ME Mercapto-	
	ethanol, SM Streptomycin	52
4.2	Referenzergebnisse CAFC-Frequenzen pro 10 ⁵ Zellen der 5. oder 6. Wo-	
	che, eigene Ergebnisse	53

Abbildungsverzeichnis

1.1	Schema der myeloischen Hämatopoese nach Heckner/Freund [50]	2
1.2	Versuchsanordnung zur Untersuchung der Funktionalität von Stamm- und	
	Vorläuferzellen [3, 13, 14, 46, 48, 51, 55, 63, 67, 68, 71, 74, 79, 80, 88,	
	94, 102, 103, 114]	7
3.1	FACS-Analyse von AC133 isolierten Zellen (Patient 11)	32
3.2	Mikroskopische Aufnahme der CAFC (Pfeil), Vergrößerung 40x (oberes	
	Bild)und 100x (unteres Bild)	33
3.3	Anzahl der CAFC pro 10 ⁵ CD34 ^{pos} Zellen der Proben 1-3; die unterbro-	
	chenen Linien stellen die Konfidenzintervalle dar	34
3.4	Anzahl der CAFC pro 10 ⁵ CD34 ^{pos} Zellen der Proben 4-6; die unterbro-	
	chenen Linien stellen die Konfidenzintervalle dar	35
3.5	CAFC pro 10^5 Zellen des Patienten 7	39
3.6	CAFC pro 10^5 Zellen der Patienten 8 bis 10	40
3.7	CAFC pro 10^5 Zellen des Patienten 13	47
3.8	CAFC pro 10^5 Zellen der Patienten 14 bis 16	48
3.9	CAFC pro 10^5 Zellen der Patienten 17 und 18	49

ABBILDUNGSVERZEICHNIS

Kapitel 1

Einleitung

1.1 Wie sind hämatopoetische Stammzellen definiert?

Obwohl die Frage nach dem Ursprung der Hämatopoese schon im 18. Jahrhundert aufgeworfen wurde [64], ist bis heute die eindeutige Identifizierung von multipotenten hämatopoetischen Stammzellen nicht gelungen. Alle Blutzellen entstehen durch Differenzierung multipotenter Stammzellen, die bislang nur funktionell charakterisiert werden können. Sie zeichnen sich durch ihre Kapazität aus, sowohl durch Zellteilung identische Nachkommen zu generieren (self renewal), als auch über viele Reifungsstufen Effektorzellen aller hämatopoetischen Differenzierungslinien zu bilden [46, 98]. Morphologisch und phänotypisch können hämatopoetische Stammzellen zwar eingegrenzt, jedoch nicht eindeutig definiert werden.

1.1.1 Morphologie und Immunphänotypisierung

Lichtmikroskopisch stellen sich diese frühen Vorläufer als etwa 15 μ m große Zellen dar, die in der Kern-Plasma-Relation mit einem Lymphozyt vergleichbar sind, jedoch ein deutlich blasseres Zytoplasma besitzen [50]. Zur Anreicherung hämatopoetischer Stammzellen der Maus werden unter anderem physikalische Eigenschaften wie Dichtezentrifugation (density centrifugation) [73] und countercurrent elutriation [80] ausgenutzt. Zudem kön-

Abbildung 1.1: Schema der myeloischen Hämatopoese nach Heckner/Freund [50]

nen anhand intrazellulärer Färbungen mit DNS-bindendem Höchst 33342 und mitochondrienfärbendem Rhodamin 123 [10, 110] Aussagen über den Zellzykluszustand getroffen werden.

Die Entwicklung von monoklonalen Antikörpern gegen Oberflächenantigene gilt als wichtigster Schritt zur phänotypischen Charakterisierung dieser Zellen [46]. Inzwischen werden die verschiedenen Differenzierungsstufen der Blutzellen durch diese immunologischen Marker definiert. Die heutige Vorstellung, wie der Stammbaum der myeloischen Blutzellen aussehen könnte, ist in Abb 1.1 dargestellt.

Die Tabelle 1.1 beschreibt den möglichen Phänotyp der hämatopoetischen Stammzellen

nochmal im einzelnen, wobei im weiteren auf die in dieser Arbeit verwendeten Marker CD34, AC133 und CD164 detaillierter eingegangen wird.

> Tabelle 1.1: Phänotyp potentieller Stammzellenkandidaten; Abkürzungen siehe Kapitel 1.1.2

	Methode des Nachweises	Referenz
CD34 ^{pos}	Lethally irradiated allogenic baboons	[3]
CD34 ^{pos} Thy-1 ^{pos}	CFC, HPP-CFC, LTC-IC	[32]
CD34 ^{pos} CD45RA ^{pos}	CFU, LTC-IC	[61]
CD34 ^{pos} CD38 ^{neg}	CFU-Bl, replating assay	[100]
CD34 ^{pos} CD38 ^{neg}	Fetal sheep	[29]
CD34 ^{pos} c-kit ^{low}	In utero transplantation	[57]
CD34 ^{pos} AC133 ^{pos}	Fetal sheep, CFU	[112]
CD34 ^{pos} AC133 ^{pos}	LTC-IC, NOD/SCID Maus	[41]
CD34 ^{pos} Flt-3 ^{pos}	CFU, CAFC	[86]
CD34 ^{pos} Flt-3 ^{neg}	CFU	[44]
${\rm CD34}^{bright}{\rm CD38}^{neg}{\rm CD164}^{pos}$	CFU, pre-CFU, LTBMC	[117]
CD34 ^{neg} CD164 ^{pos}	Fetal sheep, CAFC	[1]
Lin ^{neg} CD71-H-2 ^{high} c-kit ^{low}	CFU, LTC-IC	[96]
TIE	CAFC	[60]

CD 34

Mitte der 80er Jahre beschrieben Andrews et al. [4] einen monoklonalen Antikörper, mit Hilfe dessen aus Knochenmark sehr primitive koloniebildende Vorläuferzellen angereichert werden konnten. Das später als CD34 geclusterte Antigen wird auf hämatopoetischen Stamm- und Progenitorzellen, Leukämie-Zellen, Endothelzellen und einigen fetalen mesenchymalen Zellen exprimiert [40, 59]. Mit Hilfe von knock-out-Mäusen konnte gezeigt werden, daß CD34^{pos} Zellen eine wichtige Rolle in der Hämatopoese spielen [28] und speziell diese Zellen die Fähigkeit zur Wiederherstellung aller reifen Blutzellen besitzen (Repopulation)[3, 76]. Anhand weiterer Oberflächenmoleküle gelang es, die heterogene CD34^{pos} Zellpopulation in weitere Untergruppen unterschiedlicher Funktionalität zu fraktionieren (siehe auch Tabelle 1.1).

Ende des vergangenen Jahrzehnts rückten CD34^{*neg*} Stammzellen ins Zentrum des Interesses: 1996 beschrieben Osawa et al. [75] eine lymphohämatopoetische Rekonstitution durch eine CD34^{*neg*} Zellpopulation im Mausmodell. Zwei Jahre später zeigten Zanjani et al. [114], daß nach Transplantation von humanen CD34^{*neg*} Knochenmarkszellen in fetale Schafe CD34^{*pos*} Zellen entstehen können. Im gleichen Jahr bestätigten Bhatia et al.[12] den Stammzellcharakter von CD34^{*neg*} HLA-DR^{*neg*} Thy-1^{*neg*} Zellen durch Transplantationsexperimente in NOD/ SCID-Mäusen. Im Gegensatz zu CD34^{*pos*} Zellen bildeten diese Zellen keine Kolonien im long-term-culture-initiating-cell (LTC-IC, siehe unten)-Assay, was als Hinweis auf frühere Reifungsstufen gewertet wurde.

AC 133

Ende der 90er Jahre identifizierten Yin et al ein neues, durch den Antikörper AC133 definiertes Pentaspan-Oberflächenmolekül [70, 112], das als neuer Marker für hämatopoetische Stamm- und Progentitorzellen diskutiert wird. Dieses Antigen ist inzwischen als CD133 Molekül geclustert. Wie ein Jahrzehnt zuvor im Falle der CD34^{pos} Zellen konnte nach der Transplantation von AC133^{pos} Zellen eine Differenzierung in verschiedenste Effektorzellen nachgewiesen werden. In weiteren Arbeiten wurde gezeigt, daß diese humanen CD34^{pos}AC133^{pos} Zellen auch NOD/ SCID-Mäuse repopulieren, zur Bildung von pre-CFU-S (pre-colony-forming-units-spleen, siehe Kapitel 1.1.2) fähig sind und sich als long-term-culture-initiating-cell(LTC-IC), high-proliferation-potential- colony-forming-cells (HPP-CFC) und colony-forming-units-Blasts (CFU-Bl) präsentieren. Der Antikörper AC133 markiert zudem Blasten von Patienten mit akuter myeloischer Leukämie [24, 45, 54, 58, 112], akuter lymphatischer Leukämie [83] und Myelodysplastischen Syndromen [45], sowie normale CD34^{pos} B-lymphoide Vorläufer- [83] und Epithelzellen [30, 31, 69]. In neuester Zeit wird die Existenz einer CD34^{neg}CD38^{neg}Lin^{neg} AC133^{pos} Stammzelle diskutiert [41].

CD164

Das CD164-Molekül konnte 1997 durch verschiedene von Dr. H.-J. Bühring generierte Antikörper über Expressionsklonierung identifiziert werden [108]. Inzwischen hat sich die Zahl der Antikörper auf vier erhöht [38, 106], mit denen drei Epitope des Transmembranmucins CD164 erkannt werden. Das Verteilungsmuster auf hämatopoetischem und nicht hämatopoetischem Gewebe wurde in jüngster Zeit wie folgt beschrieben [107]: Der CD164-Klasse I-Antikörper (105A5) bindet vor allem an lymphoide Zellen. Der das Klasse II - Epitop erkennende Antikörper 103B2/9E10 markiert vaskuläres Endothel, Endothel in lymphoiden Geweben, Sinus in der Milz, sowie basale Epithelien in Thymus, Tonsillen und der Haut. Zerebrales Endothel wird von beiden genannten Antikörper angefärbt. Antigene, die vom Klasse III - Antikörper (N6B6 und 67D2) erkannt werden, werden sehr breit auf hämatopoetischem und nicht hämatopoetischem Gewebe gefunden. Das Expressionsmuster unterstützt die Hypothese einer hämatopoetisch-endothelialen Vorläuferzelle (Hämangioblast) [107].

Es wurde gezeigt, daß CD34^{pos} CD38^{lo/neg} wie auch die meisten Lin^{neg}CD34^{neg} CD38^{lo/neg} und CD34^{high} AC133^{high} CD38^{lo/neg} Zellen das CD164-Molekül exprimieren [86, 107, 108]. Die Untersuchungen von Almeida-Porada et al. zeigen, daß CD34^{neg} CD164^{pos} Zellen zu einem höheren Prozentsatz als CD34^{neg} CD164^{neg} Zellen humane Zellen im fetalen Schaf-Transplantations-Modell hervorbringen [1] (Erläuterungen siehe Abb. 1.2). Auch in späteren Reifungsstadien kann CD164 nachgewiesen werden: Der Antikörper 103B2/9E10 bindet an pre-colony-forming-unit (pre-CFU), CFU- granulocyte/ makrophage, burst-forming-unit (BFU-E) und CFU-Mix [108, 117], wie auch an Proerythroblasten, Erythroblasten, polychromatische und basophile Normoblasten. Weiter ist beschrieben worden, daß letztgenannter Antikörper die Adhäsion von CD34^{pos} Zellen an allogenes Knochenmarksstroma in vitro verhindert [117]. Die hier erwähnten Publikationen ergeben zusammengefaßt einen starken Hinweis darauf, daß die CD164-Expression tatsächlich eine sehr primitive Stammzelle definiert.

1.1.2 Funktion

Der Phänotyp einer Zelle sagt nur beschränkt etwas über die biologischen Eigenschaften aus. Um die Funktion der Zellen zu untersuchen, wurden diverse Modelle beschrieben, die unterschiedliche Stufen der hämatopoetischen Differenzierung charakterisieren. Bislang können Stammzellen nur indirekt durch Darstellung ihrer späteren Reifungsstadien nachgewiesen werden. Dazu werden in vivo- und in vitro-Methoden verwendet: Ein Ziel der in vivo-Modelle ist die Demonstration der Fähigkeit einer Zellpopulation, auf eine längere Zeit hin die Blutbildung wiederherzustellen (long-term-repopulation). In vitro-Versuchsanordnungen weisen eher reifere Zellpopulationen, aber auch, wie durch vergleichende Versuche gezeigt, in vivo darstellbare long-term-repopulating-cells nach.

So entspricht zum Beispiel die Zellpopulation, die in der Lage ist, eine subletal bestrahlte Maus am Leben zu erhalten, der Zellfraktion, die noch nach sechs Wochen in Langzeitzellkultur sogenannte cobblestone-area-forming-cells (CAFC) bildet. Breems et al. beschrieben, daß die Zahl der CAFC in der 1. bis 4. Woche mit der Erholung der frühen Hämatopoese nach Stammzelltransplantation korreliert [18]. Der CFU-Assay wird zur Qualitätskontrolle bei der Stammzelltransplantation verwendet, wobei diese Versuchsanordnung bereits differenziertere, sogenannte kommittierte Progenitorzellen, aber keine Stammzellen mehr darstellt. Eine zentrale Rolle bei der Untersuchung der Hämatopoese spielt die Maus, die als Modell für in vitro und in vivo Versuche dient [98]. Die Abbildung 1.2 gibt einen Überblick über die gegenwärtig genutzten Modelle.

Abbildung 1.2: Versuchsanordnung zur Untersuchung der Funktionalität von Stamm- und Vorläuferzellen [3, 13, 14, 46, 48, 51, 55, 63, 67, 68, 71, 74, 79, 80, 88, 94, 102, 103, 114]

Erläuterung zu Abb. 1.2

fetal sheep Assay: potentielle Stammzellen werden fetalen Schafen in utero transplantiert; 60 Tage nach Transplantation Gewinnung von Zellen aus dem transplantierten Tier und Retransplantation in ein zweites Schaf in utero; Nachweis humaner Zellen mittels FACS oder PCR

SCID-hu, SCID-, NOD/SCID-, bg/nu/xid-Maus-Assay: immundefiziente Mäuse, denen potentielle Stammzellen injiziert werden; die Entwicklung eines humanen Blutzellsystems gilt als Stammzellnachweis

CFU-S-Assay: supraletal bestrahlten Mäusen werden potentielle Stammzellen injiziert; nach 7-12 Tagen können in der Milz hämatopoetische Kolonien dargestellt werden

LTC-IC (**long-term-culture-initiating-cell**)-**Assay**: potentielle Stammzellen werden auf humanen Stromalayern über Wochen kultiviert; zu bestimmten Zeitpunkten werden Zellen entnommen und deren klonogene Aktivität anhand des CFC-Assays (siehe dort) nachgewiesen

CAFC (cobblestone-area-forming-cell)-Assay: modifizierte Form des LTC-IC-Assays

(siehe oben); potentielle Stammzellen werden in stroma-unterstützten Langzeitzellkulturen beobachtet und mikroskopisch als pflastersteinartige Kolonien (= Klon, der aus einer Stammzelle entstanden ist) ausgezählt

HPP-CFU-, CFU-Bl-, CFU-GM-, CFU-Mix-, BFU-E-, CFU-E-Assay: Nachweis von klonogenen Progenitorzellen in mit Zytokinen angereicherten semisoliden Medien

1.2 Klinische Anwendung hämatopoetischer Stammzellen

Die Transplantation hämatopoetischer Stammzellen gilt in zunehmendem Maß als etabliertes Verfahren zur Therapie maligner und einiger nicht maligner Erkrankungen. Vor allem hämatologische und metabolische Erkrankungen sind Indikationen für allogene Transplantationen, während die autologe Transplantation nach hochdosierten Chemooder Bestrahlungstherapien hämatologischer und einiger solider Tumoren angewendet wird [5]. Inzwischen wird auch von Erfolgen bei der Behandlung von Autoimmunerkrankungen berichtet [8, 25]. Cavazzana-Calvo et al. beschrieben kürzlich die erste erfolgreiche Gentherapie bei an SCID erkrankten Kindern; die Zielzellen des verwendeten Vektors waren dabei CD34^{pos} [27]. Dieser Versuch bestätigt frühere Aussagen [62], CD34^{pos} hämatopoetische Stammzellen seien geeignete Ziele für Gentherapien. Als Stammzellquelle diente bisher das Knochenmark, neuerdings werden hauptsächlich periphere Blutstammzellen, die durch Chemotherapie und/oder Wachstumsfaktoren mobilisiert werden [82] verwendet. Nabelschnurrestblut wird aufgrund der geringen Zellzahl meist nur bei Kindern transplantiert [95].

1.2.1 Ansätze zur Optimierung

Trotz der inzwischen jahrzehntelangen Erfahrung ist vor allem die allogene Stammzelltransplantation noch immer mit einer hohen Mortalität verbunden. Die Schwierigkeiten beginnen oft schon im Vorfeld mit der Suche nach einem geeigneten Spender und der Toxizität der Konditionierungstherapie. Die Transplantation an sich erfordert eine ausreichende Menge an Spenderzellen; im allgemeinen wird eine Zellzahl von über 4-5x10⁶ CD34^{pos} Zellen pro Kilogramm Körpergewicht angestrebt.

Nach der Transplantation besteht zunächst - neben der Gefahr der Transplantatabstoßung - das Risiko einer Infektion oder Blutung infolge der therapieinduzierten Panzytopenie. Mit der Etablierung des Transplantats im Körper des Empfängers kann es bei der allogenen Transplantation zu einer Graft-versus-Host-Reaktion kommen, bei der sich die Spenderzellen gegen den Empfängerorganismus wenden. Dieser Komplikation versucht man durch eine Reduktion des T-Zell-Anteils entgegenzuwirken, wobei mit sinkendem T-Zell-Anteil jedoch der erwünschte Graft-versus-Leukemia-Effekt abnimmt, was das Risiko eines Rezidivs der zugrunde liegenden Erkrankung erhöht und gleichzeitig das Risiko viraler Infektionen einschließlich der EBV-asoziierten Neoplasien steigert.

Autologe Transplantationen bergen die Gefahr, daß das Transplantat mit Tumorzellen kontaminiert sein könnte. Dieser Kontamination wird in der Praxis durch positive Selektion von Stammzellen mittels dem Oberflächenantigen CD34 [42, 92, 109] oder AC133 [7] entgegengetreten. In verschiedenen Studien wurde gezeigt, daß eine ex vivo Expansion hämatopoetischer Zellen möglicherweise zu einer Reduktion der kontaminierenden Tumorzellen führen kann [22, 39, 105]. Klinische Hinweise, daß diese verringerte Tumorzellkontamination zu einer Verbesserung der Prognose von Tumorpatienten führt, sind jedoch bislang nicht gegeben.

Die Tabelle 1.2 faßt Komplikationen einer Stammzelltransplantation zusammen und führt mögliche Lösungsansätze auf.

	Problem	Lösungsansatz	Referenz
vor Tx	passender Spender	große Zellzahlen können	[6, 87]
		HLA-Barrieren überwinden	
		("megadose"-approach)	
	Medikamententoxizität	reduzierte Konditionierung	[26, 72]
Tx	geringe Zellzahl	Expansion	[21, 52, 89, 91]
	Kontamination mit Tumor-	Selektion	[7, 22, 42, 92,
	zellen		108]
		Expansion	[20, 22, 39]
nach Tx	Panzytopenie		
	–Neutropenie/Anämie	"megadose"-approach	[118]
		Expansion	[2, 23, 39, 91]
	-Thrombozytopenie	Expansion	
	-verzögerte Erholung des	"megadose"-approach	[87]
	Immunsystems		
	Medikamententoxizität	reduzierte Konditionierung	[26, 72]
	GvH-D	T-Zell-Depletion	[39, 81]
	Relaps	Donorlymphozyteninfusion	
	Transplantatabstoßung	Anpassung der T-Zell-	[104]
		menge	
	Sekundäre Tumoren	reduzierte Konditionierung	[35]
	virale Komplikationen	virusspezifische T-Zellen	[47]
	Schädigung des Stromas	Transplantation von Stroma	[36]
		Expansion von Stroma aus	
		Stammzellen	

Tabelle 1.2: Mögliche Lösungsansätze im Rahmen einerStammzelltransplantation. Tx bedeutet Transplantation

Die ex vivo Expansion von Stamm- und Progenitorzellen ist eine der potentiellen Optionen zur Verbesserung des Transplantationsverfahrens. Eine genaue phänotypische Charakterisierung von Stammzellen könnte zum Beispiel das optimale Ausgangsmaterial für eine ex vivo Expansion definieren. Ein solcher Marker, der eine positive Selektion der Stammzellen ermöglicht, wäre eine sicherere Voraussetzung, Tumorzellen aus einem Transplantat zu eliminieren. Daher hat die Suche nach einem Stammzellmarker, der frühere als CD34^{pos} Zellen identifiziert, ebenso höchste Priorität wie der Versuch, ebendiese Zellen oder bisher identifizierbare Stammzellen in vitro zu vermehren.

1.3 Ziele der Arbeit

Ziel der vorliegenden Arbeit war es, verschiedene phänotypisch charakterisierte Stammzellpopulationen im Hinblick auf ihre funktionellen Eigenschaften in vitro zu untersuchen. Außerdem wurde versucht, die Potenz und Qualität von ex vivo Expansionen zu beschreiben.

1.3.1 Etablierung des CAFC-Assays

Für die funktionelle Untersuchung der verschiedenen Zellpopulationen wurde der sogenannte cobblestone-area-forming-cell (CAFC)-Assay etabliert, der zur Untersuchung der primitivsten in vitro nachweisbaren hämatopoetischen Stammzellen benutzt wird. Um Zellpopulationen miteinander bezüglich ihrer Funktionalität auf Stamm- und Progenitorzellebene vergleichen zu können, sollte dieser Assay anhand von CD34^{pos} Zellen etabliert und validiert werden.

1.3.2 Vergleich von CD34^{pos} und AC133^{pos} selektierten Zellen in expandiertem und nicht expandiertem Zustand

Aufgrund phänotypischer Eigenschaften einer Stamm- beziehungsweise Progenitorzelle allein können noch keine Aussagen über ihre Funktion gemacht werden. In der vorliegenden Arbeit sollten CD34^{pos} und AC133^{pos} selektierte periphere Blutstammzellen mittels CAFC-Assay auf ihre Stammzell-Verhalten in vitro untersucht werden. Ergänzend wurden diese Zellen im CFU-Assay, der Progenitoreigenschaften quantifiziert, untersucht. Damit sollte überprüft werden, ob AC133^{pos} Zellen als Antikörper für frühere als CD34^{pos} Stammzellen darstellen. In einem weiteren Schritt wurden CD34^{pos} und AC133^{pos} Zellen in serumfreiem Medium mit SCF, Flt-3-Ligand und Thrombopoetin kultiviert. Um zu untersuchen, ob sich Vorläuferzellen expandieren lassen und ob Unterschiede zwischen CD34^{pos} und AC133^{pos} Zellen bestehen, wurden diese Zellpopulationen sowohl im CAFC- als auch im CFU-Assay analysiert.

1.3.3 Charakterisierung CD34^{neg} Zellen mittels in vitro Zellkulturen

Im letzten Teil der Arbeit sollte der Frage nachgegangen werden, ob mit Hilfe des CD164-Antigens Stammzellen positiv identifiziert werden können. Dazu wurde die Isolierung der CD34^{neg} Lin^{neg} Zellen aus gesundem Knochenmark und die elektronisch gesteuerte Sortierung in CD34^{neg}CD164^{neg} und CD34^{neg}CD164^{pos} beziehungsweise CD34^{pos}CD164^{neg} und CD34^{pos}CD164^{pos} Fraktionen im Labor von Dr. H-J Bühring durchgeführt. Mit Hilfe des CAFC- und des CFC-Assays sollte anschließend das koloniebildende Verhalten der beiden Populationen in vitro beurteilt werden.

Kapitel 2

Material und Methoden

2.1 Materialien

Kurzbezeichnung	Bezeichnung	Firma
MyeloCult	MyeloCult	Stem Cell Technologies
G-CSF	Neupogen ^{(R), 1,0 ml}	Amgen/ Roche
SCF	Human SCF, 10 μ g	TeBu
Flt-3-L		TeBu
Тро	Cell Gro Cytokine human rec. TPO	Cell Genix
	$25~\mu\mathrm{g}$	
MethoCult	MethoCult H4230	Stem Cell
IL-1ß	IL-1ß	Genzyme
GM-CSF	GM-CSF	Sandoz
SCF	Recombinant Human Stem Cell	Tebu
	Factor	
IL-6	IL-6	Tebu
IL-3	IL-3	Sandoz
Еро	Еро	CILAG Fresenius

Tabelle 2.1: Materialien

IMDM		Gibco BRL
X-Vivo 10	X-Vivo 10 serum free medium with	Bio Whittaker
	gentamicin	
FBMD-1	Praeadipozyten-Zelllinie, stromal	R. Ploemacher, NL
	feeder	
Antikörper		
CD 34 Isolation-Kit	MACS-Reagents: CD34 Isolation	Miltenyi Biotec
	Kit	
IgG-FITC/-PE	Simultest Control	Becton Dickinson
CD34-FITC	CD34 anti-HPCA-2	Becton Dickinson
AC133-PE	AC 133-PE	Miltenyi Biotec
AC133 Kit	AC133 Cell Isolation Kit	Miltenyi Biotec
StemSep Antkörper	StemSep - Cocktail for CD34+/38-	CellSystems
	cells	
CD 2-FITC		Becton Dickinson
CD 3-FITC		Becton Dickinson
CD 4-FITC		Becton Dickinson
CD 8-FITC		Becton Dickinson
CD 11c-FITC		Serotec, UK
CD 13-FITC		Immunotec, France
CD 14-FITC		Becton Dickinson
CD 15-FITC		Becton Dickinson
CD 16-FITC		Immunotec, France
CD 20-FITC		Immunotec, France
CD 56-FITC		Becton Dickinson
GlycA-FITC		Immunotec, France
103WB2		Labor Bühring
Anti IgG3-PE		Labor Bühring

2.1. MATERIALIEN

CD 34-PE/Cy5

Immunotec, France

Chemikalien		
Alkohol	Ethanol 99,9%	Universitätsapotheke
PBS	PBS Dulbecco's	Gibco BRL
Ficoll	Ficoll'sche Lösung	Seromed
Trypanblau	Trypan Blue Stain 0,4%	Gibco BRL
DMSO	Dimethyl Sulfoxide 10 ml	Sigma
BSA	Bovines Serum Albumin	Boehringer-Mannh.
Hydrocortison	Hydrocortisone 21-Hemisuccinate	Sigma
Heparin	Heparin-Na Braun ""Multi", 10000	Braun
	IE/ ml	
Gelatine	Gelatine für Microbiologie	Merck
Aqua dest.	Aqua ad iniectabile, 10 ml	Braun
Trypsin	Trypsin-EDTA	Life Technologies
0,9% NaCl	E 0,9% NaCl, 250 ml	Fresenius
HSA	DRK-Albumin-Lösung 20 BaWü	DRK
ACD		Baxter
Na-Acid-Stammlsg		Merck
Verbrauchsmaterialier	l	

Zellfilter	Pre-Separation Filters	Miltenyi Biotec
96-well-Platten	Nunclon Micro Well, flat bottom	Nunc
Neubauer-Zählk.	Neubauer 0,1 mm Tiefe 0,0025	Assistent, Deutschland
	mm^2	
Pipettenspitzen gelb	$1-100\mu$ l	Greiner
Pipettenspitzen blau	100-1000µl	Greiner
Eppendorf-Cups	PP-Reaktionsgefäße 1,5 ml	Greiner
Säulen	MACS single use Separation Co-	Miltenyi Biotec
	lumns VS+	

_

FACS-Röhrchen	Falcon 2052 Polystyrene, round	Becton Dickinson
	bottom	
Einfrierbox	Nalgene cryo 1°C Freezing contai-	Nalgene
	ner	
Cryoröhrchen	Cryo.s sterile	Greiner Cellstar
CFU-Schälchen	Gewebekulturschalen, steril	Greiner
	35,0/10 mm	
Petri-Schalen		
Gewebekulturschalen	Bio-Assay-Dish 245x245x25 SI	Nunc
Kulturflaschen klein	Tissue culture Flasks	Becton Dickinson
Kulturflaschen groß	Tissue culture Flasks	Becton Dickinson
Combitip	Combitips plus 2,5 ml	Eppendorf
Handschuhe	Satin Plus Powder Free M	Safeskin Corp., USA
Parafilm	Parafilm ,,,,M", 4",x250'	American Nat. Can
Pipetten 5 ml	Pipette mit Spitze 5 ml	Greiner
Pipetten 10 ml	Pipette mit Spitze 10 ml	Greiner
Pipetten 25 ml	Pipette mit Spitze 25 ml	Greiner
StemSep Säulen	StemSep - 0.5"Colum Gravity Feed	CellSystems
15 ml Röhrchen	PP-Röhrchen, steril 15 ml	Greiner Cellstar
50 ml Röhrchen	PP-Röhrchen, steril 50 ml	Greiner Cellstar
Geräte		
Pipettboy	Vacu-petus Qualilab	Bender und Hobein
Zentrifuge	Minifuge GL	Heraeus
Mikroskop	Auflicht-Mikroskop	Olympus
Laminar Flow	Lamin Air	Heraeus
Magneten	Midi MACS	Miltenyi Biotec
Vortex	Certomat MU	Braun Biotec
Facs-Gerät	FACS-Calibur	Becton Dickinson
FACS-Vantage	FACS-Vantage	Becton Dickinson

Wasserbad	Thermomix BU	Braun
Kühlschrank	Economic-cooler super automatic	Bosch
Eppendorf-Multipette		Eppendorf
Multikanalpipette	Autoklavierbare Mehrkanalpipette	Süd-Laborbedarf-GmbH
Zentrifuge	Megafuge 1.0 R	Heraeus

2.1.1 Zusammensetzung der Puffer, Lösungen und Medien

Einfrierlösung

- 90 ml PBS
- 80 ml HSA
- 400 µl Heparin (10000 IU/ ml)
- 30 ml DMSO

MACS-Puffer

- 472 ml PBS
- 25 ml BSA
- 3 ml ACD

FACS-Puffer

- 500 ml PBS
- 5 ml BSA
- 2,5 ml Na-Acid-Stammlösung (4 g auf 20 ml PBS = 20 %)

Expansionsmedium

- X-vivo 10
- Flt-3-Ligand (c = 100 ng/ ml Medium)
- SCF (c = 10 ng/ml Medium)
- Tpo (c = 10 ng/ ml Medium)

Zellkultur-Medium

- MyeloCult
- Hydrocortison ($c = 10^{-5} M$)
- G-CSF (c = 20 ng/ ml Medium)
- IL-3 (c = 10 ng/ ml Medium)

Methylcellulose

- MethoCult
- IMDM
- IL-1 β (c = 3 ng/ml Medium)
- SCF (c = 3 ng/ml Medium)
- GM-CSF (c = 100 ng/ml Medium)
- IL-6 (c = 100 ng/ml Medium)
- IL-3 (c = 100 ng/ml Medium)
- Epo (c = 2 U/ml Medium)

2.1. MATERIALIEN

Gelatine-Lösung

- Gelatine
- 0,9% NaCl

Puffer für StemSep

- PBS
- 2-6% FCS

2.2 Methoden

2.2.1 Isolierung der Zellen

Die zu untersuchenden Zellen wurden nach den geltenden ethischen Richtlinien aus Knochenmark (KM-) Punktaten (gesunde Spender, nicht stimuliert) oder Leukapherisaten von G-CSF und/oder Chemotherapie mobilisierten Patienten und Spendern gewonnen.

Probe Nr.	Diagnose des Spenders	Material
1	gesund	Leukapherisat
2	gesund	Leukapherisat
3	gesund	Leukapherisat
4	Hoden-Ca	Leukapherisat
5	Sarkom	Leukapherisat
6	Hoden-Ca	Leukapherisat
7	Sarkom	Leukapherisat
8	gesund	Leukapherisat
9	Mamma-Ca	Leukapherisat
10	gesund	Leukapherisat
11	gesund	Leukapherisat
12	Sarkom	Leukapherisat
13	gesund	Leukapherisat
14	gesund, DKMS	Knochenmark
15	gesund, DKMS	Knochenmark
16	gesund, DKMS	Knochenmark
17	gesund, DKMS	Knochenmark
18	gesund, DKMS	Knochenmark

2.2. METHODEN

Isolierung der Mononukleären Zellen

Die Knochenmark-Proben und das Leukapherisat wurden mit PBS entsprechend einem Endvolumen von 50 ml verdünnt, auf 15 ml Ficollsche Lösung aufgeschichtet und bei 20°C und 700g 20 min lang ohne Bremse zentrifugiert. Die Interphase wurde erneut in PBS verdünnt und 8 min bei 250g und 20°C mit Bremse zentrifugiert. Der Überstand wurde verworfen, das Pellet in PBS resuspendiert und unter den gleichen Bedingungen zentrifugiert. Das nun entstehende Pellet wurde in 8 ml frischem PBS gelöst, langsam auf 4 ml zu Blasen aufgeschütteltes BSA in einem 15 ml Röhrchen aufgeschichtet und bei 325g und 20°C für 8 min ohne Bremse zentrifugiert, um die Thrombozyten aus der Probe zu entfernen.

Das Pellet wurde wieder in 10 ml MACS-Puffer verteilt und bei 250g und 20°C 10 min lang mit Bremse zentrifugiert und ohne Überstand in 2 ml MACS-Puffer, der 30 min lang zuvor im Ultraschallbad entgast und anschließend bei 0°C gekühlt wurde, resuspendiert. Nun wurde die Zellzahl mittels Trypanblaufärbung in einer Neubauer-Zählkammer ermittelt und die Zellzahl durch Hinzufügen von MACS-Puffer auf 10^8 Zellen/ 300μ l Puffer eingestellt.

Selektion der mononukleären Zellen nach Oberflächenantigenen

Isolierung von CD34^{pos} **Zellen** Die in MACS-Puffer suspendierten Zellen wurden entsprechend den Anweisungen des Herstellers mit Primär- und Sekundärantikörpern des CD34-Isolation-Kits markiert.

Nun wurde eine Säule samt Filter im Magneten befestigt und zweimal mit MACS-Puffer entgast. Auf die nun luftfreie Säule wurde langsam die Zellsuspension getropft. Die mit Magnetic-Beads markierten CD34^{pos} Zellen adhärieren an der magnetisierten Säule und die übrigen Zellen wurden durch insgesamt 12 ml MACS-Puffer entfernt. Anschließend wurde die Säule aus dem Magneten entnommen und die Zellen mit MACS-Puffer mittels des Stempels aus der Säule gedrückt. Dieser Adhäsionsvorgang wurde wiederholt, um die Reinheit zu verbessern.

Isolierung von AC133^{pos}**Zellen** Die mononukleären Zellen wurden mittels AC133-Isolation-Kit den Angaben des Herstellers folgend mit Primär- und Sekundärantikörpern konjugiert. Die so markierten Zellen wurden durch Zugabe von MACS-Puffer auf eine Zellzahl von 10^8 Zellen pro 500 μ l Puffer eingestellt, und auf eine Säule mit einem Nylonsieb von 30μ m Porengröße, die im Magneten befestigt zweimal mit MACS-Puffer entgast wurde, aufgetragen. Die Säule wurde nun durch insgesamt 12 ml MACS-Puffer gereinigt, so daß lediglich die durch magnetisierbare Antikörper gekennzeichneten AC133^{pos} Zellen in der Säule verbleiben. Zur Gewinnung der AC133^{pos} Zellen wurde die Säule nun vom Separator (Magneten) entfernt, zur Eluierung 5 ml MACS-Puffer aufgetragen und durch Drücken mit dem Kolben die Zielzellen in einem 15 ml-Röhrchen aufgefangen. Um die Reinheit zu verbessern, wurde erneut eine Säule durch zweimaliges Entgasen mit 3 ml MACS-Puffer vorbereitet, die Zellsuspension aufpipettiert und nach zweimaligem Waschen mit 3 ml MACS-Puffer durch 2,5 ml MACS-Puffer eluiert.

Isolierung von CD34^{neg}CD164^{neg}; CD34^{neg}CD164^{pos}; CD34^{pos}CD164^{neg} und CD34^{pos}

CD164^{*pos*} **Zellen** Nach der Isolierung mononukleärer Zellen wurden diese in Puffer entsprechend einer Zellzahl von 1×10^8 /ml resuspendiert, mit 100μ l StemSep-Antikörpercocktail je ml 30 min und anschließend mit 60 μ l magnetischer Kolloide nochmals 30 min auf Eis inkubiert. Währendessen wurden die StemSep-Säulen mit 15ml Puffer entlüftet. Nachdem durch ein 200 μ m großes Netz die Zellaggregate entfernt worden waren, wurden die Zellen auf die StemSep-Säule aufgetropft und die unmarkierten Zielzellen nach ihrer Passage durch die Säule aufgefangen.

Zur FACS-Isolierung wurden die in Puffer resuspendierten Zielzellen zunächst durch die 15 minütige Inkubation bei 4°C mit 1 ml Polyglobulin daran gehindert, unspezifische Bindungen einzugehen. Nach der folgenden 20minütigen Inkubation mit lin-FITC-Antikörpern (CD 2-FITC, CD 3-FITC, CD 8-FITC, CD 11c-FITC, CD 13-FITC, CD 14-FITC, CD 15-FITC, CD 16-FITC, CD 20-FITC, CD 56-FITC, GlycA-FITC, je 10μ l), 103B2-Überstand und CD 34-PE/Cy5 bei 4°C und Dunkelheit wurden die Zellen mit 4 ml PBS 8 min bei 4°C und 250g zweimal zentrifugiert, wobei jedesmal der Überstand

2.2. METHODEN

verworfen wurde.

Nun wurde das Pellet 15 min bei 4°C dunkel mit antiIgG₃, welches als Sekundärantikörper an den 103B2-(CD164-)Antikörper bindet, inkubiert und erneut nach den eben genannten Bedingungen einmal mit PBS gewaschen. Das entstandene Pellet wurde in 3ml sterilem PBS aufgenommen, durch ein Zellnetz mit 200 μ m großen Poren pipettiert und mit dem FACS-Vantage elektronisch in die oben genannten Subpopulationen sortiert.

Bestimmung der Reinheit

- In vier FACS-Röhrchen wurden je 4 μ l Antikörper vorgelegt
- Röhrchen Nr. 1: IgG1 FITC/ IgG1 PE
- Röhrchen Nr. 2: CD45-FITC/ CD34-PE
- Röhrchen Nr. 3: CD45-FITC/ AC133-PE
- Röhrchen Nr. 4: CD34-FITC/ AC133-PE.

Zu den Antikörpern wurden je 100μ l Zellsuspension hinzugefügt, beides gut mit dem Vortex gemischt und für 25 min dunkel bei 20°C inkubiert. Nach der Inkubationszeit wurde in jedes der Röhrchen 2 ml FACS-Puffer zugegeben, und nach der Zentrifugation bei 250g, 20°C für 8 min der Überstand samt ungebundenen Antikörpern dekantiert. Die Zellen wurden mit einem FACS-Calibur gemessen.

Einfrieren der Zellen

Bis zum Einsetzen der Zellen in die Zellkulturen wurden diese bei -80°C gelagert. Dazu wurden pro Cryo-Röhrchen zwischen 10^6 und 10^8 Zellen/ 900 μ l MACS-Puffer mit 900 μ l Einfrierlösung im Cryoröhrchen vermengt und unverzüglich in einer Einfrierbox bei - 80°C tiefgefroren.

2.2.2 Funktionelle Charakterisierung

Expansion der CD34^{pos} und der AC133^{pos} Zellen

Die in Kryoröhrchen bei -80°C gelagerten CD34^{pos} und AC133^{pos} Zellen wurden bei 37°C aufgetaut und sofort in je ein 15 ml-Röhrchen überführt, in das zuvor 12 ml PBS vorgelegt wurden. Die Zellsuspensionen wurde anschließend 8 min bei 20°C und 250g zentrifugiert, um das zytotoxische DMSO zu entfernen. Nachdem der Überstand dekantiert wurde, wurde das Pellet in 2 ml X-Vivo 10 resuspendiert und mittels Neubauer-Zählkammer die Zellzahl bestimmt. Die Zellen wurden in einer Konzentration von $3x10^4$ Zellen/ml in 20 ml Expansionsmedium eingesetzt, so daß pro Zellpopulation zwei kleine Kulturflaschen, entsprechend 4 und 7 Tagen Wachstumszeit, bei 37° C, 5% CO₂, 5%O₂ inkubiert wurden. Am vierten Tag der Inkubationszeit wurde die Zellzahl bestimmt und jeweils eine Flasche pro Zellpopulation in ein 15 ml-Röhrchen überführt und bei 20°C und 250g 8 min lang zentrifugiert. Der Überstand wurde dekantiert, das Pellet in 900 μ l PBS resuspendiert, 900 μ l Einfrierlösung zugegeben und wie oben beschrieben eingefroren. Der gleiche Vorgang wurde am 7. Tag mit den verbliebenen expandierten Zellen vollzogen.

CFU(Colony forming unit) - Assay

Das Methylzellulose-Medium wurde nach den Angaben des Herstellers mit Zytokinen versetzt und in Portionen zu 2 ml eingefroren. Nach Bedarf wurden die Röhrchen aufgetaut, je 1 ml in ein CFU-Schälchen pipettiert, die Zellzahl der einzusetzenden Zellen zwischen 0,5 bis $1x10^4$ Zellen/ml Medium eingestellt und einmal $1x10^3$ und einmal $5x10^2$ Zellen zugegeben. Die CFU wurden an Tag 14 unter dem Auflichtmikroskop bei 40facher Vergrößerung ausgezählt.

CAFC (Cobblestone area forming cell) - Assay

Beschichten der Platten Die 96-well-Platten wurden unter sterilen Bedingungen in große Gewebekulturschalen gesetzt, die vorher mit 70% Alkohol gereinigt wurden. Zur
2.2. METHODEN

Beschichtung der Platten wurde mittels einer Combitip-Pipette jeweils 100μ l der Gelatine-Lösung in die inneren wells gegeben, über 12 Stunden bei 37°C inkubiert, anschließend mit einer Multipette wieder entfernt und über Nacht bei 37°C im Brutschrank getrocknet.

Stroma-Layer Die Zellinie FBMD-1 wurde nach dem Auftauen bei 37°C in 12 ml PBS gegeben und bei 250g und 20°C 8 min lang zentrifugiert. Nach Dekantierung des Überstandes wurde das Pellet in 14 ml Zellkulturmedium resuspendiert und in eine große Zellkulturflasche überführt. Die Zellen wachsen bei 37°C, 5% O₂, 5% CO₂. Nachdem dieselbe konfluent gewachsen war, wurde zunächst das Medium entfernt, die adhärenten Zellen mit 5 ml PBS gespült und mit 3 ml Trypsin über 5 min von dem Boden der Zellkulturflasche gelöst. Ein Teil der Zellsuspension wurde anschließend in eine große Zellkulturflasche mit 14 ml Zellkulturmedium überführt. Nicht benötigte Zellen wurden wie oben beschrieben gereinigt und mit Trypsin gelöst, dann in ein mit 12 ml PBS gefülltes 15 ml Röhrchen überführt, bei 250g und 20°C 8 min lang zentrifugiert, das Pellet in 900µl PBS resuspendiert und in einem Cryoröhrchen mit 900µl Einfrierlösung vermengt, das sofort in einer Einfrierbox bei - 80°C eingefroren wurde.

Zellinie ausplattieren Um den Stroma-Layer zu erstellen, wurden Zellen verwendet, die nach dem Auftauen nicht mehr als 20mal passagiert wurden. Sobald die Zellinie konfluent gewachsen war, wurde die Kulturflasche mit 5 ml PBS gespült, der Layer mit 3 ml Trypsin von der Flaschenoberfläche gelöst und nach 5 min in ein 15 ml - Röhrchen mit 10 ml Zellmedium überführt. Die Zellzahl wurde mittels Trypanblaufärbung und Neubauer-Zählkammer bestimmt und anschließend die Zellzahl auf 10⁴ Zellen/ml eingestellt. Nun wurden die äußeren wells einer mit Gelatine beschichteten Platte mit 100 μ l PBS und die inneren wells mit 100 μ l Zellsuspension pro well gefüllt. Nach 2-5 Tagen bei 37°C, 5%CO₂, 5%O₂ waren die Zellen konfluent gewachsen gewesen und die Platten verwendet worden. **Zellen einsetzten** Die potentiellen Stammzellen wurden bei 37°C im Wasserbad aufgetaut, in ein mit 12 ml MyeloCult gefülltes 15ml-Röhrchen überführt und sofort bei 250g, 20°C 8 min lang zentrifugiert. Nachdem der Überstand dekantiert wurde, wurde das Pellet in 10 ml MyeloCult resuspendiert und durch Trypanblaufärbung wie oben beschrieben die Zellzahl bestimmt. Zur Untersuchung der AC133^{pos} und CD34^{pos} Zellen wurden diese in einer absteigenden Verdünnungsreihe in zwölf Stufen, beginnend bei 330 Zellen pro well bis 15 Zellen pro well, jeweils zehn wells mit der gleichen Verdünnungsstufe eingesetzt. Zur Untersuchung der CD34/CD164 charakterisierten Zellen wurde sechs Verdünnungsstufen zwischen 160 und 5 Zellen pro well, ebenfalls zehn wells pro Verdünnung verwendet. Aus den konfluent mit FBMD-1 bewachsenen 96-well-Platten wurde mit der Multikanalpipette 50 μ l Mediumüberstand entfernt und in jeweils eine Plattenreihe pro well 50 μ l der 12 beziehungsweise 6 Verdünnungen pipettiert. Die Platten wurden bei 32°C, 10% CO₂ inkubiert.

Mediumwechsel Jede Woche wurde unter sterilen Bedingungen durch eine Multikanalpipette die Hälfte des Mediums, entsprechend 50 μ l entfernt und durch 50 μ l Zellkulturmedium ersetzt, das durch G-CSF (c = 20 ng/ ml) und IL-3 (c = 10 ng/ ml) ergänzt wurde.

Auswertung der CAFC Die Auswertung der CAFC erfolgte unter dem Auflichtmikroskop bei 100facher Vergrößerung. Als "Cobblestone"-positiv wurden wells gewertet, die auf der Ebene des Stromalayers mindestens eine große, pflastersteinartige Zellkolonie mit mindestens 5 Zellen enthielten. Zusätzlich wurde der Zustand des Zellayers in Bezug auf Konfluenz, Anzahl der Fett- und der reifen Zellen dokumentiert.

2.2.3 Statistik

Die Daten wurden anhand des Statistikprogrammes "jmp "Version 3.1.6.2; SAS Institute Inc. ausgewertet und durch "Excel 97", Microsoft Corporation dargestellt. Die Berechnung der CAFC-Frequenzen erfolgte mit der folgenden Formel (Dr. rer. nat. M. Eichner,

2.2. METHODEN

Institut für Medizinische Biometrie):

$$-ln((1-e^{-ZZ*c})^{ges.wells-neg.wells}*(e^{-ZZ*c})^{neg.wells})$$

ZZ: eingesetzte Zellzahl pro well

ges.wells:Anzahl der wells pro Verdünnung

neg.wells: Anzahl der wells pro Verdünnung ohne charakteristische Zellkolonie Anhand der Werte für ZZ, ges. wells und neg. wells wird das "c"- entsprechen der CAFC-Frequenz - berechnet, für welches aufgrund dieser Werte unter Annahme einer Poissonverteilung am wahrscheinlichsten ist (maximal likelihood estimation).

Diese Formel wurde nach Bedarf erweitert, um Zellpopulationen zu vergleichen. Zum Beispiel zum Vergleich einer CD34^{pos} mit der AC133^{pos}:

$$\begin{cases} -ln((1 - e^{-ZZ \cdot c})^{ges.wells-neg.wells}(e^{-ZZ \cdot c})^{neg.wells}) & if ZELLPOP contains CD, \\ -ln((1 - e^{-ZZ \cdot c \cdot extra})^{ges.wells-neg.wells}(e^{-ZZ \cdot c \cdot extra})^{neg.wells}) & otherwise \end{cases}$$

Wobei **Extra** der Faktor bedeutet, um den die andere - in diesem Fall die AC133^{pos} Population - sich von der CD34^{pos} Population unterscheidet.

Kapitel 3

Ergebnisse

3.1 FACS-Analyse der durch MACS isolierten Zellen

Die Isolierung der Zellen durch einen Antikörper gegen CD34 und den Antikörper AC133 erfolgte nach den Angaben des Herstellers des Isolierungs-Kits. Die isolierten Zellen wurden bei -80°C eingefroren und am Tag der Untersuchung wieder aufgetaut. Bei der FACS-Analyse konnten folgende Reinheiten gemessen werden: Die Reinheit der CD 34 isolierten Zellen war 81,83 +/- 11 % ,die AC133 isolierten Zellen zeigten eine Reinheit von 64 +/- 19 % in der FACS-Analyse. Die Reinheit der Zellpopulation wurde bei den beschriebenen Untersuchungen nicht mit einberechnet; die Ergebnisse beziehen sich auf die Gesamtpopulation der durch CD34 beziehungsweise AC133 isolierten Zellen. Abb 3.1 zeigt als Beispiel die FACS-Analyse von AC133 isolierten Zellen.

Abbildung 3.1: FACS-Analyse von AC133 isolierten Zellen (Patient 11)

3.2 Etablierung des CAFC-Assays

Zur Etablierung des von Breems et al. [14] beschriebenen Stammzellnachweises wurden zunächst isolierte CD34^{pos} Zellen von sechs verschiedenen Spendern in die Langzeitzellkulturen eingesetzt. Die Abbildungen 3.3 und 3.4 zeigt den zeitlichen Verlauf der Anzahl der gebildeten pflastersteinartigen Kolonien, den "cobblestone area forming cells"(CAFC). Die y-Achse beschreibt die Frequenz, das heißt die Zahl der Kolonien pro 10⁵ eingesetzter Zellen. Tabelle 3.1 fasst diese Daten zusammen.

Abbildung 3.2: Mikroskopische Aufnahme der CAFC (Pfeil), Vergrößerung 40x (oberes Bild)und 100x (unteres Bild)

Abbildung 3.3: Anzahl der CAFC pro 10⁵ CD34^{pos} Zellen der Proben 1-3; die unterbrochenen Linien stellen die Konfidenzintervalle dar

Abbildung 3.4: Anzahl der CAFC pro 10⁵ CD34^{pos} Zellen der Proben 4-6; die unterbrochenen Linien stellen die Konfidenzintervalle dar

Tabelle 3.1: CAFC pro 10⁵ CD34^{pos} Zellen; in Klammern Konfidenzintervalle. Material: Leukapherisat

	Woche 2	Woche 4	Woche 5	Woche 6
Patient 1	248 (157-369)	669 (473-924)	506 (351-706)	603 (425-832)
Patient 2	277 (179-407)	812 (579-1114)	778 (558-1062)	1570(1091-2251)
Patient 3	356 (238-509)	446 (305-628)	389 (262-555)	n.d.
Patient 4	447 (309-626)	557 (391-770)	439 (303-613)	507 (355-703)
Patient 5	282 (182-415)	386 (261-548)	262 (169-387)	209 (37-319)
Patient 6	165 (97-319)	354 (237-506)	339 (218-499)	n.d.

3.3 Vergleich CD34^{pos} und AC133^{pos} Zellen

3.3.1 Vergleich nicht expandierter Zellen

Um die Anzahl der Kolonien absolut vergleichen zu können, wurde das Leukapherisat eines Patienten in zwei gleiche Proben geteilt, die dann einerseits nach dem Oberflächenantigen CD34 und andererseits mit Hilfe des Antikörpers AC133 isoliert wurden. Die Zellpopulationen wurden nach der im Stammzelllabor verwendeten Methode in Methylcellulose und in die zuvor etablierte Langzeitzellkultur eingesetzt. Bei diesen Untersuchungen wurde Leukapherisat von gesunden Spendern und von Patienten mit nichthämatologischen Erkrankungen verwendet. Der Vergleich dieser beiden Gruppen ergab keinen signifikanten Unterschied, so daß die statistische Analyse und Darstellung gemeinsam durchgeführt wurde.

CFU-Assay

Die AC133^{pos} und die CD34^{pos} Zellpopulation unterscheiden sich weder in der Fähigkeit, CFU-G/GM oder BFU-E, noch in der Gesamtzahl der beiden CFUs Kolonien zu bilden. Da die Aussage sowohl bei 500 wie auch bei 1000 eingesetzten Zellen /ml identisch ist, wurden nur die ersteren Werte in Tab. 3.2 dargestellt. Die abgebildeten Werte wurden durch den beidseitigen t-Test auf Signifikanz geprüft, der Unterschied ist nicht signifikant.

Tabelle 3.2: Colony forming cells (CFC)/ 500 Zellen . Material: Leukapherisat, n = 4. Abkürzungen: BFU-E burst forming unit-erythropoietic; GFU-GM colony forming unit-granulocyte/macrophage; SD Standardabweichung

•	1 0		<u> </u>			
	BFU-E		CFU-GM		gesamt	
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+
Patient 7	3	9	17	14	20	23
Patient 8	11	9	18	17	29	26
Patient 9	22	20	15	22	37	42
Patient 10	16	15	26	9	42	24
Mittelwert	15,5	13,5	19	15,5	32	28,7
SD	4,80	5,32	4,83	5,45	9,63	8,92

CAFC-Assay

Die CAFC-Frequenz, d.h. die Anzahl der pflastersteinähnlichen Kolonien pro 10^5 eingesetzter Zellen, wurde nach der in Kapitel 2 beschriebenen Formel nach dem Prinzip der maximal likelihood estimation bestimmt. Soweit nicht anders erwähnt sind 99% Konfidenzintervalle angegeben ($\alpha = 0, 01$).

Tabelle 3.3: CAFC pro 10⁵ AC133^{pos} Zellen; in Klammern Konfidenzintervalle. Material: Leukapherisat

	Woche 2	Woche 4	Woche 5	Woche 6
Patient 7	312 (259-413)	320 (235-425)	242 (172-329)	281 (203-379)
Patient 8	286 (208-382)	377 (283-492)	292 (213-389)	217 (153-298)
Patient 9	228 (161-311)	275 (198-370)	339 (248-449)	329 (216-479)
Patient 10	324 (239-429)	399 (300-521)	345 (265-452)	251 (180-340)

Tabelle 3.4: CAFC pro 10⁵ CD34^{pos} Zellen; in Klammern Konfidenzintervalle. Material: Leukapherisat

	Woche 2	Woche 4	Woche 5	Woche 6
Patient 7	65 (35-109)	n.d.	231 (160-320)	n.d.
Patient 8	325 (239-432)	418 (314-545)	249 (178-336)	191 (131-268)
Patient 9	174 (118-246)	441 (335-569)	204 (142-283)	158 (106-226)
Patient 10	289 (209-389)	473 (358-613)	233 (165-317)	159 (106-228)

Der Vergleich der beiden Zellpopulationen ergab, daß die Zahl der Kolonien der AC133^{pos} Zellen in der 2. und 6. Woche der Langzeitzellkultur signifikant höher war als die Koloniezahl der CD34^{pos} Zellen. In den vier und fünf Wochen alten Kulturen zeigten sich jedoch keine Unterschiede. In der Abbildung 3.5 und 3.6 werden die CAFC-Frequenzen im zeitlichen Verlauf, nach Patient und Zellpopulation getrennt dargestellt.

Tabelle 3.5: Faktoren, um	welche AC133 ^{pos} Zel	len im Vergleich zu d	en CD34 ^{pos} Zellen	
mehr CAFC bilden. s signifikant, ns nicht signifikant, in Klammern Konfidenzintervalle				
CAFC Woche 2	CAFC Woche 4	CAFC Woche 5	CAFC Woche 6	
Faktor1,42 (1,05-1,93) s	0,77 (0,58-1,02) ns	1,32 (0,99-1,78) ns	1,54 (1,08-2,21) s	

Abbildung 3.5: CAFC pro 10⁵ Zellen des Patienten 7

Abbildung 3.6: CAFC pro 10⁵ Zellen der Patienten 8 bis 10

3.3.2 Expansion

Um die Vergleichbarkeit zu gewährleisten, wurden auch in diesem Versuch die CD34^{pos} und AC133^{pos} Zellpopulationen aus den gleichen Proben isoliert (n=3; 2 gesunde Spender, ein Patient, der an einem Sarkom erkrankt ist). Als Ausgangswert wurden nicht expandierte Zellen im CFU- und CAFC-Assay untersucht, ein Teil der Zellpopulationen jedoch in serumfreiem Medium mit Flt-3-Ligand, SCF und Tpo 4 und 7 Tage lang inkubiert. Die absolute Zahl der Zellen konnte weder signifikant vermehrt werden, noch bestand ein Unterschied zwischen CD34^{pos} und AC133^{pos} Zellen.

		1	, 0	
	Zellpopulation	Tag 0	Tag 4	Tag 7
Patient 7	CD34+	3	4,75	9,75
Patient 7	AC133+	3	1,75	4,75
Patient 11	CD34+	3	5	14,75
Patient 11	AC133+	3	3,5	9
Patient 12	CD34+	3	3,5	4
Patient 12	AC133+	3	2	3,25

Tabelle 3.6: Absolute Zellzahlen nach Expansion, Angabe in 10^4 /ml

CFU-Assay

In diesem Versuch zur Untersuchung kommittierter Progenitorzellen konnte weder in der Reihe der erythroiden noch in der der der myeloischen Vorläuferzellen ein Unterschied festgestellt werden. Das Experiment bezog sich einerseits auf den Vergleich der beiden Zellpopulationen hinsichtlich der Art der Kolonie - BFU-E als Vorläuferzellen der erythroiden Zellreihe oder CFU-G/GM als Vorläuferzelle der myeloischen Zellreihe, wie auch der Summe der Kolonien - aufgeteilt nach Expansionsdauer und eingesetzter Zellzahl. Andererseits wurde die Koloniebildungsfähigkeit im Verlauf der Expansion innerhalb der Zellpopulation betrachtet; auch hier konnten keine signifikanten Unterschiede festgestellt werden (Tab. 3.7 und 3.8).

Tabelle 3.7: CFC pro 500 eingesetzter Zellen, Material: Leukapherisat						
Tag 0	BFU	Г - Е	CFU-0	GM	gesai	nt
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+
Patient 7	13	1	17	2	30	3
Patient 11	4	20	2	9	6	29
Patient 12	6	10	11	15	17	25
Tag 4	BFU	-E	CFU-0	GM	gesar	nt
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+
Patient 7	8	6	29	14	37	20
Patient 11	10	16	8	2	18	18
Patient 12	0	0	15	2	15	2
Tag 7	BFU	[-E	CFU-0	GM	gesar	nt
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+
Patient 7	3	11	9	21	12	32
Patient 11	8	4	4	0	12	4
Patient 12	1	0	8	4	9	4

Tabelle 3.7: CFC pro 500 eingesetzter Zellen, Material: Leukapherisat

Tabelle 3.8: CFC pro 1000 eingesetzter Zellen, Material: Leukapherisat							
Tag 0	BFU	J-E	CFU-GM		gesa	gesamt	
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+	
Patient 7	18	6	29	5	47	11	
Patient 11	2	28	7	13	6	41	
Patient 12	9	11	20	23	29	34	
Tag 4	BFU	J-E	CFU-GM		gesamt		
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+	
Patient 7	24	11	38	32	62	43	
Patient 11	17	32	16	22	33	54	
Patient 12	0	3	14	10	14	13	
Tag 7	BFU	J-E	CFU-	GM	gesar	mt	
	AC 133+	CD 34+	AC 133+	CD 34+	AC 133+	CD 34+	
Patient 7	5	21	15	42	20	63	
Patient 11	7	13	10	6	17	19	
Patient 12	0	0	10	3	10	3	

CAFC-Assay

Die Betrachtung der frühesten in vitro nachweisbaren Stammzellen bezog sich wie auch im oben beschriebenen CFU-Assay auf die Anzahl der Kolonien im Vergleich zwischen CD34^{pos} und AC133^{pos} Zellen bezüglich Expansions- und Kulturdauer.

AC133 ^{pos}	ExpTag	Woche 2	Woche 5
Patient 7	0	312 (206-449)	242 (154-360)
	4	594 (422-815)	547 (382-760)
	7	232 (147-347)	490 (340-684)
Patient 11	0	71 (31-134)	253 (150-398)
	4	372 (240-548)	271 (140-468)
	7	99 (42-192)	
Patient 12	0	106 (52-177)	365 (230-547)
	4	193 (117-298)	384 (252-559)
	7	259 (240-279)	267 (166-404)
CD34 ^{pos}	ExpTag	Woche 2	Woche 5
Patient 7	0	70 (31-132)	231 (142-352)
Patient 7	0 4	70 (31-132) 222 (138-335)	231 (142-352) 343 (222-503)
Patient 7	0 4 7	70 (31-132) 222 (138-335) 311 (206-448)	231 (142-352) 343 (222-503) 488 (338-682)
Patient 7 Patient 11	0 4 7 0	70 (31-132) 222 (138-335) 311 (206-448) 48 (18-102)	231 (142-352) 343 (222-503) 488 (338-682) 272 (165-418)
Patient 7 Patient 11	0 4 7 0 4	70 (31-132) 222 (138-335) 311 (206-448) 48 (18-102) 371 (245-538)	231 (142-352) 343 (222-503) 488 (338-682) 272 (165-418) 299 (181-463)
Patient 7 Patient 11	0 4 7 0 4 7	70 (31-132) 222 (138-335) 311 (206-448) 48 (18-102) 371 (245-538) 102 (51-180)	231 (142-352) 343 (222-503) 488 (338-682) 272 (165-418) 299 (181-463) 289 (176-445)
Patient 7 Patient 11 Patient 12	0 4 7 0 4 7 0	70 (31-132) 222 (138-335) 311 (206-448) 48 (18-102) 371 (245-538) 102 (51-180) 171 (100-269)	231 (142-352) 343 (222-503) 488 (338-682) 272 (165-418) 299 (181-463) 289 (176-445) 641 (425-932)
Patient 7 Patient 11 Patient 12	0 4 7 0 4 7 0 4 7 0 4	70 (31-132) 222 (138-335) 311 (206-448) 48 (18-102) 371 (245-538) 102 (51-180) 171 (100-269) 311 (204-453)	231 (142-352) 343 (222-503) 488 (338-682) 272 (165-418) 299 (181-463) 289 (176-445) 641 (425-932) 271 (167-412)

Tabelle 3.9: CAFC pro 10⁵ Zellen, in Klammern Konfidenzintervalle

Dabei zeigte sich, daß die Anzahl der CAFC-bildenden AC133^{pos} Zellen an Tag 0, entsprechend nicht expandierten Zellen, in der 2. Woche der Langzeitzellkultur um den Faktor 1,67 höher lag als die CAFC-Frequenz der CD34^{pos} Zellen. An den Expansionstagen 4 und 7 konnte kein signifikanter Unterschied festgestellt werden ($\alpha = 0,01$). Das heißt, daß sich in der nicht expandierten AC133^{pos} Zellfraktion in der 2. Woche mehr CAFC nachweisen lassen als in der CD34^{pos} Zellpopulation (Tabelle 3.10).

Tabelle 3.10: Faktoren, um welche AC133^{pos} Zellen im Vergleich zu den CD34^{pos} Zellen mehr CAFC bilden, in Klammern Konfidenzintervalle. **s** signifikant, **ns** nicht signifikant

	CAFC Woche 2	CAFC Woche 5
Expansion Tag 0	1,67 (1,05-2,70) s	0,80 (0,61-1,05) ns
Expansion Tag 4	1,26 (0,92-1,76) ns	1,35 (0,96-1,92) ns
Expansion Tag 7	0,89 (0,60-1,31) ns	1,01 (0,67-1,53) ns

Der zweite Aspekt beleuchtet das Verhalten einer Zellpopulation im Laufe der ex vivo Kultivierung (Tabelle 3.12). Hierbei zeigte sich, daß sowohl die CD34^{pos} als auch die AC133^{pos} Zellen an Tag 4 bezogen auf Tag 0 in der 2. Woche des CAFC-Assays signifikant mehr Kolonien bilden. In der 5. Woche konnte diese Vermehrung der CAFC-Frequenz nicht mehr nachgewiesen werden.

Tabelle 3.11: Multiplikationsfaktor der expandierten	Zellen im	Vergleich ni	cht expand	ier-
ten (Tag 0) Zellen. s signifikant, ns nicht signifikant				

AC133 ^{pos}	Expansionsdauer	CAFC Woche 2	CAFC Woche 5
	4 Tage	2,41 (1,67-3,50) s	1,50 (1,06-2,13) ns
	7 Tage	1,23 (0,82-1,87) ns	1,34 (0,92-1,94) ns
CD34 ^{pos}	Expansionsdauer	CAFC Woche 2	CAFC Woche 5
	4 Tage	3,1732 (2,08-4,97) s	0,90 (0,63-1,29) ns
	7 Tage	2,13 (1,37-3,39) s	1,19 (0,80-1,74) ns

An Tag 7 im Vergleich zu Tag 0 konnte man eine signifikante Zunahme der CAFC nur aus CD34^{pos} Zellen in der 2. Woche der Langzeitzellkultur beobachten.

3.4 CD34^{neg} und CD164^{pos/neg} Subpopulationen

3.4.1 CFU

In dem hier beschriebenen Versuchsaufbau war es nicht möglich, aus CD34^{neg} Stammzellen CFU zu generieren. Bei den CD34^{pos}CD164^{neg} und auch bei den CD34^{pos}CD164^{pos} Zellen konnten im Verhältnis zu den CD34^{neg}CD164^{pos} und CD34^{neg}CD164^{neg} Populationen signifikant mehr Kolonien festgestellt werden. CD34^{pos}CD164^{neg} bilden nach diesen Untersuchungen mehr CFU als CD34^{pos}CD164^{pos} Zellen. Die bisherigen Angaben beziehen sich auf eine Ausgangszellzahl von 500. Diese Ergebnisse konnten sich bei einer Ausgangszellzahl von 1000 nur dahingehend bestätigen lassen, daß die CD34^{pos}-CD164^{neg} signifikant mehr Kolonien bilden als die CD34^{neg} Subpopulationen. Die statistischen Analysen wurden anhand des t-Tests mit einem Konfidenzintervall von 95% durchgeführt.

CI	$\mathbf{D34}^{neg}\mathbf{CD164}^{neg}$	$CD34^{neg}CD164^{pos}$	CD34 ^{neg} CD164 ^{high}	CD34 ^{neg} CD164 ^{low}
Pat. 13	1 /2250	3 /275		
	3 /4500	12 /550		
Pat. 14	0 /160		1 /160	0 /160
	1 /320		2/320	0/320
Pat. 15	0 /500	2 /500		
	0 /1000	6 /1000		
Pat. 16	0 /500	0 /500	0 /50	0 /500
	0 /1000	0 /1000	0 /100	0 /1000
			CD34 ^{pos} CD164 ^{neg}	CD34 ^{pos} CD164 ^{pos}
Pat. 17	0 /1000	1 /1000	40 /1000	15 /1000
Pat. 18	1 /500	5 /500	30 / 500	12 /500
	0 /1000		70 / 1000	61 /1000

Tabelle 3.12: CFC der CD34/CD164-charakterisierten Zellen. Angabe in CFC /eingesetzte Zellen. Material: Knochenmark

3.4.2 CAFC

Unter den oben beschriebenen Bedingungen ließen sich in der CD34^{neg} Zellfraktionen keine oder nur sehr vereinzelt CAFC darstellen. Die als Kontrolle eingesetzten CD34^{pos} isolierten Zellen bildeten in der 2. Woche der Langzeitzellkultur 36,4 (14,95-112,2) fach mehr CAFCs und in der 5. Woche 109,8 (37,9 - nicht berechenbar)fach mehr CAFC als die CD34^{neg} Zellfraktion.

Der Vergleich zwischen CD34^{pos}CD164^{neg} und CD34^{pos}CD164^{pos} ergab für die 2. Woche eine 2,62 (1,45-4,87) fach vermehrte Bildung von CAFC in der CD34^{pos}CD164^{neg} charakterisierten Zellfraktion.

Abbildung 3.7: CAFC pro 10⁵ Zellen des Patienten 13

Patient 14

Abbildung 3.8: CAFC pro 10⁵ Zellen der Patienten 14 bis 16

Patient 16

Abbildung 3.9: CAFC pro 10⁵ Zellen der Patienten 17 und 18

($CD34^{neg}CD164^{neg}$	CD34 ^{neg} CD164 ^{pos}	CD34 ^{neg} CD164 ^{high}	CD34 ^{neg} CD164 ^{low}
Pat. 13				
Woche 2	32 (0,4-195)	0		
Woche 5	66 (5-267)	32 (0,4-197)		
Woche 8	0	0		
Woche 10	0	0		
Pat. 14				
Woche 2	32 (0,4-197)		0	0
Woche 5	32 (0,4-197)		0	32 (0,4-197)
Woche 8	33 (0,4-205)		32 (0,4-197)	0
Woche 9	32 (0,4-200)		32 (0,4-197)	0
Pat. 15				
Woche 2	0	33 (0,4-200)		
Woche 5	0	0		
Woche 8	0	0		
Woche 9	0	0		
Pat. 16				
Woche 2	66 (5-268)	0	0	0
Woche 5	0	0	0 0	
Woche 8	32 (0,4-197)	32 (0,4-197)	0 0	
Woche 9	0	33 (0,4-200)	0	0
			CD34 ^{pos} CD164 ^{neg}	CD34 ^{pos} CD164 ^{pos}
Pat. 17				
Woche 2	0	101 (14-334)	1060 (556-1834)	290 (99-634)
Woche 5	0	0	1304 (685-2253)	1505 (833-2513)
Woche 8	0	0		
Pat. 18				
Woche 2	0	0	957 (386-1956)	565 (206-1216)

Tabelle 3.13: CAFC pro 10⁵ Zellen, in Klammern Konfidenzintervalle. Material: Knochenmark

Kapitel 4

Diskussion

4.1 Methode

Unter den in dieser Arbeit gewählten Methoden steht der sogenannte cobblestone-areaforming-cell-assay (CAFC-Assay) im Vordergrund, einer der Prototypen der in vitro Untersuchungsmethoden, durch welche die frühesten in vitro nachweisbaren blutbildenden Stammzellen mittels "limiting dilution"quantifiziert werden können. Der CAFC-Assay wurde aufgrund seiner einfacheren Durchführbarkeit den anderen in vitro assays für primitive Stamm- und Progenitorzellen wie zum Beispiel dem LTC-IC (long-term-cultureinitiating cell, siehe Einleitung)-Assay, aber auch dem CFU-S und HPP-CFC-Assay vorgezogen. In seinem für diese Methode grundlegenden Artikel stellt Breems et al. [14] die Vorzüge gegenüber dem colony-forming-unit- (CFU) Assay und dem von Sutherland et al. [99] beschriebenen long-term-culture-initiating-cell (LTC-IC) Assay heraus. Der CAFC-Assay ermöglicht eine Beurteilung der CAFC-Frequenz zu verschiedenen Zeitpunkten. Da zur Quantifizierung der LTC-IC die Stammzellkandidaten in semisoliden Medium replatiert werden, ist mit der Bestimmung des zeitlichen Verlaufs der Frequenz eine ungleich größere Menge an Knochenmark und an Aufwand verbunden. Beide Testsysteme qualifizieren jedoch eine weitgehend identische Zellpopulation.

In den vergangenen sechs Jahren wurden diese Versuchsbedingungen modifiziert, das

Grundkonzept ist jedoch erhalten geblieben: Als Stromalayer werden unter anderem die murine Stromazelllinie Sys-1 und die murine Präadipozytenzellinie FBMD-1 verwendet. In Tabelle 4.1 werden die verschiedenen Kulturbedingungen verglichen, die in Zusammenhang mit der Zellinie FBMD-1 beschrieben werden. Um Unregelmäßigkeiten und Kontaminationen bei der Herstellung des Mediums zu vermeiden, wurde hier das Komplettmedium "MyeloCult"gewählt. Die anderen Bedingungen entsprechen den in der Literatur beschriebenen Parametern.

Tabelle 4.1: Kulturbedingungen aus der Literatur HC Hydrocortison, ME Mercaptoethanol, SM Streptomycin

Autor	Breems et al.	van Hennik et al.	Rappold et al.	eigene Bedingun-
				gen
Medium	IMDM	IMDM with	MyeloCult	MyeloCult
		Glutamax		
	10% FCS	10% FCS		
	5% horse Serum	5% horse Serum		
	10^{-4} M 2-ME	10^{-4} M 2-ME		
	10^{-5} M HC	10^{-5} M HC	10^{-6} M HC	10^{-6} M HC
	100 U/ml Penicillin	100 U/ml Penicillin		
	$100~\mu { m g/ml}~{ m SM}$	$100 \ \mu \text{g/ml SM}$		
	10 ng/ml IL-3	10 ng/ml IL-3		10 ng/ml IL-3
	20 ng/ml G-CSF	20 ng/ml G-CSF		20 ng/ml G-CSF
Zellzahl			10-320 Zellen	10-320 Zellen
Inkubation	33°C, 10% CO ₂	33°C, 10% CO ₂	33°C, 10% CO ₂	33°C, 10% CO2
Auswertung 2., 4., 6. Woche		2., 4., 6. Woche	5. Woche	2., 4., 5., 6. Woche
Kriterien	1 Klon ≥ 5 Zellen	1 Klon ≥ 5 Zellen	1 Klon ≥ 5 Zellen	1 Klon ≥ 5 Zellen
Referenz	17	51	86	

Zur Etablierung des CAFC-Assays wurden aus Leukapherisat per Ficoll-Gradient und MACS-Selektion CD34^{pos} periphere Stammzellen gewonnen, in den Zellkulturen nach den oben beschriebenen - durch Literatur bestätigten - Bedingungen inkubiert und ausgewertet. Die Ergebnisse entsprechen den bisher veröffentlichten Frequenzen (siehe Tabelle 4.2).

Tabelle4.2:ReferenzergebnisseCAFC-Frequenzenpro10⁵Zellen der 5. oder 6. Woche, eigene Ergebnisse

Material	Phänotyp	CAFC	Referenz
Leukapherisat (Tumorpatienten)	CD34+	493	[9]
Leukapherisat (Lymphom, MM, solide	CD34+	151-780*	[67]
Tumoren)			
Leukapherisat (NHL, Burkitt, Hodgkin,	CD34+	8330	[15]
MM)			
Leukapherisat (NHL, MM, Hoden-Ca,	CD34+	300	[18]
M.Hodgkin)			
Leukapherisat (NHL, MM, Burkitt)	CD34+	84	[16]
Leukapherisat (gesund)	CD34+	763	[77]
Knochenmark (gesund)	CD34+	280-406*	[67]
Knochenmark (gesund)	CD34	580 +/-210	[99]
Knochenmark (gesund)	CD34+	379-1563	[53]
Leukapherisat (gesund/ solide Tumo-	CD34+	204-778	eigene
ren)			Werte

* korrigiert anhand Reinheit

Grundsätzlich ist in Betracht zu ziehen, daß die Mobilisation der peripheren Blutstammund Progenitorzellen durch G-CSF und auch zum Teil durch Chemotherapeutika die Zellen in vivo beeinflußen könnte. So wurde zum Beispiel nachgewiesen, daß G-CSF eine verstärkte Expression von Differenzierungsantigenen hervorruft [101]. Als Vorgriff auf die Expansionsversuche sei hier anzumerken, daß, ausgehend von einer Gabe 5 μ g G-CSF/ kg Körpergewicht und Tag [93] und einem Blutvolumen von 65 ml/kg Körpergewicht [84], die Plasmakonzentration zumindest kurzzeitig bei 77 ng/ml liegt. Der Zytokinspiegel liegt damit in einem Bereich, der in Expansionsversuchen verwendet wird. Es konnte weiterhin gezeigt werden, daß durch Hinzufügen von G-CSF und IL-3 in sehr geringen Konzentrationen (20 beziehungsweise 10 ng/ml) im CAFC-Medium die Ausbildung von CAFC gefördert und auch im fetalen Schafmodell die Detektion von Donor-Zellen unterstützt [116] wird. Die sich anschließende Isolierung der Blutzellen durch Dichtezentrifugation wurde, wie auch die MACS-Separation, als bereits im Labor bestehende Methode übernommen. Zusätzlich zu den Angaben des Herstellers bezüglich der MACS-Selektierung wurde der Separationsvorgang wiederholt, um die Reinheit der Zellen zu erhöhen. Anschließend wurden die Zellen eingefroren. Die hier nach dem Auftauen gemessenen Reinheiten von 81% bei CD34^{pos} und 64% bei AC133^{pos} isolierten Zellen könnten Folge des Einfrierens und Auftauens sein.

Der CFU-Assay wurde als im Labor etablierte Versuchsanordnung übernommen. Sowohl für den CFC- als auch für den CAFC-Assay gilt, daß alle Auswertungen von einem Untersucher vorgenommen wurden, um die Vergleichbarkeit zu gewährleisten.

4.2 Vergleich AC133^{pos} und CD34^{pos} Zellen

Die ersten Veröffentlichungen zu AC133 beschreiben diesen Antikörper in Zusammenhang mit CD34^{pos} Zellpopulationen. Man vermutete, daß AC133^{pos} Zellen eine frühere Stamm- und Progenitorzellpopulation als die CD34^{pos} Zellen darstellen.

CD34^{*neg*}AC133^{*pos*} Zellen konnten zu diesem Zeitpunkt nicht nachgewiesen werden [111, 112]. Gallacher et al. [41] identifizierten und charakterisierten diese Zellen, in ihren Experimenten bilden AC133^{*pos*} in der CD34^{*neg*}CD38^{*neg*} Zellfraktion, in der sie 0,2% der Zellen darstellen, mehr colony forming cells (CFC) als die AC133^{*neg*}. Die Zellzahl einer Ausgangspopulation CD34^{*neg*}CD38^{*neg*}Lin^{*neg*}AC133^{*pos*} Zellen vervielfacht sich nach drei Tagen 3-4fach - im Gegensatz zu CD34^{*neg*}CD38^{*neg*}Lin^{*neg*}AC133^{*neg*} Zellen, die sich nicht

vermehren. Außerdem können nur in mit CD34^{neg}CD38^{neg}Lin^{neg}AC133^{pos} Zellen transplantierten NOD/SCID Mäusen humane Zellen nachgewiesen werden. Dies bedeutet, daß CD34^{pos} Stamm- und Progenitorzellen und AC133^{pos} Stamm- und Progenitorzellen überlappende Zellpopulationen sein könnten, die AC133^{pos} Population im Vergleich zu der heterogenen Fraktion der CD34^{pos} aber selektiver ist.

Je nach Herkunft der untersuchten Zellen beträgt der Anteil der AC133^{pos} in der CD34^{pos} Population 30-70% [112]. Bei der Betrachtung der hier erhobenen Daten sollte beachtet werden, daß 54% der CD34 isolierten Zellen und 73% der AC133^{pos} Zellen beide Antigene tragen.

Da die Zellen erst nach dem Auftauen durch FACS-Analysen phänotypisiert wurden, kann keine Aussage über die Verteilung der Oberflächenantigene der frisch isolierten Zellen beziehungsweise eine Veränderung derselben durch den Prozeß des Einfrierens und Auftauens gemacht werden.

Vergleich der nicht expandierten Zellen

In der vorliegenden Arbeit konnte kein Unterschied im Anteil an klonogenen Progenitorzellen in den untersuchten Zellpopulationen nachgewiesen werden, was anhand des CFU-Assays überprüft wurde. Matsumoto et al. [66] beschreiben jedoch, daß CD34^{pos} Zellen signifikant mehr BFU-E bilden als AC133^{pos} und AC133^{pos} mehr CFU-GM als CD34^{pos} Zellen; dabei ist zu erwähnen, daß die CFC in BFU-E, CFU-Mix und CFU-GM unterteilt wurden. In dieser Arbeit wurden lediglich BFU-E und CFU-G/GM differenziert. Da das Verhältnis von eingesetzten Zellen und CFC nicht linear ist, können die von Matsumato erhobenen Werte, die sich auf 100 eingesetzte Zellen beziehen, nicht absolut mit den hier ermittelten Daten in Beziehung gesetzt werden, die von einer Zellzahl von 500 und 1000 ausgehen. Die Ergebnisse können nur relativ verglichen werden, sprich die Klonogenitäten der untersuchten Zellpopulationen in einem Versuchsansatz. Die differierenden absoluten Resultate könnten - neben der unterschiedlichen Ausgangszellzahl daher entstanden sein, daß andere Zytokine zum CFU-Medium zugesetzt wurden. Matsumoto verwendete G-CSF, jedoch kein IL-1 β und IL-6. Bei der Untersuchung der primitiven Stamm- und Progenitorzellen durch den CAFC-Assay zeigen die AC133^{pos} Zellen in der 2. und 6. Woche der Langzeitzellkultur in dieser Arbeit eine signifikant höhere Anzahl von Stammzellen als die CD34^{pos} Zellpopulation. Dieses Ergebnis bestätigt die Versuche von Matsumoto et al., die ebenfalls in der AC133^{pos} Zellpopulation mehr LTC-IC zeigten. Diese Untersuchungen weisen somit darauf hin, daß die AC133^{pos} Stamm- und Progenitorzellpopulation tatsächlich primitivere Zellen enthält als die CD34^{pos} Zellfraktion.

4.2.1 Vergleich der CD34^{pos} versus AC133^{pos} Stammzellpopulationen bezüglich der ex vivo Expansionsfähigkeit

Die Möglichkeit, Stammzellen zu vermehren, würde - wie schon in der Einleitung erläutert - die Therapieoptionen der Stammzelltransplantation möglicherweise verbessern. Die ersten Experimente zur in vitro Expansion CD34^{pos} Zellen wurde 1992 beschrieben. Damals wurden die CD34^{pos} aus peripherem Blut [39, 49] gewonnen. Zu diesen Studien verwendeten Haylock et al. eine Zytokinkombination aus IL-1 β , IL-3, GM-CSF und SCF und erreichten damit eine 20-60fache Vermehrung der Zellzahl. Seither wurden verschiedenste Zytokinkonzentrationen, Wachstumsfaktorkombinationen, Zeitpunkt des Mediumwechsels und anderen Parameter in den Kulturansätzen verändert. Die am häufigsten benutzten Zytokine in in vitro Experimenten sind SCF, IL-1, IL-3, IL-6, G-CSF, GM-CSF, Erythropoetin, Thrombopoetin und Flt-3-Ligand [11, 21, 23, 37, 78, 85, 113]. Im Folgenden wird die Verwendung von SCF (= kit-Ligand = mast cell growth factor = steel factor), Thrombopoetin (= MGDF) und Flt-3-Ligand diskutiert, die in der hier vorliegenden Arbeit verwendet wurden, da mit dieser Zytokinkombination am ehesten primitive Stammzellen expandiert werden können. Petzer et al. zeigten, daß sowohl Thrombopoetin allein als auch Flt-3-Ligand allein und mit IL-3 und SCF die LTC-IC-Frequenz steigern [78]. Thrombopoetin gilt als wichtigster Wachstumsfaktor für Megakaryozyten, sowie deren Reifung und Bildung von Thrombozyten [56]. Der Rezeptor für dieses Zytokin befindet sich demnach auf CD34^{pos} Zellen als Vorstufen der Megakaryozyten, auf Megakaryozyten selbst und auf Stammzellen.

SCF wird sowohl in der embryonalen als auch in der adulten Hämatopoese eine entscheidende Rolle zugewiesen [19], jedoch vor allem in Kombination mit anderen Zytokinen [11, 113], allein erhält es lediglich die Fähigkeit zur Langzeit-Repopulation von Rho^{low}Lin^{neg}Sca-1^{pos} Zellen [19].

Flt-3-Ligand beeinflußt präferentiell "frühere"als "spätere"Zellen [37], wie es zum Beispiel den Anteil der CD34^{pos} Zellen ausgehend von einer CD34^{pos}CD38^{dim} Zellpopulation vergrößert. Die Kombination mit SCF führt zu einem starken Synergismus.

Die Verwendung aller drei Zytokine - Flt-3-Ligand, Thrombopoetin und SCF - fördert insbesondere das Wachstum multipotenter Progenitorzellen [85] und erhält Progenitorzellen die Fähigkeit, auf lange Zeit lymphohämatopoetische Zellen bilden zu können [97].

In den hier dargestellten Versuchen war durch eine 4 beziehungsweise 7 Tage dauernde Kultivierung von CD34^{pos} und AC133^{pos} Zellen im serumfreien Medium mit Thrombopoetin, Flt-3-Ligand und SCF keine signifikante Erhöhung der Zellzahl nachweisbar. Im Vergleich der beiden Zellpopulationen konnte weder ein Unterschied in der Anzahl der CFC noch in der Frequenz der CAFC festgestellt werden. Das Ergebnis der Vergleichsgruppe dieses Expansionsversuchs, das heißt die "Tag 0-Zellen", respektive nicht expandierte Zellen, bestätigen die Daten des CAFC-Assays zum Vergleich der nicht expandierten CD34^{pos} und AC133^{pos} Zellen: AC133^{pos} Zellen bilden in der 2. Woche der Langzeitzellkultur um den Faktor 1,67 mehr CAFC als CD34^{pos} Zellen.

Matsumoto et al. [66] beschreiben eine Vermehrung der Zellzahl um das 14-23 fache in einer zweiwöchigen Kultivierung von AC133^{pos} und CD34^{pos} Zellen in serumfreiem Medium mit Flt-3-Ligand; jedoch kann auch hier kein Unterschied zwischen diesen beiden Populationen festgestellt werden. In der funktionellen Analyse durch den CFU-Assay zeigen die AC133^{pos} eine 7,1 fache, die CD34^{pos} eine 2,9 fache Vermehrung. Die in dieser Arbeit dargestellten Experimente zeigen nach der 4 beziehungsweise 7 Tage dauernden Kultivierung keine Vermehrung der Zellzahl.

Die Betrachtung der CAFC-Frequenz im zeitlichen Verlauf der ex vivo-Kultivierung innerhalb einer Zellpopulation zeigte, daß bei CD34^{pos} und AC133^{pos} Zellen in den hier dargestellten Daten nach vier Tagen Expansion im serumfreien Medium die CAFC-Frequenz Woche 2 zugenommen hatte, die CAFC-Frequenz der 5. Woche sich jedoch im Vergleich zu den nicht expandierten Zellen nicht geändert hatte. Das legt die Vermutung nahe, daß eine Differenzierung der Zellen stattgefunden hat, die in nicht expandiertem Zustand vielleicht die Eigenschaften sehr früher Stammzellen besessen hatten, wodurch eine relative Vermehrung der "späteren"CAFC Woche 2 - Zellen eventuell aus CAFC Woche 5 resultiert (siehe auch Einleitung), oder aber daß sich die CAFC Woche 2 absolut vermehrt haben. Es sei nochmal daran erinnert, daß die CAFC-Frequenz, die durch die Anzahl der Kolonien in der 2. Woche der Langzeitkultur berechnet werden kann, mit klonogenen, kommittierten Progenitorzellen korreliert.

Die sieben Tage lang expandierten Zellen zeigten nur eine Zunahme der CD34^{pos} Zellen in der 2. Woche des CAFC-Assays,was ebenfalls darauf hindeutet, daß die Expansion CAFC-bildender Zellen unter diesen Kulturbedingungen nicht möglich ist.

Bhatia et al. [11] beschreiben eine ex vivo Expansion von CD34^{pos}CD38^{pos} und CD34^{pos} CD38^{neg} Zellen unter Zusatz der Wachstumsfaktoren SCF, Flt-3-Ligand, G-SCF, IL-3 und IL-6, bei der sich über Tag 4 bis Tag 9 eine Zunahme der Zellzahl zeigte, die Vermehrung der CFC jedoch am 9. Tag im Vergleich zum 4. Tag bei den primitiveren CD34^{pos}CD38^{neg} schon wieder abgenommen hatte. Diese Tendenz zur Abnahme der Repopulationsfähigkeit setzte sich im SRC-Modell (in vivo-assay) fort: Es zeigte sich am Tag 4 im Vergleich zu Tag 0 kein oder ein nur sehr geringer Unterschied in der Fähigkeit, SCID-Mäuse mit humanen Zellen erfolgreich zu transplantieren, während 9 Tage kultivierte Zellen in SCID-Mäusen kein Engraftment mehr zeigten. Die FACS-Analyse ergab, daß der Phänotyp bei den 4 Tage lang ex vivo kultivierten Zellen identisch geblieben war; an Tag 9 nahm bei den anfangs CD34^{pos}CD38^{neg} der Anteil der der CD34^{pos} CD38^{pos} zu, die zunächst (an Tag 0) CD34^{pos}CD38^{pos} Zellen differenzierten sich zu einem CD34^{neg}CD38^{neg} Phänotyp. Die Autoren folgern daraus, daß die Anzahl der Zellen absolut, der CFC und der CD34^{pos} Zellen nicht mit der Fähigkeit expandierter Zellen zur Repopulation korreliert. In Bezug auf die in dieser Arbeit vorgestellten Ergebnisse läßt sich schließen, daß die Fähigkeit zur kurzzeitigen Repopulation, nachgewiesen durch den CFU-Assay, unter den

oben beschriebenen Expansionsbedingungen während vier Tagen erhalten bleibt oder durch Zunahme der CAFC Woche 2 begründet sogar zunimmt, das in vitro nachweisbare long-term-engraftment (entsprechend den CAFC Woche 5/6) sich jedoch nicht verändert.

4.3 CD34^{neg} und CD164^{pos/neg} Subpopulationen

Die Arbeitsgruppe um Osawa zeigte 1996 erstmals [75], daß eine einzelne CD34^{low/neg} c-kit^{pos}Sca-1^{pos}Lin^{neg} murine Zelle eine lymphohämatopoetische Rekonstitution bei tödlich bestrahlten Ly 5.2 Mäusen erzielen konnte. Dies war der erste Hinweis, daß CD34^{pos} Zellen nicht als "die Stammzellen"betrachtet werden können. Da zu diesem Zeitpunkt die Vergleichbarkeit des murinen und des humanen Stammzellsystems noch nicht erwiesen war [33], konnte noch keine Aussage über das humane Expressionsmuster bei hämatopoetische Stammzellen getroffen werden. 1997 identifizierten Goodell et al [43] eine CD34^{neg} Zellpopulation beim Menschen, bei Affen und bei Mäusen. Die zunächst CD34^{neg} Zellen der Rhesusaffen exprimierten im Laufe der Kultivierung im LTC-IC-Assay das CD34- Oberflächenmolekül, was zeitlich mit der Fähigkeit, Kolonien zu bilden, korrelierte.

Zwei Jahre später folgten Untersuchungen mit humanen CD34^{*neg*} Stammzellen: Zum einen konnte anhand des fetalen Schafmodells [115] gezeigt werden, daß CD34^{*neg*} Stammzellen in vivo die Fähigkeit besitzen, einen Organismus langfristig zu repopulieren und daß CD34^{*neg*} Zellen Vorläuferzellen von CD34^{*pos*} Zellen sind. Zum anderen wurde mit Hilfe des SCID-Maus-Modells eine "SCID-Maus repopulierende Zelle (SRC)"beschrieben, die als CD34^{*neg*} HLA-DR^{*neg*}Thy-1^{*neg*} phänotypisiert wurde [12]. Diese Zelle wies keine klonogene Aktivität in vitro auf, proliferiert im Gegensatz zu Lin^{*neg*}CD34^{*pos*}CD38^{*pos*} Zellen unter serumfreier ex vivo-Kultivierung und zeigt eine verstärkte Fähigkeit zur SCID-Repopulation nach Kultivierung mit fetalem Kälberserum (FCS) oder humanem durch Umbilicalvenenendothelzellen konditioniertes Medium (HUVEC-CM).

Trotz der bewiesenen frühen hämatopoetischen Aktivität CD34^{neg} Zellen konnten diese Zellen nicht positiv identifiziert werden. Gallacher et al. vermuteten, daß diese sehr kleine Zellfraktion innerhalb der CD34^{neg}Lin^{neg} Zellpopulation durch den Antikörper AC133 positiv charakterisieren könnte [41]. Sie sortierte CD34^{neg}Lin^{neg}CD38^{neg} Zellen in AC133^{pos} und AC133^{neg} Subpopulationen, wobei sie in der AC133^{pos} Zellfraktion keine oder wenig klonogene Aktivität fand, allerdings in geringem Ausmaß NOD/SCID-Mäuse erfolgreich transplantieren konnte. Um eine höhere Rate von erfolgreichen Transplantationen zu erzielen, stimulierte sie vor der Injektion der CD34^{neg}CD38^{neg}Lin^{neg}-AC133^{pos} diese ex vivo mit Zytokinen, wobei sie eine Vermehrung der Zellzahl um das drei- bis vierfache innerhalb drei Tagen sowie die Expression des CD34-Oberflächenmoleküls zeigen konnte.

Diese Ergebnisse wurden jedoch durch eine von Sato et al. [90] vorgelegte Arbeit relativiert, der durch Gabe von 5-Fluoruracil (5-FU) die Expression von CD34 reversibel ändern konnte. Das wiederum stützt die Hypothese, daß das Oberflächenantigen CD34 die Aktivität einer hämatopoetische Stammzelle widerspiegeln könnte.

In der hier vorliegenden Arbeit sollte untersucht werden, ob CD164 ein geeigneter Marker ist, die CD34^{neg}, als Stammzellen bezeichneten Zellen positiv zu identifizieren. Es war jedoch nicht oder in einem nur sehr geringen, nicht signifikanten Umfang möglich, sowohl aus CD34^{neg}CD164^{neg} als auch aus CD34^{neg}CD164^{pos} Zellen in in vitro Zellkulturen als hämatopoetische Stamm- oder Progenitorzellen darzustellen. Die Ursache dafür könnte ein Mangel an adäquaten Wachstumsfaktoren [1, 41] sein. Die in Kooperation mit E. Zanjani durchgeführten Transplantationen der gleichen Zellen im Schafmodell zeigten jedoch eine Stzammzell-Aktivität vor allem der CD34^{neg}CD164^{pos} Zellfraktion. Daraus läßt sich schließen, daß die CD34^{neg}CD164^{pos/neg} Zellen zu unreif sind, um im CAFC-Assay in vitro entdeckt werden zu können.

Die als Kontrollgruppe verwendeten CD34^{pos}CD164^{pos} und CD34^{pos}CD164^{neg} Zellen zeigten im CAFC-Assay eine signifikant höhere koloniebildende Aktivität als die CD34^{neg} Populationen. Das Überraschende jedoch ist, daß die CD34^{pos}CD164^{neg} Subpopulation sowohl im CFU- als auch im CAFC-Assay mehr Kolonien bildet als die CD34^{pos}-CD164^{pos} Zellfraktion. Das widerspricht den von Zannettino et al. [117] veröffentlichten Daten, die im pre-CFU-Assay eine wesentlich höhere klonogene Aktivität der CD34^{pos}-

CD164^{pos} Subpopulation zeigen. Auch die höhere Repopulationsrate der CD164^{pos} Zellen im fetalen Schafmodell [1] steht im Mißverhältnis zu den hier dargestellten Daten. Die hier als Kontrolle erhobenen Werte der CD34^{pos} Population sollten auch als solche betrachtet werden und den Differenzen innerhalb dieser Gruppe angesichts der niedrigen Fallzahlen keine wesentliche Bedeutung beigemessen werden.

Basierend auf unseren eigenen Daten und der verfügbaren Literatur konnten wir zeigen, daß CD34^{neg} Zellen in in vitro assays nicht detektierbar sind. Es scheint möglich, daß das inzwischen als CD133 geclusterte Antigen, das durch den Antikörper AC133 erkannt wird, die "früheste", in vitro darstellbare Stammzellpopulation definiert. Weitere, insbesondere in vivo assays müssen zeigen, welche phänotypisch definierten Populationen den primitivsten hämatopoetischen Stammzellen zuzuordnen sind.
Kapitel 5

Zusammenfassung

Bis heute ist die eindeutige Identifizierung hämatopoetischer Stammzellen nicht gelungen. In dieser Arbeit sollten mit Hilfe von in vitro assays phänotypisch charakterisierte Zellpopulationen verglichen werden, die möglicherweise als frühe Vorläuferzellen betrachtet werden können. Zunächst wurde anhand CD34^{pos} Zellen der CAFC-Assay etabliert. Dieser Assay gilt als die Methode, die die primitivsten in vitro darstellbaren Stammund Progenitorzellen quantifiziert. Die Darstellung früher Stammzellen wurde durch den CFU-Assay ergänzt, der wesentlich differenziertere, kommittierte Progenitoren detektiert. Nachdem die Methoden anhand von Daten aus der Literatur verifiziert worden waren, wurden in einer ersten Versuchsreihe CD34^{pos} und AC133^{pos} Zellpopulationen nativ und nach vier beziehungsweise sieben Tagen ex vivo-Kultivierung untersucht; in einer zweiten Versuchsreihe wurden noch primitivere Lin^{neg}CD34^{neg} Stammzellkandidaten analysiert, die elektronisch mit Hilfe eines Zellsorters in eine CD164^{neg} und eine CD164^{pos} Subpopulation geteilt worden waren.

Aus den Untersuchungen der CD34^{pos} und AC133^{pos} Zellen konnte geschlossen werden, daß die durch den Antikörper AC133 charakterisierten Zellen einer unreiferen Population angehören als die heterogenen CD34^{pos} Zellen: In den Experimenten zeigte sich eine signifikant höhere Anzahl von CAFC der 2. und 6. Kulturwoche innerhalb der AC133^{pos} Zellen. Die ex vivo Expansion der beiden Zellpopulationen in mit SCF, Flt-3-Ligand und Tpo ergänzten serumfreien Medien hatte keine Auswirkung auf die Frequenz der in vitro nachweisbaren Stammzellen. Der Anteil der Progenitorzellen, quantifiziert als CAFC Woche 2, nahm jedoch zu.

In den Untersuchungen der CD34^{neg} Zellen konnten unter den hier gewählten Bedingungen weder CD34^{neg}CD164^{neg} noch CD34^{neg}CD164^{pos} Zellen im CAFC- oder CFU-Assay nachgewiesen werden; diese Daten bestätigen und ergänzen bereits veröffentlichte Ergebnisse. Die gleichzeitig in Kooperation mit E. Zanjani durchgeführten Transplantationen der CD34^{neg}Lin ^{neg} Zellpopulationen zeigen jedoch ein Engraftment vor allem der CD34^{neg}CD164^{pos} Zellen im fetalen-Schaf-Modell.

In vitro-Methoden scheinen somit für unreifere als CD34^{pos} Zellen nicht adäquat. CD34^{neg} Lin^{neg} Zellen lassen sich unter den bisher verwendeten ex vivo Bedingungen nicht untersuchen. Um weitere Aussagen über diese Zellen treffen zu können, müssen in vivo-Modelle wie zum Beispiel das fetal-sheep-Modell oder die Transplantation derartiger Zellen in NOD/SCID-Mäuse herangezogen werden.

Literaturverzeichnis

- Almeida-Porada, G., Buhring, H. J., Watt, S. M., Simmons, P., Rathke, G, Scheding, S., Kanz, L., Brugger, W., and Zanjani, E. (1999) CD164 Defines an Immature Subset of human Bone Marrow CD34 neg Stem Cells. Blood, 94, 462a
- [2] Andrews, R. G., Briddell, R. A., Hill, R., Gough, M., and McNiece, I. K. (1999) Engraftment of primates with G-CSF mobilized peripheral blood CD34+ progenitor cells expanded in G-CSF, SCF and MGDF decreases the duration and severity of neutropenia. Stem.Cells, 17(4), 210-218
- [3] Andrews, R. G., Bryant, E. M., Bartelmez, S. H., Muirhead, D. Y., Knitter, G. H., Bensinger, W., Strong, D. M., and Bernstein, I. D. (1992) CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood, 80(7), 1693-1701
- [4] Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1986) Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood, 67(3), 842-845
- [5] Armitage, J.O. (1998) Bone Marrow Transplantation, 724-730
 in: Fauci, A.S., Braunwald, E., Isselbacher, K.J., Wilson, J.D., Martin, J.B., Kasper, D.L., Hauser, S.L., Longo, D.L.:Harrison's Principles of Internal Medicine; 14th Edition, McGraw-Hill (1998) Harrison's Principles of Internal Medicine 14
- [6] Bachar-Lustig, E., Rachamim, N., Li, H. W., Lan, F., and Reisner, Y. (1995) Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat.Med., 1(12), 1268-1273
- Baersch, G., Baumann, M., Ritter, J., Jurgens, H., and Vormoor, J. (1999) Expression of AC133 and CD117 on candidate normal stem cell populations in childhood B-cell precursor acute lymphoblastic leukaemia. Br.J.Haematol., 107(3), 572-580
- [8] Van, Bekkum DW (1999) Autologous stem cell transplantation for treatment of autoimmune diseases. Stem.Cells, 17(3), 172-178
- [9] Bertolini, F., Battaglia, M., Lanza, A., Gibelli, N., Palermo, B., Pavesi, L., Caprotti, M., and Robustelli, della Cuna (1997) Multilineage long-term engraftment potential of drug-resistant hematopoietic progenitors. Blood, 90(8), 3027-3036
- [10] Bertoncello, I., Hodgson, G. S., and Bradley, T. R. (1988) Multiparameter analysis of transplantable hemopoietic stem cells. I. The separation and enrichment of stemcells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp.Hematol., 13, 999-1006

LITERATURVERZEICHNIS

- [11] Bhatia, M., Bonnet, D., Kapp, U., Wang, J. C., Murdoch, B., and Dick, J. E. (1997) Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J.Exp.Med., 186(4), 619-624
- [12] Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., and Dick, J. E. (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity Nat.Med., 4(9), 1038-1045
- [13] Bock, T. A. (1997) Assay systems for hematopoietic stem and progenitor cells. Stem.Cells, 15 Suppl 1:185-95, 185-195
- Breems, D. A., Blokland, E. A., Neben, S., and Ploemacher, R. E. (1994)
 Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay.
 Leukemia, 8(7), 1095-1104
- [15] Breems, D. A., Blokland, E. A., and Ploemacher, R. E. (1997) Stroma-conditioned media improve expansion of human primitive hematopoietic stem cells and progenitor cells. Leukemia, 11(1), 142-150
- Breems, D. A., Blokland, E. A., Siebel, K. E., Mayen, A. E., Engels, L. J., and Ploemacher, R. E. (1998)
 Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood, 91(1), 111-117
- Breems, D. A., Van, Driel EM, Hawley, R. G., Siebel, K. E., and Ploemacher, R. E. (1998)
 Stroma-conditioned medium and sufficient prestimulation improve fibronectin fragment-mediated retroviral gene transfer into human primitive mobilized peripheral blood stem cells through effects on their recovery and transduction efficiency. Leukemia, 12(6), 951-959
- Breems, D. A., van, Hennik PB, Kusadasi, N., Boudewijn, A., Cornelissen, J. J., Sonneveld, P., and Ploemacher, R. E. (1996) Individual stem cell quality in leukapheresis products is related to the number of mobilized stem cells. Blood, 87(12), 5370-5378
- [19] Broudy, V. C. (1997) Stem cell factor and hematopoiesis. Blood, 90(4), 1345-1364
- [20] Brugger, W., Heimfeld, S., Berenson, R. J., Mertelsmann, R., and Kanz, L. (1995) Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N.Engl.J.Med., 333(5), 283-287

- [21] Brugger, W., Mocklin, W., Heimfeld, S., Berenson, R. J., Mertelsmann, R., and Kanz, L. (1993)
 Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin.
 Blood, 81(10), 2579-2584
- Brugger, W., Scheding, S., Vogel, W., and Kanz, L. (1996) Purging of peripheral blood progenitor cells. Ann.Oncol., 7 Suppl 2:11-3, 11-13
- [23] Brugger, W., Scheding, S., Ziegler, B., Buhring, H. J., and Kanz, L. (2000) Ex vivo manipulation of hematopoietic stem and progenitor cells. Semin.Hematol.37(1 Suppl 2), 42-49
- [24] Buhring, H. J., Seiffert, M., Marxer, A., Weiss, B., Faul, C., Kanz, L., and Brugger, W. (1999)
 AC133 antigen expression is not restricted to acute myeloid leukemia blasts but is also found on acute lymphoid leukemia blasts and on a subset of CD34+ B-cell precursors [letter]
 Blood, 94(2), 832-833
- Burt, R. K. and Traynor, A. E. (1999)
 Hematopoietic stem cell transplantation: a new therapy for autoimmune disease. The Oncologist, 4: 77-83
- [26] Carella, A. M., Champlin, R., Slavin, S., McSweeney, P., and Storb, R. (2000) Mini-allografts: ongoing trials in humans [editorial] Bone Marrow Transplant 25(4): 345-350
- [27] Cavazzana-Calvo, M., Hacein-Bey, S., de Saint, Basile G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J. L., Bousso, P., Deist, F. L., and Fischer, A. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466): 669-672
- [28] Cheng, J., Baumhueter, S., Cacalano, G., Carver-Moore, K., Thibodeaux, H., Thomas, R., Broxmeyer, H. E., Cooper, S., Hague, N., Moore, M., and Lasky, L. A. (1996)
 Hematopoietic defects in mice lacking the sialomucin CD34. Blood, 87(2), 479-490
- [29] Civin, C. I., Almeida-Porada, G., Lee, M. J., Olweus, J., Terstappen, L. W., and Zanjani, E. D. (1996)
 Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood, 88(11), 4102-4109
- [30] Corbeil, D., Roper, K., Hellwig, A., Tavian, M., Miraglia, S., Watt, S. M., Simmons, P. J., Peault, B., Buck, D. W., and Huttner, W. B. (2000)
 The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions.
 J.Biol.Chem. 275(8): 5512-5520

- [31] Corbeil, D., Roper, K., Weigmann, A., and Huttner, W. B. (1998) AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? [letter] Blood, 91(7), 2625-2626
- [32] Craig, W., Kay, R., Cutler, R. L., and Lansdorp, P. M. (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J.Exp.Med., 177(5), 1331-1342
- [33] Dao, M. A. and Nolta, J. A. (2000) CD34: to select or not to select? That is the question. Leukemia 14(5), 773-776
- [34] Davis, T. A., Robinson, D. H., Lee, K. P., and Kessler, S. W. (1995) Porcine brain microvascular endothelial cells support the in vitro expansion of human primitive hematopoietic bone marrow progenitor cells with a high replating potential: requirement for cell-to-cell interactions and colony-stimulating factors. Blood, 85(7), 1751-1761
- [35] Deeg, H. J. and Socie, G. (1998) Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood, 91(6), 1833-1844
- [36] Devine, S. M. and Hoffman, R. (2000) Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr. Opinion in Hematol., 7: 358-363
- [37] Dooley, D. C., Xiao, M., Oppenlander, B. K., Plunkett, J. M., and Lyman, S. D. (1997)
 Flt3 ligand enhances the yield of primitive cells after Ex vivo cultivation of CD34+ CD38dim cells and CD34+ CD38dim CD33dim HLA-DR+ cells. Blood, 90(10), 3903-3913
- [38] Doyonnas, R., Yi-Hsin, Chan J., Butler, L. H., Rappold, I., Lee-Prudhoe, J. E., Zannettino, A. C., Simmons, P. J., Buhring, H. J., Levesque, J. P., and Watt, S. M. (2000) CD164 Monoclonal Antibodies That Block Hemopoietic Progenitor Cell Adhesion and Proliferation Interact with the First Mucin Domain of the CD164 Receptor. J.Immunol.2000.Jul.15.;165.(2.):840.-851., 165(2), 840-851
- [39] Emerson, S. G. (1996)
 Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood, 87(8), 3082-3088
- [40] Fina, L., Molgaard, H. V., Robertson, D., Bradley, N. J., Monaghan, P., Delia, D., Sutherland, D. R., Baker, M. A., and Greaves, M. F. (1990) Expression of the CD34 gene in vascular endothelial cells. Blood, 75(12), 2417-2426
- [41] Gallacher, L., Murdoch, B., Wu, D. M., Karanu, F. N., Keeney, M., and Bhatia, M. (2000)
 Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95(9): 2813-2820

- [42] Gazitt, Y., Reading, C. C., Hoffman, R., Wickrema, A., Vesole, D. H., Jagannath, S., Condino, J., Lee, B., Barlogie, B., and Tricot, G. (1995)
 Purified CD34+ Lin- Thy+ stem cells do not contain clonal myeloma cells. Blood, 86(1), 381-389
- [43] Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., deMaria, MA., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C., and Johnson, P. R. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 3(12): 1337-1345
- [44] Gotze, K. S., Ramirez, M., Tabor, K., Small, D., Matthews, W., and Civin, C. I. (1998)
 Flt3high and Flt3low CD34+ progenitor cells isolated from human bone marrow are functionally distinct. Blood, 91(6), 1947-1958
- [45] Green, C. L., Loken, M., Buck, D., and Deeg, H. J. (2000) Discordant expression of AC133 and AC141 in patients with myelodysplastic syndrome (MDS) and acute myelogeneous leukemia (AML) [letter] Leukemia 14(4),: 770-772
- [46] Gunji, Y and Suda, T (1995) Characterization and Enrichment of Human Hematopoietic Stem Cells, 1–25 in: Levitt,D., Mertelsmann, R.: Hematopoietic Stem Cell Marcel Dekker, Inc.1995
- [47] Gustaffson, A., Levitsky, V., Zou, J-Z, Frisan, T., Dalianis, T., Ljungman, P., Rongden, O., Winiarski, J., Ernberg, I., and Masucci, M.G. (2000) Ebstein- Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplnt lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95(3): 807-814
- [48] Hao, Q. L., Thiemann, F. T., Petersen, D., Smogorzewska, E. M., and Crooks, GM (1996)
 Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood, 88(9), 3306-3313
- [49] Haylock, D. N., To, L. B., Dowse, T. L., Juttner, C. A., and Simmons, P. J. (1992) Ex Vivo Expansion and Maturation of Peripheral Blood CD34+ Cells into the Myeloid Lineage. Blood, 80(6), 1405-1412
- [50] Heckner, F., Freund, M. (1997) Praktikum der mikroskopischen Hämatologie. Urban und Schwarzenberg, München, Wien, Baltimore
- [51] van Hennik, P. B., de Koning AE, and Ploemacher, R. E. (1999) Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood, 94(9), 3055-3061

- [52] Henschler, R., Brugger, W., Luft, T., Frey, T., Mertelsmann, R., and Kanz, L. (1994) Maintenance of transplantation potential in ex vivo expanded CD34(+)-selected human peripheral blood progenitor cells. Blood, 84(9), 2898-2903
- [53] Hill, B., Rozler, E., Travis, M., Chen, S., Zannetino, A., Simmons, P., Galy, A., Chen, B., and Hoffman, R. (1996)
 High-level expression of a novel epitope of CD59 identifies a subset of CD34+ bone marrow cells highly enriched for pluripotent stem cells. Exp.Hematol., 24(8), 936-943
- [54] Horn, P. A., Tesch, H., Staib, P., Kube, D., Diehl, V., and Voliotis, D. (1999) Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells [letter] Blood, 93(4), 1435-1437
- [55] Kamel-Reid, S. and Dick, J. E. (1988)
 Engraftment of immune-deficient mice with human hematopoietic stem cells. Science, 242(4886), 1706-1709
- [56] Kaushansky, K. (1998) Thrombopoietin and the hematopoietic stem cell. Blood, 92(1), 1-3
- [57] Kawashima, I., Zanjani, E. D., Almaida-Porada, G., Flake, A. W., Zeng, H., and Ogawa, M. (1996)
 CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood, 87(10), 4136-4142
- [58] Kratz-Albers, K., Zuhlsdorp, M., Leo, R., Berdel, W. L., Buchner, T., and Serve, H. (1998)
 Expression of a AC133, a novel stem cell marker, on human leukemic blasts lacking CD34-antigen and on a human CD34+ leukemic line:MUTZ-2 [letter] Blood, 92(11), 4485-4487
- [59] Krause, D. S., Ito, T., Fackler, M. J., Smith, O. M., Collector, M. I., Sharkis, S. J., and May, W. S. (1994) Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood, 84(3), 691-701
- [60] Kukk, E., Wartiovaara, U., Gunji, Y., Kaukonen, J., Buhring, H. J., Rappold, I., Matikainen, M. T., Vihko, P., Partanen, J., Palotie, A., Alitalo, K., and Alitalo, R. (1997) Analysis of Tie receptor tyrosine kinase in haemopoietic progenitor and leukaemia cells. Br.J.Haematol., 98(1), 195-203
- [61] Lansdorp, P. M., Sutherland, H. J., and Eaves, C. J. (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J.Exp.Med., 172(1), 363-366

- [62] Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996)
 Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat.Med., 2(12), 1329-1337
- [63] Leary, A. G. and Ogawa, M. (1987)
 Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood, 69(3), 953-956
- [64] Lord, B. I. and Dexter, T. M. (1995)Which are the hematopoietic stem cells? [or: don't debunk the history!]Exp.Hematol., 23(12), 1237-1241
- [65] Maelicke, A. (1999) Menschliche embryonale Stammzellen Nachr.Chem.Techn.Lab., (1), 39-40
- [66] Matsumoto, K., Yasui, K., Yamashita, N., Horie, Y., Yamada, T., Tani, Y., Shibata, H., and Nakano, T. (2000) In vitro proliferation potential of AC133 positive cells in peripheral blood. Stem.Cells 18(3): 196-203
- [67] Mazini, L., Wunder, E., Sovalat, H., Bourderont, D., Baerenzung, M., Bachorz, J., and Henon, P. (1998)
 Mature accessory cells influence long-term growth of human hematopoietic progenitors on a murine stromal cell feeder layer. Stem.Cells, 16(6), 404-412
- [68] McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988)
 The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science, 241(4873), 1632-1639
- [69] Miraglia, S., Godfrey, W., and Buck, D. (1998) A response to AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? [letter] Blood, 91(11), 4390-4391
- [70] Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., and Buck, D. W. (1997)
 A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 90(12), 5013-5021
- [71] Namikawa, R., Weilbaecher, K. N., Kaneshima, H., Yee, E. J., and McCune, J. M. (1990)
 Long-term human hematopoiesis in the SCID-hu mouse.
 J.Exp.Med., 172(4), 1055-1063

- [72] Nilsson, S. K., Dooner, M. S., Tiarks, C. Y., Weier, H. U., and Quesenberry, P. J. (1997)
 Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood, 89(11), 4013-4020
- [73] Orlic, D. and Bodine, D. M. (1992)
 Pluripotent hematopoietic stem cells of low and high density can repopulate W/Wv mice.
 Exp.Hematol., 20(11), 1291-1295
- [74] Orlic, D. and Bodine, D. M. (1994)
 What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! [editorial]
 Blood, 84(12), 3991-3994
- [75] Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273(5272), 242-245
- [76] Peault, B., Weissman, I. L., Baum, C., McCune, J. M., and Tsukamoto, A. (1991) Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J.Exp.Med., 174(5), 1283-1286
- [77] Pettengell, R., Luft, T., Henschler, R., Hows, J. M., Dexter, T. M., Ryder, D., and Testa, N. G. (1994)
 Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells. Blood, 84(11), 3653-3659
- [78] Petzer, A. L., Zandstra, P. W., Piret, J. M., and Eaves, C. J. (1996) Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J.Exp.Med., 183(6), 2551-2558
- [79] Ploemacher, R. E. (1997) Stem cells: characterization and measurement. Baillieres.Clin.Haematol., 10(3), 429-444
- [80] Ploemacher, R. E. and Brons, R. H. (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp.Hematol.,17:263-266
- [81] Preijers, F. W., van, Hennik PB, Schattenberg, A., Ruijs, P., Ploemacher, R. E., and de, Witte T. (1999) Counterflow centrifugation allows addition of appropriate numbers of T cells to allogeneic marrow and blood stem cell grafts to prevent severe GVHD without substantial loss of mature and immature progenitor cells. Bone Marrow Transplant., 23(10), 1061-1070

- [82] Prosper, F., Stroncek, D., and Verfaillie, C. M. (1996) Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony-stimulating factor. Blood, 88(6), 2033-2042
- [83] Przepiorka, D., Smith, T. L., Folloder, J., Khouri, I., Ueno, N. T., Mehra, R., Korbling, M., Huh, Y. O., Giralt, S., Gajewski, J., Donato, M., Cleary, K., Claxton, D., Braunschweig, I., van, Besien K., Andersson, B. S., Anderlini, P., and Champlin, R. (1999)
 Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood, 94(4), 1465-1470
- [84] Blutvolumen, 206in: Pschyrembel Klinisches Wörterbuch256. Auflage, deGruyter, Berlin, New York
- [85] Ramsfjell, V., Borge, O. J., Cui, L., and Jacobsen, S. E. (1997) Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38-) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-beta and TNF-alpha. J.Immunol., 158(11), 5169-5177
- [86] Rappold, I., Ziegler, B. L., Kohler, I., Marchetto, S., Rosnet, O., Birnbaum, D., Simmons, P. J., Zannettino, A. C., Hill, B., Neu, S., Knapp, W., Alitalo, R., Alitalo, K., Ullrich, A., Kanz, L., and Buhring, H. J. (1997) Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood, 90(1), 111-125
- [87] Reisner, Y. and Martelli, M. F. (2000) Transplantation tolerance induced by mega doseCD34+ cell transplants. Exp.Hematol.28(2): 119-127
- [88] Rowley, S. D., Sharkis, S. J., Hattenburg, C., and Sensenbrenner, L. L. (1987) Culture from human bone marrow of blast progenitor cells with an extensive proliferative capacity. Blood, 69(3), 804-808
- [89] Sato, N., Sawada, K., Koizumi, K., Tarumi, T., Ieko, M., Yasokouchi, T., Tamaguchi, M., Takahashi, T.A., Sekiguchi, S., and Koike, T. (1993) In vitro expansion of human peripheraö blood CD34+ cells Blood, 82(12), 3600-3609
- [90] Sato, T., Laver, J. H., and Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood, 94(8), 2548-2554
- [91] Scheding, S., Kratz-Albers, K., Meister, B., Brugger, W., and Kanz, L. (1998) Ex vivo expansion of hematopoietic progenitor cells for clinical use. Semin.Hematol., 35(3), 232-240

- [92] Schiller, G., Vescio, R., Freytes, C., Spitzer, G., Sahebi, F., Lee, M., Wu, C. H., Cao, J., Lee, J. C., and Hong, C. H. (1995) Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma. Blood, 86(1), 390-397
- [93] Schwella, N and Huhn, D (1998) Mobilisation und Separation autologer Blutstammzellen Onkologe, 4, 639-648
- [94] Shimizu, Y., Ogawa, M., Kobayashi, M., Almeida-Porada, G., and Zanjani, E. D. (1998)Engraftment of cultured human hematopoietic cells in sheep. Blood, 91(10), 3688-3692
- [95] Sirchia, G. and Rebulla, P. (1999) Placental/umbilical cord blood transplantation. Haematologica, 84(8), 738-747
- [96] Sogo, S., Inaba, M., Ogata, H., Hisha, H., Adachi, Y., Mori, S., Toki, J., Yamanishi, K., Kanzaki, H., Adachi, M., and Ikehara, S. (1997) Induction of c-kit molecules on human CD34+/c-kit < low cells: evidence for CD34+/c-kit < low cells as primitive hematopoietic stem cells. Stem.Cells, 15(6), 420-429
- [97] Solar, G. P., Kerr, W. G., Zeigler, F. C., Hess, D., Donahue, C., de, Sauvage FJ, and Eaton, D. L. (1998) Role of c-mpl in early hematopoiesis. Blood, 92(1), 4-10
- [98] Spangrude, G. J., Smith, L., Uchida, N., Ikuta, K., Heimfeld, S., Friedman, J., and Weissman, I. L. (1991) Mouse hematopoietic stem cells. Blood, 78(6), 1395-1402
- [99] Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C., and Eaves, C. J. (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc.Natl.Acad.Sci.U.S.A., 87(9), 3584-3588
- [100] Terstappen, L. W., Huang, S., Safford, M., Lansdorp, P. M., and Loken, M. R. (1991)Sequential generations of hematopoietic colonies derived from single nonlineagecommitted CD34+CD38- progenitor cells. Blood, 77(6), 1218-1227
- [101] Theilgaard-Monch, K., Raaschou-Jensen, K., Andersen, H., Russell, C. A., Vindelov, L., Jacobsen, N., and Dickmeiss, E. (1999) Single leukapheresis products collected from healthy donors after the administration of granulocyte colony-stimulating factor contain ten-fold higher numbers of longterm reconstituting hematopoietic progenitor cells than conventional bone marrow allografts.

Bone Marrow Transplant., 23(3), 243-249

- [102] Till, JE and McCulloch, EA (1961)
 A direct measurement of the Radiation Seneitivity of Normal Mouse Bone Marrow Cells.
 Radiation Research, 14, 213-222
- [103] Uchida, N., Combs, J., Chen, S., Zanjani, E., Hoffman, R., and Tsukamoto, A. (1996)
 Primitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities. Blood, 88(4), 1297-1305
- [104] Urbano-Ispizua, A., Rozman, C., Pimentel, P., Solano, C., de la Rubia, J., Brunet, S., Perez-Oteiza, J., Ferra, C., Zuazu, J., Caballero, D., Carvalhais, A., Diez, J. L., Espigado, I., Martinez, C., Campilho, F., Sanz, M. A., Sierra, J., Garcia-Conde, J., and Montserrat, E., for the Spanish Group for Allogeneic Peripheral Blood Transplantation (2001)
 The number of donor CD3+ cells is the most important factor for graft failure after allogeneic transplantation of CD34+ selected cells from peripheral blood from HLA-identical siblings. Blood, 97, 383-387
- [105] Vogel, W., Behringer, D., Scheding, S., Kanz, L., and Brugger, W. (1996) Ex vivo expansion of CD34+ peripheral blood progenitor cells: implications for the expansion of contaminating epithelial tumor cells. Blood, 88(7), 2707-2713
- [106] Watt, S. M., Buhring, H. J., Rappold, I., Chan, J. Y., Lee-Prudhoe, J., Jones, T., Zannettino, A. C., Simmons, P. J., Doyonnas, R., Sheer, D., and Butler, L. H. (1998) CD164, a novel sialomucin on CD34(+) and erythroid subsets, is located on human chromosome 6q21. Blood, 92(3), 849-866
- [107] Watt, S. M., Butler, L. H., Tavian, M., Buhring, H. J., Rappold, I., Simmons, P. J., Zannettino, A. C., Buck, D., Fuchs, A., Doyonnas, R., Chan, J. Y., Levesque, J. P., Peault, B., and Roxanis, I. (2000)
 Functionally defined CD164 epitopes are expressed on CD34(+) cells throughout ontogeny but display distinct distribution patterns in adult hematopoietic and nonhematopoietic tissues. Blood 95(10): 3113-3124
- [108] Watt, S. M. and Chan, J. Y. (2000)
 CD164–a novel sialomucin on CD34+ cells. Leuk.Lymphoma 37(1-2): 1-25
- [109] Williams, S. F., Lee, W. J., Bender, J. G., Zimmerman, T., Swinney, P., Blake, M., Carreon, J., Schilling, M., Smith, S., Williams, D. E., Oldham, F., and Van, Epps D. (1996)
 Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood, 87(5), 1687-1691

- [110] Wolf, N. S., Kone, A., Priestley, G. V., and Bartelmez, S. H. (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp.Hematol., 21(5), 614-622
- [111] de Wynter EA, Buck, D., Hart, C., Heywood, R., Coutinho, L. H., Clayton, A., Rafferty, J. A., Burt, D., Guenechea, G., Bueren, J. A., Gagen, D., Fairbairn, L. J., Lord, B. I., and Testa, N. G. (1998)
 CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem.Cells, 16(6), 387-396
- [112] Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., Olweus, J., Kearney, J., and Buck, D. W. (1997)
 AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002-5012
- [113] Zandstra, P. W., Conneally, E., Petzer, A. L., Piret, J. M., and Eaves, C. J. (1997) Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc.Natl.Acad.Sci.U.S.A., 94(9), 4698-4703
- [114] Zanjani, E. D., Almeida-Porada, G., and Flake, A. W. (1995) Retention and multilineage expression of human hematopoietic stem cells in humansheep chimeras. Stem.Cells, 13(2), 101-111
- [115] Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Flake, A. W., and Ogawa, M. (1998)
 Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells Exp.Hematol., 26(4), 353-360
- [116] Zanjani, E. D., Pallavicini, M. G., Ascensao, J. L., Flake, A. W., Langlois, R. G., Reitsma, M., MacKintosh, F. R., Stutes, D., Harrison, M. R., and Tavassoli, M. (1992)
 Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero. J.Clin.Invest., 89(4), 1178-1188
- [117] Zannettino, A. C., Buhring, H. J., Niutta, S., Watt, S. M., Benton, M. A., and Simmons, P. J. (1998)
 The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis Blood, 92(8), 2613-2628
- [118] Zijlmans, J. M., Visser, J. W., Laterveer, L., Kleiverda, K., Heemskerk, D. P., Kluin, P. M., Willemze, R., and Fibbe, W. E. (1998)
 The early phase of engraftment after murine blood cell transplantation is mediated by hematopoietic stem cells.
 Proc.Natl.Acad.Sci.U.S.A., 95(2), 725-729

1.51.5

Danksagung

Ganz herzlich möchte ich mich bedanken...

...bei **Herrn PD Dr. med. W. Brugger** für die Überlassung des Themas und die engagierte Hilfestellung bei der Durchführung der praktischen und theoretischen Arbeit.

...bei Herrn Dr. rer. nat. H-J Bühring und Herrn Dr. med. S. Scheding für die sehr hilfreiche Betreuung und Ratschläge.

...bei Anke Marxer für das FACS-Sortieren der CD34^{neg} Zellen.

...bei allen, die mir mit Rat und Hilfe nicht nur in fachlichen Dinge zur Seite gestanden haben, insbesondere **Jennifer Kinal, Heike Letzkus, Petra**

Mayer und Anja Weber.

...bei Herrn Dr. rer. nat. M. Eichner für die Erstellung der Formel zur Berechnung der CAFC-Frequenz.

...beim Graduiertenkolleg "Zellbiologie in der Medizin", für die gewährte Förderung.

...bei meinem Vater für die Ermöglichung der Ausbildung.

...bei meinem Freund **Patrick Weißgerber** für seine Hilfe bei den computerbedingten Hindernissen.

DANKSAGUNG

Lebenslauf

Zur Person

Name	Gisa Urte Kristina Rathke
Geburtsdatum und -ort	16. November 1975 in Freiburg im Breisgau
Eltern	Hanna Renate Rathke-Opdenhoff, geb. Opdenhoff (*1947-†1995)
	Winrich Max Hermann Rathke (*1943)
Geschwister	Götz Winrich Christoph Rathke (*1979)
	Pia Medea Hanna Rathke (*1981)
Ausbildung	
1982–1986	Grundschule Pfaffenweiler
1986–1995	Faust-Gymnasium Staufen, Allgemeine Hochschulreife
1995–1997	Studium der Humanmedizin an der Albert-Ludwigs-Universität
	Freiburg
September 1997	Ärztliche Vorprüfung
seit 1997	Studium der Humanmedizin an der Eberhard-Karls-Universität
	Tübingen
August 1998	Erstes Staatsexamen
März 2001	Zweites Staatsexamen
24. Mai 2002	Drittes Staatsexamen
Stipendien	
Studium	Evangelisches Studienwerk e.V. Villigst
Dissertation	Graduiertenkolleg "Zellbiologie in der Medizin"