
An Event Generator for Deep
Inelastic Scattering within the
POWHEG BOX Framework

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Felix Reichenbach

aus Leipzig

Tübingen
2023



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 15.03.2024

Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatterin: Prof. Dr. Barbara Jäger
2. Berichterstatter: Prof. Dr. Werner Vogelsang



Abstract

The ultimate goal of the field of particle physics is to find a theory that
fully describes nature. The Standard Model (SM) comes closest to achieve
this goal. It successfully describes many phenomena, but it fails to explain
everything. A lot of resources are spent to expand the SM to a more com-
plete theory. Therefore, the predictions of the SM must be known with very
high precision in order to detect its limitations. Experiments with particle
accelerators have proven to be promising in the past to detect new physics,
such as the latest discovery of the Higgs boson. In the near future, a new
particle accelerator, the Electron-Ion Collider (EIC), will be built, requiring
theoretical high-precision predictions.

This work presents a new event generator for deep inelastic scattering,
the main process at the EIC. With this new tool, events can be generated at
next-to leading order in quantum chromodynamics and matched to parton
showers. It is an extension to the POWHEG BOX framework, and hence uses the
positive weight hardest emission generator (POWHEG) method. Initially,
the POWHEG BOX framework was designed for hadron-hadron collisions. The
different kinematics of lepton-hadron collisions require substantial changes
to the existing implementations present in the POWHEG BOX. Specifically, the
momentum mappings in the implementation of the Frixione, Kunszt and
Signer (FKS) subtraction mechanism are reworked.

Theory predictions, obtained from the new event generator, are presented
and compared to data collected at Hadron-Elektron-Ring-Anlage (HERA).
Additionally, a phenomenological study for the experimental setup of the
future EIC is shown.

The developed event generator provides a starting point for future studies
of other processes observable at the EIC that share similar kinematic features.
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Kurzzusammenfassung

Ziel der Teilchenphysik ist es, ein Modell theoretisch zu formulieren und
experimentell zu bestätigen, das die Natur erfolgreich beschreibt. Das Stan-
dardmodell kommt diesem Ziel bisher am nächsten. Es ist in der Lage,
viele Phänomene mit großer Genauigkeit zu beschreiben, lässt aber noch
einige Beobachtungen unerklärt. Es wird intensiv daran gearbeitet, das Stan-
dardmodell zu erweitern. Dazu muss unteranderem die Präzision theoretis-
cher Vorhersagen immer weiter verbessert werden. Nur dann können Ab-
weichungen zu Experimenten bestimmt werden, um Raum für neue Physik
zu finden. Experimente an großen Teilchenbeschleunigern haben sich als
effektive Methode erwiesen, um neue physikalische Effekte nachzuweisen.
So wurde das Higgs-Teilchen am Large Hadron Collider entdeckt. In na-
her Zukunft wird ein neuer Teilchenbeschleuniger, der Electron-Ion-Collider
(EIC), gebaut werden. Dieser ermöglicht eine genauere Bestimmung von ex-
perimentell Größen als es zuvor möglich war. Im Gegenzug wird es von der
theoretischen Seite erforderlich sein, die Unsicherheiten im gleichen Maße
zu verringern.

Diese Arbeit präsentiert einen neuen Ereigninsgenerator für die tiefin-
elastische Streuung, welche der Hauptprozess des neuen EIC sein wird. Mit
diesem neuen Werkzeug können Streuereignisse bis zur nächst-führenden
Ordnung (NLO) in der Quantenchromodynamik (QCD) erzeugt werden und
an einen Parton Shower weitergegeben werden. Dieser Generator wurde als
Erweiterung des POWHEG BOX Frameworks entwickelt und benutzt folglich die
POWHEG Methode. Die Kinematik von Lepton-Hadron-Kollisionen un-
terscheidet sich grundlegend von Hadron-Hadron-Kollisionen. Dies macht
tiefgehende Modifikationen an der Implementation der bestehenden
POWHEG BOX erforderlich. Betroffen sind insbesondere die Abbildungen der
Impulse im Rahmen des Frixione, Kunszt und Signer (FKS) Subtraktionsver-
fahren.

Die theoretische Vorhersagen, die mit Hilfe des präsentierten Ereignisgen-
erators erzeugt wurden, werden mit experimentellen Daten verglichen, welche
an der Hadron-Elektron-Ring-Anlage (HERA) gesammelt wurden. Darüber
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hinaus wird eine phänomenologische Studie zu dem künftigen EIC gezeigt.
Der entwickelte Ereignisgenerator bietet einen Ausgangspunkt für künf-

tige Studien für andere Prozesse am EIC, die eine ähnliche Kinematik be-
sitzen.
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Chapter 1

Introduction

Humanity has been investigating nature for centuries. One central question
has always been: what are the things we see around us made of? The field of
particle physics aims to answer not only that question but also what forces
exist between the particles that make up our world.

The first discovered elementary particle was the electron in the late 19th
century by Joseph John Thomson. His discovery was preceded by decades of
cathode rays experiments by other physicists, such as Julius Plücker, William
Crookes or Arthur Schuster. Nowadays, the picture of elementary particles is
much more refined and experiments are getting more involved and also more
accurate.

The current world view of particle physics is condensed in the Standard
Model (SM). It describes all known elementary particles and their interac-
tions aside from gravity. The last missing particle, the Higgs boson, was
detected 2012 [2, 3] at the Large Hadron Collider (LHC) after being pro-
posed nearly 50 years before [4–9]. Despite its great success, there are still
open questions the SM cannot answer. Some of these questions concern the
nature of dark matter in the universe or the matter-antimatter asymmetry.
This means there has to be physics beyond the SM.

To find this new physics, the accuracy of experimental data and theory
predictions is being improved to find small derivations from the SM expec-
tation or constraints that can be imposed on new models. While low energy
physics has been explored for centuries, a lot of effort is nowadays put into
the search at high energy scales. Collider experiments are a promising way
to investigate high energy reactions in a very controlled environment.

The Hadron-Elektron-Ring-Anlage (HERA) is an electron-proton collider
built at the Deutsches Elektronen-Synchrotron (DESY). During its opera-
tion, electrons (or positrons) with an energy of 27.5 GeV collided with pro-
tons with energies of up to 920 GeV. The main process happening during this
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14 CHAPTER 1. INTRODUCTION

collision is deep inelastic scattering (DIS) where the electron (or positron)
scatters off of the constituents of the proton, while the energy transfer be-
tween the scattering particles is much greater than the proton mass. As the
first high energy ep collider, HERA cemented the understanding of the inner
structure of protons. Data gathered at the detectors H1 and ZEUS led to
an accurate determination of parton distribution functions (PDFs) [10–13].
More over, a wide range of quantum chromodynamics (QCD) studies [14–24]
resulted from HERA. Although HERA was ultimately shut down in 2007,
the collected data is still used in global fits of PDFs [25–28].

Due to technical limitations from roughly 16 years ago, the amount of data
collected at HERA cannot compete with the up to date LHC. This is about
to change with the future Electron-Ion Collider (EIC) whose construction
has been approved in June 2021 by the U.S. Department of Energy1. The
construction is planned to start in 2024 at Brookhaven National Laboratory
(BNL). At the EIC, electrons with an energy range of 5 to 18 GeV will collide
with a variety of ion, especially protons in the energy range of 41 to 275 GeV.
This leads to a smaller center-of-mass energy compared to HERA, but a peak
luminosity of 1034cm−2s−1 with a center-of-mass energy of 105 GeV is aimed
at which would be almost three orders of magnitudes larger than the peak
luminosity at HERA after the luminosity upgrade [29–32].

The expected increase in experimental accuracy for the DIS process has to
be met from the theory side. Since the shutdown of HERA, the calculation
of perturbative corrections has been improved considerably [33, 34]. The
DIS process has been calculated fully differentially at next-to-next-to-next-
to leading order (N3LO) order in QCD [35,36]. However, Monte-Carlo event
generators have mostly been developed focusing on hadron-hadron collision to
suit the needs of physics at the LHC. These generators offer the possibility to
match a fixed order calculation to a parton shower, e.g. using the POWHEG [37,
38] or MC@NLO [39] approach. General purpose event generators, such as
Herwig7 [40, 41], Sherpa2 [42, 43], and Pythia8 [44, 45], have been adapted
to address ep colliders. But there is no dedicated event generator available
to interface next-to leading order (NLO) calculations with a parton shower
for DIS. This thesis presents a modification to the POWHEG BOX framework
that represents a dedicated event generator for DIS. The obtained results
can be interfaced to a generic parton shower.

This thesis is structured as follows: Chapter 2 shows the theoretical ba-
sics that are needed for any NLO calculation in the framework of quantum
field theory (QFT) and how to match this calculation to a parton shower.

1https://www.energy.gov/science/articles/electron-ion-collider-achieves-critical-
decision-1-approval
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In chapter 3, the specific modifications to the POWHEG BOX are discussed to
accommodate the specifics of DIS. Chapter 4 presents phenomenological
studies for HERA and the EIC. In chapter 5 the summary and outlook of
this work are displayed.
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Chapter 2

Theoretical preliminary

2.1 Quantum field theory

High energy physics is modeled using QFT. QFT combines classical field
theory, special relativity and quantum mechanics. QFTs can be build upon
fundamental postulates [46–49] and their essence is summarized in the fol-
lowing paragraphs. The goal is to show what the key ingredients of QFT
are, and which properties they must have.

Firstly, the states of a system are represented by vectors of a Hilbert space
with a positive definite metric. Fields Φ(x) are defined as linear operators
acting on the Hilbert space of states. Poincaré symmetry is one of the most
fundamental symmetries in nature and is imposed on QFTs by requiring a
unitary representation U(Λ, a) of the Poincaré group on the Hilbert space.
The field operators Φα(x) shall transform under this Poincaré transformation
as U(Λ, a)Φα(x)U

†(Λ, a) = M(Λ−1)α
βΦβ(Λx + a). Thereby, M(Λ)α

β is a
representation of the Lorentz group that acts on the the field operators Φα.

The infinitesimal generator of the translation operator U(1, a) is called
the momentum operator P µ, where the component P 0 is also called Hamil-
tonian. It is postulated that the eigenvalues of the Hamiltonian P 0 shall be
non-negative. Further, the Hamiltonian shall have an unique ground state
|Ω〉 which is invariant under any Poincaré transformation. This ground state
is often referred to as vacuum state. Additionally, the existence of 1-particle
states |A, p, s〉 is postulated. A denotes the particle type, p its momentum
and s the spin. These states shall form an eigenspace to the operator P 2 and
are an irreducible representation of the Poincaré group. This means each
state of particle type A can be reached by a Poincaré transformation of any
other state with particle type A. Also, an 1-particle state of the particle
A does not have any properties other than momentum and spin. Next, it is
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18 CHAPTER 2. THEORETICAL PRELIMINARY

imposed that all states of the Hilbert space can be created by the application
of the field operators Φ(x).

Another important feature of special relativity is the result that nothing
can travel faster than the speed of light. This means that two events at a
space-like distance cannot impact each other. In the context of QFT, this
feature is realized by requiring [Φα(x),Ψβ(y)]∓ = 0,∀(x − y)2 < 0 for any
field operators Φα(x) and Ψβ(y). Here [·, ·]∓ is meant to be the anticom-
mutator [·, ·]+, or often {·, ·}, if both fields Φα(x) and Ψβ(y) are fermionic,
and the commutator [·, ·]− otherwise. The anticommutator has to be chosen
for fermions in order to guarantee a Hamiltonian with eigenvalues that are
bounded from below. Since all reasonable observables should consist of an
even number of fermionic operators, causality is still conserved.

One common approach to create a QFT is canonical quantization. The
starting point of the canonical quantization is the Lorentz invariant La-
grangian density, usually referred to as just Lagrangian, L of a classical field
theory. The occurring classical field functions φi are promoted to field opera-
tors φ̂i and are required to fulfill the canonical (anti-)commutation relations
[φ̂i(x, t), π̂j(y, t)]∓ = i~δ(3)(x− y)δij, with πi =

∂L
∂φ̇i

.
In the whole work it is assumed that the Lorentz invariant Lagrangian L

can be split into two parts
L = L0 + Lint, (2.1)

with

L0 =
∑
i

1

ki
φ̄Ai
α ΓαβAi

φAi
β , (2.2)

Lint =
∑
i

−gi
si
Bα1...αnφA1

α1
· · ·φAn

αn
, (2.3)

where ΓαβAi
is a linear, differential operator acting on φAi

β . The index Ai labels
the different types of fields that can occur in the theory. φ̄Aα is a modified
adjoint of φAα and is defined as φ̄Ai := (φAj )

†aji, such that φ̄Ai φAi transforms as
a scalar under Lorentz transformation. k is chosen to be ki = 2 if φ̄Ai

α = φAi
α .

si is a conventional symmetry factor equal to the number of permutation one
can apply to the product φA1

α1
· · ·φAn

αn
without changing Bα1...αnφA1

α1
· · ·φAn

αn
. gi

is called a coupling constant.
For free field theories, i.e. theories with Lint = 0, canonical quantization

can be done with the creation and annihilation operators as†(p)A and asA(p).
These operators create or annihilate single particles of type A with momen-
tum p and spin s and fulfill the (anti-)commutation relation

[asA(p), a
s†
B (p

′)] = (2π)32p0δ(3)(p− p′)δss′δAB, (2.4)



2.1. QUANTUM FIELD THEORY 19

where p0 ≡
√

p2 +m2. From these operators one can construct the field
operators

φ−i,A(x) =

∫
d3p

(2π)32p0

∑
s

asA(p)u
s
i (p)e

−ipx,

φ+
i,A(x) =

∫
d3p

(2π)32p0

∑
s

as†A (p)v
s
i (p)e

ipx, (2.5)

where usi (p)e−ipx and vsi (p)e
ipx with p0 > 0 are linear independent solutions

to the classical equations of motion. The combination of

φAi := φ−i,A + φ+
i,Ā

(2.6)

together with φ̄Ai will then fulfill the canonical and causal commutation re-
lation. In an example case of a fermion with the Lagrangian

L = ψ̄(i/∂ −m)ψ, (2.7)

one would have the free field

ψα(x) =

∫
d3p

(2π)32p0

∑
s

(
asA(p)u

s
α(p)e

−ipx + as†
Ā
(p)vsα(p)e

ipx
)

(2.8)

that annihilates the fermion and creates the anti-fermion. Here, the Dirac
adjoint is

ψ̄(x) := ψ†(x)γ0 =

∫
d3p

(2π)32p0

∑
s

(
as†A (p)ū

s
i (p)e

ipx + asB(p)v̄
s
i (p)e

−ipx
)
.

(2.9)

If the classical field φα is real, then vsα = (usα)
∗ and A = Ā. Thereby,

particles of type A and Ā are antiparticles to each other, i.e. they have the
same mass and opposite charges with respect to a conserved charge that is
created by a symmetry other than Poincaré symmetry of the theory.

In order to describe interactions, one common approach is perturbation
theory, where the interaction picture proves to be a useful tool. It allows to
use the field operators of the free theory and put the interaction terms of the
Lagrangian into the time evolution operator that acts on the states.

One of the most important experiments in high energy physics are particle
collisions. Therefore, the cross section σ is an important observable that can
be measured in actual experiments. The cross section is defined as



20 CHAPTER 2. THEORETICAL PRELIMINARY

σ =
E

NtNb

A, (2.10)

E . . . number observed events,
Nt . . . number of target particles,
Nb . . . number of beam particles,
A . . . overlapping area of beam and target.

The cross section is tied to the transition amplitude Sfi = out〈f |i〉in, where
out〈f | is the final state of the event with the particles being so far away from
each other that no interaction is felt between the final state particles to allow
the use of the free field operators. |i〉in is the initial state of the particles
colliding prepared at a large distance analogous to the out state to justify
the use of the free field theory to describe their behavior before the scattering
takes place. Sfi is called the scattering matrix element or S-matrix element
of the scattering process i → f . Often, an additional transition matrix T
is defined by S = 1 + iT . This splits the S-matrix into the part 1 which
means that the scattering particles do not interact and miss each other, and
into the physically more interesting part iT . The transition matrix contains
the information about the interactions taking place. The extra prefactor i is
convention. The T matrix is split further into

T = (2π)4δ(4)

(∑
i

pi −
∑
f

pf

)
M, (2.11)

where the sum over i runs over all initial state particles and f over final state
particles. The delta distribution guarantees the 4-momentum conservation
while the newly defined matrix M carries the physical information of the
dynamics of the transitions.

Now, the cross section σ is connected to the amplitude M by

σf←i =

∫
dΦn

|Mfi|2

4
√
(p1p2)2 −m2

1m
2
2

, (2.12)

where p1, p2 are the 4-momenta of the two incoming particles and p2i = m2
i .

The phase space measure dΦn is

dΦn = δ(4)

(
p1 + p2 −

n∑
i=1

ki

)
n∏
i=1

d3ki
(2π)3k0

, (2.13)
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and n is the number of final state particles with momentum ki and
k0i ≡

√
k2
i +m2

i .
In order to compute a cross section, one needs to calculate the matrix

element Mfi. A prescribtion to calculate such matrix elements is given by
the Lehmann-Symansik-Zimmermann (LSZ) reduction formula [48]. It states

out〈(B, k, λ)1 . . . (B, k, λ)n|(A, p, s)1 . . . (A, p, s)m〉in =
m∏
i=1

(√
ZAi

usiαi
(pi)
) m∏
j=1

(√
ZAj

ū
λj
βj
(kj)

)
× G̃

(n+m)

amp,Φ̄A1
α1
···Φ̄An

αnΦ
B1
β1
···ΦBm

βm

(p1, . . . , pm,−k1, . . . ,−kn). (2.14)

Thereby G̃(n+m)
amp is the amputated Green’s function, or n+m-point function,

in momentum space. The Heisenberg fields Φ̄Ai
αi

are the fields that, become
the free fields φ̄Ai

αi
in the limit t→ ±∞. The free fields contain the creation

operator asi†Ai
(pi) creating a free particle of type Ai, while the fields ΦB1

β1

contain the annihilation operator of particle type B in their free particle
limit. The polarization vectors usiαi

(pi), ū
λj
βj
(kj) appear in the respective free

field limit of their associated conjugated Heisenberg field together with the
annihilation or creation operator of their associated type.

The amputated Green’s function is defined as

G̃
(n)

amp,ΦA1
α1
···ΦAn

αn

(p1, . . . , pn)

=

[
G̃

(2)

Φ
A1
α1

(p1,−p1)
]−1

· · ·
[
G̃

(2)

ΦAn
αn

(pn,−pn)
]−1

G̃
(n)

Φ
A1
α1
···ΦAn

αn

(p1, . . . , pn).

(2.15)

G̃(n) together with (2π)4δ(4)
(∑m

i=1 pi −
∑n

j=1 kj

)
is the Fourier transform

of the Green’s function, or n-point function

G
(n)

Φ
A1
α1
···ΦAn

αn

(x1, . . . , xn) =∫
d4p1 · · · d4pn

(2π)4n
G̃

(n)

Φ
A1
α1
···ΦAn

αn

(p1, . . . , pn)(2π)
4δ(4)

(
n∑
i=1

pi

)
ei

∑n
i=1 pixi , (2.16)

whereas the n-point function is the vacuum expectation value of the time
ordered product of the field operators

G
(n)

Φ
A1
α1
···ΦAn

αn

(x1, . . . , xn) = 〈Ω|T
(
ΦA1
α1
(x1) · · ·ΦAn

αn
(xn)

)
|Ω〉 . (2.17)
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These n-point functions can be calculated perturbatively. For that pur-
pose, the Heisenberg fields ΦAi

αi
are expressed in the interaction picture in

order to use the free field operators ΦAi
αi

. One assumes that in the limit of
t → ±∞ the vacuum of the full interacting theory |Ω〉 becomes the vacuum
of the free theory |0〉

U(t→ −∞) |Ω〉 → λ− |0〉 ,
〈Ω|U †(t→ ∞) → λ+ 〈0| . (2.18)

Then, n-point functions can be calculated using the Gell-Mann and Low
theorem [50]

〈Ω|T
(
ΦA1
α1
(x1) · · ·ΦAn

αn
(xn)

)
|Ω〉 =

〈0|T
(
φA1
α1
(x1) · · ·φAn

αn
(xn) exp

{
i
∫
d4yLint(y)

})
|0〉

〈0|T exp
{
i
∫
d4yLint(y)

}
|0〉

. (2.19)

The exponential of the interaction action can be expanded. The resulting
series will be a polynomial in the coupling constants that occur in Lint. If
the coupling constants are small, one can evaluate all the terms of the series
up to a certain order in the coupling constants.

The free vacuum expectation values of the free fields can be calculated
using Wick’s theorem [51]. The idea of Wick’s theorem is that a vacuum
expectation value of free field operators can only be non-zero, if a creation
operator is right of an annihilation operator of the same particle. Hence,
the vacuum expectation value can be calculated by moving all creation op-
erators to the left such that they act to the left on the vacuum and yield
0. This ordering is called normal order. Wick’s Theorem states that each
product of commutators can be written as sum of normal ordered products
of operators and all full contractions of matching pairs of operators. These
full contractions reduce to a c-number. Then, the vacuum expectation value
of the normal ordered products of operators gives zero and only the fully
contracted terms survive. A contraction AB of operators A and B is defined
as

AB = AB− :AB :, (2.20)

where :AB : is the normal order product of A and B. The field operators
in the Gell-Mann and Low theorem contain both creation and annihilation
operators. Each operator φAn

αn
(xn) has a matching partner in φ̄An

αn
(xn) which

contains the appropriate creation and annihilation operator. In case of her-
mitian fields, they are the same. Then, the contraction of a matching pair
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becomes

φAα (x)φ̄
A
β (y) =

(
φ−α,A(x) + φ+

α,Ā
(x)
)(
φ̄−β,A(y) + φ̄+

β,Ā
(y)
)

= φ−α,A(x)φ̄
−
β,A(y) + φ+

α,Ā
(x)φ̄+

β,Ā
(y)

= φ−α,A(x)φ̄
−
β,A(y)− :φ−α,A(x)φ̄

−
β,A(y) :

+ φ+
α,Ā

(x)φ̄+
β,Ā

(y)− :φ+
α,Ā

(x)φ̄+
β,Ā

(y) : . (2.21)

Note that in the last line either φ−α,A(x)φ̄−α,A(y) or φ+
α,Ā

(x))φ̄+
α,Ā

(y)) is already
normal ordered. If φAα (x) is defined as in Eq. (2.6) then latter is in normal
order. If φAα (x) is the conjugate version of Eq. (2.6) the former is normal
ordered. For now, assume φAα (x) is defined like in Eq. (2.6), then

φAα (x)φ̄
A
β (y) = φ−α,A(x)φ̄

−
β,A(y)− :φ−α,A(x)φ̄

−
β,A(y)

= φ−α,A(x)φ̄
−
β,A(y)∓ φ̄−β,A(y)φ

−
α,A(x) = [φ−α,A(x), φ̄

−
β,A(y)]∓

=: ∆
(A)
−,αβ(x− y). (2.22)

If the particle of type A is a fermion then an additional minus sign in the
second line is picked up and yields the anticommutator in the end. The
analogous calculation gives

φ̄
A
β (y)φ

A
α (x) = [φ̄+

β,Ā
(y), φ+

α,Ā
(x)]

=: ∆
(A)
+,αβ(x− y). (2.23)

Of particular interest is the time-ordered product, which is

T
(
φAα (x)φ̄

A
β (y)

)
= ∆

(A)
−,αβ(x− y)∓∆

(A)
+,αβ(x− y) =: iD

(A)
F,αβ(x− y). (2.24)

D
(A)
F,αβ(x − y) is called the Feynman propagator. The Feynman propagator

turns out to be the Green’s function of the differential operator Γαβ that
defines the free Lagrangian L(A)

0 associated the the field of particle A and its
antiparticle Ā

ΓαβD
(A)
F,βγ(z) = δ(4)(z)δαγ,

with L(A)
0 =

1

k
φ̄AαΓαβφ

A
β . (2.25)

The symmetry factor k takes the value k = 2 for φAα = φ̄Aα and k = 1
otherwise. The Feynman propagator is often written as Fourier transform

D
(A)
F,αβ(z) =

∫
d4q

(2π)4
e−iqzD̃

(A)
F,αβ(q). (2.26)
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Now, remember in order to calculate cross sections one has to evaluate the
Fourier transform of Green’s functions. This can be done with the Gell-Mann
and Low theorem. Therefore, the numerator and denominator of Eq. (2.19)
have to be evaluated by finding all possible full contractions. Each contrac-
tion gives the Feynman propagator DF . The exponential can be expanded
term by term. Performing the space time integrals coming from expanding
the exponential one finds momentum conservation for the momenta that are
associated with the propagators that connect to the fields at the space-point
that was integrated over. This allows to formulate Feynman rules to visualize
and calculate these vacuum expectation values [52]. Since the Green’s func-
tions in momentum space occur in the LSZ formula, it is useful to formulate
the Feynman rules also in momentum space.

In order to calculate G̃(n)

Φ
A1
α1
···ΦAn

αn

(p1, . . . , pn):

1. Draw external points for each field ΦAi
αi

.

2. In O
(
Lkint
)

draw k inner points called vertices:

(a) Each vertex corresponds to a term in Lint =
∑

i L
(i)
int with

L(i)
int = −gi

si
Bα1...αn
i

∏n
j=1Φ

Aj
αj .

(b) For the sake of the next step, a vertex counts as multiple points,
one for each Φ

Aj
αj in L(i)

int.

3. Connect all points such that a point stemming from ΦA is connected
to a point stemming from a Φ̄A. Now, each vertex must have a number
of outgoing lines equal to the number of field in the corresponding L(i)

int
term.

4. If it is impossible to connect all points, the contribution considered is
zero. One has to choose different L(i)

int terms or increase the order k.

5. Label all lines connected to an external point with the incoming mo-
mentum pi that is the associated momentum with the field ΦAi

αi
. They

are called them propagators.

6. Label all other lines with a directed momentum ki, where i is a different
index for each inner line. They are called inner propagators.

The resulting diagram can be translated into a mathematical term. Each line
represents a contraction and yields the Feynman propagator in momentum
space D(A)

F,αβ(q), where A specifies the particle type of the line. Hence, the
lines are also called propagators. The momentum q is the directed momen-
tum flowing from the point associated with the Φ̄A

α to the point from ΦA
β .
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The indices α and β will either be contracted with a factor stemming from
the vertex to which they are connected or left uncontracted if the propagator
is connected to an external point. Each vertex yields the factor −igiBα1...αn

i

where i is the index of L(i)
int that created the vertex. The field operators in L(i)

int
are contracted, and the factor 1/si is assumed to cancel due to the multiple
permutations of the fields that lead to the same contractions. For the case
the factor 1/si is not canceled, an additional symmetry factor 1/m is applied.
The inverse symmetry factor m is equal to the number of all possible ways to
connect the inner points and get the same Feynman diagram. This usually
happens for diagrams with closed loop that identical particle propagators in
the loop. The factor 1/k! coming from the expansion of the exponential can-
cels with the k! permutations of the L(i)

int terms. Next, one has to integrate
over all momenta of inner propagators

∫ ∏
d4ki. Each vertex yields a delta

distribution (2π)4δ(4)(
∑
qi) stemming from the space-time integral over L in

the exponential. Thereby, qi are the momenta flowing into the vertex. If a
momentum is drawn with the direction going away from the vertex a minus
sign must be added for that momentum. These delta distribution ensure
momentum conservation at every vertex. After carrying out all integrals
over d4ki until no ki remains in a delta distribution, only delta distributions
containing external momenta pi remain. The number of remaining delta dis-
tributions is equal to the number of connected subdiagrams in the Feynman
diagram. The delta distributions are (2π)4δ(

∑
i pi), where the pi in the sum

are the momenta of the external legs of the connected subdiagram.
This procedure has to be done for every possible way to connect the k

vertices for every selection of k L(i)
int terms, in all orders of k. In practice,

one cannot evaluate an infinite amount of Feynman diagrams, therefore one
can sort the Feynman diagrams by their orders in gi and stop the evaluation
after a selected order of gi.

With the use of Feynman rules, the Gell-Mann and Low theorem
Eq. (2.19) can be evaluated in the momentum space. The denominator has
the structure of

〈0|T exp

{
i

∫
d4yLint(y)

}
|0〉 = 1 +

∑
v∈V

v, (2.27)

where V is the set of all diagrams without any external points, i.e. vacuum
diagrams. Meanwhile, the nominator is

〈0|T
(
φA1
α1
(x1) · · ·φAn

αn
(xn) exp

{
i

∫
d4yLint(y)

})
|0〉 =

∑
c∈C

c+
∑
ṽ∈Ṽ

ṽ. (2.28)
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Here, C is the set of all the diagrams where every internal vertex is con-
nected to at least one external point and Ṽ is the set containing all the other
diagrams. Hence, all diagrams in Ṽ are not connected Feynman diagrams
and can be written as product of connected Feynman diagrams. In partic-
ular the diagrams in Ṽ contain vacuum diagrams as a disconnected part.
Consequently, one can write

∀ṽ ∈ Ṽ ∃!cṽ ∈ C, vṽ ∈ V : ṽ = cṽvṽ. (2.29)

Now, the sum of the diagrams can be reordered

〈0|T
(
φA1
α1
(x1) · · ·φAn

αn
(xn) exp

{
i

∫
d4yLint(y)

})
|0〉

=
∑
c∈C

c+
∑
ṽ∈Ṽ

ṽ

=
∑
c∈C

c+
∑
ṽ∈Ṽ

cṽvṽ

=
∑
cṽ∈C

cṽ +
∑
vṽ∈V

cṽvṽ

=
∑
cṽ∈C

cṽ

(
1 +

∑
vṽ∈V

vṽ

)
. (2.30)

In the end, one obtains

〈Ω|T
(
ΦA1
α1
(x1) · · ·ΦAn

αn
(xn)

)
|Ω〉

=
〈0|T

(
φA1
α1
(x1) · · ·φAn

αn
(xn) exp

{
i
∫
d4yLint(y)

})
|0〉

〈0|T exp
{
i
∫
d4yLint(y)

}
|0〉

=

∑
cṽ∈C cṽ

(
1 +

∑
vṽ∈V vṽ

)
1 +

∑
v∈V v

=
∑
c∈C

c. (2.31)

Hence, in order to calculate a Green’s function one only needs to calculate
all the Feynman diagrams without vacuum diagrams as subdiagrams.

For the LSZ theorem, only the amputated Green’s function is needed.
Diagrammatically, one can understand the amputated Green’s function as
all the Feynman diagrams, where all the external legs are cut off. On can
find that Feynman diagrams, in which two external points are connected to
each other but not to any other external points, yield 0 in the context of
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the S-matrix element. Furthermore, for processes with two particles in the
initial state, the only possible non-connected Feynman diagrams, excluding
the vacuum diagram and diagrams where the initial and final state particles
are not connected, are the diagrams in which both initial states decay into
the final state particles independently from one another. If these decays
are not possible for any reason, like it is the case for processes considered
in this work, then only connected Feynman diagrams can contribute to the
S-matrix elements. If all diagrams are connected, then each of them has
only one connected subdiagram, namely the diagram itself. This leads to
only one remaining delta distribution (2π)4δ(4)(

∑
pi −

∑
pf ) in the Fourier

transformed Green’s function, which can be factored out
G̃

(n+m)

amp,Φ̄A1
α1
···Φ̄An

αnΦ
B1
β1
···ΦBm

βm

(p1, . . . , pm,−k1, . . . ,−kn) =

(2π)4δ(4)(
∑

pi −
∑

kf )Mamp,Φ̄A1
α1
···Φ̄An

αnΦ
B1
β1
···ΦBm

βm

(p1, . . . , pm,−k1, . . . ,−kn).
(2.32)

Then, the matrix element Mf←i, needed for the cross section, is

Mf←i =
m∏
i=1

(√
ZAi

usiαi
(pi)
) m∏
j=1

(√
ZAj

ū
λj
βj
(kj)

)
×Mamp,Φ̄A1

α1
···Φ̄An

αnΦ
B1
β1
···ΦBm

βm

(p1, . . . , pm,−k1, . . . ,−kn). (2.33)

In other words, the amplitude Mf←i is the sum of all amputated and con-
nected Feynman diagrams multiplied with a polarization factor for every
external field and the square root of the residue of the two point function of
each field.

2.2 Standard Model

2.2.1 Gauge theory
The concept of gauge theories was first discussed by Weyl in Ref. [53]. Here,
it is shown for the simplest theory that describes relativistic fields, the Dirac
Lagrangian [54]

LDirac = ψ̄(i/∂ −m)ψ. (2.34)
The Dirac slash is used /a = γµaµ as well as the bar notation ψ̄ = ψ†γ0.
Thereby, γµ are referred to as gamma matrices and their defining property
is fulfilling the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2gµν . (2.35)
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By looking at the Lagrangian LDirac, one can quickly see that it is invariant
under the transformation

ψ −→ Uψ = eiθψ, (2.36)

if θ is a constant real number. One can promote this global transformation
to a local one by modifying θ to a function θ(x) and observe the impact of
the transformation on the Lagrangian

LDirac −→ ψ̄U †(i/∂ −m)Uψ

= ψ̄(iU †/∂U −m)ψ = ψ̄(i/∂ − (/∂θ)−m)ψ. (2.37)

One can alter the Lagrangian to make it invariant under this transformation.
In order to do this, one has to include a new term that transforms such
that the extra term −ψ̄(/∂θ)ψ is canceled. Or equivilantly, replace /∂ →
/D = /∂ + iQ̃ /A such that /D transforms as /D → U /DU †. Thereby, Aµ is a
newly introduced field. The transformation properties of Aµ can be seen by
evaluating

U /DU † = eiθ(/∂ + iQ̃ /A)e−iθ

= /∂ − i(/∂θ) + iQ̃ /A. (2.38)

Then, Aµ has to transform as

Aµ −→ Aµ − 1

Q̃
∂µθ

=: Aµ + ∂µχ. (2.39)

In the last line χ is defined as χ = −θ/Q̃. This transformation is the same as
the gauge transformation for the electromagnetic vector field in the Maxwell
theory. Hence, this transformation will also be called gauge transformation
from now on. Now, one can write down the modified Dirac Lagrangian

LDirac, mod. = ψ̄(i /D −m)ψ,

Dµ = ∂µ + iQ̃Aµ. (2.40)

So far, the newly defined field Aµ does not contain any physical degrees
of freedom, because there are no kinetic terms in the Lagrangian. The goal
is to interpret Aµ as the electromagnetic vector potential. Consequently, the
kinetic term of the Maxwell Lagrangian is a natural choice, since it is Lorentz
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invariant and also invariant under the gauge transformation. This leads to
the Lagrangian for electrodynamics

LED = −1

4
F µνFµν + ψ̄(i /D −m)ψ,

Dµ = ∂µ + ieQAµ,

F µν =
1

ieQ
[Dµ, Dν ] = ∂µAν − ∂νAµ. (2.41)

Here, Q̃ = eQ is rescaled to the elementary charge e to match common
notation.

So far, no quantization has taken place. Everything was classical field
theory. Now, one can try to quantize LED using canonical quantization. One
would find that it is impossible. The gauge freedom prevents quantization.
By looking at the momentum conjugate π0 of A0 one finds

π0 =
∂LED

∂Ȧ0

= 0. (2.42)

In canonical quantization it is required that

[Â0(x, t), π̂0(y, t)]∓ = i~δ(3)(x− y), (2.43)

which is impossible if π0 = 0. In order to solve this problem, one can intro-
duce a gauge fixing term in the Lagrangian LQED = LED + Lfix [55]. This
term has to break gauge symmetry and represents choosing a gauge. One
common choice is [56]

Lfix =
1

2ξ
(∂µAµ)

2. (2.44)

In this gauge fixing term, the freedom of choosing the gauge it embodied by
the gauge parameter ξ. Every physical observable has to be independent of
ξ. Therefore, one can choose a value of ξ arbitrarily. A common choice is the
Feynman gauge ξ = 1. In the Feynman gauge the propagator of the photon
is particularly compact.

All gauge transformations U form the group of one dimensional uni-
tary matrices U(1). One can generalize the above procedure to other gauge
groups. Especially interesting are the special unitary groups of rank n, SU(n).
These are complex n × n matrices with determinant 1. In general, two dif-
ferent gauge transformations U1, U2 ∈ SU(n) do not commute. Those gauge
theories are therefore referred to as non-Abelian gauge theories or Yang-Mills
theories [57]. Since matrices U ∈ SU(n) are unitary, one can write them as

U = exp{−iθaT a}, (2.45)
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where T a are n2 − 1 traceless, hermitian matrices and θa are real functions
θ = θ(x). T a are called the generators of the Lie group. They define the Lie
algebra

[T a, T b] = ifabcT
c, (2.46)

and are conventionally normed to

tr
[
T aT b

]
=
δab

2
. (2.47)

fabc are the totally antisymmetric structure constants. Every set of operators
ta that fulfills Eq. (2.46) is a representation of the gauge transformation. In
particle physics, three representations are especially important. Firstly, the
fundamental representation tafund := T a that generates the transformation
from Eq. (2.45). Next, there is the trivial representation tatrivial := 0, which
obviously fulfills Eq. (2.46). Lastly, the adjoint representation

(
taadj
)
bc

=
−ifabc defines the transformation of gauge bosons.

One can repeat the same process for this new gauge transformation. Now,
the field ψ has n components ψi in the space the gauge transformation takes
place

LDirac, mod2 = ψ̄(i /D −m)ψ,

UDµU † = U(∂µ + igAµ)U †

= ∂µ + iT a(∂µθa) + igUAµU †.

=⇒ Aµ −→ UAµU † +
1

g
T a(∂µθa). (2.48)

The last line shows that Aµ cannot be a scalar in the space of the SU(n)
matrices, but it rather is a matrix (Aµ)i

j acting on the vector ψj. In fact,
Aµ can be understood as the connection field that transports ψi(x) parallel
to an infinitesimal adjacent space-time point ψ‖i(x + dx). One can expand
Aµ by the generators T a and define

(Aµ)i
j =: Aµa(T

a)i
j. (2.49)

This means one gets one gauge field for each generator T a.
Now, only the kinetic terms of the gauge fields Aµa are missing for the

Lagrangian. To this end,a field strength tensor Aµν is defined in the same
manner as in the Abelian case

Aµν :=
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (2.50)



2.2. STANDARD MODEL 31

Since Dµ was constructed to transform as Dµ −→ UDµU †, Aµν has the same
gauge transformation law Aµν −→ UAµνU †. Due to the cyclic property of
the trace, the expression

tr [AµνAµν ] (2.51)

is locally gauge invariant. The field strength tensor can be expanded in the
same way as the gauge field

(Aµν)i
j = Aµνa (T a)i

j. (2.52)

Then, one can write

tr [AµνAµν ] = Aµνa Aµνb tr
[
T aT b

]
=

1

2
Aµνa A

a
µν , (2.53)

where the normalization of the generators T a was used. The field strength
tensor can be rewritten as

Aµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

= ∂µAν − ∂νAµ + igAµaA
ν
b [T

a, T b]

= ∂µAν − ∂νAµ − gAµaA
ν
bf

ab
cT

c,

⇒ Aµνa = ∂µAνa − ∂νAµa − gAµbA
ν
cfa

bc. (2.54)

This allows to formulate a Yang-Mills Lagrangian that is gauge invariant,

LYM = −1

4
Aµνa A

a
µν + ψ̄(i /D −m)ψ,

Dµ = ∂µ + igT aAµa ,

Aµνa = ∂µAνa − ∂νAµa − gAµbA
ν
cfa

bc. (2.55)

One major feature of this theory that is absent in the Abelian gauge theory is
the self-interaction of the gauge fields Aµa . Due to the fact that [Aµ, Aν ] 6= 0,
one gets cubic and quartic terms in Aµ in the Lagrangian.

In order to quantize the Lagrangian in Eq. (2.55), a gauge fixing term
has to be added. However, this is not possible in the same straight forward
manner as in the Abelian case. The procedure uses a trick reported first by
Faddeev and Popov in Ref. [56]

2.2.2 Lagrangian of the Standard Model
In the second half of the 20th century the Standard Model of particle physics
was developed [4–6,9,57–60]. This section gives a brief overview of its content.
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Table 2.1: Particles of the Standard Model together and their respective
representation under the gauge transformations.

Particle Field operator SU(3)c SU(2)L U(1)Y

Higgs doublet Φ =

(
G+

v+H+iG√
2

)
T as Φ = 0 T awΦ = σa

2
Φ Y Φ = 1

2
Φ

Quark doublet QL = PLQL =

(
uL
dL

)
T asQL = λa

2
QL T awQL = σa

2
QL Y QL = 1

6
QL

Up-type-singlet uR = PRuR T as uR = λa

2
uR T awuR = 0 Y uR = 2

3
uR

Down-type-singlet dR = PRdR T as dR = λa

2
dR T awdR = 0 Y dR = −1

3
dR

Lepton doublet LL = PLLL =

(
νL
eL

)
T as LL = 0 T awLL = σa

2
LL Y LL = −1

2
LL

Electron-singlet eR = PReR T as eR = 0 T aweR = 0 Y eR = −1eR

The Standard Model is a gauge theory with a U(1)Y × SU(2)L × SU(3)c
gauge group. The gauge symmetry of U(1)Y ×SU(2)L is spontaneously bro-
ken to a U(1)Q gauge symmetry by a scalar doublet field Φ. The matter
content and their representations under the various gauge transformations
can be seen in Table 2.1. In the Standard Model, fermion spinors are seper-
ated into their two irreducible representations of the Lorentz group, a right-
handed and left-handed chirality spinor, ψ = ψL + ψR. Projection operators
are defined as PL := (1− γ5)/2 and PR := (1 + γ5)/2, with γ5 = iγ0γ1γ2γ3,
that fulfill the properties

P 2
L = PL, P 2

R = PR, PR + PL = 1,

PRPL = 0, ψL = PLψ, ψR = PRψ. (2.56)

The Lagrangian is

LSM = Lmatter + Lgauge + LYukawa + LH-potential + Lgauge fix + Lghost,

Lmatter = (DµΦ)†DµΦ + Q̄Li /DQL + ūRi /DuR

+ d̄Ri /DdR + L̄Li /DLL + ēRi /DeR,

Lgauge = −1

4
Gµν
a G

a
µν −

1

4
W µν
a W a

µν −
1

4
BµνBµν ,

LYukawa = −yeL̄LΦeR − ydQ̄LΦdR − yuΦ̃Q̄LuR + h.c.,

LH-potential = −µ2Φ†Φ− λ
(
Φ†Φ

)2
, (2.57)
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with

Dµ = ∂µ + igsT
a
sG

µ
a + igWT

a
WW

µ
a + igY Y B

µ,

Gµν =
1

igs
[∂µ + igsG

µ, ∂ν + igsG
ν ],

W µν =
1

igW
[∂µ + igWW

µ, ∂ν + igWW
ν ],

Bµν =
1

igY Y
[∂µ + igY Y B

µ, ∂ν + igY Y B
ν ]. (2.58)

The explicit forms of Lgauge fix and Lghost are not relevant in this work, they in-
troduce non-physical ghost fields that interact with non-Abelian gauge fields
and the massive Higgs field. They can be reviewed in Refs. [61–65]

Thereby, the generators T as , T aW and the so called hyper charge Y can
be understood as operators acting on the various field operators. The pa-
rameter µ2 in the Higgs boson potential is set to be µ2 < 0. This leads
to spontaneous symmetry breaking of the U(1)Y × SU(2)L symmetry. The
classical minimum of the Higgs potential is at |Φmin|2 = −µ2

2λ
. The idea is

to study small excitations around this minimum Φ = Φmin + Φexcitation, with
Φexcitation containing the field operators and the physical degrees of freedom.
The electric charge operator Q can be defined as

Q := T 3 + Y. (2.59)

Motivated by observation, the electric charge is forced to be conserved
and shall generate the U(1)Q symmetry. This fixes Φmin

QΦmin =

(
1 0
0 0

)
Φmin

!
= 0

⇒ Φmin =

(
0√
−µ2

2λ

)
. (2.60)

Therefore, one parametrizes the Higgs boson field as shown in table 2.1 by
defining the new parameter

v2 = −µ
2

λ
> 0. (2.61)

Due to the non-vanishing vacuum expectation value (vev) of the Higgs
boson, the term (DµΦ)†DµΦ contains bilinear terms in the gauge bosons W µ

a

and Bµ
a . By appropriate redefinitions, one can diagonalize these terms and
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obtain proper mass terms. These redefinitions are

W±µ :=
1√
2
(W µ

1 ∓W µ
2 ),(

Aµ

Zµ

)
:=

(
cos θ sin θ
− sin θ cos θ

)(
Bµ

W µ
3

)
. (2.62)

The new defined gauge boson Aµ represents the photon and thus the gauge
boson the the electromagnetic force. It shall not interact with the neutrino
ν. By plugging the redefinitions into the covariant derivative Dµ and inves-
tigating the action of Dµ on the lepton doublet L, the condition

tan θ =
gY
gW

⇔ sin θ =
gY√

g2Y + g2W
(2.63)

ensures no interaction between a photon and a neutrino. Further, the electron
shall have the electric charge −e, i.e. the interaction term between the photon
Aµ and electron eL shall be −ieAµeL. This is achieved by identifying

e :=
gY gW√
g2Y + g2W

. (2.64)

The covariant derivative becomes

Dµ = ∂µ + ieQAµ + i
e

sin θ cos θ

(
T 3 −Q sin2 θ

)
Zµ

+i
e√

2 sin θ

[
(T 1 + iT 2)W+µ + (T 1 − iT 2)W−µ]. (2.65)

The last piece missing to complete the Standard Model are the three
fermion generations that have been observed. In order to account for this,
all fermion operators get an additional generation index I ∈ 1, 2, 3, e.g. eIR.
A priori, all Yukawa couplings y now become matrices in the generation space

LYukawa = −yeIJ L̄ILΦeJR − ydIJQ̄
I
LΦd

J
R − yuIJΦ̃Q̄

I
Lu

J
R + h.c.. (2.66)

By appropriate redefinitions of the mass eigenstate fields eL, eR, νL, uL, uR, dL
and dR, ye and yu can be transformed into diagonal matrices of positive
entries, without changing any other term in the Lagrangian. However, this is
not possible at the same time for yd. Consequently, the mass eigenstate fields
of the down-type quarks are not the same as the interaction eigenstate fields.
By diagonalizing the yd, the replacement d→ V IJdJ takes place everywhere
in the Lagrangian. The matrix V IJ is called Cabibbo-Kobayashi-Maskawa
(CKM) matrix. The CKM matrix is unitary, therefore it cancels in every
term of the form of ∼ d̄d and it can only occur in interaction terms that
involve an up-type quark together with a down-type quark.
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2.2.3 Feynman rules of the Standard Model
From the Lagrangian of the previous section one can derive Feynman rules.
The following rules are used to calculate the amplitudes of the deep inelestic
scattering process.

f̄

f

Aµ = −iQfeγ
µ

f̄

f

Zµ = − ie

2 sin θ cos θ
γµ
(
If3PL − 2Qf sin

2 θ
)

f̄u,d,ν,e

fd,u,e,ν

W±µ = − ie√
2 sin θ

γµPL

k

W∓µW±µ =
−igµν

k2 −M2
W + iε

k

ZµZµ =
−igµν

k2 −M2
Z + iε

k

AµAµ =
−igµν

k2 −M2
Z + iε

(2.67)

2.2.4 Calculation method in the Standard Model
One important feature of any non-Abelian gauge theory, as QCD, is the in-
creasing gauge coupling for low energy scales. Physically this means, forces
between strongly interacting particles increase with longer distances. Hence,
perturbation theory is not applicable for describing long distance or equiv-
alently low energy effects. Consequently, strongly interacting elementary
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particles cannot exist as isolated single particles. They clump up to form
hadrons. This breaks assumptions that were put in the formalism discussed
thus far. However, inside of these compound particle states, where distances
become very short, the strong interaction becomes weak and the quarks form-
ing the hadron can be considered free.

The general strategy to deal with strongly interacting particles in initial
and final state is to split the scattering process in different time steps [66].
The first time step describes the incoming scattering hadrons before they in-
teract with each other. Therefore, they are described as a bundle of partons,
where each parton carries a fraction x of the hadron momentum P . To this
end, PDFs f(x) are defined for each parton. At leading order (LO) they
describe the probability density of finding the parton with momentum frac-
tion x in the hadron. These PDFs can not be calculated within perturbation
theory and are determined by experimental data.

The next step, the actual collision takes place. If the incoming scatter-
ing particles have a large energy, this collision takes place in a very short
time frame, such that it can be described perturbatively. Thereby, cross sec-
tions σ̂q(x) for each parton q with momentum fraction x are calculated and
convoluted with the PDFs fq(x) to yield the total hadronic cross section σ

σ =
∑
q

∫
dxfq(x)σ̂q(x). (2.68)

After the hard collision, final state particles can radiate more particles
with increasing time scale. Parton shower algorithms are used to describe
this behavior until the time scale of this radiation is too large to justify per-
turbation theory. The last step is hadronization in which strongly interacting
final state elementary particles form bound states.

2.3 Next-to-leading order calculation
In order to evaluate Green’s functions, one has to expand the exponential in
Eq. (2.19) in all orders. In practice this is impossible. Therefore, one stops
the series at a particular order in the coupling constants. The lowest order in
the coupling constants that contributes to the process at hand is called the
LO. For simple processes, the LO consists only of Feynman diagrams that do
not contain any closed loops. These Feynman diagrams are referred to as tree-
level diagrams. The next terms in higher order of the coupling constants are
called NLO contributions. These diagrams contain closed loops, leading to
momenta that are not constrained by momentum conservation, and therefore
have to be integrated over. They are called n-loop diagrams, with n being the
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number of unconstrained momenta that need to be integrated. Physically,
loop diagrams contain the quantum effects of the theory, while tree-level
diagrams represent the classical effects, which are possible to obtain without
QFT.

The calculation of 1-loop diagrams is conceptually solved if the process
is not too complicated. By applying the Feynman rules of the theory, one
will find divergent loop diagrams. The divergences are classified as a infrared
(IR) or ultraviolet (UV) divergence. A divergence is called a UV divergence
if it originates from the loop momentum k → ±∞. All other divergences are
infrared divergences. This section will only focus on UV divergences.

2.3.1 Dimensional regularization
Divergences in QFTs can be be brought under control via regularization.
The most popular regularization is the dimensional regularization [67]. In
dimensional regularization, the space-time dimension D is continued into the
complex place C. Thereby, time is assigned to the 0th dimension and the
remaining D − 1 dimensions describe the space. A detailed description can
be found in Ref. [68].

The main feature of dimensional regularization is the use ofD dimensional
integrals. They are defined to have the properties:

• Linearity:∫
dDk(af1(k) + f2(k)) = a

∫
dDkf1(k) +

∫
dDkf2(k). (2.69)

• Translation invariance:∫
dDkf(k + p) =

∫
dDkf(k). (2.70)

• Scaling: ∫
dDkf(sk) = s−D

∫
dDkf(k), ∀s ∈ C. (2.71)

• If D ∈ N and the integral is convergent, then the dimensional integral
coincides with the usual integral.

By doing this continuation, the mass dimension [L] of the Lagrangian is
altered. The Lagrangian is an energy density and, therefore, has units of
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energy raised to the power of the number of dimensions [L] = [E]D. Param-
eters in the Lagrangian, like the coupling constants gi, have their dimension
altered such that the overall dimension is correct. The part carrying the al-
tered dimension of parameters is factored out by g → µag, with [µ] = [E] and
a being chosen such that the term in the Lagrangian, in which g appears, has
the correct dimension. In practice, all loop momentum integrals are replaced∫

d4k

(2π)4
→ µ4−D

∫
dDk

(2π)D
. (2.72)

This leaves the dimension of the integral invariant. The newly defined pa-
rameter µ is called renormalization scale.

1-loop integrals of the form

µ4−D
∫

dDk

(2π)D
1

D1(k) · · ·Dn(k)
, (2.73)

where Dn(k) is the nominator of the Feynman propagator, can be reduced
to a master integral

In := µ4−D
∫

dDk

(2π)D
(−1)n(n− 1)!

[k2 −Q2 + iε]n
. (2.74)

This can be done by a technique called Feynman parametrization [69].
Thereby, n− 1 Feynman parameter integrals

∫
dzi are introduced. These

newly introduced integrals have to be carried out later, which can be a diffi-
cult task on its own, depending on the number of parameters the loop integral
depends on.

In Eq. (2.74), Q2 is a quantity that does not depend on k but depends
in general on the Feynman parameters and carries a mass dimension. This
master integral can be calculated analytically using a Wick rotation [70].
The result is

In =
i

16π2
Q4−2n

(
4πµ2

Q2

)ε
Γ(n− 2 + ε). (2.75)

Γ is the gamma function and the dimension D was substituted by D =: 4−2ε.
Hence, the four dimensional limit is retrieved by ε→ 0. To get the final result
the integral over any Feynman parameters has to be evaluated.

In general, 1-loop integrals may contain a polynomial in the loop mo-
mentum kµ in the numerator of the integrand. By the Passarino-Veltman
reduction, they can be reduced to integrals of the form of Eq. (2.73) [71,72].
The concept of Passarino-Veltman is to make the ansatz that the integral has
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to be a linear combination of all tensorial quantities appearing in the integral.
By contracting with these tensorial quantities, one obtains a linear system
of equations that can be solved for the components of the tensors. These
components turn out to be a linear combination itself of scalar integrals of
the form of Eq. (2.73)

The Gamma function in Eq. (2.75) is carrying the UV divergence. It has
a pole for n = 1, 2 for ε → 0. Usually, the final result, after integrating
the loop integrals, is expanded in ε around 0. The expansion of the Gamma
function will then lead to 1

ε
-poles for the UV divergent integrals.

2.3.2 Renormalization
UV divergent Green’s functions are a problem for a theory, since they lead to
divergent physical observables. On the other hand, measured observables in
the real world are finite. The solution is called renormalization. The concept
of renormalization is to find a Lagrangian L(ε), such that the observables
and Green’s functions of the theory are finite in the limit ε → 0. Therefore,
the UV divergencies are shifted into the Lagrangian itself. A UV divergent
Lagrangian is not problematic, since it is not an observable. Here, only
renormalization at 1-loop level is considered. The procedure is described for
example in Ref. [73] or various QFT textbooks [74,75].

The most common approach to renormalize a theory with Lagrangian L
is multiplicative renormalization. To this end, the Lagrangian is transformed
into the bare Lagrangian L → Lb by replacing all fields Φα and parameters gi
of the theory into their bare versions Φα → Φb α, gi → gb i. Then, one defines

Φb α =:
√
ZΦΦα =:

√
(1 + δZΦ)Φα,

gb i =: (1 + δZgi)gi =: gi + δgi,

⇒ Lb = Lren + Lct. (2.76)

All δZ and δgi are called renormalization constants. The bare Lagrangian
Lb can be expanded in the renormalization constants and all terms without
renormalization constants are collected in the renormalized Lagrangian Lren.
As a result, Lren looks identical to the starting Lagrangian. Lct contains
all terms involving renormalization constants and is called the counter term
Lagrangian. Each renormalization constant is treated formally as a 1-loop
quantity, hence quadratic terms, or higher, in the renormalization constants,
in Lct, are omitted. Lct leads to a set of new counter term Feynman rules.

In the next step of renormalization, all UV divergent Green’s functions are
calculated at 1-loop level. Then, renormalization constraints are imposed, in
general one constraint for each renormalization constant. The choice of these
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constraints defines the renormalization scheme. The constraints have to be
chosen such that the Green’s function become finite. Two popular choices for
renormalization schemes are the on-shell scheme and the modified minimal
subtraction (MS) scheme.

In the on-shell scheme, it is required that all mass parameters mΦ of
a particle field Φ in the Lagrangian Lren are equal to the pole of the two-
point function G̃

(2)
ΦΦ(p1,−p1) of the respective field Φ. In this way, the mass

parameter coincides with the physical, observable mass. Further, the residues
of all two-point functions are set to 1. Lastly, the coupling renormalization
constants have to be fixed. This can be done by setting a specific S-matrix
element to a certain value.

In the MS scheme, a different set of constraints is chosen. Here, the
renormalization constants are chosen such that they cancel exactly the 1

ε̄

poles, where ε̄ is defined as

1

ε̄
:=

1

ε
+ log 4π − γE, (2.77)

where γE ≈ 0.577 is the Euler-Mascheroni constant.

2.3.3 Infrared divergences
As mentioned in the previous sections, NLO calculations can give rise to two
different types of divergences. Technically, UV divergences originate from
the Gamma function in Eq. (2.75), while IR divergences may occur from
divergent Feynman parameter integrals. However, both kinds of divergences
can be regularized by dimensional regularization. Unlike UV divergences, IR
divergences cannot be removed by the means of renormalization. This can
be seen by studying the prefactors of the 1

ε
-poles. In the case of a renormal-

izable theory, UV poles have only a polynomial in momenta as a prefactor.
Since the Fourier transform of a polynomial gives delta distributions and
their derivatives, these divergences can be interpreted as local interactions.
Therefore, they can be compensated by adding local interaction terms to the
Lagrangian. On the other hand, IR divergences come with logarithms of mo-
menta as prefactors, and hence cannot be compensated by local interactions.
This means IR divergences are a physical feature of the theory.

The phenomenon of IR divergence was first discussed in dept in Ref. [76].
Every theory containing massless gauge bosons will give rise to IR diver-
gences. In the SM, those bosons are the photon and the gluons. The IR
divergences originate from the fact that charged particles in quantum elec-
trodynamics (QED) or QCD cannot be isolated at asymptotic times, due to
the long range of electromagnetic and strong interactions. A charged particle
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can emit or absorb a massless gauge boson of vanishing energy, without a
detector being able to tell if this emission or absorption has happened. In
other words, a final state of a charged particle is indistinguishable from the
state in which the particle emitted a soft gauge boson. The LSZ reduction
formula does not hold if it is impossible to isolate the initial or final state
particles. In practice, this detail is ignored in calculations. The calculation
of the S matrix elements is performed as if the LSZ formula holds [77]. The
Kinoshita-Lee-Nauenberg (KLN) theorem [78,79] states that these radiative
contributions are canceled by loop contributions. This means, in order to
obtain a finite NLO correction to a process involving charged particles in
the initial or final state, one has to not only include the according 1-loop
Feynman diagrams but also the radiative correction arising from a process
with an additional gauge boson in the final state. This procedure has proven
very successful and is hence widely used.

For now, it is assumed that the initial state particles will not produce
IR divergences. These divergences will be discussed later. The NLO cross
section σ of a 2 → n scattering process can be separated into a LO part
which is also called Born contribution σBorn, the virtual contribution σvirt
which is the loop correction, and the real correction σreal with the radiative
corrections

σ = σBorn + σvirt + σreal. (2.78)

Each individual contribution can be calculated in dimensional regularization
and the sum will be finite for ε → 0. The cross sections are integrals over
the n particle phase space for the Born and virtual contribution and over the
n+ 1 particle phase space for the real contribution

σ =

∫
dΦn

dσBorn

dΦn

+

∫
dΦn

dσvirt

dΦn

+

∫
dΦn+1

dσreal

dΦn+1

. (2.79)

The individual virtual and real integrals are only finite in D dimensions.
This raises the problem that performing a numerical calculation in D dimen-
sions is impossible. Analytical calculations are also not feasible in general.
A solution is to add and subtract a counter term. In order to do so, the n+1
particle phase space measure has to be factorized into the n particle phase
space measure and the integration over the momentum of the additional
radiation

dΦn+1 = dΦndΦrad. (2.80)

Here, dΦrad is the integration over the 3 degrees of freedom of the radiation
times an appropriate Jacobian factor. Then, a counter term C(Φn+1) has to
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be constructed such that is has the same divergence as dσreal
dΦn+1

. One possibility
is to take dσreal

dΦn+1
in the kinematic limits that cause the IR divergences and

sum over these limits. Furthermore, the counter term should be analytically
integrable over dΦrad. Then, one can write

σ =

∫
dΦn

dσBorn

dΦn

+

∫
dΦn

(
dσvirt

dΦn

+

∫
dΦradC(Φn+1)

)
+

∫
dΦn+1

(
dσreal

dΦn+1

− C(Φn+1)

)
. (2.81)

This ensures that all terms are individually finite, and the phase space in-
tegrals can be numerically computed. Still, the IR divergence in the virtual
correction has to be calculated analytically and canceled by hand with the
divergence from the counter term. Luckily, the IR divergence in QED and
QCD factorizes into a part that is proportional to the Born process, which
is finite, and a second part that is the same for all processes [80,81]. Hence,
the IR divergence can be evaluated at NLO order once and for all, allowing
to be reused for other processes.

The canceling of IR divergences between virtual and real contributions
is guaranteed as long as IR safe observables are calculated. An observable
is considered IR safe, if it is insensitive to low energy effects that create
these divergences. An example for an IR safe observable is the sum of all
final state transverse momenta, since the sum does not change if extra soft
massless vector bosons are emitted.

2.3.4 Frixione, Kunszt and Signer subtraction
A method to deal with IR divergences in numerical calculations is the Frix-
ione, Kunszt and Signer (FKS) subtraction method proposed in Refs. [82,83].
A detailed review can also be found in Ref. [38]. For the sake of brevity, one
can define

B(Φn) =
dσ̂Born

dΦn

, V(Φn) =
dσ̂virt

dΦn

, R(Φn+1) =
dσ̂real

dΦn+1

. (2.82)

In the FKS subtraction the phase space integral over the real contribution
R is split into multiple integrals. Each integral contains at most the IR
divergence corresponding to one final state particle becoming soft and the
same particle becoming collinear to another massless particle. Originally,
this was achieved by theta functions cutting the phase space into disjoint
parts that add up to the whole phase space. For numerical integrations it
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is advantageous to avoid non-continuous behavior in the integrand. Hence,
these theta functions were replaced by continuous functions.

First, one defines the singular regions. IR divergences coming from the
final state particle i being soft or collinear to one of the initial state particles
are labeled i. The IR divergences originating from the particle i being softly
emitted from the final state particle j or collinear to the final state particle j
are labeled ij. For each singular region, the functions Si(Φn+1) and Sij(Φn+1)
are introduced with the properties∑

i

Si +
∑
ij

Sij = 1. (2.83)

Thereby, the second sum contains both Sij and Sji only if both final state
particles i, j give rise to soft singularities. Otherwise, only one of the two
terms is included in the sum, where the first index represents the particle
that leads to soft divergences, if any.

In order to single out the divergent regions, the newly introduced func-
tions Si and Sij have to fulfill the properties

lim
k0m→0

(
Si +

∑
j

Sij

)
= δim,

lim
~km‖k±

Si = δim,

lim
~km‖kl

(Sij + Sji) = δimδjl + δilδjm,

lim
~km‖k±

Sij = 0,

lim
~km‖kl

Si = 0. (2.84)

Then, the real cross section contribution can be split like

R = R

(∑
i

Si +
∑
ij

Sij

)
=:
∑
i

Ri +
∑
ij

Rij. (2.85)

Each individual Ri and Rij has at most a IR divergence for a single parti-
cle becoming soft or collinear to another particle. Thus, one can construct
counter terms easily for each individual Ri and Rij. It proves useful to use
a specific parametrization in the phase space integral. The unique particle
giving rise to the IR divergence in Ri or Rij is called the FKS particle. Its
momentum is ki. Then, the phase space integral is over the FKS particle is
factored

dΦn+1 = dΦnd
3kiJ. (2.86)
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Now the FKS momentum gets parametrized further in two different ways.
For initial-state radiation (ISR), i.e. the phase space integral over Ri, it is
parametrized as

ki = ξk0+

(
1,
√
1− y2 cosφ,

√
1− y2 sinφ, y

)
. (2.87)

In the case of final-state radiation (FSR), i.e. phase space integrals over
any of the Rij, it is parametrized such that

ξ =
k0i
k0+
, y =

~ki · ~kj∣∣∣~kn+1

∣∣∣∣∣∣~kj∣∣∣ , φ = ∠
(
~η×

(
~ki + ~kj

)
, ~ki ×

(
~ki + ~kj

))
. (2.88)

Thereby, kj is the momentum of the particle that the FKS particle becomes
collinear to in the collinear IR divergence of Rij. This means, ξ is the energy
of the FKS particle normalized to half of the center-of-mass energy, y is
the cosine of the angle between the FKS particle and its emitter, and φ is
the azimuthal angle around the sum of the momenta ~ki and ~kj, where the
arbitrary unit vector ~η defines a direction for which φ = 0. In this thesis and
also in the implementation in the POWHEG BOX, ~η is set to ~η = ~ez.

In this parametrization, the IR counter terms can be constructed from
Ri and Rij in the infrared limits, i.e. ξ → 0 and y → 1. If the particle
i generates an IR divergence when it is collinear to the incoming particle
that is along the negative z axis, then one has to consider Ri in the limit
y → −1 as well. The phase space integral over these limits take a generic
form that is proportional to the process without the additional radiation.
The integral over the FKS variables ξ, y and φ can be performed analytically
in D dimensions, to get the expression that has to be subtracted from the
virtual contribution V .

2.3.5 QCD factorization
This section explains how the initial state IR divergences can be handled. A
detailed explanation of the subject can be found in Ref. [84]. A cross section
σ̂NLO with strongly interacting particles in the initial and final state consists
of the LO cross section σ̂LO and virtual and real corrections

σ̂NLO = σ̂LO + σ̂virt + σ̂real. (2.89)

Performing this calculation will raise the problem, that not all IR diver-
gences cancel. In particular, IR divergences originating from collinear radia-
tion of an initial parton cannot be canceled by virtual corrections. Figure 2.1
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LO

p1

p2

ξp2

(1− ξ)p2

Figure 2.1: Sketch for initial state collinear radiation, where an incoming
gluon splits into a collinear quark-anti-quark pair. The blob represents a LO
diagram of the process.

shows an example diagram that leads to collinear initial state radiation. The
collinear radiation leads to a particle entering the leading order subdiagram
with an energy ξp02, with ξ < 1. Therefore, the IR divergence will be propor-
tional to σ̂LO(ξp

0
2). All IR divergences coming from virtual corrections are

proportional to σ̂LO(p
0
2), since no energy can be lost due to radiation. Hence,

there cannot be any cancellation of these initial state collinear divergences.
Initial state collinear IR divergences only occur for strongly interacting

initial state particles. Due to confinement, they cannot exist as isolated
particles but only in bound states, called hadrons. Hence, cross sections σ̂a
with initial state quarks or gluons do not represent real world observables,
but rather cross sections σ involving colliding hadrons such as protons. In the
following, the discussion is reduced to the case with only one initial hadron
to allow for a shorter notation. The extension to two initial state hadrons
is straight forward. These hadronic cross sections are the convolution of the
partonic cross sections with PDFs fa(x) [66]

σ =
∑
a

∫
dxfa(x)σ̂a,NLO(x)

=
∑
a

∫
dxfa(x)(σ̂a,LO(x) + σ̂a,virt(x) + σ̂a,real(x)). (2.90)

The sum over a runs over all partons for which the PDF is non-zero. Note
that it is possible that σ̂a,LO(x) ≡ σ̂a,virt(x) ≡ 0 for some parton a, if there
does not exist any LO diagram with a in the initial state, but σ̂a,real(x)) 6= 0
for the same a.

In theory, each individual partonic cross section can be calculated sep-
arately in dimensional regularization to handle the IR divergences. Now,
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the real correction cross section leads to multiple divergences coming from
collinear and soft configurations in the initial state as well as in the final state.
Let σ̂a,real,IC(x) contain only terms with an initial state collinear divergence,
σ̂a,real,FC+S(x) all other IR divergences, and all finite terms are collected in
σ̂a,real,fin(x). Note that this also includes divergences originating from con-
figurations where a parton becomes simultaneously soft and collinear to an
initial state. Then, one can split off all IR divergences from the partonic
cross sections

σ =
∑
a

∫
dxfa(x)

[
σ̂a,LO(x) + σ̂a,virt,fin(x) + σ̂a,virt,ir(x)

+ σ̂a,real,fin(x) + σ̂a,real,IC(x) + σ̂a,real,FC+S(x)
]
. (2.91)

Now, the cancellation works out as

σ̂a,virt,ir(x) + σ̂a,real,FC+S(x) = 0, (2.92)

leaving σ̂a,real,IC(x) without a counter part within the perturbative cross sec-
tions

σ =
∑
a

∫
dxfa(x)

[
σ̂a,LO(x) + σ̂a,virt,fin(x) + σ̂a,real,fin(x) + σ̂a,real,IC(x)

]
.

(2.93)

As it turns out, the initial state collinear divergence of the real contri-
bution can be factorized into the LO contribution σ̂a,LO(x) times a universal
IR divergent factor Pab(ξ) that only depends on the initial parton a and the
parton b entering the LO sub diagram with the momentum fraction ξ of the
incoming parton (see Fig. 2.1) [80]

σ̂a,real,IC(x) =
∑
b

∫ 1

0

dξPab(ξ)σ̂b,LO(ξx). (2.94)

With this factorization one can write∫ 1

0

dx
∑
a

fa(x)(σ̂a,LO(x) + σ̂a,real,IC(x))

=

∫ 1

0

dx

(∑
a

fa(x)σ̂a,LO(x) +

∫ 1

0

dξ
∑
ab

fa(x)Pab(ξ)σ̂b,LO(ξx)

)

=

∫ 1

0

dx

(∑
a

fa(x)σ̂a,LO(x) +

∫ 1

0

dξ
∑
ab

fb(x)Pba(ξ)σ̂a,LO(ξx)

)
. (2.95)
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In the last line the summation indices a and b have been renamed such that
the LO partonic cross section carries the same index. The second term can
be written as∫ 1

0

dx

∫ 1

0

dξ
∑
ab

fb(x)Pba(ξ)σ̂a,LO(ξx))

=

∫ 1

0

dx

∫ 1

0

dξ

∫ 1

0

dχδ(χ− ξx)
∑
ab

fb(x)Pba(ξ)σ̂a,LO(ξx)

=

∫ 1

0

dχ

∫ 1

χ

dx

x

∑
ab

fb(x)Pba
(χ
x

)
σ̂a,LO(χ)

=

∫ 1

0

dx

∫ 1

x

dχ

χ

∑
ab

fb(χ)Pba
(
x

χ

)
σ̂a,LO(x). (2.96)

In the last line the integration variables were renamed. With this the LO
contribution plus the initial collinear contribution becomes∫ 1

0

dx
∑
a

fa(x)(σ̂a,LO(x) + σ̂a,real,IC(x))

=
∑
a

∫ 1

0

dx

(
fa(x) +

∫ 1

x

dχ

χ

∑
b

fb(χ)Pba
(
x

χ

))
σ̂a,LO(x)

=
∑
a

∫ 1

0

dxfNLO
a (x)σ̂a,LO(x) (2.97)

With this manipulation the problematic initial state collinear divergence
is absorbed into the PDF to define a new renormalized PDF

fNLO
a (x) =

∑
b

∫ 1

x

dχ

χ
fb(χ)

(
χδabδ(x− χ) + Pba

(
x

χ

))
. (2.98)

Thereby, the renormalization is process independent since it only depends on
the universal factors Pab.

Similar to renormalization of UV divergences, the PDFs fa(x) have to be
regarded as unmeasurable bare distributions, which can only be determined
after absorbing the collinear singularity. Further, one can add additional
finite terms Kba as long as they are in the same order in coupling constants
as Pab

fNLO
a (x) =

∑
b

∫ 1

x

dχ

χ
fb(χ)

(
χδabδ(x− χ) + Pba

(
x

χ

)
+Kba

(
x

χ

))
. (2.99)
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The choice of the finite term K fixes the choice of the factorization scheme.
The renormalized PDFs can be plugged into Eq. (2.91) while using the

fact that Pba + Kba multiplied by either the real or virtual correction gives
terms of higher order and can be neglected in a NLO calculation. The renor-
malized PDFs will by definition cancel the initial state collinear divergence
to leave

σ =
∑
a

∫
dx

[∑
b

∫ 1

x

dχ

χ
fNLO
b (χ)

(
χδabδ(x− χ)− Pba

(
x

χ

)
−Kba

(
x

χ

))]
× [σ̂a,LO(x) + σ̂a,virt,fin(x) + σ̂a,real,fin(x) + σ̂a,real,IC(x)]

=
∑
a

∫
dxfNLO

a (x)

[
σ̂a,LO(x) + σ̂a,virt,fin(x) + σ̂a,real,fin(x)

−
∑
b

∫ 1

0

dξKab(ξ)σ̂b,LO(ξx)

]
(2.100)

fNLO
q represents a quantity that cannot be calculated perturbatively by

its very nature. In fact, there does not exist an accepted method, thus far, to
calculate it from first principles. In practice, one has to choose a scheme and
use experimental data to match the renormalized PDFs. Then, one can use
the experimentally determined PDFs to calculate other processes to make
predictions. This procedure only works because the divergent terms Pab are
universal and do not depend on the specific process at hand. In dimensional
regularization, they take the form

Pab(ξ) = −αs
2π

1

ε
Pab(ξ), (2.101)

where Pab are the Altarelli-Parisi splitting functions [80]. A common factor-
ization scheme is the MS scheme in which

Kab(ξ) =
αs
2π

(γE − log 4π)Pab(ξ). (2.102)

In numerical calculations, it is not practical to split σ̂a,real(x) into its finite
and individual divergent parts. In the previous sections 2.3.3 and 2.3.4, the
addition of counter terms to handle the IR cancellation between virtual and
real corrections was discussed. The cancellation between initial state collinear
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divergences and PDF IR divergences can be handled in a similar way

σ =
∑
a

∫
dxfa(x)

[∫
dΦn+1

(
dσa,real

dΦn+1

(x)− Ca(Φn+1, x)

)

+

∫
dΦn

(
dσa,Born

dΦn

(x) +
dσa,virt

dΦn

(x) +

∫
dΦradCa(Φn+1, x)

)]

=
∑
a

∫
dx

[
fNLO
a (x)−

∑
b

∫ 1

x

dχ

χ
fNLO
b (χ)

(
Pba
(
x

χ

)
+Kba

(
x

χ

))]
[∫

dΦn

(
dσa,Born

dΦn

(x) +
dσa,virt

dΦn

(x) +

∫
dΦradCa(Φn+1, x)

)

+

∫
dΦn+1

(
dσa,real

dΦn+1

(x)− Ca(Φn+1, x)

)]

=
∑
a

∫
dxfNLO

a (x)

[∫
dΦn+1

(
dσa,real

dΦn+1

(x)− Ca(Φn+1, x)

)
+

∫
dΦn

(
dσa,Born

dΦn

(x) +
dσa,virt

dΦn

(x) +

∫
dΦradCa(Φn+1, x)

)
−
∫

dΦndξ(Pab(ξ) +Kab(ξ))
dσb,Born

dΦn

(ξx)

]

=
∑
a

∫
dxfNLO

a (x)

[∫
dΦn

dσa,Born

dΦn

(x)

+

∫
dΦn+1

(
dσa,real

dΦn+1

(x)− Ca(Φn+1, x)

)
+

∫
dΦn

(
dσa,virt

dΦn

(x) +

∫
dΦradCa(Φn+1, x) +

∫
dξGa(ξ, x)

)]
. (2.103)

Each individual line in the last step is finite on its own. Note that Ca(Φn+1, x)
is to be understood as a sum of counter terms that cancel each IR divergence,
including divergences coming from initial state collinear configurations. The
newly introduced term Ga(ξ, x) is usually referred to as collinear counter
term. It consists of the terms that are absorbed into the bare PDF and is
dependent on the factorization scheme.

If both incoming particles give rise to IR collinear divergences, the pro-
cedure is analogous. In that case, one has two sets of PDFs, one for each
incoming hadron, and one needs two collinear counter terms.
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2.3.6 Observables at next-to-leading order
When calculating observables, it proves useful to reorganize Eq. (2.103).
Since all strongly charged particles are experimentally indistinguishable, one
has to include all processes where partons in initial or final state are replaced
by other partons. Here, only processes with one strongly charged parton in
the initial state will be considered. The POWHEG BOXorganizes the calculation
in a particular way as described in Ref. [38]. This section briefly reviews the
calculation organization adjusted to a single hadron in initial state.

Let fb be all flavor structures that lead to non-zero amplitudes at LO.
Thereby, a flavor structure is a partly ordered list of particle flavor, where
the first two particles are the flavors of the initial state particles and the
other entries are the final state particles. Furthermore, two flavor structures
are considered identical if they only differ by a permutation of the initial
or final state particles. All virtual corrections must have a flavor structure
equal to one fb, since at NLO, only the interference terms with LO diagrams
contribute.

In section 2.3.4, it was discussed how one can split the real correction Rfr

into individual contributions with isolated IR divergences Rfr,i and Rfr,ij.
This can be done for each possible flavor structure fr of the real correction

R =
∑
fr

Rfr =
∑
fr

(∑
i

Rfr,i +
∑
ij

Rfr,ij

)
=:
∑
αr

Rαr . (2.104)

Here, the IR divergent regions αr are introduced. Each specific αr corre-
sponds to a real flavor structure fr and a parton becoming soft or collinear.
Additionally, each αr can be assigned to a LO flavor structure that the soft
or collinear limit of Rαr is proportional to. This LO flavor structure is called
the underlying Born flavor structure. It is also useful to introduce the nota-
tion of an underlying Born phase space point Φ̄αr

n . For ease of notation, one
can also define Φn := {x,Φn}. Then, let Mαr be a mapping that maps Φn+1

to the IR divergent phase space point αr is referring to

Φ̃αr
n+1 =MαrΦn+1. (2.105)

Now, the underlying Born phase space point Φ̄αr
n is defined as the phase

space point Φ̃αr
n+1 where:

• the soft vector is removed if αr specifies a soft divergent region,

• the two collinear momenta are replaced by their sum if αr specifies a
final state collinear divergent region and
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• the radiated parton is removed and the momentum fraction x is re-
placed by the momentum fraction after the radiation.

The same idea can be applied to the phase space point of the collinear counter
term which has an initial state collinear origin. One defines

Φ̄n = {x̄,Φn} := {ξx,Φn}. (2.106)

With this notation one can calculate the expectation value of an observ-
able O as

〈O〉 =
∑
fb

∫
dx

[∫
dΦnf

NLO
fb

(x)O(Φn)(Bfb(Φn) + Vfb(Φn))

+

∫
dΦn+1

∑
αr∈{αr|fb}

fNLO
αr

(x)
(
O(Φn+1)Rαr(Φn+1)−O(Φ̄αr

n )Cαr(Φn+1)
)

+

∫
dΦn

∑
αr∈{αr|fb}

∫
dΦradf

NLO
αr

(x)O(Φ̄αr
n )Cαr(Φn+1)

+

∫
dΦn

∑
αg∈{αg |fb}

∫
dξfNLO

αr
(x)O(Φ̄n)Gαg(ξ, Φ̄n)

]
. (2.107)

Thereby, {αr|fb} is the set that contains all αr that are assigned with the
underlying Born flavor structure fb, and αg describes all initial state collinear
regions that the collinear counter terms have to cancel. Often, the observable
O is a product of Theta-functions that determine a bin in a histogram.

2.4 Parton shower
Feynman diagrams can be split into subdiagrams to be evaluated individu-
ally and afterwards combined again. This offers the possibility to evaluate
common subdiagrams and reuse them in all kinds of processes. As discussed
in the previous sections, the branching of an off-shell quark into the same
quark with an additional gluon, q∗ → qg, gives rise to large amplitudes for
a soft or collinear gluon. This subdiagram is part of any real correction of
a process with a quark in the final state. The correction to the next order
contains a subdiagram where the quark undergoes the same branching again.
This correction would contain the subdiagram q∗ → qg twice, meaning it is
a product of two large quantities. The full calculation would consist of an
infinite series of nested q∗ → qg subdiagrams, which cannot be expected to
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be small. Another effect enhancing these large corrections is the proportion-
ality of the subdiagram q∗ → qg to the strong coupling gs. Since the QCD
is a non-Abalian gauge theory, gs increases with decreasing energy scale and
each branching introduces new smaller energy scale compared to the ones
involved before the branching. This behavior is shared with all subdiagrams
that contain IR divergences and also applies with lesser degree to IR diver-
gences coming from QED processes. Since the QED is an Abelian gauge
theory its coupling e decreases with lower energy scale.

In order to make sensible theoretical predictions for scattering processes
with strongly interacting particles in the final state, one has to take these
large corrections into account. Obviously, one cannot perform a straightfor-
ward complete calculation because it involves an infinite amount of Feynman
diagrams with an increasing number of final state particles. However, one
can use a procedure called the parton shower to simulate the endless branch-
ing using reasonable approximations [85–87]. A review of the field of parton
showers can be found in Refs. [88, 89]. Parton showers are implemented as
event generators. Prominent examples are Pythia8 [44,45], Herwig7 [40,41]
and Sherpa2 [42, 43].

The parton shower is largely independent of the actual process at hand
and only depends on the number of strongly interacting final state particles.
In practice, a parton shower is used in Monte Carlo generators. The work
flow then consists first of calculating the hard process, meaning calculating
the cross section for the partonic process at leading order. Then, an event
is generated. This event consists of the momenta of all final state particles.
The precise momenta are generated randomly according to a probability
density. This probability density is given by the differential cross section
normed to the total cross section. Now, the parton shower is applied to
the final state momenta. Thereby, the branching of final state particles into
more final state particles is done iteratively to build a complex final state of
many particles to simulate actual observations in scattering experiments. At
each iteration in the parton shower a final state particle is replaced by two
branching products. The momenta of the branching products are once again
chosen randomly according to a probability density, which is a product of an
approximate amplitude of the branching and a Sudakov factor. The Sudakov
factor takes the virtual contribution into account which was not discussed
thus far.

After generating momenta according to the cross section of the hard pro-
cess at leading order, all final state momenta are on-shell as required from the
LSZ reduction formula. However, in order to enable branching the final state
particle i needs to have a virtuality Q2

i = p2i −m2
i , otherwise the branching

is kinematically impossible. In fact, only particles in the final state after
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the showering process have to be on-shell since the hard process happens at
very small time scales, the uncertainty theorem allows for virtualities Qi 6= 0.
Therefore, the momenta of the final state particles of the hard process are
reshuffled before the parton shower to give them a virtuality. One has to
ensure that the virtualities Q2

i are much smaller than the scale of the hard
process Q2

hard. Otherwise, the matrix element for the hard process, in which
Q2
i = 0, would not be a good approximation anymore. Then, the show-

ering process can be done iteratively, where after each step the virtualities
are decreased until they fall under a cutoff threshold. Below the threshold,
non-perturbative effects of QCD take over.

The differential probability dP for a branching a→ bc to happen is given
by

dPa→bc =
dσreal,a→bc

σLO
. (2.108)

Thereby, dσreal,a→bc is the differential cross section for the process in which
the final state particle a is replaced by its branching products b and c and
σLO is the LO cross section. In the collinear or soft limit, one can neglect all
Feynman diagrams in σreal,a→bc except the one which contains the branching
as subdiagram, because this is the diagram that diverges in this limit. Hence,
all interference terms can be neglected. In this limit, σreal,a→bc factorizes into

σreal,a→bc = σLO
αs
2π

dQ2
a

Q2
a

Pa→bc(z)dz, (2.109)

where Q2
a = (pb+ pc)

2, z = Eb/(Eb+Ec) and Pa→bc(z) are splitting functions
that only depend on the particle type of the particles involved in the splitting.
Hence, the probability is independent of the hard process σLO.

This differential probability diverges for Q2
a → 0, which makes it impos-

sible to interpret it as a proper probability. At each iteration step of the
parton shower the virtuality Qa that is given to the branching particle a has
to decrease. The momenta of the branching products b and c have to be
generated according to the probability density dPfirst that some branching
happens with Q2

a but not with any other virtuality Q2 > Q2
a

dPfirst(Q
2
a) = dPbran(Q

2
a)Pno bran(Q

2
max > Q2 > Q2

a). (2.110)

Here, Q2
max is a maximal virtuality that has to be much smaller than the

hard scale of the process. Probabilities for any further branching with a
scale below Q2

a do not enter at this point, because they are considered in
later iteration steps.
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The probabilities of a particle branching and not branching have to add
up to one, since there is no other possibility

Pbran(Q
2
1 > Q2 > Q2

2) + Pno bran(Q
2
1 > Q2 > Q2

2) = 1. (2.111)

Further, the probability of no branching is multiplicative

Pno bran(Q
2
1 > Q2 > Q2

2)Pno bran(Q
2
2 > Q2 > Q2

3) = Pno bran(Q
2
1 > Q2 > Q2

3).
(2.112)

These properties allow to reformulate the no branching probability by sub-
dividing the energy scale as

Q2
i = (i/n)(Q2

max −Q2
a) +Q2

a, (2.113)

then

Pno bran(Q
2
max > Q2 > Q2

a) = lim
n→∞

n−1∏
i=0

Pno bran(Q
2
i > Q2 > Q2

i+1)

= lim
n→∞

n−1∏
i=0

(
1− Pbran(Q

2
i > Q2 > Q2

i+1)
)
.

(2.114)

For a continuous probability function, Pbran(Q
2
i > Q2 > Q2

i+1) becomes very
small in the limit n→ ∞ and one can write it as exponential

lim
n→∞

(
1− Pbran(Q

2
i > Q2 > Q2

i+1)
)
= exp

[
lim
n→∞

(
−Pbran(Q

2
i > Q2 > Q2

i+1)
)]
.

(2.115)

This transforms the product into a sum in the exponent, which can be written
as an integral together with the limit

Pno bran(Q
2
max > Q2 > Q2

a) = exp

[
−
∫ Q2

max

Q2
a

dPbran(Q
2)

dQ2
dQ2

]
. (2.116)

This is called the Sudakov form factor. Then, the probability density for a
branching a→ bc is

dPfirst,a→bc = dPa→bc exp

[
−
∑
a,b

∫ Q2
max

Q2
a

dPa→bc(Q2)

dQ2
dQ2

]

=
αs
2π

dQ2
a

Q2
a

Pa→bc(z)dz exp

[
−αs
2π

∑
a,b

∫ Q2
max

Q2
a

dQ2

Q2

∫
Pa→bc(z

′)dz′

]
.

(2.117)
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Now, one can generate additional radiated partons according to this prob-
ability density. After the first iteration, Q2

max has to be set to the randomly
selected Q2

a of the previous iteration. If the generated Q2
a falls below a thresh-

old Q2
min, one aborts the algorithm. Note that in practice Q2

a is often changed
to different order variables by a variable transformation.

2.5 POWHEG method
The previous section demonstrated how one can enhance a LO calculation
with a parton shower. Each order in the couplings is a polynomial in loga-
rithms of physical quantities, where the polynomial order increases with each
order in the coupling. The parton shower provides a method to resum the
leading logarithms of the higher orders. But one can do better. The next
step is to include all the terms in the NLO. This has to be done carefully,
since the NLO corrections will contain real corrections. These real correc-
tions are processes with an additional parton in the final state. Adding a
parton to the final state corresponds to the first step of the shower algorithm
which raises the problem of double counting. Therefore, events of a NLO
event generator have to be correctly interfaced with a shower algorithm.
One possible method is the Positive Weight Hardest Emission Generator
(POWHEG) method [37,38]. The main features of this method are the inde-
pendence of the specific shower algorithm, which has to be slightly adapted,
and the mostly avoidance of events with negative weights, which would have
no physical interpretation.

The strategy of the POWHEG method is to generate the first radiation
with full NLO precision. As a reminder, a normal shower would use the soft
and collinear limits of the NLO contribution in order to obtain the lead-
ing logarithms for the first radiation. In this context, first radiation means
hardest radiation in the sense that the first radiated parton has the largest
transverse momentum pT with respect to the direction of the splitting parton.
Each subsequent radiation is required to have a smaller transverse momen-
tum. For transverse momentum ordered shower algorithms this requirement
is easy to fulfill by setting the hard scale QHard to the transverse momentum
pT of that first NLO radiation. Angular ordered shower algorithms on the
other hand have to be adopted slightly. With these showers, the first radi-
ation does not have to be the hardest with the largest pT . One proposed
solution is to slightly modify the shower algorithm by implementing a veto
that prohibits the generation of radiations harder than the first with NLO
accuracy.

For the description of the POWHEG method, it is helpful to introduce
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the notation of absorbed the PDFs into the individual contributions they are
convoluted with

Bfb(Φn) = fNLO
fb

(x)Bfb(Φn), Vfb(Φn) = fNLO
fb

(x)Vfb(Φn),

Rαr(Φn+1) = fNLO
αr

(x)Rαr(Φn+1), Cαr(Φn+1) = fNLO
αr

(x)Cαr(Φn+1),

Gαg(Φn, ξ) = fNLO
αg

(x)Gαg(Φn, ξ). (2.118)

For the POWHEG method the NLO formula for the expectation value of
an observable O Eq. (2.107) is rewritten to

〈O〉 =
∑
fb

〈O〉fb ,

〈O〉fb =
∫

dΦnOn(Φn)B̄fb(Φn)

+
∑

αr∈{αr|fb}

∫
dΦ̄αr

n dΦαr
radRαr(Φn+1)

[
On+1(Φn+1)−On(Φ̄

αr
n )
]
,

(2.119)

B̄fb(Φn) = Bfb(Φn) + Vfb(Φn) +
∑

αr∈{αr|fb}

∫
[dΦαr

radCαr(Φn+1)]
Φ̄αr

n =Φn

+
∑

αr∈{αr|fb}

∫
[dΦαr

rad{Rαr(Φn+1)− Cαr(Φn+1)}]Φ̄
αr
n =Φn

+
∑

αg∈{αg |fb}

∫ [
dξ

ξ
Gαg(Φn, ξ)

]Φ̄n=Φn

. (2.120)

Thereby, the notation [· · · ]Φ̄
αr
n =Φn is to be understood that such the phase

space point Φn+1 inside the square bracket is factorized into (Φ̄αr
n ,Φ

αr
rad) and

Φ̄αr
n is evaluated at Φn. The measure dΦαr

rad contains the appropriate Jacobian
factor such that

dΦn+1 = dΦ̄αr
n dΦαr

rad. (2.121)

Similarly, the notation [· · · ]Φ̄n=Φn for the collinear counter term means that
the phase space point inside the squared bracket is transformed as

Φn → Φ̄n = (x̄,Φn) = (ξx,Φn), (2.122)

and the transformed phase space point Φ̄n is evaluated at Φn.
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Now, the POWHEG-Sudakov factor can be introduced, which is the NLO
accurate version of Eq. (2.116)

∆fb(Φn, pT )

= exp

−
∑

αr∈{αr|fb}

∫ [
dΦαr

rad
Rαr(Φn+1)

Bfb(Φn)
θ(kαr

T (Φn+1)− pT )

]Φ̄αr
n =Φn

.
(2.123)

Here, kαr
T (Φn+1) is a function of the phase space point Φn+1 and depends on

the divergent region αr. It is the ordering variable and should be proportional
to the transverse component of the radiation momentum with respect to:

• the beam axis if the emitter is an initial state particle, or

• the 3-momentum sum of emitter and radiation if the emitter is a final
state particle.

It can be shown that Eq. (2.119) is equivalent to

〈O〉 =
∑
fb

∫
dΦnB̄fb(Φn)

{
On(Φn)∆fb(Φn, p

min
T )+

+
∑

αr∈{αr|fb}

∫
dΦradOn+1(Φn+1)

Rαr(Φn+1)

Bfb(Φn)
∆fb(Φn, k

αr
T )θ(kαr

T − pmin
T )

}
(2.124)

up to terms that are in higher order than NLO. The first term in Eq. (2.124)
corresponds to all n-particle contributions to the observable since
∆fb(Φn, p

min
T ) is the probability of no radiation being produced above the

cutoff pmin
T . The second term contains the contribution of the first radiation

because∑
αr∈{αr|fb}

∫
dΦradOn+1(Φn+1)

Rαr(Φn+1)

Bfb(Φn)
∆fb(Φn, k

αr
T )θ(kαr

T − pmin
T ) (2.125)

is the NLO accurate version of the probability density Eq. (2.117) with which
a radiation in a shower algorithm is generated.

In order to implement Eq. (2.124), one generates an n-particle phase
space point Φn and flavor structure index fb with a probability proportional
to dΦnB̄fb(Φn). In practice, this is done using the hit and miss technique. If
the n-particle phase space point is generated, the first emission can be added.



58 CHAPTER 2. THEORETICAL PRELIMINARY

Therefore, one has to generate the hardest radiation variables a αr ∈ {αr|fb}
with a probability proportional to

dΦrad
Rαr(Φn+1)

Bfb(Φn)
∆αr
fb
(Φn, k

αr
T )θ(kαr

T − pmin
T ). (2.126)

In this context hardest radiation means the configuration with the greatest
kαr
T (Φn+1). Ultimately, this problem can be reduced to generate a value pαr

T

for each αr ∈ {αr|fb} proportional to

∆αr
fb
(Φn, pT ) = exp

{
−
∫ [

dΦαr
rad
Rαr(Φn+1)

Bfb(Φn)
θ(kαr

T (Φn+1)− pT )

]Φ̄αr
n =Φn

}
.

(2.127)

Then the pair (pαr
T , αr) with the highest value for pαr

T is accepted for the event
and the radiation variables are built to yield kαr

T = pαr
T . In order to generate

the value for pαr
T , one has to generate a random number 0 < r < 1 and solve

the equation

r = ∆αr
fb
(Φn, pT ) (2.128)

for pT .
Solving Eq. (2.128) is in general a time consuming task. To handle this

technical problem one can define an upper bounding function U(Φrad) such
that

U(Φαr
rad) ≥

[
Rαr(Φn+1)

Bfb(Φn)

]Φ̄αr
n =Φn

, (2.129)

and that the equation

r = ∆αr,U
fb

(Φn, pT ) := exp

{
−
∫

[dΦαr
radU(Φ

αr
rad)θ(k

αr
T (Φn+1)− pT )]

Φ̄αr
n =Φn

}
(2.130)

is solvable in a more timely manner. By using the veto method, one can
generate a pT with the probability density ∆αr

fb
using ∆αr,U

fb
. Consequently,

one has to find the pT,max with ∆αr,U
fb

(pT,max) = 1. Then, one generates a
uniform random number 0 < r < 1 and solves

r =
∆αr,U
fb

(pT )

∆αr,U
fb

(pT,max)
(2.131)
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for pT . From this pT the radiation variables Φαr
rad are built proportional to

the density
U(Φαr

rad)δ(k
αr
T (Φαr

rad)− pT ). (2.132)
Now, a second random number 0 < r′ < 1 is generated, and if

r′ >

[
Rαr(Φn+1)

Bfb(Φn)

]Φ̄αr
n =Φn

U(Φαr
rad)

−1, (2.133)

the event is vetoed. In case of a vetoed event pT,max is set to pT,max = pT and
the procedure is started again from Eq. (2.131) with new random numbers
r, r′. Eventually, one either finds an accepted event, or the generated pT falls
below the cutoff pT,min. In any case, the veto procedure stops and one gets
the radiation variables Φαr

rad or a rejected radiation for that αr.
After this is done for each αr ∈ {αr|fb}, the IR divergent region with

the highest kαr
T (Φαr

rad) is accepted. If all radiations are rejected because each
region generated a pT < pT,min, then the event is an n-particle event.

2.6 Deep inelastic scattering
This work focuses on the process referred to as DIS, which is traditionally
the scattering of an electron and a proton. The focus of DIS is probing the
inner structure of a hadron or nuclei with a high energy lepton. In DIS, the
incoming lepton interacts with a constituent of the proton via an exchange
boson of momentum q (see Fig. 2.2). One selects the scattering events where
the exchanging boson has a high virtuality −q2 � M2

P . This ensures the
validity of the perturbative QFT methods described in the previous sections
to obtain accurate predictions.

Throughout this work, momenta will be numbered as indicated in Fig. 2.2,
i.e. the incoming lepton will be called p1, the incoming parton p2, the out-
going lepton p3 and all outgoing partons are numbered from 4 onwards. The
momentum of the incoming proton is denoted with P . In the context of DIS,
kinematic variables are often defined as [90]

Q2 := −q2 = −(p1 − p3)
2 > 0, yDIS :=

p2q

p1p2
,

xB :=
Q2

2Pq
, λ :=

Q2

2p2q
. (2.134)

Let x be the momentum fraction of the incoming proton that is carried by
the incoming parton p2 = xP . Then, it follows

λ =
xB
x
. (2.135)
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e−

p+

p+p
+

p1 p3

p2
p4

q

Figure 2.2: Example of a Feynman diagram for electron-proton scattering.

At LO the partonic process will only have two particles in the final state.
From momentum conservation follows q = p4 − p2, and hence λ = 1, or
xB = x. If a radiated parton is added, one obtains in general λ < 1, or
xB < x.

The averaged spin and color summed squared matrix element at LO con-
sists only of the Feynman diagram depicted in Fig. 2.2, where the exchange
boson is a photon or a Z-boson. The contributions from Z-boson exchange
are suppressed by a factor 1/M2

Z for small Q2 � M2
Z . Hence, the first

approximation can be given by neglecting the Z-boson contribution, leav-
ing only one Feynman diagram to calculate. With the Mathematica tools
FeynArts [91] and FeynCalc [92–94] one obtains

|Mq|2 = 32π2α2Q2
q

Q4 − 2Q2s+ 2s2

Q4
, (2.136)

where Qq is the electric charge of the quark flavor q. One can easily see that
the squared matrix element diverges for Q2 → 0. For small energy transfers
Q2, the assumption that the electron scatters off of the constituents of the
proton does not hold up, and the idea to factor out a hard scattering process
breaks down. At small Q2 the electron would interact with the proton as a
whole rather than the partons. This emphasizes the importance to impose a
lower cut Q2

cut < Q2 on the events that are to be described by this prediction.

2.6.1 Breit frame
When describing DIS, a popular reference frame is the Breit frame. It is
defined by the condition

2xBP+ q = 0. (2.137)
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It is practical to choose a direction for the vector q. This work uses

p2,Breit = E2,Breit(1, 0, 0,−1), qBreit = Q(0, 0, 0, 1). (2.138)

Any momentum pbreit with pbreitqBreit > 0 is labeled to be in the current
hemisphere, while momenta not fulfilling this condition make up the rem-
nant hemisphere. By defining observables using only the particles in the
current hemisphere, one can easily single out effects from the scattering pro-
cess from effects that occur due to the proton remnant. The proton remnant
is nearly collinear to the incoming proton and hence in the remnant hemi-
sphere. With all momenta being transformed into the Breit frame, commonly
studied observable is the jet broadening

Bz,E :=

∑
h |pT,h|

2
∑

h |ph|
. (2.139)

The notation
∑

h means the sum over all particles in the current hemisphere
and pT,h is the transverse momentum of ph with respect to q. Some more
common observables are the thrust variable with respect to the boson axis
τ , the jet mass ρ and the C-parameter. They are defined as

τz,E := 1−
∑

h |p3
h|∑

h |ph|
,

ρ :=
(
∑

hEh)
2 − (

∑
h ph)

2

(2
∑

h |ph|)
2 ,

C :=
3
∑

h,h′ |ph||ph′ | cos2 θhh′
2(
∑

h |ph|)
2 . (2.140)

If the incoming lepton is along the positive z-axis and the incoming proton
along the negative z-axis, one can write the transformation matrix ΛBreit as

ΛBreit =


Q

q0+q3
+ q0

Q
− q1

Q
− q2

Q
Q

q0+q3
− q3

Q

− q1

q0+q3
1 0 − q1

q0+q3

− q2

q0+q3
0 1 − q2

q0+q3

− q0

Q
q1

Q
q2

Q
q3

Q

 , (2.141)

where q is the boson momentum in the original frame. This transformation
matrix is a modified version of the one reported in Appendix 7.11 of Ref. [90].
The modifications take into account the different sign for qBreit and an arbi-
trary rotation around the beam axis. This transformation will transform the
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momenta

ΛBreit


q0

q1

q2

q3

 =


0
0
0
Q

 ,

ΛBreit


1
0
0
−1

 =
q0 + q3

Q


1
0
0
−1

 . (2.142)

When doing a phase space integral in the Breit frame, one has to in-
clude a Jacobian factor for the transformation, despite ΛBreit being a Lorentz
transformation. Because ΛBreit depends on the momentum of the out going
lepton, its Jacobian determinant |ΛBreit| 6= 1. Instead, one finds

dΦn = 2yDISdΦn,Breit, (2.143)

with p33,breit < 0, i.e. the outgoing lepton is restricted to the remnant hemi-
sphere.

2.6.2 2-particle Phase space
In this section, the phase space measure dΦ2 is calculated. It will be referred
to as Born kinematics. All Born momenta and kinematic variables will be
denoted with barred variables to distinguish them from momenta associated
to the real correction. The starting point is

dΦ2 = dx̄
d3p̄3

2(2π)3Ē3

d3p̄4

2(2π)3Ē4

(2π)4δ(4)(p̄1 + p̄2 − p̄3 − p̄4), (2.144)

with Ēn := |pn| and p̄2 = x̄P , where P is the incoming proton momentum.
Now, d3p̄4 can be eliminated with the delta distribution, and the DIS vari-
ables defined in Eq. (2.134) can be introduced. This can be easily done in
the center-of-mass frame in which

p̄1 =

√
s̄

2
(1, 0, 0, 1),

p̄2 =

√
s̄

2
(1, 0, 0,−1). (2.145)

Then, one gets

dΦ2 =
1

16π2
dxBdĒ3dc̄3dφ̄3δ

(√
s̄− 2Ē3

)
, (2.146)
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with

p̄3 = E3(1, cos φ̄3

√
1− c̄23, sin φ̄3

√
1− c̄23, c̄3),

⇒ yDIS =
1− c̄3

2
, Q2 =

s̄

2
(1− c̄3). (2.147)

Hence, the phase space measure becomes

dΦ2 =
dxBdyDISdφ̄3

16π2
. (2.148)

Since the setup of two incoming particles along the z-axis is symmetric under
rotations around the z-axis, the differential cross section cannot depend on
dφ̄3. Hence, one can perform the integration over dφ̄3 to get an extra factor
2π.
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Chapter 3

Software implementation

This chapter describes the changes to the POWHEG BOX that had to be made
to generate DIS events. The POWHEG BOX is set up to handle hadron-hadron
collisions as they happen in the large hadron collider. The obvious difference
between DIS and hadron-hadron collisions is a lepton in the initial state
instead of the second hadron. The POWHEG method relies on the mapping
of the n+1 particle phase space Φn+1 of the real correction to the underlying
Born phase space Φ̄n. This mapping is done for each IR divergent region in
a generic way. In the implementation of the POWHEG BOX, this mapping is
inverted and the phase space point Φn+1 is built for a given n particle phase
space point Φ̄n. This mapping is not unique. A specific mapping suited
for proton-proton collisions was chosen and impelented in the POWHEG BOX.
In particular, this mapping includes a mapping of the momentum fractions
x̄± → x± of the incoming partons, where in general x̄± 6= x±. However, if
one of the incoming particles is a lepton, then this lepton has to carry the
whole momentum of the beam, i.e. x̄lepton = xlepton = 1. Another feature
of DIS is the divergent behavior for Q2 → 0. Hence, experimental data will
incorporate a lower cut on the momentum transfer Q2 that must be respected
in theoretical simulations. Since the POWHEG BOX generates the phase space
for the radiation based on the underlying Born phase space, it would be
efficient if the mapping would fulfill Q̄2 = Q2. If this condition is fulfilled,
one will not encounter the problem of needing to generate n-particle events
outside of the Q2 boundaries in order to ensure that all n+1-particle events
inside the boundaries can be generated or vice versa. The mapping between
underlying Born configurations and the real correction configurations do not
respect these conditions and have to be modified. This chapter shows how
the mapping can be modified to fulfill these conditions and which subsequent
modifications must be made to obtain a functioning event generator that
can be interfaced to a shower algorithm to obtain showered events at NLO

65
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accuracy.

3.1 POWHEG BOX
This section is a brief description of the functionality of the POWHEG BOX.
The detailed describtion can be found in Ref. [95]. The POWHEG BOX is split
into four stages. The first two stages are fixed order phases. In those stages
the phase space integral for the cross section is evaluated using Monte Carlo
integration. For this purpose, random variables, one for each unrestricted
dimension in the phase space integral, are generated. Then, these random
variables are mapped onto the n-particle phase space, for which the LO and
IR subtracted virtual corrections are evaluated. Three more random variables
are used to build the n+1-particle phase space on top of the n-particle phase
space to evaluate the real corrections together with their counter terms. The
first stage of the POWHEG BOX serves the purpose to optimize the importance
sampling of the random variables for the Monte Carlo integration. At the
second stage, the fixed order calculation is performed using the optimized
importance sampling. This calculation yields fixed order histograms and the
total cross section, that is used for the normalization of the later stages.

In the third stage, the upper bounding normalization constant N r
fb

is
estimated for each radiation region r and Born flavor structure fb. This is
done by evaluating the phase space integral at random points according to
the optimized importance sampling of the prior stages, such that

JrRr(Φn+1)

Bfb(Φ̄n)
< N r

fb
U r(Φn+1). (3.1)

The radiation region r is defined as r = 1 if the emitter of the radiation is
an initial state particle and r = nemitter − nlightparton + 2 otherwise. Thereby,
nemitter is the particle number of the emitter and nlightparton is the particle
number of the first light parton. The particle numbering is with respect to
the defined flavor structures in the implementation. They use the convention
that the first two particles in the flavor structure are the initial state particles,
the next particles are QCD singlets, then heavy quarks, and lastly massless
quarks where the radiation is the very last entry. Further, Rr and Jr are
defined as

Rr(Φn+1) :=
∑

αr∈{αr|fb,r}

Rαr(Φn+1), (3.2)

where the phase space point Φn+1 is given by

Φn+1 := JrΦ̄ndξdydφ. (3.3)
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ξ, y and φ are the FKS variables and will be discussed in detail in the next
section.

In the last stage of the POWHEG BOX, the final events are generated as
described in section 2.5. The generated events can then be used as input for
a Monte Carlo shower program to produce histograms using the showered
events.

3.2 Phase space generation
The phase space generation for the Born kinematics required by the
POWHEG BOX can be done manually by the user or automatically. Its gen-
eration is straight forward and does not cause any complications. The ad-
vantage of manually building the phase space by hand, as opposed to using
a generic method, is the ability to incorporate kinematic cuts already at this
level. In that way, the generation of unnecessary events that will not be
considered in the analysis is avoided. For DIS this is especially helpful since
the matrix element diverges for Q2 → 0. If no cuts are applied in the phase
space generation, then the optimization for Monte Carlo integration of the
phase space will increase the amount of points for low Q2 values that would
ultimately be cut in the analysis.

The 2-particle phase space is already discussed in section 2.6.2. The phase
space point Φ2 has the three unrestricted parameters xB, yDIS and φ̄3. This
means, three random variables Xi are mapped onto these kinematic variables
with the restrictions

xlowB < xB < xupB , ylowDIS < yDIS < yupDIS, Q2
low < Q2 < Q2

up. (3.4)
xlowB , xupB , y

low
DIS, y

up
DIS, Q

2
low, Q

2
up are input values that can be set for a specific

run. Note that
Q2 = yDISxBSbeams, (3.5)

where Sbeams = 4Ebeam,1Ebeam,2, with Ebeam,i being the energies of the two
beams. Then, the Born momenta in the partonic center-of-mass frame are

p̄1 =

√
xBSbeams

2
(1, 0, 0, 1),

p̄2 =

√
xBSbeams

2
(1, 0, 0,−1),

p̄3 =

√
xBSbeams

2
(1,
√

2yDIS cos φ̄3,
√
2yDIS sin φ̄3, 1− 2yDIS),

p̄4 =

√
xBSbeams

2
(1,−

√
2yDIS cos φ̄3,−

√
2yDIS sin φ̄3,−1 + 2yDIS). (3.6)
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With three additional random variables {Xrad
1 , Xrad

2 , Xrad
3 } the real cor-

rection phase space point Φ3 has to be built. The mapping

Φ3 →
(
Φ̄2, X

rad
1 , Xrad

2 , Xrad
3

)
(3.7)

is dependent on the IR divergent region αr. The FKS framework for the
subtraction of the IR divergences is implemented in the POWHEG BOX. This
method uses the three variables ξ, y and φ to describe the momentum of the
radiation. Their meaning is different for ISR and FSR. Hence, one needs
two different mappings. In both cases, the goal is to express the measure

dΦ3 = dx
d3p3

2E3(2π)3
d3p4

2E4(2π)3
d3p5

2E5(2π)3
(2π)4δ(4)(p1 + p2 − p3 − p4 − p5)

(3.8)

in terms of dΦ2 and the three FKS variables. Without loss of generality, it is
assumed that p5 is the momentum of the radiation, while p4 is the momentum
of the emitter.

The FKS subtraction terms are dependent on the exact definition of the
FKS variables. In order to allow minimal modifications to the code, it useful
to use the exact same definitions. In particular, this means to perform the
phase space parametrization in the partonic center-of-mass frame.

3.2.1 Phase space for initial-state radiation
Firstly, the FKS variables for ISR are defined such that

p5 = ξ

√
s

2

(
1,
√
1− y2 cosφ,

√
1− y2 sinφ, y

)
, (3.9)

where s = xSbeams is the partonic center-of-mass energy squared of the real
correction process. Further, the incoming momenta in the center-of-mass
frame are

p1 =

√
s

2
(1, 0, 0, 1),

p2 =

√
s

2
(1, 0, 0,−1). (3.10)

Starting from Eq. (3.8), the integral over d3p4 can be performed using
the delta distribution to yield

p4 = −p3 − p5. (3.11)
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The mapping to the underlying Born configuration should fulfill p1,3 = p̄1,3.
It is important to note that the center-of-mass frames for the two configu-
rations are different since x 6= xB. The outgoing lepton momentum can be
parametrized in spherical coordinates

p3 = E3

(
1,
√

1− c23 cosφ3,
√

1− c23 sinφ3, c3

)
,

d3p3 = dE3dc3dφ3E
2
3 . (3.12)

Then, the phase space measure becomes

dΦ3 =
1

8(2π)5
dx dE3 dc3 dφ3 dξ dy dφ

√
s

2

E3E5

E4

δ(E1 + E2 − E3 − E4 − E5),

E1 = E2 =

√
s

2
, E4 =

√
(p3 + p5)2, E5 = ξ

√
s

2
. (3.13)

Using the definitions of the DIS variables in Eq. (2.134) and the given
parametrization one obtains

q =

(√
s

2
− E3,−E3

√
1− c23 cosφk,−E3

√
1− c23 sinφk,

√
s

2
− E3c3

)
,

Q2 = E3

√
s(1− c3),

yDIS = 1− E3(1 + c3)√
s

,

dE3 dc3 = dyDIS dQ
2 1

2E3

= dyDIS dQ
2

√
s

s(1− yDIS) +Q2
. (3.14)

By substituting E3 and c3 with the DIS variables yDIS and Q2, one obtains

dΦ3 =

√
s

32(2π)5
dx dyDIS dQ

2 dφ3 dξ dy dφ
E5

E4

δ
(
f̃(s,Q2, yDIS,∆φ, ξ, y)

)
,

(3.15)

with ∆φ = φ − φ3. In order to factorize dΦ2, one has to eliminate either
dyDIS or dQ2. However, the equation f̃(Q2, yDIS,∆φ, ξ, y) = 0 would have
two solutions for Q2 or yDIS. This would make it impossible to perform the
factorization of

dΦ3 = dΦ2 dξ dy dφJ. (3.16)

A solution is to introduce the DIS variable λ and use the identity

1 =

∫
dλδ

(
λ− Q2

2p2q

)
. (3.17)
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As discussed in section 2.6, this also ensures λ = xB/x. By plugging in the
parametrization, one finds

2p2q = syDIS. (3.18)

Hence, one can write

dΦ3 =

√
s

32(2π)5
dx dyDIS dQ

2 dφ3 dξ dy dφ
E5

E4

× δ
(
f̃(s,Q2, yDIS,∆φ, ξ, y)

)
dλδ

(
λ− Q2

syDIS

)
. (3.19)

By integrating over dQ2 using the newly introduced delta distribution and
afterwards over dλ using the delta distribution with the function f̃ as an
argument, the two branches are moved onto the λ integration. Ultimately,
one obtains

dΦ3 =
s

3
2yDIS

32(2π)5
dx dyDIS dλ dφ3 dξ dy dφ

E5

E4

δ(f(s, λ, yDIS,∆φ, ξ, y)). (3.20)

The next step is to integrate over dλ to eliminate the delta distribution. The
argument of the delta distribution is

f(s, λ, yDIS,∆φ, ξ, y) =

√
s

2

[
(yDIS(1− λ) + 1− ξ)

−
(
4ξ
√
λ(1− y2)(1− yDIS)yDIS cos∆φ

− 2ξy(yDIS(1 + λ)− 1) + ((λ− 1)yDIS + 1) 2 + ξ2
)1/2]

. (3.21)

Solving for the zeros in λ gives two solutions

λ± =
1

yDIS(ξ(1 + y)− 2)2

[
(±2ξ cos∆φ

√
A+ 2(1− ξ)(2yDIS − ξ(1 + y))

+ ξ2
(
1− y2

)
(1− yDIS) cos (2∆φ)

]
, (3.22)

with

A =
(
1− y2

)2
(1− yDIS)

2

×
[
ξ2 cos2∆φ+

(2− ξ(1 + y))(2yDIS − ξ((1− y)yDIS + y + 1))

(1− y2) (1− yDIS)

]
. (3.23)
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In order to obtain these solutions, one has to square the equation
f(s, λ, yDIS,∆φ, ξ, y) = 0 twice. Hence, it is necessary to verify the solu-
tions, as signs may be lost in the process of squaring. The verification will
be done later. For now, one can proceed with the factorization of the Born
phase space. Therefore, one can reformulate the phase space measure using

dλf(s, λ, yDIS,∆φ, ξ, y) =
dλ

|D|
[δ(λ− λ−)− δ(λ− λ+)], (3.24)

with

D =
∂f(s, λ, yDIS,∆φ, ξ, y)

∂λ

= −
s
(
ξ cos∆φ

√
λ (1− y2) (yDIS − y2DIS) + λyDIS(1− ξy − (1− λ)yDIS)

)
4E4λ

−
√
syDIS

2
. (3.25)

The solutions λ± ensure that

E1 + E2 = E3 + E4 + E5. (3.26)

This allows to find a shorter expression for E4, rather than plugging in the
parametrization in Eq. (3.13). One finds

E4 =

√
s

2
(1 + yDIS(1− λ±)− ξ). (3.27)

The last step before factorizing the Born phase space is the transformation

x =
xB
λ

⇒ dx =
dxB
λ
. (3.28)

Thereby, one has to carefully handle the integration limits. Since the x
integration goes from 0 to 1, the xB integration will be going from 0 to λ
after the variable transformation. However, in the Born phase space the
integration of xB goes from 0 to 1. Since λ < 1, one can extend the xB
integration by supplying an according theta function

dx =
dxB
λ

Θ(λ− xB). (3.29)

Since the integration over λ is still present, one can adjust the lower integra-
tion limit of λ to xB to eliminate the extra theta function.
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If everything is put together, the phase space can be simplified to

dΦ3 =
1

16(2π)5
dxB dyDIS dφ3 dλ dξ dφ dy [δ(λ− λ+) + δ(λ− λ−)]

× s̄yDISξ

λ
∣∣∣λyDIS(ξ(1 + y)− 2)− ξ cos∆φ

√
λ (1− y2) (1− yDIS)yDIS

∣∣∣
=

1

32π3
dΦ2 dλ dξ dφ dy (δ(λ− λ+) + δ(λ− λ−))

× s̄yDISξ

λ
∣∣∣λyDIS(ξ(1 + y)− 2)− ξ cos∆φ

√
λ (1− y2) (1− yDIS)yDIS

∣∣∣ ,
(3.30)

where s̄ = xBSbeams = λs is the squared partonic center-of-mass energy of
the underlying Born kinematics.

3.2.1.1 Validation of the solutions λ±
It was already hinted that the solving process for λ± involves squaring of
roots. Hence, one has to investigate in detail the signs of both sides of the
equation. First, it is helpful to remember the physical limits of the integration
variables ξ, y, yDIS, λ, xB, which are

ξ, yDIS, xB ∈ [0, 1], y ∈ [−1, 1], λ ∈ [xB, 1]. (3.31)

The solving for λ± starts with setting Eq. (3.21) to zero, which is equivalent
to

(1− λ)yDIS + 1− ξ =

√
B + 4ξ

√
λ (1− y2) (1− yDIS) yDIS cos∆φ, (3.32)

with

B = −2ξy (λyDIS + yDIS − 1) + ((λ− 1)yDIS + 1) 2 + ξ2. (3.33)

The right-hand side of Eq. (3.32) is always positive as long as it is real,
which it has to be to satisfy the equation. With the restrictions on the
integration variables, it is easy to see that also the left-hand side is always
positive. Hence, squaring both sides will lead to an equivalent equation.
After squaring Eq. (3.32) and isolating the remaining square root one finds
the equation

ξyDIS(λ+ λy + y − 1) + 2(1− λ)yDIS − ξ(y + 1)

= 2ξ
√
λ (1− y2) (1− yDIS) yDIS cos∆φ. (3.34)



3.2. PHASE SPACE GENERATION 73

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.1: Plot of L(ξ, y, yDIS, λ) in two different scenarios with partly fixed
variables. The fixed variables are: y = 0.3, yDIS = 0.8 and cos∆φ = −1 on
the left-hand side and cos∆φ = 1 on the right-hand side. The vertical black
line shows the zero of L(ξ, y, yDIS, λ).

Now, the right-hand side of Eq. (3.34) has the same sign as cos∆φ, which can
be both positive or negative. The left-hand side can be positive or negative
as well. In order for λ± to be a solution to Eq. (3.34), it has to give the
left-hand side of Eq. (3.34) the same sign as cos∆φ. One can quickly see
that the dependence of the solutions λ± (see Eq. (3.22)) on the sign of cos∆φ
turns out as

λ+(cos∆φ) = λ−(− cos∆φ). (3.35)

For the sake of brevity, it is useful to define

L(ξ, y, yDIS, λ) := ξyDIS(λ+ λy + y − 1) + 2(1− λ)yDIS − ξ(y + 1). (3.36)

Further, let ξ0 be defined as

ξ0 =
2yDIS

1− yyDIS + yDIS + y
, (3.37)

which is a zero in ξ of L(ξ, y, yDIS, λ±). In fact, it is the only zero in ξ that
is greater than 0 and less than 1, and it fulfills

L(ξ0, y, yDIS, λ−) = 0, if cos∆φ > 0,

L(ξ0, y, yDIS, λ+) = 0, if cos∆φ < 0. (3.38)

In the case of cos∆φ > 0, one finds that

L(ξ, y, yDIS, λ−)

{
> 0, if ξ < ξ0,

< 0, if ξ > ξ0,
(3.39)
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while
L(ξ, y, yDIS, λ+) < 0 ∀ξ ∈ (0, 1). (3.40)

This means that λ− is the only zero of Eq. (3.21) if cos∆φ > 0 (see Fig. 3.1
on the right). In the other case of cos∆φ < 0, one finds (see Fig. 3.1 on the
left)

L(ξ, y, yDIS, λ−) < 0 ∀ξ ∈ (0, 1),

L(ξ, y, yDIS, λ+)

{
> 0, if ξ < ξ0,

< 0, if ξ > ξ0.
(3.41)

In other words, λ− is a correct solution for the whole range in ξ, while λ+
is only the correct zero if ξ > ξ0. Since λ+ can only be a valid solution of
Eq. (3.34) when ξ > ξ0, in the soft limit of ξ → 0, λ− is the only possibility.
The same holds for the collinear limit of y → −1. Hence, all IR divergent
kinematics can only be on the negative branch λ−.

3.2.1.2 Integration limits of ξ

As already discussed before, the λ integration is restricted to the interval
[xB, 1]. This restriction can be shifted onto the ξ integration. Therefore,
the dependence of the solutions λ± on ξ has to be analyzed. The general
dependence λ±(ξ) is shown in Fig. 3.2. The graphs λ−(ξ) and λ+(ξ) form a
closed loop, since λ−(ξ = 0) = λ+(ξ = 0) = 1 and λ−(ξmax) = λ+(ξmax). ξmax

is the value for which the root of λ± becomes zero, hence both solutions must
be identical at this point. Either λ−(ξ) or λ+(ξ) has a zero at ξ0. The closed
loop formed by λ±(ξ) is intersected by the horizontal line at xB exactly two
times at ξlow and ξup, with ξlow < ξup. They are

ξlow =
2 (xB − 1) yDIS (2

√
c |cos(∆φ)|+ yDIS (xB(y + 1) + y − 1)− y − 1)

d
,

ξup =
2 (xB − 1) yDIS (−2

√
c |cos(∆φ)|+ yDIS (xB(y + 1) + y − 1)− y − 1)

d
,

d = −2(y + 1)yDIS (2xB + y − 1) + yDIS
2
(
(y + 1)2x2B + (y − 1)2

)
− 2c cos(2∆φ) + (y + 1)2,

c = (1− y2)xB(1− yDIS)yDIS. (3.42)
The maximum value of ξ can be calculated by setting the argument of

the root in λ± to zero. This yields

ξmax =
4yDIS

R + 2yDIS + y + 1
,

R =
√

(1 + y(1− 2yDIS)) 2 − 4 (1− y2) (1− yDIS) yDIS cos2(∆φ). (3.43)
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Figure 3.2: Dependence of the solutions λ± on ξ. In the depicted scenario the
sign of cos∆Φ is negative. If the sign is positive, λ+ and λ− are interchanged.

One can picture the ξ integration by following the closed loop formed by
λ± from Fig. 3.2. The integration starts at ξ = 0 along the negative branch
λ−, and one follows the loop until it intersects the horizontal line of xB. To
sketch the integration, one can write

Iξ :=

∫ 1

0

dξ

∫ 1

xB

dλf(Φ3)[δ(λ− λ−) + δ(λ− λ+)]. (3.44)

Here, f(Φ3) is meant to be the whole integrand for the real correction to the
cross section including the matrix element and Jacobian factors. With the
definitions

f±(Φ3) =

∫ 1

xB

dλf(Φ3)δ(λ− λ±) (3.45)

the ξ integral becomes

Iξ =

∫ ξmax,−

0

dξf−(Φ3) +

∫ ξmax,+

ξmin,+

dξf+(Φ3), (3.46)

where the integral limits ξmax,−, ξmin,+ and ξmax,+ depend on the other inte-
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gration variables

ξmax,− =


ξlow, if cos∆φ > 0,

ξup, if cos∆φ < 0 ∧ λ−(ξmax) < xB,

ξmax, otherwise,

ξmin,+ =

{
ξup, if cos∆φ < 0 ∧ λ−(ξmax) > xB,

ξmax, otherwise,

ξmax,+ = ξmax. (3.47)

Note that if cos∆φ > 0 ∨ λ−(ξmax) < xB, then ξmin,+ = ξmax,+, since λ+ is
not a valid solution in that case.

In the POWHEG BOX the ξ integration is set up as an integration over a
ξ̃ from 0 to 1, where ξ̃ is mapped to the actual ξ. Thereby, the soft IR
limit is at ξ̃ → 0. In the case where one the negative branch is possible,
this is straight forward by implementing the mapping ξ = ξmax,−ξ̃. If both
λ branches are possible, this map is not sufficient. Since the positive branch
does not contain any IR divergent kinematics, it can be attached at the
end of the negative branch. In case of both branches being possible, one
has ξmax,− = ξmax,+ = ξmax. With the definition of ∆ξ := ξmax − ξup, the
integration over ξ becomes

Iξ =

∫ ξmax

0

dξf−(ξ) +

∫ ξmax

ξup

dξf+(ξ)

=

∫ ξmax+∆ξ

0

dξf−(ξ)Θ(ξmax − ξ) +

∫ ξmax+∆ξ

0

dξf+(2ξmax − ξ)Θ(ξ − ξmax).

(3.48)
Now, the two integrals can be combined into one. With the variable trans-
formation ξ̃ = ξ/ξ̃max, where ξ̃max = ξmax +∆ξ, one obtains

Iξ =

∫ 1

0

dξ̃ξ̃max

[
f−(ξ̃ξ̃max)Θ(ξmax − ξ̃ξ̃max)

+f+(2ξmax − ξ̃ξ̃max)Θ(ξ̃ξ̃max − ξmax)
]
. (3.49)

3.2.2 Phase space for final-state radiation
For FSR, the starting point for the phase space measure is again Eq. (3.8).
The emitter is the 4th particle with momentum p4. Let the momentum sum
of the two outgoing partons be called k := p4 + p5. It is parametrized as

k = (k0, k
√
1− c2k cosφk, k

√
1− c2k sinφk, kck), with k := |k|, (3.50)
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where k0 = E4 +E5. Then, one can integrate over k instead of p4. Together
with the parameterization Eq. (3.50), the phase space measure becomes

dΦ3 =
1

256π5
dx d3p3 dk dck dφk d

3p5
k2

E3E4E5

δ(4)(p1 + p2 − p3 − k),

(3.51)

where

E3 := |p3|,
E5 := |p5|,
E4 := |k− p5|. (3.52)

In the next step, a rotation R is performed to align k along the z-axis

Rk = (k0, 0, 0, k). (3.53)

To achieve this transformation, one can perform three successive rotations.
The first rotates around the z-axis by the angle −φ. The second rotation is
around the y-axis by the angle − arccos ck. The last rotation is the inverse
of the first rotation. This shifts the information of the azimuthal angle onto
the incoming particles and allows an independent spherical parametrization
of the final state particles in the phase space measure. Hence, the full rotation
is

R = R−11 R2R1,

R1 =


1 0 0 0
0 cos (φk) sin (φk) 0
0 − sin (φk) cos (φk) 0
0 0 0 1

 ,

R2 =


1 0 0 0

0 ck 0 −
√

1− c2k
0 0 1 0

0
√
1− c2k 0 ck

 . (3.54)

Momenta in the rotated frame will be denoted with the upper label (R). The
incoming momenta in the rotated frame are

p
(R)
1 =

√
s

2
(1,−

√
1− c2k cosφk,−

√
1− c2k sinφk, ck),

p
(R)
2 =

√
s

2
(1,
√

1− c2k cosφk,
√

1− c2k sinφk,−ck). (3.55)
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With the variable transformations ck → −c2 and φk → φ2, one obtains the
usual spherical coordinates in the rotated frame. This allows to express all
momenta in variables defined in the rotated frame, rather than the angles
from the original center-of-mass frame. Further, the momentum of the radi-
ation can be parametrized in spherical coordinated as

p
(R)
5 = E5(1,

√
1− c25 cosφ5,

√
1− c25 sinφ5, c5). (3.56)

Note that c5 and φ5 are not the FKS variables. The phase space measure Φ3

in the rotated frame is

dΦ3 =
1

256π5
dx d3p

(R)
3 dk dc2 dφ2 dE5 dφ5 dc5

k2E5

E3E4

× δ(4)
(
p
(R)
1 + p

(R)
2 − p

(R)
3 − k(R)

)
. (3.57)

The 3-vector component of the delta distribution is

δ(3)
(
−p

(R)
3 − k(R)

)
(3.58)

and can be easily eliminated by integrating over d3p
(R)
3 yielding

p
(R)
3 = −k(R) = (0, 0,−k) ⇒ E3 = k. (3.59)

This leads to

dΦ3 =
1

256π5
dx dk dc2 dφ2 dE5 dφ5 dc5

kE5

E4

× δ
(√

s− k − E4 − E5

)
,

E4 =

√
k2 + E2

5 − 2kE5c5. (3.60)

At this point, the DIS variables need to be introduced

Q2 = −
(
q(R)

)2
= −(p

(R)
1 − p

(R)
3 )2 = (1− c2) k

√
s,

yDIS = 1− p
(R)
2 p

(R)
3

p
(R)
1 p

(R)
2

= 1− (1 + c2) k√
s

. (3.61)

Then, one can transform the integration variables

k =
s(1− yDIS) +Q2

2
√
s

,

c2 =
s(1− yDIS)−Q2

s(1− yDIS) +Q2
,

dk dc2 = dyDIS dQ2

√
s

Q2 + s(1− yDIS)
= dyDIS dQ2 1

2k
. (3.62)
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The Q2 integral can also be replaced by introducing λ = Q2/
(
2p

(R)
2 q(R)

)
,

which works out as

dQ2 = dλ s yDIS. (3.63)

The first FKS variable ξ can be introduced with

E5 =

√
s

2
ξ. (3.64)

With all these transformations, the phase space measure becomes

dΦ3 =
1

1024π5
dx dyDIS dλ dφ2 dξ dφ5 dc5

ξs2yDIS

2E4

× δ

(√
s−

√
s

2
(ξ + 1− yDIS(1− λ))− E4

)
, (3.65)

where

2E4 =
√
s (2c5ξ(yDIS(1− λ)− 1) + ξ2 + (1− yDIS(1− λ))2). (3.66)

The last delta distribution is removed by integrating over λ. The root λ0 of
the argument of the delta distribution is

λ0 =
yDIS (ξ(1 + c5)− 2) + ξ(1− c5)

yDIS (ξ(1 + c5)− 2)
. (3.67)

The additional Jacobian factor is
2ξ (1 + c5) (ξ − 2) + 4
√
syDIS (ξ (1 + c5)− 2)2

. (3.68)

After the λ integration, the phase space measure becomes

dΦ3 =
1

512π5

∫
dx dyDIS dφ2 dξ dc5 dφ5

sξ

2− ξ (cψ + 1)
. (3.69)

The integration variables c5 and φ5 have to be transformed into the FKS
variables y and φ. Their definitions are

y =
p4 · p5

E4E5

,

φ = arctan2

((
êz × k

|êz × k|

)
·
(
p̂5 × k̂

)
,

((
êz × k

|êz × k|

)
×
(
p̂5 × k̂

))
· k̂
)
,

(3.70)
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where the second line is to be taken in the original center-of-mass frame
before the rotation R. A vector with a hat is meant to be normed â := a/|a|.
With these definitions one finds

y = 1− 2 (1− c5)

2− (2− ξ)ξ (1 + c5)
,

φ = (φ5 − φ2 − π) mod 2π, (3.71)

which yields

dc5 = dy
(2− (2− ξ)ξ (c5 + 1)) 2

4(1− ξ)2
,

dφr = dφ. (3.72)

A last transformation x = xB/λ0 has to be done. Thereby, one has to
carefully handle the integration limits in the same manner as in the ISR case

dx =
dxB
λ0

Θ(λ0 − xB). (3.73)

In contrast to the ISR case, the theta function cannot be eliminated by re-
stricting the ξ integration. Consequently, one has to carry the theta function
along.

Ultimately, the phase space measure becomes

dΦ3 =
1

256π5
dxB dyDIS dφ2 dξ dy dφ Θ(λ0 − xB)

× (1− ξ)ξs̄

λ20(2− ξ(1− y))(2− (2− ξ)ξ(1− y))

=
1

16π3
dΦ2 dξ dy dφ Θ(λ0 − xB)

× (1− ξ)ξs̄

λ20(2− ξ(1− y))(2− (2− ξ)ξ(1− y))
. (3.74)

3.3 Generation of radiation
This section shows the implementation of the radiation generation in the
POWHEG BOX and its modifications for DIS. The principles have been dis-
cussed in Sec. 2.5. Specifically, the choice of the upper bounding function
U(Φαr

rad) and the ordering variable kαr
T (Φn+1) is not set yet. Their choice is

different for ISR and FSR, so those cases will be discussed separately.
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3.3.1 Generation of initial-state radiation
In the POWHEG BOX, the upper bounding function is

UISR(Φrad) = N
αs(k

2
T )

ξ(1− y2)
, (3.75)

and the ordering variable

k2T =
s̄

4(1− ξ)
ξ2(1− y2), (3.76)

with s̄ being the underlying Born center-of-mass energy squared, and

αs(k
2
T ) =

1

b0 ln
(
k2T
Λ2

) . (3.77)

It is easy to see that k2T diverges for ξ → 1. For the normal POWHEG BOX and
its mapping between the real phase space and the underlying Born phase
space, this is not problematic, because in this mapping the upper limit of the
ξ integration is strictly less than 1. However, in the mappings proposed in
the previous section for DIS kinematics this does not hold true. Therefore,
it is better to define a different function that is identical in the soft and
collinear limit.

3.3.1.1 Generation of ISR for DIS

The choice for the ordering variable is not unique. One possible choice is
very similar to the one in the POWHEG BOX

k2T =
s̄ξ2(1− y2)

4(1− ξy2)
. (3.78)

With this definition k2T would still be divergent in the simultaneous limit of
ξ → 1 and y → ±1. However, this limit is not in the phase space since the
maximum value of ξ is strictly less than 1 for y → ±1. The maximum value
k2T inside of the real phase space is

max k2T =
s̄

4
. (3.79)

It it will be convenient to define the dimensionless variables

r :=
k2T
s̄

=
ξ2(1− y2)

4(1− ξy2)
, (3.80)
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and

rmax := max r =
1

4
. (3.81)

The intermediate goal is to generate a pT proportional to

∆(U)(pT ) := exp

[
−
∫
UISR(Φrad)Θ(kT − pT )dξdydφ

]
. (3.82)

Then, the veto method is used to get a value pT that is distributed propor-
tionally to the Sudakov form factor. Therefore, the integral in Eq. (3.82) has
to evaluated. One can trade the integration over y for an integral over r,
which allows to eliminate the theta function by adjusting the integral limits.
Therefore, one can insert

1 =

∫ 1/4

0

drδ

(
r − ξ2(1− y2)

4(1− ξy2)

)
(3.83)

and eliminate the delta distribution by integrating over y. With the roots

y± = ±

√
ξ2 − 4r

ξ(ξ − 4r)
, (3.84)

one obtains a lower limit for the ξ integration of 2
√
r, since the square root

in Eq. (3.84) has to be real. The substitution leads to

− log∆(U)(pT ) = N

∫ 1/4

p2
T
s̄

dr

r

∫ 1

2
√
r

dξ

∫ 2π

0

dφ αs(rs̄)
1− y2+ξ

y+(1− ξ)ξ

= 2πN

∫ 1/4

p2
T
s̄

dr

r

∫ 1

2
√
r

dξ

√
ξ

(ξ − 4r) (ξ2 − 4r)
(3.85)

= 8πN

∫ 1/4

p2
T
s̄

dr√
r

α(rs̄)√
1− 2

√
r

×

{
K

(
2 +

1√
r − 1

2

)
− F

(
π

4
|2 + 1√

r − 1
2

)
− 2

√
r + 1

2
√
r

[
Π

(
2

1− 2
√
r
|2 + 1√

r − 1
2

)
− Π

(
2

1− 2
√
r
;
π

4
|2 + 1√

r − 1
2

)]}
, (3.86)
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where F (φ|m), K(k) = F (π/2|m), Π(n;φ|m) and Π(n|m) are elliptic inte-
grals of first and third kind, respectively. They are defined as

F (φ|m) :=

∫ φ

0

(1−m sin2 θ)−1/2dθ,

K(k) := F (π/2|m),

Π(n;φ|m) :=

∫ φ

0

(1− n sin2 θ)−1(1−m sin2 θ)−1/2,

Π(n|m) := Π(n; π/2|m). (3.87)
Rather than trying to calculate the last integral of Eq. (3.86) and solve

xr = ∆(U)(pT ) for pT with a random number xr, one can find an upper
bounding function for the integrand of Eq. (3.86) and perform a second veto.
Then, the integral can be calculated
− log∆(U)(pT ) ≤ − log ∆̃(U)(pT )

= πN

∫ 1/4

p2
T
s̄

dr

r

log
(
4
r

)
b0 log

(
rs̄
Λ2

)
=
πN

b0

log

(
4s̄

Λ2

)
log

 log
(

s̄
4Λ2

)
log
(
p2T
Λ2

)
+ log

(
4p2T
s̄

) . (3.88)

With a uniform random number xr ∈ (0, 1), one can solve the equation
xr = ∆̃(U)(pT ) (3.89)

for pT numerically and use the veto method twice to obtain a pT value that
is distributed proportional to the Sudakov form factor (Eq. (2.127)). The
first veto is used with the ratio of integrands from equation Eq. (3.86) over
Eq. (3.88). The second veto is done as described in section 2.5.

Once a p2T is accepted, the FKS variables ξ and φ have to be generated.
Generating φ is straight forward, since the integration over φ in ∆(U)(pT ) does
not depend on it. The probability density of ξ has to be proportional to the
integrand of Eq. (3.85). Since this integral is difficult to handle, it is practical
to use the veto method again. Therefore, the integrand is overestimated by√

ξ

(ξ − 4r) (ξ2 − 4r)
<

√
1

(2
√
r − 4r) (2ξ

√
r − 4r)

. (3.90)

Next, the integrand is normed by providing the factor
√
r to have∫ 1

2
√
r

dξ
√
r

√
1

(2
√
r − 4r) (2ξ

√
r − 4r)

= 1. (3.91)
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A randomly generated ξ′ is obtained by solving∫ ξ′

2
√
r

dξ
√
r

√
1

(2
√
r − 4r) (2ξ

√
r − 4r)

= xξ, (3.92)

where xξ is an uniformly generated random number in the interval (0, 1).
This leads to

ξ′ = x2ξ
(
1− 2

√
r
)
+ 2

√
r. (3.93)

Lastly, it is checked if a new random number x̃ξ ∈ (0, 1) fulfills

x̃ξ >

√
1(

2
√
r−4r

)(
2ξ′
√
r−4r

)√
ξ′

(ξ′−4r)((ξ′)2−4r)

. (3.94)

If it does, a new ξ′ is generated until the inequality does not hold. Afterwards,
the last FKS variable y can be obtained from Eq. (3.84) by randomly choosing
either y+ or y−. From the FKS variables together with the prior generated
Born phase space, the full Φ3 phase space can be built.

This implementation for the ISR generation is implemented using the flag
rad_iupperisr = 2, which can be set in the powheg.input file by adding
the line iupperisr 2.

3.3.1.2 Alternative generation of ISR for DIS

For DIS, only the incoming parton can contribute to QCD ISR. Hence, there
will only be a collinear divergence for y → −1. This can be incorporated
in both the upper bounding function and the ordering variable by defining
them as

UISR(Φrad) := N
αs(k

2
T )

ξ(1 + y)
,

k2T :=
ξ2

2− ξ(1− y)
s̄(1 + y). (3.95)

The soft collinear limit of the ordering variable is

k2T
ξ→0,y→−1−−−−−−→ s̄ξ2(1− y)

2
. (3.96)

This is the same limit as before. Now, a p2T has to be generated using the
same steps as in the other method with the only difference being the different
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k2T definition. Again, it is useful to define the dimensionless ordering variable

r :=
k2T
s̄

=
ξ2(1− y)

2− ξ(1 + y)
, (3.97)

with

rmax := max r = 1. (3.98)

This leads to

y = −ξ
2 + (ξ − 2)r

ξ(ξ − r)
,

dy = dr
2(1− ξ)

(r − ξ)2
, (3.99)

with ξ ∈ (
√
r, 1) to ensure y ∈ (−1, 1). Then, the modified Sodakov form

factor becomes

− log∆(U)(pT ) =

∫
UISR(Φrad)Θ(kT − pT )dξdydφ

= 2πN

∫ 1

p2
T
s̄

dr

r

∫ 1

√
r

dξ
αs(rs̄)

ξ − r

= 2πN

∫ 1

p2
T
s̄

dr

r
αs(rs̄) log

(
1√
r
+ 1

)
. (3.100)

Again, the last integral will be handled using the veto method by overesti-
mating the integrand using

log

(
1√
r
+ 1

)
≤

log
(
4
r

)
2

∀r ∈ (0, 1). (3.101)

This leads to

− log∆(U)(pT ) ≤ − log ∆̃(U)(pT )

= πN

∫ 1

p2
T
s̄

dr

r

log
(
4
r

)
b0 log

(
rs̄
Λ2

)
=
πN

b0

log

(
4s̄

Λ2

)
log

 log
(
s̄
Λ2

)
log
(
p2T
Λ2

)
+ log

(
p2T
s̄

) . (3.102)

With this result, the p2T generation is carried out analogously to the previous
method.
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Similar as before, ξ has to be generated proportional to the integrand of
Eq. (3.100). This time, no additional veto is necessary, since the integral is
easy enough. Firstly, the integral is normed∫ 1

√
r

dξ
1

(ξ − r) log
(

1√
r
+ 1
) = 1. (3.103)

Then, the generated ξ′ is obtained by solving∫ ξ′

√
r

dξ
1

(ξ − r) log
(

1√
r
+ 1
) = xξ, (3.104)

with the uniform random number xξ ∈ (0, 1). This yields

ξ′ =
(√

r − r
)( 1√

r
+ 1

)xξ
+ r. (3.105)

The FKS angle y can be obtained from Eq. (3.99) by using the generated
p2T and ξ′. Together with a random uniform φ ∈ (0, 2π) the full phase space
with radiation can be built.

3.3.1.3 Selection of λ± branch

While building the real phase space for ISR, it turned out that the ratio
λ = x̄/x can have two branches. In this context, x̄ and x represent the
momentum fractions of the parton from the incoming proton beam of the
Born and real phase space, respectively. If the procedure described above
generates a set of FKS variables {ξ, y, φ} for which both branches are possible,
then the veto method has to adapted slightly.

In the last veto, it is checked whether a random number r′ ∈ (0, 1) fulfills

r′ >

[
Rαr(Φn+1)

Bfb(Φn)

]Φ̄αr
n =Φn

U(Φαr
rad)

−1. (3.106)

If both branches are possible, the real correction is
Rαr(Φn+1) = Rαr(Φ

+
n+1) +Rαr(Φ

−
n+1), (3.107)

where Φ±n+1 is the phase space point that fulfills λ± = x̄/x and λ± is given
in Eq. (3.22). If an event is accepted with FKS variables {ξ, y, φ} that allow
for both branches, then one of them has to be chosen. The probability for
the positive branch, which has λ+ = x̄/x, is

Rαr(Φ
+
n+1)

Rαr(Φ
+
n+1) +Rαr(Φ

−
n+1)

. (3.108)

Consequently, the other branch is chosen with the counter probability.
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3.3.2 Generation of final-state radiation
For FSR, the real contribution can have IR divergences for ξ → 0 (soft
limit) or y → 1 (collinear limit). Therefore, the upper bounding function
implemented in the POWHEG BOX is

UFSR(Φrad) = N
αs(k

2
T )

ξ(1− y)
, (3.109)

and the ordering variable k2T is defined as

k2T =
s

2
ξ2(1− y), (3.110)

where s is the partonic center-of-mass energy of the real correction process.
The mapping from the real phase space to the underlying Born phase space
implemented in the POWHEG BOX has s = s̄. In particular, s does not depend
on the FKS variables. The mapping for the DIS modification does not have
this feature. Instead in the DIS modification, one has

s =
s̄

λ0
,

λ0 = 1− ξ(1− ξ)(1− y)

yDIS(2− ξ(1− y))
. (3.111)

In the soft or collinear limit λ0 → 1 and hence s → s̄. Therefore, one can
modify the k2T definition to

k2T =
s̄

2
ξ2(1− y), (3.112)

since this does not alter the soft-collinear limit. Then, one only needs to
change all occurrences of s to s̄ in the implementation, because s̄ does not
depend on the radiation.
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Chapter 4

Phenomenological studies

This chapter shows the application of the POWHEG BOX implementation for
DIS. Therefore, two experimental setups were simulated. To obtain the pre-
dictions for the HERA and EIC experiments, the new NLO+PS generator
is interfaced with Pythia8. Pythia8 provides hadronization and beam rem-
nant effects, which are included in the presented studies. QED shower or
hadron decays are not included. This chapter in based on Ref. [1], in which
the results have been published. Unless explicitly stated otherwise, all events
have been generated using the ISR generation as described in Sec. 3.3.1.2.

4.1 DIS at the H1 experiment

In this section predictions obtained from the new POWHEG BOX implementa-
tion are compared to experimental data gathered from the H1 experiment
at HERA in Ref. [96]. In the study, collisions of electrons or positrons
with energy Ee = 27.6 GeV and protons with energy Ep,1 = 820 GeV or
Ep,2 = 920 GeV were collected. This yields the center-of-mass energies√
s1 = 301 GeV and √

s2 = 319 GeV, respectively. For all three different
collision types, the reported integrated luminosities in Ref. [96] are e+p: √s1,
Lint = 30 pb−1; e−p: √s2, Lint = 14 pb−1; e+p: √s2, Lint = 62 pb−1. The two
different data sets for the positron-proton collisions are combined by weigh-
ing the data with their respective luminosity. Then, the combined positron
data are merged with the electron data, where the two data sets are weighed
by the total cross section. The PDF set NNPDF30_nnlo_as_0118_hera [97],
implemented in LHAPDF v6.5.3 [98], was used. The renormalization and fac-
torization scales µR and µF are both set equal to Q. Furthermore, only events

89
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Figure 4.1: Thrust distribution (left) and broadening (right) for different
bins in Q, including hadronization effects for the dipole (red), and Vincia
(blue) showers, and at the parton level (i.e. without hadronisation and beam-
remnant effects) for the dipole shower (magenta), together with the H1 data
of Ref. [96]. For a given Q-bin n, the average value of Q is denoted by 〈Qn〉,
and the corresponding curve is multiplied by a factor of 502(6−n) for better
readability [1].

fulfilling

14 GeV < Q < 200 GeV,

0.1 < yDIS < 0.7, (4.1)

are included in the analysis. Additionally, an event is only accepted if the
energy of all particles in the current hemisphere is greater than εlim := Q/10.
This cut ensures infrared safety by removing events in which the current
hemisphere contains only soft emissions. A further constriction is imposed
on the longitudinal energy

40 GeV <
∑
i

Ei(1− cos θi) < 70 GeV, (4.2)

where the sum runs over all detectable particles in the event.
Events, generated with the new POWHEG BOX implementation for DIS, are

interfaced with Pythia8 to obtain showered events. From these showered
events, the observables jet broadening Bz,E, thrust τz,E, jet mass ρ and C-
parameter are calculated and filled in histograms. The definitions of these
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Figure 4.2: Thrust distribution including hadronization effects for the dipole
(red), and Vincia (blue) showers, and at the parton level (i.e. without
hadronization and beam-remnant effects) for the dipole shower (magenta),
together with the H1 data of Ref. [96], for the bins 14 GeV < Q < 16 GeV
(left), 30 GeV < Q < 50 GeV (middle), and 70 GeV < Q < 100 GeV (right).
The bands represent the 7-point scale variation of µR and µF by a factor
of two around the central value Q for the POWHEG results. The lower panels
show the ratio of the predictions to data [1].

observables are shown in Sec. 2.6.1. For the shower algorithm, the dipole
Pythia8 shower [99] and the default antenna Vincia shower [100] are used.
Both shower methods leave the DIS variables Q,xB and yDIS invariant if QED
radiation is not taken into account. To illustrate the impact of hadronization
effects, a third set of histograms is created with the dipole Pythia8 shower
while disabling hadronization.

It is important to note that all event shapes are identical to zero for the
LO DIS process. They only become greater than zero if radiation corrections
are taken into account. This means, the current POWHEG BOX implemen-
tation can calculate event shape distributions only at LO accuracy which
corresponds to NLO accuracy for the DIS process.

In Fig. 4.1, the thrust and jet broadening is shown for various Q-bins. In
Figs. 4.2 and 4.3 the same event shape distributions are depicted for three
selected Q-bins. The chosen Q-bins are the lowest bin, 14 GeV < Q <
16 GeV, which is strongly dominated by the photon exchange, one Q-bin
containing the Z-boson mass and an intermediateQ-bin in between the before
mentioned ones. The uncertainty band for the showered results stems from
the 7-point variation of µR and µF . The agreement of data with generated
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Figure 4.3: Same as Fig. 4.2, but for the broadening distribution [1].

event including hadronization effects is good for the thrust τz,E. Especially
for low Q values, the distribution without hadronization effects deviates from
the data. For higher values of Q, these non-perturbative effects become
smaller. For the jet broadening, the agreement between data and theoretical
prediction is worse. However, one can observe the same trend regarding the
impact of the hadronization effect that are more sizable for smaller values
of Q. For both the thrust and jet broadening, the scale variation is very
small for all Q values. Since all distributions are normalized, this behavior
is expected.

Fig. 4.4 shows the jet mass and C-parameter for all measured Q-bins.
In Figs. 4.5 and 4.6, the same Q-bins are selected as for the jet broadening
and thrust before. The difference between parton shower with and without
hadronization follows a similar pattern as for τz,E and Bz,E. For small Q
values the prediction deviates from the data. The agreement improves with
higher Q values, but one should note the large experimental uncertainty for
Q values at the hard kinematic edge.

The inclusion of hadronization effects is critical to obtain sensible predic-
tions for experimental measurements. The influence of these non-perturba-
tive effects has also been discussed in Ref. [101] for the 1-jettiness distribution
that is very similar to the thrust variable.

4.2 DIS at the EIC
This section presents predictions from the new POWHEG BOX implementation
for the future EIC. In the previous section, the high experimental uncertain-
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Figure 4.4: Same as Fig. 4.1, but for the squared jet mass (left) and the
C-parameter (right) [1].
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Figure 4.5: Same as Fig. 4.2, but for the squared jet mass [1].
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Figure 4.6: Same as Fig. 4.2, but for the C-parameter distribution [1].

ties were mentioned. With the EIC, those uncertainties will be reduced due
to the much larger luminosity.

Electron proton collisions with beam energies Ee = 18 GeV and Ep =
275 GeV are considered. These values correspond to the maximal energies
that are currently aimed at. Both neutral current (NC) and charged current
(CC) results are shown. The generated events are restricted to

25 GeV2 < Q2 < 1000 GeV2,

0.04 < yDIS < 0.95, (4.3)

following Ref. [102]. For the EIC predictions the PDF set
PDF4LHC15_nlo_100_pdfas [103] was used. This set includes constraints
on the proton structure gathered at the LHC.

In contrast to the H1 data from the previous section, jet and inclusive
distributions are shown here, where inclusive distributions are those in which
all parton momenta are integrated out. Hence, inclusive distributions should
not be modified by the parton shower, since they only depend on the lepton
momenta which are not touched by the parton shower if only QCD radiation
is considered. However, small deviations can be possible for low Q values,
due to the reshuffling of momenta to introduce particle masses that are not
present at the fixed order calculation. The jet reconstruction is done using
the anti-kT algorithm [104] for the parton momenta being in the lab frame.
Thereby, the R-parameter is set to R = 0.8, and jets are only considered if
they fulfill the restrictions on transverse momentum and pseudorapidity

pjetT > 5 GeV , |ηjet| < 3 . (4.4)
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Figure 4.7: Distributions of Q2 (left) and xB (right) for NC DIS at the
EIC with

√
s = 140 GeV and within the cuts of Eq. (4.3) at LO (orange),

NLO (magenta), and NLO+PS results, obtained with dipole shower (red) or
Vincia (blue) Pythia8 showers. Hadronisation and beam remnant effects
are included in the NLO+PS simulations. Error bars indicate statistical
uncertainties, bands are obtained by a 7-point scale variation of µR and µF
by a factor of two around the central value Q. The lower panels display the
ratios to the respective NLO results [1].

In Fig. 4.7, the distributions in Q2 and x2B for the NC cross section are
shown. The NLO correction to the Q2 distribution is strictly negative and
becomes smaller for increasing Q2. The NLO corrections to the xB correction
has different signs for the low and higher xB values and becomes greater than
20% for large values of xB. The NLO+PS result for both the Pythia8 dipole
and Vincia shower are almost identical. They also agree very well with the
NLO result, since they do not modify the lepton momenta as stated before.
For the NLO and NLO+PS results, a 7-point scale variation is performed, by
varying the renormalization and factorization scales µR and µF by a factor
2 around Q.

Fig. 4.8 shows the transverse momentum and pseudo rapidity of the hard-
est jet fulfilling Eq. (4.4). Since the momenta are in the lab frame, the trans-
verse momentum can be greater than zero even at LO, but it is limited by
pjetT < Q ≈ 32 GeV. At higher order, pjetT does not have this limit, since it can
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Figure 4.8: Distributions of pjetT (left) and ηjet (right) for NC DIS at the EIC
with

√
s = 140 GeV and within the cuts of Eqs. (4.3)–(4.4) [1].

take the recoil of additional radiation. Beyond the threshold pjetT > Qmax, the
NLO result is only LO accurate which explains the larger scale dependence
in that region. The NLO correction reduces the pjetT distribution, especially
for small pjetT . The additional parton shower amplifies the effect further. Be-
yond the threshold, the parton shower corrections become larger and reduce
the scale dependence considerably. The pseudorapidity has an asymmetric
shape around zero with more weight for ηjet < 0. This corresponds to the
proton beam direction which carries more energy than the electron beam.
In addition, the NLO correction is asymmetric as well, and it becomes very
large for high values of |ηjet|. Again, the parton shower enhances the NLO
corrections further, though to a smaller extend. Similar to the transverse
momentum distribution, the parton shower corrections are especially large
in the regions where the NLO result has a large scale dependence. The two
different showers agree very well except in the region ηjet < 1.8. In general,
the differences between the fixed order and NLO+PS results are greater than
their 7-point scale variation.

Fig. 4.9 compares the two options for ISR generation described in Secs.
3.3.1.1 and 3.3.1.2. In the pjetT distribution below the threshold pjetT < Qmax,
the two different options agree very well with each other. In the region with
low pjetT , the numerical difference between the different ordering variables and
upper bounding variables becomes small since in the soft-collinear limit pjetT
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Figure 4.9: Distributions of pjetT (left) and ηjet (right) for NC DIS at the EIC
with

√
s = 140 GeV and within the cuts of Eqs. (4.3)–(4.4). For the red

line, ISR is generated as described in Sec. 3.3.1.2, while for the blue line,
the ordering variable and upper bounding function are as described in Sec.
3.3.1.1. The error bars are due to statistical uncertainties, while the shaded
areas stem from the 7-point variation.

approaches 0. Hence, it is expected that the two different options agree for
low pjetT . Above the threshold, the difference becomes larger, and the behavior
is similar to the difference of the two shower algorithms in Fig. 4.8. The ηjet
distributions for the two ISR methods agree within the uncertainties. They
deviate for large values of |ηjet| similar to the different shower algorithms,
albeit to a much lesser extent.

The Q2 and xB distributions of the CC are depicted in Fig. 4.10. While
in the NC channel both the photon and the Z-boson can be the exchange
particle carrying Q2, in the CC channel the incoming lepton interacts only
weakly via the W -boson with the proton constituents. Therefore, the cross
section in the CC channel is roughly three orders of magnitude smaller, and
the Q2 distribution does not rise as quickly with decreasing Q2, due to the
missing massless exchange particle. However, the NLO correction, which is
entirely due to QCD effects, does not affect the leptons either way. Therefore,
the relative NLO and parton shower corrections are identical between the NC
and CC channel in shape and numerical values for the inclusive distributions.

Fig. 4.11 shows the transverse momentum and pseudorapidity distribu-
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Figure 4.10: Same as Fig. 4.7, but for the charged current channel [1].
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Figure 4.11: Same as Fig. 4.8, but for the charged current channel [1].
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tions for the CC channel. In contrast to the NC channel, the NLO corrections
are very small for low values of pjetT , but they become increasingly negative
in the intermediate region before the threshold. Additionally, the parton
shower effect is also very small below the threshold pjetT < Qmax and be-
comes comparable to the parton shower correction in the NC channel near
the threshold and beyond. The correction to the pseudorapidity distribu-
tions is similar between NC and CC channels. A notable difference is that
the NLO and NLO+PS corrections are more weighted towards higher values
of |ηjet| compared to the NC channel.
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Chapter 5

Summary and outlook

In this work, a new event generator is presented that is based on the
POWHEG BOX RES [105] enabling the generation of events for the DIS pro-
cess at NLO accuracy in QCD and their matching to a parton shower. The
theoretical foundation for any calculation in the field of high energy physics
is QFT. In the first part of this thesis, some basic concepts of QFT are sum-
marized. Additionally, a brief overview of the SM is given to form the basis
needed to calculate the DIS cross section. In the next sections, an outline
for the general strategy to obtain high precision results within the SM is
shown. The difficulties and tools to perform NLO calculations, the concept
of parton showers and their interfacing with NLO calculations are discussed.
The next section presents the DIS process and its special kinematic features.
The Breit frame is a particularly useful frame for processes like DIS that can
be reduced to a subprocess in which one of the incoming particles scatters
off of a virtual boson emitted by the other incoming particle.

Chapter 3 explains the changes to the POWHEG BOXthat are necessary to
account for lepton-hadron collisions. In particular, the FKS momentum map-
pings had do be adapted. The mapping between Born and real momentum
configurations for ISR, as it is implemented in the original version of the
POWHEG BOX RES, modifies both incoming particle momenta. This is only
sensible if both particles are understood as constituents of a hadron. For
FSR this problem does not occur, since the mapping implemented in the
POWHEG BOX conserves momenta of incoming particles in this case. However,
neither the ISR nor the FSR mapping preserves the DIS variables Q2, yDIS

and xB. An alternative mapping for both cases is presented that does con-
serve the DIS variables and the incoming lepton momentum. This allows for
efficient phenomenological studies in which constraints on the DIS variables
are imposed. These changes to the momentum mappings led to a necessary
modification of the ordering variable in the ISR generation.
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In chapter 4, two phenomenological studies are presented. The first study
compares experimental data from the H1 experiment at HERA with the
generated events obtained with the new implementation interfaced with the
parton shower program Pythia8 [45]. The compared event shapes vanish at
LO DIS. Hence, calculating DIS with two partons in the final state will only
yield LO accuracy for those event shape variables. In order to improve the
accuracy by an order, one would have to implement DIS with two partons
in the final state as already as Born process. Then, the FKS momentum
mappings would need to be adjusted to handle the extra final state particle.
In their current state, they map from a two-particle final state to a three-
particle final state. It would be worthwhile to generalize the momentum
mappings to n particles in the final state at Born level and n + 1 particles
for the real correction.

The second study in chapter 4 shows theoretical predictions for the future
EIC. It was found that NLO corrections are sizable and impact the shape
of the Q2 and xB dependence as well as the the transverse momentum and
pseudorapidity distributions of the hardest jet.

Apart from the already mentioned generalization of the FKS momentum
mappings, it could prove useful to do these mappings in the Breit frame
rather than in the center-of-mass frame. This would affect far more elements
of the POWHEG BOX than the current modification. For example, the counter
terms governing the IR divergence would need to be rederived in the new
frame of reference. Further, the FSR mapping would also encounter the
problem of two different branches similar to the ISR mapping.

A new family of parton showers designed for DIS and similar processes
was published in Ref. [106]. These showers achieve next-to leading logarithm
(NLL) accuracy rather than leading logarithm (LL) as in the parton showers
used in this thesis. It would be interesting to interface the new family of
parton shower to the new presented DIS event generator.

In summary, the newly developed implementation of DIS for the
POWHEG BOX is the first fully dedicated event generator to this process. It is
a useful tool to obtain theory predictions for the future EIC, and it provides
a starting point for more processes that share a similar kinematic structure.



Appendix A

Installation

First the POWHEG BOX RES has to be installed. It can be downloaded via svn
using the command1

$ svn checkout [--revision n] --username anonymous --password \
anonymous svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX-RES

The argument [–revision n] is optional and specifies a particular revision
of the code. The extension for DIS works with revision 4036. After the down-
load is complete, change the directory to the downloaded POWHEG BOX RES.

$ cd POWHEG-BOX-RES

From here, download the DIS process

$ svn co --username anonymous --password anonymous \
svn://powhegbox.mib.infn.it/trunk/User-Processes-RES/DIS

If the DIS directory is not placed as a subdirectory in the POWHEG BOX RES
installation, the Makefile has to be adjusted accordingly by modifying the
line

POWHEGPATH=$(PWD)/..

to the actual path. The process depends on LHAPDF [98], FastJet [107] and
Pythia8 [44, 45].

The compilation of the code requires gfortran and g++. In particular, the
code was not tested with the Intel® Fortran Compiler. The POWHEG
executable is created by running the command make, and the Pythia8 inter-
face is created with the command make main-PYTHIA8-lhef. By modifying
the variable ANALYSIS, the analysis Fortran file can be selected.

1A POWHEG BOX guide can be found at https://powhegbox.mib.infn.it/
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To run the code, the user has to create a run directory. The run directory
has to contain the powheg.input file, a file with distinct positive integer num-
bers named pwgseeds.dat and the file main31.cmnd. The file powheg.input
contains the POWHEG BOX input parameters, while main31.cmnd contains the
settings for the Pythia8 shower. In the subdirectory parallel-runs, one can
find example versions for all the files together with a script run-parallel.sh
that will execute the code in parallel. The script will run eight processes in
parallel, and it will execute the grid optimization twice. These settings can
be adjusted by modifying the according variables. In any case, the executable
pwhg_main has to be called from the run directory. During the fourth stage,
the code will produce the event files named pwgevents-<N>.lhe, with <N>
being the seed number if run in parallel, or pwgevent.lhe if the code is run
serial. To run the shower, main-PYTHIA8-lhef has to be called from the
directory containing the event files. The program automatically looks for the
file pwgevent.lhe. If this file is not present, the filename has to be entered.
The created histograms will be saved as top files named pwgPOWHEG+PYTHIA8-
output-<N>-W<M>.top, where <N> is the seed number and <M> is the weight
number if multiple weights are specified.



Appendix B

Input files

B.1 Runs for H1 data
The events used for the data in Sec. 4.1 where generated in three runs. The
powheg.input files are almost identical, hence for the last two files only the
difference to the first file is shown.

• Positron-proton run with
√
s = 319 GeV:

numevts 200000 ! number of events to be generated
ih1 -11 ! incoming positron
ih2 1 ! hadron 2 (1 for protons)
ebeam1 27.6d0 ! energy of beam 1 (lepton)
ebeam2 920d0 ! energy of beam 2 (hadron)
Qmin 10d0
Qmax 250d0
xmin 0d0
xmax 1d0
ymin 0d0
ymax 1d0

q2suppr 200d0

! To be set only if using LHA pdfs
lhans1 275200
lhans2 275200 ! pdf set for hadron 2 (LHA numbering)

alphas_from_pdf 1
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renscfact 1d0 ! (default 1d0) ren scale factor:
! muren = muref * renscfact
facscfact 1d0 ! (default 1d0) fac scale factor:
! mufact = muref * facscfact

! Parameters to allow or not the use of stored data
use-old-grid 1 ! If 1 use old grid if
! file pwggrids.dat is present (<> 1 regenerate)
use-old-ubound 1 ! If 1 use norm of upper bounding
! function stored in pwgubound.dat, if present;
! <> 1 regenerate

ncall1 500000 ! No. calls for the construction
! of the importance sampling grid
itmx1 1 ! No. iterations for grid
ncall2 10000000 ! No. calls for the computation
! of the upper bounding
! envelope for the generation of radiation
itmx2 1 ! No. iterations for the above
foldcsi 1 ! No. folds on csi integration
foldy 1 ! No. folds on y integration
foldphi 1 ! No. folds on phi integration

nubound 100000 ! No. calls to set up the
! upper bounding norms for radiation.
! This is performed using only the Born cross section
iupperisr 1

fastbtlbound 1
storemintupb 1
ubexcess_correct 1
storeinfo_rwgt 1 ! store info to allow for reweighting
hdamp 0
bornzerodamp 1

! OPTIONAL PARAMETERS

withnegweights 1 ! (default 0).
! If 1 use negative weights.
flg_jacsing 1
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testplots 1 ! do NLO and PWHG distributions

xupbound 2d0 ! increase upper bound for
! radiation generation

iseed 12 ! Start the random number
! generator with seed iseed
manyseeds 1 ! Used to perform multiple
! runs with different random
! seeds in the same directory.
! If set to 1, the program asks for an integer j;
! The file pwgseeds.dat at line j is read, and the
! integer at line j is used to initialize the random
! sequence for the generation of the event.
! The event file is called pwgevents-’j’.lhe

doublefsr 0
! Default 0; if 1 use new mechanism to generate regions
! such that the emitted harder than the
! emitter in FSR is suppressed. If doublefsr=0 this is
! only the case for emitted gluons (old behaviour). If
! 1 it is also applied to emitted quarks.
! If set, it strongly reduces spikes on showered output.

runningscales 1

channel_type 4 ! full NC = 4; CC = 3;
vtype 3 ! 1: photon exchange only, 2: Z exchange only,
! 3: photon+Z exchange
smartsig 1
nores 1

parallelstage 1
xgriditeration 1

flg_dis_isr 1
flg_dis_fsr 1
flg_dis 1
btlscalereal 1
btlscalect 1
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softtest 0
colltest 0

novirtual 0

py8QED 0
py8mpi 1
py8had 2
py8shower 1

#######################################
### Multiple weights (scale vars) #####
#######################################
rwl_file ’-’ ! If set to ’-’ read the xml reweighting info
! from this same file. Otherwise, it specifies the xml
! file with weight information
<initrwgt>
<weight id=’1’>default</weight>
<weight id=’2’ > renscfact=2d0 facscfact=2d0 </weight>
<weight id=’3’ > renscfact=0.5d0 facscfact=0.5d0 </weight>
<weight id=’4’ > renscfact=1d0 facscfact=2d0 </weight>
<weight id=’5’ > renscfact=1d0 facscfact=0.5d0 </weight>
<weight id=’6’ > renscfact=2d0 facscfact=1d0 </weight>
<weight id=’7’ > renscfact=0.5d0 facscfact=1d0 </weight>
</initrwgt>
rwl_group_events 10 ! It keeps 10 events in memory,
! reprocessing them together for reweighting
lhapdf6maxsets 10 ! Maximum number of lhapdf6 sets
! that it can keep in memory

• Positron-proton run with
√
s = 301 GeV:

(...)
ebeam2 820d0 ! energy of beam 2 (hadron)
(...)
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• Electron-proton run with
√
s = 319 GeV:

(...)
ih1 11 ! incoming electron
(...)

B.2 Runs for EIC data
The NC data for Figs. 4.7 and 4.8 in Sec. 4.2 were obtained with the
powheg.input file:

numevts 200000 ! number of events to be generated
ih1 11 ! incoming electron
ih2 1 ! hadron 2 (1 for protons)
ebeam1 18d0 ! energy of beam 1 (lepton)
ebeam2 275d0 ! energy of beam 2 (hadron)
Qmin 5d0
Qmax 32d0
xmin 0d0
xmax 1d0
ymin 0.04d0
ymax 0.95d0

! To be set only if using LHA pdfs
lhans1 90200
lhans2 90200 ! pdf set for hadron 2 (LHA numbering)

alphas_from_pdf 1

renscfact 1d0 ! (default 1d0) ren scale factor:
! muren = muref * renscfact
facscfact 1d0 ! (default 1d0) fac scale factor:
! mufact = muref * facscfact

! Parameters to allow or not the use of stored data
use-old-grid 1 ! If 1 use old grid if
! file pwggrids.dat is present (<> 1 regenerate)
use-old-ubound 1 ! If 1 use norm of upper bounding
! function stored in pwgubound.dat, if present; <> 1 regenerate
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ncall1 500000 ! No. calls for the construction
! of the importance sampling grid
itmx1 1 ! No. iterations for grid
ncall2 10000000 ! No. calls for the computation
! of the upper bounding
! envelope for the generation of radiation
itmx2 1 ! No. iterations for the above
foldcsi 1 ! No. folds on csi integration
foldy 1 ! No. folds on y integration
foldphi 1 ! No. folds on phi integration

nubound 100000 ! No. calls to set up the
! upper bounding norms for radiation.
! This is performed using only the Born cross section (fast)
iupperisr 1

fastbtlbound 1
storemintupb 1
ubexcess_correct 1
storeinfo_rwgt 1 ! store info to allow for reweighting
hdamp 0
bornzerodamp 1

! OPTIONAL PARAMETERS

withnegweights 1 ! (default 0). If 1 use negative weights.
flg_jacsing 1
testplots 1 ! do NLO and PWHG distributions

xupbound 2d0 ! increase upper bound for
! radiation generation

iseed 12 ! Start the random number
! generator with seed iseed
manyseeds 1 ! Used to perform multiple
! runs with different random
! seeds in the same directory.
! If set to 1, the program asks for an integer j;
! The file pwgseeds.dat at line j is read, and the
! integer at line j is used to initialize the random
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! sequence for the generation of the event.
! The event file is called pwgevents-’j’.lhe

doublefsr 0
! Default 0; if 1 use new mechanism to generate regions
! such that the emitted harder than the
! emitter in FSR is suppressed. If doublefsr=0 this is
! only the case for emitted gluons (old behaviour). If
! 1 it is also applied to emitted quarks.
! If set, it strongly reduces spikes on showered output.

runningscales 1

channel_type 4 ! full NC = 4; CC = 3;
vtype 3 ! 1: photon exchange only, 2: Z exchange only,
! 3: photon+Z exchange
smartsig 1
nores 1

parallelstage 1
xgriditeration 1

flg_dis_isr 1
flg_dis_fsr 1
flg_dis 1
btlscalereal 1
btlscalect 1

softtest 0
colltest 0

novirtual 0

py8QED 0
py8mpi 1
py8had 2
py8shower 1
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#######################################
### Multiple weights (scale vars) #####
#######################################
rwl_file ’-’ ! If set to ’-’ read the xml reweighting info
! from this same file. Otherwise, it specifies the xml
! file with weight information
<initrwgt>
<weight id=’1’>default</weight>
<weight id=’2’ > renscfact=2d0 facscfact=2d0 </weight>
<weight id=’3’ > renscfact=0.5d0 facscfact=0.5d0 </weight>
<weight id=’4’ > renscfact=1d0 facscfact=2d0 </weight>
<weight id=’5’ > renscfact=1d0 facscfact=0.5d0 </weight>
<weight id=’6’ > renscfact=2d0 facscfact=1d0 </weight>
<weight id=’7’ > renscfact=0.5d0 facscfact=1d0 </weight>
</initrwgt>
rwl_group_events 10 ! It keeps 10 events in memory,
! reprocessing them together for reweighting
lhapdf6maxsets 10 ! Maximum number of lhapdf6 sets
! that it can keep in memory

The input file to obtain the CC data of Figs. 4.10 and 4.11 differs only
in one line compared to the one from the NC data.

(...)
channel_type 3 ! full NC = 4; CC = 3;
(...)

The comparison of the two ISR generation methods was conducted by
two separate runs, each covering a different Q range, for both ISR methods.
This resulted in a total of four runs.

• ISR method 1 with high Q:

numevts 100000 ! number of events to be generated
ih1 11 ! electron
ih2 1 ! proton
ebeam1 18d0 ! energy of beam 1 (electron)
ebeam2 275d0 ! energy of beam 2 (proton)
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Qmin 20d0
Qmax 32d0
xmin 0d0
xmax 1d0
ymin 0.04d0
ymax 0.95d0

! To be set only if using LHA pdfs
lhans1 90200
lhans2 90200 ! pdf set for hadron 2 (LHA numbering)

alphas_from_pdf 1

renscfact 1d0 ! (default 1d0) ren scale factor:
! muren = muref * renscfact
facscfact 1d0 ! (default 1d0) fac scale factor:
! mufact = muref * facscfact

! Parameters to allow or not the use of stored data
use-old-grid 1 ! If 1 use old grid
use-old-ubound 1 ! If 1 use norm of upper
! bounding function stored in pwgubound.dat, if present

ncall1 100000 ! No. calls for the construction
! of the importance sampling grid
itmx1 1 ! No. iterations for grid
ncall2 300000 ! No. calls for the computation
! of the upper bounding
! envelope for the generation of radiation
itmx2 1 ! No. iterations for the above
foldcsi 1 ! No. folds on csi integration
foldy 1 ! No. folds on y integration
foldphi 1 ! No. folds on phi integration

nubound 100000 ! No. calls to set up the upper
! bounding norms for radiation.
! This is performed using only the Born cross section
iupperfsr 1
iupperisr 1

fastbtlbound 1
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storemintupb 1
ubexcess_correct 1
storeinfo_rwgt 1 ! store info to allow for reweighting
hdamp 0
bornzerodamp 1

! OPTIONAL PARAMETERS

withnegweights 1 ! If 1 use negative weights.
flg_jacsing 1
testplots 1 ! do NLO and PWHG distributions
withdamp 0
withsubtr 1

xupbound 2d0 ! increase upper bound
! for radiation generation

manyseeds 1 ! Used to perform multiple
! runs with different random
! seeds in the same directory.
! If set to 1, the program asks for an integer j;
! The file pwgseeds.dat at line j is read, and the
! integer at line j is used to initialize the random
! sequence for the generation of the event.
! The event file is called pwgevents-’j’.lhe

runningscales 1

channel_type 4 ! full NC = 4; CC = 3;
vtype 3 ! 1: photon exchange only,
! 2: Z exchange only, 3: photon+Z exchange
smartsig 1
nores 1

parallelstage 1
xgriditeration 1

flg_dis_isr 1
flg_dis_fsr 1
flg_dis 1
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btlscalereal 1
btlscalect 1

softtest 0
colltest 0

#######################################
### Multiple weights (scale vars) #####
#######################################
rwl_file ’-’ ! If set to ’-’ read the xml reweighting
! info from this same file. Otherwise, it specifies
! the xml file with weight information
<initrwgt>
<weight id=’1’>default</weight>
<weight id=’2’ > renscfact=2d0 facscfact=2d0 </weight>
<weight id=’3’ > renscfact=0.5d0 facscfact=0.5d0 </weight>
<weight id=’4’ > renscfact=1d0 facscfact=2d0 </weight>
<weight id=’5’ > renscfact=1d0 facscfact=0.5d0 </weight>
<weight id=’6’ > renscfact=2d0 facscfact=1d0 </weight>
<weight id=’7’ > renscfact=0.5d0 facscfact=1d0 </weight>
</initrwgt>
!rwl_group_events 10 ! It keeps 10 events in memory,
! reprocessing them together for reweighting
lhapdf6maxsets 10 ! Maximum number of lhapdf6 sets
! that it can keep in memory

py8QED 0
py8mpi 1
py8had 2
py8shower 1

• ISR method 1 with low Q:

(...)
Qmin 5d0
Qmax 20d0
(...)
iupperisr 1
(...)
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• ISR method 2 with high Q:

(...)
Qmin 20d0
Qmax 32d0
(...)
iupperisr 2
(...)

• ISR method 2 with low Q:

(...)
Qmin 5d0
Qmax 20d0
(...)
iupperisr 2
(...)
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