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Abstract 
The interaction of different neural networks is essential for cognition and for 

healthy brain function, and the cross-frequency interactions between different 

neuronal oscillations have been hypothesized to coordinate such interactions. 

However, little is understood about the distribution and the nature of the cross-

frequency relationships in the human brain.  

A prominently researched mode of cross-frequency interaction has been 

phase-amplitude coupling (PAC). Here, the phase of a low frequency oscillation 

is associated with the amplitude of a high frequency oscillation. As a 

methodological complication, however, measures for PAC do not only reflect 

the presence of a phase-to-amplitude interaction between two distinct 

oscillations, but they also reflect the presence of a neuronal single oscillation 

with a non-sinusoidal waveform. In the case of a non-sinusoidal waveform, the 

measured cross-frequency relationship reflects the wave shape of the 

oscillation. The underlying mechanisms and functions of two distinct 

oscillations that are phase-amplitude coupled to one-another differ from those 

of a a single oscillation with a particular waveform. Therefore, a clear 

dissociation between the two cases is essential to gain a meaningful 

understanding of the cross-frequency relationships in the human brain. 

In the first study of this thesis, we systematically mapped PAC across the 

human cortex, and in a wide range of frequency pairs using 

magnetoencephalography (MEG) and source reconstruction. We distinguished 

neuronal PAC from non-neuronal PAC related to muscle activity and eye-

movements, and we showed that phase-amplitude, phase-phase (PPC), and 

amplitude-amplitude (AAC) cross-frequency coupling measures are all 

sensitive to signals with higher harmonics. We used these measures in 

conjunction to dissociate non-harmonic and harmonic PAC. We found no 

evidence of non-harmonic PAC in the resting human brain. Instead, we 

observed widespread PAC that was driven by harmonic signals, predominantly 

in the alpha frequency range. That is, we observed widespread alpha 

oscillations with non-sinusoidal wave shape. 
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The results of the first study raised the question whether alpha oscillations 

in different brain areas may have different wave shapes. That is, if the wave 

shape of oscillations observed in human resting state MEG might be 

functionally relevant. To address this question in the second study, we first, 

determined spatial peaks of theta/alpha wave-shape stability using MEG, 

source-reconstruction and bicoherence. Then we assessed the wave shapes 

at these regions of interest (ROIs) with a novel method. With this method, wave 

shapes were analyzed in the frequency domain, by exploiting the characteristic 

cross-frequency patterns of signals with higher harmonics. We tested for wave-

shape differences and distinguished six statistically different alpha wave 

shapes: three corresponding to the well-established functionally distinct 

sensorimotor-, occipital- and temporal alpha rhythms, and three additional 

parietal alpha waveforms.  

These studies, to our best knowledge for the first time, systematically 

characterized the distribution and the nature of cross-frequency signals in the 

resting human brain. We showed that non-sinusoidal wave shapes were a 

prevalent phenomenon in the human cortex that dominated all observable 

cross-frequency patterns. Furthermore, we demonstrated that the 

characteristic cross-frequency patterns of non-sinusoidal wave shapes can be 

used to differentiate what are likely functionally distinct rhythms. Periodic wave 

shapes can be reconstructed in detail from their characteristic cross-frequency 

patterns, and the wave shape of oscillations might reflect rich information about 

underlying circuit physiology. 
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1 Introduction 
The human brain is a highly complex system that allows us to perceive our 

environment, to remember our past, to imagine, to reason, to make decisions, 

and to actively shape our own future. Cognition depends not only on the 

different neural networks to each fulfill their own specific functions. The 

coordinated functional interplay between these different networks is equally 

essential (Canolty and Knight, 2010; Lakatos et al., 2005; Palva, 2005; Siegel 

et al., 2012). 

Electrophysiology allows an insight into dynamic processing of neuronal 

networks with a millisecond temporal resolution. Possible spatial scales range 

from the recording of single-neuron activity, over the local field potential (LFP) 

that is measuring the combined activity of populations of tens of thousands of 

neurons and the electrocorticogram (ECoG) that is recorded with electrodes 

placed on the surface of the brain, up to non-invasive brain imaging techniques 

such as electroencephalography (EEG) or MEG with sensors distributed over 

the entire head (Buzsáki and Draguhn, 2004; Canolty and Knight, 2010). A 

common link between these spatial scales is the possibility to observe neuronal 

oscillations at all of these vastly different levels (Buzsáki and Draguhn, 2004; 

Canolty and Knight, 2010). Thus, neural oscillations can serve as a bridge 

between single-neuron activity and behavior, across all of the different spatial 

scales from large-scale non-invasive recordings to invasive single-neuron 

recordings (Buzsáki and Draguhn, 2004).  

Neural oscillations occur in different frequency bands. These frequency 

bands can be roughly subdivided into delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-

12 Hz), beta (12-30 Hz), gamma (30-80 Hz) and a fast band (80-200 Hz) 

(Buzsaki, 2006; Buzsáki and Draguhn, 2004). The different frequency bands 

have been associated with different spatial scales of neural activity, with distinct 

neural functions and different brain states (Buzsaki, 2006; Canolty and Knight, 

2010; Siegel et al., 2012).  

The correlations between neural oscillations and cognitive functions 

demonstrated, that there seems to be a link between the two. However, this 
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link does not explain how oscillations subserve cognition. The mechanistic 

function that a single oscillation can have in the brain is relatively limited. One 

oscillation can establish a certain – indefinitely repeating – functional time 

window. By providing such functional time windows, one single oscillation can 

already provide a mechanistic explanation for how different brain areas interact 

with each other and how they transfer information efficiently and selectively 

between one another (Fries, 2015, 2005; Jensen and Mazaheri, 2010). The 

functional integration of two oscillations with different frequencies could 

combine two timing mechanisms operating at different scales. Such linked 

oscillations and linked timing mechanisms could explain functions that are 

qualitatively even more complex than the functions that could be explained by 

a sum of independent single oscillations with independent timing mechanisms. 

One example for how cross-frequency interactions might subserve cognition 

could be found in working memory: the interaction between theta and gamma 

oscillations has been suggested to be the functional mechanism of working 

memory encoding, of the maintenance of a sequence of items in working 

memory, and of the working-memory capacity limit of 7±2 items (Jensen and 

Lisman, 2005; Lisman and Idiart, 1995). 

From a general perspective, it has been hypothesized, that cross-frequency 

interactions regulate the integration between oscillations of distinct frequency 

bands, and that they, in this way, regulate the integration between the different 

neuronal network computations that have been associated with the respective 

oscillations (Canolty and Knight, 2010). Hence, a well-regulated interplay 

between different neural networks that each serve different neural functions 

can be expected to be essential for normal cognition and for normal brain 

function. Therefore, cross-frequency coupling (CFC) between neural 

oscillations has been hypothesized to be a functionally significant mechanistic 

feature of brain function (Jensen and Colgin, 2007), 

Likely due to this potential as a mechanism of higher brain functions, such 

as working memory, cross-frequency interactions have received considerable 

and increasing interest in recent years (Lisman and Idiart, 1995; Jensen and 

Colgin, 2007; Canolty and Knight, 2010; Tort et al., 2010; Jensen et al., 2012; 
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Aru et al., 2015; Colgin, 2015; Hyafil et al., 2015; McLelland and VanRullen, 

2016; Dvorak and Fenton, 2014; Fell and Axmacher, 2011; Siebenhühner et 

al., 2020; Yakubov et al., 2022; Csicsvari et al., 2003). Two types of cross-

frequency coupling received the most interest: cross-frequency phase coupling 

(phase-phase synchronization) and cross-frequency phase-amplitude coupling 

(PAC), which is characterized as the phase of a low-frequency oscillation 

modulating the power of a high frequency oscillation (Canolty et al., 2006; 

Canolty and Knight, 2010). From a theoretical point of view, there are two 

additional options: cross-frequency phase-frequency coupling, which is the 

phase of a slower oscillation modulating the frequency of a faster modulation, 

and amplitude-amplitude coupling, which is the power of one oscillation 

modulating the power of an oscillation with a different frequency (Jensen and 

Colgin, 2007). However, only phase-phase and phase-amplitude coupling have 

also been associated with clearly plausible physiological mechanisms of cross-

frequency interaction (Canolty and Knight, 2010). 

The precise physiological mechanisms of PPC may still remain unknown, 

but the observation of spiking activity that can be phase-locked to oscillations 

of different frequencies suggests, that this mechanism deserves further 

investigation (Canolty and Knight, 2010). Cells that are resonant at more than 

one frequency may play an important role (Fujisawa and Buzsáki, 2011). Such 

cells or circuits could serve as a common pacemaker across different 

frequencies, or as a frequency converter mediating the phase-synchronization 

between distinct oscillations with an integer-multiple frequency relationship 

(Fujisawa and Buzsáki, 2011). Poly-resonant cells or circuits could, thus, be 

involved in the orchestration and the functional integration of networks and of 

activity that operate at different rates. 

Phase-amplitude coupling, on the other hand, could physiologically be 

generated by a lower frequency rhythm that reflects local neuronal excitability, 

e.g., in the theta frequency range. The phase of this rhythm would then 

modulate the amplitude of spontaneous local gamma oscillations (Jensen and 

Colgin, 2007). This mechanism could emerge, e.g., when inhibitory 

interneurons with slow GABAergic inhibition that contribute to the theta rhythm, 
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are connected to inhibitory interneurons with fast GABAergic feedback 

suppression that contribute to the spontaneous gamma rhythm (White et al., 

2000). Depending on the depth of the modulation that theta imposes on gamma, 

this could be reflected as either pure phase-amplitude coupling, or it could be 

reflected as phase-amplitude coupling with concurrent phase-phase coupling. 

Concurrent phase-amplitude and phase-phase coupling could emerge, when a 

gamma oscillation and associated excitatory neuronal firing is effectively 

suppressed entirely during a defined phase of a theta rhythm, rather than only 

being reduced in power. The suppressed firing and the first gamma cycle could 

then reemerge as soon as this suppression subsides, and, thus, the gamma 

rhythm may appear as cross-frequency phase-locked to the theta rhythm, in 

addition to the cross-frequency phase-amplitude relationship; with the phase-

locking being updated once during each theta cycle. 

Phase-amplitude coupling, in particular, has been related to brain function 

and -dysfunction in numerous instances, including with non-invasive recordings 

in humans (Abubaker et al., 2021; Canolty and Knight, 2010; Yakubov et al., 

2022). PAC has not only been hypothesized to link distinct oscillations and 

different functional time-scales locally, it has also been suggested that PAC 

could play an important role for the long-range synchronization of distant brain 

areas (Jensen and Colgin, 2007; Siebenhühner et al., 2020; van der Meij et al., 

2012; von Nicolai et al., 2014; Nandi et al., 2019; González et al., 2020; 

Bonnefond et al., 2017) 

Even though cross-frequency interactions have received considerable 

attention in recent years, still little is understood about the distribution and the 

nature of cross-frequency-coupling in the human brain. In this regard, it is 

essential to consider that measures of cross-frequency coupling may reflect 

different types of cross-frequency coupling patterns, instead of only reflecting 

a single cross-frequency-coupling concept of interest. Measured PAC, for 

example, could reflect a physiological interaction between the phase of one 

oscillation and the amplitude of a second oscillation and, thus, measured PAC 

might reflect an interaction between two neuronal oscillations that are 

physiologically and functionally distinct from one another. Measured PAC could, 
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however, also reflect cross-frequency patterns that emerge without any 

underlying physiological coupling between oscillations, e.g., in the form of a 

single oscillation with a temporally consistent non-sinusoidal wave shape (Aru 

et al., 2015; Chacko et al., 2018; Cole et al., 2017; Cole and Voytek, 2017; 

Gerber et al., 2016; Hyafil, 2015; Jensen et al., 2016; Kramer et al., 2008; 

Lozano-Soldevilla et al., 2016; Vaz et al., 2017; Velarde et al., 2019).  

The wave shape of a neuronal oscillation may be understood in a similar 

way as the tone of a certain musical instrument: the sound of a violin and a 

piano playing the same musical note (e.g., A4 at 440 Hz) can be distinguished 

by the different overtones that the respective instruments produce. Overtones 

are cross-frequency related higher harmonic frequencies. They define the 

characteristic sound or timbre of an instrument in a very similar way, as the 

higher harmonics of a non-sinusoidal oscillation define the wave shape of a 

neuronal oscillation. 

These two different examples of cross-frequency patterns – phase-

amplitude-coupling- or wave-shape-related – are fundamentally distinct with 

respect to their generative mechanisms and to their potential 

neurophysiological functions. However, measures for PAC are equally 

sensitive to both types of cross-frequency relationships. Thus, measured cross-

frequency coupling might either reflect the physiological properties of a single 

network of neurons, or reflect a physiological interaction between distinct 

oscillations and networks. (Giehl et al., 2021)  

Measured cross-frequency relationships reflect valuable neurophysiological 

information in either of these two cases: if it is the interaction between the 

phase and the amplitude of two largely independent oscillations that underlies 

the measured PAC, as well as if the measured PAC, instead, reflects the 

characteristic spectral signature of a single non-sinusoidal wave shape. The 

ambiguity of measured cross-frequency coupling, however, is presenting a 

significant problem: it is only possible to interpret the observed cross-frequency 

coupling in a physiologically and mechanistically meaningful way, if a clear 

distinction between these two fundamentally different cases can be made 

(Giehl et al., 2021). For this reason, it was essential to not only map phase-
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amplitude coupling in the human brain, but to also characterize the nature of 

these results; in particular, to carefully dissociate between the presence of 

canonical cross-frequency PAC and the presence of oscillations with non-

sinusoidal wave shapes, while also considering physiological and non-

physiological artifacts. This dissociation first paved the way to then investigate 

the resulting cross-frequency features further. 

1.1 The aims of this thesis 

The aim of this thesis was to map the distribution of phase-amplitude 

coupling in the human cortex during rest, and to characterize the nature of the 

observable cross-frequency relationships. To fulfill this aim, it was necessary 

to solve methodological challenges: 

The interpretation of measured PAC is challenging. Measures of PAC are 

not only sensitive to physiological phase-amplitude coupling between two 

different oscillations (non-harmonic PAC). PAC measures are also sensitive to 

signals with higher harmonics, i.e., to signals with a temporally consistent non-

sinusoidal wave shape (harmonic PAC) (Aru et al., 2015; Chacko et al., 2018; 

Cole et al., 2017; Cole and Voytek, 2017; Gerber et al., 2016; Hyafil, 2015; 

Jensen et al., 2016; Kramer et al., 2008; Lozano-Soldevilla et al., 2016; Vaz et 

al., 2017; Velarde et al., 2019). The harmonics of a wave shape are, by 

definition, phase-phase and amplitude-amplitude coupled to one-another. Thus, 

PPC and cross-frequency amplitude-amplitude coupling (AAC) measures are 

also sensitive to these signals. Thus, the results from all these CFC measures 

are inherently ambiguous, and it is challenging to characterize the functional 

nature of the measured cross-frequency relationships correctly. We aimed to 

combine these CFC measures to dissociate the different cross-frequency 

patterns of non-harmonic and harmonic PAC. (Giehl et al., 2021) 

When phase-amplitude coupling between two distinct oscillations has been 

confirmed as the cause of measured CFC, the relationship between the 

involved oscillations can be characterized using available cross-frequency 

coupling measures. When non-sinusoidal wave shapes are the cause of 
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measured CFC, the situation is different. Most of the available methods that 

can characterize wave shapes operate in the time domain (Cole and Voytek, 

2017), which is, however, associated with signal-to-noise related limitations 

(Bartz et al., 2019). This presents a limiting factor for the analysis of neuronal 

wave shapes; especially, but not only, in non-invasive recordings. As an 

additional significant limitation, all currently available wave-shape analysis 

methods that could be applied to neuronal data analyze only a select number 

of specific wave-shape features – therefore, these wave-shape analysis 

methods do not capture all potentially relevant wave-shape features (Cole and 

Voytek, 2017). The information that waveshapes could potentially provide 

about underlying physiological network properties is, however, directly limited 

by the accuracy to which a wave-shape analysis method can represent different 

wave shapes. Thus, the information that could potentially be gained from non-

sinusoidal wave shapes about underlying physiological network properties has 

not yet been fully utilized by the currently available methods. This thesis aimed 

to overcome these limitations. 

The aims of this thesis can be summarized as follows:  

First, to map the spatial and spectral distribution of cross-frequency 

relationships in the human cortex and to carefully investigate the nature of the 

observed cross-frequency relationships. That is, to dissociate non-neuronal 

and neuronal PAC, and to dissociate non-harmonic and harmonic PAC. (Giehl 

et al., 2021) 

Second, to characterize cross-frequency wave-shape features with a novel 

wave-shape analysis method that substantially increases the accuracy of the 

wave-shape representation, in combination with optimized signal-to-noise 

properties. Then, to use this novel method to characterize and to dissociate 

prominent wave-shape-related cross-frequency relationships in the human 

cortex. That is, to dissociate what may be functionally distinct alpha oscillations 

based on their distinguishable waveforms. 

Together, the two studies of this thesis aimed to provide well-founded 

insights into the cross-frequency relationships of large-scale neuronal 
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oscillations in humans. We aimed to characterize the distribution and the nature 

of cross-frequency relationships in the resting human brain and to assess the 

potential functional and physiological relevance of the cross-frequency 

relationships that can be observed in large scale neural recordings. 

The first project of this thesis, “Dissociating harmonic and non-harmonic 

phase-amplitude coupling in the human brain” corresponds directly to the 

published paper Giehl et al., 2021. This includes also the first four sections of 

chapter 3 of this thesis: “From (harmonic) PAC to the wave shape of 

oscillations“. The second project, “Fourier-based waveform analysis 

dissociates human cortical alpha rhythms” corresponds to a yet unpublished 

manuscript draft. This includes also the first four sections of chapter 5 of this 

thesis with the chapter title “Discussion”.  



 19 

2 Dissociating harmonic and non-harmonic 
phase-amplitude coupling in the human 
brain1 

 (Giehl et al., 2021, https://doi.org/10.1016/j.neuroimage.2020.117648) 

2.1 Scientific questions and aims2 

Phase-amplitude coupling has been a prominently discussed mode of cross-

frequency interactions. However, PAC has not been mapped systematically 

across the human brain and across frequency combinations. Therefore, the 

question of the distribution of PAC over the human brain, and of the involved 

frequency bands, remains open.  

Furthermore, the interpretation of cross-frequency coupling results is 

challenging. Phase-amplitude coupling measures, as well as phase-phase and 

amplitude-amplitude coupling measures, are not only sensitive to interacting 

oscillations. These measures are all also sensitive to signals with higher 

harmonics, i.e., signals that contain a periodic, but non-sinusoidal component. 

In other words: these measures cannot readily distinguish between two 

interacting oscillations and a single signal with a non-sinusoidal wave shape, 

such as the typically arch-shaped motor mu rhythm. The two different cases 

are, however, associated with distinct generative mechanisms. Therefore, a 

clear distinction is essential for a mechanistically meaningful interpretation of 

 

1 This entire chapter and the following chapter up to and including section 3.4 correspond 
to the previously published paper with the same title (Giehl et al., 2021) which can be accessed 
with the following DOI link: https://doi.org/10.1016/j.neuroimage.2020.117648. While, section 
2.1 has been modified and adapted to fit the structure of the present dissertation, the text, and 
the figures of sections 2.2 to 3.5 with all subsections correspond directly and entirely, word-by-
word, to the text and the figures of the corresponding sections of this previously published 
paper. (Sub-)section titles that differ from the original will be marked separately. 

2 This section corresponds closely to parts of the “abstract” and “introduction” sections of 
Giehl et al., (2021), which have been adapted to fit the structure of the present dissertation. In 
consequence, the correspondence of this section 3.1 to the aforementioned sections in Giehl 
et al. (2021) is close, and some single sentences, or parts of sentences, overlap directly, that 
is, they correspond word-by-word.  
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any observation of phase-amplitude coupling, and of cross-frequency signal 

features in general. In fact, several studies have already cautioned for or 

reported that harmonic PAC is linked to non-sinusoidal waveform shapes of 

oscillations rather than the non-harmonic PAC of interest (Aru et al., 2015; 

Chacko et al., 2018; Cole et al., 2017; Cole and Voytek, 2017; Gerber et al., 

2016; Hyafil, 2015; Jensen et al., 2016; Kramer et al., 2008; Lozano-Soldevilla 

et al., 2016; Vaz et al., 2017; Velarde et al., 2019). Thus, there is an inherent 

ambiguity in the results from these measures and it is challenging to not only 

map, but to also characterize the nature of any measured cross-frequency 

coupling correctly. 

In this project, we addressed this question, by evaluating phase-amplitude 

coupling across a broad range of frequency combinations and the entire human 

cortex based on two independent source-reconstructed 

magnetoencephalography (MEG) datasets. We estimated PAC using two 

different measures: vectorlength-PAC (Canolty et al., 2006) and bicoherence 

(Shahbazi Avarvand et al. 2018). The first measure established continuity to 

previous studies, whereas the latter measure provided an increased frequency 

resolution that is essential for distinguishing between canonical and harmonic 

PAC. 

To test if the measured PAC patterns reflected non-harmonic neuronal PAC, 

we assessed, first, if these patterns reflect muscle- or eye-movement artifacts, 

and second, to what extent they are affected by the non-sinusoidal shape of 

neuronal oscillations. To this end, we devised and systematically applied a 

novel procedure that allows distinguishing harmonic and non-harmonic PAC, 

by using phase-amplitude, phase-phase and amplitude-amplitude cross-

frequency coupling measures in conjunction. 
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2.2 Materials and Methods3 

2.2.1 Datasets 

We used resting-state MEG data from two different datasets: the Human 

Connectome Project MEG data (HCP) (Van Essen et al., 2013), which is 

publicly available, and an independent MEG dataset recorded at the MEG-

Center Tübingen.  

2.2.2 Data acquisition 

Unless specified otherwise, set-up, recording, and preprocessing of the HCP 

dataset (HCP S1200 Release), was as previously described (Van Essen et al., 

2013). We used the first of three sessions of 6 minutes eyes-open resting-state 

MEG, which was available for 89 subjects. Subjects were in supine position 

and fixated a red fixation cross on dark background.  

The Tübingen dataset comprised 28 healthy subjects (17 female, mean age 

26.5 years), that all gave written informed consent and received monetary 

compensation. For this dataset, 10 minutes of resting-state MEG were 

recorded with 275 channels at a sampling rate of 2,343.75 Hz (Omega 2000, 

CTF Systems, Inc., Port Coquitlam, Canada). Participants were seated upright 

in a dimly lit magnetically shielded chamber and fixated a central fixation point. 

The recordings was approved by the local ethics committee and conducted in 

accordance to the Declaration of Helsinki. All participants gave written informed 

consent before participating. For both datasets, structural T1-weighted MRIs of 

all subjects were used to construct individual head and source models. 

2.2.3 Preprocessing - HCP dataset 

We down sampled the data to 1000 Hz, band-pass filtered between 0.1 and 

400 Hz, and notch-filtered between 59 and 61 Hz (and harmonics) using zero-

 

3 This section and all subsections correspond precisely to the corresponding section with 
the same title in Giehl et al., (2021). See also footnote 1 on page 19. 



 22 

phase 4th-order Butterworth forward and reverse filters. We removed artifactual 

data segments as defined by the HCP pipeline (baddata). We manually 

identified and removed muscle-, eye- and heart-related artifacts using ICA 

(Hipp and Siegel, 2013). Heart-related artifact ICs were removed in all 89 

subjects. Eye-related ICs were removed in 86 subjects. In this dataset, muscle-

related ICs often contained prominent signal components in the alpha-band. 

To avoid accidentally removing components that may include neuronal 

interactions, we did not remove these components. Thus, we removed muscle-

ICs in only 30 of the 89 subjects, which resulted in considerable residual muscle 

activity in this preprocessed dataset. 

2.2.4 Preprocessing - Tübingen dataset 

The data was down sampled to 1000 Hz, low-pass filtered at 300 Hz, notch-

filtered between 49 and 51 Hz (and harmonics) and high-pass filtered at 0.5 Hz 

using zero-phase 4th-order Butterworth forward and reverse filters. Segments 

with jumps, eye blinks or strong muscle activity were removed manually in the 

time domain data. Remaining artifacts were removed using ICA analysis as 

described above for the HCP dataset. For this dataset, however, we removed 

muscle-ICs more stringently even if they contained a spectral peak in the alpha-

band. Thus, for this dataset muscle-related ICs were removed in all subjects.  

2.2.5 Source reconstruction 

For both datasets, we used beamforming to reconstruct cortical activity at 

457 positions on a shell that covered the entire cortex with even spacing 

approximately 1 cm beneath the skull  (Hipp and Siegel, 2015). For the HCP 

dataset, we used the spatial transformation matrices that are available in the 

individual source models provided with the HCP dataset and applied them to 

our source model. We performed two distinct source space projections and 

frequency analyses for vectorlength-PAC and all other cross-frequency 

measures. 
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2.2.6 Spectral analysis and beamforming for vectorlength-PAC 

We employed complex Morlet wavelets with logarithmically spaced center 

frequencies ranging from 2!".$%	Hz (~0.84 Hz) to 2'	Hz (256 Hz) in quarter-

octave steps (factor of 2".$%). 

Optimal for PAC detection is a relatively low frequency resolution for 

amplitude frequencies that must include the amplitude modulation side-peaks 

and a relatively high frequency resolution for the phase frequency (Aru et al., 

2015). Therefore, we chose bandwidths of 0.5 octaves for the phase 

frequencies and 1 octave for the amplitude frequencies (bandwidth defined as 

log2 of the ratio of the cut-off-frequencies at the filter’s half maximum gain). This 

corresponds to Morlet wavelets with $ = &/((	~6.86 for 0.5 octave and $ =

&/((	~3.53 for 1 octave, where & is each wavelet’s central frequency and ((	 is 

the standard deviation of its Gaussian function in the frequency domain (Tallon-

Baudry and Bertrand, 1999). We computed time-frequency estimates with a 

temporal steps size of 7ms. Subsequently, we applied DICS beamforming with 

frequency specific filters (Gross et al., 2001) For each source, we computed 

filters in the dominant dipole direction. 

2.2.7 Vectorlength-PAC 

We estimated vectorlength phase-amplitude coupling between phase-

frequencies (&)) of ~0.84 Hz (2!".$%	Hz) to 128 Hz (2*	Hz) and amplitude-

frequencies (&+)  of at least twice the phase frequency. We estimated 

vectorlength-PAC V(&) , &+) according to (Canolty et al., 2006): 

12&) , &+3 = | <, 6(7, &+)8-).,,(!0 > | 

Here, :27, &)3 is the phase, 6(7, &+) the amplitude, <,	 … > is the average 

over time and |…| is the absolute value.  
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2.2.8 Spectral analysis and beamforming for other cross-frequency 
measures 

For all other cross-frequency coupling measures (bicoherence, cross-

frequency amplitude-amplitude correlation, cross-frequency phase-phase 

coupling) we performed linearly constrained minimum variance (LCMV) 

beamforming (Van Veen et al., 1997) to estimate source level activity. This 

approach preserves the phase relationship between frequencies. The source-

data was split into half-overlapping 1 s segments (2 s and 4s segments for two 

control analyses related to spectral leakage). Each segment was demeaned 

and a Hanning window was applied. Then, fast Fourier transformation was 

computed for each segment using zero-padding to 2 or 10 seconds, which 

results in frequency resolutions of 0.5 or 0.1 Hz, respectively. 

2.2.9 Bicoherence 

We estimated bicoherence for frequencies &1 (0.5 to 64 Hz) and &$ (1 to 200 

Hz) in steps of 0.5 Hz with &$ ≥ &1 − 3 Hz and the corresponding &2 = &1 + &$ 

according to the formula with the normalization factor from (Hagihira et al., 

2001): 

?(&1, &$) =
| <, @,(&1)@,(&$)@,∗(&1 + &$) 	> |
<, 	 |@,(&1)@,(&$)@,∗(&1 + &$)| 	>

 

Here, @,(&)  is the signal’s time-frequency transformation at time t, | … | 

represents the absolute value, and <, …	> is the average over time. We use 

the terms “&2” and “&1 + &$” interchangeably throughout the paper. Frequencies 

&$ smaller than &1 were included for accurate detection of bicoherence peaks 

at and close to &1 = &$, in particular after smoothing of the cross-frequency 

spectrum. 

To locate delta-&1-range bicoherence peaks, bicoherence was estimated in 

steps of 0.1 Hz for &1 (0.1 to 2.5 Hz) and 0.5 Hz for &$ (0.5 to 50 Hz), with &$ ≥

&1. 
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2.2.10 Cross-frequency amplitude-amplitude coupling (AAC) 

We computed the Pearson correlation coefficients between amplitude time-

series, that were derived from the LCMV-beamformed Fourier time-series, 

between frequencies &1 (0.5 to 64 Hz) and &$ (1 to 200 Hz) in steps of 0.5 Hz 

where &$ ≥ &1 + 3 Hz. 

2.2.11 Cross-frequency phase-phase coupling (PPC) 

We computed cross-frequency phase-coupling between frequencies A and 

B weighted and normalized by the signal amplitudes at these frequencies. The 

phase of the lower frequency A was accelerated by the factor B/A to match the 

higher frequency B. The resulting measure can be understood as computing 

coherence between signals of different frequencies. 

CDEℎ(&4, &5) = 	
| <, 64(7)65(7)8

-6)(,)"∗54!)(,)#9 > |
<, 6(7)46(7)5 >  

<, …	>  represents the average over time. Amplitude 6(7)  and phase 

estimates :(7) were obtained from the time-frequency Fourier estimates. The 

measure approaches 0 for a random phase relationship and equals 1 for 

perfect m/n factor phase-coupling. The normalization matches the 

normalization used for bicoherence. Furthermore, the weighting by the signal 

amplitudes improves the robustness of the measure by favoring phase 

information during times of high signal amplitude. We computed this measure 

for the same frequency pairs as AAC.  

2.2.12 Regions of interest (ROIs) 

We defined 4 ROIs based on the local maxima of the group-level 

vectorlength-PAC averaged across frequencies in left/right sensorimotor (MNI: 

-44.4 -30.2 58.9 / 39.7 -20.0 61.0), visual (-19.1 -99.7 2.1 / 19.1 -99.6 1.7), 

parietal (-11.1 -81.3 45.3 / 11.1 -81.6 45.4) and superior temporal cortex (-62.5 

-43.9 15.0 / 63.0 -8.6 15.0). We averaged coupling measures across 

hemispheres. 
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2.2.13 Statistical analysis of coupling measures 

We employed a time-shifting surrogate procedure to assess the statistical 

significance of cross-frequency coupling. We generated 100 random circular 

time-shifts drawn from a uniform distribution from 0 to the length of the data. 

The same time-shift was applied for all sources and frequency combinations. 

For the vectorlength measure, the amplitude time-series of each subject was 

shifted circularly relative to the phase time-series and vectorlength-PAC was 

computed for each of the 100 shifts. For bicoherence, we shifted the time-series 

of &2 relative to &1 and &$. For AAC and PPC, we shifted the timeseries of &$ 

relative to &1. AAC values and corresponding surrogate values were Fisher-z-

transformed. For each measured coupling measure, a z-score was computed 

relative to the corresponding 100 surrogate values. To determine significant 

cross-frequency coupling while controlling for multiple comparisons, we 

employed a cluster permutation statistic across cross-frequency space or 

cortical space. For bicoherence and PPC statistics, cross-frequency spectra 

were smoothed with a 5-by-5 frequency-bin sized Hanning window. Clusters 

across cortical and cross-frequency space were defined based on the t-statistic 

of cross-frequency measures across subjects with a cluster threshold of p < 

0.01. Clusters were then defined under the null-hypothesis by random sign flip 

across subjects before computing the t-statistic (1000 repeats). Cluster 

significance was defined as the probability to obtain a maximum cluster of at 

least this size across the null-hypothesis permutations with p < 0.05. 

2.2.14 Analysis of the influence of artifacts 

To study the potential influence of residual artifacts on the cross-frequency 

coupling results, we compared the spectral and spatial PAC patterns of 

artifactual signals defined during data preprocessing to the results of the 

cleaned data (Hipp and Siegel, 2013). To this end, we back-projected only the 

artifactual ICs to the sensors, beamformed these artifactual signals, and 

computed vectorlength-PAC and bicoherence on the source-localized artifacts. 

Finally, we compared the patterns of the artifactual signals with the patterns of 
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the cleaned signal. As residual heart-artifacts tend to be project to the brain 

center, we restricted this analysis to muscle- and eye-related artifacts. 

2.2.15 Simulated signals with harmonic and non-harmonic PAC 

We computed bicoherence, AAC and PPC of simulated signals with either 

higher harmonics or non-harmonic phase-amplitude coupling. These 

simulations illustrate typical cross-frequency coupling patterns expected for 

different signal types and cross-frequency measures.  

In one of the non-harmonic PAC signals, the carrier frequency (&:) and 

modulation side-peaks were distinct from the modulating frequency (&5). To 

this end, we simulated coupling between &5=10 Hz and &:=40 Hz (resulting in 

side-peaks at 30 Hz and 50 Hz); once with 10-times smaller amplitude for &: 

than &5 and once with 25-times smaller amplitude for &: than &5. Additionally, 

we simulated the special case of PAC, where the lower side-peak of the 

amplitude modulation (&:!5) coincides with the modulating frequency (&5=10 

Hz and &:=20 Hz, resulting in side-peaks at 10 Hz and 30 Hz, and with 4 times 

smaller amplitude for &: than &5).  

For obtaining the raw signals at &5 and &: (C(#(7) and C($(7), respectively), 

we took 6 minutes of white noise and, at each time point, applied a Hanning 

window, calculated the FFT, extracted the frequency bin of interest, and applied 

the inverse Fourier transform. For each frequency, a Hanning window with a 

defined spectral width (full width at half maximum, FWHM) was used (FWHM 

= 1.5 Hz for &5, and FWHM = 3 Hz and 2 Hz for &:, for the two different signals, 

respectively). Then, non-harmonic PAC signals were generated by amplitude 

modulation of C($ according to the phase of C(# as follows:   

C;+<(7) = 	C(#(7) + G1 + 0.99 ∙ cos GΦ(#(7)PP ∙ C($(7) + A(7)	

Φ(#(7) is the phase of C(#, extracted from the above mentioned time-Fourier 

analysis. A(7) is 1/&$-noise.  
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For the two simulated harmonic-PAC signals, we obtained the base 

component at 10 Hz (C(%&(7)) using the procedure explained above for &:, and 

added it up with 4 higher harmonics and 1/&$-noise (A(7)). Higher harmonics 

of C(%& were generated as: 

C4∙(%&(7) = Q4 ∙ R@ GC(%&(7)PR ∙ cos2Φ(%&(7) ∙ A + S43 

Here, R@ GC(%&(7)PR and Φ(%&(7) are the instantaneous amplitude- and phase- 

time series of C(%&, respectively, and n is the integer multiplier (A ∈ {2,3,4,5}). 

The relative amplitude and phase of the higher harmonics relative to the base 

component were controlled by the factors Q4  and S4 , respectively. In one 

simulation we used Q$ =0.25, Q2 =0.06, Q> =0.025, Q% =0.05, S$ =pi/2, 

S2=pi/4,	S>=3/2*pi, and S%=2*pi. In the second simulation we used Q$=0.05, 

Q2=0.015, S$=pi/2 and S2=pi/4. 

For all simulated signals, we applied the same processing as described for 

the estimated source-level data with a sampling rate of 4000 Hz excluding the 

line-noise filters. We calculated vectorlength, bicoherence, cross-frequency 

AAC and PPC as well as a time-average log-power spectrum.  

2.2.16 Peak localization 

To localize peaks in the frequency-frequency space for bicoherence, AAC, 

and PPC, we averaged the cross-frequency values across &$  frequencies 

below 70 Hz. Then, we identified the &1 with the maximum averaged cross-

frequency measure (in the range 5 to 14 Hz for single subjects, 7.5 to 14 Hz for 

the average across subjects, and 0.1 to 2.5 Hz for the delta-&1 peaks). Finally, 

we identified the corresponding &$ frequency maxima for each maximum &1. 

2.2.17 Single-subject harmonic peaks in bicoherence 

After observing harmonic peaks of theta/alpha PAC averaged across 

subjects, we tested for such a harmonic pattern across subjects. Specifically, 

we tested if &$ frequencies of bicoherence peaks were at integer multiples of 

corresponding &1 frequencies. 
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For localizing bicoherence peaks, we first smoothed the Z-scored 

bicoherence cross-frequency spectra by convolution with a 3x3 Hanning 

window. To more precisely detect peaks close to the &1 = &$ diagonal of the 

bicoherence cross-frequency spectrum, we extended the lower range of &$-

frequencies to &1-3 Hz, but not lower than 0.5 Hz. Then, we created individual 

masks of single-subject significance by converting the Z-scores to p-values, 

false-discovery-rate correcting the p-values for multiple comparisons 

(Benjamini and Hochberg, 1995), and creating masks at the alpha level of 0.05. 

Next, we spline-interpolated both, the Z-scored cross-frequency spectra and 

masks, to 0.1 Hz resolution. Finally, we identified peaks of significant 

bicoherence as detailed above. 

If bicoherence peaks reflected harmonics of an oscillator at the 

corresponding &1	frequency, they should fit the following regression model: 

&W$,?@AB(A, XY?Z8[7, \]^) = &1,?@AB(XY?Z8[7, \]^) ∙ A + 8__E_. 

Here, A refers to the peak number. To avoid mislabeling of harmonic peaks, 

e.g. when a lower peak was not detectable, we set A to match the closest 

harmonic. In total, up to 6% of peaks per ROI were relabeled. For two peaks 

falling closest to the same harmonic, we omitted the peak associated with the 

weaker bicoherence Z-score. To rule out any bias due to peak relabeling, we 

tested the model fit against a permutation statistic that also entailed peak 

relabeling. For each ROI, we took peak positions of all subjects and 1000 times 

randomly reassigned &$ and &1 values across subjects, with the restriction that 

the same number of peaks had to fall within the 1st, 2nd, etc. peak groups as 

observed in the original data. For each of the 1000 surrogates, as well as for 

the original data, we computed the coefficient of determination (\$ ) as a 

measure of model fit for each regression model (one for each nth harmonic at 

each ROI). Finally, we obtained p-values by comparing the original \$ against 

the surrogates.  
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2.2.18 Simulating the bicoherence leakage pattern  

In order to identify conspicuous caveats in the bicoherence analysis, such 

as leakage into remote frequency ranges, we simulated a 10-minute long signal 

(1000 Hz sampling rate) with higher harmonics that resembled the motor mu-

rhythm with little noise and computed its bicoherence the same way as we did 

for a source reconstructed signal. To construct this signal, we took the same 

steps as explained above, with the only difference that the base component 

was reconstructed as C(%&(7) = 	1 ∙ cos(:1"(7)). The applied Hanning window 

was 4-s long, and the final signal was constructed using the following 

parameters: Q$=0.35, Q2=0.2, Q>=0.05, S$=pi, S2=0, and	S>=pi. 

2.2.19 Bicoherence leakage pattern 

To test the observation that some of the bicoherence peaks with delta-

&1	reflect the leakage pattern of noisy harmonic signals of the alpha range, we 

made use of the predictable location of the leakage pattern. We constructed 

regression models to predict peak positions and tested the model fit of the data 

against a permutation statistic. Specifically, we applied the following regression 

model:	 

&W$,C@D,A	?@AB(A, XY?Z, \]^)

= A ∙ &1,AD?EA	?@AB(XY?Z, \]^) − &1,C@D,A	?@AB(XY?Z, \]^) + 8__E_ 

Here, for each subject and ROI,	&1,C@D,A	?@AB represents delta range &1 of the 

peaks, &W$,C@D,A	?@AB(A, XY?Z, \]^)  represents the A -th predicted &$  peak 

corresponding to &1,C@D,A	?@AB 	, and	&1,AD?EA	?@AB  represents the alpha-range &1-

frequency that corresponds to the bicoherence peaks in that range. For each 

subject and ROI, &1,AD?EA	?@AB was estimated as described above. 

To locate (&1,C@D,A	?@AB , &$,C@D,A	?@AB ) pairs more precisely, we used the z-

scored bicoherence estimates with step size of 0.1 Hz for &1 frequencies and 

0.5 Hz for &$ frequencies. Next, we interpolated the cross-frequency spectra 

along their &$ axis to steps of 0.1 Hz, and smoothed the results by convolving 
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with a 3x3 Hanning kernel. Then, we localized the peaks at delta-range &1 

frequencies. 

2.2.20 Analysis software 

All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) 

using the Fieldtrip toolbox (Oostenveld et al., 2011) and custom software. 

2.3 Results4 

2.3.1 Spectral structure of phase-amplitude coupling 

We estimated vectorlength-PAC (Canolty et al., 2006) between a wide range 

of frequency pairs for 457 cortical sources in 89 subjects of the Human 

Connectome Project (HCP) resting-state MEG dataset (Fig. 1A). Averaged 

across the entire cortex, we observed significant coupling peaks in three 

different frequency ranges (Fig. 1A, top): between gamma phase frequencies 

and high gamma amplitude frequencies peaking at [&), &+] = [76.1 Hz, 152.2 

Hz], between alpha phase frequencies and beta amplitude frequencies peaking 

at [&), &+] = [11.3 Hz, 22.6 Hz], and weak but significant between delta phase-

frequencies and amplitude frequencies around 16 Hz. In the cortical space and 

averaged over all frequency pairs (Fig. 1A, bottom), the vectorlength measure 

peaked primarily in bilateral sensorimotor regions, with distinct peaks also in 

temporal, occipital and parietal areas. Do these patterns reflect true neuronal 

interactions between distinct oscillatory processes? To answer this, we first 

tested if these patterns were related to non-neuronal signals, i.e. muscle- or 

eye-movement artifacts.  

 

4  This section, including all subsections and figures, corresponds precisely to the 
corresponding section with the same title in Giehl et al., (2021). See also footnote 1 on page 
19. 
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2.3.2 Phase-amplitude coupling reflects residual muscle- and eye-
related artifacts 

Despite using ICA-based artifact cleaning and beamforming, the data may 

well contain residual artifacts. To investigate the potential influence of such 

residual artifacts, we computed vectorlength-PAC of MEG signals that mainly 

contained artifacts (Fig. 1B and 1C, Materials and Methods). If results reflected 

residual artifacts, we should observe similar patterns for artifact signals. Indeed, 

vectorlength-PAC of muscle artifacts (Fig. 1B) showed a prominent peak that 

well matched the high frequency peak in the cleaned data. The cortical 

distribution of vectorlength-PAC for muscle artifacts peaked in inferior temporal 

and frontal regions, the latter reminiscent of a saccadic spike artifact (Carl et 

al., 2012) (Fig. 1B). This cortical distribution was significantly correlated with 

the cortical distribution of PAC for the cleaned signal in the corresponding 

frequency range [&), &+] = [45-76 Hz, 128-256 Hz] (Fig. 1A, small inset) (r2 = 

0.45, p<0.001). Together, these results suggested that high frequency PAC 

likely reflected muscle artifacts rather than neuronal coupling.  

We repeated the same analysis for a potential contamination by residual 

eye-movement artifacts (Fig. 1C). Eye-movement artifacts showed low-

frequency vectorlength-PAC for phase and amplitude frequencies below 

approximately 3 and 8 Hz, respectively. This only partially matched the weak 

but significant low frequency PAC for the cleaned data, which peaked for 

amplitude frequencies around 16 Hz reaching up to 64 Hz. Thus, low-frequency 

PAC could only be partially explained by residual eye-movement artifacts.  

Next, we tested if these findings generalized to PAC estimation using 

bicoherence, which assess non-linear interactions between two frequencies by 

quantifying the phase consistency between these frequencies and their sum 

(Shahbazi Avarvand et al. 2018). Indeed, for high frequencies, we found a 

similar distribution of significant bicoherence for the cleaned data (Fig. 1D) and 

muscle artifacts (Fig. 1E). The cortical distribution of bicoherence of the 

cleaned data for this frequency range (Fig. 1D, left small inset) was significantly 

correlated with the cortical distribution of bicoherence for muscle-artifacts (Fig. 

1E, left, r2=0.25, p<0.001) as well as with the cortical distribution of 
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vectorlength-PAC of the cleaned data (Fig. 1A, small inset, r2=0.92, p<0.001) 

and muscle-artifacts (Fig. 1B, r2=0.46, p<0.001). This further suggested that 

residual muscle artifacts generated spurious high-frequency PAC in temporal, 

orbito-frontal and lateral inferior regions.  

For eye movements artifacts, bicoherence could again not entirely explain 

PAC at low frequencies. Bicoherence of eye artifacts peaked at &1 frequencies 

from 1 to 2.5 Hz and &$ frequencies up to 20 Hz and above 30 Hz (Fig. 1F). In 

contrast, the cleaned data showed significant bicoherence over a broader low-

frequency range (Fig. 1D).  Moreover, the cortical distributions of bicoherence 

of eye-artifacts and the cleaned-data was only weakly correlated for low 

frequencies (r2=0.15, p<0.01).  

In sum, both measures, vectorlength-PAC and bicoherence, consistently 

identified significant PAC that likely reflects residual muscle- and eye 

movement artifacts in high and low frequency ranges, respectively. 

2.3.3 Phase-amplitude coupling in the alpha frequency-range  

Vector-length PAC and bicoherence showed prominent effects in the alpha-

frequency range that could not be attributed to muscle or eye movement 

artifacts. Do these effects reflect true neuronal interactions between distinct 

oscillations? 

For vectorlength-PAC, the coupling of the alpha phase-frequency peaked at 

the double-phase-frequency diagonal ( &+ = 2&) ), i.e. at the first higher 

harmonic of the phase frequency (maximum at [ &) , &+ ] = [11.3, 22.6]). 

Bicoherence showed several peaks at &1= 10.5 Hz and &$ of 11 Hz, 21 Hz, 30.5 

Hz and 44 Hz, which are close to harmonics of &1. Thus, we hypothesized that 

these peaks may merely reflect harmonics of alpha oscillations, rather than true 

neuronal interactions. To address this question, we next focused on why PAC 

measures are sensitive to rhythmic signals with higher harmonics and how 

harmonics and non-harmonic PAC could be dissociated.  
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Figure 1. Vectorlength-PAC and bicoherence.  

(A) Vectorlength-PAC averaged across the cortex (top), and its cortical distribution, averaged either 

across all (bottom) or high gamma frequencies (inset). (B) Vectorlength-PAC of rejected muscle artifacts 

(independent components) averaged across the cortex (top) and all significant frequency combinations 
(bottom). (C) Vectorlength-PAC of rejected eye-related artifacts (independent components) averaged 

across the cortex (top) and all significant frequency combinations (bottom). (D) Bicoherence averaged 

across the cortex for a large frequency range (left) and zoomed-in lower frequency range (right). Cortical 
distributions of bicoherence averaged for the corresponding frequency ranges are shown below. The inset 

shows the cortical distribution of bicoherence for a high-frequency range often associated with muscle 

activity. (E) Bicoherence of rejected muscle artifacts averaged across the cortex (top) and for significant 
frequency combinations (bottom) (F) Bicoherence of rejected eye-related artifacts averaged across the 

cortex (top) and for significant frequency combinations (bottom). All coupling measures are z-scores 

relative to surrogate statistics generated by circular data shuffling. Opacity indicates statistical 
significance (p<0.05; corrected; permutation statistic). 

 

2.3.3.1 Harmonic and non-harmonic phase-amplitude coupling  

Figure 2 compares non-harmonic PAC, i.e. phase-amplitude coupling 

between two independent oscillations (Fig. 2 left, 10 Hz to 40 Hz coupling), with 
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harmonic PAC, i.e. a rhythmic non-sinusoidal signal with higher harmonics (Fig. 

2 right, 10 Hz base frequency with three harmonics).  

Importantly, both bicoherence and vectorlength-PAC do not only yield cross-

frequency phase-amplitude coupling for non-harmonic PAC, but also for 

harmonic PAC (Kovach et al., 2018; Shahbazi Avarvand et al., 2018). How can 

this be intuitively understood? 

For vectorlength-PAC, the spectral bandwidth of higher frequency 

components needs to be wide enough (at least twice the low frequency) to 

capture their potential amplitude modulation (Aru et al., 2015; Dvorak and 

Fenton, 2014, compare high frequencies extracted with narrow and wide filters 

in Fig. 2). For harmonic signals, this implies that multiple harmonics of the base 

frequency can be captured, which results in an apparent amplitude modulation 

of high frequencies (Fig. 2B). This modulation is phase-consistent with the base 

frequency, which yields significant vectorlength-PAC in absence of an 

independent high frequency oscillator.  

Bicoherence does not necessitate wide filters but is also sensitive to both, 

harmonic and non-harmonic PAC (Avarvand et al. 2018). This is, because for 

harmonic PAC (Fig. 2, right), there is always a stable phase relationship 

between the base frequency and its higher harmonics. Thus, bicoherence 

measures cross-frequency coupling for all frequency pairs, where each 

frequency and their sum coincide with the base frequency or a higher harmonic. 

2.3.3.2 Dissociating harmonic and non-harmonic phase-amplitude coupling 

How can we distinguish harmonic and non-harmonic PAC? Harmonics are 

only present at integer multiples of the base frequency. Thus, a first test is 

whether the frequencies at which PAC is observed could reflect harmonics of 

a base frequency. Bicoherence is particularly suited for this test, because it 

enables higher spectral resolution than vectorlength-PAC. However, if the 

observed PAC frequencies match a harmonic pattern, this may still reflect non-

harmonic PAC at these frequencies (e.g. Fig. 2, left). Thus, for harmonic PAC 

frequency patterns, further tests are required.  
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Figure 2. Non-harmonic and harmonic PAC. 

(A) Simulated signals with non-harmonic PAC between a modulating frequency !! = 10 Hz and a carrier 

frequency !" = 40 Hz (left) (B) Simulated signal with harmonic PAC due to a non-sinusoidal signal with 

base frequency !# = 10 Hz and three higher harmonics. First row: Power spectra. Red lines indicate the 

high-frequency bandwidth required for vectorlength-PAC. Second row: complete time-domain signals. 
Third row: low frequency component extracted with a narrow bandpass filter at 10 Hz. Fourth row: high 

frequency component of interest extracted with a narrow bandpass filter at !" and "!# for non-harmonic 

and harmonic PAC, respectively. The narrow filter prevents amplitude modulation (see subsection 3.3.1. 

for further explanation). For non-harmonic PAC, there is no stable phase relationship between the low 
and high frequency components. In contrast, for harmonic PAC, there is a stable phase relationship. Fifth 

row: high frequency components extracted with a wide filter (dashed red lines). Both signal types show 

an amplitude modulation of high-frequency components that is coherent with the 10 Hz component. 

 

To investigate such potential tests, we simulated signals that contained 

either harmonic or non-harmonic PAC between 10 Hz and some of its integer 

multiple frequencies. For each signal, we computed not only the vectorlength 

measure and bicoherence to assess PAC, but also cross-frequency amplitude-

amplitude coupling (AAC) and cross-frequency phase-phase coupling (PPC) 

(Fig. 3).  

Vectorlength-PAC shows similar coupling patterns for harmonic PAC (Fig. 

3A) and non-harmonic PAC (Fig. 3B). Harmonic-PAC shows two overlapping 

peaks at harmonically related frequencies, i.e. at [&), &+] = [&F, 2&F] and [2&F, 

3&F]. Non-harmonic PAC also shows two peaks. A first large peak is between 

the modulating and carrier frequencies, i.e. around [&), &+] = [&5, &:]. A second 

peak, which appears to be a byproduct of the large bandwidth of the spectral 

filters, is positioned at about [&), &+] = [&:!5, &:G5]. However, due to the low 
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spectral resolution of vectorlength-PAC, it is difficult to clearly dissociate the 

generated patterns. 

The high spectral resolution of bicoherence allows for better resolving these 

patterns. For both, harmonic (Fig. 3A) and non-harmonic (Fig. 3B) PAC, 

bicoherence shows distinct peaks at all [&1, &$] combinations, at which &1, &$, 

and &2 = &1 + &$ coincide with peaks in the power spectrum. For harmonic-PAC 

(Fig. 3A), power peaks at the base frequency and higher harmonics, which 

results in several corresponding bicoherence peaks. For non-harmonic PAC 

(Fig. 3B), power shows four peaks at the modulating frequency	&5 , carrier 

frequency &:  and side-peaks &5G/!: . This leads to exactly two bicoherence 

peaks at frequencies [&1, &$] = [&5, &:] and [&1, &$] = [&5, &:!5] (Fig. 3B) (Hyafil, 

2015). Thus, bicoherence with more than two harmonic peaks cannot only be 

caused by non-harmonic PAC, but implies harmonic PAC. 

Amplitude-amplitude and phase-phase coupling further dissociate harmonic 

and non-harmonic PAC and can be conveniently computed with the same 

spectral resolution as bicoherence (Fig. 3). By definition, harmonics imply AAC 

and PPC between the base frequency and any harmonics. AAC and PPC 

measures of harmonic-PAC signals well reflect these couplings (Fig. 3A). In 

contrast, non-harmonic PAC does not imply AAC or PPC between the 

modulating frequency and the carrier frequency or its side-peaks. Thus, for 

non-harmonic PAC (Fig. 3B), there is no AAC or PPC between the modulating 

frequency and any of the power peaks at higher frequencies. This provides a 

dissociating feature between harmonic and non-harmonic PAC.  

One concern may be that the above features may not be detectable at low 

SNR of higher spectral peaks. To investigate this, we repeated our simulations 

with higher spectral peaks that were close to the noise level (Fig. 3C and D). 

For both harmonic (Fig. 3C) and non-harmonic PAC (Fig. 3D), cross frequency 

coupling measures showed patterns generally consistent with the high SNR 

case, although some peaks merged to one wider peak due to the lower SNR 

(bicoherence in Fig. 3D). Importantly, for harmonic-PAC (Fig. 3C), both AAC 

and PPC showed peaks at frequency combinations with &1 =	&F, while such 

peaks were absent for non-harmonic PAC. Therefore, even at low SNR, 



 38 

bicoherence, AAC, and PPC allow to dissociate harmonic and non-harmonic-

PAC.  

 

Figure 3. Dissociating harmonic and non-harmonic PAC. 

Power spectra, cross-frequency vectorlength, bicoherence, amplitude-amplitude coupling (AAC) and 

phase-phase coupling (PPC) for three different simulated signals with harmonic or non-harmonic PAC. 

All signals contained oscillatory components and uncorrelated 1/%$ -noise. (A) Power and cross-
frequency measures for a 10 Hz signal with four higher harmonics. (B) Non-harmonic PAC between 10 

and 40 Hz. (C) Power and cross-frequency measures for a 10 Hz signal with two higher harmonics of 

lower SNR. (D) Non-harmonic PAC between 10 Hz and lower SNR 40 Hz component (E) Special case of 
non-harmonic PAC, between 10 Hz and 20 Hz. In this case, the lower side-peak of the modulated 

frequency	%%&' coincides with the modulating frequency	%'. All coupling measures are z-scores relative 

to surrogate statistics generated by circular data shuffling. 
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Finally, there is one special case of non-harmonic PAC, which is more 

ambiguous. This is when the carrier frequency is twice the modulating 

frequency (Fig. 3E). In this special case, the lower side-peak of the amplitude 

modulation coincides with the modulating frequency itself (10 Hz in Figure 3E). 

This leads to vectorlength, bicoherence and PPC patterns similar to patterns 

for a non-sinusoidal oscillator with only two higher harmonics. However, in this 

case, the relative strength of bicoherence and AAC peaks allows for 

dissociating harmonic and non-harmonic PAC, because the signal at the 

modulating frequency mixes with the lower-frequency side peak of the carrier 

frequency. For bicoherence, this leads to weaker coupling at [&1, &$] = [&5, &5] 

as compared to [&1, &$] = [&5, &:]. This is in contrast to harmonic PAC, which 

shows the opposite relative strength due to the lower power of harmonics as 

compared to the base frequency. Along the same line, for AAC coupling at [&1, 

&$] = [&5, &:] is absent or weaker than coupling at [&1, &$] = [&:, &: + &5], which 

again is opposite to harmonic-PAC. 

In sum, several features allow to assess if PAC is harmonic or non-harmonic 

in nature. A first useful heuristic is to test if the observed frequencies are 

multiples. Bicoherence is well suited for this assessment due to its high spectral 

resolution. If the observed frequencies are clearly not multiples, non-harmonic 

PAC is the cause. Otherwise, if the observed frequencies are multiples, 

bicoherence, AAC and PPC together are decisive. Bicoherence with more than 

two harmonic peaks implies harmonic PAC. Furthermore, bicoherence, AAC, 

and PPC between the base frequency and its harmonics imply harmonic PAC, 

in particular if bicoherence is strongest for identical &1  and &$  at the base-

frequency. We next applied this approach to test if the observed PAC in the 

alpha range (Fig. 1A and 1D) reflected harmonic or non-harmonic PAC. 

2.3.3.3 Alpha phase-amplitude coupling reflects harmonics 

As indicated above, average vectorlength PAC peaked between alpha 

phase- and beta amplitude frequencies (Fig. 1A and 4A). Average bicoherence 

peaked between alpha-frequencies &1  and harmonic frequencies &$  (1D and 

4A). This was also the case for every individual cortical region with prominent 

PAC, i.e. sensorimotor, parietal, occipital and temporal areas with an apparent 
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variability of the fundamental alpha frequency between regions (Fig. 4B-E), as 

well as for the average across the remaining cortical areas (Fig. 4F). Therefore, 

we next computed AAC and PPC across the entire cortex and for the 

mentioned regions to assess the nature of alpha PAC (Fig. 4, middle and right 

column). 

The average across the cortex (Fig. 4A), all four regions of interest (Fig. 4B-

E) and the average across the remaining cortical areas (Fig. 4F) showed 

prominent AAC and PPC with strongest peaks at [&1,	&$] = [10, 20] Hz and 

several effects at higher harmonics. Harmonic coupling was particularly strong 

for sensorimotor cortex, which showed prominent amplitude and phase 

coupling even between the second (20 Hz) and fourth (40 Hz) harmonic. We 

concluded that the observed PAC reflected harmonic-PAC, rather than non-

harmonic PAC of independent oscillations. 

If bicoherence, AAC and PPC all reflect the same harmonic PAC, their 

cortical distribution should be correlated. This is what we found. Averaged 

across all frequency pairs, the cortical patterns of bicoherence, AAC and PPC 

were strongly correlated (bicoherence vs. AAC: r = 0.89, p < 0.0001; 

bicoherence vs. PPC: r = 0.93, p < 0.0001; AAC vs. PPC: r = 0.88, p < 0.0001; 

Pearson correlation; Fig. 4A).  

Single subject data further supported the conclusion of harmonic-PAC. In 

particular, while it was difficult to identify clear harmonic peaks in the averaged 

power spectra (Fig. 4A-F), such harmonic peaks could well be identified in the 

power spectrum of many individual subjects along with corresponding cross-

frequency coupling peaks (one example is shown in Fig. 4G). This is because 

the single subject results are not affected by inter-subject variance of the alpha 

peak-frequency, and therefore more closely resemble the simulation of 

harmonic coupling (compare Fig. 3A and Fig. 4G). 

In sum, converging evidence suggested that PAC for low frequencies in 

alpha/beta range was harmonic in nature, and, thus, most likely reflected 

rhythmic signals with a non-sinusoidal waveform shape. 
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Figure 4. Cortical cross-frequency coupling. 

(A) Left panel: Log-power spectrum and vectorlength PAC averaged across the cortex. Remaining panels: 

Spectral and cortical distribution of bicoherence, cross-frequency amplitude-amplitude coupling and 

cross-frequency phase-phase coupling averaged across the cortex and across all frequency 
combinations, respectively. (B-E) Left panel: Log-power spectrum and vectorlength PAC for four different 

cortical ROIs. Remaining panels: Cross-frequency coupling measures for four different cortical ROIs. (F) 

As (B-E) for all remaining cortical sources, after excluding the four ROIs and their neighbouring sources. 
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(G) As (B) for an exemplary single-subject. All coupling measures are z-scores relative to surrogate 

statistics generated by circular data shuffling. Opacity (not applied in G) indicates statistical significance 
(p<0.05; corrected; permutation statistic). 

2.3.3.4 Harmonic phase-amplitude coupling reflects individual alpha rhythms 

In a control analysis, we next exploited the variability of the alpha-rhythm 

across subjects to further ascertain the harmonic nature of alpha PAC. For 

harmonic-PAC, the observed bicoherence peaks should scale with the variable 

alpha frequency across subjects. Thus, for each subject, we extracted all [&1, 

&$] peak frequencies for &1 in the alpha band and tested if these peaks were 

integer multiples of the individual alpha frequency (i.e. &$= A	&1 , for A = 1,2, 3). 

 

 

Figure 5. Harmonic PAC at individual alpha frequencies. 

(A) Bicoherence peak positions [%(, %$] with %( frequencies in the alpha range across all individual subjects 

for all four ROIs. Dashed lines indicate harmonic models along with '$ values of model fits and statistical 

significances. [sic] 

 

For all regions, peak positions were compatible with the harmonic model (Fig. 

5). The model fit of the lowest bicoherence peak to the first harmonic at &$ = &1, 

which implies coupling between the base frequency and the second harmonic, 

was significant for all ROIs (motor ROI: r2 = 0.83, p<0.001; visual ROI: r2 =0.88, 

p<0.001; parietal ROI: r2 =0.92, p<0.001; temporal ROI: r2 =0.93, p<0.001). The 

model fit for the second harmonic (&$= 2&1 ) was significant for motor and 

temporal cortex (motor ROI: r2 = 0.85, p<0.001; temporal ROI: r2 = 0.88, 

p<0.05). For the motor cortex, also the model fit for the third harmonic (&$= 3&1) 

was significant (r2 = 0.87, p<0.001). Thus, for all regions of interest, the 
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frequencies of bicoherence in individual subjects were well explained by alpha 

harmonics.  

2.3.4 Replication in an independent dataset 

We replicated the above findings in a second, independent dataset that was 

recorded with another MEG system at another research site (Fig. 6; Tübingen 

dataset). As for the HCP data, we found prominent vectorlength-PAC between 

alpha phase- and beta amplitude frequencies and prominent bicoherence 

peaks at alpha &1 frequencies and at harmonic frequency combinations. Again, 

harmonic coupling was also present for AAC and PPC with decreasing coupling 

strengths for higher frequencies. We tested if the cortical distribution of PAC 

was similar between the two datasets. Indeed, the pattern of bicoherence, AAC 

and PPC was highly correlated between the two datasets (bicoherence r=0.85, 

p < 0.0001; AAC r = 0.85, p < 0.0001; PPC r = 0.77, p < 0.0001).  

In sum, the results were highly consistent between the HCP and 

independent replication datasets. We concluded that, also for the replication 

dataset, PAC for low frequencies in the alpha range was harmonic in nature, 

and, thus, related to non-sinusoidal rhythmic signals rather than due to non-

harmonic PAC between independent oscillators. 

 

 

Figure 6. Replication of key results. 

Left panel: Log-power spectrum and vectorlength-PAC averaged across the cortex. Remaining panels: 
Spectral and cortical distribution of bicoherence, cross-frequency amplitude-amplitude coupling and 

cross-frequency phase-phase coupling averaged across the cortex and across all frequency 

combinations, respectively, for the replication dataset. All coupling measures are z-scores relative to 

surrogate statistics generated by circular data shuffling. Opacity indicates statistical significance (p<0.05; 
corrected; permutation statistic). 
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2.3.5 Sub-alpha phase-amplitude coupling 

Our initial vectorlength-PAC (Fig. 1A) and bicoherence analysis (Fig. 1D) 

revealed PAC at frequencies below 8 Hz that could not entirely be explained 

by eye-movement artifacts. In a final set of analyses, we investigated the nature 

of coupling in this sub-alpha frequency range. 

The sensorimotor bicoherence of several subjects showed distinct peaks at 

sub-alpha &1  frequencies that seemed to mirror the harmonic peaks at the 

individual &1 alpha frequency (Fig. 7A). Thus, we hypothesized that these sub-

alpha peaks might be caused by alpha-frequency harmonics. To investigate 

this, we analyzed low frequency bicoherence of a simulated 10 Hz signal with 

higher harmonics (Fig. 7B). Indeed, this revealed a characteristic “leakage 

pattern” at sub alpha frequencies with horizontal, vertical and anti-diagonal 

leakage lines that intersect at the harmonic 10 Hz peaks (&$=n*10, &1=n*10 and 

&1+ &$= n*10, respectively, for integer n). This specific pattern can be intuitively 

understood by the frequency combination used for bicoherence. Along 

horizontal, vertical or anti-diagonal lines, either the &1, &$ or &2 frequency stays 

constant. Consequently, the leakage of bicoherence is falling off slower along 

these lines than in any other direction.  

We next tested if such a leakage pattern was present in the MEG data. In 

each subject, we located up to three sub-alpha &1  bicoherence peaks and 

tested if their position was in line with the predicted leakage pattern (Fig. 7C). 

Indeed, peak positions were significantly correlated with the predictions of the 

leakage model across subjects (first peaks: R2=0.82, p <0.001; second peaks: 

R2 =0.89, p<0.01, third peaks R2 =0.89, p>0.05). This provided strong evidence 

that sub-alpha bicoherence peaks reflected spectral leakage of alpha 

oscillations with higher harmonic components. If this is correct, the cortical 

distribution of sub-alpha bicoherence should be correlated with the cortical 

distribution of alpha bicoherence. Indeed, we found a strong correlation of the 

cortical distribution of bicoherence in the leakage-related sub-alpha range ([&1, 

&$] = [0.5 to 4 Hz, 2.5 to 40 Hz]) and in the range of alpha harmonics ([&1, &$] = 

[7 to 14 Hz, 7 to 40 Hz] (r2 =0.81, p<0.001, Fig. 7D).  
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Notably, the above spectral analyses were based on temporal windowing 

using a 1 s Hanning taper. We hypothesized that the peak position of the leaked 

sub-alpha bicoherence was related to the spectral cut-off of this temporal 

windowing near 1.5 Hz. To test this, we repeated the analyses based on 2 s 

and 4 s Hanning windows (Fig. 7E). As hypothesized, the peak of leaked sub-

alpha bicoherence shifted towards lower frequencies for longer temporal 

windows. Thus, the employed windowing modulates the exact spectral profile 

of PAC that is leaked below the frequency of non-sinusoidal oscillations 
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3 From (harmonic) PAC to the wave shape of 
oscillations5 

We systematically investigated cross-frequency PAC across the human 

brain using MEG. Consistent across two independent datasets, we observed 

cortically and spectrally wide-spread PAC. However, we found no evidence for 

PAC that could be unequivocally attributed to non-harmonic coupling between 

distinct neural oscillators. Instead, the observed PAC could well be explained 

by remaining eye- and muscle artifacts, and by alpha oscillations with a non-

sinusoidal waveform shape. 

3.1 Dissociating harmonic and non-harmonic PAC 

Non-harmonic and harmonic PAC likely involve distinct underlying neuronal 

mechanisms. Therefore, it is necessary to carefully distinguish between these 

two cases in order to arrive at a correct interpretation of cross-frequency 

coupling results (Cole and Voytek, 2017). 

Non-harmonic PAC is generally thought to reflect an interaction between two 

distinct oscillatory neuronal processes in which the phase of a slower rhythm 

modulates the amplitude of a faster rhythm (Hyafil et al., 2015). Accordingly, 

non-harmonic PAC has been suggested to coordinate the activity of cell-

assemblies across different rhythmic processes, which may in turn also 

coordinate activity across different spatial distances (Hyafil et al., 2015; Jensen 

and Colgin, 2007; Lisman and Idiart, 1995; von Nicolai et al., 2014).  

Concerning harmonic coupling, little is known about its physiological basis, 

which may indeed vary for different cases. Harmonic coupling may result from 

the non-sinusoidal waveform shape of rhythmic processes, which has been 

demonstrated for various rhythms with M/EEG, ECoG and LFPs (Bartz et al., 

 

5 This chapter, up to and including section 3.4, corresponds precisely to the section with the 
title “Discussion”, and to the respective subsections with corresponding titles, in Giehl et al., 
(2021). See also footnote 1 on page 19. 
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2019; Buzsáki et al., 1985; Chacko et al., 2018; Cole et al., 2017; Cole and 

Voytek, 2017; Dellavale et al., 2020; Kuhlman, 1978; Vaz et al., 2017). Such 

non-sinusoidal waveform shapes might be caused by a single rhythmic circuit 

mechanism (Cole and Voytek, 2017; Meidahl et al., 2019; Sherman et al., 2016), 

or by simultaneous phase- and amplitude-coupling of distinct harmonically 

related oscillations.  

Our results show that the combination of three different cross-frequency 

coupling measures (bicoherence, amplitude coupling and phase coupling) 

allows to reliably distinguish harmonic and non-harmonic PAC. This approach 

well complements other methods or heuristics that can be used to dissociate 

harmonic and non-harmonic PAC. E.g. cross-frequency coupling could be 

related to neuronal spiking, PAC could be related to power, or PAC could be 

investigated between areas with distinct low- and fast oscillations (Jensen et 

al., 2016). 

Based on our approach, we characterized the nature of the observed cross-

frequency interactions between alpha and higher frequencies. We identified 

harmonic-PAC as underlying the abundant and strong local PAC observed in 

this frequency range: i.e. alpha oscillations with apparently non-sinusoidal 

waveform shapes.  

Our findings accord well with previous reports that linked phase-amplitude 

coupling to alpha harmonics. Barnett et al. (1971) observed harmonic 

bicoherence, strongest over occipital and central areas, in subjects with strong 

alpha activity. Lozano-Soldevilla (2016) reported harmonic bicoherence of 

alpha bI  frequencies in central and occipital MEG sensors. Following the 

increasing interest in cross-frequency interactions, the problem that PAC 

measures reflect harmonics has received growing attention (Aru et al., 2015; 

Chacko et al., 2018; Cole et al., 2017; Cole and Voytek, 2017; Gerber et al., 

2016; Hyafil, 2015; Jensen et al., 2016; Kramer et al., 2008; Lozano-Soldevilla 

et al., 2016; Vaz et al., 2017; Velarde et al., 2019). Our approach builds on 

previous efforts that have used bicoherence to aid the identification and 

characterization of harmonic coupling (Bartz et al., 2019; Kramer et al., 2008; 



 48 

Lozano-Soldevilla et al., 2016; Sheremet et al., 2019), and extends them by 

suggesting a pipeline to distinguish harmonic- and non-harmonic bicoherence. 

It is worth mentioning that, although we cannot entirely exclude the presence 

of any weak and potentially masked non-harmonic PAC, it is clearly no 

prominent feature in resting-state MEG data. One remaining concern might be, 

that a potentially low signal to noise ratio of the recordings might have resulted 

in limited sensitivity for the estimation of phases and amplitudes, which in turn 

might have impeded the identification of non-harmonic PAC. However, a 

previous study that used the same dataset, similar source-reconstruction and 

spectral analysis identified robust cross-area within-frequency phase- and 

amplitude coupling (Siems and Siegel, 2020). Thus, the source-reconstructed 

data likely provided adequate signal to noise ratio for valid estimates of phases 

and amplitudes.  

Here we focused on local PAC. Cross-area PAC (Chella et al., 2014; Nandi 

et al., 2019; Siebenhühner et al., 2020; van der Meij et al., 2012; von Nicolai et 

al., 2014) also needs to be carefully assessed with respect to harmonic signals. 

This is because local harmonics together with cross-area phase-coupling of the 

base-frequency may also result in measuring cross-area PAC without any 

underlying cross-area cross-frequency interaction between independent 

oscillations. 

3.2 Physiological artifacts 

Our results show that physiological artifacts such as eye-movements and 

muscle activity can cause cross-frequency coupling and need to be carefully 

distinguished from brain activity. We observed strongest muscle artifacts in 

high frequency ranges reaching down to the alpha range. Eye-movement 

artifacts were observed in the sub-alpha and sub-alpha to high-gamma range, 

which might be reflecting coupling between eye-muscle related high frequency 

activity and slow neural- or neuromuscular activity. Notably, we observed PAC 

due to these artifacts although subjects fixated continuously, the data was 

cleaned for artifacts and source-reconstruction using beamforming further 
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suppressed extracranial activity (Hipp and Siegel, 2013). This highlights the 

sensitivity of PAC measures to artifacts and the need to carefully exclude 

artifacts as causes of spurious PAC. This also includes other physiological 

artifacts such as heart-activity (Shahbazi Avarvand et al., 2018), which is 

typically projected to deeper sources. 

3.3 Spectral leakage  

Our results show that spectral leakage is an important caveat when 

assessing PAC. The simulation of a noisy non-sinusoidal alpha oscillation 

revealed a wide-spread pattern of spectral leakage of bicoherence between 

frequencies that were all linked to harmonics of alpha. We identified a matching 

leakage pattern in the MEG data suggesting that also sub-alpha PAC reflects 

leakage of harmonic alpha PAC. Critically, the leakage pattern was observed 

at lower frequencies than the base-frequency of the non-sinusoidal oscillator. 

Thus, non-sinusoidal signals can not only drive PAC at higher harmonics, but, 

due to spectral leakage, can also drive spurious PAC at lower frequencies than 

the base frequency at hand. This mechanism may be particularly problematic 

for muscle artifacts and may cause spurious PAC at very low frequencies 

typically not associated with muscle artifacts (compare Figs. 1E and 1F). 

In this context, it should be noted that, while spectral leakage may be 

negligible for power, it may become particularly problematic for bicoherence 

and other cross-frequency measures. This is because, in contrast to power, 

these cross-frequency measures are sensitive to the preserved phase-

consistencies between leaked signal components. 

3.4 Spectral resolution 

In sum, our results show that alpha harmonics, leakage and residual muscle 

activity can impact broad frequency ranges. Thus, investigating only a few pre-

defined frequency bands may lead to misinterpretations of PAC results. In other 

words, a comprehensive characterization of cross-frequency coupling across a 
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broad frequency spectrum is required to unequivocally assess the nature of 

cross-frequency coupling. This in turn necessitates proper selection of spectral 

resolution.  

Vectorlength-PAC requires a broad resolution (or wide filters) to detect 

phase-amplitude coupling (Aru et al., 2015). However, as our results show, this 

low resolution potentially masks informative spectral coupling patterns such as 

harmonic structures. Along the same line, also the use of a variable frequency 

resolution across the cross-frequency spectrum may be problematic, as it may 

mask informative spectral patterns. Bicoherence allows to avoid these 

problems and to obtain high-resolution PAC spectra (Shahbazi Avarvand et al. 

2018). Our results show, how such bicoherence spectra can reveal harmonic 

coupling patterns and how they can be readily combined with cross-frequency 

amplitude- and phase-coupling spectra. 

3.5 The wave shape of oscillations 

The first study of this thesis investigated the presence and the nature of 

cross-frequency relationships in the resting human brain that can be measured 

with MEG. After considering physiological artifacts and methodological caveats, 

we concluded that the dominant neuronal cross-frequency relationships that 

we observed in this data are best characterized as harmonic PAC. That is, we 

observed cortically wide-spread non-sinusoidal activity in a wide, alpha-band-

dominated, frequency range. In other words, we observed the spectral cross-

frequency patterns of non-sinusoidal oscillations (Giehl et al., 2021) 

Going forward, the most significant neuroscientific finding of this first study 

was the abundant presence of non-sinusoidal wave shapes in the human brain. 

This observation accords well with other recent findings, which, taken together, 

indicate that non-sinusoidal wave shapes are a wide-spread, highly prevalent 

phenomenon in human EEG-, MEG- as well as ECoG (Electrocorticography) 

recordings (Giehl et al., 2021; Lozano-Soldevilla et al., 2016; Schaworonkow 

and Voytek, 2021). In the first study of this thesis, our findings were, however, 
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limited to demonstrating the presence and a temporal consistency of these 

waveforms. We did not yet analyze the shapes of these waveforms. 

From a theoretical point of view, the importance of analyzing the wave shape 

of oscillations can be understood as follows: any local oscillation has a 

frequency, an amplitude, and a wave shape. The first two aspects alone do not 

define all potentially relevant features of non-sinusoidal oscillations. The wave 

shape includes additional dimensions of information about an oscillation, 

beyond frequency and power. This additional information has generally been 

available from neurophysiological recordings, but it has only sparsely been 

investigated before (Cole and Voytek, 2017). Studying wave shapes, therefore, 

equates to studying (additional) features of brain activity that are commonly 

present in electrophysiological recordings of oscillations, but that have 

previously remained largely uninvestigated.  

Wave shapes may differ between functionally distinct brain areas and -

oscillations, due to genetic variation, in relation to brain disorders, and wave 

shapes may change dynamically due to task demands (Cole and Voytek, 2017). 

In other words: wave shapes might be physiologically and functionally relevant; 

and the wave shapes of oscillations that can be recorded non-invasively with 

MEG might reflect characteristic physiological properties of the underlying 

neural networks. Moreover, recent evidence highlighted a functional 

significance of wave shapes in Parkinson’s disease (Cole et al., 2017; Jackson 

et al., 2019) and a changed sensorimotor waveform in schizophrenic patients 

(Bartz et al., 2019).  

Together, theoretical considerations and initial findings that non-sinusoidal 

wave shapes are not only a prevalent phenomenon, but also functionally 

significant, point to wave shapes as relevant and promising for basic and 

applied neuroscientific research in the future. Investigating the wave shapes of 

the non-sinusoidal alpha oscillations that we found in the first study was, thus, 

a logical next step. We aimed to answer the question, if the shape of these 

neuronal waveforms, as they can be observed in large-scale non-invasive 

resting-state MEG data, might potentially be physiologically or functionally 

relevant. 
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The most well-known example of a characteristic neural waveform in the 

human cortex may be the prominent alpha frequency range “mu” rhythm 

(Gastaut et al., 1952; Pineda, 2005; Tiihonen et al., 1989). This arch-shaped 

rhythm can be observed over the sensorimotor cortex, and its salient wave 

shape distinguishes it from the more sinusoidal occipital alpha rhythm 

(Kuhlman, 1978). Together with a third temporal “tau” rhythm, there are at least 

three functionally distinct alpha oscillations in the human cortex (Klimesch, 

1999; Lehtelä et al., 1997; Niedermeyer, 1991, 1990; Tenke and Kayser, 2005). 

The actual number of distinct alpha oscillations may, however, currently still be 

unknown (Hari et al., 1997). 

These three well-described different alpha oscillations have originally been 

distinguished based on their distinct responses to different tasks (Feshchenko 

et al., 2001; Klimesch, 1999; Tenke and Kayser, 2005; Tiihonen et al., 1991). 

If the wave shape of non-invasively recorded large-scale oscillations were to 

be functionally relevant, we would expect that functionally distinct rhythms 

could also be dissociated based on their wave shape – independent of task 

demands. The seconds study of this thesis aimed to address the question. 

Any potential differences between independent waveforms, as well as any 

dynamic changes of wave shapes over time, can, however, only be studied to 

the extent to which their characteristic features can be measured and 

statistically represented. The methodology of wave-shape analysis was, 

therefore, a limiting factor for studying the wave shape of oscillations. 

3.6 Current limitations of wave-shape analysis 

The spectral analysis of non-sinusoidal wave shapes of oscillations has 

previously been suspected to be infeasible: a single narrow frequency band 

filter artificially imposes a quasi-sinusoidal wave shape, which effectively 

erases any wave-shape information. Broadband frequency analysis, in contrast, 

practically doesn’t permit the study of any one specific oscillation in isolation 

from other activity that is present concurrently. For these reasons, the study of 

wave shapes in the frequency domain is impossible with the use of a single 
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Fourier-based frequency band (Cole and Voytek, 2019). In consequence, wave 

shape has predominantly been studied in the time-domain. 

To study wave shape in the time-domain, a select number of wave-shape 

characteristics are defined, and these features are evaluated on individual 

oscillation cycles that can be tracked in the time domain (e.g. Cole and Voytek, 

2019). These select wave-shape features, however, do not describe wave 

shapes comprehensively, and additional functionally relevant wave-shape 

features may be missed (Cole and Voytek, 2017). Moreover, to assess the 

shape of waveform cycles in the time domain, an excellent signal-to-noise ratio 

is necessary. Because of this signal-to-noise limitation, wave-shape analysis in 

the time domain is generally limited to the most dominant rhythms, and non-

invasive recordings such as MEEG and EEG are largely excluded. 

Wave shapes cannot be analyzed in the frequency domain with the use of a 

single frequency band. However, wave shapes can be analyzed in the 

frequency domain by investigating the relationships between different 

frequency bands. That is, by evaluating the cross-frequency patterns that are 

associated with non-sinusoidal wave shapes. In this way, the most commonly 

used wave-shape features that were originally defined in the time-domain, have 

recently been evaluated in the frequency domain (Bartz et al., 2019): it was 

demonstrated that bicoherence, a measure that captures stable phase 

relationships between different frequencies, is directly related to the wave-

shape features “peak-trough symmetry” and “rise-decay symmetry”. In other 

words, bicoherence is directly related to the two most prominently investigated 

wave-shape features: the relationship between the width of the peaks of a 

waveform relative to the width of its troughs (the “peak-trough symmetry”), and 

the relationship between the steepness of the rising phase of a waveform and 

the steepness of its decay phases (the “rise-decay symmetry”). Importantly, 

bicoherence was shown to be particularly robust in the presence of noise, 

indicating a clear advantage of the frequency-domain approach, when 

compared to time-domain based methods (Bartz et al., 2019). Other recent 

studies have, as well, already evaluated waveform features in the frequency 

domain by exploiting the cross-frequency relationship between different 
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frequency bands (Alian et al., 2022; Krishnakumaran et al., 2022; Milkovich et 

al., 2022).  

What remained missing, however, was a spectral analysis method that fulfills 

both of two fundamental requirements: robustness in the presence of noise and 

overlapping neural activity; and thoroughly capturing all potentially relevant 

wave-shape properties. The second study of this thesis, therefore, used a novel 

wave-shape analysis method that fulfills both fundamental requirements.  
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4 Fourier-based waveform analysis dissociates 
human cortical alpha rhythms 

4.1 Scientific questions and aims 

We investigated how many, and which alpha oscillations may be dissociable 

in MEG resting-state recordings, solely based on their wave shape. If alpha 

oscillation waveforms that correspond to the three established alpha 

oscillations would be dissociable in MEG resting-state recordings, this could 

indicate that physiologically relevant wave-shape features may be assessed 

based on non-invasive data. The presence of more than three distinguishable 

wave shapes might indicate the presence of additional functionally distinct 

alpha oscillations, which could contribute to a more fine-grained understanding 

of the different neural oscillations that jointly inhabit the alpha-frequency range. 

To date, the wave shape of neuronal oscillations has only been studied 

sparsely (Cole and Voytek, 2017), which may largely be a consequence of the 

current limitations of waveform-analysis methods. Currently available wave-

shape analysis methods for neuronal data assess a select number of wave-

shape characteristics; they do not to capture all potentially relevant wave-

shape features (Cole and Voytek, 2017). In addition, the most common 

approach to analyze wave shapes is to assess wave shapes in the time domain, 

with inherently associated limitations regarding the signal-to-noise ratio (Bartz 

et al., 2019). This limitation is largely rendering systematic wave-shape 

analysis in non-invasive data impossible, other than, perhaps, for the very most 

prominent rhythms. 

To avoid these limitations for the present study, we developed a novel wave-

shape analysis method that assesses all potentially relevant wave-shape 

features and that is highly resistant to noise. This method assesses wave 

shape in the frequency domain, by exploiting the intimate relationship that 

exists between the observable wave shape in the time domain and the cross-
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frequency patterns that define a periodic non-sinusoidal wave shape from the 

spectral perspective. 

This novel waveform analysis approach permits the detailed reconstruction 

of a typical wave shape in the time-domain. Therefore, it is also possible to 

analyze established waveform features such as peak-trough- and rise-decay 

symmetries (e.g. Cole and Voytek, 2019): these time-domain-defined wave-

shape features can be assessed directly on the detailed waveform 

reconstructions. To demonstrate the practicability of this approach, we used 

this additional approach to distinguish alpha waveforms based on peak-trough 

and rise-decay symmetry, besides using the complete set of waveform features 

as they are defined by the Fourier-based waveform analysis. In this way, the 

signal-to-noise advantages of our novel frequency-domain-based wave-shape 

analysis method can be combined with the freedom to investigate specific, 

previously defined wave-shape features.  

4.2 Materials and methods 

4.2.1 MEG recording & preprocessing 

We used MEG recordings from the Human Connectome Project (Van Essen 

et al., 2013). The first two 6-minute resting-state sessions were available for 

n=89 subjects. Subjects were in supine position and fixating on a red fixation 

cross on a dark background during the recording.  

The data was band pass filtered between 0.1 and 400 Hz, and notch filters 

were applied at 60±1 Hz and at the higher harmonics. Temporal segments with 

prominent artifacts were removed as defined in the “baddata” HCP pipeline. 

Muscle-, eye- and heart-related artifact components were identified by visual 

inspection and subsequently removed. 

T1 weighted MRIs were used to warp the individual subject space onto 

common space for the construction of individual source models. We used the 

resulting transformation matrices that were available in the data set to warp 

individual subject space onto a source model with 457 source positions (Hipp 
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and Siegel, 2015). Source-level activity was estimated using linearly 

constrained minimum variance (LCMV) beamforming (Van Veen et al., 1997). 

To compute bicoherence for the detection of ROIs with alpha waveform 

stability peaks, we used a frequency analysis with Hanning windowed FFT on 

1-second-long segments of data. Windows were centered at intervals of 0.5 

seconds, and zero-padded to a length of 2 seconds, which resulted in 

frequency bins that were spaced at 0.5 Hz intervals. 

To extract most wave shape parameters, we used a frequency analysis with 

Hanning windowed FFT on 1-second-long segments of data, spaced at 

intervals of 0.125 seconds. The windows were padded to a length of 10 

seconds, which resulted in frequency bins that were spaced at 0.1 Hz intervals.  

The set-up and recording is described in detail in (Van Essen et al., 2013) 

and 

http://www.humanconnectome.org/storage/app/media/documentation/s1200/

HCP_S1200_Release_Reference_Manual.pdf. 

4.2.2 Bicoherence 

Bicoherence was computed for each of the two resting state recording 

sessions in every subject according to the following formula: 

d(&1, &$) =
J'K'((%)K'((()K'∗((%G(()	L
J'	MK'((%)K'((()K'∗((%G(()M	L

=
〈+*%(,)+*((,)+*+(,)@,(!*%

(')/!*((')0!*+('))〉
〈P+*%(,)+*((,)+*+(,)@,(!*%(')/!*((')0!*+('))P〉

 

(Equation 1) 

@,(&) represents the complex time-frequency transformation at frequency f 

and time t. <, …	> indicates the temporal average, which was taken over the 

entire recording session of 6 minutes. 6(1(7) is the amplitude time-series at 

frequency &1 and :(1(7) the corresponding phase time series. The numerator 

is the bispectrum and the denominator the normalization factor according to 

Hagihira et al. (2001). For estimates of coupling strength or “wave-shape 

consistency”, we used the absolute value of bicoherence. 
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For the localization of group-level spatial peaks of bicoherence, we 

normalized the absolute values of bicoherence to standard Z-scores against 

the distribution of 100 circularly time-shifted surrogates. To compute the 

absolute value of bicoherence for a surrogate, the time-series of &2 (&2 = &1 +

&$) was shifted relative to &1 and &$. 

4.2.3 ROI selection 

To estimate alpha wave-shape consistency on the group level, we averaged 

the bicoherence Z-score values from the first recording session in the extended 

alpha frequency range: between f1 frequencies of 7 to 14 Hz, inclusive, and f2 

frequencies up to 1.5 times the respective f1 frequency. The average over this 

frequency range was calculated per subject and at each cortical source location 

and then averaged over subjects. This resulted in a cortical distribution of the 

coupling strength between the fundamental alpha frequency and its first higher 

harmonic, which we used as a measure of alpha-frequency wave-shape 

stability.  

The resulting cortical distribution was used to locate spatial peaks of alpha 

waveform shape stability. We selected spatial peaks from the subject average 

that exceeded an average bicoherence Z-score cutoff of 0.8 and that were not 

located on the caudal surface of the brain. For the two unilateral non-midline 

peaks (on the right superior parietal cortex and the left occipital cortex, 

respectively), the homologue locations on the other hemisphere were included, 

additionally.  

For each single subject, we allowed a minimal variance of the individual 

source locations that were used for the respective ROI: we selected the source 

with the strongest individual alpha-range bicoherence from the source 

matching the subject-average peak location, or one of the adjacent source 

locations. Adjacent source locations that would be directly neighboring possible 

neighbors of a different ROI location were not selected. 
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4.2.4 Fourier series waveform analysis 

The parameters characterizing waveform shape can be defined in the form 

of a Fourier series (see also Figure 7): 

e(7) = ∑ 6B ∙ cos(g ∙ 2h&17 + iQ)4
BR1   (Equation 2) 

with 61 = 1 and i1 = 0. 

S(t) represents a periodic waveform in the time domain (see Figure 7, 

middle). As a Fourier series, a periodic wave shape can be defined by three 

types of parameters: the first parameter, &1, is the fundamental frequency of the 

waveform. 6B  represents the amplitude of the phase-coupled g-th harmonic 

relative to the amplitude of the fundamental frequency, with 61 = 1, and iQ 

represents the relative phase between the fundamental frequency and the 

coupled g-th harmonics, with i1 = 0.  

In a waveform that is stable over time, the relationship between all harmonic 

waveform components is constant, or stationary, over time. Due to this 

stationarity of the cross-frequency relationship between the harmonic 

waveform components, it is possible to estimate the Fourier series waveform 

parameters by using adapted bicoherence-based measures. Below, we 

describe how we retrieved these three different waveform parameters from ROI 

source time courses with stationary alpha waveforms.  

4.2.4.1 Fundamental alpha frequency (&1)  and the number of coupled 

harmonics (g) 

To obtain the fundamental alpha frequency (&1) for each subject, at every 

ROI and in each of the two sessions, we first located the individual bicoherence 

alpha peaks in the two-dimensional bicoherence cross-frequency spectrum 

(d(&1, &$) ). For peak detection, &$  frequencies up to 80 Hz, as well as &$ -

frequency bins reaching 1 Hz below each &1  frequency were included. 

Bicoherence cross-frequency spectra had been computed with bin spacings of 

0.5 Hz. To improve the spectral precision of the detected fundamental and 

harmonic bicoherence peak frequencies, we first interpolated the absolute 
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values of the individual bicoherence cross-frequency spectra using splines to 

obtain bicoherence estimates at intervals of 0.1 Hz. Then, we averaged over 

the &$ -frequency axis in the bicoherence cross-frequency spectrum and we 

located the maximum peak frequency between &1 frequencies in the extended 

alpha range from 7 to 14 Hz.  

To define the harmonics that were coupled to this &1 frequency, we used the 

column of the bicoherence cross-frequency spectrum that corresponded to this 

&1 frequency. We located the peak &$-frequencies in this column. For a non-

sinusoidal alpha oscillation, we expected consecutive alpha-harmonic &$ -

frequency peaks to be located at integer multiples of the alpha &1 frequency. 

The significance of each &$ peak was judged based on a significance mask of 

the entire cross-spectrum of the respective ROI at p<= 0.05, which was 

corrected for multiple comparisons using false-discovery-rate correction 

(Benjamini and Hochberg, 1995). Any consecutive significant harmonic (&$-) 

frequency bicoherence peaks that were located within &$-frequency ranges of 

&1 ∙ (g ± 0.4)  were then defined as the coupled harmonics. The number of 

significantly coupled harmonics corresponded to the number of these k 

significant consecutive harmonic peaks. 

All subsequent analyses below were performed using the frequency analysis 

with estimates at every 0.125 seconds and 0.1 Hz, unless specified otherwise. 

4.2.4.2 Relative harmonic phase iB 

We reconstructed the pairwise relative harmonic phases ( iB ) from 

bicoherence phase angles. We defined i1 = 0  and the relative harmonic 

phases iQ for coupled harmonics k>1 were reconstructed as the cumulative 

sum over the harmonic bicoherence phases: 

iQ = ∢8(!-∙∑ ∢U((%,4∙(%)10%"2% )  (Equation 3) 

∢  denotes the angle (i.e., the argument) and ∢B denotes the angle of 

bicoherence. This formula exploits a direct mathematical relationship between 

the phase of the harmonic bicoherence estimates and the pairwise relative 

harmonic phases that we needed to obtain; this formula is valid if and only if 
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harmonic coupling has already been confirmed (see Appendix A). We used this 

formula to obtain the pairwise relative phase between the gth harmonic and the 

fundamental alpha frequency &1 for all significant higher harmonics. 

We further ensured that these alpha harmonic bicoherence peaks indeed 

reflected harmonic coupling and could not be due to phase-amplitude coupling 

as follows. The presence of the first three or more consecutive harmonic 

bicoherence peaks indicates harmonic coupling. In the case of less than the 

first three harmonic bicoherence peaks, the first peak should be substantially 

stronger than a potential second peak for an unequivocal decision (Giehl et al., 

2021). We checked if there were any cases with two alpha-harmonic 

bicoherence peaks, where the first harmonic peak was substantially weaker 

than the second peak. 

4.2.4.3 Relative harmonic amplitude 

To estimate the relative harmonic amplitude, we used the bispectrum with a 

custom-designed normalization factor. This normalization factor was designed 

specifically to retrieve the relative harmonic amplitudes from the bispectrum. 

The relative amplitude between the first harmonic (k=1) and itself was 

defined as kVI = 1. Estimates of the relative harmonic amplitudes kW for higher 

harmonics (k>1) were reconstructed as: 

kW =
〈+*%(,)+(10%)∙*%(,)+1*%(,)@,(!*%(')/!(10%)∙*%(')0!1∙*%('))〉
〈+*%(,)+(10%)∙*%(,)+*%(,)@,(!*%

(')/!(10%)∙*%(')0!1∙*%('))〉
 (Equation 4) 

The dividend of Equation 4 is the bispectrum between a fundamental 

frequency &1  and integer multiples of this fundamental frequency and the 

divisor is the custom-designed normalization factor. 6B∙(1(7)  represents the 

amplitude time course, :B∙(1(7)  the phase time course of the g th alpha 

harmonic frequency, and 〈	〉 denotes the average over time. Equation 4 is valid 

if and only if there is pairwise cross-frequency phase-coupling between all 

possible pairs of &1 ,		&B!1 , and &B ; which is the case for signals with higher 

harmonics (Appendix B). The obtained measure kW is, in theory, a real number. 

Numerically and in a realistic setting, it is a complex number with a phase angle 
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close to zero. We used real(kW) as the measure for the relative harmonic 

amplitude.  

To confirm a distribution of ∢kW close to 0° phase angle, we calculated the 

circular variance over the phase angles of all estimates of ∢kW. We defined 

circular variance as:  

1Q_:-X:(r) = s[|r − s[r]|]$ (Equation 5) 

where r = 18-∢Y4 and ∢kW is the cosine phase angle of kW. 

To compute 1Q_:-X:(r) , we used the following computational form of 

Equation 5: 

1Q_:-X:(r) = s[rr∗] − s[r∗]s[r] (See Appendix C for the derivation of the 

computational form). 

Here,  s[	] indicates the expected value, |	| the absolute value, ∢ the cosine 

phase angle and r∗  the complex conjugate of r . Equation 5 computes the 

distribution’s average squared distance from the mean, fulfilling the definition 

of variance. For inputs in the form of r = 18-), 1Q_:-X:(r) ranges between 0 if 

all phases : are equal, and 1 for a uniform distribution of phases (Fisher, 1993). 

Equation 5 makes no assumptions about an underlying distribution. 

Any estimates with an absolute phase angle of |∢kW ≥
Z
2 |, as well as any 

estimates of a relative amplitude real(kW) > 	1, were excluded from further 

analyses. 

4.2.5 Coupling strength  

We used bicoherence to evaluate the temporal consistency of wave shapes, 

i.e., wave-shape stability. To evaluate the individual wave-shape stability, we 

extracted the absolute values of bicoherence at every harmonic peak for each 

subject, session, and ROI.  
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4.2.6 Handling the MEG phase-ambiguity 

The 180° phase-ambiguity in the source-reconstructed MEG data might 

induce spurious differences in the relative harmonic phases between sources. 

In other words, a difference in the relative harmonic phases between sources 

might be due to only a random 180º phase-flip of one source with respect to a 

second source; that is, if the identical waveform at one source was mirrored 

across the time axis at the second source. We used a conservative approach 

to avoid this possibility: we commonly aligned all individual wave shapes into 

only one of the two possible directions. We determined which source time-

series needed to be flipped by 180º based on the reconstructed waveforms’ 

peak-trough and rise-decay symmetries. Together, peak-trough symmetry and 

rise-decay symmetry span a centrally symmetric space that contains all wave 

shapes independent of frequency, where a sinusoidal shape would be 

represented in the center, and more asymmetric shapes represented more 

distally. To determine the peak-trough and rise-decay symmetries of the 

theta/alpha waveshapes, we first reconstructed each typical alpha wave shape 

C(7) for every subject and ROI in the time domain using Equation 1 and the 

derived wave shape parameters. We reconstructed 5 cycles of each waveform 

with 1000 equally spaced samples. Peak-trough symmetry (t7) is equal to 

Pearson’s moment coefficient of skewness (X) of the signal (Elgar, 1987) and 

it was computed on the reconstructions C(7) as follows: 

t7[(,) = X2C(7)3 =
s uGC(7) − s2C(7)3P

2
v

(2C(7)32
 

The rise-decay symmetry (_w) is equal to the negative skewness of the 

imaginary part of the Hilbert transform ℋ (Elgar, 1987) and it was computed as: 

_w[(,) = −X(yBQz(ℋ(C(7))) 

In the space spanned by t7 on the x-axis and _w on the y-axis, we located 

that axis through the origin (using an axis width of 0.2, estimated in steps of 1°) 

that intersected the least number of wave-shape estimates in the joint 

distribution of all wave-shape estimates. This axis was the axis connecting 
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through 82°-0°-262°. Waveforms with [t7, _w]	representations located to the 

bottom-right of this axis were mirrored across the temporal axis and the 

waveform parameters of the flipped version were used. In this way, we 

enforced the highest possible similarity between all waveform shapes, given 

the 180° ambiguity of MEG recordings. 

4.2.7 Waveform statistics 

4.2.7.1 Distinguishing wave shapes 

We used multivariate permutation statistics akin to nonparametric within-

subject (repeated measures) MANOVAs. Effects were evaluated using 7 

dependent variables: the fundamental alpha frequency &1 , the relative 

harmonic amplitudes 6B and relative harmonic phases iB for g ∈ {2,3,4}. 

The testing protocol was outlined as follows:  

1) We tested for significant waveform shape differences across sessions, 

separately for all 10 cortical ROI locations. Since no session difference 

was found, we kept “session” as an additional, untested factor in the 

following tests. 

2) We tested for significant hemisphere differences, separately for all 4 

pairwise ROIs. Since no significant side-difference was found, we kept 

“side” as an untested additional factor in the following tests.  

3) We performed the main test of the study, assessing waveform shape 

difference across ROIs.  

4) The main test was followed up with pairwise post-hoc tests, assessing 

differences between all possible ROI-pairs. 

5) Second-order post-hoc results characterized the wave-shape differences: 

which wave shape parameters at which higher harmonics were different. 

All the different nonparametric permutation MANOVAS followed the same 

logic:  

1) We computed F values, as for a parametric within subject ANOVA, 

separately for &1, the three 6B and for the three iB (the adaptations to 
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obtain F values for the circular iB-data is detailed further below). In this 

way, we obtained 7 separate F values, one for each of the dependent 

variables.  

2) We used 5000 permutations of randomly reassigned ROI-labels. For 

each of these respective permutations we computed 7 permutation-F 

values. Testing against the permutations, we obtained one p-value for 

each of the 7 unpermuted F values, as well as one permutation-p-value 

for each of the 5000x 7 permutation-F values.  

3) We applied Fisher’s method (Mosteller and Fisher, 1948) and derived 

one Χ$ value from the 7 p-values computed as: 

Χ$ ∼ −2~log	(t-)
*

-R1
 

and we derived 5000 permutation-Χ$ using the permutation-p-values 

4) The Χ$  value was then tested against the distribution of the 5000 

permutation-Χ$  values to obtain one p-value for each nonparametric 

permutation MANOVA. For the post-hoc pairwise MANOVAS, that is, for 

the pairwise ROI-comparisons, these p-values were corrected for 

multiple comparisons using false discovery rate correction (FDR, 

Benjamini and Hochberg, 1995).  

5) In the pairwise ROI-comparisons only, the 7 separate F- and p-values of 

each pairwise MANOVA served as the second-order post-hoc statistic to 

characterize the nature of the waveform difference. These p-values were 

all together FDR-corrected for multiple comparisons. 

To obtain ANOVA-analog F values for the circular relative harmonic phases 

iB, we transformed all i to the form r = 18-\ (with i ∈ [−h; h)).  

Using the definition of circular variance given in Equation 5, we computed 

circular sums of squares (ee:-X:) in the form of: 

ee:-X:(r) = ∑(rr∗) − ∑(])∙∑(]∗)
^  (Equation 6) 
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where r∗ denotes the complex conjugate of Z (The derivation of Equation 6 

is detailed in Appendix C). Apart from this adaptation, F values for the circular 

data were computed as for a regular parametric repeated-measures ANOVA. 

4.2.7.2 Cross-session stability 

We used Spearman correlation to correlate the fundamental alpha frequency, 

the relative harmonic amplitudes, and the bicoherence coupling strengths 

across the two recording sessions. The relative harmonic phases were 

correlated using a custom bootstrap permutation test, where the phase 

correlation (_\) between the two sessions (here A and B) was calculated as: 

_\ = _8QÅ(〈18-\5 ∙ 18!-\6〉) 

Here, i+ represents the relative harmonic coupling phase of one subject at 

one ROI and one harmonic in session A, and 〈	〉 denotes the average. 

The resulting p-values were FDR-corrected for multiple comparisons, 

separately for each waveform parameter type, and jointly over all six ROIs and 

three higher harmonics (Benjamini and Hochberg, 1995). 

4.2.7.3 Phase non-uniformities 

We tested the non-uniformity of the distributions of the reconstructed relative 

harmonic phase, and the bicoherence phase, at every ROI and higher 

harmonic up to the sixth higher harmonic. We computed the mean vector length 

(ÇÅ) over subjects at every ROI and higher harmonic: 

ÇÅ(i1…i4) = R1^∑ 8-\7^
_R1 R  

Here, s represents subjects. Significance of non-uniformity was determined 

with respect to the distribution of 1000 ÇÅ`(Y1…Y4) drawn from Y_~É([0,2h)). 

The resulting p-values were FDR-corrected (Benjamini and Hochberg, 1995).  
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4.2.8 Wave shape reconstruction 

4.2.8.1 Group-level waveform shape reconstruction 

To reconstruct the typical waveform shapes on the group level, we averaged 

the waveform-shape parameters of fundamental alpha frequency (&1 ) and 

relative harmonic amplitudes (6B ) over subjects. The group-level relative 

harmonic coupling phases (iB) were reconstructed from the subject average 

bicoherence phases. We used Equation 1 and these group-level waveform 

parameters to reconstruct the group-level typical waveform shape for every 

ROI. 

Following the results of the tests for phase non-uniformity, subject average 

waveforms were reconstructed including the waveform parameters from all g =

1…Ñ  higher harmonics. The last higher harmonic (Ñ ) to be included was 

determined as the last higher harmonic that fulfilled the following requirements: 

at least 15 observations, and rejection of phase uniformity of the bicoherence 

phases at p<0.05 after FDR correction. This resulted in using Ñ = 5 for the 

sensory-motor and the lateral parietal ROIs, Ñ = 4 for the occipital ROI and 

Ñ = 3 for the remaining ROIs. 

4.2.8.2 Single subject waveform shape reconstruction and temporal excerpts 

We reconstructed the typical alpha waveform of each ROI for two example 

subjects using Equation 1 with the respective waveform parameters. In this way, 

we obtained time-domain representations of the “typical” wave shape of these 

subjects at each ROI, as assessed by the Fourier-based waveform analysis 

method. To allow a visual comparison between these Fourier series waveform 

reconstructions and the original data, we additionally obtained corresponding 

time-domain data excerpts. We extracted one second of source reconstructed 

data from each respective ROI, centered around the time of maximum alpha 

amplitude. The time of maximum alpha amplitude was identified by repeating 

the time frequency analysis as described above, but using estimates in steps 

of 10ms, and smoothing the resulting amplitude time series of the individual 

alpha peak frequency by convolving it with a 1.5-second-long Hanning window 
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before locating the temporal maximum. The resulting excerpts were low pass 

filtered at 55 Hz using a fourth order Butterworth filter with forward and 

backward filtering. 

4.2.9 Peak-trough and rise-decay symmetry for wave-shape distinction 

We computed the peak-trough- and rise-decay symmetry for each 

individually reconstructed waveform C(7) as described in section 5.2.6, and we 

tested for waveform differences as detailed in section 5.2.7.1. using the three 

dependent variables alpha frequency &1, peak-trough symmetry t7 and rise-

decay symmetry _w. 

4.2.10 Software 

All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) 

using the Fieldtrip toolbox (Oostenveld et al., 2011) and custom software. 

4.3 Results 

We developed a novel wave-shape analysis method that we applied to 

distinguish different cortical alpha oscillation wave shapes. In the first section 

of the results, we give a conceptual introduction to the Fourier series waveform 

analysis method. Whereas the remaining sections outline the scientific results 

of this study. 

4.3.1 Fourier series waveform analysis 

In this section, we first outline, how a periodic wave shape is represented in 

the frequency domain, and we summarize which parameters characterize a 

non-sinusoidal wave shape. Then, we explain the general working principles of 

how the Fourier series waveform analysis algorithm derives these parameters 

from the frequency domain data. Last, we point out the critical advantages of 

this novel wave-shape analysis approach. 
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Figure 7. Wave shape represented as a Fourier series. 

An example waveform (middle), harmonic peaks in the frequency spectrum (left) and the corresponding 

harmonic sinusoids (right) that, in their sum, reconstruct the shape of the waveform. The formal 

representation of this sum is a Fourier series (bottom). Each of the sinusoidal harmonic waveform 

components (right) contains amplitude-, as well as phase-shift information relative to the sinusoidal 
component at the fundamental frequency of the waveform. The relative amplitudes and -phases of each 

harmonic sinusoid jointly encode the wave-shape information. The three waveform parameters of alpha 

frequency (red), relative harmonic phase (blue) and relative harmonic amplitude (purple) are color-coded. 
The color-codes correspond to the representation of these parameters in a classical Fourier series 

(bottom), which formally characterizes non-sinusoidal periodic waveforms. Thus, the sum over all 

harmonically related sinusoids (right) reconstructs the original wave shape (middle). 
 

The representation of a wave shape in the frequency domain can be 

understood as follows: a non-sinusoidal waveform in the time-domain (Figure 

7, middle) can be defined by sinusoidal components (Figure 7, right), which are 

located at integer multiples of the waveform’s fundamental frequency (Figure 

7, left). The fundamental frequency of the waveform alone can only represent 

a (quasi-)sinusoidal signal (top sinusoid in Figure 7, right), whereas the entire 

wave shape can be reconstructed as the sum over all the separate sinusoidal 

waveform components. In other words, the non-sinusoidal shape of the 

waveform is defined by the combination of all its harmonic sinusoidal 

components. Each of the separate harmonic components contains a specific 

phase-shift relative to the fundamental waveform component, and a certain 

amplitude relative to the fundamental component (blue and purple, respectively, 

in Figure 7) and, jointly with the fundamental frequency (red in Figure 7), this 

information defines the specific wave shape. Formally, the spectral 

representation of a periodic wave shape can, thus, be defined in the form of a 

discrete Fourier series (Figure 7, bottom), with the Fourier series parameters 

characterizing the wave shape. 



 70 

From the spectral perspective, the shape of a periodic waveform is, therefore, 

defined by the following three waveform parameters: 

1) The fundamental waveform frequency &1 

2) The amplitude of the higher harmonic components relative to the 

fundamental component – their constant relative harmonic amplitude 6B 

3) The phase of the higher harmonic components relative to the 

fundamental component – their constant relative harmonic phase iB 

For a theoretical periodic wave shape signal without any additional noise, 

the harmonic frequencies could be extracted from a frequency representation 

of the signal and the relative amplitude and relative phase parameters could be 

derived directly. For neuronal data, however, this approach is not feasible, as 

there will always also be noise, or other neuronal activity, in these frequency 

bands. This noise or overlapping other activity will be affecting the relevant 

amplitude and phase information. Therefore, a different approach to extract the 

waveform parameters was necessary. 

Our approach exploits a characteristic property of non-sinusoidal periodic 

wave shapes: for a particular wave shape, the fundamental waveform 

frequency, as well its characteristic relative phases and relative amplitudes, are 

constant over time, whenever the identical waveform is present. This means, 

that “relative” amplitude and “relative” phase imply a consistent cross-

frequency relationship here. In other words: the wave-shape information is 

inherently encoded in the cross-frequency relationships between the harmonic 

wave-shape components. These cross-frequency relationships are consistent 

over time if the wave shape itself is consistent over time. In contrast, there is 

no such consistent cross-frequency relationship expected between, e.g., 

different frequencies of random noise. In consequence, it is generally possible 

to derive all relevant time-domain wave-shape features from the characteristic 

cross-frequency relationships of non-sinusoidal signals.  

The bispectrum specifically captures stable phase relationships between 

different frequencies, while disregarding activity without such a relationship 

(Sigl and Chamoun, 1994) and it is particularly noise resistant (Bartz et al., 
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2019; Giehl et al., 2021). This makes the bispectrum well-suited for wave-

shape analysis. Even though the bispectrum does not readily provide all the 

relevant cross-frequency relationships in the required form, it does allow their 

reconstruction. 

Using bicoherence (the normalized bispectrum), the fundamental frequency 

(&1 ) can be located directly. The fundamental waveform frequency can be 

identified by determining the presence and spectral location of harmonic 

bicoherence peaks (Bartz et al., 2019; Giehl et al., 2021; Lozano-Soldevilla et 

al., 2016). The bispectrum does, however, not as readily provide the remaining 

Fourier series waveform parameters. As a solution to this problem, we devised 

an analytical approach that allowed us to derive these parameters: we 

reconstructed the relative harmonic phases (iB) from the bicoherence phase 

estimates of the relevant harmonic bicoherence peaks; and we derived the 

relative harmonic amplitudes 6B  by using a custom designed, bicoherence-

based normalization factor (see methods section for details). Our algorithm is 

effectively translating the relevant bispectrum estimates into the critical Fourier 

series waveform parameters. We will refer to this method below as “Fourier-

based waveform analysis” (FWA). 

FWA comes with several critical advantages: 

1) FWA evaluates the stable relationship between different spectral signal 

components. Therefore, the FWA estimates are particularly resistant to 

spectrally overlapping random noise, or to overlapping neural activity 

without such a cross-frequency relationship. This property substantially 

increases the noise-resistance of the frequency-domain approach, 

compared to the time-domain approach (Bartz et al., 2019). 

2) FWA can also be expected to segregate comparatively well between two 

spectrally overlapping non-sinusoidal oscillations that do each have a 

stable relationship between their respective harmonic signal 

components. This is the case, because FWA uses the two-dimensional 

bispectrum, which increases the overall distance between the signal 

components of spectrally overlapping non-sinusoidal oscillations, when 

compared to the one-dimensional power spectrum. A spectral distance 
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of, e.g., 1 Hz between peak frequencies translates to a spectral distance 

of 1 Hz in the power spectrum, as well as to a spectral distance of 1 Hz 

between the corresponding first harmonic bicoherence peaks. However, 

the spectral distance between the respective second (or third) harmonic 

bicoherence peaks in the two-dimensional bicoherence spectrum is 

already twice (or three times) as large. This naturally results in less 

overlap and less signal mixing between the higher harmonic 

components of different non-sinusoidal oscillations. In consequence, it 

leads to a more effective segregation, as well as to a more precise 

respective spectral localization of two spectrally overlapping oscillations, 

than could be achieved when using only the corresponding power-

spectral representations.  

3) FWA makes it possible to reconstruct a comprehensive and 

parsimonious waveform model (in the form of a Fourier series) from 

neuronal data. This approach is purely data-driven, and the full space of 

possible waveform features is accessible for statistical analysis. To our 

best knowledge, this is now possible for the very first time. 

As an additional benefit, FWA allows the computation of traditionally time-

domain based waveform parameters on FWA-based waveform reconstructions. 

This approach preserves the waveform-isolating advantages of FWA, while still 

allowing the use of specific, pre-defined waveform features. 

4.3.2 Dissociating alpha wave shapes 

We analyzed MEG resting-state data from two sessions and n=89 subjects 

of the human connectome project (HCP, (Van Essen et al., 2013)). We used 

source-reconstruction (Van Veen et al., 1997) and we focused on the alpha 

frequency range (7-14 Hz) to study cortical alpha waveform shapes. We 

located sources that were spatial peaks of alpha wave-shape stability, where 

wave-shape stability was operationalized as the bicoherence coupling strength 

between alpha and the first higher alpha harmonic. We then tested for 

differences between the wave shapes at these distinct alpha-waveform source 

locations using FWA waveform parameters. Moreover, we used the FWA 

waveform parameters to reconstruct individual- as well as subject-averaged 
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typical waveform shapes. These reconstructions were used to illustrate the 

performance of FWA, and to establish a bridge to time-domain-based wave 

shape measures. 

4.3.2.1 Detecting spatial peaks of alpha waveform shape stability 

If functionally distinct cortical alpha networks were associated with distinct 

alpha wave shapes, then these different cortical alpha networks could be 

located as distinct spatial peaks of alpha waveform shape stability. To localize 

such regions of interest (ROIs) with potentially distinct alpha wave shapes, we 

mapped the first harmonic bicoherence peak in the alpha-frequency-range 

(Figure 8A) over the brain (Figure 8B) and identified the most prominent cortical 

peak locations (Figure 8C). Alpha-waveform stability-peaks were found in 

sensory-motor, parietal, temporal, and occipital areas, as well as on the inferior 

parietal and superior parietal midlines. In occipital and lateral parietal areas, an 

evident peak in bicoherence was detected unilaterally, on the left occipital- and 

right lateral parietal cortex, respectively. For these latter unilateral peaks, we 

additionally included the respective homologue locations on the second 

hemisphere. The Z-scores of these two homologue locations differed by less 

than 0.05 to the respective peak on the opposite hemisphere.  

In this way, six alpha waveform ROIs were identified at 10 ROI locations in 

total. Four of these six ROIs were bilateral, and two were midline ROIs. These 

peak locations of waveform shape stability served as the ROIs at which we 

subsequently analyzed the alpha waveforms.  
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Figure 8. ROI selection. 

(A) Bicoherence averaged across the brain. The alpha frequency range is marked in black around the 

first alpha-harmonic bicoherence peak. (B) Cortical distribution of the averaged cross-frequency range 

marked in A; average over subjects. ROI locations are indicated (C) Difference between local- and the 
maximum neighbouring bicoherence Z-score; local Z-scores < 0.5 are masked. Values greater than 0 

indicate spatial bicoherence peaks which were used as ROI locations indicated in B. (D) Percentage of 

subjects with 1-6 consecutive significant harmonic bicoherence peaks at the different ROIs, 
corresponding to the number of coupled higher harmonics of alpha. 

 

In every subject, ROI, and session, we located the strongest fundamental 

alpha frequency, based on the corresponding bicoherence spectrum. We then 

located up to six consecutive alpha harmonic bicoherence peaks and extracted 

the corresponding waveform parameters. We found two or more harmonic 

bicoherence peaks, that is, three or more harmonic components, in more than 

50% of subjects at each of the six ROIs (Figure 8D). In the lateral parietal ROI, 

we identified three- and in the sensory-motor ROI we identified four or more 

harmonic bicoherence peaks in over 50% of subjects, in at least one of the two 

hemispheres. The lowest percentage of subjects with three consecutive 

harmonic peaks was found in the temporal ROI with 33.7%, the highest in the 

sensory-motor ROI with 85.4%. The percentage of subjects with four or more 

consecutive harmonic peaks ranged from 7.9% in the inferior parietal to 61.8% 

in the sensory-motor ROI. Due to the low percentage of subjects with four or 

more harmonic bicoherence peaks, we limited our statistical analyses of wave-

shape differences between ROIs to the first three harmonic bicoherence peaks 

and, thus, we included waveform parameters of harmonic frequencies up to 

4x&a. 
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4.3.3 Reconstructing robust harmonic amplitude- and phase 
relationships 

The FWA depends on robust estimates of the relative harmonic amplitude 

and relative harmonic phase between alpha and the higher alpha harmonics. 

These estimates were reconstructed using novel methodology that is based on 

the bispectrum. This bispectrum-based reconstruction is only valid where 

harmonic coupling has already been confirmed (see methods section for 

details). Harmonic coupling can be confirmed for significant bicoherence 

coupling peaks, when three or more consecutive harmonic bicoherence peaks 

have been detected, or when the first of two consecutive harmonic bicoherence 

peaks is not considerably weaker than the second peak, or when only the first 

harmonic bicoherence peak can be detected (Giehl et al., 2021).  

In 89 subjects and 10 cortical locations we found 22 observations (1.8% of 

observations) where the second of two alpha-harmonic bicoherence peaks was 

numerically stronger than the first, thus, not unequivocally confirming harmonic 

coupling. For the remaining 98.2% of observations harmonic coupling was 

confirmed. The mean and standard deviation (SD) of the absolute value of the 

first bicoherence peak (not z-scored) over all observations was 0.39 and 0.19, 

respectively, and the mean and SD of the absolute value of the second 

bicoherence peak was 0.29 and 0.17, respectively. The mean absolute value 

of the first bicoherence peak of the 22 unclear observations was 0.16, with a 

SD of 0.8, for the second bicoherence peak the mean absolute value was 0.19 

and SD 0.07. For the 22 unclear observations, the difference in coupling 

strength was small, and coupling overall was comparatively weak. Therefore, 

these observations were not excluded from further analyses. 

The reconstructed relative amplitude is, in theory, represented by a real 

number; that is, by a complex number with a phase angle of zero (see methods 

section). Empirically, the joint distribution of the phases of the reconstructed 

relative amplitudes, over all subjects, ROIs, harmonics, and sessions, was 

centered on phase 0º with a circular variance of 0.06. Any estimates with a 

relative amplitude phase angle equal to or greater than p/3 (absolute value), or 
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with a relative amplitude real part greater than 1 were not counted as harmonic 

peaks and these observations were excluded from further analyses. 

4.3.4 Distinct alpha waveform shapes 

We tested for wave-shape differences using custom permutation-based 

nonparametric within-subject MANOVAs. These permutation MANOVAs were 

used to test for “wave-shape difference” by combining all separate waveform 

parameters and harmonics into a single statistical test using Fisher’s method 

(Mosteller and Fisher, 1948). The p-values corresponding to these Fisher’s Χ$-

statistics were obtained using a custom permutation test. 

Before testing waveform differences between ROIs, we first tested for 

waveform differences between sessions and, where applicable, between 

hemispheres. We found no significant differences between sessions for any of 

the 10 cortical ROI locations (sensory-motor left: Χ$=7.53, p=0.89; sensory-

motor right: Χ$ =14.49, p=0.41; superior parietal: Χ$ =7.58, p=0.89; lateral 

parietal left: Χ$=14.94, p=0.38; lateral parietal right: Χ$=23.63, p=0.07; inferior 

parietal: Χ$ =15.49, p=0.35; occipital left: Χ$ =12.26, p=0.57; occipital right: 

Χ$=9.38, p = 0.80; temporal left: Χ$=11.53, p=0.64; temporal right: Χ$=13.56, 

p=0.47; not corrected for multiple comparisons). Between hemispheres, no 

significant wave-shape hemisphere difference was found for any of the 4 

bilateral ROIs (sensory-motor: Χ$=19.61, p=0.16; lateral parietal: Χ$=17.68, 

p=0.23; occipital: Χ$=12.60, p=0.55; temporal: Χ$=13.37, p=0.49; not corrected 

for multiple comparisons). 

Subsequently, we tested for waveform differences between any of the six 

ROIs. The Null-Hypothesis of no wave-shape difference was rejected 

( Χ$ =107.67, p<0.001). This main test was followed up with pairwise 

permutation-MANOVAs between all 15 pairwise combinations of ROIs (Figure 

9A). We found significant wave-shape differences between all pairs of ROIs. 
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Figure 9. Waveform parameters. 

(A) Pairwise wave-shape differences (corrected p-values) (B-E) Distributions of the different waveform 

parameters and of the coupling strength within each ROI. Medians are marked with solid lines in the violin 

plots and the dotted lines mark the 25th and 50th percentiles, respectively. Statistically significant 
distinctions are marked with solid lines above or beyond individual plots (p<0.05; corrected; permutation 

statistic). The color-coding matches the schematic representation of waveform shape parameters in 

Figure 7, except for grey: absolute value of bicoherence, a measure for waveform stability (B) 
Bicoherence alpha peak frequency (C) Reconstructed relative harmonic amplitude of the first three higher 

harmonics of alpha (D) Coupling strength / absolute value of bicoherence of the first three higher 

harmonics of alpha (E) Histograms of reconstructed relative harmonic phase of alpha, for all higher 

harmonics with ≥15 single observations, as it was used for single-subject waveform reconstructions and 

for all statistical analyses (only the first three relative harmonic phases were used for statistical analyses). 

Asterisks indicate significant phase non-uniformity (corrected for multiple comparisons). The numbers at 

the top right of the circular distributions indicate the axis labelling at the circle, representing number of 
observations. 

 

The post-hoc tests that detailed in which specific parameters the waveforms 

between the respective ROI pairs differed, were obtained from within the 

permutation-MANOVAS, as the separate p-values which originally constituted 

the combined pairwise  Χ$-statistic. These separate p-values were derived by 

computing F-statistics as for parametric within-subject ANOVAs (in the case of 

the relative coupling phase we used a closely related circular adaptation), and 
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testing against random permutations (see methods section for details). The 

results are detailed in Figure 9 B,C and E, as well as in the text below: 

The bicoherence alpha peak frequency differed significantly between the 

sensory-motor ROI and all other ROIs, as well as between the temporal ROI 

and all other ROIs (Figure 9B). There was no significant frequency difference 

between the parietal and occipital ROIs. There was only a non-significant 

tendency of a lower alpha peak frequency in the superior parietal and lateral 

parietal ROIs than in the inferior parietal and occipital ROIs.  

Besides having the significantly highest bicoherence alpha frequency 

compared to all other ROIs, the motor ROI had the highest relative amplitude 

in the 2x a harmonic (Figure 9C). In the 3x and 4x a harmonic, the relative 

amplitude of the motor ROI was significantly higher than in the inferior parietal 

and occipital ROI and significantly lower than in the superior parietal ROI. In 

the 3x a harmonic, it was significantly higher than in the temporal ROI and in 

the 4x a harmonic it was significantly lower than in the lateral parietal ROI. The 

relative coupling phase of the sensory-motor ROI differed significantly to the 

parietal inferior ROI in the 2x a harmonic and to the occipital ROI in the 3x and 

4x a harmonics (Figure 9E) 

The superior parietal ROI had the second highest mean relative amplitude 

in the 2x a harmonic behind the motor ROI; it was significantly higher than in 

all other ROIs, except for the lateral parietal ROI (Figure 9C). Its mean relative 

amplitude in the 3x a harmonic was significantly higher than in any other ROI, 

including the sensory-motor ROI. In the 4x a harmonic, it was significantly 

higher than in the motor and the inferior parietal and temporal ROIs. The 

relative coupling phase of the superior parietal ROI differed significantly to the 

occipital ROI in the 2x a harmonic and to the inferior parietal ROI in the 3x and 

4x a harmonic (Figure 9E). The only significant wave-shape differences 

between the superior parietal- and the lateral parietal ROI were found in the 3x 

a harmonic relative amplitude and 2x a harmonic relative phase. Furthermore, 

the distribution of the alpha frequency in the superior parietal ROI did not 

appear to be as clearly clustered as in the other ROIs (Figure 9B).  
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In all 3 higher harmonics, the relative harmonic amplitude of the lateral 

parietal ROI was significantly higher than that of the inferior parietal and 

occipital ROIs (Figure 3C). It was significantly lower than in the superior parietal 

ROI and significantly higher than in the temporal ROI in the 3x a harmonic. It 

was significantly lower than in the motor ROI in the 2x a harmonic, but 

significantly higher in the 4x a harmonic. The lateral parietal ROI had no 

significant coupling phase differences to any other ROIs except for the superior 

parietal ROI (Figure 9E). However, it had a non-uniform coupling phase 

distribution up to the 6x a harmonic, unlike any other ROI.  

The inferior parietal ROI had the lowest relative amplitude in all 3 higher 

harmonics, although the difference to the occipital ROI was not significant in 

the 3x and 4x a harmonic (Figure 9C). The relative coupling phase of the 

inferior parietal ROI differed significantly to the sensory-motor, superior parietal 

and temporal ROIs in the 2x a harmonic (Figure 9E). It differed significantly to 

the sensory-motor and superior parietal ROI in the 3x a harmonic and to the 

superior parietal ROI in the 4x a harmonic. The only significant wave-shape 

difference between the inferior parietal- and the occipital ROI was found in the 

2x a harmonic relative amplitude.  

The occipital ROI had the second-lowest relative amplitude above the 

inferior parietal ROI, or at least a similarly low relative amplitude, in all three 

higher harmonics (Figure 9C). In the 2x a harmonic, its relative amplitude 

differed significantly from all five other ROIs. In the 3x harmonic, it was 

significantly lower than at all other ROIs, except for the inferior parietal ROI. In 

the 4x a harmonic, it was significantly lower than at the superior- and lateral 

parietal ROIs as well as at the sensory-motor ROI. The relative coupling phase 

of the occipital ROI differed significantly to the superior parietal ROI in the 2x a 

harmonic and to the sensory-motor ROI in the 3x and 4x a harmonic (Figure 

9E). 

The temporal ROI had the significantly lowest alpha bicoherence frequency, 

compared to all other ROIs (Figure 9B). It’s relative amplitude in the 2x and 3x 

a harmonics was significantly higher than that of the inferior parietal and 
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occipital ROIs and significantly lower than that of the sensory-motor, superior- 

and lateral parietal ROIs (Figure 9C). In the 4x a harmonic it was significantly 

higher than in the inferior parietal ROI. The relative coupling phase of the 

temporal ROI in the 2x a harmonic differed significantly from the inferior parietal 

2x a harmonic coupling phase (Figure 9E). 

The coupling strength (Figure 9D), that is, the absolute value of bicoherence, 

was tested separately and was not included as a wave shape parameter. The 

sensory-motor ROI had the highest average coupling strength throughout the 

2-4x a harmonics. The second highest coupling strength in the 2x a harmonic, 

in the inferior parietal ROI, differed significantly from that in the superior parietal 

ROI and the occipital ROI. The second highest coupling strength in the 3x and 

4x a harmonic differed significantly from that in the occipital ROI in the 3x a 

harmonic. The superior parietal coupling strength was significantly higher than 

the temporal coupling strength in the 4x a harmonic. All other pairwise 

comparisons between ROIs were not significant. 

In summary, we distinguished six cortical alpha wave shapes. A bilateral 

sensory-motor waveform, a medial superior parietal waveform, a bilateral 

parietal waveform, a medial inferior parietal waveform, an occipital waveform, 

and a temporal alpha wave shape. However, the occipital and inferior parietal 

waveforms only differed in a single parameter and the alpha frequency in the 

superior parietal ROI did not appear to be as clearly clustered as in the other 

ROIs. The inter-subject variability generally appeared high in all ROIs and for 

all wave shape parameters (Figure 9 B-E). 

4.3.5 Alpha wave-shape stability 

To quantify wave-shape stability across sessions, we correlated the 

waveform parameters over the two recording sessions. We found mostly 

moderate to strong correlations in all three waveform parameters, as well as 

for coupling strength (Spearman correlations for all parameters, except for 

coupling phase where we used a custom circular correlation statistic). The 

lowest cross-session correlation was generally found in the right occipital ROI, 

whereas the lateral parietal ROIs generally tended to have the strongest or one 
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of the strongest cross-session correlations. The bicoherence alpha frequency 

was correlated significantly (p≤0.05, corrected) at all ROIs and hemispheres 

and ranged between r=0.30 at the right occipital ROI and 0.70 at the right motor 

ROI with a mean of r=0.54. The 2xa relative harmonic amplitude was correlated 

significantly at all ROIs and hemispheres and ranged between r=0.39 at the 

right occipital and r=0.75 at the right lateral parietal ROI with a mean of r=0.60. 

The 3xa relative harmonic amplitude was correlated significantly at all ROIs 

except for the right occipital and right temporal ROIs and the significant 

correlations ranged between r=0.50 at the left occipital- and r=0.77 at the 

superior parietal ROI with a mean of r=0.65. The 4xa relative harmonic 

amplitude was still correlated significantly at the sensory-motor, lateral parietal 

and the inferior parietal ROI ranging between r=0.42 at the right motor ROI and 

r=0.87 at the right lateral parietal ROI with a mean of r=0.64. The 2xa relative 

harmonic coupling phase was correlated significantly across sessions at all 

ROIs, except for the superior parietal ROI. The range of significant correlations 

was between r=0.71 at the left superior parietal ROI and r=0.88 at the inferior 

parietal ROI with a mean of r=0.78. The 3xa coupling phase was correlated 

significantly across sessions at all ROIs, ranging between r=0.51 at the left 

occipital- and r=0.75 at the left temporal ROI with a mean of r=0.65. the 4xa 

coupling phase was significantly correlated at the sensory-motor, lateral 

parietal, inferior parietal, and temporal ROIs, ranging between r=0.40 at the left 

lateral parietal- and r=0.71 at the right temporal ROI with a mean of r=0.59 and 

at the left occipital ROI significance was missed barely with r=0.50 and p=0.053. 

P-values did not decrease linearly with increasing r-values, since the available 

number of observations differed across ROIs. 

The additional parameter of bicoherence coupling strength correlated 

significantly at all ROIs at the 2xa coupling peak except for the superior parietal 

ROI. The significant correlations ranged between r=0.30 at the right occipital 

and r=0.70 at the right sensory-motor ROI with a mean of r=0.54. 3xa 

bicoherence was significantly correlated at all ROIs except the superior parietal 

ROI, and the left occipital ROI (p=0.07), ranging between r=0.39 at the right 

occipital and r=0.75 at the right lateral parietal ROI with a mean of r=0.60. 4xa 
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bicoherence was correlated significantly at the sensory-motor, superior- and 

lateral parietal ROIs, ranging between r=0.55 at the left lateral parietal- and 

r=0.77 at the superior parietal ROI with a mean of r=0.65.  

4.3.6 Reconstructing typical alpha wave shapes 

We used the FWA to reconstruct the typical waveform shapes from the 

waveform shape parameters. We used the average waveform parameters to 

reconstruct group-level typical time-domain waveform signals for each cortical 

waveform peak location; with the relative harmonic coupling phases being 

derived from the average bicoherence phases. The group-level waveform 

parameters uniquely characterized the typical local alpha waveform shapes 

(Figure 10A). In the case of the sensory-motor waveform, for example, the 

typical waveform evidently includes secondary peaks and troughs nested on 

top of the fundamental 11.2 Hz crests. The reconstructed waveform 

characterizes the observable wave shape in a purely descriptive manner. It 

does not make assumptions about underlying circuit dynamics that lead to a 

particular wave shape. In other words, the wave shape characterization does 

not answer questions such as whether this wave shape is typically caused by 

a single complex-shaped 11.1 Hz process, or by two or more independent 

processes with a harmonic frequency-relationship that are stationarily phase-

coupled.  

The relationship between the FWA wave-shape reconstruction and the 

source data time courses, centered on the time of maximum alpha amplitude, 

is displayed in Figure 10B (left and right, respectively) for two example subjects 

and all six ROIs. The individual wave shape examples were reconstructed 

using waveform parameters that were estimated over the entire first recording 

session. For all these examples, a close resemblance between the 

reconstructions and at least some of the waveform cycles of the excerpts can 

be observed. The waveform variability observable in the data excerpts can be 

caused by variability in the neural waveform generating process itself, by 

interference from other neural processes in frequency-ranges that overlap the 

frequency ranges of one or more harmonic components of the reconstructed 

waveform, or by a combination of the two. 
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All features that are observable in the FWA time-domain reconstructions are 

based in- and, thus, are directly related to the Fourier-domain based waveform 

parameters of wave frequency, relative harmonic amplitudes and relative 

harmonic coupling phases. Therefore, every observable aspect of the 

reconstructions was accessible to the statistical waveform analysis. 

 

Figure 10. Waveform shape reconstructions. 

(A) Waveform reconstructions for the six ROIs (top to bottom) using the respective averaged bicoherence 

alpha frequency, the average reconstructed relative harmonic amplitudes and the relative harmonic phase 

reconstructed from the average harmonic bicoherence phases. (B) Individual wave shape reconstructions 
of two exemplary subjects (I - blue & II - orange) at each of the six ROIs using the individual local 

bicoherence alpha frequency, the individual reconstructed relative harmonic amplitude, and the individual 

reconstructed relative harmonic phase (left). Corresponding source time-course excerpts centred around 

the time with maximum alpha amplitude, low-pass filtered at 55 Hz (right). (C) Distribution of rise-decay 
and peak-trough (a)symmetry of all reconstructed waveforms at each of the six ROIs (red) and of the 

same waveforms mirrored across the temporal axis (black; 180° phase-flip). The single subject examples 

from B are marked in blue (example subject I) and orange (example subject II). Dotted: unit circle; dark 
green lines: average peak-trough symmetry plotted against the average rise-decay symmetry; light green 

lines: group-level reconstructions’ peak-trough symmetry plotted against the rise-decay symmetry. A 
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location closer to the center of the circle corresponds to a more sinusoidal waveform, whereas a less 

centralized location corresponds to a more non-sinusoidal waveform (D) Schematic of approximate 
waveform shape based on the ratio (the angle) of peak-trough- (p.-t.-) to rise-decay symmetry (r.-d. symm.) 

(Appendix D). The least amount of single-subject, single-ROI waveform observations fell into the axis 

through 82°-0°-262° (± a parallel border region of 0.1) and time courses corresponding to waveform 

signals to the right side of this axis (wave shapes in grey, black circles in C) were mirrored along the time 
axis (wave shapes in black, red circles in C) prior to any statistical waveform analysis, to account for the 

180° phase-ambiguity. (E) Pairwise wave-shape differences based on peak-frequency, rise-decay and 

peak-trough symmetry (corrected p-values) 

4.3.7 FWA based rise-decay and peak-trough (a)symmetry 

Time-domain based waveform statistics such as the peak-trough- and rise-

decay symmetry can be estimated directly from the FWA time-domain 

reconstructions (Figure 10C). We repeated the tests for waveform shape 

differences between sessions, hemispheres and ROIs using the waveform 

frequency and reconstruction-based peak-trough and rise-decay symmetry as 

waveform parameters. These traditionally time-domain based waveform 

parameters performed nearly as well in waveform differentiation as directly 

using the native FWA parameters. No significant statistical differences were 

found only in the pairwise permutation-MANOVAs between the superior- and 

lateral parietal ROIs, and between the inferior parietal and occipital ROIs 

(Figure 10E). As with the native FWA parameters, no significant waveform 

difference was found between sessions (sensory-motor left: Χ$=2.80, p=0.84; 

sensory-motor right: Χ$ =1.62, p=0.95; superior parietal: Χ$ =4.07, p=0.67; 

lateral parietal left: Χ$=8.91, p=0.18; lateral parietal right: Χ$=2.56, p=0.84; 

inferior parietal: Χ$=5.83, p=0.45; occipital left: Χ$=9.26, p=0.16; occipital right: 

Χ$=7.10, p = 0.31; temporal left: Χ$=6.24, p=0.39; temporal right: Χ$=9.07, 

p=0.17; not corrected for multiple comparisons) or hemispheres (sensory-

motor: Χ$=-1.29, p=0.09; lateral parietal: Χ$=-0.25, p=0.65; occipital: Χ$=0.53, 

p=0.24; temporal: Χ$=1.04, p=0.13; not corrected for multiple comparisons). 

  



 85 

5 Discussion 
In the second study of this thesis, we introduced FWA, a new framework that 

characterizes the wave shape of neuronal oscillations based on their harmonic 

profile in the frequency spectrum. That is, based on the characteristic cross-

frequency features of non-sinusoidal waveforms. Using this new approach we 

show, to our knowledge for the first time, that multiple cortical alpha waveforms 

can be detected and distinguished in human resting-state MEG data. Besides 

the well-established occipital, sensory-motor and temporal alpha rhythms, we 

found evidence for the presence of additional alpha rhythms with a distinct 

waveform. The observed waveform parameters, moreover, remained stable 

across recording sessions. This suggests that they may reflect characteristics 

of underlying alpha oscillations that may be stable over time. 

5.1 Analyzing the waveform shape of oscillations in 
the frequency domain 

Our new approach to analyse wave shape distinguished neural alpha 

waveforms by extracting detailed information about the wave shape using the 

conventional Fourier spectrum. This approach critically extends previous 

approaches in characterizing wave shapes. 

The methodology of FWA critically relies on measures of the bispectrum. 

Bicoherence, one bispectral measure, was already proven a measure with high 

robustness to noise and to unrelated neural activity (Bartz et al., 2019; Giehl et 

al., 2021). It performs better than wave-shape analysis in the time domain and 

is still applicable even when the signal may not be directly observable in the 

time domain (Bartz et al., 2019). This advantage of the bispectrum can be 

easily explained as follows: the bispectrum, in difference to the more familiar 

power spectrum, specifically characterizes the dependencies between different 

spectral frequencies of a recorded signal, while disregarding unrelated 

contents of the signal (Sigl and Chamoun, 1994). As such dependencies are a 

particular feature of non-sinusoidal waveforms, the bispectrum is perfectly 
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suited to specifically extract the wave-shape information from the frequency 

spectrum. FWA capitalizes on this advantage of particular noise resistance and 

on the disregard for unrelated signal components, which may be impossible to 

achieve using time-domain based approaches. Thus, FWA allows studying the 

wave shape of comparatively weaker waveforms with a signal-to-noise ratio 

that may be insufficient to even allow any wave-shape analysis in the time 

domain. This advantage of FWA over the time-domain based approach is 

particularly relevant for the study of non-invasively recorded neuronal 

waveforms, such as MEG or EEG. 

FWA analyses wave shapes holistically. It is not limited to any pre-defined 

wave shape parameters, but it encompasses all the wave-shape information 

that can be extracted from the data. That notwithstanding, we demonstrated 

that it is still possible to obtain already well-established wave shape parameters 

such as peak-trough symmetry and rise-decay symmetry from the FWA 

waveform reconstructions. This approach to compute the traditionally time-

domain-derived measures conserves the noise-resistance of FWA and it may 

be useful for applications that rely on specific pre-defined wave-shape markers. 

We also showed that peak-trough symmetry and rise-decay symmetry, in 

conjunction with waveform frequency, were still outperformed by the native 

FWA waveform parameters in terms of their sensitivity to distinguish between 

different wave shapes. FWA can make even very detailed waveform patterns 

accessible to statistical analysis if they are present in the frequency domain 

data and sufficiently stable over the time being analyzed. 

It could be argued, that FWA, in contrast to wave-shape analysis in the time 

domain, does not allow a time-resolved wave-shape analysis. We did not apply 

a temporally resolved version of FWA in the present study. However, the 

frequency, relative harmonic phases and relative harmonic amplitudes of a 

stationary waveform are stationary over time. Therefore, these parameters 

could be obtained, and they could be analyzed in a time-resolved fashion, if 

and at the times when the presence of one non-sinusoidal alpha oscillation at 

a certain frequency has already been confirmed; and if it seems advantageous 



 87 

for a particular application or research question. FWA does not generally 

preclude a time-resolved study of wave shapes. 

5.2 Dissociating multiple alpha rhythms 

It is already well-known, that “the” alpha rhythm is not a single oscillation. 

Yet, it currently remains uncertain how many alpha rhythms there may be. To 

date, three alpha rhythms have been generally recognized in the human brain, 

that have been distinguished based on their distinct functional responses and 

cortical source locations (Feshchenko et al., 2001; Klimesch, 1999; Tenke and 

Kayser, 2005): a prominent visual alpha (Berger, 1929), the idiosyncratic motor 

mu rhythm (Gastaut et al., 1952; Pineda, 2005) and a “third”/”tau” alpha rhythm 

that is located over the temporal cortices and which is generally less easily 

observable than the other two (Niedermeyer, 1991, 1990). The distinct 

temporal, sensory-motor and occipital alpha waveforms that we observed 

appear to conform well with these previously identified alpha oscillation sources. 

5.3 Parietal alpha as a fourth alpha rhythm 

We did not only distinguish three different alpha waveforms, but six. It could 

be argued, that volume conduction and signal mixing between different non-

sinusoidal alpha sources might have resulted in some intermediary wave 

shapes to be recorded at some intermediary located source positions (Bartz et 

al., 2019), and we cannot entirely refute this argument. It is, in fact, very unlikely 

that we recorded alpha waveforms at sources without at least some alpha 

signal mixing; particularly so, because the group-level ROIs may not have been 

an optimal match for every single subject. 

In the midline superior parietal ROI, there may be considerable signal mixing 

at play. This ROI’s 2x a harmonic coupling phase and 2x a harmonic coupling 

strength were not correlated across the two recording sessions. This could 

indicate that the waveform observed at this ROI may not be representing a 

consistent alpha oscillation. This ROI was particularly similar to the lateral 
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parietal ROI, differing only in the 2x a harmonic coupling phase and 3x a 

harmonic relative amplitude. This ROI location might only have appeared as a 

separate spatial peak on the midline surface due to our use of a source model 

that is restricted to the outer cortical surface. Thus, we can currently not 

exclude, that this ROI’s relatively flatter distribution of bicoherence alpha 

frequency, in combination with its location on the midline, could indicate, that 

there may be some influence from sensory motor- or even inferior parietal alpha 

sources besides the lateral parietal alpha at this location, and that the limited 

wave-shape difference to the lateral parietal ROI might be explained by these 

effects. 

Furthermore, we can currently not exclude the possibility that the occipital 

and inferior parietal waveforms might be reflecting a single underlying alpha 

oscillation. Their waveform difference is small and was limited exclusively to 

the relative amplitude of the 2x a harmonic. As an additional difference, the 

coupling strength of the occipital ROI was significantly lower than that of the 

inferior parietal ROI (Figure 3D). This might, however, have been due to low 

signal to noise of the occipital alpha rather than to an actual difference in 

waveform stability. A dataset with stronger occipital alpha, e.g., in an eyes-

closed setting, may be useful to clarify the question, if the occipital- and a 

potentially separate inferior parietal waveform may be more clearly 

distinguishable in the presence of stronger occipital alpha oscillations. 

The third alpha waveform that did not match the known three alpha 

oscillations could, however, not be as easily refuted. The superior parietal 

waveform only differed significantly from the temporal waveform in their alpha 

bicoherence frequency and in the relative amplitude of their 2x a harmonic. 

However, unlike in the previously mentioned questionable cases, neither of 

these two ROIs was a midline ROI. Moreover, their spatial location was 

considerable further apart, and the area between the two was either dominated 

by the sensory-motor rhythm along the central sulcus, or by a parietal area with 

considerably lower bicoherence coupling strength. Thus, it appeared unlikely, 

that the lateral parietal waveform, as we observed it, could predominantly 

reflect a volume-conducted temporal alpha-frequency range oscillation, or vice-
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versa. A certain wave-shape similarity to the temporal wave shape may even 

be related to a certain functional similarity, as temporal and parietal association 

cortices. 

The superior parietal waveform could not be explained by the waveforms at 

the other remaining ROIs, either: the lateral parietal wave shape was clearly 

different from the sensory-motor waveform: the significantly different 

bicoherence alpha frequency, as well as the different dynamic of relative 

amplitude – significantly lower relative amplitude in the lateral parietal than in 

the motor ROI in the 2x a harmonic, but significantly higher in the 4x a harmonic 

(Figure 9C) – clearly distinguished it from the sensory-motor ROI. Even though 

the superior parietal ROI was located spatially in-between the inferior parietal 

(and occipital), and the sensory-motor ROIs, its bicoherence alpha frequency 

was not intermediary to that of the other two (Figure 9B). Therefore, it seems 

quite unlikely that the lateral parietal alpha waveform may have resulted as a 

linear signal mixture between occipital/inferior parietal and sensorimotor alpha.  

Even though the frequency difference between the superior parietal- and the 

inferior parietal or the occipital ROI was not significant, which might have been 

due to some extend of signal overlap, they still clearly differed in their relative 

harmonic amplitude, consistently in all higher alpha harmonics. Thus, the 

lateral parietal waveform clearly appeared to be distinct from the inferior 

parietal or occipital wave shapes.  

In addition to these respective pairwise differences, the relative harmonic 

coupling phase of the lateral parietal ROI appeared to be the most consistent 

over subjects. No other ROI had a significantly non-uniform distribution of 

coupling phase beyond the 4x a harmonic. Whereas the coupling phase 

distribution of the lateral parietal ROI was significantly non-uniform up into the 

6x a harmonic (Figure 9E). Thus, the lateral parietal alpha waveform may, in 

fact, be the alpha wave shape that was most consistent across subjects. 

Taking all these aspects together, our findings strongly indicate the presence 

of a lateral parietal alpha oscillation with a wave shape that is distinct from the 

waveforms that were associated with the three previously well-established 
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alpha frequency-range rhythms. It has already been suggested before, that 

parietal and occipital alpha oscillations might represent functionally distinct 

rhythms (Barzegaran et al., 2017; Haegens et al., 2014; Sokoliuk et al., 2019) 

and different occipitoparietal sources demonstrably show heterogeneous 

responses to visual stimulation (Nuttall et al., 2022). Our observation of a 

distinct parietal alpha waveform conforms well with these findings.  

We conclude, therefore, that there appear to be at least four distinct alpha 

oscillations in the human brain. While, currently, the question remains open 

whether we may have additionally observed a distinct inferior parietal and/or 

superior parietal waveform. If confirmed in further studies, the latter might 

represent a fifth and sixth distinct alpha rhythm. 

5.4 Waveform shape as a new window into circuit 
interactions 

Distinguishing alpha oscillations based on their wave shape could make 

them accessible as separate biomarkers. The differentiated evaluation of alpha 

oscillations may, for example, allow to pinpoint the functional differences in 

brains with a neurological or psychiatric disorder more precisely. Alpha sub-

bands have already been observed to behave in functionally different ways 

(Klimesch, 1999, 1997; Klimesch et al., 1998, 1996; Wu et al., 2015) and they 

were, moreover, related differentially to neurodevelopmental disorders 

(Debnath et al., 2020; Murias et al., 2007; Van der Lubbe et al., 2019). Such 

functionally distinct alpha sub-bands could likely be related to distinct 

underlying alpha oscillations that also produce distinct wave shapes. 

Wave shape may be a valuable biomarker. Wave shape represents new 

dimensions of information that are independent of frequency and amplitude and 

that could prove useful as complementary diagnostic markers. First notable 

findings have already been made that strongly support the relevance of 

changes in waveform parameters as physiological indicators in neurological 

and psychiatric disease, in particular regarding Parkinson’s disease (Cole et al., 
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2017; Jackson et al., 2019; O’Keeffe et al., 2020) and Schizophrenia (Bartz et 

al., 2019).  

Wave shape is, furthermore, informative towards the mechanisms that may 

generate a certain rhythm (Cole and Voytek, 2017; Krishnakumaran et al., 

2022). Therefore, wave shape could, eventually, also be informative towards 

disease-related changes in these mechanisms.  

We hope that our comprehensive and widely applicable approach to study 

wave shape in the Fourier domain will contribute to significantly widen this new 

window into the analysis of neuronal oscillations. 

5.5 Characterizing cross-frequency relationships 

Together, the two studies of this thesis mapped and characterized cortical 

cross-frequency relationships in humans, as they can be observed non-

invasively using MEG in resting-state. The dominating neuronal cross-

frequency patterns were related to non-sinusoidal oscillations in the alpha-

frequency range; and the characteristic cross-frequency features of non-

sinusoidal wave shapes may allow the dissociation between functionally 

distinct alpha oscillations based on their wave shape. 

In the first study, we developed a framework to dissociate the spectral nature 

of cross-frequency signals, and to distinguish between two fundamentally 

different cases: phase-amplitude coupling between distinct oscillations, and 

non-sinusoidal wave shapes. Using this framework, we systematically mapped 

cross-frequency relationships over the human cortex as well as in a wide range 

of frequencies. We detected no conclusive evidence for canonical phase- to 

amplitude coupling in the resting state. Instead, we observed a wide cortical 

distribution of non-sinusoidal theta/alpha oscillations. Furthermore, we showed 

how spurious phase-amplitude coupling across wide frequency ranges can be 

caused by physiological artifacts and spectral leakage. (Giehl et al., 2021) 

In the second study, we presented an analytical method to analyze non-

sinusoidal wave shapes from the spectral perspective, that is, based on their 
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inherent and characteristic cross-frequency relationships. This tool is 

particularly noise resistant, and it assesses all potentially relevant features of 

asymmetric periodic waveforms. Thus, this novel tool first permitted a 

systematic and comprehensive wave-shape analysis in non-invasive MEG data. 

Using this tool, we distinguished what are likely functionally distinct occipital-, 

parietal-, temporal- and sensorimotor resting-state alpha oscillations, solely 

based on their differentiable non-sinusoidal wave shapes. 

Cross-frequency wave-shape features reflect additional dimensions of 

information about oscillations that are complementary to the band-limited 

amplitude and phase information (Bartz et al., 2019). The analysis of cross-

frequency features may, in consequence, facilitate deeper insights into the 

mechanistic and functional properties of neuronal oscillations. However, two 

prerequisites still needed to be fulfilled for a systematic use of this additional 

information:  

1) Since canonical phase-amplitude coupling and wave-shape-related 

cross-frequency features relate to distinct generative and functional 

mechanisms, a clear distinction between the two was a prerequisite for the 

correct interpretation of the measured cross-frequency relationships.  

2) The detailed characterization of all potentially relevant wave-shape 

features was a prerequisite to exploit the full potential of this additional 

information about oscillations.  

The two studies of this thesis provided the respective methodological tools 

that, together, filled both prerequisites. 

5.6 Task modulation 

The first study of this thesis mapped cross-frequency patterns in humans in 

resting-state, and no canonical non-harmonic phase-amplitude coupling could 

be found. This result might, however, be specific to the resting state. Non-

harmonic PAC could be observable in task contexts. These findings clearly 

demonstrated, however, that great care is necessary for the interpretation of 
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observed phase-amplitude coupling. (Giehl et al., 2021)  An equal level of care 

will be necessary for the interpretation of observations of cross-frequency 

coupling in task contexts. 

In the second study of this thesis, we described a cortical map of different 

theta/alpha oscillation wave shapes in resting state. It remains to be 

investigated how wave shapes may change in the context of different tasks. 

Moreover, task contexts that are associated with higher power in the delta, beta, 

or gamma frequency bands than the resting-state might be useful to facilitate 

the study of the wave shapes in different frequency ranges beyond theta and 

alpha. 

Our novel wave-shape analysis tool descriptively characterizes the shape of 

a periodic waveform as it may typically be observed in the signal. It currently 

remains unclear, to what extend the alpha-oscillation wave shapes that we 

observed are generated by single non-sinusoidal oscillators. The observed 

wave shapes might as well be the result of two or more distinct oscillators that 

are operating at harmonically related frequencies, and which are cross-

frequency phase-phase as well as cross-frequency amplitude-amplitude 

coupled in the resting state. One approach to address this open question could 

be the experimental modulation of oscillations. An evident first candidate for 

this approach may be the sensorimotor (alpha-frequency range) mu rhythm, 

and the possible dynamics of its wave shape in relation to the well-described 

event-related mu and beta desynchronization and to the post-movement beta 

rebound.  

The sensorimotor mu and beta frequencies might be harmonically related 

frequencies (Pfurtscheller et al., 1997; Salmelin et al., 1995; Salmelin and Hari, 

1994). Therefore, these components might constitute the prominent 

sensorimotor mu wave shape as we also observed it in the second study of this 

thesis. Sensorimotor mu and beta markedly present with differing temporal 

dynamics, which seems to be speaking against a single neural generator for 

both components. While mu as well as beta are, e.g., both suppressed during 

movement, beta reemerges before mu (Leocani et al., 1997; Salmelin and Hari, 

1994) and only beta shows a post-movement rebound, that is, a clear increase 
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in power above baseline level (Cardellicchio et al., 2020; Jurkiewicz et al., 

2006). Moreover, the location of these two rhythms is only partially overlapping; 

the beta component could be attributed more likely to the motor cortex and the 

mu component more likely to the sensory cortex (Jurkiewicz et al., 2006; 

Salmelin and Hari, 1994). These observations may lead to the expectation, that 

the sensorimotor mu waveshape could, in fact, reflect cross-frequency coupling 

between independent oscillations, rather than reflect the physiological 

properties of a single non-sinusoidal oscillator. The coupling between these 

distinct sensorimotor oscillations might be dynamically adapted during sensory 

and/or motor tasks and it may facilitate sensorimotor integration.  

However, there is likely not only one type of sensorimotor beta. Besides mu-

harmonic beta, movement-related beta that was not harmonic to the mu rhythm 

has also been described, and this independent beta rhythm can even present 

with its own higher harmonic component (Pfurtscheller et al., 1997). Thus, it 

currently remains unclear, which of the different beta components is 

responsible for the observable difference in the temporal dynamics and in the 

spatial location between sensorimotor beta and sensorimotor mu: the mu-

harmonic beta, a second beta rhythm, or both. This question cannot easily be 

answered by regarding the temporal dynamics and the spatial distribution of 

only the power of mu and beta. Therefore, the question remains open, whether 

the mu waveform may reflect the physiological properties of a single neural 

generator or the cross-frequency coupling between independent oscillations. 

Wave-shape analysis in the appropriate task contexts may help to address this 

questions and related questions, by dissociating the involved rhythms and their 

dynamics more clearly, based on their wave shapes or harmonic coupling 

profiles in addition to power. 

5.7 The healthy and the diseased brain 

Various psychiatric and neurological disorders have been associated with 

changes in neuronal oscillations (Başar, 2013; Başar and Güntekin, 2013; 

Buzsáki and Watson, 2012; Herrmann and Demiralp, 2005; Mathalon and 
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Sohal, 2015; Vinogradov and Herman, 2016). Most of these observations, to 

date, relate to power- and connectivity changes within certain frequency bands. 

Cross-frequency interaction patterns of oscillations might be useful biomarkers, 

that could supplement measures of power and connectivity.  

Several differences in cross-frequency measures have been reported in 

different psychiatric populations in recent years (see Yakubov et al., 2022 for a 

review). So far, distinctions between canonical PAC and potentially wave-

shape-related cross-frequency patterns have rarely been considered. Changes 

in wave shape have been reported explicitly for Schizophrenia (Bartz et al., 

2019) and Parkinson’s disease (Cole et al., 2017; Jackson et al., 2019); in both 

cases affecting a sensorimotor rhythm. The apparent variability of wave shapes 

across subjects that we have noted in the second study of this thesis (see also 

Schaworonkow and Voytek, 2021) may suggest a close relationship of wave-

shape features to interindividual genetic variability; which might, in turn, be 

related to interindividual differences in perception, thought, and behavior and 

could, therefore, be particularly relevant for psychiatric and neurological 

disorders.  

The specific advantages of wave shape as a neural biomarker are three-fold. 

First, wave shape may be used to dissociate different rhythms within the same 

frequency band, as we have demonstrated in the second project of this thesis. 

Alterations in the alpha frequency range have been reported for several 

different neuropsychiatric conditions (Ippolito et al., 2022). However, a disease 

or disorder that affects rhythmic activity in the alpha frequency band might not 

necessarily affect all the different rhythms in this frequency band. Different 

disorders might, e.g., be differentially related to changes in different underlying 

alpha rhythms. Therefore, with the use of wave-shape analysis that can 

dissociate between different alpha rhythms, disease-related changes might be 

more precisely attributed to the respectively affected rhythm(s) within this 

frequency band. Second, time-Fourier-based wave-shape analysis is not 

artificially restricted to a single frequency band. It specifically also extracts the 

relevant information that is formally localized in different sections of the 

spectrum, that is, the higher harmonics of a wave-shape signal. Conceptually, 
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FWA may be understood as a specific filter, that extracts the wave-shape 

information from all relevant frequencies of the spectrum, while suppressing 

overlapping other activity. This second advantage is closely related to the third 

advantage: wave-shape analysis may characterize disease-related changes of 

an affected rhythm in a previously unseen level of detail, since wave-shape 

features represent additional dimensions of information beyond the 

fundamental frequency and amplitude (Bartz et al., 2019). Wave shape 

analysis additionally incorporates the spectral phase information and cross-

frequency dependencies. Therefore, wave-shape analysis may uncover 

differences that were previously not observable, and it could allow more 

specific classifications of disease related changes, that go beyond changes in 

power and connectivity. Because of these advantages, wave-shape analysis 

may substantially expand the usefulness of neural biomarkers for diagnostic 

purposes, and aid in the identification of potential novel targets for treatments.  

Wave-shape-related neural biomarkers might be useful to plan individually 

adapted therapeutic interventions, or to monitor therapeutic effects. Wave 

shape might, e.g., be relevant for neurofeedback-, or for brain-computer-

interface applications. A bispectral cross-frequency measure is already a part 

of the Bispectral Index (Kearse et al., 1994; Sigl and Chamoun, 1994), which 

is being used for monitoring and titrating general anesthesia, with several 

health benefits when compared to monitoring solely based on clinical 

parameters (Chiang et al., 2018; Oliveira et al., 2017). Moreover, it has been 

reported, that cross-frequency analysis might aid in the identification of seizure 

onset zones in extratemporal lobe epilepsy (Guirgis et al., 2015). Using Fourier-

based waveform analysis in this specific application, it might be possible that 

emergent epileptic waveform features could be detected in earlier stages, that 

is, before they become dominant enough to be visible to a clinician’s eye in the 

time domain data. If this were the case, Fourier-based waveform analysis might 

be of great aid for the identification of the epileptogenic zone for surgical 

resection, which might improve the post-surgical outcome for patients in the 

future. 
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5.8 Invasive recordings 

The first study of this thesis investigated cross-frequency relationships in 

non-invasive MEG recordings. The clear advantage of this non-invasive 

approach is the relatively complete coverage of the human cortex, which is 

impossible to achieve with invasive recordings. However, large-scale non-

invasive measures may not reflect non-harmonic PAC that could be present at 

the level of cells and circuits, and which may be detectable with invasive 

recordings  (Giehl et al., 2021). Therefore, the analysis of invasive recordings 

will be essential to gain a more complete overview of all cross-frequency 

relationships that may be relevant for brain function. 

As was already pointed out before, wave-shape features represent several 

supplementary dimensions of information beyond the frequency, power, and 

connectivity of a rhythm (Bartz et al., 2019). Characteristic wave-shape 

features may be specifically related to underlying neurophysiological and 

genetic parameters that might, in turn, be related to individual cognitive or 

emotional characteristics. Invasive data will be essential to investigate the 

potential links between the detailed wave shape parameters and the underlying 

network activity and physiology.  

A first step might be the investigation and the mapping of wave shapes that 

can be observed invasively using Electrocorticography (ECoG), or local field 

potentials (LFP); and an investigation of the relationships of these wave shapes 

to the local spiking activity. Spiking activity could be related to wave shapes in 

different ways. There might be one generic relationship between firing and 

oscillatory wave shape that could be functionally identical all over the brain. 

E.g., the likelihood of firing might be directly proportional to the amount of 

depolarization. In this way, many various firing patterns could, in theory, be 

encoded by the wave shape of an oscillation. To give only the most basic 

examples: waveforms with a flat, wide top on the depolarized pole and a short 

pointy peak on the hyperpolarized pole would be associated with relatively 

long-lasting and uniform spike trains and relatively short pauses of no firing; 

whereas single spikes at fixed intervals would be encoded by the exactly 
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reversed wave shape;  sawtooth-like waveforms would be associated with 

either a slow increase and sudden stop of firing, or with a sudden start and slow 

decrease of firing, depending on the direction of the sawtooth; many more 

complex options are equally possible, including a combination of phasic- and 

tonic firing, as well as more than one firing window within a single oscillation 

cycle. A different possible relationship between oscillatory wave shapes and 

neuronal firing could be that firing might be proportional to the instantaneous 

steepness of the depolarizing flank of a periodic wave shape. It might be the 

case that the wave shape of oscillations specifically influences the temporal 

firing patterns of neurons, or vice versa, based on one such universal 

mechanism. Conversely, the relationship between the wave shape of an 

oscillation and firing may differ depending on the cortical location and the 

underlying networks; or depending on the different types of neurons, 

neurotransmitters, and receptors involved. A long-term goal would be to clarify 

these relationships. If this goal were reached, it might eventually be possible to 

make informed inferences about firing patterns and neurophysiology, e.g., 

about the neurotransmitter levels in a particular brain area, solely based on 

non-invasive recordings of wave shapes. Besides answering basic research 

questions, this kind of information could be incredibly valuable for diagnostic as 

well as therapeutic purposes. 

5.9 Conclusion 

The cross-frequency relationships of neuronal oscillations have been 

gaining interest recently because they reflect additional dimensions of 

information in neurophysiological recordings. Evaluated with great 

methodological care, these additional dimensions of information may allow 

novel insights into the mechanistic functions of neural oscillations. 

The first study of this thesis used a systematic approach to classify human 

neuronal cross-frequency patterns that were recorded with MEG in resting-

state as wave-shape-related (Giehl et al., 2021). Moreover, this study 
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demonstrated that non-sinusoidal wave shapes are a prominent and wide-

spread phenomenon in the resting human brain. 

Based on this result, the second study of this thesis demonstrated that 

cortical non-sinusoidal alpha wave shapes can be distinguished using FWA, a 

powerful new waveform analysis method. Thus, the prominently available 

wave-shape information in human MEG data was physiologically relevant. By 

distinguishing multiple cortical alpha waveforms based on MEG resting-state 

data, we showed that different alpha rhythms in the brain can be dissociated 

based on their waveforms.  

The wave shape of neural oscillations may be closely related to the 

physiology of the underlying neural networks (Cole and Voytek, 2017; 

Krishnakumaran et al., 2022). Therefore, the wave shape of oscillations 

represents a promising set of biomarkers that might, eventually, permit 

informed inferences about underlying network physiology, -firing activity, or 

neurotransmitter dynamics; even based on non-invasive recordings.  

Wave-shape analysis is rendered widely accessible and feasible by FWA. 

Thus, FWA could complement common power-spectral methods, and be 

widely applicable in neuroscience and beyond. 
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Appendix 

Appendix A. Reconstructing the relative harmonic 
phase  

Statement: 

Equation 3 (iQ = ∢8(!-∙∑ ∢U((%,4∙(%)10%"2% ) ) reconstructs the pairwise relative 

harmonic phases iQ  as the (negative) circular cumulative sum over the 

corresponding n=1 to n=k-1 harmonic bicoherence phases ∢d(&1, A ∙ &1 ). 

Equation 3 is valid, if the bicoherence phase captures the phase-difference 

between the cross-frequency coherences of two subsequent harmonic 

waveform components. That is, if:  

∢d(&1, A ∙ &1) 	≡ 	∢(D(&1, &4G1) ∙ D(&1, &4)∗) (Equation A1) 

Here, ∗ denotes the complex conjugate, ≡ denotes an equivalence that we 

will demonstrate below, &4G1 = (A + 1) ∙ &1 , &4 = A ∙ &1 , and cross-frequency 

coherence was defined as follows: 

D(&1, A ∙ &1) = 	
〈+*%(b)∙+*"(b)∙c

,∙8*"*%∙!*%(')0!*"(')9〉
〈+*%(b)∙+*"(b)〉

  

Here, 6((t) denotes the Amplitude time course, :((7) the phase time course 

and 〈	〉  denotes the average over time.  

To conserve a relative simplicity of the notation, we will be omitting the 

normalization factors in the derivation below. 

Derivation: 

Momentarily disregarding the temporal average and considering only a 

single point in time T with àâ7, we can rewrite the right side of Equation A1 

(without the normalization factor) as: 

∢([d(&1, &4G1) ∙ [d(&1, &4)∗) =	
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= ∢#$:!(T) ∙ $:"#!(T) ∙ e
;∙8:"#!:! ∙<$!(=)><$"#!(=)9 ∙ $:!(*) ∙ $:"(*) ∙ +

>;∙8:":! ∙<$!(=)><$"(=)9,	

= ∢ä$?1(T) ∙ 	 $?1(T) ∙ $?&+1(T) ∙ $?&(T) ∙ e
@∙eA(1(B)+A(&(B)−A(&+1(B)fã 

Except for a difference in amplitude weighting, this is practically identical to 

the bispectrum without the temporal average, and considering only a single 

point in time T with àâ7.	Omitting the normalization factor of bicoherence leaves 

the bispectrum: 

∢?d(&1, &4, &4G1) =	

∢ä	$?1(T) ∙ $?&+1(T) ∙ $?&(T) ∙ e
@∙eA(1(B)+A(&(B)−A(&+1(B)fã 

This equivalence remains valid when re-including the temporal averages, if 

and only if the following three requirements are all fulfilled: there is significant 

(valid) [	dE(&1, &4G1) at some times àg  (àg	â	7) and significant [	dE(&1, &4) at the 

identical times  àg and the angle ∢2[	dE(&1, &4G1) ∙ [	dE(&1, &4)
∗3 is stationary over 

these times  àg. Any unrelated contributions to A(t) and :(7) of any &1, &4, or 

&4G1, that are not phase-locked to all, &1, &4 and &4G1, are expected to result in 

cancellation, and thus vanish, in the temporal average of bicoherence. What 

difference remains to ∢d(&1, &4), when these requirements are fulfilled, is a 

difference in amplitude weighting and –normalization, which is negligible.  

These three requirements are fulfilled for harmonic components of stationary 

non-sinusoidal periodic waveform shapes, where all three frequencies (&1, &4 

and &4G1) are, by definition, jointly harmonically coupled. Thus, it is valid to use 

Equation 3 to reconstruct relative harmonic phases iQ  of non-sinusoidal 

periodic waveforms (Q.E.D.).   
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Appendix B. Reconstructing the relative harmonic 
amplitude 

For a stationary non-sinusoidal periodic waveform, it holds that: 

6B(7) = kW ∙ 61(7) (Equation B1) 

where kW = [EAX7. Here, 61(7) is the amplitude time course of the 

fundamental harmonic; 6B(7) is the amplitude time course of the gth harmonic 

of the same waveform; and kW is the constant/stationary relative harmonic 

amplitude of the gth harmonic in relation to the fundamental (g = 1) harmonic. 

kW =
〈+%(,)+10%(,)+1(,)@,(!%(')/!10%(')0!1('))〉
〈+%(,)+10%(,)+%(,)@,(!%(')/!10%(')0!1('))〉

 (Equation 4) 

The dividend of Equation 4 is the bispectrum and the divisor is a normalization 

factor that we designed specifically for the extraction of the relative harmonic 

amplitudes kW.  

Equation 4 can be derived under the assumption that Equation B1 holds. For 

if we substitute Equation B1 into the right-hand side of Equation 4 we get: 

〈+%(,)∙Y40F+%(,)∙Y4+%(,)∙@,(!%(')/!10%(')0!1('))〉
〈+%(,)∙Y40F+%(,)∙+%(,)@,(!%(')/!10%(')0!1('))〉

= 

=Y40F∙Y4∙〈+%(,)
+@,(!%(')/!10%(')0!1('))〉

Y40F∙〈+%(,)+@,(!%(')/!10%(')0!1('))〉
= kW; Q.E.D 

It is important to note that Equation 4 is only valid where harmonic coupling 

has been established and, therefore, Equation B1 can be assumed to hold. 

Contributions to any A(t) and :(7) that are not phase-locked to the waveform 

signal are expected to result in cancellation and, thus, vanish in the average. 

For practical application, we suggest to use real(kW ) and to exclude any 

estimates with a considerable imaginary component imag(kW).  
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Appendix C. Circular variance 

Equation 6 can be derived from Equation 5 as follows. Equation 5 defines 

circular variance as: 

1Q_:-X:(r) = s(|r − s[r]|)$ = (Equation 5)	

= s(r − s[r])s(r − s[r])∗ =   

= ∑(]!h[]])(]!h[]])∗
^ = kkl$,G$(])

^    (Equation C1)	

= s(r − s[r])s(r∗ − s[r]∗) =	

= s[rr∗ − rs[r]∗ − r∗s[r] + s[r]s[r]∗] =	

= s[rr∗] − s[r]s[r]∗ − s[r∗]s[r] + s[r]s[r]∗ =	

= s[rr∗] − s[r∗]s[r] =	

= ∑(]]∗)
^ − ∑(]∗)∑(])

^( = 1Q_:-X:(r) (Equation C2) 

= 1 − |s[r]| (Fisher, 1993) 

From Equation C1 and C2 it follows that: 

ee:-X:(r) = 1Q_:-X:(r) ∙ å  

Thus: 

ee:-X:(r) = ∑(rr∗) − ∑(]∗)∑(])
^  (Equation 6; Q.E.D). 

As rr∗ = |r|$ it follows further that: 

ee:-X: =~|r|$ −
|∑r|$

å  

From relating ee:-X: to ee(ç) with: 

ee(ç) =~C$ −
(∑C)$

å  

it is trivial to conclude that additivity of variances, which is fulfilled for ee(ç), 

is also fulfilled for ee:-X:(r). ee:-X:(r) can alternatively also be computed as: 

ee:-X:(r) = å ∙ (1 − |s[r]| ) 
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Appendix D. Composition of harmonic signals in 
Figure 10D 

The non-sinusoidal signals in Figure 10D were generated according to: 

C(7) = 	∑ 1
m(10%) [EX(2hg&17 + (g − 1):_)

^
BR1  (Equation D1) 

We used &1 = 10éè, å = 10 and :_ = 0, 0.25h, 0.5h, 0.75h, h, 1.25h, 1.5h 

and 1.75h , respectively, for the 8 different plotted signals, starting at 0° in 

counterclockwise order. I defined a waveform constant ë in Equation D1 as the 

constant fulfilling t7[(,) = cos	(:_), _w[(,) = sin(:_) and ît7[(,)$ + _w[(,)
$ = 1 

for å → ∞ ; and where ∢?[(,)(&1, g ∙ &1) = −:_  for all g ∈ [1, . . , å − 1] . Here, 

t7[(,) is the peak-trough (a)symmetry and _w[(,) the rise-decay (a)symmetry 

computed over full cycles of C(7), and ∢?[(,) is the bicoherence phase angle of 

C(7) at the frequencies specified. This waveform constant was approximated 

as ë	 = 	2.34521. 

It might be that ë	 = √5.5 . To prove or disprove this was, however, far 

outside the scope of this thesis, so I did not attempt it. 


