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Abstract

This thesis is composed of two broad strands of research. The first part of the
thesis will discuss causality, with focus on a novel, measure-theoretic axiomati-
sation thereof, and the second part of the thesis will tackle some problems in
regression, with focus on kernel methods and infinite-dimensional output spaces.
Even though the two topics are very distinct in nature, we tackle them through
a shared principle that places emphasis on theory.

Causality is a topic that has recently garnered much interest among the ar-
tificial intelligence research community, but it has always been a centrepiece of
human intelligence. Humans have always perceived that, in addition to observ-
ing how events unfold around them, they can also make interventions on the
world that potentially change the course of events. In other words, interventions
on the world (not necessarily by the observers themselves) can cause events to
occur, change their chances of occurring, or prevent them from occurring. This
notion of intervention is viewed by many as the essence behind the concept of
causality, and this is the view that we take in this thesis.

Mathematical modelling aims to describe the world in an abstract way, us-
ing mathematical concepts and language. Therefore, to describe the world with
causality in mind, such that interventions can be modelled, the development of
an axiomatic mathematical framework that can encode such information is a
necessity. In this thesis, we take the view that such an axiomatic framework
has been developed and established for the concept of uncertainty (or random-
ness, or stochasticity), namely probability theory, but we argue that, despite
many competing propositions, most notably the structural causal models and
the potential outcomes frameworks, a universally agreed, axiomatic framework
that plays the role of probability spaces in the study of uncertainty does not yet
exist for the study of causality. It is clear that, since interventions on the world
do not, in general, cause the world to behave in a deterministic way, but there
is ensuing uncertainty following most interventions as to how events will sub-
sequently unfold, probability theory will play a fundamental role in any theory
of causality. Based on this standpoint, we propose an axiomatic framework of
causality, called causal spaces, that is built directly on probability spaces.

The second part of the thesis will be concerned with several aspects of kernel
regression. Regression is a concept that is ubiquitous in statistics and machine
learning, and has an endless list of applications in a wide range of domains, and
regression techniques based on kernels have been some of the most popular and
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influential in statistics and machine learning research. It is natural, then, that
it has also received much attention from theoreticians regarding its properties,
guarantees and limitations. In this thesis, we make modest contributions to
several aspects of them. First, we discuss kernel conditional mean embeddings,
which have been known to researchers for over a decade. Our contribution lies
in the fact that we view them as Bochner conditional expectations, as opposed
to operators between reproducing kernel Hilbert spaces (RKHSs) as had been
prevalently done in the literature, and hence, their estimation is precisely a
regression problem in which the output space is an RKHS. The hypothesis
space in which this regression is carried out is itself a (vector-valued) RKHS,
and such a technique is widely known as kernel ridge regression.

Next, we propose a particular form of kernel ridge regression called U-
statistic regression, and apply this and the previously studied conditional mean
embeddings to the study of conditional distributional treatment effect in the
potential outcomes framework, which is widely used in the domains of medicine
or social sciences. The thesis then takes a more theoretical turn to study
learning-theoretic and empirical process-theoretic aspects of regression with
infinite-dimensional output spaces, which can naturally occur if the outputs
are themselves functions, and of which kernel conditional mean embeddings are
a particular case. We extend the existing theory of empirical processes, an
indispensable tool in statistical learning theory but that was previously only
developed for classes of real-valued functions, to take into account classes of
(possibly infinite-dimensional) vector-valued functions; in particular, we pro-
pose bounds on the metric entropy of classes of smooth vector-valued functions.
We also take a look at the special case of vector-valued kernel ridge regression
and prove a consistency result, based not on empirical process theory, but on
the powerful integral operator techniques that are popular in the analysis of
kernel ridge regression.
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Zusammenfassung

Diese Arbeit besteht aus zwei großen Forschungssträngen. Der erste Teil der
Arbeit befasst sich mit der Kausalität, wobei der Schwerpunkt auf einer neuar-
tigen maßtheoretischen Axiomatisierung liegt, und der zweite Teil der Arbeit
befasst sich mit einigen Problemen der Regression, wobei der Schwerpunkt auf
Kernel-Methoden und unendlich-dimensionalen Ausgangsräumen liegt. Obwohl
die beiden Themen sehr unterschiedlicher Natur sind, gehen wir sie nach einem
gemeinsamen Prinzip an, das den Schwerpunkt auf die Theorie legt.

Kausalität ist ein Thema, das in jüngster Zeit in der Forschungsgemeinschaft
der künstlichen Intelligenz auf großes Interesse gestoßen ist, das aber schon
immer ein Kernstück der menschlichen Intelligenz war. Menschen haben schon
immer erkannt, dass sie nicht nur beobachten können, wie sich die Ereignisse um
sie herum entfalten, sondern dass sie auch in die Welt eingreifen können, um den
Verlauf der Ereignisse zu verändern. Mit anderen Worten, Eingriffe in die Welt
(nicht notwendigerweise durch den Beobachter selbst) können das Eintreten von
Ereignissen bewirken, die Wahrscheinlichkeit ihres Eintretens verändern oder
sie verhindern. Dieser Begriff des Eingreifens wird von vielen als der Kern des
Kausalitätskonzepts angesehen, und dies ist auch die Auffassung, die wir in
dieser Arbeit vertreten.

Die mathematische Modellierung zielt darauf ab, die Welt auf abstrakte
Weise mit Hilfe mathematischer Konzepte und Sprache zu beschreiben. Um
die Welt unter Berücksichtigung der Kausalität so zu beschreiben, dass In-
terventionen modelliert werden können, ist die Entwicklung eines axiomatis-
chen mathematischen Rahmens, der solche Informationen kodieren kann, eine
Notwendigkeit. In dieser Arbeit vertreten wir die Auffassung, dass ein solcher
axiomatischer Rahmen für das Konzept der Ungewissheit (oder des Zufalls
oder der Stochastik) entwickelt und etabliert wurde, nämlich die Wahrschein-
lichkeitstheorie. Wir argumentieren jedoch, dass es trotz vieler konkurrierender
Vorschläge, insbesondere der strukturellen Kausalmodelle und der Rahmen für
potenzielle Ergebnisse, noch keinen allgemein anerkannten axiomatischen Rah-
men für die Untersuchung der Kausalität gibt, der die Rolle der Wahrschein-
lichkeitsräume bei der Untersuchung der Ungewissheit übernimmt. Da Ein-
griffe in die Welt im Allgemeinen nicht dazu führen, dass sich die Welt auf
deterministische Weise verhält, sondern nach den meisten Eingriffen Ungewis-
sheit darüber besteht, wie sich die Ereignisse in der Folge entfalten werden,
spielt die Wahrscheinlichkeitstheorie eine grundlegende Rolle in jeder Theorie
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der Kausalität. Ausgehend von diesem Standpunkt schlagen wir einen axioma-
tischen Rahmen der Kausalität vor, der als Kausalräume bezeichnet wird und
direkt auf Wahrscheinlichkeitsräumen aufbaut.

Der zweite Teil der Arbeit befasst sich mit verschiedenen Aspekten der
Kernelregression. Regression ist ein Konzept, das in der Statistik und im
maschinellen Lernen allgegenwärtig ist und eine endlose Liste von Anwendungen
in einer Vielzahl von Bereichen hat, und Regressionstechniken, die auf Kerneln
basieren, gehören zu den beliebtesten und einflussreichsten in der Statistik-
und maschinellen Lernforschung. Es ist daher nur natürlich, dass sie auch
von Theoretikern hinsichtlich ihrer Eigenschaften, Garantien und Grenzen viel
Aufmerksamkeit erhalten haben. In dieser Arbeit leisten wir einen beschei-
denen Beitrag zu mehreren Aspekten dieser Theorien. Zunächst erörtern wir
die Kernel Conditional Mean Embeddings, die den Forschern schon seit über
einem Jahrzehnt bekannt sind. Unser Beitrag besteht darin, dass wir sie als
Bochner bedingte Erwartungen betrachten, im Gegensatz zu Operatoren zwis-
chen reproduzierenden Kernel-Hilbert-Räumen (RKHS), wie es in der Literatur
vorherrschend war, und daher ist ihre Schätzung genau ein Regressionsproblem,
bei dem der Ausgangsraum ein RKHS ist. Der Hypothesenraum, in dem diese
Regression durchgeführt wird, ist selbst ein (vektorwertiger) RKHS, und eine
solche Technik ist allgemein als Kernel-Ridge-Regression bekannt.

Als Nächstes schlagen wir eine besondere Form der Kernel-Ridge-Regression
vor, die so genannte U-Statistik-Regression, und wenden diese und die zuvor un-
tersuchten bedingten Mittelwert-Einbettungen auf die Untersuchung bedingter
Verteilungseffekte im Rahmen potenzieller Ergebnisse an, die in den Bereichen
Medizin und Sozialwissenschaften weit verbreitet sind. Die Arbeit nimmt dann
eine eher theoretische Wendung, um lerntheoretische und empirische prozessthe-
oretische Aspekte der Regression mit unendlich-dimensionalen Ausgaberäumen
zu untersuchen, was natürlich vorkommen kann, wenn die Ausgaben selbst
Funktionen sind, und von denen Kernel bedingte Mittelwert-Einbettungen ein
besonderer Fall sind. Wir erweitern die bestehende Theorie der empirischen
Prozesse, ein unverzichtbares Werkzeug in der statistischen Lerntheorie, das je-
doch bisher nur für Klassen von reellwertigen Funktionen entwickelt wurde, um
Klassen von (möglicherweise unendlich-dimensionalen) vektorwertigen Funktio-
nen zu berücksichtigen; insbesondere schlagen wir Schranken für die metrische
Entropie von Klassen glatter vektorwertiger Funktionen vor. Wir werfen auch
einen Blick auf den Spezialfall der vektorwertigen Kernel-Ridge-Regression und
beweisen ein Konsistenzergebnis, das nicht auf der empirischen Prozesstheorie,
sondern auf den leistungsstarken Integraloperatortechniken basiert, die bei der
Analyse der Kernel-Ridge-Regression beliebt sind.
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Chapter 0

Introduction

This thesis is divided into two parts that treat rather distinct subfields of ma-
chine learning research. Part I is about causality, whereby we propose a novel,
measure-theoretic framework of causality, called causal spaces. Part II is about
various aspects of arguably the most ubiquitous technique in statistics and ma-
chine learning, namely regression, with particular focus on kernel methods and
vector-valued output spaces. Even though these two topics are rather distinct
in nature, we approach both of them with an emphasis on theoretical investi-
gation. Accordingly, the Introduction is divided to reflect this structure of the
paper: in Section 0.1, we will introduce the notion of causality, and why we felt
we needed a new framework of causality in addition to the (excellent) existing
frameworks, and in Section 0.2, we will introduce and summarise our contribu-
tions in regression and kernel methods. Section 0.3 lists all the papers that this
thesis is based on, and highlights the correspondence between the chapters of
this thesis and the papers.

0.1 The Mathematisation of Causality

Causal thinking is undoubtedly one of the hallmarks of human intelligence. I
find it hard to disagree with the opening lines of the celebrated “The Book of
Why” by Judea Pearl, the pioneer of modern research on causality (Pearl and
Mackenzie, 2018), and since I find it even harder to put it in a pithier way, I
will quote it directly:

“Some tens of thousands of years ago, humans began to realize that certain
things cause other things and that tinkering with the former can change the
latter. No other species grasps this, certainly not to the extent that we do. From
this discovery came organized societies, then towns and cities, and eventually
the science- and technology-based civilization we enjoy today. All because we
asked a simple question: Why?”

Due to such importance of the notion in human cognition and behaviour,
causality has duly received a huge amount of attention from researchers in a
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CHAPTER 0. INTRODUCTION

wide range of domains, including, but not limited to, philosophy (Lewis, 2013;
Woodward, 2005; Collins et al., 2004), psychology (Waldmann, 2017), statistics
(Pearl et al., 2016; Spirtes et al., 2000) including social, biological and medical
sciences (Russo, 2010; Imbens and Rubin, 2015; Illari et al., 2011; Hernan and
Robins, 2020), mechanics and law (Beebee et al., 2009). In the recent years, the
machine learning community has also taken up a rapidly growing interest in the
subject (Peters et al., 2017; Schölkopf, 2022; Schölkopf and von Kügelgen, 2022;
Bareinboim et al., 2022), in particular in representation learning (Schölkopf
et al., 2021; Mitrovic et al., 2020; Wang and Jordan, 2021; Von Kügelgen et al.,
2021; Brehmer et al., 2022; Locatello et al., 2019) and natural language process-
ing (Jin et al., 2022; Feder et al., 2022).

On the other hand, in order to describe, analyse and make predictions about
real-world phenomena, mathematical modelling is an indispensable and universal
tool, whereby mathematical models and frameworks are developed to abstractly
represent a concept or a system. To name just a few, dynamical systems are
widely used to describe how systems evolve over time (Arrowsmith and Place,
1990), for example, the swinging of a pendulum, the flow of water down a
pipe, or the number of birds in a particular migratory bird sanctuary. These
are typically a system of differential equations (Braun and Golubitsky, 1983),
which can describe a wider range of phenomena, in which the variable with
respect to which the derivative is calculated is not necessarily time. Further,
game theoretic models are used to model strategic interactions between rational
agents (Fudenberg and Tirole, 1991), and probability theory (Çınlar, 2011) and
statistical models (Dobson, 2013) are used to model the concept of uncertainty,
randomness or stochasticity that are innate to human intelligence.

In the same vein, in order to model and analyse the notion of causality,
we need a mathematical framework that can encode causal information, and
over the years, many have been proposed. Most prominently, there are the
structural causal models (SCMs) (Pearl, 2009; Peters et al., 2017), based most
often on directed acyclic graphs (DAGs). Here, the theory of causality is built
around variables and structural equations, and probability only enters the pic-
ture through a distribution on the exogeneous variables (Janzing and Schölkopf,
2010). Efforts have been made to axiomatise causality based on this framework
(Galles and Pearl, 1998; Halpern, 2000; Ibeling and Icard, 2020), but models
based on structural equations or graphs inevitably rely on assumptions even for
the definitions themselves, such as being confined to a finite number of vari-
ables, the issue of solvability in the case of non-recursive (or cyclic) cases, that
all common causes (whether latent or observed) are modelled, or that the vari-
ables in the model do not causally affect anything outside the model. Hence,
these cannot be said to be an “axiomatic definition” in the strictest sense.

The potential outcomes framework is a major competing model, most often
used in economics, social sciences or medicine research, in which we have a
designated treatment variable, whose causal effect we are interested in, and for
each value of the treatment variable, we have a separate, potential outcome
variable (Imbens and Rubin, 2015; Hernan and Robins, 2020). There are other,
perhaps lesser-known approaches to model causality, such as that based on
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CHAPTER 0. INTRODUCTION

decision theory (Dawid, 2021; Schenone, 2018), on category theory (Jacobs et al.,
2019; Fritz et al., 2022), on an agent explicitly performing actions that transform
the state space (Cohen, 2022), or settable systems (White and Chalak, 2009).

The starting point of this thesis is the that probability theory and statistics
(Figure 1a) cannot encode the notion of causality, but will nevertheless play
a central role in any theory of causality, since only in very special cases will
interventions lead to deterministic changes to the world. Then we observe that
the forwards direction of Figure 1a, i.e. probability theory, has a set of axioms
based on measure theory that are widely accepted and used1. Hence, we argue
that it is natural to take the primitive objects of this framework as the basic
building blocks, and propose an axiomatic framework called causal spaces for
the forwards direction of Figure 1b. Despite the fact that all of the existing
mathematical frameworks of causality recognise the crucial role that probability
plays / should play in any causal theory, it is surprising that few of them try
to build directly upon the axioms of probability theory, and those that do fall
short in different ways (see below).

As such, perhaps the works that are the most relevant to this thesis are those
that have already recognised the need for an axiomatisation of causality based
on measure-theoretic probability theory. Ortega (2015) uses a particular form
of a tree to define a causal space, and in so doing, uses an alternative, Bayesian
set-up of probability theory (Jaynes, 2003). It has an obvious drawback that
it only considers countable sets of “realisations”, clearly ruling out many inter-
esting and commonly-occurring cases, and also does not seem to accommodate
cycles. Heymann et al. (2021) define the information dependency model based
on measurable spaces to encode causal information. We find this to be a highly
interesting and relevant approach, but the issue of cycles and solvability arises,
and again, only countable sets of outcomes are considered, with the authors
admitting that the results are likely not to hold with uncountable sets. More-
over, probabilities and interventions require additional work to be taken care
of. Lastly, Cabreros and Storey (2019) attempt to provide a measure-theoretic
grounding to the potential outcomes framework, but thereby confine attention
to the setting of a finite number of variables, and even restrict the random
variables to be discrete.

Causal spaces will add to probability spaces in such a way that places the
concept of manipulations at the heart; more precisely, causal spaces will encode
information about what happens to a system when one makes changes to some
parts of that system. This manipulative philosophy towards causality is shared
by many philosophers (Woodward, 2005), and is the essence behind almost
all causal frameworks proposed and adopted in the statistics/machine learning
community that we are aware of.

We show that causal spaces strictly generalise (the interventional aspects
of) existing frameworks, i.e. given any configuration of, for example, a struc-

1Kolmogorov’s axiomatisation is without doubt the standard in probability theory. How-
ever, we are aware of other, less popular frameworks, for example, one that is more amenable
to Bayesian probability (Jaynes, 2003), one based on game theory (Vovk and Shafer, 2014)
and imprecise probabilities (Walley, 1991).

3



CHAPTER 0. INTRODUCTION
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Probability Theory

Statistics

(a) Statistics (or machine learning) is an inverse problem of probability theory.

Causal Data
Generating
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Data

Causal Reasoning

Causal Discovery

(b) Causal discovery is an inverse problem of causal reasoning.

Figure 1: Data generating processes and data.

tural causal model or potential outcomes framework, we can construct a causal
space that can carry the same (interventional) information. Further, we show
that causal spaces can seamlessly support situations where existing frameworks
struggle, for example those with hidden confounders, cyclic causal relationships
or continuous-time stochastic processes.

In the development of a mathematical theory, there are always ways to anal-
yse multiple structures in a coherent manner. For example, in vector spaces,
we have the notions of subspaces, product spaces and maps between vector
spaces. After proposing causal spaces in Chapter 1, we then discuss operations
on multiple causal spaces in Chapter 2. Chapter 1 only consider the develop-
ment of single causal spaces, and omit the discussion of construction of new
causal spaces from existing ones or maps between causal spaces. The latter is
of particular interest to researchers in causality for the purpose of abstraction.
When systems, humans or animals perceive the world, they consider different
levels of detail depending on their ability to perceive and retain information
and their level of interest. It is therefore crucial to connect the mathematical
representations at varying levels of granularity in a coherent way.

In probability spaces, such notions are well-established. Product measures
give rise to independent random variables, and measurable maps and probability
kernels between probability spaces give rise to pushforward measures, which
can be interpreted as abstractions or inclusions. Based on these concepts, and
using the fact that causal spaces are a direct extension of probability spaces, we
develop the notions of product causal spaces and causal transformations.

Seminal works on maps between causal frameworks lie in the field of SCMs
(Rubenstein et al., 2017; Beckers and Halpern, 2019), where the notions of
exact transformations, uniform transformation, abstraction, strong abstraction
and constructive abstraction are proposed. Beckers et al. (2020) then relax
these to an approximate notion. Massidda et al. (2023) extended the notions
to soft interventions, and Zečević et al. (2023) to continually updated abstrac-
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tions. Causal feature learning is a closely related approach, that also aims to
learn higher level features (Chalupka et al., 2015, 2016, 2017) There are also ap-
proaches based on category theory (Rischel and Weichwald, 2021; Otsuka and
Saigo, 2022, 2023) and probabilistic logic (Ibeling and Icard, 2023), all grounded
in SCMs; see (Zennaro, 2022) for a review.

The notion of causal abstraction in the SCM framework has found applica-
tions in interpretations of neural networks (Geiger et al., 2021, 2023) as well as
solving causal inference tasks (identification, estimation and sampling) at dif-
ferent levels of granularity with neural networks (Xia and Bareinboim, 2024).
Moreover, Zennaro et al. (2023) proposed a way of learning an abstraction from
partial information about the abstraction, and demonstrates an application of
causal abstraction in the SCM framework in the context of electric vehicle bat-
tery manufacturing and Kekić et al. (2023) learn an abstraction that explains a
specific target.

0.2 Kernel Regression

Regression is perhaps the most popular and widely-used technique in all of
statistics and machine learning, and comes with a huge array of subfields ac-
cording to what models are used (e.g. linear regression (Montgomery et al.,
2021), nonparametric regression (Wasserman, 2006; Györfi et al., 2006) includ-
ing kernel ridge regression (Vovk, 2013) or neural networks (Goodfellow et al.,
2016)), or whether the researcher is interested in applications (Lewis-Beck and
Lewis-Beck, 2015) or theory (a field called statistical learning theory (Vapnik,
1998)). In this thesis, we make a modest contribution to a selection of them,
introduced in separate subsections below.

0.2.1 Kernel Conditional Mean Embeddings

The author’s research career began with an interest in kernel methods, in par-
ticular, the embedding of distributions into reproducing kernel Hilbert spaces
(RKHSs). The idea of embedding probability distributions into an RKHS, a
space associated to a positive definite kernel, has received a lot of attention
in the past decades (Berlinet and Thomas-Agnan, 2004; Smola et al., 2007),
and has found a wealth of successful applications, such as independence test-
ing (Gretton et al., 2008), two-sample testing (Gretton et al., 2012), learning
on distributions (Muandet et al., 2012; Lopez-Paz et al., 2015; Szabó et al.,
2016), goodness-of-fit testing (Chwialkowski et al., 2016; Liu et al., 2016) and
probabilistic programming (Schölkopf et al., 2015; Simon-Gabriel et al., 2016),
among others – see review (Muandet et al., 2017). It extends the idea of ker-
nelising linear methods by embedding data points into high- (and often infinite-
)dimensional RKHSs, which has been applied, for example, in ridge regression,
spectral clustering, support vector machines and principal component analysis
among others (Scholkopf and Smola, 2001; Hofmann et al., 2008; Steinwart and
Christmann, 2008).
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Conditional distributions can also be embedded into RKHSs in a similar
manner (Song et al., 2013),(Muandet et al., 2017, Chapter 4). Compared to un-
conditional distributions, conditional distributions can represent more compli-
cated relations between random variables, and so conditional mean embeddings
(CMEs) have the potential to unlock the arsenal of kernel mean embeddings
to a wider setting. Indeed, CMEs have been applied successfully to dynamical
systems (Song et al., 2009), inference on graphical models (Song et al., 2010b),
probabilistic inference via kernel sum and product rules (Song et al., 2013),
reinforcement learning (Grünewälder et al., 2012b; Nishiyama et al., 2012), ker-
nelising the Bayes rule and applying it to nonparametric state-space models
(Fukumizu et al., 2013) and causal inference (Mitrovic et al., 2018) to name a
few.

Despite such progress, the prevalent definition of the CME based on com-
posing cross-covariance operators (Song et al., 2009) relied on some stringent
assumptions, which are often violated and hinder its analysis. Klebanov et al.
(2020) recently attempted to clarify and weaken some of these assumptions, but
strong and hard-to-verify conditions still persist. Grünewälder et al. (2012a)
provided a regression interpretation, but here, only the existence of the CME is
shown, without an explicit expression. The main contribution in Chapter 3 is to
remove these stringent assumptions using a novel measure-theoretic approach
to the CME. This approach requires drastically weaker assumptions, and comes
in an explicit expression. We believe this will enable a more principled analysis
of its theoretical properties, and open doors to new application areas. We derive
an empirical estimate based on vector-valued regression along with an in-depth
theoretical analysis, including universal consistency. In particular, we relax
the assumption of Grünewälder et al. (2012a) to allow for infinite-dimensional
RKHSs.

As natural by-products, we obtain quantities that are extensions of the max-
imum mean discrepancy (MMD) and the Hilbert-Schmidt independence crite-
rion (HSIC) to the conditional setting, which we call the maximum conditional
mean discrepancy (MCMD) and the Hilbert-Schmidt conditional independence
criterion (HSCIC). We demonstrate their properties through simulation exper-
iments.

0.2.2 Conditional Distributional Treatment Effect

In Chapter 4, we discuss a particular form of treatment effect analysis in the
potential outcomes framework, namely, the conditional distributional treatment
effect, where we propose applying two types of kernel regression, the aforemen-
tioned kernel conditional mean embeddings and U-statistic regression that is
newly proposed in Chapter 4. Analysing the effect of a treatment (medical
drug, economic programme, etc.) has long been a problem of great importance,
and has attracted researchers from diverse domains, including econometrics Im-
bens and Wooldridge (2009), political sciences Künzel et al. (2019), healthcare
Foster et al. (2011) and social sciences Imbens and Rubin (2015). The field
has naturally received much attention of statisticians over the years Rosenbaum
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(2002); Rubin (2005); Imbens and Rubin (2015), and in the past few years,
the machine learning community has started applying its own armoury to this
problem.

Traditional methods for treatment effect evaluation focus on the analysis of
the average treatment effect (ATE), such as an increase or decrease in average
income, inequality or poverty, aggregated over the population. However, the
ATE is not informative about the individual responses to the intervention and
how the treatment impact varies across individuals (known as treatment effect
heterogeneity). The study of conditional average treatment effect (CATE) has
been proposed to analyse such heterogeneity in the mean treatment effect. Al-
though sufficient in many cases, the CATE is still an average. As such, it fails
to capture information about distributional aspects of the treatment beyond
the mean. A significant amount of interest exists for developing methods that
can analyse distributional treatment effects conditioned on the covariates Chang
et al. (2015); Bitler et al. (2017); Shen (2019); Chernozhukov et al. (2020); Ho-
hberg et al. (2020); Briseño Sanchez et al. (2020).

In the past few years the machine learning community has focused much
effort on models for estimating the CATE function. Some approaches include
Gaussian processes Alaa and van der Schaar (2017, 2018), Bayesian regression
trees Hill (2011); Hahn et al. (2020), random forests Wager and Athey (2018),
neural networks Johansson et al. (2016); Shalit et al. (2017); Louizos et al.
(2017); Atan et al. (2018); Shi et al. (2019), GANs Yoon et al. (2018), boosting
and adaptive regression splines Powers et al. (2018) and kernel mean embeddings
Singh et al. (2020).

Distributional extensions of the ATE have been considered by many authors.
Abadie (2002) tested the hypotheses of equality and stochastic dominance of
the marginal outcome distributions PY0

and PY1
, whereas Kim et al. (2018);

Muandet et al. (2018) focus on estimating PY0
and PY1

, or some distance be-
tween them. These works do not consider treatment effect heterogeneity. Singh
et al. (2020, Appendix C) consider CATE as well as distributional treatment
effect,and while it seems that the ideas can straightforwardly be extended to
conditional distributional treatment effect, it is not explicitly considered in the
paper.

Interest has also always existed for hypothesis tests in the context of treat-
ment effect analysis, especially in econometrics (Imbens and Wooldridge, 2009,
Sections 3.3 and 5.12). Abadie (2002) tested the equality between the marginal
distributions of Y0 and Y1, while Crump et al. (2008) tested for the equality of
E[Y1|X] and E[Y0|X]. Lee and Whang (2009); Lee (2009); Chang et al. (2015);
Shen (2019) were interested, among others, in the hypothesis of the equality of
PY1|X and PY0|X , which we consider in this thesis.

The conditional distributional treatment effect (CoDiTE) incorporates both
distributional considerations of treatment effects and treatment effect hetero-
geneity. Interest has been growing, especially in the econometrics literature,
for such analyses – indeed, Bitler et al. (2017) provided concrete evidence that
in some settings, the CATE does not suffice. Existing works that analyse the
CoDiTE can be split into three categories, depending on how distributions are
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characterised: (i) quantiles, (ii) cumulative distributional functions, and (iii)
specific distributional parameters, such as the mean, variance, skewness, etc.
In category (i), quantile regression is a powerful tool Koenker (2005); however,
in order to get a distributional picture via quantiles, one needs to estimate
a large number of quantiles, and issues of crossing quantiles arise, whereby
estimated quantiles are non-monotone. In category (ii), Chernozhukov et al.
(2013, 2020) propose splitting Y into a grid and regressing for the cumulative
distribution function at each point in the grid, but this also brings issues of non-
monotonicity of the cumulative distribution function, similar to crossing quan-
tiles. Shen (2019) estimates the cumulative distribution functions P (Y0 < y∗)
and P (Y1 < y∗) for each y∗ ∈ Y given each value of X = x by essentially apply-
ing the Nadaraya-Watson conditional U-statistic of Stute (1991) to the U-kernel
h(y) = 1(y ≤ y∗). In category (iii), generalised additive models for location,
scale and shape (GAMLSS) Stasinopoulos et al. (2017) have been applied for
CoDiTE analysis Hohberg et al. (2020); Briseño Sanchez et al. (2020), but being
a parametric model, despite its flexibility, the researcher has to choose a model
beforehand to proceed, and issues of model misspecification are unavoidable.

The contributions of Chapter 4 are as follows. Firstly, we formally define
the CoDiTE associated with a chosen distance function between distributions.
Then we use kernel conditional mean embeddings to analyse the CoDiTE associ-
ated with the maximum mean discrepancy Gretton et al. (2012). Coupled with
a statistical hypothesis test, this can determine whether there exists any effect
of the treatment, conditioned on a set of covariates. Finally, we use conditional
witness functions and U-statistic regression to investigate what kind of effect
the treatment has. We characterise distributions in two ways – first as elements
in a reproducing kernel Hilbert space via kernel conditional mean embeddings,
which, to the best of our knowledge, is a novel attempt in the treatment effect
literature, and secondly via specific distributional parameters, as in category
(iii) above. The former characterisation gives us a novel way of testing for the
equality of conditional distributions, as well as an exploratory tool for density
comparison between the groups via conditional witness functions. For the latter
characterisation, we provide, to the best of our knowledge, a novel U-statistic
regression technique by generalising kernel ridge regression, which, in contrast
to GAMLSS, is fully nonparametric. Neither characterisation requires the esti-
mation of a large number of quantities, unlike characterisations via quantiles or
cumulative distribution functions.

0.2.3 Empirical Process Theory

Thence, the thesis takes a more theoretical turn in Chapter 5, where we take a
look at two main techniques in analysing kernel ridge regression, namely empir-
ical process theory and integral operator technique.

Empirical process theory is an important branch of probability theory that
deals with the empirical measure Pn = 1

n

∑n
i=1 δXi

based on random indepen-
dent and identically distributed (i.i.d.) copies X1, ..., Xn of a random variable
X on a domain X , and stochastic processes of the form {Pnf − Pf : f ∈ F},
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where F is a class of functions X → R. Due to its very nature, the theory has
found a wealth of applications in statistics (van der Vaart and Wellner, 1996;
van de Geer, 2000; Kosorok, 2008; Shorack and Wellner, 2009; Dudley, 2014).
In particular, it has been the major tool in analysing properties of estimators
in supervised learning, both in regression and classification (Györfi et al., 2006;
Steinwart and Christmann, 2008; Shalev-Shwartz and Ben-David, 2014).

In the traditional (and still dominant) supervised learning setting, the output
space is (a subset of) R, but there is a rapidly growing literature in machine
learning and statistics on learning vector-valued functions (Micchelli and Pontil,
2005; Álvarez et al., 2012), and efforts are already under way to explore ways to
make them faster and more robust (Laforgue et al., 2020; Lambert et al., 2022;
Ahmad et al., 2022). This occurs, for example, in multi-task or multi-output
learning (Evgeniou et al., 2005; Yousefi et al., 2018; Xu et al., 2019; Reeve
and Kaban, 2020), functional response models (Morris, 2015; Kadri et al., 2016;
Brault, 2017; Saha and Palaniappan, 2020), kernel conditional mean embeddings
(Grünewälder et al., 2012a; Park and Muandet, 2020a) or structured prediction
(Ciliberto et al., 2020; Laforgue et al., 2020), among others. Very recently, there
is even an interest in the more general setting of learning mappings between two
metric spaces (Hanneke et al., 2020; Cohen and Kontorovich, 2022).

There are valuable works analysing the properties of vector-valued regressors
with specific algorithms, notably integral operator techniques in vector-valued
reproducing kernel Hilbert space regression (Caponnetto and De Vito, 2006;
Kadri et al., 2016; Singh et al., 2019; Cabannes et al., 2021), and we high-
light our own contributions in Chapter 5 too. Moreover, in the form of (local)
Rademacher complexities, empirical process theoretic techniques have been ap-
plied to cases where the output space is finite dimensional (Yousefi et al., 2018;
Li et al., 2019; Reeve and Kaban, 2020; Wu et al., 2021). However, as general
empirical process theory is developed, to the best of our knowledge, exclusively
for classes of real-valued functions, the powerful armoury of empirical process
theory has not been utilised fully to analyse vector-valued learning problems.
The aim of this Chapter is to provide some first steps towards developing a
theory of empirical processes with vector-valued functions.

An indispensable object in empirical process theory is metric entropy of
function classes2, and one of the most frequently used function classes is that

2In the usual theory of empirical processes with real-valued functions, there are two major
tools. The first is to consider the entropy with respect to the empirical measure Pn. One
usually requires this entropy to be uniformly bounded over all realisations of the samples
X1, ..., Xn, and the most widely-used example of function classes that satisfy this property
are the celebrated Vapnik-Chervonenkis (VC) subgraph classes. The second tool is what is
known as entropy with bracketing with respect to the underlying measure P (see, for example,
van de Geer (2000, p.122, Theorem 2.4.1 and p.129, Section 2.5.2), van de Geer (2000, Sections
3.1 and 5.5) and Dudley (2014, Chapter 7)). However, both VC subgraph classes and entropy
with bracketing make explicit use of the fact that the output space R is totally-ordered, and
makes use of objects such as {x ∈ X : x ≤ g(x0)} and {x ∈ X : g1(x0) ≤ x ≤ g2(x0)}, where
g, g1, g2 ∈ G and x0 ∈ X . A direct extension is clearly not possible when our output space Y
has any dimension greater than 1, and an attempt at an extension is even more difficult when
Y is infinite-dimensional. In this thesis, we do not investigate whether it is possible to obtain
meaningful results by extending these ideas, and leave it for future work.
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of smooth functions. In our main results, we investigate how we can bound the
entropy of classes of smooth vector-valued functions. When the output space is
infinite-dimensional, bounding the entropy becomes far less trivial, compared to
the case of real-valued function classes. For example, seemingly benign function
classes such as the classes of constant functions onto the unit ball clearly has
infinite entropy with respect to any reasonable metric, since the unit ball in an
infinite-dimensional Hilbert space is not totally bounded (Bollobás, 1999, p.62,
Corollary 6).

0.3 Underlying Manuscripts

This thesis is based on six manuscripts that were written during the course of
my PhD studies. The correspondence between chapters and these papers is
outlined below.

Chapter 1 Junhyung Park, Simon Buchholz, Bernhard Schölkopf, Krikamol
Muandet, “A Measure-Theoretic Axiomatisation of Causality”, NeurIPS 2023.
(Park et al., 2023).

This paper was one of 77 papers chosen for oral presentation out of 12343
submissions.

Chapter 2 Simon Buchholz*, Junhyung Park*, Bernhard Schölkopf, “Prod-
ucts, Abstractions and Inclusions of Causal Spaces”, will appear in UAI 2024.
* means equal contribution.

Chapter 3 Junhyung Park, Krikamol Muandet, “A Measure-Theoretic Ap-
proach to Kernel Conditional Mean Embeddings”, NeurIPS 2020. (Park and
Muandet, 2020a).

Chapter 4 Junhyung Park, Uri Shalit, Bernhard Schölkopf, Krikamol Muan-
det, “Conditional Distributional Treatment Effect with Kernel Conditional Mean
Embeddings and U-Statistic Regression”, ICML 2021. (Park et al., 2021).

Chapter 5 Junhyung Park, Krikamol Muandet, “Regularised Least Squares
Regression with Infinite-Dimensional Output Space”, unsubmitted arXiv notes,
2020. (Park and Muandet, 2020b).

Junhyung Park, Krikamol Muandet, “Towards Empirical Process Theory for
Vector-Valued Functions: Metric Entropy of Smooth Function Classes”, ALT
2023. (Park and Muandet, 2023).

I had the initial idea for all of these papers, and the concretisation of the
concepts were done along with my supervisors, Krikamol Muandet (for all the
papers on which he is an author), Bernhard Schölkopf (for all the papers on
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which he is an author) and Uri Shalit (for Park et al. (2021)). The supervisors
also gave me advice throughout the projects. The majority of the work was
carried out by myself, except the UAI paper on which Chapter 2 is based,
for which Simon Buchholz is a shared first author. I carried out the work for
products of causal spaces, causal independence and comparison with abstraction
in the SCM framework, and Simon carried out the work for transformations of
causal spaces. Simon Buchholz also checked all of the proofs for Park et al.
(2023), and offered advice and insights throughout the project.

There are also a few other articles that I participated in, which are not
included in this thesis:

• Mihir Dhanakshirur, Felix Laumann, Junhyung Park, Mauricio Bara-
hona, “A Continuous Structural Intervention Distance to Compare Causal
Graphs”, submitted. (Dhanakshirur et al., 2023).

• Felix Laumann, Julius von Kügelgen, Junhyung Park, Bernhard Schölkopf,
Mauricio Barahona, “Kernel-based Independence Tests for Causal Struc-
ture Learning on Functional Data”, in Entropy 2023. (Laumann et al.,
2023).

• Junhyung Park, Patrick Blöbaum, Shiva Kasiviswanathan, “Overfitting
and Generalization for Regression with Trained Two-Layer ReLU Net-
works”, submitted.
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Chapter 1

Causal Spaces

1.1 Background: Measure Theory and Proba-
bility Theory

First, we compactly recall some basic facts about measure and probability theory
that we need for the development in this Chapter. Please see Çınlar (2011) for
more details.

1.1.1 Measure Theory

Suppose that E is a set. We first define the notion of a σ-algebra. A non-empty
collection E of E is called a σ-algebra on E if it is closed under complements
and countable unions, that is, if

(i) A ∈ E =⇒ E\A ∈ E;

(ii) A1, A2, ... ∈ E =⇒ ∪∞
n=1An ∈ E

(Çınlar, 2011, p.2). We call {∅, E} the trivial σ-algebra of E. If C is an arbi-
trary collection of subsets of E, then the smallest σ-algebra that contains C,
or equivalently, the intersection of all σ-algebras that contain C, is called the
σ-algebra generated by C, and is denoted σC.

A measurable space is a pair (E,E), where E is a set and E is a σ-algebra
on E (Çınlar, 2011, p.4).

Suppose (E,E) and (F,F) are measurable spaces. For A ∈ E and B ∈ F, we
define the measurable rectangle A × B as the set of all pairs (x, y) with x ∈ A
and y ∈ B. We define the product σ-algebra E ⊗ F on E × F as the σ-algebra
generated by the collection of all measurable rectangles. The measurable space
(E × F,E ⊗ F) is the product of (E,E) and (F,F) (Çınlar, 2011, p.4). More
generally, if (E1,E1), ..., (En,En) are measurable spaces, their product is

n⊗
i=1

(Ei,Ei) = (
n×

i=1

Ei,

n⊗
i=1

Ei),
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where E1 × ... × En is the set of all n-tuples (x1, ..., xn) with xi in Ei for
i = 1, ..., n and E1 ⊗ ... ⊗ En is the σ-algebra generated by the measurable
rectangles A1× ...×An with Ai in Ei for i = 1, ..., n (Çınlar, 2011, p.44). If T is
an arbitrary (countable or uncountable) index set and (Et,Et) is a measurable
space for each t ∈ T , the product space of {Et : t ∈ T} is the set×t∈T

Et of

all collections (xt)t∈T with xt ∈ Et for each t ∈ T . A rectangle in×t∈T
Et is a

subset of the form

×
t∈T

At = {x = (xt)t∈T ∈×
t∈T

Et : xt ∈ At for each t in T}

where At differs from Et for only a finite number of t. It is said to be measurable
if At ∈ Et for every t (for which At differs from Et). The σ-algebra on×t∈T

Et

generated by the collection of all measurable rectangles is called the product
σ-algebra and is denoted by

⊗
t∈T Et (Çınlar, 2011, p.45).

A collection C of subsets of E is called a p-system if it is closed under
intersections (Çınlar, 2011, p.2). If two measures µ and ν on a measurable
space (E,E) with µ(E) = ν(E) < ∞ agree on a p-system generating E, then µ
and ν are identical (Çınlar, 2011, p.16, Proposition 3.7).

Let (E,E) and (F,F) be measurable spaces. A mapping f : E → F is
measurable if f−1B ∈ E for every B ∈ F (Çınlar, 2011, p.6).

Let (E,E) and (F,F) be measurable spaces. Let f be a bijection between E

and F , and let f̂ denote its functional inverse. Then, f is an isomorphism if f
is measurable relative to E and F, and f̂ is measurable with respect to F and
E. The measurable spaces (E,E) and (F,F) are isomorphic if there exists an
isomorphism between them (Çınlar, 2011, p.11).

A measurable space (E,E) is a standard measurable space if it is isomorphic
to (F,BF ) for some Borel subset F of R. Polish spaces with their Borel σ-algebra
are standard measurable spaces (Çınlar, 2011, p.11).

Let A ⊂ E. Its indicator, denoted by 1A, is the function defined by

1A(x) =

{
1 if x ∈ A

0 if x /∈ A

(Çınlar, 2011, p.8). Obviously, 1A is E-measurable if and only if A ∈ E. A
function f : E → R is said to be simple if it is of the form

f =

n∑
i=1

ai1Ai

for some n ∈ N, a1, ..., an ∈ R and A1, ..., An ∈ E (Çınlar, 2011, p.8). The
A1, ..., An ∈ E can be chosen to be a measurable partition of E, and is then
called the canonical form of the simple function f . A positive function on E is
E-measurable if and only if it is the limit of an increasing sequence of positive
simple functions (Çınlar, 2011, p.10, Theorem 2.17).

A measure on a measurable space (E,E) is a mapping µ : E → [0,∞] such
that
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(i) µ(∅) = 0;

(ii) µ(∪∞
n=1An) =

∑∞
n=1 µ(An) for every disjoint sequence (An) in E

(Çınlar, 2011, p.14). A measure space is a triplet (E,E, µ), where (E,E) is a
measurable space and µ is a measure on it.

A measurable set B is said to be negligible if µ(B) = 0, and an arbitrary
subset of E is said to be negligible if it is contained in a measurable negligible set.
The measure space is said to be complete if every negligible set is measurable
(Çınlar, 2011, p.17).

Next, we review the notion of integration of a real-valued function f : E → R
with respect to µ (Çınlar, 2011, p.20, Definition 4.3).

(a) Let f : E → [0,∞] be simple. If its canonical form is f =
∑n

i=1 ai1Ai

with ai ∈ R, then we define∫
fdµ =

n∑
i=1

aiµ(Ai).

(b) Suppose f : E → [0,∞] is measurable. Then by above, we have a sequence
(fn) of positive simple functions such that fn → f pointwise. Then we
define ∫

fdµ = lim
n→∞

∫
fndµ,

where
∫
fndµ is defined for each n by (a).

(c) Suppose f : E → [−∞,∞] is measurable. Then f+ = max{f, 0} and
f− = −min{f, 0} are measurable and positive, so we can define

∫
f+dµ

and
∫
f−dµ as in (b). Then we define∫

fdµ =

∫
f+dµ−

∫
f−dµ

provided that at least one term on the right be positive. Otherwise,
∫
fdµ

is undefined. If
∫
f+dµ < ∞ and

∫
f−dµ < ∞, then we say that f is

integrable.

Finally, we review the notion of transition kernels, which are crucial in the
consideration of conditional distributions. Let (E,E) and (F,F) be measurable
spaces. Let K be a mapping E × F → [0,∞]. Then, K is called a transition
kernel from (E,E) into (F,F) if

(a) the mapping x 7→ K(x,B) is measurable for every set B ∈ F; and

(b) the mapping B 7→ K(x,B) is a measure on (F,F) for every x ∈ E.

A transition kernel from (E, E) into (F,F) is called a probability transition kernel
if K(x, F ) = 1 for all x ∈ E. A probability transition kernel K from (E, E) into
(E, E) is called a Markov kernel on (E, E) (Çınlar, 2011, p.37,39,40).
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1.1.2 Probability Theory

Now we translate the above measure-theoretic notions into the language of prob-
ability theory, and introduce some additional concepts. A probability space is
a measure space (Ω,H,P) such that P(Ω) = 1 (Çınlar, 2011, p.49). We call Ω
the sample space, and each element ω ∈ Ω an outcome. We call H a collection
of events, and for any A ∈ H, we read P(A) as the probability that the event A
occurs (Çınlar, 2011, p.50).

A random variable taking values in a measurable space (E,E) is a function
X : Ω → E, measurable with respect to H and E. The distribution of X is the
measure µ on (E,E) defined by µ(A) = P(X−1A) (Çınlar, 2011, p.51). For an
arbitrary set T , let Xt be a random variable taking values in (E,E) for each
t ∈ T . Then the collection {Xt : t ∈ T} is called a stochastic process with state
space (E,E) and parameter set T (Çınlar, 2011, p.53).

Henceforth, random variables are defined on (Ω,H,P) and take values in
[−∞,∞]. We define the expectation of a random variable X : Ω → [−∞,∞]
as E[X] =

∫
Ω
XdP (Çınlar, 2011, p.57-58). We also define the conditional ex-

pectation (Çınlar, 2011, p.140, Definition 1.3). Suppose F is a sub-σ-algebra of
H.

(a) SupposeX is a positive random variable. Then the conditional expectation
of X given F is any positive random variable EFX satisfying

E[V X] = E [V EFX]

for all V : Ω → [0,∞] measurable with respect to F.

(b) Suppose X : Ω → [−∞,∞] is a random variable. If E[X] exists, then we
define

EFX = EFX
+ − EFX

−,

where EFX
+ and EFX

− are defined in (a).

Next, we define conditional probabilities, and regular versions thereof (Çınlar,
2011, pp.149-151). Suppose H ∈ H, and let F be a sub-σ-algebra of H. Then
the conditional probability of H given F is defined as

PFH = EF1H .

Let Q(H) be a version of PFH for every H ∈ H. Then Q : (ω,H) 7→ Qω(H)
is said to be a regular version of the conditional probability PF provided that
Q be a probability transition kernel from (Ω,F) into (Ω,H). Regular versions
exist if (Ω,H) is a standard measurable space (Çınlar, 2011, p.151, Theorem
2.7).

The conditional distribution of a random variable X given F is any transition
probability kernel L : (ω,B) 7→ Lω(B) from (Ω,F) into (E,E) such that

PF{Y ∈ B} = L(B) for all B ∈ E.
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If (E,E) is a standard measurable space, then a version of the conditional dis-
tribution of X given F exists (Çınlar, 2011, p.151).

Suppose that T is a totally ordered set, i.e. whenever r, s, t ∈ T with r < s
and s < t, we have r < t and for any s, t ∈ T , exactly one of s < t, s = t
and t < s holds (Enderton, 1977, p.62). For each t ∈ T , let Ft be a sub-σ-
algebra of H. The family F = {Ft : t ∈ T} is called a filtration provided that
Fs ⊂ Ft for s < t (Çınlar, 2011, p.79). A filtered probability space (Ω,H,F,P)
is a probability space (Ω,H,P) endowed with a filtration F.

Finally, we review the notion of independence and conditional independence.
For a fixed integer n ≥ 2, let F1, ...,Fn be sub-σ-algebras ofH. Then {F1, ...,Fn}
is called an independency if

P (H1 ∩ ... ∩Hn) = P (H1) ...P (Hn)

for all H1 ∈ F1, ...,Hn ∈ Fn. Let T be an arbitrary index set. Let Ft be a
sub-σ-algebra of H for each t ∈ T . The collection {Ft : t ∈ T} is called an
independency if its every finite subset is an independency (Çınlar, 2011, p.82).

Moreover, F1, ...,Fn are said to be conditional independent given F if

PF (H1 ∩ ... ∩Hn) = PF (H1) ...PF (Hn)

for all H1 ∈ F1, ...,Hn ∈ Fn (Çınlar, 2011, p.158).

1.2 Causal Spaces

In the development of probability theory, one starts by assuming the existence
of a probability space (Ω,H,P). However, the actual construction of proba-
bility spaces that can carry random variables corresponding to desired random
experiments is done through (repeated applications of) two main results – those
of Ionescu-Tulcea and Kolmogorov (Çınlar, 2011, p.160, Chapter IV, Section
4); the former constructs a probability space that can carry a finite or count-
ably infinite chain of trials, and the latter shows the existence of a probability
space that can carry a process with an arbitrary index set. In both cases, the
measurable space (Ω,H) is constructed as a product space:

(i) for a finite set of trials, each taking place in some measurable space
(Et,Et), t = 1, ..., n, we have (Ω,H) = ⊗n

t=1(Et,Et);

(ii) for a countably infinite set of trials, each taking place in some measurable
space (Et,Et), t ∈ N, we have (Ω,H) = ⊗t∈N(Et,Et);

(iii) for a process {Xt : t ∈ T} with an arbitrary index set T , we assume
that all the Xt live in the same standard measurable space (E,E), and let
(Ω,H) = (E,E)T = ⊗t∈T (E,E).

In the construction of a causal space, we will take as our starting point a proba-
bility space (Ω,H,P), where the measure P is defined on a product measurable
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space (Ω,H) = ⊗t∈T (Et,Et) with the (Et,Et) being the same standard mea-
surable space if T is uncountable. Denote by P(T ) the power set of T , and for
S ∈ P(T ), we denote by HS the sub-σ-algebra of H = ⊗t∈TEt generated by
measurable rectangles ×t∈TAt, where At ∈ Et differs from Et only for t ∈ S.
In particular, H∅ = {∅,H} is the trivial σ-algebra of Ω = ×t∈TEt. Also, we
denote by ΩS the subspace ×s∈SEs of Ω = ×t∈TEt, and for T ⊇ S ⊇ U , we let
πSU denote the natural projection from ΩS onto ΩU .

Definition 1.2.1. A causal space is defined as the quadruple (Ω,H,P,K), where
(Ω,H,P) = (×t∈TEt,⊗t∈TEt,P) is a probability space and K = {KS : S ∈
P(T )}, called the causal mechanism, is a collection of transition probability
kernels KS from (Ω,HS) into (Ω,H), called the causal kernel on HS , that
satisfy the following axioms:

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);

(ii) for all ω ∈ Ω, A ∈ HS and B ∈ H,

KS(ω,A ∩B) = 1A(ω)KS(ω,B) = δω(A)KS(ω,B);

in particular, for A ∈ HS , KS(ω,A) = 1A(ω)KS(ω,Ω) = 1A(ω) = δω(A).

Here, the probability measure P should be viewed as the “observational
measure”, and the causal mechanism K, consisting of causal kernels KS for
S ∈ P(T ), contains the “causal information” of the space, by directly specifying
the interventional distributions. We write 1A(ω) when viewed as a function in ω
for a fixed A, and δω(A) when viewed as a measure for a fixed ω ∈ Ω. Note that
K cannot be determined “independently” of the probability measure P, since,
for example, K∅ is clearly dependent on P by (i).

Before we discuss the meaning of the two axioms, we immediately give the
definition of an intervention. An intervention is carried out on a sub-σ-algebra of
the formHU for some U ∈ P(T ). In the following, for S ∈ P(T ), we denote ωS =
πTS(ω). Then note that Ω = ΩS ×ΩT\S and for any ω ∈ Ω, we can decompose
it into components as ω = (ωS , ωT\S). Then KS(ω,A) = KS((ωS , ωT\S), A) for
any A ∈ H only depends on the first ωS component of ω = (ωS , ωT\S). As a
slight abuse of notation, we will sometimes write KS(ωS , A) for conciseness.

Definition 1.2.2. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ), Q a probability measure on (Ω,HU ) and L = {LV : V ∈ P(U)}
a causal mechanism on (Ω,HU ,Q). An intervention on HU via (Q,L) is a
new causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,L)), where the intervention measure
Pdo(U,Q) is a probability measure on (Ω,H) defined, for A ∈ H, by

Pdo(U,Q)(A) =

∫
Q(dω)KU (ω,A) (1)
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and Kdo(U,Q,L) = {Kdo(U,Q,L)
S : S ∈ P(T )} is the intervention causal mechanism

whose intervention causal kernels are

K
do(U,Q,L)
S (ω,A) =

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A). (2)

The intuition behind these definitions is as follows. Starting from the prob-
ability space (Ω,H,P), we choose a “subspace” on which to intervene, namely
a sub-σ-algebra HU of H. The intervention is the process of placing any de-
sired measure Q on this “subspace” (Ω,HU ), along with an internal causal
mechanism L on this “subspace”1. The causal kernel KU corresponding to the
“subspace” HU , which is encoded in the original causal space, determines what
the intervention measure on the whole space H will be, via equation (1). For
the causal kernels after intervention, the causal effect first takes place within
HU via the internal causal mechanism L, then propagates to the rest of H via
equation (2).

The definition of intervening on a σ-algebra of the form HU given in Defi-
nition 1.2.2 sheds light on the two axioms of causal spaces given in Definition
1.2.1.

Remark 1.2.3. Trivial Intervention Axiom (i) in Definition 1.2.1 ensures
that intervening on the trivial σ-algebra (i.e. not intervening at all) leaves
the probability measure intact, i.e. writing Q for the trivial probability
measure on {∅,Ω}, we have Pdo(∅,Q) = P.

Interventional Determinism Axiom (ii) of Definition 1.2.1 ensures that for
any A ∈ HU , we have Pdo(U,Q)(A) = Q(A), which means that if we inter-
vene on the causal space by giving HU a particular probability measure
Q, then HU indeed has that measure with respect to the intervention
probability measure.

Alt Tem

Figure 1.1: Alti-
tude and Temper-
ature.

The following example should serve as further clarifica-
tion of the concepts.

Example 1.2.4. Let E1 = E2 = R, and E1,E2 be Lebesgue
σ-algebras on E1 and E2. Each e1 ∈ E1 and e2 ∈ E2

respectively represent the altitude in metres and temper-
ature in Celsius of a random location. For simplicity,
we assume a jointly Gaussian measure P on (Ω,H) =

(E1×E2,E1⊗E2), say with mean vector

(
1000
10

)
and covari-

ance matrix

(
300 −15
−15 1

)
. For each e1 ∈ E1 and A ∈ E2,

we let K1(e1, A) be the conditional measure of P given e1, i.e. Gaussian with
mean 1200−e1

20 and variance 1
4 . This represents the fact that, if we intervene

1Choosing Q to have measure 1 on a single element would correspond to what is known as
a “hard intervention” in the SCM literature. Letting Q and L be arbitrary would allow us to
obtain any “soft intervention”.
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by fixing the altitude of a location, then the temperature of that location will be
causally affected. However, if we intervene by fixing a temperature of a location,
say by manually heating up or cooling down a place, then we expect that this
has no causal effect on the altitude of the place. This can be represented by the
causal kernel K2(e2, B) = P(B) for each B ∈ E1, i.e. Gaussian measure with
mean 1000 and variance 300, regardless of the value of e2. The corresponding
“causal graph” would be Figure 1.1. If we intervene on E1 with measure δ1000,
i.e. we fix the altitude at 1000m, then the intervention measure Pdo(1,δ1000) on
(E2,E2) would be Gaussian with mean 10 and variance 1

4 . If we intervene on E2

with any measure Q, the intervention measure Pdo(2,Q) on (E1,E1) would still
be Gaussian with mean 1000 and variance 300.

The following theorem proves that the intervention measure and causal
mechanism are indeed valid.

Theorem 1.2.5. From Definition 1.2.2, Pdo(U,Q) is indeed a measure on (Ω,H),
and Kdo(U,Q,L) is indeed a valid causal mechanism on (Ω,H,Pdo(U,Q)), i.e. they
satisfy the axioms of Definition 1.2.1.

To end this Section, we make a couple of further remarks on the definition
of causal spaces.

Remark 1.2.6. (i) We require causal spaces to be built on top of product
probability spaces, as opposed to general probability spaces, and causal
kernels are defined on sub-σ-algebras of H of the form HS for S ∈ P(T ),
as opposed to general sub-σ-algebras of H. This is because, for two events
that are not in separate components of a product space, one can always
intervene on one of those events in such a way that the measure on the
other event will have to change, meaning the causal kernel cannot be
decoupled from the intervention itself. For example, in a dice-roll with
outcomes {1, 2, 3, 4, 5, 6} each with probability 1

6 , if we intervene to give
measure 1 to roll 6, then the other outcomes are forced to have measure
0. Only if we consider separate components of product measurable spaces
can we set meaningful causal relationships that are decoupled from the
act of intervention itself.

(ii) We do not distinguish between interventions that are practically possible
and those that are not. For example, the “causal effect of sunlight on the
moon’s temperature” cannot be measured realistically, as it would require
covering up the sun, but the information encoded in the causal kernel
would still correspond to what would happen when we cover up the sun.

1.3 Causal Effects

In this section, we define what it means for a sub-σ-algebra of the form HS to
have a causal effect on an event A ∈ H.
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Definition 1.3.1. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
U ∈ P(T ), A ∈ H an event and F a sub-σ-algebra of H (not necessarily of the
form HS for some S ∈ P(T )).

(i) If KS(ω,A) = KS\U (ω,A) for all S ∈ P(T ) and all ω ∈ Ω, then we say
that HU has no causal effect on A, or that HU is non-causal to A.

We say that HU has no causal effect on F, or that HU is non-causal to F,
if, for all A ∈ F, HU has no causal effect on A.

(ii) If there exists ω ∈ Ω such that KU (ω,A) ̸= P(A), then we say that HU

has an active causal effect on A, or that HU is actively causal to A.

We say that HU has an active causal effect on F, or that HU is actively
causal to F, if HU has an active causal effect on some A ∈ F.

(iii) Otherwise, we say that HU has a dormant causal effect on A, or that HU

is dormantly causal to A.

We say that HU has a dormant causal effect on F, or that HU is dormantly
causal to F, if HU does not have an active causal effect on any event in F

and there exists A ∈ F on which HU has a dormant causal effect.

Sometimes, we will say that HU has a causal effect on A to mean that HU has
either an active or a dormant causal effect on A.

The intuition is as follows. For any S ∈ P(T ) and any fixed event A ∈ H,
consider the function ωS 7→ KS((ωS∩U , ωS\U ), A). If HU has no causal effect on
A, then it means that the causal kernel does not depend on the ωS∩U component
of ωS . Since this has to hold for all S ∈ P(T ), it means that it is possible to have,
for example, KU (ω,A) = P(A) for all ω ∈ Ω and yet for HU to have a causal
effect on A. This would be precisely the case where HU has a dormant causal
effect on A, and it means that, for some S ∈ P(T ), ωS 7→ KS((ωS∩U , ωS\U , A)
does depend on the ωS∩U component.

Remark 1.3.2. We collect some straightforward but important special cases.

(a) If HU has no causal effect on A, then letting S = U in Definition 1.3.1(i)
and applying Definition 1.2.1(i), we can see that, for all ω ∈ Ω,

KU (ω,A) = KU\U (ω,A) = K∅(ω,A) = P(A).

In particular, this means that HU cannot have both no causal effect and
active causal effect on A.

(b) It is immediate that the trivial σ-algebra H∅ = {∅,Ω} has no causal effect
on any event A ∈ H. Conversely, it is also clear that HU for any U ∈ P(T )
has no causal effect on the trivial σ-algebra.

(c) Let U ∈ P(T ) and F a sub-σ-algebra of H. If HU ∩ F ̸= {∅,Ω}, then
HU has an active causal effect on F, since, for A ∈ HU ∩ F with A ̸= ∅
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and A ̸= Ω, Definition 1.2.1(ii) tells us that KU (·, A) = 1A(·) ̸= P(A).
In particular, HU has an active causal effect on itself. Further, the full
σ-algebra H = HT has an active causal effect on all of its sub-σ-algebras
except the trivial σ-algebra, and every HU , U ∈ P(T ) except the trivial
σ-algebra has an active causal effect on the full σ-algebra H.

(d) Let U ∈ P(T ) and F1,F2 be sub-σ-algebras of H. If F1 ⊆ F2 and HU has
no causal effect on F2, then it is clear that HU has no causal effect on F1.

(e) If HU has no causal effect on an event A, then for any V ∈ P(T ) with
V ⊆ U , HV has no causal effect on A. Indeed, take any S ∈ P(T ). Then
using the fact that HU has no causal effect on A, see that, for any ω ∈ Ω,

KS\V (ω,A) = K(S\V )\U (ω,A) applying Definition 1.3.1(i) with S \ V
= KS\U (ω,A) since V ⊆ U

= KS(ω,A) applying Definition 1.3.1(i) with S.

Since S ∈ P(T ) was arbitrary, we have that HV has no causal effect on A.

(f) Contrapositively, if U, V ∈ P(T ) with V ⊆ U and HV has a causal effect
on A, then HU has a causal effect on A.

(g) If U ∈ P(T ) has no causal effect on A, then for any V ∈ P(T ), we have

KV (ω,A) = KU∪V (ω,A).

Indeed, since U \ V has no causal effect on A by (e),

KU∪V (ω,A) = K(U∪V )\(U\V )(ω,A)

= KV (ω,A) since (U ∪ V ) \ (U \ V ) = V.

(h) If U, V ∈ P(T ) and neither HU nor HV has a causal effect on A, then
HU∪V has no causal effect on A. Indeed, for any S ∈ P(T ) and any
ω ∈ Ω,

KS\(U∪V )(ω,A) = K(S\U)\V (ω,A)

= KS\U (ω,A) as V has no causal effect on A

= KS(ω,A) as U has no causal effect on A.

Since S ∈ P(T ) was arbitrary, HU∪V has no causal effect on A.

(i) Contrapositively, if U, V ∈ P(T ) and HU∪V has a causal effect on A, then
either HU or HV has a causal effect on A.

Following the definition of no causal effect, we define the notion of a trivial
causal kernel.

Definition 1.3.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ). We say that the causal kernel KU is trivial if HU has no causal
effect on HT\U .
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Note that we can decomposeH asH = HU⊗HT\U , and soH is generated by
events of the form A×B for A ∈ HU and B ∈ HT\U . But if KU is trivial, then
we have, by Axiom 1.2.1(ii), KU (ω,A×B) = 1A(ω)P(B) for such a rectangle.

We also define a “conditional” version of causal effects.

Definition 1.3.4. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
U, V ∈ P(T ), A ∈ H an event and F a sub-σ-algebra of H (not necessarily of
the form HS for some S ∈ P(T )).

(i) If KS∪V (ω,A) = K(S∪V )\(U\V )(ω,A) for all S ∈ P(T ) and all ω ∈ Ω,
then we say that HU has no causal effect on A given HV , or that HU is
non-causal to A given HV .

We say that HU has no causal effect on F given HV , or that HU is non-
causal to F given HV , if, for all A ∈ F, HU has no causal effect on A given
HV .

(ii) If there exists ω ∈ Ω such that KU∪V (ω,A) ̸= KV (ω,A), then we say
that HU has an active causal effect on A given HV , or that HU is actively
causal to A given HV .

We say that HU has an active causal effect on F given HV , or that HU is
actively causal to F given HV , if HU has an active causal effect on some
A ∈ F.

(iii) Otherwise, we say that HU has a dormant causal effect on A given HV ,
or that HU is dormantly causal to A given HV .

We say that HU has a dormant causal effect on F given HV , or that HU

is dormantly causal to F given HV , if HU does not have an active causal
effect on any event in F given HV and there exists A ∈ F on which HU

has a dormant causal effect given HV .

Sometimes, we will say that HU has a causal effect on A given HV to mean
that HU has either an active or a dormant causal effect on A given HV .

The intuition is as follows. For any fixed S ∈ P(T ) and any fixed event
A ∈ H. consider the function ωS∪V 7→ KS∪V ((ω(S∪V )\(U\V ), ωS∩(U\V )), A). If
HU has no causal effect on A given HV , then it means that the causal kernel
does not depend on the ωS∩(U\V ) component of ωS∪V ; in other words, HU only
has an influence on A through its V component.

We collect some important special cases in the following remark.

Remark 1.3.5. (a) Letting V = U , we always have

KS∪U (ω,A) = K(S∪U)\(U\U)(ω,A) = KS∪U (ω,A)

for all ω ∈ Ω and A ∈ H, which means that HU has no causal effect on
any event A ∈ H given itself.
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(b) If HU has no causal effect on A given HV , then letting U = S in Definition
1.3.4(i), we see that, for all ω ∈ Ω,

KU∪V (ω,A) = KV (ω,A).

In particular, this means that HU cannot have both no causal effect and
active causal effect on A given HV .

(c) The case V = ∅ reduces Definition 1.3.4 to Definition 1.3.1, i.e. HU having
no causal effect in the sense of Definition 1.3.1 is the same as HU having
no causal effect given {∅,Ω} in the sense of Definition 1.3.4, etc.

(d) It is possible for HU to be causal to an event A, and for there to exist
V ∈ P(T ) such that HU has no causal effect on A given HV . However, if
HU has no causal effect on A, then for any V ∈ P(T ), HU has no causal
effect on A given HV . To see this, note that Remark 1.3.2(e) tells us that
U \V also does not have any causal effect on A. Then given any S ∈ P(T ),

KS∪V (ω,A) = K(S∪V )\(U\V )(ω,A),

applying Definition 1.3.1(i) to S ∪ V . Since S ∈ P(T ) was arbitrary, HU

has no causal effect on A given HV .

1.4 Comparison with Existing Frameworks

In this section, we show how causal spaces can encode the interventional aspects
of the two most widely-used frameworks of causality, i.e. structural causal
models and the potential outcomes.

1.4.1 Structural Causal Models (SCMs)

Consider an SCM in its most basic form, given in the following definition.

Definition 1.4.1 ((Peters et al., 2017, p.83, Definition 6.2)). A structural
causal model C = (S, P̃) consists of a collection S of d (structural) assignments
Xj := fj(PAj , Nj), j = 1, ..., d, where PAj ⊆ {X1, ..., Xd}\{Xj} are called the

parents of Xj and Nj are the noise variables; and a distribution P̃ over the
noise variables such that they are jointly independent.

The graph G of an SCM is obtained by creating one vertex for each Xj and
drawing directed edges from each parent in PAj to Xj . This graph is assumed
to be acyclic.

Below, we show that a unique causal space that corresponds to such an SCM
can be constructed.

First, we let the variables Xj , j = 1, ..., d take values in measurable spaces
(Ej ,Ej) respectively, and let (Ω,H) = ⊗d

j=1(Ej ,Ej). An SCM C entails a unique
distribution P over the variables X = (X1, ..., Xd) by the propagation of the
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noise distribution P̃ through the structural equations fj (Peters et al., 2017,
p.84, Proposition 6.3), and we take this P as the observational measure of the
causal space. More precisely, assuming {1, ..., d} is a topological ordering, we
have, for Aj ∈ Ej , j = 1, ..., d,

P(A1 × E2 × ...× Ed) = P̃({n1 : f1(n1) ∈ A1})
P(A1 ×A2 × E3 × ...× Ed)

= P̃({(n1, n2) : (f1(n1), f2(f1(n1), n2)) ∈ A1 ×A2})
...

P(A1 × ...×Ad)

= P̃({(n1, ..., nd) : (f1(n1), ..., fd(f1(n1), ..., nd)) ∈ A1 × ...×Ad}).

Finally, for each S ∈ P({1, ..., d}) and for each ω ∈ Ω, define fS,ωj = fj if j /∈ S

and fS,ωj = ωj if j ∈ S. Then we have

KS(ω,A1 × ...×Ad)

= P̃({(n1, ..., nd) : (f
S,ω
1 (n1), ..., f

S,ω
d (fS,ω1 (n1), ..., nd)) ∈ A1 × ...×Ad}).

This uniquely specifies the causal space (Ω,H,P,K) that corresponds to the
SCM C. While this shows that causal spaces strictly generalise (interventional
aspects of) SCMs, there are fundamental philosophical differences between the
two approaches, as highlighted in the following remark.

Remark 1.4.2. (i) The “system” in an SCM can be viewed as the collection
of all variablesX1, ..., Xd, and the “subsystems” the individual variables or
the groups of variables. Each structural equation fj encodes how the whole
system, when intervened on, affects a subsystemXj , i.e. how the collection
of all other variables affects the individual variables (even though, in the
end, the equations only depend on the parents). This way of encoding
causal effects seems somewhat inconsistent with the philosophy laid out in
the Introduction, that we are interested in what happens to the “system”
when we intervene on a “subsystem”. It also seems inconsistent with the
actual action taken, which is to intervene on subsystems, not the whole
system, or the parents of a particular variable.

In contrast, the causal kernels encode exactly what happens to the whole
system, i.e. what measure we get on the whole measurable space (Ω,H),
when we intervene on a “subsystem”, i.e. put a desired measure on a
sub-σ-algebra of H2.

(ii) The primitive objects of SCMs are the variables Xj , the structural equa-
tions fj and the distribution PN over the noise variables. The observa-
tional distribution, as well as the interventional distributions, are derived

2In this sense, some philosophy is shared with generalised structural equation models
(GSEMs) (Peters and Halpern, 2021).
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from these objects. It turns out that unique existence of observational and
interventional distributions are not guaranteed, and can only be shown un-
der the acyclicity assumption or rather stringent and hard-to-verify con-
ditions on the structural equations and the noise distributions (Bongers
et al., 2021). Moreover, it means that the observational and interven-
tional distributions are not decoupled, and rather are linked through the
structural equations fj , and as a result, it is not possible to encode the
full range of observational and interventional distributions using just the
variables of interest (see Example 1.5.1).

In contrast, in causal spaces, the observational distribution P, as well as
the interventional distributions (via the causal kernels), are the primitive
objects. Not only does this automatically guarantee their unique exis-
tence, but it also allows the interventional distributions (i.e. the causal
information) to be completely decoupled from the observational distribu-
tion.

(iii) Galles and Pearl (1998, Section 3) propose three axioms of counterfactuals
based on SCMs (called causal models in that paper), namely, composition,
effectiveness and reversibility. Even though these three concepts can be
carried over to causal spaces, the mathematics through which they are
represented needs to be adapted, since the tools that are used in causal
spaces are different from those used in causal models of Galles and Pearl
(1998). In particular, we work directly with measures as the primitive
objects, whereas Galles and Pearl (1998) use the structural equations as
the primitive objects, and the probabilities only enter through a measure
on the exogenous variables. Thus, the three properties can be phrased in
the causal space language as follows:

Composition For S,R ⊆ T , denote byQ′ the measure onHS∪R obtained
by restricting Pdo(S,Q). Then Pdo(S,Q) = Pdo(S∪R,Q′). In words, inter-
vening on HS via the measure Q is the same as intervening on HS∪R

via the measure that it would have if we intervened on HS via Q.

This is not in general true. A counterexample can be demonstrated
with a simple SCM, where X1, X2 and X3 causally affect Y , in
a way that depends not only on the marginal distributions of X1,
X2 and X3 but their joint distribution, and X1, X2 and X3 have no
causal relationships among them. Then intervening on X1 with some
measure Q cannot be the same as intervening on X1 and X2 with Q⊗
P, since such an intervention would change the joint distribution of
X1, X2 andX3, even if we give them the same marginal distributions.

Effectiveness For S ⊆ R ⊆ T , if we intervene on HR via a measure Q,
then HS has measure Q restricted to HS .

This is indeed guaranteed by interventional determinism (Definition
1.2.1(ii)), so effectiveness continues to hold in causal spaces.

Reversibility For S,R,U ⊆ T , let Q be some measure on HS , and Q1

and Q2 be measures on HS∪R and HS∪U respectively such that they
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coincide with Q when restricted to HS . Then if Pdo(S∪R,Q1)(B) =
Q2(B) for all B ∈ HU and if Pdo(S∪U,Q2)(C) = Q1(C) for all C ∈ HR,
then Pdo(S,Q)(A) = Q1(A) for all A ∈ HR.

This does not hold in general in causal spaces; in fact, Example 1.5.2
is a counterexample of this, with S = ∅.

1.4.2 Potential Outcomes (PO) Framework

In the PO framework, the treatment and outcome variables of interest are fixed
in advance. Although much of the literature begins with individual units, these
units are in the end i.i.d. copies of random variables under the stable unit
treatment value assumption (SUTVA), and that is how we begin.

Denote by (Ω̃, H̃, P̃) the underlying probability space. Let Z : Ω̃ → Z be the
“treatment” variable, taking values in a measurable space (Z,Z). Then for each
value z of the treatment, there is a separate random variable Yz : Ω̃ → Y, called
the “potential outcome given Z = z” taking values in a measurable space (Y,Y);
we also have the “observed outcome”, which is the potential outcome consistent
with the treatment, i.e. Y = YZ . The researcher is interested in quantities such
as the “average treatment effect”, Ẽ[Yz1 −Yz2 ], where Ẽ is the expectation with
respect to P̃, to measure the causal effect of the treatment. Often, there are
other, “pre-treatment variables” or “covariates”, which we denote by X : Ω̃ →
X , taking values in a measurable space (X ,X). Given these, another object of
interest is the “conditional average treatment effect”, defined as Ẽ[Yz1−Yz2 | X].

It is relatively straightforward to construct a causal space that can carry this
framework. We define Ω = Z×Y×X and H = Z⊗Y⊗X. We also define P, for
each A ∈ Z, B ∈ Y and C ∈ X, as P(A × B × C) = P̃(Z ∈ A, Y ∈ B,X ∈ C).
As for causal kernels, we are essentially only interested in KZ(z,B) for B ∈ Y,
and we define these to be KZ(z,B) = P̃(Yz ∈ B).

1.5 Examples

In this section, we give a few more concrete constructions of causal spaces. In
particular they are designed to highlight cases which are hard to represent with
existing frameworks, but which have natural representations in terms of causal
spaces. Comparisons are made particularly with SCMs.

1.5.1 Confounders

The following example highlights the fact that, with graphical models, there is
no way to encode correlation but no causation between two variables, using just
the variables of interest.

Example 1.5.1. Consider the popular example of monthly ice cream sales and
shark attacks in the US (Figure 1.2a), that shows that correlation does not
imply causation. This cannot be encoded by an SCM with just two variables
as in Figure 1.2b, since no causation means no arrows between the variables,
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(a)

S I

(b)
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Figure 1.2: Correlation but no causation between ice-cream sales and shark
attacks. S stands for the number of shark attacks, I for ice cream sales, T for
temperature and E for economy.

which in turn also means no dependence. One needs to add the common causes
into the model (whether observed or latent), the most obvious one being the
temperature (high temperatures make people desire ice cream more, as well as
to go to the beach more), as seen in Figure 1.2c. Now we have a model in which
both dependence and no causation are captured. But can we stop here? There
are probably other factors that affect both variables, such as the economy (the
better the economic situation, the more likely people are to buy ice cream, and
to take beach holidays) – see Figure 1.2d. Not only is the model starting to lose
parsimony, but as soon as we stop adding variables to the model, we are making
an assumption that there are no further confounding variables out there in the
world3.

In contrast, causal spaces allow us to model any observational and causal
relationships with just the variables that we were interested in, without any re-
strictions or the need to add more variables. In this particular example, we
would take as our causal space (E1 × E2,E1 ⊗ E2,P,K), where E1 = E2 = R
with values in E1 and E2 corresponding to ice cream sales and shark attacks
respectively, and E1 = E2 being Lebesgue σ-algebras. Then we can let P be a
measure that has a strong dependence between any A ∈ E1 and B ∈ E2, but let
the causal kernels be K1(x,B) = P(B) for any x ∈ E1 and B ∈ E2, and likewise
K2(x,A) = P(A) for any x ∈ E2 and A ∈ E1.

Nancy Cartwright argued against the completeness of causal Markov con-
dition, using an example of two factories (Cartwright, 1999, p.108), in which
there may not even be any confounders between dependent variables, not even
an unobserved one. If we accept her position, then there are situations which
SCMs would not be able to represent, whereas causal spaces would have no
problems at all.

3One solution could be to add a single “variable” that collects all of the confounders
into one, but then the numerical value of this “variable”, as well as its distribution and the
structural equations from this “variable” into S and I, would be completely meaningless.

28



CHAPTER 1. CAUSAL SPACES

1.5.2 Cycles

As mentioned before, cycles in SCMs cause serious problems, namely that ob-
servational and interventional distributions that are consistent with the given
structural equations and noise distribution may not exist, and when they do,
they may not exist uniquely. This is an artefact of the fact that these dis-
tributions are derived from the structural equations rather than taken as the
primitive objects. In the vast majority of the cases, cycles are excluded from
consideration from the beginning and only directed acyclic graphs (DAGs) are
considered. Some works study the solvability of cyclic SCMs (Halpern, 2000;
Bongers et al., 2021), where the authors investigate under what conditions on
the structural equations and the noise variables there exist random variables
and distributions that solve the given structural equations, and if so, when that
happens uniquely. Other works have allowed cycles to exist, but restricted the
definition of an SCM only to those that have a unique solution (Halpern, 2000;
Pearl, 2009; Rubenstein et al., 2017).

Of course, cyclic causal relationships abound in the real world. In our pro-
posed causal space, given two sub-σ-algebras HS and HU of H, nothing stops
both of them from having a causal effect on the other (see Definition 1.3.1 for a
precise definition of causal effects), but we are still guaranteed to have a unique
causal space, both before intervention and after intervention on either HS or
HU . The following is an example of a situation with “cyclic” causal relationship.

Example 1.5.2. We want to model the relationship between the amount of rice
in the market and its price per kg. Take as the probability space (E1 ×E2,E1 ⊗
E2,P), where E1 = E2 = R with values in E1 and E2 representing the amount
of rice in the market in million tonnes and the price of rice per kg in KRW
respectively, E1,E2 are Lebesgue σ-algebras and P is for simplicity taken to be
jointly Gaussian. Without any intervention, the higher the yield, the more rice
there is in the market and lower the price, as in Figure 1.3b. If the government
intervenes on the market by buying up extra rice or releasing rice into the market
from its stock, with the goal of stabilising supply at 3 million tonnes, then the
price will stabilise accordingly, say with Gaussian distribution with mean 4.5
and standard deviation 0.5, as in Figure 1.3c. The corresponding causal kernel

will be K1(3, x) =
2√
2π
e−

1
2 (

x−4.5
0.5 )2 . On the other hand, if the government fixes

the price of rice at a price, say at 6,000 KRW per kg, then the farmers will be
incentivised to produce more, say with Gaussian distribution with mean 4 and
standard deviation 0.5, as in Figure 1.3d. The corresponding causal kernel will

be K2(6, y) =
2√
2π
e−

1
2 (

y−4
0.5 )2 .

Causal spaces treat causal effects really as what happens after an intervention
takes place, and with this approach, cycles can be rather naturally encoded, as
shown above. We do not view cyclic causal relationships as an equilibrium of
a dynamical system, or require it to be viewed as an acyclic stochastic process,
as done by some authors (Peters et al., 2017, p.85, Remark 6.5).
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Figure 1.3: Rice in the market in million tonnes and price per kg in KRW.

1.5.3 Continuous-time Stochastic Processes, and Parents

A very well established sub-field of probability theory is the field of stochastic
processes, in which the index set representing (most often) time can be either
discrete or continuous, and in both cases, infinite. However, most causal mod-
els start by assuming a finite number of variables, which immediately rules out
considering stochastic processes, and efforts to extend to infinite number of vari-
ables usually consider only discrete time steps (Peters et al., 2017, Chapter 10)
or dynamical systems (Bongers et al., 2018; Peters et al., 2022; Blom et al., 2020;
Rubenstein et al., 2018). Since probability spaces have proven to accommodate
continuous time stochastic processes in a natural way, it is natural to believe
that causal spaces, being built up from probability spaces, should be able to
enable the incorporation of the concept of causality in the theory of stochastic
processes.

Let W be a totally-ordered set, in particular W = N = {0, 1, ...}, W = Z =
{...,−2,−1, 0, 1, 2, ...}, W = R+ = [0,∞) or W = R = (−∞,∞) considered
as the time set. Then, we consider causal spaces of the form (Ω,H,P,K) =
(×t∈TEt,⊗t∈TEt,P,K), where the index set T can be written as T = W × T̃
for some other index set T̃ . The following notion captures the intuition that
causation can only go forwards in time.

Definition 1.5.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
where the index set T can be written as T =W × T̃ , with W representing time.
Then we say that the causal mechanism K respects time, or that K is a time-
respecting causal mechanism, if, for all w1, w2 ∈W with w1 < w2, we have that
Hw2×T̃ has no causal effect (in the sense of Definition 1.3.1) on Hw1×T̃ .

In a causal space where the index set T has a time component, the fact that
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Figure 1.4: 1-dimensional Brownian motion, intervened and conditioned to have
value 0 at time 1.

causal mechanism K respects time means that the past can affect the future,
but the future cannot affect the past. This already distinguishes itself from the
concept of conditioning – conditioning on the future does have implications for
past events. We illustrate this point in the example of a Brownian motion.

Example 1.5.4. Take (×t∈R+Et,⊗t∈R+Et,P,K), where, for each t ∈ R+, Et =
R and Et is the Lebesgue σ-algebra, and P is the Wiener measure. For s <

t, we have causal kernels Ks(x, y) = 1√
2π(t−s)

e−
1

2(t−s)
(y−x)2 and Kt(x, y) =

1√
2πs

e−
1
2sy

2

. The former says that, if we intervene by setting the value of the

process to x at time s, then the process starts again from x, whereas the latter
says that if we intervene at time t, the past values at time s are not affected.
On the left-hand plot of Figure 1.4, we set the value of the process at time 1 to
0. The past values of the process are not affected, and there is a discontinuity
at time 1 where the process starts again from 0. Contrast this to the right-hand
plot, where we condition on the process having value 0 at time 1. This does
affect past values, and creates a Brownian bridge from time 0 to time 1.

Note, Brownian motion is not differentiable, so no approach based on dy-
namical systems is applicable.

Remark 1.5.5. The concept of parents is central in SCMs – the structural
equations are defined on the parents of each variable. However, continuous time
is dense, so given two distinct points in time, there is always a time point in
between. Suppose we have a one-dimensional continuous time Markov process
(Xt)t∈R (Çınlar, 2011, p.169), and a point t0 in time. Then for any t < t0,
Xt has a causal effect on Xt0 , but there always exists some t′ with t < t′ < t0
such that conditioned on Xt′ , Xt does not have a causal effect on Xt0 , meaning
Xt cannot be a parent of Xt0 . In such a case, Xt0 cannot be said to have any
parents, and hence no corresponding SCM can be defined.

1.6 Interventions

In this section, we provide a few more definitions and results related to the
notion of interventions, introduced in Definition 1.2.2.
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Remark 1.6.1. First, we make a few remarks on how the intervention causal

kernels K
do(U,Q,L)
S behave in some special cases, depending on the relationship

between U and S.

(a) For S ∈ P(T ) with U ⊆ S, we have, for all ω ∈ Ω and all A ∈ H,

K
do(U,Q,L)
S (ω,A) =

∫
LU (ωU , dω

′
U )KS((ωS\U , ω

′
U ), A)

=

∫
δωU

(dω′
U )KS((ωS\U , ω

′
U ), A)

= KS((ωS\U , ωU ), A)

= KS(ω,A).

This means that, after an intervention on HU , subsequent interventions
on HS with HU ⊆ HS simply overwrite the original intervention. Note
that this is reminiscent of the “partial ordering on the set of interventions”
in (Rubenstein et al., 2017), but in our setting, this is given by the partial
ordering induced by the inclusion structure of sub-σ-algebras of H.

(b) For S ∈ P(T ) with S ⊆ U ,

K
do(U,Q,L)
S (ω,A) =

∫
LS(ωS , dω

′
U )KU (ω

′
U , A)

for all ω ∈ Ω and A ∈ H, i.e. K
do(U,Q,L)
S is a product of the two kernels KU

and LS (Çınlar, 2011, p.39); in particular, K
do(U,Q,L)
S (ω,A) = LS(ω,A)

for all A ∈ HU .

(c) For S ∈ P(T ) with S ∩ U = ∅,

K
do(U,Q,L)
S (ω,A) =

∫
L∅(ω∅, dω

′
U )KS∪U ((ωS , ω

′
U ), A)

=

∫
Q(dω′

U )KS∪U ((ωS , ω
′
U ), A)

for all ω ∈ Ω and A ∈ H, i.e. the effect of intervening on HU with Q then
HS is the same as intervening on HU∪S with a product measure of Q on
HU and whatever measure we place on HS .

We give it a name for the special case in which the internal causal kernels
are all trivial (see Definition 1.3.3).

Definition 1.6.2. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ) and Q a probability measure on (Ω,HU ). A hard interven-
tion on HU via Q is a new causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,hard)), where
the intervention measure Pdo(U,Q) is a probability measure (Ω,H) defined in
the same way as in Definition 1.2.2, and the intervention causal mechanism

Kdo(U,Q,hard) = {Kdo(U,Q,hard)
S : S ∈ P(T )} consists of causal kernels that are

obtained from the intervention causal kernels in Definition 1.2.2 in which LS∩U

is a trivial causal kernel, i.e. one that has no causal effect on HU\S .
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From the discussion following Definition 1.3.3, we have that, for A ∈ HS∩U

and B ∈ HU\S , LS∩U (ω,A×B) = 1A(ωS∩U )Q(B).
The next result gives an explicit expression for the causal kernels obtained

after a hard intervention.

Theorem 1.6.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ) and Q a probability measure on (Ω,HU ). Then after a hard

intervention on HU via Q, the intervention causal kernels K
do(U,Q,hard)
S are

given by

K
do(U,Q,hard)
S (ω,A) = K

do(U,Q,hard)
S (ωS , A)

=

∫
Q(dω′

U\S)KS∪U ((ωS , ω
′
U\S), A).

Intuitively, hard interventions do not encode any internal causal relationships
within HU , so after we subsequently intervene on HS , the measure Q that we
originally imposed on HU remains on HU\S .

The following lemma contains a couple of results about particular sub-σ-
algebras having no causal effects on particular events in the intervention causal
space, regardless of the measure and causal mechanism that was used for the
intervention.

Lemma 1.6.4. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ), Q a probability measure on (Ω,HU ) and L = {LV : V ∈ P(U)}
a causal mechanism on (Ω,HU ,Q). Suppose we intervene on HU via (Q,L).

(i) For A ∈ HU and V ∈ P(T ) with V ∩U = ∅, HV has no causal effect on A
in the intervention causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,L)), i.e. events in
the σ-algebra HU on which intervention took place are not causally affected
by σ-algebras outside HU .

(ii) Again, let V ∈ P(T ) with V ∩ U = ∅, and also let A ∈ H be any event.
If, in the original causal space, HV had no causal effect on A, then in the
intervention causal space, HV has no causal effect on A either.

(iii) Now let V ∈ P(T ), A ∈ H any event and suppose that the intervention on
HU via Q is hard. Then if HV had no causal effect on A in the original
causal space, then HV has no causal effect on A in the intervention causal
space either.

Lemma 1.6.4(ii) and (iii) tell us that, if HV had no causal effect on A in
the original causal space, then by intervening on HU with V ∩U = ∅ or by any
hard intervention, we cannot create a causal effect from Hv on A. However, by
intervening on a sub-σ-algebra that contains both HV and (a part of) A, and
manipulating the internal causal mechanism L appropriately, it is clear that we
can create a causal effect from HV .

The next result tells us that if a sub-σ-algebraHU has a dormant causal effect
on an event A, then there is a sub-σ-algebra of HU and a hard intervention after
which that sub-σ-algebra has an active causal effect on A.
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Lemma 1.6.5. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ). For an event A ∈ H, if HU has a dormant causal effect on A
in the original causal space, then there exists a hard intervention and a subset
V ⊆ U such that in the intervention causal space, HV has an active causal effect
on A.

The next result is about what happens to a causal effect of a sub-σ-algebra
that has no causal effect on an event conditioned on another sub-σ-algebra, after
intervening on that sub-σ-algebra.

Lemma 1.6.6. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U, V ∈ P(T ). For an event A ∈ H, suppose that HU has no causal effect
on A given HV (see Definition 1.3.4). Then after an intervention on HV via
any (Q,L), HU\V has no causal effect on A.

The next result shows that, under a hard intervention, a time-respecting
causal mechanism stays time-respecting.

Theorem 1.6.7. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
where the index set T can be written as T =W × T̃ , with W representing time
and K respecting time. Take any U ∈ P(T ) and any probability measure Q on
HU . Then the intervention causal mechanism Kdo(U,Q,hard) also respects time.

1.7 Sources

In causal spaces, the observational distribution P and the causal mechanism K
are completely decoupled. In Section 1.4.1, we give a detailed argument as to
why this is desirable, but of course, there is no doubt that the special case in
which the causal kernels coincide with conditional measures with respect to P
is worth studying. To that end, we introduce the notion of sources.

Definition 1.7.1. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
U ∈ P(T ), A ∈ H an event and F a sub-σ-algebra of H. We say that HU is a
(local) source of A ifKU (·, A) is a version of the conditional probability PHU

(A).
We say that HU is a (local) source of F if HU is a source of all A ∈ F. We say
that HU is a global source of the causal space if HU is a source of all A ∈ H.

Clearly, source σ-algebras are not unique (whether local or global). It is
easy to see that H∅ = {∅,Ω} and H = HT = ⊗t∈TEt are global sources, and
axiom (ii) of Definition 1.2.1 implies that any HS is a local source of any of its
sub-σ-algebras, including itself, since, for any A ∈ HU , PHU

(A) = 1A. Also,
a sub-σ-algebra of a source is not necessarily a source, nor is a σ-algebra that
contains a source necessarily a source (whether local or global). In Example
1.2.4 above, altitude is a source of temperature (and hence a global source), since
the causal kernel corresponding to temperature coincides with the conditional
measure given altitude, but temperature is not a source of altitude.

When we intervene on HU (via any (Q,L)), HU becomes a global source.
This precisely coincides with the “gold standard” that is randomised control
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trials in causal inference, i.e. the idea that, if we are able to intervene on HU ,
then the causal effect of HU on any event can be obtained by first intervening
on HU , then considering the conditional distribution on HU . Next is a theorem
showing that when one intervenes on HU , then HU becomes a source.

Theorem 1.7.2. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and let U ∈ P(T ).

(i) For any measure Q on HU and any causal mechanism L on (Ω,HU ,Q),

the causal kernel K
do(U,Q,L)
U = KU is a version of Pdo(U,Q)

HU
, which means

that HU is a global source σ-algebra of (Ω,H,Pdo(U,Q),Kdo(U,Q,L)).

(ii) Suppose V ∈ P(T ) with V ⊆ U . Suppose that the measure Q on (Ω,HU )
factorises over HV and HU\V , i.e. for any A ∈ HV and B ∈ HU\V ,
Q(A∩B) = Q(A)Q(B). Then after a hard intervention on HU via Q, the

causal kernel K
do(U,Q,hard)
V is a version of Pdo(U,Q)

V , which means that HV

is a global source σ-algebra of (Ω,H,Pdo(U,Q),Kdo(U,Q,hard)).

Let A ∈ H be an event, and U ∈ P(T ). By the definition of the intervention
measure (Definition 1.2.2), we always have

Pdo(U,Q)(A) =

∫
Q(dω)KU (ω,A),

hence Pdo(U,Q)(A) can be written in terms of P and Q if KU (ω,A) can be written
in terms of P. This can be seen to occur in three trivial cases: first, if HU is a
local source of A (see Definition 1.7.1), in which case KU (ω,A) = PHU

(ω,A);
secondly, if HU has no causal effect on A (see Definition 1.3.1), in which case
KU (ω,A) = P(A); and finally, if A ∈ HU , in which case, by intervention deter-
minism (Definition 1.2.1(ii), we have KU (ω,A) = 1A(ω). In the latter case, we
do not even have dependence on P. Can we generalise these results?

Lemma 1.7.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space.
Let A ∈ H be an event, and U ∈ P(T ). If there exists a sub-σ-algebra G of H
(not necessarily of the form HV for some V ∈ P(T )) such that

(i) the conditional probability Pdo(U,Q)
HU∨G (·, A) can be written in terms of P and

Q;

(ii) the causal kernel KU (·, B) can be written in terms of P for all B ∈ G;

then Pdo(U,Q)(A) can be written in terms of P and Q.

Remark 1.7.4. The three cases discussed in the paragraph above Lemma 1.7.3
are special cases of the Lemma with G being any sub-σ-algebra of H with
{∅,Ω} ⊆ G ⊆ HU . In this case, condition (ii) is trivially satisfied since we
have KU (·, B) = 1B(·) by intervention determinism (Definition 1.2.1(ii)), and

for condition (i), by Theorem 1.7.2(i), we have Pdo(U,Q)
HU

(·, A) = KU (·, A), which
means that the problem reduces to checking if KU (·, A) can be written in terms
of P.
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Corollary 1.7.5. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space.
Let A ∈ H be an event, and U ∈ P(T ). If there exists a V ∈ P(T ) such that
condition (i) of Lemma 1.7.3 is satisfied with G = HV and one of the following
conditions is satisfied:

(a) HU is a local source of HV ; or

(b) HU has no causal effect on HV ; or

(c) V ⊆ U ,

then Pdo(U,Q)(A) can be written in terms of P and Q.

The above is reminiscent of “valid adjustments” in the context of structural
causal models (Peters et al., 2017, p.115, Proposition 6.41), and in fact contains
the valid adjustments.
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Chapter 2

Operations on Multiple
Causal Spaces

The notations and definitions in this Chapter are carried straight over from
Chapter 1.

2.1 Product Causal Spaces and Causal Indepen-
dence

We first give the definition of the product of causal kernels, and the product
of causal spaces. This constitutes the simplest way of constructing new causal
spaces from existing ones.

Definition 2.1.1. Suppose C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2)
with Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et are two causal spaces. For all S1 ⊆ T 1

and S2 ⊆ T 2, and for a pair of causal kernels K1
S1 ∈ K1 and K2

S2 ∈ K2, we
define the product causal kernel K1

S1 ⊗K2
S2 , for ω = (ω1, ω2) ∈ Ω1

S1 × Ω2
S2 and

events A1 ∈ H1 and A2 ∈ H2, by

K1
S1 ⊗K2

S2(ω,A1 ×A2) = K1
S1(ω1, A1)K

2
S2(ω2, A2).

This can then be extended to all of H1 ⊗H2 since the rectangles A1 ×A2 with
A1 ∈ H1 and A2 ∈ H2 generate H1 ⊗ H2. Then we define the product causal
space

C1 ⊗ C2 = (Ω1 × Ω2,H1 ⊗H2,P1 ⊗ P2,K1 ⊗K2)

where the product causal mechanism K1 ⊗K2 is the unique family of kernels of
the form (K1 ⊗K2)S1∪S2 = K1

S1 ⊗K2
S2 for S1 ⊆ T 1 and S2 ⊆ T 2.

We first check that this procedure indeed produces a valid causal space.

Lemma 2.1.2. The product causal space C1 ⊗C2 as defined in Definition 2.1.1
is a causal space.
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Note that it is only for the sake of simplicity of presentation that we presented
the notion of products only for two probability spaces. Indeed, we can easily
extend the definition to arbitrary products of causal kernels and causal spaces,
just like it is possible for products of probability spaces.

When we take a product of causal spaces, the corresponding components
in the resulting causal space do not have a causal effect on each other, as the
following result shows.

Lemma 2.1.3. Let C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with Ω1 =
×t∈T 1Et and Ω2 = ×t∈T 2Et be two causal spaces. Then in C1 ⊗ C2,

(i) HT 1 has no causal effect on HT 2 , and HT 2 has no causal effect on HT 1 ;

(ii) HT 1 and HT 2 are (local) sources of each other.

Product causal spaces are analogous to connected components in graphical
models – see, for example, (Sadeghi and Soo, 2023). When forming a product
of causal spaces that each arise from an SCM, then each component in the
product would be a connected component, and the components would not have
any causal effect on each other.

2.1.1 Causal Independence

Recall that, in probability spaces, two events A and B are independent with
respect to the measure P if P(A ∩ B) = P(A)P(B), i.e. the probability mea-
sure is the product measure. Moreover, two σ-algebras are independent if each
pair of events from the two σ-algebras are independent1. Similarly, for a sub-
σ-algebra F of H, two events A and B are conditionally independent given F

if PF(A ∩ B) = PF(A)PF(B) almost surely, and two σ-algebras are condition-
ally independent given F if each pair of events from the two σ-algebras are
conditionally independent given F.

The concept of (conditional) independence is arguably one of the most im-
portant in probability theory. Now we give an analogous definition of causal
independence.

Definition 2.1.4. Let C = (Ω = ×t∈TEt,H = ⊗t∈TEt,P,K) be a causal space.
Then for U ⊆ T , two events A,B ∈ H are causally independent on HU if, for
all ω ∈ Ω,

KU (ω,A ∩B) = KU (ω,A)KU (ω,B).

We say that two sub-σ-algebras F1 and F2 are causally independent on HU if
each pair of events from F1 and F2 are causally independent on HU .

More generally, we say that a finite collection of σ-algebras F1, ...,Fn are a
causal independency on HU if, for all A1 ∈ F1, ..., An ∈ Fn, we have

KU (ω,A1 ∩ ... ∩An) = KU (ω,A1)...KU (ω,An).

1Many authors take the view that the notion of independence is truly where probability
theory starts, as a distinct theory from measure theory (Çınlar, 2011, p.82, Section II.5).
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Y1 Y2

X

Y

X1 X2

Figure 2.1: Graphs of SCMs in Example 2.1.5.

Moreover, if I is an arbitrary index set, and Fi is a sub-σ-algebra of H for each
i ∈ I, then the collection {Fi : i ∈ I} is called a causal independency given HU

if its every finite subset is a causal independency on HU .

Semantically, causal independence should be interpreted as follows: if A
and B are causally independent on HU , then they are independent once an
intervention has been carried out on HU . Note also that causal independence
is really about the causal kernels, and has nothing to do with the probability
measure P of the causal space. Indeed, it is possible for A and B to be causally
independent but not probabilistically independent, or causally independent but
not conditionally independent, or vice versa. Let us illustrate with the following
simple examples.

Example 2.1.5. We use the language of SCMs, because they are convenient
framework that fits into the framework of causal spaces.

(i) Consider three variables X, Y1 and Y2 related through the equations

X = N, Y1 = X + U1, Y2 = X + U2,

where N , U1 and U2 are standard normal variables (see Figure 2.1 left).
We denote by P their joint distribution on R3, and we identify this SCM
with the causal space (R3,B(R3),P,K)2, where K is obtained via the above
structural equations. Then it is clear to see that Y1 and Y2 are causally
independent on HX , since, for every x, and A,B ∈ B(R), KX(x, {Y1 ∈
A, Y2 ∈ B}) is bivariate-normally distributed with mean (x, x) and identity
covariance matrix, and so

KX(x, {Y1 ∈ A, Y2 ∈ B}) = KX(x, {Y1 ∈ A})KX(x, {Y2 ∈ B}).

By the same reasoning, Y1 and Y2 are conditionally independent given
HX . However, it is clear that they are unconditionally dependent, because
they both depend on the value of X.

(ii) Now consider three variables X1, X2 and Y related through the equations

X1 = N1, X2 = N2, Y = X1 +X2 + U

2Here, B represents the Borel σ-algebra.
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where N1, N2 and U are standard normal variables (see Figure 2.1 right).
We denote by P their joint distribution on R3, and we identify this SCM
with the causal space (R3,B(R3),P,K), where K is obtained via the above
structural equations. Then it is clear that X1 and X2 are probabilistically
independent. They are also causally independent on HY , since, for any
A,B ∈ B(R),

KY (y, {X1 ∈ A,X2 ∈ B}) = P(X1 ∈ A,X2 ∈ B)

= P(X1 ∈ A)P(X2 ∈ B).

However, it is clear that they are conditionally dependent given HY .

2.2 Transformations of Causal Spaces

Consider causal spaces C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with
Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et. We want to define transformations between
causal spaces C1 and C2. These transformations shall, on the one hand, preserve
aspects of the causal structure, i.e., the spaces C1 and C2 shall still describe
essentially the same system. On the other hand, they shall be flexible so that
different types of mappings between causal spaces can be captured.

We focus on transformations that preserve individual variables or combine
them in a meaningful way. This relation will be encoded by a map ρ : T 1 → T 2,
which can be interpreted as encoding the fact that S ⊆ T 2 depends only on the
variables indexed by ρ−1(S). Deterministic maps are not sufficiently expressive
for our purposes and we therefore focus on stochastic maps, i.e., on probability
kernels from measurable spaces (Ω1,H1) to (Ω2,H2).

Definition 2.2.1. Suppose that κ : Ω1 × H2 → [0, 1] is a probability kernel
and ρ : T 1 → T 2 is a map. Then we call the pair (κ, ρ) admissible if κ(·, A) is
H1

ρ−1(S) measurable for all S ⊂ ρ(T 1) and A ∈ H2
S .

One difference between probability theory and causality seems to be that
the latter requires the notion of variables (equivalently a product structure of
the underlying space) that define entities that can be intervened upon. For a
meaningful relation between two causal spaces, their interventions should be
related, which requires some preservation of variables. The definition of admis-
sible maps captures the fact that variables from ρ−1(S) are combined to form
a new summary collection of variables indexed by S.

We now require maps between causal spaces to respect the distributional
and interventional structure in the following sense.

Definition 2.2.2. A transformation of causal spaces, or a causal transforma-
tion, φ : C1 → C2 is an admissible pair φ = (κ, ρ) satisfying the following two
properties.

(i) The map satisfies distributional consistency, i.e., for A ∈ H2∫
P1(dω)κ(ω,A) = P2(A). (2.1)
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C1 C2

C1,do(ρ−1(S)) C2,do(S)

κ

κ

K1
ρ−1(S) K2

S

Figure 2.2: Interventional Consistency Definition 2.2.2 Equation (2.2) – inter-
vention and transformation commute.

(ii) The map satisfies interventional consistency, i.e., for all A ∈ H2
ρ(T 1), S ⊂

ρ(T 1), and ω ∈ Ω1 the following holds∫
K1

ρ−1(S)(ω, dω
′)κ(ω′, A) =

∫
κ(ω, dω′)K2

S(ω
′, A). (2.2)

Interventional consistency requires that interventions and causal transfor-
mations commute, i.e., the result of first intervening and then applying the
transformation is the same as intervening on the target after the transformation
– see Figure 2.2.

We emphasise that in Definition 2.2.1 and 2.2.2 we do not prescribe condi-
tions for added components indexed by T 2 \ ρ(T 1).

Further, we remark that as a special case, we can accommodate deterministic
maps f : Ω1 → Ω2 by considering the associated probability kernel κf (ω,A) =
1A(f(ω)). In this case, the admissibility condition reduces to the statement that
πS ◦f is measurable with respect to H1

ρ−1(S) for all S ⊂ ρ(T 1) and distributional

consistency becomes, for A ∈ H2,

P2(A) =

∫
P1(dω)κ(ω,A)

=

∫
P1(dω)1A(f(ω))

= P1(f−1(A))

so f∗P1 = P2 is the pushforward measure of P1 along f . Interventional consis-
tency then reads

K1
ρ−1(S)(ω, f

−1(A)) = K2
S(f(ω), A) (2.3)

for all A ∈ H2
ρ(T 1), S ⊂ ρ(T 1), and ω ∈ Ω1. Alternatively this can be expressed

as
f∗K

1
ρ−1(S)(ω,A) = K2

S(f(ω), A).

where the push-forward acts on the measure defined by the probability kernel
for some fixed ω. Henceforth, with a slight abuse of notation, we denote deter-
ministic maps by (f, ρ) without resorting to the associated probability kernel.
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Y1 Y2

X1 X2 X

Y

X = X1 +X2

Y = Y1 + 2Y2

Figure 2.3: Abstraction of SCMs in Example 2.2.3.

2.2.1 Examples

Let us provide four prototypical examples of maps between causal spaces that
are covered by this definition. Again, we make use of the language of SCMs.

Example 2.2.3. We consider four variables X1, X2, Y1, and Y2 which are
related through the equations

X1 = N1, X2 = N2,

Y1 = 3X1 +X2 + U1, Y2 = X2 + U2

where U1, U2, N1, N2 are independent standard normal variables. We denote
by P their joint distribution on R4. Consider

X = N, Y = 3X + U

where N ∼ N(0, 2) and U ∼ N(0, 5). Denote their joint distribution on R2

by Q. We identify the two SCMs with causal spaces (R4,B(R4),P,K) and
(R2,B(R2),Q,L) as explained in Section 1.4.

Consider the deterministic map f : R4 → R2 given by f(x1, x2, y1, y2) =
(x1 + x2, y1 + 2y2) and the map ρ : [4] → [2] given by ρ(1) = ρ(2) = 1, ρ(3) =
ρ(4) = 2. Clearly, the pair (f, ρ) is admissible as defined in Definition 2.2.1. It
can be checked that

E[(X1 +X2)
2] = 2 = E[X2]

E[(Y1 + 2Y2)
2] = 23 = E[Y 2]

E[(X1 +X2)(Y1 + 2Y2)] = 6 = E[XY ]

which implies that f∗P = Q because both distributions are centred Gaussian and
their covariance matrices agree.

The non-trivial causal consistency relation (2.2) concerns interventions on
{X1, X2} and X and on {Y1, Y2} and Y . Note that

K{X1,X2}((x1, x2, y1, y2), ·) = δ(x1,x2) ⊗N

((
3x1 + x2

x2

)
, Id2

)
.

Then we obtain

f∗K{X1,X2}((x1, x2, y1, y2), ·) = δx1+x2
⊗N(3x1 + 3x2, 5).
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C1 C1 ⊗ C2

ρ(t) = t

κ(ω, ·) = δω ⊗ P2

Figure 2.4: Inclusions of component causal spaces into the product (Exam-
ple 2.2.4).

On the other hand, we find

LX((x, y), ·) = δx ⊗N (3x, 5)

⇒ LX(f(x1, x2, y1, y2), ·) = δx1+x2
⊗N(3x1 + 3x2, 5)

so that we see that (2.3) holds in this case. Similarly, we obtain

K{Y1,Y2}((x1, x2, y1, y2), ·) = N(0, Id1)⊗ δ(y1,y2),

LY ((x, y), ·) = N(0, 2)⊗ δy.

We again find

f∗K{Y1,Y2}((x1, x2, y1, y2), ·) = LY ((x1 + x2, y1 + 2y2), ·).

This example shows abstraction, i.e., we obtain a transformation to a more
coarse-grained view of the system. Note that interventional consistency is quite
restrictive to satisfy, e.g., here it is crucial that all distributions are Gaussian so
that all conditional distributions are also Gaussian.

Next, we consider an example that allows us to embed a causal space in a
larger space that adds an independent disjoint system. For this, we make use
of the definition of product causal spaces (Definition 2.1.1). In this case, the
transformation is stochastic.

Example 2.2.4. Let C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) be two
causal spaces, with Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et. We define an inclusion
map (κ, ρ) : C1 → C1 ⊗ C2 by considering ρ(t) = t for t ∈ T 1 and κ(ω, ·) = δω ⊗
P2 (see Figure 2.4). This pair is clearly admissible and satisfies distributional
consistency: ∫

P1(dω)κ(ω,A1 ×A2) =

∫
P1(dω)1A1

(ω)P2(A2)

= P1(A1)P2(A2).

Moreover, for any S ⊂ T 1, ω ∈ Ω1, A1 ∈ H1 and A2 ∈ H2, we have∫
K1

S(ω, dω
′)κ(ω′, A1 ×A2) = P2(A2)K

1
S(ω,A1)

and also, ∫
κ(ω, dω′

1dω
′
2)K

1
S ⊗K2

∅((ω
′
1, ω

′
2), A1 ×A2)
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Y

X

X M Y

H
ρ({X,Y }) ↪→ {X,Y,M,H}

κ = PH1

Figure 2.5: Inclusions of SCMs (Example 2.2.5).

=

∫
κ(ω, dω′

1dω
′
2)K

1
S(ω

′
1, A1)K

2
∅(ω

′
2, A2)

= K1
S(ω,A1)

∫
P2(dω′

2)P2(A2)

= P2(A2)K
1
S(ω,A1).

where we used the condition on K∅ in Definition 1.2.1. By the usual monotone
convergence theorem arguments, we have that, for any A ∈ H1 ⊗H2,∫

K1
S(ω, dω

′)κ(ω′, A) =

∫
κ(ω, dω′

1dω
′
2)K

1
S ⊗K2

∅((ω
′
1, ω

′
2), A1 ×A2).

Thus, interventional consistency holds, in this case even for all sets A, not just
for those measurable with respect to H2

ρ(T 1).

This shows that we can consider causal maps including our system into a
larger system containing additional independent components.

Finally, we consider a more involved embedding example.

Example 2.2.5. Consider the following SCM

H = NH , X = H +NX ,

M = X +NM , Y =M +H +NY .

We denote the joint distribution of (X,Y,M,H) by P, and the marginal distri-
bution on (X,Y ) by PXY .

We consider a causal space C1 = (Ω1,H1,PXY ,K) that represents the pair
(X,Y ), where Ω1 = R2 and H1 = B(R2), and a causal space C2 = (Ω2,H2,P,L)
representing the full SCM, where Ω2 = R4 and H2 = B(R4), i.e., it contains
in addition a mediator and a confounder. The causal mechanisms K and L are
derived from the SCM. Then we consider the obvious ρ that embeds {X,Y } into
{X,Y,M,H} and, for A ∈ H2,

κ(·, A) = PH1(A).

Clearly, this pair is admissible because on the variables X and Y we use the
identity transformation. Distributional consistency follows by∫

κ((x, y), A)PXY (d(x, y)) =

∫
PH1(A)dPXY
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= P(A).

Interventional consistency also holds so that (κ, ρ) is indeed a causal transforma-
tion. For a proof of this fact we refer to the more general result in Lemma 2.4.3.

This example therefore shows that we can embed a system in a larger system
that captures a more accurate description.

2.2.2 Abstractions

Note that Example 2.2.3 is different from Examples 2.2.4 and 2.2.5 in that it
compresses the representation while the other two consider an extension of the
system. As these are different objectives, we consider the following definition.

Definition 2.2.6. The maps (κ, ρ) between measurable spaces (Ω1,H1) =
⊗t∈T 1(Et,Et) and (Ω2,H2) = ⊗t∈T 2(Et,Et) is called an abstraction if ρ : T 1 →
T 2 is surjective.

In the case of abstractions it is often sufficient to consider deterministic
maps, motivating the following definition.

Definition 2.2.7. An abstraction (κ, ρ) is called a perfect abstraction if κ is
deterministic, i.e., κ = κf for some measurable f : Ω1 → Ω2, and moreover f is
surjective.

We finally remark that one further setting of potential interest would be to
consider the inverse of an abstraction, i.e., a setting where a summary variableX
is mapped to a more detailed description (X1, X2). However, to accommodate
such transformations we need a slightly different framework than the one pre-
sented here. Roughly, we need to consider ρ : T 1 → P(T 2) with ρ(t1)∩ρ(t′1) = ∅
for t1, t

′
1 ∈ T1, and interventions on all sets S ⊂ T 1 can be expressed as inter-

ventions on the target C2 (i.e., the more fine-grained representations), while this
is reversed in our case so that those two settings are dual to each other.

We do not pursue this here any further, as those transformations are of more
limited interest and applicability. Let us emphasise nevertheless that it seems
ambitious to handle all cases in one framework. Indeed, combining variables
in a summary variable or splitting variables in a more fine-grained description
are meaningful operations, but it is less clear to interpret in a causal manner a
definition of a transformation (X1, X2) → (Y1, Y2) that allows both at the same
time. For example, intervening on X1, in general, then does not correspond to a
meaningful causal operation on the variables (Y1, Y2). We also remark that this
attempt has not been made in the SCM literature, where the focus is almost
exclusively on abstractions.

2.3 Comparison with Abstraction in the SCM
framework

Rubenstein et al. (2017) gives the definition of exact transformations between
SCMs. While being the seminal work on the theory of causal abstractions, it is
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probably also the most relevant to compare to our proposals. We first recall some
essential aspects of their definition of SCMs (or SEMs, for structural equation
models, by their nomenclature)3.

Definition 2.3.1 ((Rubenstein et al., 2017, Definition 1)). Let IX be an index
set. An SEM MX over variables X = (Xi : i ∈ IX taking values in X is a tuple
(SX ,PE), where

• SX is a set of structural equations, i.e. the set of equations Xi = fi(X,Ei)
for i ∈ IX ;

• PE is a distribution over the exogenous variables E = (Ei : i ∈ IX).

Note that their definition of SCMs is a bit more general than standard ones in
the literature (e.g. (Peters et al., 2017, p.83, Definition 6.2)), in that they allow,
for example, cycles and latent confounders, but they simply insist that there
must be a unique solution to any interventions. They also consider a specific
set of “allowed interventions”, rather than considering all possible interventions.
We also recall some essential aspects of the notion of exact transformations.

Definition 2.3.2 ((Rubenstein et al., 2017, Definition 3)). LetMX andMY be
SCMs, and τ : X → Y a function. We say that MY is an exact τ -transformation
of MX if, there exists a surjective mapping ω of the interventions such that for

any intervention i, Pi
τ(X) = Pω(i)

Y .

Note that this definition is trying to capture the same concept as our notion
of interventional consistency given in (2.2): that interventions and transforma-
tions commute. However, there are several aspects in which our proposal is
more appealing.

• They only consider deterministic maps τ : X → Y, whereas we allow the
map ρ to be stochastic.

• They have to find a separate map ω between the interventions themselves,
whereas our map ρ also determines the transformation of the causal ker-
nels.

• By insisting on surjectivity of ω, they only allow the consideration of ab-
straction, whereas we can consider more general transformations of causal
spaces, such as inclusions considered in Example 2.2.4.

Nevertheless, restricted to considerations amenable to both approaches, the no-
tions coincide. For example, we return to Example 2.2.3, where we already
showed that f∗P = Q, f∗K{X1,X2} = LX and f∗K{Y1,Y2} = LY , which implies
that two-variable SCM is an exact transformation of the four-variable SCM
according to Definition 2.3.2.

3In this section, some imported notations might clash with ours; the clashes are restricted
to this section and should not cause any confusion.
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Finally, we mention that Beckers and Halpern (2019) criticise exact transfor-
mations of Rubenstein et al. (2017) on the basis that probabilities and allowed
interventions can mask significant differences between SCMs, and then proceed
to propose definitions of abstractions that depend only on the structural equa-
tions, independently of probabilities. We remark that this criticism is not valid
in our framework, in that the interventional consistency of our transformations
is imposed independently of probabilities, making it impossible to mask them
with the choice of probability measures. That this is possible with SCMs is an
artefact of the fact that in SCMs, the observational and interventional measures
are coupled through the exogenous distribution, whereas in causal spaces they
are completely decoupled.

Moreover, we consider all possible interventions rather than a reduced set
of allowed interventions. We also remark that, since probabilities and causal
kernels are the primitive objects in our framework, rather than being derived
by other primitive objects (namely the structural equations), it does not make
sense for the transformation to be defined independently of probabilities, as
done by Beckers and Halpern (2019).

2.4 Further Properties of Causal Transforma-
tions

In this section we investigate various properties of causal transformations and
connect them to the notions introduced in Chapter 1.

First, we have the following lemma on the composition of causal transfor-
mations. Recall that for two probability kernels κ1 : Ω1 ×H2 → [0, 1] mapping
(Ω1,H1) to (Ω2,H2) and κ2 : Ω2 ×H3 → [0, 1] mapping (Ω2,H2) to (Ω3,H3)
the concatenation defined by (Çınlar, 2011, p.39)

κ1 ◦ κ2(ω1, A) =

∫
κ1(ω1, dω2)κ2(ω2, A)

defines a probability kernel from (Ω1,H1) to (Ω3,H3).

Lemma 2.4.1. Let (κ1, ρ1) : C
1 → C2 and (κ2, ρ2) : C

2 → C3 be causal transfor-
mations. If (κ1, ρ1) is an abstraction then (κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2) : C1 → C3

is a causal transformation.

We remark that, unfortunately, we cannot remove the assumption that the
first transformation is an abstraction. Let us clarify this through an example.

Example 2.4.2. Consider an SCM with equations

X1 = N1,

X2 = N2,

Y = X1 +X2 +NY
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where N1, N2, and NY follow independent standard normal distributions. Then
we can consider the causal space C1 containing (X1, Y ), the causal space C2

containing (X1, X2, Y ) and an abstraction C3 containing (X1 + X2, Y ). Then
we can embed C1 → C2 and there is an abstraction C2 → C3 which are both
transformations of causal spaces.

However, their concatenation is not a causal transformation because it is
not even admissible (and also interventional consistency does not hold for the
intervention K3

X as this cannot be expressed by K1
X1

). Note that

PX2|X1=x1,Y=y = N((y − x1)/2, 1/2)

and therefore we have

κ1((x1, y), ·) = δx1 ⊗N((y − x1)/2, 1/2)⊗ δy.

We also have κ2((x1, x2, y), ·) = δ(x1+x2,y). Thus, their concatenation is
given by

κ3((x1, y), ·) = N((y + x1)/2, 1/2)⊗ δy.

So the first coordinate is not measurable with respect to H1
X1

.

This shows that we lose measurability along the concatenation because the
variables added in the more complete description C2 may depend on all other
variables.

Let us now generalise Example 2.2.5 to general SCMs.

Lemma 2.4.3. Consider an acyclic SCM on variables (X1, . . . , Xd) ∈ Rd with
observational distribution P. Let S ⊂ [d], R = Sc = [d] \ S and consider
causal spaces C1 = (Ω1,H1,PS ,K) and C2 = (Ω2,H2,P,L), where we have
(Ω1,H1) = (R|S|,B(R|S|)) and (Ω2,H2) = (Rd,B(Rd)). Moreover, PS is the
marginal distribution on the variables in S, and the causal mechanisms K and
L are derived from the SCM. In particular, K is a marginalisation of L, namely,
for any ω ∈ Ω2, any event A ∈ H1 and any S′ ⊆ S, we have that KS′(ω,A) =
LS′(ω,A).

Consider the map ρ : S ↪→ [d] and κ(·, A) = PH1(A). Then (ρ, κ) is a causal
transformation from C1 to C2.

We now investigate to what degree distributional and interventional con-
sistency determines the causal structure on the target space. We show that
generally the causal structure on H2

ρ(T ) is quite rigid.

Lemma 2.4.4. Let C2 = (Ω2,H2,P2,K2) and C̃2 = (Ω2,H2, P̃2, K̃2) be two
causal spaces with the same underlying measurable space.

Let (κ, ρ) be an admissible pair for the measurable spaces (Ω1,H1) and
(Ω2,H2). Assume that the pair (κ, ρ) defines causal transformations φ : C1 →
C2 and φ̃ : C1 → C̃2 be a causal transformations.

Then P2 = P̃2, and for all A ∈ H2
ρ(T 1) and any S ⊆ T 2

K2
S(ω,A) = K̃2

S(ω,A) for P2 = P̃2-a. e. ω ∈ Ω2.
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We cannot expect to derive much stronger results for general causal transfor-
mation because interventional consistency does not restrict K2(ω,A) for ω not
in the support of P2 or A /∈ H2

ρ(T ). For example, in the setting of Example 2.2.4,
the causal structure on the second factor is arbitrary.

However, when we consider deterministic transformations (f, ρ) such that
f : (Ω1,H1) → (Ω2,H2) and ρ are surjective, then there is at most one causal
structure on the target space (Ω2,H2) such that the pair (f, ρ) is a causal
transformation (and thus a perfect abstraction).

Lemma 2.4.5. Suppose (f, ρ) is an admissible pair for the causal space C1 =
(Ω1,H1,P1,K1) to the measurable space X2 = (Ω2,H2) and assume that ρ is
surjective and f : Ω1 → Ω2 measurable. If f is surjective, there exists at most
one causal space C2 = (Ω2,H2,P2,K2) such that (f, ρ) : C1 → C2 is a causal
transformation.

If, in addition, K1
ρ−1(S2)(·, A) is measurable with respect to f−1(H2

S2) for all

A ∈ f−1(H2) and all S2 ⊂ T 2 then a unique causal space C2 exists such that
(f, ρ) : C1 → C2 is a causal transformation.

To motivate the measurability condition for K1(·, A), we remark that in-
terventional consistency requires K1(ω,A) = K1(ω′, A) for ω and ω′ with
f(ω) = f(ω′), and the measurability condition in the result is a slightly stronger
condition than this.

Next, we show that interventions on a space can be pushed forward along a
perfect abstraction.

Lemma 2.4.6. Let C1 = (Ω1,H1,P1,K1) with (Ω1,H1) a product with index
set T 1 and C2 = (Ω2,H2,P2,K2) with (Ω2,H2) a product with index set T 2 be
causal spaces, and let (f, ρ) : C1 → C2 be a perfect abstraction.

Let U1 = ρ−1(U2) ⊆ T 1 for some U2 ⊆ T 2. Let Q1 be a probability measure
on (Ω1,H1

U1) and L1 a causal mechanism on (Ω1,H1
U1 ,Q1). Suppose that, for

all S ⊆ U2 and A ∈ H1, the map L1
ρ−1(S)(·, A) is measurable with respect to

f−1(H2
S), and consider the intervened causal spaces

C1
I = (Ω1,H1, (P1)do(U

1,Q1), (K1)do(U
1,Q1,L1)),

C2
I = (Ω2,H2, (P2)do(U

2,Q2), (K2)do(U
2,Q2,L2)),

where Q2 = f∗Q1 and L2 is the unique family of kernels satisfying

L2
S(f(ω), A) = L1

ρ−1(S)(ω, f
−1(A))

for all ω ∈ Ω1, A ∈ H2, and S ⊆ U2. Then (f, ρ) : C1
I → C2

I is a perfect
abstraction.

We now study whether causal effects in target and domain of a causal trans-
formation can be related. Our first results shows that, for perfect abstractions
having no causal effect in the domain implies, there is also no causal effect in
the target.
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Lemma 2.4.7. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). If H1

U1 has no
causal effect on H1

V 1 in C1, then H2
U2 has no causal effect on H2

V 2 in C2.

On the other hand, we can show that when there is an active causal effect
in the target space, there is also an active causal effect in the domain.

Lemma 2.4.8. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that H2

U2

has an active causal effect on H2
V 2 in C2. Then H1

U1 has an active causal effect
on H1

V 1 in C1.

The reverse statements are not true, i.e., if there is no causal effect in the
target there might be a causal effect in the domain, and if there is an active
causal effect in the domain this does not imply that there is a causal effect in
the target, which can be seen by considering a target space with only a single
point.

We can also study causal effects in the context of embedding transformations,
as in Lemma 2.4.3. Then we see directly that active causal effects are preserved.
On the other hand, it is straightforward to construct examples where there is
no causal effect in a subsystem, but there is a causal effect in a larger system.
This can be achieved by a violation of faithfulness.

Example 2.4.9. Consider the SCM

X = NX ,

M = NX +NM ,

Y =M −X +NY .

Then there is no causal effect from σ(X) to σ(Y ) in the system (X,Y ) but there
is a causal effect in the complete system.

Finally, we show that similar results can be established for sources. Indeed,
perfect abstraction preserve sources in the following sense.

Lemma 2.4.10. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two
sets U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that
H1

U1 is a local source of H1
V 1 in C1. Then H2

U2 is a local source of H2
V 2 in C2.

In particular, this implies that if H1
U1 is a global source then H2

U2 also is a
global source.

Similar to our results for causal effects, the existence of sources in the ab-
stracted space does not guarantee the existence of sources in the domain space.
Note that local sources are preserved in the setting of Lemma 2.4.3. On the
other hand, global sources are clearly not preserved, as we can add a global
source to the system.
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Kernel Regression
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Chapter 3

Kernel Conditional Mean
Embeddings

3.1 Preliminaries

We take (Ω,F , P ) as the underlying probability space. Let (X ,X), (Y,Y) and
(Z,Z) be separable measurable spaces, and let X : Ω → X , Y : Ω → Y and
Z : Ω → Z be random variables with distributions PX , PY and PZ . We will use
Z as the conditioning variable throughout.

3.1.1 Positive definite kernels and RKHS embeddings

Let HX be a vector space of X → R functions, endowed with a Hilbert space
structure via an inner product ⟨·, ·⟩HX . A symmetric function kX : X ×X → R
is a reproducing kernel of HX if and only if: 1. ∀x ∈ X , kX (x, ·) ∈ HX ; 2.
∀x ∈ X and ∀f ∈ HX , f(x) = ⟨f, kX (x, ·)⟩HX . A space HX which possesses a
reproducing kernel is called a reproducing kernel Hilbert space (RKHS) (Berlinet
and Thomas-Agnan, 2004). Throughout the rest of this thesis, we assume that
all RKHSs are separable. This is not a restrictive assumption, since it is satisfied
if, for example, kX is a continuous kernel (Steinwart and Christmann, 2008,
p.130, Lemma 4.33) (for further details, please see Owhadi and Scovel (2017)).
Given a distribution PX on X , assuming the integrability condition∫

X

√
kX (x, x)dPX(x) <∞, (3.1)

we define the kernel mean embedding µPX
(·) =

∫
X kX (x, ·)dPX(x) of PX , where

the integral is a Bochner integral (Dinculeanu, 2000, p.15, Def. 35). We will
later show a conditional analogue of the following lemma.

Lemma 3.1.1 (Smola et al. (2007)). For each f ∈ HX ,
∫
X f(x)dPX(x) =

⟨f, µPX
⟩HX .
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Next, supposeHY is an RKHS of functions on Y with kernel kY , and consider
the tensor product RKHS HX ⊗ HY (see (Weidmann, 1980, pp.47-48) for a
definition of tensor product Hilbert spaces).

Theorem 3.1.2 ((Berlinet and Thomas-Agnan, 2004, p.31, Theorem 13)). The
tensor product HX ⊗HY is generated by the functions f ⊗ g : X ×Y → R, with
f ∈ HX and g ∈ HY defined by (f ⊗ g)(x, y) = f(x)g(y). Moreover, HX ⊗HY
is an RKHS of functions on X × Y with kernel (kX ⊗ kY)((x1, y1), (x2, y2)) =
kX (x1, x2)kY(y1, y2).

Now let us impose a slightly stronger integrability condition:

EX [kX (X,X)] <∞, EY [kY(Y, Y )] <∞. (3.2)

This ensures that kX (X, ·)⊗kY(Y, ·) is Bochner PXY -integrable, and so µPXY
:=

EXY [kX (X, ·)⊗ kY(Y, ·)] ∈ HX ⊗HY . The next lemma is analogous to Lemma
3.1.1:

Lemma 3.1.3 ((Fukumizu et al., 2004, Theorem 1)). For f ∈ HX , g ∈ HY ,
⟨f ⊗ g, µPXY

⟩HX⊗HY = EXY [f(X)g(Y )].

As a consequence, for any pair f ∈ HX and g ∈ HY , we have ⟨f ⊗ g, µPXY
−

µPX
⊗ µPY

⟩HX⊗HY = CovXY [f(X), g(Y )]. There exists an isometric isomor-
phism T : HX ⊗HY → HS(HX ,HY), where HS(HX ,HY) is the space of Hilbert-
Schmidt operators from HX to HY . The (centred) cross-covariance operator is
defined as CYX := T (µPXY − µPX

⊗ µPY
) (Fukumizu et al., 2004, Theorem 1).

The object T (µPXY
) is referred to as the uncentred cross-covariance operator in

the literature (Song et al., 2010a, Section 3.2).
The notion of characteristic kernels is essential, since it tells us that the asso-

ciated RKHSs are rich enough to enable us to distinguish different distributions
from their embeddings.

Definition 3.1.4 (Fukumizu et al. (2008)). A positive definite kernel kX is
characteristic to a set P of probability measures defined on X if the map P →
HX : PX 7→ µPX

is injective.

Sriperumbudur et al. (2010) discusses various characterisations of charac-
teristic kernels and show that the well-known Gaussian and Laplacian ker-
nels are characteristic. We then have a metric on P via ∥µPX

− µPX′∥HX for
PX , PX′ ∈ P, which is the definition of the MMD (Gretton et al., 2007). Further-
more, the HSIC is defined as the Hilbert-Schmidt norm of CYX , or equivalently,
∥µPXY

−µPX
⊗µPY

∥HX⊗HY (Gretton et al., 2005). If kX ⊗ kY is characteristic,
then HSIC = 0 if and only if X ⊥⊥ Y .

3.1.2 Conditioning

Recall that we reviewed some essentials of probability theory with real-valued
random variables in Section 1.1. We briefly review the concept of condition-
ing in measure-theoretic probability theory with Banach space-valued random
variables. We consider a sub-σ-algebra E of F and a Banach space H.
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Definition 3.1.5 (Conditional Expectation, (Dinculeanu, 2000, p.45, Defini-
tion 38)). Suppose H is a Bochner P -integrable, H-valued random variable.
Then the conditional expectation of H given E is any E-measurable, Bochner P -
integrable, H-valued random variable H ′ such that

∫
A
HdP =

∫
A
H ′dP ∀A ∈ E .

Any H ′ satisfying this condition is a version of E[H | E ]. We write E[H | Z]
to mean E[H | σ(Z)], where σ(Z) is the sub-σ-algebra of F generated by the
random variable Z.

The (almost sure) uniqueness of the conditional expectation is shown in (Din-
culeanu, 2000, p.44, Proposition 37), and the existence in (Dinculeanu, 2000,
pp.45-46, Theorems 39 and 50). The following theorem, proved in Appendix
A.3, is the reason why a regular version is important. It means that, roughly
speaking, the conditional expectation is indeed obtained by integration with
respect to the conditional measure.

Theorem 3.1.6 (Adapted from (Çınlar, 2011, p.150, Proposition 2.5)). Suppose
that P (· | E) admits a regular version Q. Then QH : Ω → H with ω 7→ QωH =∫
Ω
H(ω′)Qω(dω

′) is a version of E[H | E ] for every Bochner P -integrable H.

3.1.3 Vector-valued RKHS regression

In this subsection, we introduce the theory of vector-valued RKHS regression,
based on operator-valued kernels. For a more comprehensive treatment, see
Chapter 5. Let H be a Hilbert space, which will be the output space of regres-
sion.

Definition 3.1.7 ((Carmeli et al., 2006, Definition 1)). An H-valued RKHS on
Z is a Hilbert space G such that 1. the elements of G are functions Z → H; 2.
∀z ∈ Z, ∃Cz > 0 such that ∥F (z)∥H ≤ Cz∥F∥G ∀F ∈ G.

Next, we let L(H) denote the Banach space of bounded linear operators from
H into itself.

Definition 3.1.8 ((Carmeli et al., 2006, Definition 2)). A H-kernel of positive
type on Z × Z is a map Γ : Z × Z → L(H) such that ∀N ∈ N, ∀z1, ..., zN ∈ Z
and ∀c1, ..., cN ∈ R,

∑N
i,j=1 cicj⟨Γ(zj , zi)h, h⟩H ≥ 0 ∀h ∈ H.

Analogously to the scalar case, it can be shown that any H-valued RKHS
G possesses a reproducing kernel, which is an H-kernel of positive type Γ satis-
fying, for any z, z′ ∈ Z, h, h′ ∈ H and F ∈ G, ⟨F (z), h⟩H = ⟨F,Γ(·, z)h⟩G and
⟨h,Γ(z, z′)(h′)⟩H = ⟨Γ(·, z)(h),Γ(·, z′)(h′)⟩G .

Now suppose we want to perform regression with input space Z and output
space H, by minimising

1

n

n∑
j=1

∥hj − F (zj)∥2H + λ∥F∥2G , (3.3)

where λ > 0 is a regularisation parameter and {(zj , hj) : j = 1, ..., n} ⊆ Z ×H.
There is a corresponding representer theorem (here, δjl is the Kronecker delta):
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Theorem 3.1.9 ((Micchelli and Pontil, 2005, Theorem 4.1)). If F̂ minimises
(3.3) in G, it is unique and has the form F̂ =

∑n
j=1 Γ(·, zj)(uj) where the

coefficients {uj : j = 1, ..., n} ⊆ H are the unique solution of the linear equations∑n
l=1(Γ(zj , zl) + nλδjl)(ul) = hj , j = 1, ..., n.

3.1.4 Generalised Jensen’s Inequality

In Section 3.3, we require a version of Jensen’s inequality generalised to (possi-
bly) infinite-dimensional vector spaces, because our random variable takes values
in HX , and our convex function is ∥·∥2HX

: HX → R. Note that this square norm
function is indeed convex, since, for any t ∈ [0, 1] and any pair f, g ∈ HX ,

∥tf + (1− t)g∥2HX
≤ (t∥f∥HX + (1− t)∥g∥HX )

2 by the triangle inequality

≤ t∥f∥2HX
+ (1− t)∥g∥2HX

, by the convexity of x 7→ x2.

The following theorem generalises Jensen’s inequality to infinite-dimensional
vector spaces.

Theorem 3.1.10 ((Perlman, 1974), Theorem 3.10). Suppose T is a real Haus-
dorff locally convex (possibly infinite-dimensional) linear topological space, and
let C be a closed convex subset of T . Suppose (Ω,F , P ) is a probability space,
and V : Ω → T a Pettis-integrable random variable such that V (Ω) ⊆ C. Let
f : C → [−∞,∞) be a convex, lower semi-continuous extended-real-valued func-
tion such that E[f(V )] exists. Then

f(E[V ]) ≤ E[f(V )].

We will actually apply generalised Jensen’s inequality with conditional ex-
pectations, so we need the following theorem. The proof is in Appendix A.3.

Theorem 3.1.11 (Generalised Conditional Jensen’s Inequality). Suppose T is
a real Hausdorff locally convex (possibly infinite-dimensional) linear topological
space, and let C be a closed convex subset of T . Suppose (Ω,F , P ) is a probability
space, and V : Ω → T a Pettis-integrable random variable such that V (Ω) ⊆ C.
Let f : C → [−∞,∞) be a convex, lower semi-continuous extended-real-valued
function such that E[f(V )] exists. Suppose E is a sub-σ-algebra of F . Then

f(E[V | E ]) ≤ E[f(V ) | E ].

In the context of Section 3.3, HX is real and Hausdorff, and locally convex
(because it is a normed space). We take the closed convex subset to be the whole
space HX itself. The function ∥·∥2HX

: HX → R is convex (as shown above) and
continuous, and finally, since Bochner-integrability implies Pettis integrability,
all the conditions of Theorem 3.1.11 are satisfied.
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3.2 Conditional mean embedding

We are now ready to introduce a formal definition of the conditional mean
embedding of X given Z.

Definition 3.2.1. Assuming X satisfies the integrability condition (3.1), we
define the conditional mean embedding ofX given Z as µPX|Z := E[kX (X, ·) | Z].

This is a direct extension of the unconditional kernel mean embedding,
µPX

= E[kX (X, ·)], but instead of being a fixed element in HX , µPX|Z is a
Z-measurable random variable taking values in HX (see Definition 3.1.5). Also,
for any function f : X → R, E[f(X) | Z] is a real-valued Z-measurable random
variable. The following lemma is analogous to Lemma 3.1.1.

Lemma 3.2.2. For any f ∈ HX , E[f(X) | Z] = ⟨f, µPX|Z ⟩HX almost surely.

Next, assuming X and Y satisfy (3.2), we define µPXY |Z := E[kX (X, ·) ⊗
kY(Y, ·) | Z], a Z-measurable, HX ⊗HY -valued random variable. We have the
following analogy of Lemma 3.1.3:

Lemma 3.2.3. For any pair f ∈ HX and g ∈ HY , E[f(X)g(Y ) | Z] = ⟨f ⊗
g, µPXY |Z ⟩HX⊗HY almost surely.

By Lemmas 3.2.2 and 3.2.3, for any pair f ∈ HX and g ∈ HY ,

⟨f ⊗ g, µPXY |Z − µPX|Z⊗µPY |Z ⟩HX⊗HY = Cov(f(X), g(Y ) | Z)
= E[f(X)g(Y ) | Z]− E[f(X) | Z]E[g(Y ) | Z]

almost surely. Hence, we define the conditional cross-covariance operator as
CY X|Z := T (µPXY |Z −µPX|Z ⊗µPY |Z ) (see Section 3.1.1 for the definition of T ).

3.2.1 Comparison with existing definitions

As previously mentioned, the idea of CMEs and conditional cross-covariance
operators is not a novel one, yet our development of the theory above differs
significantly from the existing works. In this subsection, we review the previous
approaches and compare them to ours.

The prevalent definition of CMEs in the literature is the following. We first
need to endow the conditioning space Z with a scalar kernel, say kZ : Z×Z → R,
with corresponding RKHS HZ .

Definition 3.2.4 ((Song et al., 2009, Definition 3)). The conditional mean
embedding of the conditional distribution P (X | Z) is the operator UX|Z :

HZ → HX defined by UX|Z = CXZC−1
ZZ , where CXZ and CZZ are unconditional

(cross-)covariance operators as defined in Section 3.1.1.

As noted by (Song et al., 2009), the motivation for this comes from (Fuku-
mizu et al., 2004, Theorem 2), which states that for any f ∈ HX , if E[f(X) |
Z = ·] ∈ HZ , then CZZE[f(X) | Z = ·] = CZX f . This relation can be used to
prove the following theorem, which is analogous to Lemma 3.2.2.
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Theorem 3.2.5 ((Song et al., 2009, Theorem 4)). For f ∈ HX , assuming
E[f(X) | Z = ·] ∈ HZ , UX|Z satisfies: 1. µX|z := E[kX (X, ·) | Z = z] =
UX|ZkZ(z, ·); 2. E[f(X) | Z = z] = ⟨f, µX|z⟩HX .

Now we highlight the key differences between this approach and ours. Firstly,
this approach requires the endowment of a kernel kZ on the conditioning space
Z, and defines the CME as an operator from HZ to HX . By contrast, Definition
3.2.1 did not consider any kernel or function on Z, and defined the CME as a
Bochner conditional expectation given σ(Z). We argue that it is more natural
not to endow the conditioning space with a kernel before the estimation stage.
Secondly, the operator-based approach assumes that E[f(X)|Z = ·], as a func-
tion in z, lives in HZ . This is a severe restriction; it is stated in (Song et al.,
2009) that this assumption, while true for finite domains with characteristic
kernels, is not necessarily true for continuous domains, and (Fukumizu et al.,
2013) gives a simple counterexample using the Gaussian kernel. Lastly, it also
assumes that C−1

ZZ exists, which is another unrealistic assumption. (Fukumizu
et al., 2013) mentions that this assumption is too strong in many situations, and
gives a counterexample using the Gaussian kernel. The most common remedy is
to resort to the regularised version CXZ (CZZ + λI)−1 and treat it as an approx-
imation of UX|Z . These assumptions have been clarified and slightly weakened
in (Klebanov et al., 2020), but strong and hard-to-verify conditions persist. In
contrast, Definition 3.2.1 extend the notions of kernel mean embedding, expec-
tation operator and cross-covariance operator to the conditional setting simply
by using the formal definition of conditional expectations (Definition 3.1.5), and
the subsequent result in Lemma 3.2.2, analogous to (Song et al., 2009, Theorem
4), does not rely on any assumptions.

A regression interpretation is given in Grünewälder et al. (2012a), by showing
the existence, for each z ∈ Z, of µ(z) ∈ HX that satisfies E[h(X) | Z = z] =
⟨h, µ(z)⟩HX . However, no explicit expression for µ(z) is provided. In contrast,
our definition provides an explicit expression µPX|Z = E[kX (X, ·) | Z].

In (Fukumizu et al., 2004, Section A.2), the conditional cross-covariance
operator is defined, but in a significantly different way. It is defined as ΣYX |Z :=

CYX − CYZ C̃−1
ZZCZX , where C̃−1

ZZ is the right inverse of CZZ on (KerCZZ )⊥. This
has the property that, for all f ∈ HX and g ∈ HY ,

⟨g,ΣYX |Zf⟩HY = E[Cov(f(X), g(Y ) | Z)].

Note that this is different to our relation stated after Lemma 3.2.3; the condi-
tional covariance is integrated out over Z. In fact, this difference is explicitly
noted by Song et al. (2009).

3.3 Empirical estimates

In this section, we discuss how we can obtain empirical estimates of µPX|Z =
E[kX (X, ·) | Z].
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Theorem 3.3.1. Denote the Borel σ-algebra of HX by B(HX ). Then we can
write µPX|Z = FPX|Z ◦Z, where FPX|Z : Z → HX is some deterministic function,
measurable with respect to Z and B(HX ).

Hence, estimating µPX|Z boils down to estimating the function FPX|Z , which
is exactly the setting for vector-valued regression (Section 3.1.3) with input
space Z and output space HX . In contrast to Grünewälder et al. (2012a),
where regression is motivated by applying the Riesz representation theorem
conditioned on each value of z ∈ Z, we derive the CME as an explicit function of
Z, which we argue is a more principled way to motivate regression. Moreover, for
continuous Z, the event Z = z has measure 0, so it is not measure-theoretically
rigorous to apply the Riesz representation theorem conditioned on Z = z.

The natural optimisation problem is to minimise the loss

EX|Z(F ) := EZ [∥FPX|Z (Z)− F (Z)∥2HX
]

among all F ∈ GXZ , where GXZ is a vector-valued RKHS of functions Z → HX .
For simplicity, we endow GXZ with a kernel lXZ(z, z

′) = kZ(z, z
′)Id, where

kZ(·, ·) is a scalar kernel on Z.1

We cannot minimise EX|Z directly, since we do not observe samples from
µPX|Z , but only the pairs (xi, zi) from (X,Z). We bound this with a surrogate

loss ẼX|Z that has a sample-based version:

EX|Z(F ) = EZ [∥EX|Z [kX (X, ·)− F (Z) | Z]∥2HX
]

≤ EZEX|Z [∥kX (X, ·)− F (Z)∥2HX
| Z]

= EX,Z [∥kX (X, ·)− F (Z)∥2HX
]

=: ẼX|Z(F ),

where we used generalised conditional Jensen’s inequality (see Section 3.1.4, or
Perlman (1974)). Section 3.3.1 discusses the meaning of this surrogate loss. We
replace the surrogate population loss with a regularised empirical loss based on
samples {(xi, zi)}ni=1 from the joint distribution PXZ :

ÊX|Z,n,λ(F ) :=
1

n

n∑
i=1

∥kX (xi, ·)− F (zi)∥2HX
+ λ∥F∥2GXZ

,

where λ > 0 is a regularisation parameter. We see that this loss functional is ex-
actly in the form of (3.3). Therefore, by Theorem 3.1.9, the minimiser F̂PX|Z ,n,λ

of ÊX|Z,n,λ is F̂PX|Z ,n,λ(·) = kT
Z(·)f , where kZ(·) := (kZ(z1, ·), ..., kZ(zn, ·))T ,

f := (f1, ..., fn)
T and the coefficients fi ∈ HX are the unique solutions of

1EX|Z is not the only loss function, nor is lXZ the only kernel, that we can use for this
problem. Kadri et al. (2016) discuss various operator-valued kernels that can be used (albeit
without closed-form solutions) and Laforgue et al. (2020) discuss other loss functions that can
be used for more robust estimates. We view this flexibility to facilitate other loss and kernel
functions in the regression set-up, although not explored in depth in this work, as a significant
advantage over the previous approaches.

58



CHAPTER 3. KERNEL CONDITIONAL MEAN EMBEDDINGS

the linear equations (KZ + nλI)f = kX , where [KZ ]ij := kZ(zi, zj), kX :=
(kX (x1, ·), ..., kX (xn, ·))T and I is the n × n identity matrix. Hence, the coeffi-
cients are f = WkX , where W = (KZ + nλI)−1. Finally, substituting this into
the expression for F̂PX|Z ,n,λ(·), we have

F̂PX|Z ,n,λ(·) = kT
Z(·)WkX ∈ GXZ . (3.4)

3.3.1 Surrogate loss, universality and consistency

In this subsection, we investigate the meaning and consequences of using the
surrogate loss ẼX|Z instead of the original EX|Z , as well as the universal consis-
tency property of our learning algorithm.

Denote by L2(Z, PZ ;HX ) the Banach space of (equivalence classes of) mea-
surable functions F : Z → HX such that ∥F (·)∥2HX

is PZ-integrable, with norm

∥F∥2 = (
∫
Z∥F (z)∥

2
HX

dPZ(z))
1
2 . We can note that the true function FPX|Z be-

longs to L2(Z, PZ ;HX ), because Theorem 3.3.1 tells us that FPX|Z is indeed
measurable, and by Theorem 3.1.11 and (3.2),∫

Z
∥FPX|Z (z)∥

2
HX

dPZ(z) = EZ [∥EX|Z [kX (X, ·) | Z]∥2HX
]

≤ EZ [EX|Z [∥kX (X, ·)∥2HX
| Z]]

= EX [∥kX (X, ·)∥2HX
]

<∞.

The true function FPX|Z is the unique minimiser in L2(Z, PZ ;HX ) of both EX|Z

and ẼX|Z :

Theorem 3.3.2. FPX|Z minimises both ẼX|Z and EX|Z over L2(Z, PZ ;HX ).
Moreover, it is almost surely equal to any other minimiser of the loss functionals.

Note the difference in the statement of Theorem 3.3.2 from (Grünewälder
et al., 2012a, Theorem 3.1), which only considers the minimisation of the loss
functionals in GXZ , whereas we consider the larger space L

2(Z, PZ ;HX ). Next,
we discuss the concepts of universal kernels and universal consistency.

Definition 3.3.3 ((Carmeli et al., 2010, Definition 2)). A kernel lXZ : Z×Z →
L(HX ) with RKHS GXZ is C0 if GXZ is a subspace of C0(Z,HX ), the space of
continuous functions Z → HX vanishing at infinity. The kernel lXZ is C0-
universal if is is C0 and GXZ is dense in L2(Z, PZ ;HX ) for any measure PZ on
Z.

Carmeli et al. (2010, Example 14) shows that lXZ = kZ(·, ·)Id is C0-universal
if kZ is a universal scalar kernel, which in turn is guaranteed if kZ is Gaussian
or Laplacian, for example (Steinwart, 2001).

The consistency result with optimal rate Op(
logn
n ) in (Grünewälder et al.,

2012a, Corollaries 4.1, 4.2) is based on Caponnetto and De Vito (2006), and as-
sumes, as well as some distributional assumptions, thatHX is finite-dimensional,
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which is not true for many common choices of kX . In (Song et al., 2009, Theorem
6), (Song et al., 2010b, Theorem 1) and (Fukumizu, 2015, Theorem 1.3.2), con-

sistency is also shown under various assumptions, with rates at best Op(n
− 1

4 ).
In Theorem 3.3.4, we prove universal consistency without any distributional as-
sumptions, and in Theorem 3.3.5, we show that a convergence rate of Op(n

−1/4)
can be achieved with a simple smoothness assumption that FPX|Z ∈ GXZ (some-
times referred to as the well-specified case; see Szabó et al. (2016)). In particular,
both results relax the finite-dimensionality assumption on HX of Grünewälder
et al. (2012a).

Theorem 3.3.4. Suppose that kX and kZ are bounded kernels, i.e. there are
BZ , BX > 0 with supz∈Z kZ(z, z) ≤ B2

Z , supx∈X kX (x, x) ≤ B2
X , and that the

operator-valued kernel lXZ is C0-universal. Let the regularisation parameter λn
decay to 0 at a slower rate than O(n−1/2). Then the learning algorithm that
yields F̂PX|Z ,n,λn

is universally consistent, i.e. for any joint distribution PXZ ,

ϵ > 0 and δ > 0, PXZ (ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) > ϵ) < δ for sufficiently

large n.

Theorem 3.3.5. Assume further that FPX|Z ∈ GXZ . Then with probability at
least 1− δ,

ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) ≤ λn

∥∥FPX|Z

∥∥2
GXZ

+
2 ln

(
4
δ

)
3nλn

(
1 +

√
1 +

18n

ln
(
4
δ

))((
BZ

∥∥FPX|Z

∥∥
GXZ

+BX

)2
λn +B2

X

(
BZ +

√
λn

)2)
In particular, if λn = O(n−1/4), then ẼX|Z(F̂PX|Z ,n,λn

) − ẼX|Z(FPX|Z ) =

Op(n
−1/4). The boundedness assumption is satisfied with many commonly used

kernels, such as the Gaussian and Laplacian, and hence is not a restrictive con-
dition. Note that some smoothness assumption on FPX|Z or other distributional
assumptions are necessary to achieve universal convergence rates, otherwise the
rates can be arbitrarily slow – for more discussion, see e.g. (Vapnik, 1998, p.56),
(Devroye et al., 1996, p.114, Theorem 7.2) or (Györfi et al., 2006, p.32, Theo-
rem 3.1). It is likely that better (and even optimal) rates can be achieved with
further assumptions (see e.g. Caponnetto and De Vito (2006); Steinwart et al.
(2009); Blanchard and Mücke (2018) for results with real or finite-dimensional
output spaces), but we leave further investigation of learning rates with infinite-
dimensional output spaces as future work.

Theorem 3.3.4 is stated with respect to the surrogate loss ẼX|Z , not the orig-
inal loss EX|Z . Let us now investigate its implications with respect to the orig-

inal loss. Write η = ẼX|Z(FPX|Z ). Since ẼX|Z(F̂PX|Z ,n,λn
) ≥ EX|Z(F̂PX|Z ,n,λn

),
a consequence of Theorem 3.3.4 is that

lim
n→∞

PXZ (EX|Z(F̂PX|Z ,n,λn) > ϵ+ η) ≤ lim
n→∞

PXZ (ẼX|Z(F̂PX|Z ,n,λn)− η > ϵ)
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= 0

for any ϵ > 0. This shows that, in the limit as n→ ∞, the loss EX|Z(F̂PX|Z ,n,λn
)

is at most an arbitrarily small amount larger than η with high probability.
It remains to investigate what η represents, and how large it is. The law of

total expectation gives

η = E[∥kX (X, ·)− FPX|Z (Z)∥
2
HX

] = E[E[∥kX (X, ·)− E[kX (X, ·) | Z]∥2HX
| Z]].

Here, the integrand E[∥kX (X, ·) − E[kX (X, ·)| | Z]∥2HX
| Z] is the variance

of kX (X, ·) given Z (see (Bharucha-Reid, 1972, p.24) for the definition of the
variance of Banach-space valued random variables), and by integrating over Z
in the outer integral, η represents the “expected variance” of kX (X, ·).

Suppose X is measurable with respect to Z, i.e. FPX|Z has no noise. Then
E[kX (X, ·) | Z] = kX (X, ·), and consequently, η = 0. In this case, we have
universal consistency in both the surrogate loss ẼX|Z and the original loss EX|Z .
On the other hand, η will be large if information about Z tells us little about
X, and subsequently kX (X, ·) ∈ HX . In the extreme case where X and Z are
independent, we have E[kX (X, ·) | Z] = E[kX (X, ·)], and η = E[∥kX (X, ·) −
E[kX (X, ·)]∥2HX

], which is precisely the variance of kX (X, ·) in HX . Hence, η
represents the irreducible loss of the true function due to noise in X, and the
surrogate loss represents the loss functional taking noise into account, while the
original loss measures the deviance from the true conditional expectation.

3.4 Discrepancy between conditional distribu-
tions and conditional independence

In this section, we propose conditional analogues of the maximum mean dis-
crepancy (MMD) and the Hilbert-Schmidt independence criterion (HSIC), to
measure, respectively, the discrepancy between conditional distributions and
conditional independence.

3.4.1 Maximum conditional mean discrepancy

Let X ′ : Ω → X , Z ′ : Ω → Z be additional random variables, with∫
X

√
kX (x′, x′)dPX′(x′) <∞.

Following Theorem 3.3.1, we write µPX|Z = FPX|Z ◦Z and µPX′|Z′ = FPX′|Z′ ◦Z ′.

Definition 3.4.1. The maximum conditional mean discrepancy (MCMD) be-
tween PX|Z and PX′|Z′ is defined as the function Z → R given by

MPX|Z ,PX′|Z′ (z) = ∥FPX|Z (z)− FPX′|Z′ (z)∥HX .
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Using {(xi, zi)}ni=1, {(x′j , z′j)}mj=1 from joint distributions PXZ , PX ′Z ′ , we ob-
tain a closed-form, plug-in estimate from (3.4) for the square of the MCMD
function as

M̂2
PX|Z ,PX′|Z′ (·) = ∥F̂PX|Z ,n,λ(·)− F̂PX′|Z′ ,m,λ′(·)∥2HX

= kT
Z(·)WZKXWT

ZkZ(·)
− 2kT

Z(·)WZKXX ′WT
Z′kZ′(·)

+ kT
Z′(·)WZ′KX′WT

Z′kZ′(·),

where

[KX ]ij = kX (xi, xj),

[KX′ ]ij = kX (x′i, x
′
j),

[KXX ′ ]ij = kX (xi, x
′
j),

[KZ ′ ]ij = kX (z′i, z
′
j),

kZ′(·) = (kZ(z
′
1, ·), ..., kZ(z′m, ·))T ,

WZ = (KZ + nλIn)
−1,

WZ′ = (KZ′ +mλ′Im)−1.

The term “maximum mean discrepancy” stems from the equality ∥µPX
−

µPX′∥HX = supf∈BX
|EX [f(X)] − EX′ [f(X ′)]| (Gretton et al., 2007; Sriperum-

budur et al., 2010), where BX := {f ∈ HX | ∥f∥HX ≤ 1}. The supre-

mum is attained by the witness function,
µPX

−µP
X′

∥µPX
−µP

X′ ∥HX
(Gretton et al., 2012).

Using Lemma 3.2.2, the analogous (almost sure) equality for the MCMD is
supf∈BX

|EX|Z [f(X) | Z] − EX′|Z′ [f(X ′) | Z ′]| = ∥µPX|Z − µPX′|Z′∥HX . We
define the conditional witness function as the HX -valued random variable

µPX|Z − µPX′|Z′

∥µPX|Z − µPX′|Z′∥HX

.

We can informally think of MCMDPX|Z ,PX′|Z′ (z) as “MMD between PX|Z=z and
PX′|Z′=z”. However, we do not have i.i.d. samples from PX|Z=z and PX′|Z′=z,
and hence the estimation cannot be done by U- or V-statistic procedures as
done for the MMD. The following theorem says that, with characteristic ker-
nels, the MCMD can indeed act as a discrepancy measure between conditional
distributions.

Theorem 3.4.2. Suppose that kX is characteristic, that PZ and PZ′ are ab-
solutely continuous with respect to each other, and that P (· | Z) and P (· | Z ′)
admit regular versions. Then MPX|Z ,PX′|Z′ = 0 almost everywhere if and only

if, for almost all z ∈ Z, PX|Z=z(B) = PX′|Z′=z(B) for all B ∈ X.

By (Çınlar, 2011, p.11 & p.151, Theorem 2.10), we know that the space
(Ω,F) being a Polish space with its Borel σ-algebra is a sufficient condition for
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Figure 3.1: We see that MCMD(X,X ′
same|Z) ≈ 0 ∀Z. Near Z = 0, where

the dependence on Z of X and X ′
diff are similar, MCMD(X,X ′

diff|Z) ≈ 0,
whereas away from 0, the dependence on Z of X and X ′

diff are different, and
so MCMD(X,X ′

diff|Z) > 0. We also see that the conditional witness function
between X and X ′

same gives 0 at all values of X given any value of Z, whereas
we have a saddle-like function between X and X ′

diff, with non-zero functions in
X in the regions of Z away from 0.

P (· | E) to have a regular version for any sub-σ-algebra E of F . Hence, the
assumption that P (· | Z) admits a regular version is not a restrictive one.

The MCMD is reminiscent of the conditional maximum mean discrepancy
of (Ren et al., 2016), defined as the Hilbert-Schmidt norm of the operator
UX|Z − UX′|Z (see Definition 3.2.4). However, due to previously discussed as-
sumptions, UX|Z and UX′|Z often do not even exist, and/or do not have the
desired properties of Theorem 3.2.5, so even at population level, UX|Z − UX′|Z
is often not an exact measure of discrepancy between conditional distributions,
unlike the MCMD. Moreover, Ren et al. (2016) only considers the case when
the conditioning variable is the same.

3.4.2 Hilbert-Schmidt conditional independence criterion

In this subsection, we introduce a novel criterion of conditional independence.

Definition 3.4.3. We define the Hilbert-Schmidt Conditional Independence
Criterion between X and Y given Z to be HSCIC(X,Y | Z) = ∥µPXY |Z −
µPX|Z ⊗ µPY |Z∥HX⊗HY .

We can write HSCIC(X,Y | Z) = HX,Y |Z ◦ Z for some HX,Y |Z : Z → R.
Given a sample {(xi, yi, zi)}ni=1 from PXY Z , we obtain a plug-in, closed-form
estimate of H2

X,Y |Z(·) as follows:

Ĥ2
X,Y |Z(·) = kT

Z(·)W(KX ⊙KY )W
TkZ(·)

− 2kT
Z(·)W((KXWTkZ(·))⊙ (KY W

TkZ(·)))
+ (kT

Z(·)WKXWTkZ(·))(kT
Z(·)WKY W

TkZ(·))

where [KY ]ij := kY(yi, yj) and ⊙ denotes elementwise multiplication of matri-
ces.
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Casting aside measure-theoretic issues arising from conditioning on an event
of probability 0, we can conceptually think of the realisation of the HSCIC at
each z = Z(ω) as “the HSIC between PX|Z=z and PY |Z=z”. Again, we do
not have multiple samples from each distribution PX|Z=z and PY |Z=z, so the
estimation cannot be done by U- or V-statistic procedures as done for HSIC. The
following theorem shows that HSCIC is a measure of conditional independence.

Theorem 3.4.4. Suppose kX ⊗ kY is a characteristic kernel2 on X × Y, and
that P (· | Z) admits a regular version. Then HSCIC(X,Y | Z) = 0 almost
surely if and only if X ⊥⊥ Y | Z.

Sheng and Sriperumbudur (2019) also proposed a similar criterion with the
same nomenclature (HSCIC). However, they omit the discussion of CMEs en-
tirely, and define the HSCIC as the HSIC between PXY |Z=z and PX|Z=zPY |Z=z,
without considerations for conditioning on an event of measure 0. Their fo-
cus is more on investigating connections to distance-based measures (Wang
et al., 2015; Sejdinovic et al., 2013). Fukumizu et al. (2008) propose ICOND ,
defined as the squared Hilbert-Schmidt norm of the normalised conditional

cross-covariance operator VŸ Ẍ|Z := C−1/2

Ÿ Ÿ
ΣŸ Ẍ|ZC

−1/2

ẌẌ
, where Ẍ := (X,Z) and

Ÿ := (Y,Z). As discussed, these operator-based definitions rely on a number of
strong assumptions that will often mean that VŸ Ẍ|Z does not exist, or it does
not satisfy the conditions for it to be used as an exact criterion even at popu-
lation level. On the other hand, the HSCIC defined as in Definition 3.4.3 is an
exact mathematical criterion of conditional independence at population level.
Note that ICOND is a single-value criterion, whereas the HSCIC is a random
criterion.

3.4.3 Experiments

We carry out simulations to demonstrate the behaviour of the MCMD and
HSCIC. In all simulations, we use the Gaussian kernel kX (x, x′) = kY(x, x

′) =

kZ(x, x
′) = e−

1
2σX∥x−x′∥2

2 with hyperparameter σX = 0.1, and regularisation
parameter λ = 0.01.

In Figure 3.1, we simulate 500 samples from

Z,Z ′ ∼ N (0, 1)

X = e−0.5Z2

sin(2Z) +NX

X ′
same = e−0.5Z′2

sin(2Z ′) +NX

X ′
diff = Z ′ +NX ,

where NX ∼ 0.3N (0, 1) is the (additive) noise variable. The first plot shows
simulated data, the second MCMD values against Z, and the heatmaps show
the (unnormalised) conditional witness function, whose norm gives the MCMD.

2See (Szabó and Sriperumbudur, 2017) for a detailed discussion on characteristic tensor
product kernels.
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Figure 3.2: We see that HSCIC(X,Ynoise|Z) ≈ 0 (left) and HSCIC(X,Yind|Z) ≈
0 (right) for all Z, whereas HSCIC(X,Ydep add|Z) > 0, HSCIC(X,Y ′

dep add|Z) >
0, HSCIC(X,Ydep|Z) > 0, HSCIC(X,Y ′

dep|Z) > 0. In particular, the depen-
dence of Y ′

dep add and Y ′
dep on X is greater than that of Ydep add and Ydep, and

is represented by larger values of HSCIC(X,Y ′
dep add|Z) and HSCIC(X,Y ′

dep|Z)
compared to HSCIC(X,Ydep|Z) and HSCIC(X,Ydep add|Z).

In Figure 3.2, on the left, we simulate 500 samples from the additive noise
model,

Z ∼ N (0, 1)

X = e−0.5Z2

sin(2Z) +NX

Ynoise = NY

Ydep add = e−0.5Z2

sin(2Z) +NX + 0.2X

Y ′
dep add = e−0.5Z2

sin(2Z) +NX + 0.4X,

where NX ∼ 0.3N (0, 1) is the (additive) noise variable. On the right, we simu-
late 500 samples from the multiplicative noise model,

Z ∼ N (0, 1)

X = Yind = e−0.5Z2

sin(2Z)NX

Ydep = e−0.5Z2

sin(2Z)NY + 0.2X

Y ′
dep = e−0.5Z2

sin(2Z)NY + 0.4X,

where NX , NY ∼ 0.3N (0, 1) are the (multiplicative) noise variables.
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Chapter 4

Kernel Regression for
Treatment Effect

4.1 Problem Set-Up

As in Chapter 3, we take (Ω,F , P ) as the underlying probability space, X as the
input space and Y ⊆ R as the output space. Let Z : Ω → {0, 1}, X : Ω → X and
Y0, Y1, Y : Ω → Y be random variables representing, respectively, the treatment
assignment, covariates, the potential outcomes under control and treatment, and
the observed outcome, i.e. Y = Y0(1−Z) + Y1Z. For example, Z may indicate
whether a subject is administered a medical treatment (Z = 1) or not (Z = 0).
The potential outcomes Y1, Y0 respectively correspond to subject’s responses
had they received treatment or not. The covariates X correspond to subject’s
characteristics such as age, gender, race that could influence both the potential
outcomes and the choice of treatment. We denote the distributions of random
variables by subscripting P , e.g. PX for the distribution of X. We also impose,
as we did in Chapter 3, the mild condition that conditional distribution P (· | X)
admits a regular version (Çınlar, 2011, p.150, Definition 2.4, Proposition 2.5).

Each unit i = 1, ..., n is associated with an independent copy (Xi, Zi, Y0i, Y1i)
of (X,Z, Y0, Y1). However, for each i = 1, ..., n, we observe either Y0i or Y1i; this
missing value problem is known as the fundamental problem of causal inference
(Holland, 1986), preventing us from directly computing the difference in the
outcomes under treatment and control for each unit. As a result, we only have
access to samples {(xi, zi, yi)}ni=1 of (X,Z, Y ). We write n0 =

∑n
i=1 1zi=0 and

n1 =
∑n

i=1 1zi=1 for the control and treatment sample sizes, and denote the
control and treatment samples by {(x0i , y0i )}

n0
i=1 and {(x1i , y1i )}

n1
i=1.

We assume strong ignorability Rosenbaum and Rubin (1983):

unconfoundedness Z ⊥⊥ (Y0, Y1) | X; and

overlap 0 < e(X) = P (Z = 1 | X) = E[Z | X] < 1.

Causal treatment effects are then identifiable from observational data, since
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Figure 4.1: Toy illustration of higher-order heterogeneity that cannot
be captured by CATE. (a) Data. X ∼ Uniform[0, 1], Y0 = 3 + 5X +
1X<0.3N + 71X≥0.3(1 + (X − 0.3))N and Y1 = 4X + 1X<0.3N + 71X≥0.3(1 +
(X − 0.3))N , where N ∼ N (0, 1); in particular, the CATE is increasing with
X. (b) Hypothesis test (Section 4.3.2) Each of the hypotheses PY0|X ≡
PY0|X , PY1|X ≡ PY1|X and PY0|X ≡ PY1|X are tested 100 times. The last (false)
hypothesis is rejected in most tests, while the first two (true) hypotheses are
not rejected in most tests, meaning that both type I and type II errors are
low. (c) Conditional witness function (Section 4.4.1). The conditional
witness function is close to zero for all Y at X ≥ 0.5, demonstrating that PY0|X
and PY1|X are similar in this region of X . For X < 0.4, the witness function is
positive in regions where the density of Y1 is higher than that of Y0, and negative
in regions where the density of Y0 is higher than that of Y1. (d) U-statistic
regression (Section 4.4.2). True conditional standard deviation (in black) is
estimated (in red and blue for control and treatment groups respectively) as a
function of X via U-statistic regression (since variance is a U-statistic) and the
square-root operation. We see that the standard deviation increases linearly for
X ≥ 0.3.

PY0|X = PY0|X,Z=0 = PY |X,Z=0, and similarly for PY1|X . The quantity e(X) is
the propensity score. In a randomised experiment, e(X) is known and controlled
(Imbens and Rubin, 2015, p.40, Definition 3.10).

The usual objects of interest in the treatment effect literature are the average
treatment effect (ATE), E [Y1 − Y0], and the conditional average treatment effect
(CATE), T (x) = E [Y1 − Y0 | X = x]. We propose to extend the analysis to
compare other aspects of the conditional distributions, PY0|X and PY1|X . One
compelling reason to do this is that estimating CATE is inherently a problem
of comparing two means, and as such, is only meaningful if the corresponding
variances are given. Consider the toy example in Figure 4.1. The CATE is
constructed to be increasing with X, but taking into account the variance, the
treatment effect is clearly more pronounced for small values of X. For example,
the probability of Y1 being greater than Y0 is much higher for smaller values of
X.

Beyond the mean and variance, researchers may also be interested in other
higher-moment treatment effect heterogeneity, such as Gini’s mean difference
or skewness, or indeed how the entire conditional densities of the control and
treatment groups differ given the covariates, in an exploratory fashion. Pan-
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els (b), (c) and (d) in Figure 4.1 demonstrate each of the steps we propose in
this paper applied to this toy dataset: hypothesis testing of equality of condi-
tional distributions, the conditional witness function and U-statistic regression
(variance, in this instance), respectively.

4.1.1 U-Statistics

Suppose Y1, Y2, ..., Yr are independent copies of the random variable Y , i.e. they
are independent and all have distribution PY . Let h : Yr → R be a symmet-
ric function (called a kernel in the U-statistics literature; confusion must be
avoided with the reproducing kernel used throughout this paper), i.e. for any
permutation π of {1, ..., r}, we have h(y1, ..., yr) = h(yπ(1), ..., yπ(r)). Suppose
we would like to estimate a function of the form

θ(PY ) = E [h (Y1, ..., Yr)] =

∫
Y
...

∫
Y
h (y1, ..., yr) dPY (y1)...dPY (yr).

The corresponding U-statistic for an unbiased estimation of θ(PY ) based on a
sample Y1, ..., Yn of size n ≥ r is given by

θ̂(PY ) =
1(
n
r

) ∑h (Yi1 , ..., Yir ) ,

where
(
n
r

)
is the binomial coefficient and the summation is over the

(
n
r

)
com-

binations of r distinct elements {i1, ..., ir} from {1, ..., n}. Clearly, since the

expectation of each summand yields θ(PY ), we have E[θ̂(PY )] = θ(PY ), so U-
statistics are unbiased estimators.

Some examples of h and the corresponding estimator include the sample
mean h(y) = y, the sample variance h(y1, y2) = 1

2 (y1 − y2)
2, the sample cu-

mulative distribution up to y∗ h(y) = 1(y ≤ y∗), the kth sample raw moment
h(y) = yk and Gini’s mean difference h(y1, y2) = |y1 − y2|.

To the best of our knowledge, Stute (1991) was the first to consider a con-
ditional counterpart of U-statistics. Let X1, ..., Xr be independent copies of the
random variable X. We are now interested in the estimation of the following
quantity:

θ
(
PY |X

)
= E [h (Y1, ..., Yr) | X1, ..., Xr] .

By Çınlar (2011, p.146, Theorem 1.17), θ(PY |X) can be considered as a function
X r → R, such that for each r-tuple {x1, ..., xr}, we have

θ
(
PY |X

)
(x1, ..., xr) = E [h (Y1, ..., Yr) | X1 = x1, ..., Xr = xr] .

The simplest case is when r = 1 and h(y) = y. In this case, the estimand
reduces to f(X) = E[Y |X], which is the usual regression problem for which a
plethora of methods exist. Suppose we have a sample {(Xi, Yi)}ni=1. One such
regression method is the Nadaraya-Watson kernel smoother:

f̂(x) =

∑n
i=1 YiK

(
x−Xi

a

)∑n
i=1K

(
x−Xi

a

) ,
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where K is the so-called “smoothing kernel” and a is the bandwidth. This was
extended by Stute (1991) to r ≥ 1 and more general h:

θ̂
(
PY |X

)
(x1, ..., xr) =

∑
h (Yi1 , ..., Yir )

∏r
j=1K

(
xj−Xij

a

)
∑∏r

j=1K
(

xj−Xij

a

) ,

where the sums are over the
(
n
r

)
combinations of r distinct elements {i1, ..., ir}

from {1, ..., n} as before. Derumigny (2019) considers a parametric model of the
form

Λ
(
θ
(
PY |X

)
(x1, ..., xr)

)
= ψ (x1, ..., xr)

T
β∗,

where Λ is a strictly increasing and continuously differentiable “link function”
such that the range of Λ ◦ θ is exactly R, β∗ ∈ Rs is the true parameter and
ψ(·) = (ψ1(·), ..., ψs(·))T ∈ Rs is some basis, such as polynomials, exponentials,
indicator functions etc. However, the estimation of β∗ still makes use of the
Nadaraya-Watson kernel smoothers considered above.

Of course, Nadaraya-Watson kernel smoothers are far from being the only
method of regression that can be extended to estimate conditional U-statistics,
and in the main body of the paper (Section 4.4.2), we consider extending kernel
ridge regression for this purpose.

4.2 Conditional Distributional Treatment Effect

In this section, we generalise the notion of CATE to account for distributional
differences between treatment and control groups, rather than just the mean
difference.

Definition 4.2.1. Let D be some distance function between probability mea-
sures. We define the conditional distributional treatment effect (CoDiTE) asso-
ciated with D as

UD(x) = D(PY0|X=x, PY1|X=x).

Here, the choice of D depends on what characterisation of distributions is
used. For example, if D(PY0|X=x, PY1|X=x) = E[Y1 | X = x] − E[Y0 | X = x],
we recover the CATE, i.e. UD(x) = T (x), thereby showing that the CoDiTE is
a strict generalisation of the CATE. Different choices of D will require different
estimators.

The usual performance metric of a CATE estimator T̂ is the precision of
estimating heterogeneous effects (PEHE) (first proposed in sample form by Hill
(2011, Section 4.3); we report the population-level definition, found in, for ex-
ample, Alaa and Van Der Schaar (2019, Eqn. (5)):

∥T̂ − T∥22 = E[|T̂ (X)− T (X)|2].

We propose a performance metric of an estimator of the CoDiTE in an exactly
analogous manner.

69



CHAPTER 4. KERNEL REGRESSION FOR TREATMENT EFFECT

Definition 4.2.2. Given a distance function D, for an estimator ÛD of UD, we
define the precision of estimating heterogeneous distributional effects (PEHDE)
as

ψD(ÛD) = ∥ÛD − UD∥22 = E[|ÛD(X)− UD(X)|2].

Again, if D measures the difference in expectations, then the associated
PEHDE ψD reduces to the usual PEHE.

Henceforth, we explore different choices of the distance function D, as well as
methods of estimating the corresponding CoDiTE UD, to answer the following
questions:

Q1 Are PY0|X and PY1|X different? In other words, is there any distributional
effect of the treatment? (Section 4.3)

Q2 If so, how does the distribution of the treatment group differ from that of
the control group? (Section 4.4)

4.3 CoDiTE associated with MMD via CMEs

In this section, we answer Q1, i.e. we investigate whether the treatment has
any effect at all. To this end we choose D to be the MMD with the associated
kernel l being characteristic. Then writing µY0|X and µY1|X for the CMEs of Y0
and Y1 given X respectively (c.f. Section 3.1.1), we have

UMMD(x) = MMD(PY0|X=x, PY1|X=x)

= ∥µY1|X=x − µY0|X=x∥H.
(4.1)

Since l is characteristic, PY0|X=x and PY1|X=x are the same distribution if and
only if MMD(PY0|X=x, PY1|X=x) = 0. What makes the MMD a particularly
convenient choice is that for each x ∈ X , PY0|X=x and PY1|X=x are represented
by individual elements µY0|X=x and µY1|X=x in the RKHS H, which means that
we can estimate the associated CoDiTE simply by performing regression with
X as the input space and H as the output space, as will be shown in the next
section.

4.3.1 Estimation and Consistency

We now discuss how to obtain empirical estimates of UMMD(x). Recall that, by
the unconfoundedness assumption, we can estimate µY0|X and µY1|X separately
from control and treatment samples respectively. We perform operator-valued
kernel regression in separate vector-valued RKHSs G0 and G1, endowed with
kernels Γ0(·, ·) = k0(·, ·)Id and Γ1(·, ·) = k1(·, ·)Id, where k0, k1 : X × X → R
are scalar-valued kernel and Id : H → H is the identity operator. Following
Section 3.3, the empirical estimates µ̂Y0|X and µ̂Y1|X of µY0|X and µY1|X are
constructed, for each x ∈ X , as

µ̂Y0|X=x = kT0 (x)W0l0 ∈ G0

and µ̂Y1|X=x = kT1 (x)W1l1 ∈ G1,
(4.2)
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where

W0 = (K0 + n0λ
0
n0
In0)

−1,

W1 = (K1 + n1λ
1
n1
In1

)−1,

[K0]1≤i,j≤n0 = k0(x
0
i , x

0
j ),

[K1]1≤i,j≤n1
= k1(x

1
i , x

1
j ),

λ0n0
,λ1n1

> 0 are regularisation parameters,

In0
,In1

are identity matrices,

k0(x) = (k0(x
0
1, x), ..., k0(x

0
n0
, x))T ,

k1(x) = (k1(x
1
1, x), ..., k1(x

1
n1
, x))T ,

l0 = (l(y01 , ·), ..., l(y0n0
, ·))T ,

l1 = (l(y11 , ·), ..., l(y1n1
, ·))T .

By plugging in the estimates (4.2) in the expression (4.1) for UMMD, we can
construct ÛMMD as

ÛMMD(x) = ∥µ̂Y1|X=x − µ̂Y0|X=x∥H.

The next lemma establishes a closed-form expression for ÛMMD based on the
control and treatment samples.

Lemma 4.3.1. For each x ∈ X , we have

Û2
MMD(x) = k

T
0 (x)W0L0W

T
0 k0(x)

− 2kT0 (x)W0LW
T
1 k1(x)

+ kT1 (x)W1L1W
T
1 k1(x),

where [L0]1≤i,j≤n0
= l(y0i , y

0
j ), [L]1≤i≤n0,1≤j≤n1

= l(y0i , y
1
j ) and [L1]1≤i,j≤n1

=

l(y1i , y
1
j ).

The next theorem shows that, using universal kernels Γ0,Γ1 (Carmeli et al.,
2010, Definition 4.1), ÛMMD is universally consistent with respect to the PE-
HDE.

Theorem 4.3.2 (Universal consistency). Suppose that k0, k1 and l are bounded,
that Γ0 and Γ1 are universal, and that λ0n0

and λ1n1
decay at slower rates than

O(n
−1/2
0 ) and O(n

−1/2
1 ) respectively. Then as n0, n1 → ∞,

ψMMD(ÛMMD) = E[(ÛMMD(X)− UMMD(X))2]
p→ 0.

4.3.2 Statistical Hypothesis Testing

We are interested in whether or not the two conditional distributions PY0|X and
PY1|X , corresponding to control and treatment, are equal. The hypotheses are
then
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Algorithm 1 Kernel conditional discrepancy (KCD) test of conditional distri-
butional treatment effect

Input: data {(xi, zi, yi)}ni=1, significant level α, kernels k0, k1, l, regularisa-
tion parameters λ0n0

, λ1n1
, no. of permutations m.

Calculate t̂ using Lemma 4.3.4 based on the input data.
KLR of {zi}ni=1 against {xi}ni=1 to obtain ê(xi).
for k = 1 to m do
For each i = 1, ..., n, sample z̃i ∼ Bernoulli(ê(xi)).
Calculate t̂k from the new dataset {xi, z̃i, yi}ni=1.

end for

Calculate the p-value as p =
1+

∑m
l=1 1{t̂l>t̂}
1+m .

if p < α then
Reject H0.

end if

H0: PY0|X=x(·) = PY1|X=x(·) PX -almost everywhere.

H1: There exists A ⊆ X of positive measure such that PY0|X=x(·) ̸= PY1|X=x(·)
for all x ∈ A.

The null hypothesis H0 means that the treatment has no effect for any of the
covariates, whereas the alternative hypothesis H1 means that the treatment
has an effect on some of the covariates, where the effect is distributional. For
notational simplicity, we write PY0|X ≡ PY1|X if H0 holds.

We use the following criterion for PY0|X ≡ PY1|X , which we call the kernel
conditional discrepancy (KCD):

t = E[∥µY1|X − µY0|X∥2H].

The following lemma tells us that t can indeed be used as a criterion of PY0|X ≡
PY1|X .

Lemma 4.3.3. If l is a characteristic kernel, PY0|X ≡ PY1|X if and only if
t = 0.

Next, we define a plug-in estimate t̂ of t, which we will use as the test statistic
of our hypothesis test:

t̂ =
1

n

n∑
i=1

∥∥µ̂Y1|X=xi
− µ̂Y0|X=xi

∥∥2
H .

Then we have a closed-form expression for t̂ as follows.

Lemma 4.3.4. We have

t̂ =
1

n
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
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− 2

n
Tr
(
K̃0W0LW

T
1 K̃

T
1

)
+

1

n
Tr
(
K̃1W1L1W

T
1 K̃

T
1

)
,

where L0,L1 and L are as defined in Lemma 4.3.1 and [K̃0]1≤i≤n,1≤j≤n0 =

k0(xi, x
0
j ) and [K̃1]1≤i≤n,1≤j≤n1

= k1(xi, x
1
j ).

The consistency of t̂ in the limit of infinite data is shown in the following
theorem.

Theorem 4.3.5. Under the same assumptions as in Theorem 4.3.2, we have

t̂
p→ t as n0, n1 → ∞.

Unfortunately, it is extremely difficult to compute the (asymptotic) null dis-
tribution of t̂ analytically, and so we resort to resampling the treatment labels
to simulate the null distribution. To ensure that our resampling scheme respects
the control and treatment covariate distributions PX|Z=0 and PX|Z=1, we follow
the conditional resampling scheme of Rosenbaum (1984). We first estimate the
propensity score e(xi) for each datapoint xi (e.g. using kernel logistic regression
(KLR) Zhu and Hastie (2005); Marteau-Ferey et al. (2019)), and then resample
each data label from this estimated propensity score. By repeating this resam-
pling procedure and computing the test statistic on each resampled dataset, we
can simulate from the null distribution of the test statistic. Finally, the test
statistic computed from the original dataset is compared to this simulated null
distribution, and the null hypothesis is rejected or not rejected accordingly. The
exact procedure is summarised in Algorithm 1.

4.4 Understanding the CoDiTE

After determining whether PY0|X and PY1|X are different via MMD-associated
CoDiTE and hypothesis testing, we now turn to Q2, i.e. we investigate how
they are different.

4.4.1 Conditional Witness Functions

For two real-valued random variables, the witness function between them is a
useful tool for visualising where their densities differ, without explicitly esti-
mating the densities (Gretton et al., 2012, Figure 1; Lloyd and Ghahramani,
2015, Figure 1). We extend this to the conditional case with the (unnormalised)
conditional witness function µY1|X − µY0|X .

Let us fix x ∈ X . The witness function between PY1|X=x and PY0|X=x is
µY1|X=x −µY0|X=x : Y → R. For y ∈ Y in regions where the density of PY1|X=x

is greater than that of PY0|X=x, we have µY1|X=x(y)−µY0|X=x(y) > 0. For y in
regions where the converse is true, we similarly have µY1|X=x(y)−µY0|X=x(y) <
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0. The greater the difference in density, the greater the magnitude of the witness
function. For each y ∈ Y, the associated CoDiTE is

Uwitness,y(x) = µY1|X=x(y)− µY0|X=x(y).

The estimates in (4.2) can be plugged in to obtain the estimate Ûwitness,y =
µ̂Y1|X=x(y)− µ̂Y0|X=x(y). Since convergence in the RKHS norm implies point-
wise convergence (Berlinet and Thomas-Agnan, 2004, p.10, Corollary 1), Theo-
rem 4.3.2 implies the consistency of Ûwitness,y with respect to the corresponding
PEHDE. Clearly, if X is more than 1-dimensional, heat maps as in Figure 4.1(c)
cannot be plotted; however, fixing a particular x ∈ X , µ̂Y1|X=x − µ̂Y0|X=x can
be plotted against y, since Y ⊆ R. Such plots will be informative of where the
density of PY1|X=x is greater than that of PY0|X=x and vice versa.

4.4.2 CoDiTE via U-statistic Regression

Next, we consider CoDiTE on specific distributional quantities, such as the
mean, variance or skewness, or some function thereof. For example, in addition
to the CATE, Briseño Sanchez et al. (2020, Eqn. (2)) were interested in the
treatment effect on the standard deviation UD(x) = std(Y1|X = x)−std(Y0|X =
x). Our motivating example in Figure 4.1 could inspire a “standardised” version
of the CATE1:

UD(x) =
E[Y1|X = x]− E[Y0|X = x]√

Var(Y1|X = x) + Var(Y0|X = x)
. (4.3)

Many of these quantities can be represented as the expectation of a U-kernel,
i.e. E[h(Y1, ..., Yr)] (c.f. Section 4.1.1). For example, h(y) = y gives the mean,
h(y1, y2) =

1
2 (y1 − y2)

2 gives the variance and h(y1, y2) = |y1 − y2| gives Gini’s
mean difference. We consider their conditional counterparts, i.e.

θ(PY0|X) = E[h(Y01, ..., Y0r)|X1, ..., Xr],

θ(PY1|X) = E[h(Y11, ..., Y1r)|X1, ..., Xr]

(c.f. Section 4.1.1). By Çınlar (2011, p.146, Theorem 1.17), there exist functions
F0, F1 : X r → R such that F0(X1, ..., Xr) = θ(PY0|X) and F1(X1, ..., Xr) =
θ(PY1|X).

Estimation of F0 and F1 can be done via U-statistic regression, by general-
ising kernel ridge regression as follows. As in Section 4.3.1, let k0 : X ×X → R
be a kernel on X with RKHS H0. Then if we define kr0 : X r ×X r → R as

kr0((x1, ..., xr), (x
′
1, ..., x

′
r)) = k0(x1, x

′
1)...k0(xr, x

′
r),

1In practice, if the CoDiTE involves ratios of estimated quantities, we do not recommend
plugging in the estimates directly into the ratio, since, if the denominator is small, then a
small error in the estimation of the denominator will result in a large error in the overall
CoDiTE estimation. Instead, we recommend that the practitioner estimate the numerator
and the denominator separately and interpret the results directly from the raw estimates.
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Method
Setting SN

Control Treatment
GAMLSS 0.17± 0.031 0.767± 0.414

U-regression KRR 0.13± 0.059 0.16± 0.059

Method
Setting LN

Control Treatment
GAMLSS 3.3± 0.55 15.44± 8.128

U-regression KRR 1.1± 0.31 2.16± 0.61

Method
Setting HN

Control Treatment
GAMLSS 2.27± 0.44 10.91± 5.42

U-regression KRR 0.7± 0.25 1.39± 0.47

Table 4.1: Root mean square error in estimating the conditional standard devi-
ation, with standard error from 100 simulations, for GAMLSS (implemented via
the R package gamlss Rigby and Stasinopoulos (2005)) and our U-statistic re-
gression via generalised kernel ridge regression (U-regression KRR; implemented
via the Falkon library on Python Rudi et al. (2017); Meanti et al. (2020)). Lower
is better.

Berlinet and Thomas-Agnan (2004, p.31, Theorem 13) tells us that kr0 is a
reproducing kernel on X r with RKHS Hr

0 = H0 ⊗ ... ⊗ H0, the r-times tensor
product of H0, whose elements are functions X r → R. We estimate F0 in Hr

0.
Given any F ∈ Hr

0, the natural least-squares risk is

E(F ) = E[(F (X1, ..., Xr)− h(Y01, ..., Y0r))
2].

Recalling the control sample {(x0i , y0i )}
n0
i=1, we solve the following regularised

least-squares problem:

F̂0 = argmin
F∈Hr

0

{
Ê(F ) + λ0n0

∥F∥2Hr
0

}
(4.4)

where the empirical least-squares risk Ê is defined as

Ê(F ) = 1(
n0

r

) ∑(
F (x0i1 , ..., x

0
ir )− h(y0i1 , ..., y

0
ir )
)2
,

with the summation over the
(
n0

r

)
combinations of r distinct elements {i1, ..., ir}

from {1, ..., n0}. Note that Ê(F ) is itself a U-statistic for the estimation of E(F ).
The following is a representer theorem for the problem in (4.4).

Theorem 4.4.1. The solution F̂0 to the problem in (4.4) is

F̂0(x1, ..., xr) =

n0∑
i1,...,ir

k0(x
0
i1 , x1)...k0(x

0
ir , xr)c

0
i1,...,ir
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Figure 4.2: Hypothesis testing and witness functions on the IHDP
dataset. (a) Hypothesis test is conducted on 100 simulations for each setting,
with the bar chart showing proportion of tests rejected for each setting. In
setting ”LN”, where the variance overwhelms the CATE, the test does not reject
the hypothesis PY0|X ≡ PY1|X , whereas in the other two settings, the hypothesis
is rejected. (b) At both X = a and X = b, the density of the control group is
larger than that of the treatment group around Y = 0, and the reverse is true
around Y = 4, showing the marked effect of the treatment. (c) At both X = a
and X = b, the density of the control and treatment groups are roughly equal
for all Y . (d) At X = a, where the variance engulfs the CATE, the density of
the control and treatment groups are roughly equal for all Y , whereas at X = b,
the witness function clearly shows where the density of one group dominates the
other. The juxtaposition of witness functions at different points in the covariate
space is an exploratory tool to compare the relative strength of the treatment
effect.

where the coefficients c0i1,...,ir ∈ R are the unique solution of the nr linear equa-
tions,

n0∑
j1,...,jr=1

(
k0
(
x0i1 , x

0
j1

)
...k0

(
x0ir , x

0
jr

)
+

(
n0
r

)
λ0n0

δi1j1 ...δirjr

)
c0j1,...,jr

= h
(
y0i1 , ..., y

0
ir

)
.

Note that if r = 1 and h(y) = y, we recover the usual kernel ridge regres-
sion. The following result shows that this estimation procedure is universally
consistent.

Theorem 4.4.2. Suppose kr0 is a bounded and universal kernel and that λ0n0

decays at a slower rate than O(n
−1/2
0 ). Then as n0 → ∞,

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2] p→ 0.

A consistent estimate F̂1 of F1 is obtained by exactly the same procedure,
using the treatment sample {(x1i , y1i )}

n1
i=1.
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4.5 Experiments

4.5.1 Semi-synthetic IHDP Data

We demonstrate the use of our methods on the Infant Health and Development
Program (IHDP) dataset (Hill, 2011, Section 4). The covariates are taken from a
randomised control trial, from which a non-random portion is removed to imitate
an observational study. The reason for its popularity in the CATE literature
is that, for each datapoint, the outcome is simulated for both treatment and
control, enabling cross-validation and evaluation, which is usually not possible
in observational studies due to the missing counterfactuals. Existing works first
define the noiseless response surfaces for the control and treatment groups, and
generate realisations of the potential outcomes by applying Gaussian noise with
constant variance across the whole dataset.

This last assumption of constant variance is somewhat unrealistic, but of
little importance in evaluating CATE estimators. In our experiments, we modify
the data generating process in three different ways, all of which have the same
parallel linear mean response surfaces, with the CATE of 4 (“response surface
A” in Hill (2011)). In setting “SN” (“small noise”), the standard deviation of
the noise is constant at 1, so that the CATE of 4 translates to a meaningful
treatment effect. In setting “LN” (“large noise”), the standard deviation of
the noise is constant at 20, meaning that the mean difference in the response
surfaces is negligible in comparison. In this case, our test does not reject the
hypothesis that the two conditional distributions are the same, and there is
no case for further investigation (see middle bar in Figure 4.2(a)). In setting
“HN” (“heterogeneous noise”), the standard deviation is heterogeneous across
the dataset, so that the standard deviation is 1 for some data points while others
have standard deviation of 20.

The data consists of 25 covariates: birth weight, head circumference, weeks
born preterm, birth order, first born, neonatal health index, sex, twin status,
whether or not the mother smoked during pregnancy, whether or not the mother
drank alcohol during pregnancy, whether or not the mother took drugs during
pregnancy, the mother’s age, marital status, education attainment, whether or
not the mother worked during pregnancy, whether she received prenatal care,
and 7 dummy variables for the 8 sites in which the family resided at the start
of the intervention.

These covariates are originally taken from a randomised experiment, and
included information about the ethnicity of the mothers. Hill (2011) removed
all children with nonwhite mothers from the treatment group, which is clearly
a non-random (biased) portion of the data, thereby imitating an observational
study. This leaves 608 children in the control group and 139 in the treatment
group. The overlap condition is now only satisfied for the treatment group.

In creating the parallel linear response surfaces, which are used in all three of
the settings “SN”, “LN” and “HN”, we let E[Y0|X] = βX and E[Y1|X] = βX+4,
where the 25-dimensional coefficient vector β is generated in the same way as
in Alaa and Schaar (2018): for the 6 continuous variables (birth weight, head
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circumference, weeks born preterm, birth order, neonatal health index, mother’s
age), the corresponding coefficients is sampled from {0, 0.1, 0.2, 0.3, 0.4} with
probabilities {0.5, 0.125, 0.125, 0.125, 0.125} respectively, whereas for the other
19 binary variables, the coefficients are sampled from {0, 0.1, 0.2, 0.3, 0.4} with
probabilities {0.6, 0.1, 0.1, 0.1, 0.1} respectively.

Finally, we generate realisations of the potential outcomes by adding noise
to the mean response surfaces. We let Y0 = βX+ϵ(X) and Y1 = βX+4+ϵ(X),
where ϵ(X) = ϵSN in setting “SN”, ϵ(X) = ϵLN in setting “LN” and ϵ(X) =
X6ϵSN+(1−X6)ϵLN in setting “HN”, with ϵSN ∼ N (0, 12) and ϵLN ∼ N (0, 202).
The covariate X6 corresponds to the sex of the child, and was chosen because
there are roughly the same number of each sex in both the control and the
treatment groups.

In setting “HN”, let us consider points a,b ∈ X with sd(Y |X = a) = 20
and sd(Y |X = b) = 1. Then even though the CATE at a and b are equal
at 4, we have std(Y1 − Y0|X = a) ≫ std(Y1 − Y0|X = b), such that there is a
pronounced treatment effect at b, while the variance engulfs the treatment effect
at a. The comparative magnitudes of the witness functions conditioned on a
and b confirm this heterogeneity (see Figure 4.2(d)). In Table 4.1, the quality of
estimation of the standard deviation via our U-statistic regression is compared
with GAMLSS (Stasinopoulos et al., 2017) estimation for each setting.

An immediate benefit is a better understanding of the treatment. Even
a perfect CATE estimator cannot capture such heterogeneity in distributional
treatment effect (variance, in this case). As argued in Section 4.1, any method
that involves comparing mean values (of which CATE is one) should also take
into account the variance for it to be meaningful. This will give a clearer picture
of the subpopulations on which there is a marked treatment effect, and those on
which it is weaker, than relying on the CATE alone. Such knowledge should in
turn influence policy decisions, in terms of which subpopulations should be tar-
geted. We note that recently Jesson et al. (2020) considered CATE uncertainty
in IHDP in the context of a different task: making or deferring treatment rec-
ommendations while using Bayesian neural networks, focusing on cases where
overlap fails or under covariate shift; however, distributional considerations can
be important even when overlap is satisfied and no covariate shift takes place.

4.5.2 Real Outcomes: LaLonde Data

In this section, we apply the proposed methods to LaLonde’s well-known Na-
tional Supported Work (NSW) dataset (LaLonde, 1986; Dehejia and Wahba,
1999) which has been used widely to evaluate estimators of treatment effects.
The outcome of interest Y is the real earnings in 1978, with treatment Z being
the job training. We refer the interested readers to Dehejia and Wahba (1999,
Sec. 2.1) for a detailed description of the dataset. As income distributions are
known to be skewed to the right, it may be interesting to investigate not only
the CATE, but the entire distributions.

The test rejects the hypothesis PY0|X ≡ PY1|X with p-value of 0.013. As a
demonstration of the kind of exploratory analysis that can be conducted using
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Figure 4.3: Witness functions for Black, unmarried participant up to
the age of 25, unemployed in both 1974 and 1975. Each curve (witness
function) corresponds to an individual in this subset.

the conditional witness functions, we focus our attention on a subset of the
data on which the overlap condition is satisfied – Black, unmarried participants
up to the age of 25, who were unemployed in both 1974 and 1975. Figure 4.3
shows the witness function for each individual in this subset, with the colour
of the curve delineating whether the corresponding individual has a high school
diploma.

We can see clearly that for those without a high school diploma, the treat-
ment effect is not so pronounced, whereas there is a marked treatment effect
for those with it. Negative values of the witness function for small income val-
ues mean that we are more likely to get small income values from the control
group than the treatment group, whereas larger income values are more likely
to come from the treatment group, as indicated by the positive values of the
witness functions. In particular, the tail of the blue curves to the right implies
a skewness of the density of the treated group relative to the control group, and
the treatment group continues to have larger density than the control group
for high income values (> 25000), albeit to a lesser extent. Such comparison
of densities in different regions of Y is not possible with the CATE, which is a
simple difference of the means between the control and treated groups.
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Chapter 5

Vector-Valued Regression

In this Chapter, we treat the two main branches of learning theory analysis of
kernel regression with vector-valued output space, namely, the integral operator
technique and empirical processes.

5.1 Integral Operators

As in the previous chapters, let us take (Ω,F , P ) as the underlying probabil-
ity space. Suppose (X ,X) is a separable measurable space, and that Y is a
(potentially infinite-dimensional) separable Hilbert space with associated inner
product and norm denoted by ⟨·, ·⟩Y and ∥·∥Y . Denote the Borel σ-algebra of
Y as Y. Suppose X : Ω → X and Y : Ω → Y are random variables, with
distributions PX(A) = P (X−1(A)) for A ∈ X and PY (B) = P (Y −1(B)) for
B ∈ Y. Further, we denote by PXY the joint distribution of X and Y . In order
for regression of Y on X to be possible, the following assumption that Y has
finite variance is a minimal requirement:

Assumption 5.1.1. We have E
[
∥Y ∥2Y

]
<∞.

Assumption 5.1.1 also implies that E[∥Y ∥Y ] < ∞, which means that Y
is Bochner-integrable (Dinculeanu, 2000, p.15, Definition 35). Hence, we can
define its conditional expectation E[Y | X] as an X-measurable, Bochner-PX -
integrable random variable taking values in Y, according to Dinculeanu (2000,
p.45, Definition 38). In the rest of this chapter, we let E[Y | X] be any particular
version thereof, and talk about the conditional expectation of Y given X. Since
E [Y | X] is an X-measurable random variable, we can write

E[Y | X] = f∗(X). (5.1)

for some deterministic measurable function f∗ : X → Y. It is this function f∗

that we aim to estimate via regression.
Denote by L2(X , PX ;Y) the Bochner space with output in Y, i.e. the Hilbert

space of (equivalence classes of) measurable functions f : X → Y such that
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∥f(·)∥2Y is PX -integrable, with inner product ⟨f1, f2⟩2 = E[⟨f1(X), f2(X)⟩Y ].
Denote its corresponding norm by ∥·∥2. Then by Jensen’s inequality and As-
sumption 5.1.1, we have f∗ ∈ L2(X , PX ;Y):

E
[
∥f∗(X)∥2Y

]
= E

[
∥E [Y | X]∥2Y

]
≤ E

[
E
[
∥Y ∥2Y | X

]]
= E

[
∥Y ∥2Y

]
<∞.

5.1.1 Vector-Valued Reproducing Kernel Hilbert Spaces

In this report, regression for f∗ ∈ L2(X , PX ;Y) will be carried out in a fixed
vector-valued reproducing kernel Hilbert space, the well-known theory of which
we briefly review here.

Suppose that H is a Hilbert space of functions X → Y, with inner product
and norm denoted by ⟨·, ·⟩H and ∥·∥H respectively. For any n ∈ N, we denote by
Xn and Yn the n-fold direct sums of X and Y respectively; in particular, Yn is a
Hilbert space with inner product ⟨(y1, ..., yn)T , (y′1, ..., y′n)T ⟩Yn =

∑n
i=1⟨yi, y′i⟩Y .

For any x = (x1, ..., xn)
T ∈ Xn, we define the evaluation operator (or sampling

operator) by

Sx :H → Yn

f 7→ 1

n
(f (x1) , ..., f (xn))

T
.

Then H is a vector-valued reproducing kernel Hilbert space (vvRKHS) if the
evaluation map Sx : H → Y is continuous for all x ∈ X (Carmeli et al., 2006,
Definition 2.1). This immediately implies that Sx : H → Yn is continuous for
all n ∈ N and x ∈ Xn. We define the operator-valued kernel K : X ×X → L(Y),
where L(Y) is the Banach space of continuous linear operators from Y to itself,
by

K (x, x′) (y) = SxS
∗
x′y, i.e. K (·, x′) (y) = S∗

x′(y).

Then we can easily deduce the reproducing property. For any x ∈ X and y ∈ Y,

⟨y, f(x)⟩Y = ⟨y, Sx(f)⟩Y = ⟨S∗
x(y), f⟩H = ⟨K(·, x)(y), f⟩H .

For arbitrary n ∈ N and x = (x1, ..., xn)
T ∈ Xn, the adjoint of the sampling

operator, S∗
x : Yn → H, is given by

S∗
xy =

1

n

n∑
i=1

K(xi, ·)yi, for y = (y1, ..., yn)
T , yi ∈ Y,

since, by the reproducing property, for any f ∈ H and y ∈ Yn,

⟨Sxf,y⟩Yn =
1

n

n∑
i=1

⟨f (xi) , yi⟩Y

=
1

n

n∑
i=1

⟨f,K (xi, ·) yi⟩H
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=

〈
f,

1

n

n∑
i=1

K (xi, ·) yi

〉
H

.

Assumption 5.1.2. We henceforth assume that H is separable, and that the
kernel K is bounded:

sup
x∈X

∥K(x, x)∥op = sup
x∈X

sup
y∈Y,∥y∥Y≤1

∥K(x, x)(y)∥Y < B, for some B > 0.

For a fixed f ∈ H, Assumption 5.1.2 allows us to bound ∥f(·)∥Y uniformly
over X , and hence the operator norm of Sx uniformly over Xn.

Lemma 5.1.3. Suppose Assumption 5.1.2 holds. Then

(i) For all f ∈ H,

sup
x∈X

∥f(x)∥Y ≤
√
B ∥f∥H .

(ii) For all n ∈ N,

sup
x∈Xn

∥Sx∥2op ≤ B

n
.

Lemma 5.1.3(i) immediately implies that H ⊆ L2(X , PX ;Y), since, for any

f ∈ H, E
[
∥f(X)∥2Y

]
≤ B ∥f∥2H < ∞, and the inclusion ι : H → L2(X , PX ;Y)

is a bounded linear operator with ∥ι∥op ≤
√
B:

∥ι(f)∥2 =

√
E
[
∥f(X)∥2Y

]
≤

√
B ∥f∥H , for all f ∈ H.

Denote the adjoint of the inclusion by ι∗ : L2(X , PX ;Y) → H. Then ι∗ ◦ ι :
H → H and ι ◦ ι∗ : L2(X , PX ;Y) → L2(X , PX ;Y) are self-adjoint operators.

Let {(Xi, Yi)}ni=1 be i.i.d. copies of (X,Y ), and denote by X and Y the
random vectors (X1, ..., Xn)

T ∈ Xn and (Y1, ..., Yn)
T ∈ Yn. Then the operators

SX : H → Yn and S∗
X : Yn → H, given by SX(f) = 1

n (f(X1), ..., f(Xn))
T and

S∗
X((y1, ..., yn)

T ) = 1
n

∑n
i=1K(Xi, ·)yi respectively, are random.

Lemma 5.1.4. We state and prove some results about the inclusion operator
and its adjoint.

(i) An explicit integral expression for ι∗ : L2(X , PX ;Y) → H can be given as

ι∗ (f) (·) = E [K (·, X) f (X)] for f ∈ L2(X , PX ;Y).

(ii) For any f ∈ L2 (X , PX ;Y) and any n ∈ N,

ι∗ (f) = E
[
S∗
X

(
(f (X1) , ..., f (Xn))

T
)]
.
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(iii) For any f ∈ H and any n ∈ N,

ι∗ ◦ ι (f) = E [nS∗
X ◦ SX (f)] .

Although the inclusion operator ι is a compact (in fact, Hilbert-Schmidt)
operator if Y is R (Steinwart and Christmann, 2008, p. 127, Theorem 4.27),
this is not true in the general case we consider in this thesis. Indeed, consider
the following counterexample, in which K(x, x′) = k(x, x′)Id, where k(·, ·) is a
bounded scalar kernel with k(x0, x0) = 1 for some x0 ∈ X and Id : Y → Y is
the identity operator. Let {yi}∞i=1 be a (countable, by separability assumption)
orthonormal basis of Y. Then {K(x0, ·)yi}∞i=1 form a bounded sequence in H,
since, by the reproducing property,

∥K(x0, ·)yi∥2H = ⟨yi,K(x0, x0)yi⟩Y = ∥yi∥2Y = 1.

However, the sequence {ι(K(x0, ·)yi)}∞i=1 in L2(X , PX ;Y) cannot have a con-
vergent subsequence, since, for any i ̸= j,

∥ι (K (x0, ·) yi)− ι (K (x0, ·) yj)∥22 = E
[
∥k(x0, X)yi − k(x0, X)yj∥2Y

]
= 2E

[
k(x0, X)2

]
> 0.

Hence ι is not a compact operator1.
The self-adjoint operator ι ◦ ι∗ is also not compact. Indeed, let {yi}∞i=1

be an orthonormal basis of Y again, and consider the sequence of functions
fi ∈ L2(X , PX ;Y) given by fi(x) = yi for all x ∈ X . Also, consider again the
kernel K(x, x′) = k(x, x′)Id, where k(·, ·) is a scalar kernel and Id : Y → Y is the

identity operator. Then ∥fi∥22 = E
[
∥fi(X)∥2Y

]
= ∥yi∥2Y = 1, so the sequence is

bounded, but for any i ̸= j,

∥ι ◦ ι∗(fi)− ι ◦ ι∗(fj)∥22
= EX1

[
∥EX2 [K(X1, X2)fi(X2)]− EX2 [K(X1, X2)fj(X2)]∥2Y

]
= EX1

[
∥EX2 [k(X1, X2)] yi − EX2 [k(X1, X2)] yj∥2Y

]
= EX1

[
EX2 [k(X1, X2)]

2 ∥yi − yj∥2Y
]

= 2EX1

[
EX2 [k(X1, X2)]

2
]

> 0,

using the expression for ι∗ given in Lemma 5.1.4(i). So the sequence {ι ◦
ι∗(fi)}∞i=1 in L2(X , PX ;Y) cannot have a convergent subsequence, which in turn
implies that ι ◦ ι∗ is not compact.

1See Bollobás (1999, p.186) for the definition and equivalent formulations of compact oper-
ators. This counterexample does not contradict Carmeli et al. (2006, Proposition 4.8), which

says that ι is compact if K(x, x) : Y → Y is compact for all x ∈ X and E
[
∥K(X,X)∥op

]
< ∞,

since K(x, x) = k(x, x)Id is clearly not a compact operator.
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5.1.2 Regularised Least-Squares Regression

As above, take i.i.d. copies {(Xi, Yi)}ni=1 of (X,Y ). We define the unregularised
population, regularised population, unregularised empirical and regularised em-
pirical risk functions with respect to the squared-loss as follows:

R(f) = E
[
∥f(X)− Y ∥2Y

]
;

Rλ(f) = E
[
∥f(X)− Y ∥2Y

]
+ λ ∥f∥2H ;

Rn(f) =
1

n

n∑
i=1

∥f(Xi)− Yi∥2Y ; and

Rn,λ(f) =
1

n

n∑
i=1

∥f(Xi)− Yi∥2Y + λ ∥f∥2H ,

(5.2)

where λ > 0 is a regularisation parameter. Here, R and Rn is defined for any f ∈
L2(X , PX ;Y), but Rλ and Rn,λ are only defined for f ∈ H. Also, the population
risks R and Rλ are deterministic functions of F , whereas the empirical risks Rn

and Rn,λ are random, varying with the random sample {(Xi, Yi)}ni=1.
The following decomposition of the population risk is well-known; see, for

example, Cucker and Smale (2002, Propoisition 1).

Lemma 5.1.5. We have the following decomposition of the risk R:

R(f) = E
[
∥f(X)− f∗(X)∥2Y

]
+R (f∗) .

It is immediate that f∗ is the minimiser of R in L2(X , PX ;Y).

Lemma 5.1.6. We formulate the minimisers in H of the regularised risks Rλ

and Rn,λ in terms of the inclusion and evaluation operators. Similar results
can be found in many places in the literature, for example Micchelli and Pontil
(2005, Section 4) or Engl et al. (1996, p.117, Theorem 5.1).

(i) The minimiser fλ of the risk Rλ in H is unique and is given by

fλ := argmin
f∈H

Rλ(f) = (ι∗ ◦ ι+ λIdH)
−1
ι∗f∗ = ι∗ (ι ◦ ι∗ + λId2)

−1
f∗,

where IdH : H → H and Id2 : L2(X , PX ;Y) → L2(X , PX ;Y) are the
identity operators.

(ii) The minimiser f̂n,λ of the risk Rn,λ in H is unique and is given by

f̂n,λ := argmin
f∈H

Rn,λ(f)

= (nS∗
X ◦ SX + λIdH)

−1
S∗
XY

= S∗
X (nSX ◦ S∗

X + λIdYn)
−1

Y,

where IdYn : Yn → Yn is the identity operator.
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5.1.3 Universal Consistency

Our goal in this subsection is to investigate the convergence to 0 in probability
of

R
(
f̂n,λ

)
−R (f∗) = E

[∥∥∥f̂n,λ(X)− f∗(X)
∥∥∥2
Y

]
=
∥∥∥ιf̂n,λ − f∗

∥∥∥2
2
,

where the equality comes from Lemma 5.1.5. We first consider the case where
the measure is fixed, i.e. the distributions PXY , PX and PY , the regression
function f∗, the function space L2(X , PX ;Y) as well as the operator ι, are
fixed. In Section 5.1.4, we will consider a uniform rate of convergence over a
class of distributions.

We split the above using the triangle inequality into estimation and approx-
imation errors: ∥∥∥ιf̂n,λ − f∗

∥∥∥
2
≤
∥∥∥ιf̂n,λ − ιfλ

∥∥∥
2
+ ∥ιfλ − f∗∥2 .

Proposition 5.1.7 shows, under the assumption that H is dense in L2(X , PX ;Y),
the convergence of the second term to 0 as λ→ 0, and Proposition 5.1.8 shows
the convergence of the first term in probability to 0 as n → ∞ and λ → 0.
Theorem 5.1.10 then brings them together to show the consistency of f̂n,λ.

Proposition 5.1.7 (Approximation Error). If ιH is dense in L2(X , PX ;Y),
then ∥f∗ − ιfλ∥22 → 0 as λ→ 0.

Proposition 5.1.8 (Estimation Error). Take any δ > 0. Then

P

∥∥∥f̂n,λ − fλ

∥∥∥2
H

≥
BE

[
∥Y ∥2Y

]
nλ2δ

 ≤ δ.

In particular, if λ = λn depends on n and converges to 0 at a slower rate than
O(n−1/2), then ∥∥∥f̂n,λn − fλn

∥∥∥2
H

P→ 0.

Remark 5.1.9. Under additional assumptions on the underlying distribution,
we can obtain tighter bounds in Proposition 5.1.8, by using exponential proba-
bilistic inequalities like Bernstein’s inequality, instead of Chebyshev’s inequality
like we did above. This is indeed done, for example, in Smale and Zhou (2007,
Theorem 1) for real output spaces and Singh et al. (2019, Theorem 2) for RKHS
output spaces in the context of conditional mean embeddings, by assuming that
Y is almost surely bounded, not just square integrable as we assumed in As-
sumption 5.1.1.

Theorem 5.1.10. Suppose ιH is dense in L2(X , PX ;Y). Suppose that λ = λn
depends on the sample size n, and converges to 0 at a slower rate than O(n−1/2).
Then we have

R
(
f̂n,λn

)
−R (f∗) = E

[∥∥∥f̂n,λn
(X)− f∗(X)

∥∥∥2
Y

]
=
∥∥∥ιf̂n,λn

− f∗
∥∥∥2
2

P→ 0.
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5.1.4 Uniform Rates in the Well-Specified Case

In our work above, possible bottlenecks are E[∥Y ∥2Y ] in Proposition 5.1.8 being
arbitrarily large, or fϵ in the proof of Proposition 5.1.7 having arbitrarily large
norm in H. In the next result, we consider a class of measures over which
the rate of convergence is uniform. In particular, any measure in this class of
measures is conditioned to have the conditional expectation f∗ of Y given X
in H, i.e. there exists some f∗H ∈ H such that ιf∗H = f∗. This is known as the
well-specified case (Szabó et al., 2016, p.2).

Theorem 5.1.11. For constants M,C > 0, define P(M,C) as the class of
measures such that

(i) E
[
∥Y ∥2Y

]
≤M , and

(ii) f∗ = ιf∗H for some f∗H ∈ H with ∥f∗H∥2H ≤ C.

Let H be dense in L2(X , PX ;Y) for all P ∈ P(M,C). Then

sup
P∈P(M,C)

P

(∥∥∥ιf̂n,λ − f∗
∥∥∥2
2
≥ 2B2M

nλ2δ
+ 2λC

)
≤ δ.

In particular, if λ = λn depends on the sample size n and converges to 0 at the
rate of O(n−1/4), then R(f̂n,λn)−R(f∗) = OP (n

−1/4) uniformly over the class
P(M,C) of measures.

5.2 Empirical Process Theory for Vector-Valued
Functions

Recall that (Ω,F,P) is the underlying probability space, and Y is a separable
Hilbert space over R, with its inner product and norm denoted by ⟨·, ·⟩Y and
∥·∥Y respectively. We denote by Y the Borel σ-algebra of Y, i.e. the σ-algebra
generated by the open subsets of Y. Let (X ,X) be a measurable set, and Q a
probability measure on it.

Let X : Ω → X be a random variable, and let X1, X2, ... be i.i.d. copies of
X. Denote by P its distribution, i.e. for A ∈ X, P (A) = P(X−1(A)), and by
Pn the empirical measure on X based on X1, ..., Xn, i.e.

Pn =
1

n

n∑
i=1

δXi
, where, for A ∈ X, δXi

(A) =

{
0 if Xi /∈ A

1 if Xi ∈ A
.

For a function g ∈ L1(X , Q;Y), we adopt the notation Qg =
∫
gdQ. Hence,

Pg =

∫
gdP and Png =

1

n

n∑
i=1

g(Xi).

86



CHAPTER 5. VECTOR-VALUED REGRESSION

Note that the integral Pg is a Bochner integral, and that we have Pg, Png ∈ Y.
Now, for fixed g, the law of large numbers in Hilbert (more generally, Banach)
spaces (Mourier, 1953) tells us that Png converges to Pg. One of the pillars of
empirical process theory is to consider the convergence of Png to Pg not for a
fixed g, but uniformly over a class of functions. Let G ⊂ L1(X , P ;Y). For a
measure Q on X , we denote ∥Q∥G := supg∈G ∥Qg∥Y .

Definition 5.2.1. We say that the class G is a Glivenko Cantelli (GC) class, or
that it satisfies the uniform law of large numbers (with respect to the measure

P ) if ∥Pn − P∥G = supg∈G ∥Png − Pg∥Y
P→ 0.

Definition 5.2.1 could have been defined in terms of the weak convergence
in Hilbert spaces, i.e. yn → y0 if ⟨y, yn⟩Y → ⟨y, y0⟩Y for every y ∈ Y. In
this thesis, we only consider strong (norm) convergence. Next, we define the
empirical process and the asymptotic equicontinuity.

Definition 5.2.2. We regard {νn(g) =
√
n (Pn − P ) g : g ∈ G} as a stochastic

process with values in Y indexed by G, and call it the empirical process.
We say that the empirical process {νn(g) : g ∈ G} is asymptotically equicon-

tinuous at g0 ∈ G if, for every sequence {ĝn} ⊂ G with ∥ĝn − g0∥2,P
P→ 0, we

have ∥νn (ĝn)− νn (g0)∥Y
P→ 0.

In the next few subsections, we state and prove some basic empirical process-
theoretic results, adapted to our setting of vector-valued functions.

5.2.1 Symmetrisation

Symmetrisation is an indispensable technique in empirical process theory. Let
X ′

1, ..., X
′
n be another set of independent copies of X, independent of X1, ..., Xn.

Denote by P ′
n the empirical measure on X ′

1, ..., X
′
n, i.e. P

′
n = 1

n

∑n
i=1 δX′

i
.

Lemma 5.2.3. We have

E
[
∥Pn − P∥G

]
≤ E

[
∥Pn − P ′

n∥G
]
.

We let {σi}ni=1 be a Rademacher sequence, i.e. a sequence of independent
random variables σi with

P (σi = 1) = P (σi = −1) =
1

2
, for all i = 1, ..., n.

We define the symmetrised empirical measures Pσ
n = 1

n

∑n
i=1 σiδXi and P ′σ

n =
1
n

∑n
i=1 σiδX′

i
, and denote

Pσ
n g =

1

n

n∑
i=1

σig(Xi) and P ′σ
n g =

1

n

n∑
i=1

σig(X
′
i).
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Lemma 5.2.4 (Symmetrisation with means). We have

E
[
∥Pn − P∥G

]
≤ 2E

[
∥Pσ

n ∥G
]

Lemma 5.2.5 (Symmetrisation with probabilities). Let a > 0. Suppose that
for all g ∈ G,

P
(
∥(Pn − P ) g∥Y >

a

2

)
≤ 1

2
.

Then
P
(
∥Pn − P∥G > a

)
≤ 4P

(
∥Pσ

n ∥G >
a

4

)
.

A simple application of the above symmetrisation argument and Hoeffding’s
inequality in Hilbert spaces shows that finite function classes are Glivenko-
Cantelli.

Lemma 5.2.6. Let G = {g1, ..., gN} ∈ L1(X , P ;Y) be a finite class of functions
with cardinality N > 1. Then we have

∥Pn − P∥G → 0.

5.2.2 Uniform law of large numbers

We start with a definition.

Definition 5.2.7 (Adapted from van de Geer (2000, p.26, Definition 3.1)). The
function G : X → R defined by G(·) = supg∈G ∥g(·)∥Y is called the envelope of
G.

The following is a uniform law of large numbers based on conditions on the
entropy H(δ,G, ∥·∥1,Pn) and the envelope G.

Theorem 5.2.8. Suppose that

G ∈ L1(X , P ;R) and
1

n
H(δ,G, ∥·∥1,Pn

)
P→ 0 for each δ > 0.

Then G is a Glivenko Cantelli class, i.e. ∥Pn − P∥G
P→ 0.

5.2.3 Chaining and asymptotic equicontinuity with em-
pirical entropy

In this subsection we show that, with additional conditions on the entropy of G
(which we assume to be totally bounded with respect to the appropriate metric)
and a technique called “chaining”, we can derive explicit finite-sample bounds,
and show the asymptotic continuity of the empirical process indexed by G (see
Definition 5.2.2). As before, we work conditionally on the samples, and denote
the σ-algebra generated by X1, ..., Xn as Fn.
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Suppose that G has an envelope G ∈ L2(X , P ;R) (see Definition 5.2.7). Then
the quantity R = supg∈G ∥g∥2,P is finite, since

R2 = sup
g∈G

E
[
∥g(X)∥2Y

]
≤ E

[
sup
g∈G

∥g(X)∥2Y

]
= E

[
G2
]
<∞.

Similarly, the quantity Rn = supg∈G ∥g∥2,Pn
is almost surely finite. We call R

and Rn the theoretical radius and empirical radius of G, respectively. Note that
Rn is a random quantity, measurable with respect to Fn.

Let us fix S ∈ N. To ease the notation, for s = 0, 1, ..., S, write Ns =
N(2−sRn,G, ∥·∥2,Pn) for the 2−sRn-covering number of G with respect to the

∥·∥2,Pn -metric, which we assume to be finite. Let {gsj}
Ns
j=1 ⊂ G be a 2−sRn-

covering set of G with respect to the ∥·∥2,Pn-metric. Note that {g0} = {0} is
an Rn-covering set of G, since, for any g ∈ G, ∥g∥2,Pn

≤ Rn. Similarly, write
Hs = logNs for each s = 0, 1, ..., S, for the corresponding entropy. Note that the
quantities Ns and Hs, as well as the covering set {gsj}

Ns
j=1, are random quantities

that are measurable with respect to Fn.
Now fix g ∈ G. Then define

gS+1 := argmin
{gS+1

j }
NS+1
j=1

{∥∥g − gS+1
j

∥∥
2,Pn

}
gS := argmin

{gS
j }NS

j=1

{∥∥gS+1 − gSj
∥∥
2,Pn

}
...

...

gs := argmin
{gs

j}
Ns
j=1

{∥∥gs+1 − gsj
∥∥
2,Pn

}
...

...

g0 := 0.

Proposition 5.2.9 (Chaining). We fix S ∈ N. Define

Jn :=

S∑
s=0

2−sRn

√
2Hs+1.

(i) For all t > 0,

P

(
sup
g∈G

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥
√
2Jn√
n

+ 6Rn

√
1 + t

n
| Fn

)
≤ 2e−t.

(ii) Suppose that ε1, ..., εn are i.i.d. Gaussian random variables in Y with mean
0 and covariance operator Q. Without loss of generality (by rescaling
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if necessary), assume TrQ = 1. For each g ∈ G, we can consider the
following inner product:

⟨ε, g⟩2,Pn
=

1

n

n∑
i=1

⟨εi, g(Xi)⟩Y .

Then for all t > 0,

P

(
sup
g∈G

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

≥ Jn√
n
+ 4Rn

√
1 + t

n
| Fn

)
≤ e−t.

Under additional conditions, we can use the previous lemma to show the
asymptotic equicontinuity of the empirical process, {

√
n (Pn − P ) g : g ∈ G}.

We continue to assume that the envelope G = supg∈G ∥g∥Y satisfies G ∈
L2(X , P ;R).

Theorem 5.2.10. Suppose that G satisfies the “uniform entropy condition”,
i.e. there exists a decreasing function H : R → R satisfying∫ 1

0

√
H(u)du <∞

such that, for all u > 0 and any probability distribution Q with finite support,

H(u ∥G∥2,Q ,G, ∥·∥2,Q) ≤ H(u).

Then the empirical process νn is asymptotically equicontinuous.

5.2.4 Peeling and Least-Squares Regression with Fixed
Design and Gaussian Noise

Theorem 5.2.11. Suppose that ε1, ..., εn are i.i.d. with Gaussian distribution
with mean 0 and covariance operator Q, and that TrQ = 1. Further, suppose
that

J(δ) := 4

∫ δ

0

√
2H(u,B2,Pn(δ), ∥·∥2,Pn)du <∞,

for each δ > 0 and J(δ)
δ2 is decreasing in δ where B2,Pn

(δ) := {g ∈ G : ∥g∥2,Pn
≤

δ}. Then for all t ≥ 3
8 and all δn satisfying

√
nδ2n ≥ 8

(
J(δn) + 4δn

√
1 + t+ δn

√
8

3
t

)
,

we have

P
(
∥ĝn − g0∥2,Pn

> δn

)
≤
(
1 +

2

e− 1

)
e−t.
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5.2.5 Empirical Risk Minimisation with Random Design

In this Section, we discuss the setting where we have an L-bounded, c-Lipschitz
loss function L : Y × Y → R. Suppose we have a given class G of functions
X → Y. Then given samples (X1, Y1), ..., (Xn, Yn), the empirical risk minimiser,
which we assume exists, is given by

ĝn = argmin
g∈G

R̂n(g), R̂n(g) =
1

n

n∑
i=1

L(Yi, g(Xi)).

We are interested in the convergence of ĝn to the population risk minimiser,

g∗ = argmin
g∈G

R(g), R(g) = E[L(Y, g(X))],

in terms of the population risk R. First, see that

R(ĝn)−R(g∗) = R(ĝn)− R̂(ĝn) + R̂(ĝn)− R̂(g∗) + R̂(g∗)−R(g∗)

≤ sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣+ R̂(g∗)−R(g∗),

where, going from the first line to the second, the first two terms on the right-
hand side were bounded by the supremum over the whole function class G (since,
although ĝn varies as the samples and the size n of the dataset vary, it always
lives in G), the middle two terms were bounded above by 0 since the empirical
risk minimiser ĝn minimises R̂, and the last two terms remain unchanged.

Theorem 5.2.12. Suppose the following uniform entropy condition is satisfied:
there exists some function H : R → R satisfying

J (1) := 4

∫ 1

0

√
2H(u)du <∞,

such that, for all u > 0 and any probability distribution Q with finite support,

H(uL,L ◦ G, ∥·∥2,Q) ≤ H(u).

Then

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n

)
≤ 2e−t.

5.3 Interlude: Vector-Valued Differential Cal-
culus and Metric Spaces

Recall that Y is a Hilbert space. Suppose that U is an open subset of Rd, and
denote the Euclidean norm in Rd by ∥·∥. We say that f1, f2 : U → Y are tangent
at a point a ∈ U (Cartan, 1967, p.28) if the quantity

m(r) = sup
∥x−a∥≤r

∥f1(x)− f2(x)∥Y ,
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which is defined for r > 0 small enough (since U is open), satisfies the condition

lim
r→0

m(r)

r
= 0, which we also write as m(r) = o(r).

We say that the map g : U → Y is differentiable at a ∈ U if g is continuous at a
and there exists a linear map g′(a) : Rd → Y such that the maps x 7→ g(x)−g(a)
and x 7→ g′(a)(x − a) are tangent at a (Cartan, 1967, p.29). This condition is
also written as

∥g(x)− g(a)− g′(a)(x− a)∥Y = o(∥x− a∥).

This immediately implies that g′(a) is continuous, so g′(a) belongs to L(Rd,Y),
the space of continuous linear operators from Rd into Y. We call g′(a) ∈
L(Rd,Y) the derivative of g at a. We say that g is differentiable on U if g
is differentiable at every point in U , and the map g′ : U → L(Rd,Y) is called
the derivative map of g. We say that g is continuously differentiable, or of class
C1, if g is differentiable at every point of U and the map g′ : U → L(Rd,Y) is
continuous (Cartan, 1967, p.30).

Let g : U → Y be a continuous map. For each a = (a1, ..., ad) ∈ U and each
l = 1, ..., d, consider the inclusion λl : R → Rd defined by

λl(xl) = (a1, ..., al−1, xl, al+1, ..., ad).

The composition g◦λl is defined on an open subset λ−1
l (X ) ⊂ R, which contains

al. If g is differentiable at a, then for each l = 1, ..., d, the map g ◦ λl is
differentiable at al (Cartan, 1967, p.38, Proposition 2.6.1). The derivative of
g ◦ λl at a is called the partial derivative of g, denoted by ∂lg(a), and lives
in L(R,Y). But L(R,Y) is isometrically isomorphic to Y (Cartan, 1967, p.20,
Exemple 1), so we can view ∂lg(a) as an element of Y. Moreover,

g′(a)(h) = g′(a)(h1, ..., hd) =

d∑
l=1

hl∂lg(a), for h = (h1, ..., hd) ∈ Rd.

Cartan (1967, p.40, Proposition 2.6.2) tells us that g is of class C1 if and only
if ∂lg : U → Y is continuous for each l = 1, ..., d.

Next, we consider higher-order derivatives. For m ∈ N, a map F : (Rd)m →
Y is m-linear if, for each k = 1, ...,m and any a(1), ..., a(k−1), a(k+1), ..., a(m) ∈
Rd, the map x 7→ F (a(1), ..., a(k−1), x, a(k+1), ..., a(m)) is linear from Rd into Y
(Cartan, 1967, p.24). We say that F is an m-linear map from Rd into Y, and
denote by Lm(Rd;Y) the space of all continuous m-linear maps from Rd into
Y2. The space Lm(Rd;Y) can then be equipped with a natural operator norm
defined by

∥F∥op = sup
∥x(1)∥≤1,...,∥x(m)∥≤1

∥∥∥F (x(1), ..., x(m))
∥∥∥
Y
.

2Beware that Lm(Rd;Y), the space of continuous m-linear maps from Rd into Y, is different
to L((Rd)m,Y), the space of continuous linear maps from (Rd)m into Y.
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For any integer m ∈ N, Coleman (2012, p.88, Theorem 4.4) tells us that

Ψm : L(Rd,Lm−1(Rd;Y)) → Lm(Rd;Y) defined by

Ψm(F )(x(1), x(2), ..., x(m)) = F (x(1))(x(2), ..., x(m))

is an isometric isomorphism.
We say that g : U → Y is twice differentiable at a ∈ U if the derivative

map g′ : U → L(Rd,Y) is differentiable at a. We denote by g′′(a) = g(2)(a) ∈
L(Rd,L(Rd,Y)) ≃ L2(Rd;Y ) the second derivative of g at a. We say that g
is twice differentiable on U if it is twice differentiable at all points in U . Then
we have a map g(2) : U → L2(Rd,Y). We say that g is twice continuously
differentiable on U , or of class C2 on U , if g is twice differentiable and if the
map g(2) is continuous (Cartan, 1967, p.64). By continuing in this way, we
say that g is m-times differentiable at a ∈ U if g(m−1) : U → Lm−1(Rd;Y) is
differentiable at a, define the mth derivative g(m)(a) ∈ Lm(Rd;Y) of g at a as
the derivative of g(m−1) at a, and say that g is m-times differentiable on U if it
is m-times differentiable at all points in U . We say that g is of class Cm on U if
g is m-times differentiable at all points in U and the map g(m) : U → Lm(Rd;Y)
is continuous; we say that g is of class C∞ if it is of class Cm for all m ∈ N
(Cartan, 1967, pp.69–70).

Similarly, for l1 ∈ {1, ..., d}, if the partial derivative ∂l1g : U → Y is defined in
some neighbourhood of x ∈ U and is differentiable, then for l2 ∈ {1, ..., d} (which
may or may not be distinct from l1), we may define the second partial derivative
∂l1∂l2g(a) ∈ Y. If l1 = l2 = l, then we write ∂l∂lg = ∂2l g. Analogously to the
first partial derivative, we have a formula that expresses the second derivative
as a sum of second partial derivatives:

g′′(a)((h
(1)
1 , ..., h

(1)
d ), (h

(2)
1 , ..., h

(2)
d )) =

d∑
l1,l2=1

h
(1)
l1
h
(2)
l2
∂l1∂l2g(a),

where h(1) = (h
(1)
1 , ..., h

(1)
d ), h(2) = (h

(2)
1 , ..., h

(2)
d ) ∈ Rd (Cartan, 1967, p.68,

(5.2.5)). Continuing in the same way, we can define the mth partial derivative
∂l1 ...∂lmg(a) ∈ Y. Then writing h = (h(1), ..., h(m)) ∈ (Rd)m, we have

g(m)(a)(h) =

d∑
l1,...,lm=1

h
(1)
l1
...h

(m)
lm

∂l1 ...∂lmg(a).

Finally, we state the extension of Taylor’s theorem to functions with values in
Y, with Lagrange’s form of the remainder. To this end, for a, b ∈ Rd, define the
segment joining a and b as the set (Coleman, 2012, p.51).

[a, b] = {x ∈ Rd : x = va+ (1− v)b, v ∈ [0, 1]}.
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Theorem 5.3.1 (Cartan (1967, p.77, Théorème 5.6.2)). Suppose that g : U →
Y is (m + 1)-times differentiable, that the segment [a, a + h] is contained in U
and that, for some K > 0, we have∥∥∥g(m+1)(x)

∥∥∥
op

≤ K for all x ∈ U.

Then ∥∥∥∥∥g(a+ h)−
m∑

k=0

1

k!
g(k)(a)((h)k)

∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
,

where we wrote (h)k = (h, ..., h) ∈ (Rd)k for k = 1, ...,m.

Write N0 = {0, 1, 2, ...}, and for p = (p1, ..., pd) ∈ Nd
0, write [p] := p1+...+pd.

Then we denote the pth partial derivative ∂p1

1 ...∂pd

d g(a) of g at a ∈ U asDpg(a) ∈
Y. This is possible since the order of partial differentiation is immaterial by
repeated application of Cartan (1967, p.69, Proposition 5.2.2). Hence, for each
k = 1, ...,m+ 1, we have

g(k)(a)((h)k) =

d∑
l1,...,lk=1

hl1 ...hlk∂l1 ...∂lkg(a) =
∑
[p]=k

k!hp

p!
Dpg(a),

where we wrote hp as a shorthand for hp1

1 ...h
pd

d and p! for p1!...pd!. Hence, using
partial derivatives, we can express Taylor’s theorem above as∥∥∥∥∥∥g(a+ h)−

∑
[p]≤m

hp

p!
Dpg(a)

∥∥∥∥∥∥
Y

≤ K
∥h∥m+1

(m+ 1)!
.

Finally, we introduce some notions from the theory of metric spaces. In partic-
ular, covering numbers play a central role in entropy discussions, and different
notions of dimensions based on covering numbers will be used to restrict the
range of partial derivatives of functions, leading up to entropy bounds in our
main results (Section 5.4).

Suppose (Z, ρ) is a metric space. For r > 0 and z0 ∈ Z, the ball of radius
r centred at z0 is B(z0, r) = {z ∈ Z : ρ(z, z0) ≤ r}. For any δ > 0, the δ-
covering number of (Z, ρ), denoted by N(δ,Z, ρ), is the minimum number of
balls of radius δ with centres in Z required to cover Z, i.e. the minimal N
such that there exists a set {z1, ..., zN} ⊂ Z such that for all z ∈ Z, there
exists a j = j(z) ∈ {1, ..., N} with ρ(z, zj) ≤ δ (we take N(δ,Z, ρ) = ∞ if no
finite covering by closed balls with radius δ exists). We say that Z is totally
bounded if N(δ,Z, ρ) <∞ for all δ > 0. We define the δ-entropy as H(δ,Z, ρ) =
logN(δ,Z, ρ).

Let E be a subset of (Z, ρ). The upper box-counting dimension of E is

τbox(E) := lim sup
δ→0

H(δ, E, ρ)

− log δ
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(Robinson, 2010, p.32, Definition 3.1). It is immediate from the definition
(Robinson, 2010, p.32, (3.3)) that if τ > τbox(E), then there exists δ0 > 0
such that for all δ < δ0,

N(δ, E, ρ) < δ−τ . (box)

A subset E of (Z, ρ) is said to be (M, τ)-homogeneous (or simply homogeneous)
if the intersection of E with any closed ball of radius R can be covered by at
mostM

(
R
r

)τ
closed balls of smaller radius r, i.e. N(r,B(z,R)∩E, ρ) ≤M

(
R
r

)τ
for all z ∈ E and R > r (Robinson, 2010, p.83, Definition 9.1). The Assouad
dimension (Robinson, 2010, p.85, Definition 9.5), sometimes also known as the
doubling dimension, of E is

τasd(E) := inf{τ : E is (M, τ)-homogeneous for some M ≥ 1}.

5.4 Entropy of Classes of Smooth Vector-Valued
Functions

In the usual empirical process theory with real-valued functions, classes of
smooth functions on compact domains are some of the most frequently used
examples that satisfy good entropy conditions (van de Geer, 2000, p.154, Ex-
ample 9.3.2), (van der Vaart and Wellner, 1996, Section 2.7.1), (Dudley, 2014,
Section 8.2). In this section, we give analogues of these results when the output
space is the (not necessarily finite-dimensional) Hilbert space Y.

Let m ∈ N; this will determine the smoothness of our function class. Let
d ≥ 1, and take as our input space the unit cube in Rd, X = {x ∈ Rd : 0 ≤
xj ≤ 1, j = 1, ..., d}; this is only to simplify the exposition, and the subsequent
results will clearly hold for any bounded convex subsets of Rd.

In order to bound the entropy of classes of smooth real-valued functions, one
bounds the absolute values of the range of the functions and their partial deriva-
tives. When the output space is Y, in particular, if Y has infinite dimensions,
bounding the norm of the range is useless, because balls in infinite-dimensional
spaces are not totally bounded. Therefore, to have any hope, the very least we
need to do is to find a totally bounded subset B ⊂ Y, and restrict our range
and partial derivatives therein. As B is totally bounded, for some KB > 0,
∥y∥Y ≤ KB for all y ∈ B.

Denote by Gm
B the set of m-times differentiable functions g : X → Y whose

partial derivatives Dpg : X → Y of orders [p] ≤ m exist everywhere on the
interior of X , and such that Dpg(x) ∈ B for all x ∈ X and [p] ≤ m, where D0g =
g. We present three results bounding H(δ,Gm

B , ∥·∥∞) for δ > 0 sufficiently
small, each with different assumptions on B. Theorem 5.4.1 assumes that B
is homogeneous, i.e. we impose local entropy conditions. In Theorems 5.4.2
and 5.4.3, we impose global entropy conditions on B, the former with finite
upper box-counting dimension, and the latter with N(δ,B, ∥·∥Y) allowed to
grow exponentially as δ decreases.
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Theorem 5.4.1. Let B ⊂ Y be totally bounded and (M, τasd)-homogeneous.
Then for sufficiently small δ > 0, there exists some constant K depending on
KB, m, d, M and τasd such that

H (δ,Gm
B , ∥·∥∞) ≤ Kδ−

d
m .

Theorem 5.4.1 gives the same rate for Gm
B as for smooth real-valued function

classes (Dudley, 2014, p.288, Theorem 8.4(a)), which is a special case of the set-
up in Theorem 5.4.1, since any bounded subset of R is a homogeneous subset
(with Assouad dimension at most 1). In fact, Dudley (2014, Theorem 8.4(a))

shows that this rate of δ−
d
m cannot be improved, so the rate given in Theorem

5.4.1 is also optimal. We will later see from the proof that the dependence on
τasd is linear.

Theorem 5.4.2. Let B be a subset of Y with finite upper box-counting dimen-
sion τbox. Then for sufficiently small δ > 0, there exists some constant K
depending on KB, m, d and τbox such that

H (δ,Gm
B , ∥·∥∞) ≤ Kδ−

d
m log

(
1

δ

)
.

Theorem 5.4.3. Let B be a subset of Y with N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp}
for some M, τexp > 0. Then for sufficiently small δ > 0, there is some constant
K depending on KB, m, d, M and τexp such that

H (δ,Gm
B , ∥·∥∞) ≤ Kδ−(

d
m+τexp).

We can use results in Section 5.2 to show that we have uniform law of large
numbers over Gm

B , where B satisfies the conditions in any one of Theorems 5.4.1,
5.4.2 or 5.4.3.

Corollary 5.4.4. The function class Gm
B , where B is either homogeneous, has

finite upper box-counting dimension or satisfies N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp}
for some τexp > 0, is Glivenko-Cantelli.

Further, the empirical process defined by Gm
B (c.f. Definition 5.2.2) is asymp-

totically equicontinuous.

Corollary 5.4.5. Suppose that B is either homogeneous, has finite upper box-
counting dimension or satisfies N(ϵ, B, ∥·∥Y) ≤ exp{Mϵ−τexp} for some τexp >
0. Then the empirical process {νn(g) =

√
n(Pn − P )g : g ∈ Gm

B } defined by Gm
B

is asymptotically equicontinuous.

5.4.1 Examples

With these results in hand, it is now of interest to investigate which interesting
examples of output space Y and subsets B satisfy the conditions of Theorems
5.4.1, 5.4.2 and 5.4.3.
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Example 5.4.6. Suppose that Y is a finite-dimensional Hilbert space, say with
dimension dY . Then balls are totally bounded, so we can let B be of the form B =
{y ∈ Y : ∥y∥Y ≤ K} for any K > 0. Moreover, subsets of finite-dimensional
spaces are homogeneous with Assouad dimension at most dY (Robinson, 2010,
p.85, Lemma 9.6(iii)), and so we can apply Theorem 5.4.1. The case Y = R
corresponds to the usual regression with real-valued output. If Y = RdY , it
corresponds to the multi-task learning setting (Evgeniou et al., 2005; Yousefi
et al., 2018; Xu et al., 2019).

A prominent application of vector-valued output spaces will be when we have
functional responses; example data sets include speech, diffusion tensor imaging,
mass spectrometry and glaucoma (see Morris (2015); Kadri et al. (2016) and
references therein). Let X ′ be a domain, and Y = L2(X ′, P ′;R) the space of real-
valued functions that are square-integrable with respect to some distribution
P ′ on X ′. By considering interesting subsets of Y, we can derive bounds on
the entropy H(δ,Gm

B , ∥·∥∞) using Theorems 5.4.1, 5.4.2 and 5.4.3. The next 4
examples are considered in this set-up.

Example 5.4.7. Suppose that ψ1, ..., ψr ∈ Y, and let B = {f = θ1ψ1 + ... +
θrψr : θ = (θ1, ..., θr)

T ∈ Rr, ∥f∥2,P ′ ≤ R} Then van de Geer (2000, p.20,
Lemma 2.5) tells us that B is homogeneous, and so Theorem 5.4.1 applies. This
corresponds to the case where the responses are finite-dimensional functions, or
adopting the nomenclature of van de Geer (2000, p.152, Example 9.3.1), “linear
regressors”.

Example 5.4.8. More generally, function classes with finite Assouad dimen-
sions have been considered in classification problems, and their generalisation
properties analysed (Li and Long, 2007; Bshouty et al., 2009). If these func-
tions form the responses of a regression problem, then Theorem 5.4.1 can again
be applied. Examples of such function classes include halfspaces with respect to
the uniform distribution (i.e. where P ′ is the uniform distribution) (Bshouty
et al., 2009, Proposition 6).

Example 5.4.9. Let X ′ be compact in Rd′
(in general, d ̸= d′), and suppose

that B ⊂ Y consists of smooth functions. More specifically, for some m′ ∈ N
and M > 0, let B be the set of all m′-times differentiable functions f : X ′ → R
whose partial derivatives Dqf : X ′ → R of orders [q] ≤ m′ exist everywhere on
the interior of X ′, and such that |Dqf(x′)| ≤ M for all x′ ∈ X ′ and [q] ≤ m′.
Then applying the result for real-valued function classes (Dudley, 2014, p.288,
Theorem 8.4) (or Theorem 5.4.1 with Y = R and B being the ball of radius M),

we have N(δ,B, ∥·∥∞) ≤ exp{K ′δ−
d′
m′ } for some constant K ′ > 0. This in turn

allows us to apply Theorem 5.4.3 to bound the entropy of Gm
B as

H(δ,Gm
B , ∥·∥∞) ≤ Kδ

−
(

d
m+ d′

m′

)

for some constant K > 0. So when the output space is itself a class of smooth
(real-valued) functions, the smoothness of the two function classes simply add
in the negative exponent of δ in the entropy.
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Example 5.4.10. Let B be a ball in a reproducing kernel Hilbert space (RKHS)
with a C∞ Mercer kernel (see Cucker and Smale (2002) for details), then Cucker
and Smale (2002, Theorem D) tells us that for some constant K ′, we have

N(δ,B, ∥·∥∞) ≤ exp{K ′δ−
2d
h } for any h > d. Then we can again apply Theorem

5.4.3 to bound H(δ,Gm
B , ∥·∥∞) by Kδ−( d

m+ 2d
h ) for some constant K and any

h > d.

5.5 Discussion on Rademacher Complexities

In this Section, we discuss the extension of the concept of Rademacher com-
plexities to classes of vector-valued functions. We first give the definition of
Rademacher complexities of classes of real-valued functions.

Definition 5.5.1 (Bartlett and Mendelson (2002, Definition 2)). Suppose G is
a class of real-valued functions X → R. Then the empirical (or conditional)
Rademacher complexity of G is defined as

R̂n(G) = E

[
sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

σig(Xi)

∣∣∣∣∣ | X1, ..., Xn

]
,

where the expectation is taken with respect to {σi}ni=1. The Rademacher com-
plexity of G is defined as

Rn(G) = E
[
R̂n(G)

]
.

Since this seminal definition, it was realised that the absolute value around
1
n

∑n
i=1 σig(Xi) was unnecessary (see, for example, Meir and Zhang (2003, para-

graph between Corollary 4 and Lemma 5) or Maurer (2016, last paragraph of
Section 1)). However, in order to facilitate the following direct extension to
classes of vector-valued functions, we retain the absolute value sign.

Definition 5.5.2. Suppose G is a class of X → Y functions. Then the empirical
(or conditional) Rademacher complexity of G is defined as

R̂n(G) = E

[
sup
g∈G

∥∥∥∥∥ 1n
n∑

i=1

σig(Xi)

∥∥∥∥∥
Y

| X1, ..., Xn

]
= E

[
∥Pσ

n g∥G | X1, ..., Xn

]
,

using the notation from Section 5.2. The Rademacher complexity of G is defined
as

Rn(G) = E
[
R̂n(G)

]
.

Note that our definition is different to the “vector-valued Rademacher com-
plexity” already in use in the literature, mostly for Y being a finite-dimensional
Euclidean space (Yousefi et al., 2018, Definition 1; Li et al., 2019, Definition 3),
but also for Y = l2, the space of square-summable sequences (Maurer, 2016).
These papers define the “Rademacher complexity” of vector-valued function
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classes not as in Definition 5.5.2, where we have one Rademacher variable σi
per sample Xi, but introduce a Rademacher variable for every coordinate of Y.
The resulting quantity looks something like

E

[
sup
g∈G

1

n

n∑
i=1

∑
k

σk
i gk(Xi) | X1, ..., Xn

]
,

where gk is the kth coordinate of g with respect to a basis, and {σk
i }i,k are

Rademacher random variables. For convenience, in what follows, we call this
the “coordinate-wise Rademacher complexity”, and denote it by R̂coord

n (G).
While we recognise the usefulness of this definition, especially thanks to the

contraction result shown in Maurer (2016), Cortes et al. (2016), Zatarain-Vera
(2019) and Foster and Rakhlin (2019), for several reasons, we insist on using
Definition 5.5.2. Firstly, as it is clear from the definition, and as admitted by
Maurer (2016, paragraph just above Conjecture 2), Definition 5.5.2 is a more
natural definition in view of the real-valued Rademacher complexity. Moreover,
our work in Section 5.2.1 uses the empirical symmetrised measure 1

n

∑n
i=1 σiδXi

to good effect and in a way that directly generalises from the real-valued case,
which suggests that Definition 5.5.2 is natural. Finally, and perhaps most crit-
ically, the coordinate-wise Rademacher complexity is not independent of the
choice of the basis of Y. For a simple counterexample, let X = Y = R2, and
G = {g1, g2}, where g1 is the orthogonal projection onto the line y = x, and
g2 is the orthogonal projection onto the line y = −x. This means that, letting

X1 =

(
1
0

)
and X2 =

(
0
1

)
, we have

g1(X1) =

(
1
2
1
2

)
, g1(X2) =

(
1
2
1
2

)
, g2(X1) =

(
1
2

− 1
2

)
, g2(X2) =

(
− 1

2
1
2

)
.

Then the coordinate-wise Rademacher complexity of G with respect to the stan-
dard basis {X1, X2} is

R̂coord
n (G) = E

[
sup
g∈G

2∑
i=1

2∑
k=1

σk
i gk(Xi)

]

= E
[
sup
g∈G

{
σ1
1 (g(X1))1 + σ2

1 (g(X1))2 + σ1
2 (g(X2))1 + σ2

2 (g(X2))2
}]

= E
[
σ1
1

2
+
σ2
2

2
+ sup

g∈G

{
σ2
1 (g(X1))2 + σ1

2 (g(X2))1
}]

= sup
g∈G

{(g(X1))2 + (g(X2))1}+ sup
g∈G

{− (g(X1))2 + (g(X2))1}

+ sup
g∈G

{(g(X1))2 − (g(X2))1}+ sup
g∈G

{− (g(X1))2 − (g(X2))1}

= 1 + 0 + 0 + 1

= 2.
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But if we use the orthonormal basis

{(
1√
2
1√
2

)
,

(
− 1√

2
1√
2

)}
, then we have

(g1(X1))1 =
1√
2
, (g1(X1))2 = 0, (g1(X2))1 =

1√
2

(g1(X2))2 = 0

(g2(X1))1 = 0, (g2(X1))2 = − 1√
2
, (g2(X2))1 = 0, (g2(X2))2 =

1√
2
.

So the complexity with respect to the standard basis {X1, X2} is

E

[
sup
g∈G

2∑
i=1

2∑
k=1

σk
i gk(Xi)

]

= E
[
sup
g∈G

{
σ1
1 (g(X1))1 + σ2

1 (g(X1))2 + σ1
2 (g(X2))1 + σ2

2 (g(X2))2
}]

= sup
g∈G

{(g(X1))1 + (g(X1))2 + (g(X2))1 + (g(X2))2}

+ sup
g∈G

{(g(X1))1 + (g(X1))2 + (g(X2))1 − (g(X2))2}

+ sup
g∈G

{(g(X1))1 + (g(X1))2 − (g(X2))1 + (g(X2))2}

+ sup
g∈G

{(g(X1))1 − (g(X1))2 + (g(X2))1 + (g(X2))2}

+ sup
g∈G

{− (g(X1))1 + (g(X1))2 + (g(X2))1 + (g(X2))2}

+ sup
g∈G

{(g(X1))1 + (g(X1))2 − (g(X2))1 − (g(X2))2}

+ sup
g∈G

{(g(X1))1 − (g(X1))2 + (g(X2))1 − (g(X2))2}

+ sup
g∈G

{− (g(X1))1 + (g(X1))2 + (g(X2))1 − (g(X2))2}

+ sup
g∈G

{(g(X1))1 − (g(X1))2 − (g(X2))1 + (g(X2))2}

+ sup
g∈G

{− (g(X1))1 + (g(X1))2 − (g(X2))1 + (g(X2))2}

+ sup
g∈G

{− (g(X1))1 − (g(X1))2 + (g(X2))1 + (g(X2))2}

+ sup
g∈G

{(g(X1))1 − (g(X1))2 − (g(X2))1 − (g(X2))2}

+ sup
g∈G

{− (g(X1))1 + (g(X1))2 − (g(X2))1 − (g(X2))2}

+ sup
g∈G

{− (g(X1))1 − (g(X1))2 + (g(X2))1 − (g(X2))2}

+ sup
g∈G

{− (g(X1))1 − (g(X1))2 − (g(X2))1 + (g(X2))2}

+ sup
g∈G

{− (g(X1))1 − (g(X1))2 − (g(X2))1 − (g(X2))2}

100



CHAPTER 5. VECTOR-VALUED REGRESSION

=
√
2 +

√
2 + 0 +

√
2 + 0 + 0 +

√
2 + 0 +

√
2 + 0 +

√
2 + 0−

√
2 + 0 + 0 + 0

= 5
√
2.

Hence, we see that the coordinate-wise Rademacher complexity is not inde-
pendent of the chosen orthonormal basis. We deem this to be a critical issue
with the coordinate-wise Rademacher complexity, because it is intuitively clear
that the “complexity” of a function class should not depend on the choice of
the basis of the output space. This is especially pertinent in our context, con-
sidering that our interest is primarily in the case when the output space Y is
infinite-dimensional in which there may be no “standard basis”.

One of the main ways of bounding the Rademacher complexity of real-valued
function classes is to use the entropy. We show that the Rademacher complexity
of vector-valued function classes G can be bounded using the entropy, a vector-
valued analogue of Shalev-Shwartz and Ben-David (2014, p.338, Lemma 27.4).
We use the chaining notation in Section 5.2.3, and also use Hoeffding’s inequality
in Hilbert spaces (Pinelis, 1992).

Theorem 5.5.3. Let S ∈ N be any (large) integer. The empirical Rademacher
complexity is bounded as

R̂n(G) ≤ 2−(S+1)Rn +
2√
n
Jn,

where we recall that Rn = supg∈G∥g∥2,Pn is the empirical radius and Jn =∑S
s=0 2

−sRn

√
2Hs+1 is the uniform entropy bound.

When the Rademacher complexity is used in empirical risk minimisation for
real-valued function classes F , what we end up using is not the Rademacher
complexity Rn(F) of the function class itself, but that of the composition of
the loss with the function class. The same is true for vector-valued empirical
risk minimisation problems. More precisely, suppose we have a loss function
L : Y ×Y → R, and we denote by ĝn the solution of the following empirical risk
minimisation problem:

ĝn = argmin
g∈G

1

n

n∑
i=1

L(Yi, g(Xi)) = argmin
g∈G

R̂n(g).

Denote by g∗ the minimiser of the population risk:

g∗ := argmin
g∈G

E [L(Y, g(X))] = argmin
g∈G

R(g).

We want to know how fast R(ĝn) converges to the minimal risk R(g∗) as
the sample size n increases. Here, actually, the standard result concerning
Rademacher complexities applies directly – we will quote the following result.

Theorem 5.5.4 (Shalev-Shwartz and Ben-David (2014, p.328, Theorem 26.5)).
Assume that for all (x, y) ∈ X ×Y and g ∈ G, we have |L(y, g(x))| ≤ c for some
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constant c > 0. Then with probability at least 1− δ, we have

R(ĝn)−R(g∗) ≤ 2Rn(L ◦ G) + 5c

√
2 log

(
8
δ

)
n

where we used the notation L ◦ G for the class of functions X × Y → R defined
as

L ◦ G := {(x, y) 7→ L(y, g(x)) : g ∈ G} .

Now, the question is how to obtain a meaningful bound on the Rademacher
complexity Rn(L ◦ G) as n → ∞. When G is a class of real-valued functions,
the Contraction Lemma (Shalev-Shwartz and Ben-David, 2014, p.331, Lemma
26.9) tells us that if, for each Yi ∈ R, the map y 7→ L(Yi, y) is c-Lipschitz,
then Rn(L ◦ G) is bounded by cRn(G), so it is meaningful to work with Rn(G).
However, an analogue of this result when G is a class of Y-valued functions is
shown to be impossible via a counterexample, in Maurer (2016, Section 6).

As mentioned above, one of the main ways of bounding the Rademacher
complexity is to use entropy. As our end goal is to bound the Rademacher
complexity of L ◦ G, there are two ways of going about this task with entropy.
For real-valued function classes F , what is commonly done is to bound the
Rademacher complexity of L ◦ F with the Rademacher complexity of F using
contraction, then to bound the Rademacher complexity of F by an expression
involving the entropy, using chaining. As discussed before, contraction becomes
difficult with vector-valued function classes. But we propose a different way
that avoids contraction of Rademacher complexities. We can first bound the
Rademacher complexity of L ◦ G with an expression involving the entropy of
L ◦ G, and use the following contraction result of entropies.

Lemma 5.5.5. Suppose that for each Y ∈ Y, the Y → R map y 7→ L(Y, y) is
c-Lipschitz for some constant c > 0, i.e. for y1, y2 ∈ Y, |L(Y, y1)− L(Y, y2)| ≤
c∥y1 − y2∥Y . Then for any δ > 0, we have

H(cδ,L ◦ G, ∥·∥2,Pn) ≤ H(δ,G, ∥·∥2,Pn).

So for empirical risk minimisation problems with appropriate loss functions,
it does make sense to consider the entropy of vector-valued function classes
G, while it remains as future work to investigate the use of the Rademacher
complexity of G.
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Chapter 6

Conclusion and Future
Directions

In this thesis, we detailed our contributions in two broad research domains –
causality and kernel regression.

In Part I, we proposed a new, axiomatic framework thereof, based on measure
theory, called causal spaces, by enriching probability spaces with causal kernels
that encode information about what happens after an intervention. After the
axiomatisation of the concept, as is always done in the development of any
mathematical theory, we investigated several definitions and proved a number
of results that stem from the axioms, including causal effects, interventions,
sources, products, causal independence and transformations. We showed how
the interventional aspects of existing frameworks can be captured by causal
spaces, and finally we gave some explicit constructions, highlighting cases in
which existing frameworks fall short.

Even if causal spaces prove with time to be the correct approach to axioma-
tise causality, there is much work to be done – in fact, all the more so in that
case. Despite the start made in this thesis, we foresee that there are countless
more objects to be defined and theorems to be proved. Perhaps most conspicu-
ously, we only discussed the interventional aspects of the theory of causality, but
the notion of counterfactuals is also seen as a key part of the theory, both inter-
ventional counterfactuals as advocated by Pearl’s ladder of causation (Pearl and
Mackenzie, 2018, Figure 1.2) and backtracking counterfactuals (Von Kügelgen
et al., 2023). We leave this as essential future work. Only then will we be able
to provide a full comparison with the counterfactual aspects of SCMs and the
potential outcomes.

We also mention the distinction between type causality and actual causality.
The former is a theory about general causality, involving statements such as
“in general, smoking makes lung cancer more likely”. Type causality is what
we will be concerned with in this paper. Actual causality, on the other hand,
is interested in whether a particular event was caused by a particular action,
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dealing with statements such as “Bob got lung cancer because he smoked for
30 years”. It is an extremely interesting area of research that has far-reaching
implications for concepts such as responsibility, blame, law, harm (Beckers et al.,
2022, 2023), model explanation (Biradar et al., 2021) and algorithmic recourse
(Karimi et al., 2022). Many definitions of actual causality have been proposed
(Halpern and Pearl, 2005; Halpern, 2015, 2016), but the question of how to define
actual causality is still not settled (Beckers, 2021). The current definitions of
actual causality are all grounded on (variants) of SCMs, and though it was out
of the scope of this thesis, it will be an interesting future research direction to
consider how actual causality can be incorporated into our proposed framework.

Regarding operations on multiple causal spaces, one interesting direction
could be to consider a categorical treatment. Although probability theory does
not seem to be so amenable to a category-theoretic treatment as other mathe-
matical objects, there have been some efforts to do so (Lynn, 2010; Adachi and
Ryu, 2016; Cho and Jacobs, 2019; Fritz, 2020). As future work, it would be
interesting to explore extensions of the transformations proposed here to formal
category-theoretic morphisms between causal spaces.

As a final note on our contributions to causality, it must be stressed that our
goal should not be understood as replacing existing frameworks. Indeed, causal
spaces cannot compete in terms of interpretability, and in the vast majority
of situations in which SCMs, potential outcomes or any of the other existing
frameworks are suitable, we expect them to be much more useful. In particular,
assumptions are unavoidable for identifiability from observational data, and
those assumptions are much better captured by existing frameworks1, However,
just as measure-theoretic probability theory has its value despite not being useful
for practitioners in applied statistics, we believe that it is a worthy endeavour
to formally axiomatise causality.

Regarding kernel regression, our contributions were much more contained
within existing fields. Kernel conditional mean embeddings have been around
for over a decade, and our contributions in Chapter 3 were to provide a new
interpretation of them as Bochner conditional expectations, which, compared to
the previous operator-based approaches, it does not rely on stringent assump-
tions that are often violated in common situations. Using this new approach, we
discussed how to obtain empirical estimates via natural vector-valued regression,
and established some theoretical results based on this regression interpretation.
Finally, we extended the notions of the MMD, witness function and HSIC to
the conditional case.

In Chapter 4, we discussed the analysis of the conditional distributional
treatment effect (CoDiTE). We first propose a new kernel-based hypothesis test
via kernel conditional mean embeddings to see whether there exists any CoDiTE.
Then we proceeded to investigate the nature of the treatment effect via condi-
tional witness functions, revealing where and how much the conditional densities
differ, and U-statistic regression, which is informative about the differences in

1Researchers from the potential outcomes community and the graphical model community
are arguing as to which framework is better for which situations (Imbens, 2019; Pearl, 2009).
We do not take part in this debate.
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specific conditional distributional quantities.
We foresee that much of the work that has been done by the machine learning

community on treatment effect analysis, although cast mostly in the context of
CATE, applies for the CoDiTE. Examples include meta learners (Künzel et al.,
2019), model validation (Alaa and Van Der Schaar, 2019), subgroup analysis
(Su et al., 2009; Lee et al., 2020) and covariate balancing (Gretton et al., 2009;
Kallus, 2018). A major obstacle in any covariate-conditional analysis of treat-
ment effect is this: when the covariate space is high-dimensional, the accuracy
and reliability of the estimates deteriorate significantly due to the curse of di-
mensionality, and we heavily rely on changes to be smooth across the covariate
space. This limitation is present not only in methods presented in this paper,
but any CATE or CoDiTE analysis. While out of scope for the present thesis,
it is of interest to investigate how to mitigate this problem.

Perhaps the most innovative contribution of Part II was made in Chapter
5, where the theory of empirical processes was extended to the vector-valued
case. In particular, we investigated the metric entropy of smooth functions, by
restricting the partial derivatives to take values in totally bounded subsets with
specific properties, leveraging theory from fractal geometry, and demonstrated
its application in empirical risk minimisation.

There is a plethora of possible future research directions. Considering other
classes of functions than those of smooth functions is a natural next step. Also,
we let Y be a Hilbert space, primarily because some simplifications occur for
Hoeffding’s inequality and Gaussian measures, but extensions to Banach spaces
should be possible. Moreover, we used compact subsets of Rd as our input space
due to the ease in considering partial derivatives, but interesting applications
exist for which the input space X is a subset of an infinite-dimensional space (Li
et al., 2020; Nelsen and Stuart, 2021; Lu et al., 2021). On the more theoretical
side, measurability questions for empirical processes and uniform central limit
theorems involving Gaussian elements in vector spaces are interesting questions.
Also, obtaining complementary lower bounds, so that our upper bounds are
minimax optimal, is an interesting problem. With empirical risk minimisation,
extensions to more general noise with vector-valued Bernstein’s inequality or
misspecified models are important.
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Appendix A

Proofs

A.1 Proofs for Chapter 1

Theorem 1.2.5. From Definition 1.2.2, Pdo(U,Q) is indeed a measure on (Ω,H),
and Kdo(U,Q,L) is indeed a valid causal mechanism on (Ω,H,Pdo(U,Q)), i.e. they
satisfy the axioms of Definition 1.2.1.

Proof of Theorem 1.2.5. That Pdo(U,Q) is a measure on (Ω,H) follows imme-
diately from the usual construction of measures from measures and transition
probability kernels, see e.g. Çınlar (2011, p.38, Theorem 6.3). It remains to
check that Kdo(U,Q,L) is a valid causal mechanism in the sense of Definition
1.2.1.

(i) For all A ∈ H and ω ∈ Ω,

K
do(U,Q,L)
∅ (ω,A) =

∫
L∅(ω∅, dω

′
U )KU ((ω∅, ω

′
U ), A)

=

∫
Q(dω′)KU (ω

′, A)

= Pdo(U,Q)(A),

where we applied Axiom 1.2.1(i) to L∅.

(ii) For all A ∈ HS and B ∈ H, we have, by Axiom 1.2.1(ii) using the fact
that A ∈ HS ⊆ HS∪U ,

K
do(U,Q,L)
S (ω,A ∩B)

=

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A ∩B)

=

∫
LS∩U (ωS∩U , dω

′
U )1A((ωS\U , ω

′
U ))KS∪U ((ωS\U , ω

′
U ), B)

=

∫
LS∩U (ωS∩U , dω

′
U )1A((ωS\U , ω

′
S∩U ))KS∪U ((ωS\U , ω

′
U ), B),
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where, in going from the third line to the fourth, we split the ω′
U in

1A((ωS\U , ω
′
U )) into components (ω′

S∩U , ω
′
U\S) and notice that since A ∈

HS , 1A does not depend on the component ω′
U\S . Here, the map ω′

S∩U 7→
1A((ωS\U , ω

′
S∩U )) isHS∩U -measurable, so we can write it as the limit of an

increasing sequence of positive HS∩U -simple functions (see Section 1.1.1),
say (fn)n∈N with fn =

∑mn

in=1 bin1Bin
, where Bin ∈ HS∩U . Likewise, the

map ω′
U 7→ KS∪U ((ωS\U , ω

′
U ), B) is HU -measurable, so we can write it as

the limit of an increasing sequence of positive HU -simple functions, say
(gn)n∈N with gn =

∑ln
jn=1 cjn1Cjn

, where Cjn ∈ HU . Hence

K
do(U,Q,L)
S (ω,A ∩B)

=

∫
LS∩U (ωS∩U , dω

′
U )
(
lim
n→∞

fn(ω
′
S∩U )

)(
lim

n→∞
gn(ω

′
U )
)
.

Since, for each ω′
U , both of the limits exist by construction, namely the

original measurable functions, we have that the product of the limits is
the limit of the products:

K
do(U,Q,L)
S (ω,A ∩B) =

∫
LS∩U (ωS∩U , dω

′
U ) lim

n→∞
(fn(ω

′
S∩U )gn(ω

′
U )) .

Here, since fn and gn were individually sequences of increasing functions,
the pointwise products fngn also form an increasing sequence of functions.
Hence, we can apply the monotone convergence theorem to see that

K
do(U,Q,L)
S (ω,A ∩B)

= lim
n→∞

∫
LS∩U (ωS∩U , dω

′
U )fn(ω

′
S∩U )gn(ω

′
U )

= lim
n→∞

mn∑
in=1

ln∑
jn=1

bincjn

∫
LS∩U (ωS∩U , dω

′
U )1Bin

(ω′
S∩U )1Cjn

(ω′
U )

= lim
n→∞

mn∑
in=1

ln∑
jn=1

bincjnLS∩U (ωS∩U , Bin ∩ Cjn)

= lim
n→∞

mn∑
in=1

ln∑
jn=1

bincjn1Bin
(ωS∩U )LS∩U (ωS∩U , Cjn)

= lim
n→∞

mn∑
in=1

bin1Bin
(ωS∩U )

ln∑
jn=1

cjnLS∩U (ωS∩U , Cjn)

=

(
lim
n→∞

mn∑
in=1

bin1Bin
(ωS∩U )

) lim
n→∞

ln∑
jn=1

cjnLS∩U (ωS∩U , Cjn)


=
(
lim

n→∞
fn(ωS∩U )

) lim
n→∞

∫
LS∩U (ωS∩U , dω

′
U )

ln∑
jn=1

cj1Cjn
(ω′

U )


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= 1A((ωS\U , ωS∩U ))

∫
LS∩U (ωS∩U , dω

′
U ) lim

n→∞
gn(ω

′
U )

= 1A(ωS)

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), B)

= 1A(ωS)K
do(U,Q,L)
S (ωS , B)

where, from the fourth line to the fifth, we used Axiom 1.2.1(ii); from the
sixth line to the seventh, we used that limit of the products is the product
of the limits again, noting that both of the limits exist by construction;
from the eighth line to the ninth, we used monotone convergence theorem
again. This is the required result.

Theorem 1.6.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ) and Q a probability measure on (Ω,HU ). Then after a hard

intervention on HU via Q, the intervention causal kernels K
do(U,Q,hard)
S are

given by

K
do(U,Q,hard)
S (ω,A) = K

do(U,Q,hard)
S (ωS , A)

=

∫
Q(dω′

U\S)KS∪U ((ωS , ω
′
U\S), A).

Proof of Theorem 1.6.3. We decomposeHU as a product σ-algebra intoHS∩U⊗
HU\S . Then events of the form B ∩C with B ∈ HS∩U and C ∈ HU\S generate
HU , so for fixed ωS∩U , the measure LS∩U (ωS∩U , ·) is completely determined by
LS∩U (ωS∩U , B ∩ C) for all B ∈ HS∩U , C ∈ HU\S . But we have

LS∩U (ωS∩U , B ∩ C) = δωS∩U
(B)LS∩U (ωS∩U , C) by Axiom 1.2.1(ii)

= δωS∩U
(B)Q(C),

since LS∩U is trivial and C ∈ HU\S . So the measure LS∩U (ωS∩U , ·) is a product
measure of δωS∩U

and Q. Hence, applying Fubini’s theorem,

K
do(U,Q,hard)
S (ω,A)

=

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A)

=

∫ ∫
KS∪U ((ωS\U , ω

′
S∩U , ω

′
U\S), A)δωS∩U

(dω′
S∩U )Q(dω′

U\S)

=

∫
KS∪U ((ωS\U , ωS∩U , ω

′
U\S), A)Q(dω′

U\S)

=

∫
Q(dω′

U\S)KS∪U ((ωS , ω
′
U\S), A),

as required.
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Lemma 1.6.4. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ), Q a probability measure on (Ω,HU ) and L = {LV : V ∈ P(U)}
a causal mechanism on (Ω,HU ,Q). Suppose we intervene on HU via (Q,L).

(i) For A ∈ HU and V ∈ P(T ) with V ∩U = ∅, HV has no causal effect on A
in the intervention causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,L)), i.e. events in
the σ-algebra HU on which intervention took place are not causally affected
by σ-algebras outside HU .

(ii) Again, let V ∈ P(T ) with V ∩ U = ∅, and also let A ∈ H be any event.
If, in the original causal space, HV had no causal effect on A, then in the
intervention causal space, HV has no causal effect on A either.

(iii) Now let V ∈ P(T ), A ∈ H any event and suppose that the intervention on
HU via Q is hard. Then if HV had no causal effect on A in the original
causal space, then HV has no causal effect on A in the intervention causal
space either.

Proof of Lemma 1.6.4. (i) Take any S ∈ P(T ). See that

K
do(U,Q,L)
S (ω,A)

=

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A)

=

∫
LS∩U (ωS∩U , dω

′
U )1A(ω

′
U )

=

∫
LS∩U (ωS∩U , dω

′
U )K(S\V )∪U ((ω(S\V )\U , ω

′
U ), A)

=

∫
L(S\V )∩U (ω(S\V )∩U , dω

′
U )K(S\V )∪U ((ω(S\V )\U , ω

′
U ), A)

= K
do(U,Q,L)
S\V (ω,A)

where, in going from the first line to the second and from the second line
to the third, we used the fact that A ∈ HU , and in going from the third
line to the fourth, we applied the fact that (S \ V ) ∩ U = S ∩ U since
V ∩ U = ∅. Since S ∈ P(T ) was arbitrary, HV has no causal effect on A
in the intervention causal space.

(ii) Take any S ∈ P(T ). See that

K
do(U,Q,L)
S (ω,A)

=

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A)

=

∫
LS∩U (ωS∩U , dω

′
U )K(S∪U)\V ((ω(S\V )\U , ω

′
U ), A)

=

∫
L(S\V )∩U (ω(S\V )∩U , dω

′
U )K(S\V )∪U ((ω(S\V )\U , ω

′
U ), A)
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= K
do(U,Q,L)
S\V (ω,A)

where, in going from the first line to the second, we used the fact that
HV has no causal effect on A in the original causal space, and in going
from the second line to the third, we used U ∩ V = ∅, which gives us
S ∩ U = (S \ V ) ∩ U and (S ∪ U) \ V = (S \ V ) ∪ U . Since S ∈ P(T ) was
arbitrary, HV has no causal effect on A in the intervention causal space.

(iii) Take any S ∈ P(T ). Apply Theorem 1.6.3 to see that

K
do(U,Q,hard)
S (ω,A)

=

∫
Q(dω′

U\S)KS∪U ((ωS , ω
′
U\S), A)

=

∫
Q(dω′

U\S)K(S∪U)\V ((ωS , ω
′
U\S), A) Def. 1.3.1(i)

=

∫
Q(dω′

U\S)K((S\V )∪U)\V ((ωS , ω
′
U\S), A)

=

∫
Q(dω′

U\S)K(S\V )∪U ((ωS , ω
′
U\S), A) Def. 1.3.1(i)

=

∫
Q(dω′

U\(S\V ))K(S\V )∪U ((ωS\V , ω
′
U\(S\V )), A)

= K
do(U,Q)
S\V (ω,A),

where, in going from the second line to the third, we used that (S∪U)\V =
((S \ V ) ∪ U) \ V . Since S ∈ P(T ) was arbitrary, HV has no causal effect
on A in the intervention causal space.

Lemma 1.6.5. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U ∈ P(T ). For an event A ∈ H, if HU has a dormant causal effect on A
in the original causal space, then there exists a hard intervention and a subset
V ⊆ U such that in the intervention causal space, HV has an active causal effect
on A.

Proof of Lemma 1.6.5. That HU has a dormant causal effect on A tells us that
KU (ω,A) = P(A) for all ω ∈ Ω, but there exists some S ∈ P(T ) and some
ω0 ∈ Ω such that KS(ω0, A) ̸= KS\U (ω0, A). We must have S ∩ U ̸= ∅, since
otherwise S \ U = S and we cannot possibly have KS(ω0, A) ̸= KS\U (ω0, A).
Then we hard-intervene on HS\U with the Dirac measure on ω0. Then apply
Theorem 1.6.3 to see that

K
do(S\U,δω0

,hard)

S∩U ((ω0)U∩S , A) =

∫
δω0

(dω′
S\U )KS(((ω0)U∩S , ω

′
S\U ), A)

= KS(ω0, A)

̸= KS\U (ω0, A)
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Note that the intervention measure on A is equal to KS\U (ω0, A):

Pdo(S\U,δω0 )(A) =

∫
δω0

(dω′
S\U )KS\U (ω

′, A) = KS\U (ω0, A).

Putting these together, we have

K
do(S\U,δω0

,hard)

S∩U (ω0, A) ̸= Pdo(S\U,δω0 )(A),

i.e. in the intervention causal space (Ω,H,Pdo(S\U,δω0
),K

do(S\U,δω0
,hard)

S∩U ), the
σ-algebra HS∩U has an active causal effect on A.

Lemma 1.6.6. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and U, V ∈ P(T ). For an event A ∈ H, suppose that HU has no causal effect
on A given HV (see Definition 1.3.4). Then after an intervention on HV via
any (Q,L), HU\V has no causal effect on A.

Proof of Lemma 1.6.6. Take any probability measure Q on (Ω,HV ) and any
causal mechanism L on (Ω,HV ,Q). Then see that, for any S ∈ P(T ) and all
ω ∈ Ω,

K
do(V,Q,L)
S (ω,A)

=

∫
LS∩V (ωS∩V , dω

′
V )KS∪V ((ωS\V , ω

′
V ), A)

=

∫
LS∩V (ωS∩V , dω

′
V )K(S∪V )\(U\V )((ωS\(U∪V ), ω

′
V ), A)

=

∫
L(S\(U\V ))∩V (ω(S\(U\V ))∩V , dω

′
V )K(S\(U\V ))∪V ((ωS\(U∪V ), ω

′
V ), A)

= K
do(V,Q,L)
S\(U\V ) (ω,A),

where, in going from the first line to the second, we used the fact that HU has no
causal effect on A given HV , and in going from the second line to the third, we
used identities S∩V = (S \(U \V ))∩V and (S∪V )\(U \V ) = (S \(U \V ))∪V .
Since S ∈ P(T ) was arbitrary, we have that HU\V has no causal effect on A in
the intervention causal space.

Theorem 1.6.7. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
where the index set T can be written as T =W × T̃ , with W representing time
and K respecting time. Take any U ∈ P(T ) and any probability measure Q on
HU . Then the intervention causal mechanism Kdo(U,Q,hard) also respects time.

Proof of Theorem 1.6.7. Take any w1, w2 ∈W with w1 < w2. Since K respects
time, we have that Hw2×T̃ has no causal effect on Hw1×T̃ in the original causal
space. To show that Hw2×T̃ has no causal effect on Hw1×T̃ after a hard inter-
vention on HU via Q, take any S ∈ P(T ) and any event A ∈ Hw1×T̃ . Then
using Theorem 1.6.3,

K
do(U,Q,hard)
S (ω,A)
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=

∫
Q(dω′)KS∪U ((ωS , ω

′
U\S), A)

=

∫
Q(dω′)K(S∪U)\Hw2×T̃

((ωS\Hw2×T̃
, ω′

U\(S∪Hw2×T̃ )), A)

=

∫
Q(dω′)

K((S∪U)\Hw2×T̃ )∪(U∩Hw2×T̃ )((ωS\Hw2×T̃
, ω′

(U\(S∪Hw2×T̃ ))∪(U∩Hw2×T̃ )), A)

=

∫
Q(dω′)K(S\Hw2×T̃ )∪U ((ωS\Hw2×T̃

, ω′
U\(S\Hw2×T̃ )), A)

= K
do(U,Q,hard)
S\Hw2×T̃

(ω,A)

where, from the second line to the third, we used the fact that Hw2×T̃ has no
causal effect on A, from the third line to the fourth we used the fact that U ∩
Hw2×T̃ has no causal effect on A (by Remark 1.3.2(e)) and Remark 1.3.2(g), and
from the fourth line to the fifth, we used that ((S∪U)\Hw2×T̃ )∪(U∩Hw2×T̃ ) =
(S \ Hw2×T̃ ) ∪ U and (U \ (S ∪ Hw2×T̃ )) ∪ (U ∩ Hw2×T̃ ) = U \ (S \ Hw2×T̃ ).
Since S ∈ P(T ) was arbitrary, we have that Hw2×T̃ has no causal effect on A
(Definition 1.3.1(i)). Since A ∈ Hw1×T̃ was arbitrary, Hw2×T̃ has no causal

effect on Hw1×T̃ , and so Kdo(U,Q,hard) respects time.

Theorem 1.7.2. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space,
and let U ∈ P(T ).

(i) For any measure Q on HU and any causal mechanism L on (Ω,HU ,Q),

the causal kernel K
do(U,Q,L)
U = KU is a version of Pdo(U,Q)

HU
, which means

that HU is a global source σ-algebra of (Ω,H,Pdo(U,Q),Kdo(U,Q,L)).

(ii) Suppose V ∈ P(T ) with V ⊆ U . Suppose that the measure Q on (Ω,HU )
factorises over HV and HU\V , i.e. for any A ∈ HV and B ∈ HU\V ,
Q(A∩B) = Q(A)Q(B). Then after a hard intervention on HU via Q, the

causal kernel K
do(U,Q,hard)
V is a version of Pdo(U,Q)

V , which means that HV

is a global source σ-algebra of (Ω,H,Pdo(U,Q),Kdo(U,Q,hard)).

Proof of Theorem 1.7.2. Suppose that f =
∑m

i=1 bi1Bi is a HU -simple function,
i.e. with Bi ∈ HU for i = 1, ...,m. Then for any B ∈ HU ,∫

B

f(ω)Pdo(U,Q)(dω) =

∫
B

m∑
i=1

bi1Bi
(ω)Pdo(U,Q)(dω)

=

m∑
i=1

biPdo(U,Q)(B ∩Bi)

=

m∑
i=1

bi

∫
Q(dω)KU (ω,B ∩Bi)

=

m∑
i=1

bi

∫
Q(dω)1B∩Bi(ω) by Axiom 1.2.1(ii)
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=

∫
B

m∑
i=1

bi1Bi
(ω)Q(dω)

=

∫
B

f(ω)Q(dω).

Now, for any HU -measurable map g : Ω → R, we can write it as a limit of an
increasing sequence of positive HU -simple functions fn (see Section 1.1.1), so
for any B ∈ HU , using the monotone convergence theorem,∫

B

g(ω)Pdo(U,Q)(dω) =

∫
B

lim
n→∞

fn(ω)Pdo(U,Q)(dω)

= lim
n→∞

∫
B

fn(ω)Pdo(U,Q)(dω)

= lim
n→∞

∫
B

fn(ω)Q(dω) by above

=

∫
B

lim
n→∞

fn(ω)Q(dω)

=

∫
B

g(ω)Q(dω).

We use this fact in the proof of both parts of this theorem.

(i) First note that we indeed have K
do(U,Q,L)
U = KU , by Remark 1.6.1(a).

For any A ∈ H, the map ω 7→ KU (ω,A) is HU -measurable, so for any
B ∈ HU ,∫

B

KU (ω,A)Pdo(U,Q)(dω) =

∫
B

KU (ω,A)Q(dω) by the above fact

=

∫
1B(ω)KU (ω,A)Q(dω)

=

∫
KU (ω,A ∩B)Q(dω)

= Pdo(U,Q)(A ∩B)

=

∫
1A∩B(ω)Pdo(U,Q)(dω)

=

∫
1B(ω)1A(ω)Pdo(U,Q)(dω)

=

∫
B

1A(ω)Pdo(U,Q)(dω).

So KU (·, A) = K
do(U,Q,L)
U (·, A) is indeed a version of the conditional prob-

ability Pdo(U,Q)
HU

(A), which means that HU is a global source of the inter-

vened causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,L)).
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(ii) For any A ∈ H, the map ω 7→ K
do(U,Q)
V (ω,A) is HV -measurable and hence

HU -measurable, so for any B ∈ HV ⊆ HU ,∫
B

K
do(U,Q)
V (ωV , A)Pdo(U,Q)(dωV )

=

∫
B

K
do(U,Q)
V (ωV , A)Q(dωV ) by above fact

=

∫
K

do(U,Q)
V (ωV , A ∩B)Q(dωV ) by Axiom 1.2.1(ii)

=

∫ ∫
Q(dω′

U\V )KU ((ωV , ω
′
U\V ), A ∩B)Q(dωV )

=

∫
KU (ωU , A ∩B)Q(dωU )

=

∫
B

1A(ω)Pdo(U,Q)(dω).

where, in going from the third line to the fourth, we used Theorem
1.6.3, and to go from the fourth line to the fifth, we used the hypoth-
esis that Q factorises over HV and HU\V , meaning Q(dωU\V )Q(dωV ) =

Q(dωU ). So K
do(U,Q)
V (ω,A) is indeed a version of the conditional probabil-

ity Pdo(U,Q)
HV

(A), which means that HV is a global source of the intervened

causal space (Ω,H,Pdo(U,Q),Kdo(U,Q)).

Lemma 1.7.3. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space.
Let A ∈ H be an event, and U ∈ P(T ). If there exists a sub-σ-algebra G of H
(not necessarily of the form HV for some V ∈ P(T )) such that

(i) the conditional probability Pdo(U,Q)
HU∨G (·, A) can be written in terms of P and

Q;

(ii) the causal kernel KU (·, B) can be written in terms of P for all B ∈ G;

then Pdo(U,Q)(A) can be written in terms of P and Q.

Proof of Lemma 1.7.3. By law of total expectations, for any V ∈ P(T ), we have

Pdo(U,Q)(A) =

∫
Pdo(U,Q)
HU∨G (ω,A)Pdo(U,Q)(dω)

=

∫
Pdo(U,Q)
HU∨G (ω,A)

∫
Q(dω′)KU (ω

′, dω).

Here, Pdo(U,Q)
HU∨G (ω,A) can be written in terms of P and Q by condition (i). More-

over, note that it suffices to be able to write the restriction ofKU (ω
′, ·) toHU∨G

in terms of P, since the integration is of a HU∨G-measurable function. Since the
collection of intersections {D∩B,D ∈ HU , B ∈ G} is a π-system that generates
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HU ∨ G (Çınlar, 2011, p.5, 1.18), it suffices to check that KU (ω
′, D ∩ B) can

be written in terms of P for all D ∈ HU and B ∈ G. But by interventional
determinism (Definition 1.2.1(ii)), we have KU (ω

′, D ∩B) = 1D(ω′)KU (ω
′, B).

Since KU (ω
′, B) can be written in terms of P by condition (ii), the restriction

of KU (ω
′, ·) to HU ∨ G can be written in terms of P, and hence Pdo(U,Q)(A) can

be written in terms of P and Q.

Corollary 1.7.5. Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal space.
Let A ∈ H be an event, and U ∈ P(T ). If there exists a V ∈ P(T ) such that
condition (i) of Lemma 1.7.3 is satisfied with G = HV and one of the following
conditions is satisfied:

(a) HU is a local source of HV ; or

(b) HU has no causal effect on HV ; or

(c) V ⊆ U ,

then Pdo(U,Q)(A) can be written in terms of P and Q.

Proof of Corollary 1.7.5. Condition (i) of Lemma 1.7.3 is satisfied by hypothe-
sis. If one of (a), (b) or (c) is satisfied, then trivially, condition (ii) of Lemma
1.7.3 is also satisfied. The result now follows from Lemma 1.7.3.

A.2 Proofs for Chapter 2

Lemma 2.1.2. The product causal space C1 ⊗C2 as defined in Definition 2.1.1
is a causal space.

Proof of Lemma 2.1.2. It is a standard fact that K1 ⊗ K2 defines a family of
probability kernels1. For the first axiom of causal kernels (Definition 1.2.1(i)),
we observe that

(K1 ⊗K2)∅((ω1, ω2), A1 ×A2) = K1
∅(ω1, A1)K

2
∅(ω2, A2)

= P1(A1)P2(A2)

= P1 ⊗ P2(A1 ×A2).

By standard reasoning based on the monotone class theorem, this extends to
A ∈ H1 ⊗H2 and therefore the first axiom of causal spaces is satisfied.

For the second axiom of causal spaces, for any S = S1∪S2, first fix arbitrary
A1 ∈ H1

S1 and A2 ∈ H1
S2 . Then, for all B1 ∈ H1 and B2 ∈ H2, we find that for

all ω = (ω1, ω2),

LS(ω, (A1 ×A2) ∩ (B1 ×B2)) = K1
S1
(ω1, A1 ∩B1)K

2
S2(ω2, A2 ∩B2)

= 1A1
(ω1)K

1
S1(ω1, B1)1A2

(ω2)K
2
S2(ω2, B2)

1See, e.g. math.stackexchange.com/questions/84078/product-of-two-probability-kernel-is-
a-probability-kernel
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= 1A1×A2(ω)LS(ω,B1 ×B2).

Hence, for this fixed pair A1, A2 and this ω, the measures B 7→ LS(ω, (A1 ×
A2)∩B) and B 7→ 1A1×A2(ω)LS(ω,B) are identical on the generating rectangles
B1 ×B2, hence they are identical on all of H1 ⊗H2 by the standard monotone
class theorem reasoning. Now, since this is true for arbitrary rectangles A1×A2

with A1 ∈ H1
S1 and A2 ∈ H2

S2 , if we now fix B ∈ H1 ⊗ H2, we have that the
two measures A 7→ LS(ω,A ∩ B) and A 7→ 1A(ω)LS(ω,B) on H1

S1 ⊗ H2
S2 are

identical on the generating rectangles A1 × A2, hence they are identical on all
of H1

S1 ⊗ H2
S2 . Now both A and B are arbitrary elements of H1 ⊗ H2 and

H1
S1 ⊗ H2

S2 respectively. To conclude, we have, for all ω, A ∈ H1 ⊗ H2 and
B ∈ H1

S1 ⊗H2
S2 ,

LS(ω,A ∩B) = 1A(ω)LS(ω,B),

confirming the second axiom of causal spaces.

Lemma 2.1.3. Let C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with Ω1 =
×t∈T 1Et and Ω2 = ×t∈T 2Et be two causal spaces. Then in C1 ⊗ C2,

(i) HT 1 has no causal effect on HT 2 , and HT 2 has no causal effect on HT 1 ;

(ii) HT 1 and HT 2 are (local) sources of each other.

Proof of Lemma 2.1.3. (i) Denote the causal kernels on the product space by
Kp. Take any event A ∈ HT 2 , and any S ⊆ T 1 ∪ T 2. Note that S can be
written as a union S = S1 ∪ S2 for some S1 ⊆ T 1 and S2 ⊆ T 2. Then see
that, by writing A = Ω1 ×A′ ∈ HT 1 ⊗HT 2 with A′ ⊆ Ω2,

Kp
S(ω,A) = Kp

S1∪S2(ω,A)

= K1
S1(ω,Ω1)K

2
S2(ω,A′)

= K1
∅(ω,Ω1)KS2(ω,A′)

= KS\T 1(ω,A).

Here we used that K1
S1(ω,Ω1) = 1 = K1

∅(ω,Ω1) because K(ω, ·) is a
probability measure for a probability kernel.

So HT 1 has no causal effect on A. Implication in the other direction
follows the same argument.

(ii) Take any A ∈ HT 2 . By (i), HT 1 has no causal effect on A, so

KT 1(ω,A) = KT 1\T 1(ω,A) = K∅(ω,A) = P(A).

But sinceHT 1 andHT 2 are probabilistically independent, PT 1(A) = P(A).
Hence, PT 1(A) = KT 1(ω,A), meaning HT1

is a source of A. Since A ∈
HT2

was arbitrary, HT1
is a source of HT2

. The implication in the other
direction follows the same argument.
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Lemma 2.4.1. Let (κ1, ρ1) : C
1 → C2 and (κ2, ρ2) : C

2 → C3 be causal transfor-
mations. If (κ1, ρ1) is an abstraction then (κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2) : C1 → C3

is a causal transformation.

Proof of Lemma 2.4.1. First, we claim that the pair (κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2)
is admissible. We have to show that, for any S3 ⊂ ρ3(T

1) and A ∈ H3
S3 , the

map κ3(·, A) is measurable with respect to H1
ρ−1
3 (S3)

.

Let us call ρ−1
2 (S3) = S2. Note that, since (κ2, ρ2) : C2 → C3 is a causal

transformation, κ2(·, A) is measurable with respect to H2
S2 . Since we assume

that the first map is an abstraction, we find that S2 ⊂ ρ1(T 1) = T 2, and
thus by Definition 2.2.1 that for B ∈ H2

S2 the function κ1(·, B) is measurable
with respect to H1

ρ−1
3 (S3)

, where we used ρ−1
3 (S3) = ρ−1

1 (S2). We now use the

relation κ3(ω,A) =
∫
κ1(ω, dω

′)κ2(ω
′, A). Since κ2(·, A) is measurable with

respect to H2
S2 , we conclude that we can approximate κ2(·, A) by a simple

function
∑
αi1Bi

(·) with Bi ∈ H2
S2 . But for such a simple function, we find∫

κ1(ω, dω
′)
∑
i

αi1Bi
(ω′) =

∑
i

αiκ1(ω,Bi),

which is measurable with respect to H1
S1 as a sum of measurable functions

because (κ1, ρ1) is admissible. By passing to the limit (κ3, ρ3) is admissible.
Next we show that distributional consistency holds, which follows directly

from distributional consistency of (κ1, ρ1) and (κ2, ρ2):∫
P1(dω)κ3(ω,A) =

∫
P1(dω)κ1(ω, dω2)κ2(ω2, A)

=

∫
P2(dω2)κ2(ω2, A)

= P3(A).

Next we consider interventional consistency. Let S3 ⊂ ρ3(T
1) and define

S2 = ρ−1
2 (S3) and S1 = ρ−1

3 (S1) = ρ−1
1 (S2). Note that, since (κ1, ρ1) is an

abstraction, i.e., ρ1 is surjective, we have S2 ⊂ ρ1(T
1) = T 2. Now we find that,

for ω1 ∈ Ω1 and A ∈ H3,∫
κ3(ω, dω

′)K3
S3
(ω′, A) =

∫
κ1(ω, dω2)κ2(ω2, dω

′)K3
S3
(ω′, A)

=

∫
κ1(ω, dω2)K

2
S2
(ω2, dω

′)κ2(ω
′, A)

=

∫
K1

S1
(ω, dω′)κ1(ω

′, dω2)κ2(ω2, A)

=

∫
K1

S1
(ω, dω′)κ3(ω

′, A).

This ends the proof as we have shown that (κ3, ρ3) is a causal transformation.
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Lemma 2.4.3. Consider an acyclic SCM on variables (X1, . . . , Xd) ∈ Rd with
observational distribution P. Let S ⊂ [d], R = Sc = [d] \ S and consider
causal spaces C1 = (Ω1,H1,PS ,K) and C2 = (Ω2,H2,P,L), where we have
(Ω1,H1) = (R|S|,B(R|S|)) and (Ω2,H2) = (Rd,B(Rd)). Moreover, PS is the
marginal distribution on the variables in S, and the causal mechanisms K and
L are derived from the SCM. In particular, K is a marginalisation of L, namely,
for any ω ∈ Ω2, any event A ∈ H1 and any S′ ⊆ S, we have that KS′(ω,A) =
LS′(ω,A).

Consider the map ρ : S ↪→ [d] and κ(·, A) = PH1(A). Then (ρ, κ) is a causal
transformation from C1 to C2.

Proof of Lemma 2.4.3. First we note that as in Example 2.2.5 it is clear that
(κ, ρ) is admissible and∫

κ(xS , A)PS(dxS) =

∫
PH1(A)dPS = P(A),

so we have distributional consistency.
For interventional consistency, let A ∈ H1, S′ ⊆ S and ω ∈ Ω1 be arbitrary.

Then see that∫
KS′(ω, dω′)κ(ω′, A) =

∫
KS′(ω, dω′)PH1(ω′, A)

=

∫
KS′(ω, dω′)1A(ω

′) since A ∈ H1

= KS′(ω,A).

On the other hand, see that, since LS′(·, A) is measurable with respect to H1,∫
κ(ω, dω′)LS′(ω′, A) =

∫
PH1(ω, dω′)LS′(ω′, A)

=

∫
1dω′(ω)LS′(ω′, A)

= LS′(ω,A).

But by the marginalisation condition on the causal mechanisms K and L, we
have that LS′(ω,A) = KS′(ω,A) for all ω ∈ Ω1. This proves interventional
consistency.

Lemma 2.4.4. Let C2 = (Ω2,H2,P2,K2) and C̃2 = (Ω2,H2, P̃2, K̃2) be two
causal spaces with the same underlying measurable space.

Let (κ, ρ) be an admissible pair for the measurable spaces (Ω1,H1) and
(Ω2,H2). Assume that the pair (κ, ρ) defines causal transformations φ : C1 →
C2 and φ̃ : C1 → C̃2 be a causal transformations.

Then P2 = P̃2, and for all A ∈ H2
ρ(T 1) and any S ⊆ T 2

K2
S(ω,A) = K̃2

S(ω,A) for P2 = P̃2-a. e. ω ∈ Ω2.
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Proof of Lemma 2.4.4. Applying distributional consistency of φ and φ̃, we find,
for all A ∈ H2,

P2(A) =

∫
P1(dω)κ(ω,A) = P̃2(A)

and thus P2 = P̃2.
Next, we consider A ∈ H2

ρ(T 1) and S ⊂ ρ(T 1). Let us define

B = {ω ∈ Ω2 : K2
S(ω,A) < K̃2

S(ω,A)}.

Since K2
S(·, A) and K̃2

S(·, A) are H2
S measurable, we find that B ∈ H2

S ⊂ H2
ρ(T 1).

Then the definition of causal spaces (see Definition 1.2.1) implies that

K2
S(ω

′, A ∩B) = 1B(ω
′)K2

S(ω
′, A).

Note that A ∩B ∈ H2
ρ(T 1), so we can apply interventional consistency (2.2) for

C2 and C̃2 and obtain, for any ω,∫
κ(ω, dω′)1B(ω

′)K2
S(ω

′, A) =

∫
κ(ω, dω′)1B(ω

′)K2
S(ω

′, A ∩B)

=

∫
K1

ρ−1(S)(ω, dω
′)κ(ω′, A)

=

∫
κ(ω, dω′)1B(ω

′)K̃2
S(ω

′, A ∩B)

=

∫
κ(ω, dω′)1B(ω

′)K̃2
S(ω

′, A).

We integrate this relation with respect to P1(dω) and then apply distributional
consistency to get

0 =

∫
P1(dω)κ(ω, dω′)1B(ω

′)(K̃2
S(ω

′, A)−K2
S(ω

′, A))

=

∫
P2(dω′)1B(ω

′)(K̃2
S(ω

′, A)−K2
S(ω

′, A))

=

∫
B

P2(dω′)(K̃2
S(ω

′, A)−K2
S(ω

′, A)).

On B, the integrand is strictly positive by definition. Thus we conclude that
P2(B) = 0 and thus K̃2

S(ω
′, A) ≤ K2

S(ω
′, A) holds almost surely.

The same reasoning implies the reverse bound, and we conclude that, P2-
almost surely, the relation

K̃2
S(ω

′, A) = K2
S(ω

′, A)

holds.

Lemma 2.4.5. Suppose (f, ρ) is an admissible pair for the causal space C1 =
(Ω1,H1,P1,K1) to the measurable space X2 = (Ω2,H2) and assume that ρ is
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surjective and f : Ω1 → Ω2 measurable. If f is surjective, there exists at most
one causal space C2 = (Ω2,H2,P2,K2) such that (f, ρ) : C1 → C2 is a causal
transformation.

If, in addition, K1
ρ−1(S2)(·, A) is measurable with respect to f−1(H2

S2) for all

A ∈ f−1(H2) and all S2 ⊂ T 2 then a unique causal space C2 exists such that
(f, ρ) : C1 → C2 is a causal transformation.

Proof of Lemma 2.4.5. We first prove uniqueness. The relation f∗P1 = P2 that
are necessarily true for deterministic maps (see Section 2.2) implies that P2 is
predetermined. Moreover, we find that, by (2.3), for any A ∈ H2, S ⊂ T 2 and
any ω ∈ Ω1,

K1
ρ−1(S)(ω, f

−1(A)) = K2
S(f(ω), A).

But since f is surjective we conclude that due to interventional consistency
K2

S(ω
′, A) for ω′ ∈ Ω2 is unique.

To prove the existence we note that by assumption for fixed A ∈ H2 the
function K1

ρ−1(S2)(·, f
−1(A)) is measurable with respect to f−1(H2

S2). Now by

the Factorisation Lemma (, p.76, Theorem II.4.4) there is a measurable function
g : (Ω2,H2

S2) → R such that

K1
ρ−1(S2)(ω, f

−1(A)) = g ◦ f(ω).

We define K2
S2(ω′, A) = g(ω′). By surjectivity this defines K2

S2 everywhere and
this defines a probability kernel because g is measurable.

It remains to verify that the resulting C2 is indeed a causal space. Using
interventional and distributional consistency we obtain

K2
∅(f(ω), A) = K1

∅(ω, f
−1(A))

= P1(f−1(A))

= f∗P1(A)

= P2(A).

This verifies the first property of causal spaces. For the second property we
observe that, for A ∈ H2

S2 and S1 = π−1(S2), using causal consistency,

K2
S2(f(ω), A ∩B) = K1

S1(ω, f−1(A ∩B))

= K1
S1(ω, f−1(A) ∩ f−1(B))

= 1f−1(A)(ω)K
1
S1(ω, f−1(B))

= 1A(f(ω))K
2
S2(f(ω), B).

Here we used that C1 is a causal space and f−1(A) ∈ H1
S1 . Thus, we conclude

that we obtained a causal space C2.

Lemma 2.4.6. Let C1 = (Ω1,H1,P1,K1) with (Ω1,H1) a product with index
set T 1 and C2 = (Ω2,H2,P2,K2) with (Ω2,H2) a product with index set T 2 be
causal spaces, and let (f, ρ) : C1 → C2 be a perfect abstraction.
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Let U1 = ρ−1(U2) ⊆ T 1 for some U2 ⊆ T 2. Let Q1 be a probability measure
on (Ω1,H1

U1) and L1 a causal mechanism on (Ω1,H1
U1 ,Q1). Suppose that, for

all S ⊆ U2 and A ∈ H1, the map L1
ρ−1(S)(·, A) is measurable with respect to

f−1(H2
S), and consider the intervened causal spaces

C1
I = (Ω1,H1, (P1)do(U

1,Q1), (K1)do(U
1,Q1,L1)),

C2
I = (Ω2,H2, (P2)do(U

2,Q2), (K2)do(U
2,Q2,L2)),

where Q2 = f∗Q1 and L2 is the unique family of kernels satisfying

L2
S(f(ω), A) = L1

ρ−1(S)(ω, f
−1(A))

for all ω ∈ Ω1, A ∈ H2, and S ⊆ U2. Then (f, ρ) : C1
I → C2

I is a perfect
abstraction.

Proof of Lemma 2.4.6. First, we note that by Lemma 2.4.5 L2 exists and is
unique. Thus, we need to verify distributional consistency and interventional
consistency.

Let us first show f∗(P1)do(U
1,Q1) = (P2)do(U

2,Q2). Since (f, ρ) is a causal
transformation (i.e., interventional consistency as in (2.2) holds), we find that,
for A ∈ H2,

f∗(P1)do(U
1,Q1)(A) =

∫
Q1(dω)K1

U1(ω, f−1(A))

=

∫
Q1(dω)K2

U2(f(ω), A)

=

∫
(f∗Q1)(dω′)K2

U2(ω′, A)

=

∫
Q2(dω′)K2

U2(ω′, A)

= (P2)do(U
2,Q2)(A).

Here we used the change of variable for pushforward-measures.
Next, we show interventional consistency of (f, ρ) : C1

I → C2
I . For this, we

introduce the shorthand fS = πS ◦ f . Note that since fS is measurable with
respect to H1

ρ−1(S) we can find f̃S such that fS(ω) = f̃S(ωρ−1(S)). Note that,

by the interventional consistency of (f, ρ) : C1 → C2, we have

K1
ρ−1(S)(ω, f

−1(S)) = K2
S(f(ω), A) = K2

S(f̃S(ωS), A).

We can now show for A ∈ H2 and S1 = ρ−1(S2) that

(K1)
do(U1,Q1,L1)
S1 (ω, f−1(A))

=

∫
L1
S1∩U1(ωS1∩U1 , dω′

U1)K1
S1∪U1((ωS1\U1 , ω′

U1), f−1(A))
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=

∫
L1
S1∩U1(ωS1∩U1 , dω′

U1)K2
S2∪U2(f̃S2\U2(ωS1\U1), f̃U2(ω′

U1), A)

=

∫ (
(f̃U1)∗(L

1
S1∩U1(ωS1∩U1 , ·)

)
(dωU2)K2

S2∪U2(f̃S2\U2(ωS1\U1), ωU2 , A)

=

∫
L2
S2∩U2(f(ω)S2∩U2), dωU2)K2

S2∪U2(f(ω)S2\U2), ωU2 , A)

= (K2)
do(U2,Q2,L2)
S2 (f(ω), A).

This ends the proof.

Lemma 2.4.7. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). If H1

U1 has no
causal effect on H1

V 1 in C1, then H2
U2 has no causal effect on H2

V 2 in C2.

Proof of Lemma 2.4.7. Consider A ∈ H2
V 2 and any S2 ⊂ T 2. Then for any

ω′ ∈ Ω2 we find an ω ∈ Ω1 such that f(ω) = ω′. Using interventional consistency
and f−1(A) ∈ H1

V 1 we conclude

K2
S2(ω′, A) = K1

ρ−1(S2)(ω, f
−1(A))

= K1
ρ−1(S2)\ρ−1(U2)(ω, f

−1(A))

= K1
ρ−1(S2\U2)(ω, f

−1(A))

= K2
S2\U2(ω′, A).

This ends the proof.

Lemma 2.4.8. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that H2

U2

has an active causal effect on H2
V 2 in C2. Then H1

U1 has an active causal effect
on H1

V 1 in C1.

Proof of Lemma 2.4.8. Since H2
U2 has an active causal effect on H2

V 2 in C2, we
find that there is an ω′ ∈ Ω2 and an A ∈ H2

V 1 such that

K2
U2(ω′, A) ̸= P2(A).

By surjectivity there is ω ∈ Ω1 such that ω′ = f(ω) and thus

K1
U1(ω, f−1(A)) = K2

U2(ω′, A)

̸= P2(A)

= P1(f−1(A)).

The claim follows because f−1(A) ∈ H1
U1 .

Lemma 2.4.10. Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two
sets U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that
H1

U1 is a local source of H1
V 1 in C1. Then H2

U2 is a local source of H2
V 2 in C2.

In particular, this implies that if H1
U1 is a global source then H2

U2 also is a
global source.
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Proof of Theorem 2.4.10. Our goal is to show that K2
U2(·, A) is a version of the

conditional probability P2
H2

U2
(A) for A ∈ H2

V 2 . It is sufficient to show that for

all B ∈ H2
U2 the following relation holds∫

P2(dω′)1A(ω
′)1B(ω

′) =

∫
P2(dω′)1B(ω

′)K2
U2(ω′, A). (A.1)

Using that (f, ρ) is a perfect abstraction, f−1(A) ∈ H1
V 1 , f−1(B) ∈ H1

U1 , and
that H1

U1 is a local source of H1
V 1 we find∫

P2(dω′)1A(ω
′)1B(ω

′) =

∫
f∗P1(dω′)1A(ω

′)1B(ω
′)

=

∫
P1(dω)1A(f(ω))1B(f(ω))

=

∫
P1(dω)1f−1(A)(ω)1f−1(B)(ω)

=

∫
P1(dω)K1

U1(ω, f−1(A))1f−1(B)(ω)

=

∫
P1(dω)K2

U2(f(ω), A)1B(f(ω))

=

∫
f∗P1(dω′)K2

U2(ω′, A)1B(ω
′)

=

∫
P2(dω′)K2

U2(ω′, A)1B(ω
′).

Thus we have shown that (A.1) holds and the proof is completed.

A.3 Proofs for Chapter 3

Before we prove Theorem 3.1.6, we state the following definition and theorems
related to measurable functions for Banach-space valued functions.

Definition A.3.1 ((Dinculeanu, 2000, p.4, Definition 5)). A function H : Ω →
H is called an F-simple function if it has the form H =

∑n
i=1 hi1Bi

for some
hi ∈ H and Bi ∈ F .

A function H : Ω → H is said to be F-measurable if there is a sequence
(Hn) of H-valued, F-simple functions such that Hn → H pointwise.

Theorem A.3.2 ((Dinculeanu, 2000, p.4, Theorem 6)). If H : Ω → H is F-
measurable, then there is a sequence (Hn) of H-valued, F-simple functions such
that Hn → H pointwise and |Hn| ≤ |H| for every n.

Theorem A.3.3 ((Dinculeanu, 2000, p.19, Theorem 48), Lebesgue Convergence
Theorem). Let (Hn) be a sequence in L1

H(P ), H : Ω → H a P -measurable
function, and g ∈ L1

+(P ) such that Hn → H P -almost everywhere and |Hn| ≤ g,
P -almost everywhere, for each n. Then H ∈ L1

H(P ) and Hn → H in L1
H(P ),

i.e.
∫
Ω
HndP →

∫
Ω
HdP .
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Theorem 3.1.6 (Adapted from (Çınlar, 2011, p.150, Proposition 2.5)). Suppose
that P (· | E) admits a regular version Q. Then QH : Ω → H with ω 7→ QωH =∫
Ω
H(ω′)Qω(dω

′) is a version of E[H | E ] for every Bochner P -integrable H.

Proof of Theorem 3.1.6. Suppose H is Bochner P -integrable. Since Q is a regu-
lar version of P (· | E), it is a probability transition kernel from (Ω, E) to (Ω,F).

We first show that QH is measurable with respect to E . The map Q :
Ω → H is well-defined, since, for each ω ∈ Ω, QωH is the Bochner-integral
of H with respect to the measure B → Qω(B). Since H is F-measurable,
by Theorem A.3.2, there is a sequence (Hn) of H-valued, F-simple functions
such that Hn → H pointwise. Then for each ω ∈ Ω, QωH = limn→∞QωHn

by Theorem A.3.3. But for each n, we can write Hn =
∑m

j=1 hj1Bj
for some

hj ∈ H and Bj ∈ F , and so QωHn =
∑m

j=1 hjQω(Bj). For each Bj the map
ω 7→ Qω(Bj) is E-measurable (by the definition of transition probability kernel),
and so as a linear combination of E-measurable functions, QHn is E-measurable.
Hence, as a pointwise limit of E-measurable functions, QH is also E-measurable,
by (Dinculeanu, 2000, p.6, Theorem 10).

Next, we show that, for all A ∈ E ,
∫
A
HdP =

∫
A
QHdP . Fix A ∈ E . By

Theorem A.3.2, there is a sequence (Hn) of H-valued, F-simple functions such
that Hn → H pointwise. For each n, we can write Hn =

∑m
j=1 hj1Bj

for some
hj ∈ H and Bj ∈ F , and∫

A

QHndP =

∫
A

m∑
j=1

hjQ(Bj)dP

=

∫
A

m∑
j=1

hjP (Bj | E)dP since Q is a version of P (· | E)

=

m∑
j=1

hj

∫
A

E[1Bj
| E ]dP

=

∫
A

m∑
j=1

hj1Bj
dP since A ∈ E

=

∫
A

HndP.

We have Hn → H pointwise by assertion, and as before, QHn → QH pointwise.
Hence, ∫

A

QHdP = lim
n→∞

∫
A

QHndP by Theorem A.3.3

= lim
n→∞

∫
A

HndP by above

=

∫
A

HdP by Theorem A.3.3.

Hence, by the definition of the conditional expectation, QH is a version of
E[H | E ].
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Theorem 3.1.11 (Generalised Conditional Jensen’s Inequality). Suppose T is
a real Hausdorff locally convex (possibly infinite-dimensional) linear topological
space, and let C be a closed convex subset of T . Suppose (Ω,F , P ) is a probability
space, and V : Ω → T a Pettis-integrable random variable such that V (Ω) ⊆ C.
Let f : C → [−∞,∞) be a convex, lower semi-continuous extended-real-valued
function such that E[f(V )] exists. Suppose E is a sub-σ-algebra of F . Then

f(E[V | E ]) ≤ E[f(V ) | E ].

Proof of Theorem 3.1.11. Let T ∗ be the dual space of all real-valued continuous
linear functionals on T . The first part of the proof of (Perlman, 1974, Theorem
3.6) tells us that, for all v ∈ T , we can write

f(v) = sup{m(v) | m affine, m ≤ f on C},

where an affine function m on T is of the form m(v) = v∗(v) + α for some
v∗ ∈ T ∗ and α ∈ R. If we define the subset Q of T ∗ × R as

Q := {(v∗, α) : v∗ ∈ T ∗, α ∈ R, v∗(v) + α ≤ f(v) for all v ∈ T },

then we can rewrite f as

f(v) = sup
(v∗,α)∈Q

{v∗(v) + α}, for all v ∈ T . (A.2)

See that, for any (v∗, α) ∈ Q, we have

E [f(V ) | E ] ≥ E [v∗(V ) + α | E ] almost surely, by assumption (*)

= E [v∗ (V ) | E ] + α almost surely, by linearity (**).

Here, (*) and (**) use the properties of conditional expectation of vector-valued
random variables given in (Dinculeanu, 2000, pp.45-46, Properties 43 and 40
respectively).

We want to show that E [v∗(V ) | E ] = v∗ (E [V | E ]) almost surely, and in
order to so, we show that the right-hand side is a version of the left-hand side.
The right-hand side is clearly E-measurable, since we have a linear operator on
an E-measurable random variable. Moreover, for any A ∈ E , using the linearity
of the integration operation (Cohn, 2013, p.403, Proposition E.11),∫

A

v∗ (E [V | E ]) dP = v∗
(∫

A

E [V | E ] dP
)

= v∗
(∫

A

V dP

)
=

∫
A

v∗ (V ) dP

(here, all the equalities are almost-sure equalities). Hence, by the definition of
the conditional expectation, we have that E [v∗(V ) | E ] = v∗ (E [V | E ]) almost
surely. Going back to our above work, this means that

E [f(V ) | E ] ≥ v∗ (E [V | E ]) + α.
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Now take the supremum of the right-hand side over Q. Then (A.2) tells us
that

E [f(V ) | E ] ≥ f (E [V | E ]) ,
as required.

Lemma 3.2.2. For any f ∈ HX , E[f(X) | Z] = ⟨f, µPX|Z ⟩HX almost surely.

Proof of Lemma 3.2.2. The left-hand side is the conditional expectation of the
real-valued random variable f(X) given Z. We need to check that the right-
hand side is also that. Note that ⟨f, µPX|Z ⟩HX is clearly Z-measurable, and
P -integrable (by the Cauchy-Schwarz inequality and the integrability condition
(3.1)). Take any A ∈ σ(Z). Then∫

A

⟨f, µPX|Z ⟩HX dP =

∫
A

〈
f,EX|Z [kX (·, X) | Z]

〉
HX

dP by definition

=

〈
f,

∫
A

EX|Z [kX (·, X) | Z]dP
〉

HX

(+)

=

〈
f,

∫
A

kX (·, X)dP

〉
HX

see Definition 3.1.5

=

∫
A

⟨f, kX (·, X)⟩HX dP (+)

=

∫
A

f(X)dP

by the reproducing property. Here, in (+), we used the fact that the order
of a continuous linear operator and Bochner integration can be interchanged
(Dinculeanu, 2000, p.30, Theorem 36). Hence ⟨f, µPX|Z ⟩HX is a version of the
conditional expectation EX|Z [f(X) | Z].

Lemma 3.2.3. For any pair f ∈ HX and g ∈ HY , E[f(X)g(Y ) | Z] = ⟨f ⊗
g, µPXY |Z ⟩HX⊗HY almost surely.

Proof of Lemma 3.2.3. The left-hand side is the conditional expectation of the
real-valued random variable f(X)g(Y ) given Z. We need to check that the right-
hand side is also that. Note that ⟨f⊗g, µPXY |Z ⟩HX⊗HY is clearly Z-measurable,
and P -integrable (by the Cauchy-Schwarz inequality and the integrability con-
dition (3.2)). Take any A ∈ σ(Z). Then∫

A

⟨f ⊗ g, µPXY |Z ⟩HX⊗HYdP

=

∫
A

⟨f ⊗ g,E[kX (·, X)⊗ kY(·, Y ) | Z]⟩HX⊗HY
dP

=

〈
f ⊗ g,

∫
A

E[kX (·, X)⊗ kY(·, Y ) | Z]dP
〉

HX⊗HY

=

〈
f ⊗ g,

∫
A

kX (·, X)⊗ kY(·, Y )dP

〉
HX⊗HY
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=

∫
A

⟨f ⊗ g, kX (·, X)⊗ kY(·, Y )⟩HX⊗HYdP

=

∫
A

f(X)g(Y )dP.

So ⟨f ⊗ g, µPXY |Z ⟩HX⊗HY is a version of E[f(X)g(Y ) | Z].

Theorem 3.3.1. Denote the Borel σ-algebra of HX by B(HX ). Then we can
write µPX|Z = FPX|Z ◦Z, where FPX|Z : Z → HX is some deterministic function,
measurable with respect to Z and B(HX ).

Proof of Theorem 3.3.1. Let Im(Z) ⊆ Z be the image of Z : Ω → Z, and let Z̃
denote the σ-algebra on Im(Z) defined by Z̃ = {A∩Im(Z) : A ∈ Z} (see (Çınlar,
2011, page 5, 1.15)). We will first construct a function F̃ : Im(Z) → HX ,
measurable with respect to Z̃ and B(HX ), such that µPX|Z = F̃ ◦ Z.

For a given z ∈ Im(Z) ⊆ Z, we have Z−1(z) ⊆ Ω. Suppose for contradiction
that there are two distinct elements ω1, ω2 ∈ Z−1(z) such that µPX|Z (ω1) ̸=
µPX|Z (ω2). Since HX is Hausdorff, there are disjoint open neighbourhoods N1

and N2 of µPX|Z (ω1) and µPX|Z (ω2) respectively. By definition of a Borel σ-
algebra, we have N1, N2 ∈ B(HX ), and since µPX|Z is σ(Z)-measurable,

µ−1
PX|Z

(N1), µ
−1
PX|Z

(N2) ∈ σ(Z). (A.3)

Furthermore, µ−1
PX|Z

(N1) and µ−1
PX|Z

(N2) are neighbourhoods of ω1 and ω2 re-

spectively, and are disjoint.

(i) For any B ∈ Z̃ with z ∈ B, since Z(ω1) = z = Z(ω2), we have ω1, ω2 ∈
Z−1(B). So Z−1(B) ̸= µ−1

PX|Z
(N1) and Z−1(B) ̸= µ−1

PX|Z
(N2), as ω2 /∈

µ−1
PX|Z

(N1) and ω1 /∈ µ−1
PX|Z

(N2).

(ii) For any B ∈ Z̃ with z /∈ B, we have ω1 /∈ Z−1(B) and ω2 /∈ Z−1(B). So
Z−1(B) ̸= µ−1

PX|Z
(N1) and Z

−1(B) ̸= µ−1
PX|Z

(N2).

Since σ(Z) = {Z−1(B) | B ∈ Z̃} (see (Çınlar, 2011), page 11, Exercise 2.20), we
can’t have µ−1

PX|Z
(N1) ∈ σ(Z) nor µ−1

PX|Z
(N2) ∈ σ(Z). This is a contradiction

to (A.3). We therefore conclude that, for any z ∈ Z, if Z(ω1) = z = Z(ω2) for
distinct ω1, ω2 ∈ Ω, then µPX|Z (ω1) = µPX|Z (ω2).

We define F̃ (z) to be the unique value of µPX|Z (ω) for all ω ∈ Z−1(z). Then

for any ω ∈ Ω, µPX|Z (ω) = F̃ (Z(ω)) by construction. It remains to check that

F̃ is measurable with respect to Z̃ and B(HX ).
Take any N ∈ B(HX ). Since µPX|Z is σ(Z)-measurable,

µ−1
PX|Z

(N) = Z−1(F̃−1(N)) ∈ σ(Z).

Since σ(Z) = {Z−1(B) | B ∈ Z̃}, we have Z−1(F̃−1(N)) = Z−1(C) for some
C ∈ Z̃. Since the mapping Z : Ω → Im(Z) is surjective, F̃−1(N) = C. Hence
F̃−1(N) ∈ Z̃, and so F̃ is measurable with respect to Z̃ and B(HX ).
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Finally, we can extend F̃ : Im(Z) → HX to F : Z → HX by (Dudley,
2018, page 128, Corollary 4.2.7) (note that HX is a complete metric space, and
assumed to be separable in this theorem).

Theorem 3.3.2. FPX|Z minimises both ẼX|Z and EX|Z over L2(Z, PZ ;HX ).
Moreover, it is almost surely equal to any other minimiser of the loss functionals.

Proof of Theorem 3.3.2. Recall that we have

EX|Z(F ) := EZ

[
∥FPX|Z (Z)− F (Z)∥2HX

]
.

So clearly, EX|Z(FPX|Z ) = 0, meaning FPX|Z minimises EX|Z in L2(Z, PZ ;HX ).

So it only remains to show that ẼX|Z is minimised in L2(Z, PZ ;HX ) by FPX|Z .

Let F be any element in L2(Z, PZ ;HX ). Then we have

ẼX|Z(F )− ẼX|Z(FPX|Z ) = EX,Z [∥kX (X, ·)− F (Z)∥2HX
]

− EX,Z [∥kX (X, ·)− FPX|Z (Z)∥
2
HX

]

= EZ [∥F (Z)∥2HX
]

− 2EX,Z [⟨kX (X, ·), F (Z)⟩HX ]

+ 2EX,Z

[
⟨kX (X, ·), FPX|Z (Z)⟩HX

]
− EZ

[
∥FPX|Z (Z)∥

2
HX

]
.

(A.4)

Here, by the reproducing property and Lemma 3.2.2,

EX,Z [⟨kX (X, ·), F (Z)⟩HX ] = EZ

[
EX|Z [F (Z)(X) | Z]

]
= EZ

[
⟨F (Z), µPX|Z ⟩HX

]
= EZ

[
⟨F (Z), FPX|Z (Z)⟩HX

]
and similarly,

EX,Z [⟨kX (X, ·), FPX|Z (Z)⟩HX ] = EZ [EX|Z [FPX|Z (Z)(X) | Z]]
= EZ

[
⟨FPX|Z (Z), FPX|Z (Z)⟩HX

]
= EZ

[
∥FPX|Z (Z)∥

2
HX

]
.

Substituting these expressions back into (A.4), we have

ẼX|Z(F )− ẼX|Z(FPX|Z )

= EZ [∥F (Z)∥2HX
]− 2EZ [⟨F (Z), FPX|Z (Z)⟩HX ] + EZ [∥FPX|Z (Z)∥

2
HX

]

= EZ [∥F (Z)− FPX|Z (Z)∥
2
HX

]

≥ 0.

Hence, FPX|Z minimises ẼX|Z in L2(Z, PZ ;HX ). The minimiser is further more

PZ-almost surely unique; indeed, if F ′ ∈ L2(Z, PZ ;HX ) is another minimiser of
ẼX|Z , then the calculation in (A.4) shows that

EZ

[
∥FPX|Z (Z)− F ′(Z)∥2HX

]
= 0,
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which immediately implies that ∥FPX|Z (Z) − F ′(Z)∥HX = 0 PZ-almost surely,
which in turn implies that FPX|Z = F ′ PZ-almost surely.

Theorem 3.3.4. Suppose that kX and kZ are bounded kernels, i.e. there are
BZ , BX > 0 with supz∈Z kZ(z, z) ≤ B2

Z , supx∈X kX (x, x) ≤ B2
X , and that the

operator-valued kernel lXZ is C0-universal. Let the regularisation parameter λn
decay to 0 at a slower rate than O(n−1/2). Then the learning algorithm that
yields F̂PX|Z ,n,λn is universally consistent, i.e. for any joint distribution PXZ ,

ϵ > 0 and δ > 0, PXZ (ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) > ϵ) < δ for sufficiently

large n.

Proof of Theorem 3.3.4. Follows immediately from Theorem 5.1.10.

Theorem 3.3.5. Assume further that FPX|Z ∈ GXZ . Then with probability at
least 1− δ,

ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) ≤ λn

∥∥FPX|Z

∥∥2
GXZ

+
2 ln

(
4
δ

)
3nλn

(
1 +

√
1 +

18n

ln
(
4
δ

))((
BZ

∥∥FPX|Z

∥∥
GXZ

+BX

)2
λn +B2

X

(
BZ +

√
λn

)2)
Proof of Theorem 3.3.5. Follows immediately from Theorem 5.1.11.

Theorem 3.4.2. Suppose that kX is characteristic, that PZ and PZ′ are ab-
solutely continuous with respect to each other, and that P (· | Z) and P (· | Z ′)
admit regular versions. Then MPX|Z ,PX′|Z′ = 0 almost everywhere if and only

if, for almost all z ∈ Z, PX|Z=z(B) = PX′|Z′=z(B) for all B ∈ X.

Proof of Theorem 3.4.2. Write Q and Q′ for some regular versions of P (· | Z)
and P (· | Z ′) respectively, and assume without loss of generality that the con-
ditional distributions PX|Z and PX′|Z′ are given by PX|Z(ω)(B) = Qω(X ∈ B)
and PX′|Z′(ω)(B) = Q′

ω(X
′ ∈ B) for B ∈ X. By the definition of regular ver-

sions, for each B ∈ X, the real-valued random variables ω 7→ PX|Z(ω)(B) and
ω 7→ PX′|Z′(ω)(B) are measurable with respect to Z and Z ′ respectively, and
so there are functions RB : Z → R and R′

B : Z → R such that PX|Z(ω)(B) =
RB(Z(ω)) and PX′|Z′(ω)(B) = R′

B(Z
′(ω)). Moreover, for each fixed z ∈ Z,

the mappings B 7→ PX|Z(Z
−1(z))(B) = RB(z) and B 7→ PX′|Z′(Z ′−1(z))(B) =

R′
B(z) are measures. We write RB(z) = PX|Z=z(B) and R′

B(z) = PX′|Z′=z(B).
By Theorem 3.1.6, there exists an event A1 ∈ F with P (A1) = 1 such that

for all ω ∈ A1,

µPX|Z (ω) := EX|Z [kX (X, ·) | Z](ω)

=

∫
Ω

kX (X(ω′), ·)Qω(dω
′)
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=

∫
X
kX (x, ·)PX|Z(ω)(dx),

and an event A2 ∈ F with P (A2) = 1 such that for all ω ∈ A2,

µPX′|Z′ (ω) := EX′|Z′ [kX (X ′, ·) | Z ′](ω)

=

∫
Ω

kX (X ′(ω′), ·)Qω(dω
′)

=

∫
X
kX (x′, ·)PX′|Z′(ω)(dx′).

Suppose for contradiction that there exists some D ∈ Z with PZ(D) > 0
such that for all z ∈ D, FPX|Z (z) ̸=

∫
X kX (x, ·)Rdx(z). Then P (Z−1(D)) =

PZ(D) > 0, and hence P (Z−1(D)∩A1) > 0. For all ω ∈ Z−1(D)∩A1, we have
Z(ω) ∈ D, and hence

µPX|Z (ω) = FPX|Z (Z(ω)) ̸=
∫
X
kX (x, ·)Rdx(Z(ω)) =

∫
X
kX (x, ·)PX|Z(ω)(dx).

This contradicts our assertion that µPX|Z (ω) =
∫
X kX (x, ·)PX|Z(ω)(dx) for all

ω ∈ A1, hence there does not exist D ∈ Z with PZ(D) > 0 such that for all z ∈
D, FPX|Z (z) ̸=

∫
X kX (x, ·)Rdx(z). Therefore, there must exist some C1 ∈ Z with

PZ(C1) = 1 such that for all z ∈ C1, FPX|Z (z) =
∫
X kX (x, ·)Rdx(z). Similarly,

there must exist some C2 ∈ Z with PZ(C2) = 1 such that for all z ∈ C2,
FPX′|Z′ (z) =

∫
X kX (x, ·)R′

dx(z). Since PZ and PZ′ are absolutely continuous

with respect to each other, we also have PZ(C2) = 1 = PZ′(C1).

( =⇒ ) Suppose first that MCMDPX|Z ,PX′|Z′ = ∥FPX|Z − FPX′|Z′∥HX = 0 PZ-

almost everywhere, i.e. there exists C ∈ Z with PZ(C) = 1 such that for
all z ∈ C, ∥FPX|Z (z)−FPX′|Z′ (z)∥HX = 0. Then for each z ∈ C ∩C1∩C2,∫

X
kX (x, ·)Rdx(z) = FPX|Z (z) since z ∈ C1

= FPX′|Z′ (z) since z ∈ C

=

∫
X
kX (x, ·)R′

dx(z) since z ∈ C2.

Since the kernel kX is characteristic, this means that B 7→ RB(z) and
B 7→ R′

B(z) are the same probability measure on (X ,X). By countable
intersection, we have PZ(C ∩ C1 ∩ C2) = 1, so PZ-almost everywhere,

PX|Z=z(B) = PX′|Z′=z(B)

for all B ∈ X.

( ⇐= ) Now assume there exists C ∈ Z with PZ(C) = 1 such that for each
z ∈ C, RB(z) = R′

B(z) for all B ∈ X. Then for all z ∈ C ∩ C1 ∩ C2,∥∥∥FPX|Z (z)− FPX′|Z′ (z)
∥∥∥
HX
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=

∥∥∥∥∫
X
kX (x, ·)Rdx(z)−

∫
X
kX (x, ·)R′

dx(z)

∥∥∥∥
HX

since z ∈ C1 ∩ C2

=

∥∥∥∥∫
X
kX (x, ·)Rdx(z)−

∫
X
kX (x, ·)Rdx(z)

∥∥∥∥
HX

since z ∈ C

= 0,

and since PZ(C ∩ C1 ∩ C2) = 1, ∥FPX|Z − FPX′|Z′∥HX = 0 PZ-almost
everywhere.

Theorem 3.4.4. Suppose kX ⊗ kY is a characteristic kernel2 on X × Y, and
that P (· | Z) admits a regular version. Then HSCIC(X,Y | Z) = 0 almost
surely if and only if X ⊥⊥ Y | Z.

Proof of Theorem 3.4.4. Write Q for a regular version of P (· | Z), and assume
without loss of generality that the conditional distributions PX|Z , PY |Z and
PXY |Z are given by PX|Z(ω)(B) = Qω(X ∈ B) for B ∈ X , PY |Z(ω)(C) =
Qω(Y ∈ C) for C ∈ Y and PXY |Z(ω)(D) = Qω((X,Y ) ∈ D) for D ∈ X × Y.
By Theorem 3.1.6, there exists an event A1 ∈ F with P (A1) = 1 such that for
all ω ∈ A1,

µPX|Z (ω) := EX|Z [kX (X, ·) | Z](ω)

=

∫
Ω

kX (X(ω′), ·)Qω(dω
′)

=

∫
X
kX (x, ·)PX|Z(ω)(dx),

an event A2 ∈ F with P (A2) = 1 such that for all ω ∈ A2,

µPY |Z (ω) := EY |Z [kY(Y, ·) | Z](ω)

=

∫
Ω

kY(Y (ω′), ·)Qω(dω
′)

=

∫
Y
kY(y, ·)PY |Z(ω)(dy),

and an event A3 ∈ F with P (A3) = 1 such that for all ω ∈ A3,

µPXY |Z (ω) =

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y)).

This means that, for each ω ∈ A1, µPX|Z (ω) is the mean embedding of PX|Z(ω),
and for each ω ∈ A2, µPY |Z (ω) is the mean embedding of PY |Z(ω).

2See (Szabó and Sriperumbudur, 2017) for a detailed discussion on characteristic tensor
product kernels.
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( =⇒ ) Suppose first that HSCIC(X,Y | Z) = 0 almost surely, i.e. there exists
A ∈ F with P (A) = 1 such that for all ω ∈ A, ∥µPXY |Z (ω)− µPX|Z (ω)⊗
µPY |Z (ω)∥HX⊗HY = 0. Then for each ω ∈ A ∩A1 ∩A2 ∩A3,∫

X×Y
kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y)) = µPXY |Z (ω)

= µPX|Z (ω)⊗ µPY |Z (ω)

=

∫
X
kX (x, ·)PX|Z(ω)(dx)⊗

∫
Y
kY(y, ·)PY |Z(ω)(dy)

=

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PX|Z(ω)PY |Z(ω)(d(x, y)).

Since the kernel kX ⊗kY is characteristic, the distributions PXY |Z(ω) and
PX|Z(ω)PY |Z(ω) on X × Y are the same. By countable intersection, we
have P (A ∩ A1 ∩ A2 ∩ A3) = 1, so PXY |Z and PX|ZPY |Z are the same
almost surely, and we have X ⊥⊥ Y | Z.

( ⇐= ) Now assume X ⊥⊥ Y | Z, i.e. there exists A ∈ F with P (A) = 1 such
that for each ω ∈ A, the distributions PXY |Z(ω) and PX|Z(ω)PY |Z(ω) are
the same. Then for all ω ∈ A ∩A1 ∩A2 ∩A3,

µPXY |Z (ω) =

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y))

=

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PX|Z(ω)(dx)PY |Z(ω)(dy)

=

∫
X
kX (x, ·)PX|Z(ω)(dx)⊗

∫
Y
kY(y, ·)PY |Z(ω)(dy)

= µPX|Z (ω)⊗ µPY |Z (ω).

and since P (A ∩A1 ∩A2 ∩A3) = 1, HSCIC(X,Y | Z) = 0 almost surely.

A.4 Proofs for Chapter 4

Lemma 4.3.1. For each x ∈ X , we have

Û2
MMD(x) = k

T
0 (x)W0L0W

T
0 k0(x)

− 2kT0 (x)W0LW
T
1 k1(x)

+ kT1 (x)W1L1W
T
1 k1(x),

where [L0]1≤i,j≤n0 = l(y0i , y
0
j ), [L]1≤i≤n0,1≤j≤n1 = l(y0i , y

1
j ) and [L1]1≤i,j≤n1 =

l(y1i , y
1
j ).
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Proof of Lemma 4.3.1. We use the reproducing property of H and (4.2) to see
that, for any x ∈ X ,

Û2
MMD(x) =

∥∥µ̂Y1|X=x − µ̂Y0|X=x

∥∥2
H

=
∥∥kT0 (x)W0l0 − kT1 (x)W1l1

∥∥2
H

=

〈
n0∑

i,j=1

k0(x, x
0
i )W0,ij l(y

0
j , ·),

n0∑
p,q=1

k0(x, x
0
p)W0,pql(y

0
q , ·)

〉
H

− 2

〈
n0∑

i,j=1

k0(x, x
0
i )W0,ij l(y

0
j , ·),

n1∑
p,q=1

k1(x, x
1
p)W1,pql(y

1
q , ·)

〉
H

+

〈
n1∑

i,j=1

k1(x, x
1
i )W1,ij l(y

1
j , ·),

n1∑
p,q=1

k1(x, x
1
p)W1,pql(y

1
q , ·)

〉
H

=

n0∑
i,j,p,q=1

k0(x, x
0
i )W0,ij l(y

0
j , y

0
q )W

T
0,qpk0(x

0
p, x)

− 2

n0∑
i,j=1

n1∑
p,q=1

k0(x, x
0
i )W0,ij l(y

0
j , y

1
q )W

T
1,qpk1(x

1
p, x)

+

n1∑
i,j,p,q=1

k1(x, x
1
i )W1,ij l(y

1
j , y

1
q )W

T
1,qpk1(x

1
p, x)

= kT0 (x)W0L0W
T
0 k0(x)

− 2kT0 (x)W0LW
T
1 k1(x)

+ kT1 (x)W1L1W
T
1 k1(x).

Theorem 4.3.2 (Universal consistency). Suppose that k0, k1 and l are bounded,
that Γ0 and Γ1 are universal, and that λ0n0

and λ1n1
decay at slower rates than

O(n
−1/2
0 ) and O(n

−1/2
1 ) respectively. Then as n0, n1 → ∞,

ψMMD(ÛMMD) = E[(ÛMMD(X)− UMMD(X))2]
p→ 0.

Proof of Theorem 4.3.2. The simple inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holds
in any Hilbert space. Using this, we see that

ψMMD

(
ÛMMD

)
= E

[(
ÛMMD(X)− UMMD(X)

)2]
= E

[(∥∥µ̂Y1|X − µ̂Y0|X
∥∥
H −

∥∥µY1|X − µY0|X
∥∥
H

)2]
≤ E

[∥∥µ̂Y1|X − µY1|X − µ̂Y0|X + µY0|X
∥∥2
H

]
≤ 2E

[∥∥µ̂Y1|X − µY1|X
∥∥2
H +

∥∥µ̂Y0|X − µY0|X
∥∥2
H

]
.
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Hence, it suffices to know that

E
[∥∥µ̂Y1|X − µY1|X

∥∥2
H

]
p→ 0 and E

[∥∥µ̂Y0|X − µY0|X
∥∥2
H

]
p→ 0.

But this follows immediately from Chapter 5, so the proof is complete.

Lemma 4.3.3. If l is a characteristic kernel, PY0|X ≡ PY1|X if and only if
t = 0.

Proof of Lemma 4.3.3. We can assume without loss of generality that PY0|X
and PY1|X are obtained from a regular version of P (· | X). Then by Theo-
rem 3.1.6, there exist C0, C1 ∈ F with P (C0) = P (C1) = 1 such that for all
ω ∈ C0, µY0|X(ω) =

∫
Y l(y, ·)dPY0|X(ω)(y) and for all ω′ ∈ C1, µY1|X(ω′) =∫

Y l(y, ·)dPY1|X(ω′)(y).
Suppose for contradiction that there exists some measurable A ⊆ X with

PX(A) > 0 such that for all x ∈ A, µY0|X=x ̸=
∫
Y l(y, ·)dPY0|X=x(y). Then

P (X−1(A)) = PX(A) > 0, and hence P (X−1(A) ∩ C0) > 0. For all ω ∈
X−1(A) ∩ C0, we have X(ω) ∈ A, and hence

µY0|X(ω) ̸=
∫
Y
l(y, ·)dPY0|X=X(ω)(y) =

∫
Y
l(y, ·)PY0|X(ω)(dy) = µY0|X(ω).

This is a contradiction, hence there does not exist a measurable A ⊆ X with
PX(A) > 0 such that for all x ∈ A, µY0|X=x ̸=

∫
Y l(y, ·)dPY0|X=x(y). Therefore,

there must exist some measurable A0 ⊆ X with PX(A0) = 1 such that for
all x ∈ A0, µY0|X=x =

∫
Y l(y, ·)dPY0|X=x(y). Similarly, there must exist some

measurable A1 ⊆ X with PX(A1) = 1 such that for all x ∈ A1, µY1|X=x =∫
Y l(y, ·)dPY1|X=x(y).

( =⇒ ) Suppose that PY0|X ≡ PY1|X . This means that there exists a measurable
A ⊆ X with PX(A) = 1 such that for all x ∈ A, the measures PY0|X=x(·)
and PY1|X=x(·) are the same. Then for all x ∈ A ∩A0 ∩A1,

µY0|X=x =

∫
Y
l(y, ·)dPY0|X=x(y) since x ∈ A0

=

∫
Y
l(y, ·)dPY1|X=x(y) since x ∈ A

= µY1|X=x since x ∈ A1.

Now, we have PX(A) = PX(A0) = PX(A1) = 1, so PX(A ∩A0 ∩A1) = 1.
Since µY0|X=x = µY1|X=x for all x ∈ A ∩ A0 ∩ A1, we have µY0|X=· =
µY1|X=· PX -almost everywhere. Hence,

t = E
[∥∥µY1|X − µY0|X

∥∥2
H

]
= 0

( ⇐= ) Now suppose that t = 0, i.e. µY0|X=· = µY1|X=· PX -almost everywhere,
say on a measurable set A ⊆ X with PX(A) = 1. Suppose x ∈ A∩A0∩A1.
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Then∫
Y
l(y, ·)dPY0|X=x(y) = µY0|X=x since x ∈ A0

= µY1|X=x since x ∈ A

=

∫
Y
l(y, ·)dPY1|X=x(y) since x ∈ A1.

Since kY is characteristic, this means that PY0|X=x and PY1|X=x are the
same measure. As before, we have PX(A ∩ A0 ∩ A1) = 1, hence PY0|X ≡
PY1|X .

Lemma 4.3.4. We have

t̂ =
1

n
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
− 2

n
Tr
(
K̃0W0LW

T
1 K̃

T
1

)
+

1

n
Tr
(
K̃1W1L1W

T
1 K̃

T
1

)
,

where L0,L1 and L are as defined in Lemma 4.3.1 and [K̃0]1≤i≤n,1≤j≤n0 =

k0(xi, x
0
j ) and [K̃1]1≤i≤n,1≤j≤n1

= k1(xi, x
1
j ).

Proof of Lemma 4.3.4. See that, using the reproducing property in H again,

t̂ =
1

n

n∑
i=1

∥∥µ̂Y1|X=xi
− µ̂Y0|X=xi

∥∥2
H

=
1

n

n∑
i=1

{∥∥µ̂Y1|X=xi

∥∥2
H − 2

〈
µ̂Y1|X=xi

, µ̂Y0|X=xi

〉
H +

∥∥µ̂Y0|X=xi

∥∥2
H

}
=

1

n

n∑
i=1

{∥∥kT0 (xi)W0l0
∥∥2
H

−2
〈
kT0 (xi)W0l0,k

T
1 (xi)W1l1

〉
H

+
∥∥kT1 (xi)W1l1

∥∥2
H

}
=

1

n

n∑
i=1

〈
n0∑

p,q=1

k0(x
0
p, xi)W0,pql(y

0
q , ·),

n0∑
r,s=1

k0(x
0
r, xi)W0,rsl(y

0
s , ·)

〉
H

− 2

n

n∑
i=1

〈
n0∑

p,q=1

k0(x
0
p, xi)W0,pql(y

0
q , ·),

n1∑
r,s=1

k1(x
1
r, xi)W1,rsl(y

1
s , ·)

〉
H

+
1

n

n∑
i=1

〈
n1∑

p,q=1

k1(x
1
p, xi)W1,pql(y

1
q , ·),

n1∑
r,s=1

k1(x
1
r, xi)W1,rsl(y

1
s , ·)

〉
H
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=
1

n

n∑
i=1

n0∑
p,q,r,s=1

k0(xi, x
0
p)W0,pql(y

0
q , y

0
s)W

T
0,srk0(x

0
r, xi)

− 2

n

n∑
i=1

n0∑
p,q=1

n1∑
r,s=1

k0(xi, x
0
p)W0,pql(y

0
q , y

1
s)W

T
1,srk1(x

1
r, xi)

+
1

n

n∑
i=1

n1∑
p,q,r,s=1

k1(xi, x
1
p)W1,pql(y

1
q , y

1
s)W

T
1,srk1(x

1
r, xi)

=
1

n

{
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
−2Tr

(
K̃0W0LW

T
1 K̃

T
1

)
+Tr

(
K̃1W1L1W

T
1 K̃

T
1

)}

Theorem 4.3.5. Under the same assumptions as in Theorem 4.3.2, we have

t̂
p→ t as n0, n1 → ∞.

Proof of Theorem 4.3.5. We decompose
∣∣t̂− t

∣∣ as follows using the triangle in-
equality:

∣∣t̂− t
∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

∥∥µ̂Y1|X=xi
− µ̂Y0|X=xi

∥∥2
H − E

[∥∥µY1|X − µY0|X
∥∥2
H

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

∥∥µ̂Y1|X=xi
− µ̂Y0|X=xi

∥∥2
H − E

[∥∥µ̂Y1|X − µ̂Y0|X
∥∥2
H

]∣∣∣∣∣
+
∣∣∣E [∥∥µ̂Y1|X − µ̂Y0|X

∥∥2
H

]
− E

[∥∥µY1|X − µY0|X
∥∥2
H

]∣∣∣
Here, the first term converges to 0 in probability by the uniform law of large
numbers. For the second term, see that∣∣∣E [∥∥µ̂Y1|X − µ̂Y0|X

∥∥2
H

]
− E

[∥∥µY1|X − µY0|X
∥∥2
H

]∣∣∣
=
∣∣∣E [∥∥µ̂Y1|X − µY1|X + µY1|X − µY0|X + µY0|X − µ̂Y0|X

∥∥2
H

−
∥∥µY1|X − µY0|X

∥∥2
H

]∣∣∣
=
∣∣∣E [∥∥µ̂Y1|X − µY1|X

∥∥2
H +

∥∥µY0|X − µ̂Y0|X
∥∥2
H

]
+2
〈
µ̂Y1|X − µY1|X , µY1|X − µY0|X

〉
H

+ 2
〈
µ̂Y0|X − µY0|X , µY1|X − µY0|X

〉
H

+2
〈
µ̂Y1|X − µY1|X , µ̂Y0|X − µ̂Y0|X

〉
H

∣∣ .
Here, we have

E
[∥∥µ̂Y1|X − µY1|X

∥∥2
H

]
p→ 0 and E

[∥∥µ̂Y0|X − µY0|X
∥∥2
H

]
p→ 0
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as in the proof of Theorem 4.3.2, so we are done.

Theorem 4.4.1. The solution F̂0 to the problem in (4.4) is

F̂0(x1, ..., xr) =

n0∑
i1,...,ir

k0(x
0
i1 , x1)...k0(x

0
ir , xr)c

0
i1,...,ir

where the coefficients c0i1,...,ir ∈ R are the unique solution of the nr linear equa-
tions,

n0∑
j1,...,jr=1

(
k0
(
x0i1 , x

0
j1

)
...k0

(
x0ir , x

0
jr

)
+

(
n0
r

)
λ0n0

δi1j1 ...δirjr

)
c0j1,...,jr

= h
(
y0i1 , ..., y

0
ir

)
.

Proof of Theorem 4.4.1. Recall from (4.4) that

F̂0 = argmin
F∈Hr

0

{
1(
n0

r

) ∑(
F
(
x0i1 , ..., x

0
ir

)
− h

(
y0i1 , ..., y

0
ir

))2
+ λ0n0

∥F∥2Hr
0

}
,

where the summation is over the
(
n0

r

)
combinations of r distinct elements

{i1, ..., ir} from 1, ..., n0. Write

F̂ ′
0 (x1, ..., xr) =

n0∑
i1,...,ir=1

k0
(
x0i1 , x1

)
...k0

(
x0ir , xr

)
ci1,...,ir

where the coefficients ci1,...,ir ∈ R are the unique solution of the nr linear equa-
tions

n0∑
j1,...,jr=1

(
k0
(
x0i1 , x

0
j1

)
...k0

(
x0ir , x

0
jr

)
+

(
n0
r

)
λ0n0

δi1j1 ...δirjr

)
cj1,...,jr

= h
(
y0i1 , ..., y

0
ir

)
.

Also, for any F ∈ Hr
0, write Êreg(F ) for the empirical regularised least-squares

risk of F :

Êreg(F ) =
1(
n0

r

) ∑(
F
(
x0i1 , ..., x

0
ir

)
− h

(
y0i1 , ..., y

0
ir

))2
+ λ0n0

∥F∥2Hr
0
,

so that F̂0 = argminF∈Hr
0
Êreg(F ). We will show that F̂ ′

0 = F̂0. For any F ∈ Hr
0,

write G = F − F̂ ′
0. Then

Êreg(F ) =
1(
n0

r

) ∑(
F
(
x0i1 , ..., x

0
ir

)
− h

(
y0i1 , ..., y

0
ir

))2
+ λ0n0

∥F∥2Hr
0

= Êreg
(
F̂ ′
0

)
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+
1(
n0

r

) ∑G
(
x0i1 , ..., x

0
ir

)2
+

2(
n0

r

) ∑G
(
x0i1 , ..., x

0
ir

) (
F̂ ′
0

(
x0i1 , ..., x

0
ir

)
− h

(
y0i1 , ..., y

0
ir

))
+ λ0n0

∥G∥2Hr
0
+ 2λ0n0

〈
G, F̂ ′

0

〉
Hr

0

≥ Êreg
(
F̂ ′
0

)
− 2(

n0

r

) ∑G
(
x0i1 , ..., x

0
ir

) (
h
(
y0i1 , ..., y

0
ir

)
− F̂ ′

0

(
x0i1 , ..., x

0
ir

))
+ 2λ0n0

〈
G, F̂ ′

0

〉
Hr

0

= Êreg
(
F̂ ′
0

)
− 2λ0n0

∑
G
(
x0i1 , ..., x

0
ir

)
ci1,...,ir

+ 2λ0n0

n0∑
i1,...,ir=1

G
(
x0i1 , ..., x

0
ir

)
ci1,...,ir

by the reproducing property and the definition of ci1,...,ir

= Êreg
(
F̂ ′
0

)
Hence, F̂ ′

0 minimises Êreg in Hr
0, and so F̂ ′

0 = F̂0 as required.

Theorem 4.4.2. Suppose kr0 is a bounded and universal kernel and that λ0n0

decays at a slower rate than O(n
−1/2
0 ). Then as n0 → ∞,

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2] p→ 0.

Proof of Theorem 4.4.2. Define

F0,λ0
n0

= argmin
F∈Hr

0

{
E
[
(F (X1, ..., Xr)− F0 (X1, ..., Xr))

2
]
+ λ0n0

∥F∥2Hr
0

}
.

By the bias-variance decomposition, this also minimises

Eλ0
n0
(F ) = E

[
(F (X1, ..., Xr)− h (Y1, ..., Yr))

2
]
+ λ0n0

∥F∥2Hr
0
.

Denote the space of P r
X -square-integrable X r → R functions by L2(X r, P r

X),
and define the inclusion operator

ι : Hr
0 → L2(X r, P r

X).

Then we see that

F0,λ0
n0

= argmin
F∈Hr

0

{
∥ι(F )− F0∥22 + λ0n0

∥F∥2Hr
0

}
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=⇒ 0 = ι∗(ι(F0,λ0
n0
)− F0) + λ0n0

F0,λ0
n0

=⇒ F0,λ0
n0

=
(
ι∗ ◦ ι+ λ0n0

I
)−1

ι∗F0

Now, for any x0 = (x01, ..., x
0
n0
)T ∈ Xn0 , define the sampling operator

Sx0 : Hr
0 → R(

n0
r ),

(Sx0(F ))i1,...,ir =
1(
n0

r

)F (x0i1 , ..., x0ir) , {i1, ..., ir} ⊂ {1, ..., n0},

with adjoint

S∗
x0 (h) =

1(
n0

r

) ∑ k0
(
x0i1 , ·

)
...k0

(
x0ir , ·

)
hi1,...,ir , h ∈ R(

n0
r );

indeed, for any F ∈ Hr
0 and h ∈ R(

n0
r ),

⟨Sx0F,h⟩
R(

n0
r )

=
1(
n0

r

) ∑F
(
x0i1 , ..., x

0
ir

)
hi1,...,ir

=
1(
n0

r

) ∑〈
F, k0

(
x0i1 , ·

)
...k0

(
x0ir , ·

)〉
Hr

0
hi1,...,ir

=

〈
F,

1(
n0

r

) ∑ k0
(
x0i1 , ·

)
...k0

(
x0ir , ·

)
hi1,...,ir

〉
Hr

0

.

For y0 ∈ Yn0 , write

h
(
y0
)
∈ R(

n0
r ), h

(
y0
)
i1,...,ir

= h
(
y0i1 , ..., y

0
ir

)
, {i1, ..., ir} ⊂ {1, ..., n0}.

Then we see that

F̂0 = argmin
F∈Hr

0


(
n0
r

)∥∥∥∥∥Sx0(F )− 1(
n0

r

)h (y0
)∥∥∥∥∥

2

+ λ0n0
∥F∥2Hr

0


=⇒ 0 =

(
n0
r

)
S∗
x0

(
Sx0

(
F̂0

)
− 1(

n0

r

)h (y0
))

+ λ0n0
F̂0

=⇒ F̂0 =

((
n0
r

)
S∗
x0 ◦ Sx0 + λ0n0

I

)−1

S∗
x0h

(
y0
)
.

We consider the following decomposition:

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2]
=
∥∥∥ιF̂0 − F0

∥∥∥2
2

≤ 2
∥∥∥ιF̂0 − ιF0,λ0

n0

∥∥∥2
2

(a)
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+ 2
∥∥∥ιF0,λ0

n0
− F0

∥∥∥2
2
. (b)

We are done if we show that the terms (a) and (b) separately converge to 0 (in
probability, for (a)).

(a) See that

F̂0 − F0,λ0
n0

=

((
n0
r

)
S∗
x0 ◦ Sx0 + λ0n0

I

)−1

S∗
x0h

(
y0
)
− F0,λ0

n0

=

((
n0
r

)
S∗
x0 ◦ Sx0 + λ0n0

I

)−1

(
S∗
x0h

(
y0
)
−
(
n0
r

)
S∗
x0 ◦ Sx0F0,λ0

n0
+ ι∗

(
ιF0,λ0

n0
− F0

))
.

By spectral theorem,∥∥∥F̂0 − F0,λ0
n0

∥∥∥
H

≤ 1

λ0n0

∥∥∥∥S∗
x0h

(
y0
)
−
(
n0
r

)
S∗
x0 ◦ Sx0F0,λ0

n0
+ ι∗

(
ιF0,λ0

n0
− F0

)∥∥∥∥
H
.

Using this inequality and Chebyshev’s inequality, for any ϵ > 0,

P
(∥∥∥F̂0 − F0,λ0

n0

∥∥∥
H

≥ ϵ
)

≤ P

(
1

λ0n0

∥∥∥∥S∗
x0h

(
y0
)
−
(
n0
r

)
S∗
x0 ◦ Sx0F0,λ0

n0
− ι∗

(
F0 − ιF0,λ0

n0

)∥∥∥∥
H

≥ ϵ)

≤ 1

(λ0n0
)2ϵ2

E
[∥∥∥∥S∗

x0h
(
y0
)
−
(
n0
r

)
S∗
x0 ◦ Sx0F0,λ0

n0

−ι∗
(
F0 − ιF0,λ0

n0

)∥∥∥2
H

]
≤ 1

(λ0n0
)2ϵ2

(
n0

r

)E [∥∥k0 (x0i1 , ·) ...k0 (x0ir , ·) (h (y0i1 , ..., y0ir)
−F0,λ0

n0

(
x0i1 , ..., x

0
ir

))∥∥∥2
H

]
→ 0

as n→ ∞, since the kernel is bounded.

(b) Take an arbitrary ϵ > 0. By the denseness of Hr
0 in L2(X r, P r

X), there
exists some Fϵ ∈ Hr

0 with

∥ιFϵ − F0∥22 = E(Fϵ)− E(F0) ≤
ϵ

2
.
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Then∥∥∥ιF0,λ0
n0

− F0

∥∥∥2
2
= E

(
F0,λ0

n0

)
− E (F0)

≤ Eλ0
n0

(
F0,λ0

n0

)
− E (F0)

= Eλ0
n0

(
F0,λ0

n0

)
− Eλ0

n0
(Fϵ) + Eλ0

n0
(Fϵ)− E(Fϵ)

+ E(Fϵ)− E (F0)

≤ λ0n0
∥Fϵ∥2Hr

0
+
ϵ

2
.

Now let n be large enough for

λ0n0
∥Fϵ∥2Hr

0
≤ ϵ

2

to hold.

A.5 Proofs for Chapter 5

Lemma 5.1.3. Suppose Assumption 5.1.2 holds. Then

(i) For all f ∈ H,

sup
x∈X

∥f(x)∥Y ≤
√
B ∥f∥H .

(ii) For all n ∈ N,

sup
x∈Xn

∥Sx∥2op ≤ B

n
.

Proof of Lemma 5.1.3. (i) We use the reproducing property and the Cauchy-
Schwarz inequality repeatedly to obtain:

∥f(x)∥2Y = ⟨f(x), f(x)⟩Y
= ⟨f,K(·, x)(f(x))⟩H
≤ ∥f∥H ⟨K(·, x)(f(x)),K(·, x)(f(x))⟩1/2H

= ∥f∥H ⟨f(x),K(x, x)(f(x))⟩1/2Y

≤ ∥f∥H ∥f(x)∥1/2Y ∥K(x, x) (f(x))∥1/2Y

≤ ∥f∥H ∥f(x)∥Y ∥K(x, x)∥1/2op .

Now divide both sides by ∥f(x)∥Y and apply the bound in Assumption
5.1.2.
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(ii) We can apply (i) to obtain

sup
x∈Xn

∥Sx∥2op = sup
x∈Xn

sup
f∈H,∥f∥H≤1

∥Sxf∥2Yn

= sup
x∈Xn

sup
f∈H,∥f∥H≤1

1

n2

n∑
i=1

∥f(xi)∥2Y

≤ B

n
.

Lemma 5.1.4. We state and prove some results about the inclusion operator
and its adjoint.

(i) An explicit integral expression for ι∗ : L2(X , PX ;Y) → H can be given as

ι∗ (f) (·) = E [K (·, X) f (X)] for f ∈ L2(X , PX ;Y).

(ii) For any f ∈ L2 (X , PX ;Y) and any n ∈ N,

ι∗ (f) = E
[
S∗
X

(
(f (X1) , ..., f (Xn))

T
)]
.

(iii) For any f ∈ H and any n ∈ N,

ι∗ ◦ ι (f) = E [nS∗
X ◦ SX (f)] .

Proof of Lemma 5.1.4. (i) Take any f1 ∈ H and f2 ∈ L2(X , PX ;Y). Then
the reproducing property gives

⟨ιf1, f2⟩2 = E
[
⟨f1(X), f2(X)⟩Y

]
= E [⟨f1,K (·, X) (f2 (X))⟩H]

= ⟨f1,E [K (·, X) (f2 (X))]⟩H .

(ii) The fact that X1, ..., Xn
i.i.d.∼ X and (i) immediately gives

E
[
S∗
X

(
(f (X1) , ..., f (Xn))

T
)]

= E

[
1

n

n∑
i=1

K (·, Xi) f(Xi)

]
= E [K (·, X) f(X)]

= ι∗(f).

(iii) Applying (ii) and the definition of SX,

ι∗ ◦ ι(f) = E
[
S∗
X

(
(F (X1) , ..., f (Xn))

T
)]

= E [S∗
X (nSX (f))]

= E [nS∗
X ◦ SX (f)] .
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Lemma 5.1.6. We formulate the minimisers in H of the regularised risks Rλ

and Rn,λ in terms of the inclusion and evaluation operators. Similar results
can be found in many places in the literature, for example Micchelli and Pontil
(2005, Section 4) or Engl et al. (1996, p.117, Theorem 5.1).

(i) The minimiser fλ of the risk Rλ in H is unique and is given by

fλ := argmin
f∈H

Rλ(f) = (ι∗ ◦ ι+ λIdH)
−1
ι∗f∗ = ι∗ (ι ◦ ι∗ + λId2)

−1
f∗,

where IdH : H → H and Id2 : L2(X , PX ;Y) → L2(X , PX ;Y) are the
identity operators.

(ii) The minimiser f̂n,λ of the risk Rn,λ in H is unique and is given by

f̂n,λ := argmin
f∈H

Rn,λ(f)

= (nS∗
X ◦ SX + λIdH)

−1
S∗
XY

= S∗
X (nSX ◦ S∗

X + λIdYn)
−1

Y,

where IdYn : Yn → Yn is the identity operator.

Proof of Lemma 5.1.6. (i) By Lemma 5.1.5, we have fλ = argminf∈H R̃λ(f),
where, for any f ∈ H,

R̃λ(f) = E
[
∥f(X)− f∗(X)∥2Y

]
+ λ ∥f∥2H

= ∥ι(f)− f∗∥22 + λ ∥f∥2H .

Then R̃λ is clearly continuously Fréchet differentiable, coercive (Precup,
2002, p.105, Definition 7.4) and strictly convex (Precup, 2002, p.105, Def-
inition 7.5). So by (Precup, 2002, p.106, Theorem 7.4), there exists a
unique critical point fλ that minimises R̃λ, and by (Precup, 2002, p.105,
Proposition 7.2), at this critical point, we have R̃λ(fλ) = 0. Denote
by J : L2(X , LX ;Y) → R the map f 7→ ∥f − f∗∥22; then we have
J ′(f) = 2(f − f∗) by (Precup, 2002, p.100, Example 7.2). Taking the
Fréchet derivative using (Precup, 2002, p.100, Example 7.3), we have

R̃′
λ(f) = ι∗ ◦ J ′ ◦ ι(f) + 2λf

= 2ι∗ (ι(f)− f∗) + 2λf

=⇒ ι∗ (ι(fλ)− f∗) + λfλ = 0

=⇒ (ι∗ ◦ ι+ λIdH) fλ = ι∗f∗

=⇒ fλ = (ι∗ ◦ ι+ λIdH)
−1
ι∗f∗,

where (ι∗ ◦ ι + λIdH) is invertible since ι∗ ◦ ι is positive and self-adjoint,
and λ > 0. Now see that

(ι∗ ◦ ι+ λIdH) ι∗ (ι ◦ ι∗ + λId2)
−1
f∗
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= ι∗ (ι ◦ ι∗ + λId2) (ι ◦ ι∗ + λId2)
−1
f∗

= ι∗f∗.

Apply (ι∗ ◦ ι+ λIdH)−1 to both sides to obtain

fλ = ι∗ (ι ◦ ι∗ + λId2)
−1
f∗.

(ii) We can write Rn,λ(f) as

Rn,λ(f) =
1

n

n∑
i=1

∥f(Xi)− Yi∥2Y + λ∥f∥2H

= n

∥∥∥∥SX(f)− 1

n
Y

∥∥∥∥2
Yn

+ λ ∥f∥2H .

Then following the same steps as in (i), we take the Fréchet derivative of

Rn,λ and set it to 0 at f̂n,λ:

R′
n,λ(f) = 2nS∗

X

(
SX(f)− 1

n
Y

)
+ 2λf

=⇒ nS∗
X

(
SX(f̂n,λ)−

1

n
Y

)
+ λf̂n,λ = 0

=⇒ (nS∗
X ◦ SX + λIdH) f̂n,λ = S∗

XY

=⇒ f̂n,λ = (nS∗
X ◦ SX + λIdH)

−1
S∗
XY,

where (nS∗
X ◦ SX + λIdH) is invertible since nS∗

X ◦ SX is positive and
self-adjoint, and λ > 0.

By the same argument as in (i), we also have

f̂n,λ = S∗
X (nSX ◦ S∗

X + λIdYn)
−1

Y.

Proposition 5.1.7 (Approximation Error). If ιH is dense in L2(X , PX ;Y),
then ∥f∗ − ιfλ∥22 → 0 as λ→ 0.

Proof of Proposition 5.1.7. Take an arbitrary ϵ > 0. By the denseness of ιH in
L2(X , PX ;Y), there exists some fϵ ∈ H such that R(fϵ)−R(f∗) = ∥ιfϵ−f∗∥22 ≤
ϵ
2 . Then see that

∥f∗ − ιfλ∥22 = R(fλ)−R(f∗) by Lemma 5.1.5

≤ Rλ(fλ)−R(f∗) since Rλ(f) ≥ R(f)∀f ∈ H
≤ Rλ(fϵ)−R(fϵ) +R(fϵ)−R(f∗) since fλ minimises Rλ in H

≤ Rλ(fϵ)−R(fϵ) +
ϵ

2
by the choice of fϵ
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= λ ∥fϵ∥2H +
ϵ

2
by the definition of Rλ.

Now if λ ≤ ϵ
2∥fϵ∥2

H
, then

∥f∗ − ιfλ∥22 ≤ ϵ,

as required.

Proposition 5.1.8 (Estimation Error). Take any δ > 0. Then

P

∥∥∥f̂n,λ − fλ

∥∥∥2
H

≥
BE

[
∥Y ∥2Y

]
nλ2δ

 ≤ δ.

In particular, if λ = λn depends on n and converges to 0 at a slower rate than
O(n−1/2), then ∥∥∥f̂n,λn

− fλn

∥∥∥2
H

P→ 0.

Proof of Proposition 5.1.8. By Lemma 5.1.6, we can write

f̂n,λ − fλ = (nS∗
X ◦ SX + λIdH)−1S∗

XY

− (nS∗
X ◦ SX + λIdH)−1(nS∗

X ◦ SX + λIdH)fλ

= (nS∗
X ◦ SX + λIdH)−1 (S∗

XY − nS∗
X ◦ SXfλ − λfλ)

= (nS∗
X ◦ SX + λIdH)

−1
(S∗

XY − nS∗
X ◦ SXfλ − ι∗ (f∗ − ιfλ)) . (*)

Write σ for the spectrum of nS∗
X ◦ SX. Then by the spectral theorem for (non-

compact) self-adjoint operators (Hall, 2013, p.141, Theorem 7.12), there exists
a unique projection-valued measure µ on the Borel σ-algebra of σ such that

nS∗
X ◦ SX =

∫
σ

γdµ(γ),

whence, using the properties of operator-valued integration (Hall, 2013, p.139,
Proposition 7.11) and fact that σ ⊆ [0,∞) (Conway, 1990, p.242, Theorem 3.8),
we can bound its operator norm by∥∥∥(nS∗

X ◦ SX + λIdH)
−1
∥∥∥
op

=

∥∥∥∥∫
σ

1

γ + λ
dµ(γ)

∥∥∥∥
op

≤ sup
γ∈σ

∣∣∣∣ 1

γ + λ

∣∣∣∣ ≤ 1

λ
.

Then returning to (*) and taking the H-norm of both sides, we have∥∥∥f̂n,λ − fλ

∥∥∥
H

≤ 1

λ
∥S∗

XY − nS∗
X ◦ SXfλ − ι∗ (f∗ − ιfλ)∥H .

Hence, for any arbitrary ϵ > 0, by Chebyshev’s inequality,

P
(∥∥∥f̂n,λ − fλ

∥∥∥
H

≥ ϵ
)
≤ P

(
1

λ
∥S∗

XY − nS∗
X ◦ SXfλ − ι∗ (f∗ − ιfλ)∥H ≥ ϵ

)
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≤ 1

λ2ϵ2
E
[
∥S∗

XY − nS∗
X ◦ SXfλ − ι∗ (f∗ − ιfλ)∥2H

]
.

Here, letting Z = S∗
XY − S∗

X ◦ SXfλ and Zi = S∗
Xi
Yi − S∗

Xi
◦ SXi

fλ, Lemma

5.1.4(ii) and (iii) tells us that the integral is in fact simply E[∥ 1
n

∑n
i=1 Zi −

E[Z]∥2H]. Hence,

P
(∥∥∥f̂n,λ − fλ

∥∥∥
H

≥ ϵ
)
≤ 1

nλ2ϵ2
E
[
∥S∗

XY − S∗
X ◦ SXfλ − ι∗ (f∗ − ιfλ)∥2H

]
≤ 1

nλ2ϵ2
E
[
∥S∗

XY − S∗
X ◦ SXfλ∥2H

]
≤ B

nλ2ϵ2
E
[
∥Y − fλ (X)∥2Y

]
,

by Lemma 5.1.3(ii). Here, we use the fact that fλ minimises Rλ in H, i.e.
Rλ (fλ) ≤ Rλ (0), to see that

E
[
∥fλ(X)− Y ∥2Y

]
≤ E

[
∥fλ(X)− Y ∥2Y

]
+ λ ∥fλ∥2H ≤ E

[
∥Y ∥2Y

]
.

Hence,

P
(∥∥∥f̂n,λ − fλ

∥∥∥
H

≥ ϵ
)
≤
BE

[
∥Y ∥2Y

]
nλ2ϵ2

,

from which the result follows.

Theorem 5.1.10. Suppose ιH is dense in L2(X , PX ;Y). Suppose that λ = λn
depends on the sample size n, and converges to 0 at a slower rate than O(n−1/2).
Then we have

R
(
f̂n,λn

)
−R (f∗) = E

[∥∥∥f̂n,λn
(X)− f∗(X)

∥∥∥2
Y

]
=
∥∥∥ιf̂n,λn

− f∗
∥∥∥2
2

P→ 0.

Proof of Theorem 5.1.10. The simple inequality ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2 holds
in any Hilbert space. Using this, we see that∥∥∥ιf̂n,λn

− f∗
∥∥∥2
2
≤ 2

∥∥∥ιf̂n,λn
− ιfλn

∥∥∥2
2
+ 2 ∥ιfλn

− f∗∥22

≤ 2B
∥∥∥f̂n,λn

− fλn

∥∥∥2
H
+ 2 ∥ιfλn

− f∗∥22 ,

where we used the discussion after Lemma 5.1.3 in the last inequality. Here, the
second term converges to 0 as λn → 0 by Proposition 5.1.7, and the first term
converges in probability to 0 by Proposition 5.1.8. Hence,∥∥∥ιf̂n,λn

− f∗
∥∥∥2
2

P→ 0

as required.

Theorem 5.1.11. For constants M,C > 0, define P(M,C) as the class of
measures such that
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(i) E
[
∥Y ∥2Y

]
≤M , and

(ii) f∗ = ιf∗H for some f∗H ∈ H with ∥f∗H∥2H ≤ C.

Let H be dense in L2(X , PX ;Y) for all P ∈ P(M,C). Then

sup
P∈P(M,C)

P

(∥∥∥ιf̂n,λ − f∗
∥∥∥2
2
≥ 2B2M

nλ2δ
+ 2λC

)
≤ δ.

In particular, if λ = λn depends on the sample size n and converges to 0 at the
rate of O(n−1/4), then R(f̂n,λn

)−R(f∗) = OP (n
−1/4) uniformly over the class

P(M,C) of measures.

Proof of Theorem 5.1.11. First, see that the condition (ii) helps simplify the
proof of Proposition 5.1.7:

∥ιfλ − f∗∥22 = R(fλ)−R(f∗H)

≤ Rλ(fλ)−Rλ(f
∗
H) +Rλ(f

∗
H)−R(f∗H)

≤ λ ∥f∗H∥2H
≤ λC.

(*)

Then using the inequality ∥ιf̂n,λ − f∗∥22 ≤ 2B∥f̂n,λ − fλ∥2H +2∥ιfλ − f∗∥22 as in
the proof of Theorem 5.1.10,

sup
P∈P(M,C)

P

(∥∥∥ιf̂n,λ − f∗
∥∥∥2
2
>

2B2M

nλ2δ
+ 2λC

)
≤ sup

P∈P(M,C)

P

(∥∥∥f̂n,λ − fλ

∥∥∥2
H
>
BM

nλ2δ

)
+ sup

P∈P(M,C)

P
(
∥f∗ − ιfλ∥22 > λC

)

≤ sup
P∈P(M,C)

P

∥∥∥f̂n,λ − fλ

∥∥∥2
H

≥
BE

[
∥Y ∥2Y

]
nλ2δ

 by (*)

≤ δ by Proposition 5.1.8,

as required.

Lemma 5.2.3. We have

E
[
∥Pn − P∥G

]
≤ E

[
∥Pn − P ′

n∥G
]
.

Proof of Lemma 5.2.3. Denote by Fn the σ-algebra generated by X1, ..., Xn.
Then for each g ∈ G, we have

E [Png | Fn] = Png and E [P ′
ng | Fn] = Pg,
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and so
(Pn − P )g = E [(Pn − P ′

n) g | Fn] .

Now see that

∥Pn − P∥G = sup
g∈G

∥E [(Pn − P ′
n) g | Fn]∥Y

≤ sup
g∈G

E
[
∥(Pn − P ′

n) g∥Y | Fn

]
by Jensen’s inequality

≤ E
[
sup
g∈G

∥(Pn − P ′
n) g∥Y | Fn

]
.

Now take expectations on both sides and apply the law of iterated expectations
arrive at the result.

Lemma 5.2.4 (Symmetrisation with means). We have

E
[
∥Pn − P∥G

]
≤ 2E

[
∥Pσ

n ∥G
]

Proof of Lemma 5.2.4. Note that ∥Pn − P ′
n∥G has the same distribution as ∥Pσ

n − P ′σ
n ∥G ,

since, for each i = 1, ..., n and g ∈ G. g(Xi)−g(X ′
i) and σi (g(Xi)− g(X ′

i)) have
the same distribution. Hence, the triangle inequality gives us

E
[
∥Pn − P ′

n∥G
]
= E

[
∥Pσ

n − P ′σ
n ∥G

]
≤ E

[
∥Pσ

n ∥G + ∥P ′σ
n ∥G

]
= 2E

[
∥Pσ

n ∥G
]
.

Now apply Lemma 5.2.3.

Lemma 5.2.5 (Symmetrisation with probabilities). Let a > 0. Suppose that
for all g ∈ G,

P
(
∥(Pn − P ) g∥Y >

a

2

)
≤ 1

2
.

Then
P
(
∥Pn − P∥G > a

)
≤ 4P

(
∥Pσ

n ∥G >
a

4

)
.

Proof of Lemma 5.2.5. Denote again by Fn the σ-algebra generated byX1, ..., Xn.
If we have ∥Pn − P∥G > a, then we know that for some random function g∗ de-
pending on X1, ..., Xn, ∥(Pn − P ) g∗∥Y > a. Because X ′

1, ..., X
′
n are independent

of Fn,

P
(
∥(P ′

n − P ) g∗∥Y >
a

2
| Fn

)
= P

(
∥(Pn − P ) g∗∥Y >

a

2

)
≤ 1

2
. (*)

Then see that,

P
(
∥Pn − P∥G > a

)
≤ P

(
∥(Pn − P ) g∗∥Y > a

)
= E

[
1
{
∥(Pn − P ) g∗∥Y > a

}]
≤ 2E

[
P
(
∥(P ′

n − P ) g∗∥Y ≤ a

2
| Fn

)
1
{
∥(Pn − P ) g∗∥Y > a

}]
by (*)
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= 2E
[
P
(
∥(P ′

n − P ) g∗∥Y ≤ a

2
and ∥(Pn − P ) g∗∥Y > a | Fn

)]
= 2P

(
∥(P ′

n − P ) g∗∥Y ≤ a

2
and ∥(Pn − P ) g∗∥Y > a

)
.

But if the two inequalities in the probability on the last line hold, then the
reverse triangle inequality gives us

a

2
< ∥(Pn − P ) g∗∥Y − ∥(P ′

n − P ) g∗∥Y ≤ ∥(Pn − P ′
n) g∗∥Y ,

so

P
(
∥Pn − P∥G > a

)
≤ 2P

(
∥(Pn − P ′

n) g∗∥Y >
a

2

)
≤ 2P

(
∥Pn − P ′

n∥G >
a

2

)
= 2P

(
∥Pσ

n − P ′σ
n ∥G >

a

2

)
≤ 2P

(
∥Pσ

n ∥G >
a

4
or ∥P ′σ

n ∥G >
a

4

)
≤ 4P

(
∥Pσ

n ∥G >
a

4

)
.

Lemma 5.2.6. Let G = {g1, ..., gN} ∈ L1(X , P ;Y) be a finite class of functions
with cardinality N > 1. Then we have

∥Pn − P∥G → 0.

Proof of Lemma 5.2.6. Take any K > 0. Define the function G : X → R by

G(x) = max
1≤j≤N

∥gj(x)∥Y .

Since each ∥gj∥Y is integrable, and we have a finite collection, G is also inte-
grable. Then, for each j = 1, ..., N , define the function g̃j : X → Y by g̃j =
gj1 {G ≤ K}. Then for all i = 1, ..., n, letting σi be independent Rademacher
variables again, we have

E [σig̃j(Xi)] = 0 and ∥σig̃j(Xi)∥Y ≤ K almost surely.

Hence, for each j = 1, ..., N , by Hoeffding’s inequality, for any t > 0, we have

P

(
∥Pσ

n g̃j∥Y ≥ 2K

√
t

n

)
= P

(∥∥∥∥∥
n∑

i=1

σig̃j(Xi)

∥∥∥∥∥
Y

≥ 2K
√
nt

)
≤ 2e−t.

By the union bound, for any t > 0, we have

P

(
max

1≤j≤N
∥Pσ

n g̃j∥Y ≥ 2K

√
t+ logN

n

)
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≤ N max
1≤j≤N

P

(
∥Pσ

n g̃j∥Y ≥ 2K

√
t+ logN

n

)
≤ 2e−t.

Now see that, for each j = 1, ..., N , Chebyshev’s inequality gives

P

(
∥(Pn − P ) g̃j∥Y > 4K

√
t+ logN

n

)
≤
nE
[
∥(Pn − P ) g̃j∥2Y

]
16K2 (t+ logN)

≤ 1

16 (t+ logN)

≤ 1

2
,

where the last inequality follows since 8t + 8 logN ≥ 8 log 2 ≥ 1. Now apply
Lemma 5.2.5 to see that

P

(
max

1≤j≤N
∥(Pn − P ) g̃j∥Y > 8K

√
t+ logN

n

)

≤ 4P

(
max

1≤j≤N
∥Pσ

n g̃j∥Y > 2K

√
t+ logN

n

)
≤ 8e−t.

This tells us that
max

1≤j≤N
∥(Pn − P ) g̃j∥Y

P→ 0.

Finally, see that

∥Pn − P∥G ≤ max
1≤j≤N

∥(Pn − P ) g̃j∥Y + max
1≤j≤N

∥(Pn − P ) gj1 {G > K}∥Y .

Here, the first term converges to 0 in probability for any K > 0, as shown above,
and the second term decomposes as

max
1≤j≤N

∥(Pn − P ) gj1 {G > K}∥Y ≤ (Pn + P )G1 {G > K}

= (Pn − P )G1 {G > K}+ 2PG1 {G > K}
≤ (Pn − P )G+ 2PG1 {G > K} .

Here, the first term converges to 0 in probability by the weak law of large
numbers, and the second term converges to 0 as K → ∞, by Çınlar (2011, p.71,
Lemma 3.10).

Theorem 5.2.8. Suppose that

G ∈ L1(X , P ;R) and
1

n
H(δ,G, ∥·∥1,Pn

)
P→ 0 for each δ > 0.

Then G is a Glivenko Cantelli class, i.e. ∥Pn − P∥G
P→ 0.
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Proof of Theorem 5.2.8. Take any K > 0 and δ > 0. Denote again by Fn the
σ-algebra generated by X1, ..., Xn, and define GK = {g1{G ≤ K} : g ∈ G}. Let
g1, ..., gN , with N = N(δ,G, ∥·∥1,Pn

), be a minimal δ-covering of G. Then N is
a random variable, that is measurable with respect to Fn. Moreover, writing
g̃j = gj1{G ≤ K} for each j = 1, ..., N , g̃1, ..., g̃N form a δ-covering of GK ,
since, for any g̃ = g1{G ≤ K} ∈ GK for g ∈ G, there exists j ∈ {1, ..., N} with
∥g − gj∥1,Pn ≤ δ, so ∥g̃ − g̃j∥1,Pn ≤ ∥g − gj∥1,Pn ≤ δ.

Note that, when ∥g̃ − g̃j∥1,Pn
= Pn ∥g̃ − g̃j∥Y ≤ δ, we have

∥Pσ
n g̃∥Y ≤ ∥Pσ

n g̃j∥Y + ∥Pσ
n g̃ − Pσ

n g̃j∥Y
≤ ∥Pσ

n g̃j∥Y + Pn ∥g̃ − g̃j∥Y
≤ ∥Pσ

n g̃j∥Y + δ.

So for any g̃ ∈ GK ,
∥Pσ

n g̃∥Y ≤ max
1≤j≤N

∥Pσ
n g̃j∥Y + δ. (*)

By Hoeffding’s inequality and union bound (as in the proof of Lemma 5.2.6,
since N is measurable with respect to Fn), for any t > 0, we have

P

(
max

1≤j≤N
∥Pσ

n g̃j∥Y ≥ 2K

√
t+ logN

n
| Fn

)
≤ 2e−t.

We then apply (*) and integrate both sides (to remove the conditioning on Fn)
to see that, for any t > 0,

P

(
∥Pσ

n ∥GK
≥ δ + 2K

√
t+ logN

n

)
≤ 2e−t.

Then see that, using the elementary inequality
√
a+

√
b ≥

√
a+ b,

P

(
∥Pσ

n ∥GK
≥ 2δ + 2K

√
t

n

)

≤ P

(
∥Pσ

n ∥GK
≥ δ + 2K

√
t

n
+ 2K

√
logN

n

)
+ P

(
2K

√
logN

n
≥ δ

)

≤ P

(
∥Pσ

n ∥GK
≥ δ + 2K

√
t+ logN

n

)
+ P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn

) ≥ δ

)

≤ 2e−t + P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn

) ≥ δ

)
.

Also, by Chebyshev’s inequality, for each g̃ ∈ GK , we have, for any t ≥ 1
8

P

(
∥(Pn − P ) g̃∥Y > 4δ + 4K

√
t

n

)
≤ P

(
∥(Pn − P ) g̃∥Y > 4K

√
t

n

)
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≤
nE
[
∥(Pn − P ) g̃∥2Y

]
16K2t

≤ 1

16t

≤ 1

2
.

Hence, we can apply symmetrisation with probabilities again (Lemma 5.2.5) to
see that, for any t ≥ 1

8 ,

P

(
∥Pn − P∥GK

≥ 8δ + 8K

√
t

n

)
≤ 4P

(
∥Pσ

n ∥GK
≥ 2δ + 2K

√
t

n

)

≤ 2−t + P

(
2K

√
1

n
H(δ,G, ∥·∥1,Pn

) ≥ δ

)
.

Here, since δ > 0 was arbitrary and 1
nH(δ,G, ∥·∥1,Pn)

P→ 0 by hypothesis, we
have that GK is Glivenko Cantelli.

Finally, see that

∥Pn − P∥G ≤ sup
g̃∈GK

∥(Pn − P ) g̃∥Y + sup
g∈G

∥(Pn − P ) g1 {G > K}∥Y .

Here, the first term converges to 0 in probability for any K > 0, as shown above,
and the second term decomposes as

sup
g∈G

∥(Pn − P ) g1 {G > K}∥Y ≤ (Pn + P )G1 {G > K}

= (Pn − P )G1 {G > K}+ 2PG1 {G > K}
≤ (Pn − P )G+ 2PG1 {G > K} .

Here, the first term converges to 0 in probability by the weak law of large
numbers, and the second term converges to 0 as K → ∞, by Çınlar (2011, p.71,
Lemma 3.10), since G is integrable by hypothesis.

Proposition 5.2.9 (Chaining). We fix S ∈ N. Define

Jn :=

S∑
s=0

2−sRn

√
2Hs+1.

(i) For all t > 0,

P

(
sup
g∈G

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥
√
2Jn√
n

+ 6Rn

√
1 + t

n
| Fn

)
≤ 2e−t.

(ii) Suppose that ε1, ..., εn are i.i.d. Gaussian random variables in Y with mean
0 and covariance operator Q. Without loss of generality (by rescaling
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if necessary), assume TrQ = 1. For each g ∈ G, we can consider the
following inner product:

⟨ε, g⟩2,Pn
=

1

n

n∑
i=1

⟨εi, g(Xi)⟩Y .

Then for all t > 0,

P

(
sup
g∈G

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

≥ Jn√
n
+ 4Rn

√
1 + t

n
| Fn

)
≤ e−t.

Proof of Proposition 5.2.9. (i) Fix s ∈ {0, 1, ..., S} and k ∈ {1, ..., Ns+1}. De-
note

gs+1,s
k = argmin

{gs
j}

Ns
j=1

{∥∥gs+1
k − gsj

∥∥
2,Pn

}
.

Then ∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y
≤ 1

n

n∑
i=1

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥
Y
,

where√√√√ n∑
i=1

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥2
Y
=

√
n
∥∥∥gs+1

k − gs+1,s
k

∥∥∥
2,Pn

≤
√
n2−sRn,

since the {gsj}
Ns
j=1 form a 2−sRn-covering of (G, ∥·∥2,Pn). Hence, noting

that Rn is measurable with respect to Fn, Hoeffding’s inequality gives,
for any t > 0,

P

(∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y
≥ 2−(s−1)Rn

√
t

n
| Fn

)
≤ 2e−t.

Therefore (by the union bound), for each s = 0, 1, ..., S and all t > 0,

P

(
max

k∈{1,...,Ns+1}

∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y
≥ 2−(s−1)Rn

√
Hs+1 + t

n
| Fn

)
≤ 2e−t.

Fix t and for s = 0, 1, ..., S, let

αs : = 2−(s−1)Rn

(√
Hs+1 +

√
(1 + s)(1 + t)

)
≥ 2−(s−1)Rn

(√
Hs+1 + (1 + s)(1 + t)

)
,
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using
√
a+

√
b ≥

√
a+ b. Then using

∑S
s=0 2

−(s−1)
√
1 + s ≤ 6,

S∑
s=0

αs =
√
2Jn +

S∑
s=0

2−(s−1)Rn

√
(1 + s)(1 + t)

≤
√
2Jn + 6Rn

√
1 + t.

Therefore

P

(
sup
g∈G

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥
√
2Jn√
n

+ 6Rn

√
1 + t

n
| Fn

)

≤ P

(
sup
g∈G

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥ 1√
n

S∑
s=0

αs | Fn

)

≤ P

(
S∑

s=0

sup
g∈G

∥∥Pσ
n

(
gs+1 − gs

)∥∥
Y ≥ 1√

n

S∑
s=0

αs | Fn

)

≤
S∑

s=0

P
(
sup
g∈G

∥∥Pσ
n

(
gs+1 − gs

)∥∥
Y ≥ 1√

n
αs | Fn

)

=

S∑
s=0

P
(

max
k=1,...,Ns+1

∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y
≥ 1√

n
αs | Fn

)

≤ 2

S∑
s=0

e−(1+s)(1+t)

≤ 2e−t.

(ii) Fix s ∈ {0, 1, ..., S} and k ∈ {1, ..., Ns+1}. Denote

gs+1,s
k = argmin

{gs
j}

Ns
j=1

{∥∥gs+1
k − gsj

∥∥
2,Pn

}
.

Let λ > 0 be arbitrary. Then Markov’s inequality gives us, for any t > 0,

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)
≤ e−λ2−sRn

√
2t
n E
[
e

λ
n

∑n
i=1⟨εi,gs+1

k (Xi)−gs+1,s
k (Xi)⟩Y | Fn

]
= e−λ2−sRn

√
2t
n

n∏
i=1

E
[
e

λ
n ⟨εi,gs+1

k (Xi)−gs+1,s
k (Xi)⟩Y | Fn

]
.

Here, since εi is a Y-valued Gaussian random variable with mean 0 and
covariance operator Q for each i = 1, ..., n, the distribution of the real
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variable λ
n

〈
εi, g

s+1
k (Xi)− gs+1,s

k (Xi)
〉
Y

conditioned on Fn is real Gaus-

sian with mean 0 and variance

λ2

n2
E
[〈
gs+1
k (Xi)− gs+1,s

k (Xi), εi

〉2
Y
| Fn

]
≤ λ2

n2

∥∥∥gs+1
k (Xi)− gs+1,s

k (Xi)
∥∥∥2
Y
,

which follows from the Cauchy-Schwarz inequality and the fact that we

have E
[
∥εi∥2Y

]
= TrQ = 1. Hence,

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)

≤ e−λ2−sRn

√
2t
n

n∏
i=1

e
λ2

2n2 ∥gs+1
k (Xi)−gs+1,s

k (Xi)∥2

Y

= e−λ2−sRn

√
2t
n e

λ2

2n2

∑n
i=1∥gs+1

k (Xi)−gs+1,s
k (Xi)∥2

Y

= e−λ2−sRn

√
2t
n e

λ2

2n∥gs+1
k −gs+1,s

k ∥2

2,Pn

≤ e−λ2−sRn

√
2t
n e

λ2

2n (2
−sRn)

2

.

Now let λ =
√
2nt

2−sRn
to see that

P

(〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2t

n
| Fn

)
≤ e−t.

Therefore, by the union bound, for each s = 0, 1, ..., S and all t > 0,

P

(
max

k∈{1,...,Ns+1}

〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 2−sRn

√
2(t+Hs+1)

n
| Fn

)
≤ e−t.

Fix t and for s = 0, 1, ..., S, let

αs := 2−sRn

(√
2Hs+1 +

√
2(1 + s)(1 + t)

)
≥ 2−sRn

√
2 (Hs+1 + (1 + s)(1 + t))

using
√
a+

√
b ≥

√
a+ b. Then using

∑∞
s=0 2

−s
√
2(1 + s) ≤ 4,

∞∑
s=0

αs = Jn +

∞∑
s=0

2−sRn

√
2(1 + s)(1 + t) ≤ Jn + 4Rn

√
1 + t.

Then

P

(
sup
g∈G

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

≥ Jn√
n
+ 4Rn

√
1 + t

n
| Fn

)
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≤ P

(
S∑

s=0

sup
g∈G

〈
ε, gs+1 − gs

〉
2,Pn

≥ 1√
n

S∑
s=0

αs | Fn

)

≤
S∑

s=0

P
(
sup
g∈G

〈
ε, gs+1 − gs

〉
2,Pn

≥ 1√
n
αs | Fn

)

=

S∑
s=0

P
(

max
k=1,...,Ns+1

〈
ε, gs+1

k − gs+1,s
k

〉
2,Pn

≥ 1√
n
αs | Fn

)

≤
S∑

s=0

e−(1+s)(1+t)

≤ e−t.

Theorem 5.2.10. Suppose that G satisfies the “uniform entropy condition”,
i.e. there exists a decreasing function H : R → R satisfying∫ 1

0

√
H(u)du <∞

such that, for all u > 0 and any probability distribution Q with finite support,

H(u ∥G∥2,Q ,G, ∥·∥2,Q) ≤ H(u).

Then the empirical process νn is asymptotically equicontinuous.

Proof of Theorem 5.2.10. Take any arbitrary g0 ∈ G. We will show that νn is
asymptotically equicontinuous at g0. Take arbitrary ϵ1, ϵ2 > 0, and fix S ∈ N.
Define, for δ > 0, the closed δ-ball around the origin:

B(δ) :=
{
g ∈ G : ∥g∥2,P ≤ δ

}
.

Then clearly, the theoretical radius of B(δ) is supg∈B(δ) ∥g∥2,P = δ. Denote the
empirical radius of B(δ) by Rn,δ = supg∈B(δ) ∥g∥2,Pn

, and analogously to the
proof of Proposition 5.2.9, define

Jn,δ :=
S∑

s=0

2−sRn,δ

√
2H
(
2−(s+1)Rn,δ,B(δ), ∥·∥2,Pn

)
.

Also define

J (ρ) := 8

∫ ρ

0

√
2H(u)du, ρ > 0,

which is bounded for any finite ρ > 0, by the uniform entropy condition.
Define A ∈ F as the event on which Rn,δ ≤ 2δ and ∥G∥2,Pn

≤ 2 ∥G∥2,P .
Then on this event, we have

Jn,δ =

S∑
s=0

2−sRn,δ

√
2H
(
2−(s+1)Rn,δ,B(δ), ∥·∥2,Pn

)
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≤ 4

∫ Rn,δ

0

√
2H(u,B(δ), ∥·∥2,Pn)du

≤ 4

∫ 2δ

0

√
2H (u,G, ∥·∥2,Pn

)du since Rn,δ ≤ 2δ on A and B(δ) ⊆ G

≤ 4

∫ 2δ

0

√√√√2H

(
u

∥G∥2,Pn

)
du by the uniform entropy condition

≤ 4

∫ 2δ

0

√√√√2H

(
u

2 ∥G∥2,P

)
du

since ∥G∥2,Pn
≤ 2 ∥G∥2,P on A and H is decreasing.

= 8 ∥G∥2,P
∫ δ

∥G∥2,P

0

√
2H(u)du by substitution

= ∥G∥2,P J

(
δ

∥G∥2,P

)
.

On A, we also have

sup
g∈B(δ)

∥∥Pσ
n

(
g − gS+1

)∥∥
Y ≤ sup

g∈B(δ)

∥∥g − gS+1
∥∥
1,Pn

≤ sup
g∈B(δ)

∥∥g − gS+1
∥∥
2,Pn

≤ 2−(S+1)Rn,δ

≤ 2−Sδ. (*)

So on A, noting that

∥Pσ
n ∥B(δ) = sup

g∈B(δ)

∥∥∥∥∥Pσ
n

(
g − gS+1

)
+

S∑
s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≤ sup
g∈B(δ)

∥∥Pσ
n

(
g − gS+1

)∥∥
Y + sup

g∈B(δ)

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

,

we have, for all t > 0,

P

∥Pσ
n ∥B(δ) ≥

√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 12δ

√
1 + t

n
+ 2−Sδ | Fn


= P

(
sup

g∈B(δ)

∥∥Pσ
n

(
g − gS+1

)∥∥
Y + sup

g∈B(δ)

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥
√
2Jn,δ
n

+ 6Rn,δ

√
1 + t

n
+ 2−Sδ | Fn

)
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≤ P

(
sup

g∈B(δ)

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

≥
√
2Jn,δ√
n

+ 6Rn,δ

√
1 + t

n
| Fn

)
≤ 2e−t,

where the term P
(
supg∈B(δ)

∥∥Pσ
n

(
g − gS+1

)∥∥
Y ≥ 2−Sδ | Fn

)
vanishes by (*)

and the last inequality follows Proposition 5.2.9(i). Then we can de-symmetrise
using Lemma 5.2.5:

P

∥Pn − P∥B(δ) ≥
4
√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 48δ

√
1 + t

n
+ 2−(S−2)δ


≤ 4P

∥Pσ
n ∥B(δ) ≥

√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
√
n

+ 12δ

√
1 + t

n
+ 2−Sδ


≤ 8e−t + 4P

(
Rn,δ > 2δ or ∥G∥2,Pn

> 2 ∥G∥2,P
)

= 8e−t + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Now let t = log
(

8
ϵ2

)
and S large enough such that 2−(S−2) ≤ 1√

n
, and δ small

enough such that

4
√
2 ∥G∥2,P J

(
δ

∥G∥2,P

)
+ 48δ

√
1 + log

(
8

ϵ2

)
+ δ ≤ ϵ1.

Then

P
(√

n ∥Pn − P∥B(δ) > ϵ1

)
≤ ϵ2 + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Hence, for any g ∈ G such that ∥g − g0∥2,P ≤ δ,

P
(
∥νn(g)− νn(g0)∥Y > ϵ1

)
= P

(√
n ∥(Pn − P ) (g − g0)∥Y > ϵ1

)
≤ P

(√
n ∥Pn − P∥B(δ) > ϵ1

)
≤ ϵ2 + 4P

(
sup

g∈B(δ)∪{G}
∥g∥22,Pn

> 4 sup
g∈B(δ)∪{G}

∥g∥22,P

)
.

Here, by the uniform law of large numbers on B(δ) ∩ {G} (Theorem 5.2.8), the
second term converges to 0 as n → ∞. Hence, as ϵ1 and ϵ2 were arbitrary, we
have asymptotic equicontinuity.
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Theorem 5.2.11. Suppose that ε1, ..., εn are i.i.d. with Gaussian distribution
with mean 0 and covariance operator Q, and that TrQ = 1. Further, suppose
that

J(δ) := 4

∫ δ

0

√
2H(u,B2,Pn(δ), ∥·∥2,Pn)du <∞,

for each δ > 0 and J(δ)
δ2 is decreasing in δ where B2,Pn

(δ) := {g ∈ G : ∥g∥2,Pn
≤

δ}. Then for all t ≥ 3
8 and all δn satisfying

√
nδ2n ≥ 8

(
J(δn) + 4δn

√
1 + t+ δn

√
8

3
t

)
,

we have

P
(
∥ĝn − g0∥2,Pn

> δn

)
≤
(
1 +

2

e− 1

)
e−t.

Proof of Theorem 5.2.11. First, recall the notation

⟨ε, g⟩2,Pn
=

1

n

n∑
i=1

⟨εi, g(Xi)⟩Y

from Proposition 5.2.9(ii), and note that we have the following basic inequality

∥ĝn − g0∥22,Pn
≤ 2 ⟨ε, ĝn − g0⟩2,Pn

, (*)

which follows from the fact that ĝn minimises ∥Yi − g(Xi)∥22,Pn
over g ∈ G,

giving

∥εi − (g0 − ĝn)∥22,Pn
= ∥Yi − ĝn(Xi)∥22,Pn

≤ ∥Yi − g0(Xi)∥22,Pn
= ∥εi∥22,Pn

.

We use a technique called the “peeling device”, first introduced by van de Geer
(2000). See that

P
(
∥ĝn − g0∥2,Pn

> δn

)
= P

 ∞⋃
j=1

{
2j−1δn < ∥ĝn − g0∥2,Pn

≤ 2jδn

}
≤

∞∑
j=1

P
(
2j−1δn < ∥ĝn − g0∥2,Pn

≤ 2jδn

)
by the union bound

=

∞∑
j=1

P
({

2j−1δn < ∥ĝn − g0∥2,Pn

}⋂{
ĝn − g0 ∈ Bn(2

jδn)
})

≤
∞∑
j=1

P
({(

2j−1δn
)2
< 2 ⟨ε, ĝn − g0⟩2,Pn

}⋂{
ĝn − g0 ∈ Bn(2

jδn)
})

by (*)

≤
∞∑
j=1

P

(
sup

g∈Bn(2jδn)

2 ⟨ε, g⟩2,Pn
>
(
2j−1δn

)2)
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=

∞∑
j=1

P

(
sup

g∈Bn(2jδn)

⟨ε, g⟩2,Pn
>

1

8

(
2jδn

)2)
.

Now, applying the hypothesis on δn, we see that, for each j,

1

8

(
2jδn

)2 ≥ (2j)2J(δn)√
n

+ 4(2j)2δn

√
1 + t

n
+

√
8
3 t(2

j)2δn
√
n

≥ J(2jδn)√
n

+ 4(2jδn)

√
1 + t+ j

n
+

√
8
3 t(2

j)2δn
√
n

≥ Jn√
n
+ 4(2jδn)

√
1 + t+ j

n
+

√
8
3 t(2

j)2δn
√
n

where we used the fact that J(δ)
δ2 is decreasing in δ and

√
1 + t+ j ≤ 2j

√
1 + t,

and Jn is defined as in Proposition 5.2.9 with G = Bn(2
jδn) and Rn = 2jδn. On

the other hand, we can write, for any S ∈ N,

⟨ε, g⟩2,Pn
=
〈
ε, g − gS+1

〉
2,Pn

+

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

,

using the chaining notation in Section 5.2.3. Hence,

P
(
∥ĝn − g0∥2,Pn

> δn

)
≤

∞∑
j=1

P

 sup
g∈Bn(2jδn)

〈
ε, g − gS+1

〉
2,Pn

>

√
8
3 t(2

j)2δn
√
n


+

∞∑
j=1

P

(
sup

g∈Bn(2jδn)

S∑
s=0

〈
ε, gs+1 − gs

〉
2,Pn

>
Jn√
n
+ 4(2jδn)

√
1 + t+ j

n

)

≤
∞∑
j=1

P

 2j

2S+1
δn ∥ε∥2,Pn

>

√
8
3 t2

2jδn
√
n

+

∞∑
j=1

e−(t+j) Proposition 5.2.9(ii)

=

∞∑
j=1

P

(
∥ε∥2,Pn

> 2j
√

8

3
t

)
+

1

e− 1
e−t letting S such that

√
n ≤ 2S+1

≤
∞∑
j=1

P

(
∥ε∥2,Pn

> 2j +

√
8

3
t

)
+

1

e− 1
e−t since t ≥ 3

8

≤
∞∑
j=1

P

(
1

n

n∑
i=1

∥εi∥2Y > 22j +
8

3
t

)
+

1

e− 1
e−t

≤
∞∑
j=1

e−
3
8 2

2j−tE
[
e

3
8

1
n

∑n
i=1∥εi∥

2
Y

]
+

1

e− 1
e−t by Markov’s inequality
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≤
∞∑
j=1

e−
3
8 2

2j−t
n∏

i=1

E
[
e

3
8

1
n∥εi∥2

Y

]
+

1

e− 1
e−t by independence

≤
∞∑
j=1

e−
3
8 2

2j−tE
[
e

3
8∥ε1∥

2
Y

]
+

1

e− 1
e−t by Jensen’s inequality

≤
∞∑
j=1

e−
3
8 2

2j−t +
1

e− 1
e−t by Gaussian concentration

≤ e−t

e− 3
4 − e−1 +

∞∑
j=1

e−j +
1

e− 1


≤ e−t

(
1 +

2

e− 1

)
.

Theorem 5.2.12. Suppose the following uniform entropy condition is satisfied:
there exists some function H : R → R satisfying

J (1) := 4

∫ 1

0

√
2H(u)du <∞,

such that, for all u > 0 and any probability distribution Q with finite support,

H(uL,L ◦ G, ∥·∥2,Q) ≤ H(u).

Then

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n

)
≤ 2e−t.

Proof of Theorem 5.2.12. First, denote by L◦G the class of functions X×Y → R
given by (x, y) 7→ L(y, g(x)) for g ∈ G. Also, by an abuse of notation, for each
g ∈ G, denote by L ◦ g the function (x, y) 7→ L(y, g(x)). Then we have

PL ◦ g = R(g), PnL ◦ g = R̂(g).

Since the loss L is bounded above by L, the empirical radius and the theoretical
radius of L◦G are both bounded above by L. In the chaining notation of Section
5.2.3, define

Jn =

S∑
s=0

2−sL
√
2H(2−(s+1)L,L ◦ G, ∥·∥2,Pn

).

Then from the very definition of the chains, we have

sup
g∈G

∣∣Pσ
n

(
L ◦ g − L ◦ gS+1

)∣∣ ≤ sup
g∈G

∥∥L ◦ g − L ◦ gS+1
∥∥
1,Pn
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≤ sup
g∈G

∥∥L ◦ g − L ◦ gS+1
∥∥
2,Pn

≤ 2−(S+1)L. (*)

First, see that

Jn =

S∑
s=0

2−sL
√
2H(2−(s+1)L,L ◦ G, ∥·∥2,Pn)

≤ 4

∫ L

0

√
2H(u,L ◦ G, ∥·∥2,Pn

)du

≤ 4

∫ L

0

√
2H
( u
L

)
du by uniform entropy condition

= 4L

∫ 1

0

√
2H(u)du by substitution

= LJ (1). (**)

Then, by the symmetrisation lemma (Lemma 5.2.5) followed by chaining, we
have

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+ 2−(S−1)L

)

= P

(
∥P − Pn∥L◦G >

4
√
2Jn√
n

+ 24L

√
1 + t

n
+ 2−(S−1)L

)
by (**)

≤ 4P

(
∥Pσ

n ∥L◦G >

√
2Jn√
n

+ 6L

√
1 + t

n
+ 2−(S+1)L

)
by Lemma 5.2.5

≤ 4P

(
sup
g∈G

∣∣Pσ
n

(
L ◦ g − L ◦ gS+1

)∣∣+ sup
g∈G

∣∣∣∣∣
S∑

s=0

Pσ
n

(
L ◦ gs+1 − L ◦ gs

)∣∣∣∣∣
>

√
2Jn√
n

+ 6L

√
1 + t

n
+ 2−(S+1)L

)

≤ 4P

(
sup
g∈G

∣∣∣∣∣
S∑

s=0

Pσ
n

(
L ◦ gs+1 − L ◦ gs

)∣∣∣∣∣ >
√
2Jn√
n

+ 6L

√
1 + t

n

)

+ 4P
(
sup
g∈G

∣∣Pσ
n

(
L ◦ g − L ◦ gS+1

)∣∣ > 2−(S+1)L

)
by the union bound

≤ 2e−t,

where the second term disappears by (*) and the first term is bounded by
Proposition 5.2.9(i). Now letting S be large enough such that

√
n ≤ 2S+1,

P

(
sup
g∈G

∣∣∣R(g)− R̂(g)
∣∣∣ > 4

√
2LJ (1)√
n

+ 24L

√
1 + t

n
+

L√
n

)
≤ 2e−t.
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We now prove Theorems 5.4.1, 5.4.2 and 5.4.3. The idea is to approximate
smooth functions by piecewise polynomials (Kolmogorov, 1955). We start with
some development shared by the three Theorems.

Let g ∈ Gm
B , x, x + h ∈ X and p ∈ Nd

0 with [p] ≤ m − 1. Then Dpg is
(m− [p])-times differentiable, and

∥(Dpg)(m−[p])(x)∥op = ∥
∑

[q]≤m−[p]

(m− [p])!

q!
Dp+qg(x)∥Y

≤ KB

∑
[q]≤m−[p]

(m− [p])!

q!
.

Hence,

Dpg(x+ h) =
∑

[q]≤m−1−[p]

hq

q!
Dp+qg(x) +Rp(g, x, h) (*)

by Taylor’s Theorem (Theorem 5.3.1), where

∥Rp(g, x, h)∥Y ≤ KB
∥h∥m−[p]

(m− [p])!

∑
[q]≤m−[p]

(m− [p])!

q!
.

So there is a constant K1 = K1(KB ,m, d) ≥ 1 such that, for all g ∈ Gm
B , x ∈ X ,

x+ h ∈ X and p ∈ Nd
0 with [p] ≤ m− 1,

∥Rp(g, x, h)∥Y ≤ K1 ∥h∥m−[p]
. (**)

Let ∆ := ( δ
4K1

)
1
m , and x(1), ..., x(L) a ∆

2 -net in X , i.e. supx∈X {inf1≤l≤L∥x −

x(l)∥} ≤ ∆
2 . By decomposing X into cubes of side

⌈
d1/2

∆

⌉−1

and taking the x(l)

as the centres thereof, we can take

L ≤ K2δ
− d

m (†)

for some constant K2 = K2(d,K1). Now, for each k = 0, 1, ...,m − 1, define
δk = δ

2∆ked
. We construct a cover of B as follows. First, to ease the notation,

write Nk = N( 12δk, B, ∥·∥Y), and find a set {akj , j = 1, ..., Nk} ⊂ B such that

B(akj , 12δk) cover B. Then define

Ak
1 = B(ak1 ,

1

2
δk), A

k
2

= B(ak2 ,
1

2
δk)\B(ak1 ,

1

2
δk), ..., A

k
Nk

= B(akNk
,
1

2
δk)\ ∪Nk−1

j=1 B(akj ,
1

2
δk).
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Then Ak := {Ak
j , j = 1, ..., Nk} is a cover of B of cardinality Nk, whose sets

Ak
j have diameter at most δk and are disjoint. For each l = 1, ..., L, g ∈ Gm

B

and p ∈ Nd
0 with [p] ≤ m− 1, define Al,p(g) as the unique set in A[p] such that

Dpg(x(l)) ∈ Al,p(g), and al,p(g) as the centre of the ball from which Al,p(g) was

created, so that ∥al,p(g) − Dpg(x(l))∥Y ≤ 1
2δ[p]. Then if g1, g2 ∈ Gm

B are such

that Al,p(g1) = Al,p(g2) for all l = 1, ..., L and all p ∈ Nd
0 with [p] ≤ m− 1, then

∥Dp(g1 − g2)(x(l))∥Y ≤ δ[p], (***)

since the diameter of Al,p(g1) = Al,p(g2) is at most δ[p]. For each x ∈ X , take

x(l) such that ∥x− x(l)∥ ≤ ∆
2 . Then we have, by putting p = 0 into (*),

∥(g1 − g2)(x)∥Y
=
∥∥R0(g1, x(l), x− x(l))−R0(g2, x(l), x− x(l))

+
∑

[p]≤m−1

(x− x(l))
p

p!
Dp(g1 − g2)(x(l))

∥∥∥∥∥∥
Y

≤ 2K1∥x− x(l)∥m +
∑

[p]≤m−1

δ[p]
∥x− x(l)∥[p]

p!
by (**) with p = 0 and (***)

≤ 2K1∆
m +

m−1∑
k=0

δk∆
k

∑
[p]=k

1

p!


≤ δ

2
+

(
max

k≤m−1
δk∆

k

)m−1∑
k=0

dk

k!

≤ δ

2
+

δ

2ed
ed

= δ.

It follows that the δ-covering number N(δ,Gm
B , ∥·∥∞) with respect to the supre-

mum norm is bounded by the number of distinct possibilities for {Al,p(g) : l =
1, ..., L, g ∈ Gm

B , p ∈ Nd
0, [p] ≤ m− 1}.

Proof of Theorem 5.4.1. Let x(l) be ordered so that for 1 < l ≤ L, ∥x(l′) −
x(l)∥ ≤ ∆ for some l′ < l. For each l = 1, ..., L and p ∈ Nd

0 with [p] ≤ m − 1,
we write Al,p for the number of possibilities of Al,p(g) for g ∈ Gm

B , and for each
l = 1, ..., L, we write Al for the number of possibilities of Al,p(g) as p ∈ Nd

0

varies with [p] ≤ m− 1. For l = 1, we have Dpg(x(1)) ∈ B for each p ∈ Nd
0 with

[p] ≤ m− 1. So

A1,p ≤ N[p] = N

(
1

4ed
δ

m−[p]
m (4K1)

[p]
m , B, ∥·∥Y

)
≤ N

(
δ

4ed
, B, ∥·∥Y

)
,

where the last upper bound follows since N(·, B, ∥·∥Y) is a decreasing function,
and we have K1 ≥ 1 and 0 < δ < 1. This upper bound has no dependence on p.
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The number of different p ∈ Nd
0 with [p] ≤ m− 1 is equal to

(
m+d−1

d

)
, which is

bounded above bymd, and so A1 ≤ N( δ
4ed

, B, ∥·∥Y)m
d

. Since B = B∩B(0,KB)

is (M, τasd)-homogeneous, N( δ
4ed

, B, ∥·∥Y) ≤M( 4e
dKB

δ )τasd , and so

A1 ≤Mmd

(
4edKB

δ

)τasdm
d

. (††)

Now, for 1 < l ≤ L, suppose that Al′,q(g) is given for all l′ < l and all q ∈ Nd
0

with [q] ≤ m−1. Choose l′ < l such that ∥x(l′)−x(l)∥ ≤ ∆, and write yl,p(g) :=∑
[q]≤m−1−[p]

(x(l′)−x(l))
q

q! al′,p+q(g). Then for any p ∈ Nd
0 with [p] ≤ m − 1, (*)

tells us that∥∥Dpg(x(l))− yl,p(g)
∥∥
Y

=
∥∥Rp(g, x(l′), x(l) − x(l′))

∥∥
Y

+
∑

[q]≤m−1−[p]

∥x(l′) − x(l)∥[q]

q!

∥∥Dp+qg(x(l′))− al′,p+q(g)
∥∥
Y

≤ K1∆
m−[p] +

∑
[q]≤m−1−[p]

δ[p+q]
∆q

q!

= K1
∆m

∆[p]
+ δ[p]

m−1−[p]∑
k=0

δk∆
k

∑
[q]=k

1

q!


≤ ed + 1

2
δ[p].

As al′,p+q(g) is given for all [q] ≤ m − 1 − [p], yl,p(g) is a fixed point in Y. So
Al,p is bounded by the number of sets in A[p] that intersect with Bl,p(g) :=

B ∩ B
(
yl,p(g),

ed+1
2 δ[p]

)
. Define Al,p(g) := {A ∈ A[p] : A ∩ Bl,p(g) = ∅} and

A′
l,p(g) := {A ∈ A[p] : A ∩Bl,p(g) ̸= ∅}, so that A[p] = Al,p(g) ∪A′

l,p(g), N[p] =

|A[p]| = |Al,p(g)| + |A′
l,p(g)| and Al,p ≤ |A′

l,p(g)|. Now, write B+
l,p(g) := B ∩

B(yl,p(g), e
d+3
2 δ[p]). Then we have A ⊂ B+

l,p(g) for all A ∈ A′
l,p(g). Let A+

l,p(g)

be a 1
2δ[p]-cover of B

+
l,p(g) with minimal cardinality N( 12δ[p], B

+
l,p(g), ∥·∥Y). Since

B is (M, τasd)-homogeneous, N( 12δ[p], B
+
l,p(g), ∥·∥Y) ≤M(ed + 3)τasd . By taking

the union A+
l,p(g) with Al,p(g), we have a 1

2δ[p]-cover of B with cardinality at

most |Al,p(g)| +M(ed + 3)τasd . So if |A′
l,p(g)| > M(ed + 3)τasd , then we have

found a 1
2δ[p]-cover of B with cardinality strictly less than N[p], contradicting

its minimality. Hence, we must have Al,p ≤ |A′
l,p(g)| ≤ M(ed + 3)τasd . But the

latter quantity is a constant that does not depend on δ or p. Thus

Al ≤
∏

[p]≤m−1

Al,p ≤Mmd (
ed + 3

)τasdmd

. († † †)
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Putting together (†), (††) and († † †), we arrive at

N (δ,Gm
B , ∥·∥∞) ≤

L∏
l=1

Al

≤Mmd

(
4edKB

δ

)τasdm
d

MmdK2δ
− d

m
(
ed + 3

)τasdmdK2δ
− d

m

,

and so

H (δ,Gm
B , ∥·∥∞) ≤ δ−

d
m log

(
MmdK2

(
ed + 3

)τasdmdK2

)
+md log

(
M

(
4edKB

δ

)τasd)
≤ Kδ−

d
m ,

where K is a constant depending onM,m, d,K2, τasd and KB . With the second
term, we bounded log

(
1
δ

)
by a constant times δ−

d
m .

Proof of Theorem 5.4.2. Suppose g ∈ Gm
B . With notation as in the proof of

Theorem 5.4.1, for each l = 1, ..., L and each p ∈ Nd
0 with [p] ≤ m− 1, we have

Al,p ≤ N[p] = N

(
δ

2∆[p]ed
, B, ∥·∥Y

)
≤ N

(
δ

2ed
, B, ∥·∥Y

)
≤
(

δ

2ed

)−(τbox+1)

,

where the second last upper bound follows since N(·, B, ∥·∥Y) is a decreasing
function, and we have K1 ≥ 1 and 0 < δ < 1, and the last upper bound follows
from Equation (box) in Section 5.3. This upper bound has no dependence on l

or p. So for each l = 1, ..., L, Al ≤
(

2ed

δ

)(τbox+1)md

. Putting this together with

(†), we arrive at

N (δ,Gm
B , ∥·∥∞) ≤

L∏
l=1

Al ≤
(
2ed

δ

)(τbox+1)mdK2δ
− d

m

,

and so

H (δ,Gm
B , ∥·∥∞) ≤ (τbox + 1)mdK2δ

− d
m log

(
2ed

δ

)
≤ Kδ−

d
m log

(
1

δ

)
,

where K is a constant depending on m, d,K2 and τbox.

Proof of Theorem 5.4.3. Suppose g ∈ Gm
B . With notation as in the proof of

Theorem 5.4.1, for each l = 1, ..., L and each p ∈ Nd
0 with [p] ≤ m− 1, we have

Al,p ≤ N[p]
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= N

(
δ

2∆[p]ed
, B, ∥·∥Y

)
≤ N

(
δ

2ed
, B, ∥·∥Y

)
≤ exp

{
M

(
δ

2ed

)−τexp
}
,

where the second last upper bound follows since N(·, B, ∥·∥Y) is a decreasing
function, and we have K1 ≥ 1 and 0 < δ < 1. This upper bound has no
dependence on l or p. So for each l = 1, ..., L,

Al ≤ exp

{
M

(
δ

2ed

)−τexp

md

}
.

Putting this together with (†), we arrive at

N (δ,Gm
B , ∥·∥∞) ≤

L∏
l=1

Al ≤ exp

{
M

(
δ

2ed

)−τexp

mdK2δ
− d

m

}
,

and so

H (δ,Gm
B , ∥·∥∞) ≤M

(
1

2ed

)−τexp

mdK2δ
− d

m−τexp ≤ Kδ−(
d
m+τexp),

where K is a constant depending on m, d,M,K2 and τexp.

Theorem 5.5.3. Let S ∈ N be any (large) integer. The empirical Rademacher
complexity is bounded as

R̂n(G) ≤ 2−(S+1)Rn +
2√
n
Jn,

where we recall that Rn = supg∈G∥g∥2,Pn
is the empirical radius and Jn =∑S

s=0 2
−sRn

√
2Hs+1 is the uniform entropy bound.

Proof. See that

R̂n(G) = E

[
sup
g∈G

∥∥∥∥∥ 1n
n∑

i=1

σig(Xi)

∥∥∥∥∥
Y

| Fn

]

= E
[
sup
g∈G

∥Pσ
n g∥Y | Fn

]

= E

[
sup
g∈G

∥∥∥∥∥Pσ
n

(
g − gS+1

)
+

S∑
s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

| Fn

]

≤ E
[
sup
g∈G

∥∥Pσ
n

(
g − gS+1

)∥∥
Y | Fn

]
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+ E

[
sup
g∈G

∥∥∥∥∥
S∑

s=0

Pσ
n

(
gs+1 − gs

)∥∥∥∥∥
Y

| Fn

]

≤ sup
g∈G

1

n

n∑
i=1

∥∥g(Xi)− gS+1(Xi)
∥∥
Y

+

S∑
s=0

E
[
sup
g∈G

∥∥Pσ
n

(
gs+1 − gs

)∥∥
Y | Fn

]
≤ sup

g∈G

∥∥g − gS+1
∥∥
2,Pn

+

S∑
s=0

E
[

max
k∈{1,...,Ns+1}

∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y
| Fn

]
≤ 2−(S+1)Rn

+

S∑
s=0

1

λs
log

E

Ns+1∑
k=1

e
λs∥Pσ

n (g
s+1
k −gs+1,s

k )∥Y | Fn

 (a)

≤ 2−(S+1)Rn

+

S∑
s=0

1

λs
log

Ns+1∑
k=1

E
[
2 cosh

(
λs

∥∥∥Pσ
n

(
gs+1
k − gs+1,s

k

)∥∥∥
Y

)
| Fn

] (b)

≤ 2−(S+1)Rn +

S∑
s=0

1

λs
log

2

Ns+1∑
k=1

e
λ2
s
n (2−sRn)

2

 (c)

= 2−(S+1)Rn +

S∑
s=0

1

λs
log

(
2Ns+1e

λ2
s
n (2−sRn)

2

)

= 2−(S+1)Rn +

S∑
s=0

1

λs
(Hs+1 + log 2) +

λs
n

S∑
s=0

(2−sRn)
2

≤ 2−(S+1)Rn +

S∑
s=0

1

λs
2Hs+1 +

λs
n

S∑
s=0

(2−sRn)
2 (d)

= 2−(S+1)Rn +
2√
n

S∑
s=0

2−sRn

√
2Hs+1 (e)

= 2−(S+1)Rn +
2√
n
Jn

where, in (a), we used Jensen’s inequality and the fact that the sum of positive
numbers is greater than their maximum; in (b), we used the basic fact ex ≤
2 coshx; in (c), we used Hoeffding’s inequality in Hilbert spaces; in (d), we used

186



APPENDIX A. PROOFS

the fact that Hs+1 ≥ log 2; and in (e), we let

λs =

√
2nHs+1

2−sRn
.

Lemma 5.5.5. Suppose that for each Y ∈ Y, the Y → R map y 7→ L(Y, y) is
c-Lipschitz for some constant c > 0, i.e. for y1, y2 ∈ Y, |L(Y, y1)− L(Y, y2)| ≤
c∥y1 − y2∥Y . Then for any δ > 0, we have

H(cδ,L ◦ G, ∥·∥2,Pn) ≤ H(δ,G, ∥·∥2,Pn).

Proof. To ease the notation, write N = N(δ,G, ∥·∥2,Pn), and let g1, ..., gN be
a minimal δ-covering of G. Then for any L ◦ g ∈ L ◦ G, there exists some gj ,
j ∈ {1, ..., N} with ∥g− gj∥2,Pn

= ( 1n
∑n

i=1∥g(Xi)− gj(Xi)∥2Y)1/2 ≤ δ. Then by
the Lipschitz condition on L,

∥L ◦ g − L ◦ gj∥2,Pn
=

(
1

n

n∑
i=1

|L(Yi, g(Xi))− L(Yi, gj(Xi))|2
) 1

2

≤

(
1

n

n∑
i=1

c2 ∥g(Xi)− gj(Xi)∥2Y

) 1
2

= c ∥g − gj∥2,Pn

≤ cδ.

Hence L ◦ g1, ...,L ◦ gN is a cδ-covering of L ◦ G, i.e.

N(cδ,L ◦ G, ∥·∥2,Pn) ≤ N(δ,G, ∥·∥2,Pn).

Now finish the proof by taking logarithms of both sides.
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