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Abstract

The creation of personalized anatomical digital twins is important in the fields of
medicine, computer graphics, sports science, and biomechanics. But to observe a sub-
ject’s anatomy, expensive medical devices (MRI or CT) are required and creating a digital
model is often time-consuming and involves manual effort.

Instead, we can leverage the fact that the shape of the body surface is correlated with
the internal anatomy; indeed, the external body shape is related to the bone lengths, the
angle of skeletal articulation, and the thickness of various soft tissues. In this thesis, we
leverage the correlation between body shape and anatomy and aim to infer the internal
anatomy solely from the external appearance.

Learning this correlation requires paired observations of people’s body shape, and their
internal anatomy, which raises three challenges. First, building such datasets requires
specific capture modalities. Second, these data must be annotated, i.e. the body shape
and anatomical structures must be identified and segmented, which is often a tedious
manual task requiring expertise. Third, to learn a model able to capture the correlation
between body shape and internal anatomy, the data of people with various shapes and
poses has to be put into correspondence. In this thesis, we cover three works that focus
on learning this correlation. We show that we can infer the skeleton geometry, the bone
location inside the body, and the soft tissue location solely from the external body shape.

First, in the OSSO project, we leverage 2D medical scans to construct a paired dataset
of 3D body shapes and corresponding 3D skeleton shapes. This dataset allows us to learn
the correlation between body and skeleton shapes, enabling the inference of a custom
skeleton based on an individual’s body. However, since this learning process is based
on static views of subjects in specific poses, we cannot evaluate the accuracy of skeleton
inference in different poses. To predict the bone orientation within the body in various
poses, we need dynamic data.

To track bones inside the body in motion, we can leverage methods from the biome-
chanics field. So in the second work, instead of medical imaging, we use a biomechanical
skeletal model along with simulation to build a paired dataset of bodies in motion and
their corresponding skeletons. In this work, we build such a dataset and learn SKEL, a
body shape and skeleton model that includes the locations of anatomical bones from any
body shape and in any pose.

After dealing with the skeletal structure, we broaden our focus to include different
layers of soft tissues. In the third work, HIT, we leverage segmented medical data to
learn to predict the distribution of adipose tissues (fat) and lean tissues (muscle, organs,
etc.) inside the body.
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In conclusion, in this thesis we leverage statistical models and multi-modal data to
learn to predict from external body shape: the geometry of the bones, their location and
orientation inside the body, as well as the soft tissue distribution inside the body.
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Kurzfassung

Die Erstellung von personalisierten anatomischen digitalen Zwillingen ist wichtig fiir
die Bereiche Medizin, Computergrafik, Sportwissenschaft und Biomechanik. Um die
Anatomie einer Person zu beobachten, sind jedoch teure medizinische Gerdte (MRT oder
CT) erforderlich, und die Erstellung eines digitalen Modells ist oft zeitaufwindig und
erfordert manuellen Aufwand.

Stattdessen kann die Tatsache zunutze gemacht werden, dass die Form der
Korperoberfliche mit der inneren Anatomie korreliert; tatsichlich steht die dufiere
Korperform in Beziehung zu den Knochenldngen, dem Winkel der Skelettgelenke und
der Dicke verschiedener Weichteile. In dieser Dissertation nutzen wir diese Korrelation
zwischen Korperform und Anatomie und versuchen, die innere Anatomie allein basie-
rend auf dem duBeren Erscheinungsbild abzuleiten.

Das Erlernen dieser Korrelation erfordert gepaarte Beobachtungen der Korperform
und der inneren Anatomie von Personen, was drei Herausforderungen mit sich bringt.
Erstens erfordert die Erstellung solcher Datensétze spezifische technische Gerite. Zwei-
tens miissen diese Daten annotiert werden, d. h. die Korperform und die anatomischen
Strukturen miissen identifiziert und segmentiert werden, was oft eine langwierige manu-
elle Aufgabe ist, die Fachwissen erfordert. Drittens: Um ein Modell zu erlernen, das in
der Lage ist, die Korrelation zwischen Korperform und innerer Anatomie zu erfassen,
miissen die Daten von Personen mit unterschiedlichen Formen und Posen miteinander in
Beziehung gesetzt werden. In dieser Arbeit befassen wir uns mit drei Teilen, die sich auf
das Erlernen dieser Korrelation konzentrieren. Wir zeigen, dass wir die Skelettgeome-
trie, die Lage der Knochen im Korper und die Lage der Weichteile allein aus der duferen
Korperform ableiten konnen.

Im OSSO-Projekt nutzen wir zundchst medizinische 2D-Scans, um einen gepaarten
Datensatz von 3D-Korperformen und entsprechenden 3D-Skelettformen zu erstellen.
Anhand dieses Datensatzes konnen wir die Korrelation zwischen Korper- und Skelett-
formen erlernen, was die Ableitung eines individuellen Skeletts auf der Grundlage des
Korpers einer Person ermoglicht. Da dieser Lernprozess jedoch auf statischen Ansichten
von Personen in bestimmten Posen basiert, konnen wir die Genauigkeit der Skelettinfe-
renz in verschiedenen Posen nicht bewerten. Um die Ausrichtung der Knochen innerhalb
des Korpers in verschiedenen Posen vorherzusagen, benstigen wir dynamische Daten.

Um die Knochen innerhalb des Korpers in Bewegung zu verfolgen, knnen wir Me-
thoden aus dem Bereich der Biomechanik nutzen. Deshalb verwenden wir im zweiten
Teil statt medizinischer Bildgebung ein biomechanisches Skelettmodell zusammen mit
einer Simulation, um einen gepaarten Datensatz von Korpern in Bewegung und ihren
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entsprechenden Skeletten zu erstellen. In diesem Teil erstellen wir einen solchen Da-
tensatz und lernen SKEL, ein Korperform- und Skelettmodell, das die Positionen der
anatomischen Knochen von jeder Korperform und in jeder Pose enthilt.

Nachdem wir uns mit der Skelettstruktur befasst haben, erweitern wir unseren Fokus
auf die verschiedenen Schichten der Weichteile. Im dritten Teil, HIT, nutzen wir seg-
mentierte medizinische Daten um ein Modell zu trainieren, welches die Verteilung von
Fettgewebe (Fett) und magerem Gewebe (Muskeln, Organe, usw.) vorhersagt.

Zusammenfassend befasst sich die Dissertation mit der Nutzung von statistischen Mo-
dellen und multimodalen Daten, um aus der dufleren Korperform Vorhersagen iiber die
Geometrie der Knochen, deren Lage und Ausrichtung im Korper sowie die Verteilung
der Weichteile im Korper zu erlernen.
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Chapter 1
Introduction

In the realm of science, progress often hinges on the development of models. These the-
oretical models enable us to explain what we observe and forecast future phenomena. In
the case of the human body, creating accurate models involves capturing and measuring
the body, which can be done in various ways.

In medicine, patients undergo imaging to capture the internal anatomy. In biomechan-
ics, markers are placed on a subject’s body to track motion and measure limb angles.
Meanwhile, special effects artists use body scans to create digital replicas of actors. Al-
though these methods serve different purposes, they all rely on capturing different aspects
of the body: anatomy, motion, appearance, etc.

While indispensable, these capture modalities are expensive, time-consuming, and
require trained operators. Moreover, the captured data comes in various formats, such
as 3D point clouds, 3D meshes, and 2D or 3D images. Using this data requires post-
processing, such as cleaning and segmentation, as well as an expert to analyze them.

In this thesis, we start with the following observation: the easiest way to capture people
is vision. Nowadays, cameras are very accessible and advances in computer vision have
made it possible to automatically extract various information from images and videos.
Algorithms have been developed to recognize people, count them, estimate their pose in
the image, capture their body shape, track their motion, identify their actions, etc.

A limitation of images is that they only capture what is visible. We can attempt to
predict what is hidden but this requires priors about the world. If a subject’s arm is
occluded, there are only so many plausible arm poses, given the way the person stands.
If a person faces the camera with a green shirt, the back of the shirt is also probably
green. Following this idea, if we have adequate priors about human anatomy, we may
predict what is happening inside the body solely from external observations.

There is a logical correlation between how we look and our anatomy. The size of
our bones is correlated with the length of our limbs, and our fat percentage is somewhat
correlated with our waist size. In this thesis, we aim to answer this specific question:
given the body shape of a person, can we predict the location of the bones and soft
tissues inside?
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Applications. Inferring the anatomy has applications in computer graphics, medicine,
and biomechanics. One of the goals of computer graphics is to create digital humans that
look realistic. Artists need to know human anatomy to draw realistic proportions and
reproduce the subtlety of the curves of human limbs. For digital animation, designing
the underlying anatomy of a body (its skeleton, muscles, and fat) enables simulating the
body’s deformation in motion, taking realism to the next level.

In medicine, capturing the inside of the body is a costly process. Medical imaging de-
vices are expensive and require trained operators. Moreover, some imaging techniques,
such as X-ray, emit radiation. While low levels of ionizing radiation are part of everyday
life, increased exposure through medical use raises the risk of health hazards, such as
cancer. Thus, the usage of such techniques should be limited. By inferring the inter-
nal anatomy from the body shape, we can reduce the need for such invasive capturing
methods and make health care more accessible. Potential applications are estimating
the location of the bones inside the skeleton for imaging a specific part of the body or
estimating the distribution of fat in the body for monitoring the patient’s health.

Biomechanics seeks to understand the mechanical properties of living organisms.
Since human motion relies on the relative movement of bones, accurately measuring
their location and orientation within the body is essential for analyzing human movement
and joint mechanics. Current methods to measure bone location are often marker-based.
These systems involve placing markers on the skin, which is time-consuming and has
limited precision. Markers attached to the skin can slide relative to the underlying bones
and ensuring repeatability between subjects is challenging. The capture systems to track
the markers are also expensive. They require numerous cameras and controlled lightning.
Being able to accurately predict the location of the bones from videos, just by looking at
the body shape, would enable biomechanical analysis outside the lab and make it more
accessible.

Challenges. Machine-based inference requires using specific representations, i.e. how
to enter “body shape”, “bones” or “fat layer” in a computer. In this thesis, we represent
the body shape by a 3D mesh, which is the approach used in video games to represent
virtual humans. The same representation is used for the bones. As for the fat, we rep-
resent it by a mathematical function that, given a point inside the body, outputs whether
it is fat or not. Given these representations, we can train machines to predict what is
beyond the body surface.

Machine learning also requires data, and capturing people’s bones and soft tissues is
not trivial. Medical imaging techniques come with various limitations: in some cases,
they only yield 2D images, show only specific parts of the body, capture the body in
a particular position, and require annotations by an expert to be useful. Consequently,
recovering the 3D anatomy from a whole subject in an arbitrary pose is very challenging.
In this thesis, we exploit several modalities yielding different data types. Specifically,
we work with medical scans such as Dual-energy X-ray Absorptiometry (DXA) and



Magnetic Resonance Imaging (MRI). From these modalities, we can accurately measure
the body shape and pose, and the location and shape of the bones and soft tissues. Since
medical imaging techniques constrain the body in a specific pose, they are not suitable
for capturing motion. Instead, we use marker-based motion capture to estimate the pose
of the bones in the body.

Finally, machine learning requires a specific normalization of the data. Learning the
anatomy from a collection of 3D images is a very unconstrained problem. Yet, we can
rely on some postulates. First, the shape of the human body has common features across
the population. For example, most people share the same number of bones. Second,
if we capture a subject with two different poses, we know that the shape of the bones
should not change across poses. So, modeling the variability of the skeleton shape and
how the bones articulate may help normalize the data. Previous works have modeled
how the shape of the body varies across the population and poses. The idea that makes
this whole thesis possible is leveraging such models to disentangle the influence of the
body shape and the body pose in predicting the internal anatomy.

Overview. This thesis is structured as follows. In Chapter 2, we provide a background
on human anatomy and review the existing methods to capture and model the human
body.

In Chapter 3, we address the problem of inferring the shape of the anatomical skeleton
of a person in a static pose, i.e. we predict the inside (bones) from the outside (body
shape). Learning such a predictor requires data showing both the skeleton shape and the
body shape of different subjects. We thus use 2D medical images called DXA, which
yield such pairs. We leverage parametric meshes to lift this data to 3D, and then use
this 3D data to learn the correlation between the external body shape and the shape of
the bones, as well as the location of the bones. We name the learned predictor OSSO
(Obtaining Skeletal Shape from Outside). OSSO can predict the shape and location
of the bones with reasonable accuracy, and we can generalize the prediction to unseen
poses, assuming that the distance between the surface of the bones and the body surface
should remain constant in different poses.

Medical images, like the ones used for training OSSO, only show the skeleton in a
static pose. Typically, we get one scan per subject, so it is hard to generalize to unseen
poses. Questions arise like: how does the head of the humerus move when the arm is
raised, how do the hip bones move when the subject is sitting, etc.? While OSSO can
yield a guess, the resulting posed skeleton is hard to validate as we do not have ground
truth, and OSSO does not guarantee realistic interfaces between the bones.

Inferring the precise orientation of the bones in any pose is the goal of Chapter 4. In
that chapter, we start with two postulates. First, the orientation of the bones inside the
body is correlated with the visible limb orientation. Second, the orientation of the bones
is constrained by the degrees of freedom of the anatomical skeleton. Indeed, human
limbs can only articulate in specific ways depending on the skeleton articulations. We
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use these two postulates to build a dataset of bodies in motion with anatomical skeletons
inside. This dataset is made of sequences of bodies in motion, generated from motion
capture data. Then, we create an anatomical skeleton model with constrained articu-
lations and align it inside the body on each frame. This gives us, for each frame, the
external body’s limb orientations, along with the corresponding bone orientations inside.
From this dataset, we learn a model that i) captures the dependency between the body
shape and the bone orientations and ii) restricts the body motions given the anatomical
constraints imposed by the bone orientations. We name this model SKEL and demon-
strate its use in predicting the precise orientation of the bones inside a body of any shape
or pose.

While in Chapter 3 and Chapter 4 we focus on the bones, the nature of the tissues
between the bones and the body surface also influences how the body deforms. In Chap-
ter 5, we address the problem of inferring the location of soft tissues inside the body.
Contrary to the body surface and the bones, the soft tissue structure and shape have more
variability across the population, making it hard to represent them with a 3D mesh. In
consequence, we represent the soft tissues implicitly, as a classification function that,
given a point inside the body, outputs whether it is fat, muscle, or bone.

In chapters Chapter 3 and Chapter 4, we learn to predict the anatomy from respectively
2D medical images and 3D motion capture data. However, learning a volume requires
volumetric data. So in Chapter 5, we leverage MRI scans, which are 3D medical images.
To utilize these images effectively, they must be annotated. Therefore, we train a neural
network to classify each voxel of the 3D images into subcutancous adipose tissue, lean
tissues (muscles and organs), or bone tissues. We also measure the 3D shape of the
subjects from the MRI scans, constituting a dataset of body shapes paired with their
internal tissues. We use this dataset to learn a model that, from the body shape, predicts
the location of the tissues inside. We name the learned predictor HIT (Human Internal
Tissue) and show that it can predict the location of the soft tissues in the body.

Through these three chapters, this thesis shows that relevant anatomical information
can be predicted solely from the body shape. The key to this work is capturing anatom-
ical data that can be used as ground truth, using appropriate representations for these
anatomical structures, and leveraging existing human body models as priors. Given a
body shape, we can infer the bone shapes, the bone orientations, and the location of lean
and adipose tissues inside.
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Chapter 2
Background

In this chapter, we present some background for our work. First we will take a look at
basic human anatomy, then explore the various methods used to capture the human form
and process this data. Finally, we will present the related works on human modeling.

2.1 The human anatomy

In this thesis, we only discuss specific parts of human anatomy: the bones and soft
tissues. We start by briefly introducing these.

2.1.1 Skeleton

Bone tissues. The human skeleton consists of bones and cartilage.
Bones are hard living tissues that comprise the bulk of our skeleton. They support the
body, safeguard vital organs, and constitute the mechanical basis for movement [1].
Cartilage, meanwhile is a semi-rigid form of connective tissue, crucial for parts of the
skeleton that demand extra flexibility, such as the areas where ribs connect to the sternum

[1].

Bone shape. In humans, like in other species, the shape and size of bones varies among
the population. The three main variations are due to age, gender, and geographic region.
But the variation also exists between individuals of the same group [2]. As an example,
Fig. 2.1 illustrates the variability of the human humerus [3].

The bones can be grouped in different ways. In this thesis we will often refer to the
long bones, which are the tubular bones in the arms and legs, i.e. the humerus in the
forearm, the radius and ulna in the lower arm, the femur in the thigh and the tibia and
fibula in the lower leg (Fig. 2.2).

Degrees of freedom. The body moves by muscles acting directly or via tendons on the
bones. The limb motions are constrained along specific degrees of freedom and denoted
by specific names depending on the nature of the articulation. Thus, we talk about knee
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Figure 2.1: Humerus of different subjects. Note the variation in size and twist.
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Figure 2.2: The long bones of the human skeleton.
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flexion and extension for bending the knee, abduction when a limb goes away from the
sagittal plane, and rotation for the motion of a limb around its axis (Fig. 2.3).

Some articulations like the forearm are more complex than a ball joint, like the rotation
of the hand palm towards palm up and down, which is called pronation and supination
(Fig. 2.4)".

2.1.2 Soft tissues

In addition to bone tissues, the human body comprises other tissues. In this thesis, we
consider three categories of soft tissues that we denote (LT, SAT, IMVAT) and detail

For a more exhaustive list of naming conventions, see Chapter 6 of [2].
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below. The muscles and organs are denoted as Lean Tissue (LT). The Subcutaneous
Adipose Tissue (SAT) and the Intra-Muscular and Visceral Adipose Tissue (IMVAT)
denote the human fat; SAT is located directly under the skin, whereas IMVAT is located
inside the muscles and around the organs.

In the medical field, monitoring these tissues is crucial due to their association with
various diseases. For instance, an excess of fat with respect to lean tissue is correlated
with health risks such as the development of type-II diabetes and cardiovascular diseases
16, 7].

2.2 Capture modalities

Various methods are employed to capture different aspects of the human body. Color
cameras and depth sensors are typically used to record the external appearance, offering
detailed surface information. Meanwhile, the dynamics of human motion are captured
using motion capture systems and inertial sensors, enabling precise tracking of body
movements. Those systems can not capture the inside of the body, so for this task,
medical imaging techniques such as X-ray, MRI and CT scans are needed. In this section
we present those different modalities.

2.2.1 External appearance

The external appearance is usually captured using different camera technologies.

Camera sensors. Color cameras arc a straightforward way to capture humans in mo-
tion. Recent progress in computer vision has made it possible, from an image or a video,
to segment the human body [8], track its motion [9], and even predict its 3D shape [10].
However, due to the 2D nature of images, it is difficult to recover the 3D information
accurately, such as distances, speeds, or angles.

Depth sensor. Depth sensors add depth information to the RGB value of a pixel, mak-
ing it easier to recover the geometry of the observed scene. By leveraging depth measure-
ments, 3D scanners can capture the 3D shape of the body, yielding a textured 3D mesh
of the captured subject. Those meshes are usually high resolution and noisy, i.e. their
topology is not clean and regular, and they have holes.

Fig. 2.5 shows an example of such a scanner, and Fig. 2.6 its output. With a 3D scan-
ner, like with simple cameras, the capture can be done over time, yielding one detailed
textured mesh per frame. Thus, 3D scanners are the best option for precisely capturing
the 3D shape of a body.

10
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Figure 2.5: The 3dMD 4D scanner at MPI-IS Tiibingen. It uses 22 pairs of stereo cam-
eras, 22 color cameras, and speckle-light projectors and can capture the full 3D human
body shape at 60 frames per second.

11
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Figure 2.6: Mesh output by a 3D scanner. The left part of the image shows the mesh
without texture.

12



2.2 Capture modalities

Figure 2.7: Slices from an MRI scan. We can see transversal slices of the legs, trunk,
head and arms.

2.2.2 Medical Imaging.

Capturing the inside of the body is challenging as it requires specific technologies gath-
ered under the name of Medical Imaging.

Standard medical imaging techniques are described in detail in [11]. Here we will
present them from the perspective of computer vision.

Magnetic Resonance Imaging (MRI). Magnetic Resonance Imaging (MRI) technol-
ogy enables doctors to examine the interior of the body without relying on ionizing radi-
ation. These systems use strong magnetic ficlds and offer superior contrast for imaging
soft tissues [11].

The resulting MRI scan is a 3D array of float values that need to be interpreted by a
medical expert. Often, we visualize specific slices of the MRI as a 2D grayscale image
(Fig. 2.7).

X-rays. Bones are hard to distinguish and segment with MRI, so in case of fracture,
patients typically undergo radiography to assess the damages and plan the surgery.

Radiography, a widespread form of X-ray imaging, creates two-dimensional images
by measuring X-rays’ attenuation through the body. X-rays enable us to image the bones
clearly. They can then be segmented using traditional image processing techniques.
Fig. 2.8 shows an example of a broken arm X-ray.

Computed Tomography. For more complex diagnoses, Computer Tomography (CT)
can be used. CT scans are a series of X-ray images taken from different angles around
the body. The images are then combined to create a 3D image of the captured zone.
X-ray and CT scans use ionizing radiation. While everyone is naturally exposed to
radiation daily from our surroundings, additional exposure, even if minor, can marginally
elevate the likelihood of cancer development in the future2. For this reason, the use of

*https://www.radiologyinfo.org/en/info/safety-xray
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Figure 2.8: Left: Two X-ray views of a broken arm. Middle: A picture of the arm after
surgery. Right: Two X-ray views of the arm after surgery. [12]

X-rays is limited to necessary cases, and the capture volume is limited to the body part
to diagnose. Fig. 2.9 shows a comparison between an MRI and a CT scan.

DXA. For full-body X-rays, a less ionizing alternative exists. Dual-energy X-ray ab-
sorptiometry scans (DXA or DEXA) measure bone density, including the thickness and
strength of bones, by transmitting both high and low-energy X-ray beams (a type of ion-
izing radiation) through the body. This technique is typically used for measuring bone
density and body composition.

The level of radiation utilized in DEXA scans is much less than that in standard X-ray
examinations, and even less than a day’s exposure to natural background radiation?.

Overall, medical imaging devices are most of the time heavy, massive, expensive, and
hard to access in many parts of the world. This is in contrast to standard RGB cameras,
that nowadays are in every pocket. Here lies one of the main motivations for this thesis:
inferring the anatomy from the visual appearance is a key challenge to reduce the need
for medical imaging.

2.2.3 Motion

As seen before, estimating 3D measurements from a video is challenging, and medical
imaging is mostly done in static poses, constrained by the restrained acquisition volume,
the long acquisition time, or radiation emissions. So to capture human motion, specific
techniques have been developed.

*https://www.radiologyinfo.org/en/info/dexa
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Figure 2.9: Frontal and sagittal slice of an MRI (left) and a CT scan (right). Note the
higher contrast of the bones in the CT scan. Figures are from [13] and [14].

Motion Capture, also known as mocap, is the task of capturing 3D human motion.
It consists of measuring the orientation of the limbs over time. To achieve this, the most
accurate method is marker-based motion capture. Markers are placed on strategic
locations on the body like the wrist, knees, etc. (Fig. 2.10). Those markers are then
tracked using infrared cameras, and the orientation of the limbs is recovered using inverse
kinematics. Fig. 2.11 shows a mocap setup. This one is equipped with 54 cameras, that
are able to accurately track markers at 500 Hz.

Marker-based motion capture is an expensive process, both in terms of equipment and
time (Fig. 2.12). The capture system needs to be calibrated, the markers precisely placed
on the subject, and eventually, the captured data needs to be cleaned and processed. The
result of this process is a 3D skeleton model with adjusted limb scales, and pose varying
in time. This moving skeleton can then be used to animate a 3D character or to analyze
the motion by measuring the variation of joint locations and angles over time.

To reduce the overhead, several works have attempted markerless motion capture
[15—17]. For example, OpenCap [15] enables capturing a motion from two smartphones.
Video-based motion capture techniques rely on recent progress in computer vision on
estimating the pose of an individual from a single image or a video. The pose estimation
is typically done by running a 2D joint detector on the image [18-20]. Specifically,
OpenCap uses OpenPose [18] to detect the subject’s 2D joint locations in several camera
views, to then reconstruct their 3D locations.

However, existing 2D joint detectors [18-20] have limited accuracy since they are
typically trained using manually annotated 2D images. The annotators have to eyeball
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Figure 2.10: Marker set used by the motion capture software Qualisys for gait analysis.
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Figure 2.11: Motion capture system.

Mocap: marker-based motion analysis

n Reflective
L R
\ o
“ Cameras 2 -
| (~$70K) EMG . .-

Force plates elecétg%?(es
M- (~560K) ¢ )
Calibration Instrumentation  Data collection  Marker labeling Modeling
(10 minutes) (1.5 hours) (2+ minutes) (1-4 hours) (>1 day)

Figure 2.12: Pipeline of acquisition of motion capture data. In the biomechanics field,
force plates are often required to enable dynamic simulation. EMG electrodes are used
when using Neuromusculoskeletal models (introduced in Sec. 2.4.3). (Figure from [15])
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Figure 2.13: OpenPose predicts joint locations from images. These joints correspond
to a simplified skeleton and do not match anatomical skeleton joint locations like the
humerus and femur head, etc. (Figure from [21])

the human joint location on clothed subjects images, which yields approximate joint
locations that do not correspond to the human anatomical skeleton. Fig. 2.13 shows an
example of the joint locations predicted by OpenPose.

When the joints predicted from images are compared to joint locations computed from
motion capture systems [22], the differences are as high as 30 to 50 mm for joints such as
the knee. For this reason, in OpenCap, the biomechanical skeleton model is not directly
fit to the predicted joint locations. The joint locations are used to infer marker locations
(this is done using a neural network trained on real data). Then the skeleton model is fit
to these markers.

Another alternative to marker-based motion capture is to use inertial sensors [23]. This
setup is lighter but the measurements are less precise; we will not cover them here.

18
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Figure 2.14: Interface of Slicer3D.

2.3 Data processing

Human data usually needs some processing to be useful. In this thesis, we extensively
use segmentation and registration, which we present in this section.

Segmentation. Medical scans usually require the expertise of a medical doctor to be
interpreted, and the segmentation protocols often require manual work.

Medical image viewers like Slicer3D* (Fig. 2.14) have segmentation tools to assist the
segmentation of specific tissues or organs, but this is often done in a semi-automatic way.
Neural networks have shown growing abilities for segmentation, like nnU-Net [24].

In this thesis, we segment different tissues in the body. In Chapter 3, we segment
silhouettes on 2D scans using traditional computer vision algorithms like normalization,
thresholding, and morphological operations, while in Chapter 5, we use a deep learning
approach, nnU-Net, to segment soft tissues in MRIs.

Registration. Capture modalities like 3D scanners yield 3D meshes. But the raw data
is hard to work with as it has a lot of triangles, the mesh topology is not regular and the
mesh can have holes or self-intersections.

Registration or alignment refers to deforming a template to align it to a target. In
the scope of 3D bodies and medical imaging, this is a key challenge, as to learn from
datasets, data samples must be aligned in a meaningful way. Registration provides a

“https://www.slicer.org/
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(a) Aligning with b) Aligning with ¢) Warping using
translation affine triangles

Figure 2.15: Example of the importance of canonicalization. The left image shows an
average medical scan computed from several subjects. Because the shape and pose of
the subjects vary, the mean image is a useless blurry image. On the right, the subjects’
limbs are warped to be all aligned before computing the mean image, and the resulting
mean image makes the average skeleton appear. (Figure from [25])

way to canonicalize data to make them comparable (see Fig. 2.15 for an example of data
canonicalization).

Registration also enables the establishment of correspondence between different
meshes. It enables the transfer of information annotated on a template to a target piece
of data, such as semantic segmentation, texture, UV maps, etc. See Fig. 2.16 for an ex-
ample of the SMPL body mesh registered to a body scan (we introduce SMPL in more
depth in Sec. 2.4.1).

2.4 Modeling the human body

In this section, we present different models of the human body that have been created
in past works. We start from models used for graphical applications and go through

20
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Scan Ref. SMPL  Registration

Figure 2.16: A 3D body scan with its SMPL mesh alignment. The mapping yields a
correspondence between the SMPL template, which has an average shape and is in T-
pose, with the 3D scan, which exhibits geometric details like facial features and clothing
details on the surface, and a specific pose (Figure from [26]).
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(a) "A Computer Animated Hand” (1970) (b) The main character from the video game Tomb
Raider (1996)

(¢) Modern photorealistic digital human (MetaHu-
man, 2021)

Figure 2.17: Evolution of computer graphics for human modeling from the 1970s to
2021.

biomechanical models to end with anatomical models.

2.4.1 Graphical models

The evolution of human body modeling in computer graphics has been remarkable. From
the first computer-generated 3D humanoids in the early 1970s to today’s photorealistic
digital humans, the progress has been significant. Early models were simple wireframes
[27], followed by shaded 3D models in the 1970s [28]. The 1990s saw a leap forward
with more detailed, textured models in films like Toy Story. Today, the special effects
industry can produce nearly indistinguishable virtual humans [29]. Fig. 2.17 illustrates
this evolution, showing examples from different eras of computer graphics.
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Mesh based models

Traditionally, computer graphics relies on mesh-based models to represent the surface of
the human body. A base mesh is rigged to a kinematic tree (Fig. 2.18) to be animated. In
the animation community, this kinematic tree is called skeleton and is made of ball joints
and rigid segments. The mesh is then attached to this skeleton through a process called
skinning [30], usually through linear blend skinning (LBS). In LBS, each vertex of the
mesh is rigged to the different bones with specific weights. The position of a posed vertex
is then computed as a weighted sum of the bone transformations. Fig. 2.18 shows a mesh
before and after posing, with the underlying kinematic tree and the skinning weights that
rig the thigh vertices to the thigh bone.

Given a mesh rigged to a kinematic tree made of N; bones, the LBS equation gives us
the location of the posed vertices v(8) € R¥*3 posed with the parameters 8 € RVi»3:

NJ
v(6) = Y WiGi(6)T 2.1
i=1

where v are the vertices of the posed mesh, T € R¥3 is the template mesh, G; € RN/*3*3
is the transformation matrix of the i-th bone, depending on angles 6;, and W; is a N, X N;
matrix of skinning weights indicating how the N, vertices of the initial mesh are affected
by each rigid transformation i.

This rigging method is straightforward and fast to compute, but has some limitations.
For instance, it cannot represent the bulging of the muscles when the limbs are bent.
To model those deformations, corrective blend shapes are used [32]. These are pose-
dependent additive offsets applied to the mesh to make the posed limbs look more real-
istic, especially at the articulation level. The skinning equation becomes then:

N;j
v(6) = Y WiGi(6)T+Bp(6) (2.2)
i=1

where Bp(0) € N x 3 is per vertex corrective blend shapes offsets. These are either
crafted by hand or learned from data, and can be applied to the posed mesh or to the
template mesh.

Fig. 2.19 shows the difference between the leg flexion with and without corrective
blend shapes. Adding corrective blend shape offsets makes the thigh surface more real-
istic, cancelling out the candy wrap effect visible on the left image.

The mesh representation describes the human body by its surface, through a set of
connected triangular faces. Such a mesh can be efficiently rendered into an image, so
this representation is widely used in computer graphics and video games.

However, such models are usually not used for medical and biomechanical applica-
tions. Indeed, human 3D models often have a simplified kinematic tree that does not
model the actual human skeleton. The joints used are mostly ball joints, which offer
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Figure 2.18: Illustration of mesh rigging. Left: A base mesh is created and rigged to a
kinematic tree. Right: Each body part is rigged to a bone to be posed. Here, the mesh
vertices are colored according to the skinning weights rigging them to the upper leg’s
bone (Figure from [31])

Figure 2.19: Left: Leg extension resulting from linear blend skinning. Right: After
applying pose correctives. (Figure from [33])
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flexibility for the artist in the posing process. First, this is an over-parametrization of
the body motions, as the arm flexion, in reality, is only a single degree of freedom. Se-
cond, using ball joints to model articulations like the scapulo-thoracic joint (shoulder),
or spine, is quite far from the actual biomechanics of the human skeleton.

This leads to several limitations, first for graphical purposes, using a nonrealistic kine-
matic tree causes the artist to have more work designing pose-dependent blend shapes
that mimic the presence of the human anatomy underneath the surface. Second, this over-
parameterization also increases the difficulty of framing the range of plausible poses. To
achieve a specific arm pose, those models can rotate the shoulder, the elbow, and the
wrist at any angle, while the human skeleton is much more constrained.

Personalizing such models to represent a specific subject is also challenging, as chang-
ing the body shape requires editing the mesh vertices, adjusting the kinematic tree, and
potentially adjusting the pose-dependent blend shapes to the new subject. Many works
have attempted to automate the skeleton transfer between body shapes [34—37] but this
task often still requires the artist’s intervention.

Statistical body shape models.

“Statistical Shape Models (SSMs) are geometric models that describe a collection of
semantically similar objects in a very compact way” [38]. SSMs often rely on Principal
Component Analysis (PCA) [39]. Instead of storing the vertex locations of each mesh
from a collection, the mean shape and the principal components of the shape variations
are computed. SSM enable representing a shape and its variability with a few parameters.

This approach has been used to model faces [39], bones [40], organs [41], and the
whole human body shape. Successive body models have been proposed, starting from
SCAPE [42], which is based on triangle deformation. SMPL [43] is based on vertex de-
formations, then SMPL-X [44] extends SMPL with face and fingers animation. In 2021,
imGHUM is introduced as a full-body model with parametrization learned through varia-
tional auto-encoders [45]. Released in 2020, STAR [46] improves the shape expressivity
and the pose-dependant blend shapes of SMPL and, more recently, SUPR [47] proposes
a better model of feet compression.

To learn those body models, a template human mesh is registered to a collection of
3D scans of human bodies. The advantage of this approach is that the deformation of the
soft tissues in different poses can also be learned from those data. Given a pose, learned
pose corrective blend shapes can be applied instead of crafting them manually. We refer
the reader to [38] for a detailed overview of the use of SSMs for modeling the human
anatomy.

SMPL. In this thesis, we model the human body surface using the SMPL model.
SMPL was presented by Loper et al. [43] in 2015 and is built as follows. It starts with a
neutral template body mesh made of N, vertices, noted T € R080%3 (Fig. 2.20a).
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Figure 2.20: Illustration of the SMPL parametrization. (a) The template body mesh T
with skinning weights W. (b) The body shape is changed with the shape parameter 3.
(c) Pose-dependent blend shapes Bp(6) are applied. (d) The body is posed with the pose
parameter 6.

The shape of the body can be changed with a shape parameter f € R3%. Effectively,
a per-vertex shape-dependent displacement Bs(f) € 6080 x 3 is computed and added to
the template body mesh (Fig. 2.20b). In most of the works presented in this thesis, we
only use the first 10 components of the B vector as they are sufficient to model the main
variation of the human body shape.

Given the body shape, a learned joint regressor is used to regress a kinematic tree
made of 24 joints (white dots on Fig. 2.20b). Each vertex is rigged to this kinematic tree
with fixed skinning weights W € R824 shown as colors on Fig. 2.20a.

The body surface compresses in various ways depending on the pose. Muscles like
the biceps bulge when the arm is bent, the knee flexion causes the leg’s soft tissues to
compress, efc. SMPL can model this thanks to learned corrective blend shapes Bp(0) €
RO980%3 “which depend on the pose 6 and are applied in T-pose (Fig. 2.20c).

The body is then posed with the pose parameter 8 € R7? using linear blend skinning.
The pose parameter contains 3 rotation angles for each of the 24 joints of the kinematic
tree. We denote the posed mesh vertices as SMPL(f3,0).

SMPL constitutes a very compact way of representing various bodies in different
poses. Indeed, the body shape can be represented with 10 to 300 shape parameters and
each frame’s pose with only 72 parameters.

This compactness makes SMPL great for optimization and regression tasks. For exam-
ple given the picture of a subject, inferring their 3D shape is a complex task. Predicting
only 72+10 parameters makes this task more tractable.

In Chapter 3, we model the body shape using the more recent model STAR. Compared
to SMPL, STAR has localized pose-dependant blend shapes and is trained on many more
scans, thus it can model a wider range of body shapes.

In terms of degrees of freedom and anatomical accuracy, SMPL and STAR suffer the
same limit as the basic graphical body models discussed in the previous section.
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Moreover, statistical body models, as they model the shape variation on a per-vertex
basis, are intrinsically linked to the mesh representation. It makes it hard to extend them
to shapes that can not be represented well by a mesh, or for which the correspondences
between two instances are not well defined.

Implicit representation

A way to overcome the limitations of meshes is to use an implicit representation of the
human body. Either a signed distance function (SDF) or a binary occupancy function
can be used. The SDF is a function that returns the distance to the surface of the body,
with a negative value inside the modeled object and a positive value outside. The binary
function returns a boolean value, true inside the object and false outside.

These methods have been applied to model the body surface [45, 48-55], clothed
bodies [49, 56-63], and clothing [64, 65].

In contrast to meshes, implicit representations are more computationally expensive to
render and the animation is less explicit.

2.4.2 Human pose representation

As mentioned in Sec. 2.1.1, the human body limbs articulate following specific degrees
of freedom. A way to abstract those articulations is to represent the body as a kinematic
tree, where each limb is represented by a node in the tree and is linked to parent and child
body parts with specific degrees of freedom.

Defining a kinematic tree requires attaching a frame of reference to each limb, and
there are many ways to do so. For example, in computer graphics body models and
SMPL, the kinematic tree is defined in a rest pose (usually T-pose), so the limb’s frame
depends on this pose. In this case, the result of a leg extension of 30° will depend on the
initial rest pose.

In contrast, in biomechanics, the International Society of Biomechanics (ISB)® has
defined a standard to qualify the pose of the limbs (Fig. 2.21) [66]. Thus, a leg extension
of 30° is defined wrt a specific axis. This standard has been extended to the upper and
lower skeleton [67, 68] (Fig. 2.22 and 2.23) and is widely used in the biomechanics
community, but less in the Graphics and Computer Vision community.

2.4.3 Biomechanical models

In biomechanics, 3 classes of models are used for modeling human locomotion, as illus-
trated in Fig. 2.24: (i) in skeletal models, a skeleton motion is driven by torques applied
to joints (ii) in musculoskeletal models, the motion is driven by muscle activation, and

SThe International Society of Biomechanics (ISB) has a dedicated webpage listing all their standards:
https://isbweb.org/students/29-standards-documents.
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(a) Conventions for global reference frame and (b) The same rotations about segmental lo-

segmental local center of mass reference frame. cal center of mass reference frames produce
anatomically different motions on the left and
right sides of the body.

Figure 2.21: The kinematic tree of the human lower body as defined by the International
Society of Biomechanics (Figures from [66]).
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Figure 2.22: Humerus coordinate system and definition of GH (Glenohumeral rotation
center) motions. Y; is the local axis for the scapula coordinate system.
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Figure 2.23: Illustration of the pelvic coordinate system (XYZ) and femoral coordinate
system (xyz)
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Figure 2.24: Classification of human modeling (figure from [69]).

(iii) in neuromusculoskeletal (NMS) models, the movement is controlled by a model of
the central nervous system [69]. A comprehensive overview of the development of these
models can be found in [70].

Different frameworks have been developed for modeling, simulating, and controlling
such models, like OpenSim [71] (Fig. 2.25) or Anybody [72] (Fig. 2.26). These frame-
works enable recovering the kinematics and dynamics of a human motion sequence. The
input data is usually mocap sequences and ground reaction forces (GRF) measured with
a pressure plate. From the mocap sequence, inverse kinematics (IK) is used to recover
the sequence of skeleton pose parameters that explain the marker trajectory. This yields
joint trajectories over time (location, speed, and acceleration of those joints).

Biomechanical models also specify Body Segment Inertial Parameters (BSIPs), com-
prising the mass, position of the center of mass, and moments and products of inertia for
each segment of the human body. Then, given the joints’ acceleration and mass distribu-
tion in the body, Newton’s laws of motion can be used to compute the torques exerted on
each joint, enabling further analysis.

Besides rigid bodies physics, biomechanical simulation frameworks can also model
the dynamics of muscle activation [70, 73]. The point of attachment of the muscles
to the bones and their paths have to be defined on the model (Fig. 2.27) which makes
it possible, through simulation, to recover the muscle activation signal that led to the
motion. In the case of a neuromusculoskeletal model, the signal from the central neural
system triggering the muscle activation can also be estimated. In this thesis, we use
skeletal models without muscle definition.
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Figure 2.25: The OpenSim framework’s interface. Muscle paths are defined as strings
along the bones and their color shows the muscle activation.

Figure 2.26: Visualizations from the AnyBody framework. We can see the markers de-
fined on the skeleton for fitting it to mocap data, and the measured ground reaction forces
applied on the feet.
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(b)

(c)

(d)

Figure 2.27: In the Rajagopal model [74], muscle paths are defined wrt the bone meshes.
Since the model was created for gait analysis, only the lower body muscles are modeled.
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Personalization. Personalization of biomechanical skeleton models is key for obtain-
ing accurate simulation outputs for a specific subject. To personalize a biomechanical
skeleton model, mocap data are usually used to scale the model’s limbs to match the cap-
tured data. The kinematic tree segments, the limb meshes, and its BSIPs are then scaled
accordingly.

In most cases, the BSIPs estimation for a subject is based on anthropometric tables
built from cadaver studies (see [70] for a review). Effectively, the initial skeletal model
BSIPs’ are scaled according to the limb scales, height and mass of the subject. Note that
in simulation frameworks like OpenSim, the actual body shape of the captured subject is
not considered, only the limb scales. Moreover, biomechanical models are often not sex
specific, so both sex are assumed to have the same mass distribution.

To perform physics simulations, the limb volumes are usually approximated by
cuboids or capsules. But for visualization purposes, bone meshes are rigged to the kine-
matic tree.

Modeling the articulations Many mechanical models of the human joints have been
developed, with various complexity. The selection of the appropriate joint model is
crucial for valid kinematic and dynamic outcomes.

Most skeletal models use ideal joints, like ball joints to model the shoulder joint and
hips, and hinge joints for the knee [70]. Models are usually developed for specific pur-
poses, with the complexity and level of detail adapted to the task. For example, the
Rajagopal model [74], illustrated Fig. 2.27, is widely used for gait analysis. While it
models the leg’s muscles, the torso is rigid and the arm muscles are not modeled.

2.4.4 3D anatomical atlases

To provide a reference for the complete anatomy, 3D anatomical atlases have been cre-
ated like Zygote® or Anatomy 3D Atlas’. Such models represent the detailed structures
within the human body, such as bones, arteries, nerves, organs, and muscles. They con-
stitute an important educational resource for the medical profession as well as for the
general public.

Creating such models is an extensive and meticulous process, often involving segment-
ing medical scans [75-78]. Therefore the resulting model is subject-specific, is built in a
specific standing pose, and can not be reposed.

Personalizing anatomical models

Several works propose generalizing anatomical models to new poses and body shapes.

Shttps://www.zygotebody . com/
"https://anatomy3datlas.com/



Chapter 2 Background

Figure 2.28: The Zygote body model enables the visualization of different layers of the
detailed human anatomy.

With Anatomy Transfer [79] (AT), an anatomical template is morphed to match a
target body shape. AT’s optimization regularizes the different tissues to deform plausibly.
The surface of the anatomical model is deformed using Laplacian deformations, while
the underlying anatomy is interpolated, except for the bones, which are deformed with
affine transformations. The skeletal structure is enforced by defining springs between the
bones that maintain coherent articulations.

In the same line of work, Saito et al. [80] simulate the growth of fat, muscle, and bones
to match a target body shape. Kadlecek et al. [81] propose a physics-based anatomic
model that can be adapted to input 3D scans, where, similar to Zhu et al. [82], the bones
are deformed using linear blend skinning with bounded bi-harmonic weights.

While the obtained bones are visually plausible, the personalized anatomy yielded by
these models is neither learned from data nor validated against it.

34



Chapter 3

Inferring the skeleton geometry

In this thesis, we aim to infer the internal anatomy from the external body shape. In this
chapter, we start by inferring the skeleton geometry. From a subject’s 3D body shape,
we learn to infer the geometry of their bones.

Figure 3.1: From DXA scans we learn to predict the skeleton from the body surface.
Left: input DXA soft tissue and bone images; body and skeleton shapes fit to the images;
bones predicted from the skin; overlay. Right: predicted OSSO skeletons from Render-
People [83] scans.
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3.1 Introduction

As detailed in Chapter 2, statistical body models enable estimating the 3D human pose
and shape (HPS) of subjects from images or videos. While the surface shape is accurate,
these models are all based on a “skeleton” that only approximates the kinematic structure
of the body using a small number of linear segments with ball joints. These simplified
skeletons are useful for animating virtual characters and action recognition, but they are
inappropriate for applications in medicine and biomechanics. To be more widely rele-
vant, HPS methods must output a skeleton corresponding to the actual anatomic human
skeleton. No statistical body model exists that captures both the detailed outer surface
of the body and the anatomic skeletal structure inside. The key problem is the lack of
paired data capturing the inside and outside of the body.

In this chapter, we address the problem of inferring the human anatomic skeleton,
i.e. the bone shapes and locations, solely from surface observations. That is, we infer the
bones from the skin. To that end, we learn a statistical model of the skeleton shape and its
correlation with the skin surface (Fig. 3.1 top). Given a posed body, our method predicts
the skeleton from the body shape, and poses it inside (Fig. 3.1 bottom).

Anatomic body models with skin and bones are important in computer graphics,
medicine, and biomechanics, enabling realistic animation of the body anatomy and phys-
ical simulation of body motion. Existing state-of-the-art anatomic models [71, 84-86]
represent different body parts: skin, muscles, organs, and skeleton. They are mainly
developed for sports, health applications, or educational purposes. While very de-
tailed, they don’t generalize easily to new subjects. Graphics-oriented anatomic skele-
tons [79, 81, 82, 87] can deform the individual bones with simple geometric transforma-
tions (e.g. scale or affine) and can be fit to new subjects. However, these deformations
lack anatomic realism relative to actual skeletons. We argue that this realism can be
improved using a data-driven strategy.

In computer vision, 3D statistical shape models of the human body are widely
used [42, 43, 46, 88]. These have two elements in common: they model the human
external shape, i.e. the skin surface, and are learned from data. Using thousands of 3D
scans, these models capture the statistical variability of the human body shape. In this
chapter, we use STAR [46] because it has a richer shape representation than SMPL [43].
Such models, however, employ a simplified kinematic skeleton and joints. While they
can be readily inferred from data, the idealized skeletal structure means they cannot be
used for applications in biomechanics.

To address these issues, we take a data-driven approach and learn a statistical skeleton
shape model, as well as the mapping from body shape to this skeleton model. Our
method, OSSO (Obtaining Skeletal Shape from Outside), takes a STAR model instance
of any shape and pose, and estimates its corresponding skeleton. The skeleton can then
be animated by reposing the STAR model.

The key problem, however, is obtaining training data that simultaneously gives the
inside and outside of the body in 3D. Most imaging technologies that simultaneously



3.1 Introduction

capture the inside and outside of the body use ionizing radiation, which is harmful to
humans; e.g. Computed Tomography (CT) and X-rays. As a consequence, such data is
extremely limited, preventing learning-based methods. Our insight is to use dual-energy
X-ray absorptiometry (DXA) data. DXA scans use low-dose X-rays to measure bone
mineral density and body fat composition. The radiation level is so low that it is certified
to be used on healthy patients for clinical studies, such as the UK Biobank [89]. In a
DXA scan, two images are computed by combining two different energy levels: a soft-
tissue image Iy and a bone image I (Fig. 3.2). In I the silhouette of the body can clearly
be seen, whereas Ip reveals the structure and shape of the bones.

Unfortunately, DXA does not produce 3D data. Consequently, we fit the STAR body
model to the soft-tissue image to obtain an estimate of the outer 3D body surface. We
also employ a constrained part-based fitting method to fit bones to the DXA bone image.
These then provide pairs of inside and outside data for training. We use 1200 male and
1200 female DXA images from the UK Biobank [89], which we split into training and
evaluation sets. From the training set, we learn skeletal shape variation and the mapping
from outside to inside. Given a new body shape and pose, OSSO reposes the body to a
canonical pose and predicts the skeleton inside. It then reposes the skeleton to the input
pose, subject to various anatomic constraints. With ground truth DXA scans, we validate
the reposing in lying down poses and show that OSSO outperforms Anatomy Transfer
[79]. We also demonstrate the use of OSSO by estimating skeletons for a variety of body
shapes and poses.

In this chapter, we make the following contributions: (1) We fit a 3D body model to
DXA images to obtain a 3D body shape. (2) We fit a collection of bones to DXA images
using a variety of constraints. (3) We learn a statistical (PCA) model of skeleton shape
variation, capturing correlations between bones. (4) We learn a mapping from external
body shape to internal skeleton shape. (5) Given a 3D body in any pose, we repose the
body, predict the skeleton, and repose under physical constraints to obtain a plausible
posed skeleton. (6) We demonstrate superior performance to other approaches, validated
on DXA imagery. (7) We show varied reposing results for 3D bodies estimated from
3D scans. (8) Inference code is available for research purposes. (9) The paired outer
surfaces (skin) and skeleton (bone) meshes are made available as a Biobank Returned
Dataset (see the OSSO project page for more info').

In summary, OSSO provides a data-driven approach to enrich 3D human pose and
shape estimation with skeletal information. This is a step towards biomechanics in the
wild. Methods that estimate models like SMPL or STAR from images and video can
immediately use OSSO to estimate the skeletal structure. While many methods provide
some sort of visually appealing skeleton, this work is the first to learn and validate such
a skeleton based on data of the inside and the outside of the body.

Thttps://0sso.is.tue.mpg.de/
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Chapter 3 Inferring the skeleton geometry

Figure 3.2: Top: Pairs of soft tissue (Ig) and bone (/z) DXA images. Bottom: Computed
skin (My) and bone (Mpg) masks.
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3.2 Related Work

We review work on data-driven skin and bones models, and methods that create person-
alized anatomic models.

Data-driven skin models. In Sec. 2.4.1, we presented several statistical body models.
Learned statistical body models [42, 43, 46, 88, 90]. In this chapter, we use STAR [46]
to represent the body surface with two parameter vectors (B, 65) controlling the shape
and pose of the body, respectively.

Data-driven bone models. In medicine, patient-specific 3D bone models are very
valuable. Since many scanning modalities are 2D (X-ray), numerous methods address
fitting 3D models to 2D images. However, as pointed out by a review of existing meth-
ods [91], most models are restricted to individual bones (or groups) and are learned from
3D information. Our method learns a 3D skeleton model from 2D DXA images.

Fitting models to images. The literature of methods fitting 3D body models to 2D
images is wide [44, 92—-101] and was recently surveyed [102]. However, less work fits
such models to X-ray images. Pansiot and Boyer [103] leverage video-based surface
motion capture to recover a volumetric representation of the hand from planar X-ray
images. In this chapter, we leverage a silhouette term [104] and regressed landmarks to
fit models of the body surface and the skeleton to the segmented DXA images.

Personalized anatomic models. Several works have addressed the problem of creating
a personalized anatomic model of a subject from external or internal observations.

Gilles et al. [105] propose a morphing algorithm to register a template skeleton to a
target skeleton mesh or 3D image. The registration is done by alternating elastic and
plastic deformations, and joint position corrections constrained by prior kinematic in-
formation. At each step, the deformed individual bones are projected onto a statistical
model of the bone to ensure plausible bone shapes. Since the bone shape space is built
from synthetically deformed bone shapes and not from actual bone scans, it is unclear
how representative the shape space is of the population.

As previously mentioned in Chapter 1, models have also been developed to generate
new body shapes by simulating the growth of fat, muscle, on top of bones [80]. A
physics-based anatomic model can then be fit to input 3D scans, utilizing linear blend
skinning with bounded bi-harmonic weights to deform the bones, as detailed by Kadlecek
et al.[81] and Zhu et al.[82]. While the obtained bones are visually plausible, these
models are neither learned from data nor validated against it.

In Phace [106], two independent face and skull shape models are combined to infer
a probabilistic distribution of the face given a skull. This goal is similar to ours, as we
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want to infer the skeleton shape from the body shape. In contrast, however, we do not
have a statistical shape space for the whole skeleton, and thus we learn it.

Wang et al. [76] propose a method to scan a hand with MRI (Magnetic Resonance
Imaging) and create an accurate, personalized anatomic model. The model can plausibly
extrapolate to new unseen poses with high visual realism. The created model is person-
specific and cannot be inferred from skin observations.

Zoss et al. [107] propose a method to track the invisible jaw from the visible skin
surface. In their method, they propose a calibration phase to adapt the jaw size to a new
subject. OSSO goes further, as the shape of the bones is estimated from the outside in
addition to their location.

Bauer et al. [87] infer the skeleton of a subject from RGBD images of the skin.
Their skeleton inference method is based on Anatomy Transfer [79] with extra con-
straints positioning the bones inside the body and avoiding bone intersections. Bones are
parametrized with affine transformations, and results are not validated on medical data.

The recent BASH model [108] couples a musculoskeletal biomechanical model to the
SCAPE model [42]. BASH generates a skeleton from sparse measurements, but the
obtained anatomy is not validated on medical images. Unlike STAR, the SCAPE model
does not guarantee constant bone lengths when reposed. The main difference with BASH
is that we use a data-driven approach to learn to infer the shape of the skeleton inside the
human body, and we validate on medical images.

The most related work to ours is Anatomy Transfer (AT) [79]. In AT, a skeleton
is generated from only the external shape of an avatar, without requiring a particular
initialization. Given a target body shape, an anatomical template is morphed to match
it. The surface of the anatomical model is deformed using Laplacian deformations, and
the underlying anatomy is interpolated, except for the bones, which are deformed with
affine transformations. The skeletal structure is enforced by defining springs between the
bones that keep them coherent. In this chapter, we use a similar approach by leveraging
the Stitched Puppet graphical model [109]. While AT generates a plausible anatomy
for any kind of humanoid avatar, the generated anatomy is not validated on real data.
Our work goes beyond AT by using data to learn the skeletal deformation space and by
providing a quantitative evaluation on real DXA images. We consider Anatomy Transfer
to be the baseline and compare our predictions to theirs.

Lastly, recent work by Wong et al. [110], shows that the human internal body com-
position can be predicted from solely body surface measurements. Our work is comple-
mentary to theirs, as OSSO predicts the geometry and location of the skeleton inside the
body surface.

3.3 Data

A key contribution in this chapter is to create a unique dataset for training and evaluation
that contains paired outer surface (skin) and skeleton (bone) meshes (Rg, Rg) from DXA
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Figure 3.3: Overview of OSSO: learning and inference. From the input DXA images
(Ip,Is) we obtain the skeleton and skin masks (Mp,Ms). From the skeleton mask Mg,
we predict 2D landmarks £; and use them to register STAR to Mg and obtain Rg and
Bs. We then register our skeleton graphical model to Mg, £;, and Ry and obtain Rp
and its unposed version Tp. From the unposed skeletons Ty we learn a skeleton shape
space By; with paired (Rg, £5(Rp)) we learn the regressor Ry and with paired (B, B)
we learn the regressor Rﬁ. At test time, from the body surface (Rg,B) we regress
the skeleton shape Rg(B) = B and optimize its pose to match the regressed locations

Re(Rs) = L.

images. The dataset is made available to the community as a Biobank Returned Dataset?.

Creating the dataset has several steps: (1) we segment DXA images to get the silhou-
cttes of the body and bones (Sec. 3.3.1), (2) we create synthetic skeleton silhouettes and
use them to learn to predict landmarks (Sec. 3.3.2), (3) we register STAR [46] to the skin
silhouette images (Sec. 3.3.3), (4) we create a custom skeleton model (Sec. 3.3.4) and
register it to real skeleton binary masks (Sec. 3.3.5). Fig. 3.3 shows an overview of the
dataset creation procedure.

3.3.1 Skin and skeleton masks from DXA images

From the input images (Is, Ig), we compute the corresponding skin and skeleton segmen-
tation masks (Mg, Mp).

For the skin mask Mg, we threshold I5. As some small artifacts remain, mainly due to
pixels in the lungs with low-intensity values, we detect the closed contours on the image
and fill in small areas. In Fig. 3.2 we show pairs of input Ig and the obtained mask Mj.

The automatic segmentation of bones in DXA images is still an open problem. Often,
DXA image regions are obtained by manually annotating keypoints [25], and accurate
segmentations are performed manually [111]. Moreover, these methods only focus on
a small set of bones. Jamalud et al. [112] use a U-Net to segment body parts from

2See https://0sso.1is.tue.mpg.de/Dataset . html for the instructions.
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DXA scans that are relevant for scoliosis classification. Unfortunately, the code is not
available.

In this chapter, we use a simple heuristic to automatically segment the bone tissue in
the bone images: we assume that the X % brightest pixels in each /5 image belong to bone
tissue. We empirically set X = 20% for the male DXAs and X = 17% for the female. As
small artifacts remain (earrings, clothing, etc.), we remove small connected components
with an area of less than 50 pixels. Note that we do not claim to segment all bone tissues
in the DXA images. While our segmentations are coarse, they capture the structure and
location of the bones inside the body (as shown in Fig. 3.2); this is what we need to fit a
3D skeleton to them.

3.3.2 Computing landmarks from the silhouettes

Many model-based human pose estimation methods rely on fitting projected 3D joints
to 2D landmarks. Landmark detection must be automated as we fit thousands of DXA
images. Existing landmark detectors, of course, do not work with DXA imagery. So in
this section, we explain how we train a landmark detector for skeleton binary masks Mpg.

We start by creating an animatable skeleton model, which we call “Initial model” and
denote it K, to then generate a synthetic dataset of DXA silhouettes, and finally train a
2D landmark predictor from DXA skeleton silhouettes.

Initial model creation

To generate synthetic skeleton silhouettes that look similar to real DXA bone masks
Mp, we create an articulated skeleton model K, rigged with the STAR body model [46]
parameters.

We first generate 21 STAR bodies by sampling the STAR shape space Bs®. We con-
sider the mean body, and then, for the ng = 10 first components of the STAR shape
space, we sample two new body shapes with the shape parameters f = {—2,2}. Using
Anatomy Transfer (AT) [79], we register a template skeleton mesh to each of these body
shapes. Effectively we enforce that the skin of the AT mesh matches the STAR mesh.

With the obtained registrations, we define the mean skeleton shape K(f = 0,6 =0), as
the obtained AT skeleton on STAR’s mean shape. Then, for each shape space component,
we compute the skeleton offsets to the mean skeleton and use these offsets to define an
initial skeleton shape space. From these, we compute the shape vectors of K as Bg; —
(Tp,—2—Tp,—_p)/4 foriin [0,np].

To pose the skeleton, we rig it with the same kinematic tree as STAR. For each skeleton
bone, we manually define to which body part it belongs. This is straightforward as the
initial template skeleton has the individual bones identified. It is important to note that
the created skeleton model K(f3, 6) can change its shape and pose using the same shape
and pose parameters as STAR.
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Stacked
hourglass
network

Figure 3.4: From a skeleton mask, a stacked hourglass network predicts the 2D locations
of the landmarks £;.
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This initial model has an obvious drawback: the kinematic joint locations are not
consistent with the anatomic skeleton articulations. Still, it is sufficient to easily generate
plausible synthetic bone masks and the corresponding landmark annotations.

We define 29 landmarks on the skeleton mesh (Fig. 3.5). The first 24 correspond to
the closest vertex to the STAR joint locations. Additionally, we select the tip of the head,
fingers, and feet. We denote these initial landmarks £; or £;(M) if we make explicit the
mesh M on which the landmarks are defined.

Generating synthetic DXA masks

We use the skeleton model K to generate synthetic skeleton binary masks My with their
corresponding 2D landmarks, that we denote £; to explicitly distinguish them from the
3D landmarks £;.

We generate synthetic skeleton shapes by uniformly sampling the STAR shape space 3
in the range [—2.5,2.5]'%. As the poses in DXA scans are relatively constrained, i.e. lying
down with arms at the side, we manually define a lying pose 0, and sample new angles
from a uniform distribution centered at 8, within a small range.

With the sampled shape and pose parameters, we render the silhouette of the skeleton
and the corresponding landmark image. The virtual camera is orthographic to match the
DXA scanner camera, and the field of view is set depending on the sample body height
to leave a specific margin on the top and bottom of the image. This margin is sampled to
match the margin distribution observed on the DXA dataset. A sample of the generated
paired data is presented in Fig. 3.6.

This allows us to generate skeletons of different shapes in lying-down poses, which
we render as binary images with the projected landmarks, giving us paired training data.

To bridge the domain gap between the synthetic silhouettes and the DXA segmen-
tations, we augment the data by eroding and partially masking the rendered skeleton
silhouettes, while keeping the landmarks fixed.

Training a 2D landmarks predictor

From the synthetic silhouettes of the skeleton Mp, we train the landmark detector using
a stacked hourglass network [113] with 8 stacks. The network takes a 256x256 binary
silhouette as input and outputs a 29x64x64 tensor, where each channel contains the posi-
tion for one of the 29 landmarks £;. The 2D landmark prediction from DXA silhouette
is illustrated in Fig. 3.4.

In Fig. 3.7, we show qualitative results of the predicted landmarks on binary masks
from real DXA images. In Sec. 3.5.1, we also provide a quantitative evaluation of this
network on synthetic data. We visually inspected the predicted 2D landmarks and ob-
serve that the silhouette simplification strategy combined with our data augmentation
technique yields very good qualitative results on real DXA images.
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Figure 3.5: Position of the 3D landmarks £; on the Stitched Puppet skeleton model Pg.
These markers correspond to the location of the STAR 3D joints, plus five additional
landmarks.
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Figure 3.6: Pairs of synthetic skeleton masks (in white) and 2D landmarks L1 (color-
coded) overlayed on the mask (in gray).

Figure 3.7: Pairs of input and predicted 2D landmarks £; on real DXAs. The network
learned on synthetic data generalizes well to real data.
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3.3.3 Skin surface from DXA

A key step is to estimate the 3D body shape of a subject from their 2D DXA segmen-
tation My. There is prior work on fitting a body surface model to DXA images using a
silhouette [114, 115]. These methods, however, assume that a 3D scan of the subject is
available. Since this is not the case for us, we fit the 3D parametric model STAR [46] to
the silhouette and our predicted landmarks from above.

Since the registration is only conditioned by a silhouette and 2D landmarks, we need
a good pose prior. Thus, we collected twelve 3D scans of people lying down, computed
their STAR poses, learned a distribution of poses, and use this as a pose prior Ey as
in [94]. Moreover, we enforce the hands to stay in the coronal plane with the cost E,
penalizing the distance between the hand and the middle of the thighs.

To fit STAR to the silhouettes, we use the same optimization strategy as in [104] and
effectively solve for the STAR shape and pose parameters ([3 $ f) that minimize:

Eg(Bg, 05:My, L1) = Eg (ST (B, 05), M)
+M|[P(J(Bs, 65)) — L] 3.1
+2lBs|| + e Eg(0s) + AnEn(ST (Bs, 05)),

where ST (Bg, 05) is the STAR mesh and J(B,0s) are the STAR joint locations. Eg;
enforces the projection of the STAR mesh to match the silhouette (as in Eq. 6 of [104])3,
Ly are the predicted landmarks, and P is the orthographic camera projection function.
We denote the obtained mesh Ry = ST(BS, f5) (see Ry and B in Fig. 3.3).

This approach works well in general, but can fail in cases like severe scoliosis or limb
atrophy. These cases have high silhouette fitting errors, and we use these errors to detect
and remove failure cases automatically from the final dataset (see Fig. 3.14 and Fig. 3.15
for examples).

3.3.4 Skeleton model based on Stitched Puppet

Now that we have the skin surface, we need the skeleton inside. To register a 3D skeleton
model to the DXA bone mask Mg, we need a model where the individual bones can
freely move and deform but can be controlled with connectivity. Our initial skeleton
model (Sec. 3.3.2) is not well suited for this task, as it did not let us translate the bones at
will since they were rigged to the STAR kinematic tree. Thus, we create a new skeleton
model, capitalizing on the stitched puppet [109] and the synthetic shape deformation
space from GLoSS [116].

The stitched puppet model, as the name implies, represents an articulated deformable
structure, the human body, as a collection of parts that are stitched together at the part
interfaces. The model has per-part shape spaces and a pose parametrization in terms of

3We use the implementation available at https://github.com/silviazuffi/smalr_online
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location of each part center and its global rotation. The stitched puppet can be seen as
a graphical model, where part parameters are defined at each node, and edge potentials
represent stitching costs, that favor the parts to be connected and have smooth skin con-
nections. The original model [109] is fit to 3D scans of people with non-parametric
particle belief propagation. In order to define a stitched puppet model given an existing
mesh, one needs to define a segmentation of the faces into parts, duplicate the vertices
that belong to different adjacent parts, and define stitching potentials that act as springs
between the corresponding duplicated vertices.

Starting with the same AT skeleton template as before, we manually define 21 groups
of bones that belong to the same anatomic part, and define the interfaces between these
parts. In Fig. 3.8 we show the different parts with color codes, their interfaces, as well as
the 3D landmarks Lz defined on the bones.

Also, unlike [109], we do not use a graphical model inference method to register
the model to data. We refer to the skeleton mesh as SP(f,t,r), where (Bp,t,r) are
respectively the shape, translation, and rotation of all the skeleton parts. As we use the
same AT skeleton template, the landmarks £; are properly defined.

3.3.5 Skeleton from DXA

Now that we have a suitable skeleton model SP(B,t,r), we can fit it to the DXA. We
use the binary skeleton mask Mp, the estimated landfnarks Ly and the skin registration
Ry and optimize for the skeleton model parameters (3 4, t, ) that minimize:

Ep(Bg.t,x) = Eqara(By. t,0:Mp, L1, Rs) + Eprior(B g, t. 1), (32)
where .

Ejaa(Bg,t.x;Mp, L1, Rg) =E;;(P(SP(Bg,t,1)),Mp)
+M|[P(L1(SP(Bg,t.1))) — Li]| (3.3)
+AEi(SP(By,t.1,Ry))

and

Eprior(ﬁ};’ t, l‘) :)Lxhape | |ﬁB| | =+ lpose ||l‘ - l"|‘| |
+lytiExti(SP(BB7t7r)) (34)
+ )L.\'yE.\'y(SP(Bm t~ I‘))

where r are the rotations of the bones in a manually defined lying down pose, Ey; is the
—log of the stitching potentials described in [109], and Ej, forces the symmetric body
parts on the right and left to have a similar shape. Note how landmarks £; here are now
written as a function of the skeleton mesh.

The cost E; enforces the skeleton to be inside the body Ry and in contact with the
skin in some manually defined regions (knee, tibia, elbow). We decompose E; as E; =
Ejy+ Ep+ E¢, and illustrate the intuition of each cost in Fig. 3.9. Below, we detail further
each of these 3 costs.
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Figure 3.8: Our stitched puppet skeleton model, with the different bone groups (top left),
the interface point between the groups (top right) and the 3D landmarks Lg (bottom).
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We denote the vertices of SP as vy, the vertices of ST as vy, and z the anterior-posterior
axis. v* denotes the z component of vertex v and v" the mesh normal at this vertex.

The energy term E;, forces the skeleton to be inside the body along the front-back
axis.

Ein = max(0,D,(SP(Bg,t,r),Ry)) (3.5)

where D, is the distance along z between a SP vertex and the closest skin vertex.

The term E), forces vertices of the skeleton to be close to specific areas of the skin
along the front-back axis. For several manually defined pairs of skeleton vertices and
skin area A, we define

Ep=vi,— Y (%) (3.6)
vy EA
The energy E,, forces the contact between some specific vertices of the skeleton and
the skin, like the elbow or the fingertips.
We define pairs of skin and skeleton vertices (v, vy) and want them to be at a fixed
small distance e — Smm. Effectively, E, is the per vertex distance:

Ee = vgp— (Vsz —e: V?t)- 3.7)

After the optimization, we obtain the skeleton’s pose and shape parameters (ﬁ 2 61)
and the registered skeleton mesh

Ry — SP(Bp.1,8). (3.8)

Fig. 3.3 shows the registered skeleton Rp for one subject.

Unposing the skeleton registration. Before we can learn a skeleton shape space, we
need to pose-normalize the optimized skeletons Rp. While obtaining the unposed mesh
Ty of a STAR fit Ry is straightforward - one just zeros the pose parameters, unposing Rp
is ill-posed as one can zero the rotations r, but the translations t need to be adjusted. To
constrain the problem, we make the hypothesis that the 3D offsets between the skin and
skeleton do not vary much from one pose to another. From the registrations (Rg, Rp) of
a low BMI subject, we define 3113 pairs of skin and skeleton indices {(sn,,sk,)} and
define their initial 3D offset d:

d) — (Rg[snp| — Ry]sky|) (3.9)

This allows us to define a signed distance cost between the unposed meshes: We can
then define the cost function E; to maintain this offset across poses.
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Figure 3.9: We illustrate the intuition behind the costs composing E; on a profile view of
the tibia in the leg. a) The frontal silhouette does not yield any constraint for the bone
to be inside the body along the z-axis. b) We use Ej, to force it to be inside. Forcing it
inside is not enough as it could squeeze and collapse; thus, we enforce the bone to be
close to the skin surface with E, (c). In addition, there are regions where the bones are
not covered by muscle and fat and should, therefore, lie close to the skin surface. We use
E, to enforce these manually defined areas of contact (d).
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Eq(Ts,Tg) =Y wy- (Ts[snp| — Tg[skp]) —d) (3.10)
P
with

wp = sign(Ts[snp] — Tp[sky]) - N(Tg[skp)) (3.11)

where N(Tg|sk,]) is the normal on the skeleton mesh at vertex sk,.

In Fig. 3.10 we illustrate the pairs of skin and skeleton vertices that are used for this
cost. Our heuristic is that each of these pairs has a fixed distance dy that should remain
constant independent of the 3D pose.

Thus, to unpose the skeleton, we fix B, — BB and find (£,,1,) that minimize the
weighted sum of the two previously introduced losses:

Ey(t,¥) = AyiEgi(SP(Bp,t,1)) + AgEa(Ts,SP(By,t,1)) (3.12)
to obtain the unposed skeleton vertices:

Tg = SP(B g, €u,50) (3.13)

Fig. 3.3 illustrates the unposed skeleton T for a subject.

3.4 Method - OSSO

Now that we have paired meshes (Rg,Rg) and unposed Tp meshes, we learn their corre-
lations and how to predict skeleton landmarks Lp from the skin vertices Rg (Sec. 3.4.1).
Then, at test time, given an arbitrary STAR body shape in an arbitrary pose, we predict
a skeleton mesh (Sec. 3.4.2) and then repose it to match the input skin pose (Sec. 3.4.3).
Fig. 3.3 illustrates this pipeline.

3.4.1 Skeleton statistics and correlation to skin shape

With the dataset created in Sec. 3.3, we can now learn the correlation between the skin
and the bones. With the unposed skeletons Tp, we first compute a low-dimensional lin-
ear subspace Byp, representing the skeleton shape variations using Principal Component
Analysis (PCA). We then learn a linear regressor Ry that predicts the skeleton shape
space coefficients Bz € Bgy from the STAR shape space coefficients g computed in
Sec. 3.3.3.

To properly constrain the 3D location of the inferred skeleton inside the body, we
define a new set of landmarks Lp, composed of three landmarks per bone group. We
learn to infer them from the skin with one linear regressor per landmark. The regressor
‘R takes as input the vertices of Rg and predicts the 3D landmarks on Rg, i.e. L5(Rp).
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3.4 Method — OSSO

Figure 3.10: Skin to skeleton pairs used in the cost E;. We color the links in each part
with a different color for visualization purposes.
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Figure 3.11: Given a skin mesh, the landmark regressor lets us compute the landmark 3D
locations as a linear combination of the skin mesh vertices locations.

We formulate the problem as a non-negative least squares problem and solve it with an
active set method [117]. This regression is learned in a normalized lying down pose as
illustrated in Fig. 3.11.

3.4.2 Inferring the skeleton from the skin

We now have all the clements to predict the skeleton shape from an input body surface
in STAR format: (Rg,Bg). Using the learned regressor Rg (Sec. 3.4.1) we predict the
subject’s skeleton shape 83 = Rg(Bg) from the body surface shape f.

Then, to properly position the skeleton inside the body, we pose the body sur-
face in a normalized lying pose 6%, obtaining Rg(6%) and predict 3D bone landmarks
Rp(Rs(65)) = Lp.

Let us write SP(B g, t,r) to refer to the skeleton with shape 85 posed with the stirched
puppet pose parameters (t,r). To obtain the bone poses (tg,rg) that match the predicted
landmarks, we minimize:

E(t,r) = A.||Ls(SP(B g, t,1)) — Lg|| + A Ee,(SP(B, t, 1), Rs(6%)), (3.14)

where E,, forces the contact between the skeleton and the skin, as defined in Sec. 3.3.5.
The obtained mesh is our skeleton prediction.
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3.4.3 Reposing the inferred skeleton

For arbitrary poses, the simple stitching cost between bones can not properly model artic-
ulations like the knees and shoulders. A preferable approach would be a biomechanical
model with a kinematic tree enforcing a proper definition of the articulations. However,
defining a bone shape space for such models is not trivial, so we focus on more anatom-
ical articulations in the next chapter. In this chapter, we model two key articulations in
more detail: ball joints and ligaments.

Ball joints like shoulders, elbows, or hips should stay in their sockets. For such joints,
we identify sets of vertices on the skeleton that define the joint socket and the insertion
bone head. We fit spheres to them, and define an energy E; that forces the spheres to
remain at a similar distance.

Effectively, we define for each articulation, sets of vertices s;,s; of the skeleton tem-
plate representing respectively the joint socket and the corresponding bone head. At
cach optimization step, we fit spheres with centers S;,5; to these vertex sets, and force
the sphere pairs to remain at a similar distance during the optimization:

Ej(t,r;8Po) = ||Si(t,r) = S;(t,r)[| — dio. (3.15)

This cost is not sufficient to model the knee movement, so we define a stitching cost E;
approximating the human knee ligaments. We create pairs of vertices (/;,/;) at the bone
locations where the ligaments are attached, and define the per-vertex cost E; as:

E = |li—1|| - dy. (3.16)

The distances djq and dyo are defined such that £;(tg,ry:SPo) = 0 and E(tg,x9: SPg) =
0.

Note that our articulation models, like all models, are an approximation to the truth
and could be further refined for specific needs such as extreme bending poses.

Technically, given an inferred skeleton SPy

SPy = SP(Bg,to,To) (3.17)
inside the corresponding lying down skin mesh ST
STo = ST (6%, By) (3.18)
, and a skin mesh in a specific pose

ST¢ = ST (6%, By) (3.19)

, we pose the skeleton inside ST'g.
We first compute the set of dg offsets between SPy and ST in the lying down pose
and then minimize the reposing cost Eq. (3.12) to position the skeleton inside the posed
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body STg. Then, to enforce more realistic anatomic joints we add:
E(t,r) = LE;(t,r;SPy) + AE(t,r;SPg) (3.20)

to Eq. (3.12) and optimize again.
The resulting skeleton SPg fits realistically inside the target body STy as shown
Fig. 3.21 and Fig. 3.22.

3.5 Experiments

To evaluate our approach, we first evaluate our 2D landmarks regressor (Sec. 3.5.1).
We then quantify how accurately the skin registrations Rg match the skin masks Mg
(Sec. 3.5.2) and the skeleton registrations match the skeleton mask Mp (Sec. 3.5.3). We
then evaluate how accurately our learned regressors predict the 3D bone landmarks from
the skin (Sec. 3.5.4). Finally, we quantitatively and qualitatively evaluate how the pro-
jections of the computed bones overlap with the DXA bones masks (Sec. 3.5.5), we
compare our prediction to AT (Sec. 3.5.6), and show the inference generalization to new
poses (Sec. 3.5.7).

For the following evaluation, we use a training set of 1000 subjects per gender and a
test set of 200 subjects from the UK Biobank dataset [89]. We made sure both sets have
the same Body Mass Index distribution.

3.5.1 DXA to 2D landmarks regressor

As the original DXA images do not have annotations, we only evaluate the regressed
2D DXA landmarks quantitatively on unseen synthetic data. We evaluate the landmarks
predicted by the stacked hourglass network on 100 unseen synthetic skeleton silhouettes.
The prediction error is measured in pixels on an image of size 256x256 pixels. The per
landmark errors are reported in Table 3.1.

Most errors are on the order of one pixel. The highest prediction errors are for the tip
of the middle fingers (L25 and L26) and the toes (L27 and L28). We observe that due to
the resizing of the skeleton mask from the original image size (approx 800x800) to the
size of the network (256x256), fine structures such as fingers and toes are degraded or
lost. This is numerically visible with the standard deviations of the finger markers which
are over 1 pixel.

3.5.2 STAR fits to DXA skin masks

We first evaluate how well our skin registrations Rg overlap with the skin mask Mg
(Sec. 3.3.3) on the whole 2400 subjects dataset. We compute the intersection over union
metric, as ideally, all segmented skin pixels in Mg should be covered by the projection
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err. (mean + std)
L0 +0.35
L1 0.95 +0.40
L2 0.81 +£0.38
L3 0.90 +0.46
L4 1.14 £ 0.54
L5 1.12 £ 0.60
L6 0.78 + 0.46
L7 1.16 + 0.63
L8 1.24 £+ 0.68
L9 1.07 £ 0.37
L10 1.18 £ 0.52
L11 1.18 +0.62
L12 0.87 + 0.41
L13 0.87 £ 0.41
L14 1.01 £0.43
Table 3.1: Prediction error in pixels of the predicted 2D landmark £; on synthetic skele-
ton silhouettes. Landmark numbers are visually shown on the mesh in Fig. 3.5.

err. (mean =+ std)
L15 0.78 £+ 0.37
L16 1.01 £ 0.47
L17 0.87 £ 0.50
L18 1.22 + 0.62
L19 1.01 +£0.54
L20 1.22 £ 0.69
L21 1.21 £0.56
L22 1.08 £ 0.75
L23 1.04 £ 0.69
L24 0.75 £ 0.43
L25 1.87 £1.39
L26 1.53 £1.02
L27 1.23 £ 0.61
L28 1.23 £ 0.67

of the skin registrations Rg. We obtain a mean of 0.94 for the female subjects, 0.95 for
the males, with standard deviations below 0.01. The small failure regions are due to soft
tissue compression deformations of a lying down person that the STAR model does not
capture.

In Fig. 3.12 and 3.13, we also show qualitative results of the STAR fits to the DXA
silhouettes. The color-coded images show that the skin registrations faithfully capture
the DXA skin silhouettes.

As mentioned in the last paragraph of Sec. 3.3.3, we use the quality of the fit to detect
and remove failure cases from our datasets, i.e. subjects whose body shape can not be
explained with STAR. In Fig. 3.14 and 3.15, we show some failure cases with low in-

Male | Female Male | Female
Method Nr(%) + HD (px) |
Rp 92 [ 94 82+26 | 56+17
0SSO 88 89 [10.6+32] 9.1+23
AT~ [79] | 84 88 [ 144+29[115+3.1

Table 3.2: Quantitative comparison of OSSO and AT [79]. The Ng score standard devia-
tions are all below 2%.
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Is Rs MRs)NMs s Rs  M(Rs) N Mg

Figure 3.12: Comparison of the aligned STAR models Ry with the target DXA masks
Mg for subjects sampled from the curated dataset. On the left we show males, and on the
right females. The masks intersection is color-coded as follow: green: Rg only, orange:
Mg only, white: both.
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Ig Rs M(Rs)NMg Is Rs  M(Rs) N Ms

Figure 3.13: Comparison of the aligned STAR models Rg with the target DXA masks
Mg for subjects sampled from the curated dataset. On the left we show males and on the
right females. The masks intersection is color-coded as follows: green: Ry only, orange:
Mg only, white: both.
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tersection over union values. These examples include subjects with atrophied or swollen
limbs, severe scoliosis, or very low BMI. In practice, we used the alignment score to
remove outliers of the available DXA scans (about 1%) to constitute a curated dataset
containing a training set of 1000 subjects and a test set of 200 subjects for each gender.

3.5.3 Skeleton fits to DXA skeleton masks

Next, we show qualitative results of the skeleton registrations Rg in Fig. 3.16 and 3.17.
Our skeleton model matches the DXA pose and overlaps with the silhouette of the bones.
The subjects are the same as in Fig. 3.12 and 3.13.

3.5.4 Skin to 3D landmark regressors

We next evaluate the accuracy of the regressors L£p (Sec. 3.4.1) by predicting skeleton
landmark locations from the body surface on the test set.

For each gender, we train the regressors on 1000 subjects and evaluate on 200 left-out
subjects the 3D distance between the landmarks on the aligned skeleton £z(Rp) and the
predicted landmarks Rg(Rs) = Lp.

Our predictions have a mean distance (MD) below 1 cm: 8.0 £ 6.1 mm for males and
8.4 £+ 6.7 mm for females and all individual landmarks results are consistent among male
and female (£1mm). The detailed per landmark errors are presented in Appendix A.1.

The more accurate landmarks correspond to the upper skull (MD < 2 mm) and fect
(MD < 4 mm), whereas the least accurate belongs to the hip iliac crest (MD ~ 20 mm).
We observe that the supervision of the bone masks Mp is stronger in feet and skull than
in the hip iliac crest, which is often not visible (see Fig. 3.2).

3.5.5 Skeleton prediction evaluation on 2D DXA bones masks

Next, we quantify how similar the predicted skeletons are to the subject’s skeleton. How-
ever, we only have access to 2D DXA bone images (I, Mp). In addition, our DXA bone
masks Mp are coarse, as some bones, such as the hip bone are not completely segmented.
To account for this, we require every bone pixel in Mj to be covered by the skeleton pro-
jection, but not the reverse. Given a skeleton Rg and a bone mask Mp we compute
their intersection ratio Ng(Rpg,Mp) = 100|P(Rp) N Mp|/|Mg| as a percentage. We also
compute the directed Hausdorff Distance (HD) from Mp to P(Rp) accounting for the
maximum pixel-to-pixel distance.

Table 3.2 presents the results on the test set of 200 male and 200 female test subjects
held out from any learning. In the first row, we evaluate the skeletons Ry from Sec. 3.3.5
to validate that they faithfully match the masks Mp. We obtain mean intersection per-
centages of 92% and 94% and mean HDs of 8.2 and 5.6 pixels for male and females,
respectively. OSSO obtains mean intersection percentages of 88% and 89% and mean
HDs of 10.6 and 9.1 pixels, while AT obtains mean intersection percentages of 84% and
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I In R M(Rs) N Mg

Figure 3.14: Failure cases. For each subject, we show Ig, Ip, the fitted skin mesh Rg, and
the intersection of both masks. The masks intersection is color-coded as follow: green:
Ry only, orange: My only, white: both. The STAR model can not faithfully capture the
shape of these subjects.
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15 I B RS M (RS) N MS
Figure 3.15: Failure cases. For each subject, we show Ig, I3, the fitted skin mesh Ry and
the intersection of both masks. The masks intersection is color-coded as follow: green:

Ry only, orange: Mg only, white: both. The STAR model can not faithfully capture the
shape of these subjects.
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Figure 3.16: Comparison of the registered skeleton Rp with the target DXA masks Mp
for subjects sampled from the training dataset. On the left, we show males, and on the
right, females. The masks difference is color-coded as follows: green: Ry only, orange:
Mgp only, white: both.

63



Chapter 3 Inferring the skeleton geometry

Ip Rp  M(Rp) N Mp Ip Rg  M(Rg) N Mp

Figure 3.17: Comparison of the registered skeleton Ry with the target DXA masks Mg
for subjects sampled from the training dataset. On the left we show males and on the
right females. The masks difference is color-coded as follow: green: Rp only, orange:
Mg only, white: both.
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88% and mean HDs of 14.4 and 11.5 pixels for male and females respectively. Consis-
tently, the OSSO predictions have higher mean intersection values and lower HD than
those of AT.

The presented metric has a limitation: predicting all the skin volume as bone would
obtain a perfect result (Mg = 1, HD = 0).

3.5.6 OSSO vs Anatomy Transfer comparison

From the DXA test set, we select 5 subjects spanning the dataset BMI distribution. From
the skin alignment Rg, we infer the skeleton and compare it to the subject’s skeleton
DXA image. We denote Sy the skeleton inferred with AT, and Slpgso the skeleton
inferred with OSSO. M(SI) is the mask rendered from the mesh SI. Figure 3.18 shows
the comparison between our OSSO predictions and the ones from Anatomy Transfer

As can be seen from the images, our predictions better capture the global shape of the
skeletons. Particularly, Anatomy Transfer tends to estimate the location of the hips to
be too low with respect to the actual hip location. In comparison, our method predicts a
skeleton that is visually closer to the one observed in the DXA images.

3.5.7 Generalization to new poses

Our regressors and model are learned from a limited set of poses, yet OSSO can predict
skeletons from STAR bodies in arbitrary poses (Sec. 3.4.3). We show several examples
in Fig. 3.1, Fig. 3.19, Fig. 3.21 and Fig. 3.22.

The clothed scans are from RenderPeople [83] and are part of the AGORA dataset
[118], which includes high-quality SMPL fits to the scans taking into account clothing.
We fit STAR to the SMPL bodies (the templates have the same topology), and then apply
OSSO to estimate the posed skeleton. Unfortunately, we cannot quantitatively evaluate
the accuracy of the posed skeletons. Although some minor skin interpenetrations remain,
the obtained results are visually plausible.

Lateral view. Fig. 3.20 shows side views of the inference result in T-pose for various
body shapes. While there is no ground truth with which to evaluate this pose, the results
are plausible.

3.6 Conclusion

In this chapter, we addressed the problem of predicting the skeleton mesh of a person
from their external body shape with OSSO. We use STAR [46] to represent the skin sur-
face and use a novel method to learn a parametric shape model of the anatomical skeleton
using thousands of DXA scans. We learn a mapping from the external body shape to the
skeleton and can repose the skeleton inside the body subject to various constraints. We



Chapter 3 Inferring the skeleton geometry

Ry Shgron Iy M(Sly) Mg Slossoon Iy M(Slgsso) N Mg Is Ry Shgron Iy M(Sly) Mg Slossoon Iy M(Slgsso) N Mg Is

Figure 3.18: For each subject, we show in the order (1) Rg, (2) SI47 superimposed with
the ground truth DXA I, (3) the overlap of M(SIyr) and Ip, (4) Slpsso superimposed
with the ground truth DXA I, (5) the difference between M (Slpsso) and Mg, (6) the
ground truth DXA Ip
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Figure 3.19: Qualitative evaluation of the skeleton inference in arbitrary poses. OSSO
yields visually plausible results.

evaluate OSSO using 2D DXA images from the UK Biobank dataset where the skin as
well as the structure of the bones are visible. Our skeletal predictions quantitatively out-
perform the state-of-the-art on silhouette reprojection error. Qualitatively, they are also
better aligned with the DXA images.

The main limitations of OSSO are the 3D validation, and the absence of a kinematic
tree for the skeleton. We train and validate our method on DXA images that are only
2D, and only capture the body in a lying down pose. Indeed, current medical imaging
techniques do not enable capturing a large variety of poses in 3D, making it difficult to
get a ground truth skeleton in various poses.

Moreover, the inferred skeleton, based on the stitched puppet, does not have a kine-
matic tree, leading to two issues. First, we can not guarantee that the skeleton inferred
by OSSO has anatomically correct joints. Although we try to enforce plausible bone
poses with a loss, the bones can end up out of their socket and not oriented properly.
Not enforcing anatomical joint constrains becomes especially problematic if SMPL limb
orientations are not anatomically correct. In such cases, our posing method can yield
improperly oriented bones, as illustrated in Figure 3.23.

Second, reposing the inferred skeleton requires an optimization, and can lead to in-
consistencies between two subsequent frames of a motion sequence.

The main reason we could not build OSSO to have a kinematic tree is that the per-bone
shape space changes the size of the bones, and thus the location of the joints. Basically,
the skeleton kinematic tree should depend on the skeleton’s shape. This dependency
is not trivial to learn, especially without skeleton ground truth in various poses. There
are two solutions to that. i) Proceeding like SMPL and learning to regress anatomical
joint locations from the skeleton vertices, for which we lack data. ii) Defining a scalable
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Figure 3.20: Lateral views of skeletons inferred with OSSO.
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Figure 3.21: Given SMPL bodies aligned to RenderPeople subjects [83, 118], we use
OSSO to infer the underlying skeleton.
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A

Figure 3.22: Given SMPL bodies aligned to RenderPeople subjects [83, 118], we use
OSSO to infer the underlying skeleton.
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Figure 3.23: Left: SMPL fit to a yoga pose from MOYO [119]. Right: The corresponding
OSSO skeleton prediction. Although the SMPL fit looks correct, the OSSO fit reveals
that the thighs are not properly oriented. Without a proper kinematic tree for the skeleton
constraining the articulations to be anatomically correct, there is no way to recover from
the SMPL pose being unrealistic.

kinematic tree, with bones rigged to it, which is the approach followed in the next chapter.

These factors limit the usability of OSSO in biomechanics, as this field requires ac-
curate anatomical joint locations. In the next chapter, we will address some of those
limitations.
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Inferring the location and orientation
of the bones

Figure 4.1: (a) We fit our new Biomechanical Skeleton Model, BSM, to SMPL [43] mesh
sequences from AMASS [120]. This gives paired data enabling us to learn the mapping
from skin to skeleton. (b) We use this to create SKEL, a parametric body model with skin
and skeleton meshes, driven by biomechanical pose parameters and incorporating the
shape space of SMPL. SKEL is like SMPL but with more realistic degrees of freedom.
Fitting SKEL to DFAUST scans [121] results in SKEL’s scapula sliding (c) and the
forearms twisting appropriately (d).

In Chapter 3, we showed that we can infer the shape of the bones from the shape of
the body, but the inferred skeleton could not be validated on 3D ground truth skeletons,
and did not have a kinematic tree, making it difficult to repose, and to get precise joint
locations and realistic bone orientations. In this chapter, we address these limitation
by building a scalable skeleton model with an anatomical kinematic tree, and generate
ground truth 3D skeletons in motion by leveraging methods from the biomechanical
field. As a result, we learn to infer more precisely the bone location and orientation
inside bodies in any pose.
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4.1 Introduction

As seen in Sec. 2.2, the methods for capturing the human body vary significantly across
the fields of research. While computer vision focuses on estimating 3D humans from
images and videos, the biomechanics community focuses on highly accurate marker-
based motion capture systems. In this chapter, we take a step towards combining the best
of these disciplines, providing new and improved tools to each; see Fig. 4.1.

Specifically, we focus on advances in computer vision that infer the 3D pose and shape
of the human body in the form of parametric body models like SMPL [43]. The field has
advanced rapidly and the accuracy of markerless video-based 3D motion capture is catch-
ing up with marker-based techniques. Unfortunately, the kinematic structure of models
such as SMPL is not physically accurate, limiting their applicability in biomechanics.

In the previous chapter, we presented a method to estimate a skeleton mesh in any
posed body. However, OSSO suffers from SMPL’s limitations and can not guarantee
correct bone orientations inside the limbs.

In contrast, the biomechanics field has developed detailed skeletal models to represent
the anatomic motion of the knee, spine, shoulder, etc. But the vision and graphics com-
munities are currently not benefiting from these more accurate models of the body and
its joints.

To address these issues, we unify the SMPL body model with BSM, a new Biomechan-
ical Skeleton Model. While previous work, including OSSO, has addressed the problem
of putting skeletons inside 3D body models [79, 122, 123], such approaches have not
addressed the problem of precisely locating the skeleton within a moving body. The key
challenge is the lack of training data that pairs the posed 3D human body shape with the
ground-truth skeleton. We address this by creating a novel dataset called BioAMASS.
To create BioAMASS, we take sequences of 3D bodies from the AMASS dataset [120]
that cover a wide range of body shapes and challenging poses. We place virtual motion
capture markers on the body surface to obtain pscudo-ground-truth skeletons. We then
use the recent method “AddBiomechanics” [124] to solve for the BSM skeleton given
the virtual markers.

With this paired dataset, we can now address several problems that were previously
unsolvable. First, we train a regressor to estimate the 3D anatomical BSM joint locations
of the body given a posed SMPL mesh. Note that these locations significantly differ from
the joints in SMPL. This learned anatomical joint regressor is useful for generating more
relevant training data for 2D or 3D joint detectors, as today, such methods are typically
trained from manually labeled joints or projected SMPL joints.

Next, we re-rig the SMPL body model with the BSM biomechanical skeleton, i.e. we
use the BSM parameters to drive a SMPL mesh, and we call the resulting model SKEL,
which is short for “Skeletal Kinematics Enveloped by a Learned body model”. To do
so, the skeleton must be properly scaled, located and oriented inside the SMPL body
mesh. To that end, we propose a data-driven strategy that places the bones inside the
body while ensuring that their orientations are compatible with the anatomic constraints
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of the limbs. Like SMPL, SKEL provides a body surface but with a skeleton inside that
has biomechanical degrees of freedom. For example, the spine in SKEL is modeled by
a spline derived from biomechanics. Additionally, shoulders are a complicated structure
that is typically crudely approximated in vision and graphics models. SKEL replaces the
approximate shoulder of SMPL with a biomechanical shoulder blade [125] that slides
along an ellipsoid defined around the thorax. The forearm rotation is another place where
standard graphics models like SMPL differ from biomechanics. Instead of a simple
rotation around the elbow, SKEL models the motion of the radius and ulna bones to
drive forearm pronation and supination.

SKEL has several uses. Specifically, we consider the problem of taking a SMPL body
model and computing the correct skeleton inside. Compared to the previous chapter, we
now aim to achieve anatomically plausible bone orientations that do not violate the con-
straints imposed by the degrees of freedom of the human skeleton. To do so, we simply
fit SKEL to the posed SMPL mesh by optimizing the SKEL pose to minimize the vertex-
to-vertex distance between the meshes. We apply this process to archival datasets such
as 3DPW [23] and BEDLAM [126]. This effectively upgrades existing computer vision
datasets to contain biomechanical ground truth, extending their use to biomechanics. For
example, one could evaluate, or learn to directly regress, biomechanical parameters from
video.

We evaluate two methods for estimating the skeleton from SMPL: direct regression
of BSM joints from SMPL and fitting SKEL to SMPL. Accuracy is defined in terms of
3D joint location error. Since there is no ground truth for this task, we take the joint
locations estimated by AddBiomechanics as pseudo-ground truth. We find that both of
our methods produce significantly more accurate joint predictions than SMPL. We also
provide extensive qualitative experiments that show the articulated structure of SKEL
and its use in upgrading existing human motion datasets to support biomechanics.

SKEL can also be used in the other direction. Given an input skeleton mesh obtained
after fitting a biomechanical model to mocap data, SKEL can be used to add a plausible
skin surface; this is useful for visualization of mocap data. Since there are an infinite
number of body shapes that are consistent with a given skeleton, the predicted shape can
be constrained, e.g. with the subject’s weight.

At the time of publication, SKEL is the first model where the body surface and anatom-
ical skeleton are directly controlled by the same set of shape and pose parameters (3, q).
The BioAMASS dataset, the code to create it from the AMASS dataset, as well as the
SKEL model, are available for research purposes at https://skel.is.tue.mpg.de.

4.2 Related Work

As seen in Chapter 2, the accurate representation and animation of human bodies play an
essential role in computer graphics, vision, and biomechanics. Here we recall the main
approaches to capture and model the human body in motion.
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Body models. As presented in Sec. 2.4.1, statistical body shape models [42—-44, 46,
47, 88, 90, 127] have a wide range of usage, but their joint locations are not designed to
correspond to the anatomical functional joints of the body. For example, their kinematic
tree does not match the degrees of freedom of the human anatomic skeleton. The knee
and elbow flexion, the spine, the elbow and the arm supination are typically modeled by
ball joints, while those functional joints have either a single degree of freedom or are
more complex than a pure rotation, such as the forearm, knee, spine, or the shoulder.

Biomechanical skeleton models. In contrast to body models, skeletal models used in
biomechanics, like [74, 125, 128], define the degrees of freedom of the human skeleton
with a focus on anatomic realism. This is critical for kinematic and kinetic analysis.
The size and motion of these skeleton models are computed from optical motion cap-
ture data using optimization frameworks like OpenSim [71] or AddBiomechanics [124].
This is the classical approach in biomechanics for measuring the precise location of the
functional joints.

Motion capture. While marker-based motion capture (mocap) is the preferred method
for analyzing movement, it is expensive, invasive, and time-consuming. It is also hard
to reproduce the exact marker placement on different subjects and most methods assume
that the markers are rigidly attached to the body, which is not accurate due to soft tissue
deformation. MoSh [120, 129] unifies mocap and statistical body models by fitting the
parameters of the model to match the marker data. This approach can even mitigate the
issues of soft tissue motion.

Traditional mocap, however, typically prevents subjects from wearing regular cloth-
ing, complicating capture and limiting its applications. Consequently, many research and
commercial solutions for markerless motion capture exist [15—17], which are currently
limited by the absence of joints detectors on images, that yield anatomically correct joints
(Sec.2.2.3).

Bones inside bodies. Our goal is to properly place the skeleton inside a parametric
body model, providing the best of both worlds. A common approach in previous work
uses an anatomic skeleton model and deforms it to register it to a target body mesh [79—
82, 105]. This registration is challenging as these skeleton models do not, in contrast to
SMPL, have a shape space of deformations. Thus, the applied deformations may create
non-plausible anatomies. In contrast, in Chapter 3, OSSO learns to predict the geometry
of the bones from a SMPL body mesh, leveraging medical scans. Although this approach
gives a plausible skeleton shape that fits inside the subject, the resulting skeleton model
can not be easily animated as it does not have a kinematic tree and can not be validated in
3D. For a lying pose, OSSO yields precise skeletal geometry that is close to the ground
truth scans, but the reposing of the skeleton requires an optimization process that can
lead to biomechanically impossible poses. The BOSS model [122] improves on OSSO

76



4.3 Method overview

by learning a skin-bone-organs model from segmented 3D medical data. While the skin
and skeleton model share the same shape space, their kinematic trees used for rigging
are different. This does not allow the synchronous posing of both skin and skeleton and
an expensive optimization step is required.

Bodies from bones. Going in the other direction, one can infer the body shape given
a skeleton. For example, BASH [108] uses the SCAPE body model [42] to envelop a
biomechanical skeletal and muscle model [128]. However, the SCAPE model is only
scaled to match the limb lengths of the skeleton. Shape accuracy is not critical because
their goal is to better visualize muscle activation by displaying it on the human surface.

In contrast to prior work, SKEL provides a correctly scaled skeleton inside any SMPL
body model. Any optimization or regression method that estimates SMPL parameters
can now be used to produce biomechanical skeletal parameters. SKEL effectively con-
nects parametric shape models with biomechanical skeletons for the first time to enable
the integration of these technologies and fields.

4.3 Method overview

Our driving goal is to create SKEL, a model that combines skin and skeleton meshes
in which both are synchronously rigged with the same pose parameters ¢, and can be
reshaped by inheriting the SMPL shape space. To create this model, we must know the
location of the anatomic joints and bone rotations inside the human body. There is no
large-scale medical dataset of subjects in motion where one can extract both the body and
skeleton meshes, and static medical scans do not fully constrain the skeleton in motion.
For this, we need bodies in motion and leverage the AMASS dataset [ 120] to address this
challenge. In Sec. 4.4 we first present our new custom Biomechanical Skeleton Model,
BSM, and describe how to align it inside AMASS sequences of SMPL bodies in motion
to obtain the new BioAMASS dataset. Leveraging BioAMASS, Sec. 4.5 shows how we
learn the SKEL(3, q) model, which inherits the shape space § from SMPL and the pose
vector q from the new BSM biomechanical model. It enables direct animation of the
skin and the skeleton meshes using shape and pose parameters, 8 and q, respectively.
Creating SKEL involves two essential steps: learning the bone locations and orienta-
tions (Sec. 4.5.1) inside the body, and rigging the skin and bone motions to a common
kinematic tree parameterized by q (Sec. 4.5.2).

4.4 The BioAMASS dataset

The goal of the BioAMASS dataset is to enable the learning of the location and orienta-
tion of the 3D bones inside a body surface in motion. To create BioAMASS, we use the
SMPL [43] model for the body surface and a new biomechanical skeleton model, BSM,
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for the bones. We first recall the definition of SMPL function, introduce our biomechan-
ical models, and then describe how we fit BSM to SMPL and create BioAMASS.

4.4.1 The SMPL body surface model

We model the 3D body surface using the SMPL function, which takes as input shape
parameters 8 and pose parameters 6 € R7?, and outputs a 3D mesh with vertices v €
IR9890%3  The SMPL model, detailed more extensively in Sec. 2.4.1, includes a joint
regressor defined in Eq. 10 of [43]. Given shape parameters 3, this regressor lets us
compute the location of the 3D joints inside the body mesh in T-pose, thus defining a
subject-specific kinematic tree. Each joint pose is then parameterized by three degrees
of freedom in an axis-angle representation.

4.4.2 The BSM skeletal model

To model the human skeleton, we create BSM, a custom skeleton model using the Open-
Sim framework [71]; BSM is described by a file in ““.osim” format. BSM consists of 24
rigid groups of bones with joints defined between them as well as a mesh representing
the geometry of each bone group. On top of each bone, a set of virtual markers is defined;
these markers are used to fit BSM to motion capture sequences.

The BSM is represented by three functions that take scaling and pose parameters as
input. Using forward kinematics, these functions output the skeleton joint locations,
BSM’(s,q), the bone meshes vertices, BSM"(s,q), and the posed marker locations,
BSM™(s,q,mg). The scale parameter s € R?*3 scales each of the 24 unposed bones
along the axis (x,y,z), while the pose parameters q € R*’ represent the 49 degrees of
freedom of the articulated model. The model markers are defined by designating their
3D coordinates mg € R¥»*3 in the corresponding bone reference frame. Each marker is
rigidly attached to one bone and, when the bone is scaled with s, the marker location is
scaled accordingly. In contrast to SMPL, BSM has a more realistic kinematic tree but
lacks a shape space.

Body models like SMPL typically treat every joint as a ball joint with three angular
degrees of freedom. In reality, the joints of the body differ significantly from this as-
sumption. Consequently, for BSM we use more realistic models of the spine, shoulder,
and forearm. This results in a model with fewer degrees of freedom.

Lower body. For BSM’s lower body model, we use the model from Rajagopal et
al. [74], which implements the knee flexion model from Walker et al. [130].

Spine. We extend the original OpenSim framework with a new custom joint that we
call “constant curvature”, to model the spine bending with a constant length. Our BSM
model’s spine comprises 3 such joints, enabling lumbar, thoracic, and cervical bending,

78



4.4 The BioAMASS dataset

as illustrated in Fig. 4.10a. Given the parent joint location J;_; and a spine curve of
length [, the child joint J; will move on a curve of constant arc length and curvature,
parameterized by one termination angle q; = [¢x, ¢z, ¢y| € R?, represented as Euler-angles
in XZY. The child joint location is J; = R(q;) - (J; | —J;) + tP"¢(q;), where

. x=  (r—cos(a))x* f;?%ﬁ)
P (o) = { y = r-sin(et)
= (rfcos(a))*w “.n

sin(a)

with o = arcsin \/sin(qz)2 + (cos(g;) * sin(gy))?, and r = é‘

Shoulder blades. In BSM we follow the scapulothoracic model from [125] and pa-
rameterize the shoulder blade joint such that it slides along an ellipsoid defined around
the thorax, making the scapula slide along the ribs. The three degrees of freedom are
linked to scapula abduction, elevation, and upward rotation as illustrated in Fig. 4.2.

in(ernal&\

rotation™ |

Figure 4.2: The shoulder blade model used in BSM (figure from [125]).

Forearm. The forearm pronation and supination are modeled by a single degree of
freedom; which is distinct from the elbow flexion, wrist flexion, and wrist deviation
[74]. The forearm is made of two bones: the radius and the ulna. The ulna is linked
to the humerus through a hinge joint, enabling the elbow flexion. During the forearm
pronation and supination, the hand rotates while the ulna stays fixed. We model this by
rotating the radius along the axis defined by the ulna’s parent joint location and the radius
extremity as illustrated in Fig. 4.10c.
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(a) SMPL (b) Synthetic markers (c) BSM alignment

Figure 4.3: Creation of the paired skeleton and body dataset. Given a SMPL motion
sequence (a), we generate synthetic markers (b), and fit a biomechanical model to the
markers using AddBiomechanics [124] (c).

4.4.3 Fitting BSM to SMPL

To leverage the SMPL body meshes in AMASS, we define a mocap marker set on the
SMPL mesh and obtain synthetic sequences of markers. We use these as input to fit
our BSM skeleton using AddBiomechanics [124], a recent biomechanical optimization
framework. Fig. 4.3 illustrates this pipeline.

Establishing marker correspondences with BSM

To fit BSM to SMPL, we need to define corresponding markers on both models. Theo-
retically, we could define each skin vertex of SMPL to be a marker attached to BSM. But
OpenSim rigidly attaches markers to the bones, hence we define a set of markers that are
influenced mainly by one bone and not subject to significant soft tissue deformation.

Specifically, we define 54 bony markers that are close to the bones, as typically done
in motion capture. Each marker is defined on BSM and SMPL by examining tight SMPL
fits to 3D scans and identifying specific SMPL vertices. Figure 4.4 shows all the bony
markers on SMPL in orange.

Although this marker set follows the rigidity assumption, it is too sparse in some areas
to properly constrain the location of the bones. So we introduce an additional 52 soft
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Figure 4.4: The markers defined on SMPL: bony in orange, soft in blue.

markers, located on soft body parts (blue in Fig. 4.4). To define a new BSM marker, it
needs to be positioned on the BSM skeleton template. While this can be achieved quite
precisely for bony markers, it is harder to estimate at what distance to the bones soft
markers should lie. Moreover, this distance varies significantly for different body shapes
(e.g. due to adipose tissue). Initializing markers close to the bones for subjects with more
adipose tissue can lead to AddBiomechanics over-stretching the bones to fit the SMPL
markers.

To address this marker offset issue, we propose a method to automatically define mark-
ers on BSM with personalized offsets depending on the body shape. We leverage the
OSSO model [123], which predicts the location and shape of the skeleton inside SMPL.
In contrast to BSM, OSSO models the geometry of the skeleton with respect to the body
shape and, as it was trained on medical scans, it learned the offset between the bones
and the skin. We can thus use it to compute where skin markers should be located with
respect to the bone surface, given a body shape. We first compute the relationship be-
tween the OSSO and BSM bones. Precisely, we register each OSSO bone mesh to the
corresponding BSM bone mesh and effectively obtain all OSSO bones in the reference
frames of the BSM bones. This relationship only needs to be computed once. Then, for
each AMASS subject, we use OSSO to obtain their skeleton mesh. We use the lying
down pose in which OSSO is trained to obtain the best possible OSSO prediction. Now,
given a marker location on the SMPL mesh and the computed OSSO bone mesh inside
the body, we parameterize the marker location using the closest triangle on the OSSO
bone mesh (Fig. 4.5a). This allows us to transfer the marker location onto the OSSO
bone mesh and, consequently to the corresponding template BSM bone (Fig. 4.5b).

We use this method to generate a BSM model for each subject, with personalized
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markers mg(f), thus avoiding over-stretching the bones during the AddBiomechanics
optimization, as shown Fig. 4.5c. We experimented with different marker sets, adjusting
their number and placement, to obtain the best possible fits from AddBiomechanics;
i.e. minimizing the marker errors and yielding a satisfactory fit visually.

Fitting BSM to motion data

With corresponding markers defined on both SMPL and BSM, we can fit the BSM skele-
ton to any SMPL mesh. Given a sequence of N frames and N, target 3D marker loca-
tions per frame, m; (k € {1,...,N,}), extracted from the sequence of SMPL meshes,
we use AddBiomechanics [124] to obtain the BSM scale parameters s and the Ny poses
{qs}. We optimize a bi-level objective, to find the best s such that inverse-kinematics
with these scales yields poses {q} with minimal distance to the N,, target markers:

Ny N
argmin(( Z argmin Z A (BSM"(s,q,mg(B) + &)x — m[)) +7L,,P(S,B)) , (42)
5.0 =1 a =

where § € R¥»*3 is a 3D per marker offset. The weighting factor A, € R is set to a low
value for soft markers and a high value for bony markers to allow larger fitting errors due
to secondary soft tissue motions.

The prior P regularizes the scale of the bones, given the subject’s height, weight, and
biological sex as in [124]. We automatically estimate the height and weight of each
subject from their SMPL shape parameters 3, by assuming that the body has a uniform
density [10, 131] and thus re-parameterize this prior term as P(s, 8).

Despite the scale prior, using a generic marker set can lead to AddBiomechanics over-
stretching the bones for heavy subjects. Defining personalized marker locations mg(f3)
on the skeleton template as described in the previous section helps further regularize the
bone scales (Fig. 4.5¢).

We apply this optimization process to a subset of AMASS consisting of 113 subjects
and 2198 motion sequences, amounting to over 9 hours of motion data. The paired SMPL
meshes and BSM skeletons form the BioAMASS dataset. For each subject p there is a
SMPL body shape 3, and the scaled personalized BSM model s,. Further, for each
motion frame f it includes the bone angles q, as well as the bone joint locations J‘;
Figure 4.6 shows examples of the BioAMASS dataset.

4.5 The SKEL model

Now that we have a dataset of BSM skeletons inside SMPL, we can now learn a cor-
rected kinematic tree for SMPL, that matches i) the proper bone orientations and ii) the
anatomical joint locations. Effectively, we aim to parameterize the 3D body model with
the biomechanical skeleton. To that end, we develop SKEL, which is designed to be

82



4.5 The SKEL model

e -
°
(a) Markers wrt OSSO (b) Markers in the (c) AddBiomechanics fit
BSM bone frame result

Figure 4.5: (a) The OSSO skeleton is aligned to the subject’s SMPL mesh. (b) We deduce
the personalized markers location mg(f3) on the BSM bone template. (¢) On high BMI
subjects, a shape-agnostic marker definition for all subjects yields over-stretched bones
(red). Using personalized marker locations mg(f3) defined using OSSO prevents this
over-stretching (green).

Figure 4.6: BioAMASS: examples of BSM fits to AMASS poses.
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Figure 4.7: Left: SKEL kinematic tree with learned anatomical joint locations. Right:
SMPL’s kinematic tree. Middle: the superposition of both. In contrast to SMPL, which
has axis-aligned rotation axes, SKEL’s rotation axes are bone-aligned.

compatible with SMPL and posed like BSM. This allows us to leverage SMPL’s learned
shape space as well as all the existing datasets where SMPL bodies are estimated from
different modalities. To create SKEL, we must put the corresponding SMPL limbs and
BSM bones together in the same reference frame. To that end, in Sec. 4.5.1, we learn to
regress the anatomical joint locations from SMPL’s mesh using the BioAMASS dataset.
We also learn the relation between the orientation of SMPL’s limbs and the orientation
of the underlying bones. These orientations, together with the anatomical joint locations,
define a kinematic tree inside SMPL’s T-pose. Then, in Sec. 4.5.2 we describe how we
rig the SMPL model and the BSM joint to this learned kinematic tree.

Note that, in SMPL, all joint orientations are defined in a global T-pose space with an
axis-aligned frame of reference for each joint as illustrated in Fig. 4.7 right. This means
that SMPL assumes, for example, that the elbow rotation axis is aligned with the world
y-axis, independent of the orientation of the humerus. The overparametrized nature of
SMPL allows plausible arm articulation by combining several axis rotations. But BSM,
with its reduced degrees of freedom for the rotations, requires the local frame on which
the rotation is applied to be precisely aligned with the anatomy in order to obtain a proper
anatomic rigging. In addition, the location and orientation of the humerus and ulna bones
have to be coherent with the rotation axis. In SMPL this coherence does not exist: the
joint reference frames are not aligned with the articulation axis. As shown in Fig. 4.7,
the elbow frame is not aligned with the segment defining the humerus position. Hence,
we first learn to predict the location of the joints inside SMPL and, with these, we learn
to properly orient the bones inside a SMPL body mesh.
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4.5.1 Establishing the bone locations and orientations

Anatomical joint locations. Given paired SMPL body meshes and their corresponding
BSM anatomic joint locations, we learn a function that predicts the joints from the body
surface. We proceed similarly to Loper et al. [43] by learning a joint regressor 7 that
takes as input the SMPL mesh vertices v"™P! € R9890%3 and predicts the new anatomic
joints J° € R**3. We follow the same methodology as used in Sec. 3.4.1, by formulat-
ing a non-negative least squares problem for each joint i, and solving it with an active
set method [117]. We train these regressors from the posed vertices and joints of the
BioAMASS dataset.

Figure 4.7 shows the new regressed kinematic tree in green. Notice that the hip joint
locations, corresponding to the femur heads, are more anatomically correct than the ones
in SMPL. The comparison also shows significant differences at the shoulders, as well as
more subtle, but important, differences for the other joints.

Bone orientations. We aim to find the orientation of the bones inside the SMPL T-pose
mesh, i.e. find the rotation R; to apply to the i-th BSM bone template mesh, to position
it inside the SMPL T-pose mesh. In BSM, the rest position of each individual bone
template is centered at the origin and oriented along the canonical axis X, y, z. In the
following, we refer to the “bone axis” as the axis passing through the bone’s proximal
and distal ends.

In contrast to BSM, in SMPL T-pose, the bones should be positioned and oriented
between pairs of regressed anatomical joints. This brings two challenges: (i) the rotation
of the bone around its bone axis is not known, and (ii) as the regressed joint location
depends on f, the orientation of the bones also varies with 3.

To solve those two issues, we split the bone rotation R;(f3) into a learned base rotation
RY9¢ and a shape-dependant rotation R? (B):

Ri(B) = R (B) - R, “3)

where Rf"m is learned to define the bone’s orientation around its bone axis, ensuring that

bones are properly orientated wrt their parent bone. Rf-3 (B) is computed dynamically to
align the bone to the segment defined by its parent and child joints, so that the bone stays
in its socket regardless of the shape of the subject.

First, we learn Rf"“'“ from BioAMASS. For each bone i, we can define a corresponding
SMPL joint and limb. For example, the right humerus bone corresponds to the 17th joint
and the right upper arm of SMPL. Thus, for each frame f of our dataset, we obtain the
bone BSM rotation Rf ; and its SMPL rotation Rf I

Rb35¢ is he rotation that the bone needs (o undergo so that when chained to the SMPL
rotation, the corresponding BSM rotation is obtained. So, for each bone i we learn its
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Humerus template .
a) Regressed joints

b) Humerus rigged with the learned rotation
Rbase
l

B c) After correction in function of beta
base
R; (B) - R;

—

Figure 4.8: Left: Humerus template in the rest pose. We want to find its transformation to
position it inside SMPL’s T-posed arm. On the right we show, in order: a) the anatomical
bone joints J;® regressed from SMPL skin vertices (pink). b) We translate the bone to
JI* and orient it with RP¢. This provides a rough alignment, rotating the bone properly
around its bone axis. ¢) We then compute and apply the personalized rotation R,ﬁ (B) to
perfectly align the bone with the limb segment. Notice how the ulnar head now properly
fits in the humerus distal end.

base rotation Rf.’““’ by minimizing:

N

=

(RE,—RY (R0T¢)? 4.4

f
over the Ng frames of the dataset.
This rotation properly orients the bone around its bone axis. But, as shown in Fig. 4.8,
this rotation alone does not guarantee that the bones are aligned between their T-pose
parent and child joints.
Thus we explicitly compute R? (B), a shape-dependent corrective rotation that aligns
the bone segment (RPa¢ (Jrest — Jresty) with (J1 (B) — J'“(B)), where J/*! is the loca-

AN i
tion of joint i in the bone rest pose and .Iir “(B) is the shape-dependent regressed joint.
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&

Figure 4.9: Left: Rigging the skeleton to the regressed joints and posing them using
SMPL parameters 0 can yield unrealistic articulations. We see that the humerus posed
with the SMPL upper arm transformation does not yield the correct humerus orientation.
Right: BSM fit for the same frame.

The rotation axis of Rlﬁ (B) is computed from the cross-product of the segments. As
shown in Fig. 4.8, this effectively ensures a proper fit of the bone geometry into the
regressed joint location.

It is worth noting that computing a direct rotation between the rest bone and the re-
gressed segment (J% (B) —J;*(B)) leaves a degree of rotation open: the rotation around
the bone axis. With the proposed approach, we obtain an anatomically coherent place-
ment of the skeleton. Thanks to BioAMASS, a consensus orientation Rf"“"“ is found,
which is then specialized per subject with RP (B). Effectively, the per-joint R;’W is

learned from the dataset once and kept fixed, and each per-joint R,l-3 (B) is recomputed
when the shape parameters change.

4.5.2 Building SKEL: A single rig for skin and bones

As we saw in Fig. 4.7, the SMPL kinematic tree is not suited to rig the skeletal struc-
ture, as its joints do not match the anatomic ones. Moreover, because of its over-
parameterization, applying SMPL’s transformation to the bones can yield unrealistic
bone orientations, as shown in Fig. 4.9.

Consequently, we re-rig SMPL with new anatomic degrees of freedom using the
learned bone locations and orientations (Sec. 4.5.1).
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The SKEL function. The SKEL function takes as input a vector of SMPL shape pa-
rameters f3, and the q € R* pose parameters of BSM. SKEL outputs (vskin yskel_jo)
where vk are the body surface vertices, vskel the skeleton mesh vertices, and J° the
learned anatomic joint locations.

Skin. SKEL builds on the additive approach of SMPL, starting with a mean template
mesh T € R%%93 and adding the learned displacements Bg(B) + Bp(q), where By is the
shaping function presented in Sec. 2.4.1 and Bp(q) are pose dependent displacements.
The posed SKEL body vertices v*Ki" are then computed with the following linear blend
skinning equation:

0
N

vEU(B.q) = | L WG q.B) | (T4 Bs(B) + Brlw) *5)
i=1

where G5 (q, B) is a rigid transformation that will be defined in Eq. (4.6). It translates
and rotates the vertices associated with the i-th limb depending on the pose parameter
q. Wf““ is a 6890 x 24 matrix of skinning weights indicating how the vertices of the
SMPL mesh are affected by each rigid transformation i. Those weights are inherited
from SMPL, by defining a corresponding SMPL joint for each of the N} = 24 joints of
SKEL.

To define the transformations G?ki“ we use the composition of rigid transformations
T(R,t) defined by a rotation matrix R and a translation t, as well as per-joint local
transformations G (q, ), which are pure rotations for most joints, and a combination
of rotation and translation for the spine and shoulder blades as explained in Sec. 4.4.2.
The global transformation to apply to the skin vertices is computed as:

G (q,B) = [T T(Ru(B).L(B) Gl(aw B) T(Re(B).0) ' T(O.I(B)) . (46)
k=0

The green term transforms the i-th limb vertices back to the unposed bone space, by
centering it on its joint location 7'(0,J¢(B)) !, and undoing the T-pose bone rotation
T(R;(B).0) . Then, the joint-specific transformation G¥(qy, B) is applied. Finally, the
bone vertices are posed back to SMPL’s posed space by applying the rotation R (f3) and
the translation J{(f). J?(B) is the k-th joint location in T-pose (q = 0) as defined in
Eq. (4.7). The leading product enforces the kinematic tree structure.

The pose-dependent deformations of SKEL are inherited from SMPL. For the degrees
of freedom of SKEL prone to cause a candy wrapper effect on the body mesh, we define a
corresponding degree of freedom of SMPL and transfer the pose-dependent deformations
Bp(q;). For SKEL’s joints that do not have an equivalent joint in SMPL, we default to
linear blend skinning with no pose correctives.

It is important to note that these blend shapes are approximate because certain de-
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grees of freedom, like knee flexion, have slightly different axes and neutral positions
in SKEL compared to SMPL. While this transfer is not optimal and creates artifacts in
extreme poses (see the video at https://skel.is.tue.mpg.de/), SKEL can match
SMPL meshes with an average vertex-to-vertex error below 3 cm; see Fig. 4.13. We
leave the learning of SKEL-specific pose-dependent deformations using BioAMASS for
future work.

Joints. The locations of SKEL’s unposed joints are regressed from the unposed skin
vertices v*Xi"(B8, q = 0) with the learned anatomical joint regressor 7, to get the unposed
joints J°(B). These joints are then posed with the parameter q, like the skin vertices, by
applying the rigid transformations G

N¢

F(B.a)~ | L WG (4.) | 3'(B) @)

i=1

only with different weights W that ensure that the proper joint is affected by the trans-
formation. Note that for SKEL we use a simplified hinge joint at the knee.

Skeleton. To obtain the shaped and posed skeleton mesh, a similar equation is used.
We name the initial skeleton template mesh T in which every bone mesh is axis-aligned
and has its parent joint at the world’s origin (Fig. 4.5b middle shows the unposed template
femur). This mesh is scaled using s(J°(B)), a per-bone 3D scaling factor defined by the
regressed joint locations, namely the limb lengths they define. Then, the scaled vertices
are posed to obtain the posed skeleton vertices

0
N

VSkel(q,B): ZvviskelG.;kel(q’ﬁ) (S(J(’(ﬁ))oTo) (4.8)

i—1

where Wfkel are boolean per-bone weights, except for the spine and rib cage where the
weights are interpolated to be 0 at the bottom of the spine section and 1 at the top. The
skeleton vertex transformations are computed with

G(q,8) = [T 7(Re(B). 32(B))GE (0. B) 9
k=0

in which the unposed bone mesh is transformed by the joint transformation G,lf (qx,B),
then oriented with Ry () to be aligned with the limb’s skin and translated to its T-pose
joint JY(B).

Finally, we define the range of possible angles for specific degrees of freedom like the
shoulder blades, knee, arms, and spine motions. Figure 4.10 illustrates SKEL’s degrees

89



Chapter 4 Inferring the location and orientation of the bones

of freedom for the spine, shoulder blades, and arm pronation. Note that the deformation
of the body surface (pink) is driven by the BSM pose, thus combining the SMPL surface
model with an anatomical skeleton.

4.6 Evaluation

In this section, we evaluate the fit accuracy of the BioAMASS dataset, the learned
anatomical joint regressors, and the skeleton meshes obtained by fitting SKEL to SMPL
meshes.

4.6.1 Evaluating BioAMASS fits

In Sec. 4.4 we simulate optical motion capture markers on SMPL sequences and fit the
BSM biomechanical skeleton to them. We evaluate these fits by computing the Mean
Absolute Error (MAE) between the target and the fitted markers. In Tab. 4.1, for each
subset of AMASS, we report the average error of bony and soft markers across all frames.
For comparison, these distances are similar to the body shape reconstruction error from
markers reported in [129] and significantly more accurate than the held-out marker error
[129].

4.6.2 Joint regressors

We evaluate the regressors learned in Sec. 4.5.1 on unseen body meshes by comparing
the regressed values with the reference BSM alignment. We train our anatomical joint
regressors on the CMU [132] and MPI_Limits [ 133] datasets, which are part of AMASS
[120]. CMU contains good variation in body shape, while MPI_Limits contains extreme
poses. Once trained, we evaluate our regressor on the DFAUST dataset [121], with
various motion sequences for 10 subjects with diverse BMIs; DFAUST contains precise
SMPL fits to 3D scan sequences.

For each frame of the DFAUST dataset, BioAMASS provides the anatomical joint
locations J° that we consider ground truth. Then, from the frame’s SMPL mesh, we use
our learned joint regressor to regress the anatomical joint location J"8. In Fig. 4.11, we
report the per joint regression errors J;ﬂe”' — J?|, which are below a centimeter for most

Table 4.1: Marker fitting error of the BSM model on the AMASS dataset.

MAE in (cm) Bony markers Soft markers

DFAUST 1.54 2.00
CMU 1.70 2.37
MPI_Limits 1.70 2.37
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(a) Lumbar flexion, thorax extension, and head twist.

(b) Scapula’s abduction, elevation, and upward rotation.
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(c) Left: axis of rotation of the radius (lateral view). Right: forearm supination and pronation
(top view).

Figure 4.10: Illustration of SKEL’s degrees of freedom. The bone and body surface
meshes are controlled by the same kinematic tree.
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Figure 4.11: Anatomical joints regression error over the female DFAUST dataset.
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Joint femur_r error distribution Joint tibia_r error distribution
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Figure 4.12: On DFAUST female subjects, we predict the joint locations and show the
Euclidean distance errors wrt the “ground truth” BSM joint location for the right femur
(left) and right tibia (right). We compare three methods: J*"#!: using the joints directly
from the SMPL fit to the DFAUST bodies. J™: joint regressed from the SMPL mesh
using our learned anatomical joint regressor. J*¢/: anatomical joints obtained by fitting
SKEL to the SMPL mesh.

joints. Some joints, such as the humerus, have higher errors. We inspected the outlying
frames and observed some failure cases of the AddBiomechanics fits for the shoulder
joints, which explains the higher values. In these cases, the regressed anatomical joints
are more plausible than those obtained with BSM, as shown in the project’s website
video!.

Further, we evaluate the femur and tibia joint location given by different methods as
shown in Fig. 4.12. We consider J° as the ground truth joint locations and compute the
3D Euclidean distance error of the joints given by SMPL, J**!, the anatomical joints
we regress from SMPL, J™8, and the anatomical joints, Jekel | obtained by fitting SKEL
to the SMPL mesh. As expected, the SMPL joints have higher errors than the learned
anatomical ones.

4.6.3 SKEL fits to SMPL

Since SKEL has the same surface mesh topology and shape parameters 3 as SMPL, it can
be directly fit to existing SMPL meshes by optimizing its pose parameters to minimize
the vertex-to-vertex error.

To quantitatively evaluate how similar SKEL shapes are to SMPL, we consider motion
sequences from the DFAUST dataset and their SMPL fits with 10 shape parameters.
We fit SKEL to each of these SMPL meshes by optimizing its pose parameters q. To

'https://skel.is.tue.mpg.de/
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evaluate the mesh fits, we compute the mean absolute difference (MAD) between SKEL
skin vertices and the target SMPL vertices, and then average over all the frames. For
males, we find an average difference of 1.1 cm and an average max difference of 2.5
cm, while for females we obtain an average mean difference of 0.9 cm and max of 1.9
cm. A visualization of these differences on the SMPL body mesh is shown in Fig. 4.13.
The larger differences can be explained by the approximate pose-dependant blend shapes
inherited from SMPL, which could be retrained in future work.

Fitting SKEL to SMPL provides joint locations with similar accuracy as the regressed
ones, as reported on Fig. 4.12. Let us note that direct joint regression is faster than
estimating the SKEL model fit. Applications that require the joint locations but not
the skeleton pose parameters, and for which time is critical, should prefer the direct
regression approach.

Upgrading SMPL datasets with SKEL. Since SKEL is compatible with SMPL, we can
fit SKEL to SMPL meshes from the 3DPW dataset [23] and the synthetic BEDLAM
[126] dataset (Fig. 4.14). The whole sequences are shown in the video on the SKEL
project website?. This effectively upgrades these datasets to include anatomical joint
locations and biomechanical pose parameters.

4.6.4 Qualitative comparisons with OSSO

SKEL fits to SMPL also yield anatomically correct orientations of the bones. To illustrate
this, we compare the SKEL predictions to OSSO skeletons (Chapter 3) on the MOYO
dataset [119]. The SKEL skeletons yield more anatomically correct joint locations and
biomechanically relevant bone angles, as visible in Fig. 4.15; see, for example, the knee
orientation as well as arm supination. See the video athttps://skel.is.tue.mpg.de/
for more examples.

We also compare the SKEL fits and OSSO fits to SMPL meshes of the Total Capture
dataset [ 134]. The results in Fig. 4.16 illustrate that SKEL provides better bone locations
and orientations. This is particularly visible in regions such as the wrist and knee, where
in SKEL, the femur is correctly oriented with respect to the tibia, and the ulna is rotated
to stay connected to the wrist.

4.6.5 Disentangling body shape and bone lengths

Since our skeleton mesh is entirely defined by the joint segment lengths, we can modify
the body shape of a person, while maintaining their skeletal identity. This can be helpful
for generating a plausible skin mesh from a given biomechanical skeleton. As illustrated
in Fig. 4.17, we optimize the SKEL shape parameters  to fit a subject’s limb lengths
with different target weights. This results in body meshes with different body shapes but
the same bone lengths.

’https://skel.is.tue.mpg.de/
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Figure 4.13: Average per-vertex distance between SKEL and SMPL fit to the females of
the DFAUST dataset. Blue: 0 cm, Red 2cm.
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Figure 4.14: SKEL can be fit to existing SMPL datasets to upgrade them with biome-
chanical pose parameters. Left: SKEL skeleton mesh on a frame of 3DPW [23]. Right:
SKEL skeleton mesh on a frame of BEDLAM [126].

4.7 Discussion and Conclusion

In this chapter, we described SKEL, a new parametric 3D human body shape model
driven by anatomically sound parameters, providing consistent skin and bone geometries.
SKEL is learned from BioAMASS, a new dataset of skeletons inside SMPL meshes in di-
verse AMASS poses. We build BioAMASS by optimizing BSM, a new biomechanically
accurate skeleton model, to fit inside SMPL mesh sequences. Using this paired internal
and external data, we then learn a regressor from SMPL mesh vertices to the anatomic
joint locations and bone orientations. SKEL inherits the shape space from SMPL and the
anatomic kinematic parameters from BSM. From the point of view of vision and graph-
ics, the new model can be used in place of SMPL and it has fewer and more anatomically
sound pose parameters (46 for SKEL vs 72 for SMPL). Moreover, our learned regres-
sor enables regressing more accurate anatomic joints from video compared to current
approaches solely based on SMPL joints. From the biomechanics point of view, SKEL
provides a shape space, which is advantageous to adapt the model to varied body shapes
without overstretching certain bones. In addition, it provides an animatable model that
can take BSM poses and add a SMPL skin for visualization.

Compared to the previous chapter, we now predict a skeleton inside the skin that has
anatomical joint locations and bone orientations, and we can repose the body and skele-
ton mesh simultaneously.

BioAMASS accuracy limitation. Although the skeletal structures and joint locations
computed by AddBiomechanics are anatomically plausible, they should not be consid-
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Figure 4.15: Qualitative comparison between the OSSO and SKEL skeletons fitted to
MOYO SMPL meshes [119]. From left to right: Input SMPL mesh, OSSO skeleton,
SKEL skeleton. First row: Due to the anatomic degrees of freedom of SKEL, the
humerus and femur orientation are properly recovered, while OSSO fails. Second row:
OSSO does not model the forearm supination: the radius is not properly rotated with
respect to the ulna. The forearm bones have an anatomically correct orientation inside
SKEL.
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Figure 4.16: Given SMPL meshes from the Total Capture dataset [134] (in blue) we ob-
tain OSSO [123] (left two columns) and the aligned SKEL skeleton (right two columns).
SKEL provides a more anatomically correct skeleton, particularly at the joint level bone
orientation, such as the knee and elbow.
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Figure 4.17: Given an input skeleton, and a target weight, SKEL can generate plausible
skins while preserving the bone lengths. From left to right, we set the weight to be 70,
100, and 130 kg.

ered as actual ground truth, but rather as pseudo-ground truth. Obtaining actual ground-
truth bone measurements of people in motion is not technically feasible. Thus, we rely
on marker-based motion capture to obtain estimates of bone motion; this is the current
“gold standard” in biomechanics. We also inherit the accuracy limits of this method,
especially for the humerus head prediction, as shown in Fig. 4.11. A key next step is to
use SKEL in diagnosing disease and injury and to compare this with traditional motion
capture methods. This is necessary to validate the clinical relevance of the model and
methods. It is worth noting that the learning and rigging pipeline described in Sec. 4.5
are, in fact, independent of the biomechanical model. If a new biomechanical model is
clinically validated, one can rerun our approach with it to obtain an improved dataset and
model.

Conclusion. In summary, SKEL effectively connects data-driven parametric body
shape models with biomechanical skeletons to enable the integration of these technolo-
gies and fields, paving the way towards a new generation of body models and methods
that combine the best of both worlds.
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Chapter 5

Inferring the soft tissues inside the body

Figure 5.1: Top half: From volumetric human MRI scans, we learn to segment human in-
ternal tissues: subcutancous adipose tissue (yellow), intra-muscular and visceral adipose
tissue (blue), lean tissue (red), and long bones (white). We segment the MRI to extract a
point cloud of the human body surface (red rings) to which we fit a human body model
(SMPL, gray mesh). From this internal and external paired data, we learn Human Im-
plicit Tissues (HIT), an implicit volumetric model that predicts the type and location of
internal tissue. Bottom half: input body (blue mesh) and predicted tissues: subcutaneous
adipose tissue (yellow) and lean tissue (red). We use OSSO [123] to infer the bones.

102



5.1 Introduction

In Chapters 3 and 4, we infer the skeleton’s geometry, along with bone locations and
orientations, from the body shape. In this chapter, we extend this approach to infer the
3D locations of two additional anatomical tissues: subcutancous adipose tissue (fat) and
lean tissue (muscles and organs). Additionally, we predict again the location of the long
bones; however, unlike in the previous chapters, we now utilize ground truth 3D bone
volumes.

5.1 Introduction

Creating personalized anatomical digital twins of humans is key in fields such as
medicine, sports science, biomechanics, and computer graphics.

In recent years, researchers have shown that the shape of the human body surface is
related to the internal body composition [135-138], leading the way towards fast and
non-invasive methods for early screening of body-composition-related pathologies.

In addition, we showed in Chapter 3 and 4 that predicting internal anatomical struc-
tures from the outer surface is also possible, paving the way towards the automatic cre-
ation of digital twins solely from body surface observations.

In this chapter, we extend the work presented in the previous chapters by introducing
the prediction of several tissues inside the body. We focus on three key body tissues: sub-
cutaneous adipose tissue (SAT), i.e. fat under the skin; lean tissue (LT), i.e. muscles and
organs, and long bones, i.e. femur, tibia, fibula, humerus, ulna, radius, and hips. From a
medical perspective, monitoring these tissues is essential: an excess of fat with respect
to lean tissue is correlated with health risks such as the development of type-II diabetes
and cardiovascular disease [6, 7]. From a biomechanics perspective, these tissues have
different physical properties and dynamic behaviors, i.e. lean tissue is stiffer, adipose
tissue is more elastic, whereas bones are rigid. These differences affect, for example,
marker-based motion capture (mocap) systems [129], as markers on soft tissue exhibit
artifacts [139]. Thus, having a good estimate of the tissue distribution could improve
mocap accuracy and enable the simulation of soft-tissue compression in the apparel in-
dustry. In computer graphics, several methods assume [140, 141] or optimize [142] a soft
tissue layer attached to a rigid structure to simulate physical interactions of the avatars
in a virtual world. Also, artificial muscle systems [80] are widely used in character an-
imation but these are complex to design by hand. Having a good estimate of the tissue
distribution could improve the anatomic realism of these computational models.

To the best of our knowledge, the precise 3D prediction of these layers inside the body,
given only the outer body surface, is a novel problem that has not been tackled in the pre-
vious literature. Specifically, our goal is to provide a prediction of the internal structures
within a body model like SMPL for arbitrary body shapes and to be able to repose the
predicted tissues. See Fig. 5.1 for a visualization of the resulting 3D representation.

Three main challenges must be overcome to learn a model that predicts soft tissues
in the body from its surface. First, like in the two previous chapters, one needs paired
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observations of the inside and the outside of the body. Again, while medical scanners can
capture the raw data, datasets are scarce and usually need to be annotated (segmented).
Another challenge arising when working with soft tissues is that scanners that can see
inside a body, such as MRI, require the subject to be lying down. This position introduces
significant shape deformations due to the displacement of the soft tissues through contact
with the scanning table. The last challenge is to design a neural network that can be
effectively trained to extract the relevant information from the body’s surface to infer the
inner tissues. Our approach, Human Implicit Tissues (HIT), addresses these challenges.

To obtain paired inside and outside data, we acquired a dataset of full-body MRI scans
(260 female and 182 male). We start with a small subset (40 female and 40 male) for
which we compute initial segmentations of lean and adipose tissues [143]. We curate
them and enrich them with manual segmentations of the long bones and then train a
nnU-Net [24] to segment all tissues in the entire dataset. These segmented volumes
provide the distributions of the tissues inside the body.

To represent the outer body surface, we use the SMPL body model [43], which lets us
model the dependency of the tissue locations inside the body on the pose and shape of
a subject. However, unlike the surface of the body, an explicit mesh is not appropriate
to represent the inner tissues since their topology can significantly vary between sub-
jects. Implicit functions are particularly well suited to model the occupancy in a given
volume [144] and recent work has extensively explored their use in modeling the body
surface, clothed bodies and clothing itself, but not for modeling internal body structures.
In our approach, given a point inside a body, we predict its tissue class; that is, we for-
mulate the problem as a multi-tissue classification problem. Inspired by recent work on
modeling clothed humans and neural rendering [56, 57], we combine implicit and ex-
plicit models and learn to map a 3D point inside a SMPL body into a canonical space.
This allows us to learn the multi-tissue classification function in the canonical space.
The decomposition of the problem into canonicalization and tissue classification offers
the advantage of allowing generalization to unseen poses and body shapes. Yet, one more
problem remains. Since full-body MRI scans are performed in a prone pose, the bodies
exhibit significant deformation, which SMPL can not model, as SMPL was learned from
upright scans of people. We capture these deformations by optimizing the SMPL mesh
vertices to fit the body surface extracted from the MRI tightly. These tight fits allow
us to quantify the geometric changes between the SMPL model mesh vertices and their
deformed version. Our neural network can thus learn the 3D volumetric displacement of
internal soft tissue caused by lying down. This allows us to uncompress the surface and
internal structures from lying down to an upright position.

In summary, HIT provides a novel representation of the human body that connects the
outer surface to the inner structure. It employs a hybrid of implicit and explicit shape
representation and effectively extends the SMPL body model to infer internal structures
that can be reshaped and reposed. The key contributions of HIT are: (a) we formulate
the new problem of estimating the 3D structure of human internal tissues from surface
observations as a multi-tissue classification problem; (b) we contribute a new dataset
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containing the volumetric tissue location inside the body extracted from real MRI scans,
as well as the corresponding SMPL meshes representing the body surface; (c) we learn
a volumetric deformation field accounting for the compression between a standing body
shape and its counterpart lying prone on an MRI table; (d) we propose a neural im-
plicit formulation to represent the tissue locations inside the body and show that this
generalizes to new subjects and new poses; (e) we evaluate the proposed model on the
created dataset. The HIT dataset and learned models are available for academic research
athttps://hit.is.tue.mpg.de.

5.2 Related work

Motivated by prior work on the prediction of body composition from 3D scans [110,
135, 137], silhouettes [136], or images [138], we go further to predict the location of
subcutaneous adipose tissue, lean tissue, and the long bones, solely from the external
body surface. In this section, we recall the relevant related work for this chapter.

Anatomic models. Early models [145, 146] use the Visible Human data [147], con-
sisting of high-quality images from a cadaver, to build an anatomic model that can be an-
imated. Other works address the creation of detailed personalized anatomic models from
data of the hand [148] or the combination of multiple scans of the body [149] into one
full-body avatar. Many other personalized anatomic human models have been created,
with a focus on physical simulation of the tissues [76, 80-82, 106], pedagogic purposes
[79, 108], or biomechanics [150]. The recent statistical model BOSS [122] includes the
skeleton and several organs, but, unlike HIT, it does not model lean and adipose tissues.

Several methods create avatars with soft tissue deformation, enabling physics simula-
tion. These typically model the soft tissue as a continuum layer coupled to an articulated
skeleton [80, 140—142, 151]. This layer can be manually defined [80], estimated [151],
obtained with an actual scan [140, 142], inferred from skin motion observations [141], or
estimated using contact sensors [152]. None of these are validated against clinical data.
Some other works have also addressed the modeling of deformation of the hands [153]
and feet [47, 154] due to contact with the world.

Anatomy inference. Most internal anatomical structures cannot be inferred from skin
observations alone, but some can, such as estimating the skull or jaw from the face
shape [106, 107]. Anatomy Transfer [79] deforms an anatomical template model to be
consistent with a new body surface. Similarly, Bauer et al. [87] leverage [79] to infer the
skeleton inside a body from an RGBD image. Guo et al. [41] estimate the deformation
of organs as a patient moves, but the organs’ initial shapes are obtained by a scan of
the patient. Anatomy Completor [155] can complete the shape of missing organs from
the shape of the neighboring ones and OSSO (Chapter 3) can infer the skeletal bones
from the skin surface. Only the last three works [41, 123, 155] evaluate on clinical data.
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Recently, SKEL (Chapter 4) goes further and parameterizes the SMPL body model with
a biomechanical skeleton that can be inferred from the body surface.

Datasets. Training and evaluation data, i.c. segmented full-body volumetric images,
are key for solving this problem. While databases with medical scans [89, 156] exist,
their per-pixel automatic segmentation into tissues is not straightforward. To create our
paired dataset, we use an MRI protocol [157] and an automatic method [143] to obtain
initial segmentations that we manually curate and enrich.

Human implicit shape models. Implicit shape representations have a long history and
have recently become more popular due to the use of neural networks to learn occupancy
or signed distance fields. Here, we focus on methods that model deformable volumes like
the body surface [45, 48-55, 158], clothed bodies [49, 56—63], and clothing [64, 65]. Im-
plicit shape representations enable efficient inside/outside tests, allowing the models to
take into account the surrounding scene [48, 65], as well as supporting arbitrary topolo-
gies. Implicit functions for representing human bodies mainly use three approaches to
encode the input query point: part-based, relative, and global. Part-based approaches
[48, 52, 54] learn the occupancy in each part’s canonical space whereas relative encod-
ing approaches encode a point’s occupancy with respect to joint locations [159], sparse
skin vertices [64], or detected keypoints [160]. HIT uses a global approach, which learns
occupancy in a canonical pose (namely a “star” pose). SCANimate [49], Meta Avatar
[58] and ARAH [50] learn a subject-specific avatar in a canonical space and train a neural
network to predict the skinning weights of any point in space. This learned inverse LBS
(Linear Blend Skinning) lets them transform a point to the canonical pose space before
querying the occupancy. In gDNA [56], a multi-subject occupancy model is learned in
a canonical pose. A root-finding algorithm [161] enables unposing points, and a dis-
placement field that maps shaped points to the canonical space is learned. We leverage a
pretrained SMPL occupancy network to generalize to new shapes and poses, and add a
new module to model the body compression and pose-dependent deformations.

A few works jointly model two surfaces, e.g. hand-object interaction [162] or multiple
clothes [65], by adding interpenetration losses. Our multi-tissue classification formula-
tion naturally avoids reasoning about interpenetration.

5.3 Human Tissue Data

A crucial requirement for learning the relationship between the body’s inner tissues and
the body surface is a structured dataset of paired observations. We use MRI scans of
human subjects that we segment into several tissues. Each pixel of the MRI volume is
classified as Bone Tissue (BT), Lean Tissue (LT), Intra-Muscular and Visceral Adipose
Tissue (IMVAT), Subcutaneous Adipose Tissue (SAT), or Empty (E) (see Fig. 5.2 with
segmentation examples). From the segmented volume, we extract the subject’s body
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Figure 5.2: First row: input MRI images. Second row: segmentation results from the
nnU-Net. Tissues color-code: bone (white), lean (red), subcutancous adipose (yellow),
intra-muscular and visceral adipose (blue), empty (black). From left to right: calf, thighs,
hips, chest, head and arms, forearms.

surface as a point cloud and fit the SMPL [43] body model to it. We also compute tight
fits of the SMPL body mesh that capture the flattened body shape extracted from the MRI
(see Fig. 5.6). In this way, we create a dataset of paired observations of the inner body
tissues together with the human body surface.

5.3.1 MRI segmentation

MRI scans dataset. We work with 442 scans (260 female, 182 male) acquired with
a 1.5 T scanner (Magnetom Sonata, Siemens Healthcare) following a standardized pro-
tocol for whole body adipose tissue topography mapping [157]. All subjects gave prior
informed written consent and the study was approved by the local ethics board. Each
scan has around 110 slices, slightly varying depending on the subject’s height. The slice
resolution is 256 x 192, with an approximate voxel size of 2 x 2 x 10 mm.

Tissue definitions. Given an input MRI image (slice), our goal in this section is to
classify the tissue type of each pixel. For the Bone Tissue (BT) we focus on the long
bones: femur, tibia, fibula, humerus, ulna, radius, and hips. We do not segment smaller
bones, such as vertebrae, ribs, or phalanges, as, with the limited resolution of the MRI
images, it is difficult to identify them in the images consistently. The muscles and or-
gans are segmented as Lean Tissue (LT). The Subcutaneous Adipose Tissue (SAT) and
the Intra-Muscular and Visceral Adipose Tissue (IMVAT) denote the human fat; SAT is
located directly under the skin, whereas IMVAT is located inside the muscles and around
the organs. MRI pixels where no tissue is detected are classified as Empty (E). Empty
areas include the background outside the body, the lungs, skull cortical bone, and other
cavities inside the body.

Segmentation Process. To segment the whole MRI dataset into tissues, we use a
human-in-the-loop approach similar to SAM [163]. We leverage initial automatic seg-
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mentations [143] and manual annotations to train and refine a nnU-Net [24] with the help
of human supervision.

nnU-Net [24] is an Auto-ML framework that automatically configures a U-Net and
adapts the training procedure to the input data. For segmentation tasks in the medical
domain, it has been shown to be state-of-the-art in many benchmarks and it has been
used by others in the creation of datasets [164, 165]. We use it to train two networks,
Whones and Wy, which we present next. For each model, we use the default settings
configured by the Auto-ML framework.

To segment our dataset, we start by manually annotating the long bones (femur, tibia,
fibula, humerus, ulna, radius and hips) in a small subset of the dataset (1105 slice images
from 10 subjects). Then we train a segmentation model Wigpes, to segment the bones in
the MRI images. Fig. 5.3 presents examples of predicted bone annotations. The input to
the network is a single-channel DICOM MRI that contains normalized MRI intensities
and the output is a pixel-wise labeled mask with labels Lpones € [0, 1]. We empirically
validate that 1K images were enough to obtain a good generalization to left-out subjects
(DICE score: mean 0.9 1/median 0.95).

In parallel, we use an automatic approach [143] that segments MRI images into adi-
pose tissue (AT), empty (E), lean tissue (LT), as well as Visceral Adipose Tissue (VAT),
i.e. fat around organs only in the abdominal region (see Fig. 5.4). The segmentations
from this method are generally good, but the method uses empirically defined constants
that do not generalize well across subjects. Most failures come from the sequential ap-
proach of the automatic method, first detecting anatomic landmarks and then segmenting
the tissues. A landmark detection error often leads to some missing parts in the segmen-
tation. Typical errors at this stage are shown in Fig. 5.5.

Screening the full dataset (~ 442 x 110 slices) is impractical, so we focus on a gender-
balanced subset (80 subjects, ~ 8900 images) and curate the generated segmentation ar-
tifacts. For the gender-balanced subset, we also infer the bone masks with Wygpes and
merge them with the curated segmentations to obtain one multi-tissue mask per image.
We then post-process the merged segmentation masks in order to remove small artifacts
and split erroneous adipose tissue (AT) segmentations from [143] into subcutaneous adi-
pose tissue (SAT) and intra-muscular and visceral adipose tissue (IMVAT).

The obtained merged and post-processed segmentations were visually inspected and
failure cases were corrected (~ 150 images from the total of ~ 8900). Then, with the
curated data, we train a new nnU-Net model, Wy, that takes an MRI image as input
and predicts a label for each pixel corresponding to one of the 5 tissue types (BT, LT,
SAT, IMVAT, E). This network effectively replaces the previous network Wpgnes and
the automatic method [143] which are not used anymore. We quantitatively evaluate the
new segmentation predictions from Wy on a held-out test set, obtaining a mean/median
DICE score of 0.92/0.98;

To obtain the final segmentations, we use W,y to infer the segmentation masks for
all 442 subjects. Fig. 5.12 and Fig. 5.13 show examples of final segmentation masks
for a single female and male subject respectively. One final visual inspection of the
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Figure 5.3: Examples of bone predictions from the model trained on manually annotated
long bones.

Figure 5.4: Examples of tissue predictions from the Wiirslin et al. [143] method.
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Figure 5.5: Typical errors from the Wiirslin [143] method. Left: subcutaneous adipose
tissue (SAT) here is inaccurately labeled as visceral adipose tissue (VAT) in blue. Right:
visceral adipose tissue (VAT) is labeled as subcutaneous adipose tissue (SAT) in yellow.

obtained segmentations was performed to validate the full dataset of segmentations. In
the remainder of this chapter, these segmentations are treated as the ground truth internal
tissues.

5.3.2 Two-step SMPL fit

The subjects of our dataset are lying down during the MRI scan, which causes the body
shape to flatten. This skin compression is highly subject-specific, depending on their
body composition, and SMPL is not able to model it. To obtain SMPL fits that faithfully
capture the shape of the subject as well as the compression, we use a two-step process.
Fig. 5.6 illustrates the obtained fits, and below we detail further how to obtain these fits.

Initial SMPL fit. First, for cach subject i, we extract the outer body contour from the
segmented MRI images and, using the metric units of the volumetric MRI, we create
a 3D point-cloud that we denote S7'; for skin (see Fig. 5.8 left). Then, we compute a
first approximation of the subject’s shape and pose parameters (3 },6,1) that minimize
the distance between the point cloud and body surface. As the subject’s MRI poses are
similar, we define a reference pose, 6yg;, which we use to initialize the fitting of all
subjects and we regularize the estimated pose so that it does not differ too much from the
reference pose. We use the female or male version of SMPL according to the subject’s
sex and we denote these fitted SMPL meshes Sl-l (see Fig. 5.8 middle).
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5.3 Human Tissue Data

Figure 5.6: SMPL fits to MRI point clouds. The SMPL fit S; (left) does not capture the
flattened shape, whereas the tight fit f; (right) does.
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Chapter 5 Inferring the soft tissues inside the body

Next, we optimize the SMPL mesh vertices to deform and match the point-cloud
ST;. Inspired by the literature in the context of clothing capture [166, 167] we com-
pute meshes in SMPL parametrization that tightly fit the segmented skin point clouds,
ST;. We optimize the new vertex locations, bound with Laplacian regularisation [167],
and denote the resulting free form meshes f,l In Fig. 5.8 we show an example of an input
MRI point-cloud ST; and the obtained meshes S} and f}. It is worth noting, that while
visually similar, the volumes of the meshes S,]» and f} can be very different. Fig. 5.7
shows the volume disagreement between S} and f! for the 442 subjects. It shows that the
SMPL fit S} tends to under estimate the body volume, yielding a shape vector § biased
toward a lower body volume.

Constant volume SMPL fit. To get a shape vector for each subject that represent prop-
erly their body volume, we need the SMPL fit to have the same body volume as the sub-
ject. To ensure this, we start by computing the volume of the mesh f}, which we denote
ViO. As this mesh is a tight fit to the point cloud, it yields a good estimation of the actual
volume of the subject. Next, from the point-cloud S7’;, we now only consider the subset
of points that are less affected by the table compression, i.e. those for which the normal
vector is pointing in the same direction as the normal vector of the table, ny. Effectively,
we weight the contribution of each point s, € ST; with w(s,,n,) = o(n, -ny) where
o is the sigmoid function. In Fig. 5.10 we show the effect of this weight on a SMPL
mesh. Then, we compute a new SMPL mesh S; and its parameters (f;,0;) that match
the weighted vertices with the additional volume constraint ||V — V;|| 12, where V; is the
volume of S;. This enforces S; to have a consistent volume with the MRI observation. In
Fig. 5.9 we show the difference between the computed parameters [3[1 and f3;, showing
that the volume-preserving constraint effectively affects the computed body shape. The
last step is to compute a deformed mesh f; that is consistent with the new SMPL mesh S;.
To this end, we recompute the free-vertex optimization starting from S; to obtain a new
tight fit f;. In Fig. 5.11 we show further results of the obtained SMPL meshes. These
meshes allow us to compute the compression displacements dcomp between the S; and f;
vertices. An animated illustration of this displacement can be seen in the video on the
HIT project page'.

As SMPL can not model the stomach compression observed in the dataset, this two-
step approach is crucial to get SMPL f3 values for each subject that actually match their
body volume.

5.3.3 Human Implicit Tissues (HIT) dataset

The segmented MRI, along with the SMPL fits, constitute the Human Implicit Tissues
(HIT) dataset. This new dataset contains, for each subject i: a) the volumetric image seg-
mented into BT, LT, SAT, IMVAT, and E, b) the image MRI center and per-pixel spacing

"https://hit.is.tue.mpg.de/
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Volume comparison between SMPL and free surface registration
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Figure 5.7: Volume differences between the naive SMPL body fit and the free-vertices
version.
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Chapter 5 Inferring the soft tissues inside the body

Figure 5.8: Initial fit to the MRI skin point-cloud. Left: point-cloud ST; extracted from
the MRI. Middle: SMPL model fit S}. Right: Free-vertex fit f}.
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Shape parameters difference between standard and volume constrained registrations
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Figure 5.9: Boxplot of the shape coefficients difference between the S} and the volume
preserving S; for the 442 subjects.
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to transform indices from the volumetric image into 3D metric locations, and c) the skin
point cloud ST, the fitted SMPL model mesh S; represented by its parameters (6;, 3;),
as well as the SMPL tight fit f;. From b) we compute the compression displacements
deomp € RM_ between the S; and f; vertices, where N, = 6890 are the number of SMPL
vertices. Note that the original MRI images are not included. This dataset is available
for academic research at https://hit.is.tue.mpg.de/.

Final three-layer representation. The Intra-Muscular and Visceral Adipose Tissue
(IMVAT) segmented in the MRI images is sparsely located around the muscles and ab-
dominal organs (blue in Figs. 5.1 and 5.2). As its precise 3D location highly varies among
people, we leave the precise localization of IMVAT for future work and infer three layers
of tissue: Bone Tissue (BT), Lean Tissue and Intra-Muscular and Visceral Adipose Tis-
sue (LT + IMVAT) and Subcutaneous Adipose Tissue (SAT). That is, in the remainder
of this chapter, we merge IMVAT with the surrounding LT structures and refer to them
together as LT. In Fig. 5.12 and 5.13, we show examples of segmented slices from our
HIT dataset.

5.4 HIT method

Problem statement. We formalize the inference of the tissues inside the body as a
4-tissue classification problem (BT, LT (+ IMVAT), SAT, E). HIT learns an implicit
function that takes as input SMPL shape and pose parameters (8, 0) and a 3D point x,
and outputs the tissue class at that point.
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Figure 5.10: SMPL mesh vertices color-coded with the computed weights w(s,,n,).
Vertices affected by the compression have a low weight, whereas vertices far from the
MRI table have a high weight. These are used to compute S;.
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Figure 5.11: Examples of the obtained fit results. Left: point-cloud S7'; extracted from
the MRI. Middle: Volume preserving SMPL model fit S;. Right: Free-vertex fit f;.
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Figure 5.12: Example segmentation masks of a female subject.

118



5.4 HIT method

3 K )
I 3 3 3 3 3 3 0
1 K
12 2 2 3 2 2 I 3
slelslslolslololole
EEEEEEEEEE
EEEEEEEEER
1 s 2 P P
R O e
I

Figure 5.13: Example segmentation masks of a male subject.
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Point Warping to different [R3 spaces

Figure 5.14: HIT defines four R? spaces. A point x” in the original MRI space corre-
sponds to x? in the posed space, xB in the shaped space, and x¢ in the canonical space.

5.4.1 HIT spaces

To learn the tissue occupancy, HIT warps the data from the input MRI space into a
canonical space. These warps are defined between four spaces, illustrated in Fig. 5.14.
The canonical space is where the SMPL template mesh, T, in a “star” pose, is defined.
Points in the canonical space are indexed by x°. The shaped space is where additive
offsets, dg € RM>3_controlled by the shape 8 of the subject, are applied to the template.
We denote points there as xf = x¢ + dg. The shaped points can then be posed through
linear blend skinning into the posed space xP — LBS(xP,w,0), where w € R is a
vector of blend-weights, N, = 24 is the number of SMPL body parts, and 6 represents
the pose parameters. Finally, to model the MRI table compression on the body, we
define volumetric offsets d¢om, € RR3 and denote points in the original MRI space x™ =
xP + d¢op- Note that points in all spaces live in IR? and can be inside, outside, or on the
SMPL surface.

5.4.2 HIT architecture

Our architecture is composed of 4 building blocks. Three modules enable warping an
MRI point into the canonical space x* = (Solf o D)(x™, 3,0) by Decompressing (D),
Unposing (U/) and Deshaping (S). The warping architectures are illustrated in Fig. 5.15.
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(Decompressing: D(x™, B, 0) = xP )
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Figure 5.15: HIT modules (D,U,S) and networks (C,B,VV) to warp points between
spaces.
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Chapter 5 Inferring the soft tissues inside the body

Once the warped point is in the canonical space, the network 7 (x“) predicts its tissue
class.

Deshaping module. Given a shape 3, the Deshaping module S transforms shaped
points into canonical points, i.e. S(x#,B) = x¢. In the module, the function B predicts
the offsets B(xP, B) = dg, which are subtracted from x to obtain x“ (see Fig. 5.15
bottom diagram).

Unposing module. Given shape and pose parameters, the Unposing module ¢/ warps
points from the posed space into the shaped space: U(x?,B,60) — xP. Similar to Chen et
al. [56), this module uses two MLPs: B(x?, ) = dg defined in the previous paragraph
and the function WW(x¢) = w which predicts the skinning weights w of a point in the
canonical space (see Fig. 5.15 middle diagram). Unposing points inside or outside a
posed SMPL mesh is challenging because the skinning weights are only defined on the
SMPL surface. Chen et al. use a root-finding algorithm [168] that finds candidate points
{xlp } for a given posed point x”. Then, their SMPL occupancy prediction is used to
decide on the best candidate. However, this is not applicable in our multi-tissue case;
i.e. if a point has two roots, one in LT and one in BT, there is no way to know which
one is correct. To overcome this limitation, we initialize the root finding with skinning
weights w, fetched from the closest SMPL vertex. This initialization allows the iterative
algorithm to converge to the skinning weights that properly unpose the point.

Decompression module. To model the body deformation displacement induced by the
MRI table, we learn a Decompression module D that maps points in the MRI space
to the posed space: D(x™,3,6) = xP. We do so by learning to predict the volumetric
compression displacements dgomp, which generalize the computed deomp on the SMPL
surface. However, learning the volumetric body decompression is challenging: a 3D
point X" can represent a different anatomic region for two different subjects. Thus,
instead of learning to predict displacements in the MRI space, we first unpose x™ into
the shaped space xP and predict C(x?, B) = d2omp SO that X" +dgoy, = XP (see Fig. 5.15
top diagram). The shaped space has a natural shape consistency, which helps predict the
compression.

Multi-Tissue network. Once points are in the canonical space, HIT uses an MLP to
predict the point tissue class 7 (x°) = {E, LT, SAT,BT}.

Appendix B.1 provides the implementation details of each of these networks.
5.4.3 Training, losses and sampling

Training. To train HIT, we proceed in 3 steps. First, B and W are pre-trained by
randomly sampling shaped and posed SMPL bodies. In parallel, C is pre-trained using
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5.4 HIT method

the computed dcomp (see Sec. 5.3). Then, the weights of C are frozen, and B, W, T and
M are jointly trained on the HIT dataset. We denote the network’s trainable weights as
V.. and usc the subscript * to refer to the network name, i.c. yg arc the weights of the
network B. To train our architecture, we minimize the following losses.

Deshaping loss. Let xg be a vertex of the shaped mesh SMPL(f3), and x§ be the cor-
responding vertex on the SMPL template mesh. To train the weights yg, we enforce
the predicted displacement to match the SMPL’s 3 offset at the body surface level by
minimizing

L(ys) = MSE,(B(xf, ) — (x; —xf)), .1

where MSE, is the mean square error over sampled points.

Skinning weight loss. To train the ysy weights we enforce the predicted skinning
weights to be consistent with the SMPL ones by minimizing

IW(WW) = MSEV(W(X;) - wv)7 (52)

where w, € RV denotes the SMPL’s skinning weights of the SMPL template vertex x.

Decompression loss. To train C to predict a displacement that is similar to the one
between x" and x{, we minimize

lc(WC) 7MSEV(C(M(XT7B))7X{?7XT)' (5.3)

Multi-tissue loss. Given a point sampled inside the compressed body x;' and canoni-
calized to x¢, we train 7 to predict the correct tissue label. This is done by optimizing the
weighted cross-entropy loss between the tissue predictions and the training data, where
weights are inversely proportional to the tissue sample size.

Sampling strategy. The MRI scans have a discrete volumetric representation. To avoid
aliasing artifacts, we train HIT with points X' sampled at the center of voxels. Note
that this only holds for querying the ground truth volume; once the implicit function is
learned, one can sample arbitrary locations inside the body and extract smooth tissue
volumes.

Uniformly sampling the MRI voxel centers means that the canonical space is not uni-
formly sampled, e.g. the space between the legs is wider in the canonical space. Thus,
we also uniformly sample points outside the SMPL template mesh in the canonical space
and classify them as E .

As the MRI resolution is low for hands, we force these parts to always be predicted
as LT by uniformly sampling points in the canonical space inside the hands’ bounding
boxes.
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Female Male
LT SAT BT LT SAT BT
DS. 1T A% DS.T A%l DS. T A% DS.T A% DS. 1T A% DS.T A%
Chance 514 49 402 67 39 07 60.3 5.1 318 65 41 08
HIT 778 40 517 94 455 0.6 81.0 5.1 547 65 522 07

Table 5.1: Quantitative evaluation for females and males on the three tissues (LT, SAT,
BT). DICE Score (D.S.) - higher is better and A % is the relative difference in the tissue
percentage prediction (in percent) - lower is better.

Multi-Tissue mesh extraction. A classical approach to visualize the occupancy of an
implicit shape is to extract the mesh at a given level set of the implicit surface. Modeling
occupancy as a multi-class classification problem has the advantage that we can extract
meshes for each class, such that there is no class overlap in the predictions. However, for
a given class, class scores do not directly yield the continuous occupancy function that is
required for level-set extraction.

Thus, given one tissue, our goal is to define a function to apply to the per-class proba-
bilities with the following properties:

1. If class k has the highest probability, the function should yield an occupancy value
>0.5.

2. If class k does not have the highest probability, the function should yield an occu-
pancy value < 0.5.

3. If class k has the highest probability, but is equal to another class, the function
should yield an occupancy value = 0.5. This case defines the boundary between
two or more tissues, which will be extracted by the level-set method.

For a point in the canonical space X, let {p;};c(1,c) with p; € [0, 1] be the probabilities
of each of the C = 4 classes (Z[C:o pi = 1). For a tissue k, we define the function /; as:

) Pk
Vjl=k

which fulfills the desired properties. We can then pass /;({p;}) to a marching cube
algorithm to extract the k-th tissue mesh surface, and get tissue volumes that match the
predicted occupancy.

The volumes displayed in Fig. 5.1, 5.21, and 5.23, as well as the volumes in Fig. 5.18
and 5.19 were extracted using this technique.

124



5.5 Experiments

5.5 Experiments

To evaluate HIT we split the data into 80% train, 10% validation and 10% test sets (fe-
males 201/25/26, males 136/17/16). Furthermore, we train separate models for males
and females as the literature reports significant differences in their body composition
[169].

5.5.1 Tissues prediction evaluation

Since we address a novel problem, to the best of our knowledge, no prior work can be
directly used for comparison: e.g. OSSO [123] solely predicts the bone structures. To
have a numeric calibration for the multi-tissue problem, we propose a Chance baseline,
which, for each queried point, predicts the tissues [E, LT, SAT, BT| with probabilitics
0.03, 0.52, 0.41, 0.04 and 0.04, 0.60, 0.32, 0.04 for females and males respectively.
These values follow the average percentage of each tissue in the training set.

Metric evaluation. To quantitatively evaluate the HIT architecture, we report mean
Dice scores [170] for each predicted tissue on the test set. Additionally, we compute the
relative error of the predicted tissue percentage by computing A = | Vg — Vir |/Vp *
100, where Vyeq,Vor,Vs € R are the volumes of the predicted tissues, ground-truth
tissues, and whole body, respectively.

Table 5.1 shows that the HIT Dice scores are significantly better than the Chance
baseline.

Slices evaluation. Additionally, 5.16 and Fig. 5.17 present qualitative results of the
tissue predictions on transverse planes and in 3D. We show that the predicted inner tis-
sues are consistent across the body and exhibit plausible compression. In addition, most
errors arise at the tissue interfaces.

In Fig. 5.16 right column lines 9 to 11, we see that empty tissue is predicted inside the
thigh. We conjecture this happens due to the root finding algorithm initialization, which
rigs a query point to the closest SMPL skin vertex. In the cases where the SMPL mesh fit
to the MRI contour exhibits self-penetration at the thigh, which can happen when the legs
are compressed together, the points inside the intersection get rigged to the wrong leg.
As a result, the occupancy is queried outside the body, leading to an empty prediction.

Volume evaluation. The 3D visualization in 5.18 and 5.19 also shows that the obtained
3D meshes are visually consistent with the GT ones. Each tissue’s mesh is extracted in
the canonical pose given the subject’s shape 8, then posed to the target pose 6.
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Figure 5.16: Transverse slices (female): (left) GT tissues, (middle) HIT predictions,
(right) accuracy (green correct, red otherwise).
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Figure 5.17: Transverse slices (male): (left) GT tissues, (middle) HIT predictions, (right)

accuracy (green correct, red otherwise).
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Figure 5.18: Volumetric tissue predictions for males. From left to right: SMPL fit S;
(gray), HIT LT prediction, GT LT, HIT SAT prediction, GT SAT.
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Figure 5.19: Volumetric tissue predictions for females. From left to right: SMPL fit S;
(gray), HIT LT prediction, GT LT, HIT SAT prediction, GT SAT.
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Figure 5.20: Comparison between OSSO and HIT bone predictions.

5.5.2 Comparison with OSSO

To further put HIT bone predictions in context, we numerically compare to OSSO [123]
by measuring the distance between the segmented bones and the predicted ones. Fig. 5.20
reports the results in which the HIT predictions are systematically closer to GT than
OSSO predictions.

Regarding the metric A in Tab. 5.1 measuring the predicted tissue percentage, it is
interesting to note that HIT is on par with the Chance baseline (or even under-performs
it for female SAT). The Chance A metric quantifies the error of predicting the mean
volume, i.e. the variability in the dataset volumes. The similar HIT A metric points
out that, in fact, HIT is predicting an average tissue quantity. This is not surprising, as
HIT predictions are conditioned on 10 SMPL shape parameters, which cannot capture
all individual shape details. In Sec. 5.6 we discuss how future work could improve the
current predictions.

5.5.3 Generalization to new body shapes and poses

Body. To generalize to new body shapes and poses, correctly modeling the shape vari-
ation and the soft tissuec compression is key.

Here we illustrate the learned volumetric displacement fields: dg generalizing the
SMPL shape space to R3, and d¢omp accounting for the MRI table compression. Fig. 5.22
shows 2D slices of these fields at the hip level (tissue contours are shown). The field dg
computed for the shape component associated with weight (Fig. 5.22 left) shows a radial
structure, which is consistent with the SMPL shape space. The field d¢y,, (Fig. 5.22
right) shows the displacements from compressed to uncompressed shape. Note how the
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(Rik1

Figure 5.21: Prediction of the SAT occupancy for the mean SMPL body in T-pose. Left:
SMPL mesh, middle HIT, right HITycmp. Note how the compression remains in the
inference for HIT¢mp. Color code: distance to the SMPL mesh (blue=0 ¢cm, red=5cm).

central part experiences the most compression in the outward direction, while the lateral
parts have a milder but lateral inward displacement. This is coherent on how the body
shape is affected by the MRI table.

To show the importance of the compression module, we ablate it by learning HI ey,
a HIT variant without the compression module. As visible in Fig. 5.21, HI T can not
generalize, and generates compressed results for standing bodies.

New shapes. To explore how the HIT tissue predictions generalize to new body shapes,
we vary the input SMPL shape components related to height and weight [43], in the
[—2,+2] range. Figure 5.23 shows that HIT predicts plausible tissues that vary in accor-
dance with the person’s shape.

New poses. Learning in the SMPL canonical space enables querying skinning weights
for each point inside the body, and thus the inferred tissue volumes can be easily re-
posed. Figure 5.1 shows the reposed tissue volumes for two different poses. Note that
at inference time, the compression network is bypassed to yield non-compressed body
shapes.

5.6 Discussion and Conclusion

HIT introduces the new problem of inferring the human tissues inside of a body only
from surface observation. This work is relevant for medicine, sports science, biomechan-
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Figure 5.22: Slices of the learned volumetric displacement fields. Left: Shape field dg.
Given a point, the arrow shows where this point ends up in the canonical space. Right:
Compression field d)c‘omp. The arrows are colored from dark blue to red proportionally
to the 3D field absolute value at each point. They show, for one point, where this point
ends up after decompression. The black lines show the contour of the predicted tissues.
The predicted tissues are, by nature of the pipeline, decompressed.

ics, and computer graphics as it can ease the creation of personalized anatomic digital
twins. We formulate the problem as a multi-tissue classification task and learn an im-
plicit function that takes, as input, a query point and SMPL pose and shape parameters,
and predicts its tissue class. To learn HIT, we create a dataset of paired full-body volu-
metric segmented MRI scans, and SMPL meshes capturing the body surface shape. We
evaluate and ablate the proposed model on the created dataset, showing the quality of the
HIT reconstructed tissues.

To the best of our knowledge, this is the first work to predict the volumetric composi-
tion of the tissues inside the body from an outer surface observation. We show that it is
possible to predict health-relevant tissues inside the body, and most importantly, we first
quantify the accuracy of these predictions against medical data. To foster future research
on this topic, the dataset and HIT model are made available for academic purposes at
https://hit.is.tue.mpg.de.

Limitations. While we can model the uncompression of soft tissue from the body sur-
face, we are currently unable to validate this process within the body. Proper validation
would require specific data, either generated through simulations or obtained by cap-
turing MRI scans of a subject in different poses with varying soft tissue compressions.
Additionally, the current application of HIT for precisely predicting tissue percentages
remains limited. Compared to the Chance method, HIT tends to predict an average fat
percentage for each subject. This limitation may stem from the SMPL shape vector alone
not providing sufficient information to predict individual tissue percentages accurately.
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Figure 5.23: Prediction of the lean tissues for different body shapes. Varying (left) the
first component of SMPL - related to size on females - and (right) the second one - related
to weight - for males in the range {+2, -2}. The predicted tissues consistently adapt to
the new shapes, leading to visually plausible predictions.
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Our work does not explore the precise location of Intra-Muscular and Visceral Adi-
pose Tissue (IMVAT). Its structure is very sparse, and while its volume quantification is
relevant in medicine, it is unclear whether its exact pixel-wise location is. Still, the HIT
dataset provides the IMVAT segmentation masks, enabling future exploration.
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Chapter 6
Conclusion and Future Work

In this thesis, we addressed the challenge of inferring internal human anatomy from the
external body shape, a problem with far-reaching implications across multiple fields,
including medicine, computer graphics, and biomechanics.

We started with OSSO in Chapter 3, and showed that we can predict the shape and
location of bones solely from external body shape data. This required recovering the 3D
shape of the body and bones from 2D images and setting priors on the bone-skin surface
distance to repose the bones. For the first time, we could also evaluate skeleton inference
on a large dataset of medical images.

Making an inferred skeleton usable as a digital twin requires realistic articulation and
orientation of the bones. In Chapter 4, we introduced SKEL, a model that predicts bone
orientation and articulation based on external body shape. Given the scarcity of medi-
cal imaging for motion, we leveraged motion capture and biomechanical simulation to
build a dataset of paired skeletons and bodies in motion and learn from these data. By
incorporating anatomical joints into skeletal models and rigging SMPL’s body mesh to
the bones, SKEL bridges the gap between body shape and bone orientation, laying the
foundation for biomechanically accurate digital human modeling.

Expanding our focus beyond bones, in Chapter 5 we presented HIT, a model capable
of predicting the location of soft tissues within the human body. Trained on segmented
medical scans, HIT predicts the location of subcutaneous adipose tissue, lean tissues,
and bone tissues, offering valuable insights into internal human anatomy. This model
represents a significant step forward in understanding tissue distribution and composi-
tion, with implications for medical diagnostics, biomechanical simulations, and digital
human modeling.

Risks. The work presented in this thesis has associated privacy risks. If future work
shows that the prediction of the skeleton and soft tissue is accurate enough to diagnose
diseases, the technology could be used to learn about someone’s risk of disease from a
single picture of them. This is valuable as an early diagnostic tool when used with the
person’s knowledge but could constitute a risk if used without consent.
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Limitations. To predict the anatomy, we modeled the body shape using SMPL or
STAR, with the motivation that they let us explicitly model the link between shape and
pose and the resulting 3D body shape. As a consequence, our work inherits some of
these model’s limitations. Indeed, statistical body models can not well represent out-
of-distribution body shapes, like bodies that are extremely thin, extremely obese, with
scoliosis, the elderly or children, amputees, etc. Yet, if the body model does not accu-
rately represent someone’s shape, the prediction will likely be poor.

The learned predictions are deterministic and constitute an average estimate learned
from the training data. As such, our predictions cannot currently be used for diagnosis, as
they cannot infer anatomical anomalies in a patient, such as scoliosis or broken bones. A
possible extension of this work would be to use a variational approach: given the external
body shape, predict the distribution of possible anatomies inside instead of the average
plausible anatomy.

The evaluation of our models is limited by the availability of ground truth data. Ide-
ally, our inferences should be evaluated on a large set of full-body 3D medical images
of subjects in various poses. However, this is not currently possible as current imaging
technologies can not capture such data. Promising technologies include full-body stand-
ing MRI scans or bi-plane fluoroscopy. Both are rare, and the former has a limited range
of motion, while the latter can only capture small regions (like the knee) and carries a
significant X-ray exposure risk.

Future work. In this thesis, we present three distinct models. These differences are
driven by the representations imposed by the data. In OSSO we manipulate shapes rep-
resented with meshes, in SKEL we consider joints and a kinematic tree, and in HIT
volumes and warping fields. Future work could merge these models into a single repre-
sentation to create a more complete anatomical model.

In OSSO, we create a stitched puppet skeleton model with a per-bone shape space.
However, this model does not have a kinematic tree and joint definitions. The bones can
be translated and rotated freely, irrespective of their parent’s bone position, which makes
it hard to enforce that the bones stay in their sockets. In contrast, SKEL has a kinematic
tree and joint definitions but no shape space. Thus, the bones articulate with respect to
their parent bone and always stay in their sockets; they can be scaled, but their shape
is fixed. Consequently, SKEL can not model bones that are bent or twisted. Building a
skeleton model that can be articulated and scaled but also has bones that can take different
shapes would better capture the variability of the human anatomy, but it is challenging.
The skeleton’s kinematic tree depends on the bone shape, and this dependency is complex
and needs to be learned. Indeed, building a kinematic tree requires, given a bone with a
specific geometry, to know the location and frame of its children’s bone with respect to
that geometry. Suppose we consider the humerus; given its geometry, we need to predict
the location of the elbow joint and the axis or rotation for the arm flexion. Learning this
dependancy between the bone shape and the joints location and orientation remains an
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open problem.

The third prediction model, HIT, is also distinct from the two other models as it relies
on an implicit representation of the body instead of meshes. SKEL and OSSO could
be leveraged to annotate the HIT dataset further and yield a full skeleton prediction. Be-
sides, the implicit representation is well suited to integrate the notions of shape space and
kinematic tree exploited in OSSO and SKEL. Indeed, the shape space can be represented
implicitly by warping fields, which have the advantage of both displacing the surface and
the inside of a volume. A kinematic structure can still be enforced by learning a skinning
weight field inside the body’s volume.

A model combining HIT, OSSO, and SKEL would constitute a valuable tool for mod-
eling the anatomic variability. As in medical imaging, pathology is often defined as a de-
viation from the mean statistics of a population; having a model for the “mean anatomy”
would facilitate “out of distribution” detection.

As mentioned in the introduction, a key idea that made this thesis possible is to rep-
resent the body shape with statistical shape models. A significant advantage of these
models is that they allow us to establish correspondences between pairs of subjects. For
example, the tip of the nose can be identified on any body shape in any pose as a specific
vertex index. This thesis is a step forward in generalizing this correspondence idea to
the internal anatomy. OSSO enables the identification of corresponding points on the
skeleton surface across different subjects. SKEL further extends this to joint locations,
while with HIT, given a specific 3D point within one body, we can find its corresponding
location in the average body.

If future work can further enhance this mapping’s robustness, the impact would be
substantial. For instance, a complete anatomical model could be transferred to any posed
body, and the segmentation of specific organs in one subject could be applied to another.
This mapping concept is fundamental to many challenges in medicine, where there is a
constant need to identify, segment, or warp anatomical structures. The ideal body model
would encompass the entire anatomy, accounting for limb length, body shape, pose, and
statistical variability. Such a model would serve as a bridge between various research
fields, as it could be registered to all kinds of human data and other existing models,
including 3D scans, mocap data, skeleton models, and anatomical models.
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Appendix A
OSSO

A.1 OSSO 3D landmark regression errors

In OSSO, a landmark regressor lets us regress specific landmarks location from the body
mesh vertices. Here we show the per landmark errors of the regressor on the test set
of the DXA dataset. The errors are computed as the Euclidean distance between the
predicted landmark and the ground truth landmark. The errors are shown in Tab. A.1.
Fig. A.1 shows the landmarks locations in the body frame.
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Appendix A OSSO

LO
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L1l
Li12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31

female male
err. (mm) (mean =+ std)

9.03 £5.52 | 10.28 £ 10.28
14.41 +8.79 | 12.60 + 12.60
15.74 +8.49 | 13.90 &+ 13.90
9.99 +4.81 | 10.69 + 10.69
8.38 £5.39 9.37 +£9.37
9.72 £ 5.80 | 10.81 4+ 10.81
14.76 +=8.36 | 13.95 £+ 13.95
15.93 +8.47 | 14.59 + 14.59
10.76 £ 5.14 | 11.12 £ 11.12
9.46 + 5.57 9.86 +9.86
11.20 = 5.47 | 10.90 £ 10.90
991 +5.01 8.44 + 8.44
11.50 +5.83 | 13.34 £ 13.34
9.96 +4.94 8.53 £ 8.53
6.76 + 3.16 6.93 + 6.93
7.17 + 3.56 7.24 +7.24
5.29 +2.65 5.87 +5.87
5.31 +2.69

7.74 +3.92 747 +£747
5.72 £ 3.46

5.44 £+ 2.68 522 +522
6.66 + 3.22 6.40 + 6.40
10.83 +5.08 | 10.85 £ 10.85
8.94 + 4.84 8.10 &+ 8.10

L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L44
L45
L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L61
L62

female ‘ male
err. (mm) (mean =+ std)
10.75 £5.10 | 11.65 £ 11.65
6.88 + 3.37 6.40 £+ 6.40
6.23 +2.58 6.42 + 6.42
8.47 +4.79 7.96 + 7.96
5.28 +2.53 521 +£5.21
7.19 + 3.00 6.95 + 6.95
5.27 +£2.66
6.39 + 3.76
12.68 +7.17 | 10.93 +10.93
1240 £7.77 | 11.08 + 11.08
11.26 = 6.14 | 10.44 +10.44
11.96 +£5.93 9.85 +9.85
9.22 + 4.40 9.37 £9.37
10.33 £5.51 | 10.13 £ 10.13
9.37 +=4.21 9.78 +9.78
6.84 + 3.29 7.69 + 7.69
8.16 +3.93 7.62 +7.62
7.85 +3.95 6.68 + 6.68
5.82 +£2.89 5.13£5.13
1281 +£7.43 | 11.38 +£11.38
15.95+£994 | 13.96 + 13.96
12.62 £6.91 11.32 £ 11.32
20.13 +10.65 | 17.36 = 17.36
10.62 + 4.44 8.80 + 8.80
20.51 £ 11.31 | 16.47 £ 16.47

Table A.1: Errors on the £y landmarks regression in millimeters. In green the errors
below 5 mm, in red the errors over 15 mm. The landmark numbers are visually shown in

Fig. A.1.
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A.1 OSSO 3D landmark regression errors

Figure A.1: Landmarks £z on the skeleton mesh with landmark number.
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Appendix B
HIT

B.1 HIT MLP architecture

The HIT modules, described in Chapter 5 Fig. 5.15 define three networks: namely B,
W and C. In addition, to predict the tissues inside the body in the canonical space, 7 is
defined. All four networks are Multi Layer Perceptrons (MLP) with sofiplus activation
functions. Next, we detail their architectures.

B.1.1 BMLP

The architecture of the network B is shown in Fig. B.1. This network is used for con-
verting a point from theshaped space into the canonical space. This is critical to enable
learning of the implicit tissues in a single canonical representation given many training
subjects of different shapes. B takes as input the shaped points x? and the shape param-
eters B and it regresses a 3D offset dg. By applying this offset to the input point, the
corresponding canonical point is obtained.

B.1.2 W MLP

The architecture of the network W is shown in Fig. B.2. W takes as input a point in the
canonical space x“ and regresses its skinning weights. The skinning weights are defined
with respect to the 24 parts of the SMPL body model.

B.1.3 C MLP

The architecture of the network C is shown in Fig. B.3. This network is important for
undoing the effects of the table compression on the body. C takes as input shaped point
xP, a shape parameter B and regresses a 3D offset dcomp- By applying this offset to the
corresponding point x™ in the compressed space, a point in the posed space is obtained.
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B.1 HIT MLP architecture
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The architecture of the network 7 is shown in Fig. B.4. This network defines the implicit
tissue classification at the heart of HIT. 7 takes as input a point in the canonical space x¢,
it encodes it using positional encoding, then regresses its 4-tissues probabilities. From

these probabilities, the predicted tissue is obtained.
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