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Abstract

River water quality is under heavy impact from anthropogenic activities. Organic anthro-
pogenic pollutants that are present at low concentrations in river water and range from
nanogram per liter to microgram per liter are categorized as organic micropollutants. Tra-
ditional wastewater treatment plants (WWTPs) have limited capabilities to efficiently re-
move micropollutants before releasing treated water into the receiving rivers. WWTPs
are one of the main point sources of micropollutants in rivers. Hence, the micropollutants
fromWWTPs directly impact the receiving waterbodies, particularly in small rivers where
the surrounding areas are densely populated, and the WWTPs’ effluents make up a con-
siderable amount of the river discharge during baseflow conditions. The threat to river
water quality from the presence of micropollutants in rivers is elevated during heavy rain
events. Untreated wastewater enters rivers at larger quantities than during the baseflow
conditions. Storms also provide micropollutants with various sources and dispersive entry
routes into the receiving water. The level of impact from micropollutants is dictated by
their fate in rivers. Therefore when we evaluate, monitor, and improve river water qual-
ity, it becomes crucial to understand the source(s), and the in-stream reactive transport
processes of micropollutants, which characterize their fate in rivers.

Micropollutants present in river water are composed of a wide range of substances,
collectively referred to as micropollutant mixtures. It is impossible to identify every indi-
vidual substance in the mixture. Previous studies used 1) chemical analysis to investigate
the individually detected micropollutants in the mixture with regards to their concentra-
tions; 2) in vitro bioassays to quantify the overall effects of themixture with regards to their
endpoints; 3) numerical models to study the in-stream processes of single substances.

The goal of this thesis is to provide a quantitative understanding of the in-stream pro-
cesses of the micropollutant mixture effects, which is still lacking in previous studies. To
fill this knowledge blank, I hypothesized that the in-stream processes of the mixture effects
are governed by the advection-dispersion-reaction equation (ADR). I tested the hypothesis
by investigating the following three perspectives:

1) the in-stream processes of the mixture effects, for which I developed a convolution-
based one-dimensional reactive transport model that is computationally cheap and is suit-
able to couple with Metropolis–Hastings Markov chain Monte Carlo algorithm for pa-
rameter estimates and computing ensemble model results. I parameterized the model to
quantify the in-stream processes of individual micropollutants and their mixture in the
Steinlach river near Tübingen, Southern Germany. The results show that our model pa-
rameterization can characterize the in-stream processes of the individual micropollutants
and their mixture well. The low computational cost of the convolution enables modeling
the fate of large numbers of substances, as well as many iterations of model runs during
the Monte Carlo process.

2) the transferability of the ADR under different flow conditions for themixture effects,
for which I further developed a partial differential equation (PDE)-based one-dimensional
transient reactive transport model and applied the model to a storm event, during which
the mixture effects were sampled from the Ammer river, Tübingen, Southern Germany
and quantified in in vitro bioassays. I introduced the stochastic elements into the model by
using Gaussian Process Regression (GPR) to construct the model inputs. The conditional
realizations from GPR enabled the model to efficiently generate ensemble results with de-
terministically calibrated parameter values while explicitly expressing the known physical
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processes. I showed GPR is a robust method to characterize the temporal in-stream dy-
namics of the mixture effects.

3) the potential to combine numerical approaches with machine learning methods to
solve the ADR and estimate parameter values for the mixture effects, for which I applied
the deep learning-based Bayesian optimization method, simulation-based inference (SBI),
to obtain the parameter posterior distributions of a PDE-based one-dimensional reactive
transport model. I also applied the physics-informed neural network (PINN) to obtain the
solution of the same model. The two approaches were applied to model the in-stream
processes of mixture effects sampled in the Ammer river during the baseflow conditions.
I compared the results of modeled mixture using SBI coupled with standard PDE model
to that obtained with PINN. I showed the potential of deep learning methods aiding the
process-based reactive transport modeling, demonstrating the advantages and disadvan-
tages of both approaches, concluding that the preference of one over the other is a heavily
objective-oriented choice.

To my knowledge, this is the first work that uses process-based models to quantita-
tively characterize the in-stream processes of the organic micropollutant mixture effects.
My key results show the applicability of the mass conservation law to mixture effects
quantified in in vitro bioassays, approving the validity of using mixture effects as a novel
state variable for the future water quality modeling, as well as highlighting the possibility
and advantages to merge traditional process-based models with deep learning methods for
the future study on mixture effects.
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Zusammenfassung

Die Qualität von Flusswasser wird stark von anthropogenen Aktivitäten beeinflusst. Or-
ganische anthropogene Schadstoffe, die in Flüssen mit geringen Konzentrationen im
Bereich von Nanogramm pro Liter bis Mikrogramm pro Liter vorkommen, werden als
Mikroschadstoffe bezeichnet. Die Möglichkeiten von traditionellen Kläranlagen (KKAs),
Mikroschadstoffe effizient zu entfernen, bevor das behandelte Wasser in Flüsse eingeleitet
wird, sind begrenzt. KKAs sind eine der Hauptquellen für Mikroschadstoffe in Flüssen.
Unter Basisabflussbedingungen nimmt der Einfluss von Mikroschadstoffen aus KKAs auf
kleine Gewässer zu. Dies gilt vor allem für dicht besiedelte Gebiete, bei denen Kläran-
lagenabflüsse einen erheblichen Anteil des Flusswassers ausmachen. Die Gefährdung
der Flusswasserqualität durch das Vorhandensein von Mikroschadstoffen nimmt während
starker Regenereignisse zu. Unbehandeltes Abwasser gelangt dann in größeren Mengen
in die Flüsse als unter Basisabflussbedingungen. Stürme bieten Mikroschadstoffen außer-
dem verschiedene Quellen und Verbreitungspfade in die empfangenden Gewässer. Der
Schweregrad des Einflusses der Mikroschadstoffe ist von ihrem Verhalten in den Flüssen
abhängig. Daher ist es bei der Bestimmung, Überwachung und Verbesserung der Fluss-
wasserqualität entscheidend, die Quelle(n) und die flussinternen reaktiven Transport-
prozesse von Mikroschadstoffen zu verstehen, welche über ihr Schicksal in den Flüssen
entscheiden.

Mikroschadstoffe im Flusswasser bestehen aus einer breiten Palette von Substanzen,
die als Mikroschadstoffmischung bezeichnet wird. Es ist unmöglich, jede einzelne Sub-
stanz in der Mischung zu identifizieren. Frühere Studien verwendeten 1) chemische Anal-
ysen, um die individuell nachgewiesenen Mikroschadstoffe in der Mischung hinsichtlich
ihrer Konzentrationen zu untersuchen; 2) in vitro Bioassays, um die Gesamtwirkungen der
Mischung hinsichtlich ihrer Endpunkte zu quantifizieren; 3) numerische Modelle, um die
flussinternen Prozesse einzelner Substanzen zu untersuchen.

Diese Dissertation hat zum Ziel, ein quantitatives Verständnis der flussinternen
Prozesse der Mikroschadstoffmischungseffekte zu liefern, was in bisherigen Studien fehlt.
Um diese Wissenslücke zu schließen, bin ich davon ausgegangen, dass die flussinter-
nen Prozesse der Mischungseffekte von der Advektions-Diffusions-Reaktions-Gleichung
(ADR) bestimmt sind. Ich habe diese Hypothese mit den drei Ansätzen untersucht:

1) für die flussinternen Prozesse der Mischungseffekte habe ich ein eindimension-
ales reaktives Transportmodell auf Basis der mathematischen Faltung entwickelt, das
wenig Rechenressourcen benötigt und sich gut mit dem Metropolis-Hastings Markov-
Ketten-Monte-Carlo Algorithmus koppeln lässt. Dieser erlaubt Parameterabschätzun-
gen und die Berechnung von Ensemblemodellergebnissen. Ich habe die Parameter des
Modells angepasst, um die flussinternen Prozesse einzelner Mikroschadstoffe und ihrer
Mischung im Fluss Steinlach bei Tübingen in Süddeutschland zu quantifizieren. Die
Ergebnisse zeigen, dass die Modellparametrisierung die flussinternen Prozesse der einzel-
nen Mikroschadstoffe und ihrer Mischung gut abbilden kann. Aufgrund des geringen
Rechenaufwands der Faltung kann bei der Modellierung eine große Anzahl von Sub-
stanzen berücksichtigt werden, sowie eine hohe Anzahl an Modelliterationen im Monte-
Carlo-Prozesses erreicht werden.

2) die Anwendbarkeit der ADR auf Mischungseffekte unter verschiedenen Abflussbe-
dingungen, wofür ich ein eindimensionales, instationäres reaktives Transportmodell auf
der Grundlage partieller Differentialgleichungen (PDE) entwickelt habe. Mit diesem Mod-

V



ell habe ich ein Unwetterereignis im Fluss Ammer in Tübingen (Süddeutschland) simuliert,
um die Auswirkungen von Schadstoffmischungen auf in vitro-Bioassays zu bestimmen.
DasModell berücksichtigt dabei stochastischeModelleingabewerte über Gauß-Prozess Re-
gression (GPR). Die konditionierten Realisationen aus der GPR ermöglichen es dem Mod-
ell, effizient Ensembles mit deterministisch kalibrierten Parameterwerten zu erzeugen und
gleichzeitig die bekannten physikalischen Prozesse explizit zu berücksichtigen. Ich habe
gezeigt, dass GPR eine robuste Methode ist, um die zeitliche Dynamik der flussinternen
Mischungseffekte zu charakterisieren.

3) die Möglichkeit, numerische Ansätze mit Methoden maschinellen Lernens
zu kombinieren, um die ADR zu lösen und Parameterwerte für Mischungseffekte
abzuschätzen. Dafür habe ich die simulationsbasierte Inferenz (SBI), eine bayesianische
Optimierungsmethode basierend auf Deep Learning, angewendet, um die A-posteriori-
Wahrscheinlichkeitsverteilungen der Parameter eines PDE-basierten eindimensionalen
reaktiven Transportmodells zu erhalten. Ich habe dasselbe Modell außerdem über ein
physikalisch basiertes neuronales Netzwerk (PINN) lösen lassen. Ich habe beide Metho-
den auf Daten zu Mischungseffekten im Fluss Ammer angewendet, die unter Basisabfluss-
bedingungen gewonnen wurden. Ich habe die modellierten Mischungsergebnisse aus
dem SBI-Standard-PDE-Modell mit denen aus dem PINN-Ansatz verglichen. Ich habe das
Potenzial von Deep Learning methoden zur Unterstützung der prozessbasierten reaktiven
Transportmodellierung gezeigt und die Vor- und Nachteile beider Ansätze herausgear-
beitet. Ich komme dabei zu dem Schluss, dass die Präferenz für einen der beiden Ansätze
stark von der jeweiligen Fragestellung abhängt.

Nach meinemWissen ist dies die erste Arbeit, die prozessbasierte Modelle verwendet,
um die flussinternen Prozesse der Mischungseffekte organischer Mikroschadstoffe quan-
titativ zu charakterisieren. Meine wichtigsten Ergebnisse zeigen die Anwendbarkeit des
Massenerhaltungsgesetzes auf Mischungseffekte, die mit in vitro Bioassays quantifiziert
werden. Die Ergebnisse bestätigen die Gültigkeit der Verwendung von Mischungseffek-
ten als neue Zustandsvariable für die zukünftige Wasserqualitätsmodellierung. Sie beto-
nen auch die Möglichkeit und die Vorteile der Verknüpfung traditioneller prozessbasierter
Modelle mit Deep Learning methoden für zukünftige Untersuchungen zu Mischungseffek-
ten.

VI



Acknowledgments

It’s okay to struggle, but it’s not okay to give up.
Gabriele Ivy Grunewald

1986 – 2019

Looking at the finally compiled PDF file, I truly think this is a long and bumpy jour-
ney. There are a thousand difficulties from scientific perspectives, and there are another
thousand from somewhere else. But only in the darkness, can men see the stars. Through
all the difficulties and time, I definitely learned a lot, and I think I am a slightly better
scientist now than when I started. I am grateful for the years in the beautiful Tübingen.
Vielen Dank, Tübingen!

However, I stood on the shoulders of others. Without their support, patience, and
encouragement, I would not be here today.

I thank my two supervisors, Christiane Zarfl and Beate Escher, for their detailed yet
different genres of feedback giving throughout the years. One is always gentle and the
other brutally critical. However, missing one of the two, the paper would not be published.
I also thank Holger Pagel for being my external examiner, and I hope our scientific paths
will cross in the future.

I thank my colleagues in the environmental systems analysis group including Ana,
Jonas, Lana, Matthias, and Rebecca. I enjoyed our weekly group meetings and our diverse
scientific backgrounds.

I thank Olaf Cirpka for acquiring the grant for forming the Research Training Group
‘Integrated Hydrosystem Modelling’ (RTG), Monika Jekelius for managing all the detailed
yet important paperworks in RTG.

Max Müller, thanks for providing me the invaluable laboratory data used in my model,
and for your support at some of the most difficult times at the early stage of my Ph.D.. I
still remember you told me to ‘chin up’!

Yan Liu, thanks for your help when I started my Ph.D., even during some of your
busiest days.

Reynold, thank you for being a big brother at the beginning of my Ph.D.. I felt your
support even when you were not smiling. But the strongest support comes when you are
not showing.

Gaëlle and Victor, thanks for being cool office mates and your emotional support dur-
ing the lockdown!

Al, thanks for proof-reading my thesis and hanging out!
Cora, thanks for your tips about the transient model!
Marie-Madeleine, thanks for translating my abstract!
Clarissa, big thanks for your support, encouragement, help in the field, discussing the

results, writing, talking, and everything, throughout the years!
Amir and Binlong, you are the best office mates I could ever ask for. Thanks for all the

intensive scientific and non-scientific discussions, and intensive laughs! I wish we knew
each other a couple of years earlier. But more importantly, you were there when I felt the
lowest.

I want to thank friends on the sixth floor: Anh, Luise, Michał, Natalia, Steffi and Felix
plus small Tim and Jakob, Timm, and Simon! We had some great time together and you
carried me through the tough ones.

VII



I am extremely grateful and proud to be amember of the third generation of the RTG. It
was the smartest group of people I have ever met, yet no one was arrogant in the slightest
way. Great scientific minds without those attitude. The most helpful colleagues anyone
could ever ask for. Because of you, I have an extremely high standard to match with. You
also made me feel that I was not alone, especially during the pandemic. So thank you:
Anna, Elena, Hemanti, Ishani, Jonas, Julia, Luciana, Michelle, and Philipp, for teaching me
the basics: being scientific, modest, and kind!

I also want to thankmy friends outside of the institute, Dario, Davide, Julien, Kübra, LJ,
Lorenzo, Martina, andOksana. For some of you, wemet at the very beginning in Tübingen,
some back in Boulder, and I cherish our friendship spanning over the years. For all of you,
you gave me shelters when science became too harsh.

At last I deeply thank and hug my mom and dad, for supporting me, the only kid, in
studying and living across the land and ocean since 2014. 爸，妈，多谢你们多年的支
持。太久不见，我很抱歉!

魏然
15.01.2024, Tübingen

VIII



Acronyms

ADR advection, dispersion and reaction equation.

ANN artificial neural network.

AS auto-sampler.

BME Bayesian model evidence.

CA concentration addition.

CEST central European summer time.

CI confidence interval.

DOC dissolved organic carbon.

EC effect concentration.

ECd electrical conductivity.

EU effect unit.

FDM finite difference method.

GPR Gaussian process regression.

IC inhibition concentration.

KDE kernel density estimation.

MH-MCMC Metropolis-Hastings Markov Chain Monte Carlo.

MS measuring station.

MSE mean squared error.

NPE neural posterior estimation.

NRMSE normalized root mean square error.

IX



ODE ordinary differential equation.

PAH polycyclic aromatic hydrocarbon.

PCP personal care product.

PDE partial differential equation.

PI posterior interval.

PINN physics-informed neural network.

REF relative enrichment factor.

SBI simulation-based inference.

TU toxic unit.

WWTPs wastewater treatment plants.

X



Contents

List of Figures XIV

List of Tables XVIII

List of Algorithms XIX

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hypothesis & Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Theory & Modeling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 The state variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Mass conservation and continuity equation . . . . . . . . . . . . . 6
1.3.3 One-dimensional reactive transport . . . . . . . . . . . . . . . . . . 6
1.3.4 Combining mixture effects with one-dimensional reactive trans-

port model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.5 Solving the one-dimensional reactive transport equation . . . . . . 7
1.3.6 Bayesian inference for parameter estimates . . . . . . . . . . . . . 7

1.4 Studied Rivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Modeling the dynamics of mixture toxicity and effects of organic micropollu-
tants in a small river under unsteady flow conditions 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Field campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Laboratory work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 ECd signals and unsteady flow . . . . . . . . . . . . . . . . . . . . 21
2.4.2 In-stream concentration and effect dynamics . . . . . . . . . . . . 22
2.4.3 Sources of micropollutants . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Modeling the processes and dynamics of the mixture effects of organic microp-
ollutants in a small river during a storm event 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Methods & Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

XI



3.2.1 Underlying data acquisition . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Discharge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Transport model: turbidity . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Reactive transport model: mixture effects (𝐸𝑈 bio) . . . . . . . . . . 37
3.2.5 Model input characterization . . . . . . . . . . . . . . . . . . . . . 37
3.2.6 Parameters estimation: Deterministic method . . . . . . . . . . . . 38

3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 The discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 The turbidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Ensemble model input . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 In-stream dynamics of mixture effect units and their fluxes . . . . 43
3.3.5 In-stream processes understandings. . . . . . . . . . . . . . . . . . 45

3.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Application of neural network aided reactive transport models to field data: in-
stream dynamics of the mixture effects of organic micropollutants 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Methods & Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Mixture effects field data acquisition . . . . . . . . . . . . . . . . . 51
4.2.2 The governing equation . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Solutions of the reactive transport models for the mixture effects . 52
4.2.4 Parameter estimates and forward runs for the numerical approach 55

4.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 SBI & GPR aided reactive transport . . . . . . . . . . . . . . . . . . 57
4.3.2 PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Methods selection: an objective-oriented choice . . . . . . . . . . . 61

4.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Summary 66
5.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

A Supplementary information for chapter 2 85
A.1 Upstream discharge estimation . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Model-aided field experimental design . . . . . . . . . . . . . . . . . . . . 86
A.3 Lagrangian sampling campaign . . . . . . . . . . . . . . . . . . . . . . . . 87
A.4 Electrical conductivity measurements correction . . . . . . . . . . . . . . . 90
A.5 Laboratory: chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.6 Discharge time-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.7 DOC and pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.8 Deterministic model: chemical concentration and mass flux . . . . . . . . . 94
A.9 Stochastic model: randomizing the starting points for the Markov chains . 96
A.10 time-series of experimental and modeled concentration . . . . . . . . . . . 96
A.11 time-series of experimental and modeled mass flux . . . . . . . . . . . . . 101
A.12 Effect units of the individual detected compounds and their effect unit fluxes 106
A.13 Toxic units of the individual detected compounds and their toxic unit fluxes 109

XII



A.14 Effect unit in the main channel: individual contributions to the mixture. . . 115
A.15 Toxic units in the main channel: individual contributions to the mixture. . 117
A.16 Effect units of the detected compounds mixture and their fluxes . . . . . . 118
A.17 Toxic units of the detected compounds mixture and their fluxes . . . . . . 119
A.18 Effect units of the whole bioactive mixture . . . . . . . . . . . . . . . . . . 120
A.19 Effect units fluxes of the whole bioactive mixture . . . . . . . . . . . . . . 121
A.20 Toxic units of the whole bioactive mixture . . . . . . . . . . . . . . . . . . 121
A.21 Toxic units fluxes of the whole bioactive mixture . . . . . . . . . . . . . . . 122
A.22 Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and

mean 𝑇𝑈bio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.23 Grab samples: concentration . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.24 Grab samples: effect unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.25 Grab samples: toxic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.26 Spatial variation of effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.27 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B Supplementary information for chapter 3 145
B.1 Field campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 The transient discharge: flood routing model . . . . . . . . . . . . . . . . . 146
B.3 Transfer functions for lateral inflow approximation. . . . . . . . . . . . . . 147
B.4 Transient velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.5 Electrical conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.6 Model input quantification: Gaussian process regression . . . . . . . . . . 149

C Supplementary information for chapter 4 151
C.1 The sampling site map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Prior and neural posterior distributions. . . . . . . . . . . . . . . . . . . . . 152
C.3 SBI & GPR aided reactive transport . . . . . . . . . . . . . . . . . . . . . . 153
C.4 Performance of SBI & GPR aided reactive transport models . . . . . . . . . 154
C.5 PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.6 Performance of PINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

XIII



List of Figures

1.1 Scheme of the overall approach . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Steinlach River sampling site . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Ammer River sampling site . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Computed unsteady flow during the sampling period. . . . . . . . . . . . . 22
2.2 𝐸𝑈chem,𝑖 and 𝐸𝑈chem,𝑖 fluxes of the two detected chemicals that were acti-

vated in AhR-CALUX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Contribution (%) of the mean effect units over the sampling period from

individual micropollutants to the whole mixture at auto-sampler 1 for the
bioassay AhR and PPAR𝛾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 𝐸𝑈 bio fluxes ensemble of four cell lines at MS2. . . . . . . . . . . . . . . . . 27
2.5 The effect units (EU) of grab samples . . . . . . . . . . . . . . . . . . . . . 28

3.1 Schematic of the study setup in the Ammer River . . . . . . . . . . . . . . 35
3.2 Discharge and turbidity dynamics in the Ammer River. . . . . . . . . . . . 39
3.3 Time-series signal of 𝐸𝑈 bio in the water phase . . . . . . . . . . . . . . . . 41
3.4 Initial condition distributions of 𝐸𝑈 bio in AhR-CALUX in water phase. . . 42
3.5 Modeled 𝐸𝑈 bio and 𝐸𝑈 bio fluxes. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Modeled mean 𝑇𝑈 bio and 𝑇𝑈 bio flux. . . . . . . . . . . . . . . . . . . . . . . 45

4.1 SBI flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Prior and posterior of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 1 and 2

from SBI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Modeled ensemble time-series for 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer at mid-

stream and downstream sites . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 2 . . . . . . . . . . . . . . . . . . 60
4.5 Space-time distributions of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 2 . . 63

A.1 Sampling map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Electrical conductivity data prior to the sampling . . . . . . . . . . . . . . 90
A.3 Electrical conductivity correction scheme . . . . . . . . . . . . . . . . . . . 91
A.4 Raw electrical conductivity data . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 Corrected electrical conductivity data . . . . . . . . . . . . . . . . . . . . . 92
A.6 Final electrical conductivity and water temperature data . . . . . . . . . . 92
A.7 Electrical conductivity: fitting modeled results to data . . . . . . . . . . . . 93
A.8 Modeled unsteady flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.9 Dissolved organic carbon and pH . . . . . . . . . . . . . . . . . . . . . . . 94
A.10 Modeled concentrations 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

XIV



A.11 Modeled concentrations 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.12 Modeled concentrations 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.13 Modeled concentrations 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.14 Modeled concentrations 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.15 Modeled concentrations 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.16 Modeled concentrations 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.17 Modeled concentrations 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.18 Modeled concentrations 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.19 Modeled concentrations 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.20 Modeled mass flux 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.21 Modeled mass flux 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.22 Modeled mass flux 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.23 Modeled mass flux 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.24 Modeled mass flux 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.25 Modeled mass flux 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.26 Modeled mass flux 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.27 Modeled mass flux 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.28 Modeled mass flux 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.29 Modeled mass flux 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.30 Modeled individual effect unit (𝐸𝑈chem,𝑖) in AhR-CALUX . . . . . . . . . . 107
A.31 Modeled individual effect unit (𝐸𝑈chem,𝑖) in PPAR𝛾 - GeneBLAzer . . . . . . 107
A.32 Modeled individual effect unit (𝐸𝑈chem,𝑖) in AREc32 . . . . . . . . . . . . . 108
A.33 Modeled individual effect unit fluxes in AhR-CALUX . . . . . . . . . . . . 108
A.34 Modeled individual effect unit fluxes in PPAR𝛾 - GeneBLAzer . . . . . . . 109
A.35 Modeled individual effect unit fluxes in AREc32 . . . . . . . . . . . . . . . 109
A.36 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in AhR-CALUX . . . . . . . . . . . 110
A.37 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in PPAR𝛾 - GeneBLAzer . . . . . . 110
A.38 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in AREc32 . . . . . . . . . . . . . . 111
A.39 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in ER𝛼 - GeneBLAzer . . . . . . . 111
A.40 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in AR - GeneBLAzer . . . . . . . . 112
A.41 Modeled individual toxic unit (𝑇𝑈chem,𝑖) in GR - GeneBLAzer . . . . . . . . 112
A.42 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in AhR-CALUX . . . . . . . . 113
A.43 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in PPAR𝛾 - GeneBLAzer . . . 113
A.44 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in AREc32 . . . . . . . . . . . 114
A.45 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in ER𝛼 - GeneBLAzer . . . . . 114
A.46 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in AR- GeneBLAzer . . . . . . 115
A.47 Modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in GR - GeneBLAzer . . . . . 115
A.48 Effect unit’s 𝐸𝑈chem,𝑖 percentage of contribution . . . . . . . . . . . . . . . 116
A.49 Effect unit’s 𝐸𝑈chem,𝑖 and 𝐸𝑈chem,unknowns percentage of contribution . . . . 116
A.51 The mean toxic units 𝑇𝑈chem,𝑖 over the sampling period . . . . . . . . . . . 117
A.52 The mean toxic units 𝑇𝑈chem,𝑖 1 over the sampling period . . . . . . . . . . 118
A.53 Modeled effect unit 𝐸𝑈chem mixture . . . . . . . . . . . . . . . . . . . . . . 118
A.54 Modeled effect unit 𝐸𝑈chem mixture flux . . . . . . . . . . . . . . . . . . . . 119
A.55 𝑇𝑈chem mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.56 𝑇𝑈chem flux mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.57 Effect unit 𝐸𝑈bio mixture ensemble at measuring station 2 . . . . . . . . . . 120
A.58 Effect unit 𝐸𝑈bio mixture ensemble at measuring station 3 . . . . . . . . . . 121

XV



A.59 Effect unit 𝐸𝑈bio mixture ensemble at measuring station 3 . . . . . . . . . . 121
A.60 Mean 𝑇𝑈bio ensemble at MS2 . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.61 Mean 𝑇𝑈bio ensemble at MS3 . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.62 Mean 𝑇𝑈bio flux ensemble at MS2 . . . . . . . . . . . . . . . . . . . . . . . 123
A.63 Mean 𝑇𝑈bio flux ensemble at MS3 . . . . . . . . . . . . . . . . . . . . . . . 123
A.64 Prior and posterior: reaction constant of 𝐸𝑈bio in AhR - CALUX at MS1- MS2 124
A.65 Prior and posterior: reaction constant of 𝐸𝑈bio in PPAR𝛾 - GeneBLAzer at

MS1- MS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.66 Prior and posterior: reaction constant of 𝐸𝑈bio in ER𝛼 - GeneBLAzer at

MS1- MS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.67 Prior and posterior: reaction constant of 𝐸𝑈bio in AREc32 at MS1- MS2 . . 125
A.68 Prior and posterior: reaction constant of 𝐸𝑈bio in AhR - CALUX at MS1- MS3 126
A.69 Prior and posterior: reaction constant of 𝐸𝑈bio in PPAR𝛾 - GeneBLAzer at

MS1- MS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.70 Prior and posterior: reaction constant of 𝐸𝑈bio in ER𝛼 - GeneBLAzer at

MS1- MS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.71 Prior and posterior: reaction constant of 𝐸𝑈bio in AREc32 at MS1- MS3 . . 127
A.72 Prior and posterior: reaction constant of mean 𝑇𝑈bio at MS1- MS2 . . . . . 128
A.73 Prior and posterior: reaction constant of mean 𝑇𝑈bio at MS1- MS3 . . . . . 128
A.74 Grab samples: concentrations . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.75 Grab samples: effect unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.76 Grab samples: effect unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.77 Grab samples 1: toxic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.78 Grab samples 2: toxic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.79 Grab samples 3: toxic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.80 Spatial variation: total and mean EU of detected compounds and the whole

bioactive mixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 Sampling map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Discharge, electrical conductivity and turbidity data . . . . . . . . . . . . . 146
B.3 Modeled transient discharge . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.4 Modeled transient flow velocity . . . . . . . . . . . . . . . . . . . . . . . . 148
B.5 Initial condition distributions for the electrical conductivity. . . . . . . . . 149
B.6 The modeled electrical conductivity. . . . . . . . . . . . . . . . . . . . . . . 150
B.7 Model input for 𝐸𝑈 bio: 100 realizations . . . . . . . . . . . . . . . . . . . . 150

C.1 Ammer River sampling site . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Prior and posterior of 𝐸𝑈 bio in AhR-CALUX in segment 1 (A) and segment

2 (B) from simulation-based inference (SBI). . . . . . . . . . . . . . . . . . 152
C.3 Prior and posterior of 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 1 (A) and

segment 2 (B) from simulation-based inference (SBI). . . . . . . . . . . . . 152
C.4 Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX at midstream and

downstream sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.5 Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer at midstream

and downstream sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.6 Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in segment 1. . . . 155
C.7 Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in segment 2 . . . 156

XVI



C.8 Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in segment 1 and
segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.9 Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 1 158
C.10 Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 2. 159
C.11 Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment

1 and segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

XVII



List of Tables

3.1 Estimated model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 The full list of targeted compounds . . . . . . . . . . . . . . . . . . . . . . 133
A.2 time-series samples’ collection order and time in August 2020 . . . . . . . 135
A.3 Measured concentration of grab samples . . . . . . . . . . . . . . . . . . . 136
A.4 Measured concentration time-series by auto–sampler 1 . . . . . . . . . . . 138
A.5 Measured concentration time-series by auto–sampler 2 . . . . . . . . . . . 139
A.6 Measured concentration time-series by auto–sampler 3 . . . . . . . . . . . 140
A.7 Molecular weight and inhibitory concentration 10 of the detected com-

pounds. PFOA – Pentadecafluorooctanoic acid. . . . . . . . . . . . . . . . . 140
A.8 Effect concentration 10 of the detected compounds and their half-lives . . 141
A.9 𝐸𝐶10 and 𝐼𝐶10 of the whole water sample . . . . . . . . . . . . . . . . . . 142
A.10 Goodness of fit for individual compounds and electrical conductivity at

measuring station 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.11 Goodness of fit for 𝐸𝑈 bio and the mean 𝑇𝑈 bio at measuring station 2 and 3 144

C.1 Performance of SBI & GPR aided reactive transport models . . . . . . . . . 154
C.2 The performance of PINN on in vitro bioassay data and estimated physical

parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

XVIII



List of Algorithms

1 Defining the physics-informed-neural network in PyTorch . . . . . . . . . 54
2 Sampling from the neural posterior. . . . . . . . . . . . . . . . . . . . . . . 56
3 Forward run with ensemble input from Gaussian Process Regression. . . . 57

XIX



Statement of Contributions

This thesis is based on three chapters (one published and two unpublished). I was mainly
responsible for model parameterization, implementation in MATLAB and Python, results
analysis and visualization, and paper writing. I am the first author on each chapter.
Chapter 2 is based on and reprinted with permission from the publication:

Wei, R., Escher, B. I., Glaser, C., König, M., Schlichting, R., Schmitt, M., Störiko, A.,
Viswanathan, M., and Zarfl, C.. Modeling the Dynamics of Mixture Toxicity and Effects
of Organic Micropollutants in a Small River under Unsteady Flow Conditions. Environ.
Sci. Technol., 56(20):14397–14408, 2022. ISSN 0013-936X. doi: 10.1021/acs.est.2c02824.
Copyright © 2022 American Chemical Society.

In Chapter 2, I contributed 70% scientific ideas, 10% data generation, 90% analysis
and interpretation, and 80% paper writing. The authors contributed as follow:

• Scientific ideas: Ran Wei, Christiane Zarfl, and Beate I. Escher

• Data generation: Ran Wei, Clarissa Glaser, Maria König, Rita Schlichting, and
Markus Schmitt

• Analysis & interpretation: Ran Wei, Anna Störiko, and Michelle Viswanathan

• Paper writing: RanWei, Christiane Zarfl, Beate I. Escher, Maria König, Rita Schlicht-
ing, Markus Schmitt, Anna Störiko, and Michelle Viswanathan

XX

https://doi.org/10.1021/acs.est.2c02824




Chapter 1

Introduction

1.1 Background

Organic micropollutants comprise a wide spectrum of substances, such as pharmaceuti-
cals (Jaeger et al., 2018), personal care products (PCPs) (Jaeger et al., 2018; Kim and Zoh,
2016), polycyclic aromatic hydrocarbon (PAHs) (Wicke et al., 2021) and pesticides (Moschet
et al., 2015). They appear in the environment at low concentration levels ranging from
ng L-1 to 𝜇g L-1. Due to the wide categories of substances that are used for various an-
thropogenic purposes, they enter rivers via diverse sources and routes, leading to their
ubiquitous presence in river water (Desiante et al., 2021). Conventional wastewater treat-
ment plants (WWTPs) have limited ability to efficiently remove micropollutants from the
discharged wastewater (Loos et al., 2013), making wastewater treatment plants effluent
one of the major point sources of micropolluants in rivers (Jaeger et al., 2018; Loos et al.,
2013; Reemtsma et al., 2016). During rain events, a broader range of routes are facilitated
by storm water for micropollutants to enter river channels. Typical entry routes include
runoff from urban surfaces (Dittmer et al., 2020) that contains substances from building
materials (Müller et al., 2019; Gasperi et al., 2014), vehicle tire materials (Klöckner et al.,
2020), the washout of pesticides from agricultural fields (Neumann et al., 2002) and animal
farms (Kim and Zoh, 2016), and combined sewage overflow (Launay et al., 2016).

The ubiquitous presence of micropollutants in surface water poses a threat to water
quality, aquatic life and human health, causing acute and chronic negative effects at
both organ and population levels (Varga et al., 2019). Previous studies reported various
potential adverse effects caused by micropollutants: reproduction failure in fish caused
by steroid hormones (Nash et al., 2004; Ojoghoro et al., 2021); Bacteria in wastewater
resistant to antibiotics (Costanzo et al., 2005; Rodríguez-Molina et al., 2019). Potential
long-term toxicity caused by pharmaceuticals in the surface water is also reported (Luo
et al., 2014; Fent et al., 2006).

Studying the in-stream processes and the fate of the micropollutants provides quanti-
tative information regarding the level of their presence in rivers over space and time. Vari-
ous studies (Kunkel and Radke, 2012; Barber et al., 2013; Hanamoto et al., 2013; Schwientek
et al., 2013; Li et al., 2016; Jaeger et al., 2018) investigated the presence and quantities (e.g.,
concentration, mass flux) of a large sets of micropollutants in rivers, where the WWTPs
are the major releasing point source. These studies rely on data from field sampling and
focus on individual micropollutant’s concentration dynamics. The Lagrangian sampling

1



1.1. Background

scheme (Antweiler et al., 2014; Schwientek et al., 2016) has proved to be an effective tool
to capture the in-stream solute transport dynamics, providing time-series signals travel-
ing along the river course by aiming to track the same water parcels. The challenge arises
from the fact that there are unknown numbers of micropollutants in each sample of the La-
grangian sampling scheme, and it is not possible to identify all individual micropollutants,
let alone quantifying their concentrations. The mixture effects of the micropollutants in
the collected samples, quantified by in vitro biossays (Escher et al., 2021), on the other hand
represents the overall impact of the micropollutants in the sample with respect to certain
endpoints. The mixture effects can be categorized into specific effects and cytoxicity. The
former is expressed as effect unit (EU) quantified from any non-lethal endpoint (Escher
et al., 2021). The latter is expressed as toxic unit (TU) that is quantified from apical lethal
point. EU and TU can also be used to characterize the effects of individual compounds.
In mixtures where a large number of compounds are present at very low concentrations,
the synergistic (Cedergreen, 2014) or antagonistic (Marx et al., 2015) mixture effects are
usually unnoticed (Escher et al., 2020). Under such circumstances, the concentration ad-
dition (CA) concept (Cedergreen, 2014; Escher et al., 2020) can be applied to calculate the
effects of the unknown micropollutants in the mixture. Various studies (Neale et al., 2017;
König et al., 2017; Müller et al., 2018, 2020; Zhi et al., 2020; Lee et al., 2022) investigated
the mixture effects of the WWTP-induced micropollutants in river water. The measured
total mixture effects are orders of magnitude higher than the sum effects from the individ-
ually detected and activated micropollutants, indicating the majority of the mixture effects
are coming from unknown micropollutants in the samples. Therefore, the combination of
chemical analysis and in vitro bioassays presents a comprehensive picture regarding the
quantitative level of presence of micropollutants in river water.

Process-based models provide quantitative knowledge about real-world systems that
are under investigation. Figure 1.1 illustrates the overall scheme for applying process-
based models to real-world environmental systems. The general type of thinking in
process-based modeling is to parameterize the model (Figure 1.1C) such that it represents
the underlying controlling processes in the real-world environment (Figure 1.1A). Samples
are collected in the environment and the data is measured in the laboratory (Figure 1.1A–
B), and it is used for constructing model input (e.g., boundary and initial conditions), as
well as evaluating the parameterization when such parameterization is used to explain
the data. Conditioned on data, process-based models are used to obtain parameter values
of the system, particularly those parameters that are difficult to measure directly (Fig-
ure 1.1D). A well-parameterized process-based model, meaning that the processes in the
model are defined as realistically as possible to that of the real-world system, can be fur-
ther used to conduct scenario analysis, aiding the planning of laboratory experiments and
field campaigns.

The mass conservation law describes the solute transport using the continuity equa-
tion (Clement, 1978). By adding source or sink terms, and considering the compressibility
of the fluid that carries the solute (John et al., 2017), the continuity equation can be re-
formulated to the advection-dispersion-reaction equation (ADR) (Carrera et al., 2022), in
which the intensive quantity e.g., concentration or temperature, is the state variable. The
ADR is the governing equation of process-based reactive transport models. Therefore, ap-
plying the process-based reactive transport model to micropollutants concentration data
fromfield campaigns allows us to quantitatively describe the in-stream processes of themi-
cropollutants, obtaining their physical and reactive parameters through calibration. Vari-
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Figure 1.1: Scheme of the overall approach: the environment (e.g., river (A)) provides samples to be
measured to produce data (B). The data provides quantitative information for constructing model
input (boundary and initial conditions), and evaluating model output, thus physical parameter
estimation. The process-based model presents the controlling processes in the environment (C).
The relationship among process-based models, parameters, data, and environmental systems form
a complete feedback loop (D).

ous studies (Riml et al., 2013; Guillet et al., 2019; Liu et al., 2019) successfully applied the
reactive transport model to individual micropollutants concentration data in rivers, quan-
titatively characterizing complex processes such as light dependent dissipation, mass ex-
change between water and transient storage phase. There is a lack of quantitative knowl-
edge about the in-stream processes of the mixture effects. On the other hand the mixture
effects, EU and TU, are quantified as concentration equivalent (König et al., 2017; Escher
et al., 2018, 2021), indicating that the in-stream processes of the mixture effects can be de-
scribed by the ADR. Therefore, similar to concentrations, applying the reactive transport
model to the mixture effects data allows us to quantitatively understand their in-stream
processes.

Uncertainty from model parameterization (conceptualization), initial and boundary
conditions, data, and numerical approximation (integration in time and descritization in
space) influences the model prediction, compromising our quantitative understanding of
the system under investigation. Calibrating the model against informative data would im-
prove the model prediction by quantifying the parameter uncertainty. In practice when
modeling a complex reactive system, ensemble results from stochastic processes, typi-
cally Bayesian inference, e.g., Markov Chain Monte Carlo (MCMC) (Spade, 2020), are often
needed or preferred (Chavez Rodriguez et al., 2020; Störiko et al., 2021, 2022; Schwarz et al.,
2022; Wei et al., 2022), particularly when results from deterministic parameter estimate
methods, e.g., trust-region-reflective (Liu et al., 2020) and Levenberg-Marquardt (Leven-
berg, 1944; Marquardt, 1963), could not fully represent the observed dynamics. Both deter-
ministic and stochastic calibrations require iterative model forward runs. One of the main
challenges in uncertainty quantification for process-based models is the trade-off between
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model complexity and practicality. The process-based model is a simplified representation
of the real-world system. While parameterizing more complex processes adds extra details
to the model, the complexity imposes constraints on the forward run efficiency during cal-
ibrations. Such constraints become even more critical when applying MCMC that needs a
large number (from thousands to tens of thousands) of iterative model forward runs. An-
other challenge the process-based model frequently faces is to achieve solutions that are as
close as possible to the meaningful and complex information from the measurements un-
der the known and parameterized physical processes. Even the most well-parameterized
model can still yield discrepancy with the data since there are always hidden processes in
the environment that characterize the behaviours of the data but the modelers failed to
formulate, thus are not present in the models. The recently rapidly advanced deep learn-
ing methods, e.g., the Artificial Neural Network, showed the potential to overcome this
challenge when embedding with the existing knowledge regarding the processes in the
environment. In particular, the urge to achieve more accurate (than numerical methods)
modeled results while presenting interpretable physical processes (thus not purely data-
driven), and efficiently quantifying parameter uncertainty prompt the development of the
physics-informed neural network (PINN) (Raissi et al., 2019) and simulation-based infer-
ence (SBI) (Greenberg et al., 2019).

In this thesis, the transport of extensive quantities, e.g., mass, in rivers is assumed to
be one-dimensional. The lateral exchange is neglected. We calibrate the model against
data from the Lagrangian sampling campaigns, where the same water parcels are assumed
to be tracked, while facing the limitations that samples occasionally are missing, measure-
ment errors are always present, andmeasuring stations are scarce considering the distance
of the study sites. Our process-based models are developed upon those assumptions and
aim to overcome those limitations, meaning our models operate on the "conundrum" that
the conceptual uncertainty in the description of a dynamic reactive system is inevitable to
begin with. We justify our overall modeling approach based on the following principles:

1. not all uncertainty introduced by the known processes influence the overall system
behavior, since the overall system behavior is typically represented by the measure-
ments that potentially provide only limited information. Therefore we identify and
focus on the controlling processes of the studied reactive systems.

2. focusing on the controlling processes allows us to reformulate the governing equa-
tions of the model into other forms, e.g., convolution in Chapter 2, which in return
accelerates the model forward runs.

3. there are enough existing tools that can be used to solve the problems we are facing.
By combing the merits of numerical methods, Bayesian inference, and deep learn-
ing, we are able to integrate the models with the data that is available, presenting
quantitative information regarding the controlling processes.

1.2 Hypothesis & Aims

Themain hypothesis of this thesis is that themixture effects quantified in in vitro bioassays
are intensive state variables equivalent to, e.g., concentrations. Thus, the mixture effects
follow the mass conservation laws. In rivers, the in-stream processes of the mixture effects
can be described by the advection-dispersion-reaction equations (ADR).
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Under the main hypothesis, we aim to gain quantitative understandings of:

1. the in-stream processes of the mixture effects.

2. the transferability of the ADR from steady-state flow to transient flow conditions
for the mixture effects.

3. the potential to achieve accurate solutions and efficient parameter posterior approx-
imation by deep learning methods for solving the ADR and estimating parameter
values integrating the mixture effects field data.

1.3 Theory & Modeling Methods

1.3.1 The state variable

Effect unit and toxic unit. The specific effects and cytotoxicity of river water samples are
expressed as effect unit (EU) for specific effects and toxic unit (TU) for cytotoxicity (non-
specific effect). EU and TU can be used to characterize the effects of individual chemicals
(Eq. 1.1 and Eq. 1.2),

𝐸𝑈chem𝑖,assay𝑗 =
𝐶chem𝑖

𝐸𝐶𝑘,chem𝑖,assay𝑗
(1.1)

𝑇𝑈chem𝑖,assay𝑗 =
𝐶chem𝑖

𝐼𝐶𝑘,chem𝑖,assay𝑗
(1.2)

where 𝐶chem𝑖 [ng L-1] is the concentration of the individual detected compound. 𝐸𝐶𝑘,chem𝑖

[ng L-1] and 𝐼𝐶𝑘,chem𝑖 [ng L
-1] are the compound specific effect concentration (EC) and inhi-

bition concentration (IC) that causes 𝑘 effects of specific endpoints and cell death (cytotox-
icity), respectively. 𝑖 and 𝑗 are individual compounds’ and bioassays’ indices, respectively.
Further details are in Section 2.2 of Chapter 2.

Mixture effects. EU and TU can be used to characterize the mixture effects of all detected
and activated chemicals in the sample, 𝐸𝑈chem,assay𝑗 (Eq. 1.3) and 𝑇𝑈chem,assay𝑗 (Eq. 1.4),
which are the sum of the individual compounds’ effects (CA concept).

𝐸𝑈chem,assay𝑗 =
𝑛
∑
𝑖=1

𝐶chem𝑖

𝐸𝐶𝑘,chem𝑖,assay𝑗
(1.3)

𝑇𝑈chem,assay𝑗 =
𝑛
∑
𝑖=1

𝐶chem𝑖

𝐼𝐶𝑘,chem𝑖,assay𝑗
(1.4)

The EU and TU describing the mixture effects of the micropollutants extracted from
the water samples are 𝐸𝑈bio𝑗 [Lbioassay ⋅ Lwater-1] (Eq. 1.5) and 𝑇𝑈bio𝑗 [Lbioassay ⋅ Lwater-1]
(Eq. 2.6), respectively.

𝐸𝑈bio𝑗 =
1

𝐸𝐶𝑘,assay𝑗
(1.5)

𝑇𝑈bio𝑗 =
1

𝐼𝐶𝑘,assay𝑗
(1.6)
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𝐸𝐶𝑘,assay𝑗 and 𝐼𝐶𝑘,assay𝑗 are the ECs and ICs of the extracts from the water sample that trig-
ger k effects and cytotoxicity, respectively. The units of EC and IC are relative enrichment
factor (REF [Lwater L−1bioassay]) (Escher et al., 2021). For TU of the whole bioactive mix-
ture (𝑇𝑈bio), the measured 𝑇𝑈bio values in different bioassays are relatively similar since
TUs are quantified based on the same endpoint. The mean 𝑇𝑈bio of different bioassays
was used in this study. 𝑖 and 𝑗 are individual compounds’ and bioassays’ indices, respec-
tively. 𝑛 is the number of the compounds detected in the water sample and activating in
the corresponding assay 𝑗 . The corresponding effect units 𝐸𝑈 bio (Eq. 1.5) and toxic units
for cytotoxicity 𝑇𝑈 bio (Eq. 1.6) are mathematically equivalent to bioanalytical equivalent
concentrations (Escher et al., 2018, 2021; König et al., 2017) and can be seen as concentra-
tions, which makes 𝐸𝑈bio and 𝑇𝑈bio valid state variables for process-based modeling that
would normally be focused on concentrations of individual chemicals. Further details are
in Section 2.2.

1.3.2 Mass conservation and continuity equation

Mass is conserved over time in a closed system. The transport of an extensive state vari-
able, e.g., mass, can be described by the continuity equation (Clement, 1978), of which the
general differential form is expressed as Eq. 1.7,

𝜕𝑐
𝜕𝑡

= −∇ ⋅ 𝐣 + 𝑆 (1.7)

where 𝑐 is the intensive state variable, e.g., volumetric density. 𝐣 is the flux density. ∇⋅ is
the divergence. 𝑆 represents the sink and source term. 𝑡 is the time. By differentiating the
transport processes, we arrive at Eq. 1.8,

𝜕𝑐
𝜕𝑡

= −∇ ⋅ (𝐯𝑐) + ∇ ⋅ (𝐃∇𝑐) + 𝑆 (1.8)

where ∇⋅(𝐯𝑐) (divergence of the advective flux) describes the advection that is caused by the
bulk movement of the fluid with which the solute is carried. 𝐯 is the velocity field. ∇ ⋅(𝐃∇𝑐)
(divergence of the dispersive flux) describes the dispersion (diffusion) phenomenon that is
caused by the gradient of the intensive state variable. 𝐃 is the dispersion tensor. ∇ is the
gradient.

1.3.3 One-dimensional reactive transport

In rivers, it is common to consider the transport of the solute as one-dimensional, since
the magnitude of the longitudinal travel is usually much higher than that of the lateral
travel. It is also commonly assumed that the fluid, e.g., water, is incompressible, leading
the divergence of the velocity to zero (Eq. 1.9) (John et al., 2017).

∇ ⋅ 𝐯 = 0 (1.9)

Therefore, Eq. 1.8 can be simplified to Eq. 1.10 to describe the one-dimensional transport
of the solute.

𝜕𝑐
𝜕𝑡

= −𝑣(𝑡) ⋅
𝜕𝑐
𝜕𝑥

+ 𝐷L(𝑡) ⋅
𝜕2𝑐
𝜕𝑥2

+ 𝑆 (1.10)

where 𝐷L(𝑡) is the longitudinal dispersion coefficient, e.g., [m2 s-1]. 𝑥 is the space coordi-
nates. 𝐷L(𝑡) is expressed as in Eq. 1.11,

𝐷L = 𝑣(𝑡) ⋅ 𝛼 + 𝐷∗ (1.11)

6



1.3. Theory & Modeling Methods

where 𝛼, e.g., [m], denotes the dispersivity. 𝑣(𝑡) ⋅𝛼, e.g., [m2 s−1], is the hydrodynamic dis-
persion. 𝐷∗, e.g., [m2 s−1], is the pore-diffusion coefficient. When the velocity is assumed
to be steady over time, Eq. 1.10 is simplified to Eq. 1.12.

𝜕𝑐
𝜕𝑡

= −𝑣 ⋅
𝜕𝑐
𝜕𝑥

+ (𝑣 ⋅ 𝛼 + 𝐷∗) ⋅
𝜕2𝑐
𝜕𝑥2

+ 𝑆 (1.12)

Eqs. 1.8, 1.10 and 1.12 are often referred to as Advection-Dispersion-Reaction equations
(ADR).

1.3.4 Combining mixture effects with one-dimensional reactive transport
model

The mixture effects, EU and TU defined in Eqs. 1.1 - 1.6, are quantified as concentration
equivalent (Escher et al., 2021). From the mass balance point of view, the ADR (Eq. 1.12)
holds for the mixture effects, and is applied to quantitatively characterize the in-stream
processes of the mixture effects (Eq. 1.13).

𝜕𝐸𝑈 bio

𝜕𝑡
= −𝑣 ⋅

𝜕𝐸𝑈 bio

𝜕𝑥
+ (𝑣 ⋅ 𝛼 + 𝐷∗) ⋅

𝜕2𝐸𝑈 bio

𝜕𝑥2
+ 𝑆bio (1.13)

1.3.5 Solving the one-dimensional reactive transport equation

The one-dimensional reactive transport equations, Eqs. 1.8, 1.10 and 1.12, are partial dif-
ferential equations (PDE). It is often impossible to solve them analytically due to the com-
plexity in the source and sink term 𝑆, as well as boundary conditions. For the models
in Chapter 2, I used the convolution method to approximate their solutions. To solve the
ADRs in Chapter 3 and Chapter 4, I used the finite differencemethod (FDM) (Noye and Tan,
1989) to discretize the spatial domain, coverting the PDEs to a series of ordinary differen-
tial equations (ODE), solving them using the numerical ODE solver ode15s (Shampine and
Reichelt, 1997) in MATLAB and the ODE solver solve_ivp (explicit Runge-Kutta method of
order 5(4) (Dormand and Prince, 1986)) from the 𝑆𝑐𝑖𝑃𝑦 library (Virtanen et al., 2020) in the
open-source programming language Python, respectively.

The gradient for the advective transport is discretized as in Eq. 1.14,

𝜕𝑐
𝜕𝑥

||||𝑖
=

𝑐𝑖 − 𝑐𝑖−1
Δ𝑥

(1.14)

where 𝑖 is the spatial index for the nodes in the discretized domain. The dispersive trans-
port is discretized as in Eq. 1.15.

𝜕2𝑐
𝜕𝑥2

||||𝑖
=

𝑐𝑖+1 − 2𝑐𝑖 + 𝑐𝑖−1
Δ𝑥2

(1.15)

1.3.6 Bayesian inference for parameter estimates

Bayesian calibration was used to estimate the model parameters in Chapter 2 and Chap-
ter 4. Bayesian inference itself is a statistical inference that provides uncertainty quantifi-
cation of model parameter from a stochastic point of view, meaning instead of deriving
deterministic values, the estimated model parameter values are characterized by proba-
bility density functions. The estimated probability density function (posterior) is based
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on the prior knowledge (prior), e.g., physical and empirical constraints or literature infor-
mation, without the influence from the data, and the likelihood of the data (likelihood)
conditioned on the parameters. Quantitatively Bayes rule states that given the data y, the
posterior probability density of parameter θ, 𝑝(θ|y), is the product of the prior parame-
ter probability density 𝑝(θ) and the likelihood of the data 𝑝(y|θ) divided by the marginal
likelihood of the data 𝑝(y) (Eq. 1.16):

𝑝(θ|y) =
𝑝(y|θ) ⋅ 𝑝(θ)

𝑝(y)
(1.16)

𝑝(y) is the so-called Bayesian model evidence (BME) that is the integral of the likelihood
over the entire parameter space Ω as in Eq. 1.17 (Schwindt et al., 2023; Morales Oreamuno
et al., 2023):

𝑝(y) = ∫
Ω
𝑝(y|θ)𝑝(θ) 𝑑θ = 𝔼prior[𝑝(y|θ)] (1.17)

𝑝(y) is constant, meaning it does not influence the posterior 𝑝(θ|y). Therefore, Eq. 1.16
is simplified to Eq. 1.18:

𝑝(θ|y) ∝ 𝑝(y|θ) ⋅ 𝑝(θ) (1.18)

Likelihood function. One of the most commonly used likelihood functions is the Gaus-
sian likelihood. If θ = [θmodel, 𝜎𝜖,𝑗 ] is the parameter vector, yobs is the observation vector,
then the likelihood function  = 𝑝(y|θ) is defined as (Eq. 1.19):

(θ|yobs) =
𝑛

∏
𝑖=1

1√
2𝜋𝜎2

𝜖
exp(−

1
2
[𝑦model,𝑖(θmodel) − 𝑦obs,𝑖]2

𝜎2
𝜖 ) (1.19)

where θmodel is the model parameter vector, 𝑖 [-] the observation index, and 𝑛 [-] the total
number of the observations. 𝜎𝜖 is the standard deviation in the likelihood function.

Posterior sampling. An analytical expression for the posterior is typically difficult to de-
rive. Alternatively, Markov chain Monte Carlo that draws samples from the approximated
posterior (Eq. 1.18) is usually used. The Metropolis–Hastings Markov chain Monte Carlo
(MH-MCMC) algorithm was used to obtain samples of the posterior parameter distribu-
tion in Chapter 2. The Simulation-based inference (SBI) was used to obtain the Neural
Posterior Estimation (NPE) in Chapter 4.

1.4 Studied Rivers

In this thesis, I applied the reactive transport models to data collected from two rivers: the
Steinlach River (2020-08-19 – 2020-08-21 in Chapter 2) and the Ammer River (2019-07-27
– 2019-07-28 in Chapter 3, 2018-06-19 – 2018-06-20 in Chapter 4). Both rivers are located
in the state of Baden-Wüttemberg, southwest Germany.

The Steinlach River The Steinlach River is a 25.9 km long 4th-order river that starts from
the valley of the Eckenbachgraben near the town ofMössingen, passing through the south-
ern part of Tübingen city, draining into the Neckar River of the Rhine basin in the state of
Baden-Württemberg, Germany. It flows through the catchment of 140 km2 (Schwientek
et al., 2016), of which the use is 49% agriculture, 39% forest and 12% urban (Schwientek
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et al., 2013; Guillet et al., 2019). The Steinlach River has a mean discharge (as of March 1,
2016) of 1.84 m3 s-1 (https://www.hvz.baden-wuerttemberg.de/). However the discharge
varies seasonally that it can reach 15 m3 s-1 in December (Schwientek et al., 2013) and
drop to 0.1 m3 s-1 - 0.2 m3 s-1 during the dry period (Liu et al., 2018). The river stretch we
were focusing on in Chapter 2 was fed by one main tributary Ehrenbach and four small
creeks. A constructed diversion (Mühlbach) takes the water out of the main channel at ap-
proximately 1 km downstream of the wastewater treatment plant (WWTP) and flows into
the Neckar River without returning to the main channel. Further information regarding
the fluvial geomorphology can be found in Schwientek et al., 2016. Figure 1.2 shows the
sampling site.

F
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Figure 1.2: Steinlach River sampling site. Water in the main channel flows from the south to the
north. Three measuring stations (MS 1–3) were set along the river main channel for collecting
time-series samples. MS– measuring station; Grab – grab samples; AS – auto-sampler. Map made
by Victor Carvalho Cabral.

The Ammer River. The Ammer River is a 4th-order river and starts from the city of
Herrenberg, flowing over a distance of approximately 22 km and through an catchment
area of 134 km2, and merges with the Neckar River in the city of Tübingen. The mean

9

https://www.hvz.baden-wuerttemberg.de/


1.5. Thesis Structure

discharge is 0.87 m3 s-1 (gauge Pfäffingen (https://www.hvz.baden-wuerttemberg.de/). The
largest WWTP (80000 personal equivalents (PE)) in the catchment is located downstream
of Herrerberg and directly releases water into the Ammer river. The second WWTP (9000
PE, located in Hailfingen) releases water into the tributariy Kochhart Creek that flows into
the Ammer River main channel near the city of Reusten. The river stretch we are focusing
on in Chapter 3 and Chapter 4 is 7.7 km long, starting 250m downstream of the firstWWTP
and ends near Pfäffingen. Further information regarding the fluvial geomorphology can
be found in Glaser et al., 2020. Figure 1.3 shows the sampling site.

Flow direction

Figure 1.3: Ammer River sampling site. Themiddle sampling sitewas not used during the campaign
in Chapter 3. All three sampling sites were used in the campaign in Chapter 4. Map made by Victor
Carvalho Cabral.

1.5 Thesis Structure

To quantitatively understand the in-stream processes of effects of single organic micropol-
lutants and their mixture, I divided my process-based model applications into three chap-
ters.

1. In Chapter 2, I implemented convolution-based models and applied them to data
obtained under unsteady flow conditions. I addressed the model parameter uncer-
tainties for the mixture effects using Bayesian inference. Parameter posterior and
ensemble output were computed using Metropolis–Hastings Markov Chain Monte
Carlo (MCMC) to address the noisy mixture effects observations.
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2. In Chapter 3, I updated the steady-state flow condition reactive transport model
with transient terms and applied to mixture effects data collected from a storm
event. In parallel, a flood routing model was implemented to compute the discharge
wave propagation during the storm event. To properly process the noisy time-series
signals and include the measurement uncertainties, I introduced the stochastic ele-
ments into the deterministic models by implementing Gaussian Process Regression
(GPR) to characterize the inflow boundary condition.

3. In Chapter 4, I implemented the physics-informed neural network (PINN) in the
machine learning framework PyTorch to solve standard reactive transport model,
training the PINN model using real-world mixture effects observations from a field
campaign. I also applied the simulation-based-inference (SBI) to obtain the neural
posterior for the model parameters. Integrating, stochastic input from GPR, param-
eters from neural posteriors, and the 1-D reactive transport model was able to effi-
ciently compute the ensemble mixture effect output. I compared the two approaches
in terms of the final prediction accuracy, estimated parameter values, as well as com-
putational efforts and summarize the advantage and disadvantages of each approach
with respect to the modeling purposes.

4. In Chapter 5, I summarized how the main research questions of this thesis are ad-
dressed, highlighting the major outcome from the process-based modeling on the
mixture effects of micropollutants in rivers. With a brief overview of the recent
development of open-source programming language libraries, I outlined the poten-
tial future application directions for the reactive transport and other process-based
modeling.
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Chapter 2

Modeling the dynamics of mixture
toxicity and effects of organic
micropollutants in a small river
under unsteady flow conditions

This chapter is based on and reprinted with permission from: Wei, R., Escher, B. I., Glaser,
C., König, M., Schlichting, R., Schmitt, M., Störiko, A., Viswanathan, M., and Zarfl, C..
Modeling the Dynamics of Mixture Toxicity and Effects of Organic Micropollutants in a
Small River under Unsteady Flow Conditions. Environ. Sci. Technol., 56(20):14397–14408,
2022. ISSN 0013-936X. doi: 10.1021/acs.est.2c02824. Copyright © 2022 American Chemical
Society.

Abstract

The presence of anthropogenic organic micropollutants in rivers poses a long-term threat
to surface water quality. To describe and quantify the in-stream fate of single micropol-
lutants, the advection-dispersion-reaction (ADR) equation has been used previously. Un-
derstanding the dynamics of the mixture effects and cytotoxicity that are cumulatively
caused by micropollutant mixtures along their flow path in rivers requires a new concept.
Thus, we extended the ADR from single micropollutants to defined mixtures, then to the
measured mixture effects of micropollutants extracted from the same river water sam-
ples. Effects (single and mixture) are expressed as effect units (EU) and toxic units (TU),
the inverse of effect concentrations and inhibitory concentrations, respectively, quantified
with a panel of in vitro bioassays. We performed a Lagrangian sampling campaign under
unsteady flow, collecting river water that was impacted by a wastewater treatment plant
(WWTP) effluent. To reduce the computational time, the solution of the ADR was ex-
pressed by a convolution-based reactive transport approach, which was used to simulate
the dynamics of the effects. The dissipation dynamics of the individual micropollutants
were reproduced by the deterministic model following first-order kinetics. The dynamics
of experimental mixture effects without known compositions were captured by the model
ensemble obtained through Bayesian calibration. The highly fluctuating WWTP effluent
discharge dominated the temporal patterns of the effect fluxes in the river. Minor inputs
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likely from surface runoff and pesticide diffusion might contribute to the general effect
and cytotoxicity pattern but could not be confirmed by the model-based analysis of the
available effect and chemical data.

2.1 Introduction

Organic micropollutants like pharmaceuticals, personal care products (PCPs) (e.g., fra-
grances), detergents, industrial chemicals (e.g., for roof sealing), pesticides and sub-
stances induced by combustion of organic materials (e.g., polycyclic aromatic hydrocar-
bons (PAHs)) have been found ubiquitously at low concentration levels (typically in a
ng⋅L−1-range) in surface waters. The diverse physicochemical properties of these microp-
ollutants can adversely affect their biological and chemical removal efficiencies in the sec-
ondary treatment of thewastewater treatment plants (WWTPs) (Petrovic et al., 2009). Even
the WWTPs equipped with advanced processes have difficulties to completely eliminate
all the micropollutants (Kim and Zoh, 2016; Radjenović et al., 2009; Guillossou et al., 2019).
Treated and untreated wastewater has been viewed as one of the main sources of organic
micropollutants in rivers (Mandaric et al., 2018; Neale et al., 2017). Especially in small rivers
where the surrounding areas are densely populated and the WWTPs’ effluent makes up
a significant share of the river water, partly depending on the season and weather con-
ditions, the downstream river water quality will be adversely impacted by the WWTPs’
effluent (Li et al., 2016; Jaeger et al., 2018; Schaper et al., 2019; Müller et al., 2020).

To understand the micropollutant dynamics and their potential risk, some previous
studies applied a Lagrangian sampling scheme with high temporal resolution to collect
composite samples in rivers. The Lagrangian scheme captures the in-stream dynamics of
the micropollutants by tracking the same water packages from upstream to downstream
locations (Schwientek et al., 2016; Glaser et al., 2020; Guillet et al., 2019; Antweiler et al.,
2014). These studies were purely focusing on the concentrations of the micropollutants,
inorganic ions and dissolved organic carbon (DOC). Numerous studies have also been con-
ducted on individual and mixture effects (specific effects and cytotoxicity) from WWTPs-
emitted micropollutant mixtures (Neale et al., 2015, 2017) in rivers. A main question these
studies try to answer is the identification of the micropollutants in the complex mixtures
(Escher et al., 2021) and their individual contributions to the overall mixture effects. It is
not possible to identify every single compound in the complex mixture that potentially
consists of hundreds and thousands of chemicals. The effects stemming from the indi-
vidual compounds, as well as the ones driving the overall mixture, can be quantified in
the panels of in vitro bioassays. When thousands of compounds are present at very low
concentrations in mixtures, their interactions that might cause synergistic or antagonistic
mixture effects are usually not dominant and therefore not noticeable (Escher et al., 2020).
Under such circumstances, the concentration addition (CA) concept (Escher et al., 2020)
can be applied with which the effects of the unknown micropollutants in the mixture can
be calculated.

The fast changing in-stream dynamics of individual and mixture effects have been
studied by Müller and coworkers (Müller et al., 2018, 2020). Mixture effects are regarded
as indicator for the sum of effective chemicals and thus quantified as concentration equiva-
lents. It is also assumed that chemicals that trigger the same endpoint in the same bioassay
will undergo similar processes that impact the actual effectiveness of the compounds in
the river (environment). However, there is a lack of quantitative understanding of the
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in-stream transport mechanisms and reactive processes that the mixture effects undergo.
A process-based mathematical modeling approach is needed to gain quantitative in-

sights of in-streammechanisms of the mixture effects. Liu et al., 2020 studied the in-stream
fate of a few pharmaceuticals using a one-dimensional reactive transport model. The com-
putational expense of themodel is already relatively high due to the complex parameteriza-
tion and spatial discretization. Uncertainties originating from themeasurement of the total
mixture effects also impair the understanding of mechanisms and processes. For example,
unclear transport patterns in the mixture effects data are potentially caused by uncertain-
ties, which could arise from various sources: e.g., measurements, temporal resolutions of
observations, simplified characterizations of the real-world processes (Höge et al., 2019),
actual natural variability. To address these uncertainties and to display levels of belief
in the modeled results (as well as the model structure), ensemble results from “stochas-
tification” (Höge et al., 2019) are particularly useful by addressing the randomness of a
system. Coupled with stochastic methods, the measurement uncertainties are taken into
account when approximating the model parameters’ distributions, from where ensemble
results can be computed. Thus, the computational costs increase with the complexity of
the mixtures that contain a large number of micropollutants, of which the individual and
total mixture effects are quantified in multiple bioassays. The simulation time can be the
limiting factor to run the model when hundreds of thousands of model runs are needed
for each mixture effect during stochastic simulation.

The present study intended to evaluate if a one-dimensional model based on the
advection-dispersion-reaction equation (ADR) is able to characterize the in-stream dynam-
ics of specific effects and of the cytotoxicity of both individual compounds and the total
bioactive micropollutant mixture. We tested our hypothesis by combining a Lagrangian
sampling campaign in a WWTP-influenced river with the measurement of chemical mix-
tures and their effects. Measured and predicted mixture effects were compared before set-
ting up the model describing the in-stream dynamics, first, for single chemicals, second,
the known mixtures, and finally the measured bioassay responses. Sample effects were
quantified with in vitro bioassays covering four different modes of action that had been
demonstrated previously to be very relevant for water quality assessment and responding
to a wide range of organic micropollutants (Escher et al., 2021). We implemented a com-
putationally cheap convolution-based (a solution of the ADR (Cirpka and Valocchi, 2007;
Toride et al., 1993)) transport model to simulate the unsteady discharge in the river main
channel caused by the WWTP’s highly dynamic outflow. Adding first-order reaction ki-
netics, the convolution-based reactive transport model was applied to the individual com-
pounds’ effects. For the measured mixture effects of all micropollutants in water samples,
modeled ensemble time series were computed within Bayesian inference to account for
measurement and parameter uncertainties and overcome the noisy transport patterns in
the observations.

2.2 Theory

Effect unit and toxic unit. The specific effects relate to any non-lethal endpoints, e.g.,
estrogenic effects, triggered by binding of micropollutants and natural hormones to the es-
trogen receptor (Escher et al., 2021). Cytotoxicity, in our case, is the toxicity that refers to
apical lethal endpoints. Specific effects and cytotoxicity in the WWTP-impacted river wa-
ter were quantified with in vitro bioassays and expressed as effect unit (EU) for specific ef-
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fects and toxic unit (TU) for cytotoxicity (non-specific effect). Both EU and TU can be used
to characterize the effects of individual chemicals (𝐸𝑈chem𝑖,assay𝑗 , Eq. 2.1 and 𝑇𝑈chem𝑖,assay𝑗 ,
Eq. 2.2), the mixture effects of the detected chemicals in the sample (𝐸𝑈chem,assay𝑗 and
𝑇𝑈chem,assay𝑗 ), as well as the experimentally quantified mixture effects (𝐸𝑈bio and 𝑇𝑈bio).

𝐸𝑈chem𝑖,assay𝑗 =
𝐶chem𝑖

𝐸𝐶𝑘,chem𝑖,assay𝑗
(2.1)

𝑇𝑈chem𝑖,assay𝑗 =
𝐶chem𝑖

𝐼𝐶𝑘,chem𝑖,assay𝑗
(2.2)

𝐶chem𝑖 [ng L-1] is the concentration of the individual detected compound. 𝐸𝐶𝑘,chem𝑖 [ng
L-1] and 𝐼𝐶𝑘,chem𝑖 [ng L-1] are the compound specific effect concentration (EC) and inhi-
bition concentration (IC) that causes 𝑘 effects (𝑘 typically is 10 % of the maximum effect
(Escher and Neale, 2021) or the induction ratio (IR) of 1.5, which is 50% over unexposed
cells of IR 1 (Escher and Neale, 2021; Müller et al., 2018).) of specific endpoints and cell
death (cytotoxicity), respectively. 𝑖 and 𝑗 are individual compounds’ and bioassays’ indices,
respectively.

The mixture effects of all detected and activated compounds, 𝐸𝑈chem,assay𝑗 (Eq. 2.3) and
𝑇𝑈chem,assay𝑗 (Eq. 2.4), are the sum of the individual compounds’ effects (CA concept).

𝐸𝑈chem,assay𝑗 =
𝑛
∑
𝑖=1

𝐶chem𝑖

𝐸𝐶𝑘,chem𝑖,assay𝑗
(2.3)

𝑇𝑈chem,assay𝑗 =
𝑛
∑
𝑖=1

𝐶chem𝑖

𝐼𝐶𝑘,chem𝑖,assay𝑗
(2.4)

The EU and TU describing the mixture effects of the micropollutants extracted from
the water samples are 𝐸𝑈bio𝑗 [Lbioassay ⋅ Lwater-1] (Eq. 2.5) and 𝑇𝑈bio𝑗 [Lbioassay ⋅ Lwater-1]
(Eq. 2.6), respectively.

𝐸𝑈bio𝑗 =
1

𝐸𝐶𝑘,assay𝑗
(2.5)

𝑇𝑈bio𝑗 =
1

𝐼𝐶𝑘,assay𝑗
(2.6)

𝐸𝐶𝑘,assay𝑗 and 𝐼𝐶𝑘,assay𝑗 are the ECs and ICs of the extracts from the water sample that trig-
ger k effects and cytotoxicity, respectively. The units of EC and IC are relative enrichment
factor (REF [Lwater L−1bioassay]) (Escher et al., 2021). For TU of the whole bioactive mixture
(𝑇𝑈bio), the measured 𝑇𝑈bio values in different bioassays should be relatively similar since
TUs are quantified based on the same endpoint. The mean 𝑇𝑈bio of four bioassays (bioas-
say details in Section 3.2.1) was used in this study. 𝑖 and 𝑗 are individual compounds’ and
bioassays’ indices, respectively. 𝑛 is the number of the compounds detected in the water
sample and activating in the corresponding assay 𝑗 . The corresponding effect units 𝐸𝑈 bio
(Eq. 2.5) and toxic units for cytotoxicity 𝑇𝑈 bio (Eq. 2.6) are mathematically similar to bio-
analytical equivalent concentrations (Escher et al., 2018, 2021; König et al., 2017) and, in
principle, can be regarded as concentrations, which makes units 𝐸𝑈bio and 𝑇𝑈bio amenable
to the model calculations that would normally be based on concentrations of individual
chemicals.
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Effect unit and toxic unit fluxes. The fluxes 𝐹𝑞(𝑡) of the EU (𝑞 = 𝐸𝑈 chem𝑖, assay𝑗 ; 𝐸𝑈 bio𝑗 )
and the TU (𝑞 = 𝑇𝑈 chem𝑖, assay𝑗 ; 𝑇𝑈 bio𝑗 ) are defined by the products of the effect units and
toxic units, respectively, with the corresponding discharge (𝑄 in [m3 s-1]) at time t (Eq. 2.7.
𝐸𝑈 is replaced by 𝑇𝑈 when computing the cytotoxicity flux).

𝐹𝑞(𝑡) = 𝐸𝑈 chem𝑖, assay𝑗 (𝑡) ⋅ 𝑄(𝑡) (2.7)

Conservative transport of electrical conductivity. The electrical conductivity (ECd) in
rivers is assumed to behave identically to the conservative compounds or ideal tracer
(Schwientek et al., 2016; Glaser et al., 2020). Therefore, the ECd time series can be used
to determine the hydrological parameters values, i.e., the mean water travel time and the
lumped advection and dispersion coefficient (Schwientek et al., 2016; Glaser et al., 2020;
Maloszewski and Zuber, 1993) by fitting the modeled ECd to the measurements (fitting
details in Section 2.3.3). In general, the one-dimensional transport of a time series signal
in rivers can be described by a linear time-invariant system and its impulse response in
the time domain. The essence is that the output signal is the integral of the product of
the input signal and a transfer function. This operation is named convolution and can be
expressed for the ECd by Eq. 2.8,

𝐸𝐶𝑑down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝐸𝐶𝑑up(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 (2.8)

where 𝐸𝐶𝑑up [mS cm-1] and 𝐸𝐶𝑑down [mS cm-1] are the ECd time series at the upstream
and the downstream locations of the studied river stretch, respectively. 𝑡 is the sampling
time point. 𝑡max is the integral time interval. 𝜏 is the travel time of the individual water
parcel, and 𝑔(𝜏) is the transfer function.

Conservative transfer function. The impulse response of a linear time-invariant system
is the transfer function, which is a probability density function (PDF) that characterizes
the distribution of the travel times (𝜏) of the water parcels and produces the downstream
signal from the upstream signal via convolution. Assuming ECd behaves conservatively,
the transfer function consists of advection and dispersion terms (Małoszewski and Zuber,
1982; Schwientek et al., 2016; Glaser et al., 2020), and is expressed as Eq. 2.9,

𝑔(𝜏) =
1

𝜏
√

4𝜋𝐷𝜏
Δ𝑡ECd

exp
[
−
(1 − 𝜏

Δ𝑡ECd
)2

4𝐷𝜏
Δ𝑡ECd ]

(2.9)

which is parameterized by the dimensionless dispersion coefficient 𝐷 [-] and the mean
travel time Δ𝑡ECd.

Strictly speaking, for the ADR to be expressed by eqs. 2.8 – 2.9, a steady-state condition
is required. However, the convolution could still be applied under unsteady condition
when, e.g., the mean fluctuation period of the velocity is short in comparison with the
time scale of advection or dispersion (Boudreau, 1997); the time scale of flow velocity
fluctuation is smaller than the travel time (Cirpka et al., 2007). In our study, no cross-
sectional area data along the river course could be obtained. Thus, the flow velocity (the
travel time) was approximated by a mean value.
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2.2. Theory

Unsteady discharge propagation. Measuring downstream discharge (𝑄down [m3 s-1])
was not possible due the lack of a reliable rating curve. For approximating discharge time
series 𝑄down(𝑡) under unsteady flow conditions, an earlier approach for steady state con-
ditions by Schwientek et al., 2016 was adopted in Eq. 2.10,

𝑄down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝑄up(𝑡 − 𝜏)𝑞(𝜏)𝑑𝜏 (2.10)

where 𝑄up(𝑡) [m3 s-1] is the discharge time series at the upstream location (𝑄up calculation
in Appendix A.1).

The unsteady discharge follows the travel phenomenon of the kinematic wave in the
open channel. Since the studied river stretch approximates a rectangular cross-section
area and the water depth is shallow relative to the channel width, the definition of the
celerity 𝑐kn,wave [m s-1] of the wave in relation to the mean velocity of the ECd 𝑣ECd [m s-1],
can be simplified to Eq. 2.11 (Glaser et al., 2020; Schwientek et al., 2016),

𝑐kn,wave =
5
3
𝑣ECd (2.11)

which yields to Eq. 2.12,

Δ𝑡kn,wave =
3
5
Δ𝑡ECd (2.12)

where Δ𝑡kn,wave is the mean kinematic wave travel time. The transfer function 𝑞(𝜏) needs
to be adjusted as Eq. 2.13.

𝑞(𝜏) =
1

𝜏
√

20𝜋𝐷𝜏
3Δ𝑡ECd

exp
[
−
(1 − 5𝜏

3Δ𝑡ECd
)2

20𝐷𝜏
3Δ𝑡ECd ]

(2.13)

The sorption – desorption process that could influence the mean travel estimate for the
solutes transport was not included. Good results regarding the mean travel time estimate
using ECd without considering the sorption – desorption process in the similar segment
of the same river could be seen in Guillet and coworkers (Guillet et al., 2019). The study
segment of the Steinlach river is a relatively straight artificial channel that creates neither
enough hyporheic zones nor enough heads gradient to enhance hyporheic exchange. Un-
der such conditions, sorption to the riverbed and suspended sediments can be neglected.

Reactive transport of the effects from individual chemicals and mixture. In addition
to the transport processes described above for the EU and TU, these effects undergo ex-
ponential first-order decay. The transient storage part (needed under low flow conditions
(Liu et al., 2020)) of the model was ignored in this case. Therefore, the transport of the EU
and TU is complemented by a description of the lumped loss process following first-order
kinetics (Eq. 2.14 – 2.17),

𝐸𝑈chem𝑖,assay𝑗 ,down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝐸𝑈chem𝑖,assay𝑗 ,up(𝑡 − 𝜏)𝑟chem𝑖(𝜏)𝑑𝜏 (2.14)

𝑇𝑈chem𝑖,assay𝑗 ,down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝑇𝑈chem𝑖,assay𝑗 ,up(𝑡 − 𝜏)𝑟chem𝑖(𝜏)𝑑𝜏 (2.15)
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𝐸𝑈bio𝑗 ,down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝐸𝑈bio𝑗 ,up(𝑡 − 𝜏)𝑟bio𝑗 ,spec(𝜏)𝑑𝜏 (2.16)

𝑇𝑈bio𝑗 ,down(𝑡) = ∫
𝑡𝑚𝑎𝑥

0
𝑇𝑈bio𝑗 ,up(𝑡 − 𝜏)𝑟bio𝑗 ,cyto(𝜏)𝑑𝜏 (2.17)

where the 𝐸𝑈chem𝑖,assay𝑗 , 𝑇𝑈chem𝑖,assay𝑗 , 𝐸𝑈bio𝑗 and 𝑇𝑈bio𝑗 are time series of the state vari-
ables defined in Eq. 2.1 – 2.6. 𝑟chem𝑖(𝜏), 𝑟bio𝑗 ,spec(𝜏) and 𝑟bio𝑗 ,cyto(𝜏) are compound and assay
specific reactive transfer functions, respectively, that relate to the conservative transfer
function 𝑔(𝜏) (Eq. 2.9) through Eq. 2.18 – 2.20.

𝑟chem𝑖(𝜏) = 𝑔(𝜏) exp(−𝜆chem𝑖𝜏) (2.18)

𝑟bio𝑗 ,spec(𝜏) = 𝑔(𝜏) exp(−𝜆bio𝑗 ,spec𝜏) (2.19)

𝑟bio𝑗 ,cyto(𝜏) = 𝑔(𝜏) exp(−𝜆bio𝑗 ,cyto𝜏) (2.20)

where 𝜆chem𝑖 , 𝜆bio𝑗 ,spec and 𝜆bio𝑗 ,cyto are the compound-specific and assay-specific reaction
rate constants [𝜏-1] that are, for the purpose of reducing computational costs, assumed to
be constant over time.

2.3 Materials & Methods

General approach. Amodel-aided scenario analysis (Appendix A.2) was conducted prior
to the sampling and a Lagrangian sampling scheme that follows the same water parcel
along the course of the river was applied in the Steinlach River in Tübingen (southwest-
ern Germany). The studied river stretch is under direct impact of a WWTP effluent. Three
auto-samplers (AS) were installed (1.086 km, 2.249 km and 3.754 km downstream of the
WWTP, respectively) for 46 hours to collect two-hour interval composite time series water
samples. Each composite sample consisted of eight sub-samples taken every 15 minutes.
One grab sample each was taken upstream of the WWTP, in the tributary Ehrenbach,
at the WWTP’s effluent and in the tributary Mühlbach. Three grab samples were taken
at measuring station 1 (MS1). Samples from the field were analyzed for organic microp-
ollutants’ concentrations (80 targeted micropollutants) and effects (four different in vitro
bioassays). The one-dimensional convolution-based reactive convolution model (with in-
terpolated signals from MS1 (Figure A.1) as model input) was implemented for describing
the fate of individual effects along the river. Within Bayesian inference, the model was
used for describing the fate of the mixture effects.

2.3.1 Field campaign

The underlying sampling campaign took place in summer (June to August) 2020 at the
Steinlach River with a mean discharge of 1.83 m3 s-1 and a WWTP effluent of 0.26 m3 s-1

close to the city of Tübingen, Germany. More details on the field site and the sampling
campaign can be found in Appendix A.3.
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Mean travel time. Prior to the sampling, it was crucial to estimate the mean water parcel
travel time so that the starting time of the auto-samplers at different sampling sites could be
determined. ECd time series signal was measured prior to and during the sampling period.
We assumed that 1) the ECd behaves conservatively, 2) it reflects the temporal variation
resulting from the effluent flow of the WWTP, 3) the measured ECd values are a result of
the existing inorganic substances in the water and are much higher than the background
ECd values in themain channel and 4) the fluctuations of the flow velocity over time can be
approximated by a mean value because the mean fluctuation period of the velocity is short
in comparison with the time scale of advection or dispersion. To quantitatively obtain the
flow velocity fluctuations, continuous measurements of cross-sectional areas of the river
channel over time are required. The mean travel time Δ𝑡ECd and the lumped dispersion
coefficient 𝐷 estimation method presented by Schwientek et al., 2016 and Glaser et al.,
2020 was modified by implementing the MultiStart algorithm to find the global solution in
this study (Section 2.3.3). ECd measurement prior to the sampling and correcting scheme
are described in Appendix A.4 in Figure A.2 – Figure A.5.

2.3.2 Laboratory work

A brief description of the chemical analysis of the micropollutants (previously published
by Schmitt et al., 2021) like pharmaceuticals, fungicides and herbicides can be found in the
Supporting Information (Appendix A.5). Dissolved organic carbon (DOC) and pH of the
water samples were also measured.

In vitro bioassays. The enriched extracts from the 1L water sample were tested on four
in vitro bioassays named AhR-CALUX for aryl hydrocarbon receptor induction, PPAR𝛾-
GeneBLAzer for peroxisome proliferator-activated receptor activity, ER𝛼-GeneBLAzer for
estrogenicity and AREc32 for oxidative stress. Examples of inducing compounds for
the four bioassays are polycyclic aromatic hydrocarbons (PAHs), fibrate pharmaceuticals,
endocrine-disrupting compounds and pharmaceuticals that could produce reactive oxygen
species, respectively (Escher et al., 2021). In each cell line, the cytotoxicity was also mea-
sured. The effect concentration and inhibitory concentration (𝐸𝐶10 and 𝐼𝐶10) that cause
10% of the effects were quantified by fitting a simple linear regression in the concentration-
response curve (Escher et al., 2018). Details on measuring methods for specific effects and
cytotoxicity can be found in König et al., 2017 and Escher et al., 2019, respectively. The
measured 𝐸𝐶10 were converted to 𝐸𝑈 bio (Eq. 2.5) and the corresponding cytotoxicity 𝐼𝐶10
were converted to 𝑇𝑈 bio (Eq. 2.6). The mean values of 𝑇𝑈 bio of the four bioassays were
used for modeling because previous work has shown that cytotoxicity is typically very
similar for different cell lines (Escher et al., 2020; Lee et al., 2021) since the cell death is
triggered by many underlying processes and not directly by the mechanism investigated
by the reporter gene activation.

2.3.3 Parameter estimation

The parameters of the model were estimated in two steps. In the first step, the nonlinear
least-squares solver was used to estimate transport parameters from ECd data and the
first order reaction rate constants for the effect of individual micropollutants. Bayesian
inference was then used to estimate reaction rate constant for the overall mixture effects.
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Deterministic parameter estimation

The nonlinear least-squares solver was used in estimating the mean travel time Δ𝑡ECd,
the lumped dispersion coefficient 𝐷 (Eq. 2.9), and the first-order reaction rate constant of
the detected individual compound’s effect (Eq. 2.18). An optimized single value for each
parameter will be found by the search algorithm.

The MultiStart algorithm (trust-region-reflective searching method (Liu et al., 2020))
was used to evaluate the outcome of the objective function (Eq. A.14). The global solution
was found from the results of local solvers with multiple (500 - 1500) starting points. Nor-
malized root mean square error (NRMSE) was computed for each compound to evaluate
the goodness of the model fit (thus the model errors). NRMSE is defined as the root mean
square error divided by the difference between the maximum (𝑦obs,max) and minimum val-
ues (𝑦obs,min) in the observations (Eq. A.15).

Bayesian inference parameter estimation

Bayesian calibration was used to estimate the first order reaction constant in modeling the
total effects and toxic units 𝐸𝑈 bio and 𝑇𝑈 bio. Bayes rule states that given the data y, the
posterior probability density of parameter θ, 𝑃(θ|y), is proportional to the product of the
likelihood of the data 𝑃(y|θ) and the prior parameter probability density 𝑃(θ):

𝑃(θ|y) ∝ 𝑃(y|θ) ⋅ 𝑃(θ) (2.21)

Likelihood function. If θ = [𝜆𝑗 , 𝜎𝜖,𝑗 ] is the parameter vector, yobs = [𝑦obs,1, ..., 𝑦obs,𝑛] is
the observation vector, then the likelihood function is defined as:

(θ|yobs) =
𝑛

∏
𝑖=1

1√
2𝜋𝜎2

𝜖
exp(−

1
2
[𝑦model,𝑖(𝜆) − 𝑦obs,𝑖]2

𝜎2
𝜖 ) (2.22)

where 𝑖 [-] is the observation index, 𝑛 [-] the total number of the observations. Apart from
the first-order reaction rate constant 𝜆, the standard deviation 𝜎𝜖 in the likelihood function
was also estimated.

Prior parameter distribution. A prior distribution represents the belief about the exist-
ing information before any observations are provided (van Ravenzwaaij et al., 2018). It
can be derived based on existing theories, past experiments or constraints due to logical
reasons. To derive the prior distribution, we firstly assumed that the prior distribution of
the first-order reaction rate constants of 𝐸𝑈bio and mean 𝑇𝑈bio is informative and normal.
A normal distribution was fitted to the deterministically calibrated first-order reaction rate
constants of all the detected organic micropollutants (Section 2.3.3), and their correspond-
ing reaction rate constants derived from the literature half-lives (predicted biodegradation
half-life values from quantitative structure–activity/property relationship (QSAR) model
(Mansouri et al., 2018) (https://comptox.epa.gov/dashboard) using Eq. A.16).

The prior distribution of 𝜎𝜖,𝑗 (Eq. 2.22) was assumed to be a bounded uniform distri-
bution (𝜎𝜖,𝑗 ∼  (0, 5𝑠)). Here, 𝑠 is the maximum value of the reported standard errors of
the measured values of the grab samples collected at the WWTP effluent and 20% of the
measurements’ values. This was done in an effort to cover as many reasonable values as
possible. Thus, by rearranging Eq. 2.22, Eq. A.16 and Eq. A.17, the posterior distribution is
expressed as:

20

https://comptox.epa.gov/dashboard


2.4. Results & Discussion

𝑃posterior(θ|yobs) =
𝑛

∏
𝑖=1 (

1√
2𝜋𝜎2

𝜖
exp [−

1
2
(𝑦model,𝑖(𝜆) − 𝑦obs,𝑖)2

𝜎2
𝜖 ])

(
1

𝜎𝜆
√
2𝜋

exp(−
1
2 [

𝜆 − 𝜇𝜆
𝜎𝜆 ])

2

)
1
5𝑠

(2.23)

Posterior sampling. The Metropolis–Hastings Markov chain Monte Carlo (MH-MCMC)
algorithm was used to obtain samples of the posterior parameter distribution. The MH-
MCMC was applied to data from four cell lines: AhR-CALUX, PPAR𝛾-GeneBLAzer, ER𝛼-
GeneBLAzer and AREc32. Five Markov chains ran sequentially. Iterations needed for the
five chains to converge differ among cell lines (10000 to 50000 iterations each chain), de-
pending on uncertainties in the data from different cell lines. After the burn-in period (the
first 50% iterations), chains’ convergence was checked using the Gelman-Rubin diagnos-
tic with the potential scale reduction factor �̂� < 1.1 (Brooks and Gelman, 1998; Gelman
and Rubin, 1992). To avoid bias in the target distribution, the starting points of chains are
randomized values (Gelman and Rubin, 1992) (randomization details in Appendix A.9).

2.4 Results & Discussion

2.4.1 ECd signals and unsteady flow

The measured ECd signals at all measuring stations (MS) (sampling map: Figure A.1) not
only characterized the one dimensional in-stream transport phenomenon, but also con-
veyed information regarding the background river water quality, exhibiting a clear tem-
poral pattern contrast between upstream and downstream locations from the WWTP ef-
fluent. There were no rain events recorded in 2020 between 20:00, August 19 (AS1 started
sampling) and 17:15, August 21 (AS3 stopped sampling), apart from the two low precip-
itations of 0.22 mm and 0.1 mm at 21:00, August 18 and 06:00, August 20, respectively
(https://www.wetter-bw.de). During this period, the mean effluent discharge from the
WWTP (0.12 m3 s-1, ± 0.27 m3 s-1) contributed ∼ 47% of the mean discharge in the main
channel (0.26 m3 s-1, ± 0.13 m3 s-1). A distinct ambient in-stream ECd diurnal cycle was ob-
served at the measuring station upstream (MS Up) from the WWTP, where the dynamics
of ECd corresponded to the water temperature temporal pattern (Figure A.6). The ECd val-
ues at the MSs in the main channel downstream from the WWTP were approximately 1.5
times higher than that at MS Up during the sampling period, demonstrating the contribu-
tion from the WWTP release. The calibrated hydrological transport parameters based on
the ECd time series were used in the unsteady discharge calculation (Figure A.7; NRMSE
of 0.0093 and 0.0084 (Table A.10) for calibration results at MS2 and MS3 respectively). Fig-
ure 2.1 illustrates the modeled discharge in the studied river stretch. The WWTP effluent
discharge was dynamic after AS1 started sampling, and its contribution to the main river
flow was high. The WWTP effluent prompted the formation of a discharge wave (increase
from 0.12 m3 s-1 to the peak of 0.64 m3 s-1 in Figure 2.1B) that traveled downstream in
the main channel, causing flow in the main channel to become unsteady (Figure 2.1C –
E). Overlays of discharge at all MSs demonstrate how the wave propagated (Figure A.8).
The highly dynamic WWTP effluent discharge was likely reflecting the fluctuations of the
WWTP inlet. DOC (Figure A.9 A) was higher at day than at night and was also mainly
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Figure 2.1: Computed unsteady flow during the sampling period: (A) Discharge at the location
upstream from the wastewater treatment plant (Up); (B) Discharge at the wastewater treatment
plant effluent (WWTP); (C) Discharge at measuring station one (MS1); (D) Discharge at measuring
station two (MS2); (E) Discharge at measuring station three (MS3). Detailed sampling location
information can be found in Figure A.1 .

influenced by the DOC of the WWTP. The pH followed the discharge and was at pH 8 at
lower discharge but rose to over 9 at higher discharge (Figure A.9B).

2.4.2 In-stream concentration and effect dynamics

Detected chemicals’ concentrations and mass fluxes. The in-stream dynamics of the
concentrations of the detected micropollutants (Neale et al., 2015) were captured well by
the Lagrangian sampling scheme (Figure A.10 – Figure A.19, Table A.4 –A.6). All analytical
uncertainties are significantly smaller than the temporal variations observed in the data.
Therefore, it can be concluded that the observed temporal variations reflected actual in-
stream dynamics, not noise from measurement uncertainties. The modeled (model details
in eq. A.8 – A.13) compounds’ concentrations as well as their mass fluxes (Figure A.20
– Figure A.29) matched the observations well (NRMSE in Table A.10). Micropollutants
mainly emitted via the WWTP showed better agreement between measured and modeled
concentration time series than those that potentially originated from other sources. A
more detailed discussion on the sources of the micropollutants follows in Section 2.4.3.

Individual bioactive chemicals’ effects over time and space (𝐸𝑈chem,𝑖 and 𝑇𝑈chem,𝑖). The
dynamics of the detected micropollutants’ specific effects expressed as 𝐸𝑈chem,𝑖 and cy-
totoxicity, 𝑇𝑈chem,𝑖, are closely related to their concentrations (Neale et al., 2015) (Eq. 2.1
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– 2.2). Figure A.30 illustrates the measured 𝐸𝑈chem,𝑖 time series of compounds from MS2
and MS3 that were activating the AhR in AhR-CALUX assay. The pronounced 𝐸𝑈chem,𝑖
peaks recorded between 12:20 and 14:20 on August 20 were evidently caused by the earlier
high release from theWWTP. The observed effect reduction fromMS2 toMS3 (Figure 2.2A
and B) was caused by the effective dissipation process (Eq. 2.18), since the main feeding
tributary Ehrenbach had very low discharge (0.001 – 0.002 m3s−1). Linearly derived from
the concentrations, the simulated time courses of 𝐸𝑈chem,𝑖 were able to reproduce the tem-
poral variations of the measurements (e.g. the 𝐸𝑈chem,𝑖 peak for all compounds except 2-
aminobenzothiazole and benzothiazole-2-sulfonic acid (B-2-SA)), and fell within the range
of measurement uncertainties. Particularly in the cases of benzotriazole (Figure 2.2A),
diuron and telmisartan (Figure A.30), the modeled 𝐸𝑈chem,𝑖 time courses were able to accu-
rately capture the observed peaks, as well as the tailings (from 21:00 on August 20 to 10:00
on August 21) of the EU dynamics at both MS2 and MS3 (NRMSE (Eq. A.15)) of the nine
compounds in Table A.10). B-2-SA displayed an entirely different temporal pattern from
the rest of the eight compounds (Figure 2.2B). Instead of being elevated by the WWTP
input, the 𝐸𝑈chem,𝑖 observations experienced a drop between 12:20 and 14:20, as well as
observable fluctuations between 13:00 and 17:00 at both MSs on August 20. Afterwards,
pronounced peaks were observed at later hours between 21:00 on August 20 and 05:00 on
August 21. A previous study (Kloepfer et al., 2005) found that surface runoff also caused
a substantial amount of B-2-SA into receiving waters and B-2-SA was the dominant com-
pound among other benzothiazoles in the municipal wastewater. This conclusion might
shed lights on the reason for different temporal pattern found in B-2-SA in our study. Still,
the model was capable of reproducing most of the features in B-2-SA data. The modeled
𝐸𝑈chem,𝑖 time courses for individual compounds in PPAR𝛾-GeneGLAzer and AREc32 can
be found in Figure A.31 – Figure A.32, respectively. NRMSE for all detected compounds at
MS2 and MS3 are shown in Table A.10.

Individual bioactive chemicals’ effect unit fluxes. The high release from the WWTP
not only functioned as a major contributor of effects in the Steinlach River, but also played
a crucial role in characterizing the in-stream temporal patterns of 𝐸𝑈chem,𝑖 fluxes. The
𝐸𝑈chem,𝑖 fluxes of B-2-SA and benzotriazole in AhR-CALUX are shown in Figure 2.2C – D.
The modeled discharge time series was plotted alongside the 𝐸𝑈chem,𝑖 fluxes (Figure 2.2E–
F). Themajor temporal patterns of the 𝐸𝑈chem,𝑖 for AhR-CALUX (Figure A.30) were masked
by the discharge features. The 𝐸𝑈chem,𝑖 fluxes were heavily shaped by the unsteady dis-
charge. The discharge waves that were caused by the sudden WWTP release led to the
𝐸𝑈chem,𝑖 fluxes peaking at 12:00 at MS2 and 13:10 at MS3. The modeled 𝐸𝑈chem,𝑖 fluxes’
were able to produce the peaks that propagated from MS2 to MS3 in the observations of
4&5 methyl-benzotriazole, benzotriazole, climbazole, diuron, isoproturon and telmisartan
(although slight deviations from the data can be seen, e.g. in the last six hours of the sam-
pling period for tramadol.). The 𝐸𝑈chem,𝑖 flux of B-2-SA, similar to its 𝐸𝑈chem,𝑖, exhibited a
different temporal pattern from the rest of the compounds that were activating the AhR at
both MSs. In particular, the 𝐸𝑈chem,𝑖 flux of B-2-SA clearly peaked twice during our sam-
pling period, and the modeled results at MS3 showed the largest deviation from the data in
comparison to all other compounds approximately at midnight of August 21. Nevertheless,
the modeled 𝐸𝑈chem,𝑖 fluxes were able to reproduce the key features in the observations for
the detected compounds in AhR-CALUX, PPAR𝛾-GeneBLAzer and AREc32 (Figure A.33
– Figure A.35). The model also performed well when applied to the cytotoxicity data. As
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Figure 2.2: 𝐸𝑈chem,𝑖 (A) – (B) and 𝐸𝑈chem,𝑖 fluxes (C) – (D) of the two detected chemicals that were
activated in AhR-CALUX. Each dot represents the mean value of this two-hour interval for which
eight sub-samples were mixed. Analytical uncertainties (one standard deviation) originating from
the concentration measurements are illustrated by the grey area. Discharges at MS2 and MS3 are
shown in light blue and red areas, respectively. Three missing data points at MS2 were due to the
malfunction of auto-sampler 2 between 03:30 and 07:30 on August 21, 2020. Abbreviations: B-2-SA
– Benzothiazole-2-sulfonic acid; MS – Measuring station.

the 𝐸𝑈chem,𝑖 and 𝑇𝑈chem,𝑖 only differed by a scaling factor, the modeled time course of the
𝑇𝑈chem,𝑖 in six cell lines (AhR-CALUX, PPAR𝛾-GeneBLAzer, ER𝛼-GeneBLAzer, AREc32,
AR-GeneBLAzer and GR-GeneBLAzer in Figure A.36 – Figure A.41) again were able to re-
produce the main features of the individual compound’s cytotoxicity time series. Similar
results can be seen in the case of cytotoxicity fluxes (Figure A.42 – Figure A.47 , Table A.10).
By applying the convolution-based transport model with the first-order reaction kinetics
to the individual effects data, we demonstrated that the model was able to quantitatively
characterize in-stream mechanisms of the individual effects.

Predicted mixture effects of bioactive chemicals (𝐸𝑈chem and 𝑇𝑈chem). The detected
bioactive chemicals are expected to contribute to the mixture effects that were measured
in a water sample. However, this contribution is often very small, even if hundreds of
chemicals are included in an analytical method (Neale et al., 2020), which means that the
analysed chemicals are often not mixture effect drivers. Therefore we go stepwise from
individual chemicals 𝐸𝑈chem,𝑖 to the mixture of detected chemicals 𝐸𝑈chem and address the
experimental mixture effects 𝐸𝑈bio only in the next section. Regardless the goodness of the
fit for the individual compounds, their contributions to the total effects 𝐸𝑈bio differ. Fig-
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ure 2.3A – C display the percentages of the mean 𝐸𝑈chem,𝑖 of the individual micropollutants
from MS1 over the whole sampling period.

Figure 2.3: Contribution (%) of the mean effect units over the sampling period from individual
micropollutants to the whole mixture at auto-sampler 1 for the bioassay AhR and PPAR𝛾 . (A) and
(C): Contribution of individual micropollutants effects to 𝐸𝑈 chem; (B) and (D): Contribution of all
detected micropollutants to 𝐸𝑈 bio; Abbreviations: 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-
MBT – 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic acid; Detected – Effect of all
detected compounds; Unknowns – Effect of the non-detected compounds. Unit of EU: [Lbiosassy ⋅
Lwater-1]

Within the mixture effect 𝐸𝑈chem (𝐸𝑈chem = ∑𝑛
𝑖=1 𝐸𝑈chem,𝑖 (Eqs. 2.1 – 2.3)), the contri-

butions from the individual compounds varied over different bioassays, but did not differ
significantly between sampling locations. B-2-SA contributed a relatively large fraction
of 𝐸𝑈 chem in PPAR𝛾-GeneBLAzer and AREc32, and tramadol in AhR-CALUX (full results
can be found in Figure A.48 – Figure A.49.). In all three bioassays, the contribution of all
detected and activated compounds (𝐸𝑈chem) to the total effect (𝐸𝑈bio) was less than 1% re-
gardless of the locations (Figure 2.3B and D), indicating that the majority of the effects in
𝐸𝑈bio was contributed by the non-detected compounds. Neale et al., 2020 reported similar
low fractions of explained effects in the same three bioassays inwater samples from diverse
rain events in rivers of similar size. They also mixed 17 chemicals that were deemed to be
mixture effect drivers in 107 concentration ratios simulating the exact occurrence in the
water samples and demonstrated an excellent agreement between the modeled 𝐸𝑈 chem and
the experiments with the designed mixtures 𝐸𝑈 bio,designed mixtures (Figure 5 in reference
Neale et al., 2020). Hence, it is safe to assume that the 𝐸𝑈 chem is indeed a good predictor
of the true mixture effects of the quantified chemicals and the difference between 𝐸𝑈 bio
and 𝐸𝑈 chem stems from unaccounted chemicals rather than non-additive and interactive
mixture effects. The same holds for cytotoxicity, where the same mixtures tested as in
Neale et al., 2020 also showed and excellent agreement between the modelled 𝑇𝑈 chem and
the experiments with the designed mixtures 𝑇𝑈 bio,designed mixtures (Escher et al., 2020).

In the case of cytotoxicity, no single compound showed the universal dominance at
contributing individual effects (𝑇𝑈chem,𝑖) to the mixture effects of the detected compounds
(𝑇𝑈chem) across all bioassays. The percentages of TU contributed by individual compounds
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to 𝑇𝑈chem in AhR-CALUX, PPAR𝛾-GeneBLAzer, ER𝛼-GeneBLAzer, AREc32, AR-CALUX
and GR-GeneBLAzer are shown in Figure A.50 – Figure A.52. Diclofenac, benzotriazole,
sulpiride and terbutryn contributed the overall high percentages in PPAR𝛾-GeneBLAzer,
AR-CALUX, GR-GeneBLAzer and ER𝛼-GeneBLAzer, respectively. In AhR-CALUX and
AREc32, 𝑇𝑈chem was more evenly composed out of the effects of individual compounds.
No significant spatial variations of the individual TU contributions were observed.

The time patterns of the mixture effects from all the detected and active compounds,
𝐸𝑈chem and 𝑇𝑈chem (Eqs. 2.3 – 2.4), were dominated by those compounds that contributed
some of the largest shares of the effects in the mixture (Figure A.53 and Figure A.55).
Similar to the individual effects, the dynamics of the fluxes (Figure A.54 and Figure A.56)
were dominated by that of the discharge. Modeled flux results were able to reproduce
the major features (e.g. the main peak caused by the WWTP’s effluent sudden release)
observed in the data from all three bioassays.

The total mixture effects (𝐸𝑈bio and 𝑇𝑈bio) and fluxes. The measured time series
and modeled time series ensemble of 𝐸𝑈bio in AhR-CALUX, PPAR𝛾-GeneBLAzer, ER𝛼-
GeneBLAzer and AREc32 at MS2 and MS3 are shown in Figure A.57 – Figure A.58, re-
spectively. The 𝐸𝑈bio, representing the total specific burden that resulted from all of the
organic micropollutants in the water sample, displayed relatively high variations at cer-
tain time points, and unclear transport patterns along the river course (Figure 2.4). This is
presumably because the discharge was not stable during the sampling period (Figure 2.1)
and therefore the composition of the components triggering themixture effect were highly
variable. Similar to the 𝐸𝑈chem,𝑖 fluxes of the detected compounds, as well as the results
from Müller et al., 2021 in storm events, in this study the observed fluxes of 𝐸𝑈bio were
mainly dominated by the temporal patterns of the unsteady discharge (Figure 2.4). In all
four bioassays, pronounced flux peaks were seen at around 12:00 on August 20. How-
ever, the individual temporal pattern in each bioassay could also be differentiated. In both
PPAR𝛾-GeneBLAzer and ER𝛼-GeneBLAzer (Figure 2.4B – C), a pronounced drop of 𝐸𝑈bio
flux could be observed at around 15:00. At the same time, the mean 𝑇𝑈bio flux also experi-
enced the drop (Figure A.62), indicating that the observation could not have been caused by
masking effect of the cytotoxicity. Furthermore, in comparison with the other three bioas-
says, the measured 𝐸𝑈bio fluxes in AREc32 (Figure 2.4D) could clearly be seen experiencing
smaller temporal oscillations. ThroughMH-MCMC sampling, the convolution-based reac-
tive transport model yielded the 𝐸𝑈bio fluxes ensemble after all chains converged, and the
statistics of the modeled effect fluxes ensemble were computed. The means and three pos-
terior intervals (PI) (68.27% PI = mean± 𝜎; 95.45% PI = mean± 2𝜎; 99.73% PI = mean± 3𝜎)
of the modeled 𝐸𝑈bio fluxes ensemble were depicted in Figure 2.4. The model ensemble
was capable of capturing the main features of the flux dynamics mainly characterized by
the transport (e.g., Figure 2.4A). ER𝛼-GeneBLAzer and AREc32 (Figure 2.4C – D) showed
relatively large outliers at certain time points. The input uncertainties that influence the
characterizations of the dynamics were not included, which could explain the different dy-
namics for PPAR𝛾-GeneBLAzer and AREc32 (Figure 2.4B andD). The poorest model fit was
in the case of PPAR𝛾-GeneBLAzer (Figure 2.4B). The observations in PPAR𝛾-GeneBLAzer
had the largest measurement standard errors. This resulted in limited learning from the
data as seen from the similar prior and posterior distributions of the reaction rate constant
(Figure A.65). The ensembles of 𝐸𝑈bio fluxes in the four bioassays at MS3 are displayed in
Figure A.59.
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Figure 2.4: 𝐸𝑈 bio fluxes ensemble of four cell lines at MS2. Ensemble was obtained through the
posterior distributions of reaction rate constants sampled by Metropolis–Hastings Markov chain
Monte Carlo (MH-MCMC) (Figure S64). Mean and three ranges of posterior intervals (PI) of the
ensemble were computed (68.27% PI = mean ± 𝜎; 95.45% PI = mean ± 2𝜎; 99.73% PI = mean ± 3𝜎).
Analytical uncertainties (one standard error) are shown by error bars in red. Three missing data
points at MS2 were due to the malfunction of auto-sampler 2 between 03:30 and 07:30 on August
21, 2020.

In the case of the toxic unit of the whole bioactive mixture (𝑇𝑈bio), the measured 𝑇𝑈bio
values in different bioassays should be relatively similar, since TUs are quantified based on
the same endpoint, even in different bioassays. The model with Bayesian calibration was
applied to the mean 𝑇𝑈bio (Section 2.2) measured in AhR-CALUX, PPAR𝛾-GeneBLAzer,
ER𝛼-GeneBLAzer and AREc32. The modeled time course ensembles of 𝑇𝑈bio at MS2 and
MS3 are plotted in Figure A.60 and Figure A.61, respectively, and show similar performance
in terms of coverage as for EU, e.g., 11 out of the 15 observations at MS2 (Figure A.60) and
12 out of the 16 observations at MS3 (Figure A.61), considering the measurement errors,
were in the 95.45% posterior interval of the model ensemble. Figure A.62 and Figure A.63
depict the modeled 𝑇𝑈bio flux ensembles. Similar to 𝐸𝑈bio flux, the modeled 𝑇𝑈bio flux
ensembles were able to reproduce the flux peak in the data at both MS2 and MS3. The
number of iterations the MH-MCMC took to converge for each bioassay data set are given
in Figure A.64 - Figure A.71.

2.4.3 Sources of micropollutants

Effects comparison: upstream and downstream of the WWTP. The model perfor-
mances vary for micropollutants that mainly stem from the WWTP and other potential

27



2.4. Results & Discussion

non-point sources. Thus, it is essential to characterize the sources for the micropollutant
mixtures. The concentrations of all compounds in grab samples are given in Table A.3 and
illustrated in Figure A.74. As expected the typical WWTP effluent substances were not
detected at MS Up and MS Ehr, but could be found at MS Muehl and MS1. Still, atrazine-
2-hydroxy, mecoprop, terbuthylazine-2-hydroxy and carbendazim were found at MS Up
and MS Ehr. Additionally, atrazine, atrazine-desethyl, nicosulfuron, terbuthylazine and
tebuconazole were also detected at MS Ehr (Table A.3). All of these compounds are either
herbicides, herbicide metabolites or fungicides (Table A.1) that could come from other
sources, e.g. agricultural fields during and after their application periods (Wittmer et al.,
2010).

Figure 2.5 depicts the grab samples’ EU of detected individual compounds (𝐸𝑈chem𝑖 ),
the mixture of all detected compounds (𝐸𝑈 chem) and the total mixture (𝐸𝑈 bio) quantified
in PPAR𝛾-GeneBLAzer. Results from AhR-CALUX and AREc32 are shown in Figure A.75
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Figure 2.5: The effect units (EU) of grab samples: (A) Total mixture effect (𝐸𝑈 bio); (B) Individual
effects 𝐸𝑈chem,𝑖; No grab samples were taken at MS2 and MS3. Measurement uncertainties (stan-
dard deviation) are shown by the error bars. Abbreviations: Ehr – Ehrenbach; Muehl – Mühlbach;
B-2-SA – Benzothiazole-2-sulfonic acid; Chem – Effect units of the sum of detected bioactive com-
pounds (Eq. 2.3).

Evidently there is a large difference in scale between 𝐸𝑈 bio and 𝐸𝑈 chem as shown in Fig-
ure 2.3 and discussed in this section. The non-detects in 𝐸𝑈 chem at sites Up and Ehr while
𝐸𝑈 bio were similar as for other sites are likely to be explained by chemicals causing the ef-
fect that were not included in the chemical analysis. 𝐸𝐶10 values of individual compounds
are in Table A.7 – A.8. At all sampling locations, 15 out of the 42 contaminants found in
the grab samples showed at least one specific effect. Diuron, isoproturon, and tramadol
were active in two of the three bioassays. 2-aminobenzothiazole and B-2-SA triggered
specific effects in all three bioassays. At MS Up and MS Ehr, none of the detected com-
pounds displayed any specific effects, indicating that at those two locations, the detected
chemicals made no contributions to the 𝐸𝑈 bio, in terms of triggering the modes of action
quantified by AhR-CALUX, PPAR𝛾-GeneBLAzer and AREc32. None of the target analytes
activated ER𝛼. 𝐸𝑈 bio of grab samples in ER𝛼-GeneBLAzer is shown in Figure A.76. At
the same locations (MS Up and MS Ehr), the 𝐸𝑈 bio from grab samples were also less than
0.01 (inverse of 100 REF) in AhR-CALUX, ER𝛼-GeneBLAzer and AREc32, but activated
effects in PPAR𝛾-GeneBLAzer. Similar results can be found when looking at cytotoxicity.
𝑇𝑈 bio of grab samples were quantified and above the limit of detection in AhR-CALUX,
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PPAR𝛾-GeneBLAzer, ER𝛼-GeneBLAzer and AREc32 (Figure A.77 – Figure A.79). The total
bioactive mixture from MS Up and MS Ehr showed cytotoxicity in all four bioassays.

𝐸𝑈 bio and 𝑇𝑈 bioweremeasured at unexpectedly high values at locations upstream from
theWWTP, indicating other non-point sources that contribute to the total mixture effects.
PPAR𝛾-GeneBLAzer, 𝐸𝑈 bio from MS Up and MS Ehr were both higher than that from the
WWTP effluent. However, considering the low discharge in Ehrenbach (0.001 – 0.002 m3

s−1) and Mühlbach (0.04 – 0.056 m3 s−1), the load of the chemicals and effects from the two
tributaries are relatively low. In AhR-CALUX and PPAR𝛾-GeneBLAzer, 𝑇𝑈 bio from MS UP
and MS Ehr were both higher than that in samples from WWTP effluent (Figure A.77).
Oddly, in AREc32 and ER𝛼-GeneBLAzer, the 𝑇𝑈 bio of the WWTP effluent was less than
0.01. Still, in AREc32 and ER𝛼-GeneBLAzer, 𝑇𝑈 bio of MS Up and MS Ehr were measured at
the same order of magnitude to that of measuring station Mühlbach (MS Muehl) and MS1.

The results suggest that micropollutants from MS Up and MS Ehr cannot activate the
modes of action of aryl hydrocarbon receptor induction, estrogenicity and oxidative stress
response. But even without the input from the WWTP, there are unknown chemicals in
the river that are potent enough to activate the peroxisome proliferator–activated recep-
tor activity, as well as cytotoxicity in AhR-CALUX, PPAR𝛾-GeneBLAzer, ER𝛼-GeneBLAzer
and AREc32. The presence of unknown compounds triggering specific effects in PPAR𝛾-
GeneBLAzer as well as showing strong cytotoxicity in all four bioassays might be at-
tributed to undetected biocide or pesticide diffusion. Previous studies (Wittmer et al., 2010;
Munz et al., 2016; Chow et al., 2020) pointed out that biocides and pesticides from mixed
lands and urban areas can enter rivers via pathways caused by rain events (e.g. dispersive
losses and combined sewer overflows). Existing natural compounds in rivers may also ac-
tivate effects in bioassays. Salam et al., 2008 and Rau et al., 2006 confirmed that strong
PPAR𝛾 agonists can be from plants and herbs (e.g., psi-baptigenin and hesperidin), which
were not on our list of target analytes (Table A.1). Further discussion on 𝑇𝑈chem,𝑖 of grab
samples can be found in Appendix A.25).

From individual micropollutants to the total mixture: prior and posterior distribution
of the reaction rate constants. The 𝐸𝑈chem,𝑖 observations from the individual micropol-
lutants were illustrated together with 𝐸𝑈bio across all MSs in the main channel in Figure
S80. Echoing grab samples shown in Figure 2.5, 𝐸𝑈chem,𝑖 at all threeMSswere out-weighted
by 𝐸𝑈 bio. Corroboratory results were reported from numerous previous studies. (Escher
et al., 2015; König et al., 2017; Neale et al., 2015, 2017, 2020) The potentially large number
of none-detected micropollutants in the mixture were considered the main contributors to
the total specific mixture effects.

Only a limited numbers of micropollutants in themixture could be identified, for which
the reaction rate constants could be quantified. Within Bayesian inference, the reaction
rate constants of the effects of the total mixture (𝐸𝑈 bio and 𝑇𝑈 bio) were treated as random
variables. The posterior distributions of the random variables were quantified (1) based on
previous knowledge of individual micropollutants that were possibly in the mixture (the
prior), and (2) conditioning on the data (the likelihood). Prior and posterior distributions
of reaction rate constants for 𝐸𝑈 bio and mean 𝑇𝑈 bio are given in Figure A.64 – Figure A.73.
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2.5 Implications

There is a lack of mechanistic models applied to study the process of the micropollutant
mixture effects in rivers. We extended the 1D advection-dispersion-reaction equation from
single micropollutants to the measured mixture effects, quantitatively studying the in-
stream processes of the mixture effects. We demonstrated that the computationally cheap
convolution-based reactive transport model can be applied not only to simulate the effects
of a large number of individual compounds detected in the mixture, but also to be coupled
with stochastic methods to provide quantitative insights of the fate of the overall mixture
effects.

Different transfer functions can be tested so that more insights about the process of
the mixture effects in different systems (e.g., on suspended particles) can be provided.
Time dependent parameters can also be included, for instance, when modeling transient
source(s) from tributaries during rain events, even in the stochastic processes (e.g. with
hierarchical modeling). A next step should be to test if this approach can also be applied
to the micro-pollutant mixture effects during storm events, including the micropollutant
effects associated with river sediments.
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Chapter 3

Modeling the processes and dynamics
of the mixture effects of organic
micropollutants in a small river
during a storm event

Abstract

The threat to river water quality posed by the cumulative mixture effects from microp-
ollutant mixtures is potentially elevated by rain events, which supply various routes for
micropollutants to enter rivers. The in-stream processes of the mixture effects during rain
events are not fully understood. In the present study, the mixture effects in the solid-
phase extraction extracts from water collected during a storm were quantified in in vitro
bioassays, and were expressed as effect units (EU) for activation of the arylhydrocarbon
receptor (AhR-CALUX) or oxidative stress response (AREc32) and toxic units (TU) for
cytotoxicity in both cell lines. We sought to quantitatively understand the in-stream pro-
cesses of the mixture effects in rain events and addressed the following challenges. The
measured EU/TU time-series signals exhibit complex temporal patterns. During the storm,
point sources (e.g., wastewater treatment plants) and inputs from the transient lateral in-
fluxes were included. The discharge in the river channel becomes highly transient, causing
the reactive transport process parameters of the solute to be time-dependent. Hypothe-
sizing the transient discharge plays the role of the source term for the mixture effects,
we simulated the discharge during a storm separately from the mixture effects using a
flood routing (diffusive wave) model. Hypothesizing the in-stream processes for EU/TU
are transient advection and dispersion, local equilibrium sorption and the source term
that is proportional to the transient discharge, a one-dimensional transient reactive trans-
port model was applied to simulate the in-stream dynamics of mixture effects data (AhR-
CALUX and AREc32). We addressed the uncertainty in the temporal patterns of the mix-
ture effects stochastically, e.g., treating model boundary and initial conditions as random
variables. Gaussian process regression (GPR) and its conditional realizations were used
to mimic all plausible temporal patterns of the model inflow boundary conditions. In this
way, we could efficiently compute ensemble time-series output of mixture effects using
a relatively computationally heavy transient model with deterministically calibrated pa-
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rameters. The modeled ensemble output effectively reproduced the complex dynamics of
the measured EU/TU and their fluxes. The results in return verified our parameterization
for the transient in-stream processes influenced by the diffusive wave transient discharge.
GPR proved to be a robust non-parametric approach to approximate the temporal dynam-
ics of the mixture effects, as well as to construct the mixture model’s inflow boundary
conditions. Our results showed that the storm-caused transient discharge played a vital
role in characterizing the advective and dispersive transport processes for the mixture ef-
fects by directly influencing the velocity with which the mixture effects travel in the river.
Besides theWWTP as a point source, the storm introduced the lateral inflow into the river
that functioned as a lateral inflow-proportioned source for the mixture effects along the
river course. The mass conservation nature of the mixture effects in a transient system
demonstrated the prospect of using the mixture effects as the state variable suitable for
parameterizing more complex process-based models, e.g., coupling transport processes in
rivers with hyporheic exchange.

3.1 Introduction

Rain events play a unique role at introducing anthropogenic organic micropollutants into
rivers. The classic point-sources, e.g., wastewater treatment plants (WWTPs) are no longer
the only major entry points for micropollutants to enter the water body (Spahr et al., 2020).
Lateral influxes from, e.g., surfaces runoff (urban (Dittmer et al., 2020) and farmlands (Neu-
mann et al., 2002)), and combined sewage overflow (Launay et al., 2016), provide an equally
significant and dispersive entry route that is often spatially distributed along river chan-
nels. The highly dynamic nature of rain events leads the overall input of micropollutants
into rivers, as well as their in-stream reactive transport processes to be transient.

Investigating the mixture effects of micropollutants, particularly quantifying the spe-
cific mixture effects and cytotoxicity using in vitro bioassay, complementary to chemical
analysis (König et al., 2017; Lee et al., 2022), offers a new perspective of studying riverwater
quality (Escher et al., 2021). The mixture effects, such as effect unit (EU), 𝐸𝑈 bio, and toxic
unit (TU), 𝑇𝑈 bio, are quantified as concentration equivalent (Escher et al., 2018, 2021). To
quantitatively describe the in-stream processes of the mixture effects from a mass-balance
point of view, we extended the advection-dispersion-reaction equation (ADR) from a sin-
gle micropollutant to the mixture effects, applying a one-dimensional reactive transport
model in the convolution form to 𝐸𝑈 bio and 𝑇𝑈 bio data that was collected during unsteady
flow conditions (Wei et al., 2022). The results confirmed the ADR was valid for character-
izing the in-stream processes of the mixture effects under unsteady flow conditions.

The convolution-based reactive transport model could hold in the transient state only
if certain conditions (e.g., small time scale of flow velocity) are met (Boudreau, 1997; Cirpka
et al., 2007). During heavy rain events, the velocity with which the solutes travel becomes
highly transient as a result of the changing discharge and the cross-sectional areas of the
river channel over time. The transient velocity also affects the dispersion process, of which
the longitudinal dispersion coefficient is linearly scaled to the velocity (Mellage et al., 2022;
Störiko et al., 2022; Wang et al., 2022). To parameterize the transient lateral influxes into
such complex system, the partial differential equation (PDE)-based transient models, al-
though suffering from relatively higher (than the convolution-basedmodel) computational
costs, have the advantage of explicitly expressing the complex processes. The rates defined
inside the PDE-based models have physical meanings and could be easily coupled with
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time-dependent parameters, which could be determined by fitting the model results to the
observations and evaluating the goodness of the fit when they are difficult to measure
directly.

In the current study, we faced certain challenges when applying the PDE-based tran-
sient models to mixture effects. Informative data acquisition is limited by logistic capac-
ities in the field during rain events. The highly transient features of the system we are
trying to highlight could happen in short period which requires high frequency sampling
at each location. In practise considering the coarse temporal resolution of the sampling
scheme and the measurement errors, a single interpolated result from the time-series ob-
servations of the mixture effects could not robustly approximate the real-world temporal
patterns of the signal. When using such interpolated result as either model input or ob-
servations for parameter estimates, it produces unsatisfying modeled results and misleads
the understanding of the internal processes.

We sought to understand the dynamics of the mixture effects during rain events from
three quantitative perspectives: 1) explicitly expressing the transient in-stream processes
that govern the dynamics of the mixture effects during rain events; 2) robustly character-
izing the mixture effects time-series signals; 3) efficiently computing the ensemble output
from the transient model to reproduce the complex dynamics in the measurements. We
applied the transient models to the mixture effects data from the river water samples col-
lected during a storm event using Lagrangian sampling scheme (Schwientek et al., 2016;
Guillet et al., 2019) (sampling details in Glaser et al., 2020). The potential sources of the
individual micropollutants and the mixture effects, their complex portion of contributions
to the system during this storm event, as well as the impact of different endpoints of mix-
ture effects with respects to river water quality were discussed provided by Müller and
colleagues (Müller et al., 2021) (providing data for current study), thus they are not part
of the discussion in the current study. We simulated the transient discharge using the
general Hayami flood routing model (Moussa, 1996) including a uniformly distributed lat-
eral inflow over the domain. The lateral inflow was computed via convolution of effective
precipitation and the transfer function with gamma distribution shape. Taking the simu-
lated transient discharge in computing the flow velocity, we implemented a deterministic
one-dimensional PDE-based transient reactive transport model for the mixture effects dy-
namics, for which the reaction terms we considered a transient first-order source term and
local equilibrium for the sorption process. To approximate the temporal patterns of mix-
ture effects as robustly as possible, we introduced stochastic elements into the model by
treating the time-series input as random variables. We used the Gaussian process regres-
sion (GPR) (Schulz et al., 2018) to compute the posterior of the random variable input. The
conditioned realizations from the posterior were used as the mixture model input enabled
PDE model to generate ensemble output. We simulated the spatial and temporal dynamics
of the EU, the EU flux, the TU and the TU flux. The EU and TU were quantified in two
in vitro bioassays (AhR-CALUX (Brennan et al., 2015) and AREc32 (Wang et al., 2006)). Our
combined approach presented a robust characterization of the mixture effects time-series,
offering an efficient way to compute ensemble results through deterministic parameter
values while explicitly expressing the transient physical processes for the mixture effects.
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3.2 Methods & Theory

3.2.1 Underlying data acquisition

In current study, all time values are expressed as durations in hours. Exceptions are the
ones explicitly written as clock time in ISO 8601 format. All clock time was in CEST.

Field campaign. The underlying sampling campaign took place in July 2019 in the
Ammer River, Baden-Württemberg, Germany. The study segment is approximately 8
km long, starting at 4 km downstream of Herrenberg, ending in Pfäffingen. Two auto-
samplers (AS) were installed at the beginning (MS1) and the end (MS2) of the seg-
ment to collect composite time-series samples (30-minute temporal resolution). Fig-
ure B.1 shows the sampling map. AS 1 sampled from 2019-07-27 19:09 to 2019-07-28
09:00. AS 2 sampled from 2019-07-27 20:03 to 2019-07-28 10:00. One conductivity-
temperature-depth diver (CTD) was installed at each MS. CTD 1 (at MS1) recorded
from 2019-07-27 00:00 to 2019-07-28 09:00. CTD 2 (at MS2) started at the same time
as CTD 1 and stopped at 2019-07-28 11:00. All time was in central European sum-
mer time (CEST). The CTD measurement temporal resolution was 15 minutes. Mea-
sured water depth was converted to discharge using a rating curve (Eq. B.1). Precip-
itation data (1-hour resolution) was obtained from three weather stations in Herren-
berg (https://opendata.dwd.de/climate_environment/CDC/observations_germany/), Un-
terjesingen and Bondorf (https://www.wetter-bw.de/Internet/AM/NotesBwAM.nsf/). The
mean precipitation of the three stations was used to compute lateral inflow (Eq. 3.5). The
detailed sampling procedure can be found in Glaser et al., 2020. Figure 3.1A shows the
inflow signal and lateral influxes entering the domain during the storm. The river channel
geometry is shown in Figure 3.1B.

Laboratory work. The dissolved phase enriched extracts were obtained by solid phase
extraction and were analysed with two in vitro bioassays named AhR-CALUX for aryl
hydrocarbon receptor induction (Brennan et al., 2015) and AREc32 for oxidative stress
(Escher et al., 2013). Detailed description of chemical analysis of the micropollutants and
mixture effects measurements can be found in the work done by Müller et al..

Effect unit and toxic unit. The specific effects (e.g., activation of the AhR, triggered by
binding of chemicals to the arylhydrocarbon receptor (Escher et al., 2021).) and cytotoxic-
ity in the river water, stemming from the micropollutants contributed mainly by WWTPs,
were quantified in in vitro bioassays and expressed as effect unit (EU) (Müller et al., 2018)
for specific effects and toxic unit (TU) (Müller et al., 2018) for cytotoxicity. Both EU and
TU can be used to characterize the experimentally determined mixture effects (𝐸𝑈bio and
𝑇𝑈bio).

The EU and TU describing the mixture effects of the whole water sample, 𝐸𝑈bio𝑗
[Lbioassay ⋅ Lwater-1] and 𝑇𝑈bio𝑗 [Lbioassay ⋅ Lwater-1], are defined in Eqs. 3.1 – 3.2,

𝐸𝑈bio𝑗 =
1

𝐸𝐶𝑘,assay𝑗
(3.1)

𝑇𝑈bio𝑗 =
1

𝐼𝐶𝑘,assay𝑗
(3.2)
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Figure 3.1: Schematic of the study setup. (A): The 𝐸𝑈 bio time-series signal traveled from MS1 to
MS2. The orange transient influxes were caused by the storm. We assumed the influxes to be
uniformly distributed along the river. (B): River channel geometry. The cross-sectional area of the
channel was assumed to be isosceles trapezoidal. Variables in blue were estimated. Abbreviation:
MS-measuring station.

where 𝐸𝐶𝑘,assay𝑗 and 𝐼𝐶𝑘,assay𝑗 are the effect concentration (EC) (Müller et al., 2018) and and
inhibition concentration (IC) (Müller et al., 2018) of the whole water sample that trigger
𝑘 effects (typically 𝑘 is 10% of the maximum effect (Escher et al., 2015; Jia et al., 2015) or
the induction ratio of 1.5 (Müller et al., 2018; Escher and Neale, 2021) and cytotoxicity,
respectively in assay 𝑗 . The units of EC and IC are relative enrichment factor (REF [Lwater
⋅ Lbioassay-1]) (Escher et al., 2021; König et al., 2017). For TU of the whole bioactive mixture
(𝑇𝑈bio), the measured 𝑇𝑈bio values in different bioassays are relatively similar (Wei et al.,
2022), since TUs are quantified based on the same endpoint (cell viability (Escher et al.,
2021). Therefore, we used the mean 𝑇𝑈bio values for modeling.

Effect unit and toxic unit fluxes. The fluxes 𝐹𝑘(𝑡) of the EU (𝑘 = 𝐸𝑈 bio𝑗 ) and the TU
(𝑘 = 𝑇𝑈 bio𝑗 ) are defined by the products of the effect units and toxic units, respectively,
with the corresponding discharge (𝑄 in [m3 s-1]) at time 𝑡 (Eq. 3.3. 𝐸𝑈 is replaced by 𝑇𝑈
when computing the cytotoxicity flux).

𝐹𝑘(𝑡) = 𝐸𝑈𝑘(𝑡) ⋅ 𝑄(𝑡) (3.3)

3.2.2 Discharge model

During the storm, a dischargewavewas formed in the river channel and propagated down-
stream in the study segment. For the natural channel flood routing modeling, the full one-
dimensional Saint-Venant equations (Beg et al., 2022) can be simplified in the momentum
equation in practice, leaving the system to be characterized by a diffusive wave (Fan and
Li, 2006). The high precipitation also created transient lateral inflow into the river chan-
nel (Sun et al., 2023). Assuming the lateral inflow is uniformly distributed along the river
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course, we implemented the model proposed by Hayami 1951 andMoussa 1996 to simulate
the discharge under such conditions (Eq. 3.4),

𝑄down(𝑡) = 𝑄up(0) + 𝑄inflow(0) +
𝐶
𝐿 ∫

𝑡

0
[𝑄inflow(𝜆) − 𝑄inflow(0)] 𝑑𝜆

+
𝐿

2𝜋𝐷1/2 exp(
𝐶𝐿
2𝐷)∫

𝑡

0 [𝑄up(𝑡 − 𝜏) − 𝑄up(0) −
𝐶
𝐿 ∫

𝑡−𝜏

0
[𝑄inflow(𝜆) − 𝑄inflow(0)] 𝑑𝜆]

⋅
exp [−𝐶𝐿

4𝐷 ( 𝐿
𝐶𝜏 +

𝐶𝜏
𝐿 )]

𝜏3/2
𝑑𝜏

(3.4)

where 𝑄down [m3 s-1] and 𝑄up [m3 s-1] are the discharge at the upstream and downstream
locations in the river channel, respectively. 𝑄inflow [m3 s-1] is the lateral inflow caused by
the high precipitation. 𝐶 [m s-1] is the celerity. 𝐷 [m2 s-1] is the longitudinal dispersion
coefficient. 𝐿 [m] is the length of the study river segment. 𝑡 [s] is the sampling time point.
A rating curve (Eq. B.1) was used to convert measured water depth [m] to discharge, which
was used as model input and data for calibration.

The lateral inflow was approximated via convolution of effective precipitation and
transfer functions. We implemented the convolution model suggested by (Aron and Bor-
relli, 1973), which predicts stream base flow by convoluting the effective rain fall 𝐼 (𝑡) [m3

s-1] (Eq. 3.5). Effective rain fall 𝐼 is the precipitation [mm h−1] (data source in Section 3.2.1)
multiplied by the catchment area [km2] (134 km2 (Glaser et al., 2020)). 𝑘 [-] (𝑘 ∈ [0, 1]) is the
coefficient describing the fraction of lateral inflow that goes into the study river segment.

𝑄inflow(𝑡) = 𝑘 ∫
𝑡

0
𝐼 (𝑡 − 𝜏)𝑞(𝜏)𝑑𝜏 (3.5)

We tested two transfer functions suggested by Aron and Borrelli, 1973 for 𝑞(𝑡) to compare
the modeled 𝑄down(𝑡). The first transfer function is a gamma distribution (Eq. 3.6),

𝑞(𝑡) =
1

Γ(𝛽)𝛼𝛽
𝑡𝛽−1 exp(−

𝑡
𝛼)

(3.6)

where 𝛼 [s] and 𝛽 [-] are the rate and shape parameter, respectively. The second transfer
function (Eq. B.2) contains only one lumped parameter𝑅 [s-1/2]. Eq. 3.6 was chosen because
it yielded better results when coupledwith Eqs. 3.4 – 3.5, and the original expression of 𝑅 in
Eq. B.2 includes field parameters such as soil transmissivity and specific yield (Naney et al.,
1978) that are cumbersome to obtain. Modeled discharge results from the two transfer
functions are in Section 3.3.1 and Appendix B.3. 𝐷, 𝐶, 𝑘, 𝛼, and 𝛽 are parameters to be
estimated (Section 3.2.6).

3.2.3 Transport model: turbidity

The turbidity was used as conservative tracer to estimate hydrological parameters in the
study domain. 𝑁 is turbidity [NTU]. We considered the in-stream transport of the turbid-
ity was governed by the one-dimensional transient advective-dispersive transport model
(Eq. 3.7),

𝜕𝑁
𝜕𝑡

= −𝑣(𝑡)
𝜕𝑁
𝜕𝑥

+ 𝐷(𝑡)
𝜕2𝑁
𝜕𝑥2

+ 𝑘turb ⋅ 𝑄inflow(𝑡) ⋅ 𝑁 (3.7)
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where 𝑘turb ⋅𝑄inflow(𝑡) ⋅𝑁 is the transient source term that represents the turbidity brought
into the domain by the uniform lateral inflow. 𝑘turb is the first-order increase constant
[m−3]. 𝑄inflow(𝑡) is the lateral inflow (Eq. 3.5) [m3 s-1].

The transient velocity 𝑣(𝑡) was computed by dividing 𝑄(𝑡) (Eq. 3.4) by the cross-
sectional area 𝐴(𝑡), which we considered a isosceles trapezoidal shape that was defined
by Eq. 3.8,

𝐴(𝑡) =
2[ℎ(𝑡) + ℎoff] ⋅ tan(𝜃) + 𝑤

2
⋅ [ℎ(𝑡) + ℎoff] (3.8)

where ℎ(𝑡) [m] is the measured water level (15-minute temporal resolution) at time 𝑡, ℎoff
[m] the water level offset, 𝑤 [m] channel bottom width and 𝜃 the bank slope in degrees.
The hydrodynamic dispersion coefficient 𝐷 [m2 s−1] is linearly scaled to 𝑣 in Eq. 3.9 (Wang
and Cirpka, 2021; Störiko et al., 2022; Wang et al., 2022),

𝐷(𝑡) = 𝛼L ⋅ 𝑣(𝑡) (3.9)

where 𝛼L is the longitudinal dispersivity [m]. 𝛼L, 𝑤, ℎoff, 𝜃 and 𝑘turb were hydrological
parameters to be estimated (Section 3.2.6), which are later used in the reactive transport
model for the mixture effects (details in Section 3.2.4).

3.2.4 Reactive transport model: mixture effects (𝐸𝑈 bio)

We applied the one-dimensional transient reactive transport model to the effect unit in dis-
solved phase (𝐸𝑈 bio). To represent the lateral inflow process under uniform but transient
flow, the first-order transient source term was added. To account for sorption, we assumed
the local equilibrium (Liu et al., 2021). The governing equation of 𝐸𝑈 bio is expressed by
Eq. 3.10 (𝐸𝑈 was replaced by 𝑇𝑈 when modeling the cytotoxicity),

𝑅 ⋅
𝜕𝐸𝑈 bio

𝜕𝑡
= −𝑣(𝑡)

𝜕𝐸𝑈 bio

𝜕𝑥
+ [𝐷(𝑡) + 𝐷spec] ⋅

𝜕2𝐸𝑈 bio

𝜕𝑥2
+ 𝑘source ⋅ 𝑄(𝑡) ⋅ 𝐸𝑈 bio (3.10)

where 𝐷spec [m2 s−1] the 𝐸𝑈 bio specific dispersion coefficient, 𝑘source [ m−3] the increasing
coefficient, and 𝑅 [-] the retardation factor. 𝑘source and 𝑅 are assay specific parameters
to be estimated (Section 3.2.6). Eq. 3.7 and Eq. 3.10 were spatially discretized using finite
difference method (Noye and Tan, 1989) and solved using ode15s (Shampine and Reichelt,
1997) in MATLAB.

3.2.5 Model input characterization

Inflow input characterization: Gaussian process regression. The measured time-series
signals at measuring station 1 (MS1) were used as model inflow input. In reality, the
measurements often contain missing sample points. The sampling temporal resolution
(30-minute) is relatively coarse over the sampling period (3.5-hour). The uncertainties
in the measurements affect our understanding of the true dynamics of the signal. Con-
sidering those factors, a single interpolated time-series from the measurements is not a
robust characterization of the real-world temporal patterns, let along being used as inflow
boundary conditions (Dirichlet boundary conditions). The Gaussian process regression
(GPR) (Schulz et al., 2018), which includes measurement errors into its covariance matrix,
was applied to compute the posterior distribution of the time-series signals, e.g. 𝐸𝑈 bio, that
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are functions of time t. All the ‘possible’ functions form a multivariate normal distribution
with mean 𝜇(t) and covariance matrix Σ (Eqs. 3.11 – 3.12).

EU bio, MS1 = 𝑓 (t) ∼  (𝜇(t),Σ) (3.11)

Σ = [
k𝟏𝟏 k𝟏𝟐
k𝟐𝟏 k𝟐𝟐]

(3.12)

t1 is the time points of the observations, the measurement errors (σ𝜖) are passed into
the training process by Eq. 3.13,

𝑘11 = cov(t1, t1) + σ2
𝜖I (3.13)

where I is an identity matrix. The covariance k is computed by the squared exponential
kernel function (RBF kernel) (Eleftheriadis et al., 2017), of which the hyperparameters were
optimized by fitrgp (Khuwaileh and Metwally, 2020; Rasmussen and Williams, 2006) in
MATLAB. The 𝑛 [-] number of realizations of the ensemble were used as model inflow
input (Eq. 3.14).

EU bio, MS1 ≈ {EU 1
bio, MS1,EU 2

bio, MS1,… ,EUn
bio, MS1} (3.14)

Initial conditions characterization. With 𝑛 [-] number of realizations used as the in-
flow boundary conditions (Eq. 3.14), the equal 𝑛 [-] number of the initial conditions,
EU bio, initial ≈ {EU 1

bio, initial,EU 2
bio, initial,… ,EUn

bio, initial}, were needed at each spa-
tially discretized node. EU bio, initial was treated as a random variable characterized by an
estimated mean value (𝐸𝑈 bio, initial) (Section 3.2.6) and the error term (Eq. 3.15).

EU bio, initial = 𝐸𝑈 bio, initial + (0, 0.04 ⋅ 𝐸𝑈 2
bio, initial) (3.15)

The error term was characterized by a normal distribution centered at 0 with a standard
deviation of 20% of 𝐸𝑈 bio, initial.

3.2.6 Parameters estimation: Deterministic method

The discharge, turbidity and mixture effects models (Eqs. 3.4 – 3.10 and 3.15) were cali-
brated using a nonlinear least-squares solver, for which the objective function is defined
in Eq. 3.16,

argmin
θ∈𝑅

𝐹(θ) =
𝑛
∑
𝑖=1

[𝑓𝑖(θ, 𝑥) − 𝑦obs,𝑖(𝑥)]
2

(3.16)

where θ is the parameter vector; 𝑦obs,i the 𝑖th observations; 𝑓𝑖 the modeled result coore-
sponding to 𝑦obs,i; 𝑥 the spatial coordinate. lsqnonlin algorithm (trust-region-reflective
searching method (Liu et al., 2020) in MATLAB was used to find the optimal parameter
values. The mean Normalized root-mean-square error (NRMSE) was computed for each
compound to evaluate the goodness of the ensemble model fit (Eqs. 3.17 – 3.18),

s𝑖 =
∑𝑚

𝑗=1(𝑦model,𝑖, 𝑗 − 𝑦obs,𝑖, 𝑗 )2

𝑚
(3.17)

NRMSE =
√
∑𝑛

𝑖=1(s𝑖)/𝑛
𝑦obs,max − 𝑦obs,min

(3.18)

where 𝑚 and 𝑛 are the number of realizations and observations, respectively; 𝑖 and 𝑗 the
realization and observation indices, respectively.

38



3.3. Results & Discussion

3.3 Results & Discussion

3.3.1 The discharge

A nine-hour long rain event was first recorded on 2019-07-26 at approximately 20:00
by the Bondorf weather station (peaked at 6.5 mm h−1) and 21:00 by the Unterjesingen
weather station (peaked at 8.9 mm h−1). Afterwards the rain winded down for about
nine hours. A sudden high precipitation was recorded at 20.4 mm h−1 on 2019-07-26 at
20:00 by the Herrenberg station. The two rain events caused the formation of a discharge
peak in the study river segment by introducing storm water and lateral inflow into the
system. The lateral inflow contains contributions from dispersive paths (the uniform
lateral inflow in Eq. 3.4), e.g., groundwater, soil water, surface run-off and tributaries
(Kazezyilmaz-Alhan et al., 2007; Sun et al., 2023) input after the raining period, all of which
acted as the transient source to the discharge in the study segment. The modeled lumped
lateral inflow using the transfer function Eq. 3.6, and downstream (MS2) discharge are in
Figure 3.2A. The modeled lateral inflow (Eq. 3.5) showed a smooth and matching peak
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Figure 3.2: Discharge and turbidity dynamics. (A): The modeled discharge at MS2 shown in green.
The early peaks of the modeled lateral inflow (red area) were contributed by base flow from the
groundwater and surface runoff from the tributaries. Precipitation is shown in blue in bars. (B):
The modeled turbidity at MS2 shown as a green curve. Abbreviation: MS-measuring station. The
experimental data was reprinted from Glaser et al..

response to the precipitation, whereas using Eq. B.2, the modeled lateral inflow showed
unrealistically oscillating temporal patterns without a peak in Figure B.3, although the
peak existed in the input precipitation. As a result, the modeled MS2 discharge showed a
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very good fit to the observations by matching the travel time of the peak, and catching the
tail of the data (NRMSE = 0.043). The increase of the discharge at MS2 was also captured
by the zeroth-order transient source term in the model. The modeled peak of the lateral
inflow at around 20.5th hour was earlier than the discharge peak (22nd hour) at MS2. This
can be explained by the existence of multiple tributaries between the two MSs, of which
the input would cause the earlier peak in the lateral inflow. We also tested using Eq. B.2
in the model. Although Aron and Borrelli, 1973 concluded that Eq. B.2 worked better at
predicting run-offs caused by precipitations, in our case the results were less satisfactory
(Figure B.3). This is potentially due to the lack of direct measurement of the field specific
parameters for the lumped parameter 𝑅 in Eq. B.2.

3.3.2 The turbidity

The turbidity time-series signals were assumed to serve as a conservative tracer, from the
hydrological parameters were estimated. The model (Eq. 3.7) considering the processes of
the transient advection, dispersion and the lateral inflow source term was able to capture
the dynamics of the observations well. Figure 3.2B illustrates the modeled turbidity time-
series. The earlier and smaller curve at MS1 was smoothed out at MS2 due to the transient
advection and dispersion. The model was able to sufficiently reproduce the downstream
turbidity dynamics by matching the peak of the curve at 24-hour, as well as the initial
tailing of the curve after the peak (𝑁𝑅𝑀𝑆𝐸 = 0.088). The calibrated parameter values are
summarized in Table 3.1. We used the turbidity signal to estimate the hydrological param-
eters because the turbidity signal was only introduced into the system during the storm,
functioning as the injection of a tracer. Thus, the time-series signal at MS1 could be used to
formulate the model boundary condition. The electrical conductivity (ECd) also has been
used as a conservative tracer (Cirpka et al., 2007; Glaser et al., 2020; Guillet et al., 2019)
in practice. However, in our study site (Figure B.1), there were two WWTPs and multiple
tributaries in between the two measuring stations and no time-series measurements were
conducted at those sites. Figure B.2B shows that the ECd atMS2was uniformly higher than
that at MS1 through the whole sampling period, as well as a disrupted transport pattern
(delayed arrival time of the peak), indicating the constantly high impact from WWTPs.
During the storm period, the transient lateral influxes from non-point sources also played
a role in shaping the ECd signal. Additional (however hidden) processes needed to be
parameterized into the model (Eq. 3.7) to describe such a complex system. The informa-
tive boundary condition for the ECd required mixing signals from MS1 and WWTPs. No
time-series sampling was conducted at those sites. Without observations, especially at the
two WWTP outlets where the ECd was highly impacted by their release, it is difficult to
construct informative boundary conditions for the model. Thus, the turbidity signal was
deemed to be more representative to characterize the hydrological patterns of the conser-
vative solutes and to estimate the transport parameters.

Although ECd in our study was not an ideal conservative tracer, we still applied a
conservative transient transport model. Details are in Appendix B.5. Modeled ECd results
are in Figure B.6. The GPR was applied to the turbidity time-series data at MS1 (yellow
dots in Figure 3.2B) to compute the posterior (grey area in Figure 3.2B). The individual
realization was sampled from the posterior and used as the model input (Section 3.3.3).
Time-series observations of turbidity, electrical conductivity and discharge are shown in
Figure B.2 (reprinted from Glaser et al..).
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3.3.3 Ensemble model input

Time-series signals & Ensemble inflow boundary conditions. The measured 𝐸𝑈 bio at
MS1 was deemed to be the input (inflow boundary condition) for the transient reactive
transport model (Eq. 3.10). The dynamics of the inflow signal strongly influence that of
the model output. A single interpolated time-series signal, without including the uncer-
tainties (i.e., the measurement errors) is not able to represent the underlying dynamics
as robustly as possible. By treating the time-series as random variables, we introduce a
stochastic perspective in constructing the model boundary conditions. The signal’s dy-
namics were presented by the ensemble (the posterior distribution) obtained through the
Gaussian process regression (GPR). Figure 3.3 illustrates the 𝐸𝑈 bio ensemble in water phase
from AhR-CALUX (Figure 3.3A) and AREc32 (Figure 3.3B) at MS1. The mean and 95% pos-
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Figure 3.3: Time-series signal of 𝐸𝑈 bio in the water phase (A) 𝐸𝑈bio, AhR [Lbioassay ⋅ Lwater-1], (B)
𝐸𝑈bio, AREc32 [Lbioassay ⋅ Lwater-1] atMS1. Signal ensemble (characterized bymean and PI) was obtained
through the posterior distribution computed by GPR. The realizations of the posterior were used as
model input. Error bars represent the measurement errors. Abbreviation: GPR–Gaussian process
regression; PI–posterior interval.

terior interval were used to represent the posterior distribution, of which the realizations
were used as model input. Figure B.7 shows 100 realizations. In this way, in contrast to
fully believing in a single time-series, the dynamics of the signal were characterized in a
more robust way by including the measurement errors into the covariance matrix of GPR
for uncertainty quantification, and presenting the possible outcomes according to the re-
spective probabilities. By using an ensemble time-series input, the model also generates
an ensemble time-series output.
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3.3. Results & Discussion

Characterization of the initial mixture effects. To solve the PDE, initial conditions, the
state variable values at the initial time (𝑡 = 0), are required. In several previous studies
applying one-dimensional reactive transport models in rivers and flow-through column
experiments (Liu, 2018; Liu et al., 2019; Strobel et al., 2023), the initial conditions were
treated as a constant value (typically zero) in the spatial domain. This can be interpreted
that the studied domain is clear (low background signal (Kunkel and Radke, 2011)) of the
signals that are under investigation until the inflow boundary conditions start to enter the
studied domain. In the current study, the initial conditions are the mixture effects, e.g.,
𝐸𝑈 bio, at 0-hour in each of the discretized node along the river course. Figure 3.3 shows
the initial condition distributions of 𝐸𝑈 bio determined with the AhR-CALUX along the
study domain. Since we applied the ensemble inflow boundary condition, the number of
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Figure 3.4: Initial condition distributions of 𝐸𝑈 bio in AhR-CALUX in water phase. The study do-
main of the river was spatially discretized into 100 nodes in the model. (A): the first half of the
domain. (B): the second half of the domain. The initial condition of 𝐸𝑈 bio at each node was as-
sumed following a Gaussian distribution, which was formed by an optimized mean value and a
standard deviation of 20% of the mean. The stochastic perspective was introduced into the initial
conditions.

initial conditions at each node needs to match that of the realizations from the ensemble
inflow boundary condition. At each node, the initial conditions are samples drawn from a
Gaussian distribution (Eq. 3.15) of which the parameters are estimated values. In such way,
the mixture effects at 0-hour were presented through a random process that is more robust
than a fixed constant value. In the Lagrangian sampling scheme that was used to collect
time-series water samples, the estimated mean travel time of the water parcels will affect
the early stage of the temporal patterns of the collected time-series signals, of which at the
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downstream locations (of the upstream observation point) are also influenced by the initial
conditions. The estimated mean travel time under transient flow conditions is much less
accurate than that under baseflow conditions. Therefore, without a well understanding of
the initial condition in current study, fitting the modeled results against the data including
the ones from the early period would mislead the parameter estimates. It was logistically
impossible to obtain all 𝐸𝑈 bio observations along the domain at 0-hour, and unrealistic if
a constant value was assumed, particularly when we used the ensemble inflow boundary
conditions. We interpreted the initial 𝐸𝑈 bio from a stochastic perspective by treating the
initial 𝐸𝑈 bio at every node of the domain a random variable that was characterized by a
Gaussian distribution, of which themean represents the background 𝐸𝑈 bio in the river. The
mean of the Gaussian distributionwas computed based on the optimized value (Parameters
estimation and Table 3.1). Constructing distributions is the most representative way to
mimic all the 𝐸𝑈 bio at 0-hour, from where the realizations were used in parallel with that
from GPR (Ensemble model input).

3.3.4 In-stream dynamics of mixture effect units and their fluxes

Total mixture effect units (𝐸𝑈 bio) The mixture effects time-series signals displayed clear
in-stream dynamics that were the results of advection, dispersion, and additional lateral
input. The 100 realizations from the GPR input computed 100 time-series for 𝐸𝑈 bio at
downstream locations. The modeled ensemble time-series results quantitatively expressed
different levels of the uncertainty of the modeled dynamics. Figure 3.5 depicts the ensem-
ble inflow signals at MS1, and the 50th percentile, 60th (20 percentile – 80th percentile)
and 90th (5th percentile – 95th percentile) interpercentile for the modeled 𝐸𝑈 bio ensemble
at MS2. Both of the measured 𝐸𝑈 bio, AhR in AhR-CALUX (Figure 3.5A) and 𝐸𝑈 bio, AREc32 in
AREc32 (Figure 3.5B) at MS2 showed peaks of the signals at 4.5-hour that clearly traveled
from the peaks at 1.5-hour at MS1. The one-dimensional transient reactive model (Eq. 3.10)
produced the ensemble time-series that mimic the dynamics of the data reasonably well
(𝑁𝑅𝑀𝑆𝐸 = 0.159 for AhR-CALUX; 𝑁𝑅𝑀𝑆𝐸 = 0.259 for AREc32). The transient velocity
computed from the parameters estimated based on turbidity (Table 3.1) led to an accurate
arrival time of the modeled 𝐸𝑈 bio peaks at MS2. The spreading of the signals at MS2 be-
tween 3-hour and 6-hour, and the smoothness of the modeled ensemble time-series, which
was also observed in the matching data, showed the effect from the transient dispersion
processes (Eqs. 3.8 –3.9). With regards to the lateral influxes, 𝐸𝑈 bio in AREc32 showed
higher increase than 𝐸𝑈 bio in AhR-CALUX during the storm period. The transient first-
order source term in the model represented the spatially uniform lateral influxes along
the study domain and was able to capture such increase for EU in both bioassays. The
transient dispersion also led to the smooth increase of the 𝐸𝑈 bio signal at MS2. Without
considering the dispersion, the modeled ensemble time-series would have shown oscillat-
ing increasing patterns due to the different travel time (velocity) for each sample at MS1
to arrive at MS2. The modeled results showed inferior fit to data at earlier hours (from
0-hour to 3.5-hour) at MS2. The results did not necessarily indicate a poor overall model
performance or incorrect parameterization, since for the model to produce better a fit dur-
ing this time frame, additional signals at earlier hour (earlier than 0-hour) at MS1 were
required.

In-stream dynamics of total mixture effect unit fluxes. The 𝐸𝑈 bio fluxes dynamics were
heavily influenced by that of the highly transient discharge. Similar results were found in
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Figure 3.5: Modeled (A) 𝐸𝑈bio, AhR [Lbioassay ⋅ Lwater-1], (B) 𝐸𝑈bio, AREc32 [Lbioassay ⋅ Lwater-1], (C)
𝐸𝑈 bio, AhR fluxes [Lbioassay ⋅ Lwater-1 ⋅ m3s−1], and (D) 𝐸𝑈 bio, AREc32 fluxes [Lbioassay ⋅ Lwater-1 ⋅ m3s−1].
The ensemble from GPR was shown for 𝐸𝑈 bio in blue (A, B), from where 100 realizations were gen-
erated as model input. The modeled 𝐸𝑈 bio ensembles at MS2 are in red and were approximated by
100 realizations. The 𝐸𝑈 bio fluxes are shown in green (C, D). The modeled 𝐸𝑈 bio fluxes ensembles
at MS2 were approximated by 100 realizations. The light yellow (C, D) represents the period when
fluxes arrived at MS2 during the storm. Abbreviation: MS-measuring station; IP-interpercentile.

Wei et al., 2022. Figure 3.5C and Figure 3.5D show the 𝐸𝑈 bio fluxes at MS2 in AhR-CALUX
and AREc32, respectively. The discharge wave started to arrive at MS2 at approximately
2-hour. The 𝐸𝑈 bio fluxes at MS2 started to increase at the matching time and peaked ap-
proximately at 4.7-hour. The modeled ensemble fluxes could reproduce the dynamics in
the data (𝑁𝑅𝑀𝑆𝐸 = 0.184 for AhR-CALUX; 𝑁𝑅𝑀𝑆𝐸 = 0.095 for AREc32), particularly the
rising period and the peaks of the fluxes. The 𝐸𝑈 bio fluxes started to drop after 4.5-hour.
At the same time, 𝑇𝑈 bio flux (Figure 3.6B) also appeared to drop, suggesting that there was
no masking effect from the cytotoxicity.

Total mixture cytotoxicity (𝑇𝑈 bio) and flux Like 𝐸𝑈 bio, the cytotoxicity of the total mix-
ture effect was quantified as 𝑇𝑈 bio (Escher et al., 2021). The same transient model (Eq. 3.10)
was applied to the mean 𝑇𝑈 bio of AhR-CALUX and AREc32. The modeled dynamics of
𝑇𝑈 bio are shown in Figure 3.6A. The modeled 𝑇𝑈 bio ensemble showed inferior fit at the be-
ginning hours, but very well cover of the data after approximately 3.5-hour. Considering
the relatively large measurement uncertainty (error bars in Figure 3.6A) and some missing
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Figure 3.6: Modeled mean 𝑇𝑈 bio and 𝑇𝑈 bio flux. The ensemble from GPR was shown for 𝑇𝑈 bio in
grey (A), fromwhere 100 realizations were generated as model input. Themodeled 𝑇𝑈 bio ensembles
atMS2 are in brown and are approximated by 100 realizations. The 𝑇𝑈 bio fluxes are shown in purple
(B). The modeled 𝑇𝑈 bio fluxes ensembles at MS2 are approximated by 100 realizations. The light
yellow (B) represents the period when fluxes arrived at MS2 during the storm. Abbreviation: MS-
measuring station; IP-interpercentile.

data at MS1 to constrain the construction of the ensemble model input using GPR, thus the
overall goodness of fit for 𝑇𝑈 bio was worse (𝑁𝑅𝑀𝑆𝐸 = 0.372). In comparison with 𝐸𝑈 bio
(especially 𝐸𝑈 bio in AhR-CALUX), 𝑇𝑈 bio showed relatively high increase at MS2, suggest-
ing the large input from the lateral influx. 𝑇𝑈 bio flux at MS2 is shown in Figure 3.6B. The
modeled ensemble fluxes reproduced the main feature of the data well (𝑁𝑅𝑀𝑆𝐸=0.1175).
The modeled fluxes fitted the data particularly well at the rising and lowering period. The
arrival time of the peak of the flux was also captured by the model.

3.3.5 In-stream processes understandings.

The modeled ensemble 𝐸𝑈 bio and 𝑇𝑈 bio were able to capture the major temporal features
of the measurements, thus supporting our parameterizations of the bulk controlling pro-
cesses for the mixture effects in rivers. Whilst the transport processes that determine the
arrival of the peak 𝐸𝑈 bio and its spreading over time were largely influenced by the tran-
sient velocity, and the source-term characterized the input of from the lateral inflow caused
by the storm, in our parameterization, both transport processes and the source-term were
ultimately directly influenced by the transient discharge. Figure B.4 shows the simulated
flow velocity with which the mixture effects were traveling, peaked at 1.11 [m s-1], re-
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lated by the discharge and cross-sectional area (Eq. 3.4 and Eq. 3.8). The previous study
(Glaser et al., 2020) showed that the estimated mean flow velocity in the same segment of
the Ammer River during the baseflow conditions was approximately 0.39 [ms-1]. Prior to
the storm-caused water entering (20-hour in Figure B.4) the studied domain, our results
showed a mean flow velocity of 0.31 [m s-1], thus verifying our estimated cross-sectional
area parameters in Table 3.1.

The source termwas parameterized as linearly scaled to the uniformly distributed (over
the space) later inflow that was caused by the storm, therefore the rate of increase of the
𝐸𝑈 bio and 𝑇𝑈 bio was proportional to the contribution of the mixture effects coming from
the dispersive non-point source. The estimated source term coefficients for 𝐸𝑈 bio in AhR-
CALUX and AREc32 and 𝑇𝑈 bio showed minor differences (2.00 × 10−5 [m-1], 2.78 × 10−5
[m-1], and 1.48 × 10−5 [m-1], respectively in Table 3.1), indicating the contributions from
the lateral inflow are similar for all mixture effects. In comparison with 𝐸𝑈 bio in AREc32
(Figure 3.5B) and 𝑇𝑈 bio (Figure 3.6A), 𝐸𝑈 bio in AhR-CALUX (Figure 3.5A) shows relatively
smaller increase from the lateral inflow, which is counter-intuitive since lateral inflow-
scaled source term coefficients for all three mixture effects are nearly indistinguishable
from one another. 𝐸𝑈 bio in AhR-CALUX was also one order of magnitude higher than
𝐸𝑈 bio in AREc32 and 𝑇𝑈 bio, establishing a higher rate of increase for 𝐸𝑈 bio in AhR-CALUX
than for 𝐸𝑈 bio in AREc32 and 𝑇𝑈 bio. This can be explained by the large dispersive fluxes
𝐸𝑈 bio in AhR-CALUX introduced by the inflow boundary conditions (MS1). Although lon-
gitudinal dispersivity (𝛼L) and transient velocity were identical for all mixture effects, the
time-series signal of 𝐸𝑈 bio in AhR-CALUX at MS1 showed strong oscillations, particularly
between 0.5-hour and 2-hour, causing the steep gradient when the 𝐸𝑈 bio front was moving
through the studied domain. The strong dispersive fluxes therefore smoothed out the tran-
sient increase of 𝐸𝑈 bio from the lateral inflow. The time-series signals of 𝐸𝑈 bio in AREc32
(Figure 3.5B) and 𝑇𝑈 bio (Figure 3.6A) at MS1 showed relatively smoother patterns, thus the
dispersive effects on the downstream signals were less prominent, leading to a relatively
large increase from the lateral inflow. The transport processes, therefore, played a critical
role at characterizing the mixture effects in-stream signal patterns in the transient flow
conditions.

3.4 Implications

Modeling the fate of the mixture effects in river water during rain events faces challenges,
e.g., relatively complex parameterizations are needed; Processes in the standard reactive
transport model become transient; Certain parameter values, e.g., dispersivity, river chan-
nel cross-sectional area, could not be measured directly in the field, however played an
important role in characterizing the in-stream processes. Representative observations are
difficult to obtain during the rain due to the highly transient nature of the system in a short
period. The observed mixture effects show complex in-stream dynamics. By introducing
stochastic input into the PDE-based transient reactive transport model, we can construct
the mixture model input in a robust way, efficiently compute the ensemble model out-
put, as well as explicitly express the known in-stream processes. Process-based models’
performances are limited due to the relatively simplified parameterization compared to
real-world complexity, particularly when data used for constructing model input or eval-
uating the model parameterization contains many unknown elements or provides limited
information. To improve the partial/ordinary differential equation (PDE/ODE) model per-
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Table 3.1: Estimated model parameters

Parameters Symbol Unit Values

Discharge
(Eqs. 3.4 – 3.6)

Longitudinal dispersion
coefficient

𝐷 m2s−1 1.05 × 102

Celerity 𝐶 m s−1 8.56 × 10−1
Rate 𝛼 - 3.28 × 105
Shape 𝛽 - 5.00 × 10−1
Fraction 𝑘 - 9.99 × 10−1

Turbidity Offset height ℎoff m 8.02 × 10−1
(Eqs. 3.7 – 3.9) Channel bottom width 𝑤 m 3.0

Longitudinal dispersivity 𝛼L m 2.50 × 102
Channel angle 𝜃 - 3.00 × 101
Mean turbidity initial condi-
tion

𝑁 IC NTU 1.60 × 101

1st-order transient source term
coefficient

𝑘turb m-3 1.80 × 10−5

𝐸𝑈 bio,ahr Specific diffusion coefficient 𝐷spec,ahr m2s-1 1.01 × 101
(Eq. 3.10) 1st-order transient source term

coefficient
𝑘source,ahr m-3 2.00 × 10−5

Mean initial condition 𝐸𝑈 bio,ahr,initial Lbioassay Lwater-1 3.53 × 10−1
Retardation factor 𝑅bio,ahr - 1.108

𝐸𝑈 bio,are Specific diffusion coefficient 𝐷spec,are m2s-1 1.00 × 101
(Eq. 3.10) 1st-order transient source term

coefficient
𝑘source,are m-3 2.78 × 10−5

Mean initial condition 𝐸𝑈 bio,are,initial Lbioassay Lwater-1 5.00 × 10−2
Retardation factor 𝑅bio,are - 1.097

𝑇𝑈 bio Specific diffusion coefficient 𝐷spec,TU m2s-1 9.587
(Eq. 3.10) 1st-order transient source term

coefficient
𝑘source,TU m-3 1.48 × 10−5

Mean initial condition 𝑇𝑈 bio,initial Lbioassay Lwater-1 3.70 × 10−2
Retardation factor 𝑅bio,TU - 1.112

formance on mixture effects, deep learning methods, especially neural networks, could
be used to train certain rates that cannot be observed inside the PDE/ODE, making the
mixture effects model a neural PDE/ODE, thus providing processes that have physical
meanings, as well as good simulation performance. Combining with Bayesian inference,
the hybrid model can also be used to identify the unknown physical processes.
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Chapter 4

Application of neural network aided
reactive transport models to field
data: in-stream dynamics of the
mixture effects of organic
micropollutants

Abstract

The mixture effects of organic micropollutants in rivers, quantified in in vitro bioassays,
show complex in-stream dynamics. The advection-dispersion-reaction (ADR) equation
based numerical models, coupled with ensemble input, show a promising capability to
reproduce the observed complex in-stream dynamics. Such setup is computationally ex-
pensive, hindering the formation of parameter posterior distributions within traditional
Bayesian inference. To avoid the high computational costs while applying Bayesian infer-
ence, we applied the computationally cheaper simulation-based inference (SBI) method
to a one-dimensional numerical reactive transport model, approximating the posterior
through a trained deep learning neural network. We also aimed to improve the model
accuracy for the mixture effects. We applied the physics-informed neural network (PINN)
to solve the same ADR, comparing the solutions, estimated parameter values and the com-
putational efforts with that of the numerical model. The models and the training methods
are tested on observations that are mixture effects with three end points from a 7.7-km-
long segment of the Ammer River in southwest Germany under baseflow conditions. SBI
shows high efficiency converging to the posterior, yielding physically meaningful param-
eter values and their uncertainties. However, the modeled ensemble breakthrough curves
show an inferior fit to the observed mixture effects than PINN. PINN yields improved ac-
curacy, particularly at locations where a relatively large number of observations exist. The
overall space-time accuracy still suffers from the sparse availability of real-world mixture
effects data. Both methods show strengths in varying aspects, suggesting a choice be-
tween the two is highly dependent on the specific modeling goal. We show the potential
of using deep neural networks to aid the reactive transport model in real-world problem
applications.
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4.1 Introduction

The mixture effects of organic micropollutants in rivers, quantified in in vitro bioassays,
have been used as a novel and reliable state variable to evaluate river water quality (Es-
cher et al., 2021). The mixture effect represents an overall burden from all micropollu-
tants in the samples, reflecting their environmental impacts through specific endpoints.
Studying the dynamics of the mixture effects in rivers provides knowledge of the bulk in-
stream processes that the micropollutant mixtures undergo. The in-stream processes are
assumed being characterized by the advection-dispersion-reaction (ADR) equations (Wei
et al., 2022). Typically, time-series signals from the Lagrangian sampling scheme are used
to study the reactive transport processes and dynamics of the solutes (Liu et al., 2020; Guil-
let et al., 2019). However, observed time-series signals of the mixture effects show complex
dynamics in previous studies (Wei et al., 2022; Müller et al., 2020, 2021), and often an en-
semble model result is required to effectively reproduce the complex in-stream dynamics
while maintaining the ADR parameterizations. Therefore, uncertainty (distribution) of
the model parameters and the input need to be quantitatively addressed. Numerical reac-
tive transport models coupled with ensemble inflow boundary conditions characterised by
Gaussian process regression (GPR) (Schulz et al., 2018) show promising results (Chapter 3).
Such a setup is computationally expensive. Implementing Bayesian methods (e.g., Markov
Chain Monte-Carlo (MCMC)) under such a setup to obtain the parameter posterior distri-
butions is further constrained by the large number of model runs needed (obstacle one).
Uncertainty originating from the model parameterization - a simplified version of the real-
world processes in rivers - and numerical methods that discretize the space-time domain
into discontinuous "dots (or boxes)" challenges the aim of reproducing the observed in-
stream dynamics of the mixture effects as close as possible under the constraints of the
defined physical rates (obstacle two). While the process-based models aim to achieve so-
lutions that are as close as possible to the meaningful and complex information from the
measurements under the known and parameterized controlling physical processes, even
the most detailedly described model still produces inconsistencies with the data due to the
unknown environmental processes that influence data behaviors, which are not included
in the conceptualization, thus are not present in the model. The recent rapidly advanced
deep learning methods showed the potential to overcome this challenge when embedding
with the existing knowledge regarding the processes in the environment. Artificial Neu-
ral Networks, a deep learning method under the category of machine learning, have been
used in a wide range of real-word applications, e.g., natural language processing, medical
image diagnosis and autonomous driving (Cuomo et al., 2022; Lecun et al., 2015; Shinde
and Shah, 2018; Fujiyoshi et al., 2019). Through the training process using back propaga-
tion (Wright et al., 2022), the weights and bias of the neurons in each layer are updated.
Adding the non-linear activation function (Ramachandran et al., 2018) to each neuron, the
highly adaptive structure gives ANN the ability to efficiently learn features from complex
data over time. Well trained NNs demonstrate promising performances in terms of pre-
diction accuracy. Recent development of machine learning frameworks, e.g., PyTorch and
𝑇 𝑒𝑛𝑠𝑜𝑟𝐹 𝑙𝑜𝑤 (Abadi et al., 2016), makes the implementation of ANN rather straightforward.

To address the parameter uncertainty through Bayesian inference, presenting the pos-
terior distributions of the parameters, and to avoid high computational costs (obstacle one),
we applied the simulation-based inference (SBI) method. SBI was developed based on the
idea of "emulator" to tackle the "intractable likelihood" issue (Greenberg et al., 2019; Gut-
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mann and Corander, 2016; Lueckmann et al., 2018; Cranmer et al., 2020). Recent advances
in deep neural networks framework enable the fusion of Bayesian philosophy with the
power of deep learning. The 𝑠𝑏𝑖 toolbox (Tejero-Cantero et al., 2020; Gonçalves et al., 2020)
is built on top of the widely usedmachine learning framework PyTorch (Paszke et al., 2019).
The toolbox allows the approximation of posterior distributions through a trained neural
network, which quantitatively establishes a relationship between the forward model run
results (prior runs) and the corresponding parameters sampled from the prior distribution.
The prior runs could be executed in parallel so that the computational costs are drastically
reduced, demonstrating a clear advantage over the iterative Markov process in MCMC.

ANN is a pure data-driven approach. It does not provide any physically interpretable
information of the underlying system that connects the model input and output. In the
field of process-based modeling, the attempt to merge the high prediction accuracy of
ANN with the constraints set by physical laws (obstacle two) prompts what is known as
physics-informed neural network (PINN) (Raissi et al., 2019). The governing equations of
process-based models commonly are partial differential equations that often need numeri-
cal discretization, typically in space (e.g., when the transport processes are involved) before
the integration over time. Spatial discretizations introduce uncertainties, or sometimes
numerical instability. Certain high-order discretization schemes are complicated to imple-
ment (Du and Ekaterinaris, 2022). The discretized systems can be computationally expen-
sive, particularly if two-dimensional or three-dimensional transport is modeled. PINN has
the advantage of not requiring any spatial discretizations (Cuomo et al., 2023). Instead, it
computes the gradients of the ANN using the highly efficient auto-differentiation module
(Pang et al., 2020) that is also used in back propagation. The sum of computed gradients are
equal to the governing partial differential equations, thus forming the physics-informed
part of the ANN. In return, the physics-informed constraints enable the training of ANNs
on a relatively small amount of data (Tartakovsky et al., 2020), whereas standard ANNs
need a large amount of data for training, which is often logistically challenging to ob-
tain when studying real-world environmental systems (Karniadakis et al., 2021). PINN has
been applied in various process-based modeling studies on real-world problems, e.g., the
advection-dispersion equation for solute transport coupled with Darcy flow equation (He
and Tartakovsky, 2021), the groundwater flow equation (Cuomo et al., 2023), gas trans-
port (Strelow et al., 2023) and COVID-19 dynamics (Berkhahn and Ehrhardt, 2022). Tar-
takovsky et al., 2020 shows the learnability of physical parameters by applying PINN to a
groundwater flow problem. A broader perspective of PINN is also intensively studied by
others. Shen et al., 2023 highlights the advantage and applicability of merging machine
learning with process-based models in various fields of Geoscience. Karniadakis et al.,
2021 explains the fundamental theory behind PINN in details. Cuomo et al., 2022 outlines
the pipelines of PINN from different NN architectures, types of loss functions, to learning
methods. PINN shows high accuracy in terms of matching the analytical and numerical
model results. However, there is a lack of studies using real-world observations to train
PINN. The majority of the real-world problem application of PINN use only the solutions
from either analytical or numerical models as training sets. Berkhahn and Ehrhardt, 2022
uses real-world observations for training when modeling the COVID-19 dynamics, how-
ever the underlying dynamics of COVID-19 is described a systems of ordinary differential
equations. The advantage of auto-differentiation with respect to space and time is not fully
explored.

We applied PINN to compute the solution of a one-dimensional reactive transport
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problem on mixture effects. We trained the PINNmodel on time-series data collected from
a Lagrangian sampling campaign in two segments (3.6 km and 4.1 km, respectively) of Am-
mer River in the southwest of Germany (see Glaser et al., 2020 for the sampling details).
The water samples are tested on in vitro bioassays named AhR-CALUX for aryl hydrocar-
bon receptor induction, PPAR𝛾-GeneBLAzer for peroxisome proliferator-activated recep-
tor activity, AREc32 for oxidative stress response, and ER𝛼-GeneBLAzer for estrogenicity
(see Müller et al., 2020 for the bioassay analysis details). The training method is adaptive
moment estimation (Adam) (Kingma and Ba, 2015). The three physical parameters, re-
tardation factor, dispersivity, and first-order reaction constant in each segment, together
with the weights and bias in the PINN model, are estimated by Adam. Other hyperparam-
eters. e.g., learning rate, weights decay, weights in the loss functions, are set manually
(see Table C.2). We compared the modeled results, the estimated parameter values and the
computationally expense of SBI and PINN.

The present study aimed to overcome obstacle one and two, demonstrating the
strengths of deep learning methods for the parameter estimating and approximating the
solutions of the process-based models, as well as the limitations when applying to real-
word environmental data. SBI yields physically meaningful parameter values from the
neural posterior objects, and requires relatively similar computational time. The modeled
ensemble breakthrough curves could capture themajor features in the observation dynam-
ics, but the prediction accuracy is inferior to that from PINN. PINN shows improved pre-
diction accuracy, however mainly at locations of the space-time domain where the weights
are high in the loss functions and relatively large number of observations exist. The over-
all space-time domain prediction suffers from the scarcity of data. The modeled results
are highly sensitive to the hyperparameter values, which up to now lacks of a computa-
tionally cheap method to either define before training or estimate during the training. The
auto-differentiation is computationally cheap and straightforward to implement. But the
training process is still time-consuming. Retraining the NN is required when transferring
to another modeling scenario, e.g., new boundary conditions or new parameter sets, for
scenario analysis. PINN shows promising potential for improving the prediction accuracy
of reactive transport models. But the limitations become obvious when applied to field
data. The trade-off between model accuracy and constraining model structure to physical
laws still remains a challenge to be tackled.

4.2 Methods & Theory

4.2.1 Mixture effects field data acquisition

Field campaign. The underlying sampling campaign took place from 2018-06-19 to 2018-
06-20 in the Ammer River, Baden-Württemberg, Germany. The studied river site is ap-
proximately 7.7 km long. Three measuring stations divided the studied river site into two
segments by with the length of 3.6 km and 4.1 km each, starting at 4 km downstream of
the city of Herrenberg, ending in the city of Pfäffingen (Figure C.1). Three auto-samplers
(AS) were installed at upstream, midstream and downstream measuring station, respec-
tively, collecting composite time series samples (1-hour temporal resolution; mixed by four
sub-samples collected every 15 minutes) over 24 hours at each MS. The detailed sampling
procedure can be found in Glaser et al., 2020.
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In vitro bioassays. The collected water samples were tested on four in vitro bioassays,
AhR-CALUX, AREc32, PPAR𝛾-GeneBlAzer and ER-GeneBlAzer for the four endpoints of
aryl hydrocarbon receptor induction, peroxisome proliferator–activated receptor activity
respectively, oxidative stress response and estrogenicity, respectively. Detailed informa-
tion regarding the the measurement of the effect concentration and inhibitory concentra-
tion can be found in Müller et al., 2020. We applied the model to the mixture data from
AhR-CALUX, PPAR𝛾-GeneBlAzer and ER-GeneBlAzer. We left AREc32 out due to the
scarce number of data points.

4.2.2 The governing equation

Reactive transport. We previously demonstrated that the mixture effects such as 𝐸𝑈 bio
can be used as an intensive state variable, of which the rate of change is governed by
the mass conservation law. To quantitatively describe the fate of the mixture effects in
the studied segment of the Ammer river, we consider the in-stream processes including
advection, dispersion, first-order kinetic dissipation and equilibrium sorption. We set up
the one-dimensional reactive transport model for the mixture effect as in Eq. 4.1,

𝑅𝑖 ⋅
𝜕𝐸𝑈 bio

𝜕𝑡
= −𝑣𝑖 ⋅

𝜕𝐸𝑈 bio

𝜕𝑥
+ 𝑣𝑖 ⋅ 𝛼𝑖 ⋅

𝜕2𝐸𝑈 bio

𝜕𝑥2
− 𝑘𝑖 ⋅ 𝐸𝑈 bio (4.1)

where 𝑅 [-] is the retardation factor; 𝑣 [m ⋅ s −1] the velocity; 𝛼 [m] the dispersivity; 𝑘 [s −1]
the first-order dissipation constant. The studied river course is divided into two segments.
Processes in each segment are differentiated by its own parameters indexed by 𝑖 (𝑖 ∈ {1, 2}).

Boundary conditions. The studied river site was divided into two segments. The sam-
pling site map is shown in Figure C.1. We hypothesized that the processes in the two river
segments are independent. We simulated the in-stream dynamics in the two segments
separately, e.g., when SBI (see SBI) was used, the time-series signals measured at mea-
suring station (MS) upstream (MS upstream) and midstream (MS midstream) were used
as the inflow boundary conditions (Dirichlet boundary conditions) to simulate time-series
signals at MS midstream and downstream (MS downstream), respectively. In this way, the
possible correlations between parameters of the two segments can be avoided.

The time-series signals of the mixture measured at MS upstream and MS midstream
along the river course were used as model inflow boundary condition. Similar to the
method used in Section 3.2.5 of Chapter 3, to include the measurement uncertainties and
address the uncertainties from interpolation that was used to characterize the dynamics
of the signal, we applied the Gaussian Process Regression (GPR) to compute the posterior,
from which the individual conditional realizations was used as ensemble model input.

4.2.3 Solutions of the reactive transport models for the mixture effects

To numerically solve the model that involves transport processes (Eq. 4.1), one common
approach is to firstly discretize the right-hand side of the partial differential equation (PDE)
using e.g., finite difference method (FDM), transforming a partial differential equation
into a series of ordinary differential equations (ODE). Afterwards numerical ODE solvers
could be applied for the integration over time (Shampine and Reichelt, 1997). In order
to overcome the numerical instability (oscillations in the solutions), often cases flux lim-
iters (Dubey, 2013) are used in the spatial discretization scheme. Modern numerical ODE
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solvers are able to automatically adjust the step size during the time integration, further
reducing the numerical errors. Nevertheless, this approach is relatively complex to im-
plement and computationally expensive, particularly when transport processes are two or
three-dimensional, or the system is nonlinear and the manually defined Jacobian matrix
is required to reduce the computational cost.

As a comparison, we also applied the physical-informed neural network (PINN) (Raissi
et al., 2019; Karniadakis et al., 2021) for computing the solution of Eq. 4.1 and estimating the
physical parameter values (see Parameter estimates and forward runs for the numerical
approach).

Numerical approach: the spatial discretization and integration over time. We applied
the upwind FDM to discreitize the transport processes at right-hand side of the Eq. 4.1
(similar to Eq. 1.14 and Eq. 1.15 in Chapter 1). The advective transport is discretized as in
Eq. 4.2,

𝜕𝐸𝑈 bio

𝜕𝑥
||||𝑖
=

𝐸𝑈 bio𝑖 − 𝐸𝑈 bio𝑖−1
Δ𝑥

(4.2)

where 𝑖 is the spatial index for the nodes in the discretized domain. The dispersive trans-
port is discretized as in Eq. 4.3,

𝜕2𝐸𝑈 bio

𝜕𝑥2
||||𝑖
=

𝐸𝑈 bio𝑖+1 − 𝐸𝑈 bio𝑖 + 𝐸𝑈 bio𝑖−1
Δ𝑥2

(4.3)

where 𝑖 denotes the nodes in the spatial domain. The discretized system was imple-
mented in the open-source programming language Python, and solved using the ODE
solver solve_ivp (explicit Runge-Kutta method of order 5(4) (Dormand and Prince, 1986))
from the 𝑆𝑐𝑖𝑃𝑦 library (Virtanen et al., 2020).

Physics-informed neural network. Under the deep learning framework PyTorch (Paszke
et al., 2019), we applied the physics-informed neural network (PINN) to solve the partial
differential equation Eq. 4.1, and compared the modeled results and the estimated param-
eter values. The key idea of the PINN is to firstly construct the neural network that takes
the space and time coordinates, 𝑥 [m] and 𝑡 [s], as the input, and computes the states, in
our case the mixture effects, e.g., 𝐸𝑈 bio, as the output. The 𝐸𝑈 bio is expressed as a function
of 𝑥 and 𝑡 in Eq. 4.4,

𝐸𝑈 bio(𝑥, 𝑡) =  neural(𝑥, 𝑡) ⋅ 𝑘normal(𝑥) (4.4)

where  neural is the neural network.  neural consists of nine hidden layers with 50 neu-
rons in each layer, using linear and hyperbolic tangent activation functions (Han et al.,
2018) in tandem for the forward passing. 𝑘normal(𝑥, 𝑡) is a space-dependent normalization
factor (details in later context).

Then we computed the gradient of the state with respect to 𝑥 and 𝑡. The automatic
differentiation feature in PyTorch used by the back propagation (Wright et al., 2022) during
the training of the neural network is computationally efficient and easy to implement for
the gradient calculation. We substituted Eq. 4.4 into Eq. 4.1, reformulating the new function
named 𝑓 neural using Euler’ notation in Eq. 4.5,

𝑓 neural ∶ 𝑅𝑖 ⋅ 𝜕𝑡 neural + 𝑣𝑖 ⋅ 𝜕𝑥 neural − 𝑣𝑖 ⋅ 𝛼𝑖 ⋅ 𝜕𝑥𝑥 neural + 𝑘𝑖 ⋅ neural
!= 0 (4.5)
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where the right-hand side is set to be zero. Eq. 4.4 and Eq. 4.5 are the backbone of the
PINN. The former represents the neural network part of the PINN. The latter supplies the
physics information and constraint. The general code implementation in PyTorch is shown
in Algorithm 1.

Algorithm 1 Defining the physics-informed-neural network in PyTorch
def N_neural (x, t): ⊳ define the neural network (Eq. 4.4)

EU = neural_network.forward (x, t)
return EU

def f_neural (x, t): ⊳ compute the gradient (Eq. 4.5)
EU_t = torch.autograd.grad (EU, t)
EU_x = torch.autograd.grad (EU, x)
EU_xx = torch.autograd.grad (EU_x, x)
f_neural = R * EU_t + v * EU_x - alpha * v * EU_xx + k * EU
return f_neural

To train the PINN and estimate the physical parameters, we parameterized three loss
functions that take into account the constraints from the neural (downstream data), 𝑓 neural
(the physical governing equation), and the inflow boundary condition. The three loss func-
tions compute the mean square error (MSE) (Raissi et al., 2019). The optimal parameters
were estimated byminimizing theMSE. The loss function of neural is expressed in Eq. 4.6,

neural
(𝐰,σ) =

1
𝑛

𝑛
∑
𝑖=1

[ neural(𝐱data, 𝑡𝑖,𝐰,σ) − 𝑦data(𝑡𝑖)/𝑦max,data]
2

(4.6)

where 𝐱data is the spatial coordinates that observations (𝐲data) are present; 𝑛 is the number
of 𝑦data. 𝐰 and σ are the weights and bias of the neural network, respectively. The loss
function of 𝑓 neural is expressed in Eq. 4.7,

𝑓 neural(θ) =
1
𝑛

𝑛
∑
𝑖=1

[𝑓 neural(𝐱all, 𝑡𝑖,θ) − 0]2 (4.7)

where 𝐱all is the spatial coordinates of the whole domain. θ represents the physical pa-
rameters. The loss function of the inflow boundary is expressed in Eq. 4.8,

boundary =
1
𝑛

𝑛
∑
𝑖=1

[ neural(𝐱boundary, 𝑡𝑖) − 𝑦boundary(𝑡𝑖)/𝑦max,boundary]
2

(4.8)

where 𝐱boundary is the spatial coordinates that the inflow boundary (𝐲boundary) is present.
𝑛 is the number of 𝐲boundary. The total loss is the weighted summation of the three loss
functions expressed in Eq. 4.9,

total = 𝑤1 ⋅ neural
+ 𝑤2 ⋅ 𝑓 neural + 𝑤3 ⋅ boundary (4.9)

where 𝑤𝑖 is the weight [-] for each loss. 𝑤𝑖 is used to adjust the sensitivity of the three
losses (Strelow et al., 2023). We apply the adaptive moment estimation (𝐴𝑑𝑎𝑚) optimizer
(Kingma and Ba, 2015) tominimize Eq. 4.9 through a iterative process, of which the number
(3000 – 5000 epochs in the present study) is called epoch when the whole dataset was used
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during the training, and obtain the estimated physical parameter values and the optimized
PINN output. The learning rate (e.g., 1e-2) is automatically decaying after several (100
- 200) iterations. We also include the weight decay (L2 regularization) (Kingma and Ba,
2015) to prevent over-fitting.

To further improve the training, we applied the space-dependent normalization terms
(similar to the time-dependent normalization in Zong et al., 2023) in the loss function
of neural

(Eq. 4.6) and boundary (Eq. 4.8), where the normalization terms (𝑦max,data and
𝑦max,boundary) are the maximum values of the 𝐲data and 𝐲boundary, respectively. 𝑘normal con-
sists of the linearly interpolated values between 𝐲max,data and 𝐲max,boundary.

4.2.4 Parameter estimates and forward runs for the numerical approach

The mean travel time (thus the mean velocity 𝑣) of the solute in the two river segments
were estimated in previous work (Glaser et al., 2020). We used the literature 𝑣 for Eq. 4.1.
To estimate the rest of the model parameters ([𝛼𝑖, 𝑘𝑖, 𝑅𝑖]) and their uncertainties for each
mixture effect, we applied Bayesian optimization methods to obtain the posterior distribu-
tion of each parameter. As we previously mentioned, Bayes rule states that given the data
y, the posterior probability density of parameter θ, 𝑃(θ|y), is proportional to the product
of the likelihood of the data 𝑃(y|θ) and the prior parameter probability density 𝑃(θ):

𝑃(θ|y) ∝ 𝑃(y|θ) ⋅ 𝑃(θ) (4.10)

To sample the posterior, we applied the simulation-based inference (SBI).

Simulation-based inference. A closed-form of the likelihood function is required when
Markov Chain Monte Carlo (MCMC) is applied to sample the posterior. One of the most
common assumptions is that the likelihood has a Gaussian shape (Eq. 1.19). In reality, the
shape of the likelihood function could be any other shapes. Vrugt 2016 presented various
forms of likelihood functions that MCMC users can choose. The simulation-based infer-
ence (SBI) (Tejero-Cantero et al., 2020; Gutmann and Corander, 2016) allows a "likelihood-
free" Bayesian inference (Cranmer et al., 2020). The workflow of SBI follows:

1) draws parameter samples from prior distributions.
2) initiates model forward runs using these parameter samples.
3) trains a deep neural networks that establish the quantitative relationship between

the model forward run results (input of the trained neural network) and the parameters
(output of the trained neural network) from the prior. The training (inferring) process was
accomplished by the Sequential Neural Posterior Estimation (SNPE) – C (Greenberg et al.,
2019; Allgeier and Cirpka, 2023) method.

4) imports the observations into the trained neural network, which maps the posterior
distribution directly.

Figure 4.1 illustrates the SBI procedures in numerical order. We applied the PyTorch
based toolkit, 𝑠𝑏𝑖 (Tejero-Cantero et al., 2020), to achieve the Neural Posterior Estimation
(NPE) (Greenberg et al., 2019).

To include the measurement errors when sampling from the neural posterior, we treat
the input of the trained neural network object (𝑃NE) as a random variable, of which the
samples are drawn from either a multivariate Gaussian ( ) or multivariate lognormal (if
there is a negative value) distribution that is parameterized by the measurements (𝐲data)
and measurement errors (𝜎data). Algorithm 2 illustrates the sampling workflow. At each

55



4.2. Methods & Theory

Prior: 𝑃(θ) NPE: 𝑃(θ|y)

Model

Simulated results

Neural network

Observation

1)

2)
3)

3)

4)

5)

Figure 4.1: SBI flow chart: no likelihood function is required. 1) draw parameter samples from
the prior; 2) forward model runs; 3) establish and train the neural network using SNPE – C; 4)
import observations as the input of the trained neural network; 5) map the posterior from the
neural network. NPE–Neural posterior estimation. SPNE – Sequential Neural Posterior Estimation

iteration, a vector of data sample (𝐲𝑖) is draw from (or lognormal). The a corresponding
vector of model parameters 𝐩𝑖 then computed through the 𝑃NE. After all iterations, the
individual 𝐩𝑖 can be assembled to the parameter matrix (𝐏) that is used for computing the
ensemble model results.

Algorithm 2 Sampling from the neural posterior.

Require: Neural posterior object: 𝑃NE

Require: number of samples to be drawn: 𝑁 samples
Require: measurements and measurement errors for parameter estimates: 𝐲data, 𝜎data
for i = 1 to 𝑁 samples do

𝐲𝑖 ∼  (𝐲data, 𝜎data, 1) ⊳ draw data from a multivariate Gaussian distribution
if 𝑦𝑖 < 0, ∀𝑦𝑖 ∈ 𝐲𝑖 then,

𝐲𝑖 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔(𝐲data), 𝜎data, 1) ⊳ draw data from a multivariate lognormal
distribution

end if
𝐩𝑖 ∼ 𝑃NE(1, , 𝐲𝑖) ⊳ sampling the individual parameter vector
𝐏[:, 𝑖] = 𝐩𝑖 ⊳ assembling the parameter matrix

end for

Prior distribution for SBI. The prior distributions for the model parameters [𝛼𝑖, 𝑘𝑖, 𝑅𝑖]
are uniform distributions, of which the ranges are defined as wide as possible to cover all
the potential values. We use parameter values from Table 3.1 in Chapter 3 as base values
and setup the lower boundary of e.g., [5e-3, 8e-6, 1.0] and upper boundary of [500.0, 1e-4,
50.0] for [𝛼𝑖, 𝑘𝑖, 𝑅𝑖]. The units are [m], [s−1] and [-] for 𝛼𝑖, 𝑘𝑖 and 𝑅𝑖, respectively for 𝐸𝑈 bio
in PPAR𝛾-GeneBLAzer.

Forward runs with ensemble input. Similar to the approach in Section 3.2.5 in Chap-
ter 3, we use the ensemble input from GPR as the inflow boundary condition for the model
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forward run. For every GPR sample that is used as the model input 𝐱𝑖, a vector of param-
eters 𝐩𝑖 is drawn from the parameter matrix 𝐏 previously assembled (from Algorithm 2).
Algorithm 3 shows the model forward run coupled with ensemble model input and pa-
rameter sets from the neural posterior.

Algorithm 3 Forward run with ensemble input from Gaussian Process Regression.

Require: model: 
Require: posterior sample matrix: 𝐏 (from Algorithm 2)
Require: number of samples to be drawn: 𝑁 samples
Require: measurements and measurement errors for model input: 𝐱input, 𝜎input

for i = 1 to 𝑁 samples do
𝐱𝑖 ∼ (𝐱input, 𝜎input, 1) ⊳ draw input samples from Gaussian Process Regression
𝐩𝑖 ∼ 𝐏[:, 𝑖] ⊳ draw parameter samples from the posterior sample matrix
�̂�𝑖 = (𝐩𝑖, 𝐱𝑖) ⊳ forward run (solving Eq. 4.1)
�̂�[∶, 𝑖] = �̂�𝑖 ⊳ store the ensemble model output

end for

4.3 Results & Discussion

4.3.1 Simulation-based inference & Gaussian process aided reactive transport

Simulation-based inference (SBI) provides uncertainty analysis of the estimated model pa-
rameters by approximating the posterior distributions through a trained neural network,
from which the optimized parameter samples can be drawn for computing the ensemble
model results.

Neural posterior estimation. The neural posterior distributions of the parameters ob-
tained through the simulation-based inference are approximated by a neural network
(ANN) of which the input is the observations. The ANN is trained using the prior dis-
tribution samples (input of the ANN) and the corresponding simulation results (training
set for the ANN). The likelihood function in the Bayesian rule (Eq. 4.10) is not needed.

We hypothesize that the processes in the two river segments are independent, that
is, the parameters in segment 1 are not correlated to the ones in segments 2 due to the
different environmental conditions, e.g., shading and macrophyte abundance, in the two
segments (Glaser et al., 2020), therefore the parameters for the mixture effects in PPAR𝛾–
GeneBLAzer at MS mid and MS down are estimated separately. Figure 4.2A–B illus-
trate the prior and posterior distributions of ([𝛼𝑖, 𝑘𝑖, 𝑅𝑖], 𝑖 ∈ {1, 2}) from SBI for 𝐸𝑈 bio in
PPAR𝛾–GeneBLAzer in segment 1 and 2, respectively. The main diagonals show the prior
and posterior distributions for the three parameters that are in kernel density estimation
(KDE) from 1000 samples. The upper corner plots show individual samples (1000 sam-
ples) of the joint prior and posterior distributions. The joint KDEs are shown in the lower
corner plots. In both segments, the prior and posterior distributions for all parameters
show various levels of differences. The posterior distributions of the estimated parame-
ters ([𝛼𝑖, 𝑘𝑖, 𝑅𝑖], 𝑖 ∈ {1, 2}) approach Gaussian distributions, showing much narrower ranges
than the priors, particularly for 𝑘 and 𝑅, indicating the sorption and dissipation mecha-
nisms are highly constrained by the observed mixture effect. The mixture effect in seg-
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Prior Posterior

(A) Segment 1

Prior Posterior

(B) Segment 2

Figure 4.2: Prior and posterior of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 1 (A) and segment 2 (B)
from SBI. The light red and green probability density functions in the main diagonals are the prior
and posterior distributions, respectively. The upper corners show the individual 1000 samples for
the three parameters. The lower corners show the kernel density estimate of the 1000 samples for
the three parameters. 𝛼𝑖 [m] is the dispersivity; 𝑘𝑖 [s −1] the first-order dissipation constant; 𝑅𝑖 [-]
the retardation factor (𝑖 ∈ {1, 2}.)

ment 2 shows stronger retardation (mean = 2.00 [-]) and dissipating reactions (mean =
9.66 × 10−5 [s-1]) than that in segment 1 (mean = 1.57 [-] and mean = 4.10 × 10−5 [s-1],
respectively). The dispersivity 𝛼 in both segments shows less distinct difference (less sen-
sitive to the observed mixture effects), particularly in segment 2 (Figure 4.2B), indicating
less dependence of dispersion on the observed mixture effect. The parameters estimate for
AhR-CALUX and ER𝛼-GenenBLAzer in Figure C.2 – Figure C.3 show consistent results,
where the clearer difference between the prior and posterior distributions are seen in 𝑘
and 𝑅. Such finding is not surprising since the transport mechanism (advection and dis-
persion) of the solute is mainly dependent on that of the fluid, except the solute specific
pore-diffusion, e.g., Eq. 1.11, which would be orders of magnitude smaller than the ve-
locity dependent hydrodynamic dispersion (Khakimov et al., 2017), therefore it should be
consistent for all solutes. One of the advantages that SBI offers is the low computational
cost. The only time-consuming process is the forward model runs (step 2 in Figure 4.1)
after the parameter samples are drawn from the prior distributions. The forward run using
parameter from prior is "embarrassingly parallel". Python library joblib (Faouzi and Janati,
2020) is integrated inside sbi toolbox, providing efficient parallel computing power. The
whole inferencing took approximately two hours for 20000 forward runs on a AMD Ryzen
7 4700U (2.00 GHz) CPU.

In-stream dynamics. The parameter samples were drawn (Algorithm 2) from the trained
neural posterior from SBI (Figure 4.2). Combining with the ensemble input from the Gaus-
sian Process Regression (GPR), the ensemble temporal dynamics of the mixture effects
were computed from 500 realizations (𝑁 sample = 500 in algorithm Algorithm 3). Figure 4.3
illustrates the modeled 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer time-series signals. The mean of
the ensemble output and the 95% confidence interval (CI) of the ensemble output were
computed. Overall, the modeled time-series could reproduce the major features in the
temporal dynamics of the measurements. The majority of the measurements at both sites
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(A) 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer at midstream site
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(B) 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer at downstream site

Figure 4.3: Modeled ensemble time-series for 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer at the midstream (A)
and downstream site (B). The light green and red areas represent the 95% confidence interval of the
modeled ensemble from 500 realizations (𝑁 sample = 500 in Algorithm 3). Analytical uncertainties
(one standard error) from the measurement are shown by the error bars.

fall withing the 95% confidence interval (CI) of the modeled ensemble. Still, the model
performances vary when comparing the modeled results at the midstream and the down-
stream site. At the midstream site (Figure 4.3A), the modeled ensemble misses the initial
large drop (2.5th – 5th hour) in the measured 𝐸𝑈 bio by being delayed for approximately
two hours. During the periods between 10th – 15th hour and 20th – 23th hour, the mod-
eled results are lower than the measured 𝐸𝑈 bio. At a few time points (at approximately
14th, 16th, 21st and 22nd hour), even the upper 95% CI of the modeled ensemble could not
capture the lower error bar of the measurement. But throughout the whole period, the
modeled ensemble could reproduce the overall temporal patterns in the measured 𝐸𝑈 bio,
particularly by capturing the initial drop after approximately 7th hour, as well as the strong
oscillations spanning over 16-hour long period (9th hour – 25th hour) which peak at 14th,
17th and 25th hour. At the downstream site (Figure 4.3B), our approach yields better model
performance. The measured 𝐸𝑈 bio shows relatively constant temporal dynamics compar-
ing to that at the midstream. The mean of the modeled ensemble effectively captures the
overall temporal patterns of the measured 𝐸𝑈 bio. The relatively large deviation happened
only at one short period (17th – 19th hour) where the modeled ensemble show a small
peak and the temporal pattern of the measured 𝐸𝑈 bio is almost constant. The 95% CI of
the modeled ensemble covers 22 out of the 24 measured 𝐸𝑈 bio over the 24-hour sampling
period considering the measurement errors. The only two exceptions are at approximately
17th and 23rd hour where measurements considering the measurement errors fall outside
of the 95% CI of the modeled ensemble. Modeled mixture effects ensemble at the mid-
stream and downstream sites in AhR–CALUX and ER𝛼–GeneBLAzer are in Figure C.4
and Figure C.5, respectively. Our approach that integrates the stochastic input from GPR
and parameters from the neural posterior yields overall good fit of the modeled ensemble
to the measured 𝐸𝑈 bio at both midstream and downstream site, which in return supports
validity of the processes that we parameterized. The computed mean root mean square
error (RMSE, Eq. C.1) and mean normalized root mean square error (NRMSE, Eq. C.2) for
all three bioassay in the two segments are in Table C.1.
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4.3.2 Physics-informed neural network

Space-time distribution and in-stream dynamics. The space and time coordinates are
the input of the neural network in PINN, allowing the model to compute the space-time
distribution of 𝐸𝑈 bio. Figure 4.4A shows the modeled space-time distribution of 𝐸𝑈 bio
in PPAR𝛾–GeneBLAzer in segment 2 (between midstream and downstream site). Unlike
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Figure 4.4: 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 2 bounded by the midstream and downstream
sites. (A) shows the distribution of 𝐸𝑈 bio in the whole space-time domain. (B) and (C) show 𝐸𝑈 bio at
midstream and downstream sites, respectively. The light grey areas represent the 95% confidence
interval of the Gaussian process regression on data. The training processes of the three loss func-
tions (Eqs. 4.6, 4.7, and 4.8) are shown in (D). Epoch: the number of iterative training process when
the whole dataset is used during the training (Section 4.2.3).

the standard numerical or analytical reactive transport models, to train the solution at
the whole space-time domain, PINN requires observations collected across the domain.
In practice when time-series samples in rivers are collected, it is logistically challenging
to sample over a period of days with a high spatial resolution along a river course that is
kilometers long. In the current study, the data from upstream, midstream and downstream
sites provides constraints for PINN to train the boundaries of the domain (Eq. 4.6 and 4.8).
To effectively show themeasured 𝐸𝑈 bio at a finer temporal resolution (oneminute), instead
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of using interpolated 𝐸𝑈 bio values, we compute the 95% confidence interval (CI) from the
Gaussian Process Regression (GPR) (methods in Section 3.2.5 of Chapter 3) on the mea-
surements and show them in the grey areas in Figure 4.4B – C. The 95% CI of GPR, con-
sidering the measurement errors, not only realistically represents the temporal dynamics
of 𝐸𝑈 bio between the measurement points, but also helps to robustly illustrate the tempo-
ral dynamics of the 𝐸𝑈 bio measurements at the time points where the measurements are
missing. Figure 4.4B – C show the modeled time-series of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer
at midstream and downstream sites, respectively. For both sites, PINN demonstrates the
superior capability at capturing the temporal patterns of the measured 𝐸𝑈 bio in PPAR𝛾–
GeneBLAzer. Threemetrics, root mean square error (RMSE Eq. C.3), normalized root mean
square error (NRMSE Eq. C.4), and MSE (Eq. 4.6), are computed for evaluating the perfor-
mance and are shown in Table C.2. During the first 15 hours atmidstream site (Figure 4.4B),
the measured 𝐸𝑈 bio experiences a sharp decrease in the first two hours, then gradually in-
creases over a ten-hour period before experiencing oscillations during the next ten hours.
The only relatively large deviation of the PINN results from the measurements appears
in the last four hours of the sampling period. This is due to the sharp gradient presented
(between 17th and 20th hour) that PINN is known to have difficulties to capture (more dis-
cussions in Section 4.3.3). At the downstream site (Figure 4.4C), the measured 𝐸𝑈 bio shows
rather different temporal patterns from that at the midstream site. The overall measured
𝐸𝑈 bio is lower than that at the midstream site. A smooth temporal pattern of 𝐸𝑈 bio is ob-
served during the whole sampling period and the sharp drop observed at the beginning
of the midstream disappears at the downstream site. The simulated results from PINN
could accurately reproduce (MSE = 1.40 × 10−2 in Table C.2) the temporal dynamics of the
measurements at the downstream site. All modeled results fall within the analytical un-
certainty (one standard error) of the measurement except the two points between 20th and
25th-hour. For both sites, the results from PINN fall within the 95% CI of GPR at the time
points where there are no measurements. Essentially by taking the space and time coordi-
nates, PINN is able to reproduce the dynamics at both locations simultaneously, between
which exists a rather drastic transition of 𝐸𝑈 bio measurements. PINN shows the advan-
tage over the numerical model (Eq. 4.1) that requires complex parameterization to achieve
the similar performance, especially when the data used for constructing the input and the
output shows such different temporal patterns. We train the PINN model on the same
CPU used to train the neural network in SBI. The training takes 21.17 minutes to complete
5000 epochs. Figure 4.4D shows the three losses from the neural network, PDE, and the
inflow boundary over the training process (Eq. 4.6, Eq. 4.7, and Eq. 4.8, respectively). All
three losses become relatively constant after 1000 epochs. The simulated mixture effects
from PINN for AhR–CALUX and ER𝛼–GeneBLAzer in the two segments are in Figure C.6
– Figure C.7 and Figure C.9 – Figure C.10, respectively.

4.3.3 Methods selection: an objective-oriented choice

Performance limitations of PINN when applied to field data. Comparing the overall
temporal dynamics at the midstream and the downstream site in Figure 4.4B – C, 𝐸𝑈 bio at
the midstream site shows much stronger oscillations (particularly the 12th – 22th hour)
than 𝐸𝑈 bio at the downstream site. Various literature (Fuks and Tchelepi, 2020; Mishra
and Molinaro, 2022; Arora, 2023) report that PINN has difficulty converging to the correct
solution when a sharp gradient is present in the data used for training. Arora et al., 2022
shows that PINN suffers from poor accuracy in the solution or convergence issue when a
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second-order spatial derivative of the governing PDE (Eq. 4.5) is computed. These inherent
limitations of PINN lead to the deviation of the modeled results from the measurements at
the last five hours of the sampling period at midstream. For the downstream where 𝐸𝑈 bio
shows a relatively constant temporal pattern, PINN shows better performance.

Another inherent limitation requiring attention is that since there is no measurement
obtained at the locations between the three measuring stations (upstream, midstream and
downs sites) due to logistic reasons, the model is trained only on the 𝐸𝑈 bio measurement
collected at the three sampling sites, meaning the modeled 𝐸𝑈 bio at any locations between
these three sites could not be quantitatively evaluated during the training process. Also,
without training data in between the midstream and downstream site, the space-depended
normalization factor 𝑘normal(𝑥) can only be linearly interpolated between 𝑦max,data (Eq. 4.6)
and 𝑦max,boundary (Eq. 4.8). This approach leads the modeled 𝐸𝑈 bio to experience a linear
decay, instead of the exponential decay between the two sampling sites, which is not coher-
ent to the physical law imposed in Eq. 4.5. Figure 4.5A–B illustrate the three-dimensional
field of space-time distribution of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer in segment 2. To com-
pare the space-time distribution of the 𝐸𝑈 bio from the one-dimensional reactive transport
model coupled with SBI and GPR (SBI & GPR aided reactive transport) and PINN, the 𝐸𝑈 bio
ensemble mean from SBI & GPR aided reactive transport model is shown in Figure 4.5A,
where an exponential decay could be observed for 𝐸𝑈 bio. Figure 4.5B shows the three-
dimensional field of 𝐸𝑈 bio from PINN, in which although PINN yields excellent fit at the
boundaries (midstream and downstream site) of the domain, the computed 𝐸𝑈 bio space-
time distribution shows a linear decay over time. However, this particular limitation can
be overcome if more spatially distributed training data is provided by setting up more
sampling sites along the river course (if logistically applicable).

Comparison of methods. Both SBI & GPR aided reactive transport and PINN approxi-
mate the solution of the governing equation (Eq. 4.1) that describes the in-stream processes
of the mixture effect 𝐸𝑈 bio. The former integrates the stochastic input from GPR and the
parameter samples from a neural posterior into the numerical model, where the physi-
cal processes are explicitly expressed and the ensemble 𝐸𝑈 bio are computed. The latter
computes the deterministic results of 𝐸𝑈 bio through a trained neural network using the
spatial and temporal coordinates as the input. The gradient of the solution with respect to
space and time plays the critical role of physics-informing. The performance of the two
approaches varies. Both methods have its own strengths and limitations. PINN shows
clear advantages over the SBI & GPR aided reactive transport model in terms of prediction
accuracy (comparing Figure 4.3A–B and Figure 4.4A–B). Even with an ensemble output,
the latter could not guarantee the full capture of the temporal patterns of the measured
𝐸𝑈 bio, outperformed by the deterministic result from PINN. On the other hand, SBI & GPR
aided reactive transport model is able to compute a realistic 𝐸𝑈 bio distribution across the
whole space-time domain, whereas PINN, even with the imposed physical law constraints
(Eq. 4.5), still needs more data (more spatially distributed data in our case) for training
before achieving the similar computing accuracy for the whole space-time domain. Fig-
ure 4.5C–D shows the modeled space-time distribution of 𝐸𝑈 bio in PPAR𝛾–GeneBLAzer
in segment 2 in the two-dimensional field. SBI & GPR aided reactive transport model (Fig-
ure 4.5C) is able to compute the correct characteristics (Shang et al., 2004), where colors are
the 𝐸𝑈 bio ensemble mean. The cotangent of the angle (𝜃) of the tilted characteristics math-
ematically represents the effective velocity (cot(𝜃) = 𝑑𝑥/𝑑𝑡 = 𝑣/𝑅, Eq. 4.1) with which
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(A) SBI: mean 𝐸𝑈 bio in the three-dimensional field
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(B) PINN: 𝐸𝑈 bio in the three-dimensional field

0 1 2 3 4
Space…[km]

0

5

10

15

20

25

30

Ti
m

e…
[h

]

Mean…EUbio(x, t)…

0.0

0.2

0.4

0.6

0.8

1.0

EU
bi

o…
[L

bi
oa

ss
ay

…L
1 wa
te

r]

(C) SBI: mean 𝐸𝑈 bio in the two-dimensional field
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(D) PINN: 𝐸𝑈 bio in the two-dimensional field

Figure 4.5: Modeled space-time distributions of 𝐸𝑈 bio in PPAR𝛾 in segment 2. Results from SBI
& GPR aided reactive transport are in (A) and (C); Results from PINN are in (B) and (D). In (C),
the tilted characteristics mathematically represents the effective velocity (cot(𝜃) = 𝑑𝑥/𝑑𝑡 = 𝑣/𝑅,
Eq. 4.1) with which the state variable (𝐸𝑈 bio) travels through the system.

the state variable (𝐸𝑈 bio) travels through the system. PINN, although accurately comput-
ing the temporal patterns, could not reproduce the correct characteristics at the locations
where there are no training data (Figure 4.5D). The computed three-dimensional field for
𝐸𝑈 bio in AhR–CALUX and ER𝛼–GeneBLAzer in the two segments are in Figure C.8A-B
and Figure C.11A–B, respectively.

Method per choice. The preference for one method over the other depends on the ob-
jective of the modeling and setup of the experiments or field campaigns that provide the
measurements. SBI & GPR aided reactive transport yields inferior prediction accuracy
than PINN. But the former shows the advantages when the main objective of modeling
is, e.g., to estimate the model parameter values that have physical meanings but could
not be measured directly in the field or laboratories. SBI yields high sampling efficiency
when combined with models that explicitly express (parameterize) the physical processes,
meanwhile presenting meaningful parameter values and their uncertainty through poste-
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rior distributions. Once the model parameterization is settled, scenarios analysis could be
conducted by testing various parameter values, of which the results provide quantitative
information regarding the optimal setup for the future field campaigns and experiment.
To improve the prediction accuracy, a more complex parameterization is required, which
in return would potentially hinder the parameter estimate performance.

On the other hand, PINN yields high prediction accuracy, demonstrating the merits
when the main objective of the modeling is to 1) accurately reproduce the spatial and tem-
poral patterns of the observations and 2) compute reliable predictions at future time and
additional space points. Once the neural network is trained, the extrapolation of the re-
sults using the future space-time coordinates could be easily achieved since the forward
runs of PINN is computationally cheap. However, training PINN to compute the accurate
space-time distribution of state variables demands high spatial–temporal resolution data
collected across the entire domain, which is challenging during large-scale field campaigns.
Although the forward run of PINN is computationally cheap, the training process suffers
from its time-consuming nature. Since the input of PINN is only the space-time coordi-
nates, conducting scenario analysis to optimize the setups for the future field campaign is
not possible.

4.4 Implications

To gain quantitative understanding of the in-stream processes of micropollutant mixture
effects, yield accurate model prediction, and estimate model parameter values, balancing
the levels of the model details and the computational costs is essential. We compared the
results from SBI &GPR aided reactive transport and PINN, demonstrating the advantage of
combining numerical and deep learning methods in process-based models when applying
the model to the field data of the mixture effects. We also outlined the limitations of the
two methods in real-world data applications, highlighting the trade-offs with respect to
the purposes of the modeling.

Both methods require more data and less uncertainty in the data for training (calibra-
tion) and for verifying more realistic parameterization. For the future studies regarding
mixture effects data acquisition, the mixture effects as a new state variable could be used
to conduct laboratory flow-through column tests (Sorwat et al., 2021; Strobel et al., 2023),
from where the data is produced in a more controlled environment. The factors that in-
fluence the reactive transport processes, e.g., flow rate, cross-sectional area and inflow
concentration (mixture effect), can be fixed at constant values. The mixture data can also
be collected at finer spatial and temporal resolution in laboratories due to less logistic con-
straints. The spatial and temporal behavior of concentration signals in porous media in
laboratory conditions are well studied (Liu et al., 2021, 2022), which can be extrapolated
to the mixture effects. Therefore, the measured mixture effects data can provide more in-
formative and quantitative information for better parameterizing the model to understand
the reactive transport processes of the mixture effects.

To further quantify the uncertainty from the description of the reactive transport pro-
cesses of the mixture effects, a new perspective that maintains the differential equation
structure while complemented by the deep learning method is need. The hybrid model
(Rackauckas et al., 2020, 2021; Faizan Bangi and Kwon, 2022) consists of the parameter-
ized known processes in differential equation forms and unknown processes quantified by
a deep neural network. Recent advances in the programming language Julia (Bezanson
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et al., 2012) and its library DiffEqFlux.jl (Rackauckas et al., 2019) enable implementing and
solving such hybrid systems without modifying the physical model structure. Applying
such hybrid models to the mixture effects field data has the potential to 1) provide insights
into interpretable physical processes and 2) improve prediction accuracy, as well as 3)
identify unknown physical processes for the mixture effects by combining with Bayesian
inference (Dandekar et al., 2020). The rapid development of those tools opens the new
doors of scientific machine learning for quantitative studies of the mixture effects.
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Chapter 5

Summary

5.1 Key Findings

The main goal of the thesis is to address the in-stream processes of the organic micropol-
lutants mixture effects quantified in in vitro bioassays from a quantitative point of view,
providing complementary knowledge to the understandings of the single compounds in
rivers (Liu et al., 2020). In pursuit of this goal, I firstly hypothesized that the fate of the
mixture effects in rivers is characterized by the reactive transport processes that follow
the mass conservation law. Secondly, I tested my hypothesis by integrating process-based
models with mixture effect field data collected under different flow conditions, fromwhere
I interpreted the physical meanings of the estimated parameters and quantified their
uncertainty from the stochastic perspective. Lastly, I explored deep learning methods to
efficiently achieve more accurate (than numerical methods) solution for the previously
used reactive transport models and the parameter posterior, while maintaining the
parameterizations that represent physical laws for the mixture effects. In the following
context, I highlight the key findings and their connections to the objectives outlined in
Section 1.2.

1. Can the advection-dispersion-reaction (ADR) equation describe the in-stream
processes of the mixture effects?

In Chapter 2, I formulated the solution of the one-dimensional process-based model
involving advection, dispersion and first-order dissipation reaction processes into the
convolution form, which facilitates the quantification of model parameter values and
uncertainty using the Metropolis-Hasting Markov Chain Monte-Carlo. The model was
applied to mixture effects data collected using the Lagrangian sampling scheme under
unsteady flow conditions in the Steinlach river. Using the parameters from the posterior
distribution, the model was able to compute the ensemble results that effectively repro-
duce the spatial and temporal dynamics of the measured mixture effects with various
endpoints. We show that the mixture effects of the organic micropollutants can be treated
as intensive state variables, of which the rates of change in rivers can be viewed as bulk
processes that are quantitatively expressed by the advection-dispersion-reaction equation
derived from the mass conservation law. Similar to the solute reactive transport, the
transport processes of the mixture effects are controlled by that of the flow, thus the
parameters can be determined by conservative tracers, whereas the reactive processes are

66



5.1. Key Findings

effects-specific. As a result, further more complex parameterizations could be developed
for studying the processes of the mixture effects under transient flow conditions.

2. Can the ADR based-transient model be used to characterize the in-stream pro-
cesses of the mixture effects under transient flow conditions?

In Chapter 3, I parameterized the one-dimensional partial differential equation-based
reactive transport model with transient terms for the mixture effects. The model was
conditioned on mixture effects data collected in the Ammer river during a storm event,
during which the discharge wave formed by the transient flow was characterized by
a diffusive wave model. To balance the need of presenting ensemble results and the
computational costs of running the transient numerical model, I characterized the model
inflow boundary conditions using the conditional realizations from the Gaussian Process
Regression (GPR), with which the efficiently computed ensemble results could effectively
reproduce the dynamics of the mixture effects measurements, supporting the validity of
the model parameterization. We show that the storm-caused transient discharge played
a crucial role in 1) delineating the advective and dispersive transport processes for the
mixture effects, for the velocity with which the mixture effects travel in the river was
directly impacted by the transient discharge; 2) introducing the lateral inflow into the
river, functioning as a lateral inflow-proportioned source for the mixture effects along the
river course, alongside the WWTP as a point source. The mixture effects in-stream signal
patterns in the transient flow conditions were largely characterized by the transport
processes.

3. How can the combination of numerical and deep learning methods be used to
solve the ADR, estimate parameter values, and improve the model performance for the
mixture effects?

In Chapter 4, I applied the rapidly developing deep learning tools to improve the
performance (prediction accuracy and parameter estimates efficiency) of the one-
dimensional reactive transport model conditioned on the real-world mixture effects
data. I implemented the simulation-based inference (SBI) to efficiently approximate the
posterior distribution. Coupled with ensemble input from the GPR, the model computed
the ensemble mixture effects that could mimic the main features of the measured mixture
effects dynamics. I also applied the physics-informed neural network (PINN) on the
mixture effect data, which yielded superior prediction accuracy. However, through the
comparison of the two approaches in terms of the model training efforts, the amount
of data needed for training, especially when the models are conditioned on real-world
field data, I demonstrated that the preference of one approach over the other is heavily
dependent on the goal of the modeling. PINN is a powerful tool when the prediction
accuracy is the focus. When parameter estimates is the primary modeling task, SBI
coupled with the numerical model is the more suitable approach.

Overall, I conclude that the bulk reactive transport processes of the mixture effects,
effect unit and toxic unit, under both baseflow and transient flow conditions in rivers, can
be quantitatively described by the advection-dispersion-reaction equation. With informa-
tive field measurements, the estimated dissipation reactive constants provide quantitative
information regarding bulk kinetic reactions of the organic micropollutant mixture. Since
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there are no documented laboratory measurements about the bulk reactive constants for
the mixture effects, our optimized results can be used not only to analyze the fate of the
mixture in different environments but also as an indicator for possible biological accu-
mulation. From the qualitative perspective, the bulk kinetic reaction constants provides
information for developing environmental remediation strategy and regulations with re-
gards the mixture effects limits. With our modeling approach, further more detailed pa-
rameterizations can be developed for the processes of the mixture in more complex en-
vironment, e.g., multi-compartment. Our time-series characterization methods and deep
learning fused angle provides the option for efficient parameter posterior estimates and
ensemble results computing for complex reactive transport models to capture the intricate
dynamics of the mixture field data.

⋅ § ⋅
One of the main obstacles I encountered during my doctoral research was to reproduce

the complex in-stream dynamics observed in the measured mixture effects while param-
eterizing explainable physical processes. I tackled the obstacle by utilizing a combination
of tools from various modeling perspectives: numerical modeling, convolution, Gaussian
Process Regression, Bayesian optimization, deterministic global optimization, and deep
learning methods including simulation-based inference and physics-informed neural net-
work. This experience taught me that a real-world environmental system can rarely be
well understood using a single method. The complex nature of the real-world problems
we are facing frequently requires various angles of approach and strong collaboration of
multiple disciplines in order to achieve the solution that is as fruitful as possible.

5.2 Outlook

Experimental settings for mixture effects for future quantitative study

One of the main hypotheses of the thesis is that the mixture effect is concentration equiva-
lent. Through Chapter 2, Chapter 3, and Chapter 4, I demonstrated that the mixture effect,
of which the rate of change follows the mass conservation law, is an invaluable intensive
state variable for quantitative studies of river water quality. As I previously mentioned in
Section 4.4, the mixture effects can be futher used for studying the transport and reactive
processes of mixture effects of organic micropollutants in more complex environment, e.g.,
porous media. However, to minimize the uncertainty originating from the conceptualiza-
tion stage, the experiments should be conducted in a more controlled environment, e.g.,
flow-through column experiments in laboratories, where certain parameters of the inves-
tigating processes can be fixed at constant values, and the mixture effects can be measured
at finer spatial and temporal resolutions. Also under such conditions, the spatial and tem-
poral behavior of the concentration signal (therefore can be extrapolated to the mixture
effects) is very well studied. All of these can provide more insightful data for setting up
more comprehensively parameterized models for the mixture effects.

Regarding studying the mixture effects in rivers, one of the potential new angles is
to couple the reactive transport processes in the moving water phase with the hyporheic
zone to study, e.g., the turnover of the mixture of legacy compounds (Liu et al., 2020). The
information from the laboratory experiments, as well as the models built on top of that can
then be used for improving the field sampling schemes in rivers. Similar to the laboratory
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experiments, if the logistic constraints could be overcome, a sampling scheme with finer
spatial and resolutions in both water phase and hyporheic zone would provide invaluable
information for parameterizing more detailed river models for the mixture effects.

Deep learning aiding process-based models, not the other way around.

As I previously mentioned in Section 1.1, process-based modeling operates on the in-
evitable "conundrum" that the conceptual uncertainty in the efforts of describing the in-
vestigating environmental system is tremendous to begin with. Since not all uncertainty
introduced by the observed processes affect the overall system behavior, a typical yet ef-
fective way to conduct modeling is to identify and concentrate on the controlling factors
of the system.

Conditioned on data, process-based models are used to obtain parameter values of
the real-world system, particularly those parameters that are difficult to measure directly.
Uncertainty originates from the fact that models are the simplification of the real-world
system, and data is scarce and contains measurement errors. Adding complex processes in
the model imposes constraints on the computational efforts, hindering the application of
Bayesian inference when (quite often) ensemble results are needed. The balance between
model complexity and its practicality has been a long debate.

In an effort to overcome these obstacles, the environmental modeling field is advanc-
ing towards the joint force of numerical tools and deep learning techniques. This is largely
due to the fact that over the recent years, the neural network-based deep learning methods
already show superior performance in terms prediction accuracy (Shinde and Shah, 2018;
Fujiyoshi et al., 2019; Wright et al., 2022; Cuomo et al., 2022) and become easy to imple-
ment thanks to the growth in computing hardware development and maturation of deep
learning frameworks, e.g., PyTorch and TensorFlow.

Therefore in my view, the balance between uncertainty quantification and model com-
plexity will not need to be a compromised scenario, if we take the advantage of the new
tools from the rapidly developing new scientific computing programming languages and
their libraries. As I mentioned in Section 4.4, a hybrid system that inserts a neural network
inside the traditional numerical reactive transport model implemented in Julia has various
advantages over the traditional process-based models. Julia, as a high-level scientific com-
puting language, stands out for maintaining the speed of low-level programming language.
It provides various efficient numerical tools, e.g., a comprehensive and high-performance
ODE solver suite that can solve the hybrid system, from its rapidly developing libraries
(DifferentialEquations.jl, Flux.jl, DiffEqFlux.jl, Turing.jl), all of which can be used in the hy-
brid models. Moreover, the core of the hybrid models is to prioritize the known physical
processes that are well studied. The neural network added alongside these physical pro-
cesses plays aiding roles, e.g., to help the model capture the intricate patterns in data and
nonlinear relationships of unknown processes. In this way, the merits of the physical
models, e.g., interpretablilty, consistency, overpower the drawback of neural networks,
e.g., being sensitive to the variations in data, tendency to overfit training data. Comparing
with other ways of fusing the deep learning and numerical tools where the role of lat-
ter often is out weighted by the former, in my opinion, the philosophy behind the hybrid
model makes it a more suitable way for the future development of process-based models.
Combining with Bayesian inference, the hybrid model presents a suite of powerful tools
that are able to interpret the known processes, improve the prediction accuracy, estimate
the parameters of the system, as well as identify the hidden physical processes.
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Appendix A

Supplementary information for
chapter 2

A.1 Upstream discharge estimation

In the investigated river stretch, discharge in the main channel could not be quantified
accurately without considering the involvement of the discharge at the upstream (𝑄up)
from the wastewater treatment plant (WWTP), at the effluent of the WWTP (𝑄w), in the
Mühlbach (𝑄Mühlbach) and Ehrenbach (𝑄Ehrenbach). 𝑄up has been continuously monitored by
a gauging station at upstream of the WWTP since 2013. Based on these long-term data, an
empirical upstream rating curve describing the relationship between discharge and water
depth has been established as in Eq. A.1,

𝑄up = 23.2863𝑑2 − 1.2969𝑑 + 0.1150 (A.1)

where 𝑄up [m3s-1] is the discharge, and 𝑑 [m] is the water depth. Since the gauging station
stopped providing valid discharge data from 23:00 on June 30, 2020, the water depths time-
series at measuring station (MS) Up were converted to the discharge values by applying
Eq. A.1. Water depth was measured by the conductivity - temperature - depth (CTD) diver,
referencing to the water depths from manual measurements and corrected by subtract-
ing the corresponding atmospheric pressures during the sampling period. Assuming ECd
’mass’ balance (Eq. A.3), combining the measured ECd and computed 𝑄up time-series, the
two-component mixing method presented by Schwientek et al., 2016 and Ort and Siegrist,
2009 was modified to determine the discharge from the WWTP effluent and at MS Down.
Eq. A.2 – A.6 outline the detailed relationships among the measured ECds and discharges
at MS Up, WWTP and MS Down.

𝑄d = 𝑄w + 𝑄up (A.2)

𝑄d𝐸𝐶d = 𝑄up𝐸𝐶up + 𝑄w𝐸𝐶w (A.3)

This chapter is published as supplementary information for "Modeling the Dynamics of Mixture Toxicity
and Effects of Organic Micropollutants in a Small River under Unsteady Flow Conditions" in Environmental
Science & Technology doi: 10.1021/acs.est.2c02824.
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A.2. Model-aided field experimental design

𝑄d = 𝑄up
𝐸𝐶up − 𝐸𝐶w

𝐸𝐶d − 𝐸𝐶w
(A.4)

𝑄w = 𝑄up
𝐸𝐶d − 𝐸𝐶up

𝐸𝐶w − 𝐸𝐶d
(A.5)

𝑄MS1 = 𝑄𝑑 − 𝑄Mühlbach + 𝑄Ehrenbach (A.6)

𝑄MS1(𝑡) = 𝑄MS2(𝑡) = 𝑄MS3(𝑡) (A.7)

𝑄up, 𝑄w, 𝑄d, 𝑄MS1, 𝑄MS2, 𝑄MS3, 𝑄Mühlbach and 𝑄Ehrenbach [m3s-1] are the discharges at the
WESS gauging station (upstream from the WWTP), the WWTP effluent, the downstream
from the WWTP, MS1, MS2, MS3, Mühlbach and Ehrenbach, respectively. 𝐸𝐶up, 𝐸𝐶w and
𝐸𝐶d are ECd values [mS cm-1] measured at theWESS gauging station, WWTP effluent and
the downstream of the WWTP, respectively. The discharge in the two main tributaries
Ehrenbach and Mülbach was measured three times during the first sampling day using
the acoustic digital current meter (ADC) (Ott C2, Kempten, Germany). The discharges
in the tributaries were assumed to be constant throughout the selected river segment
due to the lacking ground water infiltration and relatively small amount of inflow from
the four small tributaries (Schwientek et al., 2016 estimated that less than 1‰ of the dis-
charge in the Steinlachmain channel is contributed by the four small tributaries combing.).

A.2 Model-aided field experimental design

A scenario analysis was carried out prior to the field campaign to determine the appro-
priate field instrumental set-up under different flow conditions. A 1-D reactive transport
model assuming steady-state discharge was modified from the work of Liu et al., 2020.
Available data from the study of Schwientek et al., 2016 and Guillet et al., 2019 in the
same river was used as the model input as well as for parameter estimation. The purpose
of conducting this analysis was to balance the aim of quantitatively characterizing the
dynamics of the in-stream micropollutants, observing the spatial distinction of toxic ef-
fects along the river channel, especially the effects originating from chemicals undergoing
pronounced reactive in-stream processes, with our field and laboratory logistics’ capac-
ities. Thus, the analysis leads to optimizing the temporal sampling resolutions and the
number of auto-samplers (ASs) to be used in the field campaign. After selecting three con-
servative compounds (atrazine, candesartan and carbamazepine), three day-time reactive
compounds (DEET, oxcarbazepine and TAED) and three night-time reactive compounds
(bisoprolol, trimethoprim and valsartan) based on previous studies (Schwientek et al., 2016;
Guillet et al., 2019), the simulations of the downstream concentration time courses during
the day and night time were performed separately. The model ran under numerous sce-
narios: 1) at various discharge values (0.18, 0.3, 2 and 3 m3 s-1 used during the day-time
simulation; 0.16, 0.3, 2 and 3 m3 s-1 the night-time), 2) at two different time resolutions (1
and 2-hour), 3) as well as with two and three ASs. The modeled downstream removals and
the calibrated reaction coefficients from different scenarios were compared. At last, the
three ASs scheme was chosen and the ASs’ locations were settled.
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A.3 Lagrangian sampling campaign

The details of the sampling campaign can be found in the work of Schmitt et al., 2021.
In here we provided a brief description of the study sites and the mechanism of the La-
grangian sampling scheme.

Study sites. The Steinlach River is a 25.9 km long 4th order stream that sources from the
valley of the Eckenbachgraben near the town of Mössingen, passing through the southern
part of Tübingen city, draining into the Neckar River of the Rhine basin in the state of
Baden-Württemberg, Germany. It flows through the catchment of 140 km2 (Schwientek
et al., 2016), of which the use is 49% agriculture, 39% forest and 12% urban (Schwientek
et al., 2013; Guillet et al., 2019). The Steinlach River has the mean discharge (as of March
1, 2016) of 1.84 m3s-1 (https://www.hvz.baden-wuerttemberg.de/). However the discharge
varies seasonally that it can reach 15 m3s-1 in December (Schwientek et al., 2013) and
drop to 0.1 m3s-1 - 0.2 m3s-1 during the dry period (Liu et al., 2018). The river stretch we
were focusing on was fed by one main tributary Ehrenbach and four small creeks. A con-
structed diversion (Mühlbach) takes the water out of the main channel at approximately
1 km downstream of the wastewater treatment plant (WWTP) and flows into the Neckar
River without returning to themain channel (Figure A.1). Information regarding the fluvial
geomorphology can be found in Schwientek et al., 2016.

The wastewater treatment plant (WWTP AZV Steinlach-Wiesaz), locating at approx-
imately 4 km upstream from the mouth of the Steinlach River (N4.8◦2.8′5.32′′ E9◦3′5.33′′),
has the physical capacity of 115000 population equivalent (p.e.). It is equipped with a
secondary treatment facility and is capable of removing 69.6% and 90% of the annual
incoming nitrogen and phosphorus respectively (https://uwwtd.eu/Germany/treatment-
plant/detpbw4165100000064/2016). The mean effluent flow rate from the WWTP is 0.26
m3s-1 Guillet et al. (2019), which makes up 14% of the mean discharge in the main channel
of the Steinlach. However during the dry seasons, discharge from the WWTP effluent can
account for as high as 50% of the discharge in the Steinlach main channel (Schwientek
et al., 2016). The river stretch provides an ideal environment for investigating the fate
(transport and degradation) of organic micropollutants and their mixture effects due to
multiple factors such as relatively shallow (20 cm (Guillet et al., 2019)) and sparse vegeta-
tion.

Sampling. In 2020, the conductiviy (ECd) at the three measurement stations (MS1 -
MS3 in Figure A.1) was measured three times using the conductivity-temperature-depth
(CTD) divers (Schlumberger Water Sciences Technology, Canada) before the sampling.
Two CTD divers were installed the first time at MS1 and MS2, respectively on June
26 and were retrieved on June 30. The second installation was on July 14 and three
CTD divers were set at MS1, MS2 and MS3, respectively (Figure A.1) and they were re-
trieved on July 17. However, the WESS gauging station stopped working by that time
and discharge values from the State Institute for the Environment Baden-Württemberg
(https://www.hvz.baden-wuerttemberg.de/pegel.html?id=00089) were used as a reference.
During this period two rain events took place that increased the discharge from 0.3 m3s-1

to over 1 m3s-1 in less than 24 hours. During the third measuring period on August 14, one
CTD diver each was left at MS2 and MS3 and they were retrieved on August 16. In paral-
lel, the discharge time-series at the upstream of the WWTP was recorded by the gauging
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A.3. Lagrangian sampling campaign

station (MS Up) fromWater Earth System Science (WESS) program from the University of
Tübingen.

The sampling campaign preparation started on August 18, 2020. The first measuring
station (MS1) was set at 1.086 km downstream from theWWTP effluent, so that a complete
lateral mixing of solutes in the stream at all MSs could be assumed. MS2 was set at 1.163
km downstream from the MS1); MS3 1.505 km downstream from the MS2. At each MS, an
automated sampler (AS) (ISCO 3700, Teledyne Isco, Inc., USA) was deployed to sample the
time-series of river water. AS1 started sampling at 20:00 on August 19 and stopped at 13:45
on August 21. AS2 started at 03:00 on August 20 and stopped at 15:15 on August 21 (AS2
stopped working from 03:30 to 07:30 on August 21). AS3 started at 09:30 on August 20 and
stopped at 17:15 on August 21. Table S2 displays the detailed AS schedule, as well as the
underlying mechanism of the Lagrangian point of view of tracking the same water parcels
travel in rivers. Sampling temporal resolution was two hours. Each two-hour sample
was mixed with eight sub-samples that were taken every 15 minutes. All recording times
were Central European Summer Time (CEST). Grab samples were taken upstream of the
WWTP (WESS station), at theWWTP effluent, in the streams Ehrenbach, Mühlbach and at
MS1. Information regarding sample process is in Schmitt et al., 2021. In parallel, electrical
conductivity (ECd) at MS Up, MS WWTP, MS down, MS1, MS2 and MS3 was measured
continuously (two minutes temporal resolution) during the whole sampling period.
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A.3. Lagrangian sampling campaign

Sampling site: AS+Grab

Sampling site: Grab
Sampling site: AS

Sampling site: Dry

Figure A.1: Water flows from south to north in the main channel of the Steinlach river. Three grab
samples were taken at MS1. No grab sample was taken at MS2 and MS3. One grab sample was
taken at all of the rest of the MSs. T1-T4 represent the four small tributaries that flow into the main
channel but were dry during the campaign. Abbreviation: AS – autosampler. Grab – grab sample.
MS – measuring station. Map created by Victor Carvalho Cabral.
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A.4. Electrical conductivity measurements correction

A.4 Electrical conductivity measurements correction

Figure A.2: ECd and discharge in Steinlach in July 2020. Discharge data is provided by State Insti-
tute for the Environment Baden-Württemberg (https://www.hvz.baden-wuerttemberg.de/)

Throughout the entire sampling period, the ECd measurements from the CTD probe at
the WWTP effluent (Figure A.1) oscillated strongly (Figure A.4). On August 20, 2020, the
CTD probe at the WWTP effluent experienced sudden drop of ECd signal. There were no
rain events during the sampling campaign. Combined overflow sewage or separate sewer
system will not be used under such condition. We can safely conclude that the CTD probe
was pushed out of the water surface by the sudden high release from the WWTP approx-
imately between 08:00 and 17:00, resulting the measured ECd dropped to unrealistically
low values. Therefore, it was necessary to correct the signals in this time window and
the following steps were used: 1) extracting the upper signal envelopes of the ECd values
before and after the drop; 2) removing the polynomial trend in the disrupted part of the
signal and generating random noise; 3) linearly interpolating the ECd values between the
measurements before and after the drop ; 4) combining the random noise from 2) and lin-
ear interpolation results from 3) by addition; 5) smoothing the processed signals from 4) by
moving mean; 6) Gaussian smoothing the reassembled signal vector: upper envelopes be-
fore the drop (from 1)), smoothed results from 5) and upper envelopes after the drop (from
1)). Figure A.3 displays scheme for the signal recovery and the corrected ECd results are
shown in Figure A.5.
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A.4. Electrical conductivity measurements correction

Figure A.3: Detailed procedures for correcting the measurements at the WWTP were disrupted
due to the sudden high discharge from the WWTP.

Figure A.4: Measurements at the WWTP (illustrated in green color, showing strong oscillations.)
were disrupted due to the sudden high discharge from the WWTP.
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A.4. Electrical conductivity measurements correction

Figure A.5: The original WWTP EC signals before (plotted in light blue color) and after (plotted in
dark pink color) the disrupt were separated. The corrected signals were plotted in between. The
scheme of correction is in Figure A.3.
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Figure A.6: Finally processed and temperature-compensated (A) ECd signals, and (B) water tem-
perature measurements.
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A.5. Laboratory: chemical analysis
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Figure A.7: Hydrological parameters (the dimensionless dispersion coefficient 𝐷 and mean travel
time Δ𝑡) were determined by fitting the modeled ECd to the measured results. The peak of the
signal was the most important feature, of which the fit characterizes the hydrological parameters
of the model.

A.5 Laboratory: chemical analysis

The collected water samples were stored in 1L brown glass bottles packed in iceboxes
loaded with ice packs, and were transported to the laboratory as soon as possible during
the campaign. A list of 80 organicmicropollutantswere selected as targeted compounds for
our analysis, based on the information from the field campaigns in 2013 and 2015 (Guillet
et al., 2019; Schwientek et al., 2016) at the similar sampling locations and sampling in 2017
in the Ammer River (Müller et al., 2018), into which the Steinlach drains. The concentra-
tions of the micropollutants were quantified using a liquid chromatograph (1290 Infinity
HPLC; Agilent Technologies; Waldbronn, Germany) coupled to tandem mass spectrom-
etry (6470 Triple Quadrupole; Agilent Technologies, Santa Clara, USA). 46 out of the 80
targeted compounds were found in the water sample (the main categories of detected mi-
cropollutants were: pharmaceuticals, metabolites, fungicides, herbicides, surfactants and
corrosion inhibitors). All sample preparation and full analytical work details can be found
in the work of Schmitt et al., 2021.

A.6 Discharge time-series

Modeled discharge time-series showed that the sudden high release from the wastewater
treatment plant caused the discharge in the river main channel to become unstable.
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A.7. DOC and pH

19:00 23:00 03:00 07:00 11:00 15:00 19:00 23:00 03:00 07:00 11:00 15:00
Aug 19, 2020-Aug 21, 2020   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Q

 [m
3  s

-1
]

Up
WWTP
MS1
MS2
MS3

Figure A.8: Overlay of Figure 1A - E. The propagation of the wave in the river channel.

A.7 DOC and pH

Dissolved organic carbon (DOC) were measured from the grab samples during the day.
From measuring station (MS) 1 to 3, additional night grab samples were also taken.
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Figure A.9: (A) Grab samples of dissolved organic carbon during the night and day time. (B)
Measured pH time-series.

A.8 Deterministic model: chemical concentration and mass flux

Reactive transport of individual compounds. The breakthrough curves of individual
chemicals’ concentration wasmodeled by the one-dimensional convolution-based reactive
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A.8. Deterministic model: chemical concentration and mass flux

transport model (Eq. A.8),

𝐶𝑖,down(𝑡) = ∫
𝑡max

0
𝐶𝑖,up(𝑡 − 𝜏)𝑟𝑖(𝜏)𝑑𝜏 (A.8)

where 𝐶𝑖,up and 𝐶𝑖,down are concentration [ng/L] of chemical 𝑖 at upstream and downstream
locations, respectively. 𝑖 is the chemical index [-]. 𝑡 is the sampling time point. 𝑡max is the
integral time interval. 𝜏 is the travel time of the individual water parcel. 𝑟𝑖(𝜏) is the reactive
transfer function defined by Eq. A.9,

𝑟𝑖(𝜏) = 𝑔(𝜏) exp(−𝜆𝑖 ⋅ 𝜏) (A.9)

where 𝜆𝑖 is the compound’s specific first-order reaction constant [s-1]. 𝑔(𝜏) is the conser-
vative transfer function defined by Eq. A.10.

𝑔(𝜏) =
1

𝜏
√

4𝜋𝐷𝜏
Δ𝑡𝐸𝐶

exp
[
−
(1 − 𝜏

Δ𝑡𝐸𝐶 )
2

4𝐷𝜏
Δ𝑡𝐸𝐶 ]

(A.10)

The unsteady discharge is computed by usingmeasured𝑄 time-series atMSUp (WESS)
as model input (Eq. A.11 – A.12).

𝑄down(𝑡) = ∫
𝑡max

0
𝑄up(𝑡 − 𝜏)𝑞(𝜏)𝑑𝜏 (A.11)

𝑞(𝜏) =
1

𝜏
√

20𝜋𝐷𝜏
3Δ𝑡ECd

exp
[
−
(1 − 5𝜏

3Δ𝑡ECd
)2

20𝐷𝜏
3Δ𝑡ECd ]

(A.12)

Details of Eq. A.9 – A.12 can be found in the Section 2 in the main text. The mass flux
of individual compound is defined as the product of the concentration and the discharge
(Eq. A.13).

𝐹𝑖(𝑡) = 𝐶𝑖(𝑡) ⋅ 𝑄(𝑡) (A.13)

Objective function and the goodness of fit. We fitted the modeled downstream signals
to the measured signal, deriving the transfer function’s parameters, the mean travel time
Δ𝑡ECd, the lumped dispersion coefficient 𝐷 and the first-order dissipation constants 𝜆 for
the individual compounds. The deterministic calibration method requires objective func-
tion, which was defined as:

min
𝜃
(𝑓 (𝜃)) =

𝑛
∑
𝑖=1

(𝑓 (𝜃, 𝑥𝑖) − 𝑦obs,𝑖)2 (A.14)

where 𝜃 is the parameter to be found given the input (𝑥𝑖) and observation (𝑦obs,𝑖). Normal-
ized root-mean-square error (NRMSE) was computed for each compound to evaluate the
goodness of the model fit.

NRMSE =
√
∑𝑛

𝑖=1(𝑦model,𝑖 − 𝑦obs,𝑖)2/𝑛
𝑦obs,max − 𝑦obs,min

(A.15)
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A.9. Stochastic model: randomizing the starting points for the Markov chains

A.9 Stochastic model: randomizing the starting points for the
Markov chains

Prior distribution To form the prior distribution, the detected organic micropollutants’
reaction rate constants were derived from the literature half-lives (predicted biodegra-
dation half-life values from quantitative structure–activity/property relationship (QSAR)
model (Mansouri et al., 2018) (https://comptox.epa.gov/dashboard) using Eq. A.16,

𝜆 =
ln(2)
𝑡1/2

(A.16)

where 𝑡1/2,𝑗 [time] is the literature half-life value, 𝜆𝑗 [time−1] the first-order reaction
rate constant. The prior probability density function (pdf) of the reaction constant 𝜆 ∼
 (𝜇𝜆, 𝜎2

𝜆) is:

𝑃prior(𝜆) =
1

𝜎𝜆
√
2𝜋

exp
(
−
1
2 [

𝜆 − 𝜇𝜆
𝜎𝜆 ]

2

)
(A.17)

The starting point of the individual chain is a randomized value. For the first-order re-
action rate constant 𝜆, the starting points were drawn from a normal distribution centered
at the deterministic calibration results, and with the variance derived empirically by com-
puting the standard deviation of the ’predetermined’ reaction rate constants time-series
𝜆(𝑡) [s−1]. By implementing the Lagrangian concept of tracking the same water packages
(Jaeger et al., 2018; Glaser et al., 2020), the 𝜆(𝑡) is defined as:

𝜆𝐸𝑈 (𝑡) = ln(
𝐸𝑈bio𝑗 ,down(𝑡)
𝐸𝑈bio𝑗 ,up(𝑡) ) /Δ𝑡EC (A.18)

𝜆𝑇𝑈 (𝑡) = ln(
𝑇𝑈bio𝑗 ,down(𝑡)
𝑇𝑈bio𝑗 ,up(𝑡) ) /Δ𝑡EC (A.19)

where 𝑡 [time] is the sampling time point, Δ𝑡EC [time] the mean travel time in the study
reach. 𝐸𝑈bio𝑗 ,up(𝑡), 𝐸𝑈bio𝑗 ,down(𝑡), 𝑇𝑈bio𝑗 ,up(𝑡) and 𝑇𝑈bio𝑗 ,down(𝑡) are the assay-specific effect
units and toxic units measured from the same water package passing the upstream and
downstream sampling points, respectively. In the case of the standard deviation 𝜎𝜖 in the
likelihood function, a normal distribution fromwhich the randomized starting points were
drawn was parameterized using the reported measurement errors (Adams et al., 2015).

A.10 time-series of experimental and modeled concentration

The deterministic convolution-based model with first-order kinetics were able to repro-
duce the in-stream dynamics of the concentration of the individual micropollutants. Three
missing data points at measuring station 2 were due to the malfunction of auto-sampler 2
between 03:30 and 07:30 on August 21, 2020.
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A.10. time-series of experimental and modeled concentration
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Figure A.10: The time course of measured concentration data and calibrated modeling results at
MS2. Auto-sampler 2 stoppedworking from 03:30 to 07:30 onAugust 21, 2020. Completedmeasured
concentration data can be found in Schmitt et al., 2021. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society.
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Figure A.11: The time course of measured concentration data and calibrated modeling results at
MS2. Auto-sampler 2 stoppedworking from 03:30 to 07:30 onAugust 21, 2020. Completedmeasured
concentration data can be found in Schmitt et al., 2021. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society.
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A.10. time-series of experimental and modeled concentration
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Figure A.12: The time course of measured concentration data and calibrated modeling results at
MS2. Auto-sampler 2 stoppedworking from 03:30 to 07:30 onAugust 21, 2020. Completedmeasured
concentration data can be found in Schmitt et al., 2021. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society.
Abbreviation: PFOA – Pentadecafluorooctanoic acid.
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Figure A.13: The time course of measured concentration data and calibrated modeling results at
MS2. Auto-sampler 2 stoppedworking from 03:30 to 07:30 onAugust 21, 2020. Completedmeasured
concentration data can be found in Schmitt et al., 2021. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society.
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A.10. time-series of experimental and modeled concentration
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Figure A.14: The time course of measured concentration data and calibrated modeling results at
MS2. Auto-sampler 2 stoppedworking from 03:30 to 07:30 onAugust 21, 2020. Completedmeasured
concentration data can be found in Schmitt et al., 2021. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society.
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Figure A.15: The time course of measured concentration data and calibrated modeling results at
MS3. Completed measured concentration data can be found in Schmitt et al., 2021. Measured
concentrations were reprinted (adapted) with permission from Schmitt et al., 2021. Copyright 2021
American Chemical Society.
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A.10. time-series of experimental and modeled concentration
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Figure A.16: The time course of measured concentration data and calibrated modeling results at
MS3. Completed measured concentration data can be found in Schmitt et al., 2021. Measured
concentrations were reprinted (adapted) with permission from Schmitt et al., 2021. Copyright 2021
American Chemical Society.
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Figure A.17: The time course of measured concentration data and calibrated modeling results at
MS3. Completed measured concentration data can be found in Schmitt et al., 2021. Measured
concentrations were reprinted (adapted) with permission from Schmitt et al., 2021. Copyright 2021
American Chemical Society. Abbreviation: PFOA – Pentadecafluorooctanoic acid.
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A.11. time-series of experimental and modeled mass flux
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Figure A.18: The time course of measured concentration data and calibrated modeling results at
MS3. Completed measured concentration data can be found in Schmitt et al., 2021. Measured
concentrations were reprinted (adapted) with permission from Schmitt et al., 2021. Copyright 2021
American Chemical Society.
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Figure A.19: The time course of measured concentration data and calibrated modeling results at
MS3. Completed measured concentration data can be found in Schmitt et al., 2021. Measured
concentrations were reprinted (adapted) with permission from Schmitt et al., 2021. Copyright 2021
American Chemical Society.

A.11 time-series of experimental and modeled mass flux

The deterministic convolution-based model with first-order kinetics were able to repro-
duce the in-stream dynamics of the mass flux of the individual micropollutants. Three
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A.11. time-series of experimental and modeled mass flux

missing data points at measuring station 2 were due to the malfunction of auto-sampler 2
between 03:30 and 07:30 on August 21, 2020.

Figure A.20: The time course of mass flux data and calibrated modeling results at MS2. Auto-
sampler 2 stopped working from 03:30 to 07:30 on August 21, 2020. Auto-sampler 2 stopped work-
ing from 03:30 to 07:30 on August 21, 2020.

Figure A.21: The time course of mass flux data and calibrated modeling results at MS2. Auto-
sampler 2 stopped working from 03:30 to 07:30 on August 21, 2020.

102



A.11. time-series of experimental and modeled mass flux

Figure A.22: The time course of mass flux data and calibrated modeling results at MS2. Auto-
sampler 2 stopped working from 03:30 to 07:30 on August 21, 2020. Abbreviation: PFOA – Pen-
tadecafluorooctanoic acid.

Figure A.23: The time course of mass flux data and calibrated modeling results at MS2. Auto-
sampler 2 stopped working from 03:30 to 07:30 on August 21, 2020.
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A.11. time-series of experimental and modeled mass flux
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Figure A.24: The time course of mass flux data and calibrated modeling results at MS2. Auto-
sampler 2 stopped working from 03:30 to 07:30 on August 21, 2020.

Figure A.25: The time course of mass flux data and calibrated modeling results at MS3.
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A.11. time-series of experimental and modeled mass flux

Figure A.26: The time course of mass flux data and calibrated modeling results at MS3.

Figure A.27: The time course of mass flux data and calibrated modeling results at MS3. Abbrevia-
tion: PFOA – Pentadecafluorooctanoic acid.
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A.12. Effect units of the individual detected compounds and their effect unit fluxes

Figure A.28: The time course of mass flux data and calibrated modeling results at MS3.
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Figure A.29: The time course of mass flux data and calibrated modeling results at MS3.

A.12 Effect units of the individual detected compounds and their
effect unit fluxes

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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A.12. Effect units of the individual detected compounds and their effect unit fluxes
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Figure A.30: Observed and modeled individual effect unit (𝐸𝑈chem,𝑖) in AhR-CALUX at MS2 and
MS3. 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA –
Benzothiazole-2-sulfonic acid.
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Figure A.31: Observed andmodeled individual effect unit (𝐸𝑈chem,𝑖) in PPAR𝛾 - GeneBLAzer at MS2
and MS3. B-2-SA – Benzothiazole-2-sulfonic acid.
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A.12. Effect units of the individual detected compounds and their effect unit fluxes
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Figure A.32: Observed and modeled individual effect unit (𝐸𝑈chem,𝑖) in AREc32 at MS2 and MS3.
2-Amino-benzo – 2-Aminobenzothiazole; B-2-SA – Benzothiazole-2-sulfonic acid.

Figure A.33: Measured and modeled effect unit fluxes time-series of the detected chemicals that
were activated in AhR-CALUX. Analytical uncertainties originating from the concentration mea-
surements were illustrated in grey area. Discharges at the corresponding locations were shown in
light blue and green areas. Abbreviations: 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT –
4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic acid.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes

Figure A.34: Observed and modeled individual effect unit fluxes in PPAR𝛾 at MS2 andMS3. B-2-SA
– Benzothiazole-2-sulfonic acid.

Figure A.35: Observed and modeled individual effect unit (𝐸𝑈chem,𝑖) flux in AREc32 at MS2 and
MS3. 2-Amino-benzo – 2-Aminobenzothiazole; B-2-SA – Benzothiazole-2-sulfonic acid.

A.13 Toxic units of the individual detected compounds and their
toxic unit fluxes

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes
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Figure A.36: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) in AhR-CALUX at MS2 and
MS3. Abbreviations: 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic
acid; PFOA – Pentadecafluorooctanoic acid; SFOX – Sulfamethoxazole.
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Figure A.37: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) in PPAR𝛾 - GeneBLAzer at MS2
and MS3.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes
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Figure A.38: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) in AREc32 at MS2 and MS3.
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Figure A.39: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) at in ER𝛼 - GeneBLAzer MS2
and MS3.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes
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Figure A.40: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) in AR - GeneBLAzer at MS2
and MS3.
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Figure A.41: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) in GR - GeneBLAzer at MS2
and MS3.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes

Figure A.42: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux. Abbreviation: 4&5-MBT
– 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic acid; PFOA – Pentadecafluorooc-
tanoic acid.

Figure A.43: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in PPAR𝛾 - GeneBLAzer.
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A.13. Toxic units of the individual detected compounds and their toxic unit fluxes

Figure A.44: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in AREc32.
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Figure A.45: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in ER𝛼 - GeneBLAzer.
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A.14. Effect unit in the main channel: individual contributions to the mixture.

Figure A.46: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in AR- GeneBLAzer.
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Figure A.47: Observed and modeled individual toxic unit (𝑇𝑈chem,𝑖) flux in GR- GeneBLAzer.

A.14 Effect unit in the main channel: individual contributions to
the mixture.

The individual compounds contributions to 𝐸𝑈chem did not vary significantly over mea-
suring stations (Figure A.48). Benzothiazole-2-sulfonic acid contributed the highest per-
cent. Specifically 38%, 53% and 62% of the effect in AhR-CALUX , PPAR𝛾-GeneBLAzer
and AREc32, respectively from the samples taken by AS1, and 35%, 62% in AhR-CALUX
and AREc32, respectively from the samples taken by AS3. Only in the case of PPAR𝛾-
GeneBLAzer, it contributed the second largest amount, overtaken by telmisartan (51%), in
the samples taken by AS3. In comparison to 𝐸𝑈bio (Figure A.48), the individually detected
compounds in total contributed less than 1% effects in all bioassays.
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A.14. Effect unit in the main channel: individual contributions to the mixture.

(A) AhR-CALUX MS1
1%10%

11%

21%

2% 7% 3%
6%

38%

2-Amino-benzo: 1% 4&5-MBT: 10% B-2-SA: 11%
Benzotriazole: 21% Climbazole: 2% Diuron: 7%
Isoproturon: 3% Telmisartan: 6% Tramadol: 38%

(B) PPAR.-GeneBLAZer MS1

53%

45%

B-2-SA: 1% Diclofenac: 53%
Irbesartan: < 1% Lamotrigine: < 1%
Telmisartan: 45% Torasemide: < 1%

(C) AREc32 MS1

80%

14%

2-Amino-benzo: 1% B-2-SA: 80% Citalopram: 14%
Climbazole: < 1% Diuron: 2% Isoproturon: 3%
Trimethoprim: < 1%

(D) AhR-CALUX MS3
1%10%

10%

23%

2% 8% 3%
6%

35%

2-Amino-benzo: 1% 4&5-MBT: 10% B-2-SA: 10%
Benzotriazole: 23% Climbazole: 2% Diuron: 8%
Isoproturon: 3% Telmisartan: 6% Tramadol: 35%

(E) PPAR.-GeneBLAZer MS3

46% 51%

B-2-SA: 1% Diclofenac: 46%
Irbesartan: < 1% Lamotrigine: < 1%
Telmisartan: 51% Torasemide: < 1%

(F) AREc32 MS3

81%

12%

2-Amino-benzo: 1% B-2-SA: 81% Citalopram: 12%
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Trimethoprim: 1%

Figure A.48: The mean effect units over the sampling period from individual compounds: the
individual percentage of the effect 𝐸𝑈chem,𝑖 contributed to 𝐸𝑈chem mixture. Abbreviations: 2-Amino-
benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-
2-sulfonic acid.

(A) AhR MS1
1%10%

11%

21%

2%7% 3% 6%

38%

2-Amino-benzo: 1% 4&5-MBT: 10%
B-2-SA: 11% Benzotriazole: 21%
Climbazole: 2% Diuron: 7%
Isoproturon: 3% Telmisartan: 6%
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Figure A.49: The mean effect units over the sampling period from individual compounds: the
individual percentage of the 𝐸𝑈chem,𝑖 contributed to 𝐸𝑈chem mixture in comparison with the share
from the unknowns. Abbreviations: 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5
Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic acid.
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A.15. Toxic units in the main channel: individual contributions to the mixture.

A.15 Toxic units in the main channel: individual contributions
to the mixture.
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Figure A.50: The mean toxic units 𝑇𝑈chem,𝑖 over the sampling period from individual compounds to
𝑇𝑈chem. 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA
– Benzothiazole-2-sulfonic acid; PFOA – Pentadecafluorooctanoic acid.
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Carbendazim: 14% Climbazole: < 1% Diclofenac: 16%
Diuron: < 1% Imidacloprid: < 1% Irbesartan: 10%
Isoproturon: < 1% Lamotrigine: 6% Metoprolol: 3%
PFOA: < 1% Sulfamethoxazole: < 1% Tebuconazole: < 1%
Terbutryn: 2% Trimethoprim: < 1%
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Sulfamethoxazole: < 1% Tebuconazole: < 1% Telmisartan: 7%
Terbutryn: 1% Torsemide: < 1% Venlaflaxine: 1%

Figure A.51: The mean toxic units 𝑇𝑈chem,𝑖 over the sampling period from individual compounds to
𝑇𝑈chem. 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA
– Benzothiazole-2-sulfonic acid; PFOA – Pentadecafluorooctanoic acid.
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A.16. Effect units of the detected compounds mixture and their fluxes
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Figure A.52: The mean toxic units over the sampling period from individual compounds to 𝑇𝑈chem.
PFOA – Pentadecafluorooctanoic acid.

A.16 Effect units of the detected compounds mixture and their
fluxes

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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Figure A.53: Experimental and modeled 𝐸𝑈chem mixture at MS2 and MS3.
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A.17. Toxic units of the detected compounds mixture and their fluxes
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Figure A.54: Experimental and modeled 𝐸𝑈chem mixture flux at MS2 and MS3.

A.17 Toxic units of the detected compounds mixture and their
fluxes

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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Figure A.55: Experimental and modeled 𝑇𝑈chem mixture at MS2 and MS3.
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A.18. Effect units of the whole bioactive mixture

Figure A.56: Experimental and modeled 𝑇𝑈chem mixture flux at MS2 and MS3.

A.18 Effect units of the whole bioactive mixture

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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Figure A.57: Ensemble 𝐸𝑈bio at MS2. Posterior interval (PI).
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A.19. Effect units fluxes of the whole bioactive mixture
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Figure A.58: Ensemble 𝐸𝑈bio at MS3. Posterior interval (PI).

A.19 Effect units fluxes of the whole bioactive mixture
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Figure A.59: Ensemble 𝐸𝑈bio at MS3. Posterior interval (PI).

A.20 Toxic units of the whole bioactive mixture

Toxic units of the whole bioactive mixture (𝑇𝑈 bio) were quantified on four in vitro bioas-
says named AhR-CALUX for aryl hydrocarbon receptor induction, PPAR𝛾-GeneBLAzer
for peroxisome proliferator-activated receptor activity, ER𝛼-GeneBLAzer for estrogenic-
ity and AREc32 for oxidative stress. Three missing data points at measuring station 2
were due to the malfunction of auto-sampler 2 between 03:30 and 07:30 on August 21,
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A.21. Toxic units fluxes of the whole bioactive mixture

2020. Mean 𝑇𝑈 bio of the four bioassays were used for modeling, due to the same mode of
actions.
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Figure A.60: Mean 𝑇𝑈bio ensemble at MS2. Posterior interval (PI).
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Figure A.61: Mean 𝑇𝑈bio ensemble at MS3. Posterior interval (PI).

A.21 Toxic units fluxes of the whole bioactive mixture

Three missing data points at measuring station 2 were due to the malfunction of auto-
sampler 2 between 03:30 and 07:30 on August 21, 2020.
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A.21. Toxic units fluxes of the whole bioactive mixture
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Figure A.62: Mean 𝑇𝑈bio ensemble at MS2. Posterior interval (PI).
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Figure A.63: Mean 𝑇𝑈bio ensemble at MS3. Posterior interval (PI).
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A.22. Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and mean 𝑇𝑈bio

A.22 Prior and posterior distributions: the reactive parameters
of 𝐸𝑈bio and mean 𝑇𝑈bio

Figure A.64: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in AhR - CALUX in the
river segment between MS1 - MS2. Five Markov chains converged after 25000 iterations.

Figure A.65: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in PPAR𝛾 - GeneBLAzer
in the river segment between MS1 - MS2. Five Markov chains converged after 50000 iterations.
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A.22. Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and mean 𝑇𝑈bio

Figure A.66: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in ER𝛼 - GeneBLAzer in
the river segment between MS1 - MS2. Five Markov chains converged after 25000 iterations.

Figure A.67: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in AREc32 in the river
segment between MS1 - MS2. Five Markov chains converged after 5000 iterations.

125



A.22. Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and mean 𝑇𝑈bio

Figure A.68: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in AhR - CALUX in the
river segment between MS1 - MS3. Five Markov chains converged after 15000 iterations.

Figure A.69: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in PPAR𝛾 - GeneBLAzer
in the river segment between MS1 - MS3. Five Markov chains converged after 15000 iterations.
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A.22. Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and mean 𝑇𝑈bio

Figure A.70: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in ER𝛼 - GeneBLAzer in
the river segment between MS1 - MS3. Five Markov chains converged after 15000 iterations.

Figure A.71: Prior and posterior distribution of reaction constant of 𝐸𝑈bio in AREc32 in the river
segment between MS1 - MS3. Five Markov chains converged after 15000 iterations.
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A.22. Prior and posterior distributions: the reactive parameters of 𝐸𝑈bio and mean 𝑇𝑈bio

FigureA.72: Prior and posterior distribution of reaction constant ofmean 𝑇𝑈bio in the river segment
between MS1 - MS2. Five Markov chains converged after 25000 iterations.

FigureA.73: Prior and posterior distribution of reaction constant ofmean 𝑇𝑈bio in the river segment
between MS1 - MS3. Five Markov chains converged after 15000 iterations.
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A.23. Grab samples: concentration

A.23 Grab samples: concentration
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Figure A.74: Concentration of detected chemicals in the grab samples (no grab samples were
taken at MS2 and MS3) show that multiple sources are responsible for the presence of micropol-
lutants in the Steinlach River. Abbreviations: 2-Amino-benzo – 2-Aminobenzothiazole; 4&5-MBT
– 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-sulfonic acid; Flufenamic acid (FFA); Hy-
drochlorozhiazide (HCT); O-Desmethylvenlafaxine (O-DVF); Sulfamethoxazole (SFOX); Trimetho-
prim (TTP); Terbuthylazine-2-hydroxy (TT-2-H). Ehr – Ehrenbach; Muehl – Mühlbach; The time
course of measured concentration data and calibrated modeling results at MS2. Auto-sampler 2
stopped working from 03:30 to 07:30 on August 21, 2020. Measured concentrations were reprinted
(adapted) with permission from Schmitt et al., 2021. Copyright 2021 American Chemical Society).
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A.24. Grab samples: effect unit
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Figure A.75: The effect units of grab samples (no grab samples were taken at MS2 and MS3). 𝐸𝑈bio
(A) – (C); Individual effects and mixture (D) – (F). 𝐸𝑈chem = ∑𝑛

𝑖=1 𝐸𝑈chem,𝑖. Abbreviations: 2-Amino-
benzo – 2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-
2-sulfonic acid; Trimethoprim (TTP); Specific effect of the whole bioactive mixture, 𝐸𝑈bio.
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Figure A.76: The effect units of grab samples (no grab samples were taken at MS2 and MS3).
Specific effect of the whole bioactive mixture, 𝐸𝑈bio in the ER𝛼-GeneBLAzer assay.
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A.25. Grab samples: toxic unit
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Figure A.77: The toxic units of grab samples taken at all locations. 𝑇𝑈bio (a) – (c); Individual effects
and mixture (d) – (f). 𝑇𝑈chem = ∑𝑛

𝑖=1 𝑇𝑈chem,𝑖. Abbreviations: 2-Aminobenzothiazole (2-Amino-
benzo); 4&5 Methyl-benzotriazole (4&5-MBT); Atrazine-2-hydroxy (Atrazine-2H); Atrazine-
desethyl (Atrazine-DTL); Benzothiazole-2-sulfonic acid (B-2-SA); Hydrochlorozhiazide (HCT); Sul-
famethoxazole (SFOX); Trimethoprim (TTP); Terbuthylazine-2-hydroxy (TT-2-H); Toxic effect of
the whole bioactive mixture 𝑇𝑈bio.
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Figure A.78: The toxic units of grab samples (no grab samples were taken at MS2 and MS3). Mix-
ture effects (a) – (b); Individual effects (c) – (d). 𝑇𝑈chem = ∑𝑛

𝑖=1 𝑇𝑈chem,𝑖. Abbreviations: Atrazine-
2-hydroxy (Atrazine-2H); 4&5 Methyl-benzotriazole (4&5-MBT); Atrazine-2-hydroxy (Atrazine-
2H); Atrazine-desethyl (Atrazine-DTL); Benzothiazole-2-sulfonic acid (B-2-SA); Sulfamethoxazole
(SFOX).
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A.26. Spatial variation of effects
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Figure A.79: The toxic units of grab samples taken at all locations. 𝑇𝑈chem (a) – (b); Individual
effects (c) – (d). 𝑇𝑈chem = ∑𝑛

𝑖=1 𝑇𝑈chem,𝑖. No 𝑇𝑈bio was tested on assay AR-GeneBLAzer and GR-
GeneBLAzer. Abbreviations: 2-Aminobenzothiazole (2-Amino-benzo); 4&5 Methyl-benzotriazole
(4&5-MBT); Atrazine-2-hydroxy (Atrazine-2H).
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Figure A.80: Total (a) – (c) and mean (d) – (f) EU of detected compounds and the whole bioactive
mixture. Total EU fromMS2were not included due to the fact that AS2 stopped sampling from 03:30
to 07:00 on August 21, 2020. Abbreviations: 2-Aminobenzothiazole (2-Amino-benzo); 4&5 Methyl-
benzotriazole (4&5-MBT); Benzothiazole-2-sulfonic acid (B-2-SA). Total mixture effects (Bio)
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A.27. Tables

A.27 Tables

Table A.1: The full list of targeted compounds. Detected compounds are highlighted in grey color.

Name Category

2-Aminobenzothiazole azo dye intermediate
4 & 5 Methyl-benzotriazole corrosion inhibitor

Alachlor herbicide
Amisulpride pharmaceutical

Atrazine herbicide
Atrazine-2-hydroxy herbicide metabolite
Atrazine-desethyl herbicide metabolite

Atrazine-desisopropyl herbicide metabolite
Azoxystrobin fungicide

Bentazone herbicide
Benzothiazole-2-sulfonic acid vulcanization accelerator

Benzotriazole corrosion inhibitor
Bezafibrate pharmaceutical
Bisoprolol pharmaceutical

Bixafen fungicide
Boscalid fungicide

Carbamazepine pharmaceutical
Carbendazim fungicide
Chloridazon herbicide
Chlorpyrifos metabolite & insecticide
Citalopram pharmaceutical
Climbazole fungicide
Diazinon insecticide

Diclofenac pharmaceutical
Diflufenican herbicide

Diuron herbicide
Epoxiconazole fungicide

Fenofibrate pharmaceutical
Florasulam herbicide
Fluconazole pharmaceutical
Flufenacet herbicide

Flufenamic acid pharmaceutical
Fluxapyroxad fungicide
Gabapentin pharmaceutical

Hydrochlorozhiazide pharmaceutical
Imidacloprid insecticide
Indomethacin pharmaceutical

Iodosulfuron-methyl herbicide
Irbesartan pharmaceutical

Isoproturon herbicide
Lamotrigine pharmaceutical
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MCPA herbicide
Mecoprop herbicide

Mesosulfuron-methyl herbicide
Metalaxyl fungicide

Metamitron herbicide
Methylprednisolone pharmaceutical

Metolachlor herbicide
Metoprolol pharmaceutical

Metronidazole pharmaceutical
Naproxen pharmaceutical

Metsulfuron-methyl herbicide
Nicosulfuron herbicide

O-Desmethylvenlafaxine pharmaceutical, metabolite
Olmesartan pharmaceutical

PFOA (Pentadecafluorooctanoic acid) surfactant
Pirimicarb insecticide
Primidone pharmaceutical
Propazine fungicide

Propiconazole fungicide
Prosulfuron herbicide

Pyraclostrobin fungicide
Simazine herbicide

Sitagliptin pharmaceutical
Sotalol pharmaceutical

Sulfamethazine pharmaceutical
Sulfamethoxazole antibiotic

Sulpiride pharmaceutical
Tebuconazole fungicide
Telmisartan pharmaceutical

Terbuthylazine herbicide
Terbuthylazine-2-hydroxy herbicide metabolite

Terbutryn herbicide
Thiamethoxam insecticide

Torsemide pharmaceutical
Tramadol pharmaceutical
Triclosan biocide

Trimethoprim pharmaceutical
Venlafaxine pharmaceutical
Xipamide pharmaceutical
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Table A.2: time-series samples’ collection order and time in August 2020. The same water packages
tracked by the Lagrangian scheme are highlighted by the grey color. Red colors are the missing
samples. Auto-sampler (AS)

AS1 AS2 AS3
Order Time Order Time Order Time

1 19.08.2020 20:00
2 19.08.2020 22:00
3 20.08.2020 00:00
4 20.08.2020 02:00
5 20.08.2020 04:00 1 20.08.2020 03:30
6 20.08.2020 06:00 2 20.08.2020 05:30
7 20.08.2020 08:00 3 20.08.2020 07:30
8 20.08.2020 10:00 4 20.08.2020 09:30 1 20.08.2020 09:30
9 20.08.2020 12:00 5 20.08.2020 11:30 2 20.08.2020 11:30
10 20.08.2020 14:00 6 20.08.2020 13:30 3 20.08.2020 13:30
11 20.08.2020 16:00 7 20.08.2020 15:30 4 20.08.2020 15:30
12 20.08.2020 18:00 8 20.08.2020 17:30 5 20.08.2020 17:30
13 20.08.2020 20:00 9 20.08.2020 19:30 6 20.08.2020 19:30
14 20.08.2020 22:00 10 20.08.2020 21:30 7 20.08.2020 21:30
15 21.08.2020 00:00 11 20.08.2020 23:30 8 20.08.2020 23:30
16 21.08.2020 02:00 12 21.08.2020 01:30 9 21.08.2020 01:30
17 21.08.2020 04:00 13 21.08.2020 03:30 10 21.08.2020 03:30
18 21.08.2020 06:00 14 21.08.2020 05:30 11 21.08.2020 05:30
19 21.08.2020 08:00 15 21.08.2020 07:30 12 21.08.2020 07:30
20 21.08.2020 10:00 16 21.08.2020 09:30 13 21.08.2020 09:30
21 21.08.2020 12:00 17 21.08.2020 11:30 14 21.08.2020 11:30
Stop 21.08.2020 13:45 18 21.08.2020 13:30 15 21.08.2020 13:30

Stop 21.08.2020 15:15 16 21.08.2020 15:30
Stop 21.08.2020 17:15
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Table A.3: Measured concentration (ng/L) of grab samples. Measured concentrations were
reprinted (adapted) with permission from Markus Schmitt (Schmitt et al., 2021 Copyright 2021
American Chemical Society). Auto-sampler (AS); Limit of quantification (LOQ); Solid phase extrac-
tion (SPE); Upstream (up); Ehrenbach (Ehr); Measuring station 1 (MS1); Mühlbach (Muhl); Wastew-
ater treatment plant (WWTP).

Concentration
[ng/L]

SPE
Blank
1

SPE
Blank
2

SPE
Blank
3

AS1
Blank

AS2
Blank

AS3
Blank

grab
up

grab
Ehr

grab
MS1
1

grab
MS1
2

grab
MS1
3

grab
Muhl

grab
WWTP

2-
Aminobenzothiazole

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

8,3 8,9 8,2 7,8 <
LOQ

4&5 Methyl-
benzotriazole

n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

759,7 758,4 809,9 929,5 1082,9

Alachlor <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Amisulpride n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

122,6 122,3 134,5 171,7 200,9

Atrazine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

3,2 <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Atrazine-2-
hydroxy

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

1,6 3,1 1,4 1,8 1,4 <
LOQ

<
LOQ

Atrazine-
desethyl

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

3,8 <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Atrazine-
desisopropyl

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Azoxystrobin <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

0,7 0,7 0,7 0,8 <
LOQ

Bentazone <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

0,7 0,9 <
LOQ

1,0 <
LOQ

Benzothiazole-2-
solfonic acid

n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

635,8 703,0 787,4 616,8 656,5

Benzotriazole n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

3296,3 3128,9 3340,2 5042,6 5952,1

Bezafibrate <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Bisoprolol n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

156,4 156,2 168,4 229,2 278,6

Bixafen <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Boscalid <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

3,4 2,7 3,6 4,1 2,8

Carbamazepine n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

214,5 193,8 199,0 307,7 371,3

Carbendazim <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

2,1 3,5 16,0 16,7 15,1 19,6 10,7

Chloridazon <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Chlorpyrifos <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Citalopram n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

79,9 77,1 81,7 124,6 174,9

Climbazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

3,0 2,9 4,2 2,8

Diazinon <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Diclofenac <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

346,4 383,4 377,2 697,7 442,7

Diflufenican <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Diuron <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

7,8 8,1 8,5 10,1 6,5

Epoxiconazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ
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Fenofibrate <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Florasulam <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Fluconazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

4,6 5,3 5,0 8,2 4,5

Flufenacet <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Flufenamic acid <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

5,2 5,2 4,2 8,5 4,5

Fluxapyroxad <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Gabapentin n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

1176,5 1964,9 1495,1 1430,1 1655,5

Hydrochlorozhiazide<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

447,9 421,5 452,2 835,0 517,1

Imidacloprid <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

2,4 1,8 2,5 2,2 1,7

Indomethacin <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Iodosulfuron-
methyl

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Irbesartan <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

82,4 81,8 71,4 114,8 73,0

Isoproturon <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

14,1 14,0 13,8 18,0 10,2

Lamotrigine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

351,3 358,9 325,0 503,9 318,9

MCPA <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Mecoprop <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

5,9 8,2 36,1 35,1 31,8 32,0 18,0

Mesosulfuron-
methyl

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Metalaxyl <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Metamitron <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Methylprednisolone <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Metolachlor
(high backgroud)

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Metoprolol n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

171,8 164,0 182,5 273,6 340,2

Metronidazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Metsulfuron-
methyl

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Nicosulfuron <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

5,3 <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

O-
Desmethylvenlafaxine

n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

292,7 289,2 302,0 479,3 593,0

Olmasartan <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

110,6 114,3 105,7 140,9 88,8

PFOA (Pentade-
cafluorooctanoic
acid)

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

8,0 9,2 7,2 7,4 6,7

Pirimicarb <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Primidone <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

55,6 56,0 50,0 85,8 54,7

Propazine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ
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Propiconazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

6,7 7,2 6,8 7,2 4,1

Prosulfuron <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Pyraclostrobin <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Simazine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Sitagliptin n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

1648,1 1625,5 1705,4 2823,6 3555,7

Sotalol n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

15,2 19,5 19,2 23,3 33,3

Sulfamethazine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Sulfamethoxazole n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

143,5 152,7 158,2 244,2 266,2

Sulpiride n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

48,2 51,2 51,8 83,6 81,0

Tebuconazole <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

1,1 5,8 6,2 5,5 6,8 4,3

Telmisartan <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

109,1 113,0 100,6 141,2 83,5

Terbuthylazine <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

6,3 <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Terbuthylazine-
2-hydroxy

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

8,2 13,9 27,7 27,4 24,7 25,7 16,6

Terbutryn <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

21,4 21,3 21,3 25,2 16,3

Thiamethoxam <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Torsemide <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

63,4 65,6 63,6 98,8 56,3

Tramadol n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

167,4 167,0 170,0 257,8 313,8

Triclosan <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

Trimethoprim n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

27,5 24,7 26,4 42,0 25,8

Venlaflaxine n.d n.d n.d <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

149,4 146,5 150,1 248,0 309,5

Xipamide <
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

<
LOQ

6,2 7,7 7,9 43,3 41,1

Table A.4: Measured concentration (ng/L) time-series by auto–sampler 1 at measuring station
1; Samples collected by auto-samplers. Measured concentrations were reprinted (adapted) with
permission from Markus Schmitt (Schmitt et al., 2021. Copyright 2021 American Chemical So-
ciety). Auto-sampler (AS); Limit of quantification (LOQ); PFOA –Pentadecafluorooctanoic acid;
B2SA – Benzothiazole-2-solfonic acid; 4&5 M-benzo – 4&5 Methyl-benzotriazole; O-Dems – O-
Desmethylvenlafaxine. T-2-H – Terbuthylazine-2-hydroxy.

Order of the samples taken by auto–sampler 1
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2-Aminobenzothiazole 8,7 9,4 10,2 9,3 7,9 8,3 8,4 10,0 9,0 9,5 8,2 8,6 7,7 9,5 9,7 9,6 8,2 9,0 8,4 8,5 9,3
4&5 M-benzo 698,9 799,3 745,0 740,9 720,0 685,9 614,8 816,4 902,7 697,7 728,3 664,4 666,7 736,9 734,4 684,9 695,3 701,9 672,5 832,3 885,2
Amisulpride 118,4 121,8 124,1 117,9 130,9 127,1 127,1 148,0 151,5 136,5 142,4 144,6 144,5 145,5 146,7 142,4 142,1 131,8 129,1 137,6 138,0
Atrazine-2-hydroxy < LOQ 1,3 1,6 1,7 1,2 1,5 1,6 1,5 1,8 1,5 1,4 1,3 1,3 < LOQ 1,3 1,5 1,6 1,4 1,5 1,5 1,6
Azoxystrobin 0,7 0,8 0,7 0,7 0,8 0,8 0,7 0,7 0,9 0,9 0,8 0,7 0,6 0,7 0,7 0,7 0,8 0,8 0,7 0,7 0,8
Bentazone < LOQ 0,6 0,6 0,7 0,7 0,6 0,8 0,7 0,9 0,9 0,6 0,8 0,6 < LOQ 0,7 0,8 0,7 0,7 0,5 0,8 1,0
B2SA 1024,1 979,7 670,6 681,3 674,5 515,9 603,2 672,5 661,2 616,5 529,1 681,8 838,0 995,4 1150,91009,2 919,6 739,2 1096,71003,2 921,2
Benzotriazole 2784,02886,32976,72947,83087,83054,63010,04368,04465,73989,23923,73533,43487,33562,03595,53486,53107,43101,72865,43512,43727,9
Bisoprolol 149,4 171,4 171,7 170,0 168,8 156,8 150,1 215,7 205,4 186,9 189,2 187,2 200,4 206,1 208,6 190,7 170,5 158,6 151,6 166,1 168,5
Boscalid 1,8 2,9 3,1 3,7 2,6 2,7 2,6 3,0 3,4 3,3 2,7 3,2 2,8 2,5 3,5 2,4 2,4 2,9 3,2 2,3 3,0
Carbamazepine 179,5 209,6 221,6 219,0 228,2 214,5 198,6 275,9 290,2 250,4 253,0 235,0 255,1 260,3 273,0 259,1 217,5 220,6 233,1 259,2 282,4
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Carbendazim 12,7 15,6 15,1 15,4 14,7 13,5 13,3 17,0 17,7 15,8 14,5 14,2 13,9 13,9 15,4 14,5 13,9 12,1 12,3 13,3 15,1
Citalopram 65,3 76,7 88,0 70,8 72,3 71,9 66,8 103,8 116,1 104,2 106,3 96,0 106,2 86,5 96,8 89,6 75,2 80,8 72,5 80,8 90,1
Climbazole 1,8 2,2 2,6 2,7 2,8 2,5 2,3 3,5 3,5 3,0 2,9 2,7 3,3 3,2 3,4 3,1 2,8 2,5 2,6 2,9 3,5
Diclofenac 325,2 416,6 437,5 410,3 451,0 427,9 450,8 621,1 495,7 390,3 411,4 437,7 481,9 461,8 526,0 448,5 431,9 433,0 410,6 434,1 351,5
Diuron 4,6 5,3 7,5 5,8 6,4 6,8 6,4 8,3 8,9 8,5 7,3 6,7 5,7 6,6 7,6 7,1 7,6 7,5 5,9 8,1 8,2
Fluconazole 3,1 5,3 5,1 5,9 5,3 5,2 5,5 8,1 8,6 7,8 6,5 7,2 8,5 7,4 6,9 6,9 6,1 6,4 5,2 7,0 7,0
Flufenamic acid 3,9 6,0 5,7 5,5 5,0 4,6 5,3 6,2 6,0 4,5 4,8 5,7 5,4 6,1 5,8 5,9 5,1 6,2 5,0 6,0 5,4
Gabapentin 895,5 1136,7 886,7 1185,51034,91232,81073,71401,91351,11103,3 900,8 1110,61026,11140,51455,61104,3 874,6 877,4 821,0 869,2 1041,4
Hydrochlorozhiazide 443,7 595,4 577,9 583,3 628,6 600,9 580,9 775,4 707,4 522,1 601,6 607,4 689,8 687,8 820,1 666,4 635,2 659,1 610,9 613,5 530,5
Imidacloprid 1,8 2,2 1,9 2,2 2,1 2,2 2,2 2,4 2,1 2,4 2,2 2,3 2,1 2,1 2,1 2,4 2,1 2,1 2,0 2,5 2,2
Irbesartan 64,1 79,2 85,8 87,5 87,7 83,0 77,5 109,2 104,5 94,2 90,3 88,6 88,0 84,5 91,4 88,7 78,6 82,9 80,2 80,3 94,3
Isoproturon 9,6 12,3 12,0 12,0 11,4 12,1 12,1 16,5 16,2 16,6 14,4 13,6 12,0 12,3 12,8 11,8 11,6 10,0 11,3 11,1 13,1
Lamotrigine 303,7 344,6 349,8 390,9 377,8 354,4 372,5 503,5 524,7 461,4 443,7 434,1 460,5 459,2 449,5 433,4 406,8 402,1 385,2 420,5 477,5
Mecoprop 16,0 29,6 30,5 31,8 24,4 24,6 21,4 28,3 25,8 22,9 20,7 23,8 18,7 11,4 26,8 28,0 21,1 22,4 21,3 24,2 24,6
Metoprolol 157,1 165,2 180,0 174,8 185,1 173,8 168,0 259,0 254,5 213,7 219,2 205,7 220,0 226,5 222,7 220,1 197,4 175,3 182,2 195,0 198,4
O-Dems 283,6 314,2 328,4 312,6 323,8 318,9 308,1 422,6 447,5 396,2 391,9 389,0 393,5 384,8 402,6 379,0 351,8 328,1 320,7 378,3 388,9
Olmasartan 85,0 100,1 116,0 119,8 123,6 110,0 107,3 141,5 133,5 122,6 119,4 111,4 107,0 116,6 121,9 112,7 112,7 109,4 111,1 117,2 136,9
PFOA 7,1 7,6 8,1 8,1 7,5 7,7 7,3 7,7 9,9 7,2 8,0 9,0 7,0 6,4 7,2 7,6 6,1 7,6 6,8 7,3 7,7
Primidone 36,1 50,8 57,6 59,4 58,6 57,8 52,3 71,9 71,2 66,8 68,4 63,4 65,2 63,5 69,5 66,9 61,4 62,4 63,2 68,1 74,7
Propiconazole 6,3 7,3 6,2 7,2 6,3 5,4 5,0 6,6 7,6 7,4 6,1 7,0 6,0 5,6 7,1 7,4 5,8 5,6 6,3 6,0 7,2
Sitagliptin 1607,01900,81922,51825,51823,21871,31678,52496,42679,22362,82466,12352,72313,12300,92286,22253,51949,51838,11820,42167,62274,4
Sotalol 11,8 17,5 17,1 12,0 13,9 14,8 15,2 20,5 22,0 23,3 15,9 18,4 20,4 17,4 20,6 16,3 17,3 15,4 17,1 21,8 18,8
Sulfamethoxazole 148,2 158,2 152,4 173,6 127,9 163,1 173,5 205,0 228,6 221,8 192,7 255,5 250,4 178,0 197,8 187,2 181,4 152,7 157,4 166,8 237,5
Sulpiride 42,9 55,6 51,7 50,7 49,6 55,0 46,2 65,1 66,2 65,8 57,0 60,1 54,3 60,1 70,2 52,3 52,6 48,6 55,9 60,6 62,0
Tebuconazole 3,8 5,0 5,1 5,3 5,4 4,7 4,6 5,7 6,0 5,6 4,8 5,2 4,6 4,6 5,0 5,0 4,2 4,3 4,2 4,7 5,1
Telmisartan 84,9 104,5 111,9 106,6 102,1 94,4 96,6 131,8 151,2 120,6 130,0 115,7 114,7 108,6 110,9 106,0 96,9 95,0 91,7 108,9 114,6
T-2-H 21,9 25,6 27,1 26,7 23,9 22,5 22,0 26,0 26,1 23,8 22,0 21,9 24,1 25,2 25,3 24,1 23,7 21,8 22,5 23,3 25,9
Terbutryn 13,4 15,9 16,8 18,1 17,4 16,5 16,9 21,4 24,0 22,0 20,1 18,9 17,8 17,4 19,6 19,2 20,5 19,9 18,3 21,2 25,7
Torsemide 44,1 61,6 58,6 63,8 62,1 60,2 61,7 90,1 93,1 82,3 78,1 72,1 70,6 66,9 77,7 72,6 66,8 65,1 67,0 71,5 83,2
Tramadol 160,1 175,3 182,0 174,1 183,6 166,6 155,4 230,4 233,4 204,7 215,9 203,9 214,5 212,7 210,3 211,5 189,9 181,0 171,4 195,6 196,9
Trimethoprim 21,6 24,8 26,4 28,6 24,7 23,4 25,4 32,8 37,1 33,0 30,0 29,5 31,2 29,8 32,9 30,8 26,5 25,5 24,2 27,4 31,8
Venlaflaxine 142,3 158,2 157,9 157,1 155,0 153,3 157,9 211,8 218,0 195,8 205,6 199,4 202,6 200,0 204,3 196,2 180,4 170,6 167,7 179,6 180,7
Xipamide 24,3 38,8 39,3 41,3 44,2 40,4 39,5 36,0 13,1 6,2 13,3 24,9 40,3 40,9 43,2 39,1 34,0 38,7 25,8 15,0 4,7

Table A.5: Measured concentration (ng/L) time-series by auto–sampler 2 at measuring station 2;
Samples collected by auto-samplers. Measured concentrations were reprinted (adapted) with per-
mission from Markus Schmitt (Schmitt et al., 2021. Copyright 2021 American Chemical Society).
Auto-sampler (AS); Limit of quantification (LOQ); PFOA –Pentadecafluorooctanoic acid; B2SA –
Benzothiazole-2-solfonic acid.

Order of the samples taken by auto–sampler 2
Name 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18

2-Aminobenzothiazole 9,0 8,3 8,6 8,2 8,7 9,3 7,9 8,2 7,7 9,4 9,4 9,0 7,9 9,9 10,0
4&5 Methyl-benzotriazole 698,8 648,6 687,5 530,7 904,3 882,5 770,2 731,8 685,1 620,1 697,9 756,4 749,1 777,2 919,2
Amisulpride 124,2 115,0 115,1 124,7 153,9 140,1 135,5 128,9 137,2 143,3 141,6 146,0 124,7 130,7 122,6
Atrazine-2-hydroxy 1,3 1,8 1,7 1,3 1,2< LOQ 1,9 1,5 1,6 1,7 1,7 1,4< LOQ 1,5 1,4
Azoxystrobin 0,7 0,8 0,7 0,5 0,8 0,7 0,7 0,7 0,6 0,7 0,6 0,7 0,7 0,7 0,7
Bentazone 0,8 0,9 0,6 0,7 1,0 1,1 0,7 1,0 1,0 1,0 0,9 0,9< LOQ 0,9 0,5
B2SA 722,5 753,5 728,6 479,4 617,4 723,4 462,3 579,9 654,1 957,21066,01076,7 773,41009,1 1170,0
Benzotriazole 2977,82942,73067,32924,54712,9 4465,24004,23786,33577,03414,03466,43539,2 2908,63304,7 3679,8
Bisoprolol 146,2 142,0 143,5 133,8 212,2 175,6 153,4 166,5 175,7 186,4 173,9 178,8 140,6 129,5 123,1
Boscalid 3,8 3,5 2,5 2,8 4,5 4,2 3,7 3,9 3,2 3,6 3,2 3,8 3,1 2,9 3,3
Carbamazepine 210,2 219,9 221,6 206,7 281,6 295,6 274,6 253,8 255,8 270,8 268,3 256,4 229,5 232,4 255,7
Carbendazim 15,5 13,5 14,5 12,9 18,1 17,3 15,6 14,8 13,5 13,5 14,6 14,6 9,0 13,8 13,1
Citalopram 69,3 59,6 65,2 62,5 83,6 90,4 74,8 76,4 81,9 85,0 73,0 75,2 66,8 58,4 60,2
Climbazole 2,3 2,5 1,8 2,2 3,2 3,2 3,0 2,8 2,8 2,5 2,5 2,4 1,1 2,7 2,5
Diclofenac 437,6 464,8 468,6 424,8 512,2 312,6 247,1 334,3 381,3 414,9 473,8 514,7 344,0 309,3 210,2
Diuron 7,3 6,6 6,7 7,2 8,1 8,6 9,0 7,1 5,9 6,1 6,7 6,8 5,9 8,8 7,6
Fluconazole 5,7 6,3 6,5 5,2 8,2 6,8 8,4 6,9 6,4 6,3 6,9 7,0 1,8 6,7 7,0
Flufenamic acid 5,7 4,9 4,8 4,7 5,6 4,2 3,9 3,6 4,3 5,2 5,5 6,1 5,7 4,5 4,7
Gabapentin 1026,91045,3 891,71032,61378,3 1193,71059,11093,7 973,71098,81116,31068,8 692,6 808,8 929,6
Hydrochlorozhiazide 595,5 648,3 667,3 560,4 665,3 468,6 405,3 475,7 556,5 659,9 686,1 750,7 442,0 444,9 321,1
Imidacloprid 2,3 2,3 1,9 2,1 2,3 1,8 2,3 2,1 1,8 1,8 1,8 2,4 2,1 2,0 2,0
Irbesartan 87,3 81,1 87,5 73,2 104,5 92,8 91,0 84,6 79,9 83,0 90,4 90,9 36,2 84,1 83,0
Isoproturon 13,1 13,5 13,6 12,9 16,1 16,1 14,5 14,4 11,4 11,2 11,9 12,4 5,6 11,8 11,3
Lamotrigine 410,8 367,6 393,9 375,1 478,2 496,3 457,1 441,3 430,7 419,3 440,2 462,0 210,0 441,9 460,9
Mecoprop 32,2 28,7 23,1 24,5 31,0 25,1 21,2 20,9 19,8 21,5 23,9 28,0 9,8 22,3 18,1
Metoprolol 163,9 155,3 152,6 144,7 227,7 200,2 187,0 194,9 198,3 199,4 197,4 205,4 147,4 135,1 132,8
O-Desmethylvenlafaxine 304,3 302,1 298,4 287,4 423,9 401,4 371,2 381,7 382,1 379,0 375,3 377,2 311,0 306,6 317,1
Olmasartan 119,4 102,9 114,6 103,6 131,6 121,9 106,7 111,1 105,6 104,7 107,6 130,1 60,5 127,8 116,6
PFOA 8,3 7,5 6,7 7,3 8,4 8,7 8,2 6,4 7,8 10,5 8,3 6,7 2,9 8,5 7,0
Primidone 41,9 49,1 51,3 42,9 66,6 54,5 59,1 53,1 50,3 56,2 62,6 58,7 22,0 52,1 49,9
Propiconazole 7,2 6,4 6,8 5,1 6,9 6,1 7,4 5,5 5,8 5,3 6,2 5,1 4,8 7,2 6,7
Sitagliptin 1845,51733,51716,11628,72681,6 2330,32469,82056,82155,32115,21960,22295,0 1965,22075,7 2435,2
Sotalol 18,0 14,7 10,1 14,3 22,0 24,0 14,4 16,8 17,6 17,2 15,4 17,5 13,9 13,8 12,7
Sulfamethoxazole 123,3 151,2 137,7 146,5 209,1 229,6 206,9 220,7 195,8 210,7 224,1 170,2 158,3 166,9 212,0
Sulpiride 47,1 54,6 45,5 49,8 68,0 70,2 61,3 62,0 56,3 52,7 58,3 60,0 54,4 59,7 66,0
Tebuconazole 5,5 5,2 4,6 4,8 6,7 6,2 5,9 4,9 5,2 4,7 4,9 4,7 3,6 5,2 4,5
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Telmisartan 110,0 100,5 102,2 95,7 137,2 143,1 116,5 106,8 107,3 98,5 103,0 113,5 87,3 109,1 118,4
Terbuthylazine-2-hydroxy 22,5 22,9 22,6 19,7 26,0 23,7 21,8 22,0 20,0 21,2 23,2 23,8 9,1 22,8 23,9
Terbutryn 16,2 15,4 15,5 17,4 21,6 20,8 18,4 18,1 15,6 15,0 17,2 17,2 15,1 22,0 21,5
Torsemide 65,2 61,7 66,4 65,5 88,4 84,1 75,9 79,3 72,8 69,5 71,1 76,5 43,4 73,7 74,9
Tramadol 164,4 167,0 157,6 145,0 219,4 198,7 190,5 204,9 213,4 201,6 208,4 207,3 150,6 141,6 148,8
Trimethoprim 26,5 22,8 24,1 23,3 34,2 33,3 31,0 27,5 26,6 26,8 28,5 31,1 15,1 27,1 26,6
Venlaflaxine 139,7 135,8 138,9 129,2 192,5 182,9 177,1 181,5 189,7 187,8 186,0 184,9 137,8 130,0 132,0
Xipamide 39,7 40,5 38,8 29,4 10,6 1,0 1,6 6,0 17,1 36,8 51,0 54,2 14,1 3,5< LOQ

Table A.6: Measured concentration (ng/L) time-series by auto–sampler 3 at measuring station 3;
Samples collected by auto-samplers. Measured concentrations were reprinted (adapted) with per-
mission from Markus Schmitt (Schmitt et al., 2021. Copyright 2021 American Chemical Society).
Auto-sampler (AS); Limit of quantification (LOQ); PFOA –Pentadecafluorooctanoic acid; B2SA –
Benzothiazole-2-solfonic acid.

Order of the samples taken by auto–sampler 3
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-Aminobenzothiazole 9,2 7,4 8,2 8,9 8,5 8,4 9,2 9,8 8,1 9,0 9,4 9,2 8,1 8,7 8,4 9,7
4&5 Methyl-benzotriazole 657,2 689,2 865,2 802,8 776,8 723,6 681,0 658,4 699,9 691,6 706,9 676,4 686,4 655,6 750,3 805,9
Amisulpride 115,6 117,4 133,9 124,1 125,0 124,4 125,6 125,0 134,4 136,0 141,4 133,6 125,5 115,6 107,4 103,1
Atrazine-2-hydroxy 1,4 1,2 1,5 1,6 1,3 1,6 1,7 1,2 1,5 1,2 1,6 1,3 1,1 1,4 1,3 1,7
Azoxystrobin 0,6 0,7 0,8 0,7 0,6 0,8 0,8 0,7 0,6 0,7 0,6 0,7 0,6 0,5 0,6 0,6
Bentazone 0,9 0,9 1,0 1,2 0,8 1,0 1,0 < LOQ 0,8 0,8 0,9 0,6 0,8 0,8 1,0 1,0
B2SA 770,9 432,0 522,6 477,7 605,4 411,4 533,7 752,5 687,5 882,6 887,3 890,4 833,9 681,3 889,2 725,1
Benzotriazole 2940,0 3209,4 4584,4 4383,3 3763,1 3819,6 3472,2 3231,9 3106,8 3287,8 3244,0 3125,3 2955,8 2805,4 3003,3 3503,0
Bisoprolol 119,6 129,1 157,5 130,2 129,9 124,7 140,8 157,5 160,7 162,6 153,0 144,9 121,4 103,0 89,5 79,8
Boscalid 3,5 3,6 4,6 3,8 3,3 3,5 4,7 4,4 3,3 3,4 4,0 4,4 2,6 3,4 3,9 4,5
Carbamazepine 212,7 205,3 283,4 288,7 255,1 263,1 252,2 242,7 250,9 273,2 274,0 248,3 247,5 229,6 228,5 259,1
Carbendazim 14,2 14,6 17,8 18,1 15,8 14,4 14,4 13,7 14,6 13,7 14,8 14,4 11,4 12,6 13,0 14,1
Citalopram 53,1 46,9 57,6 53,9 67,3 73,9 72,0 67,9 53,1 46,9 57,6 53,9 67,3 73,9 72,0 67,9
Climbazole 1,8 2,3 2,7 2,6 3,1 2,7 2,6 2,4 2,3 1,8 2,3 2,3 1,9 1,5 2,2 2,6
Diclofenac 385,2 346,0 270,8 204,7 213,9 294,7 398,9 467,3 470,0 481,9 518,1 429,7 299,7 277,6 141,1 130,8
Diuron 6,4 7,2 9,4 8,7 8,6 7,4 6,2 6,7 5,8 6,2 6,9 8,1 6,9 7,9 8,9 8,2
Fluconazole 5,5 6,1 8,3 8,7 8,8 8,9 8,2 8,5 7,1 7,1 7,6 6,0 6,9 6,7 6,8 7,5
Flufenamic acid 4,0 4,1 3,3 3,0 2,9 3,7 4,6 5,1 5,3 4,7 5,8 5,2 3,9 3,8 3,2 2,5
Gabapentin 887,1 945,2 1201,9 1117,2 952,1 795,9 798,4 858,9 1018,7 1081,7 955,9 939,0 876,3 783,7 707,8 777,7
Hydrochlorozhiazide 496,6 446,4 442,1 309,5 335,5 435,8 614,4 617,9 672,4 714,8 742,5 609,8 433,9 416,0 245,2 219,5
Imidacloprid 1,9 1,8 2,1 2,2 2,3 1,8 2,1 2,1 1,8 2,0 2,2 2,6 1,8 2,0 1,3 1,9
Irbesartan 82,7 82,6 103,8 95,4 89,9 82,6 88,3 86,2 89,8 88,3 90,0 83,5 71,0 71,4 74,0 80,0
Isoproturon 13,0 13,5 16,0 16,1 15,0 14,5 12,7 11,2 12,6 11,8 12,4 12,4 10,9 12,0 11,9 10,7
Lamotrigine 360,9 407,8 525,3 490,8 448,6 438,1 440,0 472,4 443,9 450,6 452,6 453,9 369,2 390,5 404,6 452,0
Mecoprop 26,4 25,5 30,9 28,5 21,5 24,9 22,9 14,8 26,7 24,7 25,8 21,4 22,5 21,7 20,6 24,6
Metoprolol 120,0 125,9 157,8 158,4 141,7 167,6 179,6 187,0 185,2 186,5 175,2 168,1 126,0 93,6 70,8 72,4
O-Desmethylvenlafaxine 284,5 289,2 353,3 359,5 362,2 380,9 386,0 369,6 370,2 367,7 365,1 351,1 307,8 284,3 234,5 235,1
Olmasartan 112,0 104,7 135,1 128,0 123,3 96,8 115,4 107,1 114,7 111,3 121,9 119,1 105,6 95,5 103,0 115,2
PFOA 8,7 8,6 10,0 10,8 8,2 7,4 8,4 8,0 6,9 8,4 8,5 8,2 7,2 7,1 8,6 8,8
Primidone 50,8 57,6 73,7 72,6 69,5 64,8 73,0 62,6 65,4 61,9 68,7 65,8 59,4 61,5 57,8 69,1
Propiconazole 5,2 5,1 6,4 6,5 6,1 8,4 6,1 6,6 5,9 5,3 7,0 6,5 5,0 5,4 5,5 5,0
Sitagliptin 1724,9 1789,1 2326,6 2511,3 2247,7 1906,5 1874,9 1730,3 2032,3 1905,1 2018,8 1912,8 1874,8 1864,7 1896,9 2205,1
Sotalol 14,0 14,5 17,2 14,1 14,8 15,9 17,3 19,5 19,2 15,5 23,2 19,8 18,1 13,2 8,1 10,4
Sulfamethoxazole 138,3 182,3 255,5 218,2 187,0 192,2 207,7 180,5 199,9 209,5 173,7 186,2 182,3 163,9 159,8 222,9
Sulpiride 50,3 56,5 66,9 65,1 64,1 57,1 54,8 61,0 60,9 59,8 58,9 69,3 62,2 56,6 53,5 57,1
Tebuconazole 4,9 5,3 6,2 6,0 5,9 5,6 5,9 4,9 4,9 4,8 5,1 4,7 4,3 4,9 4,1 5,1
Telmisartan 94,7 107,4 139,0 135,8 123,5 116,5 109,7 97,1 107,7 95,4 95,9 102,2 87,4 88,6 97,7 121,4
Terbuthylazine-2-hydroxy 22,1 23,3 26,9 27,2 24,0 22,9 24,0 23,9 24,1 23,9 25,4 23,8 22,2 22,7 24,2 25,3
Terbutryn 15,2 15,9 14,2 16,7 13,8 17,5 21,2 20,8 16,2 21,6 15,5 17,4 15,4 20,8 18,4 18,1
Torsemide 63,2 72,3 90,7 89,2 76,8 74,2 79,1 64,9 74,2 73,3 75,4 70,1 59,4 61,2 67,8 74,5
Tramadol 138,7 134,2 166,9 162,7 176,6 207,3 219,3 202,2 196,7 192,6 196,8 180,5 157,7 121,3 97,2 100,5
Trimethoprim 22,7 26,8 33,7 34,5 28,5 26,1 25,2 26,3 26,9 26,2 28,3 23,9 22,2 23,5 23,5 28,1
Venlaflaxine 114,7 114,2 138,1 127,0 150,0 171,6 177,6 174,1 173,5 170,5 163,9 157,7 132,7 101,7 79,2 84,0
Xipamide 21,4 7,3 < LOQ< LOQ< LOQ 1,8 15,0 33,8 47,5 52,6 54,2 41,1 14,4 4,6 < LOQ< LOQ

Table A.7: Molecular weight and inhibitory concentration 10 of the detected compounds. PFOA –
Pentadecafluorooctanoic acid.

DTXSID Names MW
(g/mol)
(US EPA
Comp-
tox)

AhR IC10
(Exp) (M)

PPAR𝛾
IC10
(Exp) (M)

ER𝛼 IC10
(Exp) (M)

AR IC10
(Exp) (M)

GR IC10
(Exp) (M)

AREc32
IC10
(Exp) (M)

1024467 2-
Aminobenzothiazole

150,2 not active not active not active not active not active not active
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1038743 4&5 Methyl-
benzotriazole

133,154 5,59E-04 4,60E-04

5042613 Amisulpride 369,48 not active not active not active 3,13E-05 not active not active
6037807 Atrazine-2-hydroxy 197,242
0032520 Azoxystrobin 403,394 2,77E-07 3,15E-05 2,29E-05 1,21E-05 3,54E-05 1,97E-04
0023901 Bentazone 240,28 1,18E-03 not active not active not active not active 7,57E-04
80240528 Benzothiazole-2-

sulfonic acid
215,24 5,11E-04 9,50E-04 not active

6020147 Benzotriazole 119,127 1,68E-03 not active not active 5,17E-05 not active 3,68E-03
6022682 Bisoprolol 325,449
6034392 Boscalid 343,21 4,84E-06 not active not active 6,79E-05 not active 2,72E-05
4022731 Carbamazepine 236,274 1,78E-04 not active not active not active not active 1,52E-04
4024729 Carbendazim 191,19 5,10E-06 not active not active 4,8E-05 not active 2,55E-06
8022826 Citalopram 324,399 1,23E-04
6046555 Climbazole 292,76 3,21E-05 not active not active 1,68E-05 not active 1,69E-04
6022923 Diclofenac 296,15 6,62E-05 4,10E-05 4,78E-05
0020446 Diuron 233,09 5,90E-05 not active not active not active not active 6,42E-05
3020627 Fluconazole 306,277 not active not active not active not active not active not active
7023063 Flufenamic acid 281,234 not active 3,58E-05 3,84E-05 2,98E-05 4,09E-05 8,96E-05
0020074 Gabapentin 171,24 not active not active not active not active not active not active
2020713 Hydrochlorothiazide 297,73 not active not active not active not active not active not active
5032442 Imidacloprid 255,66 1,99E-04 not active not active not active not active 5,98E-04
0023169 Irbesartan 428,54 1,95E-05 not active not active not active not active not active
1042077 Isoproturon 206,289 8,64E-05 not active not active not active not active 5,55E-05
2023195 Lamotrigine 256,09 2,62E-04 4,39E-04 not active not active not active 2,74E-04
9024194 Mecoprop 214,65 not active not active not active not active not active not active
2023309 Metoprolol 267,369 4,00E-05 2,31E-04 7,89E-04
40869118 O-

Desmethylvenlafaxine
263,381

2040571 Olmesartan 446,511
8031865 PFOA 414,07 1,98E-04 not active not active not active 7,03E-05 not active
7023510 Primidone 218,256 not active not active not active not active not active not active
8024280 Propiconazole 342,22 not active not active not active 1,61E-05 not active not active
70197572 Sitagliptin 407,32
0023589 Sotalol 272,36 not active not active not active 2,44E-05 not active
8026064 Sulfamethoxazole 253,28 2,35E-03 not active not active not active not active 2,43E-03
1042574 Sulpiride 341,43 not active not active not active 3,59E-05 5,36E-05 not active
9032113 Tebuconazole 307,82 2,38E-05 6,02E-05 6,34E-05 2,83E-05 not active 4,67E-05
8023636 Telmisartan 514,629 not active 2,84E-05 not active not active not active 3,07E-05
20216888 Terbuthylazine-2-

hydroxy
211,269

3024318 Terbutryn 241,36 3,72E-05 not active 6,68E-05 4,17E-05 not active 7,05E-05
2023690 Torsemide 348,42 not active 1,84E-04 not active not active not active 1,10E-03
90858931 Tramadol 263,381
3023712 Trimethoprim 290,323 1,57E-04 not active not active not active not active not active
6023737 Venlafaxine 277,408 not active 2,11E-04 not active not active not active 4,51E-04
5023744 Xipamide 354,81

Table A.8: Effect concentration 10 of the detected compounds and their half-lives (source:
https://comptox.epa.gov/dashboard). PFOA – Pentadecafluorooctanoic acid.

DTXSID Names AhR
EC10
(Exp) (M)

PPAR𝛾
EC10
(Exp) (M)

ER𝛼
EC10
(Exp) (M)

AR EC10
(Exp) (M)

GR EC10
(Exp) (M)

AREc32
ECIR1.5
(Exp) (M)

Half-life
(day)

1024467 2-
Aminobenzothiazole

1,92E-05 not active not active not active not active 8,79E-05 7,5

1038743 4&5 Methyl-
benzotriazole

2,56E-04 not active 2,53

5042613 Amisulpride not active not active not active not active not active not active 3,35
6037807 Atrazine-2-hydroxy 3,94
0032520 Azoxystrobin not active not active not active not active not active not active 5,69
0023901 Bentazone not active not active not active not active not active not active 4,9
80240528 Benzothiazole-2-

sulfonic acid
1,48E-04 8,91E-05 8,63E-05 11,2

6020147 Benzotriazole 6,07E-04 not active not active not active not active not active 3,99
6022682 Bisoprolol 4,29
6034392 Boscalid not active not active not active not active not active not active 5,99
4022731 Carbamazepine not active not active not active not active not active not active 6,54
4024729 Carbendazim not active not active not active 4,46353E-

05
not active not active 4,47

8022826 Citalopram 3,58E-05 3,55
6046555 Climbazole 2,02E-06 not active not active not active not active 1,68E-04 4,9
6022923 Diclofenac not active 8,56E-07 not active 4,68
0020446 Diuron 1,94E-06 not active not active not active not active 3,52E-05 4,51
3020627 Fluconazole not active not active not active not active not active not active 4,52
7023063 Flufenamic acid not active not active not active not active not active not active 3,55
0020074 Gabapentin not active not active not active not active not active not active 3,72
2020713 Hydrochlorothiazide not active not active not active not active not active not active 7,22
5032442 Imidacloprid not active not active not active not active not active not active 3,54
0023169 Irbesartan not active 1,20E-05 not active not active not active not active 34,8
1042077 Isoproturon 8,74E-06 not active not active not active not active 4,26E-05 4,34
2023195 Lamotrigine not active 1,02E-04 not active not active not active not active 6,23
9024194 Mecoprop not active not active not active not active not active not active 3,53
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2023309 Metoprolol not active not active not active 4,47
40869118 O-

Desmethylvenlafaxine
4,71

2040571 Olmesartan 14,6
8031865 PFOA not active not active not active not active not active not active 4,94
7023510 Primidone not active not active not active not active not active not active 3,34
8024280 Propiconazole not active not active not active not active not active not active 4,25
70197572 Sitagliptin 3,55
0023589 Sotalol not active not active not active not active not active 3,35
8026064 Sulfamethoxazole not active not active not active not active not active not active 3,35
1042574 Sulpiride not active not active not active not active not active not active 4,23
9032113 Tebuconazole not active not active not active not active not active not active 3,18
8023636 Telmisartan 1,56722E-

05
1,43E-07 not active not active not active not active 37

20216888 Terbuthylazine-2-
hydroxy

4,62

3024318 Terbutryn not active not active not active not active not active 3,36
2023690 Torsemide not active 5,19E-05 not active not active not active not active 3,36
90858931 Tramadol 8,56E-06 not active 3,36
3023712 Trimethoprim not active not active not active not active not active 1,97E-04 4,24
6023737 Venlafaxine not active not active not active not active not active not active 3,36
5023744 Xipamide 5,67

Table A.9: Effect concentration 10 and inhibitory concentration 10 of the whole water sample.
Units in relative enrichment factor (REF). NCT – No cytotoxicity; NotAct – Not active.

AhR-CALUX PPAR𝛾-GeneBLAzer ER𝛼-GeneBLAzer ARE32

EC10 std
err
EC10

IC10 std
err
IC10

EC10 std
err
EC10

IC10 std
err
IC10

EC10 std
err
EC10

IC10 std
err
IC10

ECIR1.5std
err
ECIR1.5

IC10 std
err
IC10

AS1 1 5,82 0,29 98,9 29,2 5,27 0,74 NCT 11,68 0,74 70,51 14,12 21,1 2,66 NCT
AS1 2 4,07 0,201 40,6 6,26 5,64 0,63 36,05 3,55 8,1 0,22 31,27 4,3 24,5 2,25 NCT
AS1 3 4,6 0,177 47,7 4,94 4,13 0,56 40,19 3,55 8,45 0,41 33,14 2,68 15,5 1,01 NCT
AS1 4 4,83 0,146 41,7 4,01 2,81 0,27 31,85 3,43 8,23 0,35 27,4 2,27 15 1,02 90,3 33,4
AS1 5 5 0,16 27,1 2,84 5,15 0,61 39,92 3,34 7,36 0,76 37,1 5,81 10,8 0,556 67 14,3
AS1 6 4,36 0,175 25,9 2,3 3,43 0,46 56,23 13,08 7,83 0,26 19,84 1,37 9,79 0,903 67,6 26
AS1 7 3,8 0,299 30,5 3,4 4,31 0,56 39,66 3,49 9,71 0,43 30,85 2,6 24,4 1,57 NCT
AS1 8 3,43 0,143 29,8 2,95 4,07 0,98 28,94 2,17 7,88 0,37 25,17 1,59 7,24 0,67 47,4 7,73
AS1 9 3,04 0,145 26,6 1,76 4,47 0,73 22,99 1,4 7,24 0,41 22,7 1,28 7,1 0,485 46,7 8,52
AS1 10 4,5 0,15 24,8 1,74 3,37 0,58 26,61 1,32 7,97 0,45 23,35 1,43 12,5 0,65 36,5 3,81
AS1 11 3,68 0,21 25 1,48 4,19 0,45 25,84 2,4 6,83 0,29 15,08 1,45 9,82 1,77 34,3 4,36
AS1 12 3,87 0,214 19,7 3,97 4,97 0,74 30,04 1,88 6,45 0,48 24,18 1,74 12,7 0,886 28,9 2,47
AS1 13 2,68 0,161 29,7 4,07 4,79 0,45 30,47 3,3 8,06 0,4 24,7 2,3 8,15 0,918 47 11,8
AS1 14 3,74 0,183 32,8 2,61 4,33 0,66 24,88 1,25 8,82 0,58 21,43 1,36 10,7 0,968 43,4 8,69
AS1 15 4,27 0,342 32 2,39 4,22 0,79 27,82 1,84 9,1 0,59 24,68 1,91 17 1,25 61,5 18
AS1 16 3,38 0,317 26,9 2,15 2,43 0,46 24,1 1,85 8,52 0,52 21,89 1,62 8,35 0,686 41,4 7,42
AS1 17 3,3 0,18 22,2 1,48 3,13 0,34 28,46 2,15 10,17 0,64 27,3 2,31 12,2 0,861 31,3 3,31
AS1 18 3,56 0,299 27,8 2,03 4,64 0,8 24,97 2,28 9,77 0,52 23,23 1,49 11,6 0,633 33,7 5,64
AS1 19 3,6 0,217 20,8 1,81 2,87 0,41 29,72 2,19 13,43 1,4 24,84 1,09 7,69 0,569 30,8 3,86
AS1 20 2,86 0,0892 29,8 2,42 4,55 0,26 29,93 2,56 12,73 0,75 23,74 1,42 6,97 0,563 40,2 5,32
AS1 21 4,51 0,179 40,4 3,8 4,48 0,6 26,59 2,11 14,52 1,36 22,2 1,24 18,1 1,47 55,5 13,1

AS2 1 4,06 0,319 35,8 3,4 4,25 0,41 33,46 2,27 12,1 0,76 29,05 1,9 7,79 0,571 45,4 9,93
AS2 2 4,74 0,219 28,9 1,52 4,78 0,69 28,93 3,56 10,93 0,79 22,52 1,34 8,41 0,581 42,2 6,59
AS2 3 5,49 0,158 22,8 1,61 4,05 0,5 31,49 1,84 11,46 0,84 25,83 1,9 9,86 0,693 37 3,29
AS2 4 3,96 0,435 23,8 3,48 6,56 1,45 NCT 14,1 1,01 38,53 5,15 13,8 2,07 84 37,4
AS2 5 2,07 0,188 30,6 3,3 2,72 0,47 34 6,83 8,86 0,62 23,91 1,41 16,2 1,65 55,5 14
AS2 6 3,07 0,41 29,9 2,47 16,88 3,46 85,68 40,72 32,22 2,9 72,51 19,19 10,9 1,01 62,9 20,7
AS2 7 3,25 0,251 26,5 2,32 5,1 0,95 29,39 2,68 10,51 0,67 23,81 1,5 17,6 1,87 75 27,1
AS2 8 3,37 0,213 22,5 3,51 3,97 0,5 36,02 2,8 9,88 0,42 32,39 3,99 13,1 1,25 51,3 9,75
AS2 9 4,27 0,199 25,8 1,91 2,53 0,34 30,68 2,72 9,12 0,45 25,85 1,13 13,8 1,43 62,1 18,6
AS2 10 2,79 0,245 16,5 2,93 5,09 0,37 28,16 2,06 12,24 1,03 26,29 2,39 8,2 1,23 35,6 5,16
AS2 11 3,06 0,279 27,1 2,19 2,55 0,33 34,78 7,87 10,8 0,8 25,77 2,16 10,4 0,76 35,2 4,24
AS2 12 3,26 0,17 27 2,3 1,81 0,46 24,52 2,39 8,67 0,58 21,92 1,24 7,9 0,608 44,3 8,36
AS2 13
AS2 14
AS2 15
AS2 16 4,58 0,226 35,3 3,08 9,1 1,06 47,58 7,88 13,11 0,79 42,28 7,11 12,7 0,647 69,8 17,3
AS2 17 4,33 0,166 25 1,57 4,93 0,8 27,52 2,58 15,03 1,11 21,82 1,23 9,71 0,855 42,8 7,57
AS2 18 3,57 0,167 21,8 1,44 3,74 0,64 31,18 1,68 15,59 1,66 30,33 3,98 13,4 0,498 52,6 11,2

AS3 1 3,71 0,19 38,5 8,68 4,97 0,6 53,44 17,98 15,87 1,54 26,2 2,57 11,3 0,686 78,4 37,3
AS3 2 2,99 0,0955 77,6 28,8 2,73 0,4 27,89 1,66 15,9 1,4 22,82 1,3 13,1 0,669 56,3 15,6
AS3 3 4,92 0,483 102 37,9 2,76 0,33 29,53 1,78 13,34 0,93 22,73 1,19 12,5 0,783 NCT
AS3 4 3,7 0,25 37,2 6,02 5,42 0,74 26,6 2,45 13,52 1,13 20,93 1,1 7,62 0,58 87,6 31,6
AS3 5 3,35 0,352 28,7 3,83 3,48 0,36 31,92 1,98 9,77 0,37 27,03 2,84 7,89 0,5 39,1 5,01
AS3 6 3,83 0,325 37 4,57 5,22 0,97 26,07 2,16 9,24 0,53 23,89 1,19 10,7 0,56 58,1 14
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AS3 7 3,52 0,174 35,9 4,46 4,7 0,57 25,93 2,08 13,07 0,83 26,15 1,73 16,4 1,02 NCT
AS3 8 10,5 1,27 NCT 10,45 0,97 61,32 12,42 24,4 2,37 42,27 6,06 29,2 2,02 70,9 19,1
AS3 9 4,34 0,496 24,9 1,66 5,59 0,81 27,8 2,24 11,78 0,99 21,87 1,54 12,4 0,71 30 2,78
AS3 10 5,64 0,665 21,3 1,26 2,89 0,47 31,07 2,43 13,16 1,1 23,54 1,76 11,5 0,887 25 2,26
AS3 11 5,09 0,353 23,1 1,63 4,83 0,71 28,53 3,48 10,79 0,9 21,77 1,27 10,7 0,786 26,7 3,23
AS3 12 4,58 0,331 17,6 2,48 4,94 0,61 29,56 1,9 11,9 1,04 23,23 1,6 8,66 0,802 20,6 1,33
AS3 13 5,69 0,713 25,3 1,96 4,86 0,47 25,15 2,41 10,49 0,57 24,55 1,14 9,83 0,818 25,6 1,69
AS3 14 3,27 0,0735 18,7 3,33 5,5 0,64 28,11 1,65 11,29 0,85 27,87 2,17 8,86 0,874 22,5 2,16
AS3 15 3,22 0,182 24,5 3,06 2,15 0,31 37,18 7,91 18,2 1,43 24,28 1,87 9,39 0,67 27,8 3,2
AS3 16 3,47 0,257 27,3 1,81 3,34 0,39 28,07 1,48 11,51 0,78 25,89 2,47 11,8 0,685 43,3 6,28

blank
1

NotAct 50,4 11,6 88,39 23,31 NCT NotAct NCT NotAct NCT

blank
2

NotAct 63,9 17,3 NotAct NCT NotAct NCT NotAct NCT

blank
3

NotAct 60,7 17,2 no
ac-
tive

NCT NotAct NCT NotAct NCT

blank
AS1

37,5 2,54 81,3 23,1 36,13 3,08 NCT NotAct NCT NotAct NCT

blank
AS2

24,6 1,41 91,9 24,2 18,31 2,59 NCT NotAct 74,29 12,51 76,5 5,59 NCT

blank
AS3

29,6 1,51 63,5 14,4 88,22 26,72 NCT NotAct 61,96 8,43 78,7 7,43 NCT

grab
cross 1
MS1

4,76 0,343 14,8 2,78 2,3 0,31 28,81 1,37 18,25 1,5 26,27 1,73 22,5 3,96 30,3 3,59

grab
cross 2
MS1

1,36 0,137 27,7 3,53 2,67 0,21 25,95 1,47 NotAct 21,83 0,94 11,2 0,951 28,1 3,77

grab
cross 3
MS1

4,57 0,796 27,5 1,76 3,38 0,44 22,8 1,25 NotAct 22,68 1,24 12,4 1,23 38,1 8,25

grab
Ehr 1

NotAct 15,1 2,14 3,02 0,49 38,39 4,65 NotAct 27,26 3,66 NotAct 20,2 2,82

grab
Mühl
1

2,47 0,0797 24,4 5,46 2,39 0,3 23,39 1,09 14,64 1,35 21,57 1,36 16,8 2,07 27,6 4,44

grab
up 1

NotAct 34,5 4,99 6,09 0,78 35,9 2,67 NotAct 32,83 3,3 NotAct 43,6 11,8

grab
WWTP

21,4 2,56 75,9 13,4 10,5 0,91 90,75 17,68 45,81 3,05 NCT 59,1 4,07 NCT

spike 1 68,7 14 NCT 63,53 9,51 NCT NotAct NCT NotAct NCT
spike 2 NotAct 99 40,6 NotAct NCT NotAct NCT

Table A.10: Normalized root-mean-square error: Goodness of fit for individual compounds and
electrical conductivity at measuring station 2 and 3. Derivation: eq. A.15.

Name MS2 MS3

2-Aminobenzothiazole 0.324545 0.324253
4&5 Methyl-benzotriazole 0.150374 0.212796

Amisulpride 0.165413 0.146543
Atrazine-2-hydroxy 0.39374 0.357831

Azoxystrobin 0.247064 0.33757
Bentazone 0.406576 0.295027

Benzothiazole-2-solfonic acid 0.184396 0.268231
Benzotriazole 0.102021 0.091749

Bisoprolol 0.141978 0.133837
Boscalid 0.199916 0.309741

Carbamazepine 0.197588 0.128591
Carbendazim 0.132609 0.071623
Citalopram 0.203516 0.462843
Climbazole 0.209829 0.121256
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A.27. Tables

Diclofenac 0.211187 0.169818
Diuron 0.182424 0.153544

Fluconazole 0.19217 0.24853
Flufenamic acid 0.251369 0.219495

Gabapentin 0.152889 0.147962
Hydrochlorozhiazide 0.194067 0.133427

Imidacloprid 0.317005 0.217726
Irbesartan 0.169491 0.118317

Isoproturon 0.163565 0.103359
Lamotrigine 0.172825 0.149023
Mecoprop 0.219674 0.214449
Metoprolol 0.184971 0.188239

O-Desmethylvenlafaxine 0.170918 0.211639
Olmasartan 0.202801 0.254664

PFOA (Pentadecafluorooctanoic acid) 0.216907 0.306165
Primidone 0.230103 0.265994

Propiconazole 0.359626 0.363439
Sitagliptin 0.163589 0.173976

Sotalol 0.238153 0.210718
Sulfamethoxazole 0.210253 0.180281

Sulpiride 0.144587 0.247814
Tebuconazole 0.133246 0.213788
Telmisartan 0.141125 0.120503

Terbuthylazine-2-hydroxy 0.195498 0.204933
Terbutryn 0.158957 0.455512
Torsemide 0.155104 0.13495
Tramadol 0.230789 0.178641

Trimethoprim 0.135999 0.119122
Venlaflaxine 0.224642 0.198435

Xipamide 0.16923 0.126968
Electrical conductivity 0.0093 0.0084

Table A.11: Goodness of fit for 𝐸𝑈 bio and the mean 𝑇𝑈 bio at measuring station 2 and 3

Normalized root-mean-square error: Goodness of fit for 𝐸𝑈 bio from four bioassays and
the mean 𝑇𝑈 bio of the four bioassays at measuring station 2 and 3. Derivation: eq. A.15

𝐸𝑈 bio MS2 MS3

AhR-CALUX 0.2244 0.3067
PPAR𝛾-GeneBLAzer 0.2597 0.2830

ER𝛼-GeneBLAzer 0.2701 0.3305
ARE32 0.4648 0.3107

𝑇𝑈 bio mean 0.3401 0.2476
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Appendix B

Supplementary information for
chapter 3

B.1 Field campaign

The detailed sampling campaign procedure could be found in Glaser et al., 2020. The
sampling map was illustrated in Figure B.1.

Flow direction

Figure B.1: Sampling map. MS1 was at sampling location near Herrenberg. MS2 was next to
the Gauging station. The MS in the middle was not used. The Ammer river flows from the city
of Herrenberg towards Tübingen. Abbreviation: MS – measuring station. Map made by Victor
Carvalho Cabral.

Twomeasuring stations (MS) were set at 8 km apart from each other. The Ammer river
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B.2. The transient discharge: flood routing model

flows from Herrenberg towards Tübingen. MS1 was 200 m upstream to the wastewater
treatment plant (WWTP) next to the main Ammer river channel. Time-series measure-
ments were conducted at both MSs using Lagrangian sampling scheme.

B.2 The transient discharge: flood routing model

Upstream rating curve. The discharge 𝑄 time series was computed using the empirical
upstream rating curve in eq. B.1,

𝑄(𝑡) = (1 − 𝑃)(10.316 ⋅ ℎ(𝑡)2) − 2.537 ⋅ ℎ(𝑡) − 0.4074)+
𝑃(2.2777 ⋅ ℎ(𝑡)2) + 0.0172 ⋅ ℎ(𝑡) − 0.3019)

(B.1)

where 𝑃 is the plant growth factor, ℎ [m] the relative water level (relative to the height of
the measuring instrument), 𝑡 [s] the sampling time point.

The hydrological data is shown in Figure B.2.
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Figure B.2: Observations of turbidity, electrical conductivity, and discharge. Abbreviation: MS-
measuring station.
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B.3. Transfer functions for lateral inflow approximation.

B.3 Transfer functions for lateral inflow approximation.

We tested two transfer functions suggested by Aron and Borrelli, 1973. The first transfer
function (eq. B.2) contains only one lumped parameter 𝑅 [s-1/2]. The original expression
of 𝑅 includes field parameters such as soil transmissivity and specific yield (Naney et al.,
1978), which are cumbersome to obtain. The modeled to discharge results using eq. B.2
was illustrated in Figure B.3.

𝑞(𝑡) = 2𝑅2
∞
∑

𝑛=1,3,5...
exp(

−𝜋𝑛2𝑅2𝑡
4 ) (B.2)
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Figure B.3: Modeled transient discharge. The lateral inflow was computed using the transfer from
Aron and Borrelli, 1973.
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B.4. Transient velocity

B.4 Transient velocity

The modeled transient flow velocity (𝑄/𝐴) is shown in Figure B.4.
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Figure B.4: Modeled transient flow velocity

B.5 Electrical conductivity.

The electrical conductivity (ECd) has been used in various previous studies (Cirpka et al.,
2007; Glaser et al., 2020; Vogt et al., 2010) as conservative tracer. In our study, the main
wastewater treatment plant (WWTP) was situated between the two measuring stations
(MS) (Figure B.1). Figure B.2B showed that the ECd at MS2 was constantly higher than that
of the MS1 over the sampling period, suggesting the ECd signal were heavily influenced by
theWWTP release. To correctly simulate the ECd dynamics, a clear signal from theWWTP
was needed. Themodel boundary condition needed to be constructed usingmixing scheme
(mixing of signals from the upstream inflow and WWTPs). There were no measurements
conducted at both WWTPs outlet. Thus, the WWTPs ECd signals were estimated using
the existing observations. We assumed the in-stream processes of the ECd was governed
by the conservative transient transport model (eq. B.3).

𝜕𝐸𝐶𝑑
𝜕𝑡

= −𝑣(𝑡)
𝜕𝐸𝐶𝑑
𝜕𝑥

+ 𝐷(𝑡)
𝜕2𝐸𝐶𝑑
𝜕𝑥2

(B.3)
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B.6. Model input quantification: Gaussian process regression

The WWTP outlet signal was approximated based on the inflow signal at MS1 in eq. B.4,

ECd(𝑥 = 0, 𝑡) = ECdMS1 + 𝐸𝐶𝑑source +

⎡
⎢
⎢
⎢
⎢
⎣

σ(𝑡1)
σ(𝑡2)
...

σ(𝑡𝑛)

⎤
⎥
⎥
⎥
⎥
⎦

∼  (0, 0.05 ∗ 𝐸𝐶𝑑source) (B.4)

ECdMS1 = 𝑓 (t) ∼  (𝜇(t),Σ) (B.5)

The initial condition distributions for the electrical conductivity is shown in Figure B.5
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Figure B.5: The initial condition distributions of the electrical conductivity in the domain.

The modeled electrical conductivity is shown in Figure B.6

B.6 Model input quantification: Gaussian process regression

The ensemble model input is shown in Figure B.7.
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B.6. Model input quantification: Gaussian process regression
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Figure B.6: The modeled electrical conductivity.
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Figure B.7: 100 realizations of themixture effects time series atmeasuring station 1 (MS1). Posterior
distributions were obtained through Gaussian process regression (GPR).
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Appendix C

Supplementary information for
chapter 4

C.1 The sampling site map.

The sampling site map is shown in Figure C.1.

Flow direction

Figure C.1: Ammer River sampling site. Water in the Ammer river flows from northwest (near
Herrenberg) to southeast, merging into the Neckar River in the city of Tübingen.
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C.2. Prior and neural posterior distributions.

C.2 Prior and neural posterior distributions.

AhR-CALUX The prior and neural posterior distributions of parameters for mixture ef-
fects 𝐸𝑈 bio in AhR-CALUX in segment 1 and 2 are show in Figure C.2.
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Figure C.2: Prior and posterior of 𝐸𝑈 bio in AhR-CALUX in segment 1 (A) and segment 2 (B) from
SBI. The light red and green probability density functions in the main diagonals are the prior and
posterior distributions, respectively. The upper and lower corners show the individual 1000 sam-
ples and their kernel density estimation for the three parameters, respectively. 𝛼𝑖 [m] is the disper-
sivity; 𝑘𝑖 [s −1] the first-order dissipation constant; 𝑅𝑖 [-] the retardation factor (𝑖 ∈ {1, 2}.)

ER𝛼–GeneBLAzer The prior and neural posterior distributions of parameters for mix-
ture effects 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 1 and 2 are show in Figure C.3.
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Figure C.3: Prior and posterior of 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 1 (A) and segment 2 (B)
from SBI. The light red and green probability density functions in the main diagonals are the prior
and posterior distributions, respectively. The upper and lower corners show the individual 1000
samples and their kernel density estimation for the three parameters, respectively. 𝛼𝑖 [m] is the
dispersivity; 𝑘𝑖 [s −1] the first-order dissipation constant; 𝑅𝑖 [-] the retardation factor (𝑖 ∈ {1, 2}.)

152



C.3. SBI & GPR aided reactive transport

C.3 Simulation-based inference & Gaussian process aided reac-
tive transport.

The mean root mean square error in Table C.1 is expressed in eq. C.1,

RMSE =
1
𝑚

𝑚
∑
𝑗=1

√
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (C.1)

where 𝑦 is the observation; �̂� the modeled result; 𝑖 the index for observations and cor-
responding modeled results; 𝑛 number of observations; 𝑗 the index for input realizations
from the Gaussian process regression; 𝑚 number of input realizations.

The mean normalized root mean square error in Table C.1 is expressed in eq. C.2,

NRMSE =
1
𝑚

𝑚
∑
𝑗=1

√
1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)2

𝑦max − 𝑦min
(C.2)

where 𝑦 is the observation; �̂� the modeled result; 𝑖 the index for observations and cor-
responding modeled results; 𝑛 number of observations. 𝑦max and 𝑦min are the maximum
and minimum values of the observations, respectively. 𝑗 is the index for input realizations
from the Gaussian process regression; 𝑚 number of input realizations.

AhR-CALUX The in-stream dynamics of 𝐸𝑈 bio in AhR-CALUX are shown in Figure C.4.
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(A) 𝐸𝑈 bio in AhR-CALUX at midstream site
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Figure C.4: Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX at midstream (A) and down-
stream site (B). The light green and red areas represent the 95% confidence interval of the modeled
ensemble from 500 realizations (𝑁 sample = 500 in algorithm 3). Analytical uncertainties (one stan-
dard error) from the measurement are shown by the error bars.
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C.4. Performance of SBI & GPR aided reactive transport models

ER𝛼–GeneBLAzer The in-stream dynamics of 𝐸𝑈 bio in ER𝛼–GeneBLAzer are shown in
Figure C.5.
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Figure C.5: Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer at midstream (A) and
downstream site (B). The light green and red areas represent the 95% confidence interval of the
modeled ensemble from 500 realizations (𝑁 sample = 500 in algorithm 3). Analytical uncertainties
(one standard error) from the measurement are shown by the error bars.

C.4 Performance of SBI & GPR aided reactive transport models

Table C.1: Performance of SBI & GPR aided reactive transport models: 500 realizations are used as
the inflow boundary condition for forward model run.

Bioassay Metric Segmet 1 Segment 2

PPAR𝛾-GeneBLAzer RMSE 3.547E-01 7.544E-02
NRMSE 4.560E-01 3.007E-01

AhR-CALUX RMSE 5.310E-02 6.781E-02
NRMSE 2.169E-01 2.727E-01

ER𝛼-GeneBLAzer RMSE 1.615E-01 6.974E-02
NRMSE 4.045E-01 2.403E-01
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C.5. PINN

C.5 PINN

AhR-CALUX The in-stream dynamics and the training loss of 𝐸𝑈 bio in AhR-CALUX in
segment 1 are shown in Figure C.6.
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Figure C.6: Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in (A) segment 1 bounded by
the upstream stream and midstream sites. (A) shows the distribution of 𝐸𝑈 bio in the whole space-
time domain. (B) and (C) show 𝐸𝑈 bio at midstream and downstream sites, respectively. The light
blue and green areas represent the 95% confidence interval of the Gaussian process regression on
data. The training processes of the three loss functions (eqs. 4.6, 4.7, and 4.8) are shown in (D).
Analytical uncertainties (one standard error) from the measurement are shown by the error bars.
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C.5. PINN

The in-stream dynamics and the training loss of 𝐸𝑈 bio in AhR-CALUX in segment 2
are shown in Figure C.7.
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Figure C.7: Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in segment 2 bounded by
the midstream and downstream sites. (A) shows the distribution of 𝐸𝑈 bio in the whole space-time
domain. (B) and (C) show 𝐸𝑈 bio at midstream and downstream sites, respectively. The light green
and red areas represent the 95% confidence interval of the Gaussian process regression on data. The
training processes of the three loss functions (eqs. 4.6, 4.7, and 4.8) are shown in (D). Analytical
uncertainties (one standard error) from the measurement are shown by the error bars.
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C.5. PINN

The three-dimensional field of 𝐸𝑈 bio in AhR-CALUX in segment 1 and 2 are shown in
Figure C.8.
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(A) 𝐸𝑈 bio in AhR-CALUX in segment 1

Space [km]

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0

Time [h]

0
5

10
15

20
25

30

EU
bio  [Lbioassay  L

1water ]

0.0

0.1

0.2

0.3

0.4

0.5

Data: midstream
Data: downstream

0.0

0.1

0.2

0.3

0.4

0.5

EU
bi

o [
L b

io
as

sa
y L

1 wa
te

r]

(B) 𝐸𝑈 bio in AhR-CALUX in segment 2

Figure C.8: Modeled ensemble time-series for 𝐸𝑈 bio in AhR-CALUX in (A) segment 1 and (B) seg-
ment 2.
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C.5. PINN

ER𝛼–GeneBLAzer The in-stream dynamics and the training loss of 𝐸𝑈 bio in ER𝛼–
GeneBLAzer in segment 1 are shown in Figure C.9.
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Figure C.9: Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in (A) segment 1 bounded
by the upstream stream andmidstream sites. (A) shows the distribution of 𝐸𝑈 bio in the whole space-
time domain. (B) and (C) show 𝐸𝑈 bio at midstream and downstream sites, respectively. The light
blue and green areas represent the 95% confidence interval of the Gaussian process regression on
data. Analytical uncertainties (one standard error) from the measurement are shown by the error
bars.
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C.5. PINN

The in-stream dynamics and the training loss of 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment
2 are shown in Figure C.10.
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Figure C.10: Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 2 bounded
by the midstream (A) and downstream site (B). (B) and (C) show 𝐸𝑈 bio at midstream and down-
stream sites, respectively. The light green and red areas represent the 95% confidence interval of
the Gaussian process regression on data. Analytical uncertainties (one standard error) from the
measurement are shown by the error bars.
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C.6. Performance of PINN

The three-dimensional field of 𝐸𝑈 bio in ER𝛼–GeneBLAzer in segment 1 and 2 are
shown in Figure C.11.
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(A) 𝐸𝑈 bio in 𝐸𝑈 bio in segment 1
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Figure C.11: Modeled ensemble time-series for 𝐸𝑈 bio in ER𝛼–GeneBLAzer in (A) segment 1 and
(B) segment 2.

C.6 Performance of PINN

The root mean square error in Table C.2 is expressed in eq. C.3,

RMSE =

√
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (C.3)

where 𝑦 is the observation; �̂� the modeled result; 𝑖 the index for observations and corre-
sponding modeled results; 𝑛 number of observations.

The normalized root mean square error in Table C.2 is expressed in eq. C.4,

NRMSE =

√
1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)2

𝑦max − 𝑦min
(C.4)

where 𝑦 is the observation; �̂� the modeled result; 𝑖 the index for observations and corre-
sponding modeled results; 𝑛 number of observations. 𝑦max and 𝑦min are the maximum and
minimum values of the observations, respectively.

The mean squared error in Table C.2 is expressed in eq. 4.6 in chapter 4.
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C.6. Performance of PINN

Table C.2: The performance metrics of PINN on the three in vitro bioassay data and estimated
physical parameter values.
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