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I 

Kurzfassung  

Baumwollfasern sind aufgrund ihrer Weichheit, Haltbarkeit und Saugfähigkeit für die Textilin-

dustrie unverzichtbar. Allerdings wirken sich Verunreinigungen negativ auf die Baumwollquali-

tät aus und es ist notwendig die Stärke der Kontamination zu bestimmen. Eine häufig auftretende 

Verunreinigung ist Honigtau, welcher zu klebriger Baumwolle führt, und erhebliche Probleme 

für die Textilindustrie verursacht. Verschiedene Methoden im sichtbaren (Vis) und nahen infra-

roten (NIR) Spektralbereich werden für Qualitätskontrollen und Sortierverfahren eingesetzt, wäh-

rend der ultraviolette (UV) Bereich bisher kaum genutzt wird. 

In den letzten Jahren haben hyperspektrale Bildgebungssysteme aufgrund ihrer Multimodalität, 

ihre räumliche Auflösung und ihrer Fähigkeit zur quantitativen Analyse im Vergleich zu her-

kömmlichen Verfahren zunehmend an Aufmerksamkeit gewonnen. Diese Vorteile haben sie für 

verschiedene Anwendungen, z. B. in der Textilindustrie, sehr attraktiv gemacht. 

Das Hauptaugenmerk der vorliegenden Arbeit liegt auf der Erkennung von Honigtaukontamina-

tionen und der Entwicklung eines hyperspektralen Bildgebungssystems im UV-Bereich. Der Auf-

bau basiert auf einem Spektrographen, der mit einer CCD-Kamera verbunden ist. Die Proben 

werden auf ein Förderband gelegt, welches die Probe unter der hyperspektralen Kamera bewegt. 

Dieses Verfahren wird als Pushbroom Imaging bezeichnet. Je nach Anwendung wurden Xenon- 

oder Deuteriumlampen zur Beleuchtung verwendet, wobei Deuteriumlampen eine höhere Be-

leuchtungsstärke im UV-C-Bereich im Vergleich zur Xenon-Bogenlampe bieten. Zur Validierung 

dieser neuartigen Bildgebungseinrichtung wurde eine Reihe von bekannten Substanzen wie ak-

tive pharmazeutische Wirkstoffe (APIs) und Schmerzmittel verwendet. Diese Proben waren Ibu-

profen, Acetylsalicylsäure und Paracetamol. Die Ergebnisse wurden mit lokalaufgenommenen 

Einzelspektren verglichen und mittels multivariater Datenanalyse ausgewertet. Es wurde gezeigt, 

dass die hyperspektrale Bildgebung im UV-Bereich zuverlässige Ergebnisse erzielt und eine ana-

lytische Methode wurde entwickelt, um kommerzielle Schmerzmitteltabletten mit dem neuen 

Prototyp zu identifizieren. Anschließend wurde eine separate Probenreihe, einschließlich direct 

bonded copper (DBC) Substrate, für eine sekundäre Bewertung getestet. Der entwickelte Prototyp 

ist in der Lage wenige Nanometer dicke Oxidschichten, zu erkennen. Dabei können verschiedene 

Oxidationszustände unterschieden werden, sogar nachdem die Proben vorgesehene Reinigungs-

verfahren durchlaufen haben.  Im nächsten Schritt wurden Baumwollproben aus verschiedenen 

Ländern verwendet und mittels Vis/NIR hyperspektraler Bildgebung untersucht. Die gewonnenen 
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Daten wurden mit lokal aufgenommen Einzelspektren verglichen und mittels multivariater Da-

tenanalyse analysiert. Die Ergebnisse zeigen, dass es möglich ist, anhand einiger ausgewählter 

Wellenlängenbereiche zwischen verschiedenen Baumwollsorten zu unterscheiden. In einem letz-

ten Schritt wurde die Quantifizierung von Honigtaukontaminationen auf Baumwolle durchge-

führt. Hierfür wurde ein Verfahren zur Kalibrierung des Prototyps für hyperspektrales Imaging 

im UV-Bereich entwickelt und mit realen Proben getestet. Mechanisch gereinigte Baumwollpro-

ben wurden in eine Lösung getaucht, die Zucker und Eiweiß in bekannten Konzentrationen ent-

hielt, um mit Honigtau verunreinigte Baumwolle zu imitieren. Diese Proben wurden nach 44 

Stunden und nach einem Monat untersucht. Anhand dieser Proben wurde der Prototyp erweitert 

und optimiert. Die gewonnenen Daten wurden chemometrisch analysiert, um ortsaufgelöst die 

Honigtaumengen in Baumwollproben mit unterschiedlichen Mengen der Substanz erfolgreich 

vorherzusagen. Zusammenfassend lässt sich sagen, dass die Menge von Honigtau auf Baumwolle 

lateral aufgelöst quantifiziert wird. Dafür wurde ein Prototyp für hyperspektrale Bildgebung im 

UV-Bereich entwickelt, der für industrielle Anwendungen geeignet ist. 

Die Ergebnisse zeigten, dass die hyperspektrale Bildgebung mehrere Vorteile gegenüber etablier-

ten Bildgebungsverfahren oder der klassischen ortsaufgelösten Spektroskopie bietet, z. B. die la-

terale Auflösung, die Fähigkeit, Proben zerstörungsfrei zu analysieren, Stoffe in sehr geringen 

Konzentrationen zu erkennen und Stoffe selbst dann zu identifizieren, wenn sie mit anderen Stof-

fen vermischt oder durch diese überlagert sind. Außerdem ist sie sehr empfindlich und kann 

kleinste Veränderungen in der chemischen Zusammensetzung von Materialien in Abhängigkeit 

der Zeit erkennen.
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Abstract  

Cotton fiber is essential for the textile industry due to its softness, durability, and absorbency. 

Therefore, the assessment of the cotton quality is needed, which is determined by the degree of 

contamination. The predominant contaminants in raw cotton come from insects that excrete sug-

ars called honeydew during feeding. Cotton contaminated by sugar causes significant problems 

for textile equipment. Honeydew is the most common source of sticky cotton. However, various 

methods in visible (Vis) and near-infrared (NIR) spectral ranges are regularly used for quality 

control and sorting procedures, while the ultraviolet (UV) range has not been widely used. In 

recent years, hyperspectral imaging systems have gained increased attention over traditional tech-

niques due to their multi-modality, spatial resolution, and ability for quantitative analysis. These 

advantages have made them highly attractive for various applications, such as in the textile in-

dustry. 

The main goal of this work is to develop a method to detect honeydew contamination in the UV 

range. For this purpose, a UV hyperspectral imaging system based on a spectrograph connected 

to a CCD camera was constructed. The samples were placed on a conveyor belt, which moved 

them underneath the hyperspectral imaging camera. This technique is called pushbroom imaging. 

Depending on the application, either Xenon or Deuterium lamps were used for illumination since 

Deuterium lamps provide a higher illumination strength in the UV-C region compared to the 

xenon-arc lamp. In order to validate this novel imaging setup, a set of well-known substances, 

such as active pharmaceutical ingredients (APIs) and painkillers, was used. These sample are 

ibuprofen, acetylsalicylic acid, and paracetamol. The results were compared with single-point 

spectroscopy and analyzed using chemometric data analysis. It was shown that the hyperspectral 

imaging achieved reliable results, and an analytical method was developed to identify commercial 

painkiller tablets with the new prototype. Subsequently, a separate sample set, including direct 

bonded copper (DBC) sheets, was tested for a secondary evaluation. The developed prototype is 

able to detect very thin oxide layers, as thin as a few nanometers. It can also distinguish between 

various oxidation states via a cleaning procedure for DBC samples. Consequently, cotton samples 

from different countries were investigated using Vis/NIR hyperspectral imaging. The data ob-

tained were compared to that obtained from single-point spectroscopy and analyzed using multi-

variate data analysis. The results indicate that it is possible to distinguish between different cotton 
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types based on specific wavelength ranges. In the last step, the quantification of honeydew con-

tamination on cotton was determined. A calibration procedure was developed using mechanically 

cleaned cotton samples. These samples were immersed in different concentrations of sugar and 

protein to mimic cotton contaminated with honeydew. Consequently, they were analyzed after 44 

hours and one month. Further improvements were made to the UV hyperspectral imaging setup 

in the later measurement. The data obtained were analyzed using chemometrics to predict the 

local quantities of honeydew on cotton samples successfully. In conclusion, the present work aims 

to quantify the spatial amount of honeydew contaminated on cotton by developing a hyperspectral 

imaging prototype in the UV region that is advantageous for industrial applications. 

The results showed that hyperspectral imaging has several advantages over established analytical 

techniques, such as lateral resolution, the ability to analyze samples non-destructively, detect ma-

terials at very low concentrations, and identify materials even when mixed or obscured by other 

materials. It is also highly sensitive and can detect subtle changes in the chemical composition of 

materials over time. 
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1 Introduction  

1.1 Spectroscopy  

Spectroscopy is a method of studying the interaction between light and objects. It helps us under-

stand the properties of different materials based on the absorption or emission over a specific 

wavelength or energy range [1,2]. Different spectroscopic methods can be used to solve a wide 

range of analytical problems. These methods differ based on the specific substances or species 

that need to be analyzed, such as atomic or molecular spectroscopy [3]. It utilizes the ability of 

molecules and atoms to absorb, emit, and scatter a type of energy called electromagnetic (EM) 

radiation. EM radiation is a form of energy that covers a wide range of wavelengths and frequen-

cies, ranging from cosmic radiation at 10-14 m to infrasonic radiation at 1010 m. Spectroscopy can 

be applied to different frequency ranges, such as Ultraviolet-Visible/Near-infrared (UV-Vis/NIR) 

and nuclear magnetic resonance (NMR) spectroscopy. UV-Vis/NIR spectroscopy is one of the 

most commonly used spectroscopic techniques, ranging from 100 nm to 2500 nm [4,5]. The ab-

sorption or emission of various forms of EM radiation is associated with different types of tran-

sitions. UV-Vis and NIR are associated with electronic transition and molecular vibration [6].  

The absorption process is defined as the transfer of EM energy to atoms or molecules. Electrons 

in the atoms are excited from a lower to a higher energy state, which exists on discrete levels. 

Absorption occurs when the energy of an exciting photon matches the energy difference between 

the ground and excited state. These energy differences are unique, providing a means of charac-

terizing a compound or material [7,8]. The following formula gives the energy E, which is related 

to the absorption bands: 

E = Eelectronic + Evibrational + Erotational (1.1) 

Where the molecules' electronic energy is given by Eelectronic, the vibrational and rotational energy 

is described as Evibrational and Erotational, respectively (see Figure 1.1). 
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Figure 1.1: Energy level diagram illustrates electronic, vibrational, and rotational energy. 

Absorption occurs, for example, when light passes through a solution. Light absorption is defined 

by Beer-Lambert law and is commonly used in spectroscopy [9]. Beer-lambert’s law can be used 

for pure samples or samples that do not significantly scatter light. It defines the amount of the 

energy absorbed A or transmitted from the solution as proportional to the molar absorptivity co-

efficient ε and the concentration of the solute 𝒸 the optical path length in cm 𝓁. The following 

formula gives the relationship [10]: 

A = ε𝓁𝒸 = − log10 (
I 

I0
) (1.2) 

Although it can also be written in terms of intensities, where I is the light intensity passing through 

the sample cell, and the initial light intensity is defined by I0. 

Often, samples have varying sizes and shapes and can be either transparent or in-transparent in 

specific wavelength regions due to absorption characteristics and refractive index in the case of 

transparent samples or scattering in the case of in-transparent samples. Therefore, many spectral 

systems acquire the reflected light from the samples. Reflection of light can be classified into two 

types: classical reflection, such as mirrors, and diffuse reflection from rough surfaces. Diffuse 
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reflection is described by Lambert's law and is observed in materials such as milk and Spectra-

lon®. Figure 1.2 illustrates both classical and diffuse reflected light [11]. 

 

Figure 1.2: (a) Classical and (b) diffuse reflected light. 

1.2 Hyperspectral imaging 

Optical spectroscopy is a widely used analytical technique in various fields, such as the internal 

quality analysis of biological samples, due to its rapid, non-destructive, and environmentally 

friendly nature [12,13]. It often requires minimal sample preparation and handling. These optical 

methods can be applied as on-line or in-line techniques [14-16]. Over the years, optical spectros-

copy has become an essential traditional method in laboratory work and is considered a reference 

method across a wide range of wavelength regions, from the far ultraviolet to the infrared, includ-

ing spectral imaging techniques [17,18]. Various instrumental techniques have been developed 

based on these fundamental principles of optical spectroscopy, such as hyperspectral imaging 

[19]. 

Hyperspectral imaging is a technique that involves capturing and analyzing images of an object 

across a wide wavelength range, typically in the Vis and NIR and, recently, in UV regions 

[17,19,20]. It allows for identifying materials and compounds within an image by analyzing those 

materials' unique "spectral fingerprints". The combination of spectroscopic techniques with im-

aging is, therefore, a fast and cheap option with the ability to cover the whole production, which 

has not been used so far. This method can operate as on-line or in-line technique [15,21]. 

Hyperspectral imaging has the potential to meet the requirements for spatial resolution and large-

area detection. It enables the rapid spatially resolved spectral analysis of surfaces. This technique 

is well described in the literature for applications in medicine, food, mineralogy, agriculture, and 

environmental monitoring [22-27].  

(a) (b) 
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The imaging system can be designed in different modes of imaging. The most common are mul-

tispectral and hyperspectral imaging. The main difference between these imaging modes is in the 

number of color channels, and the resolution see Figure 1.3 [28,29]. Multispectral imaging has 4 

to 20 color channels and collects non-continued images from specific bands. In contrast, hyper-

spectral imaging continuously captures tens to hundreds of spectral bands [30]. 

  
Figure 1.3: Schematic shows the difference between multispectral and hyperspectral. 

Hyperspectral imaging is based on one of four different technologies to acquire complete spectral 

information [30]. Figure 1.4a shows a point-by-point technique known as a whiskbroom or spot-

light sensor. It works like a broom sweeping across an area by moving a sensor back and forth to 

collect data. The sensor collects the data from one pixel in the image at a time, which can obtain 

a high spectral resolution. Therefore, discrimination between molecules can be acquired. Origi-

nally, this technique was used in satellite technology for scanning the earth by the Earth Resources 

Technology Satellites, and the Airborne Imaging Spectrometer later adopted it. Figure 1.4b shows 

a new strategy called snapshot. It captures a 3D area (x, y and λ) and spectral information into one 

single measurement by using an image mapper and prism array. Unlike the other techniques, it 

uses one exposure to record spatial and spectral information. Therefore, there is no need to scan 

at all. This technique is suitable for capturing instantaneous images of a scene or object and is 

often used in applications such as digital photography. Figure 1.4c shows an image-by-image or 

area-scanning system, also called staring imaging. The staring technique captures the 2D area (x, 

y) while changing a filter in front of the camera. The light passes through the optics, then it is 

filtered, which produces a narrowband of the spectrum [18]. It is used in many applications, in-

cluding surveillance and astronomy, for capturing detailed and steady images of specific targets 

or regions of interest. Figure 1.4d shows the line-by-line technique called pushbroom. Pushbroom, 

named along-track scanner based on an on-line scanning system, acquires complete spectral in-

formation for each pixel in the line. These data result in a three-dimensional (3D) data matrix with 

Multispectral imaging

Hyperspectral imaging

400 500 600 700

Wavelength / nm
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dimensions x, y, and λ, often referred to as a hypercube. The data of all these technique provides 

high spectral resolution and is highly stable, making it useful for industrial quality control [31]. 

 

 

Figure 1.4:  Visualization of the different imaging technologies: (a) Whiskbroom imaging (single point scanning) (b) 

Snapshot imaging (c) Staring imaging (2D scanning) (d) Pushbroom imaging (line scanning). 

Such inspection systems require a minimum of sample preparation and can scan several samples 

swiftly with high spectral resolution [23]. Hyperspectral imaging systems based on a pushbroom 

scanner and a conveyor belt are commonly used in industrial applications [27,32-34]. The data is 

collected with the camera placed perpendicular to the conveyor belt. As the conveyor belt moves, 

the pushbroom scanner scans each line of the scene, and these lines are captured and combined 

to form a complete image. Figure 1.5 illustrates the scheme and general setup of a pushbroom 

scanner with a conveyor belt. 

(a) Whiskbroom (b) Snapshot (c) Staring 
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Figure 1.5: Scheme of Vis/NIR hyperspectral imaging (pushbroom). 

Such systems have been primarily developed in the Vis/NIR region [23,35,36], but there is further 

information on quality control in the UV region. Therefore, in this dissertation, we will address 

the development of a new hyperspectral imaging prototype in the UV region and some applica-

tions combined with chemometrics. 

A hyperspectral imager was developed in the UV region to quantify and classify different cotton 

types with different amounts of honeydew contamination. Figure 1.6 shows a scheme for UV 

hyperspectral imaging. Figure 1.6a illustrates the principle of continuous line-by-line spectral data 

collection. The data results in a lateral resolved (x, y) 2D image, as shown in Figure 1.6b, c, 

whereas each location contains a further spectroscopic dimension (λ), as shown in Figure 1.6d. 

Thus, a 3D data matrix (hypercube) was recorded [19-21,37-39]. 

Pushbroom imager

Halogen lamp

Halogen lamp
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Figure 1.6: (a) Schematic shows the concept of hyperspectral imaging based on the pushbroom (the tunnel in the scheme 

was cut to show the inside). (b) Pushbroom Imager scanning principle. (c) Hyperspectral image produced 

immediately during sample scanning. (d) UV spectrum for one single pixel extracted from the image in 

(c). 

Selecting an appropriate light source for UV irradiation is a significant challenge in various fields. 

Several sources are available in the UV region, but only a limited number are suitable for our 

purpose. Among others, there are synchrotron radiation [40], light-emitting diodes (LED), laser-

induced plasma, deuterium, xenon-arc (XBO), and mercury-arc (HBO) lamps. 

Synchrotron radiation is a form of electromagnetic radiation emitted by a particle accelerator 

when the velocity of the electrons is approaching the speed of light. These electrons are forced to 

travel in curved paths by a magnetic field, which causes them to emit radiation when they are 

moved within the synchrotron. This intense radiation covers a wide range of wavelengths, includ-

ing X-rays, UV-Vis, and IR light. These properties make synchrotron radiation a valuable tool for 

scientists studying the nature and structure of molecules and materials. Having a synchrotron ra-

diance covering the entire UV range is challenging, but a spectrum within the 225 – 325 nm range 

was obtained [40]. However, synchrotrons perform off-line measurements due to their transport-

ability limitations, making them unsuitable for industrial quality. Moreover, it is considered one 
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of the most expensive radiation techniques, with approximately 70 synchrotrons worldwide. 

Therefore, researchers need a cheaper and more available light source [41-43].  

LEDs are diodes with several advantages over traditional incandescent and fluorescent lamps, 

including their small size and ease of integration into various designs. LEDs have high quantum 

efficiency, which refers to the ratio of the number of photons emitted by the LED to the number 

of electrons that pass through it. They have a long lifetime of over 100,000 hours of operation. 

However, one limitation of UV LED lamps is that they typically emit radiation within a narrow 

wavelength band, making it challenging to generate a continuous spectrum of radiation with UV 

LEDs [44,45]. 

Laser-induced plasma lamps, also known as plasma globes or spheres, are a light source contain-

ing a partially ionized gas in a glass sphere. It utilizes laser-driven technology, which is consid-

ered a leading choice for the UV-Vis/NIR region. These lamps have high spectral radiance inten-

sity across the aforementioned wavelength range and a longer lifetime than traditional lamps. Due 

to their energy consumption and heat generation, plasma lamps require water cooling to prevent 

overheating. Additionally, plasma lamps are relatively expensive compared to other lighting op-

tions [46]. 

Deuterium lamps are considered one of the most stable lamps in the UV region. This is due to the 

ceramic electrode structure within the lamp, which results in low fluctuation levels in peak inten-

sity. One of the key advantages of deuterium lamps is their ability to produce a continuous spec-

trum of UV light from approximately 115 – 400 nm. This makes these lamps suitable for experi-

ments that require UV radiation. However, deuterium lamps have a few limitations, such as 

restricted spectral range and low spectral radiance intensity in the UV region. These lamps are 

commonly used in various scientific and analytical applications, such as the pharmaceutical in-

dustry and for atomic absorption spectroscopy [47,48]. 

High-pressure mercury vapor lamps, also known as mercury-arc lamps (HBO), are a type of light 

source that can produce intense, bright illumination. These sources are stable and have a high flux 

density, making them widely used in fluorescence microscopy. However, they have a relatively 

low intensity in the UV region compared to xenon-arc (XBO) lamps. XBO lamps have a contin-

uous spectrum and produce high-intensity spectra within 240 nm to 400 nm. Despite the low 

stability, the broad spectrum range and the long-life feature are added advantages of XBO lamps. 

On the other hand, XBO lamps produce ozone and heat. In this dissertation, a xenon lamp was 

used because it is inexpensive, easy to replace, and the aperture of the illumination is adjustable 
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[49-52]. One of the critical factors to consider when evaluating these sources is the distinct emis-

sion spectra they produce, see Figure 1.7. It is important to ensure that the chosen light source 

emits the desired wavelengths to meet the application's specific requirements. This often involves 

comparing the emission spectra of the different sources and selecting the one that best matches 

the desired wavelength range. These lamps are available for use in our experiments, and the pro-

totype tested five different light sources: LED, plasma EQ-77, deuterium, XBO, and HBO. Figure 

1.7 shows the different light source spectra used pushbroom hyperspectral imaging setup. The 

pushbroom imager contains a back-illuminated CCD camera (Apogee Alta F47: Compact, inno-

spec GmbH, Nürnberg, Germany) and is connected to a spectrograph (RS 50-1938, inno-spec 

GmbH, Nürnberg, Germany) [19,23,53-55].  

 
Figure 1.7: Spectral radiance for a different light source in the UV region. (a) Synchrotron radiation of P66 beamline 

(b) LED radiance (Roithner LaserTechnik GmbH, Wien, Germany) (c) Plasma radiance (EQ-77, Energetiq 

Technology LDLSTM, Wilmington, MA, USA) (d) Deuterium radiance (SL 3, StellarNet Inc, 24 V, 65.04 

W, Tampa, Florida, USA) (e) Xenon-arc radiance (XBO, 14 V, 75 W, Osram, München, Germany) (f) 

Mercury-arc radiance (HBO, 14 V, 75 W, OSRAM, München, Germany). All light sources were tested by 

UV hyperspectral imaging except Synchrotron radiation of P66 taken from reference [40]. 

 

As a result, the synchrotron was excluded from this study because it did not serve our purpose; it 

was deemed unsuitable for on-line measurements due to lack of portability and expense. LED and 

mercury lamps were ruled out due to their narrow wavelength bands, see Figure 1.7b and f. Using 

plasma was limited due to cost considerations and the requirement for cooling. In contrast, Deu-

terium and XBO-arc lamps were selected, offering a continuous spectrum (Figures 1.7d and e) 

and low cost. 
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1.3 Chemometrics 

Chemometrics can be derived from “chemo” related to chemistry, and “metric” means measure-

ment. It is a sum of statistical methods that have introduced new algorithms capable of handling 

the massive amount of chemical data using multivariate data analysis (MVA) [56,57]. MVA can 

be a powerful tool for data reduction to find a small number of variables capable of explaining all 

the variations from the data. Typical MVA techniques are principal component analysis (PCA), 

Discriminant analysis (DA), and partial least squares regression (PLS-R) [58].  

1.3.1 Principal component analysis (PCA) 

This section is partially based on the work by Rebner K. [59]and has been further modified. 

Principal Component Analysis (PCA) is a statistical method used to identify similarities and dif-

ferences among data sets. It reduces the dimensionality of the variables to their most essential 

features without losing important information [60-62]. Data reduction and features are extracted 

from a data matrix with p objects (rows) and t variables (columns). The first summary index, so-

called latent variables, the principal components (PCs), are calculated from the original variables 

via a principal axis transformation. Mathematically, these factors are linear combinations of the 

original variables. For example, an object in a two-dimensional space described by variables x1 

and x2 can be transformed into a new vector space represented in PCs. The transformation is given 

as an orthogonal matrix formed from the eigenvectors of the covariance matrix. The coordinate 

system is rotated so that it points in the direction of maximum variance in the data, thus describing 

the information content of the data (see Figure 1.8). 

 

Figure 1.8:  Graphical representation of the principal components. The original data in the original data space (x1, x2) 

are transformed into new principal axes (PC1, PC2). 

x2

x1

PC2
PC1
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In data analysis, the first principal component explains the most variance. The second principal 

component explains the second highest variance in what remained after the effect of the first 

component was removed [63]. Each new principal component describes the maximum variance 

that was not captured by the previous components. The number of variables – 1 (maximum num-

ber of PCs) is mathematically determined until the data explain a certain percentage of variance. 

The PCs are orthogonal to each other and thus are independent, which means the data is de-cor-

related. This also means that the principal axis transformation can look different depending on 

the problem, and a separate transformation matrix must be calculated for each data set.  

The principal components are determined by decomposing the data matrix X into a weight matrix 

T, a transpose factor matrix PT, and an additional residual matrix E. 

X = TP T + E (1.3) 

TPT describes the new data structure, and the residual matrix E consists of noise and unexplained 

data. Figure 1.9 shows how a matrix with PCA is decomposed. Where the data matrix X is de-

composed to PC1 (scores t1 and loading p1) and residual E1, PC2 will be calculated from residual 

matrix E1, which contains information not explained by the first PC. 

X = t1p1 + t2p2 + … + tapa + E (1.4) 

 

Figure 1.9: Schematic description of a decomposition of a matrix X with PCA using two PCs. 

In context of data analysis, after performing PCA to reduce the dimensionality of the data, another 

statistical method called discriminant analysis (DA) can be used to validate the PCA model. DA 

is a supervised classification method that assigns an unknown pattern to a group of similar objects. 

Also, it is a separation technique that optimally divides a training set of objects into two or more 

groups using a border, which can take the form of linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), or mahalanobis discriminant analysis (MDA) distance-based sepa-

rators see Figure 1.10. DA is a powerful classification method that simultaneously minimizes the 
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variance within each group and maximizes the distance between the groups. This gives better 

separation of the groups compared to PCA, which only looks at the variance of the data. The 

optimized border may allow for minor group overlaps, and the choice of border shape depends 

on the nature of the data. For example, quadratic borders help separate groups with differently-

oriented main variances, while Mahalanobis distance is suitable for measuring the distance 

between objects and class centers using ellipses as distance calculators [64-66]. 

 
Figure 1.10: Schematic shows different discriminant analysis (DA). DA function creates a border of variable shape that 

optimally separates a training data set into multiple groups. PCA can be used to reduce the dimension of 

the training set before creating the discriminant function. The three most common types of DA separators 

are linear, quadratic, and mahalanobis distance-based separators. Linear separators are represented by 

straight orange lines (a), quadratic separators by orange curves (b), and mahalanobis distance-based sepa-

rators by ellipses (c). This figure is taken and modified from reference [66]. 

To create a discriminant function, the object groups must exhibit significant differences in their 

variables, and the variables with the maximum variance are identified to achieve the highest pos-

sible separation between the groups. The performance of the discriminant functions can be eval-

uated using a classification matrix or confusion matrix. The confusion matrix, also known as the 

error matrix, provides a table used to evaluate the performance of a model by comparing the pre-

dicted and actual values. It consists of four values: true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) see Table 1.1. This table is used to evaluate the perfor-

mance of a binary classification model by comparing the predicted and actual values. It consists 

of four values: true positives (TP), false positives (FP), true negatives (TN), and false negatives 

(FN). Various performance measurements can be derived from the confusion matrix, such as pre-

cision, specificity, and accuracy, which provide insights into the model's effectiveness and poten-

tial limitations (see Chapter 3.4, Chapter 4.4) [67]. 
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Table 1.1: Confusion Matrix. 

Predicted value 

A
ct

u
a

l 
v

a
lu

e  Positive (1) Negative (0) 

Positive (1) TP FP 

Negative (0) FN TN 

 

1.3.2 Partial least squares regression (PLS-R) 

This section is partially based on the work by Rebner K. [59]and has been further modified. 

PLS is considered one of the most important data analysis tools for regression and classification. 

This analysis tool decomposes the variance between independent X variables (predictor values) 

and dependent Y variables (response values) to calculate the variance and correlation between X 

and Y to estimate PLS-R components [68,69]. The straight-line equation gives the relationship for 

linear regression: 

y = b0 + b1x (1.5) 

Where b0 is the y-axis intercept and b1 is the slope of the straight line. This function is fitted to 

the data x and y to calculate the variance and maximize the correlation between the data repre-

senting the first PLS. When using MVA, whose structure may be complex or even error-prone, 

using a multivariate regression method is preferable to increase predictive accuracy. The PLS 

method is related to PCA and already uses the structure of the Y data to find PCs. This has the 

advantage that only a few PCs are often sufficient for the complete data description and can be 

interpreted easily. 

For each object, a target value yi is measured, which forms the vector y and, in the case of multiple 

objects, the target value matrix Y. The target values can be chemical or physical parameters. As 

in PCA, the data matrix is decomposed into a T and P matrix. As an intermediate step of the PLS, 

an additional matrix is needed that calculates weighted loadings W and provides a link to the Y 

variables. In this case, not the P loadings but the W loadings are orthogonal to the T scores. 

Therefore, PLS components are used instead of PCs, as in PCA. The target matrix Y is decom-

posed into a factor matrix Q and a score matrix U, as well as an additional residual matrix F. 

 X = TP T + E (1.6) 

Y = UQ T + F (1.7) 
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Two data sets X and Y are now contrasted with their respective score vectors T and U, respec-

tively. Figure 1.11 shows a schematic description for a PLS-R model. The direction of each PLS 

latent variable of the X matrix is now changed such that the covariance between it and the vectors 

of the Y matrix is maximized. The exact intermediate mathematical steps are described in detail 

in the literature [61]. 

  

Figure 1.11: Partial least square regression method. The Y variables influence the X variables. 

However, unlike PCA, the PLS components do not contain the largest differences in variance 

between spectra but the most relevant differences concerning the reference data. In the regression 

approach between the x- and y-variables, the coefficients are calculated as follows: 

B = W(P  T) -1Q T (1.8) 

and 

b0 = ȳ - �̅�TB (1.9) 

Where B is the regression matrix W represents the loadings matrix for the predictor (X) variables, 

Q represents the loadings matrix for the response (Y) variables, and P represents the score matrix 

for the predictor variables. b0 is the y-axis intercept, and ȳ is the mean of the response variable (Y). 

Finally, the target quantity yi can be given by 

yi = b0 + 𝐱𝐢
TB (1.10) 

by using the measured values xT for each object. The equation represents the predicted value of 

the response variable yi for a given set of predictor variables xi in a linear regression model. xi
T 

represents the transpose of the predictor variable vector xi. If the PLS regression is performed 

with one Y variable, it is called PLS1. In contrast, PLS2 calculates a model for several Y variables 
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simultaneously. The advantage is that all X and Y data are included in a common model; thus, all 

correlations are considered. Mathematically, instead of the vectors, the matrices Y, F, and Q are 

used and supplemented by the score matrix U of the Y values.  

In addition to calibration, regression includes steps of validation and prediction. PLS-R is utilized 

to unite so-called “factors” that describe the relationship between X and Y variables. The optimal 

number of factors used to describe the model is essential. Too few factors (under fitting) or too 

many factors (over fitting) lead to additional prediction errors. For an optimal model, this error is 

minimal, but a difference must be made between a calibration error due to under fitting and an 

estimation error due to overfitting. The calibration error and the residual variance will decrease 

with the first PLS components as the relevant information increases to a certain degree. The op-

timum is exceeded if random changes in the form of noise are modeled with the addition of further 

components. In this case, the estimation error increases, and the prediction error of unknown data 

becomes larger than the calculated calibration error once a suitable model can be applied to un-

known data [61,62,68]. 

In chemometrics, a distinction is made between external and internal validation. Internal valida-

tion is often used for smaller data sets because the same data set can be used for calibration and 

validation. Especially for method developments, cross-validation offers a very efficient method 

when a large number of samples is not yet available. For this purpose, some objects are omitted 

from the calibration data during the calculation, and a calibration model is created. Afterward, the 

calibration model is used to predict the omitted objects and to determine the residuals [62]. This 

process is repeated several times until all objects have been omitted once and predicted with the 

model. The quality of calibration or validation can be indicated with different values. The most 

important ones are briefly explained here. 

1.3.2.1 Coefficient of determination 

The correlation between the reference value y and the predicted value ŷ is often given for the 

regression coefficients, and the coefficient of determination R2 is calculated. This expresses how 

much of the variance of the dependent variable y can be explained by the independent variable x 

and is calculated by the following formula [70]: 

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−ŷ)2n

i=1

 (1.11) 
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1.3.2.2 Root mean square error (RMSE) 

Root mean squared error (RSME) is called the root mean square deviation (RSMD). It is consid-

ered a common function and evaluation matrix used in a regression model. RMSE is mainly used 

to calculate the difference between values predicted by a model and observed values. It is given 

with the suffix C for "Calibration" in the case of calibration RMSEC, the suffix CV for "Cross-

Validation" in case of internal validation RMSECV or the suffix P for "Prediction" in the case of 

external validation RMSEP. The mean error is calculated by [71,72]: 

RMSE = √∑ (yi−ŷi)2n

i=1

n
 (1.12) 

Where n is the number of samples. 

1.3.2.3 Standard deviation 

The standard deviation is a measure that shows how much data is scattered around the true value. 

For example, how different the answers of your respondents are. It is summarized into two forms: 

standard error of calibration (SEC) and standard error of prediction (SEP). The standard error 

(SE) is the residuals' standard deviation [73]. Mathematically, the SE systematic error between 

prediction and reference value (BIAS) must be determined in advance by the following formulas 

[62,74]. 

BIAS = ∑
(yi−ŷi)2

n

n

i=1
 (1.13) 

SE = √∑ (yi−ŷi−BIAS)2n

i=1

n−1
 (1.14) 

 

1.3.2.4 Prediction 

PLS regression is also used for predicting dependent Y values from independent X values. De-

compose the following equation gives X value used for building up and predicting Y values [62]: 

y = b0 + b1x (1.15) 

Where b0 is the y-axis intercept and b1 is the slope of the straight line. 
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1.4 Model systems 

Quality control is an essential feature of products in industrial environments. Several studies ver-

ified UV hyperspectral imaging to achieve the quality aspect. This dissertation used various ap-

plications, such as pharmaceuticals, metals, thin layers, and natural products. 

1.4.1 Pharmaceutical tablets 

Chemical drugs have been increasingly used globally for treating and preventing infections and 

pain [75]. Therefore, countless medicines, tablets, liquids, gels, and powders are made daily. Pain-

killers were used as a model system; painkillers may also consist of different liquids or powder 

mixtures [76]. In this case, qualitative and quantitative analyses are needed to identify active com-

pounds, determine the content of active compounds, and measure the significant impurities of the 

medicine [77]. Thus, these parameters are required rapidly and non-destructively during the man-

ufacturing process. 

In the pharmaceutical industry, separation techniques are used for qualitative and quantitative 

analysis. These analyses are mainly achieved by high-performance liquid chromatography 

(HPLC) [63]. Snakar et al. [78] described the application of HPLC in pharmaceutical analysis. 

This technique has many disadvantages, such as being expensive, time-consuming, needing sam-

ple preparation, and destructive. Using UV spectroscopy, Saeed et al. [79] estimated the quantity 

of active ingredients in different tablets of some commercial dosages, such as ibuprofen, aspirin, 

and paracetamol. 

In the last 20 years, the food and drug administration (FDA) in the United States started the pro-

cess of analytical technology (PAT) to control medicine production processes [19,20]. For this 

purpose, hyperspectral imaging is an excellent PAT tool for ensuring product quality. One of the 

aims of this dissertation is to develop a laboratory prototype for hyperspectral imaging in the UV 

region based on the pushbroom technique in combination with multivariate data analysis. 

Active pharmaceutical ingredients (API) 100% and commercial painkiller tablets were used for 

general testing of UV hyperspectral imaging [19]. The APIs were ibuprofen (IBU), acetylsalicylic 

acid (ASA) and paracetamol (PAR). Ibuprofen tablets from two companies (ratio pharm IBUratio, 

and beta pharm IBUbeTa), aspirin (Bayer GmbH ASPBAYER), paracetamol (ratio pharm PARratio), 

and thomapyrin were used (see Figure 1.12). The overview of the APIs and painkiller tablets is 

given in Table 3.1. 
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4 g of ASApure and IBUpure were pressed at 10 tons for 2 min by a hydraulic press into the depicted 

disc shape. Then, 4 g PARpure powder were dried in a vacuum oven for 1 h at 120 °C, and pressed 

at 10 tons for 20 min (see Table 3.1). A mixture of 2 g ASApure and 2 g PARpure was prepared by 

using a speed mixer and pressed at 10 tons for 2 min [19]. 

 
Figure 1.12: Drug samples. Reference API samples and painkiller tablets. This figure is taken from reference [19]. 

1.4.2 Direct bonded copper 

Direct Bonded Copper (DBC) refers to a process in which copper and ceramic material are di-

rectly bonded. DBC substrates have been proven to be an excellent solution for electrical insula-

tion and thermal management of high-power semiconductor modules [80]. Therefore, they are 

considered the most significant conductors compared to other materials, such as aluminum. The 

advantages of DBC substrates are high electrical and thermal conductivity due to thick copper 

metallization and thermal expansion close to the silicon copper surface due to the high adhesion 

strength of copper to ceramic [81]. However, the copper surface interacts with oxygen to produce 

copper (I) oxide (Cu2O) and copper (II) oxide (CuO). Therefore, the efficiency of the conductivity 

becomes poor [81,82]. Optical techniques such as Auger electron and X-ray photoelectron spec-

troscopy were applied to solve this problem [83,84]. Such systems are time-consuming, destruc-

tive, and expensive. 

In the past, progress in research led to the development of sensor technology [32,35,77,83,85,86]. 

Stiedl et al. [26,87] investigated the copper oxide layer thicknesses and copper state on a metallic 

DBC using UV-Vis spectroscopy and visible hyperspectral imaging. In this thesis, we verified 

the capability of the new UV hyperspectral imaging prototype to study the changes in the copper 

state and thickness of the copper oxide on DBC (see Figure 1.13).  
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Figure 1.13:  Direct bonded copper Curamik®Power substrates. (1), (2), (3), (4), (5) and (6) are different samples with 

different types of copper state and thickness of the copper oxide on DBC. This figure is taken and modi-

fied from reference [53]. 

1.4.3 Cotton fiber  

Cotton is the most important natural raw material used in producing fabrics. It has been used 

extensively for clothing people worldwide. Cotton lint (see Figure 1.14) is considered an essential 

product that provides a source of high-quality fiber for the textile industry [88].  

 
Figure 1.14: Cotton fibers. 

Over 34 million hectares of land are used to grow cotton, and around 100 million households 

worldwide are engaged in cotton production [89]. Cotton is an essential resource in the textile 

industry, accounting for approximately 30% of all fibers utilized [90]. Almost all parts of the 

cotton plant have a range of uses. Cottonseeds are an important oil source, which is a byproduct 

of the plant. Additionally, cottonseeds have a high protein concentration, making them useful in 

animal feed. The waste material left over from the ginning process, which separates the cotton 

fibers from the seeds, can be used as fertilizer. The stalk of the cotton plant is also a potential 

resource, as it contains cellulose, which can be used to make paper and cardboard [91,92]. 

Cotton is the most widely produced natural textile fiber and a significant global commodity, as it 

is the most imported and exported raw material [89]. Cotton processing, through spinning or knit-

ting, plays an important role in the economies of many countries. Cotton fabric production begins 

with the preparation of yarn, which is achieved by removing the seeds. This yarn is then woven 

1 2 3 4 5 6
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or knit into fabric. The fabric undergoes a series of additional processing stages, including dyeing, 

designing, and sewing, to produce a final product that is soft, clean, and ready for use [93]. Figure 

1.15 presents the steps of the cotton manufacturing process. 

 

Figure 1.15: Manufacture process for raw cotton; this photo is taken from reference [94]. 

In textile research, cotton plays a dominant role among textiles since cotton is the most important 

naturally occurring raw material for fabric production. It is important to guarantee the quality of 

the fibers in textile processing, as fiber properties highly impact the properties of finished yarns 

and fabrics and how easy it is to manufacture. For example, fiber strength determines yarn 

strength, and fiber maturity affects the dye uptake of fabrics. Raw cotton with poor fiber quality 

causes problems in the textile mill [91,92,95]. 

Cotton fibers are soft, relaxed, and breathable and have high absorbency. They are natural hollow 

fibers, capable of absorbing liquids such as water up to 24-27 times their weight. The elongation 

of the fibers begins shortly after anthesis, which is the flowering stage, and continues for three to 

four weeks, primarily increasing in length during this phase. Two weeks after the anthesis, depo-

sition of cellulose fibrils with varying orientations in the secondary fiber walls commences. The 

growth process of cotton fibers begins shortly after anthesis, the flowering stage. The fibers in-

crease in length during this stage and elongate for three to four weeks. Two weeks after the an-

thesis, the deposition of cellulose fibrils with varying orientations in the secondary fiber walls 

commences. This process reduces the inner space's size, known as the lumen, within the fiber (see 

Figure 1.16) [96-98]. 



1.4  Model systems 

21 

 
Figure 1.16: Schematic illustration of the structure of cotton fiber, showing its different layers. 

Fiber growth and development primarily depend on plant photosynthesis and carbohydrate pro-

duction, which are impacted by various factors. Temperature and water status are two important 

factors that can affect fiber growth, length, and quality. Studies have shown that temperature and 

plant water status impact fiber growth and length. Nighttime temperatures below 22.0 °C inhibit 

cellulose synthesis and deposition rate in the cotton fiber walls, leading to decreased productivity 

and inferior fiber quality. Low temperatures during fiber maturation can also result in sucrose 

accumulation, leading to "sticky cotton," a severe issue that negatively affects cotton quality and 

value [99]. 

Under normal conditions, cotton consists of approximately 95% cellulose, while the remaining 

5% consists of various substances, including sugar, wax, proteins, organic acids, and pectin [100]. 

One major quality issue of raw cotton is the impurity content after harvesting. The impurities 

cause a significant economic loss because low-quality cotton is rejected during quality control. 

The most relevant impurities in raw cotton arise from insects and are summarized under the um-

brella term “Honeydew” [101].  

1.4.4 Honeydew 

Cotton contaminated by sugar causes significant problems for textile equipment. These sugars are 

produced by the cotton plant (physiological sugars) or insects (entomological sugars). Entomo-

logical sugars, also known as honeydew, are the most common source of sticky cotton (see Figure 

1.17 a,b) [102,103]. 

Waxes
Primary walls

Secondary walls

Lumen
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Figure 1.17: (a) and (b) Cotton fiber contaminated by sugar cause of (c) aphid and (d) Whiteflies insects these photos 

are taken from [104,105]. 

Honeydew is excreted by aphids and whiteflies (Figure 1.17 c,d) and contains mainly trehalulose, 

trehalose, melezitose, sucrose, fructose, and glucose (see Figure 1.18). These sugars vary in stick-

iness, such as sucrose, melezitose, and trehalulose are significantly stickier when deposited on 

fiber than glucose or fructose. Furthermore, fibers contaminated with trehalulose are more sticky 

than fibers contaminated with an equivalent amount of melezitose [101,106,107]. 

 
 

Figure 1.18: Honeydew chemical structure contents (a) Trehalulose (b) Trehalose (c) Melezitose (d) Sucrose (e) Fruc-

tose (f) Glucose. 

Cotton contaminated with a high amount of honeydew becomes sticky. Transferring sticky cotton 

to a spinning machine causes severe problems by contaminating all mechanical components. This 

can cause damage to the machines, and the final yarn is of lower quality [101,106]. In Figure 1.19, 

the result of sticky cotton on a draw frame roll can be seen. Consequently, yarn from sticky raw 

cotton reaches a lower quality and achieves a low price on the market [108].  

(a) (b) 

(a) Trehalulose (b) Trehalose (c) Melezitose 

(d) Sucrose (e) Fructose (f) Glucose 

(c) 

(d) 
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Figure 1.19: sticky cotton residue on a draw frame roll; this photo is taken from reference [102]. 

 

The stickiness of raw cotton depends not only on the amount of honeydew on the fiber but also 

on the ambient conditions such as humidity and machine temperature. The stickiness can be sig-

nificantly reduced if the moisture content is increased [101]. One obvious idea is washing the raw 

cotton to reduce the sugar content and thereby reduce the stickiness. It was not a suitable solution 

because it consumes much water and requires an additional drying step. It makes the whole pro-

cess even more difficult [109-111]. The best and most economical solution seems to be blending 

cotton with different honeydew contents to obtain an optimized blend [112]. Since the sugar com-

position determines cotton's stickiness, identifying the sugars is mandatory to optimize the blend-

ing process. If the sugar composition is known in detail, the blending process can be adapted to 

the climate conditions (temperature, humidity) where the following production steps will occur 

[101]. To reach this goal, fast on-line analytics is required to monitor the cotton quality with high 

resolution in honeydew content and time. 

In recent years, the increase in quality and processing requirements has led to the introduction of 

modern techniques for processing and quality control [15,113-115]. Currently, the classification of 

cotton is done by the United States Department of Agriculture (USDA) system [116]. It classifies 

the quality by applying the High Volume Instrument (HVI). HVI is the standard instrument for 

measuring cotton quality in the USA and has been adopted by other countries as it provides a 

range of standards for measuring cotton quality, including micronaire, strength, length, color, 

foreign cotton, and material [117-120]. HVI cannot measure the quality of single fibers and short 

fibers. Therefore, another system, the Advanced Fiber Information System (AFIS), can be used. 

Although both HVI and AFIS measure a set of quality characteristics, they are not able to quantify 

and distinguish between cotton species, which is expensive and time-consuming [121]. To solve 

this problem, spectroscopic methods have been developed and applied to identify and classify 

different cotton fiber varieties in Vis/NIR region. 
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2 Objective 

The present work aims to classify different types of cotton and determine the honeydew contents 

on real cotton samples by developing hyperspectral imaging in the UV region. Traditional meth-

ods, such as fiber quality index (FQI), the spinning consistency index (SCI) and the premium-

discount index (PDI) used for this determination are not useful for large amounts of cotton bales. 

In contrast, optical spectroscopy, UV-Vis/NIR spectroscopy, and hyperspectral imaging, espe-

cially UV hyperspectral imaging, are able to distinguish between different cotton types and hon-

eydew contaminated on cotton. The data evaluation, where a correlation between the spectro-

scopic and sensory data has to be established, is a special challenge. However, this can be 

overcome by multivariate data analysis, for example, to evaluate the spectra in connection with 

the results of the amount of honeydew contaminated on cotton sample measurement. Subse-

quently, the obtained information is linked by PCA and PLS-R. This is necessary because the 

information is usually superimposed and thus cannot be derived directly from the respective spec-

tra. 

The analysis method described above is already widely used for scientific purposes. However, 

developing a method suitable for in-line analysis and monitoring industrial manufacturing pro-

cesses in the UV region has not been possible. The integration of the analysis method into the 

manufacturing processes offers an enormous optimization potential of the existing value chain 

since the time-consuming sample taking and preparation for an off-line measurement is no longer 

necessary due to the in-line measurement. Therefore, developing UV hyperspectral imaging is 

mandatory. The investigation of the effectiveness of such a prototype is tested by using standard 

samples such as active pharmaceutical ingredients (APIs) as well as direct bonded copper (DBC). 

To achieve this purpose, a calibration model is first developed using PLS-R. This model is then 

used to build a prediction model for estimating the APIs content and oxide layer thickness on 

DBC samples from the UV hyperspectral image. These experiments have demonstrated that UV 

hyperspectral imaging can effectively identify and categorize pharmaceutical and DBC samples. 

Based on this information, it is now possible to focus on the actual question. The question if 

different concentrations of honeydew contaminated on cotton can be determined by UV hyper-

spectral imaging, with the necessary accuracy and safety, on-line or in-line during manufacturing 

processes, should be answered. Therefore, PCA and PLS-R models are developed for honeydew 

content. Finally, hyperspectral imaging is compared to conventional UV-Vis spectroscopy in 

terms of prediction accuracy. 
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3.1 Abstract 

A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 

nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) 

in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). 

Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 

100% API and sample set two consists of commercially available painkiller tablets. Reference 

measurements were performed on the pure APIs in liquid solutions (transmission) and in solid 

phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the proto-

type is based on a pushbroom imager that contains a spectrograph and charge-coupled device 

(CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel 

made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination 

at the sample position. Principal component analysis (PCA) was used to differentiate the hy-

perspectral data of the drug samples. The first two PCs are sufficient to completely separate 

all samples. The rugged design of the prototype opens new possibilities for further develop-

ment of this technique towards real large-scale application. 

3.2 Introduction 

A large number of remote sensing applications have been developed over the last decade 

[122]. This also led to establish non-destructive imaging systems that are able to quickly iden-

tify quality problems within the scanned area [22,23]. Spectral imaging involves both spectral 

and spatial information of any particular sample or region within an area of interest, thus each 

pixel represents spectral and spatial information. Imaging systems can be realized in the 

modes of hyperspectral and multispectral imaging. The difference between these modes is the 

number and width of the recorded spectral bands. In multispectral imaging 3-10 bands are 

used [123]. In hyperspectral imaging hundreds or thousands of correspondingly more narrow 

bands are employed [18,29,86,124]. Therefore, hyperspectral imaging is also known as imag-

ing spectroscopy, a technique that combines conventional imaging with spectroscopy [86]. 

Hyperspectral imaging setups produce a 3D data matrix often referred to as hypercube. Two 

of the dimensions are reserved for the spatial information (x, y coordinate) while the third 

dimension represents the spectroscopic information (λ coordinate) [21,125,126]. 

Hyperspectral imaging is not restricted to the visible range, nowadays high performance sys-

tems are also available for the near infrared range (NIR) [35,86]. Hyperspectral imaging is a 
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rapid and non-destructive method which analyzes samples without changing their physical 

shape. This robust technique in combination with real-time chemometric analysis can be eas-

ily integrated into an industrial production environment. This enabled chemical sensing sys-

tems for very different applications in the fields of food quality monitoring, textile classifica-

tion, agriculture, detection target of military, astronomy, life science, medicine and 

pharmaceutical drugs [22,23,25,26,127,128]. Traditional methods such as UV-Vis spectros-

copy, high performance liquid chromatography (HPLC) or mass spectrometry (MS) are, in 

contrast, time consuming, expensive and require sample preparation and destruction [22,86]. 

Very recently, Tschannerl et al. reported an interesting application of hyperspectral imaging 

in UV range. They were able to precisely discriminate between phenolic flavor concentrations 

in melted barley by using hyperspectral imaging in UV and NIR regions [86]. 

In 2004, the food and drug administration (FDA) in the US started the Process Analytical 

Technology (PAT) initiative to control manufacturing processes [22]. Hyperspectral imaging 

is an attractive PAT tool for the quality assurance of final products. Hyperspectral imaging, 

as expected, will be increasingly used as a PAT tool in the industry; it has been already applied 

in the industrial manufacturing of pharmaceutical drugs and quality control of pharmaceutical 

products [17,129]. Most drugs appear colorless to the eye, meaning that they do not absorb 

light in the visible region but they may absorb in the UV region according to the chemical 

structure [130]. Such drugs as ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol 

(PAR) show certain absorbance in UV region [131]. Up to now, a variety of drug studies in 

the UV-Vis region have been performed; Saeed et al. investigated the active pharmaceutical 

ingredients paracetamol, aspirin, ibuprofen, codeine and caffeine in different formulations by 

UV-Vis spectroscopy [132]. Rote et al. developed a method to simultaneously quantify para-

cetamol and nabumetone by area under curve in bulk and tablet dosage form [133]. 

Hyperspectral imaging setups acquire thousands of spectra in short time resulting in a massive 

amount of data. Therefore, techniques for data evaluation like the principle component anal-

ysis (PCA) methods are required. PCA is one of the most common statistical methods. This 

technique is used for data evaluation/reduction but simultaneously minimizing information 

loss in spectroscopy [38,134]. In addition, it is capable of visualizing common features in the 

data set to detect possible groups and their heterogeneity within samples [135]. PCA combined 

with hyperspectral imaging data can highlight the relative distributions of different compo-

nents in mixtures and reveal the spectral features in the spectroscopic data [67,127]. 



3  Paper I: Characterization of Pharmaceutical Tablets Using UV Hyperspectral Imaging as a Rapid In-Line 

Analysis Tool 

28 

The aim of this study is to develop a hyperspectral imaging system in the UV wavelength 

range for the in-line characterization of pharmaceutical tablets. The results show that hyper-

spectral imaging in the UV range is a suitable technique for in-line measurements with the 

aim of a real-time classification at short time and low costs. 

3.3 Materials and Methods 

3.3.1 Samples 

Two groups of samples were analyzed. Figure 3.1 shows photographs of all tablets used. 

Further information is listed in Table 3.1. In the following, these samples are referred to as 

IBUpure, ASApure, PARpure, IBUratio, IBUbeTa, ASPBAYER, PARratio and THO. For hyperspectral 

imaging measurements, the coating of the commercially available painkiller tablets was re-

moved by sandpaper manually (grain size 320, Emil Lux GmbH & Co. KG, Wermelskirchen, 

Germany). For each removal step a new stripe was brushed over it twice. The painkiller tab-

lets were measured at different depths. A layer of approximately 500 μm ± 50 μm thickness 

was removed from the samples after each measurement. Three samples of each type were 

collected (painkiller samples) and created (pure API samples) for the study. 

 
Figure 3.1: Drug samples. Reference API samples and painkiller table. 
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Table 3.1: Types of drug samples 

Samples Descriptions 
Abbre-

viation 
Manufacturer 

CAS 

Number 

Ibuprofen 
Ibuprofen, 

>98%, API 
IBUpure 

Caesar & Loretz 

GmbH, Hilden, Ger-

many 

15687-

27-1 

Acetylsa-

licylic acid 

Acetylsalicylic acid, 99%, 

API 
ASApure 

Acros organics, New 

Jersey, US 
50-78-2 

Paraceta-

mol 
Paracetamol, 99%, API PARpure 

Hebei Jiheng (Group) 

Pharmaceutical Co., 

Ltd. 

103-90-2 

Ibuprofen Ibuprofen (400 mg) IBUratio 
Ratiopharm GmbH, 

Ulm, Germany 
- 

Ibuprofen Ibuprofen (400 mg) IBUbeTa 

Betapharm, Arzneimit-

tel GmbH, Augsburg, 

Germany 

- 

Aspirin 
Acetylsalicylic acid (500 

mg) 

AS-

PBAYER 

Bayer Vital GmbH, Le-

verkusen, Germany 
- 

Paraceta-

mol 
Paracetamol (500 mg) PARratio 

Ratiopharm GmbH, 

Ulm, Germany 
- 

Thomapy-

rin 

Thomapyrin (250 mg acetyl-

salicylic acid/ paracetamol, 

50 mg coffin) 

THO 
Sanofi-Aventis GmbH, 

Frankfurt, Germany 
- 

In total, 4 g of ASApure and IBUpure were pressed at 10 tons for 2 min by a hydraulic press 

(PerkinElmer, Inc., Waltham, MA, USA) into the depicted disc shape. Then, 4 g PARpure 

powder were dried in a vacuum oven (VACUTHERM, Thermo Scientific, Waltham, MA, 

USA) for 1 h at 120 °C, and pressed at 10 tons for 20 min (see Table 3.1). A mixture of 2 g 

ASApure and 2 g PARpure was prepared by using a SpeedMixerTM (DAC 150.1 CM41, 

Hauschild GmbH & Co KG, Hamm, Germany), and pressed at 10 tons for 2 min. 

3.3.2 API’s in Solution 

A solution of ASApure (100 µg mL−1) was prepared by dissolving 50 mg ASApure in 500 mL 

of 0.1 M HCl:methanol (1:1) in 500 mL volumetric flask with strong shaking. 

For PARpure and IBUpure solutions, 10 mg of each API were dissolved in 15 mL methanol by 

shaking. Then, 85 mL water was added to adjust the volume up to 100 mL (resulting to 100 

ppm). From that, 5 mL were taken, and volume was adjusted up to 50 mL with diluent [132]. 
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3.3.3 UV Spectroscopy 

Total (specular and diffuse) reflectance spectra of all samples (pure API and painkiller tablets) 

were recorded in the range of 200–380 nm using a commercial UV spectrometer (Lambda 

1050+, PerkinElmer, Inc., Waltham, MA, USA). Both sides of the pure API samples were 

measured. The UV-Vis/NIR spectrometer was equipped with a 150 mm Spectralon® integrat-

ing sphere to acquire data in reflection mode with an R6872-Photomultiplier (PMT). A deu-

terium lamp was used as light source in the spectrometer. The samples were placed at the 

reflectance port of the integrating sphere with a diffused scattering Spectralon® disk placed 

behind the samples. The port measuring area is approximately 4.9 cm². 

Absorbance spectra were measured using the aforementioned spectrometer in the range of 

200–320 nm connected to the transmittance accessory. The liquid samples were measured at 

2 nm spectral resolution. A 1 mm quartz SUPRASIL® cuvette (106-1-K-40, Hellma, Müll-

heim, Germany) was used for measuring the API’s in solution. 

Fluorescence excitation spectra were recorded by using a commercial setup (Fluorolog–3, 

HORIBA, Kyoto, Japan). The system includes a double grating monochromator in the exci-

tation (λEx = 270 nm) and emission (λEm = 280 nm–380 nm) paths in an “L” configuration. A 

10 mm quartz SUPRASIL® cuvette (111-10-K-40, Hellma, Müllheim, Germany) was used 

for measuring the samples. 

3.3.4 UV Hyperspectral Imaging 

Figure 3.2a shows a scheme of the hyperspectral imaging setup. The setup is based on a spec-

trograph (RS 50-1938, inno-spec GmbH, Nürnberg, Germany) connected to a CCD camera 

(Apogee Alta F47: Compact, inno-spec GmbH, Nürnberg, Germany) with 300 ms integration 

time. The samples were placed on a conveyor belt moving with speed 0.3 cm/s, which was 

positioned completely in a tunnel made of PTFE. The purpose of the tunnel design is to have 

an easily accessible system, which also ensures diffuse illumination of the samples and main-

tains a reasonable illumination strength and homogeneity. This minimizes an influence of the 

sample shape and roughness on the spectra. The illumination is provided by a Xenon lamp 

(XBO, 14 V, 75 W, OSRAM, München, Germany). Figure 3.2b–d illustrates the principle 

and workflow of the data acquisition. The continuous line by line collection of spectral infor-

mation enables a lateral (x, y) 2D image as shown in Figure 3.2c, whereas each pixel contains 
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a further spectroscopic dimension (λ) as shown in Figure 3.2d. Thus, a 3D data matrix (hy-

percube) is recorded. 

 
Figure 3.2:  (a) Setup of a hyperspectral imaging system based on the pushbroom concept (the tunnel in the scheme 

was cut to show the inside). (b) Pushbroom Imager scanning principle. (c) Hyperspectral image generated 

immediately from the scanning of a sample. (d) UV spectrum for one single pixel extracted from the image 

given in (c). 

3.3.5 Data Collection and Preprocessing 

Figure 3.3 shows the original images of the drug samples before and after background subtraction. 

The UV hyperspectral images are captured by moving the drug samples at constant speed. For the 

collection of UV hyperspectral imaging data set one sample of each type was chosen randomly. 

A distinction between the respective spectral characteristics was made first to differentiate signal 

and background. For this purpose, the regions assigned to the drug samples were manually se-

lected to eliminate the signals from background. The remaining hypercube was used as input for 

the subsequent PCA classification. 
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Figure 3.3:   Hyperspectral raw image of nine drug samples on the left. Images after subtraction of the background on 

the right. 

3.3.6 Data Handling and Software 

The UV spectra were recorded with the Lambda 1050 UV WinLab software from PerkinElmer. 

The UV hyperspectral imaging data were analyzed by the SI-Cap-GB version V3.3.x.0 software 

(inno-spec GmbH, Nürnberg, Germany). Hyperspectral data matrices were analyzed by Pred-

iktera Evince version 2.7.11. PLS_Toolbox (PLS Toolbox 8.5.1, Eigenvector Research, Inc., WA, 

USA) and MATLAB (MATLAB 9.2.0, Mathworks, MA, USA) were used for the data processing 

and analysis. An initial baseline correction was followed by a Savitzky-Golay 1st derivative (15 

points, 2nd polynomial order). PCA models were calculated with cross validation (venetian 

blinds, 10 splits, 1 sample per split) and mean centering. A PCA combined with a quadratic dis-

criminant analysis (QDA, 2 PCs) was calculated by using the software Unscrambler X 10.5 

(Camo Analytics AS, Oslo, Norway) including the same spectral preprocessing. 

Lighting conditions may vary between the samples and even within the samples across the scan 

line. A regular way to reduce this effect is to convert measured raw spectra to reflectance spectra 

by the following formula [35,86]: 

                          Reflectance = -log R/R0 = 
Isample − Idark

Ireference − Idark

 (3.1) 

where R and R0 represent the reflected intensity by the sample and a specific reference material 

with high reflectance capability. Isample is the intensity of the original image data, Idark is the inten-

sity of the dark current image data and Ireference is the intensity of the white reflectance image [23]. 

For a better comparison of the reflectance spectra to the extinction spectra in solution (absorb-

ance) the negative decadic logarithm is calculated as -log R/R0. 
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3.4 Results and Discussion 

3.4.1 UV Spectroscopy 

There are numerous references for the APIs in solution [101,131,132,136] in the UV range, but for 

solid API drug samples suitable references were not found. For this reason, first the liquid solu-

tions of the APIs were measured and then compared to the results found in the literature. In a 

second step, samples in the solid phase, i.e., the pure API reference samples and the commercial 

painkillers, were investigated. 

3.4.1.1 APIs in Liquid Phase, Transmission Spectroscopy 

The absorbance of IBUpure, ASApure, PARpure as well as a mixture of ASApure with PARpure in liquid 

solution were analyzed in the UV range. Figure 3.4 shows their absorption spectra in the UV 

region (200–320 nm). The smaller features of IBUpure and ASApure in the range of 240–300 nm 

are shown in the inset in Figure 3.4. All samples show a strongly increasing absorbance below 

310 nm. IBUpure presents one prominent maximum at 223 nm and three weaker maxima located 

at approximately 258 (sh), 265 and 273 nm. ASApure exhibits a broad maximum at approximately 

228 nm and a further, more pronounced but less intense maximum at around 277 nm. PARpure 

shows a distinct band with a maximum at 244 nm and a weak shoulder at 284 nm. The mixture 

of ASApure and PARpure presents a band maximum at 240 nm and a shoulder at 282 nm. These 

findings are listed in Table 3.2 [131,132,136]. The determined band positions are consistent with 

those reported by Saeed et al. (2016) and Lawson et al. (2017) [132,136]. 

 
Figure 3.4:   UV absorbance spectra of APIs ibuprofen (IBU), acetylsalicylic acid (ASA), paracetamol (PAR) and a 

mixture of acetylsalicylic acid and paracetamol (ASA+PAR) in liquid phase. 
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Table 3.2: UV band maxima positions of liquid and solid phase samples [131,132,137]. 

Drug Type API Liquid Phase API Solid Phase Painkiller Tablets Solid Phase 

IBU 

223 nm 

258 nm (sh) 

265 nm 

273 nm 

240 nm 

275 nm 

238 nm (IBUratio, IBUbeTa) 

275 nm (IBUratio, IBUbeTa) 

ASA/ASP 
228 nm 

277 nm 

230 nm 

277–310 nm 

328 nm (sh) 

228 nm (ASPBAYER) 

280 nm (ASPBAYER) 

294 nm (ASPBAYER) 

329 nm (ASPBAYER) 

PAR 
244 nm 

284 nm 

232 nm 

305 nm 

233 nm (PARratio) 

300 nm (PARratio) 

THO - - 
238 nm 

331 nm 

ASA+PAR (mixture) 
240 nm 

282 nm 

235 nm 

277–332 nm 
- 

 

3.4.1.2 API and Painkiller Tablets, Total Hemispherical Reflectance Spectroscopy 

Two sample sets of tablets were used to study the total hemispherical reflectance in the solid 

phase (see Figure 3.1 and Table 3.1). The first set consisted of pure APIs: IBUpure, ASApure and 

PARpure and a mixture of ARApure and PARpure. The second set consisted of commercial painkiller 

tablets. Three samples from each API were prepared and analyzed. Figure 3.5 shows the prepro-

cessed reflectance spectra of solid samples in the UV region (200–380 nm). Spectra were recorded 

from each side of the samples (Figure 3.5a). 

 
Figure 3.5:  UV total hemispherical reflectance spectra of drug samples in the solid phase in the wavelength range 200–

380 nm. (a) API drugs IBUpure, ASApure, PARpure and a mixture of ASApure with PARpure. Upper right: 

Fluorescence emission of IBU sample with excitation at 270 nm. (b) Painkiller tablets IBUratio, IBUbeTa, 

ASPratio, PARratio and THO. 

 

The most striking feature is the negative reflectance of IBUpure in the wavelength range of 288–

340 nm, which is due to fluorescence emission (inset in Figure 3a). All spectra show several 

contributions, which are listed in Table 4.2. 
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The painkiller tablets were measured at different depth levels, i.e., one layer of approximately 500 

µm was removed from the samples after each measurement; the resulting spectra are shown in 

Figure 3b. The similarity of the spectra at all depth levels inside the tablets indicates an almost 

regular distribution of ingredients. Although IBUratio and IBUbeta were manufactured from differ-

ent companies, they show similar spectral characteristics. The most prominent contributions are 

also listed in Table 3.2. 

The comparison of the spectra from the APIs and commercial painkiller tablets indicates that the 

overall spectral characterizations are comparable. Nevertheless, several deviations are observed. 

The spectral features are more pronounced in the API samples, also the negative absorbance ob-

served in the IBU sample is absent in the commercial painkillers. The reason for these differences 

is mainly that the commercial tablets do not have 100% API content. For example, the IBUratio 

tablets contains additionally pregelatinized corn starch, hypromellose, croscarmellose sodium, 

stearic acid, highly dispersed silicon dioxide, macrogol 8000, titanium dioxide. Some of these 

substances show some absorption in selected spectral range i.e., titanium dioxide shows a pro-

nounce absorbance [138]. Since the exact percentage of the composition is not known, a final 

statement on the influence of these substances on the spectra cannot be made. 

3.4.2 UV Hyperspectral Imaging 

3.4.2.1 API Tablets, Hyperspectral Imaging 

Figure 3.6 shows the results of UV hyperspectral imaging in the range from 225 to 400 nm. Figure 

4.6a shows the raw image before (left) and after subtraction of the background (right). Figure 3.6b 

shows a spectrum of an arbitrary but representative pixel for each API sample. The most dominant 

contribution for IBUpure is observed around 275 nm and for PARpure at around 305 nm. For 

ASApure, two strong contributions at 300 and 330 nm are observed. The mixture of 

(ASA+PAR)pure shows—as expected—a combination of the spectral properties of ASApure and 

PARpure. In the range 255–270 nm, all API preparations show a small peak in their reflectance at 

around 265 nm. Towards lower wavelengths, the spectra show no additional features. 

In the next step, a PCA model with cross validation (venetian blinds, 10 splits, 1 sample per split) 

was calculated for the spectra of all preparations. The first two PCs ex-plain 98.9% of the total 

variance. Figure 3.6c shows the scores plot of the PC1 and PC2. The scores plot shows that PC1 

and PC2 are sufficient to separate all samples clearly from one another. PC1 yields a clear sepa-

ration of IBUpure from the other APIs, whereas the remaining APIs are separated with PC2. The 

mixture (ASA+PAR)pure is found almost in the middle between ASApure and PARpure. 
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The loadings plot for PC1 and PC2 is given in Figure 3.6d. The loading of PC1 is dominated by 

an overall positive contribution in the range between 280 and 350 nm, PC2 shows one more nar-

row negative contribution at 311 nm and one positive at 330 nm. 

 
Figure 3.6:  (a) Raw hyperspectral image for all API drug samples before and after subtracting the background. (b) 

Spectrum recorded for a single pixel of each of pure API samples in the UV range 225–400 nm. (c,d) 

Scores and corresponding loadings plot. 

The comparison between the shape of spectra shown in Figure 3.5a or Figure 3.6b shows similar-

ities as well as some clear deviations. The shape of the spectra of all APIs is quite well reproduced 

in the range above 275 nm. Most striking in this range is an intensity deviation of the different 

spectral bands, i.e., for the ASApure the shoulder at 330 nm is much more pronounced in the hy-

perspectral imaging spectra. The same is valid also for the PARpure sample. In the range below 

275 nm clear deviations are observed. The shape of the spectra shown in Figure 3.6b is charac-

terized by a continuously decreasing intensity, whereas the spectra of the APIs in Figure 3.5a 

show clear variations in their shape in this range (see also below). 

Figure 3.5 presents UV spectra with a good signal-to-noise-ratio recorded with a research grade 
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Figures 3.6 and 4.7 show UV spectra with a less good signal-to-noise-ratio recorded with the UV 
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hyperspectral imager. These spectra result from one single pixel of the detector, representing a 

much smaller area of the tablet which considered of 13 × 13 µm. A further reason for the low 

signal-to-noise-ratio is weak irradiation intensity in the hyperspectral imaging setup by an XBO 

lamp. 

3.4.2.2 Commercial Painkiller Tablets, Hyperspectral Imaging 

Figure 3.7 shows results from the hyperspectral imaging of the second sample set, consisting of 

commercial painkiller tablets, in the range from 225 to 400 nm. Figure 3.7a shows the raw image 

before (left) and after (right) subtraction of the background. Figure 3.7b shows a spectrum of an 

arbitrary but representative pixel for each painkiller samples. For IBUratio and IBUbeTa, the most 

dominant contribution is observed around 270 nm, and a further contribution with much lower 

intensity is observed at around 315 and 333 nm. The spectra of IBUratio and IBUbeTa are quite 

similar; it seems that the contributions from the further added chemical ingredients are spectro-

scopically comparable. The spectrum for ASPBAYER is dominated by a broad intensity distribution 

at around 304 nm. Here, two contributions of different intensity are specifiable, a more intense 

with maximum at 304 nm and a weaker one at 333 nm. For PARratio, only one strong contribution 

with maximum at 310 nm is observed; whereas THO shows two contribution of different inten-

sity, a more in-tense with maximum at 304 nm and a weaker one at 333 nm. In the range 225–

275 nm, all painkiller samples show a minor peak in their reflectance at around 270 nm. Towards 

lower wavelength, the spectra show no additional features. 

The shape of the spectra of the commercial painkiller match those of the APIs (Figure 3.6b) quite 

well. Slight deviations are most likely due to additional ingredients in the commercial samples. 
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Figure 3.7:   (a) Raw hyperspectral image for all commercial painkiller tablets before and after subtracting the back-

ground. (b) Spectrum recorded for a single pixel of each painkiller tablet in the UV range 200–400 nm. 

(c,d) Scores and corresponding loadings plot. 

Figure 3.7d shows the loadings plot for PC1 and PC2. PCA model was calculated by cross vali-

dation (venetian blinds, 10 splits, 1 sample per split). The loading of PC1 is dominated by an 

overall positive contribution in the range between 275 and 350 nm, whereas PC2 shows one more 

narrow negative contribution at 308 nm and one positive at 327 nm. The distribution of the clus-

ters in the scores plot in Figure 3.7c shows a comparable variability with the scores plot in Figure 

3.6c. Only for the THO sample an increased spreading is observed along PC2. In general, such 

type of variability in the shape of the cluster can arise for several reasons; a change in the sample’s 

properties on the scale of the resolution actually achieved, or changes due to shape effects of the 

samples or positioning within the hyperspectral imaging setup. A general reason for deviations 

between the hyperspectral imaging and UV-Vis spectroscopy (see Figure 3.5 vs. Figure 3.6b or 

Figure 3.7b) are the different geometries used for illumination and detection in the setups. In the 

UV spectrometer the light is collected in an almost perfectly reflecting integrating sphere, while 

in case of the UV hyperspectral imaging, a tunnel made of PTFE is used for illumination and 

collecting as shown in Figure 3.2a. As a consequence, a clear differentiation between specular 
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and diffuse reflection is not possible in the hyperspectral imaging setup, therefore, a mixture of 

both contributions will be detected here. 

Comparing the hyperspectral imaging spectra in Figure 3.6b or Figure 3.7b with the spectra given 

in Figure 3.5 it is clear that the hyperspectral imaging data provide almost no useful spectroscopic 

information in the region < 275 nm. The low performance in this range is due to the efficiency of 

detector and the illumination in the hyperspectral imaging setup. A further consequence of this is 

that contributions at higher wavelengths appear more dominant as they actually are. The tendency 

of increasing sensitivity exists for the entire wavelength range. This is also why the shoulders 

observed in the spectra of ASA/ASP and IBU at > 25 nm (in both sample sets) appear much more 

enhanced compared to the spectra in Figure 3.5. As a consequence, the actual hyperspectral im-

aging setup yields valuable results for all samples, but reliable spectroscopic information is only 

accessible in the range above 275 nm, and there, attention must be paid to the relative intensities. 

Despite the spectroscopy weaknesses, the combination of UV hyperspectral imaging and chemo-

metric modeling enables a complete separation of all samples in both sample sets. The loadings 

plots (Figure 3.6c or Figure 3.7c) indicate that a differentiation of all samples is possible consid-

ering only a few spectral channels, so that rapid classification is easily possible. 

In order to validate the pure API PCA model (see Figure 3.6), the scores of PC1 and PC2 were 

used to calculate a quadratic discriminant analysis (QDA). The confusion matrix resulted from 

this model is listed in Table 3.3. A confusion matrix describes the performance of the classifica-

tion model based on QDA. An overall accuracy for the pure API tablets of 99.8% is reached, 

which means the model can correctly classify approximately all spectra of the pure API tablets. 

The highlighted diagonal describes how many spectra were predicted by the model as true. Only 

19 spectra of (ASA+PAR)pure were predicted as PARpure and two spectra of PARpure as 

(ASA+PAR)pure. This is because (ASA+PAR)pure contains both API components (ASApure, PAR-

pure). 

Table 3.3: The confusion matrix of the pure API spectra. 

Predicted 

A
ct

u
a

l 

API Samples IBUpure ASA pure PARpure (ASA+PAR)pure 

IBUpure 2365 0 0 0 

ASA pure 0 2428 0 0 

PARpure 0 0 2574 2 

(ASA+PAR)pure 0 0 19 2586 

This QDA model was used to classify all spectra of the painkiller tablets. Even 99.8% of the 

spectra were predicted correctly (see Table 3.4). This means approximately all painkiller tablets 

were predicted correctly in true API classes. Only two spectra of ASPBAYER were assigned as 
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(ASA+PAR)pure. This is because (ASA+PAR)pure contains both API components (ASApure, PAR-

pure). 

Table 3.4: Classification of the painkiller tablets based on the pure API model. 

Predicted 

A
ct

u
a

l 

Samples IBUpure ASP pure PARpure (ASA+PAR)pure 

IBUratio/IBUbeTa 469 0 0 0 

ASP BAYER 0 283 0 2 

PARratio 0 0 209 0 

THO 0 0 0 394 

The UV region is often preferred in process control and quality assurance, but hyperspectral im-

aging in this region is rarely reported. The aim of this study was to develop a simple UV hyper-

spectral imaging setup capable of distinguishing between different drug samples as an example 

for a possible industrial application. With the prototype, a painkiller table can be measured at 4 s. 

This speed is adequate for scientific purposes, but too low for industrial applications. The limiting 

factor towards a setup for a production environment is the intensity of the illumination and the 

quantum yield of the pushbroom imager. With an appropriate light source and imager then this 

setup is capable for in-line data acquisition, process control, in-line classification/sorting, and thus 

real-time release testing. 

3.5 Conclusions 

UV hyperspectral imaging was used to characterize active pharmaceutical ingredients in tablets. 

Two sample sets were analyzed; sample set one consisted of tablets with 100% API content and 

sample set two consisted of commercially available painkiller tablets. Reference measurements 

were performed on the pure APIs in liquid solutions and in solid phase using a commercial UV 

spectrometer. 

Hyperspectral imaging in combination with PCA is a promising approach for the detection and 

differentiation of all drug samples studied. The PCA model was able to separate all drug types 

with the first two principle components. The advantage of the home-built setup is a high spa-

tial/spectral resolution and a data acquisition speed completely sufficient for scientific studies. 

Based on the design and the data shown, a setup fulfilling the requirements of a real industrial 

process can be easily realized. 
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4.1 Abstract 

Hyperspectral imaging and reflectance spectroscopy in the range from 200–380 nm were used to 

rapidly detect and characterize copper oxidation states and their layer thicknesses on direct 

bonded copper in a non-destructive way. Single-point UV reflectance spectroscopy, as a well-

established method, was utilized to compare the quality of the hyperspectral imaging results. For 

the laterally resolved measurements of the copper surfaces an UV hyperspectral imaging setup 

based on a pushbroom imager was used. Six different types of direct bonded copper were studied. 

Each type had a different oxide layer thickness and was analyzed by depth profiling using X-ray 

photoelectron spectroscopy. In total, 28 samples were measured to develop multivariate models 

to characterize and predict the oxide layer thicknesses. The principal component analysis models 

(PCA) enabled a general differentiation between the sample types on the first two PCs with 

100.0% and 96% explained variance for UV spectroscopy and hyperspectral imaging, respec-

tively. Partial least squares regression (PLS-R) models showed reliable performance with R2
c = 

0.94 and 0.94 and RMSEC = 1.64 nm and 1.76 nm, respectively. The developed in-line prototype 

system combined with multivariate data modeling shows high potential for further development 

of this technique towards real large-scale processes. 

4.2 Introduction 

Copper is considered as one of the most important conductors for integrated circuit (IC) packaging 

and wire bonding. It has significant advantages in comparison to other materials (e.g., aluminum) 

and is thus a good alternative for smaller structures. Copper as a metal has a high mechanical 

stability and excellent electrical and thermal conductivities at low cost [139]. However, copper 

contact surfaces contaminate and interact with oxygen to copper (I) oxide (Cu2O) and copper (II) 

oxide (CuO) layers. This process is considered a problem as it influences the conductivity effi-

ciency. Science and engineering progress has driven the development of sensor technology in the 

past years [122,140]. This led to novel optical sensors, such as hyperspectral imagers, to identify 

quality problems [20,141]. 

Hyperspectral imaging is a technique that integrates a conventional spectroscopic system with 

imaging in order to acquire spectral and spatial information from the area of interest [21,39,86,142]. 

Therefore, hyperspectral imaging enables quantitative analysis with improved levels of accuracy 

[19,23,143]. It is considered as a rapid, non-destructive and robust method. Combining spectral 
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imaging with chemometric algorithms opens up new industrial applications, including manufac-

turing process control [144]. Such spectral imaging systems are used in different fields, such as 

food, pharmaceutical and textile production, as well as agriculture, military, astronomy, life sci-

ences and medicine [20,25,26,128,141,145]. 

Hyperspectral imaging is able to capture images in different spectral bands, such as in the visible 

(Vis), infrared (NIR) and ultraviolet (UV) range. In contrast, traditional methods, such as Auger 

electron and X-ray photoelectron spectroscopy (XPS), which are used to analyze copper samples, 

are time consuming, expensive and require sample preparation and destruction [87,146]. The in-

dustry demands a high lateral resolution, which cannot be fulfilled by single-point UV-Vis spec-

troscopy [19,147]. Several detection methods have been developed to classify and identify the 

copper state and copper oxide layers. In the past, UV-Vis/NIR spectroscopic applications as well 

as Vis/NIR hyperspectral imaging have been preferred in the industrial environment, especially 

for copper and other metal conductors [26,87,146,148-150]. The detection and characterization of 

oxide layers on metallic copper samples was studied by Stiedl et al. using visible hyperspectral 

imaging and UV-Vis spectroscopy. They were able to detect the thickness of the oxide layers on 

the technical copper [26,87]. 

Recently, Tschannerl et al. have shown the application of hyperspectral imaging in the UV range 

to discriminate between phenolic flavor concentrations in melted barley [86]. In another recently 

published study, Al Ktash et al. have developed this technology in the direction of real applica-

tions. The authors were able to precisely classify between different active pharmaceutical ingre-

dients (API) and painkiller tablets by using an UV hyperspectral imaging prototype [19]. 

Hyperspectral imaging collects information in three dimensions (x, y, λ), resulting in a massive 

number of variables. Therefore, data reduction algorithms, such as principal component analysis 

(PCA) and partial least squares regression (PLS-R), are required. PCA combined with hyperspec-

tral imaging data enables the detection of spectral features in the spectroscopic data along with 

identifying the relative distribution of the components in mixtures [38,151]. The PLS-R is an em-

pirical data-driven modelling approach that relies on representative model building data for two 

variable blocks (X and Y). It is used to search for a correlation between a simple and easily ac-

quirable data set (X) and a labor- as well as cost-intensive second set of measurements (Y) by 

calculating a certain number of factors. In the present study, the X data contains the UV spectra, 

and the Y data the oxide layer thickness of the direct bonded copper sheets. Consequently, quan-

titative descriptions and calibrations are possible [152]. 
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Despite several studies having focused on the characterization of copper oxide films, sample ho-

mogeneity remains a big challenge in the estimation of their thicknesses over the complete sur-

face. We address this topic in the present contribution using a hyperspectral imaging system in 

the UV wavelength range for the in-line characterization of copper states and oxide layers thick-

nesses on direct bonded copper. The data were evaluated by PCA and PLS-R. The results show 

that hyperspectral imaging in the UV range has the potential to predict oxide layer thicknesses 

and copper states in a rapid and non-destructive manner. 

4.3 Materials and Methods 

4.3.1 2.1. Samples 

In total, 28 direct bonded copper Curamik® Power substrates (Rogers Corporation, Chandler, AZ, 

USA) with dimensions of 21.0 mm × 21.0 mm × 1.1 mm were used for sample preparations. The 

samples were first ultrasonically cleaned at 50 °C for 5 min with Vigon A 200 (Zestron, Ingol-

stadt, Germany) as cleaning medium and then rinsed with deionized water for 3 min. The copper 

sheets were oxidized at five different preparation protocols (see Table 4.1). Sample type 1 was 

left in its initial condition. Figure 4.1 shows an example of each copper sheet type.  

Table 4.1: Sample preparation protocol for the direct bonded copper substrates 

Sample Type 1 2 3 4 5 6 

Number of measured samples 5 * 4 5 * 5 * 5 * 4 

Temperature/°C - 110.0 142.5 142.5 175.0 175.0 

110.0 - 2 11 20 11 20 

Time/min 0 4.0 6.0 8.3 14.0 21.1 

Mean oxide layer thickness/nm 0 5.9 3.0 4.5 7.0 8.2 

* One of each sample set was used for PLS-R prediction. 

 
Figure 4.1:  Direct bonded copper Curamik®Power substrates. (1) is an example of sample type 1, (2) sample type 2, 

(3) sample type 3, (4) sample type 4, (5) sample type 5 and (6) sample type 6. 
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4.3.2 Oxide Layer Thickness Measurement 

The thicknesses of the oxide layers were determined by depth profiling using X-ray photoelectron 

spectroscopy (XPS). The measurements were conducted under a system base pressure of 4.0 × 

10−10 mbar. A monochromatic Al Kα radiation was used and the anode tube operated at 12.5 kV 

with 20 mA. The take-off angle for the electrons was 0° with respect to the surface normal. The 

XPS core level spectra were measured with a standard X-ray source SPECS XR50 (SPECS Sur-

face Nano Analysis GmbH, Berlin, Germany) and a concentric hemispherical analyzer Phoibos 

100, SPECS (SPECS Surface Nano Analysis GmbH, Berlin, Germany). The pass energy of the 

concentric hemispherical analyzer was 50 eV for the survey and 20 eV for the high-resolution 

spectra. The data acquisition was performed with 0.5 eV; 0.1 eV per step, respectively.  

4.3.3 UV Spectroscopy 

Total (specular and diffuse) reflectance spectra were recorded in the range of 200–380 nm using 

a UV spectrometer (Lambda 1050+, PerkinElmer, Inc., Waltham, MA, USA). The 150 mm inte-

grating sphere module functioned as a detection unit and was deployed in reflectance with a 

R6872-Photomultiplier (PMT). A deuterium lamp was used as light source in the spectrometer. 

The samples were placed at the reflectance port of the inte-grating sphere with a diffused scatter-

ing Spectralon® disk placed behind the samples. The port measuring area is approximately 0.42 

cm2. Three spectra were recorded for each direct bonded copper type while the sample was rotated 

in different angles (see Figure 4.2). The UV spectra were recorded with the Lambda 1050 UV 

WinLab software from PerkinElmer. 

 

Figure 4.2:  An example of a direct bonded copper sheet rotated according to the three different measurement angles 

(a) 0°, (b) 45° and (c) 90°. 

4.3.4 Data Collection and Preprocessing 

The hyperspectral imaging setup was optimized compared to our previous work [19]. The 

pushbroom imager is a BlueEye Tec (inno-spec GmbH, Nürnberg, Germany), consisting of a 

(a) (b) (c) 
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spectrograph (RS 50–1938, inno-spec GmbH, Nürnberg, Germany), with a slit width of 80 µm, 

connected to a back-illuminated CMOS camera with total size 2048 × 2048 pixel (spatial × spec-

tral) and pixel size of 6.5 µm × 6.5 µm. Additionally, the dispersion is approximately 0.1 nm/px 

[153]. The quantum efficiency of the CMOS camera is between 30 and 50% [154]. The optimal 

integration time was 10 ms. The samples were placed on a black conveyor belt (700 mm × 215 

mm × 60 mm, Dobot Magician, Shenzhen Yuejiang Technology Co., Ltd., Shenzhen, China) 

moving with a constant speed of 0.15 mm/s, which was positioned completely in a tunnel made 

of PTFE. The illumination was provided by two ozone producing Xenon lamps (XBO, 14 V, 75 

W, OSRAM, München, Germany). The ozone was eliminated by a laboratory vacuum system 

(AirTracker, TEKA Absaug- und Entsorgungstechnologie GmbH, Coesfeld, Germany). Another 

xenon lamp was added to the setup to increase the intensity and optimize the integration time. In 

combination with the black conveyor belt and a state-of-the-art UV pushbroom imager a more 

industrial-like prototype was created. 

The principal and workflow of the data acquisition remained [19]. The UV hyperspectral imaging 

data were acquired by the FluxRecorder version 4.2.1.17 (inno-spec GmbH, Nürnberg, Germany). 

The reflectance was calculated by the FluxRecorder automatically according to the radiometric 

calibration [19,21,39,155]. PTFE was used as white reference. For collecting the dark reference, 

the objective was closed by its cover and the illumination was turned off. 

Figure 4.3 shows the original images of the direct bonded copper samples before and after back-

ground subtraction. Hyperspectral data matrices were analyzed by Evince version 2.7.11 (Pred-

iktera AB, Umeå, Sweden). While importing the raw data in Evince, a data reduction was per-

formed by binning four columns and rows (x,y) and six channels (λ). 

The background was removed by calculating a PCA and selecting the corresponding background 

scores. Therefore, some edges and borders of the samples were also eliminated, resulting in dif-

ferent sample shapes (Figure 4.3). The reduced hypercube was then used as input for the subse-

quent PCA and PLS-R. In the end, approximately 2.0 million spectra remained from the initially 

obtained 4.0 million spectra. 
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Figure 4.3:   Hyperspectral raw images of 28 direct bonded copper samples on the left (a). Images after subtraction of 

the background on the right (b). In total, 24 samples were used for building the PLS-R model and four 

samples were used for prediction. 

4.3.5 Multivariate Data Analysis and Data Handling 

Multivariate data analysis (MVA) was performed with “The Unscrambler X 10.5” (Camo Ana-

lytics AS, Oslo, Norway). All spectra recorded by UV hyperspectral imaging and commercial 

spectroscopy were preprocessed in the same way: Gaussian smoothing with 15 points reduction 

in the range from 200 nm to 380 nm. The spectral resolution of the hyperspectral imaging data 

was further reduced to 1 nm by averaging to ensure comparability to the UV spectra of the single-

point spectrometer. The principal component analysis (PCA) was calculated with mean centering, 

cross-validation and the NIPALS algorithm to distinguish between the direct bonded copper sam-

ple types. 

Partial least square regression (PLS-R) models for the oxide layer thickness prediction were cre-

ated with mean centering, full cross-validation and the Kernel algorithm. Four direct bonded cop-

per sheets of each preparation type were used to develop the PLS-R model. Additionally, the 

remaining samples of copper type 1, 3, 4 and 5 were used as prediction samples to test the final 

PLS-R model. The predicted values were compared to the determined oxide layer thicknesses by 

XPS. Finally, the oxide layer thickness of each pixel of the remaining samples was predicted by 

the hyperspectral imaging PLS-R model. The distribution map thus generated was visualized by 

MATLAB (R2020b 9.9.0, Mathworks, Natick, MA, USA). The samples were binned by factor 5 

in the x and y direction due to the large amount of data and noise. 
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4.4 Results and Discussion 

4.4.1 UV Spectroscopy 

Direct bonded copper substrates were investigated using diffuse reflectance spectroscopy in the 

UV region (200–380 nm). In total, 28 samples were measured. Generally, the thickness of the 

oxide layers increases with the oxidation time and temperature. During the oxidation process, 

copper is oxidized first to copper (I) oxide (CuO2) and then to copper (II) oxide (CuO). Figure 

4.4a shows the preprocessed reflectance spectra. Based on the shape of the spectra, the different 

steps of the oxidation process can be observed. Sample type 1 is representing copper in its initial 

condition. The other samples have undergone an oxidation process, as detailed in Table 4.1. A 

band minimum is detected approximately at 220 nm. A pronounced band maximum for all copper 

samples occurs in the wavelength range from 315 to 320 nm. Weak shoulders at 243 nm (sh) and 

266 nm (sh) are observed. Sample types 1, 2 and 3 present one prominent maximum at 295 nm. 

Sample types 4, 5 and 6 show a distinct band with maximum at 378 nm. The band at 220 nm 

could be ascribed to Cu2O. Increasing Cu2O pronounces the minimum. The band at 295 nm is as-

signed to the copper material (see Appendix Figure 10.1). This band started to fade away due to 

the increase in the maximum band at 320 nm. This band is absent in sample types 4, 5 and 6. For 

these sample types a band at 378 nm appears. These spectral differences were due to different 

oxide layer thicknesses and copper states (Cu0, Cu2O and CuO) on the copper sheets. The remain-

ing small differences among the spectra were attributed to the roughness, measuring angles and 

sample positions. 

 
Figure 4.4:  (a) UV reflectance spectra of copper sheets. Copper with initial condition type 1 (green), 2 (red), 3 (blue), 

4 (light blue), 5 (pink) and 6 (yellow) represent the oxidation layer thicknesses 0 nm, 4 nm, 8.3 nm, 14 nm 

and 21.1 nm, respectively. (b) PCA with scores and (c) the corresponding loadings plot. 

Figure 4.4b shows the scores plot of the first two principal components (PC). The first two PCs 

explain nearly 100.0% of the total variance. The scores of different sample types are clearly dis-

tinguished. Every copper sample type with a corresponding copper state and oxide layer thickness 
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appear as a distinct group. PC1 yields a clear separation of copper in the initial condition (type 1) 

from the other copper types. The groups move below the average in PC1, with increasing oxide 

layer thickness and conversion of copper states. Copper types 4 and 5 are slightly overlapped as 

their oxide layer thicknesses are almost comparable (see Table 4.1). The variance in each cluster 

results from the different samples for each type. The differences between the samples could be 

due to temperature profiles in the oven while preparing the samples, roughness variation, or sam-

ple positioning during the measurements. 

The loadings plot for PC1 and PC2 is given in Figure 4.4c. The shape of PC1 resembles the Cu0 

spectrum (see Appendix Figure 10.1 and Table 10.1). This indicates that an increasing amount of 

Cu0 on a sample results in a more positive sample arrangement on PC1. Vice versa, the less Cu0 

is present in the samples because of the growing oxide layer thickness, the more the samples are 

shifted in the negative range of PC1. The influence of the oxidation state (Cu2O, CuO) is ex-

pressed by PC2 (see Appendix Figure 10.1 and Table 10.1); these results are comparable with 

previous studies [26]. 

4.4.2 UV Hyperspectral Imaging 

All samples were analyzed by a UV hyperspectral imaging prototype, as described in Materials 

and Methods. In order to make the data more comparable to the UV spectroscopy, the average 

spectra were calculated to reduce the number of spectra. A total of 25 spectra was determined 

from the hyperspectral imaging data for each of the 28 samples. Figure 4.5a shows the results of 

the UV hyperspectral imaging in the range from 200 to 380 nm. 

The comparison between the shapes of the spectra is given in Figures 4.4a and 4.5a, showing 

similarities as well as a small deviation. They are due to the type of the illumination source and 

the design of the experimental setups. For reflectance spectroscopy, a deuterium lamp was used, 

while for hyperspectral imaging, two xenon lamps were available. Deuterium lamps have higher 

spectral irradiances in the deep UV range compared to xenon lamps [22]. However, the xenon 

illumination was sufficient for the characterization of direct bonded copper sheets. Therefore, the 

interferences < 270 nm are more pronounced compared to the higher wavelengths. As a result, 

the spectra shown in Figure 4.5a provide almost no clearly recognizable spectroscopic infor-

mation in the region <270 nm. The detector’s efficiency and illumination provide low perfor-

mance in this wavelength range. Therefore, the easily accessible tunnel design for hyperspectral 

imaging was developed to ensure a diffuse illumination of the samples. As a result, a reasonable 

illumination strength and homogeneity were reached. 
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As discussed before, the spectra were influenced by the copper states and thicknesses of the oxide 

layers on the copper sheets. Copper in the initial condition is represented in the spectra originating 

from sample type 1 (see Table 4.1, Figure 4.4a). The most dominant contributions for all copper 

sample types are observed in the wavelength range 324–328 nm and at 241 nm. Copper types 1, 

2 and 3 present a weak shoulder at 292 nm. 

 
Figure 4.5:  (a) Average UV hyperspectral imaging spectra of copper sheets. Copper with initial condition type 1 

(green), 2 (red), 3 (blue), 4 (light blue), 5 (pink) and 6 (yellow) represent the oxidation layer thicknesses 0 

nm, 4 nm, 8.3 nm, 14 nm and 21.1 nm, respectively. (b) PCA with scores and (c) the corresponding load-

ings. 

In the next step, a PCA model with a cross-validation was calculated for the average spectra of 

all samples. Figure 4.5b shows the scores plot of PC1 and PC2. The first two PCs explain nearly 

96.0% of the total variance. The scores of different sample types are clearly distinguished. Every 

copper sample type with a corresponding copper state and oxide layer thickness appears as a 

distinct group. PC1 yields a clear separation of copper with initial condition (type 1) from the 

other copper types. A discrimination of the copper state and oxide layer thickness is observed on 

PC2. Beginning from the positive to the negative scores on PC2, the samples are arranged in the 

order copper type 2, 3, 4, 5 and 6, respectively. Again, copper type 2 and 3 (positive scores) can 

be separated from the other samples 4, 5 and 6 (negative scores). 

The loadings plot for PC1 and PC2 is given in Figure 4.5c. PC1 shows the differences between 

Cu0 and the oxidation states (Cu2O, CuO). The most dominant contribution is observed in the 

range from 260 to 280 nm and the increasing shape > 280 nm. The loadings plot of PC2 mainly 

shows increasing oxide layer thickness. The most prominent contribution is observed in the range 

from 250 to 280 nm and the decreasing shape > 280 nm. Compared to PC1, PC2 has a positive 

maximum at 263 nm. The minimum on PC1 is located at 273 nm. This region could include the 

information about the copper state. The influence of the oxidation state (Cu2O, CuO) and oxide 

layer thickness is observed by PC2. 
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Figure 4.4a presents UV spectra with a good signal-to-noise-ratio recorded by a UV spectrometer, 

which collected one single spectrum over an area of 0.42 cm2. Figure 4a shows the UV spectra 

recorded by the hyperspectral imaging setup. The spectra were averaged over an area size com-

parable to the UV spectrometer. The UV hyperspectral imager recorded raw spectra with a less 

good signal-to-noise-ratio. These spectra result from one single pixel of the detector, representing 

a much smaller area of the direct bonded copper, which is estimated to be 6.5 µm × 6.5 µm. 

Additional reasons for the low signal-to-noise-ratio are the weak irradiation intensity by the xenon 

illumination and the quantum efficiency of the camera in this spectral range of approximately 30–

50% [154]. Furthermore, ozone-producing xenon lamps were used. With the help of a vacuum 

system, the influence of the ozone absorption at 250 nm was minimized. 

The benefit of hyperspectral imaging is lateral information in real time. To get a visual impression 

of the inhomogeneity of the copper states and oxide layer thickness, the thickness for every pixel 

from the first two PCs was plotted as a distribution map, shown in Figure 4.6. A sample with high 

absorbance has a high proportion of blue in the score image (e.g., Cu0), while one with low ab-

sorbance shows a higher proportion of red (e.g., Cu(II)). Clear differences between the samples 

are observed according to the oxidation time and temperature. As discussed before, PC1 yields a 

clear separation of copper in the initial condition from the other copper types. A discrimination 

of the copper state and oxide layer thickness can be observed on PC2. The regular distribution of 

the pattern in PC2 indicates a common origin; this could be the variability of the temperature 

inside the oven among each sample. Additionally, in the distribution maps, it is possible to clearly 

identify oxidation hotspots on the direct bonded copper. 

 
Figure 4.6:  Distribution maps of the oxide layer PC1 (a) and PC2 (b). Each rectangle represents a single copper sheet. 

The sample type for each row corresponds to Table 1. The samples are divided into two sets: model build-

ing and model prediction for PLS-R. The colored pixels (the score value range) represent the oxide content, 

from low (blue) to high (red).  

PC1 PC2

S
a
m

p
le

s
 f
o
r 

m
o
d

e
l 
p
re

d
ic

ti
o
n

Samples for model building

S
a
m

p
le

s
 f
o
r 

m
o
d
e
l 
p
re

d
ic

ti
o
n

Score value

range

1

2

3

4

5

6

1

2

3

4

5

6

Samples for model building

+2

-2

0

(a) (b) 



4  Paper II: UV Hyperspectral Imaging as Process Analytical Tool for the Characterization of Oxide Layers and 

Copper States on Direct Bonded Copper 

54 

4.4.3 PLS-R 

A PCA structures data sets according to their maximum variance, whereas PLS-R searches for 

the optimal correlation between spectral characteristics and an external target value. PLS-R mod-

els of the direct bonded copper for each method have been established and compared, by using 

the spectra of the UV reflectance spectroscopy and UV hyperspectral imaging. In this study, spec-

tral features were extracted from the spectral datasets and correlated to determine the oxide layer 

thickness via XPS. 

Gaussian smoothing with 15 points was performed to minimize the noise. A PLS-R model was 

developed with a calibration set of n = 24 samples (see Figure 4.6), three factors, the Kernel 

algorithm and full cross-validation. A prediction sample set was used to test the PLS-R model 

performance with an external validation to assess the predictive ability. The prediction sample set 

consisted of four samples with mean oxide layer thicknesses of 0 nm, 6 nm, 8.3 nm and 14 nm 

(see Figure 4.6). Table 4.2 summarizes the overall chemometric model results for both the UV 

spectroscopy and hyperspectral imaging. 

The number of factors for each PLS-R model was optimized according to a high coefficient of 

determination (R2) and a low root mean square error of calibration (RMSEC) and cross-validation 

(RMSECV). This approach was applied to both the calibration (R2
c) and cross-validation (R2

cv) 

model for each method (Table 4.2). 

Table 4.2: Model statistics for the calibration and full cross-validation models for oxide layer thickness on the direct 

bonded copper. 

Method Number of 

Factors 

Parameters Calibra-

tion 

Parameters Valida-

tion 

  R2
c RMSEC/nm R2

cv RMSECV/nm 

UV spectroscopy 3 0.94 1.64 0.93 1.74 

UV hyperspectral imaging 3 0.94 1.76 0.93 1.88 

The variances explained by the UV reflectance model for the X and Y variables were 99.0% and 

95.0%, respectively, by using three factors. The variances of the X and Y variables were 98% and 

94% for the UV hyperspectral imaging model, by using three factors as well. This indicated that 

three PLS components (factors) were sufficient to describe most of the variance in the data ac-

cording to the spectral information. 

The results show that the PLS-R models are very effective in correlating the oxide layer thickness 

with both spectroscopic data sets. This is indicated by a high R2
c and a low RMSEC and a high 

R2
cv with a low RMSECV (see Table 4.2). Figure 4.7a,b show the correlation between the refer-
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ence and predicted values of the UV reflectance spectra and UV hyperspectral imaging, respec-

tively. The deviation and the variance within a sample type are increasing according to the oxide 

layer growth on the direct bonded copper. Copper sample types 1, 2 and 3 have a smaller variance 

within the sample type. In contrast, sample types 4, 5 and 6 have more variance in the UV reflec-

tance spectra model. For UV hyperspectral imaging all samples have nearly the same variance. 

This variance is probably due to the efficiency of the detector and the illumination in both setups. 

 

Figure 4.7:  Three-factor PLS-R models for the oxide layer thicknesses of direct bonded copper in the UV region (200–

380 nm). (a) Predicted vs. reference of UV spectra. (b) Predicted vs. reference of UV hyperspectral imag-

ing. (c) Regression coefficients of the UV spectra. (d) Regression coefficients of the UV hyperspectral 

imaging.  

The regression coefficients of the three-factor UV spectroscopy PLS-R model are shown in Figure 

4.7c. Again, absorbance bands around 210 nm, 245 nm, 293 nm and 330 nm emerge, as displayed 

in the spectra. Above 360 nm, an increasing baseline in the regression coefficient plot is regis-

tered. In Figure 4.7d, the corresponding regression coefficients of the UV hyperspectral imaging 

PLS-R model are displayed. They have a comparable shape, but more details can be detected. For 

example, in the range <260 nm and from 310 to 340 nm, more spectral features are pronounced. 

At 370 nm, a defined band appears for the UV hyperspectral imaging model, while an increase 

>360 nm in the UV spectroscopy model is registered. 
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Correlated to the bands at <260 nm, 320 nm, 335 nm and >360 nm, the oxide layer thickness 

increases in the UV spectra, which is also comparable to UV hyperspectral imaging in the range 

230–265 nm and 306–340 nm for increasing the oxide layer thickness. At 293 nm, the oxide layer 

thickness decreases for both setups. Differences in the beginning and ending of the regression 

coefficients between both methods could be due to the detectors limits with the UV hyperspectral 

imaging setup, as already discussed in the literature [19,26]. 

In order to evaluate the PLS-R models, four samples of type 1, 3, 4 and 5 were used to test the 

model’s performance by predicting the oxide layer thickness. The sample set contains four sam-

ples with mean oxide layer thicknesses of 0 nm, 6 nm, 8.3 nm and 14 nm (see Figure 4.6).  

In addition, the results indicated that the PLS-R was very effective in predicting the oxide layer 

thickness with three factors, R2
p = 0.90 with RMSEP = 1.62 nm and bias = 0.51 for UV spectra, 

and R2
p = 0.85 with RMSEP = 1.98 nm and bias = 0.61 for UV hyperspectral imaging. 

In Table 4.3, the results for the mean value of the predictions and deviations are given. The pre-

dicted values are matched well with the references. 

Table 4.3: Prediction of the oxide layer thicknesses for direct bonded copper from PLS-R models. 

Method Sample Type Reference/nm Predicted/nm Deviation/nm 

UV spectroscopy 

1 0 1.59 0.93 

3 6 6.00 1.02 

4 8.3 7.86 1.44 

5 14 15.25 1.53 

UV hyperspectral 

imaging 

1 0 -0.87 1.49 

3 6 5.51 2.08 

4 8.3 11.74 1.91 

5 14 14.35 1.79 

Mean values with a high standard deviation were measured by XPS (see Table 4.1), as reference 

values for the PLS-R models. This average of one sample type is comparable to the UV spectra 

recording. However, hyperspectral imaging enables to recognize different oxide layer thicknesses 

among the samples. Therefore, the oxide layer thickness in nm of each pixel was calculated. The 

UV hyperspectral imaging PLS-R model was applied to the four prediction samples of type 1, 3, 

4 and 5. In Figure 4.8, the resulting distribution map is shown. The pixels represent the oxide 

layer thicknesses in nm, from low (blue) to high (red). Sample type 1 displays the initial direct 

bonded copper sheet without induced oxidation, while the other samples show an increasing oxide 

layer thickness. 

Although, PLS-R is a robust model to describe the majority of the variance of the data according 

to the spectral information. Compared to the results of the Vis hyperspectral imaging [26], the UV 
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hyperspectral imaging models seems to be more robust. This is indicated by the fact that less 

factors are necessary to achieve a model with better statistic parameters (higher R2, lower RMSE) 

by using a new UV prototype. 

 

 
 

Figure 4.8:  Distribution map predicted from the three-factor PLS-R model of the UV hyperspectral imaging data. The 

oxide layer thicknesses for each pixel of samples (a) sample type 1, (b) sample type 3, (c) sample type 4 

and (d) sample type 5 were calculated for model prediction.  

Hyperspectral imaging in the UV range is rarely reported, although it is often chosen for process 

control and quality assurance [19,86]. The aim of this study was to characterize the copper states 

and oxide layer thicknesses by using a single-point UV spectrometer and a UV hyperspectral 

imaging setup that can serve as an example for a possible real-time industrial application. With 

our hyperspectral imaging prototype, a whole direct bonded copper sheet can be measured and 

processed within 10 s. With the implemented pushbroom imager, hardware binning is also possi-

ble, and can decrease the measuring and processing time. The scan speed for the determination of 

the oxide layer thicknesses on direct bonded copper can be optimized by selecting a few relevant 

variables instead of the complete UV spectrum. The intensity and type of the illumination are the 

limiting factors towards a setup for a production environment. This study opens a novel possibility 

for further development of this method capable of rapid in-line data acquisition, process control 

and in-line classification/sorting, which meets the requirements of a real-time process with indus-

trial standard and precision. 

4.5 Conclusions 

UV hyperspectral imaging and UV reflectance spectroscopy (200–380 nm) were used to charac-

terize 28 direct bonded copper samples. UV reflectance spectroscopy, as a well-known method, 

was utilized to compare the quality of the UV hyperspectral imaging results. 

Hyperspectral imaging in combination with PCA and PLS-R is a promising approach for the lat-

erally resolved detection and differentiation of copper states and the determination of oxide layer 
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thickness in the UV region. The PCA models were able to separate all direct bonded copper types 

according to the copper states and oxide layer thicknesses, using only the first two principal com-

ponents. PLS-R models with three factors provided a high R2 and low RMSE for calibration, 

validation (ncv = 24) and prediction (np = 4). To the best of our knowledge, this is the first work 

reporting the identification and quantification of copper oxide thin films by UV hyperspectral 

imaging. The advantage of the home-built setup is the high spatial and spectral resolution and a 

relatively high data acquisition speed under laboratory conditions. Starting from the presented 

design and data given in this contribution a setup fulfilling the requirements of a real industrial 

process can be easily realized. 

Supplementary Materials: The following are available online at 

https://doi.org/10.3390/s21217332/s1, Appendix Figure 10.1: Reference spectra for the copper 

Cu0, Cu2O and CuO by using UV spectrometer, Appendix Table 10.1: Description of the direct 

bonded copper substrates and their sample preparation. 
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5.1 Abstract 

Different types of raw cotton were investigated by a commercial ultraviolet-visible/near-infrared 

(UV-Vis/NIR) spectrometer (210 nm - 2200 nm) as well as on a home-built setup for NIR hyper-

spectral imaging (NIR-hyperspectral imaging) in the range 1100 nm - 2200 nm. UV-Vis/NIR 

reflection spectroscopy illustrates a dominant role of proteins, hydrocarbons and hydroxyl groups. 

A similar result was revealed with NIR- hyperspectral imaging. Experimentally obtained data in 

combination with principle component analysis (PCA) provides a general differentiation of dif-

ferent cotton types. For UV-Vis/NIR spectroscopy, the first two principal components (PC) rep-

resent 82 % and 78 % of the total data variance for UV-Vis and NIR regions respectively. 

Whereas, for NIR- hyperspectral imaging due to the large amount of data acquired, two method-

ologies for data processing were applied in low and high lateral resolution. In the first method, 

the average of the spectra from one sample was calculated and in the second method the spectra 

of each pixel were used. Both methods are able to explain ≥ 90 % of total variance by the first 

two PCs. The results show that it is possible to distinguish between different cotton types based 

on a few selected wavelength ranges. The combination of hyperspectral imaging and multivariate 

data analysis has a strong potential in industrial applications due to its short acquisition time and 

low cost development. This study opens a novel possibility for a further development of this tech-

nique towards real large-scale processes. 

5.2 Introduction 

Hyperspectral imaging is an imaging technology that combines spatial information with spectros-

copy. It is a fast and non-destructive method, which has evolved into a powerful analysis tool for 

product inspection. Thereby, spatial images with very detailed spectral information for each pixel 

of an object are collected simultaneously [21,24,26]. In the past, spectroscopical applications as 

well as hyperspectral imaging in the UV-Vis and NIR range are more frequently found in the 

textile research and in industrial applications [156]. In textile research, cotton plays a dominant 

role among textiles, since cotton is the most important naturally occurring raw material for the 

production of fabrics [157,158]. More than 34 million hectares of land are used to grow cotton, 

and around 100 million households worldwide are engaged in cotton production [159]. Cotton is 

considered as a key resource in the textile industry and accounts for about 30 % of all fibers used 

in this sector [160]. In recent years, the increase in quality and processing requirements has led to 

the introduction of modern techniques for processing and quality control [15,113-115]. Neverthe-

less, distinguishing between different cotton species is still a demanding task.  
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Several detection methods have been developed and applied to identify and classify different cot-

ton varieties [158,161]. Most of them are off-line techniques such as thermogravimetric analysis 

and optical spectroscopy [162-164]. Only little information is expected in the visible range, since 

most raw cotton and residuals are reflective (or transparent) [165,166]. Valuable information can 

be expected in the NIR region from characteristic molecular vibration, e.g. CHn and OH groups 

of cotton which are omnipresent [167]. Unfortunately, the overall sensitivity for small variations 

of the sample as well as for small amounts of contaminations in the NIR range is low and they 

are hard to detect [36,168]. Therefore, numerous studies in the NIR region used a combination of 

spectroscopy and chemometric modeling [167,169-175].  

With NIR- hyperspectral imaging system, a complete optical spectrum with innumerable spectra 

are collected at all image pixels. This is in contrast to multispectral systems such as RGB cameras 

where only a limited number of wavebands are collected [86,176].  

Most of the hyperspectral imaging applications were focused on remote sensing systems such as 

satellites or aircrafts to gather information for agricultural, geological inspections and military 

purposes. Nowadays, hyperspectral imaging is evolving into a standard for in-line and on-line 

inspection in process analytics and quality control. Prominent technical applications can be found 

in quality control for medicine, food and agricultural products [86,177,178].  

In industrial applications, a hyperspectral imaging system is based on a combination of a 

pushbroom scanner and a conveyor belt. Pushbroom scanner is fixed over the conveyor belt as 

shown in Figure 5.1. Such inspection systems require a minimum of sample preparation and are 

able to scan several samples swiftly with high spectral resolution[179]. Here, the pushbroom scan-

ner captures the complete spectral information line by line. The data is collected with the camera 

placed perpendicular to the conveyor belt. As the conveyor belt moves, images are continuously 

captured by the pushbroom scanner, resulting in a three dimensional (3D) data matrix with di-

mensions x,y and  and  is often referred to as hypercube [28].  

For cotton research, hyperspectral imaging was used in the UV-Vis range to detect foreign matter 

with differentiation and classification of lint in cotton samples [161]. The results showed great 

potential using a hyperspectral imaging system for the classification of foreign matter 

[15,115,156].  

In this study, we used optical reflection spectroscopy in the UV-Vis/NIR range as well as hyper-

spectral imaging in the NIR range for the differentiation of cotton sample sets. For both methods, 
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a chemometric model was developed that is based on PCA. Using this model, we were able to 

distinguish between the different cotton types of our sample sets.  

5.3 Materials and Methods 

5.3.1 UV-Vis/NIR spectroscopy 

Reflectance spectra of the samples were recorded in the range from 210 nm to 2200 nm using a 

UV-Vis/NIR spectrometer (Lambda 1050, Perkin Elmer Ltd).  It was used to compare the data 

from the NIR- hyperspectral imaging and validate to another device. The UV-Vis/NIR spectrom-

eter was equipped with an Ulbricht sphere covered by polytetrafluorethylen (PTFE) to acquire 

data in diffusion reflection mode with two detectors: one is an indium gallium arsenide (InGaAs) 

detector and the second one is photomultiplier inside the sphere. The samples were placed on this 

rear of the sphere, and a diffused scattering PTFE as a white reference disc was placed behind the 

sample. The complete measuring aperture area is approximately 4.9 cm². From every cotton sam-

ple disc, a spectrum was acquired on each side. In total, three discs were measured for each sample 

and, thus, for each cotton sample disc, six spectra were recorded. 

5.3.2 NIR hyperspectral pushbroom online imaging system 

Figure 5.1a shows the setup of the used hyperspectral imaging system. The hyperspectral system 

is based on a pushbroom imager connected to a Xencis, Xeva 2.5 – 320 camera equipped with a 

mercury cadmium telluride (HgCdTe) detector of 8 nm of spectral resolution, and has a 30 µm 

slit width. Two halogen lamps illuminate the sample area. PTFE is used as a white reference while 

the dark reference is acquired by imaging without any light exposure to the sensor. Figure 5.1 (b-

d) illustrates the principle and workflow for hyperspectral imaging. Figure 5.1b shows complete 

spectroscopic information acquired for each line. Thus, a continuous line by line collection of 

spectral information forms a two dimensional (2D) image as shown Figure 5.1c. It is also possible 

to extract a single spectrum from a given pixel or point in the 2D image as shown in Figure 5.1d. 
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Figure 5.1: (a) Setup of a hyperspectral imaging system based on the pushbroom concept. (b) hyperspectral imaging 

scanning principle. (c) hyperspectral imaging generated immediately from the scanning of a cotton sample 

disc. (d) NIR-Spectrum for one single pixel extracted from the image. 

5.3.3 Samples 

Figure 5.2 show 5 types of raw cotton and one hemp sample which were investigated. The samples 

are organic raw material cotton (RoB), hemp plant from China (HC), recycled cotton (RcO), 

standard raw material cotton (RoSt), recycled organic bright cotton (RcBH) and mechanically 

cleaned cotton sample (CLN). Three samples of the aforementioned cotton types were collected 

from the bulk, amounting to 0.75 g form each sample. The samples were pressed at 10 tons for 2 

minutes to have same physical properties by a hydraulic press into a disc shape. The hydraulic 

press was cleaned after each sample to reduce the chance of any impurities. 
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Figure 5.2: Raw cotton sample discs. 

5.3.4 Data collection and preprocessing of hyperspectral 
data 

The following two methods for data pre-processing are described resulting in low and high 

lateral resolution. Matlab (MATLAB 9.2.0, Mathworks, MA, USA) scripts were written for 

per-processing of the hyperspectral data cube. 

Figure 5.3 shows the workflow for calculating the mean spectrum of each sample. The hy-

perspectral image is collected by moving any cotton sample disc at a constant speed, approx-

imately 50 spectra were collected manually within the indicated area of interest, as shown in 

Figure 5.3a (marked as dash line) and plotted as shown in Figure 5.3b. The average of these 

spectra is calculated and shown in Figure 5.3c. 

 
 

Figure 5.3: (a) hyperspectral imaging of a cotton sample disc with area of interest (dash line) with a diameter of 2.5 

cm. (b) Spectra extracted from the selected area. (c) Average spectrum of all spectra shown in (b). 

Figure 5.4 shows the workflow for the second preprocessing method. The hyperspectral im-

age is captured by moving the 18 cotton sample discs at a constant speed. To differentiate 

(a)  (b) Extracted spectra (c) Average Spectra Hyperspectral imaging 
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between signal and background, a distinction is first made between the respective spectral 

characteristics.  

For this purpose, two parallel planes are fitted into each spectral channel, one for the back-

ground and one for the samples. The distance between these planes is then selected as the 

parameter for the spectral difference between the sample and the background. The color chan-

nel with the highest value is used as mask for all other color channels. Half of this difference 

is set as threshold value. All lateral points of the color channel whose intensity value is above 

this threshold value are classified as background and removed. This clipping mask is applied 

to the entire hyperspectral data cube. The remaining data corresponds to the spectral contri-

butions from the samples. These are converted from the 3D hyperspectral data set into a 2D 

format by joining the lateral points of the X and Y dimensions. This creates a matrix in which 

each row corresponds to a pixel with a complete spectrum. This matrix is used as input for 

the PCA. 

Figure 5.4a shows the image obtained through the hyperspectral camera. The color channel 

with the highest differential value is displayed in Figure 5.4b. Figure 5.4c shows a single 

color channel of the cotton sample discs’ hyperspectral data cube after removing all lateral 

components associated with the background, the removal of outliers like dead pixels or cos-

mic events, and the application of a PCA filter, which removes all contributions of higher 

PCA components. The PCA filter works as follows: the first three of the resulting PCs explain 

about 88 % of the variance. The 4th and higher components, while contributing less than 7 % 

to the overall variance, contain mainly noise and were therefore discarded for further analysis. 

The remaining 5% of the total variance is found within the residuals, and do not contribute 

significant information. Figure 5.4d shows an image, where the red-green-blue (RGB) value 

corresponds to scores of the first (R), second (G) and third (B) components. 

In the next step, all score values that are 90 % similar to another score in all the main compo-

nents considered are removed from the data set. From the remaining score values a reduced 

data set with the load values of the considered main components was generated. The reduced 

data set is then converted back into a 3D hyperspectral data cube by separating the combined 

lateral information. Figure 5.4c shows the reduced data as lateral information for one spectral 

channel. The principal component analysis of this data again shows a significant grouping of 

the different types of cotton. In the end, approximately 120,000 spectra remain from initially 

obtained 1.7 Million spectra. 
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Figure 5.4:   (a) Hyperspectral raw imaging of 18 cotton sample discs with a diameter of 3.1 cm. (b) Image of the color 

channel with the highest variance between cotton disks and background. (c) Images after subtraction of 

the background, removal of outliers, and application of filters. (d) Image of RGB value corresponds to 

scores of the first (R), second (G) and third (B) components. 

5.3.5 Data handling and software 

The UV-Vis/NIR spectra are recorded with the Lambda 1050 UV WinLab software from 

PerkinElmer. The NIR hyperspectral pushbroom images are analyzed by the Prediktera soft-

ware from Evince 2.7.9. PLS Toolbox 8.5.1 (Eigenvector Research, Inc., USA) which is used 

for the data processing and analysis. Lighting conditions may vary between the samples and 

even within the samples across the scan line. A regular way to calculate this effect is to con-

vert measured raw spectra to reflectance spectra by the following formula [35,86]: 

                          Reflectance = -log R/R0 = 
Isample − Idark

Ireference − Idark
 (5.1) 

Where R and R0 represent the transmitted and incident intensity. Isample is the intensity of the 

original image data, Idark is the intensity of the dark current image data and Ireference is the 

intensity of the white reflectance image. Pre-processing of the mean center, smoothing (Sav-

Gol) with filter width 15 and polynomial order one, and generalized least squares (GLS) are 

applied to the data. GLS is used to achieve an efficiency by transforming variance covariance 

matrix into a homoscedastic one36. It works as a filter that calculate the differences between 

the samples. The differences are considered as interference or clutter and GLS aims to reduce 

these interferences [180-182]. 

(a) (b) (c) (d) 
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5.4 Results and discussion 

5.4.1 UV-Vis/NIR spectroscopy 

Figure 5.5a shows UV-Vis/NIR spectra (210 nm – 2200 nm) from all samples. Six spectra 

were recorded for each cotton sample type, three on each side. As expected, the spectra show 

a high similarity. All spectra show the strongest reflectance at 280 nm which can be attributed 

to proteins on the samples, see Table 5.1 [165]. In the visible range from 400 nm – 750 nm, 

the spectra do not show any distinct features since most of the raw cotton is reflective. In the 

NIR region, several spectral features can be observed. Dominant contributions are found at 

1500 nm, 1933 nm and 2100 nm corresponding to the functional groups CH, ROH and OH, 

respectively.  

Due to the high similarity of the spectra, a differentiation of the samples is demanding. As a 

consequence, PCA is used to further differentiate the samples and was applied for processed 

spectra. 

The processing of spectra is described in the Materials and Methods section. Figure 5.5b 

shows the scores plot of the first two principal components PC1 and PC2 for UV-Vis region 

(210 nm – 1100 nm). The PCA model explains 70.1 % and 82.3 % of the spectral information 

with the first two PCs respectively. The scores plot shows that PC1 and PC2 are sufficient to 

separate all samples. In this representation, the hemp (HC) sample shows the most distinct 

separation from the cotton group, as expected. Figure 5.5c shows the corresponding loadings 

plot for PC1 and PC2. The most significant differences between those loadings are found in 

the regions from 210 nm – 350 nm, 450 nm – 700 nm. In the UV range (210 nm – 350 nm), 

the strongest influence on PC1 is found at 280 nm, 300 nm and for PC2 at 290 nm. They can 

be assigned to proteins and amino acids (see Table 5.1)[165].  The contributions in the visible 

range (450 nm – 700 nm) show a maximum/minimum at 680 nm, it can be assigned to the 

color of the RcO samples (see also the inset in Figure 5.5a).  

Figure 5.5d shows the scores plot of the first two principal components PC1 and PC2 for NIR 

region (1100nm – 2200 nm). The PCA model explains 63.5 % and 78.0 % of the spectral 

information with the first two PCs respectively. The scores plot shows that the first two PCs 

are sufficient to separate all samples clearly from one another in NIR range. In the scores plot, 

the hemp (HC) and CLN sample shows the most distinct separation from the cotton group. 
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Figure 5.5e shows the loadings plot for PC1 and PC2. The most significant differences be-

tween those loadings are found in the regions from 1100 nm – 1200 nm, 1350 nm – 1500 nm, 

1600 nm – 1700 nm and 1850 nm – 2100 nm. In the NIR region (1100 nm – 2200 nm), several 

spectral features are variable which are assigned to the hydrocarbons and hydroxides oscilla-

tion (see Table 5.1). 

With UV-Vis/NIR, a separation of the analyzed cotton sample discs has been successfully 

demonstrated. However, the large deviations between PC1 and PC2 are mainly found in the 

UV-Vis and NIR region. Therefore, the application of an online method for characterization 

is the most suitable for these spectral regions. 

Table 5.1: UV-Vis/NIR reflectance maxima [165],[85,183]. 

Reflectance (nm) Functional groups 

1240 nm CH 

1525 nm ROH 

1790 nm CH3, CH2 

1955 nm OH 

2117 nm ROH 

2342 nm CH, CH2, CH3 
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Figure 5.5:  (a) UV-Vis/NIR spectra of cotton sample discs including one HC sample in the wavelength range 210 nm 

– 2200 nm. Upper left: Image of a cotton sample disc where the region of integration for determining the 

average spectra is indicated by a black area with a diameter of 2.5 cm. (b) Scores plot for the processed 

spectra in the UV-Vis. The 2D projection of the 95 % confidence ellipse of the data collected from each 

type of cotton is included to facilitate visualization of the obtained results. (c) Loadings plot for the UV-

Vis. (d) Scores plot for the NIR. (e) Loadings plot for the NIR. 
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5.4.1 NIR Hyperspectral Imaging  

Two data processing techniques were applied to the NIR hyperspectral images to calculate 

PCA models. As before, three samples of each raw fibers were analyzed. The setup for hy-

perspectral imaging as well as for determination of the spectra from the hyperspectral data 

matrix is described in the Materials and Methods section. 

In the first method, the mean value of the spectra was calculated for each cotton sample disc. 

A total of six spectra are determined from the hyperspectral imaging data for each cotton 

sample type.  

Figure 5.6a shows hyperspectral NIR spectra in the range from 1100 nm – 2200 nm. The most 

dominant contributions are observed around 1525 nm, they can be attributed to the presence 

of OH groups. Four weaker peaks are observed around 1340 nm, 1790 nm, 1955 nm and 

2117 nm, their assignment is given in Table 5.2[36]. 

The PCA of these spectra explains 93.7 %, 97.0 % or 98.3 % of the spectral information with 

the first two, three or four PCs respectively. Figure 5.6b shows the results for the first three 

PCs. In the scores plot it can be seen that the first three PCs are sufficient to separate all 

samples clearly from one another.  

 

Figure 5.6: (a) Spectra recorded by hyperspectral imaging of cotton sample discs including one HC sample in the NIR 

range from 1100nm - 2200nm. Upper right: Image of a cotton sample disc where the region of integration 

for determining the average spectra for each sample is indicated by a black circle with a diameter of 2.5 

cm. (b) Scores plot for the processed spectra in NIR- hyperspectral imaging. The 2D projection of the 70 

% confidence ellipse of the data collected from each type of cotton is included to facilitate visualization of 

the obtained results. (c) Loadings plot for the NIR- hyperspectral imaging. 

Figure 5.6c shows the loadings plot for the first three PC’s. In the range from 1340 nm – 1663 

nm the reflectance around 1508 nm can be assigned to the presence of ROH (see Table 5.2). 
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The reflectance in the range from 1789 nm - 2100 nm, 1973 nm can be assigned to the OH 

group. The contribution approximately 2270 nm is due to CH [85,183]. 

Table 5.2: NIR Hyperspectral imaging reflectance maxima [85,183]. 

Reflectance (nm) Functional groups 

1240 nm CH 

1525 nm ROH 

1790 nm CH3, CH2 

1955 nm OH 

2117 nm  ROH 

2342 nm CH, CH2, CH3 

 

In the second method, several thousand spectra from every cotton sample disc were used to 

calculate the PCA model. The preprocessing and workflow of the spectra from the hyperspec-

tral data matrix is described in the section Materials and Methods. Figure 5.7a presents ex-

amples of hyperspectral NIR spectra from a single pixel of each of the six cotton types in the 

range 1100 nm – 2200 nm.  

 

Figure 5.7:   Hyperspectral of cotton sample discs including one HC sample in the NIR range from 1100nm - 2200nm. 

(a) Six example spectra recorded at individual pixels. (b) Scores plot calculated for the whole data set 

including several thousand processed spectra. (c) Loadings plot for the NIR-Hyperspectral imaging. 
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lapping. Nevertheless, these samples can be separated only if one pair e.g. HC and RoSt is 
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three PCs. Overall, the loadings are comparable with the loadings shown in Figure 5.6c, ex-

cept a change of the sign. In the range from 1350 nm – 1700 nm, the reflectance around 1550 

nm can be assigned to the presence of ROH (see Table 5.2). The reflectance in the range from 

1800 nm - 1990 nm can be assigned to OH groups. The signal around 2302 nm is due to CH 

[85,183].  

The first three PCs explain a significant amount of the NIR hyperspectral data for both pre-

processing methods. Calculating the PCA model at each pixel or deriving it from the mean 

spectra does not significantly change the data behavior of the model (Figure 5.6 and Figure 

5.7). The advantage of using average spectra instead of the complete data set is fast data 

processing. However, this method is limited to recognize or spectrally separate background 

from the samples automatically. Therefore, a certain time is required to select the samples 

manually and calculate the average spectra for each cotton sample disc. On the other hand, 

when applying a filter (see Figure 5.4) the separation of the sample from the background 

works automatically, but here the quantity of data hampers a fast processing. The scattering 

in the scores plot in Figure 5.7 shows the huge variability of the properties of the samples, 

theses only become visible if the spectra are taken with hyperspectral imaging. Compared 

with the scattering where the spectral information is averaged over a larger area (Figure 5.5  

and Figure 5.6) this is remarkably reduced. The large variability of the score values from the 

hyperspectral imaging indicates a change of the samples properties on the scale of the reso-

lution actually achieved. For the hyperspectral imaging setup this is about 13µm. The high 

lateral resolution achieved here shows that sample properties on this scale vary and are there-

fore relevant, as new insights into the heterogeneity of fiber samples can be gained. As a 

consequence, the data show the high potential for hyperspectral imaging which is beyond the 

differentiation of fiber types.  

In the next step, a filter is required that combines the advantages of both methods to speed up 

the data handling. Together with this, a simplified model can be developed that meets the 

requirements of real online applications. 
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5.5 Conclusions 

UV-Vis/NIR reflection spectroscopy and hyperspectral imaging in combination with PCA is 

a promising approach for the detection and differentiation of raw cotton types. The most rel-

evant information for the differentiation of cotton types was found in both the UV and NIR 

range (see Figure 5.5c).  

The results obtained with UV-Vis/NIR spectroscopy revealed that the contribution in the UV 

can be assigned to the presence of protein at 280 nm. The most dominant contribution to 

absorbance in the NIR range can be assigned to CH3 for the most prominent band at 1775 nm 

and to ROH vibrations at 1500 nm. The spectral data were analyzed with PCA in order to 

achieve a differentiation of different cotton types. The PCA model was able to classify all 

types with the first two PCs explaining the maximum variance of the data.  

NIR- hyperspectral imaging results reveal the most dominant absorbance assigned to CH3 and 

ROH at 2270 nm and 1525 nm respectively. Two methods were used for processing the large 

amount of data. Both approaches resulted in a differentiation of all types. The advantages of 

the rugged online home-built setup is a high spatial/spectral resolution and a rapid data ac-

quisition. With this method, several samples can be measured in a short time and at low cost. 

Based on the data shown it is reasonable to develop a simplified chemometric model, which 

meets the requirements of a real process with industrial standards and precision. 
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6.1 Abstract 

UV hyperspectral imaging (225 nm – 410 nm) was used to identify and quantify the honeydew 

content on real cotton samples. This study presents the implementation and application of UV 

hyperspectral imaging as a non-destructive, high-resolution, and fast imaging modality. For this 

novel approach a reference sample set, which consists of sugar and protein solutions that were 

adapted to honeydew, was set up. In total, 21 samples with different amount of added sug-

ars/porteins were measured to calculate multivariate models to predict and classify the amount of 

sugar and honeydew at each pixel of a hyperspectral image. The principal component analysis 

models (PCA) enabled a general differentiation between different concentrations for sugar and 

honeydew, respectively. A partial least squares regression (PLS-R) model was built based on the 

cotton samples soaked in different sugar and protein concentrations. The result shows a reliable 

performance with R2
cv = 0.84 and low RMSECV = 0.009 g for the validation. The PLS-R refer-

ence model was able to predict the honeydew content laterally resolved in gram on real cotton 

samples for each pixel with light, strong and very strong honeydew contaminations. Therefore, 

in-line UV hyperspectral imaging combined with chemometric models can be a future effective 

tool for the quality control of industrial processing of cotton fibers. 

6.2 Introduction 

Hyperspectral imaging is an imaging technology that combines video image analysis with spec-

troscopy [141,184]. Precisely, it is a series of images acquired by moving the object or the imager. 

It is a fast and non-destructive technique, which has developed into a robust analysis tool for 

product screening. Such systems are able to capture spectral and spatial information with high 

resolution. As a result, a spectrum of an object can be obtained for each hyperspectral image pixel 

simultaneously [20,185]. 

Hyperspectral imaging and spectroscopic applications are widely used in industrial environments 

[19,53,186-189]. The importance of hyperspectral imaging is steadily growing in the textile indus-

try. For example, the visible (Vis) and near infrared (NIR) range are often applied for quality 

control and sorting processes [190,191]. Where the UV range is rarely used so far. 

In textile research, cotton is considered as one of the most important natural fibers for fabric 

production [192,193]. It provides approximately 50 % of the world’s textile fibers [194]. Cotton 

consists of approximately 95 % cellulose and 5 % sugar, wax, proteins, organic acids and pectin 
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[195]. The process ability is affected and degraded by the sugar content. Sugar is a naturally ex-

cretion of aphids and whiteflies on the cotton through metabolic processes and is specifically 

called honeydew [196]. This contamination on the raw cotton causes stickiness, which causes 

problems in the processing stage. This leads to economic loss because the sticky raw cotton is 

rejected during quality control [195,197]. In-line detection and subsequent removal of sticky cot-

ton would lead to an uninterrupted production and thus higher profit [191,198,199]. 

Several detection methods have been developed and applied to identify cotton contaminations 

and stickiness in ultraviolet (UV)-Vis/NIR spectroscopic applications as well as Vis/NIR hyper-

spectral imaging [103,115,141,200]. Most of them are off-line such as optical spectroscopy 

[103,201]. Identification of cotton and cotton trash components was studied by Fortier et al. [202] 

using FT-NIR spectroscopy. Mustafic et al. [161] examined the applicability of hyperspectral im-

aging to detect and classify cotton foreign matter in the visible spectral region, whereas the 

Vis/NIR region was studied by Jiang et al. [203]. Other methods, such as thermogravimetric anal-

ysis [162], high-pressure liquid chromatography (HPLC) and minicard [204], require an elaborate 

sample preparation, are time-consuming and expensive compared to optical spectroscopy. In-line 

detection and quantification of stickiness on cotton samples using NIR hyperspectral images was 

investigated by Severino et al. [199]. They were able to discriminate between glucose on cellulose 

and melezitose, trahalose, glucose, fructose, and sucrose at each pixel. 

Tschannerl et al. [86] compared hyperspectral imaging in UV and NIR regions to precisely dis-

criminate between phenolic flavor concentrations in melted barley. The rarely used UV region 

showed interesting results despite the illumination wasn't optimal. Previously, our group reported 

a hyperspectral imaging setup for the UV spectral region, this setup was used to distinguishing 

between different pharmaceutical drugs [19] as well as, for characterizing oxide layers thickness 

and copper states on direct bonded copper [53]. The results clearly showed that a spectral imager 

based on pushbroom technology has many advantages in terms of achieving fairly short UV op-

erational wavelengths and a high spectral resolution. However, hyperspectral imaging rapidly 

scans samples resulting in a large amount of spectral data within a short time period. Therefore, 

multivariate data analysis, such as principal component analysis (PCA) and partial squares re-

gression (PLS-R), are required to reduce the amount of data without losing important information. 

PCA reveals the most relevant information of a data matrix [38]. A combination between PCA 

and quadratic discriminant analysis (QDA) enables data classification and investigation of model 

quality parameters [65,205]. The information about the relation between a number of predictor 

variables and independent variables can be extracted by using PLS-R [206]. 
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The aim of this work is to develop a chemometric model able to identify and quantify the amount 

of honeydew on real cotton samples based on UV hyperspectral imaging. For this approach a 

reference sample set, which consists of honeydew typical sugars and proteins, was prepared. Me-

chanically cleaned cotton was soaked with solutions with different sugar concentrations. Chemo-

metric models, especially PCA and PLS-R, were developed based on UV hyperspectral imaging. 

PCA is used to classify the cotton samples according to their sugar concentration and PLS-R is 

applied to correlate the UV spectra with the sugar concentration. This PLS-R model successfully 

predicts the amount of honeydew in gram on real cotton samples. This work is considered as the 

first scientific work to identify and quantify the amount of honeydew contents at each pixel. 

Therefore, hyperspectral imaging is a suitable technique for in-line environment applications in a 

rapid and non-destructive manner.  

6.3 Materials and Methods 

6.3.1 Chemicals and preparation of solutions 

0.2 g of each macronutrient 1-6 was weighted and dissolved in 10 mL of deionized water (see 

Table 6.1). A six-fold serial dilution was prepared in 50 mL volumatric flasks. For each diluting 

step 25 mL of the previous solution and 25 mL of deionized water were mixed for 2 min (see 

Table 6.2). 
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Table 6.1: Description of the macronutrients and natural materials. 

Macronutrients 

and natural mate-

rials 

Samples Description Manufacture 
CAS Num-

ber 

1 Glucose 

D-Glucose anhydrous 

Laboratory reagent 

grade 

Fisher Scientific 

GmbH, Leics, UK 
50-99-7 

2 Fructose D-Fructose, 99.0 % 

ThermoFisher 

GmbH, Kandel, Ger-

many 

57-48-7 

3 Sucrose 
D-Sucrose, >=99.9 % 

For Molecular Biology 

Fisher Scientific 

GmbH, New Jersey, 

USA 

57-50-1 

4 Melezitose 
D-(+)-Melezitose mo-

nohydrate, >=99.0 % 

Sigma-Aldric Chemie 

GmbH, Steinheim, 

Germany 

10030-67-8 

5 Trehalose 
D- Trehalose anhyd-

rous, 99.0 % 

Acros Organics, New 

Jersy, USA 
99-20-7 

6 Protein 

Bovine Serum Albumin 

(BSA) fraction V, ly-

ophilized powder 

PAN-Biotech GmbH, 

Aidenbach, Germany 
9048-46-8 

6.3.2 Sample set and sample preparation 

The sample set consists of cleaned cotton to build the model and cotton samples contaminated by 

honeydew to test the model. 

The cotton samples for model building were collected from a bulk of cotton mechanically cleaned 

[207,208] from the Texoversum Faculty Textile at Reutlingen University. The cotton is a blend of 

different long staple Pima qualities. In total, 21 cotton samples were prepared with a weight of 

0.3 g ± 0.0001 g (XSE205 DualRange, Mettler Toledo GmbH, Switzerland). The samples were 

dried in a vacuum oven (Vacutherm VT 6130 M, Termo Fisher Scientific Inc., Waltham, Massa-

chusetts, USA) at 30 °C and 50 mbar for 8 h to remove absorbed humidity. The humidity was 

estimated by a commercially available sensor (Humidity-Detector MD, H. Brennenstuhl GmbH 

& Co. KG, Tübingen, Germany ). The weight loss is documented in Appendix Table 10.2. 4 mL 

macronutrients solution were used for each sample. Three samples per concentration were made 

(see Table 6.2). The samples were soaked in an aluminum plate (28 mL, Carl Roth GmbH+Co. 

KG, Karlsruhe, Germany). The samples were dried again in a vacuum oven at 30°C and 50 mbar 

for 44 h. By determining the remaining weight the average macronutrient content can be calcu-

lated for each sample (see Appendix Table 10.2). The humidity and temperature of the labatory 

were monitored (BL30, Klima-Datenlogger, Trotec GmbH, Heinsberg, Germany) during the 

whole workflow.  
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Comparable real cotton samples were collected by ICA Bremen GmbH (Bremen, Germany) to 

test the predictive power of the model. The samples were chosen according to their honeydew 

content in the steps light, strong and very strong. The samples origin is Sudan Acala (see Table 

6.3). 

Figure 6.1 shows the samples pressed in the sample holder prepared for measuring. The sample 

types are named from A to F and one mechanically cleaned (CLN) sample, where A has the 

highest concentration (2 wt%), and F has the lowest concentration (0.0625 wt%) (see Table 6.2). 

The average sugar content remaining on the samples after 44 h was calculated (see Table 6.2). 

For ease of reading, we omit the term macronutrients for the description of the solution of various 

sugars and the protein in the following, and replace it with the short-term "sugar" for the sample 

nomenclature. 

 
Figure 6.1: Overview of the samples pressed in the sample holder. For each concentration, three samples were prepared 

and measured at once (A to F and CLN). Real cotton samples with different honeydew contents (light, 

strong and very strong. 

A B C D E F

Very StrongStrongLight

CLN
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Table 6.2: The concentration of the sugar solutions and the weighted averaged sugar amount on cotton samples. 

Sample type Sugar concentration / wt % Ratio of: sugar / g dried cotton / g 

A 2 0.2593 

B 1 0.1331 

C 0.5 0.0743 

D 0.25 0.0386 

E 0.125 0.0326 

F 0.0625 0.0322 

CLN - - 

Table 6.3: The number of honeydew stickiness points on cotton samples. 

Stickiness Type Single measurments 
Average number of 

sticky points 
Sample 

Light 2, 11, 5 6 4301 

Strong 47, 45, 47 46 Sudan Girba Acala 3SG 

Very strong 60, 69, 80 70 Sudan Gezira Acala type 3SG 

6.3.3 UV hyperspectral imaging setup 

Figure 6.2a shows a scheme of the hyperspectral imaging setup. The pushbroom imager consists 

of a back-illuminated CCD camera (Apogee Alta F47: Compact, inno-spec GmbH, Nürnberg, 

Germany) and a spectrograph (RS 50-1938, inno-spec GmbH, Nürnberg, Germany) with a slit 

width of 30 µm. The CCD camera has a resolution of 1024 x 1024 pixel (spatial x spectral) and a 

pixel size of 13 µm x 13 µm. The optimal integration time was 300 ms. The conveyor belt (700 

mm × 215 mm × 60 mm, Dobot Magician, Shenzhen Yuejiang Technology Co., Ltd., Shenzhen, 

China) moves with a constant speed of 0.15 mm/s. The conveyor belt was located totally in a 

polytetrafluoroethylene (PTFE) (Sphereoptics GmbH, Herrsching, Germany) tunnel. The illumi-

nation was achieved by two Xenon lamps (XBO, 14 V, 75 W, OSRAM, München, Germany). 

Figure 6.2d shows a sample holder developed to reduce the influence of the topography of the 

samples. Therefore, a quartz glass made of suprasil 2 grade B with the dimension of 140 mm x 

80 mm x 1 mm (Aachener Quarzglas-Technologie Heinrich GmbH & Co.KG, Aachen, Germany) 

was used. PTFE was used as white reference.  

Figure 6.2(c-e) illustrates the principle and workflow of the data acquisition. Figure 6.2c presents 

the principle of hyperspectral imaging line scanning method which collects one line at a time, 

with all of the pixels in a line being measured simultaneously. The continuous line by line collec-

tion of spectral information results in a lateral (x, y) 2D image as shown in Figure 6.2d, whereas 

each location contains a further spectroscopic dimension (λ) as shown in Figure 6.2e. Thus, a 3D 

data matrix (hypercube) was recorded. 
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Figure 6.2: (a) Setup of a hyperspectral imaging system based on the pushbroom concept (the tunnel in the scheme was 

cut to show the inside). (b) Custom made sample holder consisting of quartz glass as sample cover and 

PTFE as reference. (c) Pushbroom imager scanning principle. (d) Hyperspectral image generated immedi-

ately from the scanning of a sample. (e) UV spectrum after preprocessing for one point extracted from the 

image given in (d). 

6.3.4 Data collection and preprocessing 

The UV hyperspectral imaging data were acquired by the SI-Cap-GB version V3.3.x.0 software 

(inno-spec GmbH, Nürnberg, Germany). The reflectance was calculated by the SI-Cap-GB auto-

matically after recording Ireference and Idark. Illumination conditions will vary between samples and 

even within samples across the scan line, especially for heterogeneous samples such as cotton 

with high scattering due to sample topography. A common method to reduce the influence of the 

sample topography is to convert the raw spectra of each pixel into reflectance spectra (radiometric 

calibration) using the following formula [19,21,37-39]: 

                          Reflectance = -log R/R0 = 
Isample − Idark

Ireference − Idark
 (6.1) 
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R and R0 are the intensities reflected from the sample and a specific reference material with high 

reflectivity, in this case PTFE. The intensity of the original image is represented in Isample. Accord-

ingly, the intensity of the dark current image is given by Idark and the intensity of the PTFE image 

is Ireference [20]. In order to enhance the absorption bands the negative decadic logarithm is calcu-

lated as -log (R/R0).  

Hyperspectral data matrices were analyzed by Evince version 2.7.13 (Prediktera AB, Tvistevä-

gen, Sweden). It is used for data handling and extracting the spectra of each pixel. For model 

building the sample set contains of 4896 pixel × 1024 pixel which represents approximately 5.0 

million spectra. One spectrum ranges from 225 nm to 410 nm including 1024 variables. With 

4464 pixel × 1024 pixel which represents approximately 4.6 million spectra the model was tested. 

In total, this results in approximately 15 GB of data size. Figure 6.3a shows an example of RGB 

hyperspectral images of cotton samples sprayed with different concentrations of sugar solution. 

A region of interest was selected by using a rectangular shape to extract the spectra (see Figure 

6.3b).  

 
Figure 6.3: Example of data extraction. (a) Hyperspectral raw images of 18 cotton samples sprayed with different 

concentrations of sugar (A highest to F lowest) and one cleaned cotton sample (CLN). For model building, 

all spectra were extracted manually. (b) Zoom-in-image of a cotton sample with the region of interest 

marked by a black rectangle. 

6.3.5 Multivariate data analysis and model building 

Multivariate data analysis (MVA) was performed with “Aspen UnscramblerTM, version 10.5.1” 

(Aspen Technology Inc., Bedford, MA, USA). The UV spectra were pretreated prior to the mul-

tivariate data analysis in the following way: Base line correction followed by a Savitzky-Golay 

smoothing (8 points, symmetric, 2nd polynomial order). The principal component analysis (PCA) 

models were calculated with mean centering, cross-validation, and NIPALS-algorithm. A partial 

least square regression (PLS-R) model for the sugar concentrations was created with mean cen-

tering, full cross-validation and Kernel-algorithm. All cotton samples of each concentrations have 

been used to develop the PLS-R model. The PLS-R model was tested by predicting the honeydew 

(a) (b) 
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content on the real cotton samples. Three different areas from these real cotton samples were also 

investigated by PCA with aforementioned settings. To show the quality of the model, PCA was 

combined with a quadratic discriminant analysis (QDA, 5 PCs). A fourth area was predicted by 

the PCA-QDA model. 

MATLAB (MATLAB 9.2.0, Mathworks, MA, USA) and PLS_Toolbox (PLS Toolbox 8.5.1, Ei-

genvector Research, Inc., Wenatchee, WA, USA) were used for presenting the data. 

6.4 Results and Discussion 

6.4.1 Cotton samples impregnated with sugar 

Cotton samples were investigated using hyperspectral imaging in the UV region (225 nm – 410 

nm). In total, 21 samples were measured. The reference sample set was created to get a proper 

model to predict the honeydew content on real cotton samples. Figure 6.4a shows the averaged 

absorbance spectra in terms of reflectance. A baseline correction was applied to eliminate the 

spectral offset due to scattering. In general, the spectral shapes of all samples are quite similar. 

The most dominant band is pronounced approximately at 332 nm and weak shoulder can be rec-

ognized at 346 nm (sh). An absorption band is observed at 261 nm. Two weak shoulders are 

remarked at 291 nm. Despite the efficiency of the detector and the weak intensity light source in 

the spectral region between 250-270 nm [19], the signal is less intense, but nevertheless contain 

useful spectroscopic information for the actual application. A prove of the remaining performance 

of the setup in this range is given in Appendix Figure 10.3. 

 

Figure 6.4: (a) Averaged UV spectra of cotton samples with sugar solutions in different concentrations: A (2 wt %, 

red), B (1 wt %, light green), C (0.5 wt %, blue), D (0.25 wt %, light blue), E (0.0125 wt %, pink), F 

(0.0625 wt %, yellow) and CLN (mechanically cleaned, dark green). PCA sugar model for the cotton 

samples with (b) scores and (c) corresponding loadings (PC1 black, PC2 red and PC4 blue). 
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Figure 6.4b and Figure 6.4c present the PCA model of the cotton samples with different concen-

trations of sugar. Figure 6.4b shows the scores plot for the first (68.0 %), second (22.0 %) and 

fourth (1.0 %) principal component (PCs). These PCs explain nearly 91.0 % of the total variance. 

The variance on PC3 is not necessary to distinguish between different sugar concentrations. For 

completeness, PC3 is displayed in supplementary materials Appendix Figure 10.2. Different sugar 

concentrations on cotton can clearly be distinguished by the PCA scores. The mechanically 

cleaned sample (CLN) is separated on PC2. PC4 shows the separation between the highest sugar 

concentration and the lowest concentration. Slight overlapping is observed due to inhomogeneity 

of the impregnation procedure for the samples with sugar. The overlap tendency increases from 

higher to lower concentrations as well as the variance within a sample increases with the concen-

tration. Each cluster overlaps with the two closest sugar concentrations (higher and lower). 

Figure 6.4c shows the loadings plot for PC1, PC2 and PC4. The strongest influence on PC1 is at 

330 nm. Most of PC1 describes the morphology of the fiber itself. PC2 has a minimum at 280 nm 

and a maximum at 380 nm. These bands are responsible for the separation of the CLN sample 

from the others and are distinguishing between the different concentrations. For PC4 a maximum 

contribution is observed at 285 nm. These bands can be assigned to the presence of protein (see 

also Appendix Figure 10.3) [141]. The most significant differences between those loadings are 

found in the spectral region between 290 nm and 380 nm. 

PLS-R is used for quantitative spectroscopic analysis. A PLS-R model was developed with a 

calibration sample set n = 21 to correlate the spectral information with the sugar concentration. 

Cotton samples (Table 6.2) were used for testing the performance of the model with a cross vali-

dation. 

The variance explained by the model for the X- and Y-variables was 84 % by using five factors. 

Accordingly, the five PLS factors were sufficient to describe the correlation between the spectra 

and the sugar content. The accuracy of the calibration and validation were evaluated using the 

coefficient of determination (R2) for the calibration (R2
c = 0.84) and cross validation (R2

cv = 0.84) 

model. The root mean square error of calibration (RMSEC = 0.009 g) and cross validation 

(RMSECV = 0.009 g) indicates the model performance. A high R2
c and R2

cv was achieved with 

an extremely low RMSEC and RMSECV. 

Figure 6.5 shows the PLS-R model for the cotton soaked in different concentrations of sugar in 

the UV region (200 nm – 380 nm). Figure 6.5a presents the correlation between reference vs. 

predicted, while the regression coefficients for the five factor model is shown in Figure 6.5b. For 
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model building and understanding the PLS-R factor loadings, loading weights for all five factors 

are displayed in the Appendix Figure 10.4. Sample E and sample F have similar ratios 0.0326 and 

0.0322 (sugar / g per dried cotton / g), respectively, due to the preparation procedure’s limit. 

Therefore, they are overlapping in the reference vs. predicted plot. A negative band at 263 nm 

and a positive band at 284 nm can be assigned to protein absorbance. An average spectrum of 

pure dried protein is shown in the supplementary materials (Appendix Figure 10.3). The protein 

information is pronounced in the spectra and mandatory for the model, even though the illumina-

tion and detector should be optimized [19]. From 300 nm – 400 nm several features are observed 

that cannot be related to a common reason. 

 
Figure 6.5: PLS-R model for different sugar concentrations in the UV region (225 nm – 410 nm). (a) Predicted vs. 

reference plot and (b) corresponding regression coefficients for the sugar content with a five factor PLS-

R model. 

6.4.2 Predicting the amount of sugar and honeydew based 
on the sugar PLS-R model 

The performance of the PLS-R model was tested by two methods. First, cleaned cotton samples 

were manually sprayed with aforementioned sugar concentrations to get a distribution of sugar 

droplets on the cotton surfaces. One benefit of hyperspectral imaging is to get the lateral infor-

mation. Therefore, the PLS-R model was used to predict the sugar content on the different sam-

ples, the result is shown in Figure 6.6. In the distribution map a clear lateral classification of the 

different sugar concentrations resulting in different ratios of sugar / g per dried cotton / g was 

achieved. From sample A to sample F the ratios decrease, CLN samples are not soaked in sugar. 

Each sample was prepared three times which are shown in the rows. Again, sample E and sample 

F are indistinguishable, due to the preparation procedure’s limit. Overall, the averaged predicted 

ratios decrease from samples A to samples CLN. The lateral inhomogeneities become visible 

through hyperspectral imaging. 

(b) (a) 
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Figure 6.6: Distribution maps of the sugar content predicted on the mechanically cleaned cotton samples, which are 

manually sprayed by sugar solution. The prediction of each pixel is based on the PLS-R sugar model. Each 

rectangle represents a single cotton sample: A (2 wt %), B (1 wt %), C (0. 5 wt %), D (0. 25 wt %), E 

(0.125 wt %), F (0.0625 wt %) and CLN (mechanically cleaned). The colored pixels (see the score value 

range) represent the sugar content, from low (blue) to high (red). 

Second, the PLS-R model was used to predict the honeydew content for each pixel of the real 

cotton types labeled: light, strong and very strong. In Figure 6.7, the resulting distribution maps 

are shown. As described for Figure 6.6, the distribution map shows a clear lateral classification 

of different ratios of sugar / g per dried cotton / g. The amount of sugar highly correlates with the 

amount of honeydew. Honeydew consists of different types of sugars and proteins [209]. From 

the very strong samples to the light samples the ratios decrease. Three samples per type were 

collected are given in the rows. 

Therefore, in Figure 6.7 red and blue pixels represent high and low concentrations of honeydew, 

respectively. As expected, the light sample displays a low honeydew concentration, while the 

other two samples show an increase in the laterally resolved honeydew concentration. Compared 

to the samples shown in Figure 6.6 the real samples show a more heterogeneous distribution of 

honeydew on the samples. Even in the strong and very strong samples regions can be found where 

almost no honeydew is present. This can be seen in the presence of blue pixels on the distribution 

map of the very strong and strong samples. 
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Figure 6.7: Distribution maps of the sugar content predicted on the real cotton samples, which are contaminated by 

honeydew. The prediction of each pixel is based on the PLS-R sugar model. Each rectangle represents a 

single cotton sample ((a) very strong, (b) strong, (c) light). The colored pixels (see the score value range) 

represent the sugar content, from low (blue) to high (red). 

6.5 Conclusions 

In summary, this proof of principle study has successfully demonstrated the identification and 

quantification of honeydew on real cotton samples by combining UV hyperspectral imaging 

(225 nm – 410 nm) with multivariate data analysis. For this novel approach, a reference sample 

set was created based on mechanically cleaned cotton which has been impregnated with honey-

dew typical sugar and protein solutions for further UV hyperspectral imaging investigations. The 

PCA model enables to classify the cotton samples according to their sugar concentration. A PLS-

R model was created that is able to predict laterally resolved the sugar/honeydew content pixel 

by pixel. This is shown for reference samples and for real cotton samples that were labeled as 

light, strong and very strong contaminated by honeydew. The lateral distribution of the ratio of 

sugar / g per dried cotton / g per pixel giving a deeper insight into the distribution of honeydew 

on real cotton samples. 

To the best of our knowledge, this is the first scientific work reporting the identification, quanti-

fication and distribution of the amount of honeydew content by UV hyperspectral imaging. This 

approach may provide an advantage in the industrial environment in the practical process appli-

cation and commercialization in the future. It enables to control the honeydew contamination in 

the industrial processing of cotton fibers in real time. Hence, each cotton batch, independent of 

the honeydew amount, can be manufactured to minimize waste and costs. 

(c) (b)

) 

(a) 
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7.1 Abstract 

Cotton contamination by honeydew is considered one of the significant problems for quality in 

textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in losses are 

attributed to honeydew contamination each year. This work presents the use of UV hyperspectral 

imaging (225–300 nm) to characterize honeydew contamination on raw cotton samples. As ref-

erence samples, cotton samples were soaked in solutions containing sugar and proteins at different 

concentrations to mimic honeydew. Multivariate techniques such as a principal component anal-

ysis (PCA) and partial least squares regression (PLS-R) were used to predict and classify the 

amount of honeydew at each pixel of a hyperspectral image of raw cotton samples. The results 

show that the PCA model was able to differentiate cotton samples based on their sugar concen-

trations. The first two principal components (PCs) explain nearly 91.0% of the total variance. A 

PLS-R model was built, showing a performance with a coefficient of determination for the vali-

dation (R2
cv) = 0.91 and root mean square error of cross-validation (RMSECV) = 0.036 g. This 

PLS-R model was able to predict the honeydew content in grams on raw cotton samples for each 

pixel. In conclusion, UV hyperspectral imaging, in combination with multivariate data analysis, 

shows high potential for quality control in textiles 

7.2 Introduction 

Cotton is widely regarded as an essential natural material in various textile products, from fabrics 

to clothing [210,211]. It is considered one of the most imported and exported materials worldwide 

[141]. Therefore, the assessment of the cotton quality is needed. Cotton contamination is one of 

the most significant problems for quality [93,95,97,108,114,115,210,212]. The most relevant impu-

rities in raw cotton arise from insects producing honeydew. Honeydew is sugar-rich, excreted by 

whiteflies and aphids, causing stickiness during manufacturing [213,214]. Therefore, it can cause 

problems during processing, and the final product shows low quality. Modern techniques and 

methods have appeared due to the increasing demand for higher processing and quality control. 

These include off-line methods such as thermogravimetric analysis and single point spectroscopy. 

However, these techniques are slow and time-consuming [36,91,103,162,168,173,201]. In contrast, 

in- and on-line methods, such as hyperspectral imaging, are non-destructive and rapid, enabling 

real-time data acquisition and analysis [141]. Hyperspectral imaging is a type of spectroscopic 

imaging that allows for collecting and analyzing massive data spanning a wide wavelength range. 

It involves both spectral and spatial information with high resolution. Hyperspectral imaging gen-

erates large amounts of data, requiring multivariate data analysis techniques such as principal 
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component analysis (PCA) and partial least squares regression (PLS-R) [54]. PCA can identify 

and visualize groups within data clusters, while PLS-R is used to build quantitative models and 

generate data clusters. It is also helpful for evaluating the robustness of these models, making it a 

powerful tool for data analysis. Combining these two techniques is often required to analyze and 

interpret the results of high-resolution hyperspectral imaging effectively [19,21,22,53,115,141]. In 

a previous study, we developed a method using UV imaging to predict honeydew quantity on 

cotton samples. The approach involves using a xenon-arc lamp to quantify the amount of honey-

dew in the UV-A and UV-B ranges. However, it could not accurately detect it in UV-C due to the 

lamp's intensity limitations [54]. In this study, we overcome this limitation by using a deuterium 

lamp as light source. Mechanically cleaned cotton was soaked with a sugar and protein containing 

solution at different concentrations that are typical for honeydew. Chemometric models such as 

PCA and PLS-R were established using UV hyperspectral images. Cotton samples were catego-

rized by sugar concentration using PCA, while PLS-R was used to correlate UV spectra with 

sugar concentration. The PLS-R model accurately predicted the amount of honeydew in grams 

on the raw cotton samples. 

7.3 Materials and Methods 

7.3.1 Chemicals and preparation of solutions and samples 

The sugar and protein solutions applied to the cotton samples were formulated to mimic natural 

honeydew [208,215,216]. 0.2 g of each macronutrient (glucose, fructose, sucrose, melezitose, tre-

halose, and protein) was weighed and dissolved in 10 mL of deionized water. A six-fold serial 

dilution was prepared in 50 mL volumetric flasks by mixing 25 mL of the previous solution with 

25 mL of deionized water for 2 minutes at each dilution step (Table 7.1).  

In total, 24 mechanically cleaned cotton samples were prepared with a weight of 0.3 g ± 1 mg of 

each sample. The samples were dried in a vacuum oven (Vacutherm VT 6130 M, Thermo Fisher 

Scientific Inc., Waltham, MA, USA) at 30 °C and 50 mbar for 8 h to remove absorbed humidity. 

4 mL of the aforementioned solution was used for soaking three samples per concentration. The 

samples were dried again in a desiccator at room temperature for one month. 

Raw cotton samples were collected by ICA Bremen GmbH (Bremen, Germany) to test the model's 

predictive power. The samples were chosen according to their honeydew content in the steps light, 

strong, and very strong [54,211]. The sample types are named from A to F, and one mechanically 

cleaned (CLN) sample, where A has the highest concentration of sugar and protein solution 
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(4 wt%), and G has the lowest concentration (0.0625 wt%) (Table 7.1). The average ratio of sugar 

mass to dried cotton mass (msugar/mcotton) remaining on the samples was calculated after drying the 

sample for one month (Table 7.1). The term macronutrients is omitted to describe the solution 

and replaced with the short-term "sugar" for the sample nomenclature. 

Table 7.1: The sugar solution concentration and the weighted average sugar on cotton samples. 

Sample type Sugar concentration / wt % msugar/mcotton 

A 4 0.4249 

B 2 0.2413 

C 1 0.1194 

D 0.5 0.0609 

E 0.25 0.02313 

F 0.125 0.0126 

G 0.0625 0.0143 

CLN - - 

7.3.2 UV hyperspectral imaging setup and data processing  

Compared to our previous studies [19,53,54], the illumination of the hyperspectral imaging setup 

was modified; now a deuterium lamp (SL 3, StellarNet Inc, 24 V, 65.04 W, Tampa, Florida, USA) 

is used, providing a higher illumination strength in UV-C region compared to the xenon-arc lamp 

(e.g around 230 nm the intensity difference for deuterium illumination higher than xenon-arc 

lamp ). Thus, the PTFE tunnel covering the convey belt for increasing the illumination strength 

was no longer necessary. 

Multivariate data analysis was acquired with “Aspen UnscramblerTM, version 10.5.1” (Aspen 

Technology Inc., Bedford, MA, USA).  The PCA model was calculated with mean centering, 

cross-validation, and the NIPALS algorithm. A PLS-R model for the sugar concentrations was 

processed with mean centering, category variable with eight segmented cross-validations, and the 

Kernel algorithm. 

7.4 Results and Discussion 

The averaged absorbance spectra in terms of reflectance after a linear baseline correction are 

shown in Figure 7.1a. The spectra show an almost linear decrease in the reflectivity for all sugar 

concentrations. In the range of 275 nm and 295 nm are broad bands showing clear dependences 

on the sugar concentration. These bands can be assigned to protein, cellulose, and lignin. A much 

weaker band between 230–255 nm corresponds to the presence of pectin and DNA [217-221]. 
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Figure 7.1: (a) Averaged spectra recorded via UV hyperspectral imaging of raw cotton samples with sugar solutions in 

different concentrations: A (4 wt %), B (2 wt %), C (1 wt %), D (0.5 wt %), E (0.25 wt %), F (0.125 wt 

%), G (0.0625 wt %), and CLN (mechanically cleaned). PCA sugar model for the cotton samples with (b) 

scores on the first principal component (PC1) and second principal component (PC2) and (c) correspond-

ing loadings. 

Figure 7.1b,c present the cotton samples' PCA model at each sample pixel with different sugar 

concentrations. Figure 1b shows the scores plot for the first (79.0%) and second (12.0%) principal 

components (PCs). These PCs explain nearly 91.0% of the total variance.  

The PCA scores enable to distinguish different sugar concentrations on cotton. On PC1, high 

sugar concentrations are separated from low concentrations, while on PC2, the mechanically 

cleaned sample (CLN) shows distinct separation from the sample with high sugar concentrations. 

Moreover, different sugar concentrations on cotton can clearly be distinguished by the PC2. An 

overlap naturally results from the preparation method chosen which results in a certain inhomo-

geneity. With decreasing concentration, the degree of overlap between samples increases together 

with the variance within the sample. Each cluster shows overlap with the two nearest sugar con-

centrations (higher and lower). Figure 7.1c shows the loadings plots for PC1 and PC2. The most 

significant differences between those loadings are found between 250 nm - 280 nm in the spectral 

region. The maximum influence on PC1 at 250 nm and the minimum at 283 nm. Most of PC1 

describes a clear dependence on the concentrations of sugar on the cotton samples. PC2 has a 

maximum at 249 nm and a minimum at 282 nm. These bands represent the chromophores, pectin, 

and DNA in the cotton fibers [217,222].  

PLS-R was utilized as a technique for quantitative spectroscopic analysis. A PLS-R model was 

developed using a calibration sample set of 24 samples to establish a correlation between the 

spectral information and the sugar content. The PLS-R model's performance was tested using 

cotton samples (Table 7.1) with different concentrations of sugar solutions. 

The PLS-R model for the X- and Y-variables explained 91% of the variance. Five PLS-R factors 

were sufficient to describe the correlation between the spectra and sugar content. The accuracy of 
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the calibration and validation were evaluated using the coefficient of determination (R2) for the 

calibration (R2
c = 0.9) and validation (R2

cv = 0.91) model. The quality of the models were evalu-

ated according to values of the error of calibration, RMSEC = 0.03 g, and the error of cross-

validation, RMSECV = 0.036 g. High R2
c and R2

cv values are achieved with extremely low 

RMSEC and RMSECV values.  

Figure 7.2 presents the PLS-R model for cotton samples soaked with different concentrations of 

sugar. For model building and understanding the PLS-R factor loadings, loading weights for all 

three factors are displayed in the supplementary materials Appendix Figure 10.5. Figure 7.2a dis-

plays the correlation between the predicted and reference values, whereas the regression coeffi-

cients for the three-factor model are illustrated in Figure 7.2b. Samples F and G have similar 

ratios, 0.0324 and 0.0321 (msugar/mcotton), hence they overlap in the regression coefficients plot. 

Two negative bands at 235 nm and 282 nm and one positive band at 250 nm can be assigned to 

protein and pectin absorbance [141,217].  

 
Figure 7.2: Five-factor PLS-R model for different sugar contents in the UV region (225 nm – 300 nm). (a) Predicted 

vs. reference plot and (b) corresponding regression coefficients. 

The PLS-R model was used to predict the honeydew content for each pixel of a hyperspectral 

image. Three raw cotton samples of three grades of honeydew contamination (very strong, strong, 

and light) were collected, and the resulting distribution maps are shown in Figure 7.3. The distri-

bution maps present a clear lateral classification of different ratios of msugar/mcotton, and the pre-

dicted ratios decrease from the very strong samples to the light samples. The sugar content is 

highly correlated with the honeydew amount [217]. The analysis reveals a highly variable distri-

bution of honeydew across all samples. Some regions present minimal contamination, while oth-

ers, including areas/pixels in the light samples, exhibit up to 0.1 msugar/mcotton ratio, comparable to 

those found in very strong samples. The observed inhomogeneity in honeydew distribution sug-

(b) (a) 
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gests that our soaking method for the sugar solution is a realistic approach, as it induces a com-

parable level of variability. However, the inhomogeneity seems to be even higher in the raw sam-

ples, as shown in Figure 7.3. 

 
Figure 7.3: Distribution maps of the sugar content predicted for each pixel of the UV hyperspectral imaging data from 

the five-factor PLS-R model on the raw cotton samples contaminated by honeydew. Each rectangle repre-

sents a single cotton sample ((a) very strong, (b) strong, (c) light). The colored pixels (see the score value 

range) represent the sugar content, from low (blue) to high (red). 

7.5 Conclusions 

UV hyperspectral imaging (225–300 nm) was combined with multivariate data analysis to suc-

cessfully identify and quantify honeydew on raw cotton samples. Therefore, a reference sample 

set based on cotton samples was prepared and imaged in UV.   

 The samples were soaked with solutions containing sugar and proteins at different concentrations 

to mimic honeydew. A PCA model enabled the classification of the cotton samples according to 

their sugar concentrations. The PLS-R model was able to predict laterally resolved honeydew 

content pixel by pixel in grams on raw cotton samples. The analysis reveals that the raw cotton 

samples have an inhomogeneous distribution of honeydew. Therefore, the chosen soaking method 

closely approximates the distribution patterns observed in the raw samples. The results were ob-

tained by analyzing samples labeled as light, strong, and very strong contaminated with honey-

dew. This combination of hyper-spectral imaging with multivariate data analysis represents a high 

potential technique for detecting honeydew contamination in real-time.  

(c) (b)

) 

(a) 
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Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1. X-loading weights and x-loadings for factor 1 (a, b), factor 2 

(c, d), and factor 3 (e, f), respectively. 
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8 Conclusion and Summary 

In the first part of this thesis presented the application of UV hyperspectral imaging for the char-

acterization of active pharmaceutical ingredients (APIs) in tablets. Two sets of samples were an-

alyzed: one set containing tablets with 100% API content and another set consisting of commer-

cially available painkiller tablets. The results demonstrated that UV hyperspectral imaging, 

combined with PCA, is a promising approach for detecting and differentiating different drug sam-

ples. The PCA models generated were able to effectively separate and classify the various drug 

types based on their spectral characteristics. In particular, the first two PCs captured most of the 

spectral variance and allowed for clear discrimination between the samples. The advantage of the 

home-built UV hyperspectral imaging setup used in the study was its spatial and spectral resolu-

tion and data acquisition speed sufficient for scientific purposes. The results obtained from this 

setup suggest that it can be easily adapted to meet the requirements of real industrial processes. 

The comparison between the hyperspectral imaging results and reference measurements per-

formed using a commercial UV spectrometer indicated that while the hyperspectral imaging data 

provided valuable information, there were some limitations. The sensitivity and efficiency of the 

hyperspectral imaging setup were lower in the wavelength range below 275 nm, resulting in less 

reliable spectroscopic information in that region. However, despite this limitation, combining UV 

hyperspectral imaging and chemometric modeling enabled accurate classification and separation 

of the different drug samples. Overall, the study demonstrated the potential of UV hyperspectral 

imaging as a tool for rapid and non-destructive characterization of pharmaceutical tablets. The 

technique has implications for quality control, process monitoring, and real-time release testing 

in industrial settings. Further advancements in UV hyperspectral imaging technology and data 

analysis methods are expected to enhance its applications in the pharmaceutical industry.  

To confirm the effectiveness of hyperspectral imaging, 28 direct bonded copper samples were 

characterized to determine the oxidation states of copper and measure the thickness of the oxide 

layer in the UV region. Single-point UV spectroscopy was used as a basis of comparison for the 

results obtained from the UV hyperspectral imaging setup. The results showed that UV hyper-

spectral imaging, in combination with PCA and PLS-R, offered a promising approach for detect-

ing and differentiating copper states and measuring oxide layer thickness with lateral resolution. 

PCA models effectively separated the different types of direct bonded copper based on their cop-

per states and oxide layer thicknesses using only the first two PCs. With three factors, the PLS-R 
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models exhibited high coefficients of determination (R2) and low RMSE for calibration, cross-

validation, and prediction. The models successfully correlated the spectral features with the oxide 

layer thickness. Notably, this study is the first to report the identification and quantification of 

copper oxide thin films using UV hyperspectral imaging. The UV hyperspectral imaging setup 

utilized in this study offered a high spatial and spectral resolution, along with relatively fast data 

acquisition under laboratory conditions. The design and data presented in this study provide a 

foundation for developing a UV hyperspectral imaging setup that meets the requirements of real 

industrial processes. Overall, this study demonstrated the efficacy of UV hyperspectral imaging 

and UV reflectance spectroscopy in characterizing direct bonded copper samples, paving the way 

for future applications in industrial processes for real-time data acquisition, process control, and 

in-line classification. 

In the second part of this thesis, it was demonstrated that the integration of UV-Vis/NIR reflec-

tance spectroscopy and hyperspectral imaging, coupled with PCA, offers a powerful technique 

for detecting and differentiating raw cotton types. It was determined that the most crucial infor-

mation for distinguishing cotton types was present in the UV and NIR spectra. In the UV range, 

the most significant factor was identified as the protein contribution at 280 nm, while the key 

contributors to absorbance in the NIR range were CH3 vibrations at 1775 nm and ROH vibrations 

at 1500 nm.  PCA analysis of the spectral data successfully classified all cotton varieties, with the 

first two PCs accounting for the maximum data variance. Moreover, the investigation revealed 

that the most dominant absorbance corresponding to CH3 and ROH in the case of NIR hyperspec-

tral imaging occurred at 2270 nm and 1525 nm, respectively. Two methods were employed to 

process the substantial data generated, facilitating the differentiation of all cotton varieties. The 

rugged online home-built setup used in the study presented benefits such as spatial/spectral reso-

lution and rapid data collection, enabling the assessment of multiple samples in a brief period and 

at a low cost. In conclusion, based on the provided data, it is feasible to develop a streamlined 

chemometric model that adheres to the demands of real-world industrial processes while main-

taining suitable standards and accuracy. This approach could offer a practical and cost-effective 

means of distinguishing between various raw cotton types, potentially having considerable impli-

cations for the textile industry. 

In the third part, UV hyperspectral imaging and multivariate data analysis techniques were suc-

cessfully utilized to identify, quantify, and spatially resolve honeydew content on cotton samples. 

The aim is to address the need for real-time control of honeydew contamination in the industrial 

processing of cotton fibers. A total of 21 cotton samples labeled A to F and one mechanically 
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cleaned (CLN) were prepared by soaking in sugar with different concentrations ranging from 2 

wt % to 0.0625 wt %. These samples were used as reference samples to create a dataset for the 

UV hyperspectral imaging investigations. Additionally, real cotton samples were chosen accord-

ing to honeydew contents in the steps of light, strong, and very strong. These samples were uti-

lized to assess the performance of the developed models. The honeydew contamination was 

achieved by exposing the cotton samples to honeydew typical sugar and protein solutions in real-

world simulating conditions. The results showed that UV hyperspectral imaging, in combination 

with PCA and PLS-R, offered a promising approach for predicting the amount of honeydew con-

taminated on real cotton. PCA is applied to classify the cotton samples based on their sugar con-

centrations. The PCA model effectively separates samples with different sugar concentrations, 

allowing for accurate classification. 

Additionally, the model reveals the spectral regions that significantly contribute to the classifica-

tion, such as those associated with fiber morphology and protein presence. To achieve quantitative 

analysis, a PLS-R model is developed. The PLS-R model establishes a strong correlation between 

spectral information and sugar concentration, enabling accurate sugar content prediction on ref-

erence and real cotton samples. This predictive capability provides valuable insights into the dis-

tribution of honeydew on cotton samples. 

The study emphasizes the novelty of its findings, as it is the first scientific work to report the 

identification, quantification, and distribution mapping of honeydew content using UV hyper-

spectral imaging. The spatial mapping of sugar concentrations and honeydew contamination on 

cotton samples provides a deeper understanding and control over honeydew contamination in the 

industrial processing of cotton fibers. Overall, this research holds promise for practical applica-

tions in the industry by enabling real-time control of honeydew contamination, optimizing man-

ufacturing processes, and minimizing waste. The combination of UV hyperspectral imaging and 

multivariate data analysis techniques offers a powerful approach for efficiently and accurately 

assessing honeydew contamination on cotton samples. Further exploration of this methodology 

on a larger scale and its potential application to other agricultural products could enhance produc-

tivity and sustainability across various industries. 

Finally, The UV hyperspectral imaging prototype underwent modifications compared to previous 

studies. Specifically, a deuterium lamp was utilized as the illumination source, providing higher 

illumination strength in the UV-C region compared to the previous xenon-arc lamp, eliminating 

the need for a PTFE tunnel to increase illumination strength. These modifications enhanced the 

performance and accuracy of the hyperspectral imaging system for honeydew detection on cotton 
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samples. Therefore, applying UV hyperspectral imaging combined with multivariate data analysis 

techniques, PCA and PLS-R, proved an effective method for identifying and quantifying honey-

dew contamination on raw cotton samples. By creating a reference sample set that mimicked 

honeydew using sugar and protein solutions at different concentrations, the UV hyperspectral 

imaging system was able to capture and analyze the spectral information of the cotton samples. 

The PCA model showed the ability to differentiate cotton samples based on their sugar concen-

trations, providing a means for categorizing the contamination levels. On the other hand, the PLS-

R model demonstrated strong performance in predicting and quantifying the honeydew content 

in grams on a pixel-by-pixel basis. The model achieved a high accuracy with an R2 of 0.91 and 

low RMSECV = 0.036 g. 

The results revealed the presence of distinct spectral bands within the UV range (225 nm – 300 

nm) that were correlated with sugar concentration and indicative of honeydew contamination. The 

distribution maps generated by the PLS-R model showed lateral classification of different sugar 

ratios and revealed the inhomogeneity of honeydew distribution on the raw cotton samples. The 

spraying and soaking method employed to simulate honeydew contamination proved realistic and 

induced comparable levels of variability in the samples. 

Overall, this study demonstrates the potential of UV hyperspectral imaging combined with mul-

tivariate data analysis as a rapid and non-destructive technique for quality control in textiles. Ac-

curately identifying and quantifying honeydew contamination on raw cotton samples can signifi-

cantly improve the quality and processing of cotton in the textile industry, thereby reducing the 

financial losses associated with such contamination. Further research and optimization of the 

technique may enhance its applicability and broaden its potential for other quality control appli-

cations in textiles and beyond. 
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10 Appendix 

10.1 Supplementary Information for Paper II: UV 
Hyperspectral Imaging as Process Analytical 
Tool for the Characterization of Oxide Layers 
and Copper States on Direct Bonded Copper 

Diffuse reflectance spectra of the copper powders were recorded in the range of 200 nm – 380 nm 

using a commercial UV spectrometer (Lambda 1050+, PerkinElmer, Inc., Waltham, MA, USA). 

The spectrometer was equipped with a 150 mm Spectralon® integrating sphere to acquire data in 

reflection mode with an R6872-Photomultiplier (PMT). A deuterium lamp was used as light 

source in the spectrometer. A 10 mm quartz SUPRASIL® cuvette (QS, 100-10-40, Hellma, Müll-

heim, Germany) was used for measuring the copper powder see Table 10.1. The filled cuvette 

was placed at the reflectance port of the integrating sphere. The port measuring area is approxi-

mately 4.9 cm². 

 
Figure 10.1: Reference spectra for the copper Cu0, Cu2O and CuO by using UV spectrometer). 
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Table 10.1: Description of the direct bonded copper substrates and their sample preparation. 

Sample type Description Manufacturer 
Article 

Number 

Cu 

Copper, powder, 

electrolytically pro-

duced 

Merck KGaA, Darmstadt, 

Germany 
2715 

Cu2O 
Copper (I) oxide 

powder, red 

Riedel-de Haën AG, Seelze, 

Germany 
12841 

CuO 

Copper (II) oxide 

powder, heavy, 

powder, technical 

Riedel-de Haën AG, Seelze, 

Germany 
12867 

 

10.2 Supplementary Information for Paper IV: 
Prediction of Honeydew Contaminations on 
Cotton Samples by In-Line UV Hyperspectral 
Imaging 

10.2.1 Cotton sample preparation 

All details and measured values of the reference sample set are given in Table 10.2.  
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Table 10.2: Description of the direct bonded copper substrates and their sample preparation. 

Sample 

type 

Sugar 

concent-

ration / 

wt  

Cotton 

weight / g 

 (± 0.0001 g) 

Cotton 

weight / g af-

ter dried at 

30 °C, 8 h 

 (± 0.0001 g) 

Hu-

mid-

ity / 

% 

after 

dried 

at 

30 °C, 

8 h 

Soaked 

cotton 

weight / g 

after dried 

at 30 °C, 

44 h  

(± 

0.0001 g) 

Humid-

ity / % 

after 

dried 

at 

30 °C, 

44 h 

Amount 

of sugar 

on cotton 

/ g 

Ratio 

of 

sugar / 

g 

dried 

cotton 

/ g 

A1 2 0.3 0.2879  53.7 0.3734 50.0 0.0855 

A2 2 0.3 0.2925  53.5 0.3643 50.0 0.0718 

A3 2 0.3 0.2914  53.3 0.3600 50.0 0.0686 

B1 1 0.3 0.2917  54.2 0.3295 50.0 0.0378 

B2 1 0.3 0.2931  54.7 0.3291 50.0 0.0360 

B3 1 0.3 0.2913  54.2 0.3341 50.0 0.0428 

C1 0.5 0.3 0.2916  55.2 0.3142 50.0 0.0226 

C2 0.5 0.3 0.2929  55.6 0.3137 50.0 0.0208 

C3 0.5 0.3 0.2992  55.7 0.3215 50.0 0.0223 

D1 0.25 0.3 0.2925  56.0 0.3050 51.0 0.0125 

D2 0.25 0.3 0.2928  56.2 0.3030 51.0 0.0102 

D3 0.25 0.3 0.2921  56.2 0.3033 51.0 0.0112 

E1 0.125 0.3 0.2908  56.5 0.2979 50.5 0.0071 

E2 0.125 0.3 0.2819  56.9 0.2915 50.0 0.0096 

E3 0.125 0.3 0.2899  57.2 0.3013 49.9 0.0114 

F1 0.0625 0.3 0.2903  57.4 0.2997 50.7 0.0094 

F2 0.0625 0.3 0.2899  57.6 0.2990 49.9 0.0091 

F3 0.0625 0.3 0.2823  57.7 0.2915 49.7 0.0093 

CLN1 0 0.3 0.2984  57.7 - - - 

CLN2 0 0.3 0.2991  57.9 - - - 

CLN3 0 0.3 0.2894  58.1 - - - 

 

10.2.2 Additional figures of the principal component 
analysis of the sugar cotton samples  

For the PCA model of the cotton samples with different concentrations of sugar four PCs are 

necessary. The variance on PC3 is not necessary to distinguish between different sugar concen-

trations. The information on PC3 might be related to the morphology of the fiber itself. PC1 

against PC2, PC3 and PC4 are shown respectively in Figure 10.2 to complement the PCA sugar 

model. 
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Figure 10.2: PCA sugar model for the cotton samples with (a,c,e) scores and (b,d,f) corresponding loadings (PC1 black, 

PC2, PC3 and PC4 red). 

10.2.3 Pure dried protein spectrum 

Protein spectra were acquired to identify the information in the range of 250 nm to 280 nm. The 

protein was solved in distilled water and the solution was dropped on a piece of PTFE. After-

wards, the sample was dried in a vacuum oven (see 6.3.2). Data was acquired with the hyperspec-

tral imaging setup with the settings mentioned in 2.3 and 2.4. This experiment was necessary to 
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verify the spectral range between 250 nm and 280 nm contains true information and is not an 

artifact due to the efficiency of the detector and the weak intensity light source in the UV range 

[2]. 

 
Figure 10.3: Mean spectrum of pure dried protein on PTFE. 

10.2.4 X-loadings weights and x-loadings of the PLS-R 
model 

For model building and understanding the PLS-R factor loadings and loading weights for all five 

factors are displayed in the Figure 10.4.  

 

(b) (a) 
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Figure 10.4: X-loadings weights and x-loadings for factor 1 (a, b), factor 2 (c, d), factor 3 (e, f), factor 4 (g, h) and 

factor 5 (i, j), respectively. 

 

10.3 Supplementary Information for Paper V: 
Applying UV Hyperspectral Imaging for 
Quantification of Honeydew Content on Raw 
Cotton via PCA and PLS-R Models 

For model building and understanding the PLS-R factor loadings and loading weights for all three 

factors are displayed in the Figure 10.5. X-loadings reflect the relationship between the predictor 

variables and the latent variables, while X-loadings weights represent the relationship between 

the predictor variables and the response variable. Both X-loadings and X-loadings weights play 

important roles in PLS-R for variable selection, model interpretation, and prediction. 

 

 

(j) (i) 

(b) (a) 
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Figure 10.5: X-loadings weights and x-loadings for factor 1 (a, b), factor 2 (c, d) and factor 3 (e, f), respectively.

(d) (c) 

(f) (e) 
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