
A Virtual Testbed Orchestration (VITO) System for

Education,

Performance Evaluation, and Network Function

Virtualization

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Andreas Stockmayer

aus Freiburg im Breisgau

Tübingen

2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 09.07.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Michael Menth

2. Berichterstatter/-in: Prof. Dr. Andreas Zell

Kurzfassung

Der Paradigmenwechsel innerhalb der Informatikbranche, weg von dedizierter,
spezialisierter Hardware, hin zu virtualisierten Systemen auf günstiger generi-
scher Hardware bietet auch im Netzwerkbereich grosses Potential. Diese Arbeit
fokussiert sich darauf, wie diese neuen Technologien im Netzwerkumfeld ver-
wendet werden können, um sowohl die Arbeit an Universitäten als auch in Da-
tacenters zu vereinfachen und die Kosten zu optimieren. Aus dem universitären
Kontext wird in dieser Arbeit ein System vorgestellt, welches die Ausbildung
von Studierenden erleichtert. Für Forschende wird ein Framework vorgestellt, mit
dem die Evaluierung neuer Protokolle und Technologien in virtualisierten Um-
gebungen ermöglicht wird. Das letzte Projekt beschäftigt sich mit einem System,
um Datacenter-Betreibern den Zugang zu moderner Netzwerkvirtualisierungs-
technik zu ermöglichen, ohne dabei auf spezialisierte Hardware zurückgreifen zu
müssen. Alle in dieser Arbeit beschriebenen Systeme richten sich nicht nur an
Netzwerkspezialisten, sondern generell an Administratoren mit grundlegenden
Netzwerkkentnissen.

Abstract

In recent years, the computer science world has seen a big shift from dedicated,
highly specialised hardware to virtualised appliances that are cheaper and more
flexible In the field of networking, those approaches also have great potential.
This work will focus on leveraging virtualisation and software-defined network-
ing for academic and data center-related purposes. We present a system to sim-
plify the education of students and a system to allow testing and evaluation of new
networking protocols in a virtualised environment without the need for real hard-
ware apart from a virtualisation platform. For data center operators, we present
a system to leverage network virtualisation without the need for expensive appli-
ances for network functions. All technologies in this work are not only scoped for
networking specialists but are also usable by engineers with only general knowl-
edge of the networking field. The procedures and technologies explained in this
work lead to scientific work that has been published at different conferences [1–5]

Contents

1 Introduction 1

1.1 Thesis Outline . 1

1.2 Scientific Contribution . 2

2 Background 3

2.1 Virtualisation . 3

2.1.1 Advantages of Virtualisation 4

2.1.2 Hypervisors . 5

2.1.3 Software-Based Virtualisation 7

2.1.4 Virtualisation Tools . 14

2.2 Overlay Routing . 15

2.2.1 Principles . 18

2.2.2 MPLS . 19

2.3 Hybrid Access . 22

2.3.1 Hybrid Access principles 22

2.3.2 Related Work . 24

2.4 Software-Defined Networking 27

2.4.1 SDN Principles . 27

2.4.2 Northbound Interface 29

2.4.3 Southbound Interface 30

2.4.4 OpenFlow . 31

2.4.5 P4 . 32

2.4.6 Network Function Virtualisation / Service Function

Chaining . 33

i

Contents

3 Testbeds 37

3.1 VITO . 37

3.1.1 Motivation . 37

3.1.2 Testbed orchestrator . 39

3.1.3 Link modelling . 42

3.1.4 CI/CD . 48

3.2 IP . 48

3.2.1 Concept . 51

3.2.2 A Lab Orchestrator for Semi-Virtualized Testbed clusters

(LOST) . 62

3.2.3 Implementation . 65

4 Hybrid Access 71

4.1 Load-balancing Concepts for Heterogenous Links 71

4.1.1 Performance Comparison of MPTCP and PBLB 72

4.1.2 Flow-Based Load Balancing 76

4.2 Performance Evaluation of FBLB 81

5 Software Defined Networking 93

5.1 Architecture of P4-SFC . 93

5.1.1 Implementation of the SFC Ingress Node 93

5.1.2 Transparent and Efficient VNF Integration on Hosts . . . 96

5.1.3 P4-SFC Orchestrator 97

6 Conclusion 101

Acronyms 103

Bibliography and References 107

ii

1 Introduction

In this section I will outline the contents of my thesis as well as the scientific

contribution that can be drawn from it.

1.1 Thesis Outline

The Internet, and any large network, is in a state of constant change. New tech-

nologies are developed on a daily basis to cope with the ever increasing amount of

traffic and users as well as threats and resilience issues. However, new approaches

and technologies are always a part of a bigger system and need to work as such.

While theoretical design and validation in a simulation is a feasible way for new

technologies to test them on their own, it can’t replace tests with real protocol

and network stack implementations. Those are written and optimized, sometimes

over the course of several years, and may divert from the behaviour one would

expect them to show. The biggest example of this are the TCP implementations

in the Windows and Linux kernel, which are loosely based on the standards they

implement but are not well documented. This work will present a framework that

uses virtualization technologies to allow for virtual networking testbeds that still

involve the same software used for the majority of servers on the Internet, while

also providing accurate link modelling for experiments. The framework, VITO,

can be used to fully automate the testing process for rapid prototyping, which

will be shown with the example of Hybrid Access. The flexible foundation of

VITO will also be shown in a modified version to aid in hands-on networking

1

1 Introduction

classes and in a version that enables data-center operators to utilize NFV1 and

SFC2 technologies with their legacy infrastructure.

1.2 Scientific Contribution

The scientific contribution of this thesis consists of multiple parts. It is made up

of contributions in the field of virtualization, overlay routing, and novel SDN

technologies. The main contribution however are not these approaches themself

but the combination of those technologies to I created a framework for rapid

prototyping of new technologies and will present a case study of a future Inter-

net technology, flow based hybrid access, that was developed and tested using

this tool. A cost effective approach for teaching students the principles of net-

works is built on the core of the prototyping framework which allows for flexible

network connections that can be leveraged to conduct experiments on variable

network topologies. All contributions are combined in an approach that allows to

replace expensive traditional network appliances like firewalls with cost effective

off-the-shelf hardware in an overlay routing and virtualization-based multi-tenant

NFV/SFC solution that does not require knowledge of networking or virtualiza-

tion technologies and can be used in conjunction with traditional infrastructure.

1network function virtualization
2Service Function Chaining

2

2 Background

This chapter introduces the technical background of this monograph. Main parts

of the thesis build upon the field virtualization, hybrid access and SDN, in partic-

ular P4.

2.1 Virtualisation

The main goal of virtualisation is to fully leverage the computing power of com-

puters – and in particular servers – efficiently. This can be achieved by sharing the

resources of a computer by so-called VMs1. Contrary to popular belief, VMs are

not used to provide greater flexibility in productive environments. The handling

of bare-metal servers and VMs are mostly the same and share the same problems

when it comes to provisioning, the need for overprovisioning and maintenance.

To provide flexibility, containers and container orchestration platforms are used

as they have a significantly smaller footprint than VMs. They will be explained

later. VMs are most often used as nodes for such container orchestration plat-

forms. A VM runs on a host just like any normal program, managed by a host

OS. In contrast to a normal program, the host OS2 needs to provide not only

resources for the VM but also an entire system platform that resembles the hard-

ware otherwise present in a physical system. Even automatic creation of VMs in

cloud environments only differs in speed from the traditional addition of bare-

metal hardware to a system. The VM therefore mostly behaves like an actual

1virtual machines
2operating system

3

2 Background

physical system. The host has to ensure that multiple VMs can run isolated from

each other in the same environment.

2.1.1 Advantages of Virtualisation

With VMs, sharing resources on a single host is possible with little to no per-

formance loss when using hardware accelerated virtualisation. Without virtuali-

sation, different services that have to be separated –for security reasons, for ex-

ample – have to run on separate dedicated machines. This, in many cases, leads

to a situation where not all resources are fully leveraged as not all services use

the full resources of their dedicated hardware such as the CPU3, RAM4 or stor-

age. Virtualisation allows different VMs to run on the same hardware without

influencing each other while still sharing the hardware resources among them.

With this principle, virtualisation reduces CAPEX5 and OPEX6, as the amount

of hardware needed is reduced, since the hardware resources of a host machine

that formerly would have been unused can be used for additional VMs. The isola-

tion also benefits security in two ways. The logical isolation between VMs allows

for service separation with hardware support. It also provides security: if mali-

cious software is contained in one VM, it cannot spread out to other VMs. In

short, a large part of security can be outsourced to well-tested hardware and does

not need to rely on software solutions.

Typically multiple VMs run on a single server. As each VM has different re-

quirements regarding resources, it is mandatory that VMs be distributed to servers

according to their needs, to allow optimal resource utilisation. This allows a mix

of different services to run on a single server and still meet all requirements with

a reduced waste of resources. For example, a firewall has a high CPU requirement

while using hardly any storage. A backup server needs storage but very few CPU

resources. On a virtualised host it is possible to combine both VMs on a single

3central processing unit
4random access memory
5https://en.oxforddictionaries.com/definition/capes
6https://en.oxforddictionaries.com/definition/opex

4

2.1 Virtualisation

server to fully leverage all resources. This allows for a more efficient use of the

available physical resources.

VMs are not bound to certain hardware. Migration of VMs between multiple

physical servers is possible, in most cases transparent for the application run-

ning inside the VM. This allows for easier maintenance, since services can be

moved to another server during the maintenance and migrated back afterwards.

This process holds its own risks and challenges, such as for time-sensitive appli-

cations relying on the OS clock, which can get out of sync during migration, but

it still provides an easier solution than an active/passive setup or one that needs

downtime for hardware maintenance. The same holds true in cases of hardware

failure, which opens up the possibility of a nearly instant failure of services. This

process may not always work seamlessly, but it can reduce downtime to several

seconds instead of several minutes or even hours, in the case of dedicated hard-

ware. All modern VM orchestrators have a feature which enables migration of

VMs with a downtime of normally less than 5 s, vMotion by VMWare [8] being

one example. Also it is easier to increase resources dedicated to a VM than it

would be on a physical host. If a VM needs more resources than the server can

provide, one option is to migrate this VM to another server with more resources,

allowing for a seamless upgrade without significant downtime. In general, over-

committing the resources of a server is also allowed. While the maximum amount

of memory available is a hard limit, it can still be distributed load dependent to

allow multiple VMs to have more resources as long as the overall consumption

does not exceed the physical hardware constraints. Distributing more CPU cores

than physically available is not a technical problem, but if done without care it

leads to worse performance for all VMs.

2.1.2 Hypervisors

Typically, a VM runs just like any other user application on a host OS. The dif-

ference is that a normal user application does not need an entire system platform.

But this part is what makes a VM behave like a physical machine that allows for

5

2 Background

the execution of an entire operating system. The VM should not have full access

to all host resources for security reasons. For example, a malicious VM might

consume all host resources, preventing other services from working. To ensure

these principles, some kind of manager needs to be set in place that provides and

limits the resources assigned to a VM. In some cases, access to real IO7 devices,

such as PCI cards, has to be granted to a VM which also has to be regulated. The

manager responsible for those tasks is called hypervisor.

Hypervisors are classified into two types, Type 1 and Type 2. A type 1 hyper-

visor runs on bare-metal hardware without an OS to execute it. These are called

native or bare-metal hypervisors and are the earliest type of hypervisor, developed

as early as 1960 by IBM. The best-known type 1 hypervisors are IBM z/VM and

VMware ESXi. They either provide their own configuration interface to man-

age VMs or require a privileged management VM which is only used to manage

the hypervisor, with no other services running on this VM. Type 2 hypervisors

are hosted as normal applications under normal OSes like Linux or Windows.

These programs provide an abstraction layer for the guest operating system from

the host OS. The best-known type 2 hypervisors are QEMU, VMware Player

and VirtualBox. Most type 2 hypervisors include a configuration interface, either

graphical or text based, and most also include an interface for external control

with frameworks like libvirt [9]. The widespread KVM8, used by the Linux ker-

nel, is some kind of intermediate form. It is part of the Linux kernel and therefore

runs directly on hardware, but it requires the normal Linux kernel for resource

access and regulation and an emulator like QEMU to run a guest VM. Figure 2.1

provides a comparison between both types of hypervisors. Hypervisors need to

manage and enforce access and resource limitations. They are also called VMMs9

since they are responsible for managing and monitoring VMs at all times. When a

VM demands access to protected resources, a trap to the VMM is required so that

the VMM can check whether the VM has the permission to perform the requested

7Input/Output
8kernel virtual machine monitor
9Virtual Machine Monitors

6

2.1 Virtualisation

Figure 2.1: Comparison between Type 1 and Type 2 hypervisors.

action, and the VMM performs the corresponding syscall to actually execute it.

To reduce the overhead introduced by these traps, newer virtualisation extensions

try to implement the required features in hardware to increase performance.

2.1.3 Software-Based Virtualisation

Software-based virtualisation can be divided into full virtualisation, paravirtu-

alisation and container-based virtualisation. The first two types share a similar

concept, while container-based virtualisation is a special kind of virtualisation

that will be explained later.

2.1.3.1 Full Virtualisation

In a fully virtualised environment, the guests are unaware that they are virtualised

since a fully emulated system is presented to the VM by the hypervisor. This al-

lows for every guest OS to be run without the need for changes like an adapted

kernel. As all resources are emulated, the VMs can run entirely unprivileged, the

same as any other application. The resources are exclusively assigned by the hy-

7

2 Background

pervisor. The emulation includes three different aspects. All peripheral devices,

like input devices or monitors, and storage is emulated by the hypervisor. Mem-

ory access and access to shadow pages using an MMU10 in hardware have to be

implemented by the hypervisor in software. All CPU instructions within the VM

have to be translated to the corresponding host CPU instruction by the hypervisor.

If the CPU architectures on the host and the guest operating system are the same,

the instructions need to be translated from unprivileged ring 3/1 instructions to

privileged ring 0 instructions. If the CPU architecture differs between host and

guest, the hypervisor needs to perform a binary translation between the different

machine commands. This usually leads to poor performance, as most instruc-

tions cannot be translated in a 1:1 fashion and the translation to corresponding

host CPU instructions has to be done by the software. However full virtualisa-

tion is still used for cross virtualisation, for example, to emulate an ARM-based

VM to emulate a smartphone on an x86 CPU. This is mostly used to develop

smartphone software to be run on Android or iOS.

2.1.3.2 Paravirtualisation

In a paravirtualised environment, the VM ‘knows’ that it is virtualised, compared

to a fully virtualised VM, where the guest is not aware it is being virtualised.

Typically, only the guest OS kernel needs to be aware of being virtualised; the

applications running inside the VMs do not. Even within the kernel only the

drivers of components that are paravirtualised need to be aware, since typically

not all components in a system are paravirtualised. This is because the drivers

for the emulated and paravirtualised components need to collaborate with the hy-

pervisor to increase performance, compared to a full virtualisation, in which the

drivers need to be emulated as well. While the hypervisor in a fully virtualised

environment only receives the commands that would have been sent to the real

hardware, a paravirtualised device communicates on a higher layer, allowing the

hypervisor to translate the request itself. To allow this functionality, the drivers

10memory management unit

8

2.1 Virtualisation

for the paravirtualised devices need to be modified to support this kind of virtu-

alisation.

The best-known example of paravirtualisation is XEN [10]. Paravirtualisation

is also used in the Linux context with virtio [11, 12]. It provides an abstraction

layer over a set of devices as paravirtualised devices and provides a common

frontend for common devices like NICs11, storage or video cards. It is much

easier to develop drivers for these paravirtualised devices due to the standardised

interfaces. For example, if the VM is able to use a virtio NIC, the OS uses an

optimised driver. This driver performs operations to transfer data from the VM to

the host in memory to accelerate the network throughput [13].

2.1.3.3 Container-based virtualisation

Container-based virtualisation is a misleading term, as it does not count as real

virtualisation. In a container environment only the ‘userland’, all the software

running on a computer except the kernel, of the guest OS is executed. The Linux

kernel allows separation of processes using a system called cgroups [14]. This

system allows for different processes on the same host to run separated from each

other with a defined resource scope. The same principle holds true for network

namespaces [15], allowing for different networking stacks on the same host. A

container is a process, running in its own networking namespace, isolated with

cgroups, running either a single process (e.g. with Docker [16]) or a whole user-

land of a Linux distribution (e.g. using lxc [17]). This is done by using the whole

filesystem and init system of the guest system and executing them as a normal

process. For the user, this construct looks like a full operating system. In both

cases, all processes share the same host kernel, leading to a smaller overhead

than full or paravirtualisation, since only a single kernel needs to be booted for

all services, compared to one kernel per service. Container-based virtualisation

does not need any hardware support at all; all functions needed are present in the

Linux kernel.

11network interface cards

9

2 Background

2.1.3.4 Hardware-Assisted Virtualisation of the x86 Architecture

Unlike other CPU architectures, x86 is not natively virtualisable in hardware.

Therefore, other hardware architectures, like POWER or ARM, are traditionally

used for virtualisation. However, Intel and AMD began to add extensions for

virtualisation, including system calls and special registers, to their architectures

around 2007. The main goal is to reduce the huge performance loss introduced

by software virtualisation and to provide near native performance for VMs. Ex-

tensions to the basic architecture, enabling further virtualisation of, for example,

PCI12 devices, were introduced. In this chapter the Intel naming scheme is used

as those processors are still more common in server environments, and all exper-

iments and technologies presented in this work were developed with Intel CPUs.

However, all extensions presented have an AMD equivalent providing the same

functionality.

2.1.3.5 Extensions to the x86 Base Architecture

The first extension introduced to enable hardware-based x86 hardware virtual-

isation is called VT13-x [18]. It introduces an additional privilege system and

special CPU registers. It allows the guest to enter and exit a special virtual exe-

cution mode. The virtual execution mode presents itself to the guest as running

with full privileges while the host OS is still protected. To allow memory vir-

tualisation, hardware-based shadowing in the MMU is introduced. While page

tables map the address of virtual memory used by actual programs to physical

addresses, shadow tables are pseudo-page tables that allow mapping between the

virtual memory of the VM and the physical address on the host. Without VT-x

this functionality needs to be implemented by software, with poor performance.

Interrupts within a VM typically cannot be processed directly by the VM. In-

terrupt processing requires that the guest leave the context of the VM and switch

to the context of the host. After the interrupt is handled, the context is switched

12Peripheral Component Interconnect
13Intel virtualization technology

10

2.1 Virtualisation

back to that of the VM. Obviously, context switches are complicated and time-

consuming. To reduce this overhead, APICv14 [19] emulates access to an ad-

vanced programmable interrupt controller and interrupt processing. By doing

this, APICv eliminates around half of the context switches, which significantly

improves performance.

The virtual memory of the host system serves as physical emulated memory

for the VM. The translation of physical memory to virtual memory is done by

the MMU. However, in data centres, VMs may serve as hypervisors for other

VMs themselves. This is called nested virtualisation and allows a VM to run in-

side a VM. The inner VM also needs to translate its physical addresses, which

are already virtualised by the MMU to virtual addresses for the inner VM. This

process must be done by the software and is also time-consuming. SLAT15, also

known as nested paging or EPT16 [20], is an extension to the MMU providing

hardware-assisted inner address translation. With EPT, every guest’s physical

address is treated like a host virtual address, as with normal applications. Ac-

cording to a VMware evaluation paper [21], this increases performance in MMU

intensive benchmarks up to 48%. For MMU-intensive micro benchmarks, it per-

forms as much as seven times faster than a traditional system. EPT is also needed

to launch a logical processor directly in real mode. Intel calls this ‘unrestricted

guest’ mode.

2.1.3.6 I/O MMU Virtualisation

As already introduced, memory can be distinguished between the actual physical

memory and the virtual memory presented to the processes. Each process per-

ceives that it can use the entire memory of a system and can freely choose the

addresses. The MMU is responsible for translating between virtual addresses and

physical addresses.

14Advanced Programmable Interrupt Controller virtualization
15Second Level Address Translation
16Extended Page Tables

11

2 Background

Figure 2.2: The IOMMU.

The same principle is applicable for hardware devices. The devices or I/O17

addresses are presented as virtual addresses and therefore have to be mapped to

hardware addresses. The component achieving this task is called the IOMMU18.

Figure 2.2 shows the analogy between an MMU and an IOMMU. The IOMMU

is called VT-d by Intel [22]. The IOMMU is responsible for device mapping, for

DMA19 access to the device and for remapping interrupts. Some IOMMUs may

also include memory protection mechanisms. An IOMMU always needs addi-

tional support in the chipset and the firmware, such as the BIOS20, as it cannot

work on its own.

Most often VT-d is used to pass through physical devices from the host sys-

tem to a VM, such as NICs. This grants exclusive access to a physical device

for a VM. The host no longer sees the device. This mechanism does not need

any software or virtualisation layer support, so there is basically no performance

17input/output
18I/O memory management unit
19direct memory access
20Basic Input/Output System

12

2.1 Virtualisation

difference between using a device on the host or inside a VM. The actual address

mapping is achieved via peripheral memory paging with the help of the ATS21

and the PRI22.

The IOMMU may also separate the device into different groups to enhance

security. Only devices within the same group can communicate with and influ-

ence each other. Neither read nor write access is allowed outside the own group.

However, this is not present on all systems as it requires the ACS23 [23] feature.

2.1.3.7 Network Virtualisation

Most VMs are placed inside data centres or provide services that require dedi-

cated network access. As network speed nowadays is quite high, with 10 Gb/s

per machine in a data centre being common, a key goal is good performance and

efficiency of the networking virtualisation. In contrast to SDN24, where network

virtualisation is related to network slicing, in this context network virtualisation

describes the virtualisation of network devices and pass-through to VMs. Intel

summarises the technologies used for networking virtualisation under the term

VT-c [24]. Compared to the other technologies presented, VT-c not only needs

to be present in the CPU but also needs support from the networking device, the

firmware and the chipset itself.

VMD-q25 [25] is a technology that enables multiple physical queues in a sin-

gle NIC in hardware. Those queues can be used for different purposes and are

connected to an internal switch within the NIC. For example, they can be used

to implement QoS26 by separating different traffic classes in different queues and

processing them differently. The queues can also be used for network virtualisa-

tion. In this case, each queue is associated with a virtualised NIC and implements

21Address Translation Service
22Page Request Interface
23Access Control Services
24software-defined networking
25virtual machine device queues
26Quality of Service

13

2 Background

packet forwarding to the VMs in the hardware.

SR-IOV27 [26] is an extension to the PCIe28 standard. It provides a standard to

distinguish between two kinds of PCI devices. PFs29 are normal PCI devices that

are directly connected to the PCI bus and are able to operate without additional

hardware. Some PFs can host virtual lightweight PCI devices that cannot run on

their own without the PF. Those devices are called VFs30. The PF manages and

shares some registers with the VF. For example, a NIC is a PF with one or more

physical network ports. If it hosts VFs, they do not have their own networking

ports and need access to the PF queues. Figure 2.3 compares different network

virtualisation approaches. The first one shows a software based emulation, the

second one leverages VMD-q and the third one uses VMD-q in combination

with SR-IOV. This combination allows the instantiation of multiple VFs, each

associated with a dedicated queue. Each VF can be individually passed through to

a VM. Such a virtualised NIC provides around 95% of native network bandwidth.

2.1.4 Virtualisation Tools

All testbeds and experiments presented in this work run on Linux-based OSes. In

this section, the three most common virtualisation tools and the used container

technologies are described.

The hypervisor already present in the Linux kernel is KVM [27]. KVM is

therefore always available on the host system; no additional overhead introduced

by a hypervisor, such as VirtualBox, is required. As part of the Linux kernel,

KVM has direct access to the hardware available on the system and can con-

trol access by the VMs. KVM supports all available virtualisation extensions of

the x86 platform and achieves good performance. However, KVM is not imple-

mented to run on its own; it is usually used with an emulator like QEMU [28].

27single root i/o virtualization
28Peripheral Component Interconnect Express
29physical functions
30virtual functions

14

2.2 Overlay Routing

QEMU is a general-purpose emulator that is widely used on the Linux plat-

form. Even though it is able to emulate all kinds of hardware and architectures,

we only utilise the x86 virtualisation, the paravirtualised virtio devices described

earlier and emulated network adapters. QEMU is able to use KVM as its virtu-

alisation backend and therefore benefit from the hardware-assisted virtualisation

features of KVM. Throughout this thesis, if not described otherwise, all storage

and NIC devices are paravirtualised using virtio, and the whole VM is virtualised

with the assistance of KVM.

QEMU itself is a powerful tool, but its direct usage is discouraged. The

parametrisation of QEMU is complex as it is based on a list of command-line

parameters to define the hardware and properties of a VM, which makes the

usage tedious and error prone. For that reason, there are different tools rely-

ing on QEMU as a virtualisation tool but enabling a simplified management of

VMs. In this work we always used the framework libvirt [9], which is the most

widespread; it provides VM definitions in XML31 format which can be defined

or edited either via CLI32 or with a GUI33 called virt-manager. The CLI is called

virsh and can be used to modify VM definitions and even run VMs. The XML

definition is well formed and human readable, allowing easy editing. In addition,

it also allows easy cloning and porting of VMs, since only the definition and the

hard disk file are needed.

2.2 Overlay Routing

In this section the principles of overlay routing will be described. The term over-

lay routing is very widespread; we will therefore focus only on the parts that are

relevant for this work.

31eXtensible Markup Language
32command line interface
33graphical user interface

15

2 Background

Figure 2.3: Different approaches to network virtualisation, including VMDQ and

SR-IOV.

16

2.2 Overlay Routing

Figure 2.4: High-level abstraction of the overlay network principle.

17

2 Background

2.2.1 Principles

The term overlay describes a logical network that spans a physical network but

does not share the underlying topology. Therefore, overlay routing can be seen as

a kind of abstraction layer for physical networks. Figure 2.4 describes the basic

principle.

The lowest layer is the physical network with real existing connections and

hardware devices. On top there is a new layer representing the logical overlay

network which utilises the physical network for packet transmission but can also

present paths that are not part of that physical network to the operator. Those

paths will, if chosen, be translated into a sequence of hops in the underlying

physical network. While the actual packet forwarding still has to be done on the

physical topology, only the logical topology is presented to the user and adminis-

trator. The translation between a logical path and a physical path in the network

has to be done with the help of an overlay routing protocol like MPLS34 [29] or

LISP35 [30].

Using a logical network instead of the physical one allows simplification of

several use cases. A virtual full mesh allows every other device to be reached

with a single hop, effectively eliminating all routing complexity from the devices,

shifting them to the underlying physical network. Overlay networks can also be

used to separate networks from each other. A physical network can be split into

several logical networks, allowing a multitenant system with the same underly-

ing infrastructure or a separation of an infrastructure into multiple security zones.

In this case, the network operator can define different logical topologies for the

customer without the need for changes to the current infrastructure. A third ap-

plication for overlay routing is traffic engineering and resilience. A logical path

in an overlay network can be mapped to any physical path in the underlying net-

work. This feature can be used for traffic engineering; the network operator can

specify the path the packet takes through the net, even if the destination and the

34MultiProtocol Label Switching
35Locator/Identified Separation Protocol

18

2.2 Overlay Routing

logical path always stay the same. This principle can also be utilised to protect

the network from link or node failures. If a link or a node fails, there is no change

in the overlay network, and the logical path stays the same. On the physical net-

work, however, the packets can be switched or routed over a different path to the

destination. This feature can hide failures in the physical network from the logical

network by simply rerouting packets in a transparent fashion for the application.

However, this flexibility comes at the price of additional signalling overhead,

which can also lead to lower performance, as each packet requires more process-

ing at each hop. To leverage overlay routing, an overlay routing protocol is re-

quired, adding at least one additional header. Providing realistic link costs to the

overlay network requires additional signalling and hardware support. For real-

time or latency-sensitive applications, this leads to an additional overhead and

may render this solution too costly compared to a less flexible physical network

connection.

In the following we will describe MPLS as an example of overlay routing and

switching.

As the field is too widespread for this thesis, MPLS is chosen as an example

of the principles because it was used in the contributions to this thesis. Other

overlay routing protocols may work on different layers of the ISO/OSI model

and therefore may be suited for different use-cases with different benefits and

limitations. Comparing them is not part of this work.

2.2.2 MPLS

MPLS is a label-switching protocol located between ISO/OSI Layers 2 and 3.

It works by assigning labels to paths within the networks and then using these

labels for forwarding decisions. Figure 2.5 shows a typical MPLS network. Each

packet gets an MPLS header with the label of the desired path, such as the desti-

nation or the egress of the MPLS network. An MPLS switch has a table with all

available combinations of ingress port and label and the corresponding actions.

These actions are assigning a new label and forwarding it to an egress port. An

19

2 Background

Figure 2.5: Packet traversal in an MPLS enabled network.

MPLS switch that receives this packet compares the label and the ingress port

with its own label table and then switches the label with a new one in the match-

ing table entry and sends the packet out to the port specified in the entry. This

reduces the switching complexity inside the hardware devices since the amount

of possible forwarding decisions is limited, but it still allows the switching deci-

sion to be based not only on the destination, as in traditional networks, but also

on the source, since the ingress port and label are taken into consideration. As

shown in Figure 2.5, a packet to the same destination can be routed over different

paths depending on the ingress port, even if both packets have the same desti-

nation label. This can be used, for example, for implementation of QoS classes

in which some packets are allowed to take a better path than others. One way to

use MPLS – as done by, for example, Deutsche Telekom [31] – is to assign one

label to each node. Effectively, this leads to a full mesh of tunnels that allows the

packets to reach every other node with a single label.

MPLS does not need to be used as an overlay network protocol; operation

as a normal switching protocol is possible and will be demonstrated later in this

work. It is possible to assign one label to each path and present the whole physical

network to the user. In such a scenario, there are two options on how to operate the

20

2.2 Overlay Routing

MPLS network. Source routing is done on the switches by checking the ingress

port and ingress label and switching said label with the one for the next segment,

based on where the packet came from. For traffic engineering purposes, the path

through the network can be already defined at the source. As every segment is

specified by a label, it is possible to push a whole stack of those labels in the

order the segments need to be traversed to the packet. Each switch then only needs

to pop the uppermost label from the stack and knows the segment to which the

packet needs to be forwarded. This approach allows for a more efficient switching

approach at the cost of larger packet overhead. When using label stacking, only

the ingress router needs to push labels on the stack, and combining this with

an SDN solution that permanently updates the best paths of the network allows

for optimal routing while only the ingress switches need to be updated if paths

change.

If used as an overlay network, MPLS can be used to create a virtual full-mesh

network which shows a connection from every switch to every other switch with a

single hop and therefore only a single label. Those labels represent tunnels in the

network which are not always direct connections, but they most often reach over

several physical hops. Labels may be exchanged on the way by other switches.

However, for the sending host, the path looks like a single segment.

2.2.2.1 Segment Routing

With label switching, an MPLS label identifies a connection. The ingress label-

switching router (LSR) pushes a label onto a packet, intermediate LSRs switch

the label according to their forwarding tables and the egress LSR pops the label.

Segment routing (SR) is a new approach for source routing and may leverage

MPLS forwarding. Here, a label identifies a segment, which may be a link, a

path, a node or something else. The ingress LSR pushes a label stack onto a

packet. LSRs forward the packet according to the topmost label and possibly pop

it. Thus, with SR, the network can remain unaware of individual connections, as

only ingress LSRs need to know them to push the right label stack. However,

most MPLS nodes can push only a few labels. In this work, we utilise SR and

21

2 Background

program a P4-capable switch for pushing large label stacks.

2.3 Hybrid Access

This section describes Hybrid Access. A set of technologies that are used to lever-

age multiple access lines for internet access to overall improve the service for

users. While end-users can profit from a higher access speed to the internet by

bundling two or more access methods, business can reach a higher resilience

while leveraging existing infrastructure. This chapter is based mostly on a col-

laboratively written unpublished technical report.

2.3.1 Hybrid Access principles

With multi homing, a network is connected via multiple links to the Internet. This

reduces its risk to be disconnected in case of a failure and improves the reliability

of its Internet connectivity. With hybrid access (HA), a user’s home gateway (HG)

is connected over multiple access technologies, e.g., 5G, LTE36, DSL37, or cable,

to the BNG38 which is also called broadband remote access server (BRAS). Thus,

HA is a special case of multi homing. Its peculiarity is that load balancers at the

HG and at the BNG may distribute traffic over all available links to increase the

access bandwidth.

Load balancing methods can be classified into end-to-end solutions and proxy-

based solutions. With end-to-end solutions, endpoints load-balance traffic over

multiple path. MPTCP39 is an example [32]. End-to-end load balancing requires

that various paths are visible between the endpoints and that both endpoints sup-

port the load balancing method. It may be applied between, e.g., a multi-homed

smartphone and a server supporting MPTCP (see Figure 2.6(a)). It is not applica-

ble for endpoints behind a HG that have only a single IP interface towards the HG

36Long-Term Evolution
37digital subscriber line
38Border Network Gateway
39Multipath TCP

22

2.3 Hybrid Access

(a) End-to-end load balancing. An example is

the end-to-end use of MPTCP, which requires

MPTCP support by servers.

(b) Proxy-assisted load balancing. Examples

are PBLB , dual MPTCP proxying (DMTP), and

FBLB.

Figure 2.6: Load balancing variants.

because they see only a single path to resources in the Internet. It is neither appli-

cable if the contacted server does not support MPTCP. As the majority of servers

does not yet support MPTCP, end-to-end load balancing cannot be effective, yet,

so that other solutions are needed.

With proxy-assisted load balancing, a load balancer (LB) load-balances the

traffic over available paths at an intermediate hop where these paths are visible,

e.g., at the HG and the BNG (see Figure 2.6(b)). Depending on the specific load

balancing approach, a recombination function (RF) may restore the original traf-

fic, e.g., remove potential load balancing headers or restore the correct packet

order. In a HA context, LBs and RFs can be deployed at HGs and BNGs. Proxy-

assisted load balancing is most suitable for HA as it does not require cooperation

from endpoints.

There are various options for proxy-based load balancing. Packet-based load

balancing (PBLB) distributes traffic over links without taking flow information

into account, i.e., packets from the same flow may be balanced over different

paths. Thus, the RF must restore the original packet order. Flow-based load bal-

ancing (FBLB) distributes traffic such that all packets of a single flow are carried

over the same path. Here, the RF may be simple. The third category is applicable

to connection-oriented traffic only, e.g., to TCP. The LB terminates single-path

TCP connections and reestablishes an MPTCP connection towards a RF. From

23

2 Background

there, the traffic is further relayed to the destination within normal, single-path

TCP connection. We call this variant dual MPTCP proxying (DMTP).

Load balancing is not a new challenge. However, most existing approaches

balance traffic over identical, parallel links, mostly on layer 2, which is also called

bonding. Load balancing for HA is more challenging as the characteristics of the

bundled links may be heterogeneous. This may lead to performance problems

for TCP when PBLP is used for HA. DMTP is applicable only to TCP traffic

and it is extensible only to connection-oriented traffic. While PBLB [33, 34] and

DMTP [35] have been recently considered, there are no applicable algorithms

and comprehensive performance evaluations for FBLB.

2.3.2 Related Work

The survey in [36] provides a general overview on load distribution over multi

path networks. In contrast to that work, we consider the impact of load balancing

on congestion controlled traffic. In the following, we provide an overview of

load balancing mechanisms that have been proposed and possibly deployed on

different layers.

2.3.2.1 Load Balancing on the Link Layer (L2)

Load balancing algorithms on the link layer schedule L2 frames to available links

and recombine them afterwards. They may even split them and transmit the parts

over all links. Mostly homogeneous links are needed. These approaches are lim-

ited to a single hop. Therefore, they cannot support HA.

The PPP Multi link Protocol (MP) [37] is an extension to PPP42. It combines

several physical L2 links to a single logical link. L3 packets may be fragmented

and fragments can be sent over different links that are established via PPP au-

thentication and LCP43. The fragments are buffered at the receiver and the L3

packet is reassembled. MP has been used, e.g., for ISDN channel bonding.

42Point to Point Protocol
43Link Control Protocol

24

2.3 Hybrid Access

The Link Aggregation Control Protocol (LACP [38], 802.1ax) is designed for

bandwidth aggregation on L2 and L3. It is designed to bundle point-to-point full

duplex links of the same speed, but does not work with heterogeneous links.

LACP supports signaling between all endpoints, which enables dynamic trunking

options, allowing for a variable amount of interfaces with the same characteristics

to be bundled.

Hari et al. proposed “strIPe” [39] for combining logical channels on any layer

which implements FIFO functionalities, allowing to ensure packet order dur-

ing the process.. It continuously synchronizes sender and receiver and requires

knowledge of the link characteristics. For optimal load balancing those condi-

tions should be stable. It is not suitable for wireless links whose link character-

istics vary over time. The paper uses the term "quasi-FIFO" to describe periods

where synchronization between both endpoints is lost due to link characteristic

changes or packet loss. During these periods packet reordering may occur.

2.3.2.2 Load Balancing on the Network Layer (L3)

Load balancing algorithms on the network layer distribute IP packets over differ-

ent paths which may have heterogeneous or even varying characteristics. There-

fore, consecutive packets carried over different links may arrive out-of-order so

that a recombination buffer is needed to delay the packets carried over the faster

path. In Section 4.1.1 we show that PBLB may cause performance issues for TCP

flows if the paths have significantly different delay.

Bonding of GRE tunnels [40] is described in RFC 8157 [33]. The document

describes requirements, header format as well as signaling for load balancing sup-

port. The RFC proposes packet coloring based on [41], which is based on a token

bucket, with subsequent color-based load balancing. It implements a cheapest-

pipe-first approach: traffic is sent of a preferred link and only traffic exceeding its

capacity is spilled over to a non-preferred link.

LISP Hybrid Access [34] provides a protocol framework for dynamic load-

balancing traffic over the Internet using the Locator Identifier Separation Protocol

(LISP [30]). It does not propose specific algorithms for LB and RF as they are

25

2 Background

not specific to the overlay network and should be considered independent of its

usage.

Equal-cost multi path (ECMP) is a load balancing method on L3 which takes

flow information into account so that packets of a single flow are carried over the

same path. In [42], the performance of ECMP has been investigated and in [43]

the load balancing result has been studied for several stages of load balancing.

FBLB load-balances flows over different paths. In contrast to ECMP, the load

balancing result depends on flow rates and available bandwidths. On the one

hand, this obsoletes the need for a complex RF as packets are not reordered. On

the other hand, a single flow cannot benefit from the capacity of several access

links. Thus, the approach is simple, likely to perform well only in the presence

of sufficiently many flows. We are not aware of any definitions or performance

evaluations of FBLB.

2.3.2.3 Load Balancing on the Transport Layer (L4)

Load balancing algorithms on the transport layer distribute L4 segments over

different paths.

Multi path TCP (MPTCP [32]) describes a TCP extension for multi path op-

eration. It associates multiple IP addresses with client and server and the combi-

nation of these tuples defines multiple subflows. A scheduler distributes a TCP

connection’s traffic over these subflows and each subflow has its own congestion

control. Thereby, MPTCP load-balances traffic over all visible links. The major

purpose of MPTCP is mobility support on layer 4. While a normal TCP connec-

tion is bound to a single client and a single server IP address, MPTCP can add

new addresses so that a connection survives when a user roams into another net-

work. Apple’s iOS supports MPTCP and Siri is a well-known application lever-

aging MPTCP. MPTCP is part of experimental Linux kernels but not part of the

mainline Linux kernel (15.11.2019). Therefore, it is not widely deployed. More-

over, MPTCP requires support from both TCP client and TCP server. An MPTCP

proxy has been proposed in an expired Internet draft [35] and may be used by

MPTCP clients to communicate with a non-MPTCP-capable server.

26

2.4 Software-Defined Networking

MPTCP may be used for end-to-end load balancing. Its effectiveness depends

on the availability of MPTCP-capable servers.

MPTCP may also be leveraged for proxy-assisted load balancing in a HA con-

text. That means, end-to-end traffic may be either tunneled or proxied between

HG and BNG. Tunneling a TCP flow over MPTCP raises performance concerns

as the interaction of the inner and outer congestion control loop is counterproduc-

tive. The proxying approach is limited to TCP traffic only; an extension to other

connection-oriented traffic seems feasible, an extension to connection less traffic

seems difficult.

The Stream Control Transmission Protocol (SCTP [44]) is an extensible

transport protocol and supports load balancing [45]. However, SCTP is only

marginally deployed. Therefore, it usage for end-to-end load balancing suffers

from the same problem as MPTCP. And the same concerns apply for SCTP-

based proxy-assisted load balancing as for MPTCP-based proxy-assisted load

balancing.

QUIC is another transport protocol on application layer. It is based on UDP,

but utilizes the same congestion control as TCP. There are plans to extend QUIC

to multipath QUIC [46], but a working implementation is still missing.

2.4 Software-Defined Networking

In the following, we introduce the idea of SDN and provide an overview of the

two most popular implementations of modern SDN, OF44 and P445

2.4.1 SDN Principles

SDN is an approach that increases flexibility and configurability in networking

environments and breaks with pre-existing networking paradigms. As the name

44OpenFlow
45Programming Protocol-Independent Packet Processor

27

2 Background

suggests, SDN diverts from the classical approach of hardware-defined network-

ing, where all packet processing is done by physical devices on their own. With

SDN, networking devices are viewed as programmable devices that can be influ-

enced from the outside to obtain the desired behaviour. Technologies to program

switches and other network devices will be described in this chapter.

While this approach is not new, today’s hardware finally has the power to fully

leverage these principles and gain advantage despite the additional overhead in-

troduced in the process.

Traditionally, the data plane and the control plane of a networking device, such

as a switch, are coupled in a single device, where the control plane is responsible

for forwarding decisions and the data plane forwards the packets. The control

plane is part of the firmware and therefore most often closed-source. Dedicated

protocols, like routing protocols, are used for communication between devices,

each device calculates its own forwarding decisions with the help of shortest-path

algorithms.

SDN breaks with this principle by separating the control plane from the data

plane of the networking device. The control plane is most often a logically cen-

tralised SDN controller. An SDN controller has a global view on the network

and is able to calculate forwarding tables for all connected devices. The result

of these calculations is then pushed to the devices to configure the data plane.

A global view allows for better algorithms for path calculation, leading to a

more optimal result; however, it requires centralised high computing power. It

can also be used to facilitate more advanced mechanisms like traffic engineering.

However a global controller also is a single point of failure; therefore, mecha-

nisms for redundancy and load-balancing are a important part of the design. The

most used implementation of this concept is the configuration of switches using

SNMP46 [47].

A controller works with network applications that implement the different

46Simple Network Management Protocol

28

2.4 Software-Defined Networking

functions routers and switches provide, like forwarding based on MAC47 or IP48.

Since all calculations are outsourced, a pure SDN switch does not need any intel-

ligence apart from simple forwarding. This allows for the rapid development and

deployment of new features, such as traffic engineering mechanisms as controller

apps without the need for upgraded SDN hardware.

We do not provide a full explanation of all parts of SDN architecture, as this is

not the focus of this work. A more detailed view can be found in surveys like [48]

or [49]

2.4.2 Northbound Interface

SDN apps communicate via the NBI49 with the actual SDN controller. The con-

troller has to provide an API50 like a direct programming interface, a REST51

service or even a dedicated communication protocol. The NBI provides an ab-

straction layer over the controller’s view of the network and the possibility to

allow configuration changes on a high level. Some controllers do not expose the

devices directly and only allow specification of the desired behaviour of the net-

work. Most often a traffic engineering mechanism does not need to know details

of the devices used to specify a path through the network; it does not even need

to know the exact physical topology. The specifications may be formulated in

a higher programming language compiled for the controller using a given NBI,

which then translates it to instructions in the SDN protocol used in the network.

No standardised NBIs have been developed as of now. Every controller sup-

ports a different set of NBIs using different methods of communication, mod-

els and programming languages. Popular examples for programming languages

are Frenetic [50], Pyretic [51] and Procera [52], which all provide a declarative

syntax based on a functional programming style with recursions. This allows to

47media access control
48Internet Protocol
49northbound interface
50application programming interface
51representational state transfer

29

2 Background

formulate and combine network policies. Another alternative is NetIDE [53]

For prototyping, most often a direct programming interface or an REST API

is used to speed up the process and allow easier implementation of new features.

Working directly with the controller through an abstraction layer instead also

leads to the results being easier to debug. Therefore, most prototypes have no

clear separation between the networking app and the controller; both can be run

in the same program for easier deployment.

2.4.3 Southbound Interface

The interface between the controller and the actual network hardware is called

the SBI52. The most popular SBI for that task is OF [54]. There are many other

variants like SNMP and NETCONF53 [55]. Programming languages like P4 [56]

could also be considered part of this group as they serve the same purpose as

the protocols mentioned above. In 2014, Cisco proposed OpFlex [57] as an al-

ternative to OF and tried to standardise it at the IETF [58]. The other already

standardised protocol is NETCONF, which differs from the SDN protocls in this

work in that it is more in line with traditional network programming protocols

like SNMP. The XML-based YANG [59] is used to model the network and the

configuration of networking devices. Each networking device can specify its own

YANG54 model with device-specific variables. The network devices and the con-

troller communicate via XML-based RPCs55. Other standardised implementa-

tions that are not used in this work include ForCES [60,61] and SoftRouter [62].

However these protocols are not widespread and are therefore irrelevant to this

work. The prototypes built in this work are built using OF and P4.

52southbound interface
53NETwork CONFiguration protocol
54yet another next generation
55remote procedure calls

30

2.4 Software-Defined Networking

Figure 2.7: A network with OF enabled switches, a generic controller and non-

specified networking aApps as source for the controller rules.

2.4.4 OpenFlow

OF56 [54] is one of the two currently most prominent SDN architectures and

SBIs. The project originated at Stanford University in 2007 and is maintained by

the ONF57. The typical architecture consisting of three layers and the interfaces

between them is depicted in Figure 2.7. The lowest layer is the infrastructure

layer, which includes OF–capable switches that communicate with the controller

via the OF protocol in the control layer. The OF controller only provides basic

network services. The actual network apps run on top of the controller in the

application layer and communicate via an NBI, such as REST with the controller.

The basic idea of OF is to classify packets by certain match rules into different

56OpenFlow
57Open Networking Foundation

31

2 Background

flows. Instruction for each flow are stored in a so-called flow table. Those instruc-

tions may include actions like forwarding packets to a certain out port, dropping a

packet or forwarding a packet to the controller. The last action is important since

a switch may not have applicable flow rules for all kinds of traffic, therefore un-

known flows need to be forwarded to the controller which then calculates a rule

for these flows. The controller then pushes the new rule back to the switch, which

can process subsequent packets on its own.

There are different versions of OF, all supporting a different feature set; how-

ever, for this work only a basic feature set of OF is important, and therefore they

are not explained in detail. The same holds true for the different controllers avail-

able.

2.4.5 P4

P4 is a language that defines the forwarding behaviour of P4-capable networking

devices, such as switches and NICs. P4 differs from other approaches in that it lets

an application define the matching tables, packet headers and packet operations

itself, providing more flexibility for the operator. The language is similar to a

simple C program but has a reduced function set, missing such things as loops and

recursions to allow it to run on networking hardware. P4 programs are compiled

directly for the target platform on which the program runs.

To receive better support from hardware vendors there are different stan-

dards which define the P4 packet processing procedure. The most widespread

is PISA58. The pipeline of a PISA system is depicted in Figure 2.8. It consists of

three parts. The parser is responsible for parsing incoming packet headers. It can

be described as a finite state automate which can be used to extract packet headers

from an incoming byte stream for further processing. The match-action pipeline

executes operations on the packet itself; for example, to implement simple IPv4

forwarding, a table lookup for the next hop of the parsed IPv4 address has to be

performed. Header fields can be modified in this step. The size and functionality

58Protocol Independent Switch Architecture

32

2.4 Software-Defined Networking

Figure 2.8: A generic pipeline that follows the PISA standard.

of the match-action pipeline depends on the hardware implementation. It is also

possible that a P4 switch offers so-called extern objects, functions that are not

directly implemented in P4 but can be accesses via an API, such as checksum

calculations which are done by the hardware itself and would be slower when

done by software. The last step is the deparser, which serialises the packet for

forwarding.

2.4.6 Network Function Virtualisation / Service

Function Chaining

NFV is a technology that aims at rebuilding existing hardware components used

in traditional networks such as firewalls in software. Those hardware components

are often costly and have a fixed performance. Replacing them with software that

can run on off-the-shelf hardware makes it possible to increase flexibility and re-

duce costs. Multiple approaches for this topic have been around for some time,

with most involving specialised programming techniques or knowledge of addi-

tional networking stacks. A possible approach to realising NFV will be described

in this thesis.

2.4.6.1 Protocol Stacks for SFC

The IETF has identified SFC as a problem for traditional networks due to their

topological dependencies [63]. Traditional networks have a rather static config-

uration, but SFC requires a highly dynamic network. Having the potential for

constant changes within the network could limit scalability and high availabilty

33

2 Background

in the long run.

A major result of the IETF’s SFC working group is the network service header

(NSH) [64], which consists of three parts: a base header providing information

about the header structure and the payload protocol, a service path header con-

taining the path identification and location within a service path and a context

header for metadata. A special feature of the NSH is that it can carry metadata

among VNFs.

Another document proposes an MPLS-based forwarding plane for SFC [65]. It

suggests tuples consisting of an ‘SFC context label’ and an ‘SF label’ similar to

the NSH. The context label identifies the SFC by the contained service path iden-

tifier (SPI), and the SF label identifies the next service function to be actioned. In

the case of label switching, the context label is maintained and used by LSRs to

switch consecutive SF labels for VNFs. In the case of segment routing, tuples of

context/SF labels are stacked by the ingress LSR and consecutively popped with

completed VNF operations. A similar approach is described in another working

group draft [66].

These protocols are partly competing and not fully compatible. In all proposed

protocol suites, all devices involved in an SFC, such as forwarding nodes and

NFs, need to be SFC aware; that is, they need to respect protocol specifics. P4-

SFC, the approach described in this thesis, allows customers to use VNFs that

are not SFC-aware. Furthermore, it leaves the network unaware of SFCs, utilises

only common MPLS labels and requires forwarding nodes to pop only single

labels; that is, no special hardware features are needed. Only the SFC ingress

node pushes a label stack.

2.4.6.2 Selected SFC-Related Activities

The ETSI has published a set of documents describing an architecture for net-

working operations and orchestration (MANO) of NFVs [67]. It provides an

overview with a focus on interoperability, but it does not offer an NFV/SFC net-

working stack.

34

2.4 Software-Defined Networking

The Open Platform for NFV (OPNFV) [68] was started by the Linux Foun-

dation in 2014. It is a cooperative project among 20 companies with the goal of

developing an NFV infrastructure (NFVI) software stack to build and test NFV

functionality. Its long-term goal is to provide a standard platform for NFVI.

Most commercial cloud operators, such as Amazon [69] or Microsoft [70],

offer configurable, complex services to their customers based on NFV/SFC. Ex-

amples of such NFs are firewalls, gateways and load balancers. These services

are comfortable for customers but are limited to functions provided by cloud op-

erators. P4-SFC allows customers to upload their own VNF binaries.

NFVnice [71] is a user-space scheduler on a host that decides whether a packet

is delivered to its desired VNF. It also monitors all VNFs in the system. If VNFs

in a later stage of an SFC are overloaded, NFVnice drops packets while they are

at an earlier stage of the SFC to reduce wasted work.

P4NFV [72] and P4SC [73] propose to implement NFs based on P4-capable

hardware because general-purpose hardware is too slow for fast-packet process-

ing. Their contribution is an architecture for the management of VNFs on P4

switches. This work is applicable to P4-based hardware and software switches.

35

3 Testbeds

This section contains contributions to the automation of testbeds and a derived

work in the form of a novel concept for the Networking Labs at the University of

Tübingen.

3.1 VITO

This section describes the VITO1 which was published as "VITO: Virtual Testbed

Orchestration for Automation of Networking Experiments" at VALUETOOLS

2017. It is designed to automate networking experiments in a virtualized envi-

ronment on a single server. The main intention behind the development is the

performance testing and evaluation of novel networking protocols. It relies heav-

ily to Open Source components, most of them present in the Linux kernel. Net-

working nodes are modelled by virtual machines and the Linux module TC is

used to model link characteristics. Both will be explained in detail in the coming

sections. An experimental performance analysis gives recommendations for the

configuration and provides an application example.

3.1.1 Motivation

In computer networking research, simulation, emulation, and hardware testbeds

are used to implement new protocols and control mechanisms, and evaluate their

performance. With simulation, control over network properties and topologies is

easy and it is convenient to perform large experiments. However, a challenge is

1VIrtual Testbed Orchestrator

37

3 Testbeds

to correctly model complex protocols like various TCP variants with sufficient

accuracy as well as correct sampling and evaluation of the results. Some network

simulators allow the integration of real Linux network stacks, but the main flaw is

that they are bound to certain operating system versions that are currently not up

to date, which is a problem for testing latest protocol enhancements [74]. Further-

more novel technologies should also be tested with the most recent Kernels used

in production and not the ones that are provided in an outdated simulator. Highly

complex communication technologies may take long simulation times if mod-

elled on a low level. Real time experiments are not possible anymore once mul-

tiple Kernels need to be executed as well as a simulation of a physical network.

A slightly different but mostly similar approach are network emulators which

interconnect real devices over a simulated network which can be easily con-

figured. An example is NetSim [75]. Network emulators generally can support

only low networking speeds so that only limited experiments can be conducted.

Highspeed experiments are not possible since the simulation of the network is a

task which can’t be optimized for off the shelf processors. Most true to reality

i experimentation on hardware testbeds which allows the application of original

protocol stacks and real protocol implementations. However, hardware testbeds

are heavy-weight solutions. If an experiment is large in terms of nodes, it requires

lots of physical hardware, administration overhead, experimentation is expensive,

requires lots of space, energy, and manpower. Large overhead is involved, and it

lacks configuration flexibility. In addition, separate management tools are needed

to efficiently leverage different kinds of hardware. Another solution are network-

ing experiments in a virtualized environment. The nodes of an experiment are

modeled by virtual machines (VMs) which may run any operating system, there-

fore latest protocol stacks may be evaluated. Communication links between the

VMs may be modelled with appropriate characteristics such as rate, delay, buffer

sizes, packet loss, and possibly jitter. There are a few frameworks for network

experimentation in virtualized environments, e.g., Mininet [76]. They allow vir-

tual interconnection of virtual nodes, but they do not provide detailed control over

link characteristics which is essential for performance evaluation. Those tools are

38

3.1 VITO

not designed for the kind of task we want to achieve but more for the testing of

applications in different environments where most of the time link characteris-

tics are not important. In this paper we describe a platform for VIrtual Testbed

Orchestration (VITO) that supports automation of networking experiments on a

single server for the purpose of performance evaluation. A major contribution is

the automation framework and the configuration of virtual links using the Linux

tool TC.

3.1.2 Testbed orchestrator

Figure 3.1 gives an overview of the experimentation methodology. Physical nodes

like end systems or routers are modelled by VMs and connected via one or more

IEEE 802.1d [77] software bridges through VIF2 We call those VMs NVMs3and

the bridges EBs4Possibly, additional AVMs5 may be used in the experiment to act

as routers or switches. NVMs and AVMs are jointly denoted as EVMs6A single

MVM7is connected to all EVMs in the testbed via a MB8The MVM orchestrates

the virtual testbed consisting of EBs and EVMs, controls experiments, records the

results and provides them for download, and finally removes the virtual testbed.

The experimentation platform itself has only the MVM and the MB running

on top of a normal Linux as hypervisor system. The experimenter requires only

access to the MVM but not to the host machine itself, i.e., he can create a vir-

tualized testbed and perform experiments without root permissions on the host.

Furthermore, he has a single point for the collection of experimental results. An

XML-based file is used for experiment description and control. The file com-

prises the configuration of all EVMs and EBs, the configuration of the network,

and commands that need to be issued at specified times on the VMs. First, the

2Virtual Interface
3Node VMs
4Experiment Bridges
5Auxiliary VMs
6Experiment VMs
7Management VM
8Management Bridge

39

3 Testbeds

Figure 3.1: Experiments are executed with node and auxiliary VMs (NVMs,

AVMs) that are interconnected by experiment bridges (EBs). NVMs

and AVMs are denoted as experiment VMs (EVMs). A managing VM

(MVM) is connected via a single managing bridge (MB) to EVMs.

MVM efficiently creates the testbed VMs using libvirt leveraging an XML-based

template for VM creation. The CPU pinning option in the VM configuration may

be activated to ensure that the VM is run on one CPU thread exclusively. This

is helpful for EVMs running CPU-intense computations to ensure they have suf-

ficient resources. Every EVM is equipped with a hard disk that is a snapshot of

a template VM. The template foresees a single uplink interface per EVM which

is assigned a random MAC address after creation. dnsmasq [78] assigns them IP

addresses and makes them reachable via their host names which are configured

in the description. As a result, the MVM can connect the EVMs via SSH and ex-

ecute specified commands. The MVM creates required EBs, further interfaces on

the EVMs with randomly generated MAC addresses, assigns them IP addresses,

and connects them to the corresponding EBs. udev [79] rules are installed to re-

name interfaces according the description. Firewall rules are installed to prevent

the usage of the uplink interface for other purposes than communication with the

MVM. For the purpose of a centralized data management, a Network File System

40

3.1 VITO

(NFS [80]) server is installed on the MVM. This allows all EVMs to write data

to a shared directory.

After creation and configuration of all EVMs and EBs, the experiment is

started by executing experimentation commands specified in the experiment de-

scription. These may include comprehensive log operations, e.g., tcpflow [81]

may log TCP state variables during experimentation and tcpdump [82] may log

network activity on all non-uplink interfaces of EVMs. They need to be started

prior to the actual experimentation and application log files may be moved to

the NFS mount after completion. The actual experiment consists of a set of com-

mands that are supposed to be executed at specified time instants after experiment

start. For instance, a server process may be started on one EVM at the beginning

of the experiment and clients are started slightly later on other EVMs. Commands

may also change EVM configuration during the experiment, e.g., for modifying

link bandwidths or simulating link failures. The virtual testbed is deleted after

each experiment to avoid undesired side effects on future experiments. After dele-

tion of the testbed, the MVN still has access to the entire data collection on the

NFS mount, compresses the data, and provides it for download as a zipped tar-

file.

Copying the hard disk consumes the major time fraction of EVM generation

and deletion. To minimize this overhead, we use qcow2 [83] as an overlay disk

image for VMs which is supported by qemu. With qcow2, all blocks initially

refer to a read-only base image. If a block is written, a modified copy is stored

in a qcow file. During an experimentation, only little data on the disk image is

modified, in particular as logs are stored on the NFS mount. Thereby, qcow2 is

very efficient and saves lots of copying overhead. As a result, the whole process

of creating and deleting a virtual testbed takes less than a minute.

So far, we have only considered the use of virtual interfaces. However, phys-

ical network interface cards (NICs) may provide special optimizations like TCP

segmentation offloading (TSO) [84]. With VT-d [22], PCI devices can be passed-

through from the host to the VM. Therefore, it may be used to pass-through a

physical NIC to a VM. VT-c [24] comprises Virtual Machine Device Queues

41

3 Testbeds

(VMDq) [25] which enables multiple queues per NIC, i.e., a single physical NIC

(physical function, PF) is virtualized into multiple virtual NICs (virtual functions,

VFs). VT-d in conjunction with Single Root I/O Virtualization (SR-IOV) [26], the

virtual NICs can be passed-through to VMs. To that end, hardware-dependent

kernel parameters need to be set to enable all required features. In addition, lib-

virt has to be configured to use a special pass-through method. With physical

or virtual NICs, a VM’s interface is connected to the NIC device instead of the

software switch.

3.1.3 Link modelling

The Linux tool TC [85] offers access to at tool called netem (network emula-

tor) [86] to modify the characteristics of an interface. Constant or variable delay

may be added or packets may be randomly dropped or duplicated. Another mech-

anism offered by TC is called TBF9 [87] which resembles a token bucket filter.

It shapes a traffic stream according to a token bucket. The token bucket is con-

figured with a rate, a burst size, and a latency. The tbf generates tokens at the

configured rate, saves them up to its configured burst size, and forwards pack-

ets if sufficient tokens are available. To that end, packets need to be queued and

the latency parameter determines the maximum queue size in time. As an alter-

native, the queue size can also be configured in bytes. If the number of tokens

suffice, several packets can be forwarded at once. With tbf, rate control can be

implemented for egress traffic on an interface. The burst size is usually config-

ured as a small multiple of a maximum transfer unit (MTU). We apply first netem

and then tbf to all non-uplink interfaces of EVMs with parameters defined in the

experiment description. With netem, constant or variable delay may be added to

individual packets and random packet drops, reordering, or duplication can be re-

alized. With tbf, a maximum data rate of the link can be enforced by delaying and

dropping packets while respecting a configurable buffer size. Also active queue

management (AQM) algorithms like random early detection (RED) [88] can be

9Token Bucket Filter

42

3.1 VITO

modelled with tbf. The two tools netem and tbf can be applied both to a single

outgoing interface, but the properties of the resulting stream depend the applica-

tion order. In the following we use netem only for adding constant packet delay

so that application order is expected to be irrelevant. We demonstrate plausible

results for application order netem/tbf and show that application order tbf/netem

does not work properly. As a workaround we propose the introduction of an aux-

iliary node so that netem/tbf and tbf/netem can be applied to a traffic stream on

consecutive outgoing links which again yields plausible results. Finally, we ex-

perimentally show that the addition of an auxiliary node hardly impacts achiev-

able throughput.

We investigate the impact of the application order of netem and tbf on a single

link. A web client (curl) [89] on one NVM communicates via a vIF and a soft-

ware bridge with a web server (busybox httpd) [90] on another NVM with a vIF.

The guest OS uses the Linux Kernel 4.8 with TCP Cubic. The client downloads a

100 MB file from the web server via HTTP/TCP. TCP’s state variables are logged

with tcpflow and the packet stream is monitored with tcpdump for analysis. In a

first experiment, the following two commands are applied to interface eth1 to

configure it with external parameters that are passed via the %s placeholders:

t c q d i s c add dev e t h 1 r o o t h a n d l e 1 : 0 \

netem d e l a y %sms %s c o r r u p t i o n %s l o s s \

%s r e o r d e r i n g %s

t c q d i s c add dev e t h 1 p a r e n t 1 : 1 \

h a n d l e 1 0 : t b f r a t e %sMbi t b u r s t %s \

l a t e n c y %sms

The netem command effects that the packet stream is modified with delay (ms),

jitter (%), corruption (%), loss (%), and reordering (%). In our experiments, only

the delay is set to 100 ms and all other values are zero. The tbf command effects

that the packet stream is spaced according to a token bucket with configured rate

(Mb/s), burst size (bytes), and latency (ms). This roughly models a transmission

link with the specified rate and a buffer size of rate · latency/1000. In the fol-

lowing, we set rate = 50 Mb/s, burst = 4542 bytes, and latency = 50 ms.

43

3 Testbeds

The chosen burst rate will be explained in detail in a later section. In a second

experiment, the application order of netem and tbf is interchanged. We apply the

same configuration for transmission from the client to the server and vice-versa.

Table 3.1 summarizes the results. While download time and goodput are rather

Table 3.1: Performance metrics for a download of a 100 MB file with netem/tbf

and tbf/netem configured on a single link with bandwidth of 50 Mb/s.

tool download goodput avg. CWND avg. RTT

order time (Mb/s) (MSS) (ms)

netem/tbf 19.7s 40.6 821 231

tbf/netem 19.3s 41.5 2013 427

similar for both application orders, packet loss, avg. TCP congestion window size

(CWND), and avg. roundtrip time (RTT) differ significantly. For further analysis,

we consider CWND and RTT over time which is illustrated in Figure 3.2. With

netem/tbf, the RTT varies between 200 ms and 250 ms, and the CWND between

500 and 1050. In particular, CWND and RTT decrease after the occurrence of a

lost packet. This is different with tbf/netem as no packet is lost. As a result, the

CWND increases up to a maximum value of 2300 MSS and the RTT oscillates be-

tween 420 and 520 ms. RTTs in this order of magnitude are unexpected because

the configured transmission and queueing delays can range only between 200 ms

and 300 ms. Thus, the application order tbf/netem causes undesired behavior and

should be avoided for experimentation.

We now interconnect the client and the server NVM via another AVM and

software bridges. The configuration is illustrated in Figure 3.3 for the application

order tbf/netem. Thus, netem/tbf or tbf/netem are applied to consecutive links

instead to a single one. The client and server NVM see only single links with

combined properties. Table 3.2 reports the experimentation results which hardly

differ from the experiment with netem/tbf. The same holds for CWND and RTT

over time for which figures are omitted. Thus, netem/tbf may be applied together

on a single outgoing interface. If tbf/netem is the desired application order, an

44

3.1 VITO

Figure 3.2: TCP’s congestion window and roundtrip time for a single TCP flow

on a link with 100 ms delay, a bandwidth of 50 Mb/s, and a buffer

with a maximum latency of 50 ms; tbf’s burst size is configured with

4500 bytes.

Figure 3.3: tbf/netem is configured individually on two consecutive links through

introduction of an additional EB and AVM that just forwards traffic.

auxiliary node may be used to ensure correct behavior.

An additional AVM may add some delay. We show that this delay is so small,

that it hardly influences experimentation results. To that end, we perform similar

45

3 Testbeds

Table 3.2: Performance metrics for a download of a 100 MB file with netem/tbf

and tbf/netem individually configured on two consecutive links.

application download goodput avg. CWND avg. RTT

order time (Mb/s) (MSS) (ms)

netem/tbf 19.1s 41.8 834 224

tbf/netem 18.9s 42.3 845 229

experiments like above but deactivate rate control and add a delay of 0 ms and

1 ms, respectively. We perform the experiments 20 times. Table 3.3 summarizes

the utilization. Even without any base delay, the presence of the AVM is hardly

visible by the increased download time and with a base delay of 1 ms, the down-

load time is almost the same. Thus, AVMs add so little delay that it cannot even

be perceived for small positive based delay. To find a reasonalbe burst size for

Table 3.3: Download time for various configurations depending on one-way de-

lay with a configured bandwidth of 100 Mb/s and a 100 MB file size.

delay w/o AVM w/ single AVM w/ jLISP

0 ms 8.68s 8.70s 9.21s

1 ms 8.72s 8.73s 9.22s

tbf we first think of a simple rate controller that ensures a maximum bit rate of

C. After transmission of a packet with size B, it transmits the next packet not

earlier than after B

C
time. If the machine performs that task only slightly late,

this reduces the maximum achievable data rate. To cope with the problem of late

transmission, tbf uses a token bucket description for spacing. tbf continuously

generates tokens and saves them in a bucket which is limited by its burst size.

Packets are queued for transmission. A packet is sent if the number of tokens in

the bucket is at least the packet size. If the number of tokens does not suffice, the

machine retries again when enough additional tokens have arrived. On the one

hand, this mechanism assures that transmission capacity is not lost if a packet is

46

3.1 VITO

(a) Idle server with an avg. CPU load of 2%. (b) Busy server with an avg. CPU load of 98%.

Figure 3.4: Impact of configured burst sizes on utilization depending on config-

ured bandwidths.

sent slightly later than possible, on the other hand it allows transmission of mul-

tiple packets so that packet bursts may be transmitted. Therefore, the burst size

should be set only large enough that the full transmission capacity can be lever-

aged, but also as little as possible to keep bursts small as the intention of a spacer

is a smooth traffic stream. In the following we evaluate the required burst size for

various bandwidths. Figure 3.4(a) compiles the utilization for various burst sizes

for a server NVM with little CPU load. The figure shows that large bandwidths

require large burst sizes to minimize download times by fully leveraging the con-

figured bandwidth. We perform the same experiment with a server NVM that

performs other tasks in parallel so that its CPU load is close to 100%. The results

in Figure 3.4(b) show that almost the same download time values are achieved

because TC is granted high priority as it is running in kernel. Both experiments

were repeated 100 times which resulted in a confidence interval of less than one

percent in each direction for an alpha value of 0.95. We derive from Figure 3.4(b)

recommendations about minimum burst sizes for specific values of configured

bandwidths that are needed so that the full transmission speed can be achieved

with tbf. The results are summarized below The values may depend on software

47

3 Testbeds

and hardware.

bandwidth (Mb/s) burst size (MTU)

<= 10 3

<= 50 4

<= 100 5

> 100 7

3.1.4 CI/CD

When using VITO, one of the main goals is simplicity and the ability to conduct

large experiments with as little work as possible. A step further would be using a

CICD10 system like Jenkins [91] or Gitlab CI [92] to automate the whole exper-

iment process. A docker container for the CICD runner will read the experiment

definitions from a git repository, copy them to the test system and starts the ex-

periments. A second Job that will be started after the experiments finished could

then be used to push the results back into a repository or to a transfer storage for

further processing. Doing both in the same pipeline is not recommended due to

the variable length of experiments. Long running experiments lead to overhead

and blocking slots for other runners while doing nothing and only waiting for

experiments to finish.

3.2 IP

This chapter is based on the paper "A Semi-Virtualized Testbed Cluster with a

Centralized Server for Networking Education" published at ITC 30

Practical courses are an important part of networking education. Students learn

to configure devices and interconnect them with cables and switches. Such

courses are traditionally based on physical testbeds consisting of PCs, routers,

and switches. While offering real hands-on experience, this approach has the

drawback that it requires lots of space, energy, and maintenance effort. With

10Continous Integration / Continous Deployment

48

3.2 IP

progress in virtualization technology, fully virtual testbeds emerged and were

used in some networking courses. In these testbeds, PCs, routers, and switches

run as virtual machines (VM) on a server, thereby avoiding some shortcomings of

physical testbeds. However, fully virtual testbeds do not provide hands-on experi-

ence which is an important learning target and fun factor of practical networking

courses. We believe that hands-on experience is an important part of networking

labs. We observe students having problems realizing limitations and problems

with physical cabling regarding available ports, cables etc. as well as problems

organizing their cabeling work. Therefore it is important to give them the op-

portunity to use real hardware as part of the learning experience. In this paper

we focus on lab systems that allow hands-on experience. We distinguish between

three different types of architectures depicted in Figure 3.5. Traditionally, a stu-

dent workspace consists of a physical testbed that allows to interconnect several

computers and routers. An entire lab system is composed of several such testbeds

and an additional server to provide IS11. As an alternative to a physical testbed,

a semi-virtualized testbed with a dedicated server per student workspace may be

used. Computers and routers run as VMs on the dedicated server and a patch

panel allows to interconnect their interfaces with cables. The testbed consists of

a PW12 and a VW13 with the VW running on the virtualization server. Due to the

PW, the testbed is only semi-virtualized. This preserves all benefits of physical

testbeds. In this work, We present a semi-virtualized testbed cluster with a cen-

tral server for multiple student workspaces. The central server hosts the IS and

the VWs for multiple testbeds that are mapped to different PWs.

At the University of Tuebingen we offer practical networking courses since

2004. Initially, our curriculum was based on the concept of Liebeherr and

Zarki [93] using physical testbeds. In 2012, we reworked the lab content and

substituted the physical testbed by semi-virtualized testbeds with dedicated

servers [94, 95]. Recently, we further elaborated that approach towards a testbed

11Infrastructure Services
12Physical Workspace
13Virtual Workspace

49

3 Testbeds

Figure 3.5: Three types of lab systems for networking education with hands-on

experience.

cluster with a centralized server.

Virtual testbeds can be easily managed with the help of an orchestration frame-

work. Such frameworks are widely used and a common technology today. In con-

trast, orchestrators for semi-virtualized testbeds which fit the requirements for

practical networking courses are hardly found. A reason for that is that orches-

trators for semi-virtualized testbeds are not trivial to implement as they depend

on the actual hardware platform and components used in the testbed, so in most

cases a fit for purpose solution needs to be built and preexisting frameworks are

not of much use at all. Moreover, they need to map virtual components to physical

hardware.

50

3.2 IP

In this work we present an architecture for a semi-virtualized testbed cluster

with a central server offering multiple student workspaces. It facilitates auto-

matic orchestration and simplified management and introduces multiple new fea-

tures that are enabled through the new architecture. The single server is based on

the x86 platform and makes use of current virtualization techniques such as VT-

x [18], VT-d [22], VT-c [24], and SR-IOV [26]. They enable VM performance

close to physical machines, in particular regarding network throughput. For or-

chestration purposes, I developed the “Lab Orchestrator for Semi-virtualized

Testbeds” (LOST). It is a Python-based platform for orchestration of VMs in

a semi-virtualized environment. It makes use of the KVM [27] hypervisor to run

VMs and leverages features of libvirt [9] to manage them.

LOST groups several student VMs into virtual workspaces and maps them

to physical workspaces. The physical workspaces enable the students to interact

with the VMs in a similar way as with physical machines and configure network

topologies with the help of cables and switches. In addition, LOST supports us-

age of USB devices plugged into physical workspaces by associating them with

student VMs.

LOST supports different types of VMs with different roles (clients, servers,

and routers). It instantiates them from templates that are derived from a base

image. To improve the manageability and to speed up orchestration of VMs, we

developed a layered concept for file system access of VM images: a jointly used

base image and additional layers for typing and individualization reduce memory

copies upon instantiation of VMs.

3.2.1 Concept

In this section, we present the overall architecture for the semi-virtualized stu-

dent testbed cluster. A single lab server hosts multiple virtual workspaces that are

mapped to physical workspaces for physical user access. Additional infrastruc-

ture VMs are used to provide services for the virtual workspaces and the students.

We suggest an optimized, layered storage organization for VMs to reduce man-

51

3 Testbeds

Figure 3.6: Architecture of the semi-virtualized lab infrastructure on a single

server.

agement overhead and to improve software consistency. The technical realization

of the mapping is described in Section 3.2.3 as it depends on the hardware plat-

form of the lab server. Finally, we compare the new concept for semi-virtualized

student testbed cluster with other approaches regarding acquisition cost, energy

consumption, and maintenance effort.

3.2.1.1 Architecture of the Semi-Virtualized Testbed

Figure 3.6 shows the overall architecture of the semi-virtualized testbed. A single

lab server hosts virtual workspaces (VWs) with SVMs14 as well as IVM15. A

physical workspace (PW) consists of a set of devices giving access to the SVMs

of a virtual workspace. The “Lab Orchestrator for Semi-virtualized lab Testbeds”

(LOST), presented in detail in Section 3.2.2, is a collection of scripts that run on

the host and on IVMs. It sets up the virtual workspaces and maps them through a

core switch to the physical workspaces so that students can interact with SVMs

and interconnect them with cables and unmanaged switches.

A virtual workspace is a set of SVMs that represent a students’ workspace on

the server. Figure 3.6 illustrates a typical setup which consists of three client (C)

SVMs, three server (S) SVMs, and two router (R) SVMs. All virtual workspaces

14Student VMs
15Infrastructure VM

52

3.2 IP

Figure 3.7: The physical workspace provides access to the desktop and outlets of

the virtual workspace.

use the same setup which is defined by a template for LOST.

A physical workspace is the actual workspace that allows students to interact

with the VMs. Figure 3.7 depicts a physical workspace. It consists of a 19 inch

cabinet, a thin client for the student user interface, and I/O devices. The cabinet

contains the following components. The PW switch is a managed switch at the

bottom of the cabinet. It connects the cabinet via the core switch to the lab server

hosting the VMs like shown in Figure 3.9.

The PW switch demultiplexes the interfaces of the VMs in the corresponding

virtual workspace to individual switch ports. The ports for the network interfaces

of clients and server VMs are connected to a patch panel at the top-most position

in the cabinet. The ports for interfaces of the routers are connected to custom-

designed front-panels that look like traditional routers (see Figure 3.7). To enable

the students to set up more complex network topologies, two additional unman-

aged switches are placed on a compartment sheet in the middle position of the

cabinet. For experiments involving wireless technology based on IEEE 802.11, a

Wi-Fi access point is placed on the top of the cabinet and USB Wi-Fi dongles for

selected VMs are provided. These dongles can be plugged into a USB hub that is

mounted on the left side of the cabinet and connected to the server.

53

3 Testbeds

Figure 3.8: Overview of components, services, and connections of the single

server testbed.

3.2.1.2 Interconnection Network and VW-PW Mapping

Figure 3.8 gives an overview of the internal structure of the single server lab in-

frastructure and the connection between the different components. In the figure,

the server hosts three VWs and each VW holds three VMs. Each SVM of a VW

contains one INI16 and at least one student network interface (SNI) which can be

configured by the students. The number of SNIs depends on the role of the SVM.

All INIs are connected through an internal bridge per VW on the host to an IVM

that provides infrastructure support (see Section 3.2.1.3). The patch panel of a

PW contains outlets for the SNIs so that they are physically accessible and the

students can perform the cabling for the labs. To that end, all SNIs are realized

as virtual interfaces on a two-port NIC that is connected to the core switch. The

mapping of virtual interface to physical interface depends on the absolute numer-

ical identifier of the virtual interface. All even numbers are mapped to the first

port of the two-port NIC and all odd numbers are mapped to the second port of

the two-port NIC.

Figure 3.9 illustrates the mapping of the SNIs to the patch panel and the con-

nection of the thin clients to the lab server. To distinguish the different inter-

faces, each is placed in a unique VLAN [96] with the following tag scheme:

pwsvm_num$interface_num. That means, all VLAN tags consist of

16Infrastructure Network Interface

54

3.2 IP

Figure 3.9: Interconnection of student VMs on the lab server with patch panels

on PWs.

a three-digit number with the most significant digit specifying the physical

workspace, the second-most significant digit specifying the SVM, and the least

significant digit specifying the interface within an SVM. VLAN tags are automat-

ically added/stripped at the transition from SVM to host. The mapping of $pw to

actual PW is dynamically configured by LOST (see Section 3.2.2).

The host forwards incoming packets to the corresponding SVM according to

the VLAN tag. In the other direction, packets from the SVM are forwarded to the

core switch as two big VLAN trunks via the two-port NIC.

On the core switch, the VLAN trunks are demultiplexed into sub-trunks that

55

3 Testbeds

are forwarded to the PWs specified in the VLAN tag. Within a PW the VLAN

trunk is processed by a managed switch. The switch is used to re-order the

VLANs to the corresponding port in the patch panel and to strip the VLAN tags.

This mechanism ensures that the students do not see any VLAN tags.

3.2.1.3 Infrastructure Support

We run three supplementary IVMs on the lab server that host the lab platform

and provide services. The first IVM facilitates basic network services for both

the SVMs and the thin clients in the PWs. Each VW gets its own dedicated

subnet whereas all thin clients are placed in the same subnet. To that end, a

DHCP server and a router advertisement daemon distribute IPv4 and IPv6 ad-

dresses, routes, and information about additional services like DNS and NTP.

The DNS server uses the following canonical naming scheme for names in the

lab: ${host_name}.tb${vw_num}.inetlab. Queries to resources in the

Internet are forwarded to an external DNS server. The local NTP server syncs

its time information with an external time server and ensures that the time in all

VWs is in sync. This IVM also acts as NAT gateway so that the thin clients of the

physical workspaces can connect to the Internet. The first IVM also includes a

central LDAP [97] directory and an NFS [98] server. The LDAP directory stores

the accounts for the students as well as their user rights within the SVMs. An

NFS server holds the home directories of the students as well as some initial con-

figuration data and scripts that the students use during the exercises. The other

two IVMs host the e-learning platform for the course and provide LXC [17] con-

tainers for special home exercises, respectively.

3.2.1.4 Simplified VM Maintenance

We first explain the need for simplified VM maintenance in the context of

testbeds, then we review concepts related to our solution, and finally we intro-

duce the new VM maintenance method.

56

3.2 IP

Motivation In our testbed, many VMs need to be maintained, i.e., configu-

ration changes and software updates need to be applied. Manual maintenance

is a lot of effort and error-prone. Therefore, maintenance work is often auto-

mated with scripts or configuration management tools like puppet [99]. Different

maintenance times or additional changes of individual VMs by the administra-

tor lead to diverging VM images. However, different VM images are undesirable

in testbeds where at least all VMs of the same type should be identical at the

beginning of an exercise.

Related Concepts The storage image solution QCOW2 is an updated copy-

on-write hard disk container to provide hard disk storage for Qemu-based VMs.

It allows to save a VM image as a stable base image file and to store later changes

to the VM image in a snapshot file. This facilitates the reset of the VM by deleting

the snapshot file.

In [2], this technique has been used to share a major portion of a VM image

on hard disk among multiple VMs. They are booted from the same QCOW2 base

image and record their image changes in individual snapshot files. Various base

images supported different VM types. This technique was used in [2] to save disk

space and in particular to reduce copy operations for VM setup.

Stacking file systems can be done with OverlayFS for Unix/Linux . It combines

a lower and upper file system, i.e., the lower file system serves as a stable base

and the upper file system accounts for differences. Thus, the upper file system

tracks changes, i.e., file generation, deletion, and modification. File requests are

served from both combined file systems like from a single file system. OverlayFS

can be applied recursively, i.e., the lower file system may be another OverlayFS

file system.

Multi-Layer VM Images We present a novel maintenance method for VMs

with similar configuration. It is based on the observation that the VMs share a

major portion of their images and the differences result from a moderate number

of additional configuration actions. It is helpful for maintaining VMs with differ-

57

3 Testbeds

ent host names, network configuration, and services. In [2], several base images

are needed to support different VM types. Now, the objective is to utilize only a

single base image for different VM types.

We diversify VMs by leveraging OverlayFS and providing configuration

changes in the upper file system of OverlayFS. To simplify the provisioning of

the upper layer file system, We define templates for SVMs with root file sys-

tems for clients, servers, and routers that are further adapted to the specifics of

individual VMs.

However, OverlayFS becomes active only after loading of the operating sys-

tem kernel has completed. Until then, VMs write all data to the lower file system.

If multiple VMs leverage the same lower file system, inconsistencies will occur.

To avoid inconsistencies due to writes from different VMs to the same base im-

age, an additional QCOW2 is utilized as protection layer. As a result, VMs are

booted from a joint base image containing the lower file system and modifica-

tions are tracked in individual QCOW2 snapshots. When OverlayFS is started,

VMs are diversified through the configuration contained in the upper file system,

the adaption layer. This leads to a setup where a VM references a QCOW2 im-

age as storage which is also a reference to the another storage image, namely the

mentioned base image. For the VM this looks like a single hard disk even though

it is a stack of two copy on write file systems. On top of that the OverlayFS is

managed by the OS which is aware of this layer.

When student work on VMs, they apply configuration changes. It is desirable

to easily undo them and restore the VM to a defined starting point. To that end,

We implement another OverlayFS layer above the VM diversification to track all

further modifications to the VM in a second upper file system, the user layer.

Technically, the base image combined with the secure base appear one disk,

the adaption layer appears as another disk, and the user layer appears as a third

disk. These three disks are input to OverlayFS whereby their order matters. How-

ever, the disks do not necessarily always appear in the same order, which affects

their numbering. Thus, the disk numbers cannot be used as input for OverlayFS.

We fix that problem with the following workaround. The disk contains metadata

58

3.2 IP

including a disk label as another identifier. This disk label is set after creation of

the disk and remains stable. Therefore, we specify the inputs for OverlayFS using

the disk labels rather than the disk numbers. In our prototype, We use ext4 as file

system type and e2label [100] as disk label implementation.

Figure 3.10 illustrates the proposed concept. A single LVM17 [101]) volume

constitutes the base image jointly used by all VMs. The protection layer is in-

dividual for all VMs and achieved through QCOW2. Its snapshot (secure base)

intercepts initial runtime modification of the VM to protect the joint base im-

age. The adaption layer is also individual for all VMs and implemented through

OverlayFS. It combines a VM’s base protection layer with the initial upper file

system holding the VM’s configuration data and minor runtime modifications. Fi-

nally, the user layer is also implemented through OverlayFS and holds all student

changes in its upper file system.

After completion of an exercise, the user layers can be deleted to reset VMs

to the states defined by their adaption layers. To maintain all VMs in the testbed,

only the base image needs to be updated provided that maintenance operations

do not affect the folders with the configuration data of the adaption layer. There-

fore, this concept provides high flexibility, minimizes maintenance overhead, and

reduces storage requirements.

3.2.1.5 Comparison: Acquisition Cost, Maintenance Effort, and

Energy Consumption

In this section I provide a comparison regarding acquisition cost, maintenance

effort, and energy consumption of the following three lab system approaches: 1)

a physical testbed, 2) a semi-virtualized testbed with a single server per testbed,

3) a semi-virtualized testbed cluster as proposed in this work.

17logical volume manager

59

3 Testbeds

Figure 3.10: File system access based on layered storage.

3.2.1.6 Acquisition Costs

We estimate acquisition costs for the components of the three different lab sys-

tem approaches. I assume reasonable, cost-efficient prices as performance is not

crucial.

For the physical testbed We assume that cheap all-in-one PCs are used and

upgraded with a 4-port network card. This will result in around 200 Euro per PC

and 20 Euro for the network card. In addition, two routers are needed. Recent or

high-performance router models are not needed since all basic functions used by

students are implemented in router firmware for more than 20 years. Therefore,

cheap, old models may be utilized which are available for 50 Euro each. In total

a single testbed costs 1440 Euro. An infrastructure server providing services can

be acquired for around 1200 Euro in total. A typical lab system consisting of 6

testbeds cost roughly 9500 Euro.

The semi-virtualized testbed with a dedicated server needs a physical

workspace which costs around 800 Euro each, including the PW switch. In addi-

tion, a dedicated server per PW is needed as host machine to run the hypervisor

for the VMs. We use the same machine type as for the infrastructure server for

60

3.2 IP

this purpose. A lab system with 6 work-spaces amounts 7 · 1200 Euro + 6 ·

800 Euro = 13200 Euro.

The proposed architecture only needs one big server for the entire testbed clus-

ter which costs around 7000 Euro. The physical workspaces are the same as for

the semi-virtualized testbed with dedicated server and also cost 800 Euro. In ad-

dition, a core switch is needed which costs around 400 Euro. This results in total

costs of 7000 Euro + 6 · 800 Euro + 400 Euro = 12300 Euro.

Maintenance Effort In the past, We encountered a maintenance effort of

about 1 hour per physical machine and semester in all three lab system ap-

proaches. That means, for the physical testbed, each server, PC, and router re-

quires that maintenance effort. For the semi-virtualized testbeds, the servers re-

quire that maintenance effort, but in addition, the VM images need to be kept

up to date. In case of one server per PW, care needs to be taken for the VMs on

all servers. Experience has shown that the required effort scales with the num-

ber of PWs although there are options for automation. In practice, We needed

about 3 hours per PW and semester for maintenance. In case of a single server

for all PWs, only a single VM needs to be maintained. That requires only 3 hours

maintenance effort per testbed cluster and semester.

Energy Consumption The power consumption of small all-in-one PCs is

estimated with around 20 W. We observe power consumption of 200 W for small

servers and 300 W for a big server. The PWs are powered with 25 W each for all

active components (PW Switch, small switches, USB).

The following table compares the three approaches in terms of cost, maintenance

and power consumption.

61

3 Testbeds

Testbed Acquisition Maintenance Power

type cost (Euro) effort (h) consumption (W)

physical testbed 9500 49 1160

semi-virtualized testbed 13200 18 1550

semi-virtualized testbed cluster 12300 3 450

3.2.2 A Lab Orchestrator for Semi-Virtualized Testbed

clusters (LOST)

As no existing orchestration platform like OpenStack provides the features

that are required for our use case, We developed Lab Orchestrator for Semi-

virtualized lab Testbed clusters (LOST) as a new one based on the same prin-

ciples as VITO described in the last chapter. It is especially designed to support

the VM storage concept, the simplified VM maintenance, and the template sys-

tem for SVMs and VWs with their mapping to PWs presented in Section 3.2.1.

It mainly consists of a set of Python scripts with some additional bash scripts.

LOST is configured via config files including the following parameters:

• The templates for the different SVMs include the adoption layers and

specify the the hardware resources like the amount of network inter-

faces (NICs), CPU, and RAM. We have templates for clients, servers,

and routers. E.g., the routers provide a Cisco-like CLI, the clients have

a graphical desktop environment, and the servers are terminal machines

that run several services.

• The composition of a VW consisting of different SVMs is defined. In

our use case, We have three clients, three servers, and two routers (like

depicted in Figure 3.6) as that fits best to the different exercises in the

courses. It is easily possible to define other composition, the available

hardware resources on the lab server are the only limitation.

• The amount of available PWs is configured, so that a VW for every PW

can later be instantiated. We have 6 workspaces.

62

3.2 IP

Figure 3.11: Wiping the user layer restores the original SVM states

• A default mapping of VW to PW is provided. Figure 3.12 depicts such a

default mapping.

With the configuration files as input, LOST instantiates the different VMs and

configure the core switch as well as the PW switches according to the config

files. E.g. the different VLANs are configured. The configuration of the switches

leverages software-defined networking (SDN) technology. Generally, LOST sup-

ports different southbound interfaces like SNMP [102], OpenFlow [54] or NET-

CONF [55]. For compatibility reasons with as many switches as possible, We

currently selected SNMP.

The instantiation process includes the initialization of the protection layer and

the adoption layer (see Section 3.2.1.4) for the individual VMs and assigning

hardware resources such as NICs, CPU, and RAM to them. LOST also manages

the VM state, i.e., this includes starting and stopping of VWs, and monitors the

different VMs. VMs can either be managed individually or as bulks. After a lab

day or in case of a heavily misconfigured SVM, LOST can wipe the student

layer so that the students can start over again with a well-defined VM states (see

Figure 3.11).

In case of a hardware failure on a PW, it is possible to move a VW to another

63

3 Testbeds

Figure 3.12: Failre-free condition

Figure 3.13: Re-mapping in case of failed PW.

64

3.2 IP

PW as depicted in Figure 3.13. To that end, LOST reconfigures the affected PW

switches and the core switch. The advantage of this mechanism is that students

only have to re-apply the cabling on the new PW, but all their configuration and

data of the VMs are available at the new location.

3.2.3 Implementation

In the following, We describe the hardware, software, and virtualization platform

that I used to implement the semi-virtualized testbed.

3.2.3.1 Hardware Platform

First, We outline the components included in the single lab server and the addi-

tional equipment used to provide the physical interaction with the VMs.

Server We use a DELL PowerEdge T430 based on the current Intel server plat-

form as base system for the lab server. The server is equipped with two Intel Xeon

CPU E5-2660 v4, 128 GB RAM, and a hardware RAID with level 6. Figure 3.9

shows that two additional Intel network cards provide the network interfaces for

the SVMs and IVMs. An Intel XL710 40GbE SFP+ two-port NIC which supports

64 virtual interfaces per physical interface, relays the network interfaces for the

student VMs. An additional Intel i350-T4 NIC provides the uplink to the Internet

for the three IVMs and connects one of them to the lab network. The onboard

NIC of the server is used as management access for the server.

As we want to be able to equip the student VMs with USB devices like Wi-Fi

dongles or headsets, a USB3 hub is attached to the server. It connects the USB

hub in each PW via a fast port USB to the lab server. The hub allows to attach

USB devices like Wi-Fi dongles or headsets to the SVMs.

Additional equipment The core switch connecting the different PWs to the

server is a Netgear S3300-28X ProSAFE 24-Port Gigabit. It includes two SFP+

10G uplink ports which are connected to the Intel XL710 at the lab server. Each

65

3 Testbeds

physical workspace has two connections to the switch: one is used for the thin

clients and the other is used to connect the cabinets with the server. Each cabinet

contains a managed HP/Aruba switch as PW switch to de-/multiplex the testbed

uplink to different physical ports on the switch. They are connected to a patch

panel containing keystones for the network outlets of the VMs. The USB hub in

each cabinet is connected to the USB3 hub at the lab server via an active USB ca-

ble. A Hardkernel odroid c2 is used as thin client. This platform provides enough

computational power and RAM to act as graphical client or terminal client for 8

VMs and to run the Chrome web browser. The odroids are connected to a 24 inch

full-hd (1080p) monitor, keyboard, and mouse for interaction.

3.2.3.2 Software Platform

We briefly outline the software used on the host and the different VMs.

Host The server itself only acts as host for VMs. For stability purposes, more

efficient use of resources, and reduced security risks, the server contains a mini-

mal environment. We chose Gentoo Linux [103] as operating system (OS) on the

server as it gives full control to the administrator. With the help of USE-flags it is

possible to define which parts of a certain package should be installed. This way,

only the parts and features of a package that are really needed and wanted are in-

stalled. Additionally, Gentoo does not force the user to use a certain component,

e.g., the user can freely select the init system. Furthermore, in our experience

Gentoo is more stable compared to other Linux distributions like, e.g., Ubuntu.

We chose kvm [27] as hypervisor because it is already part of the Linux ker-

nel. As kvm cannot be used directly, a supplementary virtualization tool like

qemu [28] is required. Qemu makes use of kvm and provides additional virtual

devices by itself. Also parts of LOST (see Section 3.2.2) are run on the host. To

ease the handling of the VMs in LOST, We designed LOST to utilize the lib-

virt [9] framework which already implements functions to create, start, stop, and

delete VMs. These operations are extended with custom operations, like applying

a template to a VM during creation as needed.

66

3.2 IP

Infrastructure VMs (IVMs) As already explained in Section 3.2.1.3, we run

three additional server VMs providing services for the lab and hosting the lab

platform. The first IVM runs a isc-dhcp [104] DHCP server and a radvd [105]

daemon to configure the network addresses. A BIND [106] DNS server is used to

resolve the IP addresses for internal and external resources. The LDAP directory

runs on an OpenLDAP [107] server and the NFS kernel server provides NFS

directories. The reference implementation [108] from the NTP project is used as

NTP server.

We use the nginx [109] webserver to host an instance of the iLab e-learning

platform [110]. In conjunction with shellinabox [111], nginx also enables access

to LXC [17] containers. The containers are used in an introductory assignment

which takes place before the practical course. This assignment compiles an intro-

duction for the students how to work on a Linux shell, do basic network configu-

ration and simple experiments.

Student VMs (SVMs) All SVMs are based on a single base image. The tem-

plate system of LOST derives different kinds of SVMs like client or server from

the base image. This base image already contains most of the tools and software

for all different types of SVMs. Among this software is the LXQt [112] desktop

environment used for clients, services, and daemons used for the servers and the

quagga [113] routing suite from which We use vtysh (a Cisco like CLI) for vir-

tual routers. However, the functionality of this software is disabled in the base

image. The templates activate the functionality required for their use case. The

thin clients can connect to the SVMs via spice [114] which transports the display

and input devices of the VMs.

As an alternative to VMs, containers could be used. However, we decided to

use VMs because VMs have their own networking stacks so that VM nodes are

isolated against each other and students observe a similar networking perfor-

mance as with real hardware. The performance obtained in this setting is suf-

ficient for most applications in general and suffices for all exercises carried out

by the students. Using VMs instead of containers provides sufficient flexibility

67

3 Testbeds

for future extensions. We planned to define an data center networking lab where

VMs act as servers hosting containers. Implementing data center servers as con-

tainers would lead to a rather unrealistic solution. Thus, the decision to utilize

VMs instead of containers on the host makes LOST future-proof.

3.2.3.3 Virtualization Platform

In the following, we describe virtualization features and techniques that we use

on our infrastructure. First, we briefly outline the basic requirements for virtu-

alization on the x86 architecture. After that, we explain the mechanisms used to

pass-through PCI and USB devices from the host to the VMs.

Hardware-Assisted Virtualization for x86 The x86 platform itself is not

virtualizable in hardware, which means that VMs must be emulated in software.

Software-based VMs lack performance. Hardware-assisted VMs require some

extensions to the x86 architecture: VT-x [18] enables basic hardware acceleration

for virtualization. It includes additional instructions and registers to implement

an additional privileged system and hardware-based shadowing for the memory

management unit (MMU). This way, VT-x permits entering and exiting a vir-

tual execution mode. In this mode the host OS remains protected while the VM

OS perceives itself as running with full privilege. Second level address trans-

lation (SLAT) is an additional extension to the MMU which further increases

the performance. It basically treats each physical address of a VM as a virtual

address on the host. This prevents software lookups to determine the actual phys-

ical memory address of VM memory. SLAT is implemented on the Intel platform

as extended page tables (EPT) [20]. Additionally, EPT is a requirement to start

a VM directly in real mode with unrestricted access. Typically, hypervisors em-

ulate most guest access to interrupts and the advanced programmable interrupt

controller which requires the exit and entry of a VM. This is time-consuming and

a major source of overhead. Advanced programmable interrupt controller virtu-

alization (APICv) [19] eliminates lots of VM exits and can increase performance

significantly.

68

3.2 IP

Pass-through of PCI Devices VT-d [22] provides an IOMMU [26] which

allows to pass-through devices, e.g., NICs from the host to the VMs. With the

help of IOMMU groups, different devices are isolated against each other and

secure memory access is ensured. Linux kernels later than 4.1 require the PCIe

Access Control Services (ACS) [23] feature for separated IOMMU groups. VT-

c [24] comprises Single Root I/O Virtualization (SR-IOV) [26], an extension to

the PCI standard, and Virtual Machine Device Queues (VMD-q) [25]. SR-IOV

classifies devices in physical functions (PFs) and virtual functions (VFs). A PF

is a full-featured PCI device, e.g. a NIC or a graphics card, which can run on

its own. A VF is a lightweight PCI device which cannot run independently of a

PF. The VF shares some resources with the PF that manages this VF. VMD-q

enables multiple hardware-based queues per NIC which are internally connected

to a bridge. Together, VT-d and VT-c instantiate a dedicated hardware queue per

VF which appears on the host as a virtual NIC. This NIC can be exclusively

passed-through to a VM so that the host does not see the device any longer.

With this mechanism the virtual NICs achieve a performance close to dedicated

physical NICs. As all VFs communicate over the common physical port of their

PF, VLAN tags are used to differentiate traffic from and to different VFs. To

be able to distinguish traffic for the different VFs, they are typically mapped to

different VLANs [96].

Pass-through of USB Devices To pass-though USB devices, the entire ad-

dress of a device on the USB bus is mapped to the address space of a VM. This

process can be automated with the help of special udev rules [79] that trigger

qemu to map a newly plugged in USB device to a specified VM. This requires

a lookup in the LOST configuration so that USB devices must be identifiable.

Typically, a USB device can be identified by a unique identifier (UUID) in the

device description field of its ROM. However, some hardware manufactors and

vendors disregard the uniqueness of UUIDs and assign the same UUID for mul-

tiple devices or entire batches thereof. That problem pertains to the USB Wi-Fi

dongles and USB headsets in our system. I developed the following workaround

69

3 Testbeds

to connect USB devices with equal UUIDs in VMs.

When a USB device is plugged into the USB bus, the host loads the driver for

that device. If the USB device is a network device, the host looks up its unique

MAC address. If that MAC address is assigned to some VM in the LOST con-

figuration, the host unloads the USB driver for that device and passes its USB

bus address through to the configured VM. This workaround allows to assign a

specific Wi-Fi dongle to a VM, which is needed because some scripts and udev

rules in the VM contain their MAC address. The described workaround works for

Wi-Fi dongles, but not for USB headsets as they do not have MAC addresses. For-

tunately, a VM does not require a specific headset, but can work with any headset

connected to the VM. Therefore, the n−th plugged-in headset is passed-through

to a specific VM that is configured with LOST depending on n.

70

4 Hybrid Access

Parts of this chapter are based upon text of a future unpublished technical report.

The traditional approach to connecting households or small companies to the in-

ternet is by the use of a single line, most often copper based or wireless. In remote

areas, mobile networks and satellite communication are used. In situations with

unreliable connections or low bandwidth this does not provide a satisfactory user

experience. In such cases, it may be possible to bundle multiple access meth-

ods, such as copper and mobile networks, to offer the customer more bandwidth

or better reliability. This principle is commonly called hybrid access (HA). In

this section different methods for HA are compared and tested using the VITO

infrastructure.

4.1 Load-balancing Concepts for Heterogenous

Links

In this section, we compare the performance of MPTCP and simple PBLB, pro-

posed in [?], for HA by experiments in a virtual environment using real net-

working stacks. Then, we propose algorithms for FBLB in Section 4.1.2. As an

important feature of all these protocols, information about link bandwidths does

not need to be configured as they are estimated by the mechanisms. We show

comprehensive experiments with FBLB and present performance results. The re-

sults include both download and streaming traffic as they exhibit different flow

dynamics.

Furthermore, we give recommendations for FBLB configuration parameters.

71

4 Hybrid Access

4.1.1 Performance Comparison of MPTCP and PBLB

In this section, we investigate the performance of simple variants of PBLB and

MPTCT. We first describe the testbed and our implementation. Then we present

the evaluation scenario and analyse the results.

4.1.1.1 Testbed

We set up four virtual machines (VMs) with a dedicated core on a server: a client

VM, a server VM and two link-modelling VMs.

We used Linux bridges so that client and server VM communicated with each

other via both link modelling VMs – that is, two paths exist between the client

VM and the server VM. We utilised the Linux tc tool [115] to limit the rate of

the outgoing interfaces of the link modelling VMs with a token bucket filter with

rates c0 and c1 of links l0 and l1, a bucket size of 3 maximum packet sizes (see

recommendation in [2]) and a latency of 10 ms. The latency determines the buffer

size. In addition, we utilised the netem module of tc to model delay d0 and d1

on these links. The link modelling was done in accordance with the principles

described in this work.

In the different experiments, only the software configurations on the client and

server VMs were modified. To exchange traffic, we utilised a client program on

the client VM and a server program on the server VM. For download experiments,

wget version 1.20.3-2 [116] was used as the client program and Busybox httpd

1.30.1-4 [117] as the server program. The design of the streaming experiments

will be elaborated in detail when they are introduced in the performance section.

4.1.1.2 Implementation

To experiment with MPTCP, we utilised Linux Kernel 4.19 (v0.95) on the

client and server VM as this is the latest version supporting MPTCP (status

19.11.2019).

To experiment with PBLB and later with FBLB, I utilised Linux Kernel 5.1

on the client and server VM to work with an up-to-date version of TCP Cu-

72

4.1 Load-balancing Concepts for Heterogenous Links

bic. As there is no recommended PBLB mechanism described in the literature,

I presented simple methods and Java-based programs for a load balancer (LB)

and a recombination function (RF). We further describe their integration into the

testbed.

Implementation of the PBLB Load Balancer The PBLB is based upon

a simple token bucket. The bucket has a certain capacity and fill rate. Whenever

a packet is sent over a link, the amount of tokens in the bucket for that link is

reduced by the size of the packet. If there are not enough tokens in the bucket, a

packet cannot be sent over that link. The fill rate adds tokens back to the bucket

depending on the link speed. The LB receives traffic from a socket and meters it

with a token bucket with rate rTB and bucket size sTB . We configure rTB with

0.99 ·c0 and sTB with 0.97 ·b0 where c0 and b0 are the bandwidth and latency of

a link l0. In-profile traffic is sent to link l0, and out-of-profile traffic, when there

are not enough tokens in the bucket for l0, is sent to link l1. Before transmission,

packets are equipped with a 4-byte LB header containing a sequence number

(SN), an 8-byte UDP header and a 20-byte IP header with an appropriate IP

address of the RF (BNG) as the destination. In addition, logging is performed for

performance evaluation and debugging purposes.

Implementation of the PBLB Recombination Function The RF re-

ceives traffic from the LB. It removes the additional headers, evaluates the SN and

immediately forwards in-order packets to their destination. Out-of-order packets

are timestamped and buffered. After a timeout tout, they are forwarded with all

consecutive in-order packets in the buffer. The timeout is link specific and should

be set to the latency of the other link plus the difference of the delay between the

other link and this link; 10-ms safety margin are added. We chose this lightweight

approach for the timeout for efficiency of implementation. If a new packet arrives,

the oldest timeout of the buffered packets is checked, and if it has expired, the

packet is forwarded. In theory, this may lead to slightly longer waiting times in

the buffer, but they were negligible in our experiments.

73

4 Hybrid Access

Figure 4.1: VM setup of the hybrid access experiments.

Integration of LB/RF in the Testbed In our testbed, the LB/RF programs

were also activated on the client and server VMs. That is, they were collocated

with the client and server programs, and I did not model real HG/BNG as they

do not influence the performance of the load balancing algorithms. Those com-

ponents are used by providers to integrate customers into their network; however,

they only add a slight latency that is part of the overall link latency for our exper-

iments. The client/server program and LB/RF utilise tun interfaces to exchange

traffic on layer 3 within the same VM. That means that the client/server program

sends its traffic to a tun interface which is read from the LB. The LB then load-

balances the traffic over two paths towards the RF. The RF reads data from these

paths and writes them to a tun interface which is read from the TCP server. The

setup is visualised in Figure 4.1

4.1.1.3 Performance Comparison

We first explain the experiments and then we discuss results for MPTCP and

PBLB.

Experiment Design In the experiment, we simultaneously downloaded n ∈

{1, 2, 4, 8, 16, 32} files of size 10 MB and measured the required time tdown
load

until the completion of the last download. We determined the relative goodput by
n·10MB

tdown
load

·(c0+c1)
, where c0 and c1 were the bandwidths of both links. We ran each

experiment 10 times and reported average values for the relative goodput.

74

4.1 Load-balancing Concepts for Heterogenous Links

Figure 4.2: Relative goodput for MPTCP and TCP over PBLB.

To determine the download time with MPTCP, the time from starting wget

until completion was measured. In the case of TCP over PBLB or FBLB, we

evaluated the logs of the LB as this is simpler and leads to more accurate results.

Performance of MPTCP We performed the above experiment series for

MPTCP and TCP Cubic over PBLB over three different HA scenarios: (1) l0

and l1 were both configured with 10 Mb/s and 10 ms delay, (2) like (1) but l0

and l1 were configured with 5 Mb/s and 15 Mb/s, (3) like (1) but the delay of

l1 was set to 100 ms. The relative goodput for these experiments is compiled in

Figure 4.2.

With MPTCP over equal links (1), a relative goodput of around 90% was

achieved for flow counts of 1, 2, 4, 8 and 32. Over asymmetric links with equal

delay but bandwidth 5/15 Mb/s (2), a clearly lower relative goodput of 60% was

achieved when the number of flows was small, but the relative goodput increased

with the number of flows. Over asymmetric links with equal bandwidth but delay

10/100 ms (3), the relative goodput was again rather large for 4 and more flows.

75

4 Hybrid Access

Performance of PBLB With TCP Cubic over PBLB, the relative goodput

was consistently lower than with MPTCP in all investigated scenarios. The dif-

ference in relative goodput is significant, while the overhead through additional

headers for LB amounts to only about 2%.

We suppose that the performance degradation results from jitter introduced

by the RF when packets are buffered to restore their original order. This creates

micro bursts that lead to early packet loss. Moreover, with PBLB, the capacity

and buffer of link l0 cannot be fully leveraged by design. This is only a brief

analysis and more investigation is needed.

We have implemented modifications of the presented PBLB variant that reduce

jitter and increase relative goodput. However, their benefits are not sufficient.

Thus, alternatives to PBLB for HA are desirable, and so we consider FBLB an

option that is worth further investigation.

4.1.2 Flow-Based Load Balancing

In this section we suggest a framework for FBLB that we limit to two available

links for the sake of simplicity. For flow-based load balancing, no permanent

recombination is required, only the distribution between links. Therefore, it is

possible to utilise more than two links without introducing additional overhead.

The LB measures the available bandwidth of both links and the current rates of all

active flows and utilises this information to assign new flows to one of both links.

It detects overloaded links and reassigns flows from the more overloaded link to

the other. During the process of rebalancing a flow from one link to another, a

flow can possibly be assigned to a link with a lower latency as its origin link. In

this case, packet reordering can occur as long as there are still in-flight packets

on the old links. During this short period of time, an additional load balancing

header carrying the packet sequence number is added to each packet. For packets

with a sequence header, the same RF that is used for PBLB is utilised to remove

the header and forward the packets in order.

We first describe measurement methods for flow- and link-related metrics. We

76

4.1 Load-balancing Concepts for Heterogenous Links

then propose and test algorithms for flow assignment to a link and finally suggest

a method for flow reassignment, including protocol support.

4.1.2.1 Measurement Algorithms

The LB keeps statistics for each flow and link. They are collected on the basis

of measurement intervals with an equal length of TMI . The statistics are updated

upon packet arrival or at the ends of measurement intervals.

Flow-Specific Metrics For each flow f , an entry is stored in a hash map. The

entry contains the number of bytes bf received within the current measurement

interval. At the end of a measurement interval, the current flow rate, rf =
bf

TMI
,

is computed, and bf is reset to zero. In addition, the number of consecutive inter-

vals without any packet arrival is recorded by the variable zf . After zmax such

intervals, a flow is considered terminated and removed from the statistics.

Upon the arrival of an IP packet with size s, the hash for the corresponding flow

is computed. The hash takes the source and destination IP address, the source and

destination port numbers and the protocol number into account. If an entry exists

for that flow, bf is updated. Otherwise, the packet belongs to a new flow. Then, a

new entry is established in the hash map and initiated – that is, bf = 0, rf = 0

and zf = 0 – and the flow is assigned to a link, which is recorded by lf . We

suggest several algorithms for that task in Section 4.1.2.2. Finally, the packet is

forwarded over the interface indicated by lf .

Bandwidth Estimation I assume that the bandwidths of the links are fairly

stable but unknown and describe a simple measurement mechanism to derive

their capacity. The number of bytes bl forwarded over a specific link l within the

current measurement interval is stored and updated with every packet transmitted

over that link. At the end of a measurement interval, the link load is computed

by r = bl
TMI

, and bl is reset to zero. In addition, the two most recent link loads

are recorded by r0l and r−1
l . An estimate of the available bandwidth of a link is

77

4 Hybrid Access

initially set to a low value of cestl = cinit, and the last two link loads are ini-

tialised with zero. It is updated as follows. When r0l and r−1
l are updated at the

end of a measurement interval, the current rate is checked for stability – that is,

whether
|r0l −r

−1

l
|

cest
l

< T rate
stability is fulfilled. As a result, the rate stability threshold

T rate
stability is a real number close to zero, such as T rate

stability = 0.01. If the cur-

rent rate is stable and larger than the last estimate of the available bandwidth –

that is, if
r0l +r

−1

l

2·cest
l

> T bandwidth
exceeded holds – the estimate of the available bandwidth

is updated by cestl =
r0l +r

−1

l

2
. As a result, the bandwidth-exceeded threshold

T bandwidth
exceeded is a real number close to 1; for example, T bandwidth

exceeded = 1.00. The

rationale behind this approach is that spikes in link loads should not lead to over-

estimated link bandwidths. Such spikes may occur due to bursts received at rates

higher than the actual link bandwidths. This works sufficiently well for links with

stable bandwidths. For links with volatile bandwidths, this can still be utilised to

gain an estimate about the average bandwidth. Short changes in bandwidth need

to be dealt with on Layer 4 by, for example, TCP.

The measurement system can be compromised by traffic being sent at a rate

higher than the actual bandwidth. There are easy countermeasures, but they are

not part of this work. Detecting attacks in a series of averages is a problem solved

in statistics, not networking.

Number of Flows Furthermore, the number of a link’s active flows, al, is

incremented when a flow is assigned to a link, and it is decremented when an ex-

isting flow is reassigned to the other link or when it is removed from the statistics.

4.1.2.2 Flow Assignment Strategies

We suggest three strategies for assigning a flow to a link when the first packet of

a flow arrives at the LB. After flow assignment, the assignment instant t
assign

f is

set to the current time tnow.

78

4.1 Load-balancing Concepts for Heterogenous Links

Equal Flow Density Flow Assignment The objective of this strategy is

to balance flows over the links such that the number of flows on the links is

proportional to their capacities. If a new flow f arrives and
al0

cest
l0

≤
al1

cest
l1

holds,

the new flow is assigned to link l0 so that the link of the new flow is initialised

with lf = l0 and the number of active flows al0 on l0 is incremented by 1.

Otherwise, the new flow is assigned to l1 with analogous operations.

Equal Utilisation Flow Assignment The objective of this strategy is to

balance flows over the links such that the sum of the flow rates of the links is

proportional to their capacities. If a new flow f arrives and
r0l0
cest
l0

≤
r0l1
cest
l1

holds,

the new flow is assigned to link l0 so that the link of the new flow is initialised

with lf = l0 and the number of active flows al0 on l0 is incremented by 1.

Otherwise, the new flow is assigned to link l1 with analogous operations.

Token Bucket Control Flow Assignment Token bucket control (TBC)

adopts the principle of ‘threshold metering’ [118] to determine whether link l0

is overloaded. A token bucket’s rate rTB is configured with cestl0
. I denote the

maximum value of the token bucket by Fmax and its minimum value by Fmin.

The last update instant is recorded by the variable tlast.

When a packet arrives, the fill state F of the token bucket is incremented by

F = min(Fmax, F + rTB · (tnow − tlast)), and the variable tlast is updated by

the current time tnow. If the packet belongs to a new flow and F ≥ Fth holds,

link l0 is not overloaded. In that case, the new flow is assigned to l0 – that is,

lf = l0 – and the number of active flows al0 on l0 is incremented by 1. Otherwise,

the new flow is assigned to link l1 with analogous operations. Finally, any arrived

packet is metered if it belongs to l0. That is, the fill state F is decremented by the

packet size s; that is, F = F − s.

79

4 Hybrid Access

4.1.2.3 Flow Reassignment

At the end of a measurement interval, the LB checks for overload on the links. I

consider a link overloaded if

r0l
cestl

≥ T
over
load . (4.1)

holds based on the newly computed estimate of the available link bandwidth cestl .

The impact of different T over
load will be shown by experiment. In case of overload, a

flow may be moved to another link. If both links are overloaded and
r0l0
cest
l0

>
r0l1
cest
l1

holds, the load on l0 is larger than on l1, so one flow should be moved from l0 to

l1. Otherwise, one flow should be moved from l1 to l0. In the following section,

we explain methods for determining appropriate flows to be moved from one

link to the other and protocol support to avoid packet reordering when a flow is

reassigned to another link.

Determining a Flow for Reassignment from l0 to l1 We determine a

flow on link l0 to be reassigned to link l1. Only flows with t
assign

f ≤ tnow −

Tguard are eligible. Tguard is a value that needs to be determined by experiment

for each flow type, as it is highly dependent on how the application reacts to

jitter and changes in bandwidth and/or latency. For our downloads and synthetic

streaming tests, we determined a value of Tguard of 2 s to be high enough to

allow TCP to adapt to a new link.

If there is no eligible flow, no flow is reassigned. Otherwise, the eligible flows

are ordered according to descending rates rf . Then, the sum of their rates is

incrementally computed based on this flow order and the first flow, for which the

rate sum exceeds cl0 , is selected to be moved to l1.

Determining a Flow for Reassignment from l1 to l0 We determine a

flow on link l1 to be reassigned to link l0. Only flows with t
assign

f ≤ tnow −

Tguard are eligible. If there is no eligible flow, no flow is reassigned. Otherwise,

the flow with the smallest rate is reassigned from l1 to l0.

80

4.2 Performance Evaluation of FBLB

Protocol Support to Avoid Packet Reordering When a flow is reas-

signed to another link, packets may be reordered if they are more quickly deliv-

ered on the new link than on the old link. As packet reordering may be detrimental

to some applications, I propose protocol support to avoid packet reordering.

When the LB reassigns a flow to another link, it adds LB headers with SNs to

packets of that flow for the next Tout time. Those headers and the value for Tout

are the same as those described in Section 4.1.1.2. The RF resequences packets

that arrive with an LB header, just as in Section 4.1.1.2. When a flow is reas-

signed, the LB sends an empty packet with an LB header to the RF over the old

link of the reassigned flow. Thereby, the RF learns the last SN, and packets of the

reassigned flow are numbered with higher SNs, which serves for synchronisation.

Generally, a packet is equipped with an LB header if tnow−t
assign

f ≤ Tout holds

for its flow. As LB headers are added only for Tout times after flow reassignment,

their protocol overhead is marginal.

The LB header may reduce the MTU size on the links between LB and RF dur-

ing reordering, which possibly causes MTU issues. Therefore, the MTU should

be set to a low enough value to avoid such problems.

4.2 Performance Evaluation of FBLB

In this section I evaluate the performance of FBLB and compare it to PBLB and

MPTCP. I utilised the same testbed as described in Section 4.1.1.1 and integrated

LB/RF for PBLB/FBLB as outlined in Section 4.1.1.2.

We first illustrated the load-balancing effect of FBLB with appropriate param-

eters for download traffic and for streaming traffic in low- and high-load condi-

tions.

Then, we conducted experiments to determine reasonable system parameters

for FBLB.

We report the impact of the suggested flow assignment methods for download

and streaming flows.

81

4 Hybrid Access

Finally, we compared the download times and achieved streaming rates for

FBLB, PBLB and MPTCP under different loads.

If not mentioned otherwise, we used the following parameters in the ex-

periments: measurement interval duration TMI = 100 ms, overload threshold

T over
load = 1.00, recombination timeout Tout = 500 ms, guard time for flow re-

assignment Tguard = 2 s and TBC’s maximum bucket size Fmax = 0.97 ∗ cl0 .

Furthermore, we performed experiments with two equal links with a capacity of

10 Mb/s and a one-way delay (OWD) of 10 ms.

4.2.0.1 Illustration of FBLB

To provide a qualitative understanding of FBLB, we first illustrate its behaviour

for download and streaming traffic.

FBLB Behaviour for Download Traffic We subsequently started 8 down-

loads of files with 10 MB with a 5-s inter-start time. Figure 4.3 shows their mea-

sured rates over time. The rates were obtained at the RF and include all header

overheads. Each colour belongs to one flow. The curves above the x-axis corre-

spond to flows on link l0, and the curves below correspond to flows on link l1.

The uppermost and lowermost curves indicate the overall rate on each link. We

observed that flows subsequently started on different links. The fifth flow was

reassigned after a short time. At that time, the overall rate temporarily exceeded

the link bandwidth, which was the trigger for reassignment. At the beginning of

the experiment, the flow rates were large, and they decreased with the increasing

number of flows. When downloads completed, the flow rates increased again.

FBLB Behaviour for Streaming Traffic We first describe our traffic gen-

erator for streaming traffic. Then I illustrate load balancing with streaming flows

under high-load and overload conditions.

Generation of Streaming Flows The tool iperf3 [119] is used in many

performance studies to generate streaming flows. However, it is also known to

82

4.2 Performance Evaluation of FBLB

Figure 4.3: 8 download flows are load-balanced by FBLB to two links; with a

capacity of 10 Mb/s and a OWD of 10 ms; flows above the x-axis

correspond to link l0, flows below the x-axis to l1.

(a) High-load condition: 5 streaming flows with

2, 3, 4, 5 and 6 Mb/s.

(b) Overload condition: 10 streaming flows

which are twice the flows as in high-load con-

dition.

Figure 4.4: Streaming flows are load-balanced by FBLB to two links; with a

capacity of 10 Mb/s and a OWD of 10 ms; flows above the x-

axiscorrespond to link l0, flows below the x-axis to l1.

create overly bursty traffic [120]. Therefore, we programmed an own generator

83

4 Hybrid Access

for streaming flows in Java. A streaming flow is transmitted via TCP with a de-

sired rate rapp on the application layer. In case of congestion, a lower data rate is

transmitted. To that end, we fill the send buffer of a TCP connection every 20 ms

with rapp · 0.02 s bytes if the fill state of the send buffer is below 50%. We used

the Linux default value of 87380 bytes for the send buffer size. The duration of

the streaming flows was limited by the time value instead of the transmitted data

volume.

High-Load Condition We first considered FBLB with 6 streaming flows hav-

ing application rates of 2, 3, 3, 4, 4 and 5 Mb/s, which is 21 Mb/s in sum. That

means that with protocol overhead, there is only slight congestion if the band-

width of both links can be fully utilised and we consider this a high-load con-

dition. Figure 4.4(a) illustrates the measured rates of the 5 streaming flows over

time. The measurement methodology was the same as in the previous experi-

ment. The streaming flows were subsequently started; they had different applica-

tion rates rapp and almost achieved them as measured rates. When some flows

were complete, the remaining flows fully utilised the available bandwidth since

their TCP send buffer had been filled during the congestion phase before.

Overload Condition We now nearly double the amount of flows so that their

overall application rate is 35 Mb/s, which is nearly twice the overall bandwidth of

both links combined. This is a clear overload condition. Figure 4.4(b) illustrates

the rates of the 10 streaming flows over time. They are subsequently started, and

as soon as there is overload on the link, they contend for bandwidth and their rates

are throttled to their fair share. When flows complete at the end of the experiment,

the remaining flows utilise the remaining bandwidth. Now we see reassignment

events during the start phase and the completion phase of the flows.

4.2.0.2 Impact of the Measurement Interval TMI

The measurement methods in Section 4.1.2.1 utilise disjoint intervals. We inves-

tigate the impact of the interval duration on the measured rate. To that end, the

84

4.2 Performance Evaluation of FBLB

Figure 4.5: Impact of measurement interval duration TMI on the measured rate

of a single flow; 2 download flows are carried over a single link. with

10 Mb/s and a OWD of 100 ms.

client downloads traffic from the server using 2 download flows over a single link

with a capacity of 10 Mb/s and a OWD of 100 ms. Figure 4.5 illustrates the rate

of one of these flows with different interval durations TMI . A short measurement

interval of 50 ms causes highly variable flow rates. A long measurement inter-

val of 150 ms leads to more stable flow rates but also to more delayed results

as the rates are available only at the end of the intervals. A measurement inter-

val of 100 ms seems long enough to produce sufficiently stable rates while they

are delivered with moderate delay. The investigated scenario can be considered a

challenge because measured rates for an OWD shorter than 100 ms or with more

flows are more stable.

Thus, in the following, we configure the load balancing algorithm with a dura-

tion of the measurement interval of TMI = 100 ms.

4.2.0.3 Impact of the Overload Threshold T over
load

Flow reassignment at the LB is triggered by overload detection according to

Equation (4.1). It requires the parameter T over
load , for which we derive a recom-

mendation in the following experiment. We download two files over FBLB and

85

4 Hybrid Access

Figure 4.6: Two greedy flows with an overload threshold of 0.99.

Figure 4.7: Two greedy flows with an overload threshold of 1.00.

86

4.2 Performance Evaluation of FBLB

Figure 4.8: Two greedy flows with an overload threshold of 1.01.

two links and start the second download 3 s after the start of the first down-

load. Both flows are intentionally assigned to the first link after the start. I test

T over
load ∈ {0.99, 1.0, 1.01}, for which the results are compiled in Figures 4.6–4.8.

Figure 4.6 shows that T over
load = 0.99 leads to oscillations. This overload threshold

is easily exceeded by traffic so that flows can be reassigned again as soon as their

guard time Tguard is over after (re-)assignment. Both the first and the second

flow are continuously reassigned, which does not efficiently utilise the capacity

of both links.

Figure 4.7 shows that T over
load = 1.0 avoids oscillations and assigns one flow

per link shortly after the second flow starts.

Finally, Figure 4.8 shows that T over
load = 1.01 avoids oscillations but takes a

long time until one flow is reassigned to the other link as overall link rates are

mostly too slow to exceed the overload threshold.

The load balancing algorithm works well with T over
load = 1.00, so we recom-

mend that value for operation.

87

4 Hybrid Access

Impact of Flow Assignment Strategies We investigated the impact of

the different flow assignment strategies presented in Section 4.1.2.2 and briefly

summarise the results. We tested them while deactivating the flow reassignment.

In one experiment, we started 10 downloads simultaneously. The expectation

was that equal utilisation (EU) and TBC could not distribute flows to other links

because they require appropriate measurement results, which are missing in case

of simultaneously starting downloads. However, we were unable to produce this

phenomenon as the simultaneous start turned out to be a challenge; EU and TBC

achieved good traffic distribution even though a bit worse than equal flow density.

In another experiment, we subsequently started streaming flows. They had dif-

ferent rates with an overall rate close to the overall bandwidth of both flows.

Here, EU achieved the best traffic distribution in that the flows reached a maxi-

mum overall streaming rate. TBC revealed the worst result in this experiment but

maximised the fraction of traffic on the first link.

As soon as we activated flow reassignment, I obtained similar results for all

three flow assignment strategies. In the following, we apply EU.

4.2.0.4 Performance Comparison for Various Load

In the following, we compare the performance of FBLB with flow reassignment,

PBLB and MPTCP for download and streaming traffic over two links. We use

transmission over a single link with single and double bandwidth (10/20 Mb/s)

as benchmarks and consider different load scenarios.

Evaluation with Download Traffic We first explain the traffic model and

then discuss performance results.

Traffic Model Download requests for files with a size of B = 20 MB start

with interarrival times A, which are determined by a exponential distribution.

We control the relative system load ρ by setting the mean of the interarrival

88

4.2 Performance Evaluation of FBLB

time to

E[A] =
B

ρ · c
. (4.2)

The capacity c is the bandwidth of a single link with a bandwidth of 10 Mb/s.

The system load ρ as defined in this context relates to application layer traffic

and ignores overhead on lower layers. Therefore, the real bandwidth utilisation is

higher than ρ – that is, a system with a load close to 100% is already overloaded.

Experiment Design We considered relative system loads 0.25 ≤ ρ ≤ 1.5

based on a link with the combined capacity of both bundled links. For each sys-

tem load we generated 10 traces over 10 minutes of download requests according

to the presented traffic model. Then we conducted experiments for the benchmark

and each considered load balancing method. We took the average download time

as the performance metric.

Performance Comparison Figure 4.9(a) shows the average download time

depending on the system load. It increases with system load and is shortest when

traffic is downloaded using single-path TCP over a single link with a double

bandwidth. It is drastically larger for a single link with a single bandwidth, and

the system seems already overloaded at a relative load of 75%. With MPTCP

over two links, the download time is larger than over a single link with double

capacity. However, significantly more load can be supported than with single-path

TCP over a single link. Thus, MPTCP can well combine the bandwidth of both

links. PBLB can support similar load levels but causes clearly larger download

times. Reasons for this inefficiency are mentioned in Section 4.1.1.3 and were the

motivation to develop FBLB. Download times for FBLB are even slightly shorter

than with MPTCP for most load levels.

Evaluation with Streaming Traffic We now investigate traffic streaming in

a similar setting. The main difference is the traffic model.

89

4 Hybrid Access

(a) Download times with greedy TCP traffic. (b) Streaming rates with fixed rate streaming

TCP traffic.

Figure 4.9: Impact of system load when traffic is load-balanced over two links

with different methods compared to a single link with the combined

bandwidth.

Traffic Model We generate streaming flows with application rates of 2 Mb/s

with 25% probability, 5 Mb/s with 50% probability, and 8 Mb/s with 25% prob-

ability. Thus the average application rate is 5 Mb/s. Every flow takes 32 s so

that flows produce a traffic volume of up to 8 MB, 20 MB and 32 MB on the

application layer with an average of 20 MB1. As in Section 4.2.0.4, I choose ex-

ponentially distributed interarrival times and calculate their average E[A] using

Equation (4.2) with E[B] = 20 MB, depending on the desired relative system

load ρ.

Performance Comparison Figure 4.9(b) shows the achieved streaming

rates depending on system load ρ. They increase with system load. They are

smallest for single-path TCP over a single link with single capacity, and they

are largest for single-path TCP over a single link with double capacity. MPTCP

transmitting over the two links well approximates the streaming rates achieved

1If the full application rate rapp cannot be achieved, less traffic is streamed over time.

90

4.2 Performance Evaluation of FBLB

for the single link with double capacity. PBLB achieves lower streaming rates

than MPTCP. With FBLB the streaming rates are mostly slightly larger than with

MPTCP.

91

5 Software Defined Networking

This chapter contains an overview of P4-SFC which was also published at the

High Performance Computing conference in 2020

5.1 Architecture of P4-SFC

NFV and SFC are a major component in future cost reduction for infrastructure

providers. It allows them to efficiently use off-the-shelf hardware to emulate net-

work functions like firewalls, proxies, etc. It is possible to implement a part of

those functions in P4, however the knowledge about P4 is nearly non present with

datacenter operators. There is currently no framework to allow normal develop-

ers and administrators to leverage the possibilities of NFV/SFC. With this work

we want to change that. In this chapter we explain the implementation of a P4-

based SFC system and how VNFs are efficiently integrated on hosts so that they

remain SFC-unaware and transparent for routing. The system consists of three

parts. The SFC aware Ingress node that determines the path through the network,

the MPLS overlay network that is used for forwarding, and the servers that are

used to emulate the network functions.

5.1.1 Implementation of the SFC Ingress Node

We briefly describe the requirements of the SFC ingress node and explain a P4

pipeline for implementation of this functionality in P4.

93

5 Software Defined Networking

Figure 5.1: Match-and-action table “push_Label_Stack” to push label stacks of

different size.

5.1.1.1 Requirements

In P4-SFC, the SFC ingress node classifies traffic and adds appropriate MPLS

label stacks to packets that require processing by a specific SFC. The classi-

fier identifies flows for a specific SFC. We utilize flow descriptors consisting

of source and destination IP addresses, port numbers, and IP protocol number for

that purpose. Wildcards are supported. That label stack encodes both the forward-

ing in the network and the identification of the VNFs. Therefore, the label stack

can be large. To keep things simple, we support support up to n = 10 labels in

our small testbed (see Section 4.1.1.1). However when using jumbo frames, large

numbers of labels are possible.

5.1.1.2 P4 Pipeline

We describe the supported header stacks, the ingress and egress control flow, and

the pushLabelStack control block in more detail.

94

5.1 Architecture of P4-SFC

Supported Header Stacks Incoming packets are parsed so that their header

values can be accessed within the P4 pipeline. To that end, we define up to n

MPLS labels, an IP header, and a TCP/UDP header. It is important to define

different pattern schemes for different amounts of Labels as the parsing in line

speed does not allow for a dynamic recognition of the next header field in the

packet.

Ingress and Egress Control Flow The ingress control flow consists of a

Push_Label_Stack control block and an IP_MPLS_Forward control block. The

push_Label_Stack control block adds an appropriate label stack to the packet,

i.e., it serves as classifier. The IP_MPLS_Forward control block performs simple

IP/MPLS forwarding. The egress flow just sends the packet and does not imple-

ment any special control blocks.

Implementation of the Push_Label_Stack Control Block The imple-

mentation challenge is that an arbitrary number of up to n labels need to be

pushed. Header sizes are fixed. An intuitive approach is pushing a single label

per pipeline execution and recirculating the packet for another pipeline execution

until the desired label stack is fully pushed. The drawback of this approach is that

pushing n labels requires n-fold packet processing capacity, which reduces the

throughput of the SFC ingress node.

Our solution uses the match-and-action table (MAT) push_Label_Stack whose

structure is given in Figure 5.1. The MAT utilizes the fields of the source and des-

tination addresses and port numbers as well as the IP protocol number as match

keys. A ternary match is used so that wildcards are supported. We provide actions

push_LS_i to push a stack of i labels onto the packet. This action has i parameters

but the table has n label entries (L1, ..., Ln). In case of a match, the correspond-

ing action is executed with the appropriate number of arguments. Afterwards, the

IP_MPLS_Forward control block is carried out. For the implementation of the

IP_MPLS_Forward control block we reuse available demo code.

95

5 Software Defined Networking

Figure 5.2: P4-SFC utilizes label stacks in packets for segment routing in the

network, but passes only IP packets to VNFs. Therefore, VNF remain

unaware of the SFC.

5.1.2 Transparent and Efficient VNF Integration on

Hosts

We now specify how packets are forwarded from a switch to a VNF on a host

and back. This is challenging since the VNF should remain unaware of the label

stack, and the packet forwarding from the host’s network interface card (NIC) to

the VM hosting the VNF should be efficient. The following steps are illustrated

by Figure 5.2

We assume that up to N VNFs are supported by a host, either within a con-

tainer or a separate VM. Each potential VNF constitutes a logical network seg-

ment while the corresponding physical network segment is the switch over which

the VNF is reachable. The forwarding table of the switch is configured such that

an incoming packet with a topmost label pointing at a specific VNF is equipped

with a VLAN tag pointing at the VNF and forwarded to the respective host.

The NIC of the host is statically configured to map packets with VLAN tags

to virtual PCI devices that serve as virtual NICs (vNICs) for VMs or containers.

These features are enabled by virtual machine device queue (VMDq) and sin-

gle root I/O virtualization (SR-IOV). These technologies are supported by most

96

5.1 Architecture of P4-SFC

contemporary NICs and CPUs. With VMDq, a NIC can have multiple internal

queues and with SR-IOV, a so-called Physical Function (PF) can be virtualized

into Virtual Functions (VFs). A VF can be passed-through as PCI device to a

VM or container. We utilize SR-IOV to pass through a queue of the NIC as a VF

to a VM/container in order to serve as a vNIC. The NIC used in our prototype

provides up to 128 VFs so that up to N = 128 VNFs can be supported on a host.

More powerful NICs providing even more VFs also exist.

Within a VM/container, the forwarding table of the MPLS Router Module in

the Linux kernel is utilized to deliver the IP packet to the VNF without the label

stack, to store the label stack, to push the label stack again when the packet is

returned from the VNF, and to send the packet to the appropriate egress interface.

Then, the packet is returned from the host to the switch in the corresponding

VLAN. The switch removes the VLAN tag and the label for the next segment.

5.1.3 P4-SFC Orchestrator

The P4-SFC orchestrator is written in Python and leverages the libvirt and LXD

framework for VM/container management. It interacts with administrators for

management purposes and with customers for the specification of SFCs. It places

VNFs on hosts and computes paths for SFCs, it launches and terminates SFCs, it

adds new hosts and migrates VNFs among hosts.

5.1.3.1 Administrator/Customer Interaction and SFC Specification

The orchestrator offers a CLI interface for maintenance, e.g., for adding a new

host to the system or moving VNFs.

Customers provide a configuration file in json format with a description of

their SFCs. The specification of an SFC includes a flow descriptor, a list of VNFs,

their executable binaries, their resource requirements (CPU, RAM, I/O), and in-

formation whether they are to be deployed as VMs or containers. Customers may

request permanent storage for a VNF, e.g., for logging purposes, so that it has per-

mission to write to shared network storage. The VNF binaries provided by cus-

97

5 Software Defined Networking

tomers are also saved to shared network storage. VNF applications are required

to receive and send packets via /dev/net / tun, but they can remain unaware of

SFCs.

5.1.3.2 VNF Placement and Path Calculation

The orchestrator determines hosts to run VNFs such that resource requirements

communicated by the customers are met. Storage is not part of these requirements

since shared network storage is used. If resources are not sufficient, VNFs may

be migrated or new hosts may be added. While there is an extensive body of

literature on VNF placement, our prototype uses only simple algorithms for this

task.

The orchestrator knows the network topology. Either the network topology is

static like in our prototype or it can be dynamically discovered with protocols

like LLDP [121]. Based on this information, the orchestrator computes paths

from the SFC ingress node to desired destinations including the VNFs specified

by SFCs. The path calculation is performed whenever a forwarding entry for the

SFC ingress node needs to be modified.

5.1.3.3 Launch and Termination of SFCs

The orchestrator holds a disk image as template for VMs/containers supporting

VNFs. P4-SFC requires an appropriate configuration of the forwarding table of

the MPLS Router Module which is initially applied to the template. The template

is copied to every host so that VMs/containers can be cloned from it. Resources

required by a VNF are provided by the customer’s SFC description and are en-

forced by the orchestrator using appropriate configuration files for the VM/con-

tainer. A libvirt xml definition specifies the hardware resources assigned to a VM.

Similarly, an LXD configuration file uses cgroup statements to limit the kernel

space resources available to the container.

If an SFC is to be launched, the orchestrator determines for each VNF a host

with sufficient resources and finds a free VF on the NIC of that host. This VF

98

5.1 Architecture of P4-SFC

determines the label for the VNF. The orchestrator defines a VM/container with

suitable parameters, i.e., the VM/container template, sufficient resources, the VF,

and a pointer to the VNF binary. It then starts the VM/container and the appropri-

ate VNF binary from the shared network storage. Finally, the SFC ingress node is

configured. To that end, a path is computed for the SFC and an entry is added to

the MAT push_Label_Stack (see Figure 5.1) containing the flow descriptor and

the label stack for the SFC. The flow descriptor is needed for packet classifica-

tion.

If an SFC is to be stopped, the VMs/containers with its VNFs are terminated

and the corresponding entry is removed from the MAT push_Label_Stack.

5.1.3.4 Adding a New Host

To add a new host to P4-SFC, the orchestrator needs ssh access and permissions

for VM/container management on the new host. It initially scans for available

resources on the new host and adds them to its pool of available capacities. It then

copies the VM/container templates to the host and configures the virtualization

frameworks.

To make the new host and its potential VNFs reachable in the network, the

forwarding table of the switch to which the host is attached is equipped with

forwarding entries for the labels of all potential VNFs on the new host. If a host

is removed, the corresponding labels are removed from the switch.

5.1.3.5 VNF Migration

VNFs may need to be migrated to another host, e.g., for maintenance purposes.

The orchestrator supports this process by first cloning and starting the VNF on the

new host, changing the respective entry of its SFC in the MAT push_Label_Stack,

and terminating the VNF on the old host.

99

6 Conclusion

The core component of this work is the VITO framework, a virtualization frame-

work with the goal of replicating physical networks with real hardware as close

as possible. VITO can be run on any server with a Linux operating system and

can create flexible topologies based on virtualization technologies. In this work I

showed how VITO can be used to fully automate all steps of testing networking

protocols. VITO can be used to define the topology of the network used for test-

ing, the execution of actions during the test, the collection of results and the rep-

etition and orchestration of tests on available hardware. It is shown how the link

modelling process achieves results close to real hardware, even though this intro-

duces additional overhead in the form of link modelling VMs. The foundation of

VITO is also used for the semi-virtualized testbeds of the Internet Praktikum at

the University of Tuebingen. In this scenario, it provides a set of scripts to gen-

erate a pre-defined networking topology, consisting of clients, servers and emu-

lated cisco routes with modelled link characteristics to give students an overview

of the behaviour of certain software and protocols. This helps to prepare students

for challenges and problems which are not expected but occur on real hardware,

e.g. bugs in the Linux TCP implementation. This work also presents P4-SFC

which extends and modifies the core of VITO to provide a novel framework for

enabling NFV and SFC legacy data-centers with minimal costs involved. For this

approach, the core orchestration and virtualization part of VITO is reused and

enhanced with an MPLS based forwarding data plane. Even if NFV/SFC is not

widely used in data-centers yet, P4 NFV/SFC is a foundation early adopters can

build on without big investments or the need for experts on the topic.

101

6 Conclusion

While hybrid access was an important topic when this work was begun, it is

definitely not a technology for the future; rather, it is more of an interim solution

for covering up bad ISP infrastructure, especially in rural areas. With the gener-

ally good availability of 5G networks and the progress of getting fibre access to

the end consumer, there will be few if any uses for this technology, with all its

drawbacks, in the future.

102

Acronyms

SDN software-defined networking 13

OF OpenFlow . 27

ONF Open Networking Foundation 31

NFV network function virtualization 2

CPU central processing unit . 4

VM virtual machine . 3

OS operating system . 3

RAM random access memory . 4

I/O input/output . 12

KVM kernel virtual machine monitor 6

VMM Virtual Machine Monitor 6

MMU memory management unit 8

NIC network interface card . 9

PCI Peripheral Component Interconnect 10

VT Intel virtualization technology 10

APICv Advanced Programmable Interrupt Controller virtualization . 11

SLAT Second Level Address Translation 11

EPT Extended Page Tables . 11

IOMMU I/O memory management unit 12

DMA direct memory access . 12

BIOS Basic Input/Output System 12

ATS Address Translation Service 13

PRI Page Request Interface . 13

ACS Access Control Services . 13

103

Acronyms

VMD-q virtual machine device queues 13

QoS Quality of Service . 13

SR-IOV single root i/o virtualization 14

PCIe Peripheral Component Interconnect Express 14

PF physical function . 14

VF virtual function . 14

GUI graphical user interface . 15

CLI command line interface . 15

XML eXtensible Markup Language 15

VW virtual workspace . 49

PW physical workspace . 49

SVM student VM . 52

IVM infrastructure VM . 52

INI infrastructure network interface 54

LVM logical volume manager . 59

SNMP Simple Network Management Protocol 28

NETCONF NETwork CONFiguration protocol 30

MAC media access control . 29

PPP Point to Point Protocol . 24

MPLS MultiProtocol Label Switching 18

API application programming interface 29

REST representational state transfer 29

NBI northbound interface . 29

SBI southbound interface . 30

YANG yet another next generation 30

RPC remote procedure call . 30

IETF Internet Engineering Task Force

LISP Locator/Identified Separation Protocol 18

DSL digital subscriber line . 22

LTE Long-Term Evolution . 22

P4 Programming Protocol-Independent Packet Processor 27

104

PISA Protocol Independent Switch Architecture 32

IO Input/Output . 6

IP Internet Protocol . 29

SFC Service Function Chaining 2

CICD Continous Integration / Continous Deployment 48

BNG Border Network Gateway 22

MPTCP Multipath TCP . 22

PBLB Packet-based Load balancing

FBLB Flow-based Load balancing

LCP Link Control Protocol . 24

VIF Virtual Interface . 39

NVM Node VM . 39

EB Experiment Bridge . 39

AVM Auxiliary VM . 39

EVM Experiment VM . 39

MVM Management VM . 39

MB Management Bridge . 39

VITO VIrtual Testbed Orchestrator 37

PW Physical Workspace . 49

VW Virtual Workspace . 49

IS Infrastructure Services . 49

SVM Student VM . 52

IVM Infrastructure VM . 52

INI Infrastructure Network Interface 54

TBF Token Bucket Filter . 42

105

Bibliography and References

Bibliography of the Author

— Conference Papers —

[1] A. Stockmayer, M. Schmidt, and M. Menth, “jLISP: An Open, Modular, and Extensible Java-

Based LISP Implementation,” in International Teletraffic Congress, Würzburg, Germany, Sep.

2016.

[2] A. Stockmayer, C. Kindermann, and M. Menth, “VITO: VIrtual Testbed Orchestration for Au-

tomation of Networking Experiments,” in Value Tools, Venice, Italy, Dec. 2017.

[3] B. Germann, M. Schmidt, A. Stockmayer, and M. Menth, “OFFWall: A Static OpenFlow-Based

Firewall Bypass,” in 11th DFN-Forum Kommunikationstechnologien, June 2018.

[4] M. Schmidt, A. Stockmayer, F. Heimgaertner, and M. Menth, “A semi-virtualized testbed cluster

with a centralized server for networking education),” in International Teletraffic Congress, Sept

2018.

[5] A. Stockmayer, S. Hinselmann, M. Häberle, and M. Menth, “Service function chaining based

on segment routing using p4 and sr-iov (p4-sfc),” in High Performance Computing, H. Jagode,

H. Anzt, G. Juckeland, and H. Ltaief, Eds. Cham: Springer International Publishing, 2020, pp.

297–309.

— Others —

[6] M. Menth, A. Stockmayer, and M. Schmidt, “LISP Hybrid Acces,” draft-menth-lisp-ha-00,

Internet Engineering Task Force, Jan. 2015. [Online]. Available: https://tools.ietf.org/id/

draft-menth-lisp-ha-00.txt

[7] Y. Qu, A. Cabellos-Aparicio, R. Moskowitz, B. Liu, and A. Stockmayer, “Gap Analysis

for Identity Enabled Networks,” Internet Engineering Task Force, Internet-Draft draft-

xyz-ideas-gap-analysis-00, Jul. 2017. [Online]. Available: https://datatracker.ietf.org/doc/

draft-xyz-ideas-gap-analysis/00/

107

Bibliography and References

General References

[8] VMWare, “VMWare VMotion,” https://www.vmware.com/products/vsphere/vmotion.html.

[9] Red Hat, “libvirt: The Virtualization API,” http://libvirt.org, 2012.

[10] The Linux Foundation, “Xen Project,” https://xenproject.org/.

[11] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,” ACM SIGOPS Operating

Systems Review - Research and developments in the Linux kernel, vol. 42, no. 5, pp. 95–103,

2008.

[12] M. Jones, “Virtio: An I/O virtualization framework for Linux,” https://www.ibm.com/

developerworks/library/l-virtio/, 2010.

[13] B. McLellan, “KVM Virtio network performance,” http://blog.loftninjas.org/2008/10/22/

kvm-virtio-network-performance/, 2008.

[14] T. linux Kernel team, “Linux control groups,” http://man7.org/linux/man-

pages/man7/cgroups.7.html.

[15] T. linux Kernel team, “Network Name Spaces,” http://man7.org/linux/man-pages/man8/ip-

netns.8.html.

[16] Docker Inc., “Docker,” https://www.docker.com/.

[17] D. Lezcano, S. Hallyn, S. Graber et al., “Linux Containers,” https://linuxcontainers.org/, 2008.

[18] Intel Corp., “Intel Virtualization Technology (VT-x),” http://www.intel.com/content/www/us/en/

virtualization/virtualization-technology/intel-virtualization-technology.html, 2006.

[19] Intel Corp., “APIC Virtualization Performance Testing and Iozone,” https://software.intel.com/

en-us/blogs/2013/12/17/apic-virtualization-performance-testing-and-iozone, 2013.

[20] Intel Corp., “Technology Brief: Intel Microarchitecture Nehalem Virtualization Technology,” ttp:

//download.intel.com/business/resources/briefs/xeon5500/xeon_5500_virtualization.pdf, 2009.

[21] VMware, Inc., “Performance Evaluation of Intel EPT Hardware Assist,” https://www.vmware.

com/pdf/Perf_ESX_Intel-EPT-eval.pdf, 2008-2009.

[22] Intel Corp., “Intel Virtualization Technology for Directed I/O (VT-d) Architecture Spec-

ification,” http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/

vt-directed-io-spec.html, 2012.

[23] PCI SIG, “Root Complex Integrated Endpoints and IOV Updates,” http://pcisig.com/sites/

default/files/specification_documents/ECN__Integrated_Endpoints_and_IOV_updates__19%

20Nov%202015_Final.pdf, 2015.

108

Bibliography and References

[24] Intel Corp., “Intel Virtualization Technology for Connectivity (VT-c),” http://www.intel.com/

content/www/us/en/network-adapters/virtualization.html, 2012.

[25] Intel LAN Access Division, “Intel VMDq Technology,” Intel Whitepaper, Intel Corp., Whitepa-

per, 2008.

[26] PCI SIG, “Single Root I/O Virtualization and Sharing Specification 1.1,” http://www.pcisig.com/

specifications/iov/single_root/, 2010.

[27] A. Kivity et al., “kvm: the Linux Virtual Machine Monitor,” in Linux Symposium, vol. 1, 2007,

pp. 225–230.

[28] F. Bellard and QEMU team, “QEMU – the FAST! processor emulator,” http://wiki.qemu.org/

ChangeLog/2.8, 2016.

[29] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,” Internet

Requests for Comments, RFC Editor, RFC 3031, January 2001, http://www.rfc-editor.org/rfc/

rfc3031.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3031.txt

[30] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The locator/id separation protocol (lisp),”

Internet Requests for Comments, RFC Editor, RFC 6830, January 2013, http://www.rfc-editor.

org/rfc/rfc6830.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6830.txt

[31] N. Leymann, B. Decraene, C. Filsfils, M. Konstantynowicz, and D. Steinberg, “Seamless mpls

architecture,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-mpls-seamless-mpls-07,

June 2014, http://www.ietf.org/internet-drafts/draft-ietf-mpls-seamless-mpls-07.txt. [Online].

Available: http://www.ietf.org/internet-drafts/draft-ietf-mpls-seamless-mpls-07.txt

[32] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions for multipath

operation with multiple addresses,” Internet Requests for Comments, RFC Editor, RFC

6824, January 2013, http://www.rfc-editor.org/rfc/rfc6824.txt. [Online]. Available: http:

//www.rfc-editor.org/rfc/rfc6824.txt

[33] N. Leymann, C. Heidemann, M. Zhang, B. Sarikaya, and M. Cullen, “Huawei’s gre tunnel bond-

ing protocol,” Internet Requests for Comments, RFC Editor, RFC 8157, May 2017.

[34] M. Menth, A. Stockmayer, and M. Schmidt, “Lisp hybrid access,” Work-

ing Draft, IETF Secretariat, Internet-Draft draft-menth-lisp-ha-00, July 2015, http:

//www.ietf.org/internet-drafts/draft-menth-lisp-ha-00.txt. [Online]. Available: http://www.ietf.

org/internet-drafts/draft-menth-lisp-ha-00.txt

[35] X. Wei, C. Xiong, and Ed, “Mptcp proxy mechanisms,” Working Draft,

IETF Secretariat, Internet-Draft draft-wei-mptcp-proxy-mechanism-02, June 2015, http:

//www.ietf.org/internet-drafts/draft-wei-mptcp-proxy-mechanism-02.txt. [Online]. Available:

http://www.ietf.org/internet-drafts/draft-wei-mptcp-proxy-mechanism-02.txt

109

Bibliography and References

[36] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “On Load Distribution over Multipath Net-

works,” IEEE Communications Surveys & Tutorials, vol. 14, no. 3, pp. 662 – 680, 2012.

[37] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The ppp multilink protocol (mp),”

Internet Requests for Comments, RFC Editor, RFC 1990, August 1996.

[38] 802.1AX: Link Aggregation, LAN/MAN Standards Committee of the IEEE Computer Society,

2014.

[39] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable striping protocol,”

SIGCOMM Comput. Commun. Rev., vol. 26, no. 4, pp. 131–141, Aug. 1996. [Online].

Available: http://doi.acm.org/10.1145/248157.248169

[40] T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic Routing Encapsulation

(GRE),” RFC 2784, Mar. 2000. [Online]. Available: https://rfc-editor.org/rfc/rfc2784.txt

[41] J. Heinanen and R. Guerin, “A single rate three color marker,” Internet Requests for Comments,

RFC Editor, RFC 2697, September 1999.

[42] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and Dynamics of Hash-Based Load Bal-

ancing Algorithms for Multipath Internet Routing,” in IEEE International Conference on Broad-

band Communication, Networks, and Systems (BROADNETS), San Jose, CA, USA, Oct. 2006.

[43] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and Dynamics of Multi-Stage Load Bal-

ancing for Multipath Internet Routing,” in IEEE International Conference on Communications

(ICC), Glasgow, Scotland, UK, Jun. 2007.

[44] R. Stewart, “Stream control transmission protocol,” Internet Requests for Comments,

RFC Editor, RFC 4960, September 2007, http://www.rfc-editor.org/rfc/rfc4960.txt. [Online].

Available: http://www.rfc-editor.org/rfc/rfc4960.txt

[45] P. P. D. Amer, M. Becke, T. Dreibholz, N. Ekiz, J. Iyengar, P. Natarajan, R. R.

Stewart, and M. Tüxen, “Load Sharing for the Stream Control Transmission Protocol

(SCTP),” Internet Engineering Task Force, Internet-Draft draft-tuexen-tsvwg-sctp-multipath-

17, Jan. 2019, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/

draft-tuexen-tsvwg-sctp-multipath-17

[46] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, “Multipath quic: A

deployable multipath transport protocol,” in 2018 IEEE International Conference on Communi-

cations (ICC), May 2018, pp. 1–7.

[47] J. D. Case, M. Fedor, M. L. Schoffstall, and J. R. Davin, “Simple network management protocol

(snmp),” Internet Requests for Comments, RFC Editor, STD 15, May 1990, http://www.

rfc-editor.org/rfc/rfc1157.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1157.txt

[48] W. Braun and M. Menth, “Software-defined networking using openflow: Protocols, applications

and architectural design choices,” Future Internet, vol. 6, no. 2, pp. 302–336, 2014.

110

Bibliography and References

[49] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uh-

lig, “Software-Defined Networking: A Comprehensive Survey,” http://arxiv.org/abs/1406.0440,

2014.

[50] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker, “Fre-

netic: A Network Programming Language,” in In Proceedings of the ACM SIGPLAN Interna-

tional Conference on Functional Programming. Tokyo, Japan, Sep. 2011.

[51] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing Software-Defined

Networks,” in In Proceedings of the USENIX Syposium on Networked Systems Design & Im-

plementation (NSDI). Lombard, USA, 2013, pp. 1–14.

[52] A. Voellmy, H. Kim, and N. Feamster, “Procera: A Language for High-Level Reactive Net-

work Control,” in ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking

(HotSDN). Helsinki, Finland, Oct. 2012, pp. 43–48.

[53] F. M. Facca, E. Salvadori, H. Karl, D. R. Lopez, P. A. A. Gutierrez, D. Kostic, and R. Riggio, “Ne-

tIDE: First Steps towards an Integrated Development Environment for Portable Network Apps,”

in European Workshop on Software Defined Networks (EWSDN). Berlin, Germany, 2013, pp.

105–110.

[54] Open Networking Foundation members, “OpenFlow Switch Specification,” The Open Network-

ing Foundation.

[55] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network Configuration Protocol

(NETCONF),” RFC 6241 (Proposed Standard), Internet Engineering Task Force, Jun. 2011.

[Online]. Available: https://tools.ietf.org/html/rfc6241.txt

[56] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and et al., “P4: Programming protocol-independent packet processors,”

SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014. [Online]. Available:

https://doi.org/10.1145/2656877.2656890

[57] Cisco and/or its affiliates, “OpFlex: An Open Policy Protocol,” Cisco Whitepaper, Cisco,

Whitepaper, 2014.

[58] M. Smith, R. Adams, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbacher, “OpFlex

Control Protocol,” Internet-Draft (Informational), Internet Engineering Task Force, Nov. 2014.

[Online]. Available: https://tools.ietf.org/html/draft-smith-opflex-01

[59] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configuration Protocol

(NETCONF),” RFC 6020 (Proposed Standard), Internet Engineering Task Force, Oct. 2010.

[Online]. Available: http://www.ietf.org/rfc/rfc6020.txt

[60] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and J. Halpern,

“Forwarding and Control Element Separation (ForCES) Protocol Specification,” RFC 5810

111

Bibliography and References

(Proposed Standard), Internet Engineering Task Force, Mar. 2010. [Online]. Available:

http://www.ietf.org/rfc/rfc5810.txt

[61] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and Control Element Separation

(ForCES) Framework,” RFC 3746 (Informational), Internet Engineering Task Force, Apr. 2004.

[Online]. Available: http://www.ietf.org/rfc/rfc3746.txt

[62] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, “The SoftRouter Architec-

ture,” in In Proceedings of the ACM HotNets. San Diego, USA, Nov. 2004.

[63] P. Quinn and T. Nadeau, “Problem statement for service function chaining,” Internet Requests

for Comments, RFC Editor, RFC 7498, April 2015, http://www.rfc-editor.org/rfc/rfc7498.txt.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc7498.txt

[64] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (nsh),” Internet Requests for Com-

ments, RFC Editor, RFC 8300, January 2018.

[65] A. Farrel, S. Bryant, and J. Drake, “An mpls-based forwarding plane for service function chain-

ing,” Internet Requests for Comments, RFC Editor, RFC 8595, June 2019.

[66] F. Clad, X. Xu, C. Filsfils, D. Bernier, C. Li, B. Decraene, S. Ma, C. Yadlapalli,

W. Henderickx, and S. Salsano, “Service programming with segment routing,” Working

Draft, IETF Secretariat, Internet-Draft draft-ietf-spring-sr-service-programming-05, September

2021, https://www.ietf.org/archive/id/draft-ietf-spring-sr-service-programming-05.txt. [Online].

Available: https://www.ietf.org/archive/id/draft-ietf-spring-sr-service-programming-05.txt

[67] ETSI, “ETSI Mano,” https://www.etsi.org/technologies/open-source-mano.

[68] T. L. Foundation, “OPNFV,” https://www.opnfv.org.

[69] Amazon, “tcpdump,” https://aws.amazon.com.

[70] Microsoft, “Microsoft azure,” https://azure.microsoft.com/.

[71] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan, T. Wood,

M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic backpressure and scheduling for nfv service

chains,” in Proceedings of the Conference of the ACM Special Interest Group on Data

Communication, ser. SIGCOMM ’17. New York, NY, USA: Association for Computing

Machinery, 2017, p. 71–84. [Online]. Available: https://doi.org/10.1145/3098822.3098828

[72] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, and L. N. Bhuyan, “P4nfv:

P4 enabled nfv systems with smartnics,” in 2019 IEEE Conference on Network Function Virtu-

alization and Software Defined Networks (NFV-SDN), 2019, pp. 1–7.

[73] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, “P4sc: Towards high-performance service

function chain implementation on the p4-capable device,” in 2019 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), 2019, pp. 1–9.

112

Bibliography and References

[74] T. N. Team, “Direct Code Execution,” https://www.nsnam.org/about/projects/direct-code-

execution/.

[75] Tetcos, “NetSim,” https://www.tetcos.com/.

[76] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping for Software-

defined Networks,” in ACM HotNets, 2010.

[77] IEEE Computer Society, “IEEE 802.1D Standard,” http://standards.ieee.org/getieee802/download/802.1D-

1998.pdf, 2004.

[78] Simon Kelley, “dnsmasq,” http://www.thekelleys.org.uk/dnsmasq/doc.html, 2017.

[79] G. Kroah-Hartman, “udev – A Userspace Implementation of devfs,” in Linux Symposium, 2003.

[80] S. Shepler et al., “Network File System (NFS) version 4 Protocol,” RFC 3530, Apr. 2003.

[81] Simson L. Garfinkel, “tcpflow,” https://github.com/simsong/tcpflow, 2017.

[82] tcpdump team, “tcpdump,” http://www.tcpdump.org/.

[83] QEMU Team, “qcow2,” http://git.qemu-project.org, 2017.

[84] The Linux foundation, “tso,” https://wiki.linuxfoundation.org/networking/gso, 2017.

[85] A. Kuznetsov and S. Hemminger, “iproute2: Utilities for Controlling TCP/IP Networking and

Traffic,” 2012.

[86] The Linux foundation, “netem,” https://wiki.linuxfoundation.org/networking/netem, 2017.

[87] The Linux foundation, “tbf,” https://linux.die.net/man/8/tc-tbf, 2017.

[88] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”

IEEE/ACM Trans. Netw., Aug. 1993.

[89] Daniel Stenberg , “cURL,” https://curl.haxx.se/, 2017.

[90] busybox developer team, “BusyBox,” https://busybox.net/, 2015.

[91] K. Kawaguchi, “Jenkins,” https://www.jenkins.io, 2020.

[92] G. Inc., “Gitlab CI,” https://docs.gitlab.com/ee/ci/.

[93] J. Liebeherr and M. E. Zarki, Mastering Networks – An Internet Lab Manual. Pearson Educa-

tion, 2003.

[94] M. Schmidt, F. Heimgaertner, and M. Menth, “Demo: A Virtualized Lab Testbed with Physical

Network Outlets for Hands-on Computer Networking Education,” in ACM SIGCOMM, 2014.

[95] M. Schmidt, F. Heimgaertner, M. Hoefling, and M. Menth, “A Virtualized Testbed with Physical

Outlets for Hands-on Computer Networking Education,” in ACM SIGITE, 2014.

113

Bibliography and References

[96] IEEE 802.1Q: Virtual Bridged Local Area Networks, LAN/MAN Standards Committee of the

IEEE Computer Society, 2003.

[97] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The Protocol,” RFC

4511 (Proposed Standard), Internet Engineering Task Force, Jun. 2006. [Online]. Available:

http://www.ietf.org/rfc/rfc4511.txt

[98] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck,

“Network File System (NFS) version 4 Protocol,” RFC 3530 (Proposed Standard), Internet

Engineering Task Force, Apr. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3530.txt

[99] L. Kanies, “Puppet: Next-Generation Configuration Management,” The USENIX Magazine,

vol. 31, no. 1, pp. 19–25, 2006.

[100] Theodore Ts’o, “e2fsprogs,” https://sourceforge.net/projects/e2fsprogs/, 2016.

[101] Red Hat, “Logical Volume Manager (LVM),” https://sourceware.org/lvm2/, 2016.

[102] J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and Applicability Statements

for Internet Standard Management Framework,” RFC 3410 (Proposed Standard), Internet

Engineering Task Force, Dec. 2002. [Online]. Available: https://tools.ietf.org/html/rfc3410.txt

[103] Gentoo Foundation, “Gentoo Linux,” http://www.gentoo.org, 2017.

[104] Internet Systems Consortium, “ISC DHCP,” https://www.isc.org/downloads/dhcp/.

[105] R. Hawkins et al., “Linux IPv6 Router Advertisement Daemon (radvd),” http://www.litech.org/

radvd/, 2016.

[106] Internet Systems Consortium, “BIND,” https://www.isc.org/downloads/bind/.

[107] The OpenLDAP project, “openldap,” http://www.openldap.org/.

[108] Network Time Foundation, “The Network Time Protocol Project,” http://www.ntp.org/.

[109] Sysoev, Igor and Nginx, Inc., “nginx,” https://www.nginx.com/.

[110] M. Pahl, “The ilab concept: Making teaching better, at scale,” IEEE Communications Magazine

(Commag), vol. 55, no. 11, pp. 178–185, 2017.

[111] M. Gutschke et al., “shellinabox,” https://github.com/shellinabox/shellinabox.

[112] The LXQt Team, “The Lightweight Qt Desktop Environment,” http://lxqt.org/.

[113] B. Gurudoss, P. Jakma, T. Teräs, G. Troxel, and Quagga developer team, “Quagga Routing Suite,”

http://www.nongnu.org/quagga/.

[114] Red Hat, “SPICE,” http://www.spice-space.org/, 2012.

[115] A. Kuznetsov and S. Hemminger, “tc: Show/Change traffic control settings,” 2012.

[116] Giuseppe Scrivano and wget developer team, “GNU Wget,” https://www.gnu.org/s/wget/.

114

Bibliography and References

[117] B. Perens, E. Andersen, R.Landley, and D. Vlassenko, “busybox httpd,” https://busybox.net/.

[118] P. Eardley, “Metering and marking behaviour of pcn-nodetockm,” Internet Requests for Com-

ments, RFC Editor, RFC 5670, November 2009.

[119] iperf3 team, “iperf3,” http://software.es.net/iperf/.

[120] Aaron Wood, “Iperf Microbursts Issue,” http://burntchrome.blogspot.com/2016/09/iperf3-and-

microbursts.html, 2016.

[121] 802.1ab: Provider Bridges, LAN/MAN Standards Committee of the IEEE Computer Society,

2005.

115

	Introduction
	Thesis Outline
	Scientific Contribution

	Background
	Virtualisation
	Advantages of Virtualisation
	Hypervisors
	Software-Based Virtualisation
	Virtualisation Tools

	Overlay Routing
	Principles
	MPLS

	Hybrid Access
	Hybrid Access principles
	Related Work

	Software-Defined Networking
	SDN Principles
	Northbound Interface
	Southbound Interface
	OpenFlow
	P4
	Network Function Virtualisation / Service Function Chaining

	Testbeds
	VITO
	Motivation
	Testbed orchestrator
	Link modelling
	CI/CD

	IP
	Concept
	A Lab Orchestrator for Semi-Virtualized Testbed clusters (LOST)
	Implementation

	Hybrid Access
	Load-balancing Concepts for Heterogenous Links
	Performance Comparison of MPTCP and PBLB
	Flow-Based Load Balancing

	Performance Evaluation of FBLB

	Software Defined Networking
	Architecture of P4-SFC
	Implementation of the SFC Ingress Node
	Transparent and Efficient VNF Integration on Hosts
	P4-SFC Orchestrator

	Conclusion
	Acronyms
	Bibliography and References
	Index

