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Abstract

Causal reasoning is a cornerstone of human intelligence and a critical capability for ar-
tificial systems aiming to achieve advanced understanding and decision-making. This
thesis delves into various dimensions of causal reasoning and understanding in large lan-
guage models (LLMs). It encompasses a series of studies that explore the causal infer-
ence skills of LLMs, the mechanisms behind their performance, and the implications of
causal and anticausal learning for natural language processing (NLP) tasks. Addition-
ally, it investigates the application of causal reasoning in text-based computational social
science, specifically focusing on political decision-making and the evaluation of scientific
impact through citations. Through novel datasets, benchmark tasks, and methodological
frameworks, this work identifies key challenges and opportunities to improve the causal
capabilities of LLMs, providing a comprehensive foundation for future research in this
evolving field.



Zusammenfassung
The “Zusammenfassung” is a machine-translated version of the abstract via https: // deepl.
com and corrected with the help of Jan Schneider.

Kausales Denken ist ein Grundpfeiler menschlicher Intelligenz und eine entscheidende
Fähigkeit für künstliche Systeme, die ein fortgeschrittenes Verständnis und fundierte Ent-
scheidungsfindung anstreben. DieseArbeit untersucht verschiedeneAspekte des kausalen
Denkens und Verstehens in großen Sprachmodellen, nämlich LLMs. Sie umfasst eine
Reihe von Studien, die die Fähigkeiten von LLMs zur kausalen Inferenz, dieMechanismen
hinter ihrer Leistungsfähigkeit und die Auswirkungen von kausalem und antikausalem
Lernen auf Aufgaben der natürlichen Sprachverarbeitung, oder NLP beleuchten. Darüber
hinaus wird die Anwendung kausalen Denkens in der textbasierten computergestützten
Sozialwissenschaft untersucht, wobei der Fokus auf politischer Entscheidungsfindung
undder BewertungdeswissenschaftlichenEinflusses durchZitationen liegt. Durch neuar-
tige Datensätze, Benchmark-Aufgaben und methodische Rahmenbedingungen identifiz-
iert dieseArbeit zentraleHerausforderungen undChancen zurVerbesserung der kausalen
Fähigkeiten von LLMs und bietet eine umfassende Grundlage für zukünftige Forschung
in diesem sich entwickelnden Bereich.
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Introduction

1.1 Overview

Causality is a fundamental aspect of human cognition and intelligence, underlying our
understanding of the world and our ability to make decisions. In the field of natural lan-
guage processing (NLP), the capability to infer and reason about causality is increasingly
recognized as a critical component of intelligent systems.

Despite the recent advancement of large language models (LLMs) (Radford et al., 2019;
Devlin et al., 2019; Brown et al., 2020; Zhang et al., 2022; OpenAI, 2023; Ignat et al., 2024,
inter alia), a key question still remains: Can these models understand and reason about
causality? This is a critical skill beforewe can trustAI agents to be integrated into decision-
making systems. Moreover, even if LLMs succeed at some extent of reasoning, they still
lack transparency of how their decisions aremade, forming a strongneed for interpretabil-
ity (Luo and Specia, 2024; Räuker et al., 2023; Zou et al., 2023).

To bridge the gap, this thesis explores various facets of causal reasoning in LLMs. We
present a series of studies that collectively advance the knowledge of how well these
models perform causal reasoning (Part I), how their decisions are made (Part II), how
causality among learning variables influences NLP tasks (Part III), and how causality and
NLP can together analyze social problems (Part IV). Below we introduce an overview of
the four parts and their corresponding chapters.

1.1.1 Causal Reasoning in LLMs (Part I)

In Part I, we investigate two formal causal reasoning skills in LLMs: causal discovery
(Chapter 2) and causal effect reasoning (Chapter 3), which existing models struggle to
address. We propose these pure reasoning tasks independent of empirical knowledge,
and contribute symbolically grounded datasets that are carefully constructed. Based on
our proposed data and test pipeline, we first look into the initial performance of LLMs
off the shelf, explore how fine-tuning improves their performance, and propose chain-of-
thought reasoning to ground the inference skills of LLMs in formal steps.

Causal Discovery in LLMs (Chapter 2) The ability to distinguish between correlation
and causation is crucial for intelligent AI systems. In Chapter 2, we propose a benchmark
dataset, Corr2Cause, specifically designed to test the causal discovery skills of LLMs.
This novel task requires models to determine causal relationships from a set of correla-
tional statements. Our large-scale dataset consists of over 200K samples, on which we
evaluate seventeen existing LLMs. The findings reveal a significant shortcoming: these
models perform close to random on this task, indicating a fundamental gap in their causal
inference abilities. Although fine-tuning improves performance somewhat, the models
still struggle with generalization, performing well only on in-distribution settings but
failing on out-of-distribution queries. This study underscores the challenges in guiding

1
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future research to enhance the pure reasoning skills and generalizability of LLMs.

Causal Effect Reasoning in LLMs (Chapter 3) To investigate the other skill, causal ef-
fect reasoning, we propose a new task in Chapter 3 inspired by the “causal inference
engine” concept postulated by Pearl and Mackenzie (2018). Our dataset contains 10K
samples derived from causal graphs and queries, which are translated into natural lan-
guage. We evaluate LLMs using this dataset and introduce a chain-of-thought prompting
strategy, CausalCoT. The results highlight the challenges LLMs face in causal reason-
ing, providing deep insights into their limitations and suggesting directions for future
improvements.

1.1.2 Causal Understanding of How LLMs Work (Part II)

Beyond understanding the causal reasoning skills in LLMs, a natural following question
is to interpret howmodels make their decisions, which leads to our exploration in Part II.
We look into two types of interpretation, one to inspect and intervene their internal states,
called intrinsic interpretability (Chapter 4), and the other to perturb the input-output
space to capture behavioral tendencies, called behavioral interpretability (Chapter 5). We
will introduce each in the following.

Intrinsic Interpretability (Chapter 4) Wepresent a novel formulation to understand the
inner mechanisms of LLMs. Most existing research focuses on analyzing a single mecha-
nism, such as how models copy or recall factual knowledge. In this work, we propose a
formulation of competition of mechanisms, which focuses on the interplay ofmultiplemech-
anisms instead of individual mechanisms and traces how one of them becomes domi-
nant in the final prediction. We uncover how and where mechanisms compete within
LLMs using two interpretability methods: logit inspection and attention modification.
Our findings show traces of the mechanisms and their competition across various model
components and reveal attention positions that effectively control the strength of certain
mechanisms.

Behavioral Interpretability (Chapter 5) Different from previous work that uses heuris-
tics to perform behavioral tests, we systematically propose a pipeline to probe the differ-
ence between the desired causal mechanisms, and model-learned causal mechanisms. To
implement our framework, we focus onmathematical reasoning problems. By grounding
our analysis in a causal graph, we assess the causal effect of different input factors such
as problem text, operands, and operators on the model’s output. This framework enables
a detailed analysis of the models’ robustness and highlights the critical role of causal fac-
tors in shaping their responses. The study reveals that robustness does not continuously
improve with model size; however, the GPT-3 Davinci model (175B) shows significant
advancements in both robustness and sensitivity compared to other variants. Despite the
relative improvement, our results indicate that there is still substantial room for enhancing
the robustness and generalization capabilities of LLMs through a better understanding of
their causal mechanisms.

1.1.3 Causality among the Learning Variables (Part III)

Apart from causal inference to improve performance and to interpret the models, we also
explore the causal relationships between the input and output variables in NLP tasks in
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Part III, which provides valuable insights into the design and evaluation of models. This
part includes studies that examine the implications of causal and anticausal learning and
their impact onNLP tasks (Chapter 6), and also provide an example discovering the causal
relationship between the input-output learning variables (Chapter 7).

Implications of Causal and Anticausal Learning in NLP (Chapter 6) We introduce the
principle of independent causal mechanisms (ICM) to the NLP community. By inspect-
ing the causal directions between the input and output variables, we categorize common
NLP tasks into clearly causal (where the input variable serves as a cause of the output
variable, or is collected before the annotation of the output), anticausal (where the output
variable serves as a cause of the input variable, or is collected before the annotation of the
input), or mixed. After an extensive meta-analysis of over 130 published studies, the pa-
per demonstrates that the causal direction of data collection significantly affects learning
outcomes. This work is the first to apply the ICM principle to NLP and offers constructive
suggestions for future modeling choices based on causal insights.

Discovering Causal and Anticausal Sentiment Analysis (Chapter 7) We further ex-
tend this exploration to cases where the variable causal relations are not evident a priori,
but discovered using interdisciplinary insights. In Chapter 7, we reformulate sentiment
analysis (SA) a combination of causal discovery and prediction tasks. For the first task,
we discover the causal relation in SA tasks, namely between a review and its sentiment,
by using the peak-end rule from psychology. In this way, we classify reviews based on
whether the review primes the sentiment or vice versa. Knowing the causal direction,
we inspect how it affects the prediction performance of LLMs when the prediction task
aligns with the same causal direction or is opposite. To improve model performance, we
construct causal prompts that reflect the underlying causal graph, which lead to substan-
tial improvements, demonstrating the importance of considering causal mechanisms in
SA tasks.

1.1.4 Causality for Text-Based Computational Social Science (Part IV)

Finally, we explore in Part IV the application of causal inference to text-based computa-
tional social science to address real-world problems. We conduct two studies that examine
the causes behind political decision-making (Chapter 8) and paper citations (Chapter 9).

Causal Policy Analysis (Chapter 8) As the first application study, we investigate how
public opinion on social media influences policy decisions during the COVID-19 pan-
demic. By analyzing textual Twitter data and controlling for confounders such as case
increases and unemployment rates, the study conducts causal inference to identify trends
in political decision-making across different states. This research highlights the dynamic
interaction between public sentiment and political actions in a rapidly evolving context.

Causal Analysis of Paper Citations (Chapter 9) For the second case study of paper ci-
tations, we propose a newmethod to evaluate the significance of scientific papers through
causal impact on subsequent research. UsingTextMatch, a novel causal inferencemethod
adapted for high-dimensional text embeddings, we assess the causal influence of papers
on their follow-ups. The effectiveness of our framework is demonstrated through various
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criteria, providing amore accuratemeasure of a paper’s true impact and suggestingways
for future researchers to utilize this metric.

1.2 Structure of the Thesis

This thesis is organized into fourmain parts, corresponding to the thematic areas outlined
above. Each part includes a detailed examination of the relevant studies, methodologies,
and findings, offering a comprehensive view of causal methods for NLP:

1. Causal Reasoning in LLMs (Part I): Assessing the ability of LLMs on causal infer-
ence by introducing formal benchmarks, and improving the model performance by
chain-of-thought reasoning and finetuning.

2. CausalUnderstanding ofHowLLMsWork (Part II): Investigating the internalmech-
anisms and robustness of LLMs by causal interventions and causal mediation anal-
ysis.

3. Causality among Learning Variables (Part III): Exploring the causal or anticausal
relation among the learning variables, and drawing insights to understand and im-
prove model performance.

4. Causality for Text-Based Computational Social Science (Part IV): Applying causal
inference on text data to uncover social and political insights.

1.3 Contributions and Impact

This body ofwork contributes to the growingfield of causal inference inmachine learning,
providing critical insights into the capabilities and limitations of LLMs in reasoning about
causality. By using causalmethods to intervene on LLMs, we pave theway for developing
more robust and interpretable AI systems. Moreover, the applications in computational
social science highlight the broader societal implications of causal reasoning with text
data, offering new tools and perspectives for analyzing complex social phenomena.
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Causal Reasoning in LLMs

5





CanLLMs InferCausation from
Correlation?

Causal inference is the study that discovers cause-effect relationships from interventional
and/or observational data (Pearl, 2009b; Spirtes et al., 2000; Zhang and Hyvärinen, 2009).
Causality started as a philosophical subject (Beebee et al., 2009; Russell, 2004; Kant, 1781),
and in the recent centuries integrated into statistics with established concepts and tools
(Fisher and Ford, 1927; Rubin, 1980; Spirtes et al., 1993; Pearl, 2009b). In the era of LLMs,
we formulate such formally-grounded pure causal inference as a target reasoning capa-
bility for language models.

In thiswork, we propose the first benchmark dataset to test the pure causal inference skills
of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause,
which takes a set of correlational statements and determines the causal relationship be-
tween the variables. We curate a large-scale dataset of more than 200K samples, on which
we evaluate seventeen existing LLMs. Through our experiments, we identify a key short-
coming of LLMs in terms of their causal inference skills, and show that these models
achieve almost close to random performance on the task. This shortcoming is some-
what mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find
that these models still fail to generalize – they can only perform causal inference in in-
distribution settings when variable names and textual expressions used in the queries are
similar to those in the training set, but fail in out-of-distribution settings generated by
perturbing these queries. Corr2Cause is a challenging task for LLMs, and can be helpful
in guiding future research on improving LLMs’ pure reasoning skills and generalizabil-
ity. Our data is available at https://huggingface.co/datasets/causalnlp/corr2cause,
and our code is at https://github.com/causalNLP/corr2cause.

2.1 Introduction

Causal inference, i.e., the ability to establish the correct causal relationships between vari-
ables or events, is fundamental to human intelligence. There are two distinct ways this
causal inference capability can be acquired: one through empirical knowledge, e.g., we
know from common sense that touching a hot stove will get us burned; the other through
pure causal reasoning, as causality can be formally argued and reasoned about using known
procedures and rules from causal inference (Spirtes et al., 2001; Pearl, 2009b; Peters et al.,
2017). One example is that we have the a priori knowledge that the correlation between A
and B does not necessarily imply causality. This is a formal rule that holds true regardless
of the realizations of the variables A and B.

With the rise of large language models (LLMs) (Radford et al., 2019; Devlin et al., 2019;
Ouyang et al., 2022; Zhang et al., 2022; OpenAI, 2023, inter alia), a crucial research ques-
tion is whether they can do causal reasoning well. Recent studies have pointed out that
LLMs are “causal parrots,” which recite the causal knowledge in the training data (Zeče-
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Previous tasks:

Getting burnedTouching a hot stove
CausesNoSuppose we know that A correlates with B.

Can we infer that A causes B?

Skill being tested in previous work: Empirical
knowledge instead of pure causal inference.

Training Corpus

Ice cream sales

How can LLMs process such
information? Correlation?

Causation? What causes what?

We propose a new task: Corr2Cause Inference
This requires the skill of inferring causation from correlation

*Assumption that we explicitly mention in the samples: We suppose a close system of the given variables and correlations.

YesA correlates with B. C correlates with B. However, A is independent of C.
Can we infer that A causes B?

?
?

Drowning cases Hot weather

Vaccination Autism

Tech company CEOs College dropout

Fatality rateMany
correlations

Figure 2.1: Illustration of the motivation behind our task and dataset.

vić et al., 2023). Moreover, the vast majority of studies frame causal reasoning as a skill to
navigate around empirical knowledge (Gordon et al., 2012; Sap et al., 2019a,b; Qin et al.,
2019; Bhagavatula et al., 2020), and also treat LLMs as a knowledge base when evaluat-
ing its causal skills (Kıcıman et al., 2023; Tu et al., 2023; Xie et al., 2023). However, all the
above lines of research frame causality as empirical knowledge, thus relying heavily on
the quality and the coverage of the training data, overlooking the great potential of the
formal causal reasoning skills to process correlational information to causal conclusions.

Drawing inspirations from technical studies on causal discovery (Spirtes et al., 2001; Spirtes
and Zhang, 2016; Glymour et al., 2019), we formulate a novel task for NLP, correlation-to-
causation inference (Corr2Cause), which is an important skill for LLMs. Imagine the sce-
nario in Figure 2.1, where the training corpus does not tediously cover every causal rela-
tion, but more pervasively talk about correlations, such as which events tend to co-occur.
Learning a good Corr2Cause skill can enable LLMs to draw causal relations behind the
mere correlational information on the surface. For example, several decades ago, there
might be an observation that female university students tend to perform better, but be-
hind the correlational statistics is the causal graph that female students have to achieve
extra good performance to get into universities as the first place.

To this end, we collect the Corr2Cause dataset, the first dataset to test the pure causal
reasoning abilities of LLMs. All the questions in this dataset are centered around testing
when it is valid or invalid to infer causation from correlation. To systematically compose
this dataset, we ground our generalization process in the formal framework of causal dis-
covery (Spirtes et al., 2001; Glymour et al., 2016; Spirtes and Zhang, 2016), which provides
rules about how to deduce causal relations among variables given their statistical corre-
lation in the observational data. We generate more than 200K data points, and label a
correlation-causation statement pair as valid if and only if there is a bijective mapping
between the statistical correlation and the underlying causality.

Based on our Corr2Cause dataset with 200K samples, we investigate two main research
questions: (1) Howwell do existing LLMs perform on this task? (2) Can existing LLMs be
re-trained or re-purposed on this task and obtain robust causal inference skills? Through
extensive experiments, we show empirically that none of the 17 existing LLMs we inves-
tigate perform well on this pure causal inference task. We also show that although LLMs
can demonstrate better performance after being finetuned on the data, the causal infer-
ence skills attained by them are not robust. In summary, our contributions are as follows:
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1. We propose the novel task of Corr2Cause, to probe an aspect of LLM’s reasoning
ability, pure causal inference;

2. We compose a dataset of over 200K samples, using insights from causal discovery;

3. We evaluate the performance of 17 LLMs on our dataset, finding that all of them
perform poorly, close to the random baseline;

4. We further explored whether LLMs can learn the skill through finetuning, and find
that LLMs fail to robustly acquire this skill in out-of-distribution settings. Finally,
we suggest future work to explore more ways to enhance the pure causal inference
skill in LLMs.

2.2 Preliminaries: Causal Inference

2.2.1 Directed Graphical Causal Models (DGCMs)

Adirected graphical causal model (DGCM) is a commonly used representation to express
the causal relations among a set of variables. Given a set ofN variablesX = {X1, . . . , XN},
we can encode the causal relations among themusing adirected graphG := (X,E), where
E is the set of directed edges. Each edge ei,j ∈ E represents a causal linkXi → Xj, meaning
that Xi is a direct cause of Xj. In the context of this work, we take the common assumption
of directed acyclic graphs (DAGs), which most causal discovery methods use (Glymour
et al., 2019), as graphs with cycles can make the causal discovery process arbitrarily hard.

Following the graph-theoretic terminology, we use an analogy of the ancestry tree to de-
note the relations between two variables. For example, we call Xi as a parent of Xj if there
is a directed edge Xi → Xj in the graph, and, thus, Xj is a child of Xi. Similarly, we denote
Xi as an ancestor of Xj if there exists a directed path from Xi to Xj, and, thus, Xj is a descen-
dent of Xi. Note that a parent is a special case of an ancestor where the directed path has
a length of 1.

For convenience, we also introduce the notions for some special three-variable relations.
Given two variables Xi and Xj, we call a third variable Xk a confounder (i.e., common cause)
if Xk is a parent of both Xi and Xj; a collider (i.e., common effect) if Xk is a child of both Xi

and Xj; and a mediator if Xk is both a child of Xi, and a parent of Xj.

2.2.2 D-Separation and Markov Property

D-Separation D-separation (Pearl, 1988) is a fundamental concept in graphical models
used to determine whether two sets of nodes X and Y in a DAG G are conditionally
independent given a third set of nodes Z, where the three sets are disjoint. We say that
X and Y are d-separated byZ if all paths between any node inX and any node in Y are
blocked by the conditioning setZ. Apath betweenX and Y is blocked byZ if there exists
a node A ∈ Z which satisfies one of the following conditions: A is the parent node in a
fork structure on the path (i.e., ·← A→ ·); A is the mediator node in a chain structure on
the path (i.e., ·→ A→ ·); or in any collider structure on the path (i.e., ·→ A← ·), Z does
not contain A or its descendants.

Markov Property The Markov property in a DAG G states that each node Xi is condi-
tionally independent of its non-descendants given its parents, namelyXi §§ NonDe(Xi)|PA(Xi),
whereNonDe(Xi)denotes the non-descendants ofXi excluding itself, andPA(Xi)denotes
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the parents of Xi. Using the Markov property, we can factorize the joint distribution of all

the nodes in the graph into P(X1, . . . , XN) =
∏N

i=1 P(Xi|PA(Xi)). To infer the causal graph
from probability distributions, a common assumption is faithfulness, namely the valid-
ity to infer all the d-separation sets in the graph from the independence relations in the
probability distribution. In our work, we also take this broadly taken assumption which
holds for most real-world scenarios.

Markov Equivalence of Graphs We denote two DAGs as Markov equivalent if they
induce the same joint distribution P(X). The set of DAGs that are Markov equivalent to
each other is called a Markov equivalence class (MEC). Causal graphs in the same MEC
can be easily identified since they have the same skeleton (i.e., undirected edges) and
V-structures (i.e., structures in the form ofA→ B← CwhereA andC are not connected).

Obviously, there is a one-to-many mapping (i.e., surjection) between the causal graph
and statistical distribution. Namely, each causal graph sufficiently determines a statistical
distribution, but from a statistical distribution, we cannot necessarily induce a unique
causal graph. This is why we say “correlation does not necessarily mean causation”.

2.2.3 Causal Discovery

Causal discovery aims to learn the causal relations by analyzing statistical properties in
the observational data (Spirtes et al., 2001; Glymour et al., 2016; Spirtes and Zhang, 2016;
Glymour et al., 2019). It can be achieved through constraint-based methods (Spirtes et al.,
2001), score-based methods (Chickering, 2002), or other methods taking advantage of the
functional causal models (Shimizu et al., 2006; Hoyer et al., 2008; Zhang and Hyvärinen,
2009).

To fit for the spirit of this paper to infer from correlation (expressed in natural language)
to causation, we base our dataset design on the widely-used Peter-Clark (PC) algorithm
(Spirtes et al., 2001). The PC algorithm is based on the principles of conditional indepen-
dence and the causal Markov assumption, which allows it to efficiently identify causal
relationships among variables in a given dataset. The algorithm first starts with a fully
connected undirected graph among all the variables. Then it removes the edge between
two variables if there is an unconditional or conditional independence relationship be-
tween them. Afterwards, it orients the directed edges whenever there is a V-structure.
And finally, it iteratively checks the direction of the other edges until the entire causal
graph is consistent with all the statistical correlations.

2.3 Dataset Construction

We introduce the construction of our dataset in this section. We start with our task formu-
lation for Corr2Cause, and then briefly give an overview of the data generation process,
followed by detailed descriptions of each step. We conclude the section with the overall
statistics of the dataset.

2.3.1 Task Formulation

Given a set of N variables X = {X1, . . . , XN}, we have a statement s about all the corre-
lations among the variables, and a hypothesis h describing the causal relation r between
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Figure 2.2: Pipeline of the data construction process.

the pair of variables Xi and Xj. The task is to learn a function f : (s,h) 7→ v which maps
the correlation statement s and the causal relation hypothesis h to their validity v ∈ {0, 1},
which takes the value 0 if this inference is invalid, and the value 1 if this inference is valid.

2.3.2 Overview of the Data Generation Process

We base the construction our dataset on several concepts of causal inference, including
the DGCM, d-separation, and MECs, as introduced in Section 2.2.

As in the overviewof our data generation process in Figure 2.2, we first choose the number
N of variables (Step 1) and generate all the unique DGCMs withN nodes (Step 2), which
we will introduce in the Section 2.3.3. Then we collect all the d-separation sets from these
graphs to identifyMECs (Step 3) in Section 2.3.4. Then, in Step 4, we create the formal form
of data in Section 2.3.5. For each correspondence of theMEC to causal graphs, we compose
the correlation statement based on the statistical relations in the MEC, and hypothesize a
causal relation between two variables, and produce the validity v = 1 if the hypothesis
is a shared property of all causal graphs in the MEC, and v = 0 if the hypothesis is not
necessarily true for all the MEC graphs. Finally, we introduce the verbalization process
in Section 2.3.6.

2.3.3 Constructing the Graphs with Isomorphism Checks

The first step of the data generation is to compose the causal graphs, as in Step 1 and
2 of Figure 2.2. For a set of N variables X = {X1, . . . , XN}, there are N(N − 1) possible
directed edges, since each node can link to any node other than itself. To remove cycles
in the graph, we make the nodes in topological order, which only allows edges Xi → Xj,
where i < j. We achieve this by limiting the adjacency matrix of the graph to only having
non-zero values above the diagonal, resulting in N(N − 1)/2 possible directed edges for
the DAGs.
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# Nodes # Unique DAGs # Edges/DAG # MECs # DAGs/MEC

2 2 out of 2 0.50 2 1.0
3 6 out of 23 1.67 5 1.2
4 31 out of 26 3.48 20 1.55
5 302 out of 210 5.89 142 2.13
6 5,984 out of 215 8.77 2,207 2.71

Total 6,325 8.60 2,376 2.66

Table 2.1: Statistics about the source causal graphs in our dataset. Given the number
of nodes, we report the number of unique DAGs, average number of edges per DAG,
number of MECs, and average number of DAGs per MEC.

At the first glance, for N nodes, there should be 2N(N−1)/2 possible DAGs (i.e., the power
set of all edges). However, there could be isomorphic graphs in this set. To avoid this, we
perform a graph isomorphism check (McKay and Piperno, 2014), and reduce the set so
that only unique DAGs are retained, and we show their statistics in Table 2.1. Although
we can handle large graphs, we mostly focus on smaller graphs that can still lead to a
reasonably sized dataset, so we empirically setN = 6, but future work can use our open-
sourced codes to extend to more nodes.

2.3.4 Programmatically Generating the D-Separation Sets

Based on the set of unique DAGs, we then programmatically generate the d-separation
sets by graph theoretical conditions, as in Step 3 of Figure 2.2. To realize this step, we
code an efficient graph-theoretic algorithm to check for all the chain, fork, and collider
structures to automatically identify the set of nodes that d-separate each pair of nodes.
Using the d-separation sets and the faithfulness assumption, we form the statistical cor-
relations as follows. For each pair of nodes, they are conditionally independent given the
variables in the d-separation set. If the d-separation set is empty, then the two nodes are
unconditionally independent. If no d-separation set can be found for the two nodes, then
they are directly correlated.

Moreover, using the d-separation sets, we are able to cluster causal graphs to MECs. We
achieve it by tracing the mapping between the causal graphs and the set of statistical
correlations, and backtracking the graphs with the same d-separation sets to group them
in the same MEC. We show in Table 2.1 that each MEC contains on average 2.66 DAGs.

2.3.5 Composing the Hypotheses and Label

After generating the set of correlations based on the d-separation sets, we now generate
the causal hypotheses. For the causal relation r, we focus on six common causal relations
between two nodes introduced in Section 2.2.1: Is-Parent, Is-Child, Is-Ancestor (excluding
the parents), Is-Descendant (excluding the children), Has-Confounder (i.e., there exists a
confounder, or common cause, of the two nodes), and Has-Collider (i.e., there exists a
collider, or common effect, of the two nodes). In this way, the set of hypotheses contains
all six meaningful causal relations between every pair of variables, resulting in a total size
of 6 ·N(N− 1)/2 = 3N(N− 1) hypotheses for a graph with N variables.

To generate the ground-truth validity label, we start from the correlation sets in Step 3,
then look up all the causal graphs in the same MEC corresponding to the given set of
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Causal Relation Hypothesis Template

Is-Parent {Var i} directly causes {Var j}.
Is-Ancestor {Var i} causes something else which causes {Var j}.
Is-Child {Var j} directly causes {Var i}.
Is-Descendant {Var j} is a cause for {Var i}, but not a direct one.
Has-Collider There exists at least one collider (i.e., common effect) of {Var i} and {Var j}.
Has-Confounder There exists at least one confounder (i.e., common cause) of {Var i} and {Var j}.

Table 2.2: Templates for each causal relation in the hypothesis. We use {Var i} and {Var

j} as placeholders for the two variables.

correlations, and check the necessity of the hypothesized causal relation. If the causal
relationship proposed in the hypothesis is valid for all causal graphs within the MEC,
then we generate the validity v = 1; otherwise, we generate v = 0. A special case of valid
samples is that when the size of the MEC is 1, then there is a bijective mapping between
the causal graph and the d-separation sets, so any hypothesis stating the causal properties
of that unique causal graph is valid.

2.3.6 Verbalizing into Language

Finally, as in the last step of Figure 2.2, we convert all the information above to text data for
our Corr2Cause task. For the correlation statement, we verbalize the set of correlations
in Step 3 into a natural language statement s. When two variables cannot be d-separated,
i.e., A ̸§§ B, then we describe them as “A correlates with B” since they are directly cor-
related and cannot be independent by any condition. And if two variables have a valid
d-separation setC, thenwe describe them as “A is independent of B givenC.” In the spe-
cial case when the d-separation set is empty, we directly say “A is independent of B.” In
addition, we disambiguate the setting by starting the correlation statement with the setup
of a closed system of the given variables, and no hidden variables: “Suppose there is a
closed system ofN variables, A, B, . . . All the statistical relations among theseN variables
are as follows:”. Finally, to verbalize the hypothesis, we feed the causal relation triplet
(Xi, r, Xj) into their hypothesis templates in Table 2.2. For example, we turn the triplet
(A, Is-Parent, B) into “A directly causes B”, as in the example of Figure 2.2.

2.3.7 Statistics of the Resulting Data

We show the statistics of our Corr2Cause dataset in Table 2.3. Overall, our dataset con-
tains 207,972 samples, where 18.57%of the samples have the positive label (i.e., with valid-
ity=1). The average length of the premise is 424.11 tokens, and hypothesis 10.83 tokens.
We split the data into 205,734 training samples, 1,076 development and 1,162 test sam-
ples.1 Since the main purpose of the dataset is to benchmark the performance of LLMs,
we prioritize the test and development sets to have a comprehensive coverage over all
sizes of graphs. Specifically, we iterate through the subset of our data for each N, and
split it entirely for only the test and development sets if the data is less than 1K, which is

1Note for our dataset v2.0: We notice that our original data (v1.0) has duplication due to symmetric relations
andverbalizations of the hypothesis. E.g., Is-Parent(A, B) has the exact hypothesis verbalization as Is-Child(B,
A). Hence, for our data v2.0, we perform a careful de-duplication, and update the data statistics in Table 2.3.
See more version comparison details in Appendix A.1.4. Note that, due to the symmetry, the current version
is a random sample half of the size of the original version, so the modeling results in the experiment section
roughly hold.
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the case for N = 2 and 3. For the other subsets that are larger, we randomly sample up
to 1K or 10% of the data, whichever is smaller, to the test and development sets. We set
the cap to be 1K in order to form a reasonable computation budget, since many LLMs are
expensive to query in the inference mode. Aside from the test and valid sets, all the rest
of the data goes into the training set.

Overall
Statistics by the Number of Nodes N

N = 2 N = 3 N = 4 N = 5 N = 6

# Samples 207,972 12 90 720 8,520 198,630
# Test 1,162 6 48 72 514 522
# Dev 1,076 6 42 72 482 474
# Train 205,734 0 0 576 7,524 197,634

# Tokens/Premise 424.11 31.5 52.0 104.0 212.61 434.54
# Tokens/Hypothesis 10.83 10.83 10.83 10.83 10.83 10.83
% Positive Labels 18.57 0.00 3.33 7.50 13.01 18.85
Vocab Size 65 49 53 55 57 61

Table 2.3: Statistics of our Corr2Cause dataset, and by subsets. We report the total num-
ber of samples (# Samples); splits of the test (# Test), developement (# Dev) and training
sets (# Train); number of tokens per premise (# Tokens/Premise) and hypothesis (# To-
kens/Hypothesis); percentage of the positive labels (% Positive Labels), and vocabulary
size by the number of unique tokens (Vocab Size). Note that the number of unique graphs
and MECs are in Table 2.1.

2.4 Experiments

2.4.1 Experimental Setup

We set up a diverse list of LLMs for the experiments on our Corr2Cause dataset. To test
existing LLMs, we first include six commonly used BERT-based NLI models in the trans-
formers library (Wolf et al., 2020): BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2020), DeBERTa (He et al., 2021), DistilBERT (Sanh et al., 2019), and
DistilBART (Shleifer and Rush, 2020). Apart from these BERT-based NLI models, we also
evaluate the general-purpose autoregressive LLMs based on GPT (Radford et al., 2019):
GPT-3 Ada, Babbage, Curie, Davinci (Brown et al., 2020); its instruction-tuned versions
(Ouyang et al., 2022), text-davinci-001, text-davinci-002, and text-davinci-003; and GPT-
3.5 (i.e., ChatGPT), and the latest GPT-4 (OpenAI, 2023) by April 2023, using the OpenAI
API (https://openai.com/api/) with temperature 0. We also evaluate the recent, more
efficient models, LLaMa (Touvron et al., 2023) and Alpaca (Taori et al., 2023a).

When inspecting the behavior of finetuned models, we adopt a large set of models, includ-
ing GPT-based models (GPT-3 Ada, Babbage, Curie, and Davinci) using the OpenAI fine-
tuning API for classification at https://platform.openai.com/docs/guides/fine-tuning,
open-sourceddecoder-onlymodels (GPT2, GPT2-Large, GPT2-XL, LLaMA-7B, andLLaMA2-
7B), BERT-basedmodels from scratch (BERT-Base, BERT-Large, RoBERTa-Base, andRoBERTa-
Large), and BERT-Based NLI models (BERT-Base MNLI, BERT-Large MNLI, RoBERTa-
Base MNLI, and RoBERTa-Large MNLI) using the transformers library (Wolf et al., 2020).
See training details in Appendix A.1.1.

For the random baselines, we provide “always majority” to predict the majority class 100%
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F1 Precision Recall Accuracy

Random Baselines
Always Majority 0.0 0.0 0.0 84.77
Random (Proportional) 13.5 12.53 14.62 71.46
Random (Uniform) 20.38 15.11 31.29 62.78

BERT-Based Models
BERT MNLI 2.82 7.23 1.75 81.61
RoBERTa MNLI 22.79 34.73 16.96 82.50
DeBERTa MNLI 14.52 14.71 14.33 74.31
DistilBERT MNLI 20.70 24.12 18.13 78.85
DistilBART MNLI 26.74 15.92 83.63 30.23
BART MNLI 33.38 31.59 35.38 78.50

LLaMa-Based Models
LLaMa-7B 26.81 15.50 99.42 17.36
Alpaca-7B 27.37 15.93 97.37 21.33

GPT-Based Models
GPT-3 Ada 0.00 0.00 0.00 84.77
GPT-3 Babbage 27.45 15.96 97.95 21.15
GPT-3 Curie 26.43 15.23 100.00 15.23
GPT-3 Davinci 27.82 16.57 86.55 31.61
GPT-3 Instruct (text-davinci-001) 17.99 11.84 37.43 48.04
GPT-3 Instruct (text-davinci-002) 21.87 13.46 58.19 36.69
GPT-3 Instruct (text-davinci-003) 15.72 13.4 19.01 68.97
GPT-3.5 21.69 17.79 27.78 69.46
GPT-4 29.08 20.92 47.66 64.60

Table 2.4: Overall performance. We report F1 (mainmetric), precision, recall and accuracy.
For the main metric, F1 score, we use the bold font to highlight the overall best perfor-
mance, and underline to highlight the best performance within each category of models.

of the time, “random (uniform)” to uniformly sample a label (i.e., 50% for each), and
“random (proportional)” to sample a label from a Bernouli distribution proportional to
the development set label distribution.

2.4.2 The Corr2Cause Skill in Existing LLMs

We show the performance of seventeen LLMs in Table 2.4. We can see that pure causal
inference is a very challenging task across all existing LLMs. Among all the LLMs, the best
performance is 33.38% F1 by BARTMNLI, which is even higher than the latest GPT-based
model, GPT-4. Notably, many models are worse than random guess, which means that
they totally fail at this pure causal inference task. The observation still holds for few-shot
chain-of-thought prompts tested in Appendix A.1.7.

2.4.3 Finetuned Performance

Next, we address the question: Can we re-purpose LLMs to learn this task? The experimental
results in Table 2.5a of 17 models finetuned on our Corr2Cause seem very strong at first
sight. Most models see a substantial increase, among which the finetuned BERT-based
NLI models demonstrate the strongest performance. The best-performing one, RoBERTa-
Large MNLI, achieves 94.74% F1 score on this task, as well as very high precision, recall
and accuracy scores.
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F1 Precison Recall Accuracy

Finetuned GPT-Based Models Using OpenAI API
GPT-3 Ada 79.85 70.47 92.11 92.92
GPT-3 Babbage 78.19 69.98 88.60 92.48
GPT-3 Curie 81.23 75.00 88.60 93.77
GPT-3 Davinci 85.52 80.26 91.52 95.28

Finetuned Open-Sourced Decoder-Only Models
GPT2 89.18 88.03 90.35 96.66
GPT2-Large 94.29 92.18 96.49 98.22
GPT2-XL 94.30 91.94 96.78 98.22
LLaMA-7B 91.98 88.62 95.61 97.46
LLaMA2-7B 92.92 90.11 95.91 97.77

Finetuned BERT-Based Models
BERT-Base 69.29 54.42 95.32 87.13
BERT-Large 85.26 77.51 94.74 95.01
RoBERTa-Base 87.60 78.47 99.12 95.73
RoBERTa-Large 89.10 82.54 96.78 96.39

Finetuned BERT-Based NLI Models
BERT-Base MNLI 89.88 85.49 94.74 86.51
BERT-Large MNLI 90.19 84.44 96.78 96.79
RoBERTa-Base MNLI 94.27 90.35 98.54 98.17
RoBERTa-Large MNLI 94.74 92.24 97.37 98.35

(a) Performance of finetuned models on the original test set.

F1 (Paraph.) F1 (Var. Ref.)

61.73 41.57
62.34 43.28
64.93 45.32
65.01 46.96

56.76 31.70
55.95 31.99
60.32 43.95
56.41 53.92
52.24 49.47

61.13 35.20
63.64 38.54
65.58 53.12
65.05 60.20

65.56 31.50
67.24 52.04
57.42 62.83
55.45 67.87

(b) F1 scores of finetuned
models on the perturbed
test sets by paraphrasing
(Paraph.) and variable refac-
torization (Var. Ref.).

Table 2.5: Performance of finetunedmodels on the original test set and perturbed test sets.

2.4.4 Fine-Grained Performance by Causal Relation

In addition to the overall results mentioned above, we conduct a fine-grained analysis to
check the performance of the strongest finetuned model, RoBERTa-Large MNLI, by our
six causal relation types. As in Table 2.6a, the model is very good at judging relations
such as Is-Parent, Is-Descendant and Has-Confounder, all with more than 96% F1 scores,
whereas it is several points weaker on the Has-Collider relations. This could be due to
that the collider relation is themost special type, requiring identification of the V-structure
based on both the unconditional independence based on the two variables only and cor-
relationswhenever conditioned on a common descendant. We also conduct error analysis
for non-finetuned models in Appendix A.1.6.

2.4.5 Robustness Analysis

Looking at the very high performance of the finetunedmodels, we raise the next question:
Did the models really robustly learn the causal inference skills?

Two Robustness Tests We design two simple robustness tests: (1) paraphrasing, and
(2) variable refactorization. For (1) paraphrasing, we simply paraphrase the hypothesis
by changing the text template for each causal relation to some semantically-equivalent
alternatives in Appendix A.1.3. For (2) variable refactorization, we reverse the alphabet
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Relation Type F1 Precision Recall Accuracy

Is-Parent 96.18 95.45 96.92 98.67
Is-Ancestor 93.94 93.94 93.94 98.93
Is-Child 95.73 94.92 96.56 98.67
Is-Descendant 96.55 93.33 100 99.47
Has-Collider 92.19 87.41 97.52 94.64
Has-Confounder 98.67 97.37 100 99.73

(a) Fine-grained performance of RoBERTa-Large by causal
relation type on the original test set.

F1 Precision Recall Accuracy

74.80 79.31 70.77 91.73
45.45 90.91 30.30 93.60
73.39 78.43 68.97 92.27
29.41 83.33 17.86 93.60
70.70 75.00 66.90 82.04
70.42 73.53 67.57 94.37

(b) Its fine-grained performance by
relation type after variable refactor-
ization.

Table 2.6: Fine-grained analysis of the best-performing model, RoBERTa-Large MNLI.

of the variable names, namely flipping A, B, C, to Z, Y, X and so on. The inspiration
behind the two robustness tests comes from the spurious correlation analysis described
in Appendix A.1.5.

Specifically, we adopt the common setup of text adversarial attack (Morris et al., 2020;
Jin et al., 2020) to preserve the training set and keep the same saved models, but run the
inference on the perturbed test set. In this way, we separate the possibilities of the models
only overfitting on the training data vs. mastering the reasoning skills.

Results after Perturbation We can see from Table 2.5b that all the models drop drasti-
cally, by up to 39.29 on the paraphrased test set, and up to 62.30 after variable refactoriza-
tion. The best-performing model, RoBERTa-Large MNLI, is especially sensitive towards
paraphrasing, demonstrating the most drop among all models; however, it is the most ro-
bust against the variable refactorization, maintaining a high F1 score of 67.87. We conduct
fine-grained analysis for RoBERTa-Large MNLI under perturbation in Table 2.6b. We can
see the the main source of the performance drop of the model comes from the two classes,
Is-Ancestor (decreasing to 45.45%) and Is-Descendant (decreasing to 29.41%), while the
other classes stay relatively robust, keeping their F1 scores over 70%.

From this analysis, wemake the following suggestions to future studies testing thisCorr2Cause
skill of LLMs. First, it is safe to use it as a test set to benchmark existing LLMs’ per-
formance, since the data we generate is out-of-distribution from the training data of the
current LLMs. Then, when testing finetuned models, it is very important to accompany
adversarial attack together with the i.i.d. test set. We open-source our perturbed test sets
for future work to test the generalizability skill.

2.4.6 Extension to Natural Stories

We envision our Corr2Cause dataset to be a foundation for future extensions to various
settings, such as instantiating the variableswith actual phenomena and situating the story
in a more natural setting. For example, the correlation does not imply causation rule can be
instantiated with the ice cream sales and swimming pool attendance as the two variables,
and argue that ice cream sales does not necessarily affect swimming pool attendance,
because their correlation could be due to a third variable, such as hot weather. We provide
a case study for how to instantiate the symbolic expressions in our dataset tomore natural
stories, and find that LLMs such as GPT-4 can generate realistic, daily life stories that has
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foreseeably broad applications. See more details in Appendix A.1.2.

2.5 Related Work

Existing Causal Reasoning Tasks A large body of existing research of causal reasoning
in NLP focuses on leveraging empirical knowledge to do tasks such as inferring the cause
and effect of why an agent perform certain tasks (Sap et al., 2019a), the motivation and
emotional reaction in a social context (Sap et al., 2019b), how people achieve a given goal
with a set of concrete steps (Zhang et al., 2020a), the development of a story given a dif-
ferent beginning (Qin et al., 2019), and how in general LLMs serve as a knowledge base
of cause and effect (Willig et al., 2023; Kıcıman et al., 2023). In contrast, our Corr2Cause
task focuses on the pure causal inference skill ofmodels, which is a knowledge-dependent
reasoning skill based on formally correct rules from causal inference.

Existing Logical and Inference Tasks Another related area of literature is logical and
inference tasks, of which a well-established one is natural language inference (NLI), to
identify the semantic relationship between a pair of sentences (MacCartney andManning,
2008; Bowman et al., 2015). NLI datasets mainly focus on the set and paraphrase relations.
For example, “a group of boys are playing football” can entail “some guys are playing
football,” where “boys” are a sub-concept of “guys,” and “a group of” and “some” are
paraphrases. Recently, there have been increasing efforts to extend the inference task to
various logical inference skills such as deductive logic and propaganda techniques (Jin
et al., 2022b; Alhindi et al., 2022). Our Corr2Cause dataset is the first dataset testing the
correlation-to-causation inference skill, which is unique of its type.

2.6 Conclusion

In thiswork, we introduced a novel task,Corr2Cause, to infer causation from correlation,
and collected a large-scale dataset of over 200K samples. We evaluated an extensive list
of LLMs on this new task, and showed that off-the-shelf LLMs perform poorly on this
task. We also show that it is possible to re-purpose LLMs on this task by finetuning,
but future work needs to be aware of the out-of-distribution generalization problem. To
avoid theGoodhart’s law, we recommend using this dataset to benchmark the pure causal
inference skills for LLMs that have not seen this dataset. Given the limited reasoning
abilities of current LLMs, and the difficulty of separating actual reasoning from training-
corpus-derived knowledge, it is imperative that our community focus on work aiming to
accurately disentangle and measure both abilities. We believe the present work is a first
such step.

Limitations and Future Work

We identify several limitations of this work and open future directions: First, in the con-
text of this work, we limit the causal graphs to two to six nodes, but future work can
feel free to explore larger graphs. Another aspect is that we do not assume hidden con-
founders in this inference problem, so we welcome future work to generate an even more
challenging dataset to infer the existence of hidden confounders, analogous to the causal
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discovery algorithm of fast causal inference (FCI) (Spirtes et al., 2001). And also in gen-
eral, explorations of other causal discovery algorithms are welcomed too. Finally, a lot
of motivation behind proposing this task is inspired by the problem of invalid reason-
ing patterns in our daily reasoning (Jin et al., 2022b), which could fertilize the ground for
more pervasive spread of fake news. We believe false causal inference is a prevalent type
of fallacious beliefs, and welcome future work to connect the idea of this benchmark to
more real-world false beliefs based on confusing correlation with causation.



CLadder: AssessingCausalRea-
soning in LLMs

Apart from causal discovery covered in the previous chapter, we further explore causal
effect reasoning in natural language, inspired by the “causal inference engine”postulated by
Pearl andMackenzie (2018). To this end, we compose a large dataset, CLadder, with 10K
samples: based on a collection of causal graphs and queries (associational, interventional,
and counterfactual), we obtain symbolic questions and ground-truth answers, through an
oracle causal inference engine. These are then translated into natural language. We eval-
uate multiple LLMs on our dataset, and we introduce and evaluate a bespoke chain-of-
thought prompting strategy, CausalCoT. We show that our task is highly challenging for
LLMs, andwe conduct an in-depth analysis to gain deeper insights into the causal reason-
ing abilities of LLMs. Our data is open-sourced at https://huggingface.co/datasets/
causalNLP/cladder, and our code can be found at https://github.com/causalNLP/cladder.

3.1 Introduction

Once we really understand the logic behind causal thinking, we could emulate it on
modern computers and create an “artificial scientist”.

— Pearl and Mackenzie (2018)

Causal reasoning is believed to be one of the hallmarks of human intelligence (Penn and
Povinelli, 2007; Harari, 2014). The ability to draw causal inferences from available infor-
mation is crucial for scientific understanding and rational decision-making: for example,
knowing whether smoking causes cancer might enable consumers to make a more in-
formed decision (Doll and Hill, 1950, 1954); assessing the causal effect of a vaccine is es-
sential for effective policy-making during a pandemic (Plotkin, 2005; De Serres et al., 2013;
Whitney et al., 2014; Kekić et al., 2023); and understanding the interplay behind family
background, education and income helps devise effective education policies (Card, 1999;
Chetty et al., 2011; Heckman et al., 2006; Psacharopoulos and Patrinos, 2004).

Our opening quote therefore mirrors the aspirations of many scientists in artificial intel-
ligence and causal inference: to construct a machine capable of performing sound causal
reasoning, and able to answer causal questions at scale andwith ease. Recent advances in
large language models (LLMs) have brought about a paradigm shift in natural language
processing (NLP) and artificial intelligence (Radford et al., 2019; Devlin et al., 2019; Brown
et al., 2020; Zhang et al., 2022; OpenAI, 2023; Ignat et al., 2024, inter alia). These transfor-
mative developments raise the question of whether these machines are already capable
of causal reasoning: Do LLMs understand causality?

Many previous works addressed the above question by focusing on commonsense causal-
ity (Zečević et al., 2023; Zhang et al., 2023; Ho et al., 2022), inspired by the literature that

20
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Correct steps to lead to the ground-truth answer: 

Question: Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or
causal relationships: 

Physical vulnerability has a direct effect on the likelihood of fatality and vaccination decision. Vaccination has a direct effect on
the fatality rate.

In the entire population, 50% of the people are vulnerable to a certain disease.
For vulnerable and vaccinated people, the fatality rate is 4%. For vulnerable and unvaccinated people, the fatality rate is 7%.
For strong and vaccinated people, the fatality rate is 1%. For strong and unvaccinated people, the fatality rate is 5.8%.  
Overall, the fatality rate for vaccinated people is 5%, while the fatality rate for unvaccinated people is 4.5%.

Does getting vaccinated increase the likelihood of death?

Ground-Truth Answer: No

1) Parse the causal graph: Confounding

2) Classify the query type: Average Treatment Effect

3) Formulate the query to its symbolic form: 
     E[Y | do(X=1)] - E[Y|do(X = 0)]

4) Collect the available data: 
     P(Z=1)=0.5
     P(Y=1|Z=1,X=1)=0.04, P(Y=1|Z=1,X=0)=0.07
     P(Y=1|Z=0,X=1)=0.01, P(Y=1|Z=0,X=0)=0.058
     P(Y=1|X=1)=0.05, P(Y=1|X=0)=0.045

Y

Z

X

5) Derive the estimand using causal inference:
E[Y | do(X=1)] - E[Y|do(X = 0)]
= \sum_{Z=v} P(Z=z)*[P(Y=1|Z=z,X=1) - P(Y=1|Z=z, X=0)] # remove "do" using
do-calculus
= P(Z=0)*[P(Y=1|Z=0,X=1) - P(Y=1|Z=0,X=0)] 
+ P(Z=1)*[P(Y=1|Z=1,X=1) - P(Y=1|Z=1,X=0)] # turn the expression into terms in
the available data

6) Solve for the estimand by plugging in the relevant data in Step 4:
= 0.5*(0.01 - 0.058)+0.5*(0.04-0.07) # plug in the numbers in the available data
= -0.039
< 0 # the effect size is negative, so the final answer is "No"

Subskill: Causal Relation Extraction

Subskill: Causal Question Classification

Subskill: Formalization

Subskill: Semantic Parsing

Subskill: Formal Causal Inference

CLadder

Subskill: Arithmetics

Figure 3.1: Example question in our CLadder dataset featuring an instance of Simpson’s
paradox (Pearl, 2022). We generate the following (symbolic) triple: (i) the causal query; (ii)
the ground-truth answer, derived through a causal inference engine (Pearl and Mackenzie,
2018); and (iii) a step-by-step explanation. We then verbalize these questions by turning
them into stories, inspired by examples from the causality literature, which can be ex-
pressed in natural language.

explores LLMs as knowledge bases (Petroni et al., 2019; Shin et al., 2020; Jiang et al., 2020) (we
refer to this line of work as causality as knowledge). This involves assessing the alignment
between commonsense knowledge about causal relationships in humans and LLMs. This
line of work generally does not focus on evaluating howwell models are capable of causal
reasoning. For example, it may be difficult to rule out the possibility that LLMs perform
potentially unreliable amortized causal inference, answering causal questions by a simple
repetition of verbal patterns present in the texts composing their training data:12 in other
words, LLMs may just be “causal parrots” (Zečević et al., 2023).

In this work, we introduce a way to test the formal causal reasoning in LLMs. To this end,
we introduce the CLadder dataset. The specificity of CLadder is that causal questions
posed in natural language are grounded in symbolic questions and ground truth answers: the
latter are derived through an oracle causal inference engine (CI engine) (Pearl and Macken-
zie, 2018), which abides by the rules of the causal inference approach described by Pearl
(2009b), based on graphical models and structural causal models (SCMs) (Pearl, 1995;
Spirtes et al., 2001; Pearl, 2009b; Glymour et al., 2016; Peters et al., 2017). We compose
more than 10,000 causal questions that cover a variety of causal queries across the three
rungs of the Ladder of Causation (Pearl and Mackenzie, 2018; Bareinboim et al., 2022)—
i.e., associational (Rung 1), interventional (Rung 2), and counterfactual (Rung 3). We consider

1which may itself contain instances of fallacious causal reasoning.
2The extent to which this would imply an inaptitude of LLMs for causal reasoning has been ques-

tioned (Huszár, 2023).
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several causal graphs, giving rise to scenarios which require different causal inference
abilities. Additionally, we generate ground-truth explanations with step-by-step reason-
ing for more in-depth analysis of LLM behavior. Our symbolic questions and answers are
then verbalized, by turning them into stories which can be expressed in natural language.
To probe whether LLMs employ amortized causal inference, we construct stories with
commonsensical, as well as anti-commonsensical and with nonsensical causal relations:
in these latter cases, amortized causal inference is expected to fail, whereas formal causal
reasoning would still yield the correct answer. An example question from CLadder is
shown in Figure 3.1.

ExploitingCLadder, we also introduce amethod to elicit sound causal reasoning in LLMs
and help them solve challenging causality questions. Specifically, we develop Causal-

CoT, a chain-of-thought prompting strategy (Wei et al., 2022b) inspired by the CI engine,
which prompts the LLM to extract the causal graph, causal query, and available “data”
(e.g., conditional or interventional do-probabilities (Goldszmidt and Pearl, 1992)) from
the question, formalize them precisely, and perform correct causal inferences. Our ex-
periments indicate that CausalCoT achieves an accuracy of 70.40%, which substantially
improves the performance of vanilla GPT-4 by 8.37 points on CLadder.

We summarize the main contributions of our work:

1. In contrast to most other works on causality in LLMs, focusing on commonsense
causal knowledge, our goal is to assess the LLMs’ ability to perform formal causal rea-
soning (briefly reviewed in Section 3.2).

2. We introduce CLadder (Section 3.3), a dataset containing more than 10K causal
questions, spanning all three rungs of the ladder of causation, several causal graphs,
and various stories for verbalization.

3. We develop CausalCoT (Section 3.4), a chain-of-thought prompting strategy to
elicit formal causal reasoning in LLMs, inspired by the causal inference engine.

4. Weperform extensive experiments on eight LLMs (Section 3.5), analyze fine-grained
errors to showcase the limitations of LLMs in formal causal reasoning, and suggest
directions for future research.

3.2 Preliminaries on Causal Inference

Ourdataset design takes inspiration from theCausal Inference Engine as postulated byPearl
andMackenzie (2018), see also (Pearl, 1995). We beginwith a brief overview of the causal-
ity framework by Pearl (2009b).3 This framework was largely developed within the field
of artificial intelligence, and therefore puts particular emphasis on algorithmic aspects of
causal reasoning (e.g., (Pearl, 2011))—which makes it particularly suited for our work,
where we want to algorithmically generate ground truth answers to causal queries, with-
out having to appeal to common sense to assess the correctness of an answer.

3We refer to (Pearl et al., 2016; Bareinboim et al., 2022) for a comprehensive introduction. See also Ap-
pendix A.2.3 for further details.
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3.2.1 The Ladder of Causation

The Ladder of Causation, introduced by Pearl and Mackenzie (2018), is a proposed taxon-
omy, and hierarchy, of causal inference tasks (Bareinboim et al., 2022). It consists of three
distinct rungs.

Rung 1 (“seeing”). This describes statistical associations (“How often do I take an aspirin
when I have a headache?”). Rung 1 deals with statistical dependences among random vari-
ables, and involves probabilistic reasoning about joint and conditional distributions, P(X = x, Y = y)

andP(Y = y|X = x), which can be formalised throughBayesianNetworks (Pearl, 1988; Cow-
ell et al., 2007) representing a set of variables and their conditional dependencies via a
directed acyclic graph (DAG).

Rung 2 (“doing”). This enables us to formalize the concept of actively intervening in
the world, and modifying it toward some end (“If I take an aspirin now, will my headache
subside?”). Interventions can be formalized using the do-operator (Goldszmidt and Pearl,
1992) and Causal Bayesian Networks (Pearl, 2009b) to represent, for example, the distribu-
tion over Y when intervening on X to set its value to x as P(Y = y|do(X = x)).

Rung 3 (“imagining”). This rung deals with counterfactual reasoning, i.e., reasoning
about alternative scenarios in which the world could have been different, possibly even
contradicting the factual state (“Would my headache have subsided, if I had taken an aspirin?”).
Counterfactual probabilities can bewritten as P(Yx = y), representing the probability that
“Y would be y, had X been x”. Reasoning about Rung 3 quantities requires the introduc-
tion of Structural Causal Models (SCMs) (Pearl, 2009b). SCMs are especially powerful as
they enable any quantity in Rungs 1, 2, and 3 to be formulated precisely (Bareinboim et al.,
2022).

3.2.2 Causal Inference

Identification. Causal inference is especially difficult since we typically only have mea-
surements from lower rungs, but want to reason about higher ones. A crucial question
is then under what conditions are such inferences possible, i.e., what assumptions and
measurements are required to unambiguously answer a causal query of interest: this is
the question of identification. As argued in (Bareinboim et al., 2022), “it is generically im-
possible to draw higher-layer inferences using only lower-layer information”. One may be able
to draw inferences at a higher layer given a combination of partial knowledge of the un-
derlying SCM, in the form of a causal graph, and data at lower layers. The graphical
structure therefore plays a crucial role in bridging the rungs of the Ladder of Causation,
andmany prior works have been dedicated to exploiting properties of the graph to trans-
form higher-rung queries into expressions which can be estimated based on lower-rung
quantities (Huang and Valtorta, 2006; Shpitser and Pearl, 2006a; Pearl and Bareinboim,
2022).

Causal Inference Engine. An overarching objective of this research is the construction
of a Causal Inference Engine (CI Engine) (Pearl, 1995; Pearl and Mackenzie, 2018; Hüner-
mund and Bareinboim, 2019), which takes as input a query, a graph, and some available
data (typically from lower rungs than the query); and outputs whether a solution exists,
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Natural Language Part of the Question Generation

Stories (Variable Name Instantiations)

Formal Part of the Question Generation

Common causal graphs with treatment-effect (X-Y) pairs

Sample a causal graph
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X Y

Collision:

Confounding:

Mediation:

X
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X
YDiamond:

Sample a query type

~

Rung 1: Association
● Marginal prob.     ● Conditional prob.

Rung 2: Intervention
● ATE     ● Valid adjustment set

Rung 3: Counterfactuals
● Counterfactual prob.     ● ATT 
● NDE     ● NIE

For Commonsensical Confounding Graphs:
● Story 1: X=vaccine, Z=vulnerability, Y=fatality rate
● Story 2: X=drug, Z=gender, Y=recovery
● Story 3: X=treatment, Z=age, Y=recovery

X YChain:

~

: example option to choose

Generate 
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... ...

Generate the data s.t.
the estimand is identifiable= ∫Z = z P(Z = z) [E(Y | X = 1, Z = z) -

E(Y | X = 0, Z = z)]

ATE = E[Y| do(X=1)] - E[Y |do(X=0)]
Map to the estimand

Apply do-calculus given the causal graph

Observational:
P(...) = ...

Interventional:
E[...|do(...)] = ...

Sample a degree of alignment
with common sense

● Commonsensical  e.g., smoking causes cancer
● Anti-commonsensical  e.g., smoking affects ear shape
● Nonsensical  e.g., zory affects qixy

Sample a story for
variable name instantiation

... ...

~

Levels of Empirical Alignment Verbalize the
entire question

Figure 3.2: The data-generating process of the CLadder dataset. The upper part of the
figure describes the formal part of the question generation, which samples inputs for the
CI Engine and derives a ground truth answer. The bottom part describes the natural lan-
guage part of the question generation—i.e., its verbalization, based onmultiple stories and
different degrees of alignment with commonsense knowledge.

and, if so, an equivalent expression of the query which is estimable from the available
data. While some previous works refer to the CI engine in the context of Rung 2 queries,
where it corresponds to the do-calculus (Shpitser and Pearl, 2006a; Huang and Valtorta,
2006), here we refer to it in a more general sense, encompassing all three rungs.

3.3 Composing the CLadder Dataset

Task Formulation. Like in the example of Figure 3.1, our dataset D := {(qi,ai, ei)}
N
i=1

consists of N triples, each containing a question qi, binary answer ai ∈ {Yes,No}, and an
explanation ei. Our main task is to test the accuracy of the prediction function f : q 7→ a,
i.e., a LLM which maps a natural language causal question to an answer. Apart from
directly evaluating the answer, we also compose the ground-truth explanations e to eval-
uate the reasoning steps of LLMs.

Design Principles. In the composition of our dataset, we adhere to the following design
principles. First, we ensure broad coverage of all rungs of the ladder of causation. Second,
we avoid settings that involve continuous variables and use binary variables instead: this
is partly due to the large availability of identifiability results for binary and categorical
variables, and partly because queries involving binary variables lend themselves to more
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natural-sounding verbalization. Moreover, since LLMs struggle with calculation-heavy
tasks (Hendrycks et al., 2021; Stolfo et al., 2023), and we are chiefly interested in causal
reasoning abilities, we focus on graphs with few (three to four) variables, in various com-
mon configurations, to produce questions which are identifiable from the outset. Lastly,
we carefully design a rich set of templates to translate the abstract formulas into gram-
matically correct and natural-sounding, fluent prompts.

Overall Pipeline. The generation pipeline for CLadder, depicted in Figure 3.2, consists
of two parts:

1. In the Formal Part (which we illustrate in Section 3.3.1), we specify all the required
inputs (query, model, data) and the ground truth answer generated by the CI Engine.

2. In the Natural Language Part (in Section 3.3.2), we verbalize the formal queries and
specification of the causal model and data by associating them to a story or narrative,
using a rich set of templates.

3.3.1 Formal Part of the Question Formulation

The first step of our data generating process is to construct a set of inputs to the CI En-
gine such that by design there exists a well-defined ground truth answer: i.e., we construct
triples of causal queries, graphs, and data such that the query can be unambiguously an-
swered based on the available data (ensuring identifiability by construction).4 The ground
truth causal models, which specify all quantities which are considered measurable in our
questions, are causal Bayesian networks (CBNs), where each causal mechanism (i.e., con-
ditional probability of a variable given its parents in the factorization according to the
causal graphG) corresponds to a Bernoulli distribution. We compile a selection of graphs
G based on examples drawn frommultiple sources from the literature (Spirtes et al., 2001;
Peters et al., 2017; Pearl, 2009b; Pearl and Mackenzie, 2018), where suitable graph struc-
tures are used to illustrate toy problems in causal inference. The complete list of struc-
tures we consider can be found in Appendix A.2.1.3; the complete list of sources in Ap-
pendix A.2.1.1.

Selecting Query Types. We again draw from the causal inference literature to collect
common query types in each rung. As illustrated in the “Sample a query type” box in Fig-
ure 3.2, for Rung 1, we can ask about probability distributions such as marginal probabil-
ities and conditional probabilities. For Rung 2 questions, we can enquire average treatment
effects (ATE) (“how will Y change if X changes from x to x ′?”), or what constitutes a valid
adjustment set that can block all backdoor spurious correlations between X and Y. Lastly,
for Rung 3, we include counterfactuals (“what would happen to Y had X been x ′ instead of x?”),
average treatment effect on the treated (ATT) (“for the subpopulation whose X changed from x to
x ′, how does their Y change on average?”), natural direct effect (NDE) (“what is the direct effect
of X in Y, but not through the mediators?”), and natural indirect effect (NIE) (“what is the effect
from X to Y through the mediators?”).

4We use the term “data” to denote numerical values of conditional or do-probabilities, and not as collec-
tions of data samples. This is in line with how the term is used in other descriptions of the CI Engine (Pearl
and Mackenzie, 2018; Hünermund and Bareinboim, 2019).
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Applying the Causal Inference Engine for the Ground-truth answer. By construction,
the causal processes we define encapsulates all necessary information to make the causal
quantities of the query types identifiable. This allows us to apply the rules of causal in-
ference to obtain an estimand for each causal graph and query type, and evaluate the
estimand to get a ground truth answer. The Rung 2 queries simplify to Rung 1 terms
using the rules of do-calculus (Pearl, 1995), and, for the Rung 3 queries, we apply meth-
ods of counterfactual causal inference (Pearl, 2009b) (with details in Appendix A.2.3.3).
The estimand also specifies exactly which terms are necessary to include in the prompt
as “available data” in order to ensure that enough information is provided to answer the
question correctly (i.e., for identifiability), provided the correct causal reasoning is ap-
plied. Our entire code base of the data generation process can be found at our GitHub
repository, https://github.com/causalNLP/cladder.

3.3.2 Natural Language Part of the Question Formulation

While Section 3.3.1 describes a way to generate the ground-truth causal model, query and
answers, computed through a causal inference engine, real-world causal reasoning prob-
lems are expressed in natural language rather than symbolic expressions. The next part
of the data generation pipeline therefore focuses on the verbalization of all these compo-
nents with a plausible narrative in natural language.

Generating the Stories. For each causal graph, we collect a set of two to five stories
which consist of a list of variable names for each node in the graph. The stories are pri-
marily selected from examples in commonly cited causal inference books and papers (see
Appendix A.2.1.1), which ensures that the stories and corresponding causal graph struc-
tures adhere to empirical common sense (e.g., the drug-gender-recovery example of Pearl
and Mackenzie (2018)). However, it is very likely that at least some of the stories appear
in the training data of many LLMs. Therefore, we also generate various anti-common sense
and nonsensical variants of the stories, meant to isolate the effects of memorization. For
the anti-commonsensical stories, we randomly do one of the actions: (1) replace the effect
variable Y with an unusual attribute, that would not be an effect variable in any of the sto-
ries (e.g., “ear shape”); or (2) create an irrelevant treatment variable X that does not play a
causal role in any of our commonsensical stories, such as “playing card games” (see Ap-
pendix A.2.1.7). For the nonsensical variants, we invent artificial words as variable names
such as “zory” and “qixy” (see Appendix A.2.1.6). .

Verbalizing the Prompts. The verbalization procedure applies themapping of symbolic
variables to semantic concepts to form a plausible narrative for the underlying causal
process and then translates the symbolic expressions from the underlying causal process
to natural language using carefully designed templates.

Specifically, we use several different grammatical forms for each semantic concept t in
the story to make the resulting prompt sound natural and grammatically correct. We first
have the overall variable name voverall(t) (e.g., the recovery status), and, then, for each
binary value i ∈ {0, 1}, we compose its noun vnoun(t = i) (e.g., recovery), verb (e.g., to
recover), sentence vsent(t = i) (e.g., the patients recover), noun with attributive clause
vattr(t = i) (e.g., patients who recover), and third conditional vcond(t = i) (e.g., if the
patient had recovered).
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Using these elements, we first verbalize the causal graph by iterating through each node
and its outgoing edges, using the template “t has a direct effect on CH(t).”, where CH(·)

denotes the set of direct effects (children) of a variable. Then, for the available data d, we
verbalize each conditional probability by “For vattr(tm = i), the probability of vnoun(tn =

1) is p.”, and each marginal probability by “The overall probability of vattr(t = 1) is p.”
Note that our distributions are Bernoulli, so it is adequate to just introduce the parameter
p, which is the likelihood of t = 1. For example, we generate sentences such as “The
overall probability of recovery is 60%.” and “For patients who have small kidney stones,
the probability of recovery is 70%.” Finally, for the query q, we instantiate each query
type in our dataset following our question templates in Appendix A.2.1.5 such that the
questions can always be answered with “yes” or “no”.

Generating the Explanations. Apart from the question-answer pairs, we also generate
the step-by-step explanations. Our goal is to provide all intermediate reasoning steps a
student of causal inference would use to answer the questions, so that each necessary
subskill necessary for causal inference can be evaluated individually. We identify the
following six subskills: d causal graph extraction; e correct query type interpretation; f

symbolic formalization of the query; g semantic parsing to compile the available data; h

estimand derivation; and i arithmetic calculation to solve the estimand, as in the colored
boxes in Figure 3.1. Our explanation e verbalizes all the elements d-i as sequential steps
using our template in Appendix A.2.1.8.

3.3.3 Dataset Statistics

Our data-generating procedure has the potential to algorithmically generate a vast large
number of questions. In practice, we pick a dataset size that is large enough to be represen-
tative, and at the same time not too large to be problematic given the expensive inference
costs of LLMs. We therefore set our dataset size to be 10K, and report the statistics in
Table 3.1.

The dataset roughly balance across the query types, graph structures, stories, and ground
truth answers (as seen in Figure 3.3). Note that some causal queries are only compatible
with a subset of the graphs, thereby resulting in a slightly lower representation of those
queries (such as the NDE and NIE). More details on our design choices can be found
in Appendix A.2.1.4.

3.3.4 Data Quality Check

Our dataset is generated through an algorithmic procedure, which has the following po-
tential benefits: formal correctness; zero human annotation cost; and, most importantly,
controllability—e.g., for the question distribution, as well as for making it more unlikely
that the data was previously seen by the model. However, since the dataset is different
from commonNLPdatasets collected fromhumannatural languagewriting, we also need
to perform additional data quality checks. We therefore checked for a list of non-formal,
natural language properties: grammaticality; human readability; naturalness/perplexity;
and how well humans perform on this task.

For grammaticality, we ran a grammatical error check on our dataset using the Language-
Tool package (Naber et al., 2003), and got on average 1.26 grammatical errors per 100
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Total Rung 1 Rung 2 Rung 3
Size
# Samples 10,112 3,160 3,160 3,792

Question
# Sentences/Sample 6.01 5.88 5.37 6.65
# Words/Sample 80.9 73.43 76.95 90.42
# Nodes/Graph 3.52 3.5 3.5 3.54
# Edges/Graph 3.38 3.3 3.3 3.5

Answer
Positive Class (%) 50 50 50 50

Explanations
# Sentences/Sample 9.11 9.1 8.1 9.96
# Words/Sample 47.95 49.87 32.8 58.97

Table 3.1: Statistics of our CLadder dataset v1.5.
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Figure 3.3: Distribu-
tions of query types in
our 10K data.

words (i.e., 98.74% correctness), which shows that most of the language in our dataset
follows English grammar. For human readability, we checked how comprehensible the
questions are to students who have taken causality courses. We selected a random sub-
set of 50 questions from the dataset, and let a graduate student annotator go through the
questions to judgewhether they could understand them or not: 96% of the questionswere
deemed readable. Next, for the naturalness/perplexity score, we used the open-sourced
GPT-2 model and obtained a perplexity score of 21.17 on our dataset, which is substan-
tially lower (i.e., closer to the distribution of natural human-written text) than the one of
MATH (Hendrycks et al., 2021), a commonly used dataset of maths questions. Lastly, we
conducted a sanity check where one expert evaluator tried to solve a random sample of
50 questions from the dataset, and we recorded an accuracy of 82% on this task.

3.4 Our CausalCoT Model

In order to guide LLMs in correctly answering the questions in CLadder, we draw in-
spiration from the ideal functioning of the CI engine (Pearl and Mackenzie, 2018), which
breaks down a causal reasoning problem into multiple symbolically-grounded, simpler
steps. We developCausalCoT, amulti-step causal chain-of-thought prompt in Figure 3.4,
which combines formal causal reasoning skills with the idea of chain-of-thought prompt-
ing (Wei et al., 2022b) and the use of scratch pads for solving more complicated problems
requiring a long list of steps (Nye et al., 2021) for LLMs.

We base our prompt design on the multi-step reasoning process of causal inference as
shown in Figure 3.4, first starting with four preparation steps: d identifying the causal
graph structure; e determining the causal query type;5 f formulating the query sym-
bolically precisely; and g extracting relevant data from the prompt. Then, given all the
information collected in the preparation stage, we introduce the formal solution: h cor-
rectly deducing the estimand using causal inference techniques; and finally i evaluating
the estimand to answer the question. This set of steps require both natural language under-
standing to parse the question (as in most steps in the preparation phase), as well as formal
causal reasoning to derive the correct estimand (as in the solution phase).

5This step amounts to a multi-class classification problem, where each class is a different causal query.
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Determine the query type.

Formalize the query.

Gather all relevant data.

Extract the causal graph.

Our Causal Chain-of-Thought (CausalCoT) Model:
Guidance: Address the question by following the steps below:

Final answer: No

Step 1

Step 2

Step 3

Step 4

Solution
Phase

Average Treatment Effect (ATE)

P(Z=1)=0.50, P(Y=1|X=0)=0.045, P(Y=1|X=1)=0.05
P(Y=1|Z=0,X=0)=0.07, P(Y=1|Z=0,X=1)=0.058
P(Y=1|Z=1,X=0)=0.04, P(Y=1|Z=1,X=1)=0.01

E[Y|do(X=1)] - E[Y|do(X = 0)] 

= ΣZ=z P(Z=z) [P(Y=1|Z=z,X=1)-P(Y=1|Z=z, X=0)] (Apply backdoor adjustment formula) 

YX

Z

Preparation
Phase

Deduce the estimand using causal inference: Given all the information above, deduce the estimand
using skills such as do-calculus, counterfactual prediction, and the basics of probabilities.

Calculate the estimand: Insert the relevant data in Step 4 into the estimand, perform basic arithmetic
calculations, and derive the final answer.

Based on all the reasoning above, output one word to answer the initial question with just "Yes" or "No".Final Q

Step 5

Step 6

ATE(X) = ... = -0.021 < 0

Question

Figure 3.4: Illustration of our CausalCoT prompting strategy, which designs a chain of
subquestions inspired by the idea of a CI engine (Pearl and Mackenzie, 2018).

We build our CausalCoT prompting strategy using GPT-4 (OpenAI, 2023), a recent au-
toregressive LLM that achieves state-of-the-art performance on many tasks. This lat-
est model builds upon the previous series of general pretrained models (GPT) (Radford
et al., 2019; Brown et al., 2020) and adds reinforcement learning with human feedback, or
instruction-tuning (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022), to align the
model responses to free-form questions with human preferences. It has achieved human-
competitive performance over a list of tasks (OpenAI, 2023; Bubeck et al., 2023; Nori et al.,
2023; Katz et al., 2023; Ziems et al., 2024), among which the more formal tasks unseen in
the training data still remain elusive (Razeghi et al., 2022; Stolfo et al., 2023; Jin et al., 2024).

Given a causal question q, we provide the LLM a list of instructions ℓ := (s1, . . . , s6)

consisting of the detailed descriptions of the six steps s1, . . . , s6 in Figure 3.4. As themodel
fLLM : si 7→ ri autoregressively produces responses r1, · · · , r6 sequentially corresponding
to the six steps, we concatenate all the above before asking the final question “Based on
all the reasoning above, output one word to answer the initial question with just ‘Yes’ or
‘No’.” See the complete prompt in Appendix A.2.2.1. In the end, we obtain the binary
answer a ∈ {Yes,No} as the final result.

Compared with the standard strategy of directly prompting the LLMs a question, we
impose an inductive bias upon LLMs by using the causal inference framework, thus in-
corporating some of the powerful, principled insights of the causal inference community
for NLP tasks. In this way, we enhance the strong natural language ability of LLMs with
formal causal reasoning skills.
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3.5 Testing LLMs with CLadder

3.5.1 Experimental Setup

Our empirical investigation focuses on some of the most recent language models. We
include the latest GPT-4 (OpenAI, 2023) with 1T parameters by the time we conduct the
experiments (i.e., gpt-4-1106-preview), the previous ChatGPT (i.e., GPT-3.5) with 175B
parameters, and then a series of earlier models with instruction-tuning on the 175B GPT-
3 (text-davinci-001, -002, and -003) (Ouyang et al., 2022). As baselines, we also include the
non-instruction-tunedGPT-3 (davinci). We use the OpenAI APIwith temperature 0when
querying these models. We also include open-source, more efficient models like LLaMa
(Touvron et al., 2023) and its instruction-tuned version Alpaca (Taori et al., 2023a), both
with the same number of parameters, 6.7B.

3.5.2 Main Results

Overall Acc.
Acc. by Rung Acc. by Commonsense Alignment

1 2 3 Comm. Nonsens. Anti-C.
Random 49.27 50.28 48.40 49.12 49.01 49.69 49.12
LLaMa 44.03 48.23 29.46 52.66 45.14 44.22 42.67
Alpaca 44.66 52.03 29.53 51.13 44.86 44.40 44.77
GPT-3 Non-Instr. (davinci) 49.92 50.00 49.75 50.00 49.06 49.97 50.72
GPT-3 Instr. (text-davinci-001) 51.40 51.30 52.63 50.47 54.31 50.13 50.05
GPT-3 Instr. (text-davinci-002) 53.15 50.85 56.96 51.90 55.33 52.47 51.81
GPT-3 Instr. (text-davinci-003) 56.26 51.11 62.97 54.96 56.83 54.79 57.49
GPT-3.5 52.18 51.80 54.78 50.32 54.09 50.68 52.09
GPT-4 62.03 63.01 62.82 60.55 62.27 63.09 60.47
+ CausalCoT 70.40 83.35 67.47 62.05 69.25 71.58 70.12

Table 3.2: Performance of all models on our CLadder dataset v1.5. We report the over-
all accuracy (Acc.), and also fine-grained accuracy by rung, and by degree of com-
monsense alignment, from commonsensical (Comm.), nonsensical (Nonsens.), to anti-
commonsensical (Anti-C.).

We compare the performance of all models in Table 3.2. First, we can see that the causal
reasoning task in CLadder is in general very challenging for all models. Models such
as the earlier, non-instruction-tuned GPT-3, and both LLaMa and Alpaca are around ran-
dom performance. With instruction-tuning, models start to show some improvement.
And amongst all, our CausalCoT achieves the highest performance of 70.40%, which is
substantially better than the vanilla GPT-4 by 8.37 points. Moreover, CausalCoT also
achieve the best performance across all three rungs of causal questions, with a monotoni-
cally decreasing performance as the rungs get higher, i.e., the questions get more difficult.
See Appendix A.2.4 for experiments on our earlier dataset v1.0.

3.5.3 Isolating the Effect of Data Contamination

A well-known problem with evaluating LLMs on question-answering tasks is the data
contamination problem, i.e., that LLMs perform well on a test set because the test set is
(unintentionally) contained partially or even entirely in the training data (OpenAI, 2023;
Brown et al., 2020). We address this problem by creating not only the commonsensical
subset of our dataset, but also anti-commonsensical and nonsensical, both of which, by
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construction, are very likely not in the training data of LLMs. From the accuracy by com-
monsense alignment degree in Table 3.2, we can see the original GPT-4 model performs
the worst on the anti-commonsensical subset (1.8 points lower than that on the common-
sensical subset). However, our CausalCoT enhances the reasoning ability across all lev-
els, with substantial improvement on anti-commonsensical data by 9.65 points, highlight-
ing the strength of CausalCoT on unseen data.

3.5.4 Error Analysis by Subquestions

Step d Step e Step f & h Step g Step i

Node Edge Dist. (↓) Overall F1 Rung 1 Rung 2 Rung 3 Estimand F1 Arithmetic

99.34 97.01 1.69 50.65 69.99 59.14 42.12 53 47.53 99

Table 3.3: Performance for each step in CausalCoT. For Step d, we report the F1 score
of node prediction, edge prediction, and also the graph edit distance (Dist.) with the true
graph. See more details in Appendix A.2.5.1.

We conduct a fine-grained error analysis by looking into the performance of different steps
of CausalCoT in Table 3.3.6 We can see that the model is good at Step d to extract causal
graph G, achieving high F1 scores for predicting both the nodes and the edges correctly,
although not perfect, still leaving a graph edit distance of 1.69 between the ground truth
causal graph and themodel-identified graph. The other steps aremore challenging for the
model. Among those, Steps e, f and h require careful and correct application of causal
inference, where the model struggles. This reveals a notable weakness of current LLMs
to perform formal causal reasoning, which is an important direction for future work on
improving and enhancing LLMs. To better understand the reasoning abilities of LLMs, we
also perform an extensive analysis taking the entire reasoning chain of our CausalCoT
and the ground-truth explanations, to produce 20 fine-grained scores about the multi-
step reasoning quality using the ROSCOE framework (Golovneva et al., 2022), and show
detailed results in Appendix A.2.5.2.

3.5.5 Effect of In-Context Learning
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Figure 3.5: Heatmap
showing the how helpful
each query type is to
solving subsequent query
types.

As an additional analysis, we look into the effect of in-context
learning (ICL) by providing an example solution before ask-
ing the question. The interesting question to us is whether
models can generalize across different query types. Namely,
we keep our CausalCoT framework, and prepend a reason-
ing example of query type i, and then calculate how much
improvement it can bring when models answer new ques-
tions of query type j. In Figure 3.5, we can see that condi-
tional probability and NIE are the questions that benefit the
most from ICL, and showing examples of marginal probabil-
ity and ATT are among the most helpful to all questions in
general.

6We experienced some rate-limiting in the fine-grained analysis of LLMs that are only accessible through
a web API. As a result, we occasionally had to evaluate on a subset of 2K random samples.
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3.6 Related Work

Skill evaluation for LLMs. Our work may be seen as part
of the literature aimed at evaluating the performance of cur-
rent LLMs (Radford et al., 2019; Devlin et al., 2019; Brown
et al., 2020; Zhang et al., 2022; OpenAI, 2023, inter alia), focusing on understanding their
strengths and weaknesses. Various studies into the capabilities of LLMs (Bubeck et al.,
2023; Qin et al., 2023; OpenAI, 2023; Ignat et al., 2024) change people’s perception of do-
mains such as education (Baidoo-Anu and Owusu Ansah, 2023; Rudolph et al., 2023),
medicine (Singhal et al., 2022; Nori et al., 2023), law (Katz et al., 2023), and computational
social science (Ziems et al., 2024). However, most work evaluates newmodels on existing
datasets from previously-curated large-scale benchmarks (Wang et al., 2019, 2022; Srivas-
tava et al., 2022), or human exams (Katz et al., 2023; OpenAI, 2023; Jin et al., 2022b) which
is becoming increasingly unreliable due to training set contamination.

Causality-related skills for NLP. With the increasing attention on LLMs and causal-
ity (Zečević et al., 2023; Zhang et al., 2023), we review several formulations of causality-
related skills for NLP, which we summarize into (1) causality as knowledge, (2) causality
as language comprehension, and (3) causality as reasoning. In the causality-as-knowledge
line of work, many existing studies investigate how well NLP models understand com-
monsense causality, such as the cause and effect of an agent’s action (Sap et al., 2019a),
motivation and emotional reaction in a social context (Sap et al., 2019b), correspondence
of a set of steps with a high-level goal (Zhang et al., 2020a), development of a story given
a different beginning (Qin et al., 2019), and how in general LLMs serve as a knowledge
base of causality (Zečević et al., 2023). Concurrent work (Kıcıman et al., 2023) focuses on
evaluating LLMs on various causality related tasks by leveraging the conceptual knowl-
edge accrued from the training data, rather than formal causal inference, except for their
causal sufficiency analysis which is close to our counterfactual questions. Importantly,
most work in this line does not define explicit causal graphs, making it difficult to quan-
titatively define the ground-truth causal relationships in a principled way. The causality-
as-language-comprehension line of work stems from traditional linguistic studies on causal
connectives and causal language usage (Stede, 2008; Cao et al., 2022; Yu et al., 2019), to
the recent causal relation extraction (Bethard et al., 2008; Hidey and McKeown, 2016; Xu
et al., 2020) to identify cause-effect pairs as a subtask of information extraction from text.

Finally, for causality as formal reasoning, our CLadder work formulates the task of causal
inference for NLP, and our other work, Corr2Cause (Jin et al., 2024), addresses the causal
discovery problem to infer causation from correlation. Together, they cover the twomajor
branches of causal reasoning investigated in existing technical literature on causality. See
a comprehensive comparison of literature in Appendix A.2.6.

3.7 Discussion of Limitations and Future Work

ANatural Language “Mini Turing Test” for Causality. Pearl and Mackenzie (2018) de-
scribe an ideal “mini-Turing test” to assess understanding of causal inference, and argue
that if amachine can answer all possible questions correctly, then it “understands” causal-
ity. According to the authors, this is because there are no possible shortcuts when you
consider all possible combinations of queries, graphs and data in this ideal test: due to
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their combinatorial explosion, the machine can only answer all questions right if it cor-
rectly applies causal reasoning. From this point of view, our work constitutes a first step
towards a mini-Turing test formulated in natural language. However, we cover only some of
the commonly studied causal queries spanning all three rungs. Future work may extend
this to further queries, such as, e.g., path-specific effects other than NDE and NIE (Nabi
and Shpitser, 2018), thereby increasing the number of potential questions and moving
closer to the ideal test.

LLMs and Causal Reasoning. It has been claimed that LLMs understand causality well
(e.g., (Kıcıman et al., 2023) report high performance, such as 97% and 92%). In contrast,
our work suggests that LLMs may still be far from reasoning reliably about causality
(reaching only 60+% on CLadder). As argued in Section 3.1, we believe that investigat-
ing this aspect may be of particular importance, since causal inference is crucial in many
policy-relevant scenarios, where reliable AI systems could assist decision-making: from
epidemiology (Glass et al., 2013; Rothman andGreenland, 2005) to economics (Card, 1999;
Hünermund and Bareinboim, 2019) to fairness (Loftus et al., 2018; Plecko and Bareinboim,
2022). Testing the abilities of these systems in semi-realistic scenarios is therefore cru-
cial, motivating some of the design choices in our dataset: e.g., the example in Figure 3.1
was inspired by similar questions which arose in the context of the COVID-19 pandemic,
where incorrect causal reasoning resulted in a fallacywhere vaccinationswere considered
to be harmful instead of beneficial (Morris, 2021; Ellenberg, 2021). Further work may be
dedicated to making the questions and verbalizations even closer to realistic instances of
causal inference problems.

ACI Engine Plug-in for LLMs. An interesting direction for future research could be to
provide the LLM access to an actual implementation of the CI engine. For example, Davis
and Aaronson (2023) tested the improvement of math abilities in LLMs augmented with
plug-ins (i.e., external modules that extend the model’s capabilities by adding specific
functionality or customizing its behaviour for particular tasks, like a calculator), suggest-
ing that they significantly enhance the model’s ability to solve these problems. However,
evenwith plug-ins, there are still often “interface” failures: that is, “[the LLM] often has trou-
ble formulating problems in a way that elicits useful answers from the plug-ins”. We hypothesise
that something similarwould happen for causal inference: even once suitable plug-ins are
built, the language-to-tool interface may still be a non-trivial research question.

3.8 Conclusion

We proposed formal causal reasoning as a new task to evaluate LLMs, and created the
CLadder benchmark, covering several aspects of causal inference across all rungs of the
ladder of causation and verbalizations involving semi-realistic scenarios. To address the
task, we proposed a prompting strategy, CausalCoT, inspired by the principles of formal
causal inference, which introduces multistep chain-of-thought reasoning for causal ques-
tions. Extensive experiments indicate that this dataset is highly challenging, thus offering
a principled tool to gain a better understanding of the reasoning abilities of LLMs and to
develop better models for causal reasoning in natural language.
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Competition ofMechanisms: Trac-
ingHowLLMsHandle Facts and
Counterfactuals

Interpretability research aims to bridge the gap between empirical success and our sci-
entific understanding of the inner workings of large language models (LLMs). However,
most existing research focuses on analyzing a single mechanism, such as how models
copy or recall factual knowledge. In this work, we propose a formulation of competition
of mechanisms, which focuses on the interplay of multiple mechanisms instead of individ-
ual mechanisms and traces how one of them becomes dominant in the final prediction.
We uncover how and where mechanisms compete within LLMs using two interpretabil-
ity methods: logit inspection and attention modification. Our findings show traces of the
mechanisms and their competition across variousmodel components and reveal attention
positions that effectively control the strength of certain mechanisms.

Our code is available at https://github.com/francescortu/comp-mech, and our data at
https://huggingface.co/datasets/francescortu/comp-mech.

4.1 Introduction

Recent advancements in large languagemodels (LLMs) have brought unprecedented per-
formance improvements to NLP (Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023;
Anil et al., 2023, inter alia). However, the black-box nature of these models obfuscates
our scientific understanding of how these models achieve certain capabilities, and how can we
trace the problem when they fail at other tasks. This has brought an increasing focus on inter-
pretability research to help us understand the inner workings of LLMs.

Existing interpretability research has been largely focused on discovering the existence
of single mechanisms, such as the copy mechanism in induction heads of LLMs Elhage
et al. (2021); Olsson et al. (2022), and factual knowledge recall in the MLP layers (Geva
et al., 2021; Meng et al., 2022; Geva et al., 2023). However, different from discovering
what mechanisms exist in LLMs, we propose a more fundamental question: how do different
mechanisms interact in the decision-making of LLMs? We show a motivating example in Fig-
ure 4.1, where the model fails to recognize the correct mechanism when it needs to judge
between two possible mechanisms: whether to recall the factual knowledge on who de-
veloped the iPhone (i.e., Mechanism 1) or to follow its counterfactual redefinition in the
new given context (i.e., Mechanism 2).

We propose a novel formulation of competition of mechanisms, which focuses on tracing
each mechanism in the model and understanding how one of them becomes dominant
in the final prediction by winning the “competition”. Specifically, we build our work
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Figure 4.1: Top: An example showing that LLMs can fail to recognize the correct mech-
anism when multiple possible mechanisms exist. Bottom: Our mechanistic inspection of
where and how the competition of mechanisms takes place within the LLMs.

on two single mechanisms that are well-studied separately in literature: (1) the factual
knowledge recall mechanism, which can be located in the MLP layers (Geva et al., 2021;
Meng et al., 2022; Geva et al., 2023); and (2) the in-context adaptation to a counterfactual
statement, which is enabled by the copy mechanism conducted by induction heads of
attention layers Elhage et al. (2021); Olsson et al. (2022). Based on the latest tools to inspect
each of these twomechanismsNostalgebraist (2020); Wang et al. (2023); Geva et al. (2023),
we then unfold how and where the competition of the two mechanisms happen, and how
it leads to the overall success or failure of LLMs.

Technically, we deploy two main methods: logit inspection Nostalgebraist (2020); Geva
et al. (2022) by projecting the outputs of each model component by an unembedding ma-
trix, and attentionmodificationGeva et al. (2023);Wang et al. (2023). Using thesemethods,
we assess the contributions of various model components, both from a macroscopic view
(e.g., each layer) and a microscopic view (e.g., attention heads), and identify critical posi-
tions and attention heads involved in the competition of the two mechanisms. Moreover,
we locate a few localized positions of some attention head matrices that can significantly
control the strength of the factual mechanism. We summarize our main findings as fol-
lows:

1. In early layers, the factual attribute is encoded in the subject position, while the
counterfactual is in the attribute position (Section 4.6.1);

2. The attention blocks write most of the factual and counterfactual information to the
last position (Section 4.6.2);

3. All the highly activated heads attend to the attribute position regardless of the spe-
cific type of information they promote. The factual information flows by penalizing
the counterfactual attribute rather than promoting the factual one (Section 4.6.3);
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4. We find that we can up-weight the value of a few very localized values of the atten-
tion head matrix to strengthen factual mechanisms substantially (Section 4.6.4).

4.2 Related Work on Interpretability

As deep learning approaches show increasingly impressive performance in NLP, their
black-box nature has hindered the scientific understanding of these models and their ef-
fective future improvements. To this end, interpretability research has been a rising re-
search direction to understand the internal workings of these models.

Interpreting the Representations. One major type of work in interpretability has fo-
cused on understanding what has been encoded in the representations of deep learning
models. This is usually achieved by a probe, namely by training a supervised classifier
to predict features from its representations (Alain and Bengio, 2016; Conneau et al., 2018;
Hupkes et al., 2018; Hewitt and Liang, 2019; Tenney et al., 2019; Jiang et al., 2020; Elazar
et al., 2021, inter alia), or by geometric methods Doimo et al. (2020); Valeriani et al. (2024);
Park et al. (2024); Cheng et al. (2024). Example features of interest include part of speech
Belinkov et al. (2017), verb tense Conneau et al. (2018), syntaxHewitt andManning (2019),
and factual knowledge Petroni et al. (2019).

Interpreting the Mechanisms/Functions. Beyond interpreting the representations in
the hidden states of the black-box models, another research direction is to interpret the
mechanisms or functions that the models have learned, giving rise to the field of mecha-
nistic interpretability (Olah et al., 2020; Elhage et al., 2021; Olsson et al., 2022; Nanda et al.,
2023, inter alia). Some examplemechanisms decoded in recentwork includemathematical
operations such as modular addition Nanda et al. (2023) and the greater-than operation
(Hanna et al., 2023); natural language-related operations such as the copy mechanism
achieved by induction heads in LLMs Olsson et al. (2022) and factual knowledge recall
achieved by MLP layers (Geva et al., 2021; Meng et al., 2022; Geva et al., 2023), which we
describe below.

The Single Mechanism of Copy: One of the basic actions in LLMs is the copy mechanism,
which is found to be operationalized by attending to the copied token in the attention
heads and passing it on to the next token prediction Elhage et al. (2021); Olsson et al.
(2022). This foundational mechanism enables further research to decode more complex
mechanisms, such as indirect object identification Wang et al. (2023).

The Single Mechanism of Factual Knowledge Recall: Another major direction is understand-
ing how LLMs mechanistically recall factual information (Geva et al., 2021; Meng et al.,
2022; Geva et al., 2023). For example, Meng et al. (2022) develop the causal tracingmethod
to show that the factual information is found in the mid-layer MLP units in GPT-2. A
followup work Geva et al. (2023) shows that MLPs of early layers enrich the subject em-
beddings with related attributes, and late attention blocks select and write the correct
factual information to the sentence’s last position.

Interplay of Multiple Mechanisms: In the final stage of our project in December 2023, we
noticed a related study by Yu et al. (2023), which also investigates the role of two different
mechanisms in LLMs. Specifically, they inspect a type of prompt whose subjects are the
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capital cities and whose attributes are the countries, examine the dynamics of the factual
recall mechanism and the effect of the in-context counterfactual statement, and find that
the subject and attribute frequency in the pre-training set can affect the ability of factual
recall. Differently, the methods in our work are applied to a broader set of prompts; more-
over, we also establish novel analyses of the underlying mechanistic details of the com-
petition, and precisely localize the path where the information flows at the level of single
attention map activations, based on which we discover new findings that are unique to
our study.

4.3 Problem Setup

Following the setup of many existing interpretability studies (Olah et al., 2020; Elhage
et al., 2021; Olsson et al., 2022; Nanda et al., 2023, inter alia), we look into the next token
prediction behavior of autoregressive LLMs in their inference mode, namely

P(tk|t<k), (4.1)

which predicts the k-th token tk given all the previous tokens in the context.

Next, we design the task to incorporate the competition of mechanisms as in Figure 4.1.
Specifically, for each factual statementf := (tf1, . . . , t

f
k) consisting ofk tokens (e.g., “iPhone

was developed by Apple.”), we compose a corresponding counterfactual statement c :=

(tc1, . . . , t
c
k ′) (e.g., “iPhone was developed by Google.”). Then, we compose a prompt con-

necting the two statements as “Redefine: c. f1:k−1.”, such as “Redefine: iPhone was developed
by Google. iPhone was developed by ___”.

The two mechanisms can be traced by inspecting the rise and fall of the factual token tfk
and the counterfactual token tck ′ . For the simplicity of notation, we take the tokens out of
the context of their exact position and denote them as tfact and tcofa, respectively, in the
rest of the paper.

4.4 Method and Background

Method 1: Logit Inspection. To inspect the inner workings of the two mechanisms, we
trace the residual stream Elhage et al. (2021), or logits of each component in the LLM. Given
a text sequence of k tokens, LLMs map it into the residual stream, namely a matrix x ∈

R
d×k, where d is the dimension of the internal states of the model. We use the term xl

i to
specify the residual stream at position i and layer l.

An LLM produces the initial residual stream x0
i by applying an embedding matrixWE ∈

R
|V |×d to each token ti, where |V | is the size of the vocabulary. Then, itmodifies the residual

stream by a sequence of L layers, each consisting of an attention block al and MLP ml.
Finally, after the last layer, it projects the internal state of the residual stream back to the
vocabulary space with an unembedding matrixWU ∈ R

d×|V |. Formally, the update of the
residual stream at the lth layer is:

xl = xl−1 + al +ml , (4.2)

where both the attention and the MLP block take as input the x after layer normalization
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norm:

al = al(norm(xl−1)) , (4.3)

ml = ml(norm(xl−1 + al)) . (4.4)

To understand which token the residual stream xl favors, we follow the common prac-
tice in previous work (Halawi et al., 2023; Geva et al., 2023; Dar et al., 2023; Geva et al.,
2022) to project it to the vocabulary space using the aforementioned unembeddingmatrix
WU which maps the latent embeddings to actual tokens in the vocabulary, enabling us to
obtain the logits of the factual tfact and counterfactual token tcofa.

Known as the Logit Lens (Nostalgebraist, 2020), this method is broadly adopted due to its
consistent success in yielding interpretable results, demonstrating its effectiveness through
broad empirical usage. However, it is important to note that it can occasionally fail to
reflect the actual importance of vocabulary items, especially in the early layers of the net-
work (Belrose et al., 2023).

Method 2: Attention Modification. Modifying or ablating the activation of a specific
model component is also a strategy used to improve the understanding of the information
flow within LLMs, including techniques such as causal tracing Meng et al. (2022) and
attention knockout (Wang et al., 2023; Geva et al., 2023).

In our work, we focus on modifying a small number of entries in the attention matrix.
Namely, in the attention matrix Ahl of the h-th head of the l-th attention layer al, we
focus on a certain entry, e.g., at the (i, j) position, where j < i, which is the attention value
of the token xl

i attending to one of its earlier tokens xl
j. Following recent work Yu et al.

(2023) , the modification is after the softmax layer, so the other attention values of the
matrix stay unchanged. For the target entry Ahl

ij , we scale it up by a multiplier of α:

Ahl
ij ← α ·Ahl

ij , where j < i . (4.5)

4.5 Experimental Setup

Data Creation To compose the factual and counterfactual statements as introduced in
Section 4.3, we adopt CounterFact1 (Meng et al., 2022), commonly used dataset to inter-
pret models’ ability of factual knowledge recall. We select 10K data points by considering
only exampleswhere the attributes are represented by a single token andwhere themodel
completes the sentence in a factually accurate manner.

Each instance of CounterFact expresses a relation r between a subject s and an attribute
a: (s, r, a). For example, in the sentence “iPhone was developed by Apple”, s = “iPhone”, r =
“was developed by”, a =“Apple”. Moreover, each (s, r) instance is provided two values of
the attribute a, namely a factual token tfact, and a counterfactual token tcofa, representing
a false fact.

Using this source data, we compose each instance of our test set in the format of (“Redefine:”, s, r, tcofa, s, r, _),
such as “Redefine: iPhone was developed by Google. iPhone was developed by ___”. We pre-
process the original dataset by keeping only the data points whose attribute is a single

1https://rome.baulab.info/data/
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token (for the simplicity of our implementation), and where the model correctly predicts
the factual token tfact when completing the sentence (s, r, _). We randomly select 10K
test samples into our test set from 219,180 such samples. We open-source our dataset at
https://huggingface.co/datasets/francescortu/comp-mech.
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(a) The logit values for the factual token tfact
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Figure 4.2: Logits of the factual token tfact and counterfactual token tcofa across different
positions and layers inGPT-2. The logit of tfact is higher in the subject position in the initial
layers and in the last position of the premise and second sentence in the final layers. The
logit of tcofa is higher in the attribute position in the first layers and in the last position of
the second sentence at the end of the network.

Models For this work, we first choose the GPT-2 small (Radford et al., 2019) model as
it is the most commonly used one in previous interpretability studies (e.g., Meng et al.,
2022; Wang et al., 2023; Conmy et al., 2023; Hanna et al., 2023). Aligning the same model
with those studies can communicate the findings of this work better in the context of
existing literature. Then, in addition to GPT-2, we check the generalizability of our work
by provide supplemental results of Pythia-6.9B (Biderman et al., 2023) in Appendix A.3.1,
to show the robustness of our findings across the two LLMs of different architectures and
scales. In this way, having similar results across the two very diverse models makes the
finding stronger than existing studies, most of which are only on GPT-2.

Implementation Details As for experimental details, GPT-2 small has 117M parame-
ters, consisting of 12 layers with 12 self-attention heads each and a residual stream of
768 dimensions. Pythia-6.9B has 32 layers with 32 self-attention heads each and a model
dimension of 4,096, with a 30x increase in the number of parameters. For all our exper-
iments, we deploy the pre-trained models from the Huggingface Hub Wolf et al. (2020),
and inspect the residual streams by the LogitLens tool in the TransformerLens library
(Nanda and Bloom, 2022).

4.6 Results and Findings

In this section, we trace the competition of the mechanisms within the LLM via the two
methods introduced in Section 4.4, i.e., inspecting the residual stream and intervening on
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Figure 4.3: Contributions of the attention andMLP blocks to the competition of the mech-
anisms. The attention blocks (left) contribute more to the marginal win of the counterfac-
tual mechanism than the MLP blocks (right).

the attention. We providemechanistic analyses on five research questions in the following
subsections:

1. Macroscopic view: Which layers and token positions contribute to the two mecha-
nisms? (Section 4.6.1)

2. Intermediate view: Howdowe attribute the prediction to attention andMLPblocks?
(Section 4.6.2)

3. Microscopic view: How do individual attention heads contribute to the prediction?
(Section 4.6.3)

4. Intrinsic intervention: Can we edit the model activations to modify the strength of
a certain mechanism? (Section 4.6.4)

5. Behavioral analysis: What word choice varies the strength of the counterfactual
mechanism in the given context? (Section 4.6.5)

4.6.1 Macroscopic Inspection across Layers and Token Positions

In the mainmodel that we inspect, GPT-2, we find that it can usually identify the counter-
factual mechanism in 96% of the 10K test examples. This means that, in the last sequence
position, at the output of the network, the counterfactual token, tcofa, gets most of the
times a higher probability than tfact. In the following, we will inspect how the “winning”
of the counterfactual mechanism happens across the layers of the LLM.

Method. We study how tfact and tcofa are encoded in the residual stream using the logit
inspection method described in Section 4.4. Specifically, for a given token position i and a
layer l, we project the embeddingxl

i, i.e., the residual stream in Eq. (4.2), to the vocabulary
space by Λx

l
i = WU · norm(xl

i), where WU is the unembedding matrix and norm is the
normalization of the last layer of the model. By varying l, we measure the values of the
logits of tfact and tcofa as they evolve in the residual stream after the first attention block.

Results. Our results reveal the prevalence of eachmechanism by varying the layer l and
position i.

Finding 1: Information flows from different tokens for different mechanisms. We analyze the
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role of previous context at various token positions with respect to different depths of the
layers. In Figure 4.2a, the blue heatmap above shows the logits of the factual token tfact,
and the red heatmap below shows those of the counterfactual token tcofa.

Looking at the blue heatmap, we see that the subject position is themain contributor to the
logits of tfact in early layers, which is consistent with a previous finding Geva et al. (2023).
Specifically, we also locate the factual attribute in the subject positions by the first MLP
layer, and find they increase on average the value of tfact from 0.38 to 0.74 in the premise
and from 0.9 to 1.93 in the second sentence. Then, in the later layers, the strongest contrib-
utor is the last tokens before the attribute, as the last token position is used to predict the
attribute. From the red heatmap, we see the evolution of tcofa’s logits. The observations of
later layers are similar across twomechanisms, in that the last token contributes the most.
However, in early layers, the counterfactual mechanism’s tcofa token is best encoded in
the attribute position instead of the subject position for the factual mechanism.

Such information flow between different token positions suggests a major role played by
the attention mechanism in moving such information to the last position, resonating with
observations in Geva et al. (2023).

Finding 2: Both the individual mechanisms and competition take place in late, but not early lay-
ers. We trace the competition of the two mechanisms across the layers by plotting in Fig-
ure 4.2b the scale of the logits corresponding to the two mechanisms in the last token po-
sition. The first observation is that the strength of each individual mechanism increases
monotonically across the layers, from a relatively small logit below 1 in early layers to
large values of around 15 in the final layer.

Another observation is that, although bothmechanisms increase in strength, stronger sig-
nals of the competition (where the counterfactual mechanism prevails the factual one)
start after the fifth layer, and this prevalence gradually grows in later layers. The logits
of the counterfactual mechanism are, in most of the examples, the highest in the 50K-
dimensional vocabulary of GPT-2, making tfact dominant in 96% of the examples.

4.6.2 Intermediate Inspection of Attention and MLP Blocks

Behind the overall win of the counterfactual mechanism, we want to trace the contribu-
tions from the attention and MLP blocks in each layer.

Method. For each attention or MLP block, it processes the input embedding and out-
puts the logits of tfact and tcofa to be added to the residual stream. We can consider the
contribution of each block as its added logit values to the residual stream. Intuitively,
if the added logit value for tcofa is higher than that of tfact, then this block pushes the
overall prediction to lean towards the counterfactual mechanism; otherwise, this block
suppresses the counterfactual mechanism.

Hence, we inspect the margin of the added logit of tcofa over that of tfact in each block,
represented by ∆cofa := BlockLogit(tcofa) − BlockLogit(tfact). To this end, we apply the
logit inspection method to analyze the logit distribution at WUa

l
N

and WUm
l
N
, where

N denotes the last token position in the sequence. The logit contribution of the attention
block is the sum over that of all the attention heads. As for the result, a positive value of
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∆cofa for a block means that it supports the counterfactual mechanism in the competition,
and a negative value indicates suppression.

Results. We quantify the contribution of each block in each layer by plotting the ∆cofa
values in Figure 4.3.

Finding 1: The attention blocks play a larger role in the competition of mechanisms than the MLP
blocks. Contrasting the ∆cofa margin of the added logits of the attention blocks in Fig-
ure 4.3a and MLP blocks in Figure 4.3b, we see that the size of ∆cofa is almost always
larger in the attention blocks than in MLP blocks. This is consistent with the work of
Geva et al. (2023) showing that the attention blocks adds most of the information about
tcofa to the residual stream.

Finding 2: Only late but not early layers contribute to the competition of the mechanisms. Wefind
that the early layers have almost no contribution to the competition of the mechanisms,
reflected by the close-to-zero margin ∆cofa in Layer 0-4 for both types of blocks. However,
later layers contribute to substantially to the increase of the margin ∆cofa, by a relatively
smaller rate for theMLP blocks, and a larger overall rate for the attention blocks, together
with a large variance.

Note that we observe a negative ∆cofa around -0.8 in the last attention block, somewhat
favoring tfact, which might be since the factual information is moved to the last position
in the last layers, as already noted by Geva et al. 2023.

4.6.3 Microscopic Inspection of Individual Attention Heads

Beyond the overall contributions of the attention block, we further study the contribution
of each individual attention head in this section.

Method. We analyze the effect of each individual attention head with the logit inspec-
tion method by projecting the outputs of each attention head to the last sequence po-
sition N in the vocabulary space. Formally, we consider ∆cofa = HeadLogit(tcofa) −
HeadLogit(tfact) with the logits from the projection WUa

h,l
N

of each head h. Here aN is
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the output of the attention head h after it has been processed by the output matrix of the
Attention Block but before its sum to the residual stream.

Results. We plot the contributions of individual attention heads to ∆cofa in Figure 4.4,
and introduce the main findings as follows.

Finding 1: A few specialized attention heads contribute themost to the competition. Aswe can see
from the overall contributions of all attention heads across all the layers in Figure 4.4a, sev-
eral attention heads (e.g., L9H6, L9H9, L10H0, and L10H10) strongly promote the coun-
terfactual mechanism, i.e., with a positive value of ∆cofa colored in dark red, and two
attention heads (L10H7 and L11H10) strongly support the factual mechanism instead, re-
flected by the large negative ∆cofa in dark blue.

For example, the sum of L7H2 and L7H10 equals 75% of the large positive ∆cofa contribu-
tion of Layer 7. The sum of L9H6 and L9H9 explains 65% of the ∆cofa at Layer 9.

On the other hand, the two attention heads, L10H7 and L11H10, explain almost the 70% of
the total negative contribution to ∆cofa in the entire network (33% and 37% respectively).
This also explains the reason behind the negative ∆cofa in Figure 4.3a of the previous sec-
tion. Our study is consistent with McDougall et al. (2023) showing that these two heads
are responsible for suppressing the copy mechanisms in GPT-2 small. In our setting, the
joint ablation of these two heads decreases the factual recall of GPT-2 small from 4.13% to
0.65%.

Finding 2: All the highly activated heads attend to the same position – the attribute token. Focus-
ing on the heads with large absolute values of ∆cofa, we show the attention scores of the
last positionN to different tokens in Figure 4.4b. Expectedly, the major heads supporting
the counterfactual mechanism (those in red) attend to the attribute position because they
need to copy this token for the prediction, which echoes the findings in Section 4.6.1.

However, it is surprising to see the other heads supporting the factual mechanism (those
in blue) also mainly attend to the counterfactual attribute token. We find that those heads
read from the attribute position to give a lower value to the logit of tcofa, which might
be an easier operation for it to learn than increasing the logit of the factual token. The
evidence is that, in these two heads, the logit of tfact is smaller than the mean of the two
layers, but the logit of tcofa (which is -1.13 for L10H7 and -1.05 for L11H10) are the lowest
of all the heads in the network.

We include supplementary analyses showing the consistency of Finding 2 on Pythia in
Appendix A.3.1, and provide the full attention maps with attention scores between every
pair of tokens for these heads in Appendix Appendix A.3.2.2.

4.6.4 Intrinsic Intervention by Attention Modification

After understandingwhere the twomechanisms take place, we use the insights to intervene
on the model internal states. Specifically, we perform model editing to alter the factual
mechanism, which concentrates on a few strongly activated attention heads (L10H7 and
L11H10 inGPT-2, andmostly L17H28, L20H18, andL21H8 inPythia, seeAppendixA.3.1.3),
and has most of the information flowing from the attribute position (see Figure 4.4-right
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and Section 4.6.2). In the following, we show that enlarging the value of a few well-
localized attention values can largely improve the factual recall of the model.

Method. We utilize the attention modification method in Eq. (4.5) to apply a multiplier
ofα to the attentionweights of the last token to the attribute position in L10H7 andL11H10
for GPT-2, and L17H28, L20H18, and L21H8 in Pythia. To choose the α value, we perform
a grid search over [2, 5, 10, 100] to maximize the factual recall rate of the model. We find
that α = 5 is the best value for both GPT-2 for Pythia.

Results. We highlight the effect of our model editing method on the strength of the fac-
tual recall mechanism in Figure 4.5. Originally, GPT-2 has only 4% of the cases where the
factual mechanism prevails the counterfactual one, and Pythia only 30%. However, after
modifying the attention weights of the entries mentioned above, the strength of the fac-
tual mechanism increases drastically that it wins over the other mechanism in 50% of the
cases for both models. This result is remarkable since we modify only two entries in the
attention map out of the 33,264 attention values of GPT-2 (117M parameters) and three
entries out of the 270,848 attention values of Pythia (6.9B parameters). This highlights the
importance of the interpretability analysis in Sections 4.6.2 and 4.6.3, which enables us to
find the detailed role played by the individual units of each transformer layer.

4.6.5 What Word Choices Intensify the Competition?

After the intrinsic intervention to edit the internal states of the model, we explore how
the similarity between tfact and tcofa in our dataset affects the mechanism described in the
previous sections.

Method. We divided the dataset into 10 equal bins based on the similarity between the
vectors for tfact and tcofa, with each bin containing 1000 items. Starting from the low-
est, each group represents a 10% segment of the dataset, arranged by increasing similar-
ity scores. For our word similarity metric, we calculate the cosine similarity of the 300-
dimensional word embeddings from the pre-trained Word2Vec model (Mikolov et al.,
2013) implemented in the Gensim Python package (Řehůřek and Sojka, 2010).

Results. As a result of the varying similarity of the two tokens, we see a drastic change
in the dominance of the factual mechanism in Figure 4.6.
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Figure 4.6: Prediction frequency of factual token by similarity level. We show the percent-
age of tfact predictions within each bin compared to the entire dataset (represented by a
dotted line) across various model sizes. We can notice that more similar tfact and tcofa are,
and the factual mechanism is stronger.

Finding 1: Similar tokens confuse the model more easily. Consistently across all the models,
the more similar the two tokens are, the more likely the model is to be confused and
mistakenly let the factual mechanism dominate, to predict tfact as its output.

Finding 2: Largermodels suffermore from such confusion. For example, the largest one, Pythia-
6.9B, demonstrates a very strong attachment to the factual information, letting the factual
mechanism win almost 45% of the cases when the token similarity reaches 90%. Even
when the similarity is low, larger models are still more likely to confuse and lean towards
the factual mechanism. This finding resonates with the observations from the inverse
scaling prize McKenzie et al. (2023) that larger models have a greater capacity to store
and retrieve factual information, thus more influenced by the factual mechanism.

4.7 Discussion and Future Work

Situating Our Findings in Related Work. Our findings about the late attention blocks
are consistent with Geva et al. (2023), showing that late attention blocks write most of
the information to the last layer when adding a counterfactual premise. Surprisingly,
however, we find that the largest contribution to the factual prediction of the network
mostly comes from the suppression of the counterfactual token read from the attribute
position rather than the promotion of the factual token from the subject position.

Consistently with McDougall et al. (2023), we find that few highly specialized heads
suppress the counterfactual information. Moreover, we make a unique contribution up-
weighting only two or three attention entries of these heads to increase substantially the
number of factual responses of the model.

With an approach similar to ours, Yu et al. (2023) find that more heads can promote the
factual mechanism, also in early layers, but found it challenging to improve the factual
responses by scaling up the weights of the attention maps. This discrepancy can be due
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to the broader set of topics we include in our prompts, which allowed us to select fewer,
more specialized heads, to the different ways the prompts are framed, or also to our more
focused modification of the attention maps.

Future Work For future research directions, we aim to analyze more in depth how our
findings depend on the prompt structure andwhether the promotion of factual responses
by suppressing the counterfactuals generalizes to larger models and a more comprehen-
sive variety of datasets.

4.8 Conclusion

In this work, we have proposed the formulation of the competition of mechanisms as a pow-
erful interpretation when LLMs need to handle multiple mechanisms, only one of which
leads to the correct answer. We deployed two mechanistic interpretability tools, logit in-
spection and attention modification, and identified critical positions and model compo-
nents involved in competing for the mechanisms. Finally, we discovered a few localized
positions in the attention map, which largely control the strength of the factual mecha-
nism. Our study sheds light on future work on interpretability research for LLMs.

Limitations

Limited models: Our study aligns with most existing work in mechanistic interpretability
to use GPT-2 small. However, we understand that this is a small model with far fewer pa-
rameters than current state-of-the-art LLMs. Future work is welcome to extend to larger-
sized models, which might generalize our conclusion to a certain extent, and also reveal
interesting behavior once the models get beyond a specific size, maybe also seeing a U-
shaped curve Wei et al. (2023) for the dominance of the counterfactual mechanism.

Interpretability method: Furthermore, our experiments and insights are heavily grounded
in the interpretability within the embedding space of the model’s inner components. This
approach is reliable and extensively employed in mechanistic interpretability research
(Dar et al., 2023; Geva et al., 2022; Halawi et al., 2023). The logit inspection method, al-
though commonly employed in previous work, can occasionally fail to reflect the actual
importance of some vocabulary items, especially in the early layers of the network (Bel-
rose et al., 2023).

Simplicity of the prompts: Our prompts have a relatively simple structure for the control-
lability of the counterfactual information tracing, as it is very challenging to follow the
information flow in a more diversified set of prompts. We welcome future work to ex-
plore methodological advances to enable analyses over more diverse prompts.

Ethical Considerations

The aim of our study is to enhance comprehension of the interplay among mechanisms
within language models that may yield unforeseen and undesirable outcomes. Addi-
tionally, our research serves as a conceptual demonstration of methods to guide model
behavior under such conditions. We believe that recognizing and dissecting the mech-
anisms by which LLMs produce unpredictable responses is crucial for mitigating biases
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and unwanted results. Moreover, understanding the competitive dynamics under inves-
tigation is critical for improving the safety of LLMs. Specifically, inputting a prompt with
an inaccurate redefinition may lead the model to inadvertently reveal sensitive factual
information.



A Causal Framework to Quan-
tify theRobustness ofMathemat-
ical Reasoning in LLMs

We have recently witnessed a number of impressive results on hardmathematical reason-
ing problemswith languagemodels. At the same time, the robustness of thesemodels has
also been called into question; recent works have shown that models can rely on shallow
patterns in the problem description when generating a solution. Building on the idea of
behavioral testing, we propose a novel framework, which pins down the causal effect
of various factors in the input, e.g., the surface form of the problem text, the operands,
and math operators on the output solution. By grounding the behavioral analysis in a
causal graph describing an intuitive reasoning process, we study the behavior of lan-
guage models in terms of robustness and sensitivity to direct interventions in the input
space. We apply our framework on a test bed of math word problems. Our analysis
shows that robustness does not appear to continuously improve as a function of size, but
the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness
and sensitivity compared to all other GPT variants. Our code and data are available at
https://github.com/alestolfo/causal-math.

5.1 Introduction

Many natural language understanding situations, such as understanding the financial
news, require reasoning with text that includes numbers. However, such mathematical
reasoning is challenging for NLP models (Cobbe et al., 2021; Mishra et al., 2022b). Math-
ematical reasoning for text has been an active area of research for a while (Seo et al., 2015;
Sachan and Xing, 2017; Sachan et al., 2017, 2018, inter alia), and has also emerged as a
key task to track the capabilities of large language models (LLMs) in recent years (Brown
et al., 2020; Ouyang et al., 2022; Wei et al., 2022a, inter alia).

However, despite the impressive performance of LLMs on variousmath reasoning bench-
marks (e.g., Ouyang et al., 2022; Chowdhery et al., 2022), it remains unclear whether these
models have learned mere artifacts in the data or have truly mastered the mathematical
concepts needed to consistently solve all variations of the same problem (Patel et al., 2021;
Razeghi et al., 2022; Welleck et al., 2022). In sharp contrast with a large number of papers
on improving the performance of LLMs on various types of math-based problems, there
has been little effort on behavioral analysis of LLMs for these tasks. Existing methods
for understanding the robustness of these models (Patel et al., 2021) rely on manually
constructing variations of math problems, and we do not yet have a principled, compre-
hensive framework for quantifying such robustness.

Thus, in this work, we propose a formal framework based on causal inference, to quantify

50
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Kyle could fit n1=26 drawings on each page. If he has n2=11 
pages, the number of drawings he can make is ___.

Kyle could fit n1=2 drawings on each page. If he has n2=143 
pages, the number of drawings he can make is ___.

Prediction

LLMs

Original text:

Example do-intervention 
by our framework:

Keep ground-truth g,
but change n1, n2

After do-intervention

Pred = 286 = g
P(286)=0.085

Pred = 143 (incorrect)

P(286)=0.001

Original prediction

Distribution of the Predicted Numerical Answer

P(R)

Figure 5.1: Through our framework, we conduct do-interventions on the input and eval-
uate the change in the distribution P(R) of the prediction R by LLMs, in this figure, GPT-J.
This allows us to measure the causal effect of each factor in the input on the model’s re-
sponse.

the robustness of NLPmodels’ math reasoning abilities. Specifically, we describe a causal
graph formulation ofmath reasoning, where the graph allows us tomeasure the difference
in the structural causal models of human reasoning and model judgment. We consider
various causal factors such as the textual framing of the question, numerical operands,
and operation types. Then, we identify a set of interventions in the context of math word
problems (an example of which is illustrated in Figure 5.1), and provide a causal inference
framework to obtain causal effects of each factor via direct do-interventions (Pearl, 1995)
and causal mediation analysis (Pearl, 2001). While our approach is reminiscent of recent
studies using causal analysis for LLMs (Finlayson et al., 2021; Vig et al., 2020b;Meng et al.,
2022), in this work, we provide a new theoretical analysis framework specifically suitable
for math reasoning. Using our framework, we disentangle factors affecting the model’s
predictions and measure their influences. This way, we are able to provide insights into
themodel’s reasoning in terms of robustness and sensitivitywith respect to changes in these
factors.

We apply our framework to study a set of thirteen GPT models with various sizes and
training procedures (i.e., instruction-tuned and non-instruction-tuned). We observe that,
among non-instruction-tuned language models, the larger ones tend to be more sensi-
tive to changes in the ground-truth result of a math word problem, but not necessarily
more robust. However, we observe a different behavior in the instruction-tuned GPT-3
models (Ouyang et al., 2022), which show a remarkable improvement in both sensitivity
and robustness, although the robustness reduces when problems get more complicated.
We additionally investigate the role of size and instruction tuning on the model’s perfor-
mance with three models of the LLaMAfamily (Touvron et al., 2023) and Stanford Alpaca
(Taori et al., 2023a).
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Figure 5.2: Causal graph of model predictions on math questions. We highlight the dif-
ference between a cognitively-inspired correct reasoning path (Gh) and the undesired ef-
fects that some factors might have on the model’s prediction (red arrows). By performing
controlled interventions of the numerical values (N ) and on the textual framing of the
problem (T , S), we are able to quantify the causal effects of each factor.

5.2 Problem Setup

We consider a dataset D of math word problems (MWPs), where each MWP is denoted
as a questionQ. Q is a list (T ,N) consisting of a question template T and an ordered list
of operands N = (N1, N2, . . . ,Nm). Each question template T := (O, S) further contains
two types of information: a set of arithmetic operationsO implicitly expressed in the ques-
tion, and the text surface form S irrelevant to the arithmetic operations. O incorporates the
information relative to the operations as a collection of tuples {(O1, i1, j1), (O2, i2, j2), . . . },
where Ok ∈ {+,−,×,÷} (k ∈ N) and ik, jk ∈ N represent the indices of the operands to
which operator Ok should be applied.1 The ground-truth result G = fO(N) is calculated
by computing the function fO, which represents the application of all the operators in O

to the respective operands. We illustrate the factors in Q and their inter-dependency in
the causal graph in Figure 5.2. A two-operand instance q ofQ in this form from Patel et al.
(2021) is:

Template t: Mark hasn1 trees in his backyard. If he plantsn2 more, howmany
trees will he have?
Operands n: (n1 = 12, n2 = 13)

Operations o: {(“+”, 1, 2)}
Result: g = fo(n) = n1 + n2 = 25

Our goal is to quantify the robustness of a modelM on the set of problems q ∈ D. Ideally,
D should be a dataset not seen by the model during training. We assume that a model
takes q as input and predicts a probability distribution of the result R: P(R | t,n). Our
formulation below will be easier to understand using this finite discrete set and can be
generalized to any kind of data pairing a natural language template with a function that
maps a set of operands to a result (e.g., a Python program; Mishra et al. 2022a).

1The intermediate result of operation Ol is indicated by ik = m + l.
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5.3 A Causal Framework

In this section, we describe our framework in three steps. First, we define the idea of
model robustness on MWPs. Then, we identify possible do-interventions (Pearl, 1995)
that we can perform. Finally, we describe the causal effects that we measure to quantify
the robustness of various models.

5.3.1 Step 1. Question Reformulation

We address the research question “Is a model reasoning robustly on MWPs?” by compar-
ing the causal mechanisms of the model’s decisions to a hypothesized human reasoning
mechanism. Note that we do not claim to know how humans reason about these prob-
lems. We simply propose a reasonable and intuitive way to judgemodel robustness given
a reasonable and intuitive human reasoning mechanism inspired by findings regarding
the independence of language and mathematical reasoning in humans (Brannon, 2005;
Monti et al., 2012).

Human Reasoning Mechanisms. The causal mechanisms of how humans might solve
q include

o = fabstract(q) , (5.1)

g = fo(n) , (5.2)

where they first abstract the arithmetic operations o from the problem q by some cognitive
process fabstract, and then apply the operation to the operands to obtain the result g. We
show these mechanisms in the green subgraph Gh of Figure 5.2.

Model Reasoning Mechanisms. In contrast, the causal mechanisms of how a model
might solve q are as follows:

r = fblackBox(t,n) , (5.3)

where we are unsure about (1) what part(s) of t the model takes into account, and (2) how
it operates over the relevant variables.

Thus, we draw all possible causal mechanisms that might take place in the black-box
model fblackBox in the complete causal graph in Figure 5.2. Some possible fine-grained
causal mechanisms are

1. The model might attend over the question template t in two ways: paying attention
to the text surface form s via the causal path T → S → R, or text relevant to the
math operations o via the causal path T → O → R.

2. The model might also attend to the operands n := (n1, n2, . . . ) via a causal path
N → R.

3. If themodel learns the correct causalmechanisms as in the human cognitive process,
it should capture how the operator and the operands matter to the ground-truth
result g (viaO → G andN → G) and then the model prediction should be sensitive
to any changes in the ground truth, namely G → R. No spurious correlations can
directly affect R without going through the mediator G.
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Hence, to answer the question “How robust is the mathematical reasoning of a model on
MWPs?” we can answer the following subquestions:

1. How does R change in response to G? By quantifying this, we assess the sensitivity
(correct responsiveness) of the model to changes in the problem. In other words,
does the model correctly adjust its prediction in response to a change in the correct
solution of the problem?

2. What is the (unwanted) direct causal effect size of S → R, and N → R? We see the
quantities as a measure of the brittleness (i.e., wrong responsiveness) of the model
to result-preserving changes in the input. The lower the direct causal effect of S and
N , the more robust the model is.

5.3.2 Step 2. Causal Intervention List

After formulating the cognitively-inspired subgraphGh anddefining the undesired causal
paths in Figure 5.2, we list all feasible limited actions that allow us to perform our causal
analysis. In the context of MWPs, we use the following interventions:

1. Direct intervention on all possible n1, n2, . . . ;
2. Partially controllable interventions on T . We can replace the template T in two

ways:

(a) both S andO are affected, or
(b) S is affected butO is not affected.

5.3.3 Step 3. Turning Limited Actions into Causal Effect Sizes

Next, we explain howwe can obtain the causal effect sizes we want (listed in Step 1) from
the limited set of interventions we can do (listed in Step 2). Specifically, we first start from
all the feasible interventions, and for variables that we cannot directly intervene on, we
apply deductions fromdo-calculus (Pearl, 1995) to obtain or approximate the direct causal
effect sizes. In the following, we describe a list of causal effect sizes that we need.

General Formulation. Let us consider an intervention do(X : x → x ′), where X ∈
{T , S,N } and a problem Q = {T ,N }. The support of the numerical values Ni’s and R is
I ¦ N, and we consider N to be distributed uniformly over the set {n ∈ I2 | fO(n) ∈ I}.
We denote the distribution before the intervention P(R | T ,N) as P and the distribution
after the intervention as P ′.

Following the distributional definition of causal effect by Pearl (1995), we quantify the
effect of factor X in our causal graph using a distance metric δ between the distributions
P and P ′. That is,

CE = δ(P, P ′), (5.4)

where CE can refer to the total causal effect (TCE, i.e., the joint effect through all the
directed causal paths from a variable to another), or the direct causal effect (DCE, i.e., the
effect from the directed causal path from a variable to another that does not go through
any intermediate variables) (Pearl, 2001). We describe our choices for δ in Section 5.3.4.
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Causal Effects of the Operands. When intervening on the operandsN := (N1, N2, . . . ),
we can obtain the size of the total causal effect ofN on R, namely

TCE(N on R) := En ′∼P(N)[δ(P, P
′)], (5.5)

where P ′ = P(R|T ,do(N = n ′)) . (5.6)

Note that this TCE is not the exact desired quantity, because we want to separate two
different paths of howN affects R: (1) the pathN → G → R, which is the correct decision
path that we want the model to pick up (where the model reacts to the change in the
ground-truth answer), and (2) the path N → R, which is the spurious correlation that
the model might have learned (where the model relies on some spurious correlations
with certain numerical values, which could be traced to perhaps their frequencies in the
training corpus).

We can quantify the direct causal effect (DCE, i.e., the effect from the directed causal path
from a variable to another that does not go through any intermediate variables) (Pearl,
2001) of N on R, namely the strength of the direct causal path N → R, by controlling for
G to be fixed every time we intervene onN :

DCE(N → R) := En ′∼P(N |G)[δ(P, P
′)], (5.7)

where P ′ = P(R|T ,do(N = n ′)) . (5.8)

For example, if we observe a model doing 100+ 100 = 200 correctly, we want to separate
the math ability here into (1) the model’s sensitivity towards the ground-truth answer,
and (2) the model’s decisions based on its familiarity with just the operand 100. Here, the
overall effect is the calculable TCE(N on R) by Eq. (5.5), and one of the subeffects is the
calculable DCE(N → R) by Eq. (5.7).

Causal Effects of the Text Surface Form. As for the operands, we can compute both the
direct and indirect effects of the surface form representing the math problem. In particu-
lar, intervening on T without controlling for O (intervention 2a in Section 5.3.2), we can
compute the total effect, i.e.,

TCE(T on R) := Et ′∼P(T )[δ(P, P
′)], (5.9)

where P ′ = P(R|N ,do(T = t ′)) . (5.10)

Controlling for the operationsO (intervention 2b in Section 5.3.2) will instead allow us to
obtain the direct causal effect of the surface text:

DCE(S → R) := Et ′∼P(T |O)[δ(P, P
′)], (5.11)

where P ′ = P(R|N ,do(T = t ′)) . (5.12)

Note that since there is no mediator between S and R, the DCE(S → R) is also TCE of
S on R. The only adaptation that we need to make with regard to the MWPs is that it is
not feasible to enumerate all possible perturbations of S. Therefore, the practical results
that researchers can achieve are over a certain subset of S. In practice, we obtain this by
intervening on T without affecting O.
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Causal Effects of the Operators. The ideal way to obtain the TCE of O on R is through
some careful human annotation that minimally changes the templates as Kaushik et al.
(2020) do for sentiment classification. The challenge for MWPs in our case is that with all
our possible interventions, we cannot only intervene onOwithout introducing changes to
the irrelevant surface form. However, wemight get some information about TCE(O on R)

because, on the causal graph, the total causal influence of T on R actually flows into two
directed paths, one through S to R (which is the DCE(S → R)), and the other fromO to R,
which is our interested quantity TCE(O on R). Therefore, we compare the two quantities
we know, TCE(T → R) and DCE(S → R), to get a sense of the causal influence of O on R

that we cannot obtain in any other way.

5.3.4 Step 4. Quantifying the Causal Influence

Consider a realization of problemQwith operands n and ground-truth result g = fo(n),
and denote by g ′ the result after the intervention do(X : x → x ′). We quantify the causal
effect of factor X on the model’s prediction R in two ways: by assessing the change in the
predicted result, and by measuring the change in the probability assigned by the model
to the correct result g (or g ′).

Change in the Prediction To account for the inability of LMs to capture the continuous
property of numbers (Jin et al., 2021a), we measure the change in the model’s prediction
using an indicator of the “change result” event:

δcp(P, P
′) := r ̸=r ′ , (5.13)

where r = argmaxx∈I P(x), and r ′ = argmaxx∈I P
′(x).

Relative Change in Confidence Inspired by Finlayson et al. (2021), we also highlight
the change in terms of the relative difference in the probability assigned to g and g ′. We
formulate two types of relative change, one quantifying the relative change in the confi-
dence of g, and the other quantifying the relative change in the confidence of g ′:

∆rel =
P(g) − P ′(g)

P ′(g)
(5.14)

∆ ′
rel =

P ′(g ′) − P(g ′)

P(g ′)
. (5.15)

We quantify the overall relative change in confidence (RCC) as the average of the two
relative changes above:

δrcc(P, P
′) =

1

2

(

∆rel + ∆ ′
rel

)

. (5.16)

AUnified Form We are interested in the average causal effect of the intervention across
all problems inD. Thus, wemeasure the average of the effects over all instances q ∈ D. We
denote by the subscripts TCEcp/DCEcp and TCErcc/DCErcc the causal effects computed
using the change in prediction metric and the relative change in confidence, respectively.
We describe how we construct the dataset D in Section 5.4.2.
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5.4 Experimental Setup

In this section, we describe the data used to perform the interventions and to measure the
causal effects.

5.4.1 Datasets

For our analyses, we use instances of math word problems from three popular datasets:
ASDiv-A (Miao et al., 2020), MAWPS (Koncel-Kedziorski et al., 2016), and SVAMP (Pa-
tel et al., 2021). The examples contained in these collections are pairs (t,o) consisting
of a question template t with its annotated operations o. Each of these pairs can be in-
stantiated multiple times into problems q = (t,n) by filling the template with numerical
values (n1, n2, . . . ) and computing the ground-truth result g = fo(n) (most problems in-
volve two to three operands, i.e., |n| ∈ {2, 3}). We select a set of 437 two-operand and
307 three-operand template-expression pairs that we use to generate pairs of prompts
representing an intervention. More details about the prompt generation procedure are in
Appendix A.4.1. We use (t,n) to refer to an instantiated template that we use as a prompt.

5.4.2 Intervention Data

Given an MWP q = (t,n) and its solution g, we generate a second problem-solution in-
stance (q ′, g ′) depending on the type of causal effect CE we want to measure and on the
considered variable. When intervening on the operands of the problem, the text of the
problem is kept unaltered and a set of new operands n is sampled in such a way that the
result g is affected or not depending on the effect that is being measured. When changing
the textual description of the problem, we change t such that either o ′ = o, or o ′ ̸= o. In
the former case, we sample a different template t ′ = (s ′,o) from the set of templates de-
scribing the same operations o, in the latter case we sample a new t ′ describing a different
operation. In Appendix A.4.2.1 we report some examples of (q, q ′) pairs representing the
different types of interventions.

Given a model, we use the question pair (q, q ′) to obtain a pair of answer distributions
P(R|t,n) and P(R|t ′,n ′), which we use to measure the causal effect of the intervention.
We consider the space for the numerical values to be I = {1, 2, . . . , C} consisting of integer
values, following the setup of several existing MWP datasets (Miao et al., 2020; Koncel-
Kedziorski et al., 2016; Patel et al., 2021). To control our experimental costs andmake sure
themodels keep the number as one token, we setC = 300. From all the tokens in amodel’s
vocabulary, we focus on the probability assigned to the numbers in our numerical space
I, and thus we use P(R = r) to denote the normalized probability Praw(R = r)/Z, where
Z =

∑C
r=1 Praw(R = r), and Praw(x) is the raw probability score assigned to the vocabulary

token x. For each intervention type, we generate a dataset D consisting of (q, q ′) pairs.
Unless otherwise specified, for our experiments we generate 500 intervention pairs for
each template, and results are averaged over three seeds.

5.4.3 Models to Evaluate

We use our framework to assess the robustness of reasoning in thirteen pre-trained lan-
guage models. We consider five sizes of the GPT-2 model (Radford et al., 2019): dis-
tilled (Sanh et al., 2019), small, medium, large, and XL. We evaluate four models from
EleutherAI that were pre-trained on the Pile (Gao et al., 2020): GPT-Neo 1.3B and 2.7B
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(Black et al., 2021), GPT-J-6B (Wang and Komatsuzaki, 2021), and GPT-NeoX-20B (Black
et al., 2022). We use HuggingFace Transformers (Wolf et al., 2020) to access the models.
Additionally, we experiment with a set of instruction-tuned versions of GPT-3 (Brown
et al., 2020): Instruct (Ouyang et al., 2022), Curie, Davinci-002, and Davinci-003.2 Experi-
ments with GPT-3 are carried out under the constraints set by the OpenAI APIs3, which
prevent us from computing the causal effect using the same procedure as for the other
models. We report the details about how the metrics were computed for GPT-3 in Ap-
pendix A.4.3. In the reported results, we indicate with an asterisk (∗) the metrics that
were influenced by this limitation.

5.5 Results

Our analyses focus primarily on two-operand problems (Sections 5.5.1 and 5.5.2) and later
extend tomore complex problems that involve three operands (Section 5.5.5) for themod-
els that perform best on the two-operand test bed. We compare the direct causal effect
DCE and the total causal effect TCE of N and T on R. DCE represents the undesired ef-
fect for a model to being mistakenly responsive to a change in N or T not leading to a
change in the result g (low robustness), whereas higher values of TCE indicate a higher
ability of themodel to correctly adjust the probability weight assigned to the new solution
g ′ after the intervention (high sensitivity).

5.5.1 Effect of N on R

From the results in Figure 5.3, we notice that larger models exhibit a larger TCErcc/DCErcc

ratio. In particular, in GPT-J-6B and NeoX, the TCE is, respectively, 30x and 1000x larger
than the DCE. However, this improvement in sensitivity is not manifested in terms of
change of prediction (δcp), for which the models show to be affected by result-preserving
changes almost as equally as by result-altering interventions. This behavior changes sig-
nificantly in instruction-tuned models. In particular, for the 175B-parameter GPT-3, per-
formance varies depending on the type of supervision, with the PPO-trained Davinci-003
exhibiting an 84% difference between direct and total effect.

In Figure 5.4, we present a different visualization of the direct causal effect of N on the
model’s prediction. We report the heatmaps showing the probability assigned by the
model to the resultg of a problem (t, (n1, n2), g) |g = n1+n2, ∀g ∈ {0, 1, . . . , 50}, ∀(n1, n2) ∈
{0, 1, . . . , 50}2. For Distil-GPT-2 we observe low overall probability assigned to g and di-
agonal patterns indicating consistency in assigning higher probability to specific results
(e.g., 10, 20, 30, 40, 50). For the two larger models we notice a higher probability mass
assigned to the problem’s result, but less consistency on the prediction of the same result
with different sets of operands (this is true for GPT-J in particular). This result is con-
sistent with the observed higher DCE and TCE in larger models: P(g) might vary more
considerably when intervening on N without affecting g, but overall the model assigns
higher probability weight to the correct result, which correlates with higher sensitivity.

2The OpenAI ids for these models are, respectively, davinci-instruct-beta, text-curie-001,
text-davinci-002, and text-davinci-003.

3https://openai.com/api/
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Figure 5.3: Comparison of DCE(N → R) and TCE(N on R). ∗approx values, see Ap-
pendix A.4.3.
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5.5.2 Effect of T on R

In Figure 5.5, we report the total causal effect of the textual framingT and the direct causal
effect of the irrelevant text elements S on themodel’s prediction. For the instruction-tuned
models, the improvement in terms of prediction change (δcp) follows a similar trend as
for N , with GPT-3 Davinci-003 showing a 76% difference between direct and total effect.
An interesting observation is that the irrelevant textual information S appears to have a
lower direct effect than N for all non-instruction-tuned models. However, in the GPT-3
Davinci-00x models, we observe the opposite (i.e., DCE(N → R) f DCE(S → R)). This
suggests that large instruction-based models tend to be more susceptible to variation in
the textual framing of a problem, while smaller models are more responsive to changes
in the numerical values (though not necessarily correctly).

5.5.3 Overall Insights

In comparison to other models, GPT-3 Davinci shows the highest DCErcc, but low DCEcp.
This discrepancy is related to the quantities that the two metrics consider. δrcc takes into
account the probability assigned to g, while δcp does not consider the ground truth solu-
tion. One interpretation of this result is that GPT-3 Davinci consistently predicts the same
answer r = r ′ when g = g ′, but the probabilities P(g) and P ′(g)might vary significantly.

The results observed for the two kinds of intervention do(T : t → t ′) and do(N :

(n1, n2) → (n ′
1, n

′
2)) show similar trends. Small models (Distilled and Small GPT-2) ex-

hibit low sensitivity to interventions. Larger models (from GPT-2 Medium to GPT-Neo)
appear to be more influenced by changes in both N and T . However, they display sim-
ilar sensitivity to both result-altering and result-preserving interventions. An improve-
ment in sensitivity is noticeable in GPT-J and NeoX, though not accompanied by an im-
provement in robustness. Remarkably different behavior is instead shown by the GPT-
3 Davinci models, which demonstrate substantially higher sensitivity to result-altering
interventions (high TCE), and higher robustness (in terms of prediction change). In Ap-
pendix A.4.2.2, we report the accuracy of themodels on the generated instances ofMWPs,
which exhibits a similar trend as the robustness/sensitivity changes we observed.

Possible explanations for the improved robustness and sensitivity demonstrated by the
large GPT-3 models might be the dramatic size increase and extension/enhancement of
the training procedure involving instructions. The former idea is aligned with the emer-
gent abilities hypothesis (Wei et al., 2022a), which postulates the existence of skills that are
displayed by large-scale models but are not present in smaller-scale models. However,
our observations show different performances in versions of GPT-3 Davinci that differ
in the training procedure.4 This raises the question of whether the capability of LLMs
to reason about math problems benefits from instruction-based tuning. We address this
question in the following section.

5.5.4 Extending to LLaMA-Based Models

To further investigate the roles played by size and training method in the model’s per-
formance, we carry out our experimental procedure on three versions with different sizes
(7B, 13B, and 30B) of the LLaMA model (Touvron et al., 2023), and on Stanford Alpaca

4Ahigh-level description of the training procedures for the models is provided at https://beta.openai.
com/docs/model-index-for-researchers.
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(which applies instruction tuning on LLaMA 7B) (Taori et al., 2023a). We present these
results separately, as the LLaMA tokenization makes the prediction setup different from
the one used from the other models, and prevents us from computing the relative change
in confidence (δrcc).5

From the results (Figure 5.6), two notable observations emerge. Firstly, the increased dif-
ference between TCE and DCE observed with the increasing size of the LLaMAmodels
suggests that a larger number of parameters can be a significant driver behind robust-
ness/sensitivity improvement. However, this is not necessarily the case across different
models: GPT-NeoX-20B shows a smaller TCEcp-DCEcp gap compared to LLaMA7B (5.2%
vs 9.0%). Secondly, the instruction tuning procedure of Alpaca does not seem to help sig-
nificantly with mathematical computation: the decrease in both TCE and DCE shows that
robustness improves at the expense of sensitivity. Nonetheless, overall, when comparing
Alpaca compared to its basemodel, LLaMA7B,we observe an increase in the gap between
TCE and DCE, although this difference is minimal (9.5% vs 9.0%).

The limited improvement of Alpaca might be attributed to its instruction tuning proce-
dure consisting of “a list of user-oriented instructions including email writing, social me-
dia, and productivity tools” (Taori et al., 2023a), which differs from reasoning-intensive
tasks. We suggest future work to examine different types of instruction tuning (e.g., fo-
cused on reasoning procedures or reinforcement learning from human feedback), which
might help the model answer more complex types of questions in a step-by-step manner
andmore accurately. We hypothesize that the different performances in versions of GPT-3
Davinci might be produced by the specific type of instructions used for training, by the
reinforcement learning component (Ouyang et al., 2022), or simply by an extension of the
language modeling pre-training. It is challenging to pinpoint the exact factor in the train-
ing procedure that contributes to this improvement, as specificmethodological details are
not available.

5.5.5 Moving to Three-Operand Problems

We extend our evaluation to consider the three-operand problems in the dataset. In these
experiments, we consider only the GPT-3 175B-parameter models, as they are the only
models performing well on the simpler bivariate problems. The results regarding the
effects of N are reported in Figure 5.7. We notice that the large difference between the
desired (TCE) and undesired (DCE) effects observed on simpler problems shrinks signif-
icantly for both metrics. In particular, for Davinci-003, the direct effect of N (measured
as δcp) grows from 0.17 to 0.87. That is, GPT-3 Davinci-003 predicts a different result 87%
of the time after an intervention that does not affect the ground-truth solution. The in-
crease in direct effect indicates a performance degradation in terms of brittleness: even
the models that show good performance on two-operand problems, now display an un-
stable behavior after result-preserving interventions.

5.6 Related Work

Causal NLP Causal inference aims to study the cause and effect from observational and
interventional data (Pearl, 2009b; Peters et al., 2017). Traditionally, researchers usually

5The LLaMA tokenizer considers each digit as an independent token in the vocabulary. This makes it
problematic to compare the probability value assigned by the model to multi-digit numbers.
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apply causal techniques to phenomena in nature and human society. With the rise of
powerful models in NLP, recent research has started to explore the intersection of causal
inference and NLP, forming the study of Causal NLP (Jin et al., 2022a; Feder et al., 2021a).

There are several formulations for Causal NLP: the causality for NLP thread involves using
the causal framework for data collection and task formulation (Jin et al., 2021c), inspecting
the (path-specific) causal effect of certain neurons on predictions (Vig et al., 2020b; Meng
et al., 2022), understanding the causal effect of data and learning paradigm for model
performance (Ni et al., 2022), and as a way to frame prompts (Lyu et al., 2024); and NLP
for causality involves testing the pure causal inference skills of LLMs (Jin et al., 2023a,
2024), and use text as a variable for causal effect estimation (Roberts et al., 2020; Veitch
et al., 2020; Jin et al., 2021b, 2023b).

The most similar line of research to our work is the application of causal effect estimation
on interpreting models’ behavior, such as how models understand syntactic agreement
(Finlayson et al., 2021), and how interventions in the representations and weights affect
the model prediction (Feder et al., 2021b). To the best of our knowledge, our work is the
first to formulate a causal framework for robustness behavioral tests, and also we are the
first to introduce the idea to quantify the differences in the causal mechanisms of human
reasoning and model decisions.

Math Reasoning in NLP Agrowing body of work tries to improve the math reasoning
capability in NLP models (Zhang et al., 2020b; Geva et al., 2020; Spokoyny et al., 2021),
and prompting techniques for LLMs (Cobbe et al., 2021; Shen et al., 2021b; Kojima et al.,
2022; Wei et al., 2022b; Chowdhery et al., 2022). For analysis, significant attention has
been given to models’ ability to understand numerical quantities (Wallace et al., 2019;
Thawani et al., 2021) and numerical operations (Pal and Baral, 2021; Berg-Kirkpatrick and
Spokoyny, 2020; Piękos et al., 2021; Razeghi et al., 2022).

5.7 Conclusion

We developed a framework to disentangle and separately measure the effect of different
factors influencing the predictions of LLMs for math reasoning. Our results indicate that
a drastic increase in both robustness and sensitivity emerges in the GPT-3 Davinci mod-
els. Additionally, we study the contribution of size and instruction tuning in the models
of the LLaMA family, observing that the Alpaca instruction tuning, while increasing the
model’s robustness, does not significantly improve the overall performance. Our frame-
work provides a formalized theory of behavioral testing for math reasoning models and
opens new future directions to design behavioral tests of models in a principled way.

Ethical Considerations

As for the ethical practice in this work, the data involved are from existing MWP datasets
with no private user information, and available under the MIT license. As for the ethical
impact of the use of this work, the study is about providing a metric and analyzing ex-
isting models’ robustness, so there is less concern over harmful usage. Rather, it is more
about putting checks on existing AI models and helping humans understand them bet-
ter before use. Potential stakeholders that could benefit from this research include NLP
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researchers working on math models, practitioners working on various applications in-
volving mathematical reasoning with text, and e-learning design.

Limitations

A key limitation in our work is that LLMs might have seen these math problems. Our
work theoretically assumes this is not the case. Another limitation is that for the sake of
simplicity, our work makes some assumptions. For example, we assume all numbers in
the range of integers 0 toC = 300. This would not cover everyMWPout there. And future
work is needed to generalize our framework to other forms of MWPs. In this work, we
are also constrained by the limitations of the OpenAI policy on the GPT-3 API. This limits
the number of perturbations we consider in this work as well as the accuracy with which
we can estimate our causal distributions. Finally, our work is restricted to English, and
extending it to other languages will require us to create anMWPdataset in that language.
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Figure 5.4: Heatmaps displaying P(g) for Distil-GPT-2 (left), GPT-J-6B (center), andGPT-3
Davinci-002 (right). g is the ground-truth result g = n1+n2 (n1 and n2 are represented by
the x and y axes, respectively. The probability values for each combination of ((n1, n2), g)

are averaged over 20 different templates. Probability values over 0.2 are displayed with
the darkest color.
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Figure 5.5: Comparison of DCE(S → R) and TCE(T on R). We use ∗ to denote approxi-
mated values, explained in Appendix A.4.3.
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Causal Direction in Data Mat-
ters: Implications ofCausal and
Anticausal Learning in NLP

The principle of independent causal mechanisms (ICM) states that generative processes
of real world data consist of independent modules which do not influence or inform each
other. While this idea has led to fruitful developments in the field of causal inference, it is
not widely-known in the NLP community. In this work, we argue that the causal direc-
tion of the data collection process bears nontrivial implications that can explain a number
of published NLP findings, such as differences in semi-supervised learning (SSL) and
domain adaptation (DA) performance across different settings. We categorize common
NLP tasks according to their causal direction and empirically assay the validity of the ICM
principle for text data usingminimumdescription length. We conduct an extensive meta-
analysis of over 100 published SSL and 30 DAstudies, and find that the results are consis-
tent with our expectations based on causal insights. This work presents the first attempt
to analyze the ICM principle in NLP, and provides constructive suggestions for future
modeling choices. Our code is available at https://github.com/zhijing-jin/icm4nlp.

6.1 Introduction

NLP practitioners typically do not pay great attention to the causal direction of the data
collection process. As a motivating example, consider the case of collecting a dataset to
train a machine translation (MT) model to translate from English (En) to Spanish (Es): it
is common practice to mix all available En-Es sentence pairs together and train the model
on the entire pooled data set (Bahdanau et al., 2015; Cho et al., 2014). However, such
mixed corpora actually consist of two distinct types of data: (i) sentences that originated
in English and have been translated (by human translators) into Spanish (En→Es); and (ii)
sentences that originated in Spanish and have subsequently been translated into English
(Es→En).1

Intuitively, these two subsets are qualitatively different, and an increasing number of
observations by the NLP community indeed suggests that they exhibit different proper-
ties (Freitag et al., 2019; Edunov et al., 2020; Riley et al., 2020; Shen et al., 2021a). In the case
of MT, for example, researchers find that training models on each of these two types of
data separately leads to different test performance, as well as different performance im-
provement by semi-supervised learning (SSL) (Bogoychev and Sennrich, 2019; Graham
et al., 2020; Edunov et al., 2020). Motivated by this observation that the data collection
process seems to matter for model performance, in this work, we provide an explanation
of this phenomenon from the perspective of causality (Pearl, 2009b; Peters et al., 2017).

1There is, in principle, a third option: both could be translations from a third language, but this occurs
less frequently.
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Given the English sentence above, can
you write its Spanish translation?

Prompt for annotators

[En] This is a beautiful world.

[Es] Este es un mundo hermoso. 

Cause: 

Effect: 

Annotation
process
(Noise)

Effect = CausalMechanism (Cause, Noise)

Figure 6.1: Annotation process for NLP data: the random variable that exists first is typ-
ically the cause (e.g., a given prompt), and the one generated afterwards is typically the
effect (e.g., the annotated answer).

First, we introduce the notion of the causal direction for a given NLP task, see Figure 6.1
for an example. Throughout, we denote the input of a learning task by X and the output
which is to be predicted by Y. If, during the data collection process, X is generated first,
and then Y is collected based on X (e.g., through annotation), we say that X causes Y, and
denote this by X → Y. If, on the other hand, Y is generated first, and then X is collected
based on Y, we say that Y causes X (Y → X).2

Based on whether the direction of prediction aligns with the causal direction of the data
collection process or not, Schölkopf et al. (2012) categorize these types of tasks as causal
learning (X → Y), or anticausal learning (Y → X), respectively; see Figure 6.2 for an illus-
tration. In the context of our motivating MT example this means that, if the goal is to
translate from English (X = En) into Spanish (Y = Es), training only on subset (i) of the
data consisting of En→Es pairs corresponds to causal learning (X → Y), whereas training
only on subset (ii) consisting of Es→En pairs is categorised as anticausal learning (Y → X).

C
Causal mechanism f(·, NE)

E

Causal Learning

Anticausal Learning

f : Given C, predict E

g : Given E, predict C

Input Output

InputOutput

Figure 6.2: (Top) A causal graph C → E, where C is the cause and E is the effect. The
function f(·, NE) denotes the causal process, or mechanism, PE|C by which the effect E is
generated from C and unobserved noise NE. (Bottom) Based on whether the direction of
prediction aligns with the direction of causation or not, we distinguish two types of tasks:
(i) causal learning, i.e., predicting the effect from the cause; and (ii) anticausal learning,
i.e., predicting the cause from the effect.

Based on the principle of independent causal mechanisms (ICM) (Janzing and Schölkopf,
2010; Peters et al., 2017), it has been hypothesized that the causal direction of data collec-
tion (i.e., whether a given NLP learning task can be classified as causal or anticausal) has

2This corresponds to an interventional notion of causation: if one were to manipulate the cause, the anno-
tation process would lead to a potentially different effect. Amanipulation of the effect, in contrast, would not
change the cause.
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Category Example NLP Tasks

Causal learning
Summarization, parsing, tagging, data-to-text generation, infor-
mation extraction

Anticausal learning Author attribute classification, review sentiment classification
Other/mixed (depending on
data collection)

Machine translation, question answering, question generation,
text style transfer, intent classification

Table 6.1: Classification of typical NLP tasks into causal (where the model takes the cause
as input and predicts the effect), and anticausal (where the model takes the effect as input
and predicts the cause) learning problems, as well as other taskswhich do not have a clear
causal interpretation of the data collection process, or where a mixture of both types of
data is typically used.

implications for the effectiveness of commonly used techniques such as SSL and domain
adaptation (DA) (Schölkopf et al., 2012). We will argue that this can explain performance
differences reported by the NLP community across different data collection processes and
tasks. In particular, we make the following contributions:

1. We categorize a number of common NLP tasks according to the causal direction of
the underlying data collection process (Section 6.2).

2. We review the ICM principle and its implications for common techniques of using
unlabelled data such as SSL and DA in the context of causal and anticausal NLP
tasks (Section 6.3).

3. We empirically assay the validity of ICM for NLP data using minimum description
length in a machine translation setting (Section 6.4).

4. We verify experimentally and through a meta-study of over respectively 100 (SSL)
and 30 (DA) published findings that the difference in SSL (Section 6.5) and domain
adaptation (DA) (Section 6.6) performance on causal vs anticausal datasets reported
in the literature is consistent with what is predicted by the ICM principle.

5. Wemake suggestions onhow touse findings in this paper for futurework inNLP (Sec-
tion 6.7).

6.2 Categorization of Common NLP Tasks

We start by categorizing common NLP tasks which use an input variable X to predict a
target or output variable Y into causal learning (X → Y), anticausal learning (Y → X), and
other tasks that do not have a clear underlying causal direction, or which typically rely
on mixed (causal and anticausal) types of data, as summarised in Table 6.1.

Key to this categorization is determining whether the input X corresponds to the cause
or the effect in the data collection process. As illustrated in Figure 6.1, if the input X and
output Y are generated at two different time steps, then the variable that is generated
first is typically the cause, and the other that is subsequently generated is typically the
effect, provided it is generated based on the previous one (rather than, say, on a common
confounder that causes both variables). If X and Y are generated jointly, then we need to
distinguish based on the underlying generative process whether one of the two variables
is causing the other variable.
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Learning Effect from Cause (Causal Learning) Causal (X → Y) NLP tasks typically
aim to predict a post-hoc generated human annotation (i.e., the target Y is the effect)
from a given input X (the cause). Examples include: summarization (article→summary)
where the goal is to produce a summary Y of a given input text X; parsing and tagging
(text→linguists’ annotated structure) where the goal is to predict an annotated syntactic
structure Y of a given input sentence X; data-to-text generation (data→description) where
the goal is to produce a textual description Y of a set of structured input data X; and
information extraction (text→entities/relations/etc) where the goal is to extract structured
information from a given text.

Learning Cause from Effect (Anticausal Learning) Anticausal (Y → X) NLP tasks typi-
cally aim to predict or infer some latent target property Y such as an unobserved prompt
from an observed inputXwhich takes the formof one of its effects. Typical anticausalNLP
learningproblems include, for example, author attribute identification (author attribute→text)
where the goal is to predict some unobserved attribute Y of the writer of a given text
snippet X; and review sentiment classification (sentiment→review text) where the goal is
to predict the latent sentiment Y that caused an author to write a particular review X.

Other/Mixed Some tasks can be categorized as either causal or anticausal, depending on
how exactly the data is collected. In Section 6.1, we discussed the example of MT where
different types of (causal and anticausal) data are typically mixed. Another example is
the task of intent classification: if the same author reveals their intent before the writing
(i.e., intent→text), it can be viewed as an anticausal learning task; if, on the other hand,
the data is annotated by other people who are not the original author (i.e., text→annotated
intent), it can be viewed as a causal learning task. A similar reasoning applies to ques-
tion answering and generation tasks which respectively aim to provide an answer to a
given question, or vice versa: if first a piece of informative text is selected and annota-
tors are then asked to come up with a corresponding question (answer→question) as, e.g.,
in the SQuAD dataset (Rajpurkar et al., 2016), then question answering is an anticausal
and question generation a causal learning task; if, on the other hand, a question such as a
search query is selected first and subsequently an answer is provided (question→answer)
as, e.g., in theNatural Questions dataset (Kwiatkowski et al., 2019), then question answer-
ing is a causal and question generation an anticausal learning task. Often, multiple such
datasets are combined without regard for their causal direction.

6.3 Implications of ICM for Causal and Anticausal Learning

Whether we are in a causal or anticausal learning scenario has important implications
for semi-supervised learning (SSL) and domain adaptation (DA) (Schölkopf et al., 2012;
Sgouritsa et al., 2015; Zhang et al., 2013, 2015a; Gong et al., 2016; von Kügelgen et al.,
2019, 2020), which are techniques also commonly used in NLP. These implications are
derived from the principle of independent causal mechanisms (ICM) (Schölkopf et al.,
2012; Lemeire and Dirkx, 2006) which states that “the causal generative process of a system’s
variables is composed of autonomous modules that do not inform or influence each other” (Peters
et al., 2017).

In the bivariate case, this amount to a type of independence assumption between the
distribution PC of the cause C, and the causal process, or mechanism, PE|C that generates
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Figure 6.3: The ICMprinciple assumes that the generative process PC of the causeC is indepen-
dent of the causal mechanism PE|C: the two distributions share no information and each may
be changed or manipulated without affecting the other. In the anticausal direction, on the
other hand, the effect distribution PE is (in the generic case) not independent of the inverse
mechanism PC|E: they may share information and change dependently. (Left) SSL, which
aims to improve an estimate of the target conditional PY|X given additional unlabelled in-
put data from PX, should therefore not help for causal learning (X → Y), but may help in
the anticausal direction (Y → X). (Right) DA, which aims to adapt a model of PY|X from
a source domain to a target domain (e.g., fine-tuning on a smaller dataset), should work
better for causal learning settings where a change in PC is not expected to lead to a change
in the mechanism PE|C, whereas in the anticausal direction PE and PC|E may change in a
dependentmanner.

the effect from the cause. For example, for a question answering task, the generative
process PC by which one person comes up with a question C is “independent” of the
process PE|C by which another person produces an answer E for question C.3

Here, “independent” is not meant in the sense of statistical independence of random vari-
ables, but rather as independence at the level of generative processes or distributions in the sense
that PC and PE|C do not share information (the person asking the question and the one an-
swering may not know each other) and can be manipulated independently of each other (we
can swap either of the two for another participant without the other one being influenced
by this). Crucially, this type of independence is generally violated in the opposite, i.e.,
anticausal, direction: PE and PC|E may share information and change dependently (Dani-
ušis et al., 2010; Janzing et al., 2012). This has two important implications for common
learning tasks (Schölkopf et al., 2012) which are illustrated in Figure 6.3.

Implications of ICM for SSL First, if PC shares no information with PE|C, SSL—where
one has additional unlabelled input data from PX and aims to improve an estimate of the
target conditional PY|X—should not work in the causal direction (X → Y), but may work
in the anticausal direction (Y → X), as PE and PC|E may share information. Causal NLP
tasks should thus be less likely to show improvements over a supervised baseline when
using SSL than anticausal tasks.

Implications of ICM for DA Second, according to the ICM principle, the causal mech-
anism PE|C should be invariant to changes in the cause distribution PC, so domain—
specifically, covariate shift (Shimodaira, 2000; Sugiyama andKawanabe, 2012)—adaptation,
where PX changes but PY|X is assumed to stay invariant, should work in the causal direc-
tion, but not necessarily in the anticausal direction. Hence, DAshould be easier for causal

3The validity of this is meant in an approximate sense, and one can imagine settings where it is ques-
tionable. E.g., if the person asking the question has prior knowledge of the respondent (e.g., in a classroom
setting), then she might adjust the question accordingly which would violate the assumption.
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NLP tasks than for anticausal NLP tasks.

6.4 Validity of ICM for NLP Data Using MDL

Traditionally, the ICM principle is thought of in the context of physical processes or mech-
anisms, rather than social or linguistic ones such as language. Since ICM amounts to an
independence assumption that—whilewellmotivated in principle—maynot always hold
in practice,4 we now assay its validity on NLP data.

Recall, that ICM postulates a type of independence between PC and PE|C. One way to
formalize this uses Kolmogorov complexity K(·) as a measure of algorithmic information,
which can be understood as the length of the shortest program that computes a particular
algorithmic object such as a distribution or a function (Solomonoff, 1964; Kolmogorov,
1965). ICM then reads (Janzing and Schölkopf, 2010):5

K(PC,E)
+
= K(PC) + K(PE|C)

+
f K(PE) + K(PC|E) .

(6.1)

In other words, the shortest description of the joint distribution PC,E corresponds to de-
scribing PC and PE|C separately (i.e., they share no information), whereas there may be
redundant (shared) information in the non-causal direction such that a separate descrip-
tion of PE and PC|E will generally be longer than that of the joint distribution PC,E.

6.4.1 Estimation by MDL

Since Kolmogorov complexity is not computable (Li et al., 2008), we adopt a commonly
used proxy, the minimum description length (MDL) (Grünwald, 2007), to test the ap-
plicability of ICM for NLP data. Given an input, such as a collection of observations
{(ci, ei)}

n
i=1 ∼ PC,E, MDL returns the shortest codelength (in bits) needed to compress

the input, as well as the parameters needed to decompress it. We use MDL to approx-
imate Eq. (6.1) as follows:

MDL(c1:n, e1:n) = MDL(c1:n) +MDL(e1:n|c1:n)

f MDL(e1:n) +MDL(c1:n|e1:n), (6.2)

where MDL(·|·) denotes a conditional compression where the second argument is treated
as “free parameters” which do not count towards the compression length of the first argu-
ment. Eq. (6.2) can thus be interpreted as a comparison between twoways of compressing
the same data (c1:n, e1:n): either we first compress c1:n and then compress e1:n conditional
on c1:n, or vice versa. According to the ICM principle, the first way should tend to be
more “concise” than the second.

6.4.2 Calculating MDL Using Machine Translation as a Case Study

To empirically assess the validity of ICM for NLP data using MDL as a proxy, we turn
to MT as a case study. We choose MT because the input and output spaces of MT are

4E.g., due to confounding influences from unobserved variables, or mechanisms which have co-evolved
to be dependent

5Here, +

= and
+

≤ hold up a constant due to the choice of a Turing machine in the definition of algorithmic
information.
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Dataset Size Note

En→Es 81K Original English, Translated Spanish
Es→En 81K Original Spanish, Translated English
En→Fr 16K Original English, Translated French
Fr→En 16K Original French, Translated English
Es→Fr 15K Original Spanish, Translated French
Fr→Es 15K Original French, Translated Spanish

Table 6.2: Details of the CausalMT corpus.

relatively symmetric, as opposed to other NLP tasks such as text classification where the
input space is sequences, but the output space is a small set of labels.

There are only very few studies which calculate MDL on NLP data, so we extend the
method of Voita and Titov (2020) to calculateMDLusing online codes (Rissanen, 1984) for
deep learning tasks (Blier and Ollivier, 2018). Since the original calculation method for
MDLby Voita and Titov (2020) was developed for classification, we extend it to sequence-
to-sequence (Seq2Seq) generation. Specifically, given a translationdatasetD = {(x1,y1), . . . , (xn,yn)}

of n pairs of sentences xi with translation yi, denote the size of the vocabulary of the
source language by Vx, and the size of the vocabulary of the target language by Vy. In
order to assess whether Eq. (6.2) holds, we need to calculate four different terms: two
marginal terms MDL(x1:n) and MDL(y1:n), and two conditional terms MDL(y1:n|x1:n)

and MDL(x1:n|y1:n).

Codelength of the Conditional Terms To calculate the codelength of the two condi-
tional terms, we extend themethod ofVoita andTitov (2020) from classification to Seq2Seq
generation. Following the setting of Voita and Titov (2020), we break the dataset D into
10 disjoint subsets with increasing sizes and denote the end index of each subset as ti.6

We then estimate MDL(y1:n|x1:n) as

’MDL(y1:n|x1:n) =
∑t1

i=1length(yi) · log2 Vy

−
∑n−1

i=1 log2 pθi(y1+ti:ti+1
|x1+ti:ti+1

) , (6.3)

where length(yi) refers to the number of tokens in the sequence yi, θi are the parameters
of a translation model hi trained on the first ti data points, and seqidx1:idx2 refers to the set
of sequences from the idx1-th to the idx2-th sample in the dataset D, where seq ∈ {x,y}

and idxi ∈ {1, . . . , n}. Similarly, when calculating MDL(x1:n|y1:n), we simply swap the
roles of x and y.

Codelength of theMarginal Terms When calculating the twomarginal terms,MDL(x1:n)

and MDL(y1:n), we make two changes from the above calculation of conditional terms:
first, we replace the translation models hi with language models; second, we remove the
conditional distribution. That is, we calculate MDL(x1:n) as

’MDL(x1:n) =
∑t1

i=1length(xi) · log2 Vx

−
∑n−1

i=1 log2 pθi(x1+ti:ti+1
) ,

(6.4)

6The sizes of the 10 subsets are 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.25, 12.5, 25, and 50 percent of the dataset size,
respectively. E.g., t1 = 0.1%n, t2 = (0.1% + 0.2%)n, . . . .



76 • Validity of ICM for NLP Data Using MDL

Data (X→Y) MDL(X) MDL(Y) MDL(Y|X) MDL(X|Y)
MDL(X)+MDL(Y|X) vs.
MDL(Y)+MDL(X|Y)

En→Es 46.54 105.99 2033.95 2320.93 2080.49 < 2426.92
Es→En 113.42 55.79 3289.99 3534.09 3403.41 < 3589.88
En→Fr 20.54 53.83 503.78 535.88 524.32 < 589.71
Fr→En 53.83 21.6 705.28 681.12 759.11 > 702.72
Es→Fr 58.26 55.66 701.04 755.5 759.30 < 811.16
Fr→Es 56.14 54.34 665.26 706.53 721.40 < 760.87

Table 6.3: Codelength (in kbits) of MDL(X), MDL(Y), MDL(Y|X), and MDL(X|Y) on six
CausalMT datasets.

where θi are the parameters of a language model hi trained on the first ti data points. We
apply the same method to calculate MDL(y1:n).

For the languagemodel, we useGPT2 (Radford et al., 2019), and for the translationmodel,
we use the Marian neural machine translation model (Junczys-Dowmunt et al., 2018)
trained on the OPUS Corpus (Tiedemann and Nygaard, 2004). For fair comparison, all
models adopt the transformer architecture (Vaswani et al., 2017), and have roughly the
same number of parameters. See Appendix A.5.2 for more experimental details.

6.4.3 CausalMT Corpus

For our MDL experiment, we need datasets for which the causal direction of data collec-
tion is known, i.e., forwhichwe have ground-truth annotation ofwhich text is the original
and which is a translation, instead of a mixture of both. Since existing MT corpora do not
have this property as discussed in Section 6.1, we curate our own corpus, which we call
the CausalMT corpus.

Specifically, we consider the existingMTdatasetWMT’19,7 and identify some subsets that
have a clear notion of causality. The subsets we use are the EuroParl (Koehn, 2005) and
Global Voices translation corpora.8 For EuroParl, each text has meta information such as
the speaker’s language; for Global Voices, each text has meta information about whether
it is translated or not. We regard text that is in the same language as the speaker’s native
language in EuroParl (and non-translated text in Global Voices) as the original (i.e., the
cause). We then retrieve a corresponding effect by using the cause text to match the par-
allel pairs in the processed dataset. In this way, we compile six translation datasets with
clear causal direction as summarized in Table 6.2. For each dataset, we use 1K samples
each as test and validation sets, and use the rest for training.

6.4.4 Results

The results of our MDL experiment on the six CausalMT datasets are summarised in Ta-
ble 6.3. If ICM holds, we expect the sum of codelengths to be smaller for the causal di-
rection than for the anticausal one, see Eq. (6.2). As can be seen from the last column,
this is the case for five out of the six datasets. For example, on one of the largest datasets
(En→Es), the MDL difference is 346 kbits.9

7Link to WMT’19.
8Link to Global Voices.
9As far as we know, determining statistical significance in the investigated setting remains an open prob-

lem. While, in theory, one may use information entropy to estimate it, in practice, this may be inaccurate
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Comparing the dataset sizes in Table 6.2 and results in Table 6.3, we observe that the
absolute MDL values are roughly proportional to dataset size, but other factors such as
language and task complexity also play a role. This is inherent to the nature of MDL
being the sum of codelengths of the model and of the data given the model. Since we use
equally-sizeddatasets for each language pair in theCausalMT corpus (i.e., in both theX →
Y and Y → X directions, see Table 6.2), numbers for the same language pair in Table 6.3,
including the most important column “MDL(X)+MDL(Y|X) vs. MDL(Y)+MDL(X|Y)”,
form a valid comparison. That is, En&Es experiments are comparable within themselves,
so are the other language pairs.

For some of the smaller differences in the last column in Table 6.3, and, in particular the
reversed inequality in row 4, a potential explanation may be the relatively small dataset
size, as well as the fact that text data may be confounded (e.g., through shared grammar
and semantics).

6.5 SSL for Causal vs. Anticausal Models

In semi-supervised learning (SSL), we are given a typically-small set of k labeled observa-
tionsDL = {(x1,y1), . . . , (xk,yk)}, and a typically-large set ofm unlabeled observations of
the inputDU = {x

(u)
1 , . . . ,x

(u)
m }. SSL then aims to use the additional information about the

input distribution PX from the unlabeled dataset DU to improve a model of PY|X learned
on the labeled dataset DL.

As explained in Section 6.3, SSL should onlywork for anticausal (or confounded) learning
tasks, according to the ICM principle. Schölkopf et al. (2012) have observed this trend on
a number of classification and regression tasks on small-scale numerical inputs, such as
predicting Boston housing prices from quantifiable neighborhood features (causal learn-
ing), or breast cancer from lab statistics (anticausal learning). However, there exist no
studies investigating the implications of ICM for SSL on NLP data, which is of a more
complex nature due to the high dimensionality of the input and output spaces, as well as
potentially large confounding. In the following, we use a sequence-to-sequence decipher-
ment experiment (Section 6.5.1) and a meta-study of existing literature (Section 6.5.2) to
showcase that the same phenomenon also occurs in NLP.

6.5.1 Decipherment Experiment

To have control over causal direction of the data collection process, we use a synthetic
decipherment dataset to test the difference in SSL improvement between causal and anti-
causal learning tasks.

Dataset We create a synthetic dataset of encrypted sequences. Specifically, we (i) adopt
a monolingual English corpus (for which we use the English corpus of the En→Es in the
CausalMTdataset, for convenience), (ii) apply the ROT13 encryption algorithm (Schneier,
1996) to obtain the encrypted corpus, and then (iii) apply noise on the corpus that is chosen
to be the effect corpus.

since (i) MDL is only a proxy for algorithmic information; and (ii) ICM may not hold exactly, but only ap-
proximately. We evaluate on six different datasets, so that the overall results can show a general trend.
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Causal Data Learning Task Sup. BLEU ∆SSL (BLEU)

En→Cipher
Causal 19.20 +1.84
Anticausal 7.75 +38.02

Cipher→En
Causal 17.08 +4.05
Anticausal 7.97 +38.01

Table 6.4: SSL improvements (∆SSL) in BLEU score across causal vs. anticausal learning
tasks on the synthetic decipherment datasets.

In the encryption step (ii), for each English sentence x, its encryption ROT13(x) replaces
each letter with the 13th letter after it in the alphabet, e.g., “A”→“N,” “B”→“O.”Note that
we choose ROT13 due to its invertibility, since ROT13(ROT13(x)) = x. Therefore, with-
out any noises, the corpus of English and the corpus of encrypted sequences by ROT13
are symmetric.

In the noising step (iii), we apply noise either to the English text or to the ciphertext,
thus creating two datasets Cipher→En, and En→Cipher, respectively. When applying
noise to a sequence, we use the implementation of the Fairseq library.10 Namely, wemask
some random words in the sequence (word masking), permute a part of the sequence
(permuted noise), randomly shift the endings of the sequence to the beginning (rolling
noise), and insert some random characters or masks to the sequence (insertion noise). We
set the probability of all noises to p = 5%.

Results For each of the two datasets En→Cipher and Cipher→En, we perform SSL in
the causal and anticausal direction by either treating the input X as the cause and the tar-
get Y as the effect, or vice versa. Specifically, we use a standard Transformer architecture
for the supervised model, and for SSL, we multitask the translation task with an addi-
tional denoising autoencoder (Vincent et al., 2008) using the Fairseq Python package. The
results are shown in Table 6.4. It can be seen that in both cases, anticausal models show a
substantially larger SSL improvement than causal models.

We also note that there is a substantial gap in the supervised performance between causal
and anticausal learning tasks on the same underlying data. This is also expected as causal
learning is typically easier than anticausal learning since it corresponds to learning the
“natural” forward function, or causal mechanism, while anticausal learning corresponds
to learning the less natural, non-causal inverse mechanism.

6.5.2 SSL Improvements in Existing Work

After verifying the different behaviour in SSL improvement predicted by the ICM prin-
ciple on the decipherment experiment, we conduct an extensive meta-study to survey
whether this trend is also reflected in published NLP findings. To this end, we consider a
diverse set of tasks, and SSL methods. The tasks covered in our meta-study include ma-
chine translation, summarization, parsing, tagging, information extraction, review senti-
ment classification, text category classification, word sense disambiguation, and chunk-
ing. The SSL methods include self-training, co-training (Blum and Mitchell, 1998), tri-
training (Zhou and Li, 2005), transductive support vector machines (Joachims, 1999), ex-

10Link to the Fairseq implementation.
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Task Type Mean ∆SSL (±std) According to ICM

Causal +0.04 (±4.23) Smaller or none
Anticausal +1.70 (±2.05) Larger

Table 6.5: Meta-study of SSL improvement (∆SSL) across 55 causal and 50 anticausal NLP
tasks.

Task Type Mean ∆DA (±std) According to ICM

Causal 5.18 (±6.57) Larger
Anticausal 1.26 (±1.79) Smaller

Table 6.6: Meta-study of DA improvement (∆DA) across 22 causal and 11 anticausal NLP
tasks.

pectation maximization (Nigam et al., 2006), multitasking with language modeling (Dai
and Le, 2015), multitasking with sentence reordering (as used in Zhang and Zong (2016)),
and cross-view training (Clark et al., 2018). Further details on our meta study are ex-
plained in Appendix A.5.1.

We covered 55 instances of causal learning and 50 instances of anticausal learning. A
summary of the trends of causal SSL and anticausal SSL are listed in Table 6.5. Echoing
with the implications of ICM stated in Section 6.3, for causal learning tasks, the average
improvement by SSL is only very small, 0.04%. In contrast, the anticausal SSL improve-
ment is larger, 1.70% on average. We use Welch’s t-test (Welch, 1947) to assess whether
the difference in mean between the two distributions of SSL improvment (with unequal
variance) is significant and obtain a p-value of 0.011.

6.6 DA for Causal vs. Anticausal Models

We also consider a supervised domain adaptation (DA) setting in which the goal is to
adapt a model trained on a large labeled data set from a source domain, to a potentially
different target domain fromwhich we only have a a small labeled data set. As explained
in Section 6.3, DA should only work well for causal learning, but not necessarily for anti-
causal learning, according to the ICM principle.

Similar to the meta-study on SSL, we also review existing NLP literature on DA.We focus
on DA improvement, i.e., the performance gain of using DA over an unadapted baseline
that only learns from the source data and is tested on the target domain. Since the number
of studies on DA that we can find is smaller than for SSL, we cover 22 instances of DAon
causal tasks, and 11 instances of DA on anticausal tasks.

The results are summarised in Table 6.6. We find that the observations again echo with
our expectations (according to ICM) that DA should work better for causal, than for an-
ticausal learning tasks. Again, we use Welch’s t-test (Welch, 1947) to verify that the DA
improvements of causal learning and anticausal learning are statistically different, and
obtain a p-value of 0.023.
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6.7 How to Use the Findings in this Study

Data Collection Practice in NLP Due to the different implications of causal and anti-
causal learning tasks, we strongly suggest annotating the causal direction when collecting new
NLP data. One way to do this is to only collect data from one causal direction and to men-
tion this in the meta information. For example, summarization data collected from the
TL;DR of scientific papers SciTldr (Cachola et al., 2020) should be causal, as the TL;DR
summaries on OpenReview (some from authors when submitting the paper, others de-
rived from the beginning of peer reviews) were likely composed after the original papers
or reviewswere written. Alternatively, onemay allowmixed corpora, but label the causal
direction for each (x,y) pair, e.g., which is the original vs. translated text in a translation
pair. Since more data often leads to better model performance, it is common to mix data
from both causal directions, e.g., training on both En→Es and Es→En data. Annotating
the causal direction for each pair allows future users of the dataset to potentially handle
the causal and anticausal parts of the data differently.

Causality-Aware Modeling When building NLP models, the causal direction provides
additional information that can potentially be built into the model. In the MT case, since
causal and anticausal learning can lead to different performance (Ni et al., 2022), one way
to take advantage of the known causal direction is to add a prefix such as “[Modeling-
Effect-to-Cause]” to the original input, so that themodel can learn fromcausally-annotated
input-output pairs. For example, Riley et al. (2020) use labels of the causal direction to
elicit different behavior at inference time. Another option is to carefully design a com-
bination of different modeling techniques, such as limiting self-training (a method for
SSL) only to the anticausal direction and allowing back-translation in both directions, as
preliminarily explored by Shen et al. (2021a).

Causal Discovery Suppose that we are givenmeasurements of two types of NLP data X
and Y (e.g., text, parse tree, intent type) whose collection process is unknown, i.e., which
is the cause and which the effect. One key finding of our study is that there is typically a
causal footprint of the data collection processwhichmanifests itself, e.g., when computing
the description length in different directions (Section 6.4) or when performing SSL (Sec-
tion 6.5) or DA (Section 6.6). Based on which direction has the shorter MDL, or allows
better SSL or DA, we can thus infer one causal direction over the other.

Prediction of SSL and DA Effectiveness Being able to predict the effectiveness of SSL
or DA for a given NLP task can be very useful, e.g., to set the weights in an ensemble of
different models (Søgaard, 2013). While predicting SSL performance has previously been
studied from a non-causal perspective (Nigam and Ghani, 2000; Asch and Daelemans,
2016), our findings suggest that a simple qualitative description of the data collection
process in terms of its causal direction (as summarised for the most common NLP tasks
in Table 6.1) can also be surprisingly effective to evaluate whether SSL or DA should be
expected to work well.

6.8 Limitations and Future Work

We note that ICM—when taken strictly—is an idealized assumption that may be violated
and thus may not hold exactly for a given real-world data set, e.g., due to confounding,
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i.e., when both variables are influenced by a third, unobserved variable. In this case, one
may observe less of a difference between causal and anticausal learning tasks.

We also note that, while we have made an effort to classify different NLP tasks as typ-
ically causal or anticausal, our categorization should not be applied blindly without re-
gard for the specific generative process at hand: deviations are possible as explained in
the Mixed/Other category.

Another limitation is that the SSL andDAsettings considered in this paper are only a sub-
set of the various settings that exist in NLP. Our study does not cover, for example, SSL
that uses additional output data (e.g., Jean et al. (2015); Gülçehre et al. (2015); Sennrich and
Zhang (2019)), or unsupervised DA (as reviewed by Ramponi and Plank (2020)). In addi-
tion, in ourmeta-study of published SSL andDAfindings, the improvements of causal vs.
anticausal learning might be amplified by the scale of research efforts on different tasks
and potentially suffer from selection bias.

Finally, we remark that, in the presentwork, we have focused on bivariate prediction tasks
with an input X and output Y. Future work may also apply ICM-based reasoning to more
complexNLP settings, for example, by (i) incorporating additional (sequential/temporal)
structure of the data (e.g., for MT or language modeling) or (ii) considering settings in
which the input X consists of both cause Xcau and effect Xeff features of the target Y (von
Kügelgen et al., 2019, 2020).

6.9 Related Work

NLP and Causality Existing work on NLP and causality mainly focuses on the extract-
ing text features for causal inference. Researchers first propose a causal graph based on
domain knowledge, and then use text features to represent some elements in the causal
graph, e.g., the cause (Egami et al., 2018; Jin et al., 2021b), effect (Fong and Grimmer,
2016), and confounders (Roberts et al., 2020; Veitch et al., 2020; Keith et al., 2020). An-
other line of work mines causal relations among events from textual expressions, and
uses them to perform relation extraction (Do et al., 2011; Mirza and Tonelli, 2014; Dunietz
et al., 2017; Hosseini et al., 2021), question answering (Oh et al., 2016), or commonsense
reasoning (Sap et al., 2019a; Bosselut et al., 2019). For a recent survey, we refer to Feder
et al. (2021a).

Usage of MDL in NLP Although MDL has been used for causal discovery for low-
dimensional data (Budhathoki and Vreeken, 2017; Mian et al., 2021; Marx and Vreeken,
2021), only very few studies adopt MDL on high-dimensional NLP data. Most existing
uses of MDL on NLP are for probing and interpretability: e.g., Voita and Titov (2020) use
it for probing of a small Bayesian model and network pruning, based on the method pro-
posed by Blier and Ollivier (2018) to calculate MDL for deep learning. We are not aware
of existing work usingMDL for causal discovery, or to verify causal concepts such as ICM
in the context of NLP.

Existing Discussions on SSL and DA in NLP SSL and DA has long been used in NLP,
as reviewed by Søgaard (2013) and Ramponi and Plank (2020). However, there have been
a number of studies that report negative results for SSL (Clark et al., 2003; Steedman et al.,
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2003; Reichart and Rappoport, 2007; Abney, 2007; Spreyer and Kuhn, 2009; Søgaard and
Rishøj, 2010) and DA (Plank et al., 2014). Our works constitutes the first explanation of
the ineffectiveness of SSL and DAon certain NLP tasks from the perspective of causal and
anticausal learning.

6.10 Conclusion

This work presents the first effort to use causal concepts such as the ICM principle and
the distinction between causal and anticausal learning to shed light on some commonly
observed trends in NLP. Specifically, we provide an explanation of observed differences
in SSL (Tables 6.4 and 6.5) and DA (Table 6.6) performance on a number of NLP tasks:
DA tends to work better for causal learning tasks, whereas SSL typically only works for
anticausal learning tasks, as predicted by the ICMprinciple. These insights, together with
our categorization of common NLP tasks (Table 6.1) into causal and anticausal learning,
may prove useful for future NLP efforts. Moreover, we empirically confirm using MDL
that the description of data is typically shorter in the causal than in the anticausal direc-
tion (Table 6.3), suggesting that a causal footprint can also be observed for text data. This
has interesting potential implications for discovering causal relations between different
types of NLP data.

Ethical Considerations

Use of Data This paper uses two types of data, a subset of an existing machine transla-
tion dataset, and synthetic decipherment data. As far as we know, there are no sensitive
issues such as privacy regarding the data usage.

Potential Stakeholders This research focuses on meta properties of two commonly ap-
pliedmethodologies, SSLandDAinNLP. Although this research is not directly connected
to specific applications in society, the usage of this study can benefit future research in SSL
and DA.



On the Causal Nature of Senti-
ment Analysis

Sentiment analysis (SA) aims to identify the sentiment expressed in a text, such as a prod-
uct review. Given a review and the sentiment associated with it, this work formulates
SA as a combination of two tasks: (1) a causal discovery task that distinguishes whether
a review “primes” the sentiment (Causal Hypothesis C1), or the sentiment “primes” the
review (Causal Hypothesis C2); and (2) the traditional prediction task to model the sen-
timent using the review as input. Using the peak-end rule in psychology, we classify a
sample as C1 if its overall sentiment score approximates an average of all the sentence-
level sentiments in the review, and C2 if the overall sentiment score approximates an
average of the peak and end sentiments. For the prediction task, we use the discovered
causalmechanisms behind the samples to improve LLMperformance by proposing causal
prompts that give the models an inductive bias of the underlying causal graph, leading to
substantial improvements by up to 32.13 F1 points on zero-shot five-class SA. Our code
is available at https://github.com/cogito233/causal-sa.

7.1 Introduction

Sentiment analysis (SA) is the task of identifying the sentiment y given a piece of text
x. The field has a rich history originating from subjectivity analysis (Wiebe, 1994; Hatzi-
vassiloglou and Wiebe, 2000), and developed rapidly with the availability of large opin-
ionated online data such as reviews with ratings (Turney, 2002; Nasukawa and Yi, 2003;
Zhang et al., 2015b; Keung et al., 2020, inter alia).

Despite recent advances in large language models (LLMs), it is still challenging to ad-
dress the fine-grained five-class SA (which corresponds to the five star ratings in most
datasets) for document-level classification (Choi et al., 2020; Fei et al., 2023; Truică et al.,
2021), due to the subtle nature of the task including aspects such as inter-aspect relations,
commonsense reasoning, among others (Poria et al., 2023; Venkit et al., 2023).

In this paper, we propose a causally-informed solution for the SA task. Different from
the approach of naïvely applying up-to-date LLMs, we leverage insights from causal in-
ference to propose a reformulation for SA into two tasks, as in Figure 7.1: (1) a causal
discovery task to identify the cause-effect relation between the review X and the senti-
ment Y, and (2) the traditional prediction task f : x 7→ y to model the sentiment using the
review as input.

We first look into the causal discovery task. In the study of affect science (Salovey and
Mayer, 2004; Barrett, 2006; Feinstein, 2013), language can be the cause of emotion (Sat-
pute et al., 2013; Kassam and Mendes, 2013) – namely a review priming the following
sentiment, i.e., the Causal Hypothesis C1 of X → Y); or emotion can affect the use of lan-
guage (Barrett, 2006) – namely sentiment priming the review as an ad-hoc justification for
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Peak-End Rule (from Thinking Fast and Slow): 
- For slow thinking, overall sentiment ≈ average feeling
- For fast thinking, overall sentiment ≈ average of the
peak (most intensive) and end feelings

This was a great spot to take a break from it all and just people watch.
We sat at the bar facing the casino and we were entertained the whole time.
The mini grilled cheese (appetizer) was fantastic.
It came with a tomato based dipping sauce that was the perfect compliment
to the bite sized wedges.
Tip - ask for two dipping sauces because one just won't do.

Sentence Index|
1

Label: 50% (which is closer to Mean than to Peak-End)
Mean: 46% (by slow thinking)

| | | |
2 3 4 5

Emotion Arc

Peak-End: 13% (by fast thinking)

+100%

-100%

0

Sentiment

End

Review

Corresponds toSentiment causes Review
Y → X

Review causes Sentiment
X → Y

Two Possible Causal Directions:

Task 1. Causal Discovery

Fast Thinking
Overall = Peak-End of the Emotion Arc

Psychology Theories (§3)

Corresponds to Slow Thinking
Overall = Average of the Emotion Arc

Task 2. Improving LLM Performance on SA

I initially selected a star rating, and then provided the following explanations in my
review: {review} The review clarifies why I gave a rating of ___

I initially composed the following feedback: {review} After carefully considering the
facts, my final rating was ___C1

C2

C1

C2

Causal Prompts (§4.2)

1. LLMs perform better on C2 data (§4.1)

3. LLMs follow some mechanisms with causal prompts, but not perfectly (§4.3)

2. We can give inductive bias to LLMs by causal prompts (§4.2)

Applying the Peak-End Rule to discover the causal direction

Peak

Figure 7.1: An overview of the paper structure, where we first investigate the causal dis-
covery task, and then use it to improve LLM performance. For each document-level text
review, we parse its emotion arc consisting of the sentiment of each sentence in the re-
view, and then use the peak-end rule (Kahneman et al., 1993; Kahneman, 2011) to identify
whether the overall sentiment is an average of the arc (corresponding to Slow Thinking),
or an average of the peak and end sentiments (corresponding to Fast Thinking).

the emotion, i.e., the Causal Hypothesis C2 of Y → X. These two processes might arise
from the data annotation process (Jin et al., 2021c), but is hard to discover post-hoc in
existing datasets.

Given the possibility of both causal directions X → Y or Y → X in the SA data, we iden-
tify the actual underlying mechanism based on insights from psychology (Kahneman,
2011; Epstein, 1994). Specifically, we identify the correspondence of the above two causal
mechanisms with the Fast and Slow Thinking systems (Kahneman, 2011): (1) a review-
driven sentiment (as in C1) largely resembles the Slow Thinking process applying rea-
soning based on evidence, and (2) the process of first coming up with the sentiment and
then justifying it by a review (as in C2) conforms to Fast Thinking. Given this correspon-
dence, we apply the peak-end rule from psychology (Kahneman et al., 1993; Kahneman,
2011). As shown in the right part of Figure 7.1, we classify a sample as C1 if its overall
sentiment score approximates an average of all the sentence-level sentiments in the re-
view, and as C2 if the overall sentiment score approximates an average of the peak and
end sentiments.

Based on the identified causal mechanism behind SAdata from the causal discovery task,
we further explore how it can improve prediction performance in the era of LLMs. Ex-
isting literature highlights “causal alignment,” namely to align the prediction direction
along the underlying causal direction (Jin et al., 2021c; Schölkopf, 2022; Schölkopf et al.,
2021), but to our knowledge we are the first to explore how causal alignment improves
model performance of SA in the era of LLMs. Specifically, we answer three subquestions:
(Q1) If using the standard SA prompt, do models perform differently on C1/C2 data?
(Q2) Does it help if we make the prompt aware of the underlying causality, i.e., use causal
prompts? And (Q3) When prompted causally, do LLMs mechanistically understand the
corresponding causal processes?
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Our empirical results show that under the standard prompt, LLMs perform better on
data corresponding to the C2 causal process. Moreover, causal prompts aligned with the
causal direction of the data can substantially improve the performance of zero-shot SA.
Finally, we apply mechanistic interpretability methods to probe the models, and find that
there is still improvement space for LLMs to correctly grasp the essence of the two causal
processes. In summary, the contributions of this paper are as follows:

1. We propose the dual nature of SA as a combination of two tasks: a causal discovery
task, and a prediction task.

2. For causal discovery, we ground the two possible causal processes in psychology,
and use the peak-end rule to identify them.

3. For the prediction task, we inspect existing LLMs’ performance on data correspond-
ing to the two underlying causal processes, and design causal prompts to improve
model performance by up to 32.13 F1 points.

7.2 Problem Formulation of SA

In this section, we formulate SA as a combination of two tasks: the traditional prediction
task in NLP and the causal discovery task in statistics, which we will introduce in the
following.

7.2.1 The Prediction Task (in NLP)

SA is a prediction task to identify the sentiment y given a piece of text x. We adopt the
setup in most existing SA datasets (Maas et al., 2011; Zhang et al., 2015b; Keung et al.,
2020), where the text x is a review consisting of n sentences (t1, . . . , tn), and the label y
is a sentiment score corresponding to the star rating of the review in 1 (most negative), 2,
. . . , 5 (most positive).

7.2.2 The Cause-Effect Discovery Task (in Statistics)

As a separate problem, there is an established task in causal discovery, the causal-effect
problem (see the review by Janzing, 2019), which aims to tell the cause from effect using
only observational data. Its formal formulation is as follows: Suppose we have an i.i.d.
datasetD := {(xi, yi)}

n
i=1 containing n observational data pairs of the two variables, X and

Y. The task is to infer whether X causes Y (i.e., X → Y), or Y causes X (i.e., Y → X), if one out
of the two is true. In causality, “→” indicates the directional causal relation between two
variables. The two hypotheses can also be expressed in their equivalent structural causal
models (SCMs; Pearl, 2009b) as introduced in Peters et al. (2017):

Causal Hypothesis 1 (C1): X → Y (7.1)

ô Y := fY(X,NY)with NY § X , (7.2)

Causal Hypothesis 2 (C2): Y → X (7.3)

ô X := fX(Y,NX)with NX § Y , (7.4)

where Ni is an unobserved noise term orthogonal to the input distribution.
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7.2.3 Causality and NLP Model Performance

Formany years, causality andmachine learning have been two separate domains on their
own. Recently, researchers started to think about how the causal knowledge of the data
can improve machine learning performance on the prediction task, especially for the two
variable cause-effect case (Schölkopf et al., 2012; Jin et al., 2021c; Ni et al., 2022). The
essence of this line of research is that causality makes the two learning tasks x 7→ y

and y 7→ x asymmetric, as one function’s prediction direction aligns with the ground-
truth causal direction behind the two random variables, and another contradicts. We call
this phenomenon “causal alignment,” or “direction match,” of the prediction task and the
causality.

To contrast the contribution of ourwork, we review the previous literature on causal align-
ment, which only shows its effect on the performance of trained-from-scratch machine
learning models, without any indications in the era of LLMs:

1. Causal alignment makes a model more robust against covariant shifts (Jin et al.,
2021c; Schölkopf, 2022; Schott et al., 2018, inter alia)

2. Semi-supervised learning (SSL) onlyworks under causalmisalignment, as the cause
variable contains no information about the mechanism, but the effect variable does.
So in themisaligned case, additionalPX (i.e., the effect variable) helpsSSL (Schölkopf
et al., 2012; Jin et al., 2021c).

3. Learning a causally-aligned model induces less Kolmogorov complexity (a more
minimal description length) than the causally-misaligned model on the same X-Y
data (Jin et al., 2021c; Janzing and Schölkopf, 2010)

4. Causal alignment significantly affects model performance in supervised learning,
in the case of machine translation (Ni et al., 2022).

All the above findings are drawn under the training condition that we can isolate the
training data to be only of one causal direction. In the era of LLMs, we have seen sub-
stantial differences: (1) the training data can be a mixture of both causal directions, (2)
the operationalization of the prediction task is through prompting, but no longer a sepa-
rate model for each direction, and, (3) in general, research has shifted to designing better
prompts for already pre-trained models in their inference mode.

Given these changes, we use the rest of the paper to address the following research ques-
tions:

1. What is the causal direction in SA? (Section 7.3)
2. Can causal alignment help us improve SAprompts in the era of LLMs? (Section 7.4)

7.3 Causal Discovery of Sentiment and Review

7.3.1 Problem Setup

As mentioned previously, the setup of the bivariate causal discovery problem is to infer
whetherX causes Y (C1), or Y causesX (C2), based on adatasetD := {(xi, yi)}

n
i=1 containing

only observational data of the joint distribution.
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Challenges The common paradigm to check causal discovery results is to generate sim-
ulated data, of which the ground truth causal graph is known (Zhang and Hyvärinen,
2009; Spirtes and Zhang, 2016). However, in the context of the established SA datasets,
such as Yelp (Zhang et al., 2015b), Amazon (Keung et al., 2020), and App Review (Grano
et al., 2017), we would not be able to track each individual user and survey their original
causal process when composing the review and the rating. Another solution would also
be difficult, as it would require SA to abandon all the abovewell-established datasets, and
meticulously collect new data while surveying the users’ underlying causal process.

Our Approach In the context of our work, we propose that there are still rich findings
that we could derive from the observation-only data in the existing datasets, without in-
terviewing or conducting new costly data collection.

The key to our approach is the psychology theories of the two causal processes, as the
relation between sentiment and text has been well-studied and verified by randomized
control trials (RCTs), among many other experiments. In the rest of the section, we first
introduce in Section 7.3.2 the psychology theories of fast and slow thinking, followed by
the Peak-End Rule as the quantitative signal. Then, we operationalize the theory with
computational techniques in Section 7.3.3, and the report findings on three different SA
datasets in Section 7.3.4.

7.3.2 Psychological Processes Underlying Sentiment Processing

Two Systems of Emotional Responses In psychology, the bifurcation into System 1 and
System 2 in human decision-making, including sentiment processing, has garnered sub-
stantial empirical support (Kahneman, 2011; Epstein, 1994).

System 1, or the “Fast Thinking” system, operates involuntarily, effortlessly, and without
conscious awareness. It is often optimized in evolution to provide rapid responses to
environmental stimuli (LeDoux, 1998), and guides most of our daily cognitive processing
(Kahneman, 2011), and emotional responses such as fear or joy (Zajonc, 1980).

Conversely, System 2, often termed as “Slow Thinking,” is deliberate, slower, and more
rational, requires more conscious effort (Kahneman, 2011), and allows for self-regulation
and thoughtful consideration before making decisions (Baumeister et al., 1998). The in-
terplay between these systems influences everything from mundane to critical decisions,
highlighting the complexity of human emotional and cognitive processing (Kahneman
and Frederick, 2002; Kahneman, 2011).

Correspondence to the Two Causal Processes There is a nice correspondence between
the fast/slow thinking systems and our two causal hypotheses. Asmentioned previously,
the Causal Hypothesis 2 (C2) posits Y → X, where the sentiment Y causes the review X,
which aligns well with the Fast Thinking system (Kahneman, 2011; LeDoux, 1998), as it
rapidly generates an emotional reaction Y, and then writes text to justify it Y. On the
other hand, the Causal Hypothesis 1 (C1) refers to the case where X → Y, namely the
review X causing the sentiment Y. It is an instance of Slow Thinking (Baumeister et al.,
1998; Kahneman and Frederick, 2002), which deliberately uses conscious efforts to list out
the up- and downsides of an experience in the review X, and come up with a thoughtful
final decision as the rating Y.
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Yelp Amazon App Review
All C1 C2 All C1 C2 All C1 C2

# Samples 34,851 19,557 (56%) 15,294 (44%) 2,582 1,393 (54%) 1,189 (46%) 9,696 3,809 (39%) 5,887 (61%)
# Sents/Review 11.11 11.30 10.87 6.70 6.62 6.80 6.34 6.33 6.35
# Words/Sent 15.53 15.55 15.49 11.04 11.28 10.77 10.53 10.90 10.29
Vocab Size 64,864 48,889 44,826 10,271 7,609 7,049 20,248 12,773 15,400
Avg Sentiment 2.93 2.74 3.18 2.94 2.82 3.07 2.9 2.72 3.02
Avg λ1 3.78 2.97 4.83 3.77 3.10 4.55 6.03 5.18 6.58
Avg λ2 4.48 6.05 2.48 4.21 5.72 2.45 5.10 7.96 3.26

Table 7.1: Statistics of the entire datasets and their C1 and C2 subsets for Yelp, Amazon,
and App Review. We can see that a roughly balanced number of reviews aligning with
the C1 and C2 processes.

Quantitative Signals of the Two Processes In sentiment processing, an evidence for
the two processes is the famous Kahneman et al. (1993) study illustrating the Peak-End
Rule of how individuals recall and evaluate past emotional experiences, which we show
in Figure 7.1. As we know, fast thinking is prone to systematic biases and errors in the
judgment (Tversky and Kahneman, 1974), and the Kahneman et al. (1993) study provides
important quantitative results showing that, in the Fast Thinking system, people’s emo-
tional memories of an experience are disproportionately influenced by its most intense
point (the “peak”) and its conclusion (the “end”), rather than by the average experience
as in the Slow Thinking system. The important role of peak and end for the fast think-
ing system implies that it is the intensity of specific moments that dominate memory and
judgment.

7.3.3 Operationalizing the Theory

We summarize the previous psychological insights in the upper left part of Figure 7.1,
where the Causal Hypothesis 1 corresponds to taking the average of all emotional expe-
riences mentioned in the review X for the sentiment Y, and the Causal Hypothesis 2 uses
the peak and end emotions in the review X to derive the sentiment Y. In this section, we
introduce a formalization of the theory, and suggest signals to distinguish the two causal
hypotheses.

EmotionArc To capture the aforementioned trajectory of emotional experiences, we use
the concept of the emotion arc (Reagan et al., 2016), an example of which we visualize in
Figure 7.1. Contextualizing it in the task of SA, we formally define an emotion arc of the
review as follows. Given a review x consisting of n sentences (t1, . . . , tn), we identify the
sentiment for each of them, thus obtaining a series of sentiment labels (s1, . . . , sn). We
denote this series as the emotion arc e := (s1, . . . , sn) of the review.

The Two Causal Processes Provided the notion of the emotion arc e := (s1, . . . , sn) for
a review x, we formulate the sentiment labels corresponding to the two causal processes
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Example of a C1-Dominant Review
· This was a great spot to take a break from it all and just people watch. s1 = 4.57

· We sat at the bar facing the casino and we were entertained the whole time.s2 = 4.67

· The mini grilled cheese (appetizer) was fantastic. s3 = 4.53

· It came with a tomato based dipping sauce that was the perfect compliment to the bite
sized wedges. s4 = 4.20

· Tip - ask for two dipping sauces because one just won’t do. s5 = 1.60

Stars y: 4
Psychology Scores (³): λ1 = 0.0884 < λ2 = 0.8683

Example of a C2-Dominant Review
· I read the reviews and should have steered away... but it looked interesting. s1 = 3.72

· Salad was wilted, menus are on the wall, with no explanation so you are ordering
blind, service was NOT with a smile from the bartender to the waitress, to the server
who helped the waitress, and the waitress never checked back to see how everything is.
s2 = 2.20

· Terribly overpriced for what you get, and as an Italian, this does not even pass for a
facsimile thereof! s3 = 1.45

· Stay away for sure. s4 = 1.85

· I only gave themone star, as I had to fill something in, they should get no stars! s5 = 1.32

Stars y: 1
Psychology Scores (³): λ1 = 1.1827 > λ2 = 0.3647

Table 7.2: Examples of C1- and C2-dominant reviews.

as follows:

Slow Thinking (Causal Process 1):

ŷavg =
1

n
(s1 + · · ·+ sn) , (7.5)

λ1 = |y− ŷavg| , (7.6)

Fast Thinking (Causal Process 2):

ŷpeakEnd =
1

2
(Peak(s1, . . . , sn) + sn) , (7.7)

λ2 = |y− ŷpeakEnd| , (7.8)

where λi indicates the alignment of the actual sentiment ywith the Causal Process i, and
Peak(·) selects the sentiment with the strongest intensity by its distance from the neutral
sentiment 3, which is themiddle point among the sentiment range 1–5, i.e., Peak(s1, . . . , sn) :=
sargmax

i
|si−3|.

Here, we interpret λi as an indicator for each causal process, where a small value (with the
best value being zero) implies the alignment with the process i. We show two examples
in Table 7.2, one aligning well with the Causal Process C1 with a small λ1, and another
aligning well with the Causal Process C2 with a small λ2.

7.3.4 Findings on SA Datasets

Dataset Setup Weadopt three commonly used datasets in SA: Yelp (Zhang et al., 2015b),
Amazon (Keung et al., 2020), and App Review (Grano et al., 2017). For the Amazon data,
we concatenate each review’s title with its text. Since the model performance on many
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Random GPT-2 XL LLaMa-7B Alpaca-7B GPT-3 GPT-3.5 GPT-4

F1
Overall 19.82 ±2.07 10.23 ±4.12 31.78 ±5.32 46.01 ±5.35 52.71 ±1.73 57.98 ±5.11 59.54 ±4.69

C1 Subset 21.36 ±2.26 5.80 ±3.11 27.30 ±4.73 37.77 ±7.66 43.96 ±2.93 58.64 ±1.48 58.62 ±2.54

C2 Subset 20.43 ±2.95 16.37 ±5.33 37.66 ±7.86 55.82 ±4.02 65.40 ±1.37 59.09 ±9.13 62.57 ±6.85

Acc
Overall 19.78 ±2.07 23.06 ±2.10 39.28 ±5.07 47.72 ±4.19 53.22 ±1.35 58.36 ±4.13 59.84 ±4.17

C1 Subset 20.61 ±2.23 16.18 ±1.59 36.55 ±4.05 42.14 ±5.26 43.61 ±2.89 59.89 ±1.09 59.62 ±1.96

C2 Subset 18.86 ±2.78 30.79 ±2.68 42.33 ±7.24 53.93 ±3.91 63.93 ±1.28 56.66 ±8.08 60.08 ±7.05

Table 7.3: Performance of different models on the five-class classification of Yelp-5. We
use five paraphrases for the prompt (in Appendix A.6.1.3), and report the average perfor-
mance with the standard deviation.

Random GPT-2 XL LLaMa-7B Alpaca-7B GPT-3 GPT-3.5 GPT-4

F1

D=C1, P=C1 20.47 ±2.47 6.12 ±2.77 55.16 ±7.16 52.74 ±5.04 38.36 ±6.66 60.62 ±3.24 54.23 ±4.17

D=C1, P=C2 20.26 ±2.31 15.98 ±3.59 36.22 ±8.95 35.10 ±5.40 54.44 ±1.64 52.85 ±6.01 58.58 ±3.33

D=C2, P=C1 22.35 ±3.02 31.98 ±8.66 56.69 ±8.46 54.74 ±14.26 74.64 ±3.06 78.18 ±1.21 72.52 ±3.68

D=C2, P=C2 20.35 ±2.18 48.50 ±7.66 66.82 ±7.90 71.22 ±3.99 77.09 ±1.33 78.16 ±1.81 76.80 ±1.36

Acc

D=C1, P=C1 19.60 ±2.67 12.96 ±2.91 58.23 ±5.30 55.81 ±4.00 43.16 ±6.20 60.39 ±3.25 54.06 ±3.97

D=C1, P=C2 19.68 ±2.46 22.61 ±5.73 43.07 ±8.18 41.45 ±4.06 56.36 ±1.94 53.11 ±5.89 58.68 ±3.45

D=C2, P=C1 20.97 ±3.19 43.51 ±6.30 57.54 ±7.21 54.82 ±12.59 76.60 ±3.23 77.38 ±1.43 70.69 ±3.93

D=C2, P=C2 19.03 ±2.18 51.59 ±5.09 68.16 ±9.24 71.83 ±4.33 76.70 ±1.35 78.92 ±1.31 75.38 ±1.70

Table 7.4: Performance on Yelp using the causal prompts on the two causal subsets. We ex-
periment all combinations of data nature (“D”) and causal prompt type (“P”), and report
the average performance across the five paraphrases for each prompt, with the standard
deviation.

binary classification datasets is saturated (Poria et al., 2023; Yang et al., 2019), we use the
5-way classification version of the SA datasets when applicable.

Sincewe need to utilize the emotion arc, we keep only reviewswith at least five sentences,
after sentence tokenization using the Spacy package (Honnibal and Montani, 2017). We
apply this filtering above on the test set of the Yelp dataset, the English test of Amazon,
and the unsplit entire dataset ofAppReview. We report the statistics of remaining samples
in Table 7.1.

To obtain the emotion arcs, we calculate the sentiment score of each sentence by the
sentiment-analysis pipeline1 from Huggingface (Wolf et al., 2020).

Causal Discovery For each input sample, we process them as in Table 7.2, namely first
obtaining the sentence-level sentiments to form the emotion arc, and then calculating the
alignment scores λ1 and λ2 for each causal process, respectively. We consider an example
as dominated by the causal process Ci if the alignment score λi is more optimal than the
other.

We report the resulting statistics in Table 7.1. For each dataset, we describe their overall
statistics, as well as the statistics of data with the underlying causal process of C1, and

1https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english. We map its output value in 0–
1 to the 5-class labels, by converting a value in 0–0.2 to the class label of 1, 0.2–0.4 to label 2, ..., and 0.8–1 to
label 5.
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that of C2. We can see that Yelp and Amazon have an almost balanced split of C1 and C2,
while App Review has 61% C2 data compared to 39% C1 data. See Appendix A.6.2.2 for
an additional visualization of the λ1-λ2 distribution across the 1K data points.

7.4 Improving Sentiment Classifiers with Causal Alignment

Using our proposed causal discovery method, we have identified two distinct subsets
with their corresponding causal processes C1 and C2. Now, we address the last practical
question proposed in Section 7.2.3:

Can causal alignment help us improve SA in the era of LLMs?

Specifically, we take the commonly used approach in the era of LLMs, i.e., prompting pre-
trained LLMs for the SA task, and look into how alignment with the underlying causal
process could help SA performance. We answer the following three subquestions in this
section:

Q1. Using the standard SAprompt, domodels perform differently on C1/C2 data? (Sec-
tion 7.4.1)

Q2. Does it help if wemake the prompt aware of the underlying causality, i.e., use causal
prompts? (Section 7.4.2)

Q3. When prompted causally, do LLMs really understand the causal processes? (Sec-
tion 7.4.3)

7.4.1 Q1: Do Models Perform Differently on C1/C2 Data?

Experimental Setup The first question is whether models perform differently on data
with the causal nature of C1 or C2. We use the subsets identified by our psychologically-
grounded causal discovery, and test a variety of available autoregressive LLMs, including
the open-weight GPT-2 (Radford et al., 2019), LLaMa (Touvron et al., 2023), and Alpaca
(Taori et al., 2023b); aswell as the closed-weightmodelswithOpenAIAPI, the instruction-
tuned GPT-3 (text-davinci-002) (Brown et al., 2020; Ouyang et al., 2022), GPT-3.5 (gpt-3.5-
turbo-0613), GPT-4 (gpt-4-0613) (OpenAI, 2023). We also add a random baseline which
uniformly samples the label space for each input.

We use the standard prompt formulation for SA in the format of “[Instruction] Review

Text: {x}\n Label:”. The experiments are on a set of randomly selected 1K samples
from the test set of Yelp-5 (Zhang et al., 2015b), due to the time- and cost-expensive in-
ference of the above LLMs. (E.g., LLaMa/Alpaca takes 96 GPU hours to run.) See more
experimental details in Appendix A.6.1.1.

Results We show the performance of the six LLMs in Table 7.3, and report the F1 and
accuracy across the five-class classification on Yelp-5. We can see that the existing LLMs
perform the best on the subset with the causal process C2, implying that the decision
pattern of LLMs is closer to the Fast Thinking system, which takes the peak-end average
of the emotion arc.
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7.4.2 Q2: Do Causal Prompts Help?

DesigningCausal Prompts Inspired by the fact thatmodels performdifferently onC1/C2
data, our next question is, will it help if we directly give a hint to the LLMs about the un-
derlying causal graph?

Prompt Design
C1 As a customer writing a review, I initially composed the following feedback:

“[review]”
After carefully considering the facts, I selected a star rating from the options of “1”,
“2”, “3”, “4”, or “5”. My final rating was:

C2 As a customer writing a review, I initially selected a star rating from the options “1”,
“2”, “3”, “4”, and “5”, and then provided the following explanations in my review:
“[review]”

The review clarifies why I gave a rating of

Table 7.5: Causally-aware prompts describing the SA task in contexts with the C1 and C2
causal graphs.

To this end, we propose the idea of causal prompts, which are prompts that describe the
causal story behind the input and output variables. We list our designed prompts for the
C1 and C2 stories in Table 7.5.

Results Wereport the performance for all combinations of the dataset natures andprompt
natures in Table 7.4, where we find that the most-performant setting uses Prompt C2 on
the data subset with the same causal nature, C2. This alignment leads to the best per-
formance across almost all models by both F1 and accuracy. On the C2 data, we also see
that Prompt C2 outperforms the standard SAprompt in Table 7.3 by a substantial margin,
such as 32.13 F1 points increase for GPT-2, and 14.23 F1 points increase for GPT-4.

However, although Prompt C2 shows a strong performance, the other causal prompt, i.e.,
Prompt C1, does not always help the data subset C1 in all cases, from which we raise a
further question – how well do LLMs really mechanistically understand our prompts?
We explore this question in the next section.

7.4.3 Q3: Can LLMs Correctly Capture the Causal Stories in the Prompts?

Although the proposal of the two causal prompts is intuitive for humans, we still need to
inspect whether LLMs are able to understand them correctly.

Method Mechanistically, for a model to solve SA for the causal process C1 correctly, it
needs to treat the sentence-level sentiments across all sentences equally; and for a model
to solve SA for the causal process C2 correctly, it needs to pay more attention to the peak
and end sentiments on the emotion arc.

Targeting the two mechanisms, we use causal tracing (Meng et al., 2022) to attribute the
final sentiment prediction to the source sentences in the input. Briefly, causal tracing uses
causal mediation analysis (Pearl, 2001) to quantify the causal contribution of the inter-
nal neuron activations of a model to its final prediction (Vig et al., 2020a). We use causal
tracing to inspect the causal effects of the hidden states on the model prediction, using
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Figure 7.2: Causal attribution in LLaMa-7B and Alpaca-7B, showing howmuch each sen-
tence contributes to the prediction probability.

the open-weight models, LLaMa and Alpaca. We use the causal effects of the first-layer
neurons for each sentence, which we aggregate to obtain the final prediction. See imple-
mentation details in Appendix A.6.1.2.

Results We plot the causal attribution results of howmuch each sentence contributes to
the final prediction in Figure 7.2. Here, the ideal behavior of the models is that Prompt C1
should trigger uniform attention over all the sentences, which is roughly observed through
the more even shades of color of the “Prompt C1” row than the “Prompt C2” row in
Figure 7.2 in the row of “Prompt C1”. On the other hand, Prompt C2 should trigger more
attention to the sentences corresponding to the peak and end sentiments. For this, we
see the models have high attention to the middle sentence, as in the “Prompt C2” row
in Figure 7.2. Additionally, the average causal effect of the peak sentence on predictions
under Prompt C2 is 0.0013 for LLaMa and 0.0029 for Alpaca, quantitatively aligning with
our expectation that the peak sentencewould showahigh contribution. Nonetheless, note
that no model sufficiently attends to the end sentence under Prompt C2. This implies that
they do not fully grasp the expected contribution pattern of the peak-end rule, missing
the significant role of the end sentence.

7.5 Related Work

SA The task of SA aims to identify the sentiment given a piece of text. It has a rich
history originating from subjectivity analysis (Wiebe, 1994; Hatzivassiloglou and Wiebe,
2000), and developing rapidly with the availability of large opinionated online data such
as reviews with star ratings (Turney, 2002; Nasukawa and Yi, 2003; Zhang et al., 2015b;
Keung et al., 2020, inter alia). Most literature on SA focuses on building computational
models, from using traditional linguistic rules (Hatzivassiloglou and McKeown, 1997;
Choi and Cardie, 2008), to the application of machine learning methods, from traditional
naive bayes and support vector machines (Pang et al., 2002; Moraes et al., 2013; Tan et al.,
2009), to early deep learning models (Socher et al., 2013; Kim, 2014; Xing et al., 2020), and
finally entering the era of LLMs (Hoang et al., 2019; Raffel et al., 2020; Yang et al., 2019).

Psychology and Affective Science In the study of emotion, or affect science (Salovey
and Mayer, 2004; Barrett, 2006; Feinstein, 2013), previous work finds that not only the
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emotion people perceive influences or prime how they communicate in the moment (Bar-
rett, 2006), but language can also influence emotion, which can be observed in functional
magnetic neuroimaging (Satpute et al., 2013), and also experiments showing the act of
self-reporting the emotion inwriting can change the physical reaction to the emotion (Kas-
sam and Mendes, 2013). In his seminal work, Kahneman (2011) uses the two systems of
thinking to reveal the mechanisms of how people come up with their sentiment, where
fast thinking conforms to the peak-end rule (Kahneman et al., 1993), and slow thinking is
more reflective of the overall sentiment.

Cause-Effect Distinction Distinguishing the cause from effect based on observational
data is a long-standing and fundamental problem in causality (Hoyer et al., 2008; Zhang
and Hyvärinen, 2009; Janzing, 2019). Existing methods to address this problem are based
on statistics (Hoyer et al., 2008; Peters et al., 2010; Shajarisales et al., 2015; Mooij et al.,
2014), physics (Janzing, 2007; Janzing et al., 2016), information theory (Janzing et al., 2012;
Chaves et al., 2014;Mejia et al., 2022), and algorithmic complexity (Janzing and Schölkopf,
2010; Jin et al., 2021c). However, we are the first to look at the rich nature of NLP datasets,
and directly approach the difference in the causal and anticausal mechanisms grounded
in interdisciplinary insights.

As for our causal prompts, the most similar studies are the non-causally-grounded explo-
rations for prompt tuning, such as by varying the patterns of masked language modeling
(Schick and Schütze, 2022) and using the noisy channel method (Min et al., 2022). How-
ever, these studies are not aware of the underlying causal processes, thus neglecting the
connection of prompts with the causal nature of data, and also the explicit causal story of
the sentiment-review relation.

7.6 Conclusion

In conclusion, we have formulated the task of SA into a prediction problem and a causal
discovery problem. Wefirst identified the cause-effect relation among existing SAdatasets,
namely whether the review primes the rating, or the sentimental judgment primed the re-
view writing process. To achieve this causal discovery, we obtain insights from existing
psychology studies, namely aligning the above two causal processes with the famous Fast
Thinking and Slow Thinking systems, with their distinct qualitative signals. Given the
causal understanding of the dataset, we further improve the performance of LLMs on SA
using our proposed causal prompts. Our research paves the way for more causally-aware
future research in SA.

Limitations and Future Work

This study has several limitations. First, the rapid progression of LLMsmakes it challeng-
ing to keep up with all newly proposed models and architectures. Since our work covers
only a set of recent LLMs at the time of this study, we encourage future research to apply
our methods to additional LLMs and other SA datasets.

Although our study is grounded inwell-established psychological theories, there remains
the possibility that new theories could emerge, necessitating updates to the calculation of
the λ values for the two causal processes. However, the causal processes identified in this
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work appear plausible, as evidenced by the effectiveness of the causally aligned prompts
in improving language model performance.

Regarding the causal graph formulation, we focus on basic bivariate causal graphs, but
future work could include more variables, such as confounders, mediators, and colliders.

The nature of this work is to introduce a paradigm shift for SA, and formulate the task
differently. Therefore, we see lots of space for future extensions, such as to explore the
causal nature of SA in different settings, different languages, and also aspect-based senti-
ment analysis (Pontiki et al., 2014; Xing et al., 2020; Hua et al., 2023).

Ethical Considerations

Regarding data concerns and user privacy, our study employs several established NLP
datasets, and the examples we cite do not include sensitive user information.

Concerning potential stakeholders and misuse, this research primarily introduces a new
perspective on the SA task. A possible negative impact concerns the general application
of SA, which could be used to analyze user mentality for surveillance or fraudulent pur-
poses. We acknowledge that studies on SA inherently involve these risks, and we firmly
oppose the misuse of SAmodels in such contexts.
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Mining theCause of PoliticalDecision-
Making from Social Media: A
Case Study of COVID-19 Poli-
cies across the US States

Mining the causes of political decision-making is an active research area in the field of
political science. In the past, most studies have focused on long-term policies that are
collected over several decades of time, and have primarily relied on surveys as the main
source of predictors. However, the recent COVID-19 pandemic has given rise to a newpo-
litical phenomenon, where political decision-making consists of frequent short-term deci-
sions, all on the same controlled topic—the pandemic. In this paper, we focus on the ques-
tion of how public opinion influences policy decisions, while controlling for confounders
such as COVID-19 case increases or unemployment rates. Using a dataset consisting of
Twitter data from the 50 US states, we classify the sentiments toward governors of each
state, and conduct controlled studies and comparisons. Based on the compiled samples of
sentiments, policies, and confounders, we conduct causal inference to discover trends in
political decision-making across different states. Our code and data are publicly available
at https://github.com/zhijing-jin/covid-twitter-and-policy.

8.1 Introduction

Policy responsiveness is the study of the factors that policies respond to (Stimson et al.,
1995). One major direction is that politicians tend to make policies that align with the
expectations of their constituents, in order to run successful re-election in the next term
(Canes-Wrone et al., 2002).

An overview of existing studies on policy responsiveness reveals several patterns, sum-
marized in Table 8.1. First, most work focuses on the long-term setting, where the policies
are collected over a span of several decades, e.g., Caughey and Warshaw (2018)’s collec-
tion of public opinion surveys and state policymaking data over 1936-2014, and Lax and
Phillips (2009)’s collection of public opinion polls and gradual policy changes over 1999-
2008. Second, the data sources of existing studies are mostly surveys and polls, which can
be time-consuming and expensive to collect (Lax and Phillips, 2012). Third, the resulting
data are often of relatively small sizes, for both the number of policies and the number of
public opinion.

Different from previous work on long-term policies, our work focuses on the special case
of COVID pandemic, during which political leaders make a number of frequent, short-
termpolicies on the same topic: social distancing. Moreover, instead of collecting surveys,
we use Twitter to collect public opinion, which is instant, costless, and massive, e.g., tril-
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Previous
Work

This Work

Policy Type Long-term,
gradu-al (over
decades)

Short-term
(weekly/-
monthly)

Policy Sparsity Less policies
on the same
topic

Many policies
on the same
topic across
states

Data Source Surveys Trillions of
tweets

Data Collection – NLP&Causal-
ity

Table 8.1: Comparison of the characteristics and paradigms of existing work versus our
work.

Twitter Sentiment

COVID Case Num

Unemployment

Policy

Other covariates

COVID tweets Identify governor-
related tweets State-wise sentiment

Daily new case
increases

Normalize by
state population

State-wise daily case
increase (normalized)

State-wise monthly
unemployment rate

Take the span of 14 days before the policy date

- Urbanization of the state
- Population of the state
- Party affiliation of the governor
- Whether the governor will run for re-election
- Whether the state legislatures is full-time
- Whether the governor is a political ally of Trump
- Trump support rate in the state 
- Number of Twitter followers of the governor

Classify sentiments by
fine-tuned COVID BERT

State-wise covariate
features

Resources & Tools

Fine-tuned COVID
BERT

COVID tweets

BERT

Comparative 
Study

Causal
Inference

Regression

Covariates

Cause
(research

target) Effect

Figure 8.1: The data collection pipeline and architecture of our system to predict the state-
wise COVID policies.

lions of data points. We limit our scope to US policies because the 50 states provide abun-
dant policy data, and a good background for both controlled groups and comparative
studies.

We present one of the first efforts to address policy responsiveness for short-term poli-
cies, namely the causal impact of public Twitter sentiments on political decision-making.
This is distinct from existing studies on COVID policies that mostly explore the impact of
policies, such as predicting public compliance (Grossman et al., 2020; Allcott et al., 2020;
Barrios and Hochberg, 2020; Gadarian et al., 2021; DeFranza et al., 2020). Specifically,
since governors have legislative powers through executive orders, we focus our study on
each state governor’s decisions and how public opinion towards the governor impacts
their decisions. For example, governors that optimize short-term public opinion are more
likely to re-open the state even when case numbers are still high.

Our workflow is illustrated in Figure 8.1. We start by collecting 10.4M governor-targeted
COVID tweets, which we annotate for sentiment with a BERT-based classifier. Next, we
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annotate 838 social distancing policies and collect data on ten potential confounders such
as average daily case increases or unemployment rates. Finally, we conductmultiple anal-
yses on the causal effect of Twitter sentiment on COVID policies. For interpretability, we
first use a multivariate linear regression to identify correlations of sentiments and poli-
cies, in addition to considering all the confounders. We also use do-calculus (Pearl, 1995)
to quantify the causal impact of Twitter sentiment on policies. We also conduct cross-state
comparisons, cross-time period analysis, and multiple other analyses.

The main contributions of our work are as follows. First, we compile a dataset of public
opinion targeted at governors of the 50 US states with 10.4M tweets. Second, we annotate
a dataset of 838 COVID policy changes of all 50 states, along with data of ten confounders
of each state. Third, we conduct regression analyses and causal analyses on the effect
of Twitter sentiment on policies. Finally, we implement additional fine-grained analyses
such as cross-state comparisons, cross-time period analysis, and multiple other analyses.

8.2 Related Work

Policy Responsiveness Policy responsiveness (i.e., public opinion−causes→policies) is
an active research field in political science, where people study how policies respond to
different factors (Stimson et al., 1995). Studies show that policy preferences of the state
public can be a predictor of future state policies (Caughey and Warshaw, 2018). For ex-
ample, Lax and Phillips (2009) show that more LGBT tolerance leads to more pro-gay
legislation in response. Most policies and public opinion studied in existing literature are
often long-term and gradual, taking several decades to observe (Lax and Phillips, 2009,
2012; Caughey and Warshaw, 2018).

CrisisManagement Policies Another related topic is crisismanagement policies, where
most studies focus on the reverse causal problem of our study – how crisis management
policies impact public opinion (i.e., policies−causes→public opinion). Awell-known phe-
nomenon is the rally “round the flag” effect, which shows that during a crisis, therewill be
an increased short-run public support for the political leader (Mueller, 1970, 1973; Baum,
2002), due to patriotism (Mueller, 1970; Parker, 1995), lack of opposing views or criticism
(Brody and Shapiro, 1989), and traditional media coverage (Brody, 1991).

To the best of our knowledge, there is not much research on how public opinion influence
policies (i.e., public opinion−causes→policies) during a crisis. Our work is one of the few
to address this direction of causality.

COVID Policies There are several different causal analyses related to COVID-19 poli-
cies, although different from our research theme. Existing studies focus on how social dis-
tancing policies mitigate COVID spread (i.e., policies−causes→pandemic spread) (Krae-
mer et al., 2020), what features in public attitudes impact the compliance to COVID poli-
cies (i.e., public attitudes/ideology−causes→policy compliance) (Grossman et al., 2020;
Allcott et al., 2020; Barrios andHochberg, 2020; Gadarian et al., 2021), how polices change
the public support of leaders (i.e., policy−causes→public support). Bol et al. (2021); Ajzen-
man et al. (2020), how pandemic characteristics affect Twitter sentiment (Gencoglu and
Gruber, 2020), andhowpolitical partisanship impacts policies (i.e., partisanship−causes→policy
designs) (Adolph et al., 2021). However, there is no existingwork using public sentiments
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Positive Neutral Negative

Percentage 15.8% 36.5% 47.7%
Length 15.51 12.21 16.39
Topics we, support, thank, great, gov-

ernors, covid, action
people, masks, covid, cases,
state, today, total

cases, state, covid, close,
deaths, people, trump

4-
Grams

- great governors responded
executive
- responded executive action
promptly
- quickly , support americans

- positive patients nursing
homes
- governors ordered covid
positive
- today ’s update numbers

- covid patients nursing
homes
- america ’s governors
forced
- covid patients nursing
homes

Example "I am a small business owner,
we kept health insurance for
the furloughed staff of my
two restaurants, month after
month, even while one restau-
rant was closed and the other
only has limited service. Why?
Because I have a conscience.
We are in a pandemic."

"Today: @GovInslee 3 pm
news conference on WA’s
coronavirus response. Inslee
to be joined by state schools
chief. Your daily #covid19
updates via @seattletimes"

"And the politicians that
are doing the conditioning
are out, maskless, celebrat-
ing with their family and
friends... @GavinNewsom
Glad I never once fell for it.
Covid-19 was always just a
power-grab for politicians"

Table 8.2: Label distribution (Percentage), average number of words per tweet (Length),
topics extracted by LDA topic modeling (Blei et al., 2003), top 4-grams, and examples of
positive, neutral, and negative tweets.

(e.g., from social media) to model COVID policies.

Opinion Mining from Social Media Social media, such as Twitter, is a popular source
to collect public opinions (Thelwall et al., 2011; Paltoglou and Thelwall, 2012; Pak and
Paroubek, 2010; Rosenthal et al., 2015). Arunachalam and Sarkar (2013) suggest that Twit-
ter can be a useful resource for governments to collect public opinion. Existing usage of
Twitter for political analyses mostly targets at election result prediction (Beverungen and
Kalita, 2011; Mohammad et al., 2015; Tjong Kim Sang and Bos, 2012), and opinion to-
wards political parties (Pla and Hurtado, 2014) and presidents (Marchetti-Bowick and
Chambers, 2012). To the best of our knowledge, this work is one of the first to use Twitter
sentiment for causal analysis of policies.

8.3 Governor-Targeted Public Opinion

To investigate the causality between public opinion and each state governor’s policy de-
cisions, we first describe how we mine public opinion in this Section; we then describe
the process we use to collect policies and other confounders in Section 8.4.

We collect governor-targeted public opinion in two steps: (1) retrieve governor-related
COVID tweets (Section 8.3.1), and (2) train a sentiment classificationmodel for the COVID
tweets and compile sentiments towards governors (Section 8.3.2).
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8.3.1 Retrieve Governor-Related COVID Tweets

Weuse theCOVID-related tweet IDs curated byChen et al. (2020).1 Chen et al. (2020) iden-
tified these tweets by tracking COVID-related keywords and accounts. We provide the
list of keywords and accounts they used in Appendix A.7.1.1. We hydrate the tweet IDs to
obtain raw tweets using an academic Twitter Developer account. This process took sev-
eral months to complete, and resulted in a dataset of 1.01TB. The retrieved 1,443,871,617
Tweets span from January 2020 to April 2021.

Since this study focuses on governor’s policy decision-making process, we focus on the
public opinion that are more directly related to the governors. Specifically, we focus on
tweets that tagged, replied to, or retweeted state governors. We obtain 10,484,084 tweets
by this filter. On average, each of the 50 states has about 209K tweets that address the state
governor. The rationale of this filter is that the governors and their teams are likely to
have directly seen (a portion of) these tweets, since they showed up in governor’s Twitter
account.

8.3.2 Classify Sentiments towards Governors

Existing studies on COVID Twitter sentiment analysis (Manguri et al., 2020; Kaur and
Sharma, 2020; Vijay et al., 2020; Chakraborty et al., 2020a; Singh et al., 2021a) mostly use
TextBlob (Loria, 2018), or some simple supervised models (Machuca et al., 2021; Kaur
et al., 2021; Mansoor et al., 2020).

For our study, we use the state-of-the-art BERT model pretrained on COVID tweets by
Müller et al. (2020).2 We finetune this pretrained COVID BERT on the Twitter sentiment
analysis data from SemEval 2017 Task 4 Subtask A (Rosenthal et al., 2017). Given tweets
collected from a diverse range of topics on Twitter, the model learns a three-way clas-
sification (positive, negative, neutral). In the training set, there are 19,902 samples with
positive sentiments, 22,591 samples with neutral sentiments, and 7,840 samples with neg-
ative sentiments.

We tokenize the input using the BERT tokenizer provided by the Transformers Python
package (Wolf et al., 2020). We add [CLS] and [SEP] tokens at start and end of the input,
respectively. The input is first encoded by the pretrained COVID BERT. Then, we use
the contextualized vector C of the [CLS] token as the aggregate sentence representation.
The model is finetuned on the classification task by training an additional feed-forward
layer log(softmax(CW)) that assigns the softmax probability distribution to each senti-
ment class.

Prior to training, we preprocess the tweets by deleting the retweet tags, and pseudonymis-
ing each tweet by replacing all URLs with a common text token. We also replace all uni-
code emoticons with textual ASCII representations. During training, we use a batch size
of 32 and fine-tune for 5 epochs. We use a dropout of 0.1 for all layers, and the Adam
optimizer (Kingma and Ba, 2017) with a learning rate of 1e-5. Additionally, due to the
specific nature of our classification task (i.e., mining opinion towards the governor), we
add a post-processing step to classify a tweet as supportive of a governor (i.e., positive)
if the tweet retweets a tweet from the governor’s official account.

1COVID-related Tweet IDs: https://github.com/echen102/COVID-19-TweetIDs
2https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2
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Model Performance. We evaluate our model accuracy on two test sets. First, on the test
set of SemEval 2017, our finetuned model achieves 79.22% accuracy and 79.29% F1. Sec-
ond, we also evaluate our model performance on our own test set. Since the features
of general tweets provided in SemEval 2017 might differ from COVID-specific tweets,
we extracted 500 random tweets from the Twitter data we collected in Section 8.3.1. We
asked a native English speaker in the US to annotate the Twitter sentiment with regard to
the state governor that the tweet addresses. The annotator has passed a small test batch
before annotating the entire test set.

We use the TextBlob classifier as our baseline, since it is the most commonly used in exist-
ingCOVIDTwitter sentiment analysis literature. On our test set’s three-way classification,
the TextBlob baseline has 23.35% accuracy and 16.67% weighted F1. Our finetuned BERT
classifier has 60.23% accuracy and 62.31%weighted F1. Detailed scores per class is in Ap-
pendix A.7.1.3. When applying the sentiment classifier, we care more about whether the
average sentiment over a time period is accurate, so we also turn the test set into groups
of tweets each containing 20 random samples. The average mean squared error (MSE) for
the average sentiment of each group is 0.03889 for the BERT model, and 0.22749 for the
TextBlob model. We apply the finetuned COVID BERT classifier on the governor-related
tweets we extracted previously. As listed in Table 8.2, among 10.4M tweets, 15.8% are
positive, 36.5% neutral, and 47.7% negative.3

We use Latent Dirichlet Allocation (LDA) topic modeling (Blei et al., 2003) to extract key
topics of each category. Typical topic words in positive tweets include “we,” “support,”
“thank,” “great,” and “governors,” while negative tweets tend to mention more about
“america’s governors forced ...” and support Trump, perhaps Trump’s tweets on “libera-
tion.”

8.4 Collection of Policies and Confounders

We focus on state-wide social distancing policies, and collect 838 social distancing policies
from 50 states over the period January 2020 – April 2021 (described in Section 8.4.1).

Since we want to focus on the causal effect of public sentiment on policy, we must control
for possible confounding factors. In particular, case numbers and unemployment rates
are potentially the most important confounders, the collection of which is introduced in
Section 8.4.2. In addition, we also collect eight other potential confounders suggested by
political science experts (described in Section 8.4.3). The collection process is illustrated
in Figure 8.1.

8.4.1 Social Distancing Policy Annotation

We annotate the social distancing policies related to COVID for each of the 50 states in
the US. For each state, the annotators are asked to go through the entire list of COVID-
related executive orders from January 2020 to April 2021. In cases where the states do not
use executive orders for COVID regulations, we also consider proclamations and state
guidance on social distancing.

The policies are rated on a scale of 0 (loosest) - 5 (strictest). We provide guidance as to

3Note that label imbalance is commonly observed on Twitter data (Guerra et al., 2014).
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the level of strictness that each number indicates, as detailed in Appendix A.7.1.2. Four
annotators are asked to conduct the ratings. Since the annotation is very tedious, taking
up to 3 hours per state, we do not conduct double annotations. Instead, given our original
annotations (for which we score each policy based on its official legal document in PDF),
we did a quick second pass by confirming that our scores roughly match the succinct 1∼2-
sentence textual summary of each policy provided by the Johns Hopkins Coronavirus
Resource Center.4

8.4.2 Key Confounders: State-Level Case Numbers and Unemployment Rates

Wecollect COVIDdaily newconfirmed case numbers from the open-sourceCOVIDdatabase5

curated by the Kaiser Family Foundation. For a fair comparison across states, we normal-
ize the case numbers by the population of the state. We retrieve the seasonly adjusted data
of monthly unemployment rates for each state from the U.S. Bureau of Labor Statistics.6

8.4.3 Additional Confounders

For additional confounders, we collect both state data as well as governor features.

State Features. For state features, we collect the population7 and urbanization rate from
US 2010 Census (Census Bureau, 2012).8 In addition, we also collect the last US presiden-
tial election returns of each state.9 Note that it is necessary to use pre-policy data, so we
collect the presidential election returns from 2016 but not from 2020. For the presidential
election returns, we obtain the percentage of votes for Donald Trump to indicate Trump’s
support rate.

Governor Features. For each governor, we collect their party affiliation, whether the gov-
ernor will run for the next gubernatorial election,10 and whether the state legislatures are
full-time or not, collected from National Conference of State Legislatures.11 In addition,
we also annotate whether the governor is a political ally of Trump or not. We conduct the
annotation based on the background and past news reports of each governor. For corner
cases, we quote additional evidence in our annotation, e.g., for republican governors who
do not support Trump, and democratic governors who support Trump. We also collect
the number of Twitter followers for each governor, since it might be correlated with how
much attention the governor pays to the twitter reactions.

Table 8.3 lists the statistics of the confounder data we collected.

4Social distancing policy summaries: https://coronavirus.jhu.edu/data/state-timeline
5COVID case number data: https://github.com/KFFData/COVID-19-Data
6Monthly unemployment data: https://www.bls.gov/web/laus/ststdsadata.zip
7Population data: https://www.census.gov/programs-surveys/decennial-census/data/tables.

2010.html
8Urbanization data: https://www.icip.iastate.edu/tables/population/urban-pct-states.
9Presidential election return data: https://www.nytimes.com/elections/2016/results/president

10For simplicity, we collect the pre-COVID data at the time point of January 2020, and do not consider the
change of governorships in two states in early 2021.

11https://www.ncsl.org/
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Numerical Features
Mean (±std) Min Max

Daily Case Increase (%) 0.02 (±0.02) 0.0 0.45
Unemployment Rate (%) 5.51 (±3.25) 2.0 29.5
Urbanization (%) 73.58 (±14.56) 38.7 95
Population (M) 12.94 (±45.68) 0.57 325.38
Trump’s Support Rate (%) 48.29 (±11.93) 4 68
# Twitter Followers (K) 237 (±458) 7 2596

Binary Features
Yes No

Gov Is Republican 26 24
Will Run for Re-election 39 11
Full-Time Legislatures 10 40
Trump’s Political Ally 22 28

Table 8.3: Statistics of the ten confounders collected for policy prediction task.

8.5 Mining Decisive Factors of COVID Policies

Since we are interested in discovering the key factors that changes the decisions of policy-
makers, we focus on the change of policies (e.g., changing from complete close down to
reopening K-12 schools) rather than absolute values of the policy strictness. For each
policy in state s on date t, we calculate the change ∆policy as the difference of this policy
from the previous policy that was issued.

Since sentiment may change rapidly and many policies are updated frequently during
COVID, for each policy change ∆policy, we focus on the average sentiment over the time
span (t − ∆t, t) from ∆t days prior to the policy date t. Here, we set ∆t = 14 since many
epidemiology reports are based on 14-day statistics, e.g., the 14-day notification rate.

When building the policy predictionmodel, we also need to account for confounders. For
the confounders, most are static over time for a given state, except for the daily case in-
creases and the unemployment rates that change over time, for whichwe take the average
over the 14-day time span.

Based on the data above, we seek to answer the following questions: (Q1) What variables
are indicative of policy changes?, and (Q2) What causal impact does sentiment have on
the policies?

8.5.1 Q1: What Variables Are Indicative of Policy Changes?

To aim for interpretability, we choose amultivariate linear regression as ourmodel, which
is commonly used in political science literature on COVID policies (Grossman et al., 2020;
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Allcott et al., 2020; Barrios and Hochberg, 2020; Gadarian et al., 2021). Specifically, we
model the policy change ∆policy as a function of all variables, including our main focus
– Twitter sentiments – and all the confounders, which form in total 11 variables.12

Sentiment, Case Numbers, Unemployment Are Important The first experiment is to
compare howwell different combinations of input variables fit the policy change. We use
mean squared error (MSE) as the measure of model capability.

When taking into consideration all variables, the model has an MSE score of 0.368. As a
further step, we test whether a smaller number of inputs can achieve similar results. We
find that when only taking three variables as inputs, theMSE is 0.369, which is 0.001 from
themodel taking in all variables. Among all combinations of three variables, the proposed
three key variables, sentiment, case numbers, and unemployment rates, achieve the best
performance of 0.369.

Note that it is reasonable that with rational decision-making, politicians consider the case
numbers and unemployment rates whenmaking COVID policies. The focus of this study
is to show the additional effect of sentiment, the role of which is not explicitly pointed out
in previous COVID policy research.

The Role of Non-Sentiment Variables First, given the presence of the sentiment vari-
able in the model, we test the additional effect of non-sentiment variables. As shown in
Table 8.4, case numbers and unemployment rate both lead to non-trivial improvement of
the models, and unemployment is more important.

Additional Non-Sentiment Variables MSE (³)
Sentiment-only 0.618
+ Case 0.532
+ Unemp 0.407
+ Case, Unemp 0.369
+ Case, Unemp, Others 0.368

Table 8.4: TheMSE ofmodels taking as input the additional non-sentiment variables, such
as case increases (Case), unemployment (Unemp), and other confounders (Others).

The Role of Sentiment Second, we look into the role of sentiment. We take the optimal
11-variable, 3-variable, and 2-variable models, and conduct ablation studies to inspect
how much does sentiment contribute exclusively in Table 8.5.

We show that for each model, sentiment has a crucial impact of more than 0.032 on the
model performance. Note that in linear regression, we do not need to explicitly disen-
tangle the correlations within sentiments and other confounders – in Table 8.5, the effect
of sentiment is demonstrated in addition to fitting all other variables that may contain
correlations.

12For each input variable, we first normalize by adjusting mean to zero and standard deviation to 1.
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Model MSE (³)
11-Variable model 0.368
−Senti Deterioration of 0.032

3-Variable model 0.369
−Senti Deterioration of 0.032

2-Variable model 0.407
−Senti Deterioration of 0.034

Table 8.5: Ablation study of sentiment for the optimal 11-, 3-, 2-variable models. Note that
the 11-variable model is the full model taking in all variables.

8.5.2 Q2: What Causal Impact Does Sentiment Have on the Policies?

In the previous section, we investigated the most indicative variables of policies. The
experiments indicate how important each variable is to the regression target, i.e., howwell
they serve as a predictor, although such correlation does not necessarily capture causation.
In this section, we are interested in the causal impact of sentiment on policies, and we use
causal inference methods to quantify the impact.

Formulation by Do-Calculus Formally, we are interested in the effect of a cause X (i.e.,
Twitter sentiment) on the outcome Y (i.e., policy change) in the presence of the confounder
Z (i.e., case numbers, unemployment, etc.), as shown in Figure 8.2.

X

Cause

Y

Effect

Z

Confounders

backdoor path

Causal association

Method 1: Intervene X
P(Y | do(X))

Method 2: Block the backdoor path
P(Y | X, Z)

Figure 8.2: Backdoor Adjustment.

To formulate the causal impact, Pearl (1995) defines a language for causality called do-
calculus, by which the causal impact of X on Y is formulated as the interventional distri-
bution:

P(Y|do(X)) , (8.1)

where do(X) refers to an intervention on the cause X.

Note that the interventional distribution P(Y|do(X)) may be different from the observa-
tional distribution P(Y|X) in the presence of the confounder Z. Specifically, in the above
Figure 8.2, there are two ways how X correlates with Y. The first is the causal path X→ Y,
and the second is the backdoor path X← Z→ Y.
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There are two ways to account for the backdoor path: Method 1 needs to intervene on X,
e.g., create a counterfactual situation where all confounders are the same but the Twitter
sentiment can be set to negative vs. positive. In our study of Twitter opinion on COVID
policies, this is not a feasible experiment to conduct, due to the fundamental problem of
causal inference (Rubin, 1974; Holland, 1986) (namely, for each sample i, we are usually
only able to observe one value ofX but not both). The othermethod, backdoor adjustment,
circumvents the problem, which will be introduced in the following.

Backdoor Adjustment The key challenge in the above causal inference is that we need
to account for the confounder Z. Backdoor adjustment (Pearl, 1995) presents an approach
to estimate the causal impact of X on Y by using only observational data. Basically, we need
to block all backdoor paths by conditioning on nodes that can break the unwanted con-
nections between X and Y. Moreover, these nodes should not contain any descendants of
X. In our case, we condition on the confounder Z, and turn the interventional distribution
into the observational distribution:

P(Y|do(X)) =
∑

Z

P(Y|X,Z)P(Z) . (8.2)

The causal impact of X (i.e., positive or negative sentiment) on Y (i.e., policy change) be-

comes

´ = E[Y|do(X = 1)] − E[Y|do(X = −1)]

=
∑

Z

(E[Y|X = 1, Z] − E[Y|X = −1, Z])P(Z)

= EZ[E[Y|X = 1, Z] − E[Y|X = −1, Z]] .

(8.3)

Results We apply Eq. (8.3) to all states using a 10-dim vector Z that encodes all con-
founders.13 Then we rank the states by ´ values, which represents the causal impact of
sentiment on the state policies.

Top 5 States with Large ´ Top 5 States with Small |´|
State ´ Value State ´ Value
Colorado 4.292 Arizona 0.053
Massachusetts 1.157 West Virginia 0.030
Florida 1.124 Pennsylvania 0.023
Texas 1.095 Nebraska -0.001
South Dakota 1.057 Alabama -0.065

Table 8.6: Top five states with the largest ´ values, and the ´ values that are closest to
zero.

In Table 8.6, we show the top five states with highest ´ values, and five states with ´

values that are the closest to zero. The higher the ´ value, there exists more alignment
between people’s sentiment and the state policy strictness in the state.

There are some associations between our results and real-world patterns. For instance,
among the top five states in Table 8.6, Colorado’s high ´ value reflects its Democratic

13Due to length restrictions, please refer to the arXiv version of our paper for additional implementation
details of the backdoor adjustment.
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governor’s large net favorable rating compared to the Republican politicians.14 Mas-
sachusetts also has a high governor approval rate, and most people support the COVID
policies. The three Republican states, South Dakota, Texas, and Florida, also have high ´,
but they are in a different scenario. The loose policies in all these states are in line with
general sentiment across the states to refuse restrictions.

8.6 Fine-Grained Analyses

8.6.1 Early-Stage vs. Late-Stage Decisions

Since the COVID pandemic is an unprecendented situation, it is likely that in early stages
of the pandemic, politicians tend to rely on their pre-judgements, and as time goes on,
they form a better understanding of the situation and adjust their reaction towards the
public opinion. We compare the causal impact of sentiment on policies in the first three
months of the outbreak (i.e., from March to June 1, 2020) and afterwards (i.e., from June
1, 2020 to now). Table 8.7 shows that the states with the most changes in ´ are Montana,
Washington, Georgia, Tennessee, and Indiana.

State Change in ´ before and after June 1

Montana +9.39
Washington +4.03
Georgia +3.15
Tennessee +2.94
Indiana +2.53

Table 8.7: Top 5 states with the most change in the causal impact of sentiment on policies
from March to June 1, 2020, versus from June 1, 2020 to April, 2021.

8.6.2 Cross-State Comparison

For cross-state comparison, we identify states that are similar in terms of the confounders,
and then compare how different policies are a result of different public sentiments. For
simplicity, we consider the two most important confounders, case numbers and unem-
ployment rates. We evaluate the similarity matching on the two time series across differ-
ent states by the dynamic timewarping algorithm (Berndt and Clifford, 1994), and extract
state pairs that are the most similar in terms of the confounders.

In Figure 8.3, we show an example pair of states, Mississippi (MS) and Georgia (GA),
which have highly similar case numbers and unemployment rates at most time steps.
Note that we use the New York (NY) state to show in contrast how the above pair is
different from another unrelated state.

In the comparative study of MS and GA, they can be considered as counterfactuals for
each other. In their policy curves, the policy strictness in MS responds to the COVID case
numbers (e.g., the policies are stricter on the rising slope of case numbers), but the policies
in GA remain loose even during the rising trends in July – August 2020, and November
2020 – January 2021. We look into the sentiment differences across the two states: For
example, during November 2020 – January 2021, GA experienced a very low average

14For example, see this poll result by Colorado Poll reported by Denver Post.



110 • Additional Discussions

(a) Cases in MS. (b) Cases in GA. (c) Cases in NY.

(d) Unemployment in MS. (e) Unemployment in GA. (f) Unemployment in NY.

(g) Policy of MS. (h) Policy of GA. (i) Policy of NY.

Figure 8.3: Comparative study of states. MS and GA is a pair of states with the most
similar confounders, and NY is an irrelevant state to contrast how different MS and GA
are from other states. Note that unemployment data is only available until March 2021.

sentiment of -0.58 in the [-1, 1] scale, whereas MS experienced a milder sentiment of -0.04.
By the controled comparison, themore negative sentiment is the potential cause for looser
policies in GA.

8.7 Additional Discussions

Fine-GrainedOpinionsbehind theSentiments. To further interpretwhypositive tweets
usually lead to stricter social distancing policies (and negative tweets lead to looser poli-
cies), we look into the correlation of Twitter sentiment and the user’s opinion towards
social distancing policies. Note that usually it is not easy to directly get an unsupervised
intent classifier on COVID specific tweets. Hence, we ask the annotators to classify the
opinion on social distancing for the 500 tweets in our test set as supportive, against, and
not related to social distancing. Among the tweets about social distancing with positive
sentiment, 95.13% support social distancing. Among the tweets about social distancing
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with negative sentiment, 69.38% are against social distancing and ask for the reopening
of the state.

Additional Analyses. Weput our additional analyses in Appendix A.7.2, including cor-
relation across all variables, and alternative causal analysis models such as difference-
in-differences (Abadie, 2005), and continuous-valued propensity score matching (Hirano
and Imbens, 2004; Bia and Mattei, 2008).

Limitations. There are several limitations of this study. For example, a common limita-
tion of many causal inference settings is the uncertainty of hidden confounders. In our
study, we list all the variables that we believe should be considered, but future studies
can investigate the effect of other confounders.

Another limitation is the accuracy of the Twitter sentiment classifier. Since the Twitter sen-
timent during COVID is very task-specific, modeling the sentiments can be very challeng-
ing. For example, our model often misclassifies “increased positive cases” as a positive
sentiment. Another challenge is that some tweets refer to a url. These cases are difficult
to deal with, and might be worth more detailed analyses in future studies.

In the data setting, one limitation is that for causal inference, modeling the whole time
series is extremely challenging, so we empirically take the 14-day time span, which is a
commonly used time span for many other COVID measures.

Future Work. This work is the first work to use NLP and causal inference to address
policy responsiveness, and we explicitly measure the alignment of government policies
and people’s voice. This signal can be very important for the government and decision-
makers.

In future work, a similar approach can be used together with other variables (e.g., eco-
nomic growth, participation in health/vaccination campaigns, well-being) to determine
to which extent such people-government alignment relates to societal outcomes.

8.8 Conclusion

In this paper, we conducted multi-faceted analyses on the causal impact of Twitter sen-
timent on COVID policies in the 50 US states. To enable our study, we compile a large
dataset of over 10 million governor-targeted COVID tweets, we annotate 838 state-level
policies, and we collect data ten potential confounders such as daily COVID cases and
unemployment rates. We use a multivariate linear regression and do-calculus to quantify
both the correlation of Twitter sentiment as well as its causal impact on policies, in the
presence of other confounders. To our knowledge, this is one of the first studies to utilize
massive social media data on crisis policy responsiveness, and lays the foundation for
future work at the intersection of NLP and policy analyses.

Ethical Considerations

Use of Data For the data used in this study, the COVID-related tweets are a subset of the
existing dataset provided by Chen et al. (2020). Following the data regulations of Twitter,



112 • Conclusion

we will not publicize the raw tweet text. If necessary, we can provide the list of tweet
IDs to future researchers. For the policy strictness we annotated, we will open-source it
since it is public information that can benefit societies affected by the pandemic, and has
no privacy or ethical issues. For other confounding variables, the data are also public
information.

Potential Stakeholders This research can be used for policy-makers or political science
researchers. The research on causality between public opinion and political decision-
making helps make policies more interpretable. One potential caveat is that there might
be parties that maliciously manipulate sentiments on Twitter to affect politicians. Amiti-
gation method is to control the flow of misinformation, terrorism and violent extremism
on social media. The ideal use of the study is to reflect the process how a democracy
system surveys the opinion from people, and makes policies that best balances people’s
long-term and short-term interests.



CausalCite: A Causal Formula-
tion of Paper Citations

Citation count of a paper is a commonly used proxy for evaluating the significance of
a paper in the scientific community. Yet citation measures are widely criticized for fail-
ing to accurately reflect the true impact of a paper. Thus, we propose CausalCite, a
new way to measure the significance of a paper by assessing the causal impact of the pa-
per on its follow-up papers. CausalCite is based on a novel causal inference method,
TextMatch, which adapts the traditional matching framework to high-dimensional text
embeddings. TextMatch encodes each paper using text embeddings from large language
models (LLMs), extracts similar samples by cosine similarity, and synthesizes a counter-
factual sample as the weighted average of similar papers according to their similarity
values. We demonstrate the effectiveness of CausalCite on various criteria, such as high
correlation with paper impact as reported by scientific experts on a previous dataset of
1K papers, (test-of-time) awards for past papers, and its stability across various subfields
of AI. We also provide a set of findings that can serve as suggested ways for future re-
searchers to use our metric for a better understanding of the quality of a paper. Our code
is available at https://github.com/causalNLP/causal-cite.

9.1 Introduction

Recent years have seen explosive growth in the number of scientific publications, mak-
ing it increasingly challenging for scientists to navigate the vast landscape of scientific
literature. Therefore, identifying a good paper has become a crucial challenge for the sci-
entific community, not only for technical research purposes, but also formaking decisions,
such as funding allocation (Carlsson, 2009), research evaluation (Moed, 2006), recruitment
(Gary Holden and Barker, 2005), and university ranking and evaluation (Piro and Sivert-
sen, 2016).

A traditional approach to recognize paper quality is peer review, a mechanism that re-
quires large efforts, and yet has inherent randomness and flaws (Cortes and Lawrence,
2021; Rogers et al., 2023; Shah, 2022; Prechelt et al., 2018; Resnik et al., 2008). Moreover,
the number of papers after peer review is still overwhelmingly large for researchers to
read, leaving the challenge of identifying truly impactful research unaddressed. Another
commonly used metric is citations. However, this metric faces criticism for biases, such
as a preference for survey, toolkit, and dataset papers (Zhu et al., 2015; Valenzuela et al.,
2015). Together with altmetrics (Wilsdon, 2016), which incorporates social media atten-
tion to a paper, both metrics also bias towards papers from major publishing countries
(Rungta et al., 2022; Gomez et al., 2022), with extensive publicity and promotion, and
authored by established figures.

To provide a more equitable assessment of paper quality, we employ the causal inference
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Causal Effect
Paper a Paper b

What is the impact of Paper a on its followup study b?

Paper topic
Publication year
...

Success metric: y

Attributes

Paper a Paper b
Paper topic
Publication year
...

Success metric: y'

Attributes

We make a counterfactual situation
Had Paper a not existed... Yet Paper b still has the same topic, year, etc.

What would the counterfactual success metric y' be?

Figure 9.1: An overview of our research question.

framework (Hernán and Robins, 2010) to quantify a paper’s impact by how much of the
academic success in the follow-up papers should be causally attributed to this paper. We
introduce CausalCite, an enhanced citation based metric that poses the following coun-
terfactual question (also shown in Figure 9.1): “had this paper never been published, what
would have happened to its follow-up studies?” To compute the causal attribution of each
follow-up paper, we contrast its citations (the treatment group) with citations of papers
that address a similar topic, but are not built on the paper of interest (the control group).

Traditionally, this problem is solved by using the matching method (Rosenbaum and Ru-
bin, 1983) in causal inference, which discretizes the value of the confounder variable,
and compares the treatment and control groups with regard to each discretized value
of the confounder variable. However, this approach does not apply when the confounder
variable is high-dimensional, e.g., text data, such as the content of the paper. Thus, we
improve the matching method to adapt for textual confounders, by marrying recent ad-
vancement of large language models (LLMs) with traditional causal inference. Specifi-
cally, we propose TextMatch, which uses LLMs to encode an academic paper as a high-
dimensional text embedding to represent the confounders, and then, instead of iterating
over discretized values of the confounder, we match each paper in the treatment group
with papers from the control group with high cosine similarity by the text embeddings.

TextMatchmakes contributions in three different aspects: (1) it relaxes the previous con-
straint that the confounder variable should be binned into a limited set of intervals, and
makes the matching method applicable for high-dimensional continuous variable type
for the confounder; (2) since there are millions of papers, we enable efficient matching via
amatching-and-reranking approach, first using information retrieval (IR) (Manning et al.,
2008) to extract a small set of candidates, and then applying semantic textual similarity
(STS) (Majumder et al., 2016; Chandrasekaran and Mago, 2022) for fine-grained rerank-
ing; and (3) we enable a more stable causal effect estimation by leveraging all the close
matches to synthesize the counterfactual citation score by a weighted average according to
the similarity scores of the matched papers.
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CausalCite quantifies scientific impact via a causal lens, offering an alternative under-
standing of a paper’s impact within the academic community. To test its effectiveness, we
conduct extensive experiments using the Semantic Scholar corpus (Lo et al., 2020; Kinney
et al., 2023), comprising of 206M papers and 2.4B citation links. We empirically validate
CausalCite by showing higher predictive accuracy of paper impact (as judged by scien-
tific experts on a past dataset of 1K papers (Zhu et al., 2015)) compared to citations and
other previous impact assessment metrics. We further show a stronger correlation of the
metric with the test-of-time (ToT) paper awards. We find that, unlike citation counts, our
metric exhibits a greater balance across various research domains in AI, e.g., general AI,
NLP, and computer vision (CV).While citation numbers for papers in these domains vary
significantly – for example, while an average CV paper has many more citations than an
average NLP paper, CausalCite scores papers across AI sub-fields more similarly.

After demonstrating the desirable properties of our metric, we also present several case
studies of its applications. Our findings reveal that the quality of conference best pa-
pers is noisier on average than that of ToT papers (Section 9.5.1). We then showcase and
presentCausalCite for severalwell-knownpapers (Section 9.5.3) andutilizeCausalCite
to identify high-quality papers that are less recognized by citation counts (Section 9.5.4).

In conclusion, our contributions are as follows:

1. We introduce CausalCite, a counterfactual causal effect-based formulation for pa-
per citations.

2. We develop TextMatch, a new method that leverages LLMs and causal inference
to estimate the counterfactual causal effect of a paper.

3. We conduct comprehensive analyses, including various performance evaluations
and present new findings using our metric.

9.2 Problem Formulation

Our problem formulation involves a citation graph and a causal graph. We use lower-
case letters for specific papers and uppercase for an arbitrary paper treated as a random
variable.

Citation Graph In the citation graph G := (P,L), P is a set of papers, and each edge
ℓi,j ∈ L indicates that an earlier paper pi influences (i.e., is cited by) a follow-up paper
pj. To obtain the citation graph, we use the Semantic Scholar Academic Graph dataset
(Kinney et al., 2023) with 206M papers and 2.4B citation edges.

Causal Graph. The causal graph, shown in Figure 9.2, highlights the contribution of a
paper a to a follow-up paper b. We use a binary variable T to indicate if a influences
b and an effect variable Y to represent the success of b. We use log10 of citation counts
to quantify Y, although other transformations can also be used. We introduce two sets of
variables in this causal graph: (i) The set of confounders, which are the common causes of
T and Y. For instance, the research area of b impacts both the likelihood of a paper citing a

and its own citation count. (ii) Descendants of the treatment, comprising mediators (e.g.,
paper a influencing the quality of paper b and subsequently influencing its citations) and
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Treatment T
Building Paper b on Paper a

Effect Y
Success of Paper b

What is the causal effect size?

Confounders X
Title+Abstract
incl., topic, research

question

Year
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Building Paper b on Paper a

Effect Y
Success of Paper b

Mediators
Performance

e.g., "90%"
Venue

e.g., "ACL"
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Post-Hoc Award

e.g., "Test of Time"
...

...
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Target:

T's Ancestors (but not Y's)
Paper a's venue,

publicity, ... Should be
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Should not be
controlled for

Y's Ancestors (but not T's)

Paper b's efforts into PR...

Figure 9.2: The causal graph of our study.

colliders (e.g., both the influence from a and the citations of b influencing later awards
received by b).

9.2.1 CausalCite Indices

In this section, we introduce various indices that measure the causal impact of a paper.

Two-Paper Interaction: Pairwise Causal Impact (PCI). To examine the causal impact
of a paper a on a follow-up paper b, we define the pairwise causal impact PCI(a, b) by
unit-level causal effect:

PCI(a, b) := yt=1 − yt=0 , (9.1)

where we compare the outcomes Y of the paper b had it been influenced by paper a or
not, denoted as the actual yt=1 and the counterfactual yt=0, respectively. Note that the
counterfactual yt=0 can never be observed, but only estimated by statistical methods, as
we will discuss in Section 9.3.2.

Single-Paper Quality Metrics: Total Causal Impact (TCI) and Average Causal Impact
(ACI). Let S denote the set of all follow-up studies of paper a. We define total causal
impact TCI(a) as the sum of the pairwise causal impact index PCI(a, b) across all b ∈ S.
That is,

TCI(a) :=
∑

b∈S

PCI(a, b) . (9.2)

This definition provides an aggregatedmeasure of a paper’s influence across all its follow-
up papers.
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As the causal inference literature is usually interested in the average treatment effect, we
further define the average causal impact (ACI) index as the average per paper PCI:

ACI(a) :=
TCI(a)
|S|

=
1

|S|

∑

b∈S

(
yt=1 − yt=0

)
. (9.3)

We note that ACI(a) is equal to the average treatment effect on the treated (ATT) of paper
a (Pearl, 2009b).

9.3 The TextMatch Method

As illustrated in Figure 9.1, the objective of our study is to quantify the causal effect of the
treatment T (i.e., whether paper b is built on paper a) on the effect Y (i.e., the outcome of
paper b). To approach this, we envision a counterfactual scenario: what if paper a had
never been published, yet certain key characteristics of paper b remain unchanged? The
critical question then becomes: which key characteristics of paper b should be controlled
for in this hypothetical situation?

9.3.1 What Does Causal Inference Tell Us aboutWhat Variables to Control for,
and What Not?

In causal inference, selecting the appropriate variables for control is a delicate and crucial
process that affects the accuracy of the analysis. Pearl’s seminal work on causality guides
us in differentiating between various types of variables (Pearl, 2009b).

Firstly, we must control for confounders – variables that influence both the treatment and
the outcome. Confounders can create spurious correlations; if not controlled, they can
lead us to mistakenly attribute the effect of these external factors to the treatment itself.
For example, in assessing the impact of one paper on another, if both papers are in a
trending research area, the apparent influence might be due to the popularity of the topic
rather than the papers’ content.

However, not all variables warrant control. Mediators and colliders should be explicitly
avoided in control. Mediators are part of the causal pathway between the treatment and
outcome. By controlling them, we would block the very effect we are trying to measure.
Colliders, affected by both the treatment and the outcome, can introduce bias when con-
trolled. Controlling a collider can inadvertently create associations that do not naturally
exist. In general, this also includes not controlling for the descendants of the treatment,
as it could obscure the direct impact we intend to study.

Lastly, variables that do not share a causal path with both the treatment and outcome,
known as unshared ancestors, are less critical in our analysis. They do not contribute to or
confound the causal relationship we are exploring, and thus, controlling for them does
not add value to our causal understanding.

9.3.2 Can Existing Causal Inference Methods Handle This Control?

Several causal inference methods have been proposed to address the problem of estimat-
ing treatment effects while controlling for confounders. Next, we will discuss the work-
ings and limitations of three classical methods.
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Randomized Control Trials (RCTs) Assumes Intervenability. The ideal way to obtain
causal effects is through randomized control trials (RCTs). For example, when testing
a drug, we randomly split all patients into two groups, the control group and the treat-
ment group, where the random splitting ensures the same distribution of the confounders
across the two groups such as gender and age. However, RCTs are usually not easily
achievable, in some cases too expensive (e.g., tracking hundreds of people’s daily lives
for 50 years), and in other cases unethical (e.g., forcing a random person to smoke), or
infeasible (e.g., getting a time machine to change a past event in history).

For our research question on a paper’s impact, utilizing RCTs is impractical as it is in-
feasible to randomly divide researchers into two groups, instructing one group to base
their research on a specific paper a while the other group does not, and then observe the
citation count of their papers years later.

Ratio Matching Iterates over Discretized Confounder Values. In the absence of RCTs,
matching is as an alternatemethod for determining causal effects fromobservational data.
In this case, we can let the treatment assignment happen naturally, such as taking the
naturally existing set of papers and running causal inference by adjusting for the variables
that block all paths. Given a set of naturally observed papers, one of the most commonly
used causal inference methods is ratio matching (Rosenbaum and Rubin, 1983), whose
basic idea is to iterate over all possible values x of the adjustment variablesX and obtain
the difference between the treatment group T and control group C:

‘ACI(a) =
∑

x

P(x)


 1

|Tx|

∑

i∈Tx

yi −
1

|Cx|

∑

j∈Cx

yj


 , (9.4)

where for each valuex, we extract all the units corresponding to this value in the treatment
and control sets, compute the average of the effect variable Y for each set, and obtain the
difference.

While ratio matching is practical when there is a small set of values for the adjustment
variables to sum over, its applicability dwindles with high-dimensional variables like text
embeddings in our context. This scenario may generate numerous intervals to sum over,
presenting numerical challenges and potential breaches of the positivity assumption.

One-to-One Matching Is Susceptible to Variance. To handle high-dimensional adjust-
ment variables, one possible way is to avoid pre-defining all their possible intervals, but,
instead, iterating over each unit in the treatment group tomatch for its closest control unit
(e.g., McGue et al., 2010; Sato et al., 2022). Consider a given follow-up paper b, and a set
of candidate control papers C, where each paper ci has a citation count yi, and vector
representation ti of the confounders (e.g., research topic). One-to-one matching estimates
PCI as

P̂CI(a, b) = yb − yargmax
ci∈C

mi

= yb − yargmax
ci∈C

sim(tb,ti) ,
(9.5)

where we approximate the counterfactual sample by the paper ci ∈ C which is the most
similar to paper b by the matching score mi, which is obtained by the cosine similarity
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sim of the confounder vectors. A limitation of the one-to-one matching method is that it
might induce large instability in the result, as only taking one paper with similar contents
may have a large variance in citations when the matched paper slightly differs.

9.3.3 How Do We Extending Causal Inference to Text Variables?

9.3.3.1 Theoretical Formulation of TextMatch: StabilizingTextMatching bySynthesis

Tofill in the aforementionedgap in the existingmatchingmethods, weproposeTextMatch,
which mitigates the instability issue of one-to-one matching by replacing it with a con-
vex combination of a set of matched samples to form a synthetic counterfactual sample.
Specifically, we identify a set of papers ci ∈ C with high matching scoresmi to the paper
b, and synthesize the counterfactual sample by an interpolation of them:

P̂CI(a, b) = yb −
∑

ci∈C

wiyi = yb −
∑

ci∈C

mi∑
ci∈C

mi
yi , (9.6)

where the weight wi of each paper ci is proportional to the matching score mi and nor-
malized.

The contributions of our method are as follows: (1) we adapt the traditional matching
methods from low-dimensional covariates to any high-dimensional variables such as text
embeddings; (2) different from the ratio matching, we do not stratify the covariates, but
synthesize a counterfactual sample for each observed treated units; (3) due to this iter-
ation over each treated unit instead of taking the population-level statistics, we closely
control for exogenous variables for the ATT estimation, which circumvents that need for
the structural causal models; (4) we further stabilize the estimand by a convex combina-
tion of a set of similar papers. Note that the contribution of Eq. (9.6) might seem to bear
similarity with synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2010), but
they are fundamentally different, in that synthetic control runs on time series, and fit for
the weights wi by linear regression between the time series of the treated unit and a set
of time series from the control units, using each time step’s values in the regression loss
function.

9.3.3.2 Overall Algorithm

To operationalize our theoretical formulation above, we introduce our overall algorithm
in Algorithm 1. We briefly give an overview of the the algorithm with more details to
be elaborated in later sections. We use the weighted average of the matched samples
following our TextMatchmethod in Eq. (9.6) through lines 25 to 34. In our experiments,
we use the interpolation of up to top 10 matched papers. We encourage future work to
explore other hyperparameter settings too. Given the PCI estimation, the main spirit of
the GetACIandTCI(a) function is to average or sum over all the follow-up studies of
paper a, following the theoretical formulation in Eqs. (9.2) and (9.3) and implemented in
our algorithm through lines 7 to 12.

9.3.3.3 Key Challenges and Mitigation Methods

We address several technical challenges below.
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Algorithm 1 Get causal impact indices ACI and TCI
1: Input: Paper a.
2: procedure GetACIandTCI(a)
3: D ← GetDesc(a) ▷ Get descendants by DFS
4: B ← GetChildren(a)
5: B

′
← SampleSubset(B) ▷ See Section 9.3.3.3.4

6: C ← EntireSet\{D ∪ {a}} ▷ Get non-descendants
7: ACI← 0

8: for each bi inB
′ do

9: Ii ← GetPCI(a, bi,C)

10: ACI← ACI + 1

|B ′|
· Ii

11: end for
12: TCI← ACI · |B|

13: return ACI and TCI
14: end procedure

15: procedure GetPCI(a, b,C)
16: CsameYear ← FilterByYear(C, byear)

17: for each pi inCsameYear ∪ {b} do
18: ti ← RemoveMediator(TitleAbstracti)
19: end for
20: Ccoarse ← BM25(b,CsameYear, topk = 100)

21: for each ci inCcoarse do
22: mi ← Sim(tb, ti)

23: end for
24: Ctop10 ← argmax10

m
(Ccoarse)

25: M← 0

26: for each ci inCtop10 do ▷ For the normalization later
27: M←M +mi

28: end for
29: ŷt=0

← 0

30: for each ci in Ctop10 do
31: wi ←

mi

M

32: ŷt=0
← ŷt=0 +wi · yi ▷ Apply Eq. (9.6)

33: end for
34: return yb − ŷt=0

35: end procedure

9.3.3.3.1 Confounders of Various Types

First, as we mentioned in the causal graph in Figure 9.2, the confounder set consists of
a text variable (title and abstract concatenated together) and an ordinal variable (publi-
cation year). Therefore, the similarity operation Sim between two papers should be cus-
tomized. For our specific use case, we first filter by the publication year in line 16, as it is
not fair to compare the citations of papers published in different years. Then, we apply
the cosine similarity method paper embeddings as in line 22. As a general solution, we
recommend to separate hard logical constraints, and soft matching preferences, where
the hard constraints should be imposed to filter the data first, and then all the rest of the
variables can be concatenated to apply the similarity metric on.

9.3.3.3.2 Excluding the Mediators from Confounders

Another key challenge to highlight is that the text variable we use for the confounder
might accidentally include some mediator information. For example, the quality or per-
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formance of a paper could be expressed in the abstract, such as “we achieved 90% accu-
racy.” Therefore, we conduct a specific preprocessing procedure before feeding the text
variable to the similarity function. For the RemoveMediator function in line 18, we ex-
clude all numerical expressions such as percentage numbers, as well as descriptions such
as “state-of-the-art.” For generalizability, the essence of this step is a entanglement action
to separate the confounder variable (in this case, the research content) and all the de-
scendants of the treatment variable (in this case, mentions of the performance). For more
complicated cases in future work, we recommend a separate disentanglement model to
be applied here.

9.3.3.3.3 Efficient Matching-and-Reranking Method

Since we use one of the largest available paper databases, the Semantic Scholar dataset
(Kinney et al., 2023) containing 206Mpapers, we need to optimize our algorithm for large-
scale paper matching. For example, after we filter by the publication year, the number of
candidate papersCsameYear could be up to 8.8M. In order to conduct text matching across
millions of papers, we use a matching-and-reranking approach, by combining two NLP
tasks, information retrieval (IR) (Manning et al., 2008) and semantic textual similarity
(STS) (Majumder et al., 2016; Chandrasekaran and Mago, 2022).

Specifically, we first run large-scale matching to obtain 100 candidates papers (line 20)
using the common IR method, BM25 (Robertson and Zaragoza, 2009). Briefly, BM25 is
a bag-of-words retrieval function that uses term frequencies and document lengths to
estimate relevancy between two text documents. Deploying this method, we can find a
set of candidate papers for, for example, twomillion papers, at a speed 250x faster than the
text embedding cosine similarity matching. Then, we conduct a fine-grained reranking
using cosine similarity (lines 21 to 23). In the cosine similarity matching process, we use
theMPNetmodel (Song et al., 2020) to encode the text of each paper ci into an embedding
ti, with which we get the matching score mi according to Eq. (9.5) in line 22, and the
normalized weight wi by Eq. (9.6) in line 31.

9.3.3.3.4 Numerical Estimation

Given the large number of papers, it is numerically challenging to aggregate the TCI from
individual PCIs, because the number of follow-up papers for a study can be up to tens of
thousands, such as the 57,200 citations by 2023 for the ImageNet paper (Deng et al., 2009).
To avoid extensively running PCI for all follow-up papers, we propose a new numerical
estimation method using a carefully designed random paper subset.

A naive way to achieve this aggregation is Monte Carlo (MC) sampling. However, un-
fortunately, MC sampling requires very large sample sizes when it comes to estimating
long-tailed distributions, which is the usual case of citations. Since citations are more
likely to be concentrated in the head part of the distribution, we cannot afford the com-
putational budget for huge sample sizes that cover the tails of the distribution. Instead,
we propose a novel numerical estimation method for sampling the follow-up papers, in-
spired by importance sampling (Singh, 2014; Kloek and van Dijk, 1976).

Our numerical estimation method works as follows: First, we propose the formulation
that the relation between ACI and TCI is an integral over all possible paper b’s. Then, we
formulated the above sampling problem as integral estimation or area-under-the-curve
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estimation. We draw inspiration from Simpson’s method, which estimates integrals by
binning the input variable into small intervals. Analogously, although we cannot run
through all PCIs, we use citations as a proxy, bin the large set of follow-up papers accord-
ing to their citations into n equally-sized intervals, and perform random sampling over
each bin, which we then sum over. In this way, wemake sure that our samples come from
all parts of the long-tailed distribution and are a more accurate numerical estimate for the
actual TCI.

9.4 Performance Evaluation

The contribution of a paper is inherently multi-dimensional, making it infeasible to en-
capsulate its richness fully through a scalar. Yet the demand for a single, comprehensible
metric for research impact persists, fueling the continued use of traditional citations de-
spite their known limitations. In this section, we show how our newmetrics significantly
improve upon traditional citations by providing quantitative evaluations comparing the
effectiveness of citations, Semantic Scholar’s highly influential (SSHI) citations (Valen-
zuela et al., 2015), and our CausalCitemetric.

9.4.1 Experimental Setup

Dataset We use the Semantic Scholar dataset (Lo et al., 2020; Kinney et al., 2023)1 which
includes a corpus of 206M scientific papers, and a citation graph of 2.4B+ citation edges.
For each paper, we obtain the title and abstract for the matching process. We list some
more details of the dataset in Appendix A.8.2, such as the number of papers reaching 8M
per year after 2012.

Selecting the Text Encoder When projecting the text into the vector space, we need a
text encoder with a strong representation power for scientific publications, and is sensi-
tive towards two-paper similarity comparisons regarding their abstracts containing key
information such as the research topics. For the representation power for scientific publi-
cations, instead of general-domainmodels such as BERT (Devlin et al., 2019) andRoBERTa
(Liu et al., 2019), we consider LLM variants2 pretrained on large-scale scientific text, such
as SciBERT (Beltagy et al., 2019), SPECTER (Cohan et al., 2020), and MPNet (Song et al.,
2020).

To check the quality of two-paper similaritymeasures, we conduct a small-scale empirical
study comparing human-ranked paper similarity and model-identified semantic similar-
ity in Appendix A.8.1.3, according to which MPNet outperforms the other two models.

Implementation Details We deploy the all-mpnet-base-v2 checkpoint of the MPNet us-
ing the transformers Python package (Wolf et al., 2020), and set the batch size to be 32.
For the set of matched papers, we consider papers with cosine similarity scores higher
than 0.81, which we optimize empirically on 100 random paper pairs. We take the top ten
most similar papers above the threshold. In special cases where there is nomatched paper
above the threshold, it means that no other paper works on the same idea as Paper b, and

1https://api.semanticscholar.org/api-docs/datasets
2Note that we follow the standard notion by Yang et al. (2023) to refer to BERT and its variants as LLMs.
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we make the counterfactual citation number to be zero, which also reflects the quality of
Paper b as its novelty is high.

To enable efficient operations on the large-scale citation graph, we use the Dask frame-
work,3 which optimizes for data processing and distributed computing. We optimize our
program to take around 100GB RAM, and on average 25 minutes for each PCI(a, b) after
matching against up to millions of candidates. More implementation details are in Ap-
pendix A.8.1.1. For the estimation of TCI, we empirically select the sample size to be 40,
which is a balance between the computational time and performance, as found in Ap-
pendix A.8.1.2.

9.4.2 Author-Identified Paper Impact

In this experiment, we follow the evaluation setup in Valenzuela et al. (2015) to use an
annotated dataset (Zhu et al., 2015) comprised of 1,037 papers, annotated according to
whether they serve as significant prior work for a given follow-up study. Although paper
quality evaluation can be tricky, this datasetwas cleverly annotated by first collecting a set
of follow-up studies and letting one of the authors of each paper go through the references
they cite and select the ones that significantly impact their work. In other words, for a
given paper b, each reference a is annotated as whether a has significantly impacted b or
not.

Table 9.1 reports the accuracy of our CausalCite metric, together with two existing ci-
tation metrics: citations, and SSHI citations (Valenzuela et al., 2015). See the detailed
derivation of the accuracy scores in Appendix A.8.3.2. From this table, we can see that
our CausalCite metric achieves the highest accuracy, 80.29%, which is 5 points higher
than SSHI, and 9 points higher than the traditional citations.

9.4.3 Test-of-Time Paper Analysis

The test-of-time (ToT) paper award is a prestigious honor bestoweduponpapers that have
made substantial and enduring impacts in their field. In this section, we collect a dataset of
792 papers, including 72ToT papers, and a control group of 10 randomly selected non-ToT
papers from the same conference and year as each ToT paper. To collect this ToT paper
dataset, we look into ten leading AI conferences spanning general AI (NeurIPS, ICLR,
ICML, and AAAI), NLP (ACL, EMNLP, andNAACL), and CV (CVPR, ECCV, and ICCV),
for which we go through each of their websites to identify all available ToT papers.4

In Table 9.2, we show the correlations of variousmetricswith the ToT awards. In this table,
CausalCite achieves the highest correlation of 0.639, which is +30.14% better than that
of citations. Furthermore, we visualize the correspondence of our metric and ToT, and
observe a substantial difference between the CausalCite distributions of ToT vs. non-
ToT papers in Figure 9.3. We also show three examples of ToT papers in Figure 9.4, where
the ToT papers differ from the non-ToT papers by one or two orders of magnitude.
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Metric Accuracy

Citations 71.33
SSHI Citations 75.25
CausalCite 80.29

Table 9.1: Accuracy of all three citation
metrics.

Metric Corr. Coef.

Citations 0.491
SSHI Citations 0.317
TCI 0.640

Table 9.2: Correlation coefficients of each
metric and ToT paper award by Point Bis-
erial Correlation (Tate, 1954).
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Figure 9.3: Distributions of
ToT (mean: 142) and non-
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Figure 9.4: The CausalCite values of three ex-
ample ToT papers from general AI, NLP, and CV.

Research Area ACI Citations SSHI

General AI (n=16) 0.748 2,024 267
CV (n=36) 0.734 7,238 1,088
NLP (n=20) 0.763 1,785 461

Table 9.3: The average of eachmetric by research area on our collected set of 72 ToTpapers.

9.4.4 Topic Invariance of CausalCite

A well-known issue with citations is their inconsistency across different fields. What
might be considered a large number of citations in one field might be seen as average
in another. In contrast, we show that our ACI index does not suffer from this issue. We
show this using our ToT dataset, where we control for the quality of the papers to be ToT
but vary the domain by the three fields: general AI, CV, and NLP. We observe in Table 9.3
that even though some domains have significantly more citations (for instance, CV ToT
papers have, on average, 4.05 times more citations than NLP), the ACI remains consistent
across various fields.

9.5 Findings

Having demonstrated the effectiveness of our metrics, we now explore some open-ended
questions: (1) Do best papers have high causal impact? (Section 9.5.1) (2) How does the

3https://dask.org/
4We get this list by selecting the top conferences on Google Scholar using the h5-Index ranking in each of

the above domains: general AI (link), CV (link), and NLP (link).
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CausalCite value distribute across papers? (Section 9.5.2) (3) What is the impact of some
famous papers evaluated by CausalCite? (Section 9.5.3) (4) Can we use this metric to
correct for citations? (Section 9.5.4).

9.5.1 Do Best Papers Have High Causal Impact?

Selecting best paper awards is an arguably much harder task than ToT papers, as it is
difficult to predict of the impact of a paper when it is just newly published. Therefore,
we are interested in the actual causal impact of best papers. Similar to our study on ToT
papers, we collect a dataset of 444 papers including 74 best papers and a control set of
random 5 non-best papers from the same conference in the same year, using the same
set of the top ten leading AI conferences. We find that the correlation of the CausalCite
metric with best papers is 0.348, which is very low compared to the 0.639 correlation with
the ToT papers. This shows that the best papers do not necessarily have a high causal
impact. One interpretation can be that the best paper evaluation is a forecasting task,
which is much more challenging than the retrospective task of ToT paper selection.

9.5.2 What Is the Nature of the CausalCite Distribution?
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Figure 9.5: The distribution of TCI values by percentile of 100 random papers, which
shows a long tail indicating that high impact is concentrated in a relatively small portion
of papers.

We explore how the CausalCite scores are distributed across papers in general. We plot
Figure 9.5 using a random set of 100 papers from the Semantic Scholar dataset, which is
a reasonably large size given the computation budget mentioned in Section 9.4.1. From
this plot, we can see a power law distribution with a long tail, echoing with the common
belief that the paper impact follows the power law, with high impact concentrated in a
relatively small portion of papers.

9.5.3 Selected Paper Case Study

In addition to the shape of the overall distribution, we also look at our metric’s corre-
spondence to some selected papers shown in Table 9.4. For example, we know that the
Transformer paper (Vaswani et al., 2017) is a more foundational work than its follow-up
work BERT (Devlin et al., 2019), and BERT is more foundational than its later variant,
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Paper Name TCI Citations ACI
Transformers 52,507 68,064 0.771
BERT 40,675 59,486 0.683
RoBERTa 6,932 14,434 0.480

Table 9.4: Case study of some selected NLP papers.

RoBERTa (Liu et al., 2019). This monotonic trend is confirmed in their TCI and ACI val-
ues too. Again, this is a preliminary case study, and we welcome future work to cover
more papers.

9.5.4 Discovering Quality Papers beyond Citations

Another important contribution of our metric is that it can help discover papers that are
traditionally overlooked by citations. To achieve the discovery, we formulate the problem
as outlier detection, where we first use a linear projection to handle the trivial alignment
of citations and CausalCite, and then analyze the outliers using the interquartile range
(IQR) method (Smiti, 2020). See the exact calculation in Appendix A.8.3.1. We show the
three subsets of papers in Table 9.5, where the two outlier categories, the overcited and
undercited papers, correspond to the false positive and false negative oversight by cita-
tions, respectively. An additional note is that, when we look into some characteristics of
the three categories, we find that the citation frequency in result section, i.e., the percent-
age of times they are cited in results section compared to all the citations, correlates with
these categories. Specifically, we find that the undercited papers tend to have more of
their citations concentrated in the results section, which usually indicates that this paper
constitutes an important baseline for a follow-up study, while the overcited papers tend
to be cited out of the results section, which tends to imply a less significant citation.

Paper Category Result Citations Residual
Overcited Papers (7.04%) 1.26 -1.792
Aligned Papers (91.20%) 1.51 0.118
Undercited Papers (1.76%) 1.90 1.047

Table 9.5: We use our CausalCite metric to discover outlier papers that are overlooked
by citations. For each paper category, we include their portion relative to the entire pop-
ulation, the percentage of citations occurred in the result section (Result Citations), and
average residual value by linear regression.

9.6 Related Work

The quantification of scientific impact has a rich history and continuously evolves with
technology. Bibliometric analysis has been largely influenced by earlymethods that relied
on citation counts (Garfield et al., 1964; Garfield, 1972, 1964). Hou (2017) investigate the
evolution of citation analysis, employing reference publication year spectroscopy (RPYS)
to trace its historical development in scientometrics. Donthu et al. (2021) provide practi-
cal guidelines for conducting bibliometric analysis, focusing on robust methodologies to
analyze scientific data and identify emerging research trends.

Indices such as the h-index, introduced by Hirsch (2005), are established tools for mea-
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suring research impact. The more recent Relative Citation Ratio (RCR), developed by
Hutchins et al. (2016), provides a field-normalized alternative to traditionalmetrics. Valen-
zuela et al. (2015) introduced SSHI, an approach to identify meaningful citations in schol-
arly literature. However, these metrics are not without limitations. AsWróblewska (2021)
discussed, conventional citation-based metrics often fail to capture the multidimensional
nature of research impact. In this context, Elmore (2018) discussed theAltmetric Attention
Score, which evaluates the broader societal and online impact of research.

With the increasing availability of large datasets and the advent of digital technologies,
new opportunities for bibliometric analysis have emerged. Iqbal et al. (2021) highlighted
the role of NLP and machine learning in enhancing in-text citation analysis. Similarly,
Umer et al. (2021) explored the use of textual features and SMOTE resampling techniques
in scientific paper citation analysis. Jebari et al. (2021) analyzed citation context to de-
tect research topic evolution, showcasing data analysis for scientific discourse. Chang
et al. (2023) explored augmenting citations in scientific papers with historical context, of-
fering a novel perspective on citation analysis. Manghi et al. (2021) introduced scientific
knowledge graphs, an innovative method for evaluating research impact. Bittmann et al.
(2021) explored statistical matching in bibliometrics, discussing its utility and challenges
in post-matching analysis. The use of AI in bibliometric analysis is highlighted in research
by Chubb et al. (2022) and the systematic review of AI in information systems by Collins
et al. (2021). Network analysis approaches, as discussed by Chakraborty et al. (2020b) in
the context of patent citations and by Dawson et al. (2014) in learning analytics, further
illustrate the diverse applications of advanced methodologies in understanding citation
patterns.

9.7 Conclusion

In this study, we proposeCausalCite, a novel causal formulation for paper citations. Our
method combines traditional causal inference methods with the recent advancement of
NLP in LLMs to provide a new causal outlook on paper impact by answering the causal
question: ”Had this paper never been published, what would be the impact on this pa-
per’s current follow-up studies?”. With extensive experiments and analyses using expert
ratings and test-of-time papers as criteria for impact, our newCausalCitemetric demon-
strates clear improvements over the traditional citationmetrics. Finally, we use thismetric
to investigate several open-ended questions like “Do best papers have high causal im-
pact?”, conduct a case study of famous papers, and suggest future usage of our metric for
discovering good papers less recognized by citations for the scientific community.

Limitations and Future Work

There are several limitations for our work. For example, as mentioned previously, our
metric has a high computational budget. Future work can explore more efficient opti-
mization methods. Also, we model the content of the paper by its title and abstract, it
could also be possible for future work to benefit frommodeling the full text, given appro-
priate license permissions.

As for another limitation, our study is based on data provided by the Semantic Scholar
corpus. This corpora has certain properties such as being more comprehensive with com-



128 • Conclusion

puter science papers, but less so in other disciplines. Its citation data also has a delay
compared to Google Scholar, so for the newest papers, the citation score may not be ac-
curate, making it more difficult to calculate our metric.

Additionally, our study provides a general framework for causal inference given a causal
graph that involves text. It is totally possible that for a more fine-grained problem, the
causal graphwill change, in which case, we undersuggest future researchers to derive the
new backdoor adjustment set, and then adjust the algorithm accordingly. An example of
such a variable could be the author information, which might also be a confounder.

Finally, since quality evaluation of a paper is a multi-faceted task, theoretically, a single
number can never give more than a rough approximation, because it collapses multiple
dimensions into one and loses information. Our argument in this paper is just to show
that our formulation is theoretically more accurate than the citation formulation. We take
one step further, instead of solving the quality evaluation problem which is much more
nuanced. Some intrinsic problems in citations that we can also not solve (because our
metrics still rely on using citations, just contrasting them in the right away) include (1) if
a paper is newly published, with zero citations, there is no way to obtain a positive causal
index, and (2) we do not solve the fair attribution problem when multiple authors share
credit of a paper, as our metric is not sensitive towards authors.

Ethical Considerations

Data Collection and Privacy The data used in this work are all from Open Source Se-
mantic Scholar data, with no user privacy concerns. The potential use of this work is for
finding papers that are unique and innovative but do not get enough citations due to lack
of popularity or awareness of the field. This metric can act as an aid when deciding im-
pact of papers, but we do not suggest its usage without expert involvement. Through this
work, we are not trying to demean or criticize anyone’s work we only intend to findmore
papers that have made a valuable contribution to the field.

CS-Centric Perspective The authors of this paper work in Computer Science (mostlyMa-
chine Learning) hence a lot of analysis done on the quality of papers that required sanity
checks are done on ML papers. The conferences selected for doing the ToT evaluation
were also CS Top conferences, hence they might have induced some biases. The metric in
general has been created generically and should be applicable to other domains as well,
the Author IdentifiedMost Influential Papers study is also done on a generalized dataset,
but we encourage readers in other disciplines to try out the metric on papers from their
field.
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This dissertation explored causal methods for NLP. We first started with the question of
whether LLMs can do causal reasoning. In Part I, we build formal causal reasoning bench-
marks covering two key skills, causal discovery (Chapter 2) and causal effect reasoning
(Chapter 3), which existing models struggle to address. We develop CausalCoT to en-
hance model performance, inspired by a combination of symbolic and LLM-driven steps.
A natural question next is to interpret how models make their decisions, which leads to
our exploration in Part II to use causal methods for intrinsic (Chapter 4) and behavioral
interpretability analysis (Chapter 5).

Apart from causal inference to improve performance and to interpret the models, we also
look into the causality among the variables in the dataset in Part III. We find that whether
the variables hold a causal or an anticausal relation has large impact on their performance
in different settings (Chapter 6). We further extend this exploration to cases where the
variable causal relations are not evident a priori, but discovered using interdisciplinary
insights (Chapter 7). Based on the variable relations we also suggest causal prompts to
make use of those relations to improve LLMs’ decisions.

Lastly, we also demonstrate social applications using causal methods and NLP together
in Part IV. Our first study utilizes NLP for sentiment classification on social media text,
and perform causal effect estimation between sentiment and social policies (Chapter 8).
Our second study looks into causal analysis for paper citations, which is a more techni-
cally challenging case to adjust for textual confounders, where we use LLMs to encode
the text to high-dimensional vector space, and perform a text-based matching algorithm
(Chapter 9).

Building on the insights gained from all the above research, we outline a few open chal-
lenges and future directions:

The first direction to highlight is to build a more comprehensive framework of causal
reasoning. My previous work distinguishes two types of causal understanding in LLMs:
knowledge-based causal understanding (Cui et al., 2024), and knowledge-independent
formal reasoning (Jin et al., 2023a, 2024). Looking ahead, there is a large need to sys-
tematize reasoning as an interplay of both. To achieve it, one way is to develop more
sophisticated models and training strategies that enhance the causal inference abilities
of LLMs. This includes exploring novel architectures, fine-tuning methods, and datasets
that better capture causal relationships. Anotherway is to advance tool-augmented LLMs
connecting different subskills into an overall pipeline.

Since reasoning does not necessarily need to be constrained to passively processing the
text, it is also a promising direction to explore cause of reasoning in interactive systems,
such as conversational agents and decision support tools. Research in this area can focus
on integrating causal inference with real-time interactions and feedback mechanisms. In
addition to the interaction setup, some other modalities of data can also be included as
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inputs for causal inference, which can generalize text-only reasoning to image, video,
audio, structured information, and many others.

In parallel to improving model performance, we can also advance the use of causal meth-
ods for interpretable, robust, and fair NLP models. Interpretability, at its essence, is a
causal discovery problem, where we aim to understand what elements or mechanisms
in the model contribute to the final prediction. The key technical challenges are to scale
up causal inference to a large number (e.g., trillions) of neurons in the model, and to ob-
tain human-understandable high-level interpretation. For robustness and fairness, my
existing work uses SCMs to formulate them as causal alignment, between the desired
decision-making mechanism, and the model-learned mechanisms. Further work can for-
malize more evaluation pipelines in causal terms, and apply our framework for robust-
ness and fairness assessments.

Finally, with all the technological advancements in LLMs, we are in an era to see the
rise of cross-disciplinary applications to connect Causal NLP with fields such as health-
care, economics, and education. We look forward to collaborative research that leverages
domain-specific knowledge with Causal NLP methods, leading to impactful advance-
ments in these areas.

If these efforts above are successful, they could lead to the development ofmore intelligent
and robust NLP systems capable of sophisticated causal reasoning. Such advancements
have the potential to transform numerous fields. I believe that the continuous improve-
ment and application of causalmethods for LLMswill be a critical driver of progress inAI,
inspiring future research and opening new avenues for interdisciplinary collaboration.





Appendix

A.1 Additional Materials for Chapter 2

A.1.1 Implementation Details

When finetuning on our data, for GPT-based models, we use the default settings of the
OpenAI finetuning API; and for BERT-based models, we use the transformers library
(Wolf et al., 2020) and train the models on a server with an NVIDIATesla A100 GPUwith
40G of memory. To fit for the GPU memory, we set the batch size to be 8. We use the
validation set to tune the learning rate, which takes value in {2e-6, 5e-6, 1e-5, 2e-5, 5e-5};
dropout rate, which takes value in {0, 0.1, 0.2, 0.3}; andweight decay, which takes value in
{1e-4, 1e-5}. We train the models until convergence, which is usually around ten epochs.

Prompts When querying the autoregressive LLMs, we formulate the prompt as follows:

Question: [premise]

Can we deduct the following: [hypothesis]? Just answer "Yes" or "No."

Answer:

A.1.2 Generating Natural Stories

To generate the natural stories based on our symbolic expressions, we utilize the state-
of-the-art LLM, GPT-4, which is very good at story generation. We design detailed in-
structions in the prompt, and generate around 200 stories in our case study. We show two
examples stories in Table A.1, and the report the overall statistics in Table A.2.

Formore information, the exact promptwe use is “Here is a causal inference rule: [symbolic
form] Please provide a real-world example instantiating this phenomenon. Format it also as
"Premise:", "Hypothesis:", and "Relation between the promise and hypothesis:".”

A.1.3 Templates and Paraphrases

We use the verbalization templates in Table A.3 to compose the hypotheses for all six
causal relations.

A.1.4 Change Log for the Dataset Version Update

De-Duplication Strategy As mentioned in Section 2.3.7 in the main paper, our original
dataset (v1.0) has duplication due to symmetric relations and verbalizations. We intro-
duce in Table A.4 several reasons for why duplicated hypotheses exist in our original
data. One typical reason is symmetric relations such as Is-Parent(A, B) and Is-Child(B,
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A), and, similarly, the paraphrased version of Is-Ancestor(A, B) and Is-Descendent(B, A).
Another typical reason is the semantic equivalence in the verbalization templates, which
applies to the Has-Collider and Has-Confounder relations. For example, the verbalized
texts of Has-Collider(A, B) and Collider(B, A) are “There exists at least one collider (i.e.,
common effect) of {A and B, B and A},” respectively, which are semantically-equivalent
paraphrases of each other, so we randomly keep one out of the two.

Resulting Dataset Statistics after De-Duplication Since the reason for duplication in
the first place is due to symmetry in the causal relation, or verbalization, the resulting
new data, CLadder v2.0, is exactly a half of the original data. As we reported previously
in Table 2.3 of Section 2.3.7, the total number of samples cuts down to half, while the la-
bel distribution and all other properties are the same. To compose each split, we apply
the same de-duplication method for the test, train, and development sets. We notice that
some duplicates are across the splits, sowe prioritize keeping the test and training sets un-
touched (to minimally affect the experimental results), and then reduce the development
set by removing the cross-split duplicates, namely:

• test_2.0 = deduplicate(test_1.0)
• train_2.0 = deduplicate(train_1.0)
• dev_2.0 = deduplicate(dev_1.0) \ {test_2.0, train_2.0}

We expect minimal or almost no change to the experimental results. In case of the slight
possibility that this change in the development set might affect the model selection in the
training process, future work can feel free to re-train the models and update the exact
performance number.

A.1.5 Spurious Correlation Analysis

The inspirations of our two robustness tests (paraphrasing and variable refactorization)
come from our data analysis. We check for spurious correlations in the data by reporting
in Table A.5 the point-wise mutual information (PMI) between the label and any n-gram
with no more than four tokens. In addition, we also report the difference of the PMI with
the two labels in the |Diff| column of Table A.5, and report the top 10 n-grams.

The design spirit for our robustness test is that if the models’ correct judgment relies on
exploiting these spurious correlations, then such reliance will be broken in our perturba-
tions.

We can see that some spurious correlations are rooted in the framing of the hypothesis,
such as “a cause (for)”, and “a direct (one)” (whichwe use the paraphrasing task to break),
and others are connected to the variable names, such as “for D (but)” and “for E (but)”
(which we use the variable refactorization to break).

A.1.6 Fine-Grained Error Analysis

In addition to the fine-grained analysis by causal relation type in Table 2.6a for fine-tuned
models, we also report such error analysis for non-finetuned models in Table A.6.

These results are particularly revealing, showing how off-the-shelf models perform in
recognizing specific relations. Specifically, GPT-3.5 cannot recognize ancestor relations,
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whereas GPT-4 fails at all direct causation recognition with parents and children. And
RoBERTa MNLI only did collider relation relatively correctly. Note that, when the F1
score is zero, the accuracy number is a result of always predicting the negative class of
that relation.

A.1.7 LLM Performance Optimization

Since our experiments in Section 2.4.2 are based on plain, zero-shot prompts, we explore
whether better prompting strategies could improve the performance. We enhance the
query prompt by incorporating several strategies: (1) Utilizing a system prompt that
specifies the model’s expertise (“You are a highly intelligent question-answering bot with
profound knowledge of causal inference.”); (2) Including a pair of few-shot examples,
one positive and one negative; (3) Implementing chain-of-thought prompting with “Let’s
think step by step.” to encourage the language model to generate step-by-step reasoning.
In Table A.7, we present the evaluation results on the relatively affordable model, GPT-
3.5, where the optimized prompt leads to a 4-point improvement in F1 over the original
performance. However, we can see that despite the deployment of all three strategies, the
model continues to struggle with this challenging task.
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A.2 Additional Materials for Chapter 3

A.2.1 Supplementary for Dataset Generation

A.2.1.1 List of References for Causal Inference

When collecting the causal graphs, query types, and commonsensical stories for our dataset,
we took our examples from the following books (sorted by year):

1. Causality (Pearl, 2009b)
2. Causal inference in statistics: A Primer (Glymour et al., 2016)
3. Elements of Causal Inference (Peters et al., 2017)
4. The Book of Why (Pearl and Mackenzie, 2018)
5. Introduction to Causal Inference (Neal, 2020)

And the following papers:

1. Causes and Explanations: A Structural-Model Approach. Part I: Causes (Halpern
and Pearl, 2005a)

2. Causes andExplanations: AStructural-ModelApproach. Part II: Explanations (Halpern
and Pearl, 2005b)

3. Causality and Counterfactuals in the Situation Calculus (Hopkins and Pearl, 2007)
4. Causal inference in statistics: An overview (Pearl, 2009a)

A.2.1.2 Formulation of the Query Types

Here, we introduce all the query types included in our dataset.

Rung-1 Queries: Marginal and Conditional Probabilities. For marginal probabilities,
we ask questions about the overall distribution of a variable. For conditional probabili-
ties, we ask whether conditioning on one variable increases or decreases the likelihood of
another variable. For the explaining away questions, we condition on a collider node and
ask how that affects the correlation between the two parents.

Rung-2 Queries: ATE and Adjustment Set. For ATE questions, we ask whether the
treatment (X = 1) increases or decreases the likelihood of the effect variable Y = y. For
adjustment set questions, we ask whether a set of variables should be adjusted for when
estimating the causal effect between treatment and effect. By adjusting, we aim to blocked
the non-causal paths from the treatments to effect, and hence eliminate spurious correla-
tion. For example, to query whether the set gender is an adjustment set for the effect of
a treatment on recovery, we ask "To estimate the effect of the treatment on recovery, should we
directly look at how the treatment correlates with recovery, or should we look at gender-specific
correlation?" In the collider bias questions, similarly to the explaining away questions, we
condition on a collider variable and ask about how an intervention on one of the parents
(treatment X) affects the other parent (outcome Y). However since by construction X and
Y do not have common causes, the answer to this question is always “no”.
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Figure A.1: List of all ten causal graphs with treatment-effect pairs (CGTEs). We omit
CGTEs that trivially resemble existing ones.

Rung-3 Queries: Counterfactual Probability, ATT, NDE, and NIE. For counterfactual
probability, we ask about what would have been the likelihood of Y = y, if the treatment
variable X had been x, given sufficient evidence e such that the query is identifiable. For
ATT, we ask how the likelihood of Y = ywould change for those who received treatment
(X = 1) if there had been no treatment (X = 0). ForNDE,we askwhether theX = 1directly
increases or decreases the likelihood of the Y = y, not through anymediators. ForNIE, we
ask whether the treatment (setting X = 1) increases or decreases the likelihood of Y = y

through mediators, not directly.

A.2.1.3 Collection of Causal Graphs

We include all the ten causal graphs with treatment-effect pairs (CGTEs) in Figure A.1.

Note that one causal graph can have several different CGTEs, such as the confounding
structure, which has three CGTEs: confounding, mediation, and collision in the triangle
form. To generate all the causal graphs and CGTEs here, we iterate all commonly used
ones within four nodes in the CI books, and omit CGTEs whose solution by CI methods
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trivially resembles existing ones.

A.2.1.4 Data Coverage

Starting from the full set of 12 distinct causal graphs and 10 query types, there are a few
combinations that must be omitted as the ground truth answer would be trivial or ill-
defined. For example, in the “Immorality” graph, the treatment “X” and outcome “Y” are
by construction statistically independent, so there correlation is necessarily 0. Similarly,
there are several graphs where certain causal queries are ill-defined or don’t make sense
to ask. Specifically:

1. For the Natural Direct Effect, we only include questions on the “IV”, “Arrowhead”,
“Confounding”, “Mediation” and “DiamondCut” graphs.

2. For theNatural Indirect Effect, we only include questions on the “Mediation”, “Front-
door”, “Arrowhead”, “Diamond” and “Chain” graphs.

3. For the Collider Bias and Explaining Away effect, we only include questions on the
“Collision” graph.

4. For the Average Treatment Effect, we include questions on all graphs except “Colli-
sion”.

5. For the (deterministic) Counterfactuals, we include questions on all graphs except
“Collision”.

6. For the Average Treatment Effect on the Treated (ATT), we include questions on all
graphs except “Collision” and “IV”.

The “balanced” benchmark (main benchmark in v1.5), containing 10,112 questions split
between all stories, graphs, query types, and commonsensicalness, is balanced such that
there are roughly the same number of questions for each distinct story-graph-query com-
bination (ranging from 50-100 per combination) across the different variants: common-
sense, anticommonsense, and nonsense. Furthermore, we balance the distribution of cor-
rect answers so that there are the same number of “yes”s and “no”s.

The “aggregate” variant (main benchmark in v1.0) contains 10,560 questions and is pri-
marily balanced across all stories. However since the number of stories for each variant
(commonsense, anticommonsense, and nonsense) varies significantly, the results in an
unbalanced benchmark in terms of sensicalness.

A.2.1.5 Query Form and Text Templates

We provide in Table A.8 the text templates we use for each query type.

A.2.1.6 Nonsensical Stories

To come up with a collection of nonsensical variable names, we use GPT-4 to gener-
ate some meaningless words. Specifically, we use the prompt: “Create 100 non-existent
words that are short, i.e., within 5-characters.”, with temperature=0 with the OpenAI in-
terface. The collection of nonsensical words we later use as variable names are as follows:
ziblo, truq, fyze, glimx, jorv, wexi, snov, yupt, kraz, qixy, vubr, chiz, pliv, moxa, fygo,
rukz, tasp, xevo, jyke, wibl, zorf, quzy, nyrp, gwex, smez, vytz, hupx, cwoj, lirf, ovka,
pexu, yigz, twaz, kwox, zuph, fraq, jyxo, swoy, uvzi, nekl, gyzp, rixq, vwem, xyfu, blyz,
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qwip, zeku, tijv, yomx, hwaz, czix, plof, muvy, fyqo, rujz, tasb, xevi, jyka, wibm, zorx,
quzw, nyro, gwet, smeu, vyta, hupz, cwoi, lirg, ovki, pexy, yigw, twac, kwoz, zupj, fraq,
jyxi, swoq, uvzo, nekm, gyzl, rixw, vwen, xyfo, blyx, qwiu, zeky, tijw, yomz, hwax, czir,
ploz, muvq, fyqi, rujx, tasn, xevu, jyko, wibp, zory, and quzt.

A.2.1.7 Anti-Commonsensical Stories

For the anti-commonsensical stories, we randomly do one of the actions:

1. Replace the effect variable Y with an attribute that would not be an effect variable
in any of the stories. Such replacement variables include: “lip thickness”, “earth-
quakes”, “lactose intolerance”, “rainfall”, “is allergic to peanuts”, “brown eyes”,
“curly hair”, “black hair”, “foot size”, “freckles”

2. Create an irrelevant treatment variable X that does not play a causal role in any of
our commonsensical stories. Such as: “can swim”, “is religious”, “has a brother”,
“has visited England”, “likes spicy food”, “is vegetarian”, “speaks english”, “drinks
coffee”, “plays card games”, “listens to jazz”, “solar eclipse”, “has a sister”, “full
moon”

To transform a commonsensical story into an anti-commonsensical story, we apply one of
these replacements sampled uniformly, resulting in stories such as:

• Ability to swim has a direct effect on studying habit and exam score. Studying habit
has a direct effect on exam score.

• Gender has a direct effect on department competitiveness and peanut allergy. De-
partment competitiveness has a direct effect on peanut allergy.

• Liking spicy food has a direct effect on relationship status. Appearance has a direct
effect on relationship status.

• Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct
effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is
unobserved.

For a full list of the replacements and how the replacements are made, check out the code.

A.2.1.8 Explanation Template

Step d Extract the causal graph: The causal graph expressed in the context is: "G".

Step e Identify the query type: The query type of the above question is "query_type".

StepfFormulate the query to its symbolic form: The formal formof the query is "symbolic_expression".

Step g Collect all the available data: The available data are: "d".

Step h Derive the estimand: Based on the graph structure and causal query, the ques-
tion can be simplified into estimand "est".

Step i Solve for the estimand: Plug in the available data "d" into "est".
est(d)
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≈ float(a)

Since the estimate for the estimand is float(a), the overall answer to the question is bool(a).

A.2.2 Experimental Details

A.2.2.1 CausalCoT Prompt

Q: [question from the dataset]

Guidance: Address the question by following the steps below:

Step 1) Extract the causal graph: Identify the causal graph that depicts the relationships
in the scenario. The diagram should simply consist of edges denoted in "var1 -> var2"
format, separated by commas.

Step 2)Determine the query type: Identify the type of query implied by themain question.
Choices include "marginal probability", "conditional probability", "explaining away ef-
fect", "backdoor adjustment set", "average treatment effect", "collider bias", "normal coun-
terfactual question", "average treatment effect on treated", "natural direct effect" or "nat-
ural indirect effect". Your answer should only be a term from the list above, enclosed in
quotation marks.

Step 3) Formalize the query: Translate the query into its formal mathematical expression
based on its type, utilizing the "do(·)" notation or counterfactual notations as needed.

Step 4) Gather all relevant data: Extract all the available data. Your answer should contain
nothing but marginal probabilities and conditional probabilities in the form "P(...)=..." or
"P(...|...)=...", each probability being separated by a semicolon. Stick to the previously
mentioned denotations for the variables.

Step 5) Deduce the estimand using causal inference: Given all the information above,
deduce the estimand using skills such as do-calculus, counterfactual prediction, and the
basics of probabilities. Answer step by step.

Step 6) Calculate the estimand: Insert the relevant data in Step 4 into the estimand, per-
form basic arithmetic calculations, and derive the final answer. There is an identifiable
answer. Answer step by step.

A: [LLM previous response]

Q: Based on all the reasoning above, output one word to answer the initial question with
just "Yes" or "No".

A: [LLM final answer]
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A.2.3 Additional Technical Background for Preliminaries

A.2.3.1 Graphical Models

We adopt the causal inference framework described in (Pearl, 2009b). A causal graph
G := (V ,E) consists of a set of k vertices V : {V1, . . . , Vk} and directed edges E := {eij},
where the existence of each eij means that there is a direct causation from Vi to Vj, also
denoted as Vi → Vj. We also introduce some notations to describe the relative positions
among the nodes. Following a standard assumption in causality (but see, e.g., (Bongers
et al., 2021)), we will assume that G is a direct acyclic graph (DAG), where we denote the
parents of a node Vi as PA(Vi) := {Vj|eij ∈ E}. We denote descendants DE(Vi) := {Vj|Vj →
· · · → Vi ∈ E} of a node Vi as all the nodes that have at least one direct path leading to a
node. We call a node Vk as a confounder (i.e., common cause) of the other two nodes Vi and
Vj if eki, ekj ∈ E; a collider (i.e., common effect) if eik, ejk ∈ E; and amediator if eik, ekj ∈ E.

Among all the variables in V , we use X and Y to denote two special variables, the treat-
ment and effect, respectively.

A.2.3.2 Illustration of the Three Rungs of the Causal Ladder

In Figure A.2, we illustrate the difference among the three rungs by enumerating what
actions are performed on the variables other than target variables X and Y.

YZ
X
W

Rung 2. Intervention Rung 3. Counterfactuals

YZ
X

W

Rung 1. Association

YZ W

NY

NW
NZ

NX

X

do(X)

(b) Backdoor path through
the confounder Z

Direct intevention on X
 cuts off all its parents

Average over all the non-descendants
of X to get P(Y | do(X)).

To completely isolate the effect of X, we 
look at the counterfactual P(Yx' | X=x).
Namely, we infer all non-descendants 
of X as if X were still the original value x.

(a) Direct causation path

The correlation of X and Y, i.e., P(Y|X), flows
through all undirected paths: Force X to be the

counterfactual value x'

FigureA.2: TheCausal Ladder consists of three rungs: association, intervention and coun-
terfactuals. We color in blue the treatment X and effect Y, as well as the actions on X. We
color in orange words about how to get the estimand, and we use the orange circle to
include all the non-descendants of X.

A.2.3.3 Causal Inference Methods

We introduce do-calculus which can downgrade the Rung-2 queries to Rung-1 quanti-
ties when it is applicable, and counterfactual predictions which downgrade the Rung-3
queries.

A.2.3.3.1 Do-Calculus

Do-Operator as a Notation As mentioned in Rung 2, the do-operator is a convenient
notation to represent an intervention on a variable. For example, do(X = x) sets the value
of variable X to x.

Three Inference Rules for Climbing the Ladder Do-calculus is a set of rules that allows
us to answer higher-rung questions using lower-rung quantities, such as probability dis-



Additional Materials for Chapter 3 • 141

tributions of Rung 1. Given a causal graphical model with and four disjoint sets of vari-
ables X, Y, Z, and W, and a joint probability distribution that is Markov and faithful to
the graph, do-calculus contains the following three rules:

Rule 1 (Insertion/deletion of observations):

P(Y|do(X), Z,W) = P(Y|do(X),W) , (A.1)

if Y and Z are d-separated by X ∪ W in G∗, the graph obtained from G by removing all
arrows pointing into variables in X.

Rule 2 (Action/observation exchange):

P(Y|do(X),do(Z),W) = P(Y|do(X), Z,W) , (A.2)

if Y and Z are d-separated by X ∪ W in G , the graph obtained from G by removing all
arrows pointing into variables in X and all arrows pointing out of variables in Z.

Rule 3 (Insertion/deletion of actions):

P(Y|do(X),do(Z),W) = P(Y|do(X),W) , (A.3)

if Y and Z are d-separated by X ∪W in G!, the graph obtained from G by first removing
all arrows pointing into variables in X (thus creating G∗) and then removing all arrows
pointing into variables in Z that are not ancestors of any variable inW in G∗.

These rules are sound and complete (Shpitser and Pearl, 2006b). Namely, iff we have all
the terms on the right hand side, then the causal term on the left hand side is identifiable.

Example Application of Do-Calculus Taking the example in Figure 3.2, g1 maps the
query type ATE to its symbolic expression E[Y|do(X = 1)] − E[Y|do(X = 0)].

Next, g2 further simplifies the estimand given the confounding graph, as in the flow chart
in the middle of Figure 3.2:

ATE := E[Y|do(X = 1)] − E[Y|do(X = 0)] (A.4)

=
∑

z

P(Z = z)[E(Y|X = 1, Z = z) − E(Y|X = 0, Z = z)] , (A.5)

which which resolves all the do(·) terms to probability terms. This example shows the
famous backdoor adjustment in do-calculus (Pearl, 1995).

A.2.3.3.2 Three Steps for Counterfactual Prediction

Given a SCM M, distribution on the exogenous variables P(u), and evidence e from the
model ïM,P(u)ð, the probability of the counterfactual "if X had been x then Y would have
been y, given we observed e,” denoted P(Yx = y|e), can be evaluated using the following
three steps (Pearl, 2009b):

Abduction: Update the probability distribution P(u) by the evidence e to obtain P(u|e)

Action: Modify M by the action do(X = x), i.e. replace X with X = x in the structural
equations, to obtain the modified SCM Mx

Prediction: Use the modified model ïMx, P(u|e)ð, to compute the probability of Y = y.
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A.2.4 Previous Results on CLadder v1.0

A.2.4.1 Dataset Statistics for v1.0

Total Rung 1 Rung 2 Rung 3
Size
# Samples 10,560 3,288 3,288 3,984

Question
# Sentences/Sample 6.85 6.00 7.00 7.25
# Words/Sample 94.47 76.41 96.84 103.42
# Nodes/Graph 3.54 3.54 3.55 3.54
# Edges/Graph 3.44 3.41 3.43 3.46

Answer
Positive Class (%) 50 50 50 50

Explanations
# Sentences/Sample 13.11 12.04 13.76 13.83
# Words/Sample 146.82 141.88 147.88 151.30

Table A.9: Statistics of our CLadder data v1.0.
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C
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Figure A.3: Distribu-
tions of query types in
our dataset v1.0.

Our data-generating procedure has the potential to algorithmically generate very large
amounts of questions. In practice, we pick a dataset size that is large enough to be repre-
sentative, and at the same time not too large to be problematic given the expensive infer-
ence costs of LLMs. We therefore set our dataset size to be 10K. We report the statistics of
our dataset in Table A.9.

Thedataset roughly balanced across the query types, graph structures, stories, andground-
truth answers (as seen in Figure A.3). Note that there are some slight adjustments such
as more samples for ATE because it allows us to test various techniques, including back-
door and front door adjustments. More details on our design choices can be found in Ap-
pendix A.2.1.4.

A.2.4.2 Main Results on v1.0

We compare the performance of all models in Table A.10. First, we can see that the causal
reasoning task inCLadder is in general very challenging for allmodels. Andmodels such
as the earlier, non-instruction-tunedGPT-3 and both LLaMa andAlpaca are no better than
random performance. With instruction-tuning, models start to show some improvement.
And amongst all, our CausalCoT achieves the highest performance of 66.64%, which is
2.36 points better than vanilla GPT-4.

Moreover, from the accuracy by empirical alignment level in Table A.10, we can see that
the original GPT-4 model performs the best on commonsensical data, but 5.34 points
worse on nonsensical data. However, our CausalCoT enhances the reasoning ability
across all levels, with substantial improvement on anti-commonsensical data and non-
sensical data, indicating that CausalCoT is particularly beneficial on unseen data.

A.2.4.3 Ablation Study on v1.0

Acc.
CausalCoT 66.64
w/o Step d 64.54
w/o Step e 63.74
w/o Step f 63.43
w/o Step g 64.47

Table A.11: Ablation
study.

We conduct an ablation study for our multi-step CausalCoT. We
ablate each of the four subquestions, and observe in Table A.11 that
classifying the query type and formalizing it has the most effect on
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the model’s performance, which might be because that they are
the crucial formalization step in order to do the causal inference
correctly. Meanwhile, removing Steps d and g, which are mostly
about parsing the prompt correctly, have the least impact on per-
formance.

A.2.5 More Experiments

A.2.5.1 Details of Our Error Analysis

For Step 2 about the query type prediction, we report the overall F1
classification score, and also F1 by rungs. For the rest of the steps, we manually annotate
the correctness of 100 samples ofCausalCoT.We report the correctness of est by accuracy,
and the correctness of the predicted set of available data by taking the F1with the ground-
truth d. For Step 5, we report the accuracy of whether the model simplifies the estimand
correctly to est ′ using causal inference, and also arithmetic correctness (Arith.).

A.2.5.2 ROSCOE Evaluation

We employed the ROSCOE suite of evaluation metrics on step-by-step text reasoning, as
introduced by (Golovneva et al., 2022), to automate the evaluation of the outputs from
CausalCoT on 2,000 randomly sampled questions from our dataset. Differing from con-
ventional metrics, ROSCOE is specifically designed to scrutinize the quality of large lan-
guage model outputs, focusing on aspects such as semantic consistency, logicality, in-
formativeness, fluency, and factuality, all evaluated within the context of step-by-step
reasoning, rather than solely the final response. This allows for a more objective and
comprehensive assessment of a model’s output, greatly aiding in the verification of its
interpretability. The results of this evaluation can be found in Table A.12 and Figure A.4.
We consider the model’s performance as unsatisfying if it falls out of the top quantile,
namely receiving a score s ∈ [0, 1] smaller than 0.25 when the score should be minimized,
or greater than 0.75 when it should be maximized.

We can see in the plot that the good-performing aspects are faithfulness to the original
question, reasoning alignment with the ground truth, and absence of external hallucina-
tions, which are consistently within the top quantile. This suggests that the model carries
out accurate reasoning within the constraints of the fictitious world introduced in each
question.

However, there are some performance dips in redundancy, perplexity chain, and miss-
ing step metrics. The first two could potentially be attributed to complex elements such
as graph notation, while the relatively lower “missing step” score warrants further in-
vestigation. Despite these observations, this analysis largely aligns with our qualitative
understanding of the models’ good response ability in answering causal questions in our
dataset.
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Example 1 (Label=Negative) Example 2 (Label=Positive)
Symbolic
Form

Premise: Suppose there is a closed
system of 2 variables, A and B. All
the statistical relations among these
2 variables are as follows: A corre-
lates with B.
Hypothesis: Adirectly affects B.
Relation between the promise and hy-
pothesis: The premise does not a
necessary condition for the hypoth-
esis.

Premise: Suppose there is a closed
system of 3 variables, A, B and C.
All the statistical relations among
these 3 variables are as follows: A
correlates with C. B correlates with
C. However, A is independent of B.
Hypothesis: Adirectly affects C.
Relation between the promise and hy-
pothesis: The premise is a necessary
condition for the hypothesis. So if
the premise is true, the hypothesis
must be true.

Natural
Story

Premise: Suppose there is a closed
system of 2 variables, ice cream
sales and swimming pool atten-
dance. All the statistical relations
among these 2 variables are as fol-
lows: ice cream sales correlate with
swimming pool attendance.
Hypothesis: Ice cream sales directly
affect swimming pool attendance.
Relation between the premise and hy-
pothesis: The premise does not pro-
vide a necessary condition for the
hypothesis. The correlation be-
tween ice cream sales and swim-
ming pool attendance could be due
to a third variable, such as hot
weather, which increases both ice
cream sales and swimming pool at-
tendance. Therefore, it is not nec-
essarily true that ice cream sales di-
rectly affect swimming pool atten-
dance.

Premise: Let’s consider three fac-
tors: eating junk food (A), obesity
(C), and watching television (B).
There is a correlation between eat-
ing junk food and obesity, and be-
tween watching television and obe-
sity. However, eating junk food
and watching television are inde-
pendent from each other.
Hypothesis: Eating junk food di-
rectly affects obesity.
Relation between the premise and hy-
pothesis: The premise provides the
necessary conditions for the hy-
pothesis. It establishes the inde-
pendent variables A (eating junk
food) and B (watching television)
and their correlations with obesity.
Given that these are true, it sup-
ports the hypothesis that eating
junk food directly affects obesity.

Table A.1: Examples of natural stories generated based on the symbolic form in ourCLad-
der dataset, showing the broad application value of our dataset as the starting point for
various verbalizations of the correlation-to-causation inference task.
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Test Set Size 102
Dev Set Size 102
# Tokens/Premise 64.88
# Tokens/Hypothesis 13.54
# Tokens/Explanation 64.66
% Positive Labels 1.67

Table A.2: Statistics of our generated natural stories. We report the number of samples in
the test anddevelopment sets; number of tokens per premise (# Tokens/Premise), hypoth-
esis (# Tokens/Hypothesis), and explanation (# Tokens/Explanation); and percentage of
the positive labels (% Positive Labels).

Causal Relation Hypothesis Template

Is-Parent {Var i} directly causes {Var j}.
Is-Ancestor {Var i} causes something else which causes {Var j}.
Is-Child {Var j} directly causes {Var i}.
Is-Descendant {Var j} is a cause for {Var i}, but not a direct one.
Has-Collider There exists at least one collider (i.e., common effect) of {Var i} and {Var j}.
Has-Confounder There exists at least one confounder (i.e., common cause) of {Var i} and {Var j}.
Paraphrases
Is-Parent {Var i} directly affects {Var j}.
Is-Ancestor {Var i} influences {Var j} through some mediator(s).
Is-Child {Var j} directly affects {Var i}.
Is-Descendant {Var j} influences {Var i} through some mediator(s).
Has-Collider {Var i} and {Var j} together cause some other variable(s).
Has-Confounder Some variable(s) cause(s) both {Var i} and {Var j}.

Table A.3: Templates and their paraphrases for each causal relation in the hypothesis. We
use {Var i} and {Var j} as placeholders for the two variables.

Two Equivalent Forms Duplication Property De-Duplication Method
{
Is-Parent(i, j)

Two exact same strings Keep only one, by forcing i < j
Is-Child(j, i){
Is-Ancestor(i, j) (Original) Two different strings,

but
Randomly sample one out of the two

Is-Descendent(j, i) (Original) semantically equiva-
lent{

Is-Ancestor(i, j) (Paraphrased)
Two exact same strings Keep only one, by forcing i < j

Is-Descendent(j, i) (Paraphrased){
Has-Collider(i, j) Two different strings,

but
Randomly sample one out of the two

Has-Collider(j, i) semantically equiva-
lent{

Has-Confounder(i, j) Two different strings,
but

Randomly sample one out of the two

Has-Confounder(j, i) semantically equiva-
lent

Table A.4: De-duplication methods for the six causal relation types and their verbaliza-
tions.
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N-Gram PMI w/ Non-Ent. Label PMI w/ Ent. Label |Diff|
a cause 1.692209 -1.025611 2.717820
a cause for 1.663640 -0.983790 2.647430
A causes 1.640679 -0.951610 2.592289
A causes something 1.621820 -0.926075 2.547895
a direct 1.606052 -0.905316 2.511369
a direct one 1.592673 -0.888107 2.480781
for D 1.584826 -0.878180 2.463006
for D but 1.583897 -0.877014 2.460911
for E 1.582980 -0.875864 2.458844
for E but 1.582074 -0.874728 2.456802

Table A.5: PMI between the labels and n-grams. The labels include non-entailment (Non-
Ent.) and entailment (Ent.). And the n-grams include all with no more than four words.
The |Diff| column shows the absolute value of the difference between the PMIs with two
labels. We show the top 10 n-gramswith the largest differences of their PMIs with the two
classes in the |Diff| column.

Selected Models Relation Type F1 Precision Recall Accuracy
GPT-3.5 All 21.69 17.79 27.78 69.46
GPT-3.5 Is-Parent 8.82 100 4.62 83.47
GPT-3.5 Is-Ancestor 0 0 0 90.67
GPT-3.5 Is-Child 9.84 100 5.17 85.33
GPT-3.5 Is-Descendant 14.29 11.9 17.86 84
GPT-3.5 Has-Collider 34.24 25.51 52.07 35.12
GPT-3.5 Has-Confounder 15.33 8.86 56.76 37.8
GPT-4 All 29.08 20.92 47.66 64.6
GPT-4 Is-Parent 0 0 0 82.67
GPT-4 Is-Ancestor 30.77 31.25 30.3 88
GPT-4 Is-Child 0 0 0 84.53
GPT-4 Is-Descendant 26.98 17.35 60.71 75.47
GPT-4 Has-Collider 44.1 30.18 81.82 32.71
GPT-4 Has-Confounder 20.67 11.53 100 23.86
RoBERTa MNLI All 22.79 34.73 16.96 82.5
RoBERTa MNLI Is-Parent 0 0 0 82.67
RoBERTa MNLI Is-Ancestor 0 0 0 91.2
RoBERTa MNLI Is-Child 0 0 0 84.53
RoBERTa MNLI Is-Descendant 0 0 0 92.53
RoBERTa MNLI Has-Collider 43.45 39.73 47.93 59.52
RoBERTa MNLI Has-Confounder 0 0 0 84.45

Table A.6: Fine-grained evaluation results for some selected non-fine-tuned models.

F1 Precision Recall Accuracy
GPT-3.5 (plain query; original) 21.69 17.79 27.78 69.46
GPT-3.5 (enhanced query) 25.44 17.29 48.11 52.01

Table A.7: Performance of GPT-3.5 with different queries. We quote the original perfor-
mance from Table 2.4.
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Query Type Symbolic Ex-
pression

Natural Language Question Template

Rung 1: Association
Marg. Prob. P(Y) Is the overall likelihood of {vnoun(X = 1)} greater

than chance?
Cond. Prob. P(Y|X) Is the chance of {vnoun(Y = 1)} larger when observ-

ing {vnoun(X = 1)}?
Rung 2: Intervention
ATE E[Y|do(X = 1)]−

E[Y|do(X = 0)]
Will {vnoun(X = 1)} increase the chance of
{vnoun(Y = 1)}?

Adjust. Set If S opens a
backdoor path

To understand how {voverall(X)} affects {voverall(Y =

1)}, should we look directly at how {voverall(X)} cor-
relates with {voverall(Y)} in general, or this correla-
tion case by case according to {voverall(S)}?

Rung 3: Counterfactuals
Counterf.
Prob.

P(Yx = y) Can we infer that {vsent(Y = 1)} had it been that
{vcond(X = 1)} instead of X=0?

ATT E[Y1−Y0|X = 1] For {vattr(X = 1)}, would it be more likely to see
{vnoun(Y = 1)} {vcond(X = 0)}?

NDE E[Y1,M0
−

Y1,M0
]

If we disregard the mediation effect through
{voverall(Y = 1)}, would {vnoun(X = 1)} still posi-
tively affect {vnoun(Y = 1)}?

NIE E[Y0,M1
−

Y0,M0
]

Does {voverall(X)} affect {voverall(Y)} through
{voverall(OtherVars)}?

Table A.8: Example natural language templates for each query type.

Overall Acc.
Acc. by Rung Acc. by Empirical Alignment

1 2 3 Anti-C. Nonsens. Comm.
Random 49.27 50.28 48.40 49.12 49.69 49.01 49.12
LLaMa 45.22 63.33 31.10 41.45 45.31 45.21 45.12
Alpaca 45.54 63.33 31.57 41.91 45.94 45.21 45.49
GPT-3 Non-Instr. (davinci) 47.42 63.88 32.99 44.89 47.0 48.28 46.97
GPT-3 Instr. (text-davinci-001) 57.07 63.95 63.63 48.04 59.12 57.81 54.28
GPT-3 Instr. (text-davinci-002) 56.24 46.03 69.55 55.04 54.75 59.65 54.31
GPT-3 Instr. (text-davinci-003) 62.69 58.0 80.83 54.52 63.93 62.09 62.05
GPT-3.5 (queried in May 2023) 61.71 65.12 69.9 54.11 65.43 55.15 64.55
GPT-4 (queried in May 2023) 64.28 53.94 81.87 63.11 65.75 60.87 66.21
+ CausalCoT 66.64 61.67 86.13 58.23 69.32 63.02 67.60

Table A.10: Performance of all models on ourCLadder dataset v1.0. We report the overall
accuracy (Acc.), and also fine-grained accuracy by rung and by empirical alignment.
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Figure A.4: ROSCOE scores of answers from CausalCoT on 2,000 randomly sampled
questions from our dataset.
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Mean Std Min 25% 50% 75% Max
Faithfulness 0.89 0.02 0.83 0.88 0.89 0.90 0.93
Informativeness Step 0.88 0.01 0.83 0.87 0.88 0.89 0.92
Informativeness Chain 0.88 0.03 0.76 0.87 0.89 0.90 0.96
Faithfulness Word 0.95 0.01 0.92 0.94 0.95 0.96 0.97
Repetition Word 0.02 0.02 -0.00 0.00 0.02 0.04 0.05
Repetition Step 0.02 0.01 -0.00 0.00 0.01 0.03 0.06
Reasoning Alignment 0.92 0.01 0.86 0.91 0.92 0.93 0.95
External Hallucination 0.97 0.02 0.84 0.96 0.97 0.98 0.99
Redundancy 0.80 0.05 0.56 0.77 0.80 0.83 0.92
Common Sense Error 0.95 0.01 0.86 0.94 0.95 0.96 0.98
Missing Step 0.78 0.03 0.58 0.76 0.78 0.80 0.88
Semantic Coverage Step 0.99 0.01 0.95 0.98 0.99 0.99 1.00
Semantic Coverage Chain 0.98 0.01 0.93 0.98 0.98 0.99 0.99
Discourse Representation 0.06 0.13 0.00 0.01 0.01 0.05 0.67
Coherence Step Vs Step 0.14 0.27 0.00 0.00 0.01 0.07 0.94
Perplexity Step 0.02 0.01 0.00 0.02 0.02 0.03 0.07
Perplexity Chain 0.17 0.07 0.05 0.11 0.17 0.23 0.42
Perplexity Step Max 0.00 0.00 0.00 0.00 0.00 0.01 0.02
Grammar Step 0.93 0.04 0.77 0.90 0.93 0.96 0.99
Grammar Step Max 0.53 0.35 0.02 0.12 0.65 0.85 0.99

Table A.12: Statistics of ROSCOE scores evaluated on answers from CausalCoT on 2,000
randomly sampled questions from our dataset.
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A.2.6 Comparison with Existing Causality-Related Datasets

We show in Table A.13 the distinction of our work from all existing causality-related
datasets that address either the causality-as-knowledge task, or the causality-as-language-
comprehension task.

Question Types Skill Types

Assoc. Interv. Counterf. CI Method
Formalization
of Causal
Queries

Causal RE
Qualitative
Reason-

ing
Datasets for Causality as Knowledge (Commonsense Causality)
COPA (2012) : 6 : : : : :

Event2Mind (2018) : 6 : : : : :

ATOMIC (2019a) : 6 : : : : :

SocialIQA (2019b) : 6 : : : : :

TimeTravel (2019) : 6 : : : : :

Goal-Step (2020a) : 6 : : : : :

Abductive (ART) (2020) : 6 : : : : :

Com2Sense (2021b) : 6 : : : : :

CRASS (2022) : : 6 : : : :

Datasets for Causality as Language Comprehension (Causal Relation Extraction)
SemEval2021 Task8 (2010) : : : : : 6 :

EventCausality (2011) : : : : : 6 :

Causal-TimeBank (2014) : : : : : 6 :

CaTeRS (2016) : : : : : 6 :

BECauSE (2017) : : : : : 6 :

TellMeWhy (2021) : : : : : 6 :

Datasets for Formal Causal Reasoning
Corr2Cause (Jin et al., 2024) : 6 : 6 6 : :

CLadder (Ours) 6 6 6 6 6 6 6

Table A.13: Comparison of our dataset and existing causal or reasoning datasets. The aim
of our dataset is to test the pure reasoning ability of LLMs on causal questions. For each
dataset, we first identify whether its question types cover the three rungs: association
(Assoc.), intervention (Interv.), and counterfactuals (Counterf.). We also check what skill
types the dataset tests: the application of causal inference methods (CI Method), formal-
ization of causal queries, causal relation extraction from the given text (Causal RE), and
qualitative reasoning.
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A.3 Additional Materials for Chapter 4

A.3.1 Experiments for Pythia-6.9b

This section extends the experimental analysis conducted on GPT-2 to Pythia-6.9b. The
goal is to replicate the prior methodology and compare the outcomes across the two dif-
ferent models, thus contributing to a broader understanding of model behaviors under
similar conditions.

A.3.1.1 Macroscopic Inspection across Layers and Token Positions

Figure A.5 provides a comparative analysis of the logit values for two specific tokens,
labeled as factual and counterfactual, across various positions and layers in Pythia-6.9b.

Subject

Relation

Relation Last

Attribute*

Subject repeat

Relation repeat

Last

0 10 20 30
Layer

Logit of t fact
0 5 10 15

Subject

Relation

Relation Last

Attribute*

Subject repeat

Relation repeat

Last

0 10 20 30
Layer

Logit of tcofa
0 5 10 15

FigureA.5: Layer-wise PositionAnalysis of Relevant Tokens inGPT-2-small. The figure
presents the logit values for two pertinent tokens across various positions and layers.
The left panel illustrates the logit values for the factual token tfact, while the right panel
illustrates the logit values for the counterfactual token tcofa.

A.3.1.2 Intermediate Inspection of Attention and MLP Blocks

This subsection exposes the contributions of Attention and MLP Blocks to the differences
in logit values across layers within Pythia-6.9b. Figure A.6 explores how these compo-
nents influence the computation of logits for two tokens, represented as the difference
∆cofa = Logit(tcofa)−Logit(tfact) at the final position of the input. The analysis specifically
highlights the distinct effects of these blocks at different stages of the model’s operation.

A.3.1.3 Microscopic Inspection of Individual Attention Heads

Figure A.7 quantifies the direct contributions of all attention heads to the difference in
logit values, labeled as ∆cofa. It specifically identifies heads that preferentially enhance
the logits for tfact (shown in blue) versus those favoring tcofa (depicted in red), offering
insights into how attention mechanisms differentially prioritize token attributes.

Figure A.8 presents the attention patterns of the relevant attention heads at the last token
position. It shows the consistent pattern of the relevant heads, with a consistent focus on
the attribute position.
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Figure A.6: Attribution of Logit Differences to Attention and MLP Blocks. delineates
the differential impact of Attention and MLP Blocks on logit values at the terminal input
position. The attention mechanism is shown to predominantly influence early layer pro-
cessing in the left panel, while the right panel details the increased contribution of MLP
Blocks to the factual token’s logits in the concluding layers, illustrating the dynamic in-
terplay between these fundamental neural network elements.

A.3.2 Other Experiment for GPT-2

A.3.2.1 Ranks Analysis in the Last Position

Weprovide additional information in FigureA.9mapping the logits to ranks of the tokens,
and find that the rank of tcofa in the projected logit distribution remains very low: tcofa is
among the 20 most likely tokens in the first five layers and between the 20th and the 70th
in the last part of the network.

A.3.2.2 Attention Pattern of Relevant Attention Heads

Figure A.10 shows the full attention pattern for the relevant attention heads, as identi-
fied in Section 4.6. It is show as the attention pattern is similar between all the relevant
attention heads, independently if the heads is favoring tfact or tcofa.
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Figure A.7: Direct Contribution of Attention Heads. The figure displays the direct con-
tribution of all heads in Pythia-6.9b to the logit difference ∆cofa with heads favoring tfact
highlighted in blue and those favoring tcofa in red.

A.4 Additional Materials for Chapter 5

A.4.1 Creation of the Prompts

We consider MWP examples from the union of the three datasets SVAMP, ASDiv-A, and
MAWPS. The textual template t of a problem consists of a context (describing a real-world
state and/or actions) and a question. In order to obtain suitable prompts for the models,
we convert the problems’ questions into statements where the result of the problem is
expected to be the first token after the prompt. E.g., in the example in Section 5.2, how
many trees will he have? is converted into the number of trees that he will have is _. From
the MWP templates of the SVAMP/ASDiv-A/MAWPS collection (we consider all splits),
we filter out the templates whose questions do not start with How many..., and we use
spaCy1 to identify the subject, the object and the verbs in the sentence. This allows us to
convert the last sentence of the template from The number of... is. This way, we obtain 437
statement-based MWP templates for two-operand problems and 307 for three-operand
problems. We manually checked a subset of the templates to identify possible mistakes
in the conversion procedure.

1https://spacy.io
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Figure A.8: Attention Pattern for Relevant Attention Heads. The panel illustrates the
attention patterns of relevant heads for the last position, demonstrating consistent atten-
tion to the attribute position by both red and blue heads.
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Figure A.9: Rank of Target Tokens for Attribute Position Across Layers in GPT-2. This
figure depicts the trend where the logit rank for the factual token tfact decreases while the
rank for the counterfactual token tcofa increases at the attribute position. In the concluding
layers, this pattern is evident as tfact typically secures a lower rank, in contrast to tcofa,
which shows an upward trajectory in rank. However, it is important to note that tcofa’s
rank consistently remains lower than that of tfact.

A.4.2 Frequently Asked Questions

A.4.2.1 How do the intervention data look like?

In Table A.14 we report examples of MWP pairs representing different types of interven-
tion.

A.4.2.2 What is the accuracy of the evaluated models on the generated problems?

We report the accuracy of the models considered for our main evaluation in terms of
accuracy at 1 and accuracy at 10. Results are displayed in Figure A.11. The accuracy of
the LLaMA models is 11.1%, 25.7%, 32.8%, and 13.0% respectively for the 7B, 13B, 30B,
and Alpaca versions. The accuracy of the GPT-3 Davinci models on the three-operand
problems is 2%, 11%, and 15% for the Instruct, Davinci-002, and Davinci-003 versions,
respectively.
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TCE(N → R)

Ruby has 87 candies. If she shares the candies
among 29 friends, the number of candies that
each friend gets is

g = 87/29 = 3

Ruby has 35 candies. If she shares the candies
among 5 friends, the number of candies that each
friend gets is

g = 35/5 = 7

DCE(N → R)

The school is composed of 13 buildings each hav-
ing 10 classrooms. The number of classrooms
that the school has is

g = 10× 13 = 130

The school is composed of 65 buildings each hav-
ing 2 classrooms. The number of classrooms that
the school has is

g = 65× 2 = 130

DCE(S→ R)

The razorback t-shirt shop ordered 6 cases of t-
shirts. If each case contains 17 t-shirts the number
of t-shirts that they ordered is

g = 17× 6 = 102

The roller coaster at the state fair costs 6 tickets
per ride. If 17 friendswere going to ride the roller
coaster the number of tickets that they would
need is

g = 17× 6 = 102

TCE(T → R)

Sean has 23whistles. He has 6morewhistles than
Charles. The number of whistles that Charles has
is

g = 23− 6 = 17

Jovana filled her bucket with 23 pounds of shells.
If she adds 6 more pounds of shell to fill her
bucket, the number of pounds that she has is

g = 23+ 6 = 29

TableA.14: For each of the causal effectsmeasured (left column), we report a pair ofMWPs
illustrating the intervention performed (center), along with their respective ground-truth
result (left column).
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Figure A.10: Attention Pattern of Significant Heads. This figure illustrates the compre-
hensive attention pattern of heads substantially influencing ∆tcofa . Notably, a similar pat-
tern emerges for both heads favoring tcofa (depicted in red) and those favoring tfact (il-
lustrated in blue), particularly in the attention edge between the attribute and the final
position.

A.4.2.3 What is the relation between accuracy and the RCC metric?

We examine the relationship between performance and robustness, computing the Pear-
son correlation coefficient between accuracy (accuracy@10) and the relative confidence
change (RCC)metric. On a per-template basis (500 instances for each template), we found
accuracy to be positively correlated with TCE(N on R) and TCE(T on R) (0.24 and 0.49,
respectively) and negatively correlated with DCE(N → R)and DCE(S → R) (-0.26 and
-0.36, respectively). We see these results as a quantitative validation of the intuition be-
hind our framework: the better the model’s performance, the more the model tends to
correctly adjust its prediction after a result-altering intervention (higher sensitivity) and
to correctly not change its prediction after a result-preserving intervention (higher robust-
ness).

Moreover, we conduct an additional sanity check as in Patel et al. (2021): removing the
question from the MWP templates, we observe a sensitivity-robustness degradation to
random guessing (i.e., TCE ≃ DCE). This indicates that the measurement of the causal
effects within our framework is not affected by patterns in the templates that might have
been picked up or memorized by large models.

A.4.3 Computation of Causal Effects for GPT-3

We access GPT-3 through the OpenAI APIs, which allow a user to prompt the model and
obtain the probabilities assigned by the model to the k-th most likely vocabulary entries,
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Figure A.11: Average accuracy of the models on the generated instances of MWPs. Re-
sults are averaged over two sets consisting of 500 problem instances generated for each
template. The lower figure shows a zoomed-in visualization of the accuracy at 1.
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for each token generated. To overcome this limitation, we approximate the relative prob-
ability change δrcc as follows, depending on the kind of effect measured.

The limit for k is set by OpenAI to 5. However, for our main set of experiments (i.e.,
computing the causal effects of N , S, and T ) we were granted an increased limit of k to
100. This allowed us to obtain reasonable estimates for the causal effects, as the number
of cases in which P(g) is not defined is less than 10% of the number of examples that we
consider.

Algorithm 2 Computation of δrcc for GPT-3

1: Q = (t,n, g)

2: Q ′ = (t ′,n ′, g ′)

3: if P(g) is defined then
4: if P ′(g) is defined then

5: ∆ =
P(g)−P ′(g)

P ′(g)

6: else
7: P̂ ′ ← P ′(k-th most likely token)

8: ∆ =
P(g)−P̂ ′

P̂ ′

9: end if
10: else
11: ∆ = 0

12: end if
13: if P ′(g ′) is defined then
14: if P(g ′) is defined then

15: ∆ ′ =
P ′(g ′)−P(g ′)

P(g ′)

16: else
17: P̂ ← P(k-th most likely token)

18: ∆ ′ =
P ′(g ′)−P̂

P̂
19: end if
20: else
21: ∆ ′ = 0

22: end if
23: δrcc =

1
2(∆+ ∆ ′)

A.4.3.1 TCE(N on R) and TCE(T on R)

In cases when P(g) is defined (i.e. when g appears in the top k token predictions) and
P ′(g) is not defined, we compute a lower bound on the relative change using the upper
bound on P ′(g) given by the probability of the k-th most likely token. This gives us a
conservative estimate of∆. For cases inwhich P(g) is not defined, we cannot say anything
about the relative change, and we set ∆ = 0. The same applies when swapping P and P ′.
This procedure is illustrated by Algorithm 2.

A.4.3.2 DCE(N -> R) and DCE(S -> R)

In this case, we simply discard the examples for which P(g) is not defined or P ′(g) are not
defined. In that is not the case, then we compute δrcc as in Section 5.3.4.
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A.4.3.3 Heatmap Illustration

The heatmap for GPT-3 displayed in Figure 5.4 was computed by taking the raw probabil-
ity score produced by the model over the whole vocabulary, as the limit on the available
top predicted tokens makes it impossible to normalize it over the set {0, . . . , 300}, as done
for the other models. The probability was set to 0 when g did not appear in the model’s
top 5 predictions for the next token after the prompt.

A.4.4 Computing Infrastructure and Inference Details

To run our experiments, we used a single NVIDIA TITANRTX with 24GB of memory for
all the versions of GPT-2 and GPT-Neo. We used a single NVIDIA A100 with 40GB of
memory for GPT-J-6B and a single NVIDIA A100 with 80GB of memory for GPT-NeoX
and the LLaMAmodels (two for the 30B version). We accessed GPT-3 using the OpenAI
APIs. The longest run (GPT-J) on the four kinds of experiments corresponding to the four
kinds of effects measured took ∼12 hours, using 500 MWP instances for each of the 437
templates. Due to budget and resource constraints, the experiments onGPT-3, GPT-NeoX,
and LLaMAwere carried out using 20 examples generated for each template and took ∼7
hours. Experiment tracking was carried out using Weights & Biases2.

2http://wandb.ai/
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A.5 Additional Materials for Chapter 6

A.5.1 Meta Study Settings of SSL and DA

For the meta study of SSL, we covered but are not limited to all relevant papers cited by
the review on NLP SSL by Søgaard (2013). We went through the leaderboard of many
NLP tasks and covered the SSL papers listed on the leaderboards. The papers covered by
our meta study are available on our GitHub.

For supervised DA, we searched papers with the keyword domain adaptation and task
names from a wide range of tasks that use supervised DA.

Note that for fair comparison, we do not consider papers without a comparable super-
vised baseline corresponding to the SSL, or a comparable unadapted baseline correspond-
ing to the DA. We do not consider MT DA which tackles the out-of-vocabulary (OOV)
problem because P(E|C) may be different for OOV (Habash, 2008; III and Jagarlamudi,
2011).

A.5.2 Experimental Details of Minimum Description Length

We calculate the MDL(X) and MDL(Y) by a language model, and obtain MDL(X|Y) and
MDL(Y|X) using translation models. For language model, we use the autoregressive
GPT2 (Radford et al., 2019), and for the translation model, we the Marian Neural Ma-
chine Translation model (Junczys-Dowmunt et al., 2018) trained on the OPUS Corpus
(Tiedemann and Nygaard, 2004). Both these models use the layers from the transformer
model (Vaswani et al., 2017). The autoregressive languagemodel consists only of decoder
layers, whereas the translation model used six encoder and six decoder layers. Both of
these models have roughly the same number of parameters. We used the huggingface
implementation (Wolf et al., 2020) of these models for their respective set of languages.
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A.6 Additional Materials for Chapter 7

A.6.1 Implementation Details

A.6.1.1 Model Details

Using Closed-Weight Models For the use of GPT model series, we use the OpenAI
API,3 with a text generation temperature of 0. We spent around 400 USD across around
20-30K single API calls.

Using Open-Weight Models For reproducibility, we set the generation temperature to
0 for all the models used in our work. For the open-weight models, GPT2-XL, LLaMa-7B
and Alpaca-7B, it took around 24 hours on 4 GPUs RTX 2080 to generate their predictions
on 1K data points for the 5 paraphrases of the causally-neutral prompt (denoted as C0),
and on 500 data points for the 5 paraphrases of the C1 prompt, and 5 paraphrases of the
C2 prompt. The causal tracing experiments with LLaMa-7B and Alpaca-7B on 100 data
points took around 24 hours each using one GPU V100.

A.6.1.2 Implementation Details for Causal Tracing

We introduce the workings of the causal tracing method (Meng et al., 2022) as follows.
First, we compute the hidden states of the residual stream of LLaMa-7B’s layers for two
inputs, (1) the original input: the prompt+review, and (2) the corrupted input: prompt
+ a corrupted version of the review by adding random noise immediately after the to-
ken embeddings. Then, we restore one by one the clean state of the residual stream into
the corrupted version and measure the effect of the clean state on the probability of the
originally predicted token for each token sequence and layer position.

Since this process is highly time-consuming, taking around 12 hours for 50 samples even
using the smallest LLaMamodelwith 7B parameters, we do a case study on the 7B LLaMa
and Alpaca using 100 random samples from the 1K test set. For these experiments, we
follow the idea of APE (Zhou et al., 2023) to use the best-performing prompts on the 1k
test set for C1 and C2.

A.6.1.3 Prompts

A.6.1.3.1 Prompts to Get paraphrases

Since we need to report the average performance across five paraphrases of the same
prompt, for each original prompt, we call GPT to generate the four paraphrases.

Below is the prompt that we used for this paraphrase generation process:

You are an expert in prompt engineering for large language models (LLMs).
And you are also a native English speaker who writes fluent and grammati-
cally correct text.

Given the following prompt for NLP sentiment analysis, you provide four
alternative prompts.

3https://openai.com/api/
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####### Original Prompt ####### [Our original prompt]

####### Alternative Prompt 1 #######

... (Then, we let the model to generate all the way to “Alternative Prompt 4”.)

We queried the GPT-4 model with temperature 0 on June 8, 2023.

A.6.1.3.2 Neutral Prompt

In addition to the standard prompt to query LLMs in the main paper, we show its four
paraphrases in Table A.15.

Prompt Design
As a proficient data annotator in natural language processing (NLP), your responsibility
is to determine the sentiment of the given review text. Please assign a sentiment value
from “1” (very negative) to “5” (very positive).
Review Text: “[review]”
Sentiment Score:
As a skilled data annotator in the field of natural language processing (NLP), your task
is to evaluate the sentiment of the given review text. Please classify the sentiment using
a scale from “1” (highly negative) to “5” (highly positive).
Review Text: “[review]”
Sentiment Rating:
As an expert data annotator forNLP tasks, you are required to assess the sentiment of the
provided review text. Kindly rate the sentiment on a scale of “1” (extremely negative)
to “5” (extremely positive).
Review Text: “[review]”
Sentiment Score:
As a proficient data annotator in natural language processing (NLP), your responsibility
is to determine the sentiment of the given review text. Please assign a sentiment value
from “1” (very negative) to “5” (very positive).
Review Text: “[review]”
Sentiment Assesment:

Table A.15: Four additional paraphrases of the neutral prompt (C0) generated with GPT-
4.

A.6.1.3.3 Causal Prompts

In addition to the standard C1 and C2 prompts in the main paper, we show the four
paraphrases for each of them in Tables A.16 and A.17, respectively.

A.6.2 Additional Experimental Results

A.6.2.1 Few-Shot Results

For reproducibility and controllability, we use the zero-shot prompting setting across the
experiments in the main paper, to avoid randomness in few-shot prompting according to
which examples are selected as the few shots, and the order of the examples.

As a supplementary information in case this is of some readers’ interest, we provide the
few-shot prompting results in Tables A.18 and A.19.
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Prompt Design
As a customer sharing my experience, I crafted the following review: “[review]”
Taking into account the details of my experience, I chose a star rating from the available
options of “1”,“2”, “3”, “4”, or “5”. My ultimate rating is:
As a client providing my opinion, I penned down the subsequent evaluation:
“[review]”
Upon thorough reflection of my encounter, I picked a star rating among the choices of
“1”, “2”, “3”, “4”, or “5”. My conclusive rating stands at:
As a patron expressing my thoughts, I drafted the ensuing commentary: “[review]”
After meticulously assessing my experience, I opted for a star rating from the range of
“1”,“2”, “3”, “4”, or “5”. My definitive rating turned out to be:
As a consumer conveying my perspective, I authored the following assessment:
“[review]”
By carefully weighing the aspects of my interaction, I determined a star rating from the
possibilities of “1”,“2”, “3”, “4”, or “5”. My final verdict on the rating is:

Table A.16: Four additional paraphrases of the causal prompt C1 generated with GPT-4.

A.6.2.2 λ1-λ2 Distribution Plot
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Figure A.12: The λ1-λ2 density plots of C1 (above) and C2 (below).

To provide a clear understanding of the distributions of λ1 and λ2, we include their density
plots of the causal processes C1 and C2 in Figure A.12. The mean values of λ1 and λ2 for
each group are in Table A.20.

Further, we performed the Mann-Whitney U rank test to determine if the underlying dis-
tributions of λ1 and λ2 for groups C1 and C2 are the same. The results are as follows:

• For λ1, the p-value is 8.4572× 10−71, leading us to reject the null hypothesis that the
two groups come from the same distribution.

• For λ2, the p-value is 1.36138 × 10−11, also leading us to reject the null hypothesis
that the distributions are the same.

These statistical results indicate significant differences between the distributions of λ1 and
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Prompt Design
As a customer sharingmy experience, I first chose a star rating from the available choices
of “1”,“2”, “3”, “4”, or “5”, and subsequently elaborated on my decision with the fol-
lowing statement: “[review]”
The review elucidates the reasoning behind my assigned rating of
As a client providing my opinion, I initially picked a star rating from the range of “1”
to “5”, and then proceeded to justify my selection with the following commentary:
“[review]”
The review sheds light on the rationale for my given rating of
As a patron expressing my thoughts, I started by selecting a star rating from the scale of
“1” to “5”, and then offered an explanation for my choice in the following review text:
“[review]”
The review expounds on the basis for my designated rating of
As a consumer conveying my perspective, I began by opting for a star rating within the
“1” to “5” spectrum, and then detailed my reasoning in the subsequent review passage:
“[review]”
The review delineates the grounds for my conferred rating of

Table A.17: Four additional paraphrases of the causal prompt C2 generated with GPT-4.

Random GPT-3 Few-Shot

F1
Overall 19.82 ±2.07 63.35 ±0.80

C1 Subset 21.36 ±2.26 54.44 ±1.24

C2 Subset 20.43 ±2.95 75.65 ±0.45

Acc
Overall 19.78 ±2.07 64.14 ±0.86

C1 Subset 20.61 ±2.23 54.22 ±1.28

C2 Subset 18.86 ±2.78 75.18 ±0.53

Table A.18: Few-shot performance of the standard SA prompts on Yelp-5. We use five
paraphrases for the prompt, and report the average performance with the standard devi-
ation.

λ2 across the causal process groups, which indicate distinct underlying characteristics in
the sentiment dynamics of the two groups.

A.6.3 Emotion Arc Clustering

We analyze the emotional arc patterns of Yelp reviews. Reagan et al. (2016) identified 6
basic emotional arc shapes in stories. However, reviews are usually shorter and therefore
present fewer variations. We take each sentence of the review and predict its sentiment.
Then we divide the review into ten bins and compute an average sentence sentiment for
each decile to make reviews with different lengths comparable. Reviews shorter than 10
sentences generate null values for some deciles which we fill with the information of the
next decile. In Figure A.14, we illustrate the 4 clusters found, they have the following
characteristics:

Positive + Early Rise: This cluster primarily comprises highly positive reviews, where
customers express satisfaction and praise for their overall experience. Interestingly, 21.1%
of these reviews begin with a negative first sentence, which often indicates initially low
expectations or a negative first impression. However, despite the initial negativity, the
reviews tend to turn positive as customers elaborate on their positive experiences.
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Random GPT-3 Few-Shot

F1

Data=C1, Prompt=C1 20.47 ±2.47 49.18 ±0.76

Data=C1, Prompt=C2 20.26 ±2.31 52.79 ±2.64

Data=C2, Prompt=C1 22.35 ±3.02 80.46 ±1.29

Data=C2, Prompt=C2 20.35 ±2.18 75.88 ±1.86

Acc

Data=C1, Prompt=C1 19.60 ±2.67 50.12 ±0.71

Data=C1, Prompt=C2 19.68 ±2.46 53.83 ±2.46

Data=C2, Prompt=C1 20.97 ±3.19 81.21 ±1.17

Data=C2, Prompt=C2 19.03 ±2.18 76.36 ±1.53

Table A.19: Few-shot performance on Yelp using two different causal prompts on the two
causal subsets. We use five paraphrases for each prompt, and report the mean perfor-
mance with the standard deviation.

C1 C2

µ(λ1) 4.48 5.62
µ(λ2) 7.31 3.02

Table A.20: Mean values of the lambdas for C1 and C2.

Negative + Early Fall: This cluster mainly consists of predominantly negative reviews.
Similarly to the Positive cluster, some reviews (28.14%) start with a sentence with the
opposite sentiment, usually indicating high expectations followed by disappointment.

Rise: The main characteristic of this cluster is the positive ending of the review, despite
the initial negativity observed in the first half, with an average sentiment of -1.63. An
important fraction of the reviews in this cluster (52.49%) start with a positive comment as
a summary, but then proceed to highlight the negative aspects of the experience. Despite
the initial criticisms, the reviews concludewith positive points, suggesting that the overall
experience was still satisfactory.

Fall: In contrast to the previous cluster, the Fall cluster is characterized by a negative
ending of the review, despite a generally positive first half with an average sentiment of
2.18. An important proportion (36%) of the reviews in this cluster begin with a negative
comment as a summary, but then proceed to describe the positive aspects before even-
tually highlighting the negative ones. This cluster showcases a shift in sentiment from
positive to negative, indicating a decline in satisfaction as the review progresses.
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Figure A.13: The λ1-λ2 plot on Yelp-5 (left), Amazon (middle), and App Review (right).
We draw the y = x diagonal line, and the orange dots in the upper-left triangle represent
the C1-dominant subset, and green dots in the lower-right triangle are the C2-dominant
subset.

Positive + Early Rise
Review: Was there last Friday. Seats right in front if the stage. The show was good. The headliner,
while a bit long, was good. Fantastic service from our waitresses. Will definitely go back.
Review: This is by far my favorite Panera location in the Pittsburgh area. Friendly, plenty of room to
sit, and good quality food & coffee. Panera is a great place to hang out and read the news - they even
have free WiFi! Try their toasted sandwiches, especially the chicken bacon dijon.
Negative + Early Fall
Review: Pass on this place, there are better restaurants mere feet away.
The menu here is too large, which is a sure sign none of the food is going to be good. And, its not good.
Some of the salads are alright, but its just not good food.
The service is friendly and prompt, but the beer is over priced. They do have a good selection though.
This place is open late if you need a bite to eat, but there are so much better options out there.
Review: Wings are overpriced. And the quality of them are bad. They were tough and greasy. The
staff are pleasant but then over all experience was too expensive for a sports bar.
Rise
Review: To be honest, I feel that this is one of the most overpriced restaurants in the entire city. The
food is average to good, the place is beautiful with outdoor seating, but in my opinion the price is just
not worth it. They have a really good happy hour, so I would definitely recommend going to that and
maybe trying an appetizer or two.
Review: The first time I came here, I waited in line for 20 minutes. When it was my turn, I realized
I left my wallet in the car. It hurt so bad, I didn’t come back for a year.
I can walk to this place from my house- which is dangerous because those biscuits are just OH SO
DREAMY. I can’t describe them. Just get some.
Do I feel guilty about noshing on fabulous Strawberry Napoleons and Jewish Pizza (kind of like a
modified, yet TOTALLY delicious fruitcake bar) at 10:15am? Hecks, naw... But they do have quiche
and some other breakfast-y items for those who prefer a more traditional approach to your stomach’s
opening ceremony.
Just go early :) They open at 10 on Saturdays. And bring cash...it’s easier that way.
Fall
Review: It’s cheap, I’ll say that, but otherwise it’s bland food served by workers who mostly don’t seem
to notice they’re working, and when they do, only respond snarkily. There are many better vegetarian
and vegan options to choose from
Review: I do like my Mad Mex, however predictable and non-authentic it may be. The portion sizes
are mammoth and I come away with a satisfied sense of regret. Their beer menu is happily extensive.
Charging me $9 for chips and salsa is a bit of crime, wouldn’t ya say though!?! I mean, c’mon! Our
service has most times been lacking–a bit rushed and on the inattentive side. Also, why do you require
your wait staff to not servestraws/ lemons/etc unless asked by cusotmers—weirdness-cut out these odd
cost-cutting, anti-service friendly measures please

Table A.21: Example reviews for each emotion arc cluster.
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Figure A.14: Four emotion arc clusters.

A.6.4 Additional Interpretability by Shapley Values

We further analyze the effect of each part of the prompts on LLaMa’s predictions. Using
50 reviews, we compute the shapley values of each token. In Figure A.15 we observe that
the tokens with the largest shapley values are the ones in the end, which is expected since
they are the ones helping to form a grammatically correct sentence. To account for that,
we subtracted the average shapley values computed for the other possible start rating
answers. In Figure A.16 we show the adjusted shapley values. We observe that the tokens
in prompt C1 have a larger effect than the tokens in prompt C2. The words introducing
the review have a positive effect on C2 but a negative one on C1. Whereas, the phrase “I
chose a star rating” has a negative effect on C2 but a positive one on C1.
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Figure A.15: Shapley values for the two types of prompts.
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Figure A.16: Adjusted shapley values for the two types of prompts.
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A.7 Additional Materials for Chapter 8

A.7.1 Statistics of our Data

A.7.1.1 COVID Twitter Keywords

We list the COVID-related Twitter keywords and accounts tracked by Chen et al. (2020)
in Tables A.22 and A.23. They are used to retrieve the 1.01TB raw Twitter data.

Keywords used by Chen et al. (2020)

14DayQuarantine covidiot
CDC epitwitter
COVD flatten the curve
COVID__19 flattenthecurve
COVID-19 kung flu
China lock down
Corona lockdown
Coronavirus outbreak
Coronials pandemic
DontBeASpreader pandemie
DuringMy14DayQuarantine panic buy
Epidemic panic buying
GetMePPE panic shop
InMyQuarantineSurvivalKit panic shopping
Koronavirus panic-buy
Kungflu panic-shop
N95 panicbuy
Ncov panicbuying
PPEshortage panicshop
Sinophobia quarantinelife
Social Distancing quarentinelife
SocialDistancing saferathome
SocialDistancingNow sars-cov-2
Wuhan sflockdown
Wuhancoronavirus sheltering in place
Wuhanlockdown shelteringinplace
canceleverything stay at home
china virus stay home
chinavirus stay home challenge
chinese virus stay safe stay home
chinesevirus stayathome
corona virus stayhome
coronakindness stayhomechallenge
coronapocalypse staysafestayhome
covid trump pandemic
covid-19 trumppandemic
covid19 wear a mask
covididiot wearamask

Table A.22: Keywords used by Chen et al. (2020) to track COVID-related tweets.
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Accounts tracked by Chen et al. (2020)

PneumoniaWuhan WHO
CoronaVirusInfo HHSGov
V2019N NIAIDNews
CDCemergency DrTedros
CDCgov

Table A.23: Accounts tracked by Chen et al. (2020) to retrieve COVID-related tweets.

A.7.1.2 Annotation Guidance for Policy Strictness

For each state, the annotators are asked to go to the official website that lists all COVID
policies of the state. In most cases, the website lists all executive orders (EOs), proclama-
tions, or other forms of policies issued during 2020 – 2021. Then the annotator is asked
to read through the EOs that are related to COVID social distancing policies. For each
relevant policy, the annotator is asked to record the start date on which the policy will
take effect,4 a brief intro of what kind of social distancing policy it is, and a real-valued
score in the range of 0 (loosest) to 5 (strictest).

For the scoring criteria, we provide the following guides:

• Score 0: masks are optional, open the schools„ bars, gaming facilities, concert, and
almost everything

• Score 1: State of emergency, limit gathering, close K-12
• Score 2: Open 50% capacity for retail business, open religious activities like churches

to 50%
• Score 3: Open 25% capacity for retail businesses
• Score 4: Open only business for necessities such as supermarkets, only allow deliv-

ery and curbside services, gatherings have to be no more than 10 people
• Score 5: Strict stay at home policy, close every business

A.7.1.3 Accuracy of Twitter Sentiment Classifier

We list the detailed performance report of TextBlob and our COVID BERT in Table A.24,
including the overall accuracy, weighted and macro F1 scores, precision and recall for
each class, and MSE of the average sentiment of random groups of 20 tweets. Note that
since TextBlob predicts a real-valued number in the range of -1 to 1 for the sentiment, we
regard [-1, -0.33) as negative, [-0.33, 0.33] as neutral, and (0.33, 1] as positive.

Model Acc F1 Score Positive Neutral Negative MSE on Groups
Weighted Macro P R P R P R

TextBlob 23.35 16.67 19.70 20.34 10.62 20.67 85.19 74.07 6.45 0.43
COVID BERT 60.23 62.31 55.17 51.19 76.11 26.76 35.51 83.68 62.99 0.15

Table A.24: The detailed performance report of the TextBlob baseline, and our COVID
BERT model. We report the overall accuracy (Acc), weighted and macro F1 scores, preci-
sion (P) and recall (R) for each class, andMSE of the average sentiment of random groups
of 20 tweets.

4For consistency, we record 0:01am of the first effective date, but not the 11:59pm of the previous day.



172 • Additional Materials for Chapter 8

A.7.2 Additional Analyses

A.7.2.1 Correlation across All Variables

We can see that, averaging over all 50 states, unemployment correlates the most with
policy changes, which is consistentwith our analysis in Section 8.5.1. Since different states
may have different styles to take sentiment into consideration when making policies, the
effect of sentiment on policy changes over all 50 states is relatively mild.

For Twitter sentiment, it correlates largely with case numbers, and urbanization rate of
the state.

Interestingly, the case numbers correlate withwhether the state governor is a political ally
of Trump.

Figure A.17: Correlation across all variables.

A.7.2.2 Alternative Causal Analysis Methods by Potential Outcomes Framework

There are two commonly used frameworks for causal inference, one is the do-calculus we
introduced in Section 8.5.2, and the other is the potential outcomes framework (Rubin,



Additional Materials for Chapter 8 • 173

1974, 2005; Imbens and Rubin, 2015). We will introduce two alternative causal inference
methods on our problem, using the potential outcomes framework.

Difference-in-Differences One possible limitation of this study is that we treat the data
in an i.i.d. way, following most existing studies. An improvement is to treat it as time
series. For time series analyses, one commonly used method is the first-difference (FD)
estimator, difference in differences (DID) (Abadie, 2005). Specifically, DID takes in the
time series data of the cause X, effect Y, and confounders Z, and solves the following
regression:

∆Y = β · ∆X+ ∆Z (A.6)

Yt − Yt−1 = β(Xt − Xt−1) + Zt − Zt−1 , (A.7)

where t is the time step, and β is the causal effect of X on Y.

After applyingDID on all the policies, we obtainβ scores for all states, and the top 5 states
with largestβ are Colorado (β = 0.67), Kentucky (β = 0.23), Wyoming (β = 0.22), Oregon
(β = 0.19), North Carolina (β = 0.17), Michigan (β = 0.14), and New York (β = 0.13).

Continuous-Valued Propensity Score Matching Another commonly used alternative
for causal inference is propensity score matching. However, the challenge in our study is
that the cause is not categorical, but takes continuous values. To this end, we follow the ex-
tension of propensity score matching to continuous treatment (Hirano and Imbens, 2004;
Bia andMattei, 2008). We adopt the stata package of Bia andMattei (2008) for continuous-
valued propensity score matching. The resulting prediction of policies based on Twitter
sentiment is a polynomial function with an order of three. As examples, We show the
predictions of Texas (TX) and Michigan (MI) in Figure A.18.
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Figure A.18: Causal models by continuous-valued propensity score matching of TX and
MI.

A.8 Additional Materials for Chapter 9

A.8.1 Additional Implementation Details

A.8.1.1 Time and Space Complexity Details

For the time cost of running the causal impact indices, each PCI(a, b) takes around 1,500
seconds, or 25 minutes. Multiplying this by 40 samples per paper a, we spend 16.67
hours to calculate each ACI or TCI for the paper’s overall impact. For a fine-grained
division into the time cost, the majority of the time is spend on the BM25 indexing (800s)
and the sentence embedding cosine similarities calculation (400s). The rest of the time-
consuming steps are the BFS search (150-200s every time) to identify descendants and
non-descendants of a paper.

For the space complexity, we loaded the 2.4B edges of the citation graph into a parquet
gzip format for faster loading, and use Dask’s lazy load operation to load it part by part
to RAM for better parallelization. The program can fit into different sizes of RAMs by
modifying the number of partitions and reducing the number of workers in Dask, at the
cost of an increased computation time. On the hard disk, citation graph takes up 19G
space, and paper data takes 11G.

A.8.1.2 Numerical Estimation Method: Finding the Sample Size

For our numerical estimation method, we first calculate the ACI on a subset of carefully
sampled papers and then aggregate it to TCI. One design choice question is how to decide
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the size of this random subset. In our case, we need to balance both the computation
time (25 minutes per pairwise paper impact) and the estimation accuracy. To identify the
best sample size, we conduct a small-scale study, first obtaining the TCI using our upper-
bound budget of n = 100 samples and then gradually decreasing the number of samples
to see if there is a stable point in the middle which also leads to a result close to that
obtained with 100 samples. In Figure A.19, we show the trade-off of the two curves, the
error curve and time cost, wherewe can seen = 40 seems to be a good point balancing the
two. It is at the elbow of the arrow curve, making it relatively close to the estimation result
of n = 100, and also in the meantime vastly saving our computational budget, enabling
us to run efficient experiments for more analyses.
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Figure A.19: We show the trade-off of two curves: the error curve (orange), and the time
cost curve (blue). For the error curve, we see an elbow point at around n = 40, when the
error starts to be small. The curve for the computational time is linear, taking 25 minutes
for each paper. Balancing the trade-offs, we decided to choose the sample size n = 40.

A.8.1.3 Experiment to Select the Best Embedding Method

When selecting the text encoder for our CausalCoT method, we compare among the
three LLMs pre-trained on scientific papers, SciBERT, MPNet, and SPECTER. Specifically,
we conduct a small-scale experiment to see howmuch the similarities scores based on the
embedding of each model align with human annotations. As for the annotation process,
we first collect a set of random papers, and for each such paper (which we call a pivot
paper), we identify ten papers, from the most similar to the least, with monotonically
decreasing similarity. We collect a total of 100 papers consisting of ten such collections,
for which we show an example in Table A.25. Then we see how the resulting similarity
scores conform to this order by deducting the percentage of papers that are out of place
in the ranking.

We find that MPNet correlates the best with human judgments, achieving an accuracy
of 82%, which is 10 points better the second best one, SPECTER, which gets 72%, and
18 points better than SciBERT with a score of 64%. It also gives more distinct scores to
papers with different levels of similarity. This capability advantage may be attributed to
its Siamese network objectives in the training process (Song et al., 2020). We open-sourced
our annotated data in the codebase.
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Paper Index Title SciBERT SPECTER MPNet
Pivot Paper: GPT-3 (2020)

1 (Most similar) PaLM (2022) 0.9787 0.8689 0.7679
2 GPT-2 (2019) 0.9346 0.9064 0.8196
3 GPT (2018) 0.9488 0.8778 0.7790
4 BERT (2019) 0.9430 0.8321 0.6784
5 Transformers (2017) 0.9202 0.8644 0.6385
6 SciBERT (2019) 0.8396 0.8112 0.5667
7 Latent Diffusion Models (2021) 0.9586 0.7755 0.4567
8 Sentiment Analysis Using DL (2015) 0.7775 0.7298 0.2911
9 Sentiment Analysis Using ML (2014) 0.6462 0.6403 0.2563
10 (Least similar) New High Energy Accelerator (1952) 0.8033 0.5617 0.0359

Table A.25: An example collection of papers with monotonically decreasing similarity to
the pivot paper. As can be seen from the similarities scores produced by the three text
embedding methods, MPNet corresponds to the ground truth the most, and also shows
clear score distinctions between less similar and more similar papers.

A.8.2 Dataset Overview

Figure A.20: The number of papers published per year from 1684 to 2023. We can see that
in recent years since 2010, there are more than 7 million papers each year.

For the Semantic Scholar dataset (Kinney et al., 2023; Lo et al., 2020), we obtain the set of
206M papers using the “Papers” endpoint to get the Paper Id, Title, Abstract, Year, Cita-
tion Count, Influential Citation Count (Valenzuela et al., 2015), and the Reference Count
for each paper. The papers come froma variety of fields such as law, computer science, lin-
guistics, chemistry, material science, physics, geology, etc. For the citation network with
2.4B edges, we use the Semantic Scholar Citations API to get each edge of the citation
graph in a triplet format of (fromPaper, toPaper, isInfluentialCitations).

In general, the number of publications shows an explosive increase in recent years. Fig-
ureA.20 shows the number of papers publish the per year, which reaches on average 7.5M
per year since 2010. Figure A.21 shows the number of references each paper cites, which
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Figure A.21: The year-wise average of the number of references per paper, also with a
sharply increasing trend.

also increases from less than five before 1970s, to around 25 in recent years. Both statistics
support the need of our paper, which helps distinguish the quality of scientific studies
given such massive growths of papers.

A.8.3 Additional Analyses

A.8.3.1 Citation Outlier Analysis

For the outlier detection, we first visualize the scatter plot between our CausalCite and
citations. Then, we fit a log-linear regression to learn the line log(TCI) = 1.026 log(Cit) −
0.541, as shown in Figure A.22, with a root mean squared error (RMSE) of 0.6807. Af-
ter fitting the function, we use the interquartile range (IQR) method (Smiti, 2020), which
identify as outliers any samples that are either lower than the first quartile by over 1.5
IQR, or higher than the third quartile by more than 1.5 IQR, where IQR is the difference
between the first and third quartile.

We denote as overcited papers the ones that are identified as outliers by the IQR method
due to toomany citations thanwhat it should have deserved given theCausalCite value.
Symmetrically, we denote as undercited papers the ones that are identified as outliers by
the IQR method due to too few citations than what it should have deserved given the
CausalCite value. And we denote the non-outlier papers as the aligned ones.

A.8.3.2 Additional Information for the Author-Identified Paper Impact Experiment

Asmentioned in themain paper, the dataset is annotated by pivoting on each paper b, and
going through each of its references a to label whether a has a significant influence on b

or not. We show an example of paper b and all its 31 references in Table A.26. We calculate
the accuracy of each metric with the spirit that each non-significant paper’s impact value
should be lower than a significant paper’s. Specifically, we go through the score of each
non-significant paper, and count its accuracy as 100% if it is lower than all the significant
papers’, or themore general formnlower/|Sig| of conformity, wherenlower is the number of
significant paperswhich it is lower than, and |Sig| is the total number of significant papers.
Then we report the overall accuracy for each score by averaging the accuracy numbers on
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Figure A.22: The scatter plot between our CausalCite and citations, with the fitted func-
tion as log(TCI) = 1.026 ∗ log(Cit) − 0.541, and a non-outlier band width of 0.8809.

each non-significant paper. To illustrate the idea better, we show the calculated accuracy
numbers for all three metrics on our example batch in Table A.26.

A.8.3.3 Step Curve for PCI Values Given a Fixed Paper b

Apart from the long-tailed curve shape of TCI in Section 9.5.2, we also look into the pair-
wise paper impacts by PCI. If we fix the paper b, we can see that PCI(·, b) often has a step
curve shape in Figure A.23. The reason behind it lies in the nature of PCI, which is calcu-
lated based on the top K papers that are similar in content with paper b, but do not cite
paper a. When we go through different references, e.g., from a1 to a2 of the same paper
b, the semantically matched top K papers could still be largely the same pool, and only
change when some papers in the pool need to be swapped when releasing the constraint
to be that they can cite a1, and adding the constraint that they cannot cite a2.
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Figure A.23: We take an example paper b, Sentence BERT (Reimers and Gurevych, 2019),
and plot its PCI values with all its reference paper a’s. We can see clearly that there is a
plateau in the curve, showing a step function-like nature.
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References of the Paper “Sorting improves word-aligned
bitmap indexes”

Label PCI Citations SSHI

- A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional
Spaces

0 3.519 1777 156

- Optimizing bitmap indices with efficient compression 0 3.519 375 40
- Data Warehouses And Olap: Concepts, Architectures
And Solutions

0 3.526 187 11

- Histogram-aware sorting for enhanced word-aligned
compression in bitmap indexes

0 3.543 17 1

- CubiST++: Evaluating Ad-Hoc CUBE Queries Using
Statistics Trees

0 3.543 5 1

- Improving Performance of Sparse Matrix-Vector Mul-
tiplication

0 3.543 114 11

- Binary Gray Codes with Long Bit Runs 0 3.543 53 4
- Analysis of Basic Data Reordering Techniques 0 3.543 16 1
- Tree Based Indexes Versus Bitmap Indexes: A Perfor-
mance Study

0 3.543 24 0

- Secondary indexing in one dimension: beyond b-trees
and bitmap indexes

0 3.543 10 1

- A comparison of five probabilistic view-size estima-
tion techniques in OLAP

0 3.543 24 1

- Compression techniques for fast external sorting 0 3.543 16 0
- A Note on Graph Coloring Extensions and List-
Colorings

0 3.543 33 1

- UsingMultiset Discrimination to Solve Language Pro-
cessing Problems Without Hashing

0 3.543 52 2

-MonotoneGrayCodes and theMiddle Levels Problem 0 3.543 80 5
- The Art in Computer Programming 0 3.543 9242 678
- An Efficient Multi-Component Indexing Embedded
Bitmap Compression for Data Reorganization

0 3.543 8 2

- The LitOLAP Project: Data Warehousing with Litera-
ture

0 3.543 8 0

- Multi-resolution bitmap indexes for scientific data 0 3.583 96 3
- Notes on design and implementation of compressed
bit vectors

0 3.583 81 12

- Compressing Large Boolean Matrices using Reorder-
ing Techniques

0 3.595 88 7

- Compressing bitmap indices by data reorganization 1 3.595 53 4
- Model 204 Architecture and Performance 0 3.635 238 10
- On the performance of bitmap indices for high car-
dinality attributes

1 3.654 196 10

- A performance comparison of bitmap indexes 0 3.655 86 9
- Minimizing I/O Costs of Multi-Dimensional Queries
with Bitmap Indices

0 3.692 16 0

- Evaluation Strategies for Bitmap Indices with Binning 0 3.692 69 3
- C-Store: A Column-oriented DBMS 0 3.710 1241 111
- Byte-aligned bitmap compression 0 3.793 209 48
- Bit Transposed Files 0 3.837 84 10
- Space efficient bitmap indexing 0 4.011 96 16

Table A.26: All the reference papers for a given study “Sorting improves word-aligned
bitmap indexes.” Among all its 31 references, we boldface the reference papers that are
annotated to be significant influencers. For the three metrics, PCI, citations, and SSHI, we
report their impact scores for each reference paper on the given study, where we mark a
score in green when it conforms to the rule that a non-significant paper’s value should
be lower than that of a significant paper, and mark a score in dark green if it conforms to
the rule to have a lower score than one of the significant paper, but violates the rule, i.e.,
having a higher score than the other significant paper. In this example, our PCImetric has
an accuracy score of 79.3%, which is higher than both citations (68.1%), and SSHI (65.0%).
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