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1. Introduction 

The most widely used histologic grading system for breast cancer is the grading 

according to Elston and Ellis, a modification of the Bloom and Richardson grading 

system1,2. The Elston and Ellis Classification is applied on hematoxylin and eosin 

(HE) stained slides, the standard staining in histopathologic diagnostics, and 

combines details of cell morphology by the degree of nuclear pleomorphism, with 

a measurement of differentiation through evaluation of  tubule formation and an 

assessment of mitosis1. By assigning scores to each feature, the overall score 

determines the histological grade.   

Mitotic figures in a tissue sample may be evaluated either by mitotic count or by 

mitotic activity index. The mitotic count is a measure of the number of mitotic 

figures per 10 high-power fields (HPF), the areas showing the highest number of 

mitoses within the tumor, assessed through observation.  

The mitotic activity index (MAI) is calculated by dividing the number of mitotic 

figures by the total number of cells in the tissue sample and expressing the result 

as a percentage. 

Multiple studies have shown histological grading to be of important prognostic 

significance3-5 and it recently has been incorporated globally in breast cancer 

guidelines6,7. The visual evaluation of mitotic figures is a widely and routinely 

used and accepted technique, as it provides a simple and rapid overview of tumor 

characteristics, such as growth rate and tumor behavior.  

Despite all the advantages of the visual assessment of mitotic figures in 

histological sections, it still suffers from limited reproducibility8-13.  

The mitotic count is considered to be a subjective measure, because it depends 

on the interpretation of the person performing the analysis, and difficulties may 

arise. During the evaluation process, the pathologist must identify and count the 

number of mitotic figures, which can be challenging, as mitoses may appear in 

different forms, depending on which part of the cell cycle they are currently in.  

Furthermore, they may be difficult to distinguish from other structures, such as 

apoptotic or karyorrhectic cells. The assessment is usually performed in a small 

area of the tumor, where the choice of the area is the matter of subjective 
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interpretation. In addition, the correct identification depends on the quality of 

tissue processing, differences in fixation or thickness of the sections14-16. 

To reduce interobserver variability, mitotic figure identification could be facilitated 

by the use phosphorylated histone H3 (pHH3) immunohistochemistry (IHC), 

which has been shown to be a specific marker for mitosis17. 

PHH3 is a protein component of nucleosomes in eukaryotic cells. 

Phosphorylation of histone H3 is a specific step during mitosis and is absent in 

other phases of the cell cycle. PHH3 expressions have shown promising results 

in multiple studies concerning various tumors18-21.  

PHH3 staining allows the identification of prophase nuclei, clear identification of 

mitotic figures, and leaves the apoptotic, necrotic or karyorrhectic cells unstained. 

Additionally, it allows faster and easier detection of mitotically active areas. 

Several studies have suggested that pHH3 based mitotic index may be the 

strongest prognostic variable in early-stage breast carcinoma22-24. 

Ki-67 is used as a marker of cell proliferation. Ki-67 is a protein that is expressed 

at high levels during all phases of the cell cycle, except for the resting phase G0 

and is often used as an indicator of cell growth and division. Ki-67 

immunohistochemistry is scored as a proliferation index, based on the 

percentage of positive cells in a tissue sample. The proliferation marker has been 

shown to be a good objective substitute for mitotic counts when used in a grading 

system25 and has also been valued as a prognostic factor being associated with 

breast cancer outcomes26,27. Ki-67 previously has been already considered as a 

biomarker for therapeutic decisions28. The reproducibility of proliferation indexes 

of ⩽10% and ⩾35%, has been shown to be much better than in the intermediates, 

but since there is no general cut-off value for Ki-6729-31, the clinical significance 

of its expression may vary, depending on the specific context of other clinical 

factors and patient cohort of a study. 

PHH3 IHC and the Ki-67 proliferative index are quantifiable markers and 

therefore amenable to computer-assisted image analysis. 

In recent years, technological innovations have offered new, reliable, and 

accurate approaches for a more objective assessment of tumor tissue. 
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With the use of whole slide imaging (WSI), which means scanning of slides at a 

high resolution, it has been made possible to view and analyze each slide on the 

computer. Image analysis software may be used to perform quantitative image 

analysis on digital pathology images, or to measure various features of cells and 

tissues and to classify them based on their characteristics. Improvements in 

diagnostic reproducibility have previously been achieved through computer-

assisted image analysis32.  

Artificial intelligence (AI) and machine learning algorithms are increasingly being 

trained to recognize patterns and features that are indicative of breast cancer and 

to classify tissue samples. There is ongoing research to develop AI based 

diagnostic tools to assist pathologists in the analysis of histological images33.  

In this study the quantitative image analysis software Cognition Master 

Professional Suite (CogM) was used. It is a collection of image analysis software 

tools for virtual microscopy, evaluation, and analysis of scanned digital 

histological slides. One of the CogM modules, the Ki-67 Quantifier, has been 

previously validated in a neoadjuvant breast cancer clinical trial as a computer-

based approach for the quantitative evaluation of Ki-67 scoring based on a cell 

detection method34. 

The main goal of our study was to compare probable changes in tumor grading, 

agreement, and correlation between visual and digital methods for assessing 

mitotic count, and the quantifiable marker pHH3 and Ki-67 in breast carcinoma 

tissue and thus reducing the subjectivity and variability of histological grading. 

 

1.1. Epidemiology 

Breast cancer is the most prevalent cancer in women globally, with 2.3 million 

cases diagnosed in 2020, and remains the leading cause of cancer-related 

deaths, accounting for 685.000 deaths worldwide35.  

The lifetime risk of developing breast cancer in women is approximately 1 in 8, 

and the incidence of breast cancer increases with age. Risk factors for breast 

cancer include genetic mutations such as BRCA1/2, a family history of breast or 

ovarian cancer, alcohol consumption, and obesity after menopause. 



Introduction 

4 

Despite the high incidence of breast cancer, the death rate has been declining 

since the 1990s, due to screening, prevention, early detection, more awareness 

and continuous improvement in treatment36. Early detection through preventative 

examinations and mammography has led to the detection of breast cancer in 

earlier stages, smaller in size and as lymph node negative tumors at diagnosis, 

thereby increasing the importance of histological grade in breast cancer diagnosis 

and treatment5,37. 

 

1.2. Classification 

Breast carcinoma represents a heterogeneous group of diseases characterized 

by distinct clinical, histopathological, and molecular characteristics. 

Morphological subtypes have traditionally been used to classify invasive breast 

cancer, which includes various biologically distinct entities, each with unique 

pathological features and clinical presentations. 

Patient age, along with tumor size, lymph node involvement, metastasis, 

histological type and grade are clinical-pathological parameters that are crucial 

for breast cancer assessment. Heterogeneity in histopathological and biological 

characteristics in breast carcinomas results in varying responses to treatment. 
38,39.  

Immunohistochemical markers are often used to guide treatment decisions, 

making individual treatment possible. To further refine breast cancer 

classification, gene expression profiling has been used to develop molecular 

subgroups40. 

To aid the restricted daily clinical application of gene expression profiling, due to 

expenses and the time-consuming nature of the technique, 

immunohistochemistry is used as a time efficient surrogate41,42. 

The molecular subgroups, in combination with conventional prognostic indicators 

such as TNM staging, tumor size, and histological grading, represent relevant 

prognostic and predictive factors that have significant implications for treatment 

and affect therapeutic strategies7. 

The following chapters are focusing on giving an overview of the morphological 

classification and histological grade. 
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1.3. Morphological classification 

Breast cancer comprises a broad spectrum of types and subtypes, each of which 

is associated with varying prognoses and treatments. According to the WHO 

classification of 2012, the majority of breast cancer cases are carcinomas43, 

which arise from epithelial cell-based components of the inner layer of the 

terminal ducts and lobules. Sarcomas, which arise from connective tissues such 

as blood vessels or myofibroblasts, represent approximately 1% of breast cancer 

cases and comprise the second category. Carcinomas are further classified into 

in situ and invasive carcinomas. In situ carcinomas are characterized by the 

presence of abnormal cells confined within the mammary ducts and without 

invasion of the basement membrane. In contrast, invasive carcinomas have 

breached the ductal walls and invaded the surrounding tissues. If left untreated, 

invasive carcinomas have the potential to metastasize to other tissues and 

organs. The majority of invasive breast cancers, accounting for approximately 

80%, lack distinct histological features and are categorized as invasive carcinoma 

of no special type (NST). This group was previously known as invasive ductal 

carcinoma until the update in the WHO classification in 202043. 

 

1.4. The histological grade 

The Elston and Ellis Score, also known as the Nottingham grading system, has 

become widely adopted as a global standard for evaluating breast carcinoma and 

guiding treatment decision. Histologic grade is a measure of the degree of 

differentiation based on the evaluation of three morphological features: tubule 

formation, nuclear pleomorphism, and mitotic nuclei. A study by Schwartz et al. 

analyzed a large cohort of breast cancer cases from the Surveillance, 

Epidemiology, and End Results (SEER) program and demonstrated that 

histological grading remains a significant prognostic factor for overall survival44. 

This finding highlights the continued clinical relevance and importance of 

incorporating histological grade into the disease management of breast cancer. 
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Table 1: Elston and Ellis grading system  

 

The Elston and Ellis Classification is conducted on HE-stained slides and is 

evaluated by a numeric scoring system of 1-3 in each category. The grades are 

classified based on the total scores. 

The cut-off values for mitotic counts are determined by the diameter of the high-

power field and its corresponding area7. 

In this study, the mitotic count was scored as the total number of mitotic figures 

in non-overlapping 10 consecutive HPFs with a field diameter of 0.45 mm and the 

area assessed is 0.159 mm2 (Table 1).  

Counting is preferred in tumor rich areas. One of the challenges of mitosis 

detection on hematoxylin and eosin-stained slides is distinguishing true mitotic 

figures from apoptotic bodies, tissue artifacts, dark staining or dark nuclei12,13. 

Tubule formation 

1 point Tubule formation in >75% of the tumor 

2 points Tubule formation in 10% to 75% of the tumor 

3 points Tubule formation in <10% of the tumor 

Nuclear pleomorphism 

1 point Small, regular, uniform cells, nucleus shapes only differ mildly 

2 points Moderate nuclear size and variations 

3 points Nucleus shape and size difference significantly 

Mitotic count/field area (0.159mm2) 

1 point 0-5 

2 points 6-11 

3 points >12 

Final score 

3,4,5 Grade I: well differentiated 

6,7 Grade II: moderately differentiated 

8,9 Grade III: poorly differentiated 
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The total score is obtained by adding the scores on tubule formation, nuclear 

pleomorphism and mitotic index. The histological grades are determined by the 

total scores. 

 

   
a) b) c) 

  
Figure 1: Breast cancer of no special type is graded according to the Elston and Ellis Score, 
which is based on the degree of three morphological features: tubule formation, nuclear 

pleomorphism, and mitotic count (Table 1). Figure 1 displays examples of histological samples 

of the different grades: a) grade I: well differentiated, b) grade II: moderately differentiated and 

c) grade III: poorly differentiated breast tissue. 

 

1.5. Immunohistochemistry 

The molecular classification of breast cancer began with the identification of 

hormone receptor markers. Estrogen receptors (ER) were first discovered in the 

1960s by Jensen and Jacobson27 and later studies in the 70s by McGuire et al. 

demonstrated that the ER was detectable in 60-80% of breast cancers45. In the 

1980s, amplification of HER-2 (Human Epidermal Growth Factor 2) was shown 

in 30% human breast cancer46. Subsequently, gene expression profiling was 

developed, which allowed for molecular classification of breast cancer into 

subgroups40. The luminal class was further divided into luminal A and luminal B, 

resulting in the identification of an additional fifth class of breast cancer: luminal 

A, luminal B HER2-positive and luminal B negative, HER2-enriched and triple 

negative breast cancer47. In clinical practice, immunohistochemical analyzes of 

tumors based on status of ER, PR, and HER2 are used to determine molecular 
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subtypes. This method is easier and more cost-effective than gene expression 

profiling and provides similar results48. 

 

1.5.1. Hormone receptor biomarkers  

In the present day, the utilization of immunohistochemistry for the evaluation of 

breast cancer has become a common practice for the analysis of steroid receptor 

status49. The majority of human breast cancers, approximately 70-80%, are 

hormone-dependent and estrogen receptor positive50,51 and IHC testing can 
effectively detect estrogen and progesterone receptors (ER/PR) in cancer cells 

from tissue samples. These receptors are dependent on estrogen or 

progesterone for their growth, and patients with ER and PR positive breast cancer 

usually respond well to endocrine therapy51.  

 

1.5.2. Human Epidermal Growth Factor 2 

Human Epidermal Growth Factor 2 (HER2) is a gene which encodes a 

transmembrane tyrosine kinase and is a crucial regulator of cellular growth and 

proliferation in normal breast tissue. However, in about 15-20% of breast cancer 

cases, HER2 gene amplification or overexpression occurs52. The 

immunohistochemistry has been adopted as the screening test and is a routine 

practice for invasive breast cancer in pathology. The IHC test involves staining 

the tumor tissue sample with antibodies that specifically target the HER2 protein. 

The tissue is then examined under a microscope and given a score. Scores of 0 

or 1+ indicate HER2-negative tissue, while a score of 3+ indicates HER2-positive 

tissue. A strong, circumferential membrane staining is required for a positive (3+) 

result. However, if the tissue is scored as 2+, it is considered equivocal, and 

further testing using fluorescence in situ hybridization (FISH) is recommended. 

Patients with HER2-positive breast cancer are typically treated with targeted 

therapies, such as trastuzumab (Herceptin), which specifically target the HER2 

protein52. 
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1.5.3. Proliferation index 

The proliferation index describes what proportion of the cancer cells within the 

tumor are growing and increasing in number. A higher number indicates a more 

aggressive tumor53. Immunohistochemical analysis of the Ki-67 index represents 

the cell proliferation of the cancer. Ki-67 is a nuclear protein which was found by 

Gerdes et al. in 1983 in a Hodgkin lymphoma cell line54. The most widely used 

proliferation marker in breast cancer is Ki-6731. Ki-67 protein is present during all 

phases of the cell cycle (G1, S; G2 and mitosis) but is absent during the resting 

phase, G055. Ki-67 level varies during the cell cycle. Levels are low in G1 and 

early S phase and reach the maximum in early mitosis. Rapid decrease in Ki-67 

rates occur in anaphase and telophase. MIB-1 is a monoclonal antibody that 

reacts with the Ki-67 nuclear antigen and can be used on both frozen and 

paraffin-embedded section56. Ki-67 may be used to distinguish between low- and 

high-proliferating tumors and its reproducibility has been shown to be more 

consistent when the rate of cell division is either very low (⩽10%) or very high 

(⩾35%), but there is still no general cut-off value for Ki-6729-31. 

Furthermore, the proliferation index may be used to guide clinical decisions 

regarding adjuvant chemotherapy in ER-positive tumors and is predictive of 

responsiveness to neoadjuvant chemotherapy57,58. 

Currently monitoring Ki-67 levels during or after neoadjuvant endocrine or 

chemotherapy helps to make decisions on the effectiveness of the current 

treatment or if the treatment plan needs to be adjusted. A high Ki-67 index is 

predictive of responsiveness to neoadjuvant chemotherapy and for potential 

effectiveness of the treatment and a decline of Ki-67 expression after neoadjuvant 

endocrine therapy predicts better disease-free survival59.  

Moreover, patients with rapidly proliferating breast cancer benefit from adjuvant 

chemotherapy as opposed to those with slowly proliferating tumors26.  

Furthermore, Ki-67 may have a role as part of the IHC4 score, based on 

quantitative assessment of four immunohistochemistry markers (ER, PR, HER2, 

and Ki6760). The IHC4 score can be applied to postmenopausal women with 

early-stage breast cancer who have been treated with 5 years of hormonal 

therapy to estimate the risk of recurrence at 10 years and the potential benefits 
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of extended endocrine therapy (EET) beyond the standard 5 years of treatment 

with hormonal therapy61. The score can help guide clinical decision-making by 

identifying patients who have a low risk of recurrence and would not benefit from 

extended therapy61. 

 

1.5.4. Phosphohistone H3 

Histone H3 is a nuclear core histone protein of DNA chromatin and plays an 

important role in chromatin condensation during mitosis after phosphorylation on 

Serin 1062. Phosphorylation appears to be essential for maintaining the compact 

chromosome state and is involved in controlling DNA replication during the cell 

cycle. It occurs during late G2 (second gap phase, where the cell undergoes 

growth and prepares for cell division) and early prophase and dephosphorylation 

from late anaphase to early telophase. In metaphase histone H3 is always heavily 

phosphorylated and resulting in a high level of pHH3 expression. During 

interphase there is minimal to no pHH3 expression58. PHH3 allows for better 

distinctions between mitotic cells and mitotic mimickers such as apoptotic or 

karyorrhectic cells, as it only stains actively dividing cells63.  The assessment of 
pHH3 staining is uncomplicated and straightforward, given the contrast between 

brown-stained mitotic cells and blue-stained non-mitotic cells aiding in 

recognition. 

Multiple studies have verified pHH3 concerning various tumors, such as thin 

melanoma, meningiomas, pancreatic neuroendocrine carcinoma, pulmonary 

neuroendocrine carcinoma, and astrocytomas for its sensitive and specific role 

as a marker of mitotic figures	18-21,64. 
PHH3 IHC has been shown as a dependable and sensitive technique for 

identifying mitotic figures and hot spots for mitotic activity assessment63,65. In a 
study conducted by Cui et al., they observed a significant correlation between the 

mitotic indices gathered from pHH3 staining and those obtained from HE staining 

and the authors suggested the possibility of integrating the pHH3 marker into 

breast cancer grading66.  
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a)  b) 

 
Figure 2: Examples of mitotic figures with pHH3 staining: the slide appears in different shades 

of blue with dark-brown-stained cells, indicating mitotic indices expressing pHH3. 

a) Overview of a pHH3-stained slide without annotations.   

b) Close-up of a pHH3-stained slide with blue encircled mitotic indices. 

 

1.6. Molecular classification 

Breast cancer is classified based on classical immunohistochemistry, genetic, 

and molecular characteristics40. Subtypes of breast cancer have been identified 

using advanced techniques such as gene expression profiling with 

complementary DNA microarrays67. In clinical practice the status of 

immunohistochemistry staining such as ER, PR and HER2 are used to determine 

these molecular subtypes. The molecular classification of breast cancer provides 

more precise information for personalized therapeutic decision-making and 

prognosis68. 

The St. Gallen Consensus of 2011 has classified breast cancer into four subtypes 

based on molecular characteristics, namely Luminal A (ER+/PR+/HER2/low Ki-

67), Luminal B (ER+/PR+/HER2-/+/high Ki-67), HER2-overexpression (ER-/PR-

/HER2+) and triple negative breast cancers/TNBCs (ER-/PR-/HER2-)69. 
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Table 2: An overview of the molecular subtypes according to IHC staining 

 

1.6.1. Luminal A 

Luminal A represents the most prevalent molecular subtype of breast cancer, 

accounting for 30-45% of all newly diagnosed cases. According to the St. Gallen 

International Expert Consensus of 2013, it is characterized by an estrogen 

receptor (ER) expression of more than 1%, progesterone receptor (PR) 

expression of more than 20%, human epidermal growth factor receptor 2 (HER2) 

expression of =/<10%, and low to medium Ki-67 expression. Luminal A subtype 

is associated with a favorable prognosis compared to the other subtypes70. Given 

the positive hormone receptor status, recommended treatment for Luminal A 

breast cancer includes endocrine therapy such as selective estrogen receptor 

modulators (e.g., tamoxifen) or aromatase inhibitors (e.g., anastrozole)71. 

1.6.2. Luminal B 

The subtype Luminal B comprises approximately 20% of all cases and is further 

divided into Luminal B HER2 positive and negative, depending on the status of 

ER, PR and HER2 receptors, with high Ki-67 expression71. Compared to Luminal 

A, Luminal B breast cancer is slightly more aggressive and has intermediate 

prognosis. The recommended treatment differs for Luminal B HER2 positive and 

negative cases. For Luminal B HER2 negative cases, the recommended 

treatment is endocrine therapy, with the option of additional systemic therapy. In 

Luminal B HER2 positive cases, anti-HER2 therapy (such as trastuzumab) is also 

needed in addition to endocrine therapy and chemotherapy71. 

Subtypes ER  PR HER2 Ki-67 

Luminal A ER positive PR positive/negative Negative Low 

Luminal B ER positive PR positive/negative Negative High 

Luminal B ER positive PR positive/negative Positive Any 

HER2-enriched Negative  Negative Positive Any 

Triple negative Negative  Negative Negative Any 
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1.6.3. HER2 positive 

Approximately 15-20% of all breast cancers are classified as HER2-positive. This 

subtype is characterized by HER2 positivity, lack of steroid receptors (ER<1% 

and PR<20%) but high expression of Ki-67. Amplification of the HER2 gene is 

associated with faster growth, higher mitotic index, higher histological grade, and 

worse prognosis72. The recommended treatment for HER2-positive breast cancer 

is HER2 blockers, either with humanized monoclonal antibodies (trastuzumab) or 

molecular receptor tyrosine kinase inhibitors (lapatinib). 

 

1.6.4. Triple negative  

Triple negative breast cancer (TNBC) accounts for approximately 10-20% of all 

breast cancer cases and is characterized by the absence of steroid receptors 

(ER<1% and PR<20%) and HER2 proteins, but with a high proliferative index. 

TNBC is generally considered more aggressive than other types of breast cancer, 

with a higher risk of metastasis and recurrence. This subtype is more common in 

women with BRCA1 gene mutations, among women younger than 40 years and 

African American women. The standard therapy for TNBC without distant 

metastases is currently anthracycline-/taxane-based chemotherapy, preferably 

administered neoadjuvantly73,74. 

 

1.7. Digital pathology 

At present, the gold standard for evaluating histological slides in pathology 

laboratories is through visual examination by a pathologist. This method involves 

the evaluation of histological images under a microscope. However, the current 

method of assessing histological slides by visual examination is subjective and 

prone to inter-observer variability, resulting in diagnostic discrepancies. To 

overcome this issue, computerized image analysis methods have been proposed 

as an objective and quantifiable solution with the potential to improve 

reproducibility. 
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Whole slide imaging is a commonly used method by pathologists worldwide, 

where conventional glass slides are scanned to produce digital slides. These 

scanners allow for a magnification of the slides at 20x or 40x with 0.46 μm/pixel 

or 0.23 μm/pixel spatial resolution. Spatial resolution is indicative of the amount 

of detail the scanner can capture, with higher resolution scanners providing 

greater pixel definition. WSI scanners by manufacturers such as Ventana, 

Aperito, Hamamatsu, and Leica are among the most commonly used in pathology 

laboratories. The digitization of histopathological images has enabled the 

automation of breast cancer classification using computer-assisted image 

analysis software. 

Image analysis software offer several advantages including the potential to 

improve accuracy and precision in the analysis of tissue samples. By providing 

more objective measurements, these software tools may help to reduce 

subjectivity and variability associated with traditional visual evaluation by a 

pathologist. Additionally, image analysis software has the potential to reduce the 

time and effort required for the analysis. 

The search for better, more objective methods has led to the development of 

deep learning algorithms. These algorithms are capable of extracting thousands 

of features, including small areas, from WSI. These features, commonly referred 

to as tiles, are utilized to classify tissue samples into diverse categories, such as 

cancerous or non-cancerous. The outcomes achieved from analyzing individual 

tiles within a WSI are eventually integrated to generate a diagnosis for the entire 

slide. 

Convolutional Neural Networks (CNNs) have become the preferred approach for 

analyzing pathology images since their introduction. These networks can analyze 

images and recognize features such as contours by detecting changes in the 

color intensity of pixels in surrounding areas. The network can identify larger and 

more complex patterns by combining these features across multiple layers75-78. 

In a recent study conducted by Chan et al., the current state of Artificial 

Intelligence development was reviewed. The authors specifically highlighted a 

study conducted by Barsha et al., which proposed a combination of multiple 

common deep learning algorithms to detect and invasive breast cancer79,80. The 
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accurate detection of mitotic count is a crucial component of histological grading, 

and numerous studies have been conducted in an attempt to automate this 

process using AI81-83. 

Despite the successes observed thus far, the practical implementation of AI may 

be complicated by the algorithms tendency to identify excessive information on 

histological slides (e.g., artifacts, ink stains). Additionally, various factors such as 

section thickness, staining characteristics, and imaging techniques may also 

influence the accuracy of the analysis84. 

 

1.8. Aims of this study 

Aim 1: Assessing the accuracy and interobserver variability of the Elston and Ellis 

Score 

 

Aim 2: Using Ki-67 and pHH3 as quantifiable immunohistochemical markers for 

grading assessment, reducing the subjectivity and variability of histological 

grading 

 

Aim 3: Integrating digital pathology to improve the accuracy of quantitative 

immunohistochemical staining   
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2. Material and Methods 

2.1. Patient cohort and samples 

Archival formalin-fixed paraffin-embedded tissue blocks were obtained from the 

archives of the Institute for Pathology and Neuropathology in Tübingen spanning 

the period from 2017 to 2019. A total of 74 cases of invasive breast carcinoma of 

no special type (NST) were selected for inclusion, with 1-2 slides each, resulting 

in a dataset of 84 HE-stained slides. Each case contributed 1-2 slides, resulting 

in a dataset of 84 slides stained with HE. This study included multiple slides of 

the same tumor for some cases, when available, to enhance the range of 

histologic features and tumor heterogeneity observed in real clinical cases. This 

approach may also provide insights into the degree of variation between samples 

from the same individual. 

For each of the 84 hematoxylin and eosin-stained slides, one corresponding 

immunohistochemically stained slide was used to evaluate the expression of 

estrogen receptor (ER), progesterone receptor (PR), human epidermal growth 

factor receptor 2 (HER2), and Ki-67. All tissue blocks had previously been 

stained, except for phosphorylated histone H3 (pHH3) IHC, which was specifically 

performed for this study. 

The project was evaluated by the Ethics Committee (Ethics Committee at the 

Medical Faculty of the Eberhard Karls University and at the University Hospital 

Tübingen) and approved on 17.08.2021, the project number is 547/2021BO2. 

 

2.2. Material  

All cases were subjected to re-evaluation under a microscope (Zeiss Axio Imager 

A1). Additionally, digital images of the tissue slides were generated using the 

Ventana DP 200 slide scanner (Roche Diagnostics), which allowed for high-

resolution digitization of the pathological images and immunohistochemical stains 

at a magnification level of 20x.  
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Table 3: List of devices 

Name Article, Manufacturer 
Microscope Zeiss Axio Imager A1 

Slide scanner Ventana DP 200 slide scanner, Roche 
Group 

BenchMark Ultra  Ventana Medical Systems, Roche 
Group 

 
Table 4: List of software 

Software Purpose of use Manufacturer 
Ventana Image Viewer Virtual slide viewing Roche Diagnostics 

ASAP Automated Slide 

Analysis Platform 
Annotation 

Computation Pathology 

Group at Radboud 

University Medical 

Center 

Cognition Master 

Professional Suite 

Digital assessment and 

quantification 
VMscope GmbH (Berlin) 

 

2.3. Methods 

2.3.1. Hematoxilin and eosin staining 

HE-staining is a critical process for highlighting histological features. In breast 

cancer tissue, nuclei are stained in a deep purple or blue color and the cytoplasm 

has various degrees of pink staining.  

The formalin fixed tissue specimens must dry for 12 minutes. Before staining, the 

slides were dewaxed in Xylol twice for 2,5 minutes each, then passed through 

descending grades of alcohol (100%, 96%, 70%) and rinsed in distilled water for 

30 seconds. The sections were stained in Mayer’s hemalum solution for 2 

minutes first and two more times for 4 minutes. Afterwards, sections were rinsed 

for 10 minutes in tap water, before counterstaining them in 1% eosin solution for 

1 minute. After a 10 second rinse with tap water, the sections were dehydrated 

with ascending grades of alcohol for 20 seconds with 70% alcohol, for 1 minute 
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with 96% alcohol and twice for 1 minute with 100% alcohol. Finally, Xylene was 

used as a clearing agent for 4 minutes. 

 

2.3.2. Immunohistochemistry staining  

The investigation of the tissue sample by immunohistochemistry provides 

information through specific antibodies, which are used to bind a target protein.  

The bound antibody is then visualized by dye created by an enzymatic reaction. 

Immunohistochemical staining was performed on formalin fixed, paraffin 

embedded tissue sections. The immunohistochemical staining was performed 

according to the BenchMark ULTRA XT (Ventana Medical Systems, Roche 

Group, Tucson, AZ, USA) manufacturer protocols. 

The BenchMark ULTRA XT is a fully automated immunohistochemistry slide 

staining system and was used for IHC staining with the Ventana OptiView DAB 

IHC Detection Kit. The automated staining platform aids in securing and 

improving consistency of the IHC staining procedure. 

The BenchMark Ultra XT was used to conduct all involved steps, beginning with 

deparaffinization, rehydration and antigen retrieval. The latter involves 

pretreatment of tissue to retrieve antigens masked by fixation and to make them 

more accessible to antibody binding. Antigen retrieval was performed with CC1 

(EDTA buffer) (prediluted; pH 8.0), on the BenchMark Ultra automated slide 

stainer for 64 minutes at 100°C. 

After antigen retrieval, the sections were incubated in 3% H2O2, then with the 

primary antibody for a fixed set of time. The primary antibodies are mouse or 

rabbit antibodies that bind to the target proteins. A secondary antibody is used to 

detect the primary antibody and only binds mouse or rabbit antibodies and does 

not bind human antibodies. The secondary antibody utilized is known as the 

OptiView HQ Universal Linker, which consists of a blend of HQ-labeled 

antibodies. These antibodies include goat anti-mouse IgG, goat anti-mouse IgM, 

and goat anti-rabbit antibodies, with HQ representing a proprietary hapten that is 

covalently attached to the goat antibodies 

The secondary antibody was detected through an indirect method utilizing an 

enzyme bound tertiary antibody, a multimer (OptiView HRP Multimer) a multi 
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molecular structure that contains several enzymes. The enzyme used to catalyze 

the reactions that produce dye is horseradish peroxidase (HRP). 

The mouse monoclonal anti-HQ-labeled HRP tertiary antibody was visualized by 

H2O2, DAB chromogen (3, 3’-diaminobenzidine tetrahydrochloride) and copper 

enhancer. DAB, when oxidized by HRP, results in the brown colored visualization 

of the antigen bound antibodies. 

The employed primary antibodies are manufactured by Ventana (Tucson, USA) 

and are listed in the following table (Table 5). 

Table 5: Characteristics of the antibodies used in the study 

Antigen Antibody Clone Dilution 
Incubation 
time 

Incubation 
temperature 

ER 
ANTI-ER 
(Rabbit- 

IgG) 
SP1 

Ready to 

use1 
32 min 37°C 

PR 
ANTI-PR 

(Rabbit- 

IgG) 
1E2 

Ready to 

use 
32 min 37°C 

HER2 

ANTI-HER- 

2/NEU 

(Rabbit- 

IgG) 

4B5 
Ready to 

use 
32 min 

 Room 

temperature 

Ki-67 
ANTI-Ki-67 

(Rabbit- 

IgG) 
MIB1 1:400 32 min 37°C 

pHH3 
Anti-

Histone H3 
BC37 1:500 32 min 37°C 

 

 

 
1 Prediluted for diagnostic purposes 
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Figure 3: Image of the principle of immunohistochemistry: The primary antibody binds the 
antigen, and the secondary antibody is used to detect the primary antibody. The secondary 

antibody is detected through an indirect method utilizing an enzyme bound tertiary antibody. 

The enzyme-catalyzed reaction results in dye. 

 
2.3.3. Whole slide scanning 

All glass slides with tissue sections with HE- and IHC-staining were digitized 

using the Ventana DP 200 slide scanner (Roche Diagnostics) at 20x with a scan 

resolution of 0.46 μm/pixel. The Ventana slide scanner is a 6-tray based scanning 

system. Digital imaging vendors may use different technologies to acquire the 

digital images, but most use either a tile-based or a line-based system. A tile-

based scanner creates hundreds of individual photos that cover the whole tissue 

area and are subsequently stitched together to create one seamless image. The 

Ventana slide scanner is a line-based scanner, creating line scans of tissue 

areas85, thus creating the entire slide with fewer images and increasing the 

digitization speed86. 
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Figure 4: Different technologies for the acquisition of digital images:  
a) Tile based scanning  
b) Line based scanning 

 

2.3.4. Slide management   

The digital slides were examined using the Ventana Image Viewer software 

(Roche Tissue Diagnostics, Tucson, USA). This software facilitated efficient slide 

management, enabled the display of digital slides, and allowed for the 

incorporation of annotations as needed.  

Despite the large file size of digital slides, pathologists can utilize virtual slide 

viewing software on their computers, because the slide viewers function by 

accessing and displaying only the current area of interest, eliminating the need 

to download the entire slide. As new areas are observed, previously requested 

areas are closed87.  

 

2.4. Pathological examination 

In this study, two different methods were employed to assess the 

histopathological features of breast cancer tissue, which were subsequently 

compared for their accuracy and reliability. 

The first method involved visual assessment, the traditional approach of slide 

evaluation of mitotic indices or positive cells by an observer under a microscope. 

The second method involved the use of automated digital analysis by a computer-

based software. In the following, both methods are described. 
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2.4.1. Visual assessment  

Data was collected from the pathology reports for each of the 74 cases of breast 

cancer included in the study. This included information on the Elston and Ellis 

Scores, as well as the scores for each of the three components - nuclear 

pleomorphism, tubular formation, and mitotic count - and IHC scores for HE, ER, 

PR, HER2, and Ki-67. The pathology reports were conducted by experienced 

pathologists at the Institute of Pathology in Tübingen. 

Corresponding to the reported data, pathological re-evaluation was conducted on 

all samples HE, ER, PR, HER2, Ki-67 and pHH3. 

The grading of the HE slides was performed according to current guidelines using 

the Elston and Ellis Score, which emphasizes the three main features nuclear 

pleomorphism, tubular formation, and mitotic count7. 

Mitoses were counted as part of the re-evaluation on glass slides under a Zeiss 

light microscope. Counting was performed at 400x magnification with 10x ocular 

and 40x objective. Mitotic count was scored as the total number of mitotic figures 

in non-overlapping 10 consecutive HPFs with a field diameter of 0.45 mm and 

the area assessed is 0.159 mm2. Areas with ductal carcinoma in situ were 

excluded. PHH3 IHC was scored as the total number of positive cells in 10 

consecutive HPFs where the immunolabeling was most prevalent.  

The assessment of Ki-67 positivity was based on the percentage of positively 

stained nuclei, with a threshold of <20% used to determine positivity. ER and PR 

positivity were evaluated using the Immune Reactive Score (IRS) method 

developed by Remmele and Stegner, which assigns a total score of 2 to 12 based 

on the intensity and percentage of positive staining88.  

HER2 expression was assessed according to the following criteria: 0 for the cells 

stained in less than 10%. 1+ as >10% of the tumor cells stained positive but no 

staining of the cell membrane. 2+ as >10% of the tumor cells stained positively 

but only moderate staining of the cell membrane occurred and 3+ as >10% of the 

tumor cells stained positively with strong staining of the circumferential 

membrane.  
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Table 6: IRS Staining intensity (SI) evaluation method by Remmele and Stegner, assessing 
positive ER and PR expression. The IRS score is the result of the score for percentage of 

positive cells multiplied by the score for staining intensity. 

 

2.4.2. Computer assisted digital assessment  

For the digital image analysis, the software Cognition Master Professional Suite 

(VMscope, Berlin, Germany) was used to analyze the digital images based on 

structures, intensity, color, and texture of pixel regions. Each stained section was 

digitized with the Ventana slide scanner at 20x magnification. The software 

requires .jpg, .png, .tif or .bmp images, which were generated manually by 

selecting representative fields of the digital image using either the screenshot tool 

in Ventana picture viewer in 40x or the image generating feature in Cognition 

Master Professional Suite. Also, manual selection helped identifying the regions 

of interest, since quantitative image analysis algorithms cannot always 

automatically find the focused tissue regions.  

Percentage of positive 
cells 

Score Staining intensity Score 

No positive cells 0 No staining visible 0 

less than 10 1 Low staining intensity 1 

10-50 2 Moderate staining 
intensity 2 

51-80 3 High staining intensity 3 

more than 80 4  

IRS Immunoreactive Score Score 

Negative 0 - 1 

Positive 2 - 12 



Material and Methods 

24 

2.4.3. Ki-67 Quantifier 

Ki-67 scoring was conducted by the Ki-67 Quantifier module of the Cognition 

Master Professional Suite (VMscope). The Ki-67 Quantifier is a feature for 

computer assisted scoring of the Ki-67 index. To utilize the quantification tool, 

previously selected .png (Portable Network Graphic) images were used. By 

accessing the folder icon in the toolbar, the image may be uploaded through 

selecting the required file. Analyzing may begin with the start button, and after a 

short loading time, the results (the number of positive cells, the total number cells, 

and the percentage of positive cells) are presented. The percentage of positive 

cells was used to describe the Ki-67 proliferation index. 

Digital assessment of pHH3 was performed using the Ki-67 quantifying tool as 

well, which automatically counted the total number of positive cells in each 

histological image (10 HPFs). 

 
Figure 5: a) Tissue sections stained for Ki67 with MIB1 antibody (brown stain) and 

counterstained with Mayer's hematoxylin (blue stain)  

b) Ki-67-stained tissue sample after analysis with the Ki-67 Quantifier (the cells circled in green: 

Ki67-negative tumor cells; the cells circled in red: Ki67-positive tumor cells; the cells circled in 

black: non-tumor cells) 
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Figure 6: Ki-67-stained slide uploaded and opened the Ki-67 Quantifier module of CogM 

 

2.4.4. ER and PR Quantifier 

Cognition Master Professional Suite also offers an ER and PR quantifying tool. 

The automated scoring tool provides a score either according to Remmele or to 

Allred. For this database (ER=84 slides and PR=84 slides) the scoring according 

to Remmele was used. Therefore, not only the amount of stained tumor cells were 

counted, but also the intensity of the staining was assessed for the final score 

(Table 6). 

 

2.5. Annotations 

The annotation of images was performed using the Automated Slide Analysis 

Platform (ASAP) (Computation Pathology Group at Radboud), which allows the 

user to draw directly onto whole slide images and export them for further use. In 

total, 84 HE-stained slides and 84 pHH3-stained slides were digitized and 

annotated. Annotations were made on the digitized images using the tools 

provided by the ASAP software. All cancerous tissue was annotated. Tissues with 

NST invasive carcinoma show a distortion of the architecture as well as higher 



Material and Methods 

26 

nuclei variability and an increasing number of mitoses. In contrast, normal tissue 

has maintained architecture and well-differentiated nuclei. The mitotic count was 

assessed and scored according to the Elston and Ellis Classification on HE-

stained slides. On pHH3-stained slides, positive cells were counted in 10 high 

power fields. 

 

2.5.1. Development of a training dataset for a deep learning algorithm  

For the purpose of developing a cancer detection algorithm, cancerous regions 

and mitoses were annotated in order to create an effective training dataset. The 

dataset used for this study was prepared as a training set for a deep learning 

algorithm developed by Simon Holdenried-Krafft and Prof. Dr. Ing. Lensch from 

the Department of Computer Science in Tübingen as part of the project GRK 

2543: Intraoperative Multisensory Tissue Differentiation in Oncology. 

The deep learning algorithm was trained on this dataset to learn the automated 

distinction between cancerous and non-cancerous tissue, therefore cancerous 

tissue was annotated on the HE slides with NST in ASAP. The annotations were 

controlled by two experienced pathologists. Areas with ductal in situ carcinoma, 

tissue artifacts, necrosis were excluded. To simulate the mitosis counting as 

defined in the Elston and Ellis Grading system, 10 regions of mitosis were 

determined per tissue sample. In these regions, all mitosis were encircled and 

counted. Positive cells on pHH3-stained samples were annotated and counted in 

10 HPFs as well.  

 

2.6. Comparison of different methods 

We compared the performance of pHH3 and Ki-67 immunohistochemistry 

visually and digitally in NST breast carcinomas with traditional mitotic count by 

HE-staining, assessing changes in histological grading, agreement, and 

correlation between methods. Mitotic indices on HE-stained slides and pHH3-

stained slides were manually annotated and counted on 10 high power fields at 

40x magnification, after being digitized. The visual assessment of Ki-67 positivity 

was based on the percentage of positively stained nuclei, digital assessment of 
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Ki-67 and pHH3 was performed using the Ki-67 quantifying tool of the CogM 

software, which automatically counted the total number of positive cells in each 

histological image. 

The inter-rater reliability of different techniques for assessing mitotic figures was 

measured using intraclass correlation. The intraclass correlation coefficient (ICC) 

is a statistical measure to assess the reliability of a technique assessed by 

different observers and ranges from 0 to 1. It quantifies the degree of agreement 

among multiple raters and thereby indicates the extent to which the variability in 

data may be attributed to genuine differences between subjects.  

Spearman correlation coefficient (SCC) measures the strength, direction, and the 

monotonic relationship between two variables. It captures the degree to which 

the variables move together in a consistent manner, either increasing or 

decreasing. In this study, the SCC was applied to evaluate the correlation 

between visual and digital assessments. 

 

2.7. Cluster analysis  

Cluster analysis was employed to establish new cut-off thresholds for pHH3, and 

Ki-67. The primary aim was to examine the interrelationship of visually and 

digitally assessed parameters, evaluate their similarities, and ascertain whether 

grouping them could yield distinct categories. 

K-medoid cluster analysis is a widely used statistical method that aims to divide 

data points into k homogeneous groups or clusters. The method involves defining 

a set number of k clusters, each distinct from one another, but within themselves 

similar to each other. The value of k refers to the number of centroids, which 

represent the center of the clusters. The number of clusters was conducted 

multiple times, determining the optimal number k=3. The initial three cluster 

centers were randomly assigned to a scatter plot, every data point was allocated 

to the nearest centroid. The data was then averaged through repetitive 

calculations, leading to the identification of new centroids, and optimizing the 

clusters until the centroids have stabilized. 
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2.8. Statistical analysis 

Categorical variables were described using absolute and relative frequency. 

Continuous variables were described as means and standard deviation or 

medians, and interquartile ranges (IQR) according to the distribution of the data. 

Normality of the distribution was assessed by investigating skewness and 

kurtosis as well as Q-Q graphs, box plots, and histograms. Correlations were 

calculated by Spearman´s rank order correlation since the data were not normally 

distributed. Furthermore, Fleiss Kappa was also performed to measure intra-rater 

agreement. 

Agreement of continuous variables was assessed with intraclass correlation 

coefficient by means of a two-way mixed effects model.  

A cluster analysis was conducted to identify groups of patients with as many 

similarities as possible.  Previously, a standardization of variables was performed 

to get a mean of zero and standard deviation of one. The calculation of the 

distance between two real-valued vectors was performed using the Euclidean 

distance. PAM algorithm of K-Medoids clustering was the method used to group 

the patients based on their similarity. The Partitioning around Medoids (PAM) 

algorithm is a robust algorithm, which searches for K representative objects 

amongst a group of patients based on their similarity (k-medoids). In this method, 

each data point is assigned to the closest medoid, thereby creating clusters 

(objects within a cluster for which the average dissimilarity between it and all the 

other the members of the cluster are minimal). This algorithm was used since it 

is less sensitive to noise and outliers 89. The clustering analysis was based on 

the following variants: histology classification (grade, mitosis score), 

immunohistochemistry (HE, Ki-67, pHH3) and visual vs. digital assessment.  To 

estimate the optimal number of clusters, the average silhouette method was used 

(3 clusters were the number of clusters that maximized the average silhouette). 

Statistical analysis was performed using IBM SPSS Statistics (SPSS Inc., 

Chicago, Illinois, USA) and R Software Version 4.0 (R Foundation for Statistical 

Computing, Vienna, Austria).  
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3. Results 

3.1. Patient characteristics 

The patient cohort included n=74 women, the median age was 58 (standard 

deviation: ± 14.9). Each case contributed 1-2 slides, resulting in a dataset of 84 

slides stained with HE. This study included multiple slides of the same tumor for 

some cases, when available, to enhance the range of histologic features and 

tumor heterogeneity observed in real clinical cases. Additionally, these slides 

were included to ensure the dataset available for the deep learning algorithm was 

as extensive as possible. 
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Table 7: Patient characteristics: All cases with diagnosed NST breast cancer including gender, 
age histological grade, molecular subtype, and TNM (Tumor, Node, Metastases)-stage. Out of 

the total 74 cases, only 56 cases had available TNM stages. This limitation is attributed to the 

fact that not all treatment was carried out at the University of Tübingen. 

Characteristics N=74 
Age (years)  

median 58 

range 27-96 

mean 61.2 

SD 14.9 
Gender   

women, n (%) 74 (100) 

Histological grade (Elston and Ellis Classification)  

1, n (%) 10 (13,5) 

2, n (%) 15 (20.3) 

3, n (%) 49 (66.2) 

Molecular subtype   

Luminal A, n (%) 13 (17.6) 
Luminal B HER2+, n (%) 13 (17.6) 

Luminal B HER2-, n (%) 16 (21.6) 

HER2 positive, n (%) 18 (24.3) 

Triple negative, n (%) 14 (18.9) 

T stage, n (%) N=56 

pT0 15 (26,8) 

pT1  21 (37,5) 

pT2-4 19 (33,9) 
N stage, n (%)  

Positive (pN1a-pN2c) 15 (26,8) 

Negative (pN0) 41 (73,2) 
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3.2. Agreement between pathologists 

The pathology report data from 84 HE slides were compared to the pathological 

re-evaluation conducted on the same slides. The comparison focused on the 

grade assessment according to the Elston and Ellis Grade, considering nuclear 

pleomorphism, tubular formation, and mitotic count.  

There was an overall statistically significant interrater agreement (p<0,001) of 

78,9% (95% CI 63,7% to 96,5%) between the two evaluations. Of the subgroups, 

mitotic score agreement was highest with 83,0% (95%CI 67,4 to 98,6), followed 

by tubular formation with 69,8% (95%CI 50,9% to 88,8%). Nuclear pleomorphism 

showed the poorest agreement with 62,9% (95% CI 42,0% to 83,7%). The Fleiss 

Kappa for grade I nuclear pleomorphism could not be calculated since there was 

only one case. 

The correlation suggests that the assessments and evaluations of the histological 

features, such as nuclear pleomorphism, tubular formation, and mitotic count, 

were in strong alignment. Furthermore, with increasing histologic grade, the 

agreement between observers increased. 
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Table 8: Pathologists’ interrater agreement (Fleiss Kappa) 

 Fleiss Kappa 95% CI p-value 

Tubular formation 69,8% 50,9% – 88,8% <0,001 

score 1 48,8% 27,4% – 70,2%  

score 2 64,7% 43,4% – 86,1%  

score 3 71,4% 56,6% – 99,3%  

Nuclear pleomorphism 62,9% 42,0% – 83,7% <0,001 

score 1 - -  

score 2 70,3% 40,5% – 83,3%  

score 3 92,3% 44,6% – 87,4%  

Mitotic index 83,0% 67,4% – 98,6% <0,001 

score 1 87,7% 60,0% – 100%  

score 2 89,7% 59,5% – 100%  

score 3 90,9% 67,3% – 100%  

Elson and Ellis grade 78,9% 63,7% – 96,5% <0,001 

grade I 77,8% 53,7% – 96,5%  

grade II 78,0% 49,6% – 92,3%  

grade III 95,4% 65,6% – 100%  

 

There was a very strong correlation (intraclass correlation coefficient (ICC) = 

0.939; 95% CI 0.906 to 0.961; p<0.001) between two pathologists (pathology 

report vs. pathology re-evaluation) regarding the mitotic count according to the 

Elston and Ellis Classification. 

 

3.3. HE mitotic count vs. Ki-67 proliferation index  

The ICC for agreement between mitotic count on HE-stained slides and visual 

evaluation of Ki-67 IHC was 0.433 (95% CI: -0.167 to 0.712; Table 9), indicating 

moderate agreement. The interrater reliability was found to be lower when 
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comparing the results of mitotic count on HE-stained slides obtained via visual 

assessment (VA) with those of Ki-67 IHC obtained via digital assessment (DA) 

(ICC= 0.279; 95% CI: -0.156 to 0.561; Table 9). 

Table 9: ICC of VA of mitotic count (HE) vs. VA of Ki-67 and VA of mitotic count (HE) vs. DA of 
Ki-67 

 ICC (95% CI) p-value 

VA of mitotic count (HE) 

vs. 

VA of Ki-i67 

0.433 (-0.167 to 0.712) <0.001 

VA of mitotic count (HE) 
vs. 

DA of Ki-67 

0.279 (-0.156 to 0.561) <0.002 

 

A moderate correlation was identified between the visual evaluation of mitotic 

count on HE-stained slides and the visual assessment of Ki-67 staining, when 

applying the Spearman correlation. The strength of the correlation was quantified 

by a SCC of 0.525, indicating a moderate correlation between the two techniques 

(Table 10). Additionally, a moderate correlation was observed between the visual 

assessment of mitotic count on HE-stained slides and the digital assessment of 

Ki-67-stained slides, with a SCC of 0.434 (Table 10). 

 
Table 10: Spearman correlations between mitotic count on HE stains vs. VA of Ki-67 and 

mitotic count on HE stains vs. DA of Ki-67 within histological grades 

 Spearman correlation 

Mitotic count (HE) vs. Ki-67 visual assessment 0.525 

Mitotic count (HE) vs. Ki-67 digital assessment 0.434 

 

Upon analyzing the correlation within individual histological grades (as shown in 

Table 11), a strong positive correlation was found between the visual and digital 

comparison of Ki-67 for histological grades II and III, with SCC of 0.806 and 

0.728, respectively. A moderate correlation, represented by a SCC of 0.563, was 
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observed for grade I. By comparing the VA and DA of Ki-67 within each 

histological grade, it allows for the evaluation of the agreement between these 

two methods at the grade level. 

 
Table 11: Spearman correlations between VA and DA of Ki-67 within histological grades 

Histological grade Spearman correlation 

grade I 0.563 

grade II 0.806 

grade III 0.728 

Figure 7: Comparison between visual and digital assessment of Ki-67, according to the original 
histological evaluation (grade I, II, III). Scatter plots with regression lines. VA (x-axis) is plotted 

against DA (y-axis). 

Figure 7 depicts the correlation between VA and DA of Ki-67. A positive and linear 

relationship between the VA and DA of Ki-67 is observed, with tightly clustered 
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data points around the regression lines, suggesting a strong relationship between 

the two methods. 

 

3.4. HE mitotic count vs. pHH3 mitotic indices 

Table 12 presents the number of slides with mitosis scores from 1 to 3, assessed 

by different methods, including HE visual, pHH3 visual, and pHH3 digital, 

categorized by their respective histological grade. 

According to VA of HE-staining, 18 out of 84 slides (21.4%) were categorized as 

having a mitosis score of 3. The pHH3 marker revealed a greater number of 

mitotic cells, thus in the visual analysis this number increased to 72 out of 84 

slides (85.7%), and further to 100% when DA was used. However, this increase 

diminished the discriminatory properties, as all cases were then categorized as 

having a mitosis score of 3. 

Figure 8 depicts the distribution of the number of mitoses based on mitosis scores 

1-3, as determined by various methods (HE visual, pHH3 visual, and pHH3 

digital). 
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Figure 8: Number of mitoses (y-axis) plotted against different methods of analysis (x-axis: 
Visual assessment of HE-stained slides; visual and digital assessment of pHH3). Further 

subdivision of each analysis method into mitosis score 1 (gray), 2 (yellow) and 3 (black). 

 

Table 12: Stratification of mitosis scores as assessed by different methods (HE visual, pHH3 
visual, and pHH3 digital). 

 

The mitosis count is scored by different assessment methods (see 3 columns) 

and the number of slides of each scoring category as well as the percentages are 

Grade 
VA 

of HE-stained slides 

(n, %) 

VA of pHH3-stained 
slides 

(n, %) 

DA of 
pHH3-stained slides 

(n, %) 

Score 1 29 (34.5%) 4 (4.8%) 0 

Score 2 37 (44.0%) 8 (9.5%) 0 

Score 3 18 (21.4%) 72 (85.7%) 84 (100%) 

Total 84 84 84 
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depicted (total n=84 slides). The number of slides according to mitosis score was 

assessed according to mitotic count/area (0.159mm2; Table 1). 

 

3.4.1. Agreement between methods 

The study compared the initial assessment of mitotic count on HE-stained slides 

with the evaluation of mitotic indices on pHH3-stained slides, using both visual 

and digital assessment techniques. The obtained intraclass correlation 

coefficients were 0.315 (with a 95% confidence interval ranging from -0.156 to 

0.599; p < 0.001, as shown in Table 13) for comparing mitotic count on HE-

stained slides with visual assessment of pHH3, and 0.134 (with a 95% confidence 

interval ranging from -0.131 to 0.378; p = 0.039, as shown in Table 13) for 

comparing mitotic count on HE-stained slides with digital assessment of pHH3.  

These results suggest that the assessment of the two different stains may not be 

interchangeable techniques. A high degree of reliability was found between VA 

and DA of pHH3. The average ICC measure was 0,849 (with a 95% CI from 0.365 

to 0.941; p<0.001, Table 13). 

Table 13: ICC of mitotic count on HE-stained slides and VA of pHH3-stained slides, mitotic 
count on HE-stained slides and DA of pHH3-stained slides and between VA and DA of pHH3-

stained slides 

 ICC (95% CI) p-value 

VA of mitotic count (HE) 

vs. 

VA of pHH3 

0.315 (-0.156 to 0.599) <0.001 

VA of mitotic count (HE) 

vs. 

DA of pHH3 

0.134 (-0.131 to 0.378) 0.039 

VA of pHH3 

vs. 

DA of pHH3 

0.849 (0.365 to 0.941) <0.001 
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A moderate correlation was found between mitotic count on HE-stained slides 

(assessed visually) and the number of pHH3 positive cells (assessed visually) 

indicated by the SCC of 0.643, see Table 14. 

However, a weak correlation was observed when comparing the mitotic count on 

HE-stained slides (assessed visually) with the number of pHH3 positive cells 

(assessed digitally), as indicated by the SCC of 0.384. 

 
Table 14:  SCC of mitotic count on HE slides and pHH3 positive cells by VA and DA 

 Spearman correlation 

Mitotic count (HE) vs. pHH3 VA 0.643 

Mitotic count (HE) vs. pHH3 DA 0.384 

 

Upon analyzing the Spearman correlation within individual histological grades, a 

very strong positive correlation between visual and digital comparison of pHH3 

across all three histological grades was observed (Table 15), as indicated by the 

SCC of 0.955 for grade I, 0.763 for grade II, and 0.889 for grade III. 

 
Table 15: Spearman correlations between VA and DA of pHH3 within histological grades 

Histological grade Spearman correlation 

grade I 0.955 

grade II 0.763 

grade III 0.889 
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Figure 9: Comparison between visual and digital assessment of pHH3 according to the original 
histological evaluation (grade I, II, III). Scatter plots with regression lines. VA (x-axis) is plotted 

against DA (y-axis). 

Figure 9 illustrates the positive and linear relationship between the VA and DA of 

pHH3, where the x-axis and y-axis represent the VA and DA, respectively. The 

dots in the plot represent the individual data points, with different colors 

representing the histological grades I-III. 

In particular, the purple data points representing grade III are tightly clustered 

around the purple regression line, indicating a strong and consistent relationship 

between VA and Da within this grade. 

 

3.5. PHH3 mitotic indices vs. Ki-67 proliferation index  

The ICC for agreement between visual evaluation of positive cells on Ki-67-

stained slides and visual evaluation of positive cells on pHH3 stain was 0.517 

(95% CI: 0.172 to 0.709; <0.001), indicating moderate agreement. 
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Table 16: ICC of VA of pHH3 vs. VA of Ki-67 and of DA of pHH3 vs. DA of Ki-67 

 

The ICC for agreement between the digital evaluation of positive cells on Ki-67-

stained slides and digital evaluation of positive cells on pHH3 stain was 0.324 

(95% CI: -0.131 to 0.598; p<0.002), indicating moderate agreement.  

A moderate correlation was observed between visual and digital assessment of 

Ki-67 stain (SCC = 0.668), as determined by the Spearman correlation. A slightly 

lower SCC of 0.478 was found, when comparing positive cells on pHH3 and Ki-

67-stained slides evaluated by DA.  

 
Table 17: Spearman correlation between VA and DA of pHH3 and Ki-67 IHC 

 Spearman correlation 

pHH3 visual vs. Ki-67 VA 0.668 

pHH3 digital vs. Ki-67 DA 0.478 

 

3.6 Identification of new thresholds based on quantitative 
assessment 

The objective of utilizing cluster analysis was to explore the relationship between 

different parameters, assess their similarities, and determine if grouping them 

together would result in distinct categories. This analysis seeks to identify 

patterns among the parameters, enabling the identification of clusters that share 

common characteristics or properties. Utilizing cluster analysis provides insights 

 ICC (95% CI) p-value 

VA of pHH3 

vs. 

VA of Ki-67 

0.517 (0.172- 0.709) <0.001 

DA of pHH3 

vs. 

DA of Ki-67 

0.324 (-0.131 - 0.598) <0.002 
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into the underlying structure and organization of the data, which can aid in 

classifying different categories based on the similarities observed among the 

parameters. 

 

3.5.1. Cluster analysis 1 

To identify new cut-off thresholds based on quantitative assessment of pHH3 and 

Ki-67, cluster analysis was performed, with the optimal number of clusters 

determined to be three. The results are depicted in Figure 10, which illustrates a 

scatter plot of visual quantification of pHH3 against visual quantification of Ki-67, 

with the plot divided into three clusters representing potential cut-off values. Each 

point in the scatter plot represents the number of mitoses for a single tissue 

sample. The data points are colored and grouped into three distinct clusters (1-

3), based on the results of the k-medoid cluster analysis. These clusters 

represent possible cut-off values for the number of mitoses. The scatter plot 

allows for visualization of the relationship between pHH3 and Ki-67 staining and 

their association with the number of mitoses in each tissue sample. 
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Figure 10: Distribution of number of mitoses according to visual quantification of pHH3 (x-axis) 
and visual quantification of Ki-67 (y-axis). Clusters 1-3 are color-coded 

 

Figure 11: Visualization of percentage of Ki-67 according to clustering 1 
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In Figure 11, boxplots were constructed to represent the distribution of Ki-67 

according to the clusters obtained from cluster analysis 1. The overlap in 

interquartile ranges between group 2 and 3 suggests that the values within this 

range could be classified into both groups, leading to reduced specificity. In 

contrast, Figure 12 presents a boxplot illustrating the classification of mitotic 

indices on pHH3 IHC, according to the clusters derived from cluster analysis 1. 

The interquartile ranges of the clusters do not overlap, indicating that the analysis 

of cluster 1 is more suitable for establishing cut-off values for pHH3. 

 

Figure 12: Visualization of pHH3 positive cells according to clustering 1 

3.5.2. Cluster analysis 2 

Figure 13 displays a scatter plot representing the relationship between visual 

quantification of pHH3 (x-axis) and digital quantification of Ki-67 (y-axis), with 

clusters identified through a similar procedure as described in cluster analysis 1. 

The scatter plot is divided into three clusters, with each cluster potentially 

representing a different cut-off value for pHH3 and Ki-67. 
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Figure 13: Distribution of number of mitoses according to clusters 1-3, according to visual 
quantification of pHH3 (x-axis) and digital quantification of Ki-67 (y-axis). 

 

In Figure 14, the distribution of Ki-67 according to cluster 2 is displayed using 

boxplots. The interquartile ranges do not overlap, indicating a higher specificity 

for creating cut-off values. In contrast, Figure 15 shows the distribution of pHH3 

according to cluster analysis 2, which displays an overlap of interquartile ranges 

in groups 2 and 3. This overlap signifies a higher probability for categorizing 

values into both groups, indicating a lower specificity for creating cut-off values 

for pHH3. 
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Figure 14: Visualization of percentage of Ki-67 according to clustering 2 

 

Figure 15: Visualization of pHH3 positive cells according to clustering 2 



Results 

46 

Table 18: Min-max values of possible groups stratified by clustering 2 

 

New possible subgroups could be identified through the application of cluster 

analysis, based on the quantitative assessment of pHH3 and Ki-67. The number 

of positive cells on pHH3 IHC and percentages of proliferating cells on Ki-67 IHC 

were assigned to three possible groups, grade I to III, according to the second 

clustering. 

 

3.6. Summary of the results 

The study examined the impact on histological grading, agreement, and 

correlation between methods. We used the ICC to assess histological slides with 

different methods, the SCC to determine the relationship between techniques and 

finally, through cluster analysis we propose potential cut-off values for the 

biomarkers pHH3 and Ki-67. 

The VA of pHH3 showed higher sensitivity in detecting mitotic figures compared 

to mitotic count in HE-stained slides, suggesting that these approaches are not 

equivalent. The agreement between mitotic count and the VA of both 

immunohistochemical methods, as well as between the two 

immunohistochemical methods pHH3 and Ki-67 was moderate (ICC= 0.315 to 

0.517; SCC=0.525 to 0.668). 

However, considering pHH3 immunolabeling, VA allows for better identification 

of the area with the highest mitotic activity due to the distinct contrast between 

stained elements. 

Grade 1 2 3 

pHH3 

Visual assessment 
1 - 59 21 - 121 39 – 226 

Ki-67 (%) 

Visual assessment 
5 - 35 15 – 70 15 – 80 

Ki-67 (%) 

Digital assessment 
5.3 - 35 26.4 – 55.7 49.7 – 84.8 
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The agreement between mitotic count and DA was comparatively lower 

(ICC=0.134 to 0.279; SCC=0.384 to 0.434). 

The strong correlation observed between the visual and digital approaches 

indicates the potential of the digital method as a viable alternative to conventional 

counting methods. Despite the superior performance of digital pathology in 

quantifying Ki-67 IHC staining, our study demonstrated that it was not feasible for 

accurate quantification of pHH3 due to the software's limited ability to distinguish 

between dark artifacts and positive cells. Moreover, to identify new cut-off 

thresholds based on quantitative assessment of pHH3 and Ki-67, cluster analysis 

was performed, with the optimal number of clusters determined to be three. 

Accordingly, the study proposes the use of 3 subgroups for pHH3 with minimum 

to maximum values (such as group 1: 1 – 59; group 2: 21 –121; group 3:  39-226) 

and 3 subgroups for Ki-67 (such as group 1: 5,3 - 35 %; group 2: 26,4 –55,7 %; 

group 3: 49,7 - 84,8 %). 
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4. Discussion 

In this study, the main objective was to evaluate the accuracy and interobserver 

variability of the Elston and Ellis Classification in NST breast carcinoma and to 

compare the conventional HE-staining with Ki-67 and pHH3 as quantifiable 

immunohistochemical markers. Another goal was to make the histological 

grading process more objective by utilizing digital pathology for quantitative 

measurements. 

The results of our study indicate that the pHH3 marker offers a higher degree of 

sensitivity and accuracy in determining mitotic count than the conventional HE-

staining. Our findings highlight the potential utility of incorporating pHH3 as a 

quantifiable marker in the process of histological grading for more objective 

differentiation, particularly in challenging cases between grades II and III. 

However, the establishment of pHH3-specific cut-off values would be required. 

Despite the superior performance of digital pathology in quantifying Ki-67 

immunohistochemical staining, our study demonstrated that it was not feasible 

for accurate quantification of pHH3 due to the software's limited ability to 

distinguish between dark artifacts and positive cells. 

In the following chapters these results will be discussed further. 

 

4.1. Accuracy and interobserver variability of the Elston and 
Ellis Score 

A large-scale study revealed that the mitotic count was the only factor that had a 

significant impact on prognosis, when individual elements of the Elston and Ellis 

Classification were examined90. Moreover, numerous studies have demonstrated 

its independent prognostic value91,92. 

The current method for determining the mitotically active cells is identifying them 

based on their morphology on HE-stained slides. However, the identification of 

mitotic figures in practical application may be challenging, as it has been shown 

to be highly subjective93,94  and prone to considerable inter- and intra-observer 
variability. This variability may arise due to variations in the interpretation of 
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morphological features, differences in identifying mitotically active areas on HE-

stained slides, as well as variability in slide fixation and thickness. The presence 

of cells resembling mitotic figures such as apoptotic, karyorrhectic or 

hyperchromatic cells may further diminish the reproducibility65. 

Additionally, cells in metaphase and anaphase are typically easier to identify, 

while recognizing cells in prophase or telophase can be difficult or even 

impossible. Moreover, crushed artifacts, which often obscure morphological 

details, may further hinder the accurate identification of mitotic figures. These 
factors may weaken the reliability of histologic grade, particularly when mitotic 

count is a crucial factor in determining the overall grade, especially when the 

score falls within the intermediate range based on tubular formation and nuclear 

pleomorphism. 

In this study, two pathologists evaluated a total of 84 HE-stained slides. The 

interobserver agreement was 83.0% for mitotic count, 69.8% for tubular 

formation, and the lowest agreement of 62.9% for nuclear pleomorphism. The 

overall agreement between the two observers was 78.9%. These findings align 

with a previous study conducted by Elmore et al., which reported an interobserver 

agreement of approximately 75% among three consensus panel members for 

breast biopsy diagnoses95. Many other studies have been published regarding 

the variability in pathologists´ breast cancer grading, with a wide range of 

agreement94,96-99. While some studies have reported lower agreement for nuclear 

pleomorphism94,99, as observed in our study, others have found greater variability 

in mitotic count98,100. Our study also revealed that as the histologic grade 

increased, the agreement between observers also increased. 

In contrast, a study by Bueno-de-Mesquita et al. found that inter-observer 

variation was higher in grade II tumors than in grade I and III tumors101. 

Interestingly, there was a very strong correlation (ICC= 0,928) between the  two 

pathologists regarding the Elston and Ellis Classification, despite the commonly 

reported subjectivity and moderate interobserver reproducibility associated with 

mitotic count assessment17,66. It is noteworthy, that this strong correlation could 

be due to both pathologists working at the same institute and the relatively low 

sample size of the study.  
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4.2. Comparison of HE mitotic count and Ki-67 proliferation 
index 

Ki-67 is an indicator of proliferation and a clinically validated predictor of 

prognosis for early breast cancer57,59 and a prognostic factor for several tumors 

including cutaneous melanomas102 and meningiomas103. 

Despite the widespread use of Ki-67 IHC for estimation of cell proliferation, its 

utility in both breast cancer research and clinical decision-making has come into 

question due to the considerable variability in Ki-67 results. Determining the ideal 

cut-off value for Ki-67 in clinical practice has proven difficult, further complicating 

its utility. The published cut-off for Ki-67 in different studies vary between 5% and 

34%104 and the International Ki-67 in Breast Cancer Working Group (IKWG) was 

unable to come to a consensus regarding the ideal cut-offs that might be used in 

clinical practice31. In a 2009 study by Cheang et al., which was the first study to 

attempt to distinguish the luminal B subtype from the luminal A subtype, a cut-off 

of 14% was proposed58. In 2011 this threshold was suggested by the St. Gallen 

Consensus Meeting69 and was upgraded to 20% two years later95. 

In a meta-analysis conducted by Azambuja et al., a wide range of Ki-67 cut-off 

values were found across different studies57, which included a 10% threshold, 

mean or median values. Therefore, these differences might contribute to the 

difficulty in setting a standard cut-off value in daily practice. The differences in 

cut-off values may also be influenced by the clinical objective, as suggested by 

some authors57,105. For instance, a 10% cut-off may be useful in cases with slow 

proliferating tumors to avoid overtreatment, while a 25% cut-off may be 

appropriate for identifying patients who could benefit from chemotherapy 

protocols, as demonstrated in a study by Spyratos et al.57,105. 

Denkert et al. proposed that Ki-67 should be regarded as a continuous variable 

as it reflects the percentage of proliferating cells in the tumor, which can range 

from 0% to 100%. They suggested that setting a standard cut-off value might not 

be possible, and that Ki-67 levels should be regarded as dependent on clinical 

endpoints, treatment, and molecular subtypes106. However, a continuous marker 

may offer more flexibility for clinical decision-making and the ability to adjust to 
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different therapeutic strategies. IKWG states that Ki-67 levels less than 5% and 

30% or more should be considered clinically actionable29. 

We chose to investigate the relationship between Ki-67 and mitotic count since 

previous research has shown a strong association between Ki-67 and tumor 

grade107,108, which is an important prognostic factor in breast cancer5. 

Additionally, mitotic count is an important component of histologic grade, 

therefore, evaluating the correlation between these two measures was of interest 

in this study. 

In the present study, the agreement between mitotic count on HE-stained slides 

and visual evaluation of Ki-67 IHC was determined by intraclass correlation 

coefficient analysis. The agreement between mitotic count on HE-stained slides 

and visual evaluation of Ki-67 IHC was moderate agreement (0.433; 95% CI: -

0.167 to 0.712). Furthermore, the ICC agreement between mitotic count on HE-

stained slides and digital evaluation Ki-67 IHC was also assessed, revealing 

slightly lower agreement (ICC= 0.279; 95% CI: -0.156 to 0.561). Given that Ki-67 

can be detected in all phases of the cell cycle except for the resting phase, while 

mitotic figures in HE-staining are only visible in the mitotic phase, it is not 

unexpected that there is only moderate correlation between these two measures. 

Therefore, they may provide complementary information, but cannot be used 

interchangeably. 

Furthermore, when comparing the mitotic count with visual and digital 

assessment of Ki-67 IHC, the SCC indicated a moderate correlation (mitotic count 

(HE) vs. Ki-67 VA = 0.525; mitotic count (HE) vs. Ki-67 DA = 0.434). The 

moderate correlation could be attributed to the inherent differences in the 

measurement approaches of the two methods to assess cell growth and division. 

While mitotic count reflects the number of mitotic figures identified during the 

mitotic phase of the cell cycle, Ki-67 is a marker of proliferation, present during 

all active phases of the cell cycle except the resting phase. The potential influence 

of molecular subtypes on the correlation between mitotic count and Ki-67 IHC 

was not considered in the present study. It is possible that differences in the 

molecular subtypes of breast cancer may have an impact on the observed 

correlation between these two methods of measurement55,109. 
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In conclusion, the moderate correlation observed between the mitotic count and 

Ki-67 IHC in this study may be attributed to multiple factors, such as the 

differences in methodology of the two techniques, as well as potential variations 

in the molecular subtypes of the tumors. 

 

4.2.1. Comparison of visual and digital assessment of Ki-67 scoring 

In this study, two methods were employed for the evaluation of Ki-67 in breast 

cancer: visual assessment and automated digital analysis. 

Digital pathology is a promising tool in reducing interobserver variability, 

increasing accuracy and reproducibility in diagnostic and research settings110. 

However, until recently, the image quality and analysis software did not allow for 

automated assessment of histological slides. According to Robertson et al. the 

ultimate goal of digital pathology is to improve pathologists' workflow, provide 

more accuracy, reduce human error, and increase reproducibility33. 

Although many image analysis systems exist, most provide the opportunity to 

adjust parameters, which may lead to inconsistent results. The non-adjustable 

software of Cognition Master Professional Suite (CogM), a collection of image 

analysis software tools, offers an advantage for routine application, as no 

opportunity exists for modification. CogM enables the presentation, evaluation, 

and analysis of digital histological slides, making it a valuable tool for digital 

pathology. The Ki-67 Quantifier module used for this study has been previously 

validated in a neoadjuvant breast cancer clinical trial as a computer-based 

approach for Ki-67 scoring34. A recent study conducted by Alataki et. al., 

demonstrated that CogM image analyzes allowed for standardized automated Ki-

67 scoring that accurately replicated previously clinically validated and calibrated 

manual scores111. 

Our analysis showed good agreement between the conventional (visual) and 

digital methods of Ki-67 expressions (SCC: grade I = 0.563; grade II = 0.806; 

grade III = 0.728). This is in line with previous publications that also obtained high 

levels of correlation112,113. Given the high correlation observed between the visual 

and digital methods of Ki-67 expression, the digital method shows promise as a 
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potential alternative to traditional counting methods, as digital pathology 

continues to advance. 

However, the IKWG  currently advises the manual counting of Ki-67 through light 

microscopy or from a digital image, while automated scoring is still being 

researched29. 

In their discussions, the IKWG also addressed different approaches to Ki-67 

assessment, namely the hot spot score and the global score. The hot spot score 

involves selecting the field with the highest observed Ki-67 index and scoring up 

to 500 cells. To obtain the global score, the IKWG developed an online scoring 

application that evaluates 100 cells in four distinct areas of the tumor section 

(negligible, low, medium, or high), aiming to capture tumor heterogeneity. In 

studies conducted by the IKWG, global scores obtained across the entire tumor 

section demonstrated higher reproducibility compared to hot spot methods. 

However, it is important to note that these differences did not reach statistical 

significance, indicating the need for further advancements in this area29. 

 

4.2.2. The advantages of using pHH3 as a mitosis specific marker 

The pHH3 marker is a specific marker for mitoses that offers a potentially more 

objective method for identifying mitotic figures compared to the traditional mitotic 

count. This approach has several advantages, including reducing the 

uncertainties and misdiagnoses due to artifacts associated with traditional 

methods and enabling the detection of easily missed mitoses. 

Studies have shown that pHH3 is a practical, robust and sensitive indicator of 

mitotic figures in breast cancer, enabling faster and easier detection of mitoses 

and the identification of hot-spots65. Moreover, pHH3 expression has been 

demonstrated to be a stronger prognostic marker than axillary lymph node status, 

tumor size, nuclear grade, and histological grade23. 

Comparable to mitosis scoring on HE samples, mitotic indices on pHH3-stained 

slides involve counting the total number of tumor cells in 10 consecutive high-

power fields (HPFs) where the immunolabeling was most prevalent. The use of 

pHH3 in identifying additional mitoses may have practical application. Recent 
studies have shown pHH3 IHC to be highly specific for phosphorylated histone 
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H3, which is always heavily phosphorylated during metaphase. Histone H3 is a 

nuclear core histone protein that is part of chromatin, and its phosphorylation at 

serine-10 and serine-28 likely plays an important role in chromosome 

condensation and cell-cycle progression during mitosis114. Especially metaphase 

chromosomes are heavily phosphorylated, while interphase cells do not stain or 

show very low intensity114,115. Hence, pHH3 counts should theoretically correlate 

with mitotic counts and several reports have been published on the positive 

correlation between mitotic count and pHH3 counts 22,24,116,117. Research studies 

have indicated that pHH3 is a useful marker in several types of tumors. PHH3 

IHC has been recommended as an adjunct to HE-staining, as it has been shown 

to improve inter-rater reliability in identifying mitotic “hot spots” in thin melanoma, 

thereby helping diagnosis118. Similarly, in well-differentiated neuroendocrine 

tumors of the pancreas, the use of pHH3 IHC has been shown to improve 

interobserver agreement in mitotic count and grade assessment compared to 

HE64. In a study by Skaland et al. pHH3 expression served as a strong prognostic 

marker for lymph node-negative breast cancer patients under the age of 55 years 

who underwent systemic adjuvant chemotherapy22 and found that a threshold of 

≥13 positive cells for pHH3 could effectively distinguish between low-proliferative 

and high-proliferative tumors, with the cut-off value of 13 providing the strongest 

prognostic threshold for 20 year recurrence-free survival22. In a study conducted 

by Van Steenhoven et al., the threshold of ≥13 positive cells for pHH3 was utilized 

and the findings demonstrated that pHH3 exhibits independent prognostic value, 

thus potentially improving the histological grading process by enabling more 

accurate identification of mitotic figures119. 

 

4.3. PHH3 as a quantifiable marker 

The use of pHH3 staining for visual and digital analysis has shown a higher 

sensitivity in identifying mitotic figures compared to traditional HE-staining. The 

re-evaluation of mitosis score using pHH3 staining resulted in a significant 

upgrade of mitotic score and grade, with a higher number of mitotic figures being 

identified. According to visual assessment of HE-staining, 18 out of 84 slides 

(21.4%) were categorized as having a mitosis score of 3. However, using the 
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pHH3 marker in visual analysis increased this number to 72 out of 84 slides 

(85.7%), and further to 100%, when digital assessment was used. 

The higher sensitivity of pHH3 staining was expected and is likely due to the fact 

that pHH3 staining allows for the identification of prophase figures that are 

impossible to count with regular HE staining, but can be easily identified in pHH3-

stained slides116. Furthermore, pHH3 allows rapid detection of the mitotically most 

active area because of the sharp contrast between stained elements compared 

to non-stained elements. The increased sensitivity and accuracy of pHH3 staining 

have been demonstrated in several other studies concerning breast 

cancer22,116,120. A study by Veta et al. suggested that automated image analysis 

of pHH3 immunostains could be used to guide pathologists to the region of the 

tumor with the highest proliferation rate and help in improving objectivity53. 

The evaluation of pHH3-stained slides using automated digital analysis led to a 

mitosis score of 3 in all cases (100%), indicating a lack of discriminatory power 

when categorizing the number of positive cells into different grades according to 

the original HE-staining assessment. The recognition tool of the software used 

for cell segmentation may have been disturbed, particularly by darker artifacts. 

Segmentation of nuclei is a challenging task due to the complex shapes and 

overlapping of nuclei, imperfect slide preparation or staining, contact regions, and 

artifacts8,121. 

In their study “Grading of invasive breast carcinoma: the way forward”, Van 

Dooijeweert et.al. quoted an important remark by Bloom and Richardson form 

1957 that the three histological groups are not different entities, but statistically 

allocated cut-off values2,122. As the current cut-off values for mitotic count are 

based on studies conducted using HE-staining, they may not be directly 

applicable to pHH3-staining. Consequently, it is necessary to establish specific 

cut-off values for pHH3-staining in the future. 
The comparison of mitotic count based on HE-staining with the evaluation of 

pHH3 positive cells showed a stronger correlation when pHH3 was assessed 

visually, with a correlation coefficient of 0.643. However, digital assessment of 

pHH3 was not always reliable due to difficulties in distinguishing between 

artifacts, darker staining, and actual positive cells. As a result, interrater 
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agreement between mitotic count on HE and pHH3 positive cells with digital 

assessment was only moderate, with a correlation coefficient of 0.384. The 

observed increase in mitotic counts based on pHH3 staining in comparison to 

HE-staining could be attributed to the higher sensitivity and specificity of pHH3 in 

staining mitotic figures and highlighting nuclear details. Additionally, the positive 

cells on pHH3-stained slides are easier to distinguish than those on HE-stained 

slides, leading to a higher count. This finding is consistent with a study by Cui et 

al. which reported a similar increase in mitotic count based on pHH3 staining66. 

A strong correlation was observed between the visual and digital assessment of 

pHH3-stained slides, as indicated by a strong SCC and tightly clustered scatter 

plots around the regression lines in Figure 9, especially for grade III. This 

suggests a strong and linear relationship between the evaluation methods. These 

findings are consistent with a previous study by Bossard et al., which also 

reported a good correlation between visual and computer-assisted counts of 

pHH3 positive mitotic figures in breast adenocarcinomas116. 

Using a quantifiable biomarker such as pHH3 with acomputer assisted method 

might offer the opportunity to better reproducibility, and accuracy24,123. Although 

a high degree of reliability (ICC=0,849) was found between visual and digital 

assessment of pHH3, the digital method was not feasible due to technical 

limitations. Specifically, the software used for digital assessment (CogM) could 

not always distinguish between artifacts, darker staining, and actual positive cells, 

which led to inaccurate results. 

 

4.4. Comparison of pHH3 mitotic indices and Ki-67 
proliferation index 

Ki-67 and pHH3 are both quantifiable IHC markers, which allow fast recognition 

and easy distinction between positive and negative cells. Both markers may be 

employed to detect and quantify cells in the process of mitosis. Subsequently, a 

comparison was conducted to evaluate positive indices of pHH3 and Ki-67 IHC. 
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The inconsistency in reproducing results using the Ki-67 marker include the 

selection of hot spots and the determination of the percentage of positive cells 

among the total number of invasive cancers. 

In contrast, the pHH3 marker has a unique feature that confirms the presence of 

mitosis based on the morphology, like shape and structure. This feature allows 

for better agreement and accuracy in detecting the presence of specific cells, 

which may improve the reproducibility of results. 

Only moderate inter-rater agreement was observed between pHH3 and Ki-67 

IHC, being slightly better when assessed visually. Although both pHH3 and Ki-67 

markers are commonly used to evaluate proliferating cells, they target different 

stages of the cell cycle and are not interchangeable. While Ki-67 is visible in all 

active cell cycle phases, including mitosis, pHH3 is particularly visible during late 

G2 and the mitotic phase. Consequently, Ki-67 immunolabeling identifies more 

positive cells than pHH3 staining. 

Strong positive correlation was observed between visual assessment of pHH3 

and Ki-67 immunolabeling indices. 

Digital evaluation was found to be superior in Ki-67 assessment, compared to the 

digital evaluation of the pHH3 marker. Dark artifacts and staining intensity posed 

challenges that were not as prevalent with digital assessment of Ki-67. This may 

be explained due to the nature of the assessment, since Ki-67 positivity is based 

on the percentage of positively stained nuclei and pHH3 was scored as the total 

number of positive cells in 10 HPFs. Furthermore, the Ki-67 Quantifier may be 

therefore better optimized for Ki-67 assessment compared to pHH3. Staining 

intensities on slides may vary and digital image analysis might be better suited 

for the Ki-67 marker. The quality of histological slides might differ for pHH3 and 

Ki-67 and may impact the accuracy of the digital evaluation.  

Thus, only a moderate correlation was found between the digital assessment of 

pHH3 and Ki-67 IHC. 

 

4.5. Identification of new thresholds 

The traditional visual quantification method may have certain advantages over 

digital quantification, such as the ability of the observer to identify subtle 
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variations in staining intensity, to evaluate staining patterns, and account for any 

specific morphological characteristics associated with mitotic cells. Moreover, 

visual assessment enables the utilization of human expertise and judgment 

during the analysis, which may consider additional factors that automated digital 

quantification may overlook. 

However, it's important to note that digital quantification has its own advantages, 

such as providing objective, reproducible and precise measurements, thereby 

reducing subjectivity, and allowing for potential automation of large datasets. 

By conducting both visual and digital quantification cluster analyzes, the study 

gains a comprehensive understanding of the relationship between pHH3 and Ki-

67 staining. 

The present study revealed that pHH3 staining highlights a larger number of 

mitotic cells in comparison to HE-staining, suggesting that the use of the current 

HE cut-off values to score pHH3-stained slides may lead to an overestimation of 

the histological grade. To identify potential cut-off values for pHH3 and Ki-67, k-

medoid cluster analysis was conducted to group data points into homogeneous 

clusters, with the optimal number of clusters determined to be 3 for both pHH3 

and Ki-67. Accordingly, the study proposes the use of 3 subgroups for pHH3 with 

minimum to maximum values (such as 1 - 59 vs. 21 - 121 vs. 39 - 226) and 3 

subgroups for Ki-67 (such as 5,3 - 35 % vs. 26,4 - 55,7 % vs. 49,7 - 84,8 %) as a 

reasonable approach for further validation. 

 

4.6. Conclusion 

In this study we show that pHH3 counts correlate with mitotic count on HE stains 

but pHH3 is a more sensitive marker, therefore resulting in a higher number of 

mitoses than traditional HE slides. While digital pathology exhibited excellent 

performance in quantifying Ki-67 immunohistochemical staining, our study 

revealed that accurate quantification of pHH3 using digital methods was not 

feasible. 

Subjectivity in the assessment of histological grade might be reduced by using 

pHH3, however, further confirmation of suitability and superiority of this biomarker 

is needed. 
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4.7. Challenges and future trends 

The findings of this study should be considered in the light of some limitations. 

The relatively small sample size of the cohort and the exploratory nature of the 

study represent important limitations. Therefore, the prognostic impact of pHH3-

assisted mitotic count needs to be validated in larger cohorts as part of the GRK 

2543 project. At present, these results are not yet applicable to clinical practice. 

Another potential limitation is observer bias, which may arise from researchers' 

role as observers in collecting data. Our data was selected in a non-random 

manner, and was aimed to create a balanced dataset, thus introducing selection 

bias. Additionally, demographic risk factors were not taken into consideration in 

our analysis. Furthermore, although the software utilized in this study was able to 

provide an estimation of the total number of cells, number of positive cells, and 

an index value based on these values, standardized comparisons could not be 

made without measuring the size of the tissue area that was analyzed. To 

address this issue, it is necessary to calculate the physical size of each analyzed 

tissue area by converting the number of pixels to mm2 using a conversion factor 

based on the resolution and magnification values employed during the whole 

slide imaging process. 

However, it is important to mention, that this calculation was not possible due to 

influence from several factors. In many cases the scanned WSI had to be resized, 

resampled, converted or cut before the software could analyze it. To overcome 

these circumstances, it would be necessary for the software to be able to process 

the whole slide images or to carry out the conversion calculations on its own. 

As pathology is an image-based discipline, precise analysis, and interpretation of 

the tissue sections is key for correct diagnosis. 

Efforts to overcome some of the challenges seen with traditional pathological 

analysis have led to AI models, which have evolved into better machine learning 

techniques, such as deep convolutional neural networks, using biologically 

inspired networks to represent data. These groundbreaking improvements have 

greatly aided visual and digital image analysis124. Machine learning is a field of 

artificial intelligence where the algorithm is able to learn and adapt to new data 

but also to extract information or features beyond human visual perception125. 
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AI has the power to analyze large amounts of data quickly and might enable the 

discovery of novel histopathological features. This might help us to better 

understand the disease better or promote our ability to predict disease 

progression and consequently tailor individual treatment plans125,126. 

In the future, we aim to explore deep learning algorithms to automatically identify 

cancerous tissue. Pattern recognition is possible through a training process, for 

example from datasets annotated by humans.  

The dataset collected for this study was prepared as a training set for a deep 

learning algorithm developed by Simon Holdenried-Krafft and Prof. Dr. Ing. 

Lensch from the Department of Computer Science in Tübingen. HE stained slides 

were converted into digital images and cancerous tissue was annotated. The AI 

algorithm was trained on this dataset for the automated distinction between 

cancerous and non-cancerous tissue. 

Annotated regions were divided into thousands of image patches and fed into a 

convolutional neural network (CNN). 

IHC staining for ER, PR, HER2 and Ki-67 for 74 patients were visually assessed 

under the microscope and digitized. 

Our future aim is to predict breast cancer biomarkers directly from HE slides - 

potentially bypassing the need for immunohistochemical staining altogether. A 

similar approach has already been conducted by Couture et al. in 2018, with 

promising results127. 
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a) b) 

 

Figure 16: a) An image patch created of an annotated HE-stained slide. A mitotic figure is 
circled in green. b) An image patch created of an annotated pHH3 slide, mitotic indices are 

stained bown. The pHH3-positive cell is circled in green. 
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5. Summary  

Mitotic count is considered to be the best available proliferation marker and the 

most important grading component to predict prognosis in invasive breast 

carcinoma. However, it is believed that it is also the cause of subjectivity in grade 

estimation based on the Elston and Ellis Classification. Thus, quantifiable 

methods such as immunohistochemistry (pHH3 and Ki-67) based analysis 

methods hold great potential in supporting histological grading. 

In this study, we aimed to evaluate the accuracy and interobserver variability of 

the Elston and Ellis Score and to compare the conventional method of mitotic 

count on HE-stained slides with visual and digital assessment of pHH3 and Ki-67 

as quantifiable immunohistochemical markers in NST breast carcinoma. 

Visual assessment of pHH3 demonstrated a higher sensitivity in detecting mitotic 

indices than mitotic count on HE-stained slides, suggesting that the visual and 

digital assessment of mitotic count on HE-stained slides and the evaluation of 

mitotic indices on pHH3-stained slides are not equivalent approaches. 

Nevertheless, considering pHH3 immunolabeling, visual assessment allows for 

better identification of the area with the highest mitotic activity due to the distinct 

contrast between stained elements. 

A strong correlation was observed between the visual and digital approaches, 

indicating the potential of the digital method as a viable alternative to conventional 

counting methods. Despite the superior performance of digital pathology in 

quantifying Ki-67 immunohistochemical staining, our study demonstrated that it 

was not feasible for accurate quantification of pHH3 due to the software's limited 

ability to distinguish between dark artifacts and positive cells. Moreover, we 

propose cut-off values for pHH3 und Ki-67 based on quantitative assessment. 

The pHH3 marker may potentially improve subjectivity in histological grade and 

Ki-67 assessment, but additional validation is necessary to establish its suitability 

as a biomarker. 
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5.1 Zusammenfassung  

Die Mitosenzahl ist eine wichtige Komponente der Elston und Ellis Klassifikation, 

welche - neben der Kernmorpholgie und der Tubulusdifferenzierung - der 

histologischen Beurteilung von invasivem Brustkrebs dient. Da die histologische 

Untersuchung immer noch der Subjektivität der visuellen Untersuchung 

unterliegt, wurde in dieser Studie die Mitosezahl mit den quantifizierbaren 

Markern Ki-67 und pHH3, welche die Proliferation der Tumorzellen 

widerspiegeln, verglichen. Zur histologischen Untersuchung wurden die 

Gewebeproben unter dem Mikroskop betrachtet und anschließend digitalisiert 

und durch eine computerbasierte quantitative Bildanalyse evaluiert. Die 

immunhistochemisch gefärbten Schnitte wurden mit visueller und digitaler 

Bildanalyse untersucht und verglichen, mit dem Fernziel die Sensitivität und 

Spezifität der Tumordiagnostik und -klassifizierung durch computerbasierte 

Algorithmen zu verbessern. 

Die visuelle Bewertung von pHH3 zeigte eine höhere Anzahl an Mitosen als auf 

HE-gefärbten Objektträgern, was darauf zurückzuführen ist, dass pHH3 ein 

sensitiverer Marken für Mitosen ist. Die Übereinstimmung zwischen der Anzahl 

der Mitosen und der visuellen Beurteilung von pHH3 und Ki-67 gefärbten 

Schnitten zeigte sich als mäßig und zwischen der Anzahl der Mitosen und der 

digitalen Beurteilung von pHH3 und Ki-67 als gering. Visuelle und digitale 

Methoden korrelierten stark, was auf das Potenzial der digitalen Methode als 

praktikable Alternative zu den herkömmlichen Zählmethoden hinweist. Trotz der 

überlegenen Leistung der digitalen Analyse bei der Quantifizierung der 

immunhistochemischen Ki-67-Färbung zeigte unsere Studie, dass eine genaue 

Quantifizierung von pHH3 aufgrund der begrenzten Fähigkeit der Software, 

zwischen dunklen Artefakten und positiven Zellen zu unterscheiden, nicht 

möglich ist. Darüber hinaus schlagen wir, basierend auf einer Clusteranalyse 

Cut-off-Werte für pHH3 und Ki67 vor. 

Die Anwendung der pHH3 Färbung könnte die Subjektivität der histologischen 

Klassifikation senken, bedarf in Zukunft jedoch weiterer Untersuchungen. 
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