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Chapter 1

Introduction

1.1 Summary
Two of the most studied metric invariants of a smooth closed hyperbolic sur-
face X are the Laplace spectrum Spec∆(X) and the length spectrum SpecL(X).
While the length spectrum is at least known for a few arithmetic surfaces (see
e.g. [83]), the Laplace spectrum can only be worked out using numerical meth-
ods (cf. [94, 29]). For this reason, one instead tries to describe the asymptotics
of the Laplace spectrum, a typical result being Weyl’s law

N(X,x)

vol(X)
∼ 1

4π
x

for the counting function N(X,x) = {λ ∈ Spec∆(X) | λ ≤ x} of the Laplace
operator. Now, one might ask what happens if we assume x to be fixed and
instead allow the surface X to vary. Let us consider a sequence of smooth closed
hyperbolic surfaces (Xj)j∈N. This sequence is called Plancherel-convergent, if

lim
j→∞

N(Xj , x)

vol(Xj)
= µPl([0, x]) (1.1)

holds for any x ≥ 0. The measure, which appears on the right-hand side of
(1.1) is the Plancherel measure on the unitary dual of SL2(R). In (1.1) we have
implicitely made an identification between certain representations of SL2(R)
and subsets of [0,∞), which is described in detail in Section 2.7. In Chapter 3
we will show

Theorem 1.1.1. Any sequence of smooth closed congruence surfaces (Xj)j∈N
with vol(Xj)→∞ is Plancherel-convergent.

We want to stress here that this already has been shown by Fraczyk [43]. We
will give a different proof, which significantly reduces the amount of estimates
needed.
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It is natural to ask in what way this form of convergence is reflected in secondary
metric invariants such as the Selberg zeta function. One result in this direction
by Deitmar [31, Thm. 3.2] is

Theorem 1.1.2. Let (Xj)j∈N be a sequence of smooth closed hyperbolic surfaces
and let Λj be the logarithmic derivative of the Selberg zeta function of Xj.

1. If the sequence (Xj)j∈N is uniformly discrete and Plancherel convergent,
then

lim
j→∞

Λj(s)

vol(Xj)
= 0

for Re(s) > 1.

2. If for Re(s) > 1 we have

lim
j→∞

Λj(s)

vol(Xj)
= 0,

then (Xj)j∈N is Plancherel-convergent.

Here, uniform discreteness asserts that there is a uniform lower bound for the
lengths of closed geodesics on the surfaces (Xj)j∈N. This assumption was needed
in the proof of the above theorem to control the accumulation rate of eigenvalues.
Deitmar asks in [31, §4] whether the condition of uniform discreteness is actually
needed. We will see in Section 4.3 that by a careful analysis of the accumulation
rate of eigenvalues in Plancherel sequences one can establish

Theorem 1.1.3. Let (Xj)j∈N be a Plancherel-convergent sequence of smooth
closed hyperbolic surfaces. Then there exists a constant cA such that

N(Xj , x) ≤ cA vol(Xj)(1 + x). (1.2)

This is sufficient to remove the assumption of uniform discreteness from
Theorem 1.1.2. Next, Deitmar considered in [31, §4] the limit of vol(Xj)

−1Λj(s)
for s ∈ C with Re(s) ≤ 1. In this range the functions {Λj}j∈N may have poles
for

s ∈P = {−k | k ∈ N0} ∪ [0, 1] ∪ ( 12 + iR),

which we will avoid for the moment. The functional equation of Λj (see e.g.
[31, Prop. 3.4]) allows one to deal with those s ∈ C ∖ P such that Re(s) < 0.
It remains to determine what happens for s sitting inside the critical strip

S = {s ∈ C | 0 ≤ Re(s) ≤ 1}.

In Section 4.4 we will employ a formula of McKean to compute the limit of
vol(Xj)

−1Λj(s) for all s in

U1 = {s ∈ C | Re(s) > 1
2 , Re(s(s− 1)) > − 1

4 , s /∈P}.
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If for s ∈ C∖ P we let

F (s) =

{
0, Re(s) > 1

2 ,

(s− 1
2 ) cot(πs), Re(s) <

1
2 ,

our final result of Chapter 4 is

Theorem 1.1.4. Let (Xj)j∈N be a sequence of smooth closed hyperbolic sur-
faces. The following two statements are equivalent:

1. The sequence (Xj)j∈N is Plancherel convergent.

2. For each s ∈ C∖ P such that either s ∈ U1, Re(s) < 0 or Re(s) > 1 one
has

lim
j→∞

Λj(s)

vol(Xj)
= F (s).

The values s ∈ C, for which the behaviour of the logarithmic derivative of
the Selberg zeta function is known, are sketched in Figure 4.1.

Figure 1.1: The values s ∈ C from Theorem 1.1.4.

Finally, in Chapter 5 we discuss the behaviour of vol(Xj)
−1Λj(s) for s ∈P

in a few arithmetic scenarios. We will use the Euler-Selberg constant (cf. [46])

γX = lim
s→1

(
ΛX(s)− 1

s− 1

)
as a replacement for the logarithmic derivative of the Selberg zeta function ΛX
at s = 1.
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Proposition 1.1.5. Let (Xj)j∈N be a sequence of smooth closed congruence
surfaces with vol(Xj)→∞. Then for s ∈ ( 3964 , 1) one has

lim
j→∞

Λj(s)

vol(Xj)
= 0

and
lim
j→∞

γXj

vol(Xj)
= 0.

Here, one utilizes a well-known uniform lower bound for the first eigenvalue
of congruence surfaces (see Theorem 5.3.1). However, this may change, if there
is no such bound:

Proposition 1.1.6. There exist a Plancherel-convergent sequence of arithmetic
surfaces (Xj)j∈N such that

lim
j→∞

γXj

vol(Xj)
= l0 > 0

for some positive constant l0.

This suggests that for s ∈P the behaviour of vol(Xj)
−1Λj(s) is not deter-

mined by (Xj)j∈N being a Plancherel sequence and that additional information
about the spectral geometry of the surfaces (Xj)j∈N is needed.

1.2 Comparison to the Literature
The subject started with DeGeorge and Wallach [100] establishing the limit
multiplicity property (see Section 2.11) for towers in a semisimple Lie group G.
Here, a tower is a sequence of cocompact lattices (Γj)j∈N in G such that each
Γj is a normal subgroup of Γ1 and

Γj ⊃ Γj+1,

∞⋂
j=1

Γj = {1} (1.3)

holds. The limit multiplicity property is a well-studied subject (see e.g. [33,
26, 40, 80, 34]). Sauvageot [84] showed that the limit multiplicity property of
a sequence of lattices (Γj)j∈N follows from establishing Plancherel convergence
of (Γj)j∈N. In the more recent breakthrough [1] it was shown that a uniformly
discrete sequence (Γj)j∈N is Plancherel convergent, if it is Benjamini-Schramm
convergent1 (BS-convergent for short). The authors of [1] then established that
any sequence (Γj)j∈N of non-conjugate lattices in a semisimple Lie group of
rank greater than 1 is BS-convergent. Since uniform discreteness for these lat-
tices is a well-known consequence of the Lehmer conjecture (cf. [61, p. 322])
this essentially closes the case of higher rank Lie groups. Raimbault [78] and

1The definition of Benjamini-Schramm convergence can also be found in Section 2.11.
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Matz [64] dealt with certain sequences of lattices (Γj)j∈N in semisimple Lie
groups of rank one, for which the degrees of the associated trace fields F (Γj)
are uniformly bounded. Fraczyk [43] then established Plancherel convergence
for arbitrary cocompact torsion-free congruence lattices in the groups PSL2(R)
and PSL2(C). Later on, Fraczyk and Raimbault [44] removed the assumption
on torsion elements. The main insight of Fraczyk was to use the Bilu equidistri-
bution principle (cf. [8]) to establish bounds, which are uniform in the degree
of the trace fields. We will also make use of these bounds, but do not need his
bounds on characters of p-adic groups. The case of non-cocompact principal
congruence subgroups of PSL2(R) had already been dealt with by Sarnak [82].
Bergeron and Venkatesh [7] studied the asymptotics of analytic torsion in BS-
convergent sequences and were able to establish convergence in the strongly
acyclic case. Numerical data by Sengün [88] suggests that the results of Berg-
eron and Venkatesh should be true without assuming strong acyclicity, but, to
the best knowledge of the author, this has not yet been shown (cf. [78]). Fur-
ther interesting references on this topic include [5, 6, 14]. Another direction
of research is the relation between Benjamini-Schramm convergence and quan-
tum ergodicity (cf. [58]). Furthermore, BS-convergence can also be extended
to more general situations (see [30]). In this thesis, we will focus on the rela-
tionship between BS-convergence and zeta functions described by Deitmar in
[31].
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Chapter 2

Preliminaries

2.1 The Geometry of the Upper Half-Plane
Let us recall some standard material regarding the geometry of the hyperbolic
plane. Any further information can be found in [3] and [53].
The upper half-plane H is the set

H = {x+ iy ∈ C | x ∈ R, y ∈ R>0}. (2.1)

If we equip H with the so-called hyperbolic metric ds2 = (dx2 + dy2)/y2, it
becomes a model for the hyperbolic plane. In this model, the geodesics have
the following elegant description:

Theorem 2.1.1. The geodesics in the hyperbolic plane H consist of straight
lines and semicircles, which meet the boundary of H orthogonally.

Proof. [3, Thm. 7.3.1]

Figure 2.1: Geodesics in the upper half-plane

We have an action of the special linear group

SL2(R) =

{(
a b
c d

)
∈M2(R)

∣∣∣∣ad− bc = 1

}
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on the upper half-plane H, which for g =

(
a b
c d

)
∈ SL2(R) and z ∈ H is given

by

ϕg(z) =
az + b

cz + d
.

Since the center Z(SL2(R)) = {±12} of SL2(R) acts trivially, we get an action
of the projective special linear group PSL2(R) = SL2(R)/{±12} on H.

Remark 2.1.2. We want to warn the reader that we will not distinguish between
a matrix g ∈ SL2(R) and its projection [g] ∈ PSL2(R). Whenever it is necessary,
we assume that a lift of [g] with non-negative trace has been fixed and simply
represent [g] by the matrix of this lift. When speaking of the matrix [g], we mean
the matrix of the lift of [g]. This is a common abuse of notation and significantly
improves the readibility of any argument involving elements [g] ∈ PSL2(R).

Any of the maps ϕg for g ∈ PSL2(R) is an orientation-preserving isometry
of the upper half-plane. The converse statement is also true:

Theorem 2.1.3. The group of orientation-preserving isometries of the hyper-
bolic plane consists of the Möbius transformations {ϕg | g ∈ PSL2(R)}.
Proof. [3, Thm. 7.4.1]

With the above theorem, one can classify isometries of the upper half-plane
in terms of properties of the corresponding matrices g ∈ PSL2(R). We call an
element g ∈ PSL2(R)

• hyperbolic, if | tr g| > 2,

• elliptic, if | tr g| < 2,

• parabolic, if | tr g| = 2.

Any hyperbolic element γ ∈ PSL2(R) fixes exactly two points on the extended
boundary ∂∞H = R ∪ {∞} of H. The unique geodesic connecting these fixed
points is called the axis of γ and denoted Aγ . Conversely, any geodesic of the
hyperbolic plane appears as the axis of some hyperbolic element γ ∈ PSL2(R).
Note that an element γ ∈ PSL2(R) is hyperbolic, if and only if it is conjugate
in PSL2(R) to a matrix of the form(

τγ 0
0 τ−1

γ

)
.

with τγ > 1. The eigenvalues τ±1
γ are roots of the characteristic polynomial

pγ(x) = x2 − tr(γ) x+ 1, (2.2)

and are given by

τ±1
γ =

tr γ ±
√

(tr γ)2 − 4

2
. (2.3)

The Weyl discriminant dγ of γ is given by

dγ = (1− τγ)(1− τ−1
γ ). (2.4)
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2.2 Geometry of Hyperbolic Surfaces
In this section we will use the well-understood geometry of the upper half-plane
to derive results about the geometry of smooth closed hyperbolic surfaces. Our
exposition is based on [3, 53, 17].
A discrete subgroup Γ of PSL2(R) is called a Fuchsian group. Any elliptic
element x of a Fuchsian group has finite order. We will call an element of
finite order a torsion element. If a Fuchsian group Γ does not contain any
torsion-elements, it is said to be torsion-free. A Fuchsian group is called purely
hyperbolic, if every non-trivial element γ ∈ Γ is hyperbolic. A Fuchsian group Γ
is said to be cocompact, if the quotient space Γ\H is compact.

Theorem 2.2.1. Let Γ be a Fuchsian group.

1. The quotient space Γ\H is compact if and only if vol(Γ\H) < ∞ and the
Fuchsian group Γ does not contain any parabolic elements.

2. If Γ is torsion-free, the quotient Γ\H carries a uniquely determined com-
plete hyperbolic structure such that the natural projection π : H → Γ\H is
a local isometry.

3. Any smooth closed hyperbolic surface X is of the form X = Γ\H with Γ
a purely hyperbolic group. For such a group Γ we have an isomorphism
Γ ∼= π1(X).

4. Let Γ1,Γ2 be purely hyperbolic groups. Then Γ1\H and Γ2\H are confor-
mally equivalent if and only there exists x ∈ PSL2(R) with Γ2 = xΓ1x

−1.

Proof. The first statement is proven in [53, Cor. 4.2.7]. For the statement
regarding torsion-free Fuchsian groups we refer to [17, Thm. 1.2.4]. The last
two statements1 are given in [52, Thm. 4.19.8] and [52, Thm. 5.9.3].

Given a smooth closed hyperbolic surface X, we will always assume to have
fixed some purely hyperbolic Fuchsian group Γ with X ∼= Γ\H. We write
g = g(X) for the genus of X. We note that the Gauss-Bonnet theorem implies

vol(X) = 4π(g − 1). (2.5)

Next we want to study closed geodesics on hyperbolic surfaces.

Theorem 2.2.2. Let X be a smooth closed hyperbolic surface and c : [0, 1]→ X
be a continuous, closed curve on X. In the homotopy class [c] of c there exists
a unique curve of minimal length. This curve is a closed geodesic.

Proof. [17, Thm. 1.5.3]

It is clear from the above theorem that hyperbolic elements γ ∈ Γ ∼= π1(X)
are closely related to closed geodesics on X. This can be made more precise (cf.
e.g. [45, Prop. 9]):

1The third statement is not directly the statement given in [52, Thm. 4.19.8], but follows
from it and the remark before [52, Thm. 5.9.3].
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Proposition 2.2.3. Let X be a smooth closed hyperbolic surface with associated
Fuchsian group Γ. Then there is a bijection between Γ-conjugacy classes of
hyperbolic elements γ ∈ Γ and closed geodesics c(γ). Under this correspondence,
the length of c(γ) is given by lγ = 2 log τγ , where τγ is the larger of the two
eigenvalues of γ.

Proof. Let γ ∈ Γ be a hyperbolic element. After possibly conjugating the group
Γ we may assume

γ =

(
τγ 0
0 τ−1

γ

)
.

Then the axis of γ is given by Aγ = iR>0. For any z ∈ Aγ we have

γ.z = τ2γ z ∈ Aγ

so that Aγ projects down to a closed geodesic c(γ) on Γ\H. A quick integration
shows that the length of this geodesic is given by lγ = 2 log τγ .
For the converse direction, let c be a closed geodesic on Γ\H. By [17, Thm.
1.4.4], we can lift it to a geodesic c̃ in H. The stabilizer of the action of Γ on c̃
contains a hyperbolic element γ such that c = c(γ).

From now on, we will not distinguish between a hyperbolic transformation
γ and the corresponding geodesic c(γ) from Proposition 2.2.3 and write γ for
both objects. When speaking of the length of a hyperbolic element γ ∈ Γ, we
mean the quantity lγ = 2 log τγ , where τγ > 1 is the larger eigenvalue of γ. The
following is a typical feature of closed geodesics on hyperbolic surfaces:

Theorem 2.2.4. Let X be a smooth closed hyperbolic surface and fix some
c > 0. Then there exist only finitely many closed geodesics on X of length ≤ c.

Proof. [17, Thm. 1.6.11]

In particular, there exists a closed geodesic γs of shortest length ls on X.
The number ls = ls(X) is called the systole (or systolic length) of X. Let us
write σL(X) for the set of lengths of closed geodesics on X. Then the above
theorem shows that the multiplicity m(l) for any length l ∈ σL(X) is finite.
Hence, we can define the length spectrum

SpecL(X) = {(l,m(l)) | l ∈ σL(X)}

of X. The length spectrum of X = Γ\H is also denoted by SpecL(Γ). We will
sometimes write m(l,X) or m(l,Γ) instead of m(l), when dealing with more
than one surface.

Remark 2.2.5. Let Γ be a cocompact torsion-free Fuchsian group. From Propo-
sition 2.2.3 we see that all hyperbolic elements γ ∈ Γ of fixed length l fall into
finitely many Γ-conjugacy classes

[γ1]Γ, ..., [γs]Γ,
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where the number s of these classes is equal to m(l). This is a purely algebraic
description of the length spectrum, which will be carried over to Fuchsian groups,
which might be neither cocompact nor torsion-free.

For γ ∈ Γ a hyperbolic element in a Fuchsian group we let

Γγ = {x ∈ Γ | xγx−1 = γ}

be the centralizer of γ. The centralizer is cyclic [3, Thm. 8.1.2] and we call
any element γ0 ∈ Γ with Γγ = ⟨γ0⟩ a primitive element or a prime geodesic.
Throughout this thesis, we always let γ0 be the prime geodesic underlying γ.
A hyperbolic element γ ∈ Γ is called simple, if for all x ∈ Γ either xAγx−1 = Aγ
or xAγx−1 ∩ Aγ = ∅ holds. Otherwise, we say that γ is non-simple. We note
that γ is simple if and only if the corresponding geodesic has no self-intersections
[60, Lemma 5.3.10]. We will see in the next section that simple geodesics play
an important role for the geometry of hyperbolic surfaces.

2.3 Decompositions of Hyperbolic Surfaces
Next we want to discuss certain decompositions of smooth closed hyperbolic
surfaces. Our main sources for this material are [17, §3] and [17, §4].
Let X be a smooth closed hyperbolic surface and h be the Riemannian metric
on X. For p ∈ X we write

expp : TpX → X

for the exponential map at p ∈ X, which is defined as follows: Every non-zero
tangent vector v ∈ TpX defines a unique geodesic tangential to v, which starts
at p. One follows that geodesic for time ||v||h = hp(v, v)

1/2 to reach a point,
which is denoted expp(v). Finally, one sets expp(0) = p. The injectivity radius
rp(X) of X at a point p ∈ X is the supremum of all r > 0 such that expp
is injective on the open ball Ur = {v ∈ TpX : ||v||h < r}. Points with small
injectivity radius lie in certain subsets of X, whose geometry do not depend on
the ambient surface X:

Theorem 2.3.1. Let X be a smooth closed hyperbolic surface and γi, i =
1, ...,mX , be the closed geodesics of length li = l(γi) ≤ 1. Then the following
hold:

1. mX ≤ 3g − 3.

2. The tubes
Tγi = {p ∈ X | dist(p, γi) ≤ wi}

of widths
wi = arcsinh(1/ sinh(li/2))

are pairwise disjoint for i = 1, ...,mX .
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3. Each tube Tγi is isometric to a cylinder [−wi, wi] × S1 equipped with the
Riemannian metric

ds2 = dr2 + l2i cosh
2 r dt2.

4. The injectivity radius rp(X) for p ∈ X ∖
⋃mX

i=1 Tγi is bounded from below
by arcsinh(1).

5. If p ∈ Tγi and d = dist(p, ∂Tγi), then

sinh rp(X) = cosh(li/2) cosh d− sinh d

Proof. All of the statements can be found in [17, §4].

A closed geodesic of length l ≤ 1 is called short. The coordinates for the
tube coming from the third statement will be called Fermi coordinates for the
tube Tγi .

Figure 2.2: A tube Tγ around a short geodesic γ.

For technical reasons2, we will actually work with the truncated tubes

T ′
γi = {p ∈ X | dist(p, γi) ≤ wi − 1}.

We will call

X ′ =

mX⋃
i=1

T ′
γi

the thin part of X, the complement X ′′ = X ∖X ′ the thick part of X and refer
to X = X ′∪X ′′ as the thick-thin decomposition of X. While the geometry of the
thin part is described by Theorem 2.3.1, points in the thick part are contained
in geodesic balls of uniform size. In this sense, the thick-thin decomposition
gives a description of the local geometry of hyperbolic surfaces.

2Roughly speaking, one needs a description of the geometry close to the boundary of the
thin part (see Lemma 4.3.3).
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Remark 2.3.2. It would actually be better to speak of "a" thick-thin decompo-
sition, as the precise meaning of the thick and thin part usually is chosen to suit
the circumstances (cf. [20]).

Next, we want to lose a few words regarding the decomposition of a closed
hyperbolic surface into pairs of pants. We recall that a compact topological
surface is said to have signature (g, n), if it is obtained from a closed topological
surface by removing the interior of n disjoint closed topological disks. A compact
Riemann surface of signature (0, 3) is called a Y -piece or a pair of pants. For
any triple of positive real numbers l1, l2, l3 there exists a pair of pants Yl1,l2,l3
with boundary geodesics γ1, γ2, γ3 of respective lengths li = lγi (see [17, Thm.
3.1.7]).

Theorem 2.3.3. Let X be a smooth compact hyperbolic surface of genus g. Let
γ1, ..., γm be pairwise disjoint simple closed geodesics on X. Then the following
hold:

1. m ≤ 3g − 3.

2. There exist simple closed geodesics γm+1, ..., γ3g−3, which together with
γ1, ..., γm decompose X into Y -pieces.

Proof. [17, Thm. 4.1.1]

2.4 The Spectrum of the Laplace Operator
LetX be a smooth closed manifold equipped with a Riemannian metric h and let
µh be the associated measure on X. Let L2(X) be the space of square-integrable
functions f on X. On L2(X) we have an inner product given by

(f1, f2)2 =

∫
X

f1f2 dµh.

and an associated norm ||f ||2 = (f, f)
1
2 . Let X(X) be the space of smooth vector

fields on X. The de Rham-differential of a smooth function f ∈ C∞(X) is the
one-form on X given by df(V ) = V f , where V ∈ X(X). The inner product
(·, ·)2 allows us to define the adjoint δ = d∗ of the de Rham-differential. The
Laplace operator ∆ acts on smooth functions via

∆f = δdf, f ∈ C∞(X). (2.6)

In local coordinates, the Laplacian can be written as

−∆ =
1√
deth

∑
i,j

∂i

(√
deth hij∂j

)
(2.7)

(see e.g. [91, §22.1]), where deth is the determinant of absolute value of the
metric tensor (hij) and hij = (h−1)ij is the inverse of the metric tensor. The
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operator given by the right-hand side of (2.6) extends to a self-adjoint operator
∆ on the Sobolev space H (X), which is the completion of C∞(X) in the norm

||f ||2 = ||f ||22 + || grad f ||22,

where grad f is unique vector field on X such that

df(V ) = h(V, grad f), for all V ∈ X(X).

Theorem 2.4.1. The operator spectrum σ(∆) of ∆ consists of a sequence of
eigenvalues

0 = λ0 < λ1 < λ2 < · · · ↗ +∞,

where the multiplicity m(λ) of each eigenvalue λ ∈ σ(∆) is finite.

Proof. [17, Thm. 7.2.6]

We call the list of tuples

Spec∆(X) = {(λ,m(λ)) | λ ∈ σ(∆)}

the spectrum of the Laplace operator3 on X or the Laplace spectrum of X.
Occasionally, we will write λk(X) in place of λk to emphasize the dependence on
X. We will sometimes write m(λ,X) for the multiplicity of a Laplace eigenvalue
λ, when there is some danger of confusion. We call two smooth closed manifolds
X1 and X2 isospectral, if Spec∆(X1) = Spec∆(X2). The counting function of
the Laplace operator is given by

N(X,x) =
∑
λ≤x

m(λ).

Let us from now on assume that X is a smooth closed hyperbolic surface of
genus g. A Laplace eigenvalue λ of ∆ is said to be small, if λ < 1

4 . There are
plenty of good reasons to distinguish the eigenvalues below 1

4 from those above
1
4 . For example, the number of small eigenvalues is bounded by the topology
alone (cf. [76]),

λ2g−2(X) ≥ 1

4
,

while the same is not true for the remainder of the spectrum:

Theorem 2.4.2. Let g ≥ 2 be fixed. For any k ∈ N and for arbitrarily small
ε > 0 there exists a smooth closed surface X of genus g such that λk(X) ≤ 1

4+ε.

Proof. [17, Thm. 8.1.2]
3Note that, in our choice of convention, the spectrum of the Laplace operator is different

from the operator spectrum σ(∆) of ∆, as σ(∆) does not keep track of the multiplicities of
the eigenvalues.

16



Finally, we note that the first eigenvalue λ1(X) can be controlled by the
Cheeger constant

h(X) = inf
lu

min{vol(A), vol(B)}
, (2.8)

where u ranges over the set of all finite unions of piecewise smooth curves on
X, which separate X into two disjoint subsets A and B.

Theorem 2.4.3 (Buser-Cheeger inequality).

1

4
h2(X) ≤ λ1(X) ≤ 2h(X) + 10h2(X) (2.9)

Proof. The left-hand side is the well-known Cheeger inequality [24], while the
right-hand side is due to Buser [16].

2.5 Harmonic Analysis on Locally Compact Groups
Next we want to introduce some basic terminology and fundamental facts from
the theory of harmonic analysis on locally compact groups. Our main references
on this subject are [42] and [32].
Let G be a locally compact group, i.e. a topological group, whose topology is
locally compact and Hausdorff. A left (respectively right) Haar measure on G is
a non-zero Radon measure µG on G that satisfies µG(xE) = µG(E) (respectively
µG(Ex) = µG(E)) for every Borel set E ⊂ G and x ∈ G. Every locally compact
group possesses a Haar measure and such a measure is unique up to multiples.
The group G is said to be unimodular, if any left Haar measure is also a right
Haar measure. We assume from now on that a Haar measure µG has been fixed
and write ∫

G

f(x)dµG(x) =

∫
G

f(x)dx

for the corresponding Haar integral. A unitary representation of G is a homo-
morphism from G into the group U(Hπ) of unitary operators on some non-zero
Hilbert space Hπ that is continuous in the strong operator topology. If such a
representation π admits a proper invariant subspace, it is said to be reducible.
Otherwise, π is called irreducible. Two unitary representations π1 : G→ U(Hπ1

)
and π2 : G→ U(Hπ2) are called (unitarily) equivalent, if and only if there exists
a unitary operator U : Hπ1 → Hπ2 such that π2(x) = Uπ1(x)U

−1 for each
x ∈ G. The set of equivalence classes of irreducible unitary representations of
G is denoted by Ĝ and called the unitary dual of G. We will always assume to
have fixed some representantive π in an equivalence class [π] ∈ Ĝ and omit the
brackets from now on. We equip Ĝ with the so-called4 Fell topology. To any
f ∈ L1(G) we associate the measurable field of operators over Ĝ

f̂(π) =

∫
G

f(x)π(x−1)dx,

4The definition of the Fell topology can be found in [42, §7.2].
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which is referred to as the Fourier transform of f . There exists a Radon measure
µPl on the unitary dual Ĝ, for which under certain technical assumptions5 a
Plancherel theorem holds:

Theorem 2.5.1. Suppose G is a second countable unimodular type I group.
The Fourier transform f 7→ f̂ maps L1(G) ∩ L2(G) into

∫
Ĝ
Hπ ⊗ HπdµPl(π)

and extends to a unitary map from L2(G) onto
∫
Ĝ
Hπ ⊗Hπ̄dµPl(π).

Proof. The proof can be found in [36, §18.8].

The measure µPl from Theorem 2.5.1 is called the Plancherel measure of Ĝ
and is unique, once the Haar measure on G has been fixed. A representation
π ∈ Ĝ is said to be tempered, if it lies in the support of the Plancherel measure.
Let us write Ĝtemp for the set of tempered representations.

2.6 Representation Theory of SL2(R)

In this section we describe the unitary dual of the group G = SL2(R) and the
corresponding Plancherel measure on Ĝ. For any further details we refer the
reader to [55].
We equip SL2(R) with the unique Haar measure µ such that µ(K) = 1, where
K = SO(2) is the maximal compact subgroup of SL2(R). The unitary dual of
SL2(R) is explicitly known:

Theorem 2.6.1. Each irreducible unitary representation of SL2(R) is, up to
equivalence, contained on the following list:

• the trivial representation π1,

• the principal series Ĝ+
prin = {π+

iν | ν ∈ R≥0} and Ĝ−
prin = {π−

iν | ν ∈ R>0},

• the complementary series Ĝcomp = {π+
ν | ν ∈ (0, 12 )},

• the (limits of) discrete series Ĝdisc = {δ±m | m ∈ N}

All of these representations are irreducible and no two irreducible representations
from this list are equivalent.

Proof. [55, Thm. 16.3]

In Figure 2.3 we have sketched the unitary dual of SL2(R) with respect to
the Fell topology (cf. [42, Fig. 7.3]). Note that the dotted lines describe non-
Hausdorff points, meaning for example that the trivial representation π1 cannot
be separated from δ±2 in this topology and these three points are limit points of
the complementary series representation π+

ν for ν → 1
2 .

5The rather technical definition of a group of type I is given on page 206 of [42]. For our
purposes, it is enough to know that SL2(R) is of type I [42, Thm. 7.8].
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π+
ν

π+
iνπ−

iν

δ+2 δ+m

δ−2 δ−m
δ−1 δ+1

π1

Figure 2.3: The unitary dual of SL2(R)

Let us include an explicit construction of the principal series Ĝ±
prin and com-

plementary series Ĝcomp from [55, p. VII.1]. For this we recall the Iwasawa
decomposition G = ANK of G, where K = SO(2) as above and

N =

{(
1 x
0 1

) ∣∣∣∣ x ∈ R} , A =

{(
y 0
0 y−1

) ∣∣∣∣ y ∈ R>0

}
,

(cf. [32, §11.1]). For an element ay = diag(y, y−1) of A we write log ay = log y.
Furthermore, let M = {±12} and B = MAN be a so-called Borel subgroup of
G. We note that M has two irreducible representations

ρ+(±12) = 1, ρ−(±12) = ±1.

For ν ∈ C we get a (possibly non-unitary) representation ρ±ν of B by

ρ±ν (man) = ρ±(m)eν log a.

We will use this representation of B to induce a representation of G. Consider
the space

V ±
ν = {F ∈ C(G) | ∀x ∈ G : F (xman) = e−(ν+1/2) log aρ±(m)F (x)}

equipped with the norm

||F ||2 =

∫
K

|F (k)|2dk.

G acts on this space via

π±
ν (g)F (x) = F (g−1x).

Completing V ±
ν with respect to || · || yields a Hilbert space H±

ν and π±
ν continues

to a (possibly non-unitary) representation on H±
ν . The representations π±

iν with
ν ∈ R are unitary and, with the exception of π−

0
∼= δ+1 ⊕ δ

−
1 , irreducible. The

representations π+
ν with ν ∈ (0, 12 ) are irreducible and unitary with respect to a

suitable inner product on H±
ν .

Next we want to describe the Plancherel measure on ŜL2(R):
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Theorem 2.6.2. The Plancherel measure on the unitary dual of SL2(R) is
given on the principal series Ĝ±

prin and (limits of) discrete series Ĝdisc by

dµPl(π
+
iν) = ν tanh(πν)dν, dµPl(π

−
iν) = ν coth(πν)dν, µPl({δ±m}) = m− 1,

while the complementary series Ĝcomp and the trivial representation π1 are not
contained in the support of µPl.

Proof. [42, p.248]

The above theorem shows that the set of tempered representations of SL2(R)
is given by

Ĝtemp = Ĝ+
prin ∪ Ĝ

−
prin ∪ {δ

±
m | m ≥ 2}.

Remark 2.6.3. Note that we have changed the normalization chosen in [42,
p.248] to fit the normalization of [32, Thm. 11.3.1].

2.7 The Selberg Trace Formula
After introducing the length spectrum SpecL(X) and the Laplace spectrum
Spec∆(X) of a smooth closed hyperbolic surface X we now want to discuss
the Selberg trace formula, which is a tool to compare these spectra. Our main
source on this topic is [32].
Let G be a locally compact group. A subgroup Γ ⊂ G is called cocompact, if the
quotient Γ\G is compact. A discrete subgroup Γ ⊂ G such that Γ\G carries a
G-invariant Radon measure µ with µ(Γ\G) <∞ is called a lattice.

Theorem 2.7.1. Let Γ be a cocompact lattice. Then the representation

R : L2(Γ\G)→ L2(Γ\G), Ryϕ(x) = ϕ(xy)

decomposes into a direct sum of irreducible representations,

L2(Γ\G) =
⊕
π∈Ĝ

NΓ(π)Hπ, (2.10)

where each representation π ∈ Ĝ appears with finite multiplicity NΓ(π) ∈ N0 in
(2.10).

Proof. [32, Thm. 9.2.2]

We write ĜΓ for the set of representations, which appear with non-zero
multiplicity in the decomposition (2.10). For γ ∈ G we let

Gγ = {x ∈ G | xγx−1 = γ}

be the centralizer of γ ∈ G.
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Theorem 2.7.2 (Trace Formula). Let Γ ⊂ G be a cocompact lattice and let
f ∈ C∞

c (G). For every π ∈ ĜΓ the operator π(f) is of trace class and∑
π∈ĜΓ

NΓ(π) trπ(f) =
∑
[γ]

vol(Γγ\Gγ)Oγ(f), (2.11)

where the sum on the right-hand side runs over all conjugacy classes [γ] in the
group Γ and Oγ(f) denotes the orbital integral

Oγ(f) =
∫
Gγ\G

f(x−1γx)dx.

Proof. See [32, Thm. 9.3.2] and the notes at the end of Chapter 9 in [32].

Let us now restrict to the case G = SL2(R). Using the Iwasawa decom-
position from Section 2.6 we may identify the quotient G/K with the upper
half-plane H via

nxay =

(
1 x
0 1

)(
y 0
0 y−1

)
←→ x+ iy ∈ H.

Under this identification the left action of G on G/K agrees with the action
of G on H described in Section 2.1. Hence, we can write any smooth closed
hyperbolic surface X = Γ\H as a double quotient X = Γ\G/K.

Remark 2.7.3. By our choice of the normalization of the Haar measure, we
have vol(Γ\H) = vol(Γ\G) for Γ ⊂ G a cocompact lattice.

We can use (2.10) to give a decomposition of the L2-space

L2(X) ∼=
⊕
π∈Ĝ

NΓ(π)H
K
π , (2.12)

where
HK
π = {v ∈ Hπ | π(k)v = v ∀k ∈ K}

is the subspace of K-invariant vectors. A representation π ∈ Ĝ such that
HK
π ̸= {0} is called a representation with a K-invariant vector. The set of

representations with a K-invariant vector is denoted ĜK . These are given by

ĜK = {π1} ∪ Ĝcomp ∪ Ĝ+
prin.

(see [55, Chap. II]). Using our description for the representations π+
ν from

Section 2.6 we quickly see that any K-invariant vector Fν ∈ H+
ν is of the form

Fν(ank) = F0e
−(ν+1/2) log a
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with F0 = F (12) ∈ C some constant. Since the Laplace operator ∆ on the
upper half-plane is given by ∆ = y2(∂2x+∂

2
y), these K-invariant vectors are also

eigenfunctions of the Laplacian6,

∆Fν =

(
1

4
− ν2

)
Fν .

Thus, (2.12) gives the following representation-theoretic interpretation of the
Laplace-spectrum:

• The trivial representation π1 corresponds to the eigenvalue λ0 = 0 of
multiplicity 1,

• a complementary series representation π+
ν ∈ Ĝcomp corresponds to a small

eigenvalue λ = 1
4 − ν

2 < 1
4 and the corresponding multplicities agree, i.e.

m(λ) = NΓ(π
+
ν ),

• a principal series representation π+
iν ∈ Ĝ+

prin corresponds to a Laplace
eigenvalue λ = 1

4 + ν2 ≥ 1
4 and we have m(λ) = NΓ(π

+
iν).

Finally, we note that the map defined by sending any representation π ∈ ĜK to
the corresponding Laplace eigenvalue defines a homeomorphism ĜK ∼= [0,∞).
If we let

L2(Γ\H) = C⊕
∞⊕
k=0

NΓ(π
+
iνk

)(H+
iνk

)K

we get the following more explicit version of the Selberg trace formula:

Theorem 2.7.4. Let ε > 0 and let h be a holomorphic function on the strip
{| im(z)| < 1

2 + ε}. Suppose that h is even, i.e. h(z) = h(−z) and that h(z) =
O(|z|−2−ε) as |z| → ∞. Then one has

∞∑
k=0

h(νk) =
vol(Γ\G)

4π

∫
R

rh(r) tanh(πr)dr +
∑
[γ ]̸=1

lγ0
elγ/2 − e−lγ/2

ĥ(lγ). (2.13)

Proof. [32, Thm. 11.4.1]

If we apply (2.13) to ht(ν) = e−t(
1
4+ν

2), we can express the heat kernel
θ(t) = tr exp(−t∆) in terms of the length spectrum,

θ(t) =
∑
[γ]

lγ0
elγ/2 − e−lγ/2

e−t/4−l
2
γ/4t

√
4πt

+ φ0(t) vol(X), (2.14)

where φ0(t) = (4π)−1µPl(e
−tλ) is the fundamental solution of the heat equation

at the origin. A careful analysis of (2.14) yields the following:
6More precisely, the Laplace operator agrees with the Casimir element ΩG restricted to K-

invariant vectors and the Casimir element acts on the K-invariant subspace of an irreducible
representation by y2(∂2

x + ∂2
y).
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Theorem 2.7.5 (Huber). Two smooth closed hyperbolic surfaces have the same
length spectrum if and only if they have the same Laplace spectrum.

Proof. [17, Thm. 9.2.9]

In Section 3.5 we will see that Huber’s theorem can be used to construct
examples of isospectral Riemann surfaces, which are not isometric.

2.8 The Selberg Zeta Function
We will now describe some elementary properties of the Selberg zeta function.
We refer the reader to [32, §11] for further details.
Recall from Section 2.2 that the number of geodesics of bounded length is finite.
Hence, one may study the counting function for the length spectrum

πΓ(x) = {[γ] ∈ Γ | lγ ≤ x}.

For the study of the asymptotics of the counting function πΓ Selberg [87] intro-
duced the Selberg zeta function ζΓ given by

ζΓ(s) =
∏
γ

∏
k≥0

(1− e−(s+k)lγ ), (2.15)

where the first product runs over the prime geodesics of Γ\H.

Theorem 2.8.1. The product representation (2.15) for ζΓ(s) converges for
Re(s) > 1 and extends to an entire function with the following zeroes:

• For each k ∈ N a zero at s = −k of multiplicity 2(g− 1)(2k+ 1), where g
is the genus of Γ\H,

• For every eigenvalue λk = 1
4 +ν

2
k of the Laplacian ∆ a zero at s = 1

2 ± iνk
of multiplicity NΓ(π

+
iνk

).

Proof. [32, Thm. 11.6.1]

The holomorphic continuation of ζΓ is achieved by using the Selberg trace
formula to express the logarithmic derivative of the Selberg zeta function

ΛΓ(s) =
ζ ′Γ(s)

ζΓ(s)
=
∑
[γ]

lγ0
elγ/2 − e−lγ/2

e−(s−1/2)lγ , Re(s) > 1, (2.16)

in terms of the Laplace spectrum of Γ\H. Now, applying the standard machinery
from analytic number theory to ζΓ allows one to derive πΓ(x) ∼ e2x

2x (see e.g. [4,
§5.4.2]).
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Figure 2.4: The zeroes of the Selberg zeta function ζΓ.

We note that the non-trivial zeroes of ζΓ are contained in the critical strip

S = {s ∈ C | 0 ≤ Re(s) ≤ 1}

and either lie in the interval [0, 1] or on the critical line 1
2 + iR. Thus, the

Riemann hypothesis holds for the Selberg zeta function if and only if Γ\H does
not have non-trivial small eigenvalues, which is expected in certain arithmetic
scenarios (cf. Section 5.3).

2.9 Number-Theoretic Preliminaries
We need some standard terminology and results from algebraic number theory.
The presented material can be found in most standard textbooks on algebraic
number theory such as [71].
Let F be a number field, i.e. a field extension of Q of finite degree n = [F : Q].
Let σ1, ..., σr1 be the real embeddings and σr1+1, ..., σr1+2r2 the complex embed-
dings of F respectively, where the numbering is chosen so that σr1+k = σr1+r2+k
for k = 1, ..., r2. These embeddings will be referred to as the infinite places of
F and we write Ω∞ for the set of infinite places. Any prime ideal p of F comes
with a valuation vp and an absolute value |x|p = p−vp(x), which gives an em-
bedding σp of F into a p-adic field Fp. We will refer to the prime ideals as
the finite places of F . We denote the set of finite places of F by Ωf and write
Ω = Ωf ∪ Ω∞ for the set of places of F . A proper embedding of F is a ring
homomorphism ι : F → Rr1 ×Cr2 such that the coordinate projections give all
real embeddings and the complex embeddings up to complex conjugation. An
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order o in F is a subring of F containing 1 such that it is a finitely generated
Z-module of rank n. We write o× for the units in the order o. For ι a proper
embedding of F the number

d(o) = vol(Rr1 × Cr2/ι(o))

is called the absolute discriminant of the order o. Note that d(o) does not
depend on the chosen proper embedding. For an order o, we let I(o) be the
set of all finitely generated o-submodules in F . Then, according to the Jordan-
Zassenhaus theorem the set of isomorphism classes [I(o)] of I(o) is finite. We
let h(o) be the cardinality of [I(o)] and call it the class number of o. There
exists a unique maximal order in F , denoted oF , which is called the ring of
integers of F . We write hF = h(oF ) and dF = d(oF ) for the class number and
the discriminant of oF respectively. We write oF,p for the completion of oF in
Fp and denote the uniformizer of oF,p by πp. For an order o we call the set

fo = {x ∈ o | xoF ⊂ o}

the conductor of o. It is an ideal in oF and o. The group of units o×F in oF is
described by

Theorem 2.9.1 (Dirichlet’s unit theorem). The group of units o×F is the direct
product of the finite cyclic group of roots of unity in F and a free abelian group
of rank rF = r1 + r2 − 1, i.e.

o×F
∼= ZrF × (Z/wFZ),

where wF is the number of roots of unity in F .

Proof. [71, Thm. I.7.4]

Let ε1, ..., εrF be a set of units, which generate the free part of o×F . For
j = 1, ..., rF + 1 let uj = 1, if σj is a real embedding and uj = 2 otherwise.
Then the rF × (rF + 1)-matrix R̃ given by

R̃i,j = uj log |σj(εi)|

has the property that the sum of any row is zero. Hence, the determinant of any
submatrix of R̃ obtained by deleting one column is independent of that column.
This determinant is called the regulator RF of F . The absolute norm N(a) of
an ideal a in oF is defined to be the cardinality of the finite quotient ring oF /a.
The series

ζF (s) =
∑
a⊂oF

N(a)−s,

where the sum runs over all ideals in oF , converges absolutely for Re(s) > 1
and extends to a meromorphic function on C with a single a pole at s = 1 (see
[71, Cor. 5.10]). This function ζF is called the Dedekind zeta function of the
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number field F . It has a zero of order rF at s = 0 and the leading term of the
Taylor expansion at this point is given by

lim
s→0

ζF (s)

srF
= −hFRF

wF
. (2.17)

Let L/F be a finite Galois extension of F with Galois group

Gal(L/F ) = {ϕ ∈ Aut(L) | ∀x ∈ F : ϕ(x) = x}

and let

NL/F (x) =
∏

σ∈Gal(L/F )

σ(x), TrL/F (x) =
∑

σ∈Gal(L/F )

σ(x)

be the relative norm and relative trace of an element x ∈ L respectively. The
relative norm of an ideal is the ideal

NL/F (a) = ⟨NL/F (x) | x ∈ a⟩ ⊂ F.

Note that we have NL/Q(a) = (N(a)) in the above notation. We write dL/F for
the relative discriminant of the extension L/F and note that for a quadratic
extension L/F we have the identity

dL = NF/Q(dL/F )d
2
F .

We say that a prime ideal P of L lies above a prime ideal p of F if p = P∩ oF .
The subset of prime ideals of L lying above some fixed prime ideal p of oF is
denoted by Ωf,p. The Galois group Gal(L/F ) acts on Ωf,p. For a prime ideal
P of L we let

Gal(L/F )P = {g ∈ Gal(L/F ) | gP = P}

be the decomposition group of P. The action of the decomposition group on the
residue class field LP = oL/P yields a group homomorphism

ϕP : Gal(L/F )P → Gal(LP/Fp),

where Fp = oF /p. The kernel of this homomorphism IP is called the inertia
subgroup in P. The homomorphism ϕP is surjective, so that we get an iso-
morphism Gal(L/F )P/IP ∼= Gal(LP/Fp). Since LP is a finite field, the Galois
group Gal(LP/Fp) is a finite cyclic group generated by the Frobenius homomor-
phism

Frobp : LP → LP, x 7→ xq,

where q = N(p). If ρ : Gal(L/F ) → GL(V ) is a finite-dimensional complex
representation, we get an action of Gal(L/F )P/IP on

V IP = {v ∈ V : gv = v ∀g ∈ IP}.
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and the characteristic polynomial det(1−zρ(Frobp)|V IP ) for z ∈ C only depends
on p. The infinite product

L(s, L/F, ρ) =
∏
p

det(1−N(p)−sρ(Frobp)|V IP )−1,

where the product runs over all finite places of F , converges absolutely for
Re(s) > 1 and extends to a meromorphic function L(s, L/F, ρ) on C (see [71,
Thm. VII.12.6]). The function L(s, L/F, ρ) is called the Artin L-function as-
sociated to the representation ρ. If the Galois extension L/F is clear from the
context we will simply write L(s, ρ) for the Artin L-function. It is a famous
conjecture of Artin (see e.g. [68]) that for any non-trivial irreducible represen-
tation ρ the Artin L-function is an entire function. Class field theory yields an
answer in the abelian case:

Theorem 2.9.2. Let L/F be a Galois extension such that Gal(L/F ) is an
abelian group. If ρ : Gal(L/F ) → GL(V ) is a non-trivial irreducible repre-
sentation on a finite-dimensional complex vector space V , the Artin L-function
L(s, ρ) is entire.

Proof. This follows from [71, Thm.VII.10.6], as explained on page 527 in Neukirch’s
book [71].

Finally, we note that Artin L-functions appear in the factorization of Dedekind
zeta functions:

Theorem 2.9.3. For L/F a Galois extension one has

ζL(s) = ζF (s)
∏
ρ̸=1

L(s, ρ)dim ρ,

where the product runs over the equivalence classes of all non-trivial irreducible
representations ρ of Gal(L/F ).

Proof. [71, Cor.VII.10.5]

2.10 Arithmetic Fuchsian Groups
In this section we will describe the construction of arithmetic Fuchsian groups
and some parts of the surrounding theory. For further details we refer the reader
to standard textbooks such as [53, 60].
Let F be a field of characteristic ̸= 2. A quaternion algebra A over F is a
4-dimensional central simple algebra over F . Each quaternion algebra is iso-
morphic to an algebra A =

(
a,b
F

)
over F spanned by a basis {1, i, j, k} fulfilling

the relations
i2 = a, j2 = b, k = ij = −ji,
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where a, b ∈ F ∗. On a quaternion algebra A there exists an involution given by

x = x0 + x1i+ x2j + x3k 7→ x = x0 − x1i− x2j − x3k.

In terms of this involution one may define the reduced trace trd(x) = x+ x̄ and
the reduced norm nrd(x) = x · x̄ of an element x ∈ A. If each element in A has
an inverse, A is called a quaternion division algebra. From now on, we let F be
a number field. For any homomorphism σ of F into another field K define

Aσ =

(
σ(a), σ(b)

σ(F )

)
, Aσ ⊗K =

(
σ(a), σ(b)

K

)
.

The quaternion algebra A is said to be ramified at a place v of F , if Aσv ⊗ Fv
is a division algebra over Fv. Otherwise, A is said to be unramified at v. Let
Ram(A) be the set of places, at which A ramifies. Let Ramf (A) be the subset
of finite places of Ram(A) and Ram∞(A) be the subset of infinite places in
Ram(A). The discriminant of A is the ideal

dA =
∏

p∈Ramf (A)

p.

of F . One can classify quaternion algebras over F according to their ramification
behaviour:

Theorem 2.10.1. Let A1 and A2 be two quaternion algebras over F . Then A1

is isomorphic to A2 as an F -algebra if and only if Ram(A1) = Ram(A2).

Proof. [60, Thm. 7.3.6]

A quaternion algebra A is said to be indefinite, if there is at least one infinite
place, at which A is unramified. We now further assume that F is a totally real
field, i.e. r2 = 0 and any quaternion algebra A will always be assumed to
be unramified at exactly one infinite place. Let σ1, ..., σn be the n distinct
embeddings of F into R. Over R, any quaternion algebra is either isomorphic
to M2(R) or the Hamilton quaternions H and

• Aσj ⊗R ∼=M2(R) for exactly one j,

• Aσi ⊗R ∼= H for all 1 ≤ i ≤ n, i ̸= j.

We assume without loss of generality that σ1 is the unique infinite place, at which
A is unramified. We will in the following always identify F with σ1(F ) ⊂ R and
A with Aσ1 ⊂M2(R), whenever this is necessary.
An order O in A is a subring of A containing 1, which is a Z-submodule of rank
4n. For p a prime ideal of F we let Op = O ⊗ oF,p be the localization of the
order O at p. Consider the group of units of reduced norm 1 of an order O,

O1 = {x ∈ O | nrd(x) = 1}.

Then O1 is a subgroup of SL2(R) and the image Γ(A,O) = Pσ1
O1 under the

projection map Pσ1
: SL2(R) → SL2(R)/{±12} is a Fuchsian group (see e.g.

28



[53, Thm. 5.2.7]). If Γ ⊂ PSL2(R) is a Fuchsian group, which is a subgroup
of finite index in Γ(A,O) for some order O in A, it is called a Fuchsian group
derived from the quaternion algebra A. If a Fuchsian group Γ ⊂ PSL2(R) is
commensurable7 with some Γ(A,O), it is called an arithmetic Fuchsian group.
If Γ is an arithmetic Fuchsian group, we will call the the quotient space Γ\H an
arithmetic surface.

Theorem 2.10.2. A subgroup Γ ⊂ PSL2(R) is an arithmetic Fuchsian group
if and only if Γ(2) = ⟨γ2 | γ ∈ Γ⟩ is derived from a quaternion algebra.

Proof. [53, Thm. 5.3.11]

We note that the wide commensurability8 class of an arithmetic Fuchsian
group can be classified by the invariant trace field F (Γ) = Q(tr Γ(2)) and the
invariant quaternion algebra

A(Γ) =

{
k∑
i=1

aiγi | ai ∈ F (Γ), γi ∈ Γ(2)

}

as follows:

Theorem 2.10.3. Let Γ1,Γ2 be arithmetic Fuchsian groups. Then Γ1 and Γ2

are commensurable in the wide sense, if and only if F (Γ1) = F (Γ2) and there
exists an F (Γ1)-algebra isomorphism ϕ : A(Γ1)→ A(Γ2).

Proof. [60, Thm. 8.4.6]

Arithmetic Fuchsian groups form an important source of cocompact lattices:

Theorem 2.10.4. Suppose a Fuchsian group Γ is commensurable to some
Γ(A,O) with O an order in a quaternion division algebra A. Then the cor-
responding arithmetic surface Γ\H is compact.

Proof. [53, Thm. 5.4.1]

Arithmetic surfaces are rare among smooth closed hyperbolic surfaces, in
the sense that the moduli space of hyperbolic surfaces of genus g only contains
finitely many points, which correspond to arithmetic surfaces:

Theorem 2.10.5. Let T > 0 be given. There are only finitely many conjugacy
classes of arithmetic Fuchsian groups Γ such that vol(Γ\H) < T .

Proof. [60, Thm. 11.3.1]

This is a consequence of the following explicit formula for the covolumes of
maximal orders:

7Recall that two subgroups Γ1 and Γ2 of a given group G are called commensurable, if
Γ1 ∩ Γ2 is of finite index in both Γ1 and Γ2.

8Two subgroups Γ1 and Γ2 of a given group G are called commensurable in the wide sense,
if Γ1 and a conjugate of Γ2 are commensurable.
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Lemma 2.10.6. Let O be a maximal order in a quaternion algebra A and
Γ = Γ(A,O). Then

vol(Γ\ SL2(R)) =
d
3/2
F ζF (2)

∏
p|dA

(N(p)− 1)

(4π2)n−1
.

Proof. [60, §11.1]

Fix a maximal order O. A principal congruence subgroup (of O1) is a sub-
group of O1 of the form

O1(a) = {x ∈ O1 | x− 1 ∈ aO},

where a is an ideal of F . A congruence subgroup Γ is a subgroup of O1, which
contains some principal congruence subgroup O1(a). We will also call the re-
sulting Fuchsian group Pσ1

Γ ⊂ PSL2(R) a congruence subgroup. The quotient
space Γ\H will be called a congruence surface.

2.11 Benjamini-Schramm Convergence and Plancherel
Convergence

In this section we introduce the notions of Benjamini-Schramm convergence
and Plancherel convergence. For simplicity, we will restrict our discussion to
cocompact torsion-free lattices in SL2(R). For the more general setting we refer
the reader to [1, 30].
As before, we let G = SL2(R) and Γ be a cocompact lattice in G. Recall from
Theorem 2.7.1 that the representation R on L2(Γ\G) given by Ryϕ(x) = ϕ(xy)
decomposes into a direct sum of irreducible representations

L2(Γ\G) =
⊕
π∈Ĝ

NΓ(π)Hπ,

where the multiplicities NΓ(π) are finite. The spectral measure µΓ associated
with Γ is then defined by

µΓ =
∑
π∈Ĝ

NΓ(π)δπ,

where δπ is the Dirac measure for π ∈ Ĝ.

Definition 2.11.1. Let (Γj)j∈N be a sequence of cocompact lattices in SL2(R).
We say that (Γj)j∈N has the limit multiplicity property, if

1. for any Jordan-measurable set A ⊂ Ĝtemp one has

lim
j→∞

µΓj (A)

vol(Γj\G)
= µPl(A),
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2. for any bounded subset A ⊂ Ĝ∖ Ĝtemp one has

lim
j→∞

µΓj
(A)

vol(Γj\G)
= 0.

It is usually easier to establish the following closely related notion:

Definition 2.11.2. A sequence (Γj)j∈N of cocompact lattices in G is called
Plancherel convergent (or a Plancherel sequence), if for every f ∈ C∞

c (G) we
have

1

vol(Γj\G)
µΓj

(f̂)→ µPl(f̂)

as j → ∞. We will call a sequence (Xj)j∈N of smooth hyperbolic surfaces
Xj = Γj\H Plancherel-convergent (or a Plancherel-sequence), if the associated
sequence of lattices (Γj)j∈N is Plancherel-convergent.

Theorem 2.11.3. Let (Γj)j∈N be a sequence of cocompact lattices in PSL2(R).
If (Γj)j∈N is a Plancherel sequence, it has the limit multiplicity property.

Proof. This is a well-known consequence of Sauvageot’s density principle [84].

There exists an even weaker notion of convergence, which implies Plancherel
convergence in many scenarios (cf. [1]).

Definition 2.11.4. We say that a sequence (Xj)j∈N of smooth closed hyper-
bolic surfaces is Benjamini-Schramm convergent (or BS-convergent), if for every
R > 0 one has

lim
j→∞

vol({p ∈ Xj : rp(Xj) ≤ R})
vol(Xj)

= 0.

Alternatively, we will say that the associated sequence of cocompact torsion-free
lattices (Γj)j∈N defined by Xj = Γj\H is Benjamini-Schramm convergent.

We call a sequence of lattices (Γj)j∈N in G uniformly discrete, if there exists
a unit neighborhood U in G such that x−1Γjx∩U = {1} for all x ∈ G and j ∈ N.
From the characterization of closed geodesics given in Proposition 2.2.3 one may
quickly check that a sequence of cocompact torsion-free lattices is uniformly
discrete if and only if the systoles {ls(Xj) | j ∈ N} of the associated surfaces
Xj = Γj\H are uniformly bounded away from zero. We collect the following
important result, which links the notions of convergence just introduced:

Theorem 2.11.5. Let (Γj)j∈N be a sequence of cocompact torsion-free lattices
in G.

1. If (Γj)j∈N is Plancherel convergent, it is BS-convergent.

2. If (Γj)j∈N is BS-convergent and uniformly discrete, it is Plancherel con-
vergent.
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Proof. [30, Thm. 2.6]

To investigate examples of Plancherel-convergent and BS-convergent sequences,
we note the following explicit criterion for Plancherel convergence:

Proposition 2.11.6. A sequence of smooth closed hyperbolic surfaces (Xj)j∈N
is Plancherel-convergent if and only if for each c > 0 one has

lim
j→∞

1

vol(Xj)

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
= 0, (2.18)

where the sum runs over the lengths in SpecL(Xj).

Proof. We start by showing that (2.18) implies that (Xj)j∈N is a Plancherel-
sequence. Let f ∈ C∞

c (G) with support sitting in some compact set Kf . Let us
abbreviate Bj = | vol(Xj)

−1µΓj (f̂)− µPl(f̂)|. Applying the trace formula from
Section 2.7 to Bj gives

Bj = vol(Xj)
−1

∣∣∣∣∣∣
∑
[γ] ̸=1

lγ0

∫
Gγ\G

f(x−1γx)dx

∣∣∣∣∣∣ . (2.19)

Since the orbital integral is conjugation-invariant, we may assume

γ =

(
elγ/2 0
0 e−lγ/2

)
.

Let G = ANK be the Iwasawa decomposition from Section 2.6. Since Kf is
compact and the matrix trace tr : SL2(R)→ R is continuous, there exists some
constant c = c(f) > 0 such that

Bj ≤ vol(Xj)
−1
∑
lγ≤c

m(lγ)lγ0

∫
Gγ\G

∣∣∣∣f (x−1

(
elγ/2 0
0 e−lγ/2

)
x

)∣∣∣∣ dx, (2.20)

where the sum on the right-hand side runs over the lengths in the length spec-
trum of Xj . A quick computation shows Gγ = A and we get∫
Gγ\G

|f(x−1γx)|dx =

∫
R

∫ 2π

0

|f(k−1
θ n−1

y γnykθ)|dydθ

=
1

2 sinh(lγ/2)

∫
R

∫ 2π

0

∣∣∣∣f (k−1
θ

(
elγ/2 y
0 e−lγ/2

)
kθ

)∣∣∣∣ dydθ.
The integrand on the right-hand side can only be non-zero if(

elγ/2 y
0 e−lγ/2

)
∈ KKfK =: K ′

f .
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Since multiplication in G is continuous, the set K ′
f is compact. Hence, there

exists a constant Mf solely depending on f such that∫
Gγ\G

|f(x−1γx)|dx ≤ Mf

sinh(lγ/2)
. (2.21)

Plugging (2.21) into (2.20) yields

Bj ≤
Mf

vol(Xj)

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
. (2.22)

and thus (2.18) implies limj→∞Bj = 0.
Let us now prove the converse direction. Let (Xj)j∈N be a Plancherel-convergent
sequence of smooth closed hyperbolic surfaces and let c > 0 be given. We will
prove in Theorem 4.1.2 that for s ∈ C with Re(s) > 1 one has

lim
j→∞

1

vol(Xj)

∑
[γ ]̸=1

lγ0
2 sinh(lγ/2)

e−(s−1/2)lγ = 0. (2.23)

If we take s = 3/2 in (2.23), we already get (2.18) by observing∑
[γ ]̸=1

lγ0
sinh(lγ/2)

e−lγ ≥ e−c
∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
.

This concludes the proof.

This allows for the following interesting reformulation of BS-convergence in
the uniformly discrete case:

Corollary 2.11.7. Let (Γj)j∈N be a uniformly discrete sequence of torsion-free
cocompact lattices in SL2(R). Then (Γj)j∈N is BS-convergent if and only if for
any c > 0 one has

lim
j→∞

πΓj
(c)

vol(Γj\H)
= 0,

where πΓj
is the counting function of the length spectrum of Xj = Γj\H.

Proof. Let (Γj)j∈N be uniformly discrete and let c > 0 be given. Then we can
find constants C1, C2 > 0 such that

C1 ≤
lγ0

sinh(lγ/2)
≤ C2

holds for any length lγ ≤ c in SpecL(Xj). This already given the claim in view
of Proposition 2.11.6.

Let us discuss a few examples (and non-examples) of Plancherel convergent
and BS-convergent sequences to gain intuition and demonstrate structural fea-
tures of the theory.
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Example 2.11.8. We start with the construction of a sequence of smooth closed
hyperbolic surfaces (Xj)j∈N, which is not BS-convergent. For ε < 1 consider
the Y-piece Yε with all three boundary geodesics of length equal to ε. If we glue
2j−2 copies of Yε along their respective boundary geodesics we get a surface Xj

of volume vol(Xj) = 4π(j−1). According to Theorem 2.3.1 this sequence cannot
contain any further short geodesics, so that (Xj)j∈N is uniformly discrete. Since

πΓj (ε)

vol(Xj)
=

3j − 3

4π(j − 1)
=

3

4π

this sequence cannot be BS-convergent by Corollary 2.11.7.

Example 2.11.9. Next we construct a Plancherel sequence. Let A be a quater-
nion algebra over Q unramified at the infinite place such that Ram(A) ̸= ∅.
Hence, we have A ̸= M2(Q). Fix a maximal order O in A and let (pk)k∈N be
a sequence of pairwise non-identical primes. For j ∈ N we let Ij be the ideal
given by the product Ij = (p1)....(pj). We claim that the sequence defined by
Γj = O1(Ij) is Plancherel-convergent. To see this let us fix some c > 0. The
traces of elements of O are contained in Z, so that there exist only finitely many
traces below 2 cosh(c/2), say

tr γ1 = t1, ..., tr γq = tq. (2.24)

for γ1, ..., γq ∈ O1. Now, if an element γs of trace ts with s ∈ {1, ..., q} is
contained in O1(Ij) we get from the congruence condition γs ∈ 1 + IjO that

ts − 2 = xp1 · · · pj (2.25)

for some x ∈ Z. This can only happen for finitely many j ∈ {1, .., j0}. Con-
sequently, any Xj = Γj\H with j large enough can neither contain a torsion-
element nor a geodesic of length l ≤ c and Corollary 2.11.7 implies that (Xj)j∈N
is Plancherel-convergent.

Example 2.11.10. More generally, we will see in Chapter 3 that any sequence
of cocompact torsion-free congruence subgroups (Γj)j∈N with vol(Γj\G) → ∞
is Plancherel-convergent.
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Chapter 3

Spectra of Arithmetic
Surfaces and Plancherel
Convergence

3.1 Summary
We have seen at the end of the last chapter that a certain sequence of principal
congruence subgroups in a fixed maximal order is Plancherel convergent. It is
natural to ask, whether this also holds for arbitrary sequences of (non-conjugate)
congruence subgroups. For this reason we need a more in-depth understanding
of the length spectra of arithmetic surfaces. We begin this chapter by collecting
information about the length spectra of arithmetic surfaces from the literature
and recast them in a language suitable for our purpose. Based on this informa-
tion we then go on to prove

Theorem 3.1.1. Let (Γj)j∈N be a sequence of torsion-free congruence subgroups
of PSL2(R) with vol(Γj\G)→∞. Then (Γj)j∈N is Plancherel convergent.

The proof of Theorem 3.1.1 will be given in Section 3.7. We note that
the analogue of Theorem 3.1.1 for arbitrary sequences of arithmetic surfaces is
known to be wrong (cf. [1, p.716]).

3.2 Hyperbolic Transformations and Salem Num-
bers

The goal of this section is to describe the lengths, which appear in the length
spectrum of an arithmetic surface. The material covered here can for example
be found in [60, §12] and [45].
Recall from Section 2.2 that the lengths of closed geodesics on the Riemann
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surface X = Γ\H are of the form 2 log τγ , where

τ±1
γ =

tr γ ±
√
(tr γ)2 − 4

2
(3.1)

are the eigenvalues of the hyperbolic transformation γ ∈ Γ. From now on, we
assume that Γ = Γ(A,O) is always a Fuchsian group derived from a quater-
nion algebra A, unless mentioned otherwise. We let F = F (Γ) be the in-
variant trace field with real embeddings σ1, ..., σn, which are chosen so that
Ram∞(A) = {σ2, ..., σn}.

Proposition 3.2.1. Let γ = σ1(x) ∈ Γ be a hyperbolic element. Then σj(trd(x))
lies in the interval (−2, 2) for j = 2, ..., n.

Proof. For each j ∈ {2, ..., n} we have an isomorphism Aσj ⊗R ∼= H. Let us fix
such an isomorphism for j = 2, ..., n and write

σj(x) = x0 + x1i+ x2j + x3k ∈ H.

Since nrd(σj(x)) = 1, we have

1 = x20 + x21 + x22 + x23

and thus
|σj(trd(x))| = | trd(σj(x))| = 2|x0| ≤ 2.

Because of (3.1) the above proposition shows that all conjugates of τγ with
the exception of τ−1

γ lie on the unit circle. This observation connects lengths of
closed geodesics to the following class of algebraic integers:

Definition 3.2.2. A Salem number is a real algebraic integer τ > 1 such that
all conjugates of τ except τ−1 lie on the unit circle.

Remark 3.2.3. One usually requires that Salem numbers have at least one
conjugate on the unit circle. This restriction is relevant for some problems such
as the distribution of powers of τ modulo 1 (cf. [92, §3.4]), but does not play a
role in our case.

Example 3.2.4. The root τL = 1.17628... of the Lehmer polynomial

pL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

is the smallest known Salem number.
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τL

Figure 3.1: The Salem number τL = 1.17628... and its conjugates

On the other hand, there are plenty of examples of arithmetic surfaces,
which contain a particular Salem number τ (see e.g. [60, Lemma 12.3.2]). As
an immediate consequence of this discussion, we get

Theorem 3.2.5. Let Γ be a torsion-free Fuchsian group derived from a quater-
nion algebra. Let lγ be the length of a closed geodesic γ on the corresponding
arithmetic surface Γ\H. Then τγ = exp(lγ/2) is a Salem number. Conversely,
any Salem number τ is of the form τ = exp(lγ/2) for lγ the length of a closed
geodesic on an arithmetic surface X.

It is an interesting observation by Stark [93] (and Chinburg [25]) that Salem
numbers can be expressed in terms of special values of L-functions:

Theorem 3.2.6. Let F be a totally real number field of degree n > 1. Let L
be a relative quadratic extension of F having exactly two real places. Let u = 2,
if L is generated by the square root of a unit in F and u = 1 otherwise. Let
χ be the non-trivial character of Gal(L/F ) and L(s, χ) be the associated Artin
L-function. Then L(s, χ) vanishes to first order at s = 0 and

L′(0, χ) =
hL2

n−2 log τs
hFu

,

where τs is a unit of L, which together with o×F generates a subgroup of index
2u in o×L .

Proof. [93, pp.63-88].

The algebraic integer τs from Theorem 3.2.6 will be referred to as Stark unit.

Corollary 3.2.7. The Stark unit τs is a Salem number. Conversely, any Salem
number τ in L is of the form τ = τ

k/2
s for some k ∈ N.

Proof. [25].
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3.3 Systoles of Arithmetic Surfaces
For Salem numbers we have the following well-known

Conjecture 3.3.1 (Salem). There exists some δ > 0 such that each Salem
number is larger than 1 + δ.

This question has been extensively numerically investigated1 by Boyd [11,
10], Mossinghoff [67] and others (see e.g. [41]), even though Lehmer had already
found some of the smallest known Salem numbers [59]. Some of their findings
are illustrated in Figure 3.2:

1 1.3
τL

Figure 3.2: All Salem numbers τ < 1.3 of degree ≤ 44.

Because of Theorem 3.2.5 and the following remark, the above conjecture is
equivalent to

Conjecture 3.3.2 (Minimization problem). There exists a uniform positive
constant C0 such that any length of a closed geodesic on an arbitrary arithmetic
surface is bounded from below by C0.

There exist partial results towards Salem’s conjecture, which are sufficient
for our purposes2:

Theorem 3.3.3. There exists an absolute constant cD such that for any systole
ls of an arithmetic surface Γ\H with invariant trace field F (Γ) of degree n we
have

1

ls
≤ cD log(n)3.

Proof. [37, Theorem 1].

3.4 Bilu Equidistribution
When proving Plancherel convergence for congruence surfaces, we will be faced
with estimating quantities such as

N(dτ ) =

n∏
k=1

(σk(τ + τ−1)2 − 4),

1We note that some of these investigations actually aimed at Lehmer’s conjecture, which
is more general than the above conjecture.

2Note that we are using a weaker version of what Dobrowolski has shown, as this suffices
for our purposes.
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where
dτ = (τ + τ−1)2 − 4

is the discriminant of τ . Therefore, it is necessary to understand how the conju-
gates of a Salem number τ distribute on the unit circle S1. Fraczyk [43] realized
that Bilu’s equidistribution principle [8] can be utilized for this task. Restricted
to the case of Salem numbers it states that a sequence of Salem numbers num-
bers (τj)j∈N with [Q(τj) : Q] = 2nj →∞ and log τj/nj → 0 equidistributes on
the circle, in the sense that for any f ∈ Cc(C) one has

lim
j→∞

1

2nj

∑
σ∈Hom(Q(τj),C)

f(σ(τj)) =
1

2π

∫ 2π

0

f(eiθ)dθ.

Figure 3.3 visualizes this phenomenon for a certain sequence of Salem numbers
(τj)j∈N, which converges to the plastic number θ0 ≈ 1.32471. The definition of
this sequence and relevant sources are given in Appendix A.

Figure 3.3: Non-real conjugates of τ10, τ20 and τ40 respectively

Fraczyk made use of the estimates leading up to Bilu’s equidistribution prin-
ciple to derive bounds on the norm of the Weyl discriminant and the number
of ideals of small norm. Since our proof will also use these estimates, we note
that they form an independent and comparatively short part of his work.

Theorem 3.4.1. Let c > 0 be some constant and let τ be a Salem number of
degree 2n with τ ≤ c. Then for each s ∈ C with Re(s) > 1 and δ > 0 there exist
constants cδ and cδ,s so that

1. N(dτ ) ≤ cδ(1 + δ)n,

2. N(dL/F ) ≤ cδ(1 + δ)n,

3. |ζF (s)| ≤ cδ,s(1 + δ)n.

Proof. This is a direct consequence of Lemma 30 and Lemma 31 in [43].
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3.5 Embedding Numbers of Orders
Until the end of this section, we let Γ = Γ(A,O) always be the group of norm 1
units of some order O sitting in a quaternion division algebra A over a totally
real field F , such that A is unramified at exactly one infinite place of F . We
first note that each γ ∈ Γ gives an embedding of the relative quadratic extension
L = F (τγ) into A via

σγ : L→ A, a+ bτγ 7→ a+ bγ, a, b ∈ F (3.2)

One may readily verify that σ−1
γ (σγ(L) ∩ O) defines an order in L.

Definition 3.5.1. An optimal embedding of an order o in L into O is an em-
bedding σ : L→ A such that σ−1(σ(L) ∩ O) = o holds.

The set of optimal embeddings of o into O is denoted by Σ(o,O). Any
x ∈ O× acts on Σ(o,O) by conjugation. For any subgroup H ⊂ O× we let
Σ(o,O)/H be the quotient under the action of H and write

m(o,O;H) = |Σ(o,O)/H|

for the cardinality of this set. Let us also denote oγ = oF + τγoF . One can
express the multiplicity of the length of γ in terms of the embedding numbers
m(o,O;O1):

Lemma 3.5.2. The multiplicity m(lγ) of a length lγ in the length spectrum of
Γ is given by

m(lγ) =
∑

oγ⊂o⊂oL

m(o,O;O1),

where the sum runs over all orders o with oγ ⊂ o ⊂ oL, which can be embedded
into A.

Proof. Any γ ∈ Γ defines an embedding σγ of L into A through (3.2). Then
o = σ−1

γ (σγ(L)∩O) defines an order in L, which contains oγ . Since any geodesic
in X = Γ\H is described by a Γ-conjugacy class [γ′] of some element γ′ in Γ,
we have

m(lγ) ≤
∑

oγ⊂o⊂oL

m(o,O;O1).

Now, let o be an order with oγ ⊂ o and σ : L→ A be an optimal embedding of
o. Let γ′ ∈ O ∩ σ(L) be the unique element with γ′ = σ(τγ), i.e. σ = σγ′ in the
above notation. One has

γ′2 − tr(γ)γ′ + 1 = σ(τ2γ − tr(γ)τγ + 1) = 0,

which shows that γ and γ′ have the same eigenvalues. Thus, γ′ lies in O1 and
the respective lengths lγ and lγ′ are equal. Hence

m(lγ) ≥
∑

oγ⊂o⊂oL

m(o,O;O1),

which concludes the proof.
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Let us restrict our attention to maximal orders. We first observe that the
embedding numbers may vanish in a few cases:

Theorem 3.5.3. Let L be a quadratic extension of F such that L embeds into
A. Let o be an order in L containing oF . Then every maximal order in A
contains a conjugate of o, unless both of the following conditions hold:

1. The extension L/F and the quaternion algebra A are unramified at all
finite places and ramified at exactly the same set of real places.

2. Any prime ideal of F , which divides the relative discriminant d(o) of o, is
split in L/F .

Proof. [60, Thm. 12.4.2]

Definition 3.5.4. An order o satisfying the conditions of the above theorem is
said to be selective. Otherwise, it is called non-selective.

Remark 3.5.5. The first condition in Theorem 3.5.3 can only be met for our
quaternion algebra A, if n = [F : Q] is odd, since Ram(A) has even cardinality.
If n is odd, there are, up to isomorphism, only n possibilities for our quaternion
algebra A over F , for which selectivity could occur. Furthermore, there are only
finitely many unramified quadratic extensions of F . In this sense, we regard
selectivity as an exceptional phenomenon. Still, selectivity does occur for certain
quaternion algebras (cf. Exercise 6 in [60, §12.5]).

Remark 3.5.6. Sometimes it may also happen that no embedding of a certain
order o is optimal. This depends on the ramification set of the quaternion algebra
A and is discussed in more detail in Appendix B.

With these considerations in mind we now express the embedding number
m(o,O;O1) in terms of arithmetic data:

Theorem 3.5.7. Let O be a maximal order. Then there exists a number
s(o,O) ∈ {0, 1, 2} such that

m(o,O;O1) =
s(o,O)h(o)21+|Ωi(L)|

hF [NL/F (o×) : (o
×
F )

2]
, (3.3)

where Ωi(L) is the subset of finite places in Ram(A), which stay inert in the
extension L.

This result is essentially known in the literature and a derivation based on
[98] can be found in Appendix B. For the moment we only notice that s(o,O)
does not depend on the maximal order O, whenever o is non-selective. A well-
known application of (3.3), due to Vignéras [97], is the construction of pairs of
isospectral Riemann surfaces, which are not isometric (see also [60, §12.4]).
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3.6 Quadratic Orders
By Lemma 3.5.2 only orders o in a quadratic extension L = F (elγ/2) with
oγ ⊂ o ⊂ oL could yield a contribution to the multiplicity of some length l = lγ
in the length spectrum. In this section we will describe a way to parametrize
these orders by studying the following more general class of orders:

Definition 3.6.1. A quadratic oF -order o is an order in a relative quadratic
extension L/F such that o is a module over oF .

In our exposition, we closely follow [69], although we need to be more explicit
in some places. Most of the results can also be found in the more recent article
[13]. Let us recall some terminology and standard facts from the theory of
modules over Dedekind domains. The presented material can for example be
found in [70, §1.3]. In the following R is always a Dedekind domain and F its
field of fractions. Any arrow between R-modules will be implicitely assumed to
be a morphism of R-modules.

Definition 3.6.2. An R-module M is called projective if every diagram of the
form

M

A B 0

with exact row and arbitrary R-modules A and B can be extended to a com-
mutative diagram

M

A B 0

Proposition 3.6.3. Any non-zero fractional ideal I of R is projective.

Proof. [70, Prop. 1.36]

Theorem 3.6.4. Let M be a finitely generated R-module and let Z be the
submodule of M consisting of all torsion-elements of M , i.e. of elements x ∈M ,
which for some non-zero r ∈ R satisfy rx = 0. Then M can be written as a
direct sum

M ∼= Rk ⊕ I ⊕ Z,

where k is a non-negative integer and I is some ideal of R.

Proof. [70, Theorem 1.32]

Theorem 3.6.5. Let M1,M2 be finitely generated, torsion-free R-modules with

M1 = I1 ⊕ ...⊕ Is, M2 = J1 ⊕ ...⊕ Jt,
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where the Ii Jj are non-zero fractional ideals of R. Then M1 and M2 are
isomorphic if and only if s = t and there exists some a ∈ F such that

I1 · · · Is = aJ1 · · · Jt
holds.

Proof. [70, Thm. 1.39]

We now specialize to the case of R being the ring of integers oF of some
number field F and M some quadratic oF -order o. We have the following short
exact sequence

0 oF o o/oF 0ι π (3.4)

where ι is the inclusion map and π is the projection map. Since o/oF is a
finitely-generated torsion-free oF -module, Theorem 3.6.4 yields an isomorphism

o/oF ∼= okF ⊕ b

for some fractional ideal b of oF and some k ∈ N. Comparing the ranks of both
modules over Z yields k = 0 and thus o/oF ∼= b. Theorem 3.6.5 shows that the
ideal class of b is uniquely determined by o. Let us choose b such that oF ⊂ b.
With this choice we have 1 ∈ b. Let us fix an isomorphism ϕ : b → o/oF and
let π : o → o/oF be the projection map. By Proposition 3.6.3 any non-zero
fractional ideal is a projective oF -module so that the inspection of the diagram

o/oF

o o/oF 0

ψ
Id

π

yields an oF -morphism ψ : o/oF → o with π◦ψ = Id. Hence, the exact sequence
(3.4) splits and the map

h : oF ⊕ o/oF → o, (x1, x2) 7→ ι(x1) + ψ(x2)

constitutes an isomorphism. We therefore get isomorphisms

oF ⊕ b oF ⊕ o/oF o,
Id⊕ϕ h (3.5)

which yields
o = oF ⊕ ψ(ϕ(b)).

For x ∈ oF with xb ⊂ oF we have

xψ(ϕ(b)) = ψ(ϕ(xb)) = xbψ(ϕ(1))

so that
o = oF ⊕ bθ (3.6)

with θ = ψ(ϕ(1)). Applying this procedure to the ring of integers oL of a relative
quadratic extension L/F we find the decomposition oL = oF ⊕ bLθ for some
fractional ideal bL of oF .
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Definition 3.6.6. The element [bL] of the ideal class group is called the Steinitz
class of the extension L/F . We denote it by st(L/F ).

The Steinitz classes of relative quadratic extensions are known:

Lemma 3.6.7. Let L = F (
√
a) be a relative quadratic extension of F . Then

dL/Fa
−1 = b2 for some fractional ideal b of F with [b] = st(L/F ).

Proof. [27, Thm. 2.2].

For the relative quadratic extension L = F (
√
dγ), we always choose bL such

that
b2L = dL/F d

−1
γ . (3.7)

With the Steinitz class fixed, we can parametrize quadratic oF -orders in terms
of integral ideals of oF :

Proposition 3.6.8. Let o be a quadratic oF -order sitting in a quadratic exten-
sion L/F . Then there exists an integral ideal co of F such that

o = oF ⊕ cobLθ. (3.8)

Conversely, for any integral ideal c the set oc = oF ⊕ cbLθ defines a quadratic
oF -order.

Proof. The set l := {x ∈ bL | xθ ∈ o} defines a fractional ideal of F contained
in bL and one may quickly check that o = oF ⊕ lθ. By [70, Prop. 1.13], we have
that l ⊂ bL implies the existence of a fractional ideal co such that l = cobL.
From co = lb−1

L we get co ⊂ oF and hence that co is integral.

The algebraic number θ is a zero of a quadratic polynomial

pθ(x) = x2 + a1x+ a2 (3.9)

with a1, a2 ∈ F . Let dθ = a21 − 4a2 be the discriminant of θ. We note the
following formula for the discriminant of an order (cf. [69, Lemma 1.6]) :

Lemma 3.6.9. Let o = oF ⊕ bθ be a quadratic order with b some fractional
ideal of F and θ an algebraic integer. Then the discriminant of o is given by

d(o) = d2FN(b2dθ).

3.7 Plancherel Convergence for Congruence Sur-
faces

Proof of Theorem 3.1.1. For Γj a congruence subgroup we let Xj = Γj\H be
the associated hyperbolic surface and abbreviate Vj = vol(Xj). The strategy of
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the proof is to confirm the condition of Proposition 2.11.6, i.e. we show that for
each ε > 0 there exists jε so that

1

Vj

∑
lγ≤c

m(lγ ,Γj)
lγ0

sinh(lγ/2)
< ε (3.10)

for each j ≥ jε, where the sum runs over the lengths in SpecL(Xj). The proof
of (3.10) will take up the rest of this section.
Let us consider an arbitrary congruence subgroup Γ of covolume V = vol(Γ\H)
with invariant trace field F of degree n and invariant quaternion algebra A. Let
O be a maximal order so that Γ ⊂ Pσ1

O1. In view of

vol(Γ\H) = [Γ : Pσ1
O1] vol(Pσ1

O1\H) (3.11)

and
m(lγ ,Γ) ≤ [Γ : Pσ1O1]m(lγ , Pσ1O1), (3.12)

we first concentrate on the case of maximal orders. From lim
x→0

x/ sinh(x) = 1

one may derive
1

sinh(lγ/2)
≤ c0 max{1, l−1

s } (3.13)

for some sufficiently large constant c0 and ls = ls(X) the systole of X = Γ\H.
Applying Theorem 3.3.3 to (3.13) yields

1

sinh(lγ/2)
≤ cDc0 log(n)3. (3.14)

Next we want to estimate

∑
lγ≤c

m(lγ ,Γ)lγ0 =
∑
lγ≤c

 ∑
oγ⊂o⊂oL

m(o,O;O1)lγ0

 . (3.15)

According to Theorem 3.5.7 we have

m(o,O;O1) ≤ 4
h(o)2|Ωi(L)|

hF
. (3.16)

Consider the well-known formula for the class number

h(o) =
hL

[o×L : o×]

φoL
(fo)

φo(fo)
, (3.17)

where φoL
(fo) is the number of units in oL/fo and φo(fo) is the number of units

in o/fo (see [71, Thm. 12.12]). Applying the crude estimate

φoL
(fo) ≤ |oL/fo| = N(fo) (3.18)

to (3.17) shows
h(o) ≤ hLN(fo). (3.19)
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Plugging (3.19) into (3.16) yields

m(o,O;O1) ≤ 4
hL2

|Ωi(L)|N(fo)

hF
. (3.20)

We note the following

Lemma 3.7.1. Let o be a quadratic order in L with oγ ⊂ o. Then one has
NL/Q(fo) ≤ NF/Q(dγ).

Proof. Since oγ ⊂ o, one has by definition foγ
⊂ fo and hence

NL/Q(fo) ≤ NL/Q(foγ ). (3.21)

It is known3 (cf. [89, Cor. III.6.1]) that

(dγ) = NL/F (foγ
)dL/F (3.22)

holds. Using NF/Q ◦ NL/F = NL/Q one may conclude from (3.21) and (3.22)
that

NL/Q(fo) ≤ NL/Q(foγ
) = NF/Q(dγ)NF/Q(dL/F )

−1 ≤ NF/Q(dγ).

By applying the above lemma to (3.20) we get

m(o,O;O1) ≤ 4
hL2

|Ωi(L)|N(dγ)

hF
. (3.23)

Now, regarding lγ0 we note that Theorem 3.2.6 guarantees the existence of
k0 ∈ N with

lγ0 = k02
2−nu

hF
hL
L′(0, χ), (3.24)

where u ∈ {1, 2}. We get

k0 ≤
c

ls
≤ cDc log(n)3 (3.25)

from another application of Theorem 3.3.3. The inequalities (3.23),(3.24) and
(3.25) together yield

m(o,O;O1)lγ0 ≤ c12−n log(n)3N(dγ)2
|Ωi(L)|L′(0, χ), (3.26)

where c1 = 64cDc. Applying the bounds from Theorem 3.4.1 to (3.26) leads to

m(o,O;O1)lγ0 ≤ c2
log(n)3(1 + δ)n

2n
2|Ωi(L)|L′(0, χ), (3.27)

3Here, one also needs a well-known relation between the relative discriminant dL/F and
the so-called different of an extension L/F, see e.g. [89, Prop. III.3.6].
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where c2 = c1cδ and δ > 0 is sufficiently small. Hence, we have

∑
oγ⊂o⊂oL

m(o,O;O1)lγ0 ≤ c2
log(n)3(1 + δ)n

2n
2|Ωi(L)|L′(0, χ)

 ∑
oγ⊂o⊂oL

1

 .

(3.28)
In view of (3.28) we note the following

Lemma 3.7.2. For δ > 0 sufficiently small one has ∑
oγ⊂o⊂oL

1

 ≤ c3(1 + δ)2n,

where c3 = cδ,2cδ.

Proof. We first claim that
N(dθ) = N(dγ) (3.29)

holds. This readily follows from Lemma 3.6.9 and our choice of the fractional
ideal bL made in (3.7), since

d2FN(dL/F ) = doL
= d2FN(b2Ldθ) = d2FN(dL/F d

−1
γ dθ),

where we used that L = F (
√
dγ). According to Lemma 3.6.8 we may write any

order with oγ ⊂ o ⊂ oL in the form o = oF + cobLθ with co an integral ideal of
F . Since oγ ⊂ o we have by definition of the discriminant that d(o) ≤ d(oγ).
Again applying Lemma 3.6.9 shows

d2FN(c2ob
2
Ldθ) = d(o) ≤ d(oγ) = d2FN(dγ), (3.30)

which in combination with (3.29) yields

N(co)
2 ≤ N(b−2

L ) = N(dL/F )
−1N(dγ) ≤ N(dγ). (3.31)

We therefore get ∑
oγ⊂o⊂oL

1

 =
∑

co⊂oF

1 =
∑

co⊂oF

N(co)
−2N(co)

2 ≤ ζF (2)N(dγ),

where the sums in the middle run over all integral ideals co coming from a
quadratic order oγ ⊂ o ⊂ oL as in Lemma 3.6.8. This gives the desired claim in
view of the bounds from Theorem 3.4.1.

Applying the above lemma to (3.28) shows∑
oγ⊂o⊂oL

m(o,O;O1)lγ0 ≤ c4
log(n)3(1 + δ)3n

2n
2|Ωi(L)||L′(0, χ)|. (3.32)

with c4 = c2c3. Let us now deal with |L′(0, χ)|:
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Lemma 3.7.3. For any δ > 0 sufficiently small there exists a constant c′δ so
that

|L′(0, χ)| ≤ c′δ(1 + δ)3nπ−nd
(1+δ)/2
F .

Proof. The completion Λ(s, χ) of L(s, χ) is given by

Λ(s, χ) =
(
π−n/2dFN(dL/F )

)s
Γ
(
s
2

)
Γ
(
s+1
2

)n−1 L(s, χ),

(see e.g. [56, p. 299]), where Γ(s) is the Gamma function. We therefore have

Λ(0, χ) = Γ(12 )
n−1

(
lim
s→0

Γ
(
s
2

)
L(s, χ)

)
. (3.33)

Inserting Γ( 12 ) =
√
π and lims→0 sΓ(s) = 1 into (3.33) shows

Λ(0, χ) = 2π(n−1)/2

(
lim
s→0

L(s, χ)
s

)
. (3.34)

Since

lim
s→0

L(s, χ)
s

= lim
s→0

s−rLζL(s)

s−rF ζF (s)
=
hLRL
hFRF

= L′(0, χ), (3.35)

where for the last equality we used Theorem 2.9.3 and the Taylor expansion of
ζL and ζF at s = 0 from (2.17), we have

Λ(0, χ) = 2π(n−1)/2L′(0, χ). (3.36)

Let δ0 > 0 be a real number with 0 < δ0 < 1. Next, we want to apply the
Phragmen-Lindelöf principle (cf. Appendix C) to Λ(s, χ) on the vertical strip

U = {z = x+ iy ∈ C : −δ0 < x < 1 + δ0}

to derive a bound for Λ(0, χ). We therefore have to estimate Λ(s, χ) on the
extended boundary ∂∞U = ∂U ∪ {∞} of U . Since |Γ(σ + it)| ≤ Γ(σ) for σ > 0
and t ∈ R, we have

|Λ(1+δ0+it, χ)| ≤ π−n(1+δ0)/2d
(1+δ0)/2
F N(dL/F )

(1+δ0)/2Γ
(
1+δ0
2

)
Γ
(
1 + δ0

2

)n−1
ζF (1+δ0).

Using the bounds from Theorem 3.4.1 yields

|Λ(1 + δ0 + it)| ≤ c2δ0Γ(
1+δ0
2 )(1 + δ0)

2nπ−n/2d
(1+δ0)/2
F Γ(1 + δ0

2 )
n−1.

Now, the functional equation for the completed Λ(s, χ) is given by

W (χ)Λ(s, χ) = Λ(1− s, χ)

(see [56, Corollary XIV.8.2]) with some constant W (χ) ∈ C such that |W (χ)| =
1. Hence, we get

|Λ(−δ0+it, χ)| = |Λ(1+δ0+it, χ)| ≤ c2δ0Γ(
1+δ0
2 )(1+δ0)

2nπ−n/2d
(1+δ0)/2
F Γ(1+ δ0

2 )
n−1.
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Finally, we have
lim sup
s→∞

|Λ(s, χ)| = 0,

as any automorphic L-functions is of finite order (cf. [50, Lemma 5.2]). Hence,
the Phragmen-Lindelöf principle yields

|Λ(s, χ)| ≤ c2δ0Γ(
1+δ0
2 )(1 + δ0)

2nπ−n/2d
(1+δ0)/2
F Γ(1 + δ0

2 )
n−1

for all s ∈ U . In view of (3.36) this gives

|L′(0, χ)| ≤
√
πc2δ0Γ(

1+δ0
2 )

2
(1 + δ0)

2nπ−nd
(1+δ0)/2
F Γ(1 + δ0

2 )
n−1.

Since Γ(1) = 1, choosing δ0 sufficiently small gives the claimed bound for
|L′(0, χ)| with

c′δ =

√
πc2δ0Γ(

1+δ0
2 )

2Γ(1 + δ0
2 )

.

Plugging the bound from Lemma 3.7.3 into (3.32) gives

∑
oγ⊂o⊂oL

m(o,O;O1)lγ0 ≤ c5
log(n)3(1 + δ)6n

(2π)n
2|Ωi(L)|d

(1+δ)/2
F , (3.37)

where c5 = c4c
′
δ. We clearly have |Ωi(L)| ≤ |Ram(A)| and therefore

∑
oγ⊂o⊂oL

m(o,O;O1)lγ0 ≤ c5
log(n)3(1 + δ)6n

(2π)n
2|Ram(A)|d

(1+δ)/2
F . (3.38)

Note that the right-hand side of (3.38) does only depend on the invariant trace
field F and the invariant quaternion algebra A.
Returning to (3.15), we note that we still have to estimate the counting function

NΓ(c) =
∑
lγ≤c

1, (3.39)

where the lengths in SpecL(Γ) are counted without multiplicities.

Lemma 3.7.4. For δ > 0 sufficiently small, there exists a constant c′′δ so that

NΓ(c) ≤ c′′δ log(n)32n(1 + δ)2nζF (2).

Proof. To any length l = lγ in the length spectrum of Γ we may associate4 the
principal ideal Jl = (dl) generated by dl = (el/2 + e−l/2)2 − 4. We want to use

4Note that we still silently identify the number field F with its image in R under the
embedding σ1.
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the resulting map J : SpecL(Γ) → I(oF ) to estimate Nγ(c). Let us first show
that

|J−1(Jl)| ≤ 4ccD log(n)32n. (3.40)

Assume that Jl′ = Jl for two different lengths l, l′ ∈ SpecL(Γ). Then there
exists a unit v′ ∈ o×F with dl = v′dl′ . By Dirichlet’s unit theorem, we can choose
a set of representatives v1, ..., v2n+1 for o×F /(o

×
F )

2, so that we may write any unit
v ∈ o×F in the form v = vjw

2 with w ∈ o×F . Assume that we have two different
lengths l′, l′′ such that

vj(w
′)2dl′ = dl = vj(w

′′)2dl′′ . (3.41)

for some j ∈ {1, ..., 2n+1} and w′, w′′ ∈ o×F . Then the extensions L′ = F (
√
dl′)

and L′′ = F (
√
dl′′) agree. In particular, τl′′ = el

′′/2 defines a Salem number in
L′. By Corollary 3.2.7, we have τl′′ = τ

k/2
s for some k ∈ N and τs the Stark

unit in L′. By using Theorem 3.3.3, we have

c ≥ k

2
log τs ≥

k

2
c−1
D log(n)−3

so that
k ≤ 2ccD log(n)3.

This establishes (3.40), since there are at most k possibilities for the equality
(3.41) to occur. But then

NΓ(c) ≤ 4ccD log(n)32n
∑
Jl:l≤c

1

≤ 4ccD log(n)32n
∑
Jl:l≤c

N(Jl)
2N(Jl)

−2

≤ 4ccDc
2
δ log(n)

32n(1 + δ)2nζF (2),

where the sums run over the principal ideals (dl) with l ≤ c. Note that we again
utilized the bounds from Theorem 3.4.1. This yields the claimed inequality with

c′′δ = 4ccDc
2
δ .

Using Lemma 3.7.4 together with (3.38) shows∑
lγ≤c

m(lγ)lγ0 ≤ c6
log(n)6(1 + δ)8n

πn
2|Ram(A)|d

(1+δ)/2
F ζF (2). (3.42)

with c6 = c5c
′′
δ . But then (3.14) shows

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ c7

log(n)9(1 + δ)8n

πn
2|Ram(A)|d

(1+δ)/2
F ζF (2) (3.43)
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with c7 = c6cDc0. Using the expression for the volume of the maximal order
from Lemma 2.10.6, we arrive at

1

V

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ c8

log(n)9(1 + δ)8n(4π)n∏
p|dA

(
N(p)−1

2

)
d
1− δ

2

F

(3.44)

with c8 = c7/(4π
2). We note that N(p)− 1 = 1 is only possible, if p | 2. Hence,

if we let d∗A be the product over all prime ideals in Ram(A), which do not divide
2, we get

1

V

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ c8

log(n)9(1 + δ)8n(8π)n∏
p|d∗

A

(
N(p)−1

2

)
d
1− δ

2

F

. (3.45)

Let us now fix some δ > 0 with δ ≤ 1
500 . Using Odlyzko’s bound [75, eq. (2.5)]

for the discriminant,
dF ≥ 60.8n

for n large enough, we see that

(1 + 1
500 )

8n(8π)n

d
1−1/1000
F

≤
(

(1 + 1
500 )

8(8π)

(60.8)5/6−1/1000

)n
1

d
1/6
F

≤ 0.84n
1

d
1/6
F

.

This guarantees the existence of a constant c9 such that

log(n)9(1 + 1
500 )

8n(8π)n

d
1−1/1000
F

≤ c9
1

d
1/6
F

(3.46)

for any totally real number field F . Plugging this into (3.45), we finally end up
with

1

V

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ c10

1

d
1/6
F

∏
p|d∗

A

(
N(p)−1

2

) , (3.47)

where c10 = c8c9. Now, let (Γj)j∈N be a sequence of torsion-free non-conjugate
congruence subgroups and let ε > 0 be given. Let Fj = F (Γj) and Aj = A(Γj)
be the respective invariant trace fields and invariant quaternion algebras. It is a
well-known result that there exist only finitely many number fields of bounded
discriminant, so that

1

V

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
> ε (3.48)

is only possible for finitely many invariant trace fields F1, ..., Fs. According to
the classification of quaternion algebras (see e.g. [60, Thm. 7.3.6]), inequality
(3.47) also shows that there only finitely many invariant quaternion algebras
A1, ...,At over these fields F1, ..., Fs, for which we possibly could have (3.48).
In these invariant quaternion algebras, there are, up to conjugacy, only finitely
many maximal orders O1, ...,Ou (cf. [60, §6.7]). Hence, all congruence sub-
groups, for which (3.48) could hold, lie in finitely many arithmetic Fuchsian
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groups Pσ1O1
1, ..., Pσ1O1

u. Let (Γjk)k∈N be the subsequence of (Γj)j∈ consisting
of those congruence subgroups contained in Pσ1O1

1, ..., Pσ1O1
u. This sequence

is uniformly discrete and known to be Benjamini-Schramm convergent (see [1,
Thm. 1.12]). In particular, (Γjk)k∈N is Plancherel convergent by Theorem
2.11.5 and we can find k0 such that

1

Vjk

∑
lγ≤c

m(lγ ,Γjk)
lγ0

sinh(lγ/2)
≤ ε (3.49)

for all k ≥ k0. This shows

1

Vj

∑
lγ≤c

m(lγ ,Γj)
lγ0

sinh(lγ/2)
≤ ε (3.50)

for j ≥ jk0 , which concludes the proof.
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Chapter 4

Plancherel Convergence and
Zeta Functions

4.1 Summary
In the previous sections we have discussed basic properties of Plancherel-convergent
sequences and have many examples. Now, a natural question is how this form
of convergence is reflected by secondary metric invariants such as the Selberg
zeta function. One first result in this direction stems from Deitmar (see [31,
Thm. 3.2]):

Theorem 4.1.1. Let (Γj)j∈N be a sequence of torsion-free cocompact lattices
in SL2(R) and Λj be the logarithmic derivative of the Selberg zeta function for
Xj = Γj\H.

1. If the sequence (Γj)j∈N is uniformly discrete and Plancherel, then

lim
j→∞

Λj(s)

vol(Γj\G)
= 0

for Re(s) > 1.

2. If for Re(s) > 1 one has

lim
j→∞

Λj(s)

vol(Γj\G)
= 0

then the sequence (Γj)j∈N is Plancherel.

In [31, §4] it is asked whether the condition of uniform discreteness is actually
necessary in the first part of the statement. This condition was needed to
avoid the possible accumulation of eigenvalues in fixed intervals caused by short
geodesics (cf. [17, §8.4]). We will see in Section 4.3 that a careful analysis of the
accumulation rate of eigenvalues in Plancherel sequences allows one to remove
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the assumption of uniform discreteness from Theorem 4.1.1.
Next, Deitmar [31, §4] also considered the limits vol(Γj\G)−1Λj(s) for s ∈ C
with Re(s) ≤ 1. The functional equation [31, Prop. 3.4] for the logarithmic
derivative of the Selberg zeta function allows one to deal with s ∈ C∖ P such
that Re(s) < 0 (cf. Section 4.4). It remains to determine what happens for s
sitting inside the critical strip

S = {s ∈ C | 0 ≤ Re(s) ≤ 1}.

In Section 4.4 we will use a formula of McKean for the logarithmic derivative
of the Selberg zeta function to compute the limit of vol(Γj\G)−1Λj(s) for all s
sitting in

U1 = {s ∈ C | Re(s) > 1/2, Re(s(s− 1)) > −1

4
, s /∈P}.

For s ∈ C∖ P we let

F (s) =

{
0, Re(s) > 1

2 ,

(s− 1
2 ) cot(πs), Re(s) <

1
2 .

Then the final result is

Theorem 4.1.2. Let (Γj)j∈N be a sequence of torsion-free cocompact lattices
in G = SL2(R). The following two statements are equivalent:

1. The sequence (Γj)j∈N is Plancherel.

2. For each s ∈ C∖ P such that either s ∈ U1, Re(s) < 0 or Re(s) > 1 one
has

lim
j→∞

Λj(s)

vol(Γj\G)
= F (s).

The values s ∈ C, for which the behaviour of the logarithmic derivative of
the Selberg zeta function is known, are sketched in Figure 4.1.
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Figure 4.1: The values s ∈ C from Theorem 4.1.2

4.2 Tools from Spectral Geometry
In this section we extend our discussion of the Laplace operator to manifolds
with boundary and collect some standard tools from spectral geometry, which
can be used to estimate the counting function of the Laplace operator. Further
details can be found in [22, §1.5].
Let X be a smooth compact manifold (possibly with boundary) equipped with
a Riemannian metric h and let ∆ be the corresponding Laplace operator. One
can study solutions ϕ ∈ C2(X) of the eigenvalue equation

∆ϕ = λϕ (4.1)

by introducing the Sobolev space H (X). On the Sobolev space H (X) one may
use the Dirichlet integral

D[f, h] = (grad f, gradh)

to give the following weak formulation of (4.1)

D[ϕ, f ] = −λ(ϕ, f), ϕ ∈ C2(X), (4.2)

valid for certain boundary conditions on X and f sitting in certain closed sub-
spaces of H (X):

• Closed eigenvalue problem: In this case we assume that X has no
boundary. For fixed ϕ ∈ C2(X) the functional Fϕ = D[ϕ, ·], initially
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defined on C∞(X), can be extended to the whole space H (X) by using
standard arguments from functional analysis. If in this case (4.2) is valid
for some λ ∈ C and all f ∈H (X), we call λ a (closed) eigenvalue.

• Neumann eigenvalue problem: Here, one considers (4.2) under the
assumption that ϕ ∈ C2(X) and νϕ = 0 on ∂X, where ν is the outward
unit normal vector field on the boundary of X. Then Fϕ can again be
extended to H (X) and the solutions λ of (4.2) will be called Neumann
eigenvalues.

• Dirichlet eigenvalue problem In this case one considers ϕ ∈ C2(X)
satisfying ϕ = 0 on ∂X. Then Fϕ can be extended to the completion of
C∞
c (X) in H (X) and solutions λ of (4.2) will be referred to as Dirichlet

eigenvalues.

Given each of the above eigenvalue problems we define the space of admissible
functions H(X) to be H (X) in the case of closed and Neumann eigenvalues and
to be the completion of C∞

c (X) in H (X) in the case of Dirichlet eigenvalues.
It is well-known (see e.g. [22, Thm. 1.3.1]) that for each of the above eigenvalue
problems the solutions λ of (4.2) form an increasing sequence

0 ≤ λ1 ≤ λ2 ≤ .. ≤ λk →∞ as k →∞,

where each eigenvalue appears with finite multiplicity. The function, which
counts the eigenvalues in the interval [0, x] will be denoted N(X,x) in the case
of closed eigenvalues and NN (X,x) or ND(X,x) for Neumann eigenvalues and
Dirichlet eigenvalues respectively. The characterization (4.2) allows for a varia-
tional formulation of the eigenvalue problem:

Theorem 4.2.1 (Max-Min principle). Let v1, ..., vk−1 ∈ L2(X) and for non-
zero f ∈ H(X) let

R(f) = D[f, f ]

||f ||2

be the so-called Rayleigh-Ritz quotient. Then for any of the above eigenvalue
problems one has

infR(f) ≤ λk, (4.3)

where the infimum varies over non-zero functions f orthogonal to the span of
v1, ..., vk−1 in L2(M). If v1, ..., vk−1 form an orthonormal basis of eigenfunctions
for the eigenvalues λ1, ..., λk−1, we have equality in (4.3).

Proof. [22, §1.5]

From the Max-Min principle one immediately gets various monotonicity
properties of eigenvalues (cf. [51, §3]):

• Domain monotonicity: Let Ω1, ...,Ωm be pairwise disjoint regular1 do-
mains in X with X = Ω1 ∪ ... ∪Ωm, whose boundaries, when intersecting

1A subset of Ω of a smooth manifold is called a regular domain, if Ω is connected, has
compact closure and non-empty smooth boundary.
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∂X, do so transversally2. Given an eigenvalue problem on X with re-
spective eigenvalues (λk)k∈N, consider for each q = 1, ...,m the eigenvalue
problem on Ωq obtained by requiring either Dirichlet or Neumann bound-
ary conditions for all q = 1, ...,m and leaving original data on ∂Ωq ∩ ∂X
unchanged. Arrange all the eigenvalues of Ω1, ...,Ωm in an increasing se-
quence, where each eigenvalue is repeated according to its multiplicity.
We will denote this sequence by (ωk)k∈N in the case of Dirichlet boundary
conditions and (κk)k∈N for Neumann boundary conditions.

Lemma 4.2.2. With the notation as above, one has

κk ≤ λk ≤ ωk, for all k ∈ N.

Proof. [22, §1.5]

• Boundary condition monotonicity: Let P be an operator in diver-
gence form on an interval [a, b],

P = ∂r (f(r)∂r)− V (r), a ≤ r ≤ b

with f ∈ C∞([a, b]) such that f(r) > 0. Then one can compare eigenvalues
for Dirichlet and Neumann boundary conditions as follows:

Lemma 4.2.3. Let (ωk)k∈N and (κk)k∈N be the solutions of

Pu(r) + λu(r) = 0

with respect to Dirichlet and Neumann boundary conditions respectively.
Then for all k ∈ N one has

κk ≤ ωk ≤ κk+2.

Proof. This is a direct consequence of Corollary 1 in [101, §3].

• Potential monotonicity: Let V : [a, b]→ R be a continuous function3.
We collect the following result for the operator ∂2r − V (r) acting on func-
tions on some interval [a, b]:

Lemma 4.2.4. Let P1 = −∂2r + V1(r) and P2 = −∂2r + V2(r) be two
operators over a compact interval [a, b] with V1, V2 ∈ C([a, b]) so that
V1(r) ≥ V2(r) for all r ∈ [a, b]. Then the eigenvalues of P1 are larger
than the corresponding eigenvalues of P2 with respect to either Dirichlet
or Neumann boundary conditions.

Proof. [51, Lemma 3.3]
2Two regular domains Ω and Ω′ intersect transversally in a point p if the tangent space

TpX is generated by the vectors in TpΩ and TpΩ′.
3In this context, V is usually called a potential in formal analogy with the Hamilton

operator from quantum mechanics.
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4.3 Bounds for the Accumulation Rate
For X a smooth closed hyperbolic surface there are, roughly speaking, two
geometric quantities, which control the number of Laplace eigenvalues lying in
a fixed interval [0, x]: These are the lengths of short geodesics in X and the
volume of X. In [31] Deitmar imposed the condition of uniform discreteness to
avoid the accumulation of Laplace eigenvalues caused by short geodesics. More
precisely, he used uniform discreteness to derive the bound

N(Γj\H, x) ≤ C vol(Γj\H)x (4.4)

with C > 0 some absolute constant. We will show that the bound (4.4) auto-
matically holds for any Plancherel sequence (Γj)j∈N. Since the bound (4.4) is
the only reason, why uniform discreteness was needed in the proof of [31, Thm.
3.2], one can remove this condition.

Theorem 4.3.1. For each Plancherel sequence (Γj)j∈N of torsion-free cocom-
pact lattices in PSL2(R) there exists a positive constant cA such that

N(Γj\H, x) ≤ cA vol(Γj\H)(1 + x). (4.5)

The proof of this theorem will take up the rest of this section. We note that
our approach of proving Theorem 4.3.1 is heavily inspired by the works [23, 51]
on degenerating sequences of hyperbolic surfaces and three-manifolds and we
will use many of their ideas.
Let X = Γ\H be a smooth closed hyperbolic surface with mX closed geodesics
of length ≤ 1. Recall the thick-thin decomposition X = X ′ ∪X ′′ from Section
2.3, where

X ′ =

mX⋃
i=1

T ′
γi , X ′′ = X ∖X ′.

Figure 4.2: The thick-thin decomposition of a surface with a single short
geodesic.
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Then domain monotonicity for Neumann boundary conditions implies

N(X,x) ≤ NN (X ′, x) +NN (X ′′, x). (4.6)

We will estimate the counting functions on the right-hand side of (4.6) sepa-
rately. We start with the thin part X ′. Note that the next proof is particularly
close to the proof of [51, Thm. 1.4].

Lemma 4.3.2. There exists a constant c12 > 0, which does not depend on X,
such that for each x > 1

4 one has

NN (X ′, x) ≤ c12

(
mX∑
i=1

wi

)
(1 + x),

where wi is the width of the tube Tγi .

Proof. By domain monotonicity for Neumann boundary conditions one has

NN (X ′, x) ≤
mX∑
i=1

NN (T ′
γi , x).

To prove the lemma it therefore suffices to show that for a closed geodesic γ in
X of length l ≤ 1 there exists some constant c12 > 0 such that

NN (T ′
γ , x) ≤ c12wl(1 + x), (4.7)

where wl is the width of the tube Tγ . According to Theorem 2.3.1 we can
represent the truncated tube T ′

γ by Fermi coordinates

{(r, t) ∈ R2 | 1− wl ≤ r ≤ wl − 1, 0 ≤ t ≤ 1}/(r, 0) ∼ (r, 1),

in which the metric takes the form

ds2 = dr2 + l2 cosh2 r dt2.

In these coordinates the Laplace operator reads4

−∆ = ∂2r + tanh r ∂r +
1

l2 cosh2 r
∂2t . (4.8)

To estimate the Neumann spectrum of ∆ on the truncated tube T ′
γ , we want to

make use of its rotational symmetry. Thus, consider the ∆-invariant decompo-
sition

L2(T ′
γ) =

⊕
n∈Z

L2
n(T

′
γ),

4We note that in equation (2.2) on page 272 of [51] there is a misprint. There should be a
"+" in front of tanh r∂r.
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where L2
n(T

′
γ) consists of smooth, square-integrable functions v : T ′

γ → C of
the form v(r, t) = u(r)e2πint. Let ∆n be the restriction of ∆ to L2

n(T
′
γ). This

operator is given by

∆n = −∂2r − tanh r ∂r +
4π2n2

l2 cosh2 r
. (4.9)

Let κn be an eigenvalue of ∆n for Neumann boundary conditions and ϕn be the
corresponding eigenfunction, i.e.

1

l cosh r
∂r(l cosh r ∂rϕn)−

4π2n2

l2 cosh2 r
ϕn + κnϕn = 0 (4.10)

and
∂rϕn(1− wl, t) = ∂rϕn(wl − 1, t) = 0. (4.11)

If we multiply (4.10) by l cosh r ϕn(r, t) and integrate the resulting expression
over [1− wl, wl − 1], we get by using (4.11) that

κn

∫ wl−1

1−wl

l cosh r ϕ2n(r, t)dr −
∫ wl−1

1−wl

l cosh r (∂rϕn(r, t))
2dr

= 4π2n2
∫ wl−1

1−wl

1

l2 cosh2 r
l cosh r ϕ2n(r, t)dr.

Since the function

fl : [−wl, wl]→ R, fl(r) = (l cosh r)−2

assumes its minima for r ∈ {−wl, wl} and

lim
l→0

fl(wl) =
1

4
,

there exists an absolute constant c11 > 0 such that

(l cosh r)−2 ≥ c11, for all l ∈ (0, 1], r ∈ [1− wl, wl − 1].

Plugging this into the above equality yields

κn

∫ wl−1

1−wl

l cosh r ϕ2n(r, t)dr −
∫ wl−1

1−wl

l cosh r (∂rϕn(r, t))
2dr

≥ 4π2n2c11

∫ wl−1

1−wl

l cosh r ϕ2n(r, t)dr,

which shows
κn ≥ 4π2n2c11. (4.12)

Thus, only those n ∈ Z with

|n| ≤
√

x

4π2c11
(4.13)
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have to be accounted for to estimate NN (T ′
γ , x). Assume n to be fixed. We

will abuse notation and also write ∆n for the differential operator given by the
right-hand side of (4.9) acting on smooth functions u : [1 − wl, wl − 1] → C.
We are left with estimating the number of solutions of the (one-dimensional)
problem {

∆nu = λu,

u′(1− wl) = u′(wl − 1) = 0.
(4.14)

For this, we will consider the conjugate operator

∆̃n = cosh1/2 r ∆n cosh
−1/2 r

= −∂2r +
(
1

2
− 1

4
tanh2 r +

4π2n2

l2 cosh2 r

)
= −∂2r +

(
1

4
+

1

4 cosh2 r
+

4π2n2

l2 cosh2 r

)
.

Unfortunately, this conjugation does not respect Neumann boundary conditions.
However, it does preserve Dirichlet boundary conditions. For this reason, we
switch to Dirichlet boundary conditions by applying boundary condition mono-
tonicity and now consider the Dirichlet problem{

u′′ −
(

1
4 + 1

4 cosh2 r
+ 4π2n2

l2 cosh2 r

)
u+ λu = 0,

u(1− wl) = u(wl − 1) = 0.
(4.15)

Potential monotonicity shows that the counting function of (4.15) is bounded
by the counting function of the problem{

u′′ − 1
4u+ λu = 0,

u(1− wl) = u(wl − 1) = 0.
(4.16)

Problem (4.16) can be exactly solved and its solutions are given by

uk(r) = a sin

(
kπ(r − 1 + wl)

2wl − 2

)
, λk =

1

4
+

(
kπ

2wl − 2

)2

, for k ∈ Z, a ∈ C.

Since

|{λk | λk ≤ x}| ≤
4(wl − 1)

π

√
x− 1

4
,

we get in view of (4.13) and the earlier mentioned boundary condition mono-
tonicity that

NN (T ′
γ , x) ≤ 2

√
x

4π2c11

(
4(wl − 1)

π

√
x− 1

4
+ 2

)
.

This shows
NN (T ′

γ , x) ≤ c12wl(1 + x)
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with
c12 =

4

π
√
c11

.

We continue with the thick part. The proof of the following lemma is an
adaptation of [23, Lemma 3.6]:

Lemma 4.3.3. There exists an absolute constant c16 such that for any x > 1/4
one has

NN (X ′′, x) ≤ c16 vol(X)(1 + x). (4.17)

Proof. Let us fix5 δ = 1
2 and set X1 = X ∖

⋃mX

i=1 Tγi . By the fourth statement
of Theorem 2.3.1 each point p ∈ X1 satisfies rp(X) > δ. Take a maximal set P
of points p ∈ X1 of pairwise distances greater than or equal to δ. Since balls of
radius δ/2 with center at p ∈ P are disjoint, we have

|P| ≤ vol(Bδ/2(p))
−1 vol(X), (4.18)

where p ∈ P is arbitrary6. Consider the covering U of X ′′ consisting of δ-balls
Bδ(p) centered at p ∈ P and annuli Ωi = Tγi ∖ T ′

γi , i = 1, ...,mX . We claim
that there exists an absolute constant c13 > 0 such that for every p0 ∈ X ′′ the
number m0 of sets U ∈ U containing p0 is at most c13: By the second statement
of Theorem 2.3.1 the tubes Tγi , i = 1, ...,mX are disjoint, so that p0 can sit
in at most one tube at the same time. If p0 is contained in some δ-ball Bδ(p1)
with p1 ∈ P, we already have dist(p0, p1) = δ by the choice of P and therefore
Bδ(p1) ⊂ B2δ(p0). Again, the balls of radius δ/2 with center at p ∈ P are
disjoint, so that

m0 ≤
vol(B2δ(p0))

vol(Bδ/2(p1))
+ 1. (4.19)

One may check from the fifth statement of Theorem 2.3.1 that

rp0(X) > arcsinh(cosh(1/2) cosh(1)− sinh(1)) > 0.53 >
δ

2

and hence vol(Bδ/2(p0)) = vol(Bδ/2(p1)). Plugging this into (4.19) yields

m0 ≤
vol(B2δ(p0))

vol(Bδ/2(p0))
+ 1. (4.20)

A standard volume comparison estimate (see e.g. [47, eq. (2.2.2)]) then shows

vol(B2δ(p0))

vol(Bδ/2(p0))
≤ 16e2δδ2 (4.21)

5We use the notation δ = 1
2

for conceptual clarity and to aid future generalizations of the
above argument to any semisimple Lie group G of non-compact type, where the value of δ
depends on the Margulis constant of G.

6We are using here that vol(Bδ(p)) does not depend on p, since rp(X) > δ.
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and hence m0 ≤ c13 with
c13 = 1 + 16e2δδ2. (4.22)

We now prove the desired inequality (4.17). Let (κk)k∈N be the sequence ob-
tained by arranging all Neumann eigenvalues of all sets U ∈ U in increasing order
into a single sequence and let (κ′k)k∈N be the sequence of Neumann eigenvalues
of X ′′. Let us show that

κ′k ≥ κk/c13. (4.23)

For this consider the Hilbert spaces H (X ′′) and H =
⊕

U∈U H
1(U) and the

restriction map F : f 7→ (f |U )U∈U . Then the eigenvalues (κ′k)k∈N have a Max-
Min characterization in terms of the Rayleigh-Ritz quotient

R(f) =
∫
X′′ | grad(f)|2∫

X′′ |f |2
.

Similarly, the (κk)k∈N are critical values of

R1(f) =

∑
U∈U

∫
U
| grad(fU )|2∑

U∈U .
∫
U
|fU |2

.

One verifies easily
(1/c13)R1(F (f)) ≤ R(f),

which shows (4.23) in view of the Max-Min principle. From (4.23) we get

NN (X ′′, x) ≤ |P|NN (Bδ(p0), c13x) +

mX∑
i=1

NN (Ωi, c13x), (4.24)

where p0 ∈ P is arbitrary. Arguing exactly as in Lemma 4.3.2, one may derive
for any x > 1/4 the bound

NN (Ωi, x) ≤ c14(1 + x), i = 1, ...,mX , (4.25)

for some absolute constant c14 > 0. Furthermore, [47, Thm. 1.2.6] shows for
any x > 0 that

NN (Bδ(p0), x) ≤ c15(1 + x) (4.26)

with c15 > 0 some absolute constant. Plugging inequalities (4.18), (4.25) and
(4.26) into (4.24) gives

NN (X ′′, x) ≤ c15
vol(Bδ/2(p0))

vol(X)(1 + c13x) + c14mX(1 + c13x).

By the first statement of Theorem 2.3.1 we have

mX ≤ 3g − 3 < 4π(g − 1) = vol(X) (4.27)

and therefore
NN (X ′′, x) ≤ c16 vol(X)(1 + x)

with
c16 =

c13c15
vol(Bδ/2(p0))

+ c13c14.
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Finally, we also need a lower bound for the counting function:

Lemma 4.3.4. For x > 1/2 one has

N(X,x) ≥ 4

π

(
mX∑
i=1

(wi − 1)

)√
x− 1

2
− 2mX . (4.28)

Proof. By domain monotonicity for Dirichlet boundary conditions one has

N(X,x) ≥ ND(X ′′, x) +

mX∑
i=1

ND(T
′
γi , x). (4.29)

Let the notation be as in the proof of Lemma 4.3.2. It suffices to consider the
operator

∆̃0 = ∂2r −
(
1

4
+

1

4 cosh2 r

)
. (4.30)

Since cosh−2 r ≤ 1, an application of potential monotonicity to the Dirichlet
problem for the operator (4.30) shows that ND(T ′

γ , x) is bounded from below
by the counting function of the problem{

u′′ − 1
2u+ λu = 0,

u(1− wl) = u(wl − 1) = 0.
(4.31)

Problem (4.31) can exactly be solved and the solutions are given by

uk(r) = a sin

(
kπ(r − 1)

2wl − 2

)
, λk =

1

2
+

(
kπ

2wl − 2

)2

, for k ∈ Z, a ∈ C.

Hence, for x > 1/2 we have

ND(T
′
γ , x) ≥

4

π
(wl − 1)

√
x− 1

2
− 2,

which in view of (4.29) gives the desired inequality (4.28).

Proof of Theorem 4.3.1. Let mj be the number of closed geodesics of length
smaller than or equal to 1 in Xj = Γj\H. From (4.6) and the upper bounds for
the counting function given in Lemma 4.3.2 and Lemma 4.3.3, we get

N(Xj , x) ≤

[
c12

(
mj∑
i=1

wi

)
+ c16 vol(Xj)

]
(1 + x) (4.32)

Now, fix some x0 > 1/2 and let 1I be the characteristic function of the interval
I = [−x0, x0]. By [82, Lemma 1] there exists an even function h on R, whose
Fourier transform is of compact support and such that 1I ≤ h. Fix some ε > 0.
Since (Γj)j∈N is Plancherel-convergent, we have for j large enough that

|µΓj
(h)− vol(Xj)µPl(h)| ≤ ε vol(Xj). (4.33)
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Combining Lemma 4.3.4 and (4.33) shows

4

π

(
mj∑
i=1

(wi − 1)

)√
x0 −

1

2
− 2mj ≤ N(Xj , x0)

≤ µΓj
(h)

≤ (µPl(h) + ε) vol(Γj\H).

As before, we have mj ≤ vol(Xj) (cf. (4.27)), so that we may derive from the
above inequality that

mj∑
i=1

wi ≤ c17 vol(Xj) (4.34)

holds with

c17 =

1 +
π

4
√
x0 − 1

2

(µPl(h) + ε+ 2)

 .

After plugging (4.34) into (4.32), we end up with

N(Xj , x) ≤ cA vol(Xj)(1 + x),

where
cA = c12c17 + c16.

This concludes the proof.

As a corollary to Theorem 4.3.1 we obtain

Theorem 4.3.5. Let (Γj)j∈N be a sequence of torsion-free cocompact lattices
in SL2(R) and Λj be the logarithmic derivative of the Selberg zeta function of
Xj = Γj\H. The sequence (Γj)j∈N is Plancherel convergent if and only if

lim
j→∞

Λj(s)

vol(Γj\G)
= 0

for all s ∈ C with Re(s) > 1.

4.4 Convergence inside the Critical Strip
Let (Γj)j∈N be a Plancherel-convergent sequence of torsion-free cocompact lat-
tices in SL2(R). Theorem 4.1.1 deals with the behaviour of vol(Γj\G)−1Λj(s)
in the half-plane {s ∈ C | Re(s) > 1}. The restriction to this particular domain
was necessary in the proof to ensure the convergence of the Euler product rep-
resenting the Selberg zeta functions ζΓj

(s), j ∈ N. It is natural to ask what
happens for other values of s. One may use the functional equation of ζΓj

to
deal with s ∈ C∖ P such that Re(s) < 0:
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Proposition 4.4.1. Let Γ be a torsion-free cocompact lattice. For s ∈ C ∖ P
one has

ΛΓ(s) + ΛΓ(1− s) =
(
s− 1

2

)
vol(Γ\G) cot(πs).

Proof. [31, Prop. 3.4]

Corollary 4.4.2. Let (Γj)j∈N be a Plancherel-convergent sequence of torsion-
free cocompact lattices. Then for s ∈ C∖ P with Re(s) < 0 we have

lim
j→∞

Λj(s)

vol(Γj\G)
=

(
s− 1

2

)
cot(πs).

Proof. This directly follows from Theorem 4.1.1 and Proposition 4.4.1.

It remains to work out the case of s ∈ C lying in the critical strip

S = {s ∈ C | 0 ≤ Re(s) ≤ 1}.

If s ∈ P, we may have that s is a pole of Λj for some j ∈ N, in which case
vol(Γj\G)−1Λj(s) would not even be defined. We therefore restrict our attention
to those s sitting outside P. Central to our treatment of these values will be
McKean’s formula [65, p.239] for the logarithmic derivative of the Selberg zeta
function:

Proposition 4.4.3 (McKean’s formula). Let X = Γ\H be a smooth closed hy-
perbolic surface, (λk)k∈N the Laplace eigenvalues of X and ΛΓ be the logarithmic
derivative of the Selberg zeta function. Let s be a complex number sitting in

U0 = {s ∈ C | Re(s) > 1, Re(s(s− 1)) > 0}.

Then one has

ΛΓ(s) = (2s− 1)

∫ ∞

0

e−tξ(θ(t)− φ0(t) vol(X))dt, (4.35)

where θ(t) =
∑∞
k=0 e

−tλk is the trace of the heat kernel, φ0(t) = (4π)−1µPl(e
−tλ)

is the fundamental solution of the heat equation at the origin and ξ = s(s− 1).

Proof. Fix some s ∈ U0 and let ξ = s(s − 1). Let us first check that the
integral on the right-hand side of (4.35) is absolutely convergent. Since both
θ(t) and φ0(t) are monotonically decreasing positive functions, the integrand is
O(e−tRe(ξ)) for t → ∞. For t → 0 one has the known small-time asymptotics
(see e.g. [66])

θ(t) ∼ vol(X)

4πt
+O(1), φ0(t) ∼

1

4πt
+O(1), (4.36)

which shows that θ(t)− φ0(t) vol(X) stays bounded as t→ 0. Thus, we have∫ ∞

0

|e−tξ(θ(t)− φ0(t) vol(X))|dt <∞. (4.37)
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Let us evaluate this integral. Recall from (2.14) that

∑
[γ]

lγ0
elγ/2 − e−lγ/2

e−t/4−l
2
γ/4t

√
4πt

= θ(t)− φ0(t) vol(X) (4.38)

holds. We also need the well-known Laplace transform [74, p.41]∫ ∞

0

e−tz
e−a

2/4t

√
4πt

dt =
1

2

e−a
√
z

√
z
, for Re(z) > 0, Re(a) ≥ 0,

where for
√
z = exp( 12 log(z)) one takes the logarithm with branch cut at the

non-positive real numbers. Multiplying (4.38) with e−tξ and integrating over
[0,∞) yields∫ ∞

0

e−tξ(θ(t)− φ0(t) vol(X))dt =
∑
[γ]

lγ0
elγ/2 − e−lγ/2

∫ ∞

0

e−t(ξ+1/4) e
−l2γ/4t
√
4πt

=
1

2s− 1

∑
[γ]

lγ0
elγ/2 − e−lγ/2

e−lγ(s−1/2)

=
1

2s− 1
ΛΓ(s)

where we used the expression (2.16) for the logarithmic derivative of the Selberg
zeta function, which is valid for Re(s) > 1. Note that interchanging the integral
and the infinite sum in the first step is allowed, since (4.37) permits us to use
Fubini’s theorem. This concludes the proof.

McKean’s formula expresses ΛΓ as a Laplace transform in the variable ξ. The
poles in the range − 1

4 < ξ ≤ 0 correspond to the small eigenvalues 0 ≤ λk <
1
4

of Γ\H. Wolpert [102, p.285] realized that after subtracting the contributions
coming from small eigenvalues,

ΛΓ(s)

2s− 1
−

∑
0≤λk<

1
4

1

s(s− 1) + λk
=

∫ ∞

0

e−tξ(θ∗(t)− φ0(t) vol(X))dt, (4.39)

where θ∗(t) =
∑
λk≥ 1

4
e−tλk , the remaining integral on the right-hand side of

(4.39) stays finite on the larger domain Re(ξ) > −1/4. It is essentially this
observation, which allows us to extend Theorem 4.1.1 into the critical strip S:

Theorem 4.4.4. Let (Γj)j∈N be a Plancherel sequence. For s sitting in

U1 = {s ∈ C | Re(s) > 1/2, Re(s(s− 1)) > −1

4
, s /∈P}.

one has
lim
j→∞

Λj(s)

vol(Γj\H)
= 0.
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Proof. For j ∈ N let Xj = Γj\H be the smooth closed hyperbolic surface
associated to the lattice Γj and (λj,k)k∈N be the Laplace eigenvalues of Xj . For
s ∈ U0 we have by McKean’s formula

Λj(s)

vol(Xj)
= (2s− 1)

∫ 1

0

e−tξ
(

θj(t)

vol(Xj)
− φ0(t)

)
dt

+ (2s− 1)

∫ ∞

1

e−tξ
(

θ∗j (t)

vol(Xj)
− φ0(t)

)
dt

+
(2s− 1)

vol(Xj)

∫ ∞

1

e−tξ

 ∑
0≤λj,k<

1
4 1

e−tλj,k

 dt

=: I1,j(s) + I2,j(s) + I3,j(s),

where θ∗j (t) =
∑
λj,k≥ 1

4
e−tλj,k . Let us first check that the equality

Λj(s)

vol(Xj)
= I1,j(s) + I2,j(s) + I3,j(s) (4.40)

can be extended to U1. Starting with I3,j we observe that

I3,j(s) =
2s− 1

vol(Xj)

∑
0≤λj,k<

1
4

e−(ξ+λj,k)

ξ + λj,k
, (4.41)

which shows that I3,j extends to a holomorphic function on U1. Regarding
I2,j(s) we claim that the integral defining I2,j(s) converges absolutely for s ∈ U1.
To see this we write Tk = λj,k − 1

4 and let k0 be the smallest natural number so
that Tk0 ≥ 0. Then we have

θ∗j (t)

vol(Xj)
=

1

vol(Xj)

∞∑
k=k0

m(Xj , λj,k)e
−tλj,k

=
e−t/4

vol(Xj)

∞∑
k=k0

m(Xj , Tk + 1/4)e−tTk

≤ e−t/4

vol(Xj)

∞∑
T=0

e−tT

 ∑
T≤Tk≤T+1

m(Xj , Tk + 1/4)


≤ e−t/4

vol(Xj)

∞∑
T=0

e−tTN(Xj , T + 5/4)

≤ cA

( ∞∑
T=0

e−tT (T + 9/4)

)
e−t/4.

Since
ϕ0(t) = (4π)−1

(∫ ∞

−∞
e−tr

2

r tanh(πr)dr

)
e−t/4,

68



and b(t) =
∫∞
−∞ e−tr

2

r tanh2(πr)dr is monotonically decreasing on [1,∞), we
get for t ≥ 1 ∣∣∣∣ θ∗j (t)

vol(Xj)
− φ0(t)

∣∣∣∣ ≤ c18e−t/4, (4.42)

where

c18 = cA

(∑
T=0

e−T (T + 9/4)

)
+
b(1)

4π
<∞.

This shows that the integral representing I2,j(s) converges absolutely for s ∈
U1 and by a standard result on parameter-valued integrals (see e.g. [38, Satz
IV.5.6]) we have that the resulting function I2,j : U1 → C is continuous. Next
we will prove that I2,j is holomorphic on U1 by using Morera’s theorem. Hence,
consider a closed piecewise smooth curve η in U1 and let

fj(t) =
θ∗j (t)

vol(Xj)
− φ0(t).

Then ∫
η

I2,j(s)ds =

∫
η

∫ ∞

1

(2s− 1)e−ts(s−1)fj(t)dtds

=

∫ ∞

1

(∫
η

(2s− 1)e−ts(s−1)ds

)
fj(t)dt = 0,

and the holomorphy of I2,j : U1 → C follows. In the above computation the ap-
plication of Fubini’s theorem in the second step is justified due to the integrand
being absolutely integrable. In the last step we used Cauchy’s integral theo-
rem for the analytic function f(s) = (2s− 1)e−ts(s−1) on the simply-connected
domain U1. For I1,j(s) one notes that the small-time asymptotics (4.36) gives∣∣∣∣ θj(t)

vol(Xj)
− φ0(t)

∣∣∣∣ ≤ c(Xj)

for c(Xj) > 0 some constant depending on Xj and then proceeds as before to
show that I1,j defines a holomorphic function on U1. Hence, we have shown that
I1,j(s) + I2,j(s) + I3,j(s) is a holomorphic function on U1, which by McKean’s
formula agrees with vol(Xj)

−1Λj on a subset containing an accumulation point.
By the identity theorem for holomorphic function this implies (4.40) for s ∈ U1.
Now, we will estimate each of the three contributions in (4.40) separately. Let
us start with I3,j(s). We have

|I3,j(s)| =
1

vol(Xj)

∣∣∣∣∣∣
∑

0≤λj,k<
1
4

2s− 1

s(s− 1) + λj,k

∣∣∣∣∣∣ ≤ CsN(Xj ,
1
4 )

vol(Xj)
, (4.43)

where
Cs = sup

y∈[0, 14 ]

∣∣∣∣ 2s− 1

s(s− 1) + y

∣∣∣∣ <∞.
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Since the small eigenvalues {λj,k | λj,k < 1
4} correspond to either the comple-

mentary series representations Ĝcomp or the trivial representation π1, we get

|I3,j(s)| ≤ Cs
µΓj ({π1} ∪ Ĝcomp ∪ {π+

0 })
vol(Xj)

. (4.44)

Neither the trivial representation nor the complementary series representations
are contained in the support of the Plancherel measure, so that Theorem 2.11.3
shows that I3,j(s) converges to zero for j →∞. Let us turn to I1,j(s). We have
for any x0 > 0 that

|I1,j(s)| =

∣∣∣∣(2s− 1)

∫ 1

0

e−tξ
(

θj(t)

vol(Xj)
− φ0(t)

)
dt

∣∣∣∣
≤ |2s− 1|

∫ 1

0

e−tRe(ξ)

(
θj(t)

vol(Xj)
− φ0(t)

)
dt

≤ |2s− 1|ex0

∫ 1

0

e−t(Re(ξ)+x0)

(
θj(t)

vol(Xj)
− φ0(t)

)
dt

≤ |2s− 1|ex0

∫ ∞

0

e−t(Re(ξ)+x0)

(
θj(t)

vol(Xj)
− φ0(t)

)
dt

where we have used that θj(t)−vol(Xj)φ0(t) is positive for t > 0, which follows
from (4.38). By choosing x0 so that Re(ξ) + x0 ≥ 2 holds, we get from another
application of McKean’s formula that

|I1,j(s)| ≤
(
|2s− 1|ex0

5

)
Λj(2)

vol(Xj)
. (4.45)

and the right-hand side of (4.45) converges to 0 for j → ∞ by Theorem 4.3.5.
It remains to check that I2,j(s) vanishes in the limit j → ∞. Consider the
functions

ϕj(t) = e−tξ
(

θ∗j (t)

vol(Xj)
− φ0(t)

)
, t ∈ [1,∞).

We want to apply Lebesgue’s theorem to derive

lim
j→∞

∫ ∞

1

ϕj(t)dt = 0. (4.46)

From (4.42) we see that ϕ(t) = c18e
−tδ with δ = Re(ξ)+1/4 > 0 is an integrable

majorant for the ϕj , j ∈ N. We are left with showing that ϕj(t)→ 0 as j →∞.
Let ε > 0 be some positive real number and

ht(λ) =

{
e−tλ, λ ≥ 1

4 ,

0, else.

Since the trivial representation and the complementary series do not lie in the
support of the Plancherel measure, we have

ϕj(t) = e−tξ
(
µΓj (ht)

vol(Xj)
− µPl(ht)

)
.
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Let J ⊂ [0,∞) be a relatively open, bounded interval and 1J the characteristic
function of J . By Sauvageot’s density principle [84] one has∣∣∣∣µΓj

(1J)

vol(Xj)
− µPl(1J)

∣∣∣∣ ≤ ε, (4.47)

for j large enough, which clearly extends to any linear combination of such
characteristic functions. Standard measure theory [38, Satz III.4.13] allows us
to find a sequence of linear combinations (gi)i∈N of such functions with

0 ≤ gi ↗ ht, as i→∞

outside a set of Plancherel measure zero, and therefore by the Theorem of mono-
tone convergence

|µPl(gi)− µPl(ht)| ≤ ε (4.48)

for i large enough. The proof of [38, Satz III.4.13] shows that for the function
ht we even have that

Φi(T ) = sup
λ∈[T,T+1)

|ht(λ)− gi(λ)| (4.49)

tends to zero as i→∞. Furthermore,

0 ≤ µΓj (ht − gi) =

∞∑
k=0

ht(λj,k)− gi(λj,k)

≤
∞∑
T=0

Φi(T ) (N(Xj , T + 1)−N(Xj , T ))

≤ cA vol(Xj)

∞∑
T=0

Φi(T )(2T + 3),

where we made use of Theorem 4.3.1. Since Φi(T ) ≤ 2e−T , we can apply
dominated convergence to the last sum to derive

|µΓj
(ht)− µΓj

(gi)| ≤ ε vol(Xj) (4.50)

for i large enough. Combining the estimates (4.47), (4.48) and (4.50) we end
up with ∣∣∣∣µΓj (ht)

vol(Xj)
− µPl(ht)

∣∣∣∣ ≤ 1

vol(Xj)
|µΓj

(ht)− µΓj
(gi)|

+

∣∣∣∣ µΓj
(gi)

vol(Xj)
− µPl(gi)

∣∣∣∣
+ |µPl(gi)− µPl(ht)| ≤ 3ε,

for i and j sufficiently large. This implies lim
j→∞

ϕj(t) = 0 for t ≥ 1.

71



Chapter 5

Spectral Geometry of
Congruence Surfaces and
Zeta Functions

5.1 Summary
When describing the behaviour of zeta functions of a Plancherel sequence (Xj)j∈N,
we have, until now, always excluded the set

P = {−k | k ∈ N} ∪ [0, 1] ∪ ( 12 + iR)

from our considerations, as any point in this set could be a pole of the logarith-
mic derivative of the Selberg zeta function. The goal of this chapter is to close
this gap by discussing the expected behaviour of the zeta functions for s ∈P.
Let us start with considering the critical line 1

2+iR. The poles of Λj will become
dense in 1

2 + iR for j → ∞, in the sense that any fixed open subset of 1
2 + iR

contains a pole of Λj for j sufficiently large. If we are given a point s ∈ 1
2 + iR,

which is not a pole of any of the Λj , the literature unfortunately does not offer
a way to bound the rate with which the poles are approaching the point s. The
author expects the behaviour of vol(Γj\G)−1Λj(s) to be chaotic, even though
he is unable to offer any precise results in this direction.
Regarding the set {−k | k ∈ N} we note that according to Theorem 2.8.1 any
s = −k with k ∈ N is a pole of Λj for each j ∈ N, so that one either completely
ignores these points or removes the poles, in which case the asymptotics follow
from Theorem 4.1.2 and the functional equation of the Selberg zeta function.
This leaves us with the interval [0, 1]. Any pole in [0, 1] comes from a small
eigenvalue λ ≤ 1

4 and these can be controlled in terms of the spectral geometry
of the surface in question (cf. [86]). In some arithmetic scenarios, there conjec-
turally are no non-zero small eigenvalues and using partial results towards this
conjecture, we can show the following
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Proposition 5.1.1. Let (Xj)j∈N be a sequence of smooth closed congruence
surfaces with vol(Xj)→∞. Then for s ∈ ( 3964 , 1) one has

lim
j→∞

Λj(s)

vol(Xj)
= 0.

Furthermore, for the Euler-Selberg constants one has

lim
j→∞

γXj

vol(Xj)
= 0.

The above proposition fails for arbitrary Plancherel sequences:

Proposition 5.1.2. There exist a Plancherel-convergent sequence of smooth
closed arithmetic surfaces (Xj)j∈N such that

lim
j→∞

γXj

vol(Xj)
= l0

for some positive constant l0 > 0.

This suggests that, while one still may get convergence of the (possibly
renormalized) zeta functions, the limit is not uniquely fixed by the property of
being a Plancherel sequence. The construction of the arithmetic surfaces from
Proposition 5.1.2 will be the main content of the following sections. On our way
we will demonstrate a technique to construct congruence surfaces containing
prescribed Y -pieces. The proofs of the above propositions can be found in
Section 5.3.

5.2 Arithmetic and Geometry of Two-Generator
Subgroups

The goal of this section is to study a few arithmetic and geometric aspects of
two-generator subgroups of PSL2(R). The first part of this discussion is based
on works of Maskit (cf. [62, 63]).
Let us first consider the relationship between certain two-generator subgroups
and Y -pieces. Let Y0 be a Y-piece. Since the signature of Y0 is (0, 3), the
associated Fuchsian group Γ with Γ\H ∼= Y0 is of the form

Γ = ⟨α, β, γ | αβγ = 1⟩ (5.1)

(cf. [72]), where α, β and γ correspond to loops in Y0, which are freely homotopic
to the boundary geodesics of Y0. Clearly, our presentation of Γ in (5.1) is
redundant and we can write Γ = ⟨α, β⟩ for two hyperbolic transformations α, β ∈
PSL2(R). The axes Aα and Aβ are disjoint and an elementary computation (see
[54, Lemma 1]) shows that1

trα trβ trαβ < 0. (5.2)
1Note that the sign of the left-hand side of (5.2) does not depend on the choice of lifts for

α, β.
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Now, we consider the converse direction and start with a two-generator subgroup
Γ = ⟨α, β⟩ of PSL2(R) and try to find the right obstructions on α and β so that
Γ\H is a surface of signature (0, 3) with boundary geodesics given by α, β and
(αβ)−1. Let Y0 be a Y -piece, whose boundary geodesics are given by a, b and
c with respective lengths la, lb and lc. If we cut Y0 open along the common
orthogonals of the boundary geodesics, we get a geodesic hexagon, which can
be isometrically embedded into the upper half-plane:

Figure 5.1: A geodesic hexagon in the upper half-plane.

In view of Figure 5.1, it is natural (cf. [63, §3]) to make the following

Definition 5.2.1. A triple (α, β, γ) ∈ PSL2(R) of transformations are called
geometric generators for a pants group if the following hold:

1. The transformations α, β and γ are hyperbolic and the three axes Aα, Aβ
and Aγ are disjoint.

2. The three axes Aα, Aβ and Aγ bound a common region D.

3. When traversing any of these axes from the repelling fixed point to the
attracting point, the region D always lies on the right.

4. The group Γ = ⟨α, β, γ⟩ has a single defining relation, namely αβγ = 1.

We call Γ = ⟨α, β⟩ a pants group.

Theorem 5.2.2. Let α, β ∈ PSL2(R) be two hyperbolic transformations. If the
axes Aα, Aβ are disjoint and (5.2) holds, the transformations α, β and (αβ)−1

are geometric generators of a pants group.

Proof. [62, Thm. 4.1]

Let us explicitly write down matrices fulfilling the conditions of the above
definition. Let us fix x, y, µ ∈ R>0. If we make the choice (cf. [63, §4])

α =

(
ex 0
0 e−x

)
, β =

1

sinhµ

(
sinh(µ− y) sinh y
− sinh y sinh(µ+ y)

)
, (5.3)
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the attracting and repelling fixed point of α are given by 0 and ∞ respectively,
while for β the attracting and repelling fixed point are given by e−µ and eµ

respectively. We have

γ = (αβ)−1 =
1

sinhµ

(
e−x sinh(µ+ y) −ex sinh y
e−x sinh y ex sinh(µ− y)

)
. (5.4)

It is an elementary exercise to show that one can choose the three parameters
x, y and µ in such a way that

trα = 2 cosh(la/2), trβ = 2 cosh(lb/2), tr γ = −2 cosh(lc/2)

holds. By applying Theorem 5.2.2 to α, β we see that Γ = ⟨α, β⟩ is a pants
group.

Remark 5.2.3. For the interested reader we note that the quantity µ is related
to the distance d between Aα and Aβ via cothµ = cosh d.

In summary, we have a bijection between conjugacy classes of pants groups
and isometry classes of Y-pieces, where a pants group Γ = ⟨α, β⟩ is mapped to
the quotient surface Y = Γ\H of signature (0, 3).
Now, assume we are given a pants group Γ = ⟨α, β⟩ contained in a cocompact
torsion-free Fuchsian group Γ′. The next proposition gives a criterion to decide,
when the geodesics α, β and γ = (αβ)−1 appear as the boundary geodesics of
some Y -piece Y0 in the hyperbolic surface X = Γ′\H:

Proposition 5.2.4. Let X = Γ′\H be a smooth closed hyperbolic surface. Let
α, β ∈ Γ′ be geometric generators of a pants group Γ = ⟨α, β⟩. Assume that the
geodesics α and β are simple and disjoint. Then the geodesic γ = (αβ)−1 is
simple and disjoint to both α and β. Furthermore, the three geodesics α, β and
γ form the boundary geodesics of a pair of pants Y0 in X.

Proof. Let us choose a point z0 ∈ X and fix an isomorphism Γ′ ∼= π1(X, z0). A
small free homotopy, which is sketched in Figure 5.2, deforms γ = (αβ)−1 into
a curve µ, which is simple and disjoint to α, β.

Figure 5.2: A small homotopy, which deforms γ = (αβ)−1 into a curve disjoint
to α, β.

Since γ is the unique geodesic in the free homotopy class of µ, we get from
[17, Thm. 1.6.6] that γ is simple and from [17, Thm. 1.6.7] that γ is disjoint to
α and β. Now, the Theorem of Baer-Zieschang [17, Thm. A.3] guarantees the
existence of a homeomorphism ϕ : X → X such that ϕ(α) = α, ϕ(β) = β and
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ϕ(µ) = γ. Since cutting the surface along α, β and µ disconnects the surface X
into a surface Y of signature (0, 3) and some remainder X ′′ = X ∖ Y , the same
must be true for their respective images under ϕ. Therefore, ϕ(Y ) has signature
(0, 3).

Remark 5.2.5. The author expects that Proposition 5.2.4 is known to experts,
but has not yet seen it in the literature.

Let us turn to the arithmetic side. Let as before Γ = ⟨α, β⟩ be a two-
generator subgroup of PSL2(R). We call Γ an arithmetic two-generator sub-
group, if there exists a Fuchsian group Γa derived from a quaternion algebra
such that Γ ⊂ Γa. If Γ is in addition a pants group, we call it an arithmetic
pants group. We have the following neat criterion for the arithmeticity of two-
generator subgroups:

Lemma 5.2.6. Let Γ be a two-generator subgroup of PSL2(R) with invariant
trace field F = F (Γ) and invariant quaternion algebra A = A(Γ). Then Γ is
arithmetic if the following two conditions are fulfilled:

1. F is a totally real number field and the traces trα, trβ and trαβ lie in the
ring of integers oF of F .

2. The invariant quaternion algebra A is unramified at exactly one infinite
place of F .

Proof. Let w(α, β) be a word in the letters α, β. Then it is a well-known fact
(cf. [95]) that there exists a polynomial Pw with integral coefficients such that

trw(α, β) = Pw(trα, trβ, trαβ).

Therefore, the first condition implies trw(α, β) ∈ oF and

{tr γ : γ ∈ Γ} ⊂ oF (5.5)

follows. Using (5.5) one may quickly check that

O =
{∑

aiγi | ai ∈ oF , γi ∈ Γ
}

(5.6)

defines an order in A, where the sums appearing on the right-hand side of (5.6)
are assumed to be finite. Since A is unramified at exactly one infinite place
σ1 of F , we have that Pσ1

O1 is a Fuchsian group derived from a quaternion
algebra. By construction we have Γ ⊂ Pσ1

O1.

Our next goal is to find congruence subgroups, which contain certain pre-
scribed arithmetic two-generator subgroups. For this we recall that for each
natural number p one has the well-known homomorphism

Φp : PSL2(Z)→ PSL2(Z/pZ)
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given by reducing the matrix entries modulo p, which can be used to classify
congruence subgroups2 of PSL2(Z). There exist maps with analogous properties
for maximal orders in (most) quaternion algebras:

Proposition 5.2.7. Let O be a maximal order in a quaternion algebra A over
a field F . Let σ1 be an infinite place of F with σ1 /∈ Ram(A). Let p be a
prime of F of norm N(p) = q so that p /∈ Ram(A). Then there exists a group
epimorphism φp : O1 → SL2(Fq) such that

trφp(x) ≡ trd(x) mod p (5.7)

for each x ∈ O1. Furthermore, the ensuing diagram

O1 SL2(Fq)

Pσ1
O1 PSL2(Fq)

can be completed to a commutative diagram by a unique group epimorphism
Φp : Pσ1O1 → PSL2(Fq) such that kerΦp = Pσ1(O1(p)) is a principal congru-
ence subgroup.

Proof. Let prp : O → O/pO be the projection map and let us write [x]1 for the
equivalence class of x ∈ O in O/pO. Let πp be a uniformizer in Fp. For y ∈ Op

we let [y]2 be the equivalence class of y in Op/πpOp. We claim that

fp : O/pO → Op/πpOp, [x]1 7→ [x]2

defines a vector space isomorphism3. Let us first check that fp is well-defined.
Let x′ ∈ O with x′ = x + ry, where r ∈ p and y ∈ O. We may write r = πpu
for u ∈ oF,p. Then we have ry = πp(uy) ∈ πpOp and [x]2 = [x′]2 follows. Thus,
the map fp is well-defined. The proof of linearity is straightforward and left to
the reader. Next, let x, x′ ∈ O with [x]2 = [x′]2. This implies the existence of
y ∈ Op with x = x′ + πpy and hence

x− x′ = πpy ∈ O ∩ (πpOp) = pO.

This implies [x]1 = [x′]1. Regarding the surjectivity of fp we consider an arbi-
trary element y = ry′ ∈ Op with r ∈ oF,p and y′ ∈ O. We can represent r as a
power series r =

∑
j rjπ

j
p with rj ∈ oF . For x = r0y

′ ∈ O we get [x]2 = [y]2.
Now, one can utilize linearity of fp to prove that fp is surjective.
Since A is unramified at p, we have Ap ⊗ Fp

∼= M2(Fp). Let us fix this iso-
morphism. Then Op is a maximal order in M2(Fp) (see [60, Lemma 6.2.8]),
which by [60, Thm. 6.5.3] implies the existence of g ∈ M2(Fp) such that

2To classify all congruence subgroups of PSL2(Z) one clearly needs to consider the homo-
morphisms ΦN with N a natural number. For simplicity we restrict ourselves to the case of
primes.

3We silently identify the finite fields oF /p and oF,p/πpoF,p.

77



gOpg
−1 = M2(oF,p). Writing [x]3 for the equivalence class of x ∈ M2(oF,p)

in M2(oF,p)/πpM2(oF,p), we have the well-defined bijection

gp : Op/πpOp →M2(oF,p)/πpM2(oF,p), [x]2 7→ [gxg−1]3.

Since M2(Fq) is isomorphic to M2(oF,p)/πpM2(oF,p), we can compose the three
maps prp, fp and gp to get a map from O to M2(Fq). It is straightforward to
check that any of these three maps preserves reduced traces and reduced norms
modulo p. Since these maps also preserve the unit element and products, we
get a group homorphism φp : O1 → SL2(Fq) such that (5.7) holds. The surjec-
tivity of φp is a well-known consequence of strong approximation for quaternion
algebras (cf. [98, Lemma 28.5.14]). Note that it is possible to apply strong
approximation here, because σ1 /∈ Ram(A) holds.
Let P± : SL2(Fq) → PSL2(Fq) be the map given by dividing out ±12. We
want to show the existence of a group epimorphism Φp : Pσ1

O1 → PSL2(Fq)
such that

Φp ◦ Pσ1 = P± ◦ φp. (5.8)

For any x ∈ Pσ1
O1 we fix a lift x̃ ∈ O1 and define

Φp(x) = P±(φp(x̃)).

This map does not depend on the chosen lift, since φp preserves ±12. For
another element y ∈ Pσ1

O1 with lift ỹ ∈ O1 we see that x̃ỹ is a lift of the
product xy. Hence, the map Φp is a group homomorphism. Assume that there
exists another group homomorphism Φ′

p : Pσ1O1 → PSL2(Fq) such that (5.8)
holds. Then for any x ∈ Pσ1O1 we have

Φ′
p(x) = Φ′

p(Pσ1(x̃)) = P±(φp(x̃)) = Φp(Pσ1(x̃)) = Φp(x)

and Φ′
p = Φp follows. The surjectivity of Φp follows from the fact that any

element x̃ ∈ O1 appears as a lift of some x ∈ Pσ1
O1 and the surjectivity of φp.

Finally, the identity kerΦp = Pσ1
(O1(p)) follows from O1(p) = pr−1

p ([12]1).

Remark 5.2.8. Proposition 5.2.7 should be regarded as well-known, even though
the author has not yet seen it in the above form in the literature.

In the following we will sometimes abbreviate Φp(x) = x, when the prime
ideal p is clear from the context. The map Φp gives a bijection between con-
gruence subgroups containing Pσ1

(O1(p)) and subgroups of PSL2(Fq). The
subgroups of PSL2(Fq) are completely classified:

Theorem 5.2.9. Let p be a rational prime and q = pf with f ∈ N. Any
subgroup of PSL2(Fq) is contained on the following list:

• Cyclic groups: Ck = ⟨x | xk = 1⟩ for k ≥ 1,

• Elementary abelian p-groups: Epl = (Z/pZ)l for l ∈ N,

• Dihedral groups: Dm = ⟨r, s | rm = s2 = (rs)2 = 1⟩ for m ≥ 2,
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• Classical matrix groups: PSL2(Fpn) and PGL2(Fpn) for n ∈ N,

• Permutation groups: A4, S4 and A5,

• Semidirect products of cyclic groups with elementary abelian p-groups.

Proof. [49, Thm. 8.27]

Remark 5.2.10. One can even describe the possible parameters k, l,m and n
in the above theorem in terms of q. For our purposes it is more than enough to
only list the possible types of groups.

Let us now describe the generic image of an arithmetic pants group under
the reduction map Φp:

Proposition 5.2.11. Let Γ = ⟨α, β⟩ be an arithmetic pants group. For all but
finitely many prime ideals the group Φp(Γ) is a classical matrix group.

Proof. The above proposition essentially follows from observing that Γ0 is a
purely hyperbolic group and that x ∈ Pσ1(O1(p)) implies trd(x) ≡ ±2 mod p,
or in other words, p either divides trd(x)−2 or trd(x)+2. Let us go through all
possible cases. If Φp(Γ0) is a cyclic group, the commutator [α, β] has trace ±2
modulo p, which can only be the case for finitely many prime ideals. If Φp(Γ0)
is an elementary abelian p-group, we can, after possibly conjugating, assume
that Φp(Γ0) is contained in P±(N), where

N =

{(
1 x
0 1

) ∣∣∣∣ x ∈ Fq} ⊂ SL2(Fq)

and P± : SL2(Fq) → PSL2(Fq) is the usual projection. This implies that
trd(α) ≡ ±2 mod p, which is only possible for finitely many prime ideals. Next
we assume that Φp(Γ0) is a dihedral group Dm for some m ≥ 2. We note that
Dm can be written in the form

Dm = {1, r, r2, ..., rm−1, s, rs, r2s, ..., rm−1s},

where the last m elements all have order 2. There are only finitely many prime
ideals, for which the order of α, β could be 2, so that α = rk1 and β = rk2

for some k1, k2 ∈ N in all but finitely many cases. But then the trace of the
commutator [α, β] reduces to ±2 modulo p, which is only possible in finitely
many cases. Regarding the permutation groups A4, S4 and A5, we note that
there are only finitely many prime ideals, for which the order of α is smaller
than or equal to |A5| = 60. Finally, let us assume that Φp(Γ0) is given by a
semidirect product of a cyclic group with a elementary abelian p-group. After
possibly conjugating, we can assume that Φp(Γ0) is contained in P±(B), where

B =

{(
y x
0 y−1

) ∣∣∣∣ x ∈ Fq, y ∈ F×
q

}
.

This again implies that the trace of [α, β] reduces to ±2 modulo p and we are
done.
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In the next section we will see an example of an arithmetic two-generator
subgroup Γ0 such that Φp(Γ0) is a dihedral group.

5.3 Arithmetic Surfaces and Zeta Functions
In this section we first prove Proposition 5.1.1 and then construct the Plancherel
sequence needed for Proposition 5.1.2. We begin with the following well-known
lower bound for the first non-zero eigenvalue of a congruence surface:

Theorem 5.3.1. Let Xc be a congruence surface. Then one has

λ1(Xc) ≥
1

4
−
(

7

64

)2

= 0.238... (5.9)

Proof. This lower bound follows from bounds towards the generalized Ramanu-
jan conjecture [9], see e.g. [96] for the case F = Q.

The lower bound from Theorem 5.3.1 guarantees large pole-free regions of
the logarithmic derivative of the Selberg zeta function:

Proof of Proposition 5.1.1. Let (Xj)j∈N be a sequence of congruence surfaces
with vol(Xj)→∞ and let Λj be the logarithmic derivative of the Selberg zeta
function of Xj . Using the notation and results from the proof of Theorem 4.4.4,
we have

Λj(s)

vol(Xj)
= I1,j(s) + I2,j(s) + I3,j(s).

for any s ∈ ( 12 , 1), which is not a pole of Λj . By Theorem 4.4.4 any sequence
of smooth closed congruence surfaces (Xj)j∈N with vol(Xj)→∞ is Plancherel-
convergent, so that we can repeat the proof of Theorem 4.4.4 to show that I1,j(s)
and I2,j(s) converge to zero for s ∈ ( 12 , 1). Now, fix a point s ∈ ( 3964 , 1) and let
ε > 0 such that s = 39

64 + ε. Since

I3,j(s) =
2s− 1

vol(Xj)

∑
0≤λj,k<

1
4

e−(ξ+λj,k)

ξ + λj,k
,

with ξ = s(s− 1) we can use the bound from Theorem 5.3.1 to derive

|I3,j(s)| ≤
1

7
32ε+ ε2

N(Xj ,
1
4 )

vol(Xj)
. (5.10)

The right-hand side of (5.10) converges to zero by the limit multiplicity
property of (Xj)j∈N and

lim
j→∞

Λj(s)

vol(Xj)
= 0

for s ∈ ( 3964 , 1) follows. The claim regarding the Euler-Selberg constants can be
proved analogously.
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While congruence surfaces conjecturally do not have any non-trivial small
eigenvalues, this is not true for arithmetic surfaces. For the proof of Proposition
5.1.2 we will construct a Plancherel-convergent sequence of arithmetic surfaces
(Xj)j∈N, which have a single non-zero eigenvalue converging to λ0 = 0. This sin-
gle eigenvalue will yield a non-trivial contribution to the limit of vol(Xj)

−1γXj
.

The construction of this sequence will take up the rest of this section.
Let τ = elτ/2 be a Salem number of degree 2n with n ≥ 2 so that τ < 1.2.
We additionally assume that τ has been chosen such that it is the smallest
Salem number in its degree. Let L = Q(τ) be the associated number field. Let
F = Q(ω) be the totally real subfield of L generated by ω = τ + τ−1. Let
σ1, ..., σn be the real embeddings of F , chosen in such a way that σ1(ω) > 2.
Let x, y ∈ oL be non-zero algebraic integers and m ∈ N. A prime ideal P is
called a primitive divisor of xm − ym, if P | xm − ym and P ∤ xk − yk holds
for k < m. For primitive divisors, we have the following result by Schinzel and
Postnikova [77, Thm. 1]:

Theorem 5.3.2. Let x, y be relatively prime algebraic integers in a number field
L such that x

y is not a root of unity. Then there exists a constant m0 = m0(x, y)
such that xm − ym has a primitive divisor for m ≥ m0.

Hence, we can find m0 = m0(τ, 1) ∈ N such that τm − 1 has a primitive
divisor for m ≥ m0. Let p0 be a rational prime with m = 4p0 > m0 and P0 be
a primitive divisor of τ4p0 − 1,

P0 | τ4p0 − 1, P0 ∤ τk − 1 for k < 4p0. (5.11)

Let p0 = P0 ∩ oF be the prime ideal of F lying below P0. After possibly
replacing p0 by a larger prime, we can assume that p0 is a non-dyadic4 prime
ideal so that

p0 ∤ 4, p0 ∤ ω2 − 4. (5.12)

We now want to make a few assumptions on p0 to be able to deal with torsion
elements later on. First of all, there are only finitely many cyclotomic extensions
K1, ...,Ks of F with [Kj : F ] = 2. Furthermore, in each cyclotomic extension
Kj there are only finitely many elements xj1 , ..., xjt of finite order. Let us write
mjk for the order of xjk and tjk = TrL/F (xjk) for the respective traces. After
possibly replacing p0 we can assume that

p0 ∤ mjk , p0 ∤ t2jk − 4, j = 1, ..., s, k = 1, ..., t. (5.13)

Next, we recall the strong approximation theorem for number fields:

Theorem 5.3.3. Let S0 be a finite set of places of F and q ∈ ΩF ∖S0. Assume
that xp is given for p ∈ S0. Then for each ε > 0 there exists x ∈ F such that

• |x− xp|p < ε for each p ∈ S0,

• |xp|p ≤ 1 for each p ∈ Ω∖ (S0 ∪ q).
4A prime ideal p is called dyadic, if it lies over (2) and called non-dyadic otherwise.
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Proof. [73, §33G]

According to Theorem 5.3.3 we can find θ ∈ oF so that

σ1(θ) > 2, σj(θ
2 + ω2 − 4) < 0, j = 2, ..., n, vp0(θ) = 1. (5.14)

Let us choose matrices α0, β as in Section 5.2 with

trα0 = ω, trβ = θ2 − 2, trα0β = −ω. (5.15)

and let β0 be the unique in element in the stabilizer Gβ of β with β = β2
0 . With

this choice we have

trα0 = ω, trβ0 = θ, trα0β0 = 0. (5.16)

Let Γ0 = ⟨α0, β0⟩ be the subgroup generated by α0, β0.

Lemma 5.3.4. The group Γ0 = ⟨α0, β0⟩ is an arithmetic two-generator sub-
group. For the corresponding invariant quaternion algebra A = A(Γ0) we have
σ2, ..., σn ∈ Ram(A) and σ1, p0 /∈ Ram(A).

Proof. According to [60, Thm. 3.6.1] we can express the Hilbert symbol of A
by

A =

(
θ2 − 4, θ2 + ω2 − 4

F

)
.

Since a real quaternion algebra B =
(
a,b
R

)
ramifies if and only if a, b < 0, we get

from (5.14) that σ1 /∈ Ram(A) and σ2, ..., σn ∈ Ram(A). Hence, Lemma 5.2.6
implies that Γ0 is an arithmetic two-generator subgroup. Regarding the finite
place p0 we observe that a quaternion algebra D =

(
a,b
Fp

)
ramifies at p0 if and

only if for a = a0π
vp(a)
p and b = b0π

vp(b)
p one has

(−1)vp(a)vp(b)(q0−1)/2

(
a0
p

)vp(b)(b0
p

)vp(a)
= −1,

(see [98, Eq. 12.4.10]), where q0 is the cardinality of the residue class field
k = oF /p0 and (

a0
p0

)
=

{
+1, if a0 ∈ k×2,

−1, if a0 ∈ k× ∖ k×2

is the Legendre symbol. By (5.12) and (5.14), we have vp0(θ
2 − 4) = 0 and

vp0
(θ2 + ω2 − 4) = 0, which shows p0 /∈ Ram(A).

Next, we work out the image of Γ0 under the group homomorphism Φp0
:

Lemma 5.3.5. The group Φp0
(Γ0) is isomorphic to the dihedral group

D2p0 = ⟨r, s | r2p0 = s2 = (rs)2 = 1⟩

and a group isomorphism ψ : D2p0 → Φp0
(Γ0) is given by sending r 7→ α0 and

s 7→ β0.
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Proof. First, we check that ord(β0) = 2. By the choice made in (5.16) we have

trβ0 ≡ 0 mod p0. (5.17)

Combining (5.17) with the Cayley-Hamilton theorem gives β0
2
= 1. Since (5.17)

also implies that β0 cannot have order 1, we get ord(β0) = 2. In the same way
one may derive ord(β0α0) = 2. Next, we show ord(α0) = 2p0. Recall from
(5.11) that

P0 | (τ2p0 − 1)(τ2p0 + 1).

Since P0 is a primitive divisor, we get P0 | (τ2p0 + 1). Furthermore, we also
have P0 | τ−2p0 + 1, as we can write

(τ−2p0 + 1) = τ−2p0(τ2p0 + 1)

and τ−2p0 is a unit. This implies

TrL/F (τ
2p0 + 1) = (τ2p0 + 1) + (τ−2p0 + 1) ∈ P0 ∩ F = p0

and hence
trα2p0 ≡ ±2 mod p0. (5.18)

Therefore, α0
2p0 lies in some elementary abelian p0-group Ep0

⊂ PSL2(Fp0
).

By (5.12) the group H = ⟨α0⟩ is not an elementary abelian p0-group, so that
the Partition Lemma [49, Thm. 8.5] yields

α0
2p0 ∈ H ∩ Ep0 = {1}.

Thus, the order of α0 is either 1, 2, p0 or 2p0. The possibilities ord(α0) = 1
and ord(α0) = 2 can be excluded using (5.12). If ord(α0) = p0, one either gets
τp0 − 1 ∈ P0 or τp0 + 1 ∈ P0. In both cases we get a contradiction to (5.11)
and ord(α0) = 2p0 follows. Now, it is guaranteed that the assignment

r 7→ α0, s 7→ β0

can be extended to a surjective group homomorphism ψ : D2p0 → Φp0
(Γ0). We

will prove the injectivity of ψ by showing

|Φp0
(Γ0)| = 4p0 = |D2p0 |. (5.19)

We claim that two elements β0
ε1
α0

k1 and β0
ε2
α0

k2 with ε1, ε2 ∈ {0, 1} and
k1, k2 ∈ {0, 1, ..., 2p0 − 1} can only be equal if ε1 = ε2 and k1 = k2 holds.
Assume that this is not case, i.e.

1 = (β0
ε2
α0

k2)−1β0
ε1
α0

k1 = α0
−k2β0

ε1−ε2
α0

k1 (5.20)

with either k1 ̸= k2 or ε1 ̸= ε2. If ε1 − ε2 ≡ 0 mod 2, equation (5.20) reads
α0

k1−k2 = 1. If k1 ̸= k2, we get a contradiction to ord(α0) = 2p0, since
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|k1 − k2| < 2p0. In the case ε1 − ε2 ≡ 1 mod 2 we may apply the relation
β0α0 = α0

−1β0, which follows from ord(β0α0) = 2 and ord(β0) = 2, to derive

α0
k1+k2 = β0. (5.21)

This again yields a contradiction, since

β0α0β0
−1

= α0
−1 ̸= α0 = α0

k1+k2α0 α0
−(k1+k2). (5.22)

This shows |Φp0
(Γ0)| ≥ 4p0. The surjectivity of ψ implies |Φp0

(Γ0)| ≤ 4p0 and
(5.19) follows. This concludes the proof.

From now on, we fix the isomorphism ψ and write D2p0 = Φp0(Γ0). Let us
consider the normal subgroup N = ⟨r2⟩ of D2p0 . Writing Γc = Φ−1

p0
(N) and

Γ1 = Φ−1
p0

(D2p0), we clearly have Γc ⊴ Γ1. The quotient group Γc\Γ1 is the
Klein four group and can be presented as

V4 = {1, [α0], [β0], [α0β0]}.

We have an action of V4 = Γc\Γ1 on the quotient space Xc = Γc\H via

[γ].(Γcz) = Γc(γ.z)

Let us denote

α = α2
0, δ = β0αβ

−1
0 , η = δ−1α−1 = (β0α

−1
0 )2, ρ = α0ηα

−1
0 .

Let us also write η0 = β0α
−1
0 . We make the following observations:

• The involution [α0] preserves the geodesics α, δ and interchanges η, ρ.

• The involution [η0] preserves the geodesics η, ρ and interchanges α, δ.

Our next goal is to utilize the symmetry group V4 to study the geometry of our
surface:

Figure 5.3: The geometric configuration of the four geodesics α, δ, η and ρ.

Lemma 5.3.6. The quotient space Xc = Γc\H is a smooth closed congruence
surface. The four geodesics corresponding to α, β, η and ρ are simple and pair-
wise disjoint. Let Yη be the Y -piece with boundary geodesics α, δ, η and Yρ be
the Y -piece with boundary geodesics α, δ, ρ. Then we have Y ◦

η ∩ Y ◦
ρ = ∅.
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Proof. The group Γc is a congruence subgroup, since by Proposition 5.2.7 it
contains Pσ1(O1(p0)). From F ̸= Q it follows that Xc is closed (cf. [53, Thm.
5.4.1] and [53, Thm. 5.2.6]). Regarding the smoothness of Xc we need to prove
that Γc is torsion-free. Assume to the contrary that there exists a torsion-
element xt ∈ Γc of order mt > 1. By the second assumption made in (5.13) the
element xt ∈ N has order mt. But any non-trivial element in N has order p0,
so that we get a contradiction to the first assumption made in (5.13). Thus, Γc
is torsion-free.
Next, we show that the geodesic α is simple. Since its length lα = 4 log τ is
smaller than 1, we get from [17, Thm. 4.2.1] that α is the power of some simple
geodesic α′, i.e. α = (α′)k0 for some k0 ∈ Z. If we let τ ′ = elα′/2 and L′ = F [τ ′],
then τ = (τ ′)k0 and L ⊂ L′ follows. Since [L : Q] = 2n = [L′ : Q], we have
L = L′ and the minimality assumption on τ implies |k0| = 1. In particular, the
geodesic α is simple. The same argument proves that δ is simple.
Let us check that α and δ are disjoint. Assume to the contrary that δ intersects
α. As the width wδ of the tube Tδ around δ is greater than 1 and lα < 1,
the geodesic α is completely contained in Tδ. This tube contains exactly two
simple closed geodesics, namely δ and δ−1. Then Proposition 2.2.3 guarantees
the existence of an element x0 ∈ Γc with δ = x0αx

−1
0 . From δ = β0αβ

−1
0 we get

x−1
0 β0 ∈ Gα ∩ Pσ1

O1 = {αk0 | k ∈ Z}.

If we let x−1
0 β0 = αk00 and x0 = α0

2k1 for some k0, k1 ∈ Z, we get

β0 = Φp0(x0α
k0
0 ) = α0

k0+2k1

in contradiction to Lemma 5.3.5. Hence, the geodesics α and δ are disjoint. From
the choice of the matrices representing α and δ one can check that Γ = ⟨α, δ⟩ is
a pants group. Therefore, we can employ Proposition 5.2.4 to conclude that η
and ρ are simple geodesics and that they are disjoint to α and δ.
It remains to show that η and ρ are disjoint. First, we claim that η and ρ
intersect in at most finitely many points. Assume that this is not the case.
Then η and ρ agree as point sets and applying Proposition 2.2.3 guarantees the
existence of x0 ∈ Γc with ρ = x0ηx

−1
0 . From ρ = α0ηα

−1
0 we get

x−1
0 α0 ∈ Gη ∩ Γ1.

We claim that
Gη ∩ Γ1 = {ηk0 | k ∈ Z}. (5.23)

Otherwise, there would be an element η′0 ∈ Γ1 with η0 = (η′0)
k for some k ∈ Z

with |k| > 1. In consequence, [η′0] would be an element in Γc\Γ1 of order
greater than 2, which is a contradiction to Γc\Γ1 being the Klein four group.
From (5.23) we get

x−1
0 α0 = ηk00 (5.24)

for some k0 ∈ Z. Let x0 = α0
2k1 for some k1 ∈ Z. We can apply the map Φp0

to (5.24) to derive
α0

1−2k1 = (β0α0
−1)k0 . (5.25)
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If in (5.24) the number k0 is even, say k0 = 2k2 for k2 ∈ N, we get

α0 = x0η
k1 ∈ Γc,

which is a contradiction. If k0 is odd, we see that the element on the left-hand
side of (5.24) has order p0, while the one on the right-hand of (5.24) side either
has order 1 or 2. This is a contradiction. Thus, η and ρ differ as point sets and
can only intersect in finitely many points.
Now, assume that η and ρ intersect in the points z1, ..., zn0

. We note that these
points come in pairs (z, [α0β0].z), since the symmetry [η0] preserves η, ρ and acts
non-trivially on η. Let us first assume that we have at least 4 (non-identical)
points of intersection z1, ..., z4, ..., where the ordering is chosen according to the
order in which η passes through ρ. Let r be the common orthogonal in Yρ
between α and δ. We let η12 be the subarc of η in Yρ between z1 and z2 and η34
be the subarc of η in Yρ between z3 and z4. We will lead this to a contradiction
by sketching a few homotopies. For the construction of these it is important to
note that we know the local geometry around points on the boundary of Yρ, as
one of the half-tubes Tρ,h is not contained in Yρ (see Figure 5.4).

Figure 5.4: The Y -piece Yρ.

Now, both of the subarcs η12 and η34 pass through r, as otherwise we can
find a loop η′ in the free homotopy class of η such that η′ does not intersect ρ
in either z1, z2 or z3, z4 (cf. Figure 5.5). This is a contradiction, since by [17,
Thm. 1.6.7] this would imply that η and ρ intersect in at most n0 − 2 points.
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Figure 5.5: A homotopy of η, which decreases the intersection number of η and
ρ.

Now, there exists a free homotopy (sketched in Figure 5.6), which moves η34
on top of η12.

Figure 5.6: A homotopy of η, which moves η34 on top of η12.

Again, we can employ [17, Thm. 1.6.7] to derive that η and ρ intersect in
at most n0 − 2 points, which is a contradiction. Hence, there exists at most
one pair of intersection points (z1, z2). Cutting Yρ along η12 disconnects it into
two connected components Y +

ρ and Y −
ρ . We claim that at least one of these

components is contained in Yη. To see this we note that removing α, δ and η
disconnects Xc into two connected components, one of which is Yη. The Y -piece
Yη contains one of the half-tubes Tη,h. Since Y +

ρ touches one of the half-tubes
around η, while Y −

ρ touches the other half of the tube, one of the components
Y +
ρ and Y −

ρ is contained in Yη. Without loss of generality we assume that
Y +
ρ ⊂ Yη. Now, we claim that Y −

ρ is the image of Y +
ρ under the involution [η0].

To see this we first note that Yρ is fixed by the involution [η0], i.e.

[η0].Yρ = Yρ. (5.26)
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This follows from observing that [η0] maps the triple of geodesics (α, δ, ρ) to
the triple (δ, α, ρ) and hence leaves the decomposition of Xc into Yρ and Xc ∖
Yρ invariant. The geodesic arc [η0].η12 runs from z2 and z1 and by (5.26) is
contained in Yρ. If it were different from η12, the geodesic η would be non-
simple. Hence, we get

[η0].η12 = η12. (5.27)

Now, by (5.26) and (5.27) the component Y +
ρ is mapped to a connected compo-

nent of Yρ ∖ η. Hence, either Y +
ρ is mapped to itself or to Y +

ρ . We can exclude
the former case by noting that under [η0] the geodesic α is mapped to δ. This
implies

[η0].Y
+
ρ = Y −

ρ . (5.28)

Arguing as before we see that [η0] also maps Yη to itself. This implies Y −
ρ ⊂ Yη

and Yρ ⊂ Yη follows. Since Yη does not contain a simple geodesic in its interior,
we see by comparing lengths that η and ρ need to be equal as point sets. We
have already seen that this is not a case and we arrive at a contradiction
It remains to show that Yη and Yρ only intersect in the boundary. By [17, Thm.
4.1.1] we can find simple closed geodesics γ5, ..., γ3g−3 such that the geodesics
α, δ, η, ρ, γ5, ..., γ3g−3 are pairwise disjoint and removing them disconnects Xc

into 2g − 2 pairs of pants Y1, ..., Y2g−2, so that Y ◦
j ∩ Y ◦

k = ∅. After removing
the first three geodesics α, δ and η we get from Proposition 5.2.4 that one of
the connected components of Xc∖ (α∪ δ ∪ η) is given by Yη. Since Yη does not
contain any further simple geodesics, which could possibly disconnect it, it has
to appear in the list Y1, ..., Y2g−2. Without loss of generality we may assume
Y1 = Yη. Repeating the same argument with ρ in place of η shows that Yρ = Yk
for some k = 1, ..., 2g − 2. Since Yη and Yρ have different boundary geodesics,
we have k ̸= 1 and Y ◦

η ∩ Y ◦
ρ = ∅ follows.

Let us write Z = Yη∪Yρ. Let ξ be the unique simple geodesic running around
the hole of Z, which intersects α in one point. Let us abbreviate g = g(Xc)
and fix some point z0 ∈ Xc. We choose a canonical dissection of Xc (cf. [17,
§6.7] and the references given there) consisting of loops a1, b1, ..., ag, bg with
base point z0 such that the unique geodesic in the free homotopy class of a1 is
ξ and the unique geodesic in the free homotopy class of b1 is α. Then Γc can be
written in terms of generators and relations as (cf. [48, p.51])

Γc = ⟨a1, b1, ..., ag, bg | [a1, b1]...[ag, bg] = 1⟩, (5.29)

where we have fixed an isomorphism between Γc and π1(Xc, z0). For j = 1, ..., 2g
we write ej for the vector in R2g with 1 in the jth place and zeroes elsewhere.
Then we have the well-known group homomorphism

φH : Γc → H1(Xc) ∼= Z2g, (5.30)

into the first homology group ofXc defined by φH(aj) = e2j−1 and φH(bj) = e2j .
We let Γa = φ−1

H (2Z×Z2g−1) and Xa = Γa\H be the corresponding arithmetic
surface. We claim that Xa gets disconnected by removing δ and ξδξ−1. This
follows from the following
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Lemma 5.3.7. Let X+
c be the surface of signature (g−1, 2) obtained by cutting

Xc along δ and p+ : X+
c → Xc be the projection map. Let X−

c be an isometric
copy of X+

c with projection map p− : X−
c → Xc. Let the boundary curve of

X−
c , which under the aforementioned isometry is mapped to δ, be denoted by

δ−. Then Xa is isometric to a surface obtained by gluing X+
c and X−

c along
their boundary curves in such a way that δ− is identified with ξδξ−1.

Proof. Let p : Xa → Xc be the covering map of degree 2 given by mapping
Γaz 7→ Γcz and let X ′

a = Γ′
a\H be the surface obtained by gluing X+

c and
X−
c along their boundaries without twisting such that δ− is identified with

ξδξ−1. Then we have a covering map p′ : X ′
a → Xc of degree 2 given by

mapping any point z ∈ X±
c to p±(z). Fix points z̃0 ∈ Xa and z̃0

′ ∈ X ′
a

with p(z̃0) = p′(z̃0) = z0. Furthermore, fix isomorphisms Γa ∼= π1(Xa, z̃0) and
Γ′
a
∼= π1(X

′
a, z̃0

′). Let p∗ : Γa → Γc and p′∗ : Γ′
a → Γc be the push-forwards of the

covering maps p and p′ respectively. By a standard result of algebraic topology
(see [48, Prop. 1.32]) we have that p′∗(Γ′

a) is a subgroup of Γc of index 2. We
claim that p′∗(Γ′

a) ⊂ Γa. For this we observe that the loops a1, b21, a2, b2, ..., ag, bg
all lie in the image of p′∗, while a quick proof by contradiction shows that b1
is not contained in p′∗(Γ

′
a). Hence, we have φH(p′∗(Γ

′
a)) = 2Z × Z2g−1 and

p′∗(Γ
′
a) ⊂ Γa follows. Since both groups Γa and p′∗(Γ

′
a) are of index 2 in Γc we

get Γa = p′∗(Γ
′
a). In an analogous manner, one may derive p∗(Γa) = Γa. Hence,

we arrive at p∗(Γa) = p′∗(Γ
′
a). By the Galois theory of coverings this guarantees

the existence of a homeomorphism f : Xa → X ′
a such that p = p′ ◦ f (see

[48, Prop. 1.37]). We claim that f is a local isometry. Consider an arbitrary
point z̃ in Xa and let z = p(z̃) be the corresponding point in Xc. Since p′ is
a local isometry there exists a ball Br(z) of radius r > 0 around z such that
(p′)−1 : Br(z)→ X ′

a exists and is a local isometry. Hence, we have f = (p′)−1◦p
on Br(z̃) and f is a local isometry. But any homeomorphism of Riemannian
manifolds, which is a local isometry, is a (global) isometry. Hence, Xa and X ′

a

are isometric.

This arithmetic surface has the interesting feature that it has a single Laplace
eigenvalue close to zero, while the remaining non-zero eigenvalues stay uniformly
away from λ0 = 0:

Lemma 5.3.8. The first eigenvalue λ1(Xa) of the arithmetic surface Xa can
be bounded from above and below by

c19lτ
vol(Xa)

≤ λ1(Xa) ≤
c20 lτ
vol(Xa)

, (5.31)

where c19 and c20 are absolute positive constants. Furthermore, there exists an
absolute positive constant c21 such that

λk(Xa) ≥ c21 (5.32)

whenever k ≥ 2.
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Proof. For the proof of the upper bound in (5.31) we recall the Buser-Cheeger
inequality

λ1(Xa) ≤ 2h(Xa) + 10h2(Xa). (5.33)

From Lemma 5.3.7 we see that Xa gets disconnected by removing δ and ξδξ−1,
where each of the resulting connected components has two-dimensional volume
given by vol(Xc) =

1
2 vol(Xa). This implies

h(Xa) ≤
8lτ

vol(Xa)
. (5.34)

Combining (5.33) and (5.34) gives the right-hand side of (5.31) with

c20 = 656.

For the left hand-side of (5.31) we recall from [35, Thm. 1.3] the strengthened
Cheeger inequality for 2-covers

λ1(Xa) ≥
1

4

√
λ1(Xc) h(Xa). (5.35)

Since τ is the smallest Salem number of degree 2n, the length of any geodesic
in Xa is bounded from below by lτ . This implies

h(Xa) ≥
2lτ

vol(Xa)
. (5.36)

Plugging (5.36) into (5.35) gives the left-hand side of (5.31) with

c19 =
1

2

√
1

4
−
(

7

64

)2

.

Regarding the lower bound (5.32) we apply domain monotonicity (cf. Section
4.2) to Xa = X+

c ∪X−
c to derive

λ2(Xa) ≥ κ1(X+
c ), (5.37)

where κ1(X+
c ) is the first Neumann eigenvalue of X+

c . The Cheeger inequality
(cf. Section 2.4) also holds for the first Neumann eigenvalue (see [18, Thm.
1.6]),

κ1(X
+
c ) ≥ 1

4hN (X+
c ) (5.38)

with
hN (X+

c ) = inf
u

l(u)

min{vol(Au), vol(Bu)}
,

where u ranges over the set of all finite unions of piecewise smooth curves on
X+
c , which separate X+

c into two disjoint subsets Au and Bu. We claim that

hN (X+
c ) > 0.01, (5.39)
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which implies
λ2(Xa) ≥ c21

with
c21 = 0.000025.

Assume to the contrary that

hN (X+
c ) ≤ 0.01. (5.40)

Then we can find a finite union of piecewise smooth curves u = u1∪...∪us, which
decomposes X+

c into two disjoint subsets Au and Bu with vol(Au) ≤ vol(Bu)
such that

lu
vol(Au)

≤ 0.02. (5.41)

For the sake of simplicity we will only deal with the case that u is a single curve,
but the careful reader may check that the full argument extends to finite unions
of curves. Applying the Buser-Cheeger inequality to the closed surface Xc we
may derive

h(Xc) ≥ 0.08. (5.42)
Now, if we cut the closed surface Xc along u and δ, it gets disconnected into
two disjoint subsets, which are isometric to Au and Bu. Thus, using (5.42) we
get

lu
vol(Au)

+
2lτ

vol(Au)
≥ 0.08 (5.43)

Combining (5.41) and (5.43) gives

1

vol(Au)
≥ 0.03

lτ
. (5.44)

If u is a loop, we have lu ≥ lτ by Theorem 3.2.5 and the minimality of τ . If we
plug this into (5.44), we arrive at

lu
vol(Au)

≥ 0.03,

which is a contradiction to (5.41). If u is not a closed curve, it touches the
boundary of X+

c at both endpoints. If u is contained in a single half-tube around
one of the boundary geodesics, we can use the argument from the second case
in [86, p.281] to derive

hN (X+
c ) ≥ 0.5.

If it leaves the half-tubes around the boundary, we have by Theorem 2.3.1 that
lu ≥ 1 and hence

1

vol(Au)
≤ lu

vol(Au)
≤ 0.02. (5.45)

Combining (5.45) with (5.43) and noting that 2lτ ≤ 1, we get

lu
vol(Au)

≥ 0.06,

which is a contradiction to (5.41).
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We can finally turn our attention to Proposition 5.1.2:

Proof of Proposition 5.1.2. Let (pj)j∈N be a sequence of prime ideals in F with
N(pj)→∞ as j →∞, which fulfill the assumptions made for p0. Replacing p0
by any of these prime ideals gives a sequence of congruence subgroups Γc,j and
arithmetic Fuchsian groups Γa,j ⊂ Γc,j such that the estimates from Lemma
5.3.8 hold for any of the arithmetic surfaces Xj = Γa,j\H. We claim that
(Xj)j∈N is Plancherel convergent. We first observe that by Theorem 3.1.1 we
have that (Γc,j)j∈N is a Plancherel sequence. Now, the bound

|ΛΓa,j (s)| ≤ 2ΛΓc,j (Re(s)),

valid for Re(s) > 1, together with Theorem 1.1.2 implies Plancherel convergence
of (Xj)j∈N.
Using the notation of the proof of Theorem 4.4.4 we write

γXj

vol(Xj)
= I1,j(1) + I2,j(1) +

1

vol(Xj)

∑
0<λj,k<

1
4

e−λj,k

λj,k
. (5.46)

We note that, as before, the first two summands on the right-hand side of (5.46)
converge to zero for j →∞, so that we are left with estimating

1

vol(Xj)

∑
0<λj,k<

1
4

e−λj,k

λj,k
=

e−λj,1

λj,1 vol(Xj)
+

1

vol(Xj)

∑
λj,1<λj,k<

1
4

e−λj,k

λj,k
(5.47)

The second term on the right-hand side of (5.47) converges to zero by the same
argument as in the proof of Proposition 5.1.1. From Lemma 5.3.8 we get the
existence of positive constants C0 and C1 such that

C0 ≤
λ−1
j,1

vol(Xj)
≤ C1. (5.48)

Thus, after possibly replacing (Xj)j∈N by a subsequence, we can assume that

lim
j→∞

λ−1
j,1

vol(Xj)
= l0 (5.49)

for some constant l0 with C0 ≤ l0 ≤ C1. Hence, we end up with

lim
j→∞

γXj

vol(Xj)
= l0 > 0.
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Chapter 6

Discussion and Further
Projects

6.1 Plancherel Convergence of Non-compact Con-
gruence Subgroups

In Chapter 3 we showed that any sequence of cocompact torsion-free congruence
subgroups (Γj)j∈N in G = PSL2(R) with vol(Γj\G)→∞ is Plancherel conver-
gent. Here the author only excluded torsion elements for simplicity. Raimbault
and Fraczyk showed in [44] that there is no need to exclude congruence sub-
groups with torsion. The author expects that the methods from Chapter 3
should also be sufficient to deal with torsion elements. We now want to con-
sider congruence subgroups of PSL2(R), which are not cocompact. For Γ a
cofinite lattice in PSL2(R) we have a decomposition of the form (see [57])

L2(Γ\G) = L2
disc(Γ\G)⊕ L2

ac(Γ\G)

where L2
disc(Γ\G) is the maximal subspace of L2(Γ\G) on which the right regular

representation R decomposes discretely. Again, we let

L2
disc(Γ\G) =

⊕
π∈Ĝ

NΓ(π)Hπ,

and consider the spectral measure

µΓ =
∑
π∈Ĝ

NΓ(π)δπ.

This allows one to extend the definition of Plancherel convergence to cofinite
lattices. Now, any non-cocompact congruence subgroup Γ of SL2(R) is con-
tained in (a conjugate of) SL2(Z). In particular, any non-cocompact principal
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congruence subgroup is of the form

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(
1 0
0 1

)
mod N

}
for some N ∈ N and congruence subgroups are in bijective correspondence with
subgroups of the groups SL2(Z/NZ), N ∈ N. The only new ingredient in
the trace formula for these groups is the appearance of poles of the determi-
nant ϕΓ(s) = detCΓ(s) of the scattering matrix CΓ. For principal congruence
subgroups Sarnak [82] was able to link the poles of ϕΓ(N) to zeroes of certain
L-functions and then estimate the number of these zeroes by standard methods
from number theory. One possible starting point for the non-principal con-
gruence subgroups is the work of Reznikov [79], where the determinant of the
scattering matrix is expressed as a ratio of automorphic L-functions.

6.2 Plancherel Convergence and Zeta Functions
In the preceding chapters we analyzed, in what way Plancherel convergence of
a sequence (Γj)j∈N of lattices in PSL2(R) is reflected by their respective zeta
functions. There still remain a few open questions (cf. [31, §4]):

• Convergence inside the critical strip: Let (Γj)j∈N be a sequence of
cocompact torsion-free lattices in G = PSL2(R). In Section 4.4, we did
show that vol(Γj\G)−1Λj(s) converges for s sitting inside a certain subset
U1 of the critical strip. At the same time the examples constructed in
Section 5.3 suggest that there should be no uniform behaviour for s ∈P.
These problems are caused by the poles the logarithmic derivative of the
zeta functions and we expect they can be avoided by staying sufficiently
far away from the poles. Recalling the notation from Theorem 4.1.2 we
therefore make the following

Conjecture 6.2.1. Let (Γj)j∈N be a sequence of torsion-free cocompact
lattices in G = PSL2(R). The following two statements are equivalent:

1. The sequence (Γj)j∈N is Plancherel convergent.
2. For each s ∈ C∖ P one has

lim
j→∞

Λj(s)

vol(Γj\G)
= F (s)

• General rank one groups: In our discussion we exclusively considered
lattices sitting in G = PSL2(R). Now, let G be a semisimple Lie group
of rank one with Iwasawa decomposition G = ANK. Let M be the
centralizer of A in K. For σ ∈ M̂ and Γ ⊂ G a cocompact torsion-free
lattice one can define a (twisted) Selberg zeta function ζΓ(s, σ) (cf. [15]).
It is natural to try to extend Theorem 4.1.2 to these zeta functions. By
generalizing the arguments of [31] one can prove1

1Here we have normalized the zeta functions in such a way that the axis of absolute
convergence lies at Re(s) = 1.
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Theorem 6.2.2. Let (Γj)j∈N be a sequence of torsion-free cocompact
lattices in a semisimple Lie group G = ANK of rank one and M =
ZK(A). Let Λj(s, σ) be the logarithmic derivative of the Selberg zeta func-
tion ζΓj

(s, σ). Then the following holds:

1. If the sequence (Γj)j∈N is uniformly discrete and Plancherel, then

lim
j→∞

Λj(s, σ)

vol(Γj\G)
= 0

holds for any σ ∈ M̂ and any s ∈ C with Re(s) > 1.
2. If

lim
j→∞

Λj(s, σ)

vol(Γj\G)
= 0

holds for any σ ∈ M̂ and any s ∈ C with Re(s) > 1, the sequence
(Γj)j∈N is Plancherel-convergent.

The proof is completely analogous to the proof of [31, Thm. 3.2]. Again,
one might try to remove the condition of uniform discreteness from Theo-
rem 6.2.2 using the methods from Section 4.3. While the author believes
that these methods should also work for semisimple Lie groups of rank
one, there are the following two problems, which need to be adressed:

1. In Section 4.3 we applied methods from spectral geometry to the
thick-thin decomposition of a hyperbolic surface to estimate the count-
ing function of the Laplace operator. For these methods to work it is
necessary that the boundary of the thin part is smooth. This can fail
for any rank one group G, which is not a cover of either PSL2(R) or
PSL2(C) (cf. [20]). A possible way of approaching this problem is to
apply quasi-isometries as in [20] to the thin part to get a sufficiently
well-behaved boundary, while changing the Laplace spectrum only
by a controlled amount.

2. In the case of a hyperbolic surface X, we controlled the thin part
X ′ = ∪mX

i=1T
′
γi by using the explicit formulae for the Riemannian

metric
ds2 = dr2 + l2i cosh

2 rdt2 (6.1)
on the tubes T ′

γi and the asymptotic formula

wi ∼ log

(
2

li

)
(6.2)

for the widths of the tubes Tγi . While the analogue of (6.1) for
semisimple Lie groups of rank one is either known (see e.g. [18, eq.
(4.17)] for the group G = SO(n, 1)) or can be quickly worked out,
the analogue of (6.2) seems to require some effort. We only note
here that for G = PSL2(C) one can find useful bounds in [39, p.50],
which allow one to prove the analogue of Theorem 4.3.1 for the group
PSL2(C).
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6.3 Benjamini-Schramm Convergence and Limit
Multiplicities

We have seen in Section 2.11 that any Plancherel convergent sequence (Γj)j∈N
has the limit multiplicity property. Now, if the sequence (Γj)j∈N is only Benjamini-
Schramm convergent, do we still get the limit multiplicity property for certain
subsets M ⊂ Ĝ, i.e. do we have

lim
j→∞

µj(A)

vol(Γj\G)
= µPl(A) (6.3)

for any Jordan-measurable subset A ⊂ M? For the sake of simplicity we will
restrict the following discussion to the group SL2(R). Recall the classification
of unitary representations of SL2(R) from Theorem 2.6.1:

• Discrete series representations: The multiplicities for (limits of) dis-
crete series representations are explicitly known (cf. e.g. [99, p.174]),

NΓ(δ
±
n ) = vol(Γ\G) µPl({δ±n }), n ≥ 3, (6.4)

and

NΓ(δ
±
2 ) = vol(Γ\G) µPl({δ±2 }) + 1, NΓ({δ±1 }) = 0. (6.5)

From (6.4) and (6.5) it is clear that we have the limit multiplicity property
for Ĝdisc as long as vol(Γj\G)→∞.

• Principal series representations: The author expects that the limit
multiplicity property for principal series representations is what distin-
guishes Plancherel convergent sequences from those sequences, which are
only BS-convergent. Unfortunately, the author is not aware of a BS-
convergent sequence in PSL2(R), which is not Plancherel-convergent. How-
ever, in Appendix D we construct a sequence of smooth closed hyperbolic
surfaces, which might be a candidate.

• Complementary series representations: In contrast to principal se-
ries representations, the number of complementary series representations
in the decomposition L2(Γ\G) can be bounded in terms of the topology
of the surface Γ\H alone (cf. [17, Thm. 8.1.1]), i.e. we have an absolute
constant cB such that

µΓ(Ĝcomp) ≤ cB vol(Γ\G). (6.6)

Now, there are sequences of smooth closed hyperbolic surfaces for which
the number of complementary series representations grows linear in the
volume (cf. [19, §8.4]), but these are not Benjamini-Schramm convergent
(see Example 2.11.8). The intuition behind these examples is that for each
small eigenvalue of a surface X there should exist a subdomain of X with
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small isoperimetric quotient (cf. [17, §8.1]). Benjamini-Schramm conver-
gence may be sufficient to show that the number of these subdomains can
only grow sublinear in the volume. As a starting point one may consider
[86], where the relationship between small eigenvalues and the geometry
of the surface is discussed in more detail.
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Appendix

A Limit Points of Salem Numbers
Let T be the set of Salem numbers. In this section we briefly discuss the set of
limit points T (1) of T and review what is known about it. Our main reference
is [12].
Let us introduce the following class of algebraic integers:

Definition A.1. A Pisot-Vijayaraghavan number is a real algebraic integer
θ > 1 such that all conjugates of θ lie in the unit disk {z | |z| < 1}.

We denote the set of Pisot-Vijayaraghavan numbers by S. An example of
a Pisot-Vijayaraghavan number is the plastic number θ0 = 1.32471..., which is
the unique real root of the polynomial p0(x) = x3 − x − 1. For a polynomial
p(x) = a0+ ...+anx

n we let p∗(x) = an+ ....+a0x
n be its reciprocal polynomial.

One can show that S ⊂ T (1) by the following construction (see [81, §7]): Start
with a Pisot-Vijayaraghavan number θ and let Pθ be the minimal polynomial.
Then for large enough n ∈ N, the polynomial

Rn(x) = xnPθ(x)± P ∗
θ (x) (A.1)

splits into a product of cyclotomic polynomials and a Salem polynomial2. This
defines a sequence (τn)n∈N of Salem numbers, which converges to θ for n→∞.
In Section 3.4.1 we used the sequence of Salem numbers defined by taking the
minimal polynomial Pθ(x) = x3 − x − 1 of the plastic number3. For example,
we produced τ10 by factorizing

R10(x) = x10(x3 − x− 1) + (x3 + x2 − 1). (A.2)

into
R10(x) = (x− 1)(x2 + x+ 1)(x10 − x8 − x5 − x2 + 1), (A.3)

where the last factor on the right-hand side of (A.3) gives a Salem polynomial.
For the interested reader we note that Boyd speculates in [12] that one might
have T (1) = S. But, to the best knowledge of the author, this has not yet been
shown.

2We call a polynomial a Salem polynomial, if it is the minimal polynomial of a Salem
number.

3Note that for small n ∈ N the polynomial from (A.1) does not produce Salem numbers.
Still, to avoid any confusion we do not change the indexing of the sequence.
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B Length Multiplicity
Throughout this section F is a totally real field, A is a quaternion algebra over
F unramified at exactly one infinite place of F and O is a maximal order in
A. Furthermore, we let o be some order in a relative quadratic extension L/F ,
such that L embeds into A. For p ∈ Ω we let Op = O ⊗ oF,p and op = o⊗ oF,p
the localizations of O and o at p. The central goal of this section is to prove

Theorem B.1. The embedding numbers m(o,O;O1) can be expressed as

m(o,O;O1) =
s(o,O)h(o)21+|Ωi(L)|

hF [NL/F (o×) : (o
×
F )

2]
, (B.1)

where Ωi(L) is the subset of finite places in Ram(A), which stay inert in the
extension L.

Further definitions and facts can be found in [98] (see in particular Sections
§17, §30 and §31). We first remark that we can reduce the computation of
m(o,O;O1) to the computation of m(o,O;O×):

Lemma B.2. If Γ is a group with O1 ⊂ Γ ⊂ O×, then

m(o,O; Γ) = m(o,O;O×)[nrd(O×) : nrd(Γ) nrd(o×)].

Proof. [98, Lemma 30.3.14]

The embedding numbers m(o,O;O×) will be determined using local-global
methods. We collect the following definitions from [98]:
An ideal I ⊂ A is an oF -module such that FI = A. An ideal I comes with two
orders

OL(I) = {α ∈ A : αI ⊂ I}, OR(I) = {α ∈ A : Iα ⊂ I}.

An ideal I is said to be invertible, if there exists an ideal J ⊂ A such that

IJ = OL(I) = OR(J), JI = OL(J) = OR(I).

I is called two-sided, if OL(I) = OR(I). The set of all two-sided ideals I sitting
in O is denoted by Idl(O). If I is of the form I = αO for some α ∈ A×, then I
is called a principal two-sided ideal and the set of principal two-sided ideals in
O is denoted by PIdl(O). We say that two ideals I, J ⊂ A are in the same right
class and write I ∼R J , if there exists α ∈ A× such that αI = J . The right
class of an ideal I is written as [I]R. The right class set of O is given by

ClsRO = {[I]R : I ⊂ A invertible and OR(I) = O}.

One may define the left class set ClsLO analogously. Since the standard involu-
tion on A induces a bijection between the right and left class set, we will simply
write ClsO instead of ClsRO. This set is always finite [98, Thm. 17.7.1] and
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its cardinality h(O) is called the class number of O. Next, consider two orders
O′ and O′′ in A. We say that O′ and O′′ are of the same type, if there exists
α ∈ A× such that O′ = α−1Oα. According to the Skolem-Noether theorem two
orders O′ and O′′ are of the same type if and only if they are isomorphic as
rings. We say that O′ is connected to O′′, if there exists an invertible ideal I
with OL(I) = O′ and OR(I) = O′′. Since invertible ideals are locally principal
[98, Thm. 16.6.1], two orders will be connected if and only if they are locally
of the same type (i.e. locally isomorphic as rings). The genus of O is the set
GenO of orders in A locally isomorphic to O. The type set TypO of O is the
set of oF -isomorphism classes of orders in the genus of O. Now, consider the
localizations op and Op at a finite place p of F . Let us denote

s1(o, p) =

{
1, if op is integrally closed
0, else.

and
s1(o) =

∏
p∈Ram(A)

s1(o, p).

We define the local embedding number m(op,Op;O×
p ) as the number of optimal

embeddings of op into Op modulo the action of O×
p . These local embedding

numbers are explicitly known for maximal orders O:

Proposition B.3. One has

m(op,Op;O×
p ) =

{
s1(o, p)

(
1−

(
L
p

))
, if p ∈ Ram(A),

1, else.

Proof. [98, Prop. 30.5.3]

The above proposition shows in particular that the product

m(ô, Ô; Ô×) :=
∏

p∈Ωf

m(op,Op;O×
p ) = s1(o)2

|Ωi(L)| (B.2)

is finite. The relevant result linking global embedding numbers to their local
counterpart is given by

Theorem B.4. We have∑
[I]∈ClsO

m(o,OL(I);OL(I)×) = h(o)m(ô, Ô; Ô×). (B.3)

Proof. [98, Thm. 30.4.7]

The above theorem allows the evaluation of m(o,O;O×) by the next result:

Theorem B.5. Assume that m(ô, Ô; Ô×) ̸= 0. Then the following holds:
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1. If o does not embed optimally into O, we have Σ(o,O′) ̸= ∅ for precisely
half of the types [O′] ∈ TypO.

2. One has
m(o,O′;O′×) = m(o,O;O×)

for O′ ∈ GenO, whenever both sides are non-zero.

Proof. [98, Thm. 31.1.7]4

We note that the vanishing of m(ô, Ô; Ô×) already implies by (B.3) that
m(o,O;O×) = 0. Hence, from now on we will only consider the casem(ô, Ô; Ô×) ̸= 0,
which is equivalent to s1(o) = 1.

Corollary B.6. Suppose that m(o,O′;O′×) ̸= 0 for all O′ ∈ GenO. Then

m(o,O;O×) =
h(o)

h(O)
m(ô, Ô; Ô×).

Proof. If I is an ideal inA with [I]R ∈ ClsO, we have by definitionOL(I) ∈ GenO.
One may then apply the second statement of Theorem B.5 to Theorem B.4 and
use (B.2).

If o does embed optimally into O , but m(o,O′;O′×) vanishes for some other
order O′ ∈ GenO, we still have that o does embed into precisely half of the types
[O′] ∈ TypO. If we want to apply (B.3) in this case, we need to understand the
fibers of the surjective map

ϕ : ClsO → TypO, [I] 7→ OL(I).

Proposition B.7. The map I 7→ [I] induces a bijection

PIdl(O)\ Idl(O)→ {[I] ∈ ClsO | OL(I) ∼= O}

Proof. [98, Prop. 18.5.10]

Hence the number of elements in a single fiber of the map ϕ is equal to the
cardinality |PIdl(O)\ Idl(O)|. This number luckily does not depend on O:

Proposition B.8. Let O and O′ be locally isomorphic orders in A. Then

|PIdl(O)\ Idl(O)| = |PIdl(O′)\ Idl(O′)|

holds.

Proof. [98, Prop. 28.9.7]

Let us define a number s2(o,O) by

4For the careful reader we note that the assumption m(ô, Ô; Ô×) ̸= 0 is not contained in
the statement of Theorem 31.1.7 itself, but has been made in Paragraph 31.1.4.
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• s2(o,O) = 0, if o does not embed optimally into O,

• s2(o,O) = 1, if m(o,O′;O′×) ̸= 0 for all O′ ∈ GenO,

• s2(o,O) = 2, else.

and let s(o,O) = s1(o)s2(o,O).

Corollary B.9. One has

m(o,O;O×) = s(o,O) h(o)
h(O)

2|Ωi(L)|.

Proof. The case s(o,O) = 0 is trivial and the case s(o,O) = 1 has already been
dealed with in Corollary B.6. Let us now assume that o embeds optimally into
O, but there exists [O′′] ∈ GenO such that o does not embed optimally into
O′′. We first note that∑

[I]∈ClsO

m(o,OL(I);OL(I)×) =
∑

O′∈TypO
|ϕ−1(O′)|m(o,O′;O′×). (B.4)

If we let (TypO)∗ be the subset of TypO consisting of those [O′] such that o
embeds into O′, we can apply the second statement of Theorem B.5 to (B.4) to
deduce∑

O′∈TypO
|ϕ−1(O′)|m(o,O′;O′×) = m(o,O;O×)

∑
O′∈(TypO)∗

|ϕ−1(O′)|. (B.5)

Combining Proposition B.7 and Proposition B.8 yields |ϕ−1(O′)| = |ϕ−1(O)|
for O′ ∈ TypO and therefore we can apply Theorem B.5 to (B.5) to derive

m(o,O;O×)
∑

O′∈(TypO)∗

|ϕ−1(O′)| = m(o,O;O×)|ϕ−1(O)| |TypO|
2

.

Since h(O) = |ϕ−1(O)||TypO|, we get∑
[I]∈ClsO

m(o,OL(I);OL(I)×) =
1

2
m(o,O;O×)h(O),

which concludes the proof in view of Theorem B.4.

Proof of Theorem B.1. In view of Corollary B.9 and Lemma B.2 we have

m(o,O;O1) = s(o,O)h(o)2|Ωi(L)| [nrd(O
×) : nrd(o×)]

h(O)
(B.6)

By an application of the third group isomorphism theorem we get

[nrd(O×) : (o×F )
2] = [nrd(O×) : nrd(o×)][nrd(o×) : (o×F )

2]. (B.7)
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Next, combining [98, Cor. 31.1.11], [98, Lemma 39.4.7] and [98, Lemma 28.5.17]
shows

[nrd(O×) : (o×F )
2] = 2

h(O)
hF

. (B.8)

Plugging equations (B.7) and (B.8) into (B.6) finally gives

m(o,O;O1) =
s(o,O)h(o)21+|Ωi(L)|

hF [NL/F (o×) : (o
×
F )

2]
,

where we used that the reduced norm on A agrees with the relative norm NL/F ,
when restricted to L.

C The Phragmen-Lindelöf Principle
The Phragmen-Lindelöf principle is a substitute for the maximum modulus the-
orem for analytic functions f : U → C on an unbounded domain U . There exist
different versions of it. We will use it in the form stated in [28]. Any further
details and proofs can be found in [28].
The extended complex plane C∞ is the one-point compactification of C, i.e. it
is the topological space C∞ = C ∪ {∞}, whose topology consists of open sets
U ⊂ C together with all sets V = (C∖K)∪{∞}, where K is a compact subset
of C. For a subset U ⊂ C we let ∂∞U be the boundary of U in C∞ and call
it the extended boundary of U . We have that ∂∞U = ∂U if U is bounded and
∂∞U = ∂U ∪ {∞} if U is unbounded.

Definition C.1. Let U be an open subset of C and U be its closure in the
standard topology of C. If f : U → R and x ∈ U or x = ∞, then the limit
superior of f(s) as s approaches x, denoted by lim sup

s→x
f(s) is defined by

lim sup
s→x

f(s) = lim
r→0+

sup{f(s) : s ∈ U ∩B(x, r)},

where B(x, r) is the ball of radius r centered around x with respect to the
standard metric of C.

Theorem C.2. Let U ⊂ C be a simply connected region and let f be an analytic
function on U . Suppose there is an analytic function φ : U → C, which never
vanishes and is bounded on U . If M is a constant and ∂∞U = X ∪ Y such that

1. for every x in X, lim sup
s→x

|f(s)| ≤M ;

2. for every y in Y and η > 0, lim sup
s→y

|f(s)||φ(s)|η ≤M ;

then |f(s)| ≤M for all s ∈ U .

Proof. [28, Thm. 4.1]
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D A Degenerating Plancherel sequence
Before starting the construction of a Plancherel-convergent sequence, which is
not uniformly discrete, we need to extent our discussion of Y -pieces from Section
2.3 to possibly non-compact surfaces. The material can be found for example
in [17, §4.4].
One can paste together two degenerate hexagons, which are hexagons with either
one, two or three points at infinity to get a degenerate Y -piece (or degenerate
pair of pants). We will refer to the points at infinity as punctures. We will extend
the notation Yl1,l2,l3 to degenerate Y -pieces by writing li = 0 for any boundary
component, which is a puncture. A degenerate Y -piece contains around each
puncture a neighborhood C, which is isometric to (−∞, log 2]×S1 equipped with
the Riemannian metric

ds2 = dr2 + e2rdt2.

Such a neighborhood is called a cusp and depicted in Figure 1.

Figure 1: A cusp around a puncture.

A Y -piece has signature (0, p; q) if it has p boundary geodesics and q cusps.
A cofinite hyperbolic surface of genus g is said to have signature (g, p; q), if it
has p boundary geodesics and q cusps.

Theorem D.1. Let X be a (possibly) non-compact smooth hyperbolic surface
of signature (g, 0; q). Let γ1, ..., γm be pairwise disjoint simple closed geodesics
on X. Then the following hold

1. m ≤ 3g − 3 + q,

2. There exist simple closed geodesics γm+1, ..., γ3g−3+q, which together with
γ1, ..., γm decompose X into Y -pieces.

3. The tubes Tγi , i = 1, ..., 3g− 3+ q and the cusps C1, ..., Cq are all pairwise
disjoint.

Proof. [17, Thm. 4.4.6]

Now, if we take a smooth hyperbolic surface X and pinch a simple closed
geodesic γ on X, i.e. we let lγ → 0, then we intuitively expect that the tube Tγ
around γ converges in a suitable sense to (two copies of) a cusp C. To give this
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a precise meaning we need some additional terminology (cf. [21]). Let Yl1,l2,l3
be a Y -piece and let r0 ∈ (0,∞). The horocycles

hr0 = {p ∈ C | dist(p, ∂C) = r0}

for a cusp C in Yl1,l2,l3 and the curves

γr0 = {p ∈ X | dist(p, γ) = r0}

for γ a boundary geodesic of Yl1,l2,l3 and 0 < r0 < wγ are called equidistant
curves. Now, select in each half-tube or cusp an equidistant curve βi of length
λi. Then the closure of the connected component of Yl1,l2,l3 ∖ (β1 ∪ β2 ∪ β3)
not containing any of the boundary geodesics of Yl1,l2,l3 or punctures is called
a restricted Y -piece and denoted Y λ1,λ2,λ3

l1,l2,l3
. Let us also write Y cl1,l2 instead of

Y l1,l2,cl1,l2,0
. A homeomorphism ϕ : Y → Y ′ of possibly restricted Y -pieces is called

boundary-coherent, if for corresponding boundary curves αi of Y and α′
i of Y ′

in standard parametrization one has

ϕ(αi(t)) = α′
i(t), ∀t ∈ [0, 1].

For each boundary length li ≥ 0 we let

Pi = {p ∈ Yl1,l2,l3 | dist(p, γi) < log( 2
li
)} (D.1)

if 0 < li < 2 and Pi = ∅ for li ≥ 2. In the degenerate case, we let Pi be the set
of points that lie outside of the horocycle of length 1. Then

Ŷl1,l2,l3 = Yl1,l2,l3 ∖ (P1 ∪ P2 ∪ P3)

is called a reduced Y -piece. Finally, let us recall that a piecewise smooth5

mapping Ψ : M → N of Riemannian manifolds M and N is called a quasi-
isometry, if there exists d > 0 such that for any tangent vector v of M we
have

1

d
||v||M ≤ ||DΨ(v)||N ≤ d||v||M (D.2)

The infimum over all the d such that (D.2) holds is called the length distortion
F and denoted dΨ.

Theorem D.2. Let 0 ≤ l1, l2 and 0 < ε < 1
2 . Set ε∗ = 2

π ε. Then there exists a
boundary-coherent homeomorphism

ϕ : Yl1,l2,ε → Y ε
∗

l1,l2

such that

1. ϕ(Ŷl1,l2,ε) = Ŷl1,l2,0

5By a piecewise smooth mapping we mean a homeomorphism, which is smooth on the
complement of a finite number of curves.
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2. The restriction of ϕ to Ŷl1,l2,ε is boundary-coherent and has length distor-
tion dϕ ≤ 1 + 5

4ε
2.

Proof. [21, Thm. 5.1]

Remark D.3. Theorem D.2 can be extended in an obvious manner to Y -pieces
with more than one degenerating boundary geodesic.

Now, we can finally construct a Plancherel-convergent sequence of smooth
hyperbolic surfaces (Xj)j∈N, which is not uniformly discrete. For this we adapt
an example from [19]. Let us recall a few facts about the principal congruence
subgroups

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(
1 0
0 1

)
mod N

}
.

We denote by X(N) = Γ(N)\H the congruence surface of level N . Let us write
gN for the genus of X(N) and bN for the number of boundary components of
X(N).

Theorem D.4. The principal congruence subgroup Γ(N) is torsion-free for
N ≥ 3. All boundary components of X(N) are punctures and we have

gN = 1 +
dN (N − 6)

24N
, bN =

dN
2N

, (D.3)

where dN is given by d2 = 12 and dN = N3
∏
p|N (1− 1/p2) for N ≥ 3.

Proof. [90]

Note that the number of cusps of X(N) always is even for N ≥ 3. The
systole ls,N of X(N) is given by (cf. [85, Lemma 2])

2 cosh(ls,N/2) = (N2 − 2). (D.4)

Now, decompose X(N) into pairs of pants. The boundary components of the
pants are either geodesics or punctures. We keep the boundary geodesics and
replace each puncture by a geodesic of length t. Let us reassemble these pieces
using the old identifications. Since the number of cusps of X(N) is even, we can
identify the remaining geodesics in pairs. This yields a smooth closed hyperbolic
surface Xt(N). By counting the number of Y -pieces involved one can show
g(Xt(N)) ≥ gN . We also note that the surface Xt(N) contains bN/2 disjoint
simple closed geodesics γi, i = 1, ..., bN/2 of length t. Now, let (Nj)j∈N be a
sequence of natural numbers Nj ≥ 3 with Nj → ∞ as j → ∞ and (tj)j∈N be
a sequence of positive real numbers converging towards zero. Let us write bj =
bNj/2 and gj = gNj . Let (Xj)j∈N be a sequence of smooth closed hyperbolic
surfaces defined by Xj = Xtj (Nj).

Lemma D.5. The sequence (Xj)j∈N is Plancherel convergent if and only if t−1
j

grows subexponentially in Nj.
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Proof. Let us fix some c > 0. We will first describe all closed geodesics in Xj

of length smaller than or equal to c for j sufficiently large. Let γ be a simple
closed geodesic in some Xj , which is not freely homotopic to some power of one
of the geodesics γ1, ..., γbj . If γ intersects any of the geodesics γi, i = 1, ..., bj
we get from [17, Cor. 4.1.2] that

sinh(lγ/2) ≥
1

sinh(tj/2)
.

Hence, γ can be dismissed for j large enough. If γ does not intersect any of the
γi, i = 1, ..., bj , we have by [17, Thm. 4.1.1] that γ lies outside of the tubes Tγi
with i = 1, ..., bj . There exists a boundary-coherent quasi-isometry

ϕ : Xj ∖
bj⋃
i=1

Pi → X(Nj)∖
bj⋃
i=1

P ′
i

given by the identity on any Y -piece, where no boundary geodesic has been
replaced in the above process and the map from Theorem D.2 in the remaining
cases. Its length distortion is bounded by dϕ ≤ 1+ 5

4 t
2
j . Therefore, ϕ(γ) defines

an element [ϕ(γ)] in Γ(Nj) and

l(ϕ(γ)) ≤ (1 + 5
4 t

2
j ) l(γ). (D.5)

We claim that [ϕ(γ)] ∈ Γ(Nj) is covered by a hyperbolic transformation, i.e.
there exist a closed geodesic in the free homotopy class of ϕ(γ). Assume other-
wise that [ϕ(γ)] is covered by a parabolic transformation. Then by [2, p.72] the
curve ϕ(γ) can be homotoped into the power of a simple loop around a puncture
of X(Nj). Now, applying ϕ−1 gives a homotopy of γ into the tube around some
geodesic γi0 for i0 ∈ {1, ..., bj}. Hence, γ is homotopic to some power of γi0 ,
which is a contradiction to our assumption on γ. Consequently, there exists a
hyperbolic transformation ηγ ∈ Γ(Nj), which covers [ϕ(γ)] and Theorem 2.2.2
implies

2 arcosh((N2
j − 2)/2) ≤ l(ηγ) ≤ l(ϕ(γ)) ≤ (1 + 5

4 t
2
j )l(γ). (D.6)

Since tj is bounded from above, inequality (D.6) shows that for Nj large enough
there are no simple closed geodesics of length ≤ c apart from γ1, ..., γbj . Next, let
γ be a non-simple closed geodesic different from a power of one of the γ1, ..., γbj .
According to [17, Thm. 4.2.4] any non-simple primitive geodesic of smallest
length is a figure-eight geodesic6 δ embedded into a Y -piece. Any Y -piece con-
tains at least one boundary geodesic not belonging to γ1, ..., γbj , since otherwise
X(Nj) would not be connected. Then the length formula for δ (see [17, eq.
(4.2.3)]) yields

l(γ) ≥ l(δ) ≥ 2(1 + 5
4 t

2
j )

−1 arcosh((N2
j − 2)/2).

This proves that for j large enough any geodesic in Xj of length ≤ c is a power
of some of the geodesics γ1, ..., γbj .

6A figure-eight geodesic is a closed geodesic with exactly one self-intersection.
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Finally, we want to apply the criterion for Plancherel-convergence from Propo-
sition 2.11.6. We compute∑

lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
= bj

∑
k∈N:ktj≤c

tj
sinh(ktj/2)

. (D.7)

Since limx→0 x/ sinh(x) = 1 there exists for sufficiently small ε > 0 positive
constants C0 and C1 such that

C0 ≤
x

sinh(x)
≤ C1

for x ∈ (0, ε]. Applying this to (D.7) gives

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ 2bjC1

 ∑
k∈N:ktj≤ε

1

k

+
bjtj

sinh(ε/2)
. (D.8)

Using the asymptotic expansion of the harmonic series
n∑
k=1

1

k
= log n+ γE +O

(
1

n

)
,

where γE is the Euler-Mascheroni constant, gives∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ C2bj | log tj | (D.9)

for C2 some sufficiently large constant. Plugging in the values for bj and gj from
(D.3) yields

1

vol(Xj)

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≤ 3C2| log tj |

π(Nj − 6)
. (D.10)

In particular, the right-hand side of (D.10) goes to zero, if t−1
j grows subexponen-

tially in Nj , in which case Proposition 2.11.6 implies the Plancherel convergence
of (Xj)j∈N. In an analogous manner, one can derive the lower bound

1

vol(Xj)

∑
lγ≤c

m(lγ)
lγ0

sinh(lγ/2)
≥ C3

| log tj |
π(Nj − 6)

. (D.11)

for C3 some positive constant and j sufficiently large. Hence, we can employ
Proposition 2.11.6 to show that (Xj)j∈N is not Plancherel-convergent, if t−1

j

grows at least exponentially in Nj .

E Notations and Conventions
In this section we collect, for the sake of completeness, a few conventions and
notations, which are used throughout this thesis.
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• Isomorphisms: If we speak of an isomorphism between two objects A
and B, we always mean an isomorphism in the respective category. For
example, if A,B are groups, an isomorphism f : A → B is a group iso-
morphism, or if A,B are smooth manifolds any isomorphism f : A → B
is a diffeomorphism.

• Generators of a subgroup: If G is a group and g1, ..., gn ∈ G are
elements of G, we denote the subgroup H generated by g1, ..., gn by

H = ⟨g1, ..., gn⟩.

• Vinogradov notation: When writing down any bounds, we usually write
out the constants, whenever possible. While this introduces some amount
of bookkeeping, the author thinks that it makes it easier to follow the
computations. Hence, the author has decided against using Vinogradov
notation.

• Subsets with unit removed: If S is a subset of group G and 1 is the
unit in G, we write S∗ = S ∖ {1}.

• Cardinality: If S is a finite set, we write |S| for the cardinality of S.

• Big O-Notation: In a few places, we use the so-called Big O-Notation
to write down asymptotics.

• Properties of manifolds: We always assume that any manifold appear-
ing in this thesis is connected and orientable without explicitly mentioning
it.

• Finite fields: Let p be a rational prime and n ∈ N an integer. For q = pn

a power of p we write Fq for the finite field of cardinality q.

• Order of an element: Let x ∈ G be an element of a group G. If n ∈ N
is the smallest natural number such that xn = 1, we let ord(x) = n be the
order of x.

• Interior points: If X is a topological space and A ⊂ X a subset of X,
we write A◦ for the set of interior points of A.

• Curves as point sets: For a curve c : [0, 1] → X in a topological space
X we also write c for the point set

{c(t) | t ∈ [0, 1]}.
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