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INTRODUCTION

This thesis contributes to the explicit classification of Fano varieties of Picard number
one and two.

By a Fano variety we mean a normal projective variety X admitting an ample anticanon-
ical divisor −KX . Smooth Fano varieties are well understood up to dimension three.
There is a single one-dimensional Fano variety, the projective line. In dimension two
the smooth Fano varieties are the classically known del Pezzo surfaces: The product of
two projective lines and the blow-ups of the projective plane in at most eight points in
general position. In dimension three we have the classifications by Iskovskikh [52, 53]
and Mori–Mukai [63]. For higher dimensions there are partial results. For instance the
smooth toric Fano varieties are classified up to dimension nine [11, 59, 66, 69]. In the
singular case, the situation is less explored. As a landmark, we have in dimension two the
classifications by Alexeev/Nikulin [1] and Nakayama [64] of the log terminal del Pezzo
surfaces X of Gorenstein index g ≤ 2. Here, log terminal means discrepancies greater
than −1 and g is the smallest positive integer with gKX Cartier; so, g = 1 merely means
that X is Gorenstein. In dimension three, the classification problem for singular Fano
varieties is still widely open. An intensely studied class are the Mori–Fano threefolds,
that means terminal Q-factorial Fano threefolds of Picard number one. See in particular
Prokhorov’s classifications for higher index and degree cases [71–74].

Once we restrict to Fano varieties with many symmetries, the singular case is more
accessible. An example class are toric Fano varieties. Here we mention Kasprzyk’s
classification of the canonical toric Fano threefolds [56], comprising in particular the toric
Mori–Fano threefolds. In Chapter 1 we consider fake weighted projective spaces. They are
the Q-factorial toric Fano varieties of Picard number one. Equivalently, a d-dimensional
fake weighted projective space is a quotient of Cd+1\{0} by a diagonal action of C∗×Γ,
where Γ is a finite abelian group and the factor C∗ acts with positive weights. Via this
description, fake weighted projective spaces form a natural generalization of the well
known class of weighted projective spaces. They appear in toric Mori theory as the
fibers of elementary contractions; see [76], as well as [27,36]. Fake weighted projective
spaces form an interesting example class for the general question of effectively bounding
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Introduction

geometric data of a Fano variety in terms of its singularities. For instance, in the case of
Gorenstein index g = 1, Nill [65] provides a sharp bound for the degree of a d-dimensional
fake weighted projective space, i.e. the self intersection number (−K)d of its anticanonical
divisor.

Our first result extends Nill’s bound to fake weighted projective spaces of any Gorenstein
index. For any integer g ≥ 1 we define the g-Sylvester sequence sg,1, sg,2, . . . and the
truncated g-Sylvester sequence tg,1, tg,2, . . . as

sg,1 := g + 1, sg,k+1 := sg,k(sg,k − 1) + 1, tg,k := sg,k − 1.

Moreover, for any g ≥ 1 and any d ≥ 2 we define a (d + 1)-tuple of positive integers by

Qd,g :=
(︄

2tg,d

sg,1
, . . . ,

2tg,d

sg,d−1
, 1, 1

)︄
.

Theorem 1. See Theorem 1.1.1. There are sharp upper bounds on the anticanonical
degree (−K)d of a fake weighted projective space Z, only depending on its dimension d
and its Gorenstein index g:

(i) If (d, g) = (2, 1), then we have (−K)2 ≤ 9. Equality holds if and only if Z is
isomorphic to the projective plane P2.

(ii) In all other cases the anticanonical degree is bounded from above by

(−K)d ≤
2 t2

g,d

gd+1 .

Equality holds if and only if Z ∼= P(3, 1, 1, 1) or Z ∼= P(Qd,g) holds.

The combinatorial counterpart to fake weighted projective spaces are the Fano simplices,
i.e. lattice simplices with primitive vertices, containing the origin in their interior. The
Goreinstein index of a Fano simplex ∆ is the Gorenstein index of the corresponding
fake weighted projective space. It can be expressed combinatorially as the smallest
positive integer g such that the g-fold of the dual polytope ∆∗ is a lattice simplex. The
anticanonical degree of Z is precisely the normalized volume of ∆∗, i.e. the d!-fold of the
euclidean volume of ∆∗. Our second result concerns the volume of ∆ itself. For simplices
of Gorenstein index one, i.e. reflexive simplices, Nill [65, Thm. A] provides sharp upper
bounds on the normalized volume in terms of the dimension d of the simplex. We extend
Nill’s bound to Fano simplices of arbitrary Gorenstein index. We write ∆ = ∆(P ) with
the d× (d + 1) matrix P having the vertices of ∆ as its columns.

Theorem 2. See Theorem 1.1.2. There are sharp upper bounds on the normalized volume
of a Fano simplex ∆, only depending on its dimension d and its Gorenstein index g:
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Introduction

(i) Assume (d, g) = (2, 1). We have the following upper bound on the normalized
volume of ∆, which is attained if and only if ∆ ∼= ∆(P ) holds:

Vol(∆) ≤ 9, P =
[︄

1 1 −2
0 3 −3

]︄
.

(ii) In all other cases the normalized volume of ∆ is bounded from above by

Vol(∆) ≤
2t2

g,d

g2 .

Equality holds if and only if we have ∆ ∼= ∆(P ), where P is one of the following:

P =

⎡⎢⎣ 1 1 1 −5
0 2 2 −4
0 0 6 −6

⎤⎥⎦ ,

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 (sg,1−g)
sg,1

tg,d

g − (sg,1+g)
sg,1

tg,d

g

0 1 . . . ...
...

...
... . . . . . . 0

...
...

... . . . 1 (sg,d−1−g)
sg,d−1

tg,d

g − (sg,1+g)
sg,1

tg,d

g

0 . . . . . . 0 tg,d

g − tg,d

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Another invariant of a Fano simplex ∆ is its multiplicity mult(∆), i.e. the index of the
sublattice generated by the vertices of ∆. This is precisely the order of the torsion part
of the divisor class group of the fake weighted projective space Z associated with ∆. For
Fano simplices having only the origin as an interior lattice point Averkov, Kasprzyk,
Lehmann and Nill [3, 55] provide sharp upper bounds on the multiplicity in terms of the
dimension. These simplices correspond to fake weighted projective space with at most
canonical singularities. Our third result provides multiplicity bounds for arbitrary Fano
simplices in terms of the Gorenstein index and the dimension.
Theorem 3. See Theorem 1.1.3. There are upper bounds on the multiplicity of any Fano
simplex ∆, only depending on its dimension d and its Gorenstein index g:

(i) Assume d = 3 and g ∈ {1, 2}. We have the following upper bound on the multiplicity
of ∆, which is attained if and only if ∆ ∼= ∆(P ) holds:

mult(∆) ≤ 16g2, P =

⎡⎢⎣ 1 4g − 3 4g − 3 5− 8g
0 4g 0 −4g
0 0 4g −4g

⎤⎥⎦ .

(ii) Assume (d, g) = (4, 1). We have the following upper bound on the multiplicity of ∆,
which is attained if and only if ∆ ∼= ∆(P ) holds:

mult(∆) ≤ 128, P =

⎡⎢⎢⎢⎣
1 1 1 1 −7
0 2 2 2 −6
0 0 8 0 −8
0 0 0 8 −8

⎤⎥⎥⎥⎦ .

3



Introduction

(iii) In all other cases the multiplicity of ∆ is bounded from above by

mult(∆) ≤
3t2

g,d−1
g

.

If equality holds, then we either have (d, g) = (3, 3) and ∆ ∼= ∆(P ) holds, where

P =

⎡⎢⎣ 1 1 5 −7
0 12 0 −12
0 0 12 −12

⎤⎥⎦ ,

or there are positive integers a1, . . . , ad−1 ∈ Z≥1 such that ∆ ∼= ∆(P ) holds, where
P is the matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 (sg,1−g)
sg,1

tg,d−1
g a1 −

(︂
(sg,1+2g)

sg,1

tg,d−1
g + a1

)︂
0 1 . . . ...

...
...

...
... . . . . . . 0

...
...

...
... . . . 1 (sg,d−2−g)

sg,d−2

tg,d−1
g ad−2 −

(︂ (sg,d−2+2g)
sg,d−2

tg,d−1
g + ad−2

)︂
0 . . . . . . 0 tg,d−1

g ad−1 −
(︂

tg,d−1
g + ad−1

)︂
0 . . . . . . 0 0 3tg,d−1 −3tg,d−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Moreover, if g is odd, then for k = 1, . . . , d− 2 we may choose

ak = (sg,k − g)
sg,k

tg,d−1
g

, ad−1 = tg,d−1
g

.

For our fourth result we consider the Mahler volume [62] of a (not necessarily Fano)
rational IP simplex, i.e. a rational simplex ∆, that has the origin in its interior. The
Mahler volume of ∆ is the product MV(∆) := Vol(∆)Vol(∆∗). We obtain sharp upper
bounds that only depend on the dimension and the Gorenstein index. For the Gorenstein
index of a rational IP simplex see Definition 1.2.3.

Theorem 4. See Theorem 1.1.4. Let ∆ a d-dimensional IP simplex of Gorenstein index
g. Then we have

MV(∆) ≤
t2
g,d+1
gd+2 .

Equality holds if and only if there is H ∈ GL(d,Q) such that ∆ ∼= H ·∆(P ) holds, where

P =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 − tg,d+1

sg,1

0 . . . . . . ...
...

... . . . . . . 0
...

0 . . . 0 1 − tg,d+1
sg,d

⎤⎥⎥⎥⎥⎥⎥⎦ .
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We come to the explicit classification of Fano simplices. Conrads [28] provides an
algorithm for the classification of reflexive simplices, i.e. Fano simplices of Gorenstein
index one, and carries out the classification up to dimension four. Hättig, Hafner, Hausen
and Springer [39] present an efficient classification procedure without the restriction
on the Gorenstein index, but only for simplices of dimension two. This procedure is
completely automated and the authors carry out the classification of Fano triangles up to
Gorenstein index 200. We generalize and speed up the procedure from [39], which allows
us to efficiently classify Fano simplices of any dimension and any Gorenstein index. This
allows us to carry out the following classifications; the complete classification data, as
well as the Julia code [22] to produce these results can be found at [13].

Theorem 5. See Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles of
Gorenstein index g ≤ 1000. The number of triangles N(g) for given Gorenstein index g
develops as follows:

0 100 200 300 400 500 600 700 800 900 1,0000

0.3

0.6

0.9

1.2

1.5
·104

g

N
(g

)

Theorem 6. See Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices of
dimension three and Gorenstein index g ≤ 30. The number of simplices N(g) for given
Gorenstein index g develops as follows:

g 1 2 3 4 5 6 7 8
N(g) 48 435 1,703 3,042 7,506 14,527 16,627 21,789
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g 9 10 11 12 13 14 15 16
N(g) 39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530

g 17 18 19 20 21 22 23 24
N(g) 133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,989

g 25 26 27 28 29 30
N(g) 515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 7. See Theorem 1.1.7. Up to isomorphy there are 87,532 Fano simplices of
dimension four and Gorenstein index g ≤ 2. Of those, 1,561 are of Gorenstein index
g = 1. The remaining 85,971 simplices are of Gorenstein index g = 2.

By the correspondence between Fano simplices and fake weighted projective spaces,
Theorems 5 – 7 are also classifications of fake weighted projective spaces of respective
dimension and Gorenstein index. Our classification procedure relies on the interplay
between d-dimensional Fano simplices of Gorenstein index g and partitions of 1/g into
d + 1 unit fractions. These unit fractions impose strong divisibility properties on the
data defining our simplices, making the procedure efficient. Theorems 1 – 4 are also es-
sentially a result of the connection between (lattice) simplices and unit fraction partitions.

We turn to varieties with a torus action of complexity one. We first consider threefolds
coming with an effective action of a two-dimensional torus. In this setting, the Mori–
Fano threefolds have been classified by Bechtold, Hausen, Huggenberger and Nicolussi
[21], using the so-called anticanonical complex: a generalization of the Fano polytope
associated with a toric Fano variety. Hische and Wrobel [48, 49] successfully applied
this approach to the case of higher complexity as well. A classification algorithm for
Gorenstein canonical Fano varieties with a torus action of complexity one has been
proposed by Ilten, Mishna and Trainor [51], using the approach via polyhedral divisors [2].
However, already in the three-dimensional case, feasability becomes a serious question. In
Chapter 2 we classify the non-toric Q-factorial log terminal Gorenstein Fano threefolds X
of Picard number one that come with an effective action of a two-dimensional torus. We
use the Cox ring based approach to rational varieties with a torus action of complexity
one developed in [41, 46]. The Cox ring of a normal projective variety X with finitely
generated divisor class group Cl(X) is defined as

R(X) =
⨁︂

Cl(X)
Γ(X,OX(D)),

where we refer to [6] for the details. For our Fano threefolds X of Picard number one
acted on by a two-dimensional torus, the divisor class group Cl(X) is of the form Z⊕ Γ
with a finite abelian torsion part Γ and the Cox ring R(X) is a finitely generated complete
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intersection ring with a very specific system of trinomial relations. The variety X can
be uniquely reconstructed from the list of generator degrees in Cl(X) and the defining
relations of the Cox ring R(X) which allows us to encode X via these Cox ring data
in a compact manner. Moreover, our variety X comes with an embedding into a fake
weighted projective space, which dictates many geometrical properties of X. Similar to
the toric case, the Gorenstein property of X leads to identities involving unit fractions,
which eventually yield strong bounds on the Cox ring data, making a computational
treatment viable.

Theorem 8. See Classification 2.1.1. We obtain 538 families of non-toric, Q-factorial,
Gorenstein, log terminal Fano threefolds of Picard number one acted on effectively by a
two-dimensional torus. Listed according to the possible divisor class groups, we have:

Divisor class group Sporadic varieties True families

Z 242 3 one-dimensional

Z× Z/2Z 163 4 one-dimensional

Z× (Z/2Z)2 46 5 one-dimensional,
1 two-dimensional

Z× (Z/2Z)3 6 1 one-dimensional

Z× Z/2Z× Z/4Z 4 1 one-dimensional

Z× Z/2Z× Z/6Z 1 0

Z× Z/3Z 26 1 one-dimensional

Z× (Z/3Z)2 1 0

Z× Z/4Z 18 1 one-dimensional

Z× Z/5Z 4 0

Z× Z/6Z 8 0

Z× Z/8Z 2 0

Moreover, every non-toric, Q-factorial, Gorenstein, log terminal Fano threefold of Picard
number one with an effective action of a two-dimensional torus is isomorphic to precisely
one member of these 538 families.

Note that being Gorenstein and log terminal, all varieties from Theorem 8 are canonical.
The overlap with the classification of non-toric Mori–Fano threefolds coming with an
action of a two-dimensisonal torus given in [21] consists precisely of the smooth quadric
in P4. The defining data of each of our 538 families are presented in the Classification lists
2.12.1 – 2.12.19 and can also be found in the file [15]. This file also contains geometric
invariants such as genus, codimension, anticanonical self intersection and Hilbert series.
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Finally we study Fano fourfolds with an effective action of a three-dimensional torus.
We focus on the case of Picard number two. In this situation, Kleinschmidt [58] gave a
complete description of all smooth toric varieties, which leads in particular to complete
classifications of the Fano ones in any dimension. Via linear Gale duality, Kleinschmidt’s
approach can be turned into a study of two-dimensional combinatorial structures, see
[19, Prop. 1.11]. The latter point of view applies as well to torus actions of higher
complexity, i.e. higher maximal orbit codimension [41,42,46]. This allows for instance to
extend Kleinschmidt’s description to smooth varieties with a torus action of complexity
one and gives complete classifications of smooth Fano varieties with torus action of
complexity one in any dimension [35]. Further work in this spirit concerns smooth
intrinsic quadrics, general arrangement varieties and intrinsic Grassmannians [34, 42, 75].
We leave the smooth setting and consider more generally locally factorial varieties,
meaning that every Weil divisor is locally principal. Whereas in the toric case smoothness
and local factoriality coincide, the latter setting turns out to be much more general
for torus actions of complexity one; for instance, the varieties need not be log terminal
any more and we find infinite series of non-isomorphic Fanos in fixed dimensions. We
settle the case of dimension four, complexity one and a Cox ring defined by a single
relation. Our main result considerably extends the corresponding one in the smooth
case [35, Thm. 1.2].

Theorem 9. See Theorem 3.1.1. There are 447 sporadic cases and 106 infinite series of
locally factorial Fano fourfolds of Picard number two coming with an effective action of a
three-dimensional torus and a Cox ring defined by a single relation.

Our varieties in question are uniquely determined by the generator degrees and the
relation in their Cox ring. Classification lists 3.10.1 – 3.10.11 provide the complete
and redundancy free presentation of the specifying data for Theorem 3.1.1. A data file
containing the complete classification data is also available at [18].
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CHAPTER
ONE

LATTICE SIMPLICES AND FAKE WEIGHTED PROJECTIVE
SPACES

We give sharp upper bounds on the anticanonical degree of fake weighted projective
spaces, only depending on the dimension and the Gorenstein index. Furthermore, we
present sharp upper bounds on the volume, Mahler volume and multiplicity for Fano
simplices, also only depending on dimension and Gorenstein index. These bounds rely
on the interplay between lattice simplices and unit fraction partitions. Moreover, we
present an efficient procedure for explicitly classifying Fano simplicies of any dimension
and Gorenstein index and we carry out the classification up to dimension four for various
Gorenstein indices. This chapter is organized as follows. In Section 1.1 we present the
main results of this chapter. Section 1.2 covers the basics on fake weighted projective
spaces and IP simplices. In Section 1.3 we associate with every IP simplex a unit fraction
partition of its Gorenstein index. The main result of this section is Proposition 1.3.3,
which relates the volume and the multiplicity of a (Fano) simplex to its unit fraction
partition. Section 1.4 is dedicated to providing sharp bounds on unit fraction partitions.
The main result of that section is Theorem 1.4.2, which is the foundation for proving
Theorems 1.1.1 – 1.1.4. Section 1.5 contains the proofs of Theorems 1.1.1 – 1.1.4. Section
1.6 contains our classification procedure for Fano simplices. In Section 1.7 we present
and discuss our classification results. The results of this chapter are published in [12, 14].

1.1 Main results

A d-dimensional fake weighted projective space is a quotient Z = (Cd+1\{0})/G by a
diagonal action of G := C∗×Γ, where Γ is a finite abelian group and the factor C∗ acts
via positive weights. The case for trivial Γ delivers the weighted projective spaces. If
moreover the weights are all equal to one, then Z is a classical projective space. Any fake
weighted projective space Z is normal, Q-factorial, of Picard number one and is a Fano
variety, i.e. its anticanonical divisor −K is ample. Apart from the classical projective
spaces, all fake weighted projective spaces are singular, but have at most abelian quotient

9



Chapter 1. Lattice simplices and fake weighted projective spaces

singularities. In the case of Gorenstein index one, Nill [65] provides a bound for the
degree of a d-dimensional fake weighted projective space Z, i.e. the self intersection
number (−K)d of its anticanonical divisor. These degree bounds also hold more generally
for any toric Fano variety with at most canonical singularities, see [9].

For our first result in this chapter we extend Nill’s bound to fake weighted projective
spaces of any Gorenstein index. For any integer g ≥ 1 we define the g-Sylvester
sequence sg,1, sg,2, . . . and the truncated g-Sylvester sequence tg,1, tg,2, . . . as

sg,1 := g + 1, sg,k+1 := sg,k(sg,k − 1) + 1, tg,k := sg,k − 1.

For g = 1, 2, 3 the beginning of the sequences (sg,k)k are the following

(s1,k)k = 2, 3, 7, . . . (s2,k)k = 3, 7, 43, . . . (s3,k)k = 4, 13, 157, . . .

Moreover, for any g ≥ 1 and any d ≥ 2 define a (d + 1)-tuple of positive integers by

Qd,g :=
(︄

2tg,d

sg,1
, . . . ,

2tg,d

sg,d−1
, 1, 1

)︄
.

For g = 1, 2, 3 and d = 2, 3 the corresponding (d + 1)-tuples Qg,d are given by:

Q2,1 = (2, 1, 1), Q2,2 = (4, 1, 1), Q2,3 = (6, 1, 1),

Q3,1 = (6, 4, 1, 1), Q3,2 = (28, 12, 1, 1), Q3,3 = (78, 24, 1, 1).

Theorem 1.1.1. There are sharp upper bounds on the anticanonical degree (−K)d of a
fake weighted projective space Z, only depending on its dimension d and its Gorenstein
index g.

(i) If (d, g) = (2, 1), then we have (−K)2 ≤ 9. Equality holds if and only if Z is
isomorphic to the projective plane P2.

(ii) In all other cases the anticanonical degree is bounded from above by

(−K)d ≤
2 t2

g,d

gd+1 .

Equality holds if and only if Z ∼= P(3, 1, 1, 1) or Z ∼= P(Qd,g) holds.

We turn to Fano simplices, ie. lattice simplices ∆ with primitive vertices, containing
the origin in their interior. They form the combinatorial counterpart to fake weighted
projective spaces, see Proposition 1.2.1. The Goreinstein index of a Fano simplex ∆
is the Gorenstein index of the corresponding fake weighted projective space. It can be
expressed combinatorially as the smallest positive integer g such that the g-fold of the
dual polytope ∆∗ is a lattice simplex. The anticanonical degree of Z is precisely the
normalized volume of ∆∗, i.e. the d!-fold of the euclidean volume of ∆∗. Our second result
concerns the volume of ∆ itself. For simplices of Gorenstein index g = 1, i.e. reflexive
simplices, Nill [65, Thm. A] provides sharp upper bounds on the normalized volume in
terms of the dimension of the simplex. We extend these bounds to Fano simplices of
arbitrary Gorenstein index. We write ∆ = ∆(P ) with the d× (d + 1) matrix P having
the vertices of ∆ as its columns.

10
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Theorem 1.1.2. There are sharp upper bounds on the normalized volume of a Fano
simplex ∆, only depending on its dimension d and its Gorenstein index g:

(i) Assume (d, g) = (2, 1). We have the following upper bound on the normalized
volume of ∆, which is attained if and only if ∆ ∼= ∆(P ) holds:

Vol(∆) ≤ 9, P =
[︄

1 1 −2
0 3 −3

]︄
.

(ii) In all other cases the normalized volume of ∆ is bounded from above by

Vol(∆) ≤
2t2

g,d

g2 .

Equality holds if and only if we have ∆ ∼= ∆(P ), where P is one of the following:

P =

⎡⎢⎣ 1 1 1 −5
0 2 2 −4
0 0 6 −6

⎤⎥⎦ ,

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 (sg,1−g)
sg,1

tg,d

g − (sg,1+g)
sg,1

tg,d

g

0 1 . . . ...
...

...
... . . . . . . 0

...
...

... . . . 1 (sg,d−1−g)
sg,d−1

tg,d

g − (sg,1+g)
sg,1

tg,d

g

0 . . . . . . 0 tg,d

g − tg,d

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Another invariant of a Fano simplex ∆ is its multiplicity, ie. the order of the sublattice
generated by the vertices of ∆. This is also the order of the torsion part of the divisor class
group of the fake weighted projective space Z corresponding to ∆. For Fano simplices
having only the origin as an interior lattice point, for instance reflexive ones, [3, Thm. 1.1]
provides sharp upper bounds on the multiplicity in terms of the dimension. In our
third result we provide multiplicity bounds for arbitrary Fano simplices in terms of the
Gorenstein index and the dimension.

Theorem 1.1.3. There are upper bounds on the multiplicity of any Fano simplex ∆,
only depending on its dimension d and its Gorenstein index g:

(i) Assume d = 3 and g ∈ {1, 2}. We have the following upper bound on the multiplicity
of ∆, which is attained if and only if ∆ ∼= ∆(P ) holds:

mult(∆) ≤ 16g2, P =

⎡⎢⎣ 1 4g − 3 4g − 3 5− 8g
0 4g 0 −4g
0 0 4g −4g

⎤⎥⎦ .

11
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(ii) Assume (d, g) = (4, 1). We have the following upper bound on the multiplicity of ∆,
which is attained if and only if ∆ ∼= ∆(P ) holds:

mult(∆) ≤ 128, P =

⎡⎢⎢⎢⎣
1 1 1 1 −7
0 2 2 2 −6
0 0 8 0 −8
0 0 0 8 −8

⎤⎥⎥⎥⎦ .

(iii) In all other cases the multiplicity of ∆ is bounded from above by

mult(∆) ≤
3t2

g,d−1
g

.

If equality holds, then we either have (d, g) = (3, 3) and ∆ ∼= ∆(P ) holds, where

P =

⎡⎢⎣ 1 1 5 −7
0 12 0 −12
0 0 12 −12

⎤⎥⎦ ,

or there are positive integers a1, . . . , ad−1 ∈ Z≥1 such that ∆ ∼= ∆(P ) holds, where
P is the matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 (sg,1−g)
sg,1

tg,d−1
g a1 −

(︂
(sg,1+2g)

sg,1

tg,d−1
g + a1

)︂
0 1 . . . ...

...
...

...
... . . . . . . 0

...
...

...
... . . . 1 (sg,d−2−g)

sg,d−2

tg,d−1
g ad−2 −

(︂ (sg,d−2+2g)
sg,d−2

tg,d−1
g + ad−2

)︂
0 . . . . . . 0 tg,d−1

g ad−1 −
(︂

tg,d−1
g + ad−1

)︂
0 . . . . . . 0 0 3tg,d−1 −3tg,d−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Moreover, if g is odd, then for k = 1, . . . , d− 2 we may choose

ak = (sg,k − g)
sg,k

tg,d−1
g

, ad−1 = tg,d−1
g

.

For our fourth result we consider the Mahler volume [62] of a (not necessarily Fano)
rational IP simplex, ie. a rational simplex ∆, that has the origin in its interior. The
Mahler volume of ∆ is the product MV(∆) := Vol(∆)Vol(∆∗). We obtain sharp upper
bounds that only depend on the dimension and the Gorenstein index. For the Gorenstein
index of a rational IP simplex see Definition 1.2.3.

Theorem 1.1.4. Let ∆ a d-dimensional IP simplex of Gorenstein index g. Then we
have

MV(∆) ≤
t2
g,d+1
gd+2 .

12
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Equality holds if and only if there is H ∈ GL(d,Q) such that ∆ ∼= H ·∆(P ) holds, where

P =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 − tg,d+1

sg,1

0 . . . . . . ...
...

... . . . . . . 0
...

0 . . . 0 1 − tg,d+1
sg,d

⎤⎥⎥⎥⎥⎥⎥⎦ .

We come to the explicit classification of Fano simplices. Hättig, Hafner, Hausen and
Springer [39] present an efficient procedure for the classification of Fano triangles with
fixed Gorenstein index based on unit fraction partitions. This procedure is completely
automated and the authors carry out the classification of Fano triangles up to Gorenstein
index 200. We generalize and speed up their procedure, which allows us to efficiently
classify Fano simplices of any given dimension and Gorenstein index. This allows us to
carry out the following classifications; the complete classification data, as well as the
Julia code [22] to produce these results can be found at [13].

Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles of Gorenstein
index g ≤ 1000. The number of triangles N(g) for given Gorenstein index g develops as
follows:

0 100 200 300 400 500 600 700 800 900 1,0000

0.3

0.6

0.9

1.2

1.5
·104

g

N
(g

)

Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices of dimension three
and Gorenstein index g ≤ 30. The number of simplices N(g) for given Gorenstein index
g develops as follows:
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g 1 2 3 4 5 6 7 8
N(g) 48 435 1,703 3,042 7,506 14,527 16,627 21,789

g 9 10 11 12 13 14 15 16
N(g) 39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530

g 17 18 19 20 21 22 23 24
N(g) 133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,989

g 25 26 27 28 29 30
N(g) 515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 1.1.7. Up to isomorphy there are 87,532 Fano simplices of dimension four and
Gorenstein index g ≤ 2. Of those, 1,561 are of Gorenstein index g = 1. The remaining
85,971 simplices are of Gorenstein index g = 2.

1.2 Fake weighted projective spaces and simplices

We recall basic properties of fake weighted projective spaces and fix our notation, see
also [65, Sec. 3]. The reader is assumed to be familiar with the very basics of toric
geometry [30,37]. Throughout, N is a rank d lattice for some d ∈ Z≥2. Its dual lattice is
denoted by M = Hom(N,Z) with pairing ⟨· , ·⟩ : M ×N → Z. We write NQ := N ⊗Z Q
and MQ := M ⊗Z Q. Polytopes ∆ ⊆ NQ are assumed to be full-dimensional. The
normalized volume of a d-dimensional polytope ∆ is Vol(∆) = d! vol(∆), where vol(∆)
denotes its euclidean volume. Suppose the origin 0 ∈ NQ is contained in the interior
of ∆. Then the dual of ∆ is the polytope

∆∗ := {u ∈MQ; ⟨u, v⟩ ≥ −1 for all v ∈ ∆} ⊆ MQ.

For a facet F of ∆ we denote by uF ∈MQ the unique linear form with ⟨uF , v⟩ = −1 for
all v ∈ F . We have

∆∗ = conv( uF ; F facet of ∆ ), ∆ = {v ∈ NQ; ⟨uF , v⟩ ≥ −1, F facet of ∆}.

A lattice polytope ∆ ⊆ NQ is a polytope whose vertices are lattice points in N . An
IP polytope is a lattice polytope that contains the origin 0 ∈ NQ in its interior. A
Fano polytope is an IP polytope whose vertices are primitive lattice points. We re-
gard two lattice polytopes ∆ ⊆ NQ and ∆′ ⊆ N ′

Q as isomorphic if there is a lattice
isomorphism φ : N → N ′ mapping ∆ bijectively to ∆′.

For an elementary proof of the following Proposition we refer to [39, Sec. 2].

14
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Proposition 1.2.1. The fake weighted projective spaces are precisely the toric varieties
Z = Z(∆) associated with the face fan of Fano simplices ∆ ⊆ NQ.

Example 1.2.2. As a running example, we consider the two-dimensional Fano simplex ∆
with the vertices

v0 = (1, 0), v1 = (1, 4), v2 = (−7,−12).

The corresponding fake weighted projective plane Z = Z(∆) has the divisor class group

Cl(Z) ∼= Z⊕ Z/4Z.

Under this isomorphism the classes of the three torus-invariant divisors D0, D1, D2 of Z
are given by

[D0] = (4, 3̄), [D1] = (3, 1̄), [D2] = (1, 0̄).

Denote by C(4) ⊆ C the group of 4-th roots of unity. The variety Z can be realized as
the quotient of C3\{0} by the action of G = C∗ × C(4) given by

(t, η) · (z0, z1, z2) = (t4η3z0, t3ηz1, tz2).

Two fake weighted projective spaces are isomorphic if and only if the corresponding
Fano simplices are isomorphic. The weighted projective spaces among them correspond
to Fano simplices whose vertices generate the lattice. Many geometric properties of a
fake weighted projective space can be read off the corresponding simplex. Here we focus
our attention on the Gorenstein index and the anticanonical degree.

Definition 1.2.3. Let ∆ ⊆ NQ an IP polytope.
(i) The index of rationality of ∆ is the positive integer

gQ(∆) := min{ k ∈ Z≥1; k∆ is a lattice polytope }.

(ii) The Gorenstein index of ∆ is the positive integer

g(∆) := gQ(∆) · gQ(∆∗).

(iii) Assume ∆ is a lattice simplex. Denote by u0, . . . , ud ∈MQ the vertices of the dual
∆∗ ⊆ MQ. We call uk the k-th Gorenstein form of ∆. We define the k-th local
Gorenstein index gk of ∆ as the smallest positive integer such that gkuk ∈M holds.

Remark 1.2.4. If ∆ ⊆ NQ is an IP lattice simplex with local Gorenstein indices g0, . . . , gd,
then we have g(∆) = lcm(g0, . . . , gd).

Lemma 1.2.5. The Gorenstein index of any fake weighted projective space Z = Z(∆)
coincides with the Gorenstein index g(∆) of the corresponding Fano simplex ∆ ⊆ NQ.

Proof. The dual polytope ∆∗ coincides with the polytope ∆(−K) associated with −K:

∆(−K) = conv( m ∈MQ; χm ∈ Γ(X,OX(−K)) ).

The assertion thus follows from [30, Thm. 4.2.8].
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Lemma 1.2.6. See for instance [37, p. 111]. Let Z = Z(∆) a d-dimensional fake
weighted projective space. Then we have (−KZ)d = Vol(∆∗).

Example 1.2.7. We continue Example 1.2.2. The dual of ∆ is the rational simplex ∆∗

with the vertices

u0 =
(︃

1,−1
2

)︃
, u1 =

(︃
−1,

2
3

)︃
, u2 = (−1, 0) .

Thus ∆ has local Gorenstein indices (g0, g1, g2) = (2, 3, 1) and Gorenstein index g(∆) =
lcm(g0, g1, g2) = 6. The group of Cartier divisor classes of Z is the intersection of the
subgroups of Cl(Z) generated by the torus-invariant divisor classes:

⟨[D0]⟩ ∩ ⟨[D1]⟩ ∩ ⟨[D2]⟩ = ⟨(48, 0̄)⟩ ⊆ Cl(Z) = Z⊕ Z/4Z.

An anticanonical divisor of Z is given by the sum of the torus-invariant divisors. In Cl(Z)
we have

[−K] = [D0] + [D1] + [D2] = (8, 0̄).

The 6-fold of K is the smallest multiple that is Cartier. Thus Z has Gorenstein index g = 6.

Any weighted projective space P(q0, . . . , qd) is up to an isomorphism uniquely de-
termined by its weights (q0, . . . , qd). More generally we assign weights to any IP sim-
plex ∆ ⊆ NQ.

Definition 1.2.8. See [28, 65]. A weight system Q of length d is a (d + 1)-tuple of
positive rational numbers Q = (q0, . . . , qd). The total weight of a weight system Q is the
rational number |Q| := q0 + · · ·+ qd. A weight system Q is called reduced if it consists of
integers and gcd(q0, . . . , qd) = 1 holds. A reduced weight system is called well-formed
if gcd(qj ; j = 0, . . . , d, j ̸= i) = 1 holds for all i = 0, . . . , d. Any weight system Q can be
written as λ(Q) ·Qred with a unique reduced weight system Qred and a unique positive
rational number λ(Q). We call λ(Q) the factor of Q and Qred the reduction of Q.

Definition 1.2.9. See [28,65]. To any IP simplex ∆ ⊆ NQ with vertices v0, . . . , vd we
associate a weight system by

Q∆ := (q0, . . . , qd), qi := |det( vj ; j = 0, . . . , d, j ̸= i )|.

Remark 1.2.10. Let ∆ ⊆ NQ a d-dimensional IP simplex with vertices v0, . . . , vd and
weight system Q∆ = (q0, . . . , qd).

(i) For the total weight we have |Q∆| = Vol(∆).
(ii) If ∆ is a Fano simplex, then Qred

∆ is well-formed.
(iii) We have

∑︁d
i=0 qivi = 0 and Qred

∆ = (q′
0. . . . , q′

d) is the unique reduced weight system
satisfying

∑︁d
i=0 q′

ivi = 0.
(iv) For any H ∈ GL(d, NQ) we have QH∆ = | det(H)|Q∆. In particular, the weight

systems of isomorphic IP simplices coincide up to order.
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For an IP lattice simplex ∆ ⊆ NQ we denote by N(∆) ⊆ N the sublattice generated
by the vertices of ∆. If ∆ ⊆ NQ is any IP simplex and ∆′ := gQ(∆) ∆, then we have

λ(∆) := λ(Q∆) = [N : N(∆′)]
gQ(∆)d

.

In case ∆ is a Fano simplex, we write mult(∆) := λ(∆) and call it the multiplicity
of ∆. It coincides with the cardinality of the torsion part of the class group Cl(Z) of the
associated fake weighted projective space Z = Z(∆).

Example 1.2.11. For the two-dimensional Fano simplex ∆ from Example 1.2.2 and
Example 1.2.7 we have

Q∆ = (16, 12, 4), |Q∆| = 32, λ(Q∆) = 4, Qred
∆ = (4, 3, 1).

For the sublattice N(∆) ⊆ Z2, generated by the vertices of ∆, and it’s index we have

N(∆) = ⟨ (1, 0), (0, 4) ⟩, λ(∆) = [Z2 : N(∆)] = 4.

The following Proposition is a reformulation of [23, Prop. 2]. Compare also [28, 4.4–
4.6].

Proposition 1.2.12. To any reduced weight system Q of length d there exists a d-
dimensional IP lattice simplex ∆(Q) ⊆ Qd, unique up to an isomorphism, with Q∆(Q) = Q.
For any IP simplex ∆ ∈ Qd with (Q∆)red = Q there is a linear map H ∈ GL(d,Q) whose
determinant satisfies |det(H)| = λ(∆), such that ∆ = H ∆(Q) holds.

Restricting to well-formed weight systems, we obtain the following Corollary to
Proposition 1.2.12. Compare also [10, Thm. 5.4.5].

Corollary 1.2.13. To any well-formed weight system Q of length d there exists a d-
dimensional Fano simplex ∆(Q) ⊆ NQ, unique up to an isomorphism, with Q∆(Q) = Q.
Any fake weighted projective space Z = Z(∆) with Qred

∆ = Q is isomorphic to the
quotient of the weighted projective space P(Q) by the action of the finite group N/N(∆)
corresponding to the inclusion N(∆) ⊆ N .

As an immediate consequence, we can relate the Gorenstein index and the anticanon-
ical degree of a fake weighted projective space Z(∆) to those of the weighted projective
space P(Qred

∆ ).

Corollary 1.2.14. Let Z = Z(∆) a d-dimensional fake weighted projective space and let
Z ′ = P(Qred

∆ ) the corresponding weighted projective space. Then the Gorenstein index of
Z is a multiple of the Gorenstein index of Z ′. Moreover we have λ(∆)(−KZ)d = (−KZ′)d.
In particular, (−KZ)d = (−KZ′)d holds if and only if Z is isomorphic to Z ′.

Proof. By Proposition 1.2.12 there is a square matrix H in a lattice basis of N with
determinant λ(∆) such that ∆ = H∆(Q) holds. Dualizing yields ∆(Q)∗ = H∗∆∗,
where H∗ denotes the transpose of H. Applying Lemma 1.2.5 and Lemma 1.2.6 yields
the assertions.
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Example 1.2.15. We continue Example 1.2.11. The vertices v′
0, v′

1, v′
2 of the Fano

simplex ∆′ associated with the weighted projective plane Z ′ = P(4, 3, 1) = P(Qred
∆ ) and

the vertices u′
0, u′

1, u′
2 of it’s dual simplex (∆′)∗ are given by

v′
0 = (1, 0), v′

1 = (0, 1), v′
2 = (−4,−3),

u′
0 = (1,−1), u′

1 =
(︃
−1,

5
3

)︃
, u′

2 = (−1,−1).

Thus ∆′ has Gorenstein index g(∆′) = 3. The Gorenstein indices of ∆ and ∆′ satisfy
g(∆) = 6 = 2 · 3 = 2g(∆′). The simplex ∆ is the image of ∆′ under the linear map
Z2 → Z2 given by the matrix

H =
[︄

1 1
0 4

]︄
.

We can recover Z = Z(∆) as the quotient of P(4, 3, 1) by the action of the group C(4) of
4-th roots of unity given in homogeneous coordinates by

η · [z0, z1, z2] = [η3z0, ηz1, z2].

Using Lemma 1.2.6, for the degrees of Z and Z ′ we obtain

(−KZ′)2 = Vol((∆′)∗) = 16
3 = 4 · 4

3 = λ(∆)Vol(∆∗) = λ(∆)(−KZ)2.

1.3 Unit fraction partitions

We associate with every IP simplex a unit fraction partition of its Gorenstein index, see
Proposition 1.3.2. The main result of this section is Proposition 1.3.3, which relates the
volume and the factor of an IP simplex to its unit fraction partition.

Definition 1.3.1. Let g ∈ Z≥1. A tuple A = (α1, . . . , αn) ∈ Zn
≥1 is called a unit fraction

partition (ufp for short) of g of length n, if the following holds:

1
g

=
n∑︂

k=1

1
αk

.

A tuple A = (α1, . . . , αn) ∈ Zn
≥1 is called a unit fraction partition if it is a ufp of g for

some g ∈ Z≥1. For a unit fraction partition A = (α1, . . . , αn) of g we call

tA := lcm(α1, . . . , αn), λ(A) := gcd(g, α1, . . . , αn), Ared := A/λ(A)

the total weight, the factor and the reduction of A, respectively. A unit fraction partition A
is called reduced if it coincides with its reduction. It is called well-formed if αi |
lcm(αj ; j ̸= i) holds for all i = 1, . . . , n.
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Proposition 1.3.2. Let ∆ ⊆ NQ a d-dimensional IP simplex of Gorenstein index g with
weight system Q∆ = (q0, . . . , qd). Then

A(∆) :=
(︃

g|Q∆|
q0

, . . . ,
g|Q∆|

qd

)︃
is a unit fraction partition of g of length d + 1. We call it the unit fraction partition of g
associated with ∆.

Proof. The entries of A(∆) are positive. We show that they are integers. Denote by
v0, . . . , vd ∈ NQ the vertices of ∆. For 0 ≤ i ≤ d let Fi = conv(v0, . . . , v̂i, . . . , vd) the i-th
facet of ∆, where v̂i means that vi is omitted. For all i = 0, . . . , d we have

0 =
d∑︂

j=0
qjg⟨uFi , vj⟩ = g⟨uFi , vi⟩qi − g

d∑︂
j = 0,
j ̸= i

qj = (g⟨uFi , vi⟩+ 1)qi − g|Q∆|.

By definition of the Gorenstein index, g⟨uFi , vi⟩ = ⟨gQ(∆∗)uFi , gQ(∆)vi⟩ is an integer.
Thus qi divides g|Q∆|, which means that A(∆) consists of integers. Now summing over
the reciprocals of A(∆) we see that it is in fact a ufp of g.

The following Proposition establishes a connection between geometric properties of
an IP simplex ∆ and its associated unit fraction partition. It can be seen as an extension
of [65, Prop. 4.5] to the case of non-reflexive IP simplices.

Proposition 1.3.3. Let ∆ ⊆ NQ a d-dimensional IP simplex of Gorenstein index g(∆) =
g with associated unit fraction partition A(∆) = (α0, . . . , αd) of g. Then A(∆) = A(∆∗)
holds and we have:

(i)

Vol(∆)Vol(∆∗) = 1
gd+1 α0 · · ·αd,

(ii)

λ(∆∗)Vol(∆) = λ(∆)Vol(∆∗) = 1
gd

α0 · · ·αd

lcm(α0, . . . , αd) ,

(iii)

λ(∆)λ(∆∗) = 1
gd−1

α0 · · ·αd

lcm(α0, . . . , αd)2 .

Note that the left hand side of equations (i)–(iii) in Proposition 1.3.3 only depends on
the simplex ∆, while the right hand side only depends on the unit fraction partition A(∆).

Example 1.3.4. We continue Example 1.2.15. The Fano simplex ∆ has Gorenstein
index g = 6 and weight system Q∆ = (16, 12, 4). It’s unit fraction partition is given by

A(∆) = (12, 16, 48).
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This is a unit fraction partition of g = 6. Indeed, we have

1
6 = 1

12 + 1
16 + 1

48 .

The IP simplices ∆ and ∆ have normalized volumes and factors

Vol(∆) = 32, λ(∆) = 4, Vol(∆∗) = 4
3 , λ(∆∗) = 1

6 .

Plugging these values into the formulas given in Proposition 1.3.3, we obtain

Vol(∆)Vol(∆∗) = 32 · 4
3 = 128

3 = 1
63 · 12 · 16 · 48 = 1

gd+1 α0 · · ·αd,

λ(∆∗)Vol(∆) = λ(∆)Vol(∆∗) = 16
3 = 1

62 ·
12 · 16 · 48

48 = 1
gd

α0 · · ·αd

lcm(α0, . . . , αd) ,

λ(∆)λ(∆∗) = 4 · 1
6 = 2

3 = 1
63 ·

12 · 16 · 48
482 = 1

gd−1
α0 · · ·αd

lcm(α0, . . . , αd)2 .

For the proof of Proposition 1.3.3, we need the following Lemma 1.3.6, which is
originally [65, Prop. 3.6].

Definition 1.3.5. See [65, Def. 3.4]. For any weight system Q = (q0, . . . , qd) set

mQ := |Q|d−1

q0 · · · qd
.

Lemma 1.3.6. See [65, Prop. 3.6]. For any d-dimensional IP simplex ∆ we have

Q∆∗ = mQ∆Q∆.

Proof of Proposition 1.3.3. By Lemma 1.3.6 the weight systems Q∆ and Q∆∗ differ only
by a factor. Moreover, the simplices ∆ and ∆∗ have the same Gorenstein index. Thus the
associated unit fraction partitions A(∆) and A(∆∗) coincide. Item (i) is an immediate
consequence of (ii) and (iii). We prove (ii). Remark 1.2.10 (i) together with Lemma 1.3.6
yields

Vol(∆∗) = |Q∆∗ | = |Q∆|d

q0 · · · qd
.

We multiply this by the multiplicity λ(∆) and use the identity λ(∆) = g|Q∆|/tA(∆) to
obtain

λ(∆)Vol(∆∗) = g|Q∆|
tA(∆)

|Q∆|d

q0 · · · qd
= 1

gd

α0 · · ·αd

lcm(α0, . . . , αd) .

Switching the roles of ∆ and ∆∗ and using the fact that they have the same unit fraction
partition, we obtain λ(∆)Vol(∆∗) = λ(∆∗)Vol(∆). We prove (iii). Let Qred

∆ = (q′
0, . . . , q′

d).
With Lemma 1.3.6 we obtain:

λ(∆∗) = λ(∆)mQ∆ = λ(∆) |Q∆|d−1

q0 · · · qd
= 1

λ(∆)
|Qred

∆ |d−1

q′
0 · · · q′

d

= 1
λ(∆)mQred

∆
,
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1.3. Unit fraction partitions

Multiplying both sides by λ(∆) yields the identity λ(∆)λ(∆∗) = mQred
∆

. We obtain:

mQred
∆

= 1
|Qred

∆ |2
|Qred

∆ |d+1

q′
0 · · · q′

d

= λ(∆)2

|Q∆|2
|Q∆|d+1

q0 · · · qd
= 1

gd−1
α0 · · ·αd

lcm(α0, . . . , αd)2 .

It will be convenient to assign unit fraction partitions directly to weight systems and
vice versa.

Definition 1.3.7. The index of a weight system Q = (q0, . . . , qd) is the positive integer

g(Q) := min ( k ∈ Z≥1; k|Q|/qi ∈ Z for all i = 0, . . . , d ) .

Remark 1.3.8. The index g(Q∆) of the weight system Q∆ of an IP simplex ∆ is always
a divisor of it’s Gorenstein index g(∆). They might coincide, however frequently g(Q∆)
is a true divisor of g(∆).

Example 1.3.9. We continue Example 1.3.4. The weight system of ∆ is Q∆ = (16, 12, 4).
It has index g(Q∆) = 3, which is a proper divisor of the Gorenstein index of ∆.

Proposition 1.3.10. Let Q = (q0, . . . , qd) a weight system of length d and let A =
(α0, . . . , αd) a unit fraction partition of g ∈ Z≥1 of length d + 1. Set

A(Q) :=
(︃

g|Q|
q0

, . . . ,
g|Q|
qd

)︃
, Q(A) :=

(︃
tA

α0
, . . . ,

tA

αd

)︃
.

Then A(Q) is a reduced unit fraction partition of g(Q) and Q(A) is a reduced weight
system of length d and index g(Q(A)) = g/λ(A). Moreover, we have

Q(A(Q)) = Qred, A(Q(A)) = Ared

and this correspondence respects well-formedness.

Example 1.3.11. We continue Example 1.3.9. We have the weight system and the
uf-partition of g(∆) = 6:

Q = Q∆ = (16, 12, 4), A = A(∆) = (12, 16, 48).

The weight system Q has index g(Q) = 3. Total weight, factor and reduction of A are
given by

tA = 48, λA = 2, Ared = (6, 8, 24).

With respect to Proposition 1.3.10, we obtain the unit fraction partition and the weight
system

A(Q) = (6, 8, 24) = Ared, Q(A) = (4, 3, 1) = Qred.

For the proof of Proposition 1.3.10 we need the following Lemmas.
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Lemma 1.3.12. For g, α1, . . . , αn ∈ Z set

G(g; α1, . . . , αn) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(α1 − g) −g . . . −g

−g (α2 − g) . . . ...
. . .

... . . . (αn−1 − g) −g

−g . . . −g (αn − g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then
det(G(g; α1, . . . , αn)) = α1 · · ·αn − g

n∑︂
i=1

∏︂
j ̸=i

αj .

Proof. We prove the Lemma by induction on n. The cases n = 1 and n = 2 are
verified by direct computation. Let n ≥ 3. Subtracting the second to last row of
G := G(g; α1, . . . , αn) from the last row, we obtain

det(G) = αn det(G′) + αn−1 det(G′′),

where G′ = G(g; α1, . . . , αn−1) and G′′ = G(g; α1, . . . , αn−2, 0). By the induction hypoth-
esis we have

det(G′) = α1 · · ·αn−1 − g
n−1∑︂
i=1

∏︂
j ̸=i

αj , det(G′′) = −gα1 · · ·αn−2.

Plugging these into the equation for det(G) yields the assertion.

Lemma 1.3.13. For any unit fraction partition (α1, . . . , αn) of g and any 1 ≤ k < n we
have

det(G(g; α1, . . . , α)) ≥ 1.

Proof. For any 1 ≤ k < n we have 1/α1 + · · · + 1/αk < 1/g. Multiplying both sides
by g α1 · · ·αk and subtracting the left hand side we obtain

0 < α1 · · ·αk − g
k∑︂

i=1

∏︂
j ̸=i

αj = det(G(g; α1, . . . , αk)).

Since the determinant of G(g; α1, . . . , αk) is an integer, it must be at least one.

Proof of Proposition 1.3.10. We show that A(Q) is a reduced unit fraction partition of
g(Q). As qi divides g(Q) |Q|, the tuple A(Q) consists of positive integers. Summing over
the reciprocals of A(Q) shows that it is a ufp of g(Q). Assume A(Q) is not reduced
and let A′ its reduction. Then A′ is a ufp of g′ for some g′ < g(Q). This means that
each qi divides g′|Q|, which contradicts the minimality of the index g(Q). Thus A(Q)
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1.4. Sharp bounds on unit fraction partitions

is reduced. The fact that Q(A) is a reduced weight system of index g/λ(A) follows
directly from the definition of tA. We prove the last assertion of Proposition 1.3.10. Let
Q = (q0, . . . , qd) a weight system of length d and index g and write A(Q) = (α0, . . . , αd).
To show that Q(A(Q)) = Qred holds we consider the matrix G = G(g; α0, . . . , αd) as
defined in Lemma 1.3.12. Both Q and Q(A(Q)) are contained in its kernel and the latter
weight system is reduced. So it suffices to show that G is of rank d. This follows from
Lemma 1.3.13, as the minor of G, obtained by deleting the last row and column, equals
det(G(g; α0, . . . , αd−1)). Now let A = (α0, . . . , αd) a ufp of g of length d + 1. Write
Q(A) = (q0, . . . , qd) and let A(Q) = (α′

0, . . . , α′
d). This is a ufp of g(Q). Note that each

qi divides g |Q| as well as g(Q)|Q|. The minimality of the index of Q implies that g(Q)
divides g. With λ := g/g(Q) we obtain

λα′
i = g

g(Q)
g(Q)|Q|

qi
=

g tA(Q)αi

g tA(Q)
= αi,

which yields A = λA(Q). As A(Q) is reduced, we obtain A(Q) = Ared. Now let
Q = (q0, . . . , qd) a reduced weight system of length d and write A(Q) = (α0, . . . , αd). We
have qi = tA(Q)/αi. The weight system Q is well-formed if and only if for all i = 0, . . . , d
we have ∏︂

j ̸=i

αj = tA(Q) gcd

⎛⎝ ∏︂
k ̸=i,j

αk; j ̸= i

⎞⎠ .

This in turn is equivalent to the well-formedness of A(Q).

1.4 Sharp bounds on unit fraction partitions

For a unit fraction partition A = (α1, . . . , αn) of length n we consider

Fk(A) := α1 · · ·αn

lcm(α1, . . . , αn)n−k
.

For k = n− 2, n− 1, n these are the right hand side expressions in the identities from
Proposition 1.3.3. We give sharp bounds on these expressions among all unit fraction
partitions of g and completely describe the unit fraction partitions attaining those bounds.

Definition 1.4.1. The g-Sylvester sequence Sg = (sg,1, sg,2, . . . ) and the truncated g-
Sylvester sequence Tg = (tg,1, tg,2, . . . ) for a positive integer g are given by

sg,1 := g + 1, sg,k+1 := sg,k(sg,k − 1) + 1, tg,k := sg,k − 1.

Theorem 1.4.2. Let g ≥ 1 and let n ≥ 3. Let A = (α1, . . . , αn) a unit fraction partition
of g with α1 ≤ · · · ≤ αn. For the value of Fk on A the following hold:

(i) Fn(A) ≤ t2
g,n/g and equality holds if and only if A = (sg,1, . . . , sg,n−1, tg,n).
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(ii) Assume k = n− 1. If (n, g) = (3, 1), then we have Fn−1(A) ≤ 9 and equality holds
if and only if A = (3, 3, 3). In all other cases we have

Fn−1(A) ≤
2 t2

g,n−1
g

.

Equality holds if and only if A is one of the following unit fraction partitions:

(6, 6, 6), (2, 6, 6, 6), (sg,1, . . . , sg,n−2, 2tg,n−1, 2tg,n−1).

(iii) Assume k = n − 2. If n = 4 and g ∈ {1, 2}, then we have Fn−2(A) ≤ 16g2 and
equality holds if and only if A = (4g, 4g, 4g, 4g). If (n, g) = (5, 1), then we have
Fn−2(A) ≤ 128 and equality holds if and only if A = (2, 8, 8, 8, 8). In all other
cases we have

Fn−2(A) ≤
3 t2

g,n−2
g

.

Equality holds if and only if A is one of the following unit fraction partitions:

(12, 12, 12, 12), (sg,1, . . . , sg,n−3, 3tg,n−2, 3tg,n−2, 3tg,n−2).

Remark 1.4.3. In the literature the sequence S1 = (s1,1, s1,2, . . . ) is known as Sylvester’s
sequence, see for instance [67]. Our naming for the sequences Sg and Tg is derived from
that. We list some properties of the sequences Sg and Tg that we will use frequently.

(i) For any n ≥ 1 we have

1
g

= 1
sg,1

+ · · ·+ 1
sg,n−1

+ 1
tg,n

.

(ii) For any n ≥ 1 we have
g

tg,n
= 1

sg,1
· · · 1

sg,n−1
.

(iii) For any g, n ≥ 1 we have sg,n+1 > sg,n and sg+1,n > sg,n.
(iv) For i ̸= j we have gcd(sg,i, sg,j) = 1.

The strategy for the proof of Theorem 1.4.2 is as follows: For given g and n we
define a certain compact subset An

g ⊆ Rn, which has the property that for any unit
fraction partition A = (α1, . . . , αn) of g with α1 ≤ · · · ≤ αn, the point (1/α1, . . . , 1/αn)
is contained in An

g . For k ∈ {n− 2, n− 1, n} we minimize the function fk(x) := x1 · · ·xk

on An
g and show that it attains its minimum precisely at the points corresponding to the

unit fraction partitions listed in Theorem 1.4.2. This strategy for minimizing functions
on unit fraction partitions was first used by Izhboldin and Kurliandchik in [54], see
also [4, 65] for generalizations. In [4] the authors call this type of optimization problems
Izhboldin-Kurliandchik problems. In the following we adopt their naming convention.

Definition 1.4.4. Let g, n ≥ 1. We denote by An
g ⊆ Rn the compact set of all

points (x1, . . . , xn) ∈ Rn that satisfy the following conditions:
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1.4. Sharp bounds on unit fraction partitions

(A1) x1 ≥ · · · ≥ xn ≥ 0.
(A2) x1 + · · ·+ xn = 1/g.
(A3) x1 · · ·xk ≤ g(xk+1 + · · ·+ xn) for all k = 1, . . . , n− 1.
For x ∈ Rn we denote by SUM(g) the equality x1 + · · ·+xn = 1/g, by ORD(k) we denote
the inequality xk ≥ xk+1 and by PS(g, k) the inequality x1 · · ·xk ≤ g(xk+1 + . . . + xn).
Thus the set An

g consists of the points (x1, . . . , xn) ∈ Rn
≥0 that satisfy the equality SUM(g)

and the inequalities ORD(k) and PS(g, k) for all k = 1, . . . , n− 1.

Lemma 1.4.5. Let g ≥ 1 and n ≥ 1. For any unit fraction partition A = (α1, . . . , αn)
of g with α1 ≤ · · · ≤ αn the point (1/α1, . . . , 1/αn) is contained in An

g .

Proof. The tuple (1/α1, . . . , 1/αn) fulfills conditions (A1) and (A2). For the third
condition let 1 ≤ k ≤ n− 1. Then we have

g

(︃ 1
αk+1

+ · · ·+ 1
αn

)︃
= 1− g

(︃ 1
α1

+ · · ·+ 1
αk

)︃
=

α1 · · ·αk − g
(︂∑︁k

j=1
∏︁

i ̸=j αi

)︂
α1 · · ·αk

.

The numerator on the right hand side is at least one by Lemma 1.3.13. This yields the
desired inequality.

In the following Proposition we gather important properties of the set An
g . It is a

generalization of [4, Lemma 4.1].

Proposition 1.4.6. Let g ≥ 1 and n ≥ 3. For any point x ∈ An
g the following hold:

(i) We have 1/g > x1 ≥ xn > 0.
(ii) The inequalities ORD(k) and PS(g, k) cannot simultaneously be fulfilled with equal-

ity.
(iii) If for some 1 ≤ k ≤ n−1 the inequality PS(g, i) is fulfilled with equality for all i ≤ k,

then xi = 1/sg,i holds for all i = 1, . . . , k.

Proof. We prove (i). Since the xi are all non-negative, the equality SUM(g) implies
that x1 ≤ 1/g holds. Assume xn = 0. Then by the inequality PS(g, n − 1) we
have x1 · · ·xn−1 = 0. Thus xi = 0 holds for some i = 1, . . . , n−1. The inequality ORD(j)
thus implies that xj = 0 holds for all j = i, . . . , n. We can repeat this argument to
obtain x1 = · · · = xn = 0, which contradicts the equality SUM(g). Thus xn > 0 holds.
We prove (ii). Assume that for some k the inequalities ORD(k) and PS(g, k) hold
simultaneously with equality. Using xk+1 = xk, we may then write

0 = g(xk+1 + · · ·+ xn)− x1 · · ·xk = g(xk+2 + · · ·+ xn) + xk(g − x1 · · ·xk−1).

The first summand on the right hand side is non-negative, the second summand is positive.
This means that they cannot add to zero, a contradiction. Thus ORD(k) and PS(g, k)
cannot simultaneously be fulfilled with equality. We prove (iii) by induction on i. In
case i = 1, if PS(g, 1) holds with equality, we get

x1 = g(x2 + · · ·+ xn) = g

(︃1
g
− x1

)︃
.
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Solving this equation for x1 yields x1 = 1/sg,1. Now assume i > 1 and xj = 1/sg,j holds
for all j ≤ i. If PS(g, i) holds with equality, we obtain

g

tg,i
xi = x1 · · ·xi = g(xi+1 + · · ·+ xn) = g

(︃1
g
− x1 − · · · − xi

)︃
= g

(︄
1

tg,i
− xi

)︄
.

Solving this equation for xi yields xi = 1/sg,i. This completes the proof.

Definition 1.4.7. Let g ≥ 1 and n ≥ 3. For k = 1, . . . , n we define a function fk by

fk : An
g → R, x ↦→ x1 · · ·xk.

Moreover, for g, n and k as above, we set

y(g, n, k) :=
(︄

1
sg,1

, . . . ,
1

sg,k−1
,

1
(n− k + 1)tg,k

, . . . ,
1

(n− k + 1)tg,k

)︄
.

Note that the point y(g, n, k) belongs to An
g .

Proposition 1.4.8. Let g ≥ 1, n ≥ 3 and k ∈ {1, . . . , n}. Let y = (y1, . . . , yn) ∈ An
g

such that fk attains its minimum at y. Then y = y(g, n, i0) holds for some i0 ≤ k.

The major part of the proof of Proposition 1.4.8 is governed by the following Lemma.

Lemma 1.4.9. Let n ≥ 3 and k ∈ {1, . . . , n}. Let y = (y1, . . . , yn) ∈ An
g such that fk

attains its minimum at y. Denote by i0 the minimal index such that yi0 = yn holds. Then
the following hold:

(i) i0 ≤ k.
(ii) The inequality ORD(i) is strict for all 1 ≤ i ≤ i0 − 1.
(iii) The inequality PS(g, i) holds with equality for all 1 ≤ i ≤ i0 − 1.

Proof. The strategy for proving (i)-(iii) is the same in each of the three cases. We will
assume that the assertion is false and this will allow us to construct a point y′ ∈ An

g

with fk(y′) < fk(y), which contradicts the choice of y. Thus the assertion must be true.
We prove (i). For k = n there is nothing to prove. Let k < n. Assume that i0 > k holds.
Let j0 maximal with yk = yj0 . By assumption j0 < i0 holds. The entries of y satisfy

y1 ≥ . . . ≥ yk = . . . = yj0 > yj0+1 ≥ . . . ≥ yi0−1 > yi0 = . . . = yn.

We first consider the case i0 = n. In that case we have yn−1 > yn. Let

0 < ϵ < min
(︃

yj0+1 − yj0

2 ,
yn−1 − yn

2(j0 − k + 1)

)︃
,

y′ = (y1, . . . , yk−1, yk − ϵ, . . . , yj0 − ϵ, yj0+1, . . . , yn−1, yn + ϵ̃),
where ϵ̃ = (j0 − k + 1) ϵ. We show that y′ lies in An

g . By the choice of ϵ and ϵ̃, the
equality SUM(g) holds for y′ and the inequality ORD(i) holds for y′ for all i. Moreover,
for all i ≤ n− 1 we have

y′
1 · · · y′

i ≤ y1 · · · yi ≤ g(yi+1 + · · ·+ yn) ≤ g(y′
i+1 + · · ·+ y′

n),
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thus PS(g, i) holds as well. This shows that y′ lies in An
g . Evaluating fk on y′ we obtain

fk(y′) = y′
1 · · · y′

k = y1 · · · yk−1 · (yk − ϵ) < fk(y),

which contradicts the choice of y. Now assume that i0 < n holds. Note that since ORD(i)
holds with equality for all i ≥ i0, by Proposition 1.4.6 (ii) the inequality PS(g, i) is strict
for y. Thus for each i ≥ i0 we can find δi > 0, such that

y1 · · · yi0−1 · (yi0 + δi) · · · (yi + δi) < g(yi+1 + · · ·+ yn)− g(n− i)δi.

We denote by δ the minimum of all the δi. Let

0 < ϵ < min
(︃

yj0+1 − yj0

2 ,
yi0−1 − yi0

2 ,
n− i0 + 1
j0 − k + 1δ

)︃
,

y′ = (y1, . . . , yk−1, yk − ϵ, . . . , yj0 − ϵ, yj0+1, . . . , yi0−1, yi0 + ϵ̃, . . . , yn + ϵ̃),

where ϵ̃ = j0−k+1
n−i0+1 ϵ. Again, ϵ and ϵ̃ are chosen such that y′ satisfies equality SUM(g) and

the inequality ORD(i) for all i. We show that PS(g, i) holds for y′. This is clear for
i < i0. For i ≥ i0 note that ϵ̃ < δ ≤ δi holds. Thus we have

y′
1 · · · y′

i < y1 · · · yi0−1 · (yi0 + δi) · · · (yi + δi) < g(y′
i+1 + · · ·+ y′

n).

This shows that y′ belongs to An
g . Evaluating fk on y′ we again obtain the inequality

fk(y′) < fk(y), which contradicts the choice of y. Thus i0 ≤ k holds, which proves (i).
We prove (ii). Note that by definition of i0 we have yi0−1 < yi0 , so for i0 ≤ 2 there is

nothing to show. Assume i0 ≥ 3 holds. This also means we have n ≥ k ≥ 3. We show
that ORD(i) is strict for all i ≤ i0 − 2. Assume on the contrary that yi = yi+1 holds for
some i ≤ i0 − 2. Let j0 ≤ i maximal with yj0 = yi and j1 ≥ i minimal with yi = yj1 . We
have 1 ≤ j0 ≤ i < j1 ≤ i0 − 1. For the entries of y we have:

yj0−1 > yj0 = . . . = yi = . . . = yj1 > yj1+1 ≥ . . . ≥ yi0−1 > yi0 .

By Proposition 1.4.6 The inequality PS(g, l) is strict for all j0 ≤ l < j1. There is
thus δ > 0 such that the following inequality holds for all j0 ≤ l < j1:

y1 · · · yj0−1 · (yj0 + δ) · yj0+1 · · · yl < g(yl+1 + · · ·+ yn − δ)

With this value δ we may choose an ϵ > 0 as follows and define a point y′ depending on
this ϵ:

0 < ϵ < min
(︃

yj0−1 − yj0

2 ,
yj1 − yj1−1

2 , δ

)︃
,

y′ = (y1, . . . , yj0 + ϵ, . . . , yj1 − ϵ, . . . yn) .

We show that y′ lies in An
g . Clearly y′ satisfies SUM(g) and ORD(l) for all l. By the

choice of ϵ, the inequality PS(g, l) holds for y′ for l < j1. For l ≥ j1 note that

y′
j0 · y

′
j1 = (yj0 + ϵ)(yj1 − ϵ) = yj0yj1 − ϵ2 < yj0yj1 .
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Thus in this case PS(g, l) holds for y′ as well. This shows that y′ belongs to An
g . As

before, we have fk(y′) < fk(y), which contradicts the choice of y. Thus ORD(i) is strict,
which proves (ii).

We prove (iii). First we assume there is i ≤ i0 − 2 such that PS(g, i) is strict. Then
there is δ > 0 such that the following inequality holds:

y1 · · · yi−1 · (yi + δ) < g(yi+1 + · · ·+ yn − δ).

With this value δ we may choose an ϵ > 0 as follows and define a point y′ depending on
this ϵ:

0 < ϵ < min
(︃

yi−1 − yi

2 ,
yi − yi+1

2 , δ

)︃
,

y′ = (y1, . . . , yi−1, yi + ϵ, yi − ϵ, yi+1, . . . , yn).

With the same arguments as in (i) and (ii) we see that y′ lies in An
g and again fk(y′) < fk(y)

holds, contradicting the choice of y. Thus PS(g, i) holds with equality. Now assume
that PS(g, i0 − 1) is strict. For t ∈ R consider the points

ỹ(t) := (y1, . . . , yi0−2, yi0−1 + t, yi0 − t̃, . . . , yn − t̃),

where t̃ = t
n−i0+1 . Note that ỹ(0) = y holds. We define a function f : R→ R by

f(t) := fk(ỹ(t)) = y1 · · · yi0−2(yi0−1 + t)(yi0 − t̃)k−i0+1.

The derivative of f is given by

f ′(t) = y1 · · · yi0−2(yi0−1 − t̃)k−i0

[︃(︃
yi0 −

k − i0 + 1
n− i0 + 1yi0−1

)︃
− (k − i0 + 2)t̃

]︃
.

Note that for t close to zero, the factor before the square brackets is positive. The
behaviour of f close to t = 0 is thus governed by the term

δ = yi0 −
k − i0 + 1
n− i0 + 1yi0−1.

If δ is negative, then f is monotone decreasing in a neighborhood of t = 0. We can
thus find t > 0 with ỹ(t) ∈ An

g such that f(t) < f(0) holds. On the other hand, if δ is
positive, then f is monotone decreasing in a neighborhood of t = 0 and we can find t < 0
with ỹ(t) ∈ An

g and f(t) < f(0). If δ = 0, then f has a local maximum at t = 0. There
is thus a neighborhood of t = 0 with ỹ(t) ∈ An

g and we have f(t) < f(0) for all t ̸= 0
in that neighborhood. In all cases there is a point ỹ(t) ∈ An

g with fk(ỹ(t)) < fk(y). A
contradiction to the choice of y, thus PS(g, i0 − 1) holds with equality for y.

Proof of Proposition 1.4.8. Let y = (y1, . . . , yn) ∈ An
g such that fk attains its minimum

at y. Let i0 minimal such that yi0 = yn holds. By Lemma 1.4.9 (i) we have i0 ≤ k. We
show that y = y(g, n, i0) holds. By Lemma 1.4.9 (ii) the inequality PS(g, i) holds with
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equality for all i = 1 . . . i0 − 1. Proposition 1.4.6 (iii) then tells us that yi = 1/sg,i holds.
Now using yi0 = · · · = yn and the fact that PS(g, i0 − 1) holds with equality, we obtain

g

tg,i0
= 1

sg,1
· · · 1

sg,i0−1
= g(yi0 + · · ·+ yn) = g(n− i0 + 1)yi0 .

This shows that y = y(g, n, i0) holds, which completes the proof.

Proposition 1.4.10. Let g ≥ 1, n ≥ 3 and let k ∈ {1, . . . , n}. Let y ∈ An
g such that fk

attains its minimum at y.
(i) Assume k = n. Then we have fn(y) = g/t2

g,n and y = y(g, n, n) holds.
(ii) Assume k = n− 1. If (n, g) = (3, 1), then we have f2(y) = 1/9 and y is the point

y(1, 3, 1). In all other cases we have

fn−1(y) = g

2t2
g,n−1

and the point y is one of the following:

y(2, 3, 1), y(1, 4, 2), y(g, n, n− 1).

(iii) Assume k = n − 2. If n = 4 and g ∈ {1, 2}, then we have f2(y) = 1/(16g2) and
y = y(g, 4, 1) holds. If (n, g) = (5, 1), then we have f3(y) = 1/128 and y = y(1, 5, 2)
holds. In all other cases we have

fn−2(y) = g

3t2
g,n−2

and either y = y(3, 4, 1) or y = y(g, n, n− 2).

For the proof of Proposition 1.4.10 we need the following Lemma.

Lemma 1.4.11. Let g ≥ 1 and n ≥ 3. Then the following hold:
(i) For all 1 ≤ r ≤ n we have

rrtr+1
g,n−r+1 ≤ t2

g,n.

Equality holds if and only if r = 1.
(ii) Assume (n, g) ̸= (3, 1). Then for all 1 ≤ r ≤ n− 1 we have

(r + 1)rtr+1
g,n−r ≤ 2t2

g,n−1.

Equality holds if and only if r = 1 or (g, r, n) equals (1, 2, 4) or (2, 2, 3).
(iii) Assume (n, g) ̸∈ {(4, 1), (4, 2), (5, 1)}. Then for all 1 ≤ r ≤ n− 2 we have

(r + 2)rtr+1
g,n−r−1 ≤ 3t2

g,n−2.

Equality holds if and only if r = 1 or (g, r, n) = (3, 2, 4).
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Proof. We prove the assertions (i)–(iii) by induction on r and n. Note that for r = 1 the
inequalities in (i)–(iii) even hold with equality for any n ≥ 3. We may thus assume r ≥ 2.
Moreover, we will use the following, which can be verified by direct computation:

(a) (r + 1)/r ≤ sg,n holds for all values of g, n and r.
(b) If n ≥ 3, then (r + 1)2/r ≤ sg,n holds for all g and all 1 ≤ r ≤ n.
(c) If n ≥ 4, or n ≥ 3 and g ≥ 2, then (r + 1)2/r ≤ sg,n−1 holds for all 1 ≤ r ≤ n.
(d) If n ≥ 6, or n ≥ 4 and g ≥ 2, then (r + 1)2/r ≤ sg,n−2 holds for all 1 ≤ r ≤ n.

We prove (i). The cases (r, n) = (2, 3) and (r, n) = (3, 3) are verified by direct computation.
In these two cases, the inequality is strict. Assume the assertion is true for a fixed
pair (r, n). Then we have:

(r + 1)r+1t
(r+1)+1
g,(n+1)−(r+1)+1 = rrtr+1

g,n−r+1(r + 1)
(︃

r + 1
r

)︃r

tg,n−r+1

≤ t2
g,n(r + 1)

(︃
r + 1

r

)︃r

tg,n−r+1

≤ t2
g,nsg,nsg,n−1 · · · sg,n−r+1tg,n−r+1

= t2
g,ntg,n+1

< t2
g,n+1.

In the second step we used the induction hypothesis for the pair (r, n) and in the third
step we used (a) and (b). Thus the inequality (i) holds for the pair (r + 1, n + 1) and it
is strict in this case.

We prove (ii). The cases (g, r, n) = (1, 2, 4) and (g, r, n) = (1, 3, 4) as well as the
cases (g, r, n) = (g, 2, 3) for all g ≥ 2 are verified by direct computation. Here (ii) holds
with equality for (g, r, n) = (1, 2, 4) and for (g, r, n) = (2, 2, 3) and is strict otherwise.
Assume the assertion is true for a fixed pair (r, n). Then we have:

((r + 1) + 1)r+1t
(r+1)+1
g,n−r = (r + 1)rtr+1

g,n−r(r + 2)
(︃

r + 2
r + 1

)︃r

tg,(n+1)−(r+1)

≤ 2t2
g,n−1

(r + 2)2

r + 1

(︃
r + 2
r + 1

)︃r−1
tg,n−r

≤ 2t2
g,n−1sg,n−1sg,n−2 · · · sg,n−rtg,n−r

= 2t2
g,n−1tg,n

< 2t2
g,n

= 2t2
g,(n−1)+1.

In the second step we used the induction hypothesis for the pair (r, n) and in the third
step we used (a) and (c). Thus the inequality (ii) holds for the pair (r + 1, n + 1) and it
is strict in this case.

We prove (iii). For n = 3 there is nothing to prove. The cases (g, r, n) = (g, 2, 4)
for g ≥ 3, as well as (g, r, n) = (2, r, 5) and (g, r, n) = (1, r, 6) for 2 ≤ r ≤ n − 2 are
verified by direct computation. Here (iii) holds with equality for (g, r, n) = (3, 2, 4) and
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is strict otherwise. Assume the assertion is true for a fixed pair (r, n). We may assume
that g ≥ 2 and n ≥ 4, or g = 1 and n ≥ 6. Then we have:

((r + 1) + 2)r+1t
(r+1)+1
g,(n+1)−(r+1)−1 = (r + 2)rtr+1

g,n−r−1(r + 3)
(︃

r + 3
r + 2

)︃r

tg,n−r−1

≤ 3t2
g,n−2

(r + 3)2

r + 2

(︃
r + 3
r + 2

)︃r−1
tg,n−r−1

≤ 3t2
g,n−2sg,n−2sg,n−3 · · · sg,n−r−1tg,n−r−1

= 3t2
g,n−2tg,n−1

< 3t2
g,n−1

= 3t2
g,(n+1)−2.

In the second step we used the induction hypothesis for the pair (r, n) and in the third
step we used (a) and (d), thus (iii) holds for the pair (r + 1, n + 1) and it is strict in this
case.

Proof of Proposition 1.4.10. We compare the values of the function fk on the points
y(g, n, k) and y(g, n, l) for 1 ≤ l ≤ k. On y(g, n, l), the value of fk is given by

fk(y(g, n, l)) = g

(n− l + 1)k−l+1tk−l+2
g,l

.

We prove (i). Let 1 ≤ l ≤ n and set r := n− l + 1. Then we have

fn(y(g, n, l))
fn(y(g, n, n)) = fn(y(g, n, n− r + 1))

fn(y(g, n, n)) =
t2
g,n

rrtr+1
g,n−r+1

.

By Lemma 1.4.11 (i) this ratio is at least one for all 1 ≤ r ≤ n− 1 and equality holds if
and only if r = 1, ie. if and only if l = n. This proves (i).

We prove (ii). Let k = n− 1. Let 1 ≤ l ≤ n− 1 and set r := n− l. Then we have

fn−1(y(g, n, l))
fn−1(y(g, n, n− 1)) = fn−1(y(g, n, n− r))

fn−1(y(g, n, n− 1)) =
2t2

g,n−1

(r + 1)rtr+1
g,n−r

.

Assume (n, g) ̸= (3, 1). Then this ratio is at least one for all 1 ≤ r ≤ n − 1 by
Lemma 1.4.11 (ii). Moreover it is equal to one if and only if r = 1 or (g, r, n) = (1, 2, 4)
or (g, r, n) = (2, 2, 3). This means that fn−1 attains its minimum on y(g, n, l) if and only
if (g, l, n) = (1, 2, 4) or (g, l, n) = (2, 1, 3) or l = n− 1. In the case (n, g) = (3, 1) we have

f2(y(1, 3, 1)) > f2(y(1, 3, 2)).

Thus in this case f2 attains its minimum at y = y(1, 3, 1) and we have f2(y) = 1/9.
We prove (iii). Let k = n− 2. Let 1 ≤ l ≤ n− 2 and set r := n− l− 1. Then we have

fn−2(y(g, n, l))
fn−2(y(g, n, n− 2)) = fn−2(y(g, n, n− r − 1))

fn−2(y(g, n, n− 2)) =
3t2

g,n−2

(r + 2)rtr+1
g,n−r−1

.
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Assume (n, g) ̸∈ {(4, 1), (4, 2), (5, 1)}. Then by Lemma 1.4.11 (iii) this ratio is at least
one for all 1 ≤ r ≤ n − 2 and it is equal to one if and only if r = 1 or (g, r, n) equals
(3, 2, 4), ie. if and only if l = n− 2 or (g, l, n) = (3, 1, 4) holds. For the three cases that
were excluded, plugging in the actual values, we obtain

f2(y(1, 4, 1)) < f2(y(1, 4, 2)),
f2(y(2, 4, 1)) < f2(y(2, 4, 2)),
f3(y(1, 5, 2)) < f3(y(1, 5, 1)) < f3(y(1, 5, 3)).

This completes the proof of Proposition 1.4.10.

Proof of Theorem 1.4.2. Let A = (α1, . . . , αn) a unit fraction partition of g and as-
sume α1 ≤ · · · ≤ αn holds. Let y(A) := (1/α1, . . . , 1/αn). This point belongs to An

g by
Lemma 1.4.5. For 1 ≤ k ≤ n we have

Fk(A) = α1 · · ·αn

lcm(α1, . . . , αn)n−k
≤ α1 · · ·αk = f−1

k (y(A)).

We prove (i). Using Proposition 1.4.10 (i) for the point y(A) we obtain

Fn(A) ≤ 1
fn(y(A)) ≤

t2
g,n

g
.

Equality holds if and only if y(A) = y(g, n, n), ie. if and only if A is the unit fraction
partition (sg,1, . . . , sg,n−1, tg,n). We prove (ii). We use Proposition 1.4.10 (ii) for the
point y(A). If (n, g) = (3, 1) holds, then we have

F2(A) ≤ 1
f2(y(A)) ≤ 9

and equality holds if and only if y(A) = y(1, 3, 1), ie. if and only if A = (3, 3, 3).
If (n, g) ̸= (3, 1), then we have

Fn−1(A) ≤ 1
fn−1(y(A)) ≤

2t2
g,n−1
g

.

Checking the points where fn−1 attains its minimium, we see that equality holds if and
only if A = (6, 6, 6) or A = (2, 6, 6, 6) or A = (sg,1, . . . , sg,n−2, 2tg,n−1, 2tg,n−1). We prove
(iii). We use Proposition 1.4.10 (iii) for the point y(A) and distinguish three cases:

(a) If n = 4 and g ∈ {1, 2}, then we have

F2(A) ≤ 1
f2(y(A)) ≤ 16g2

and equality holds if and only if y(A) = y(g, 4, 1), ie. A = (4g, 4g, 4g, 4g).
(b) If (n, g) = (5, 1), then we have

F3(A) ≤ 1
f3(y(A)) ≤ 128

and equality holds if and only if y(A) = y(1, 5, 2), ie. A = (2, 8, 8, 8, 8).
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(c) If (n, g) ̸∈ {(4, 1), (4, 2), (5, 1)}, then

Fn−2(A) ≤ 1
fn−2(y(A)) ≤

3t2
g,n−2
g

.

Equality holds if and only if y(A) = y(3, 4, 1) or y(A) = y(g, n, n − 2), ie. if and
only if A is one of

(12, 12, 12, 12), (sg,1, . . . , sg,n−3, 3tg,n−2, 3tg,n−2, 3tg,n−2).

1.5 Proofs of Theorems 1.1.1 – 1.1.4
Proof of Theorem 1.1.1. Let Z a d-dimensional fake weighted projective space of Goren-
stein index g. Let ∆ ⊆ NQ a d-dimensional Fano simplex with Z(∆) ∼= Z. Then ∆
has Gorenstein index g. Let A := A(∆) = (α0, . . . , αd) the unit fraction partition of g
associated to ∆. We may assume that A is ordered non-decreasingly. By Lemma 1.2.6
and Proposition 1.3.3 we have

(−KZ)d = Vol(∆∗) ≤ λ(∆)Vol(∆∗) = 1
gd

α0 · · ·αd

lcm(α0, . . . , αd) .

For d = 1 there is only one fake weighted projective space, namely P1, which has
anticanonical degree −KP1 = 2. Let d ≥ 2. In case g = 1 and d = 2 the right hand side
of the inequality is bounded from above by 9 and P2 is the only Gorenstein fake weighted
projective plane whose degree attains that value, see [65, Ex. 4.7]. If (d, g) ̸= (2, 1), then
Theorem 1.4.2 (ii) provides the upper bound

(−KZ)d ≤ 1
gd

α0 · · ·αd

lcm(α0, . . . , αd) ≤
2t2

g,d

gd+1 .

Equality in the first case holds if and only if Z is a weighted projective space, see
Corollary 1.2.14. By Theorem 1.4.2 (ii) equality in the second case holds if and only if
one of the following holds:

(i) (d, g) = (2, 2) and A = (6, 6, 6).
(ii) (d, g) = (3, 1) and A = (2, 6, 6, 6).
(iii) A = (sg,1, . . . , sg,d−1, 2tg,d, 2tg,d).

Note that the unit fraction partition in (i) is not reduced. In particular, there is no
weighted projective plane Z(∆) of Gorenstein index 2 with A(∆) = (6, 6, 6). The unit
fraction partitions in (ii) and (iii) are reduced and well-formed. By Corollary 1.2.13 and
Proposition 1.3.10 the unit fraction partition A = (2, 6, 6, 6) corresponds to the three-
dimensional Gorenstein weighted projective space X = P(3, 1, 1, 1) and the unit fraction
partition A = (sg,1, . . . , sg,d−1, 2tg,d, 2tg,d) corresponds to the d-dimensional weighted
projective space Z = P(Qd,g).
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The following Lemmas will be used in the proof of Theorem 1.1.2.

Lemma 1.5.1. For any d-dimensional Fano simplex ∆ of Gorenstein index g the
product gd−1λ(∆∗) is an integer.

Proof. Let ∆ a d-dimensional Fano simplex of Gorenstein index g. For the weight
system of its dual we write Q∆∗ = (q∗

0, . . . , q∗
d). We show that gd−1q∗

i is an integer for
all i = 0, . . . , d. Denote by v0, . . . , vd the vertices of ∆ and by u0, . . . , ud the vertices
of ∆∗, ordered in such a way that ⟨ui, vj⟩ = −1 holds whenever i ̸= j. We have

q∗
i = |det(u0, . . . , ûi, . . . , ud)|.

Let i ∈ {0, . . . , d} and extend (vi) to a basis (vi = b1, b2, . . . , bd) of Zd. Denote by
C = (c1, . . . , cd) the dual basis. For j ̸= i we write uj as a linear combination of the basis
C with coefficients µj1, . . . , µjd ∈ 1

gZ. We have

µj1 =
d∑︂

k=1
µjk⟨ck, b1⟩ = ⟨uj , vi⟩ = −1.

Using this presentation of uj with respect to the basis C = (c1, . . . , cd), we obtain for q∗
i :

q∗
i = |det(u0, . . . , ûi, . . . , ud)| = |det

⎡⎢⎢⎢⎢⎣
−1 . . . −1
µ02 . . . µd2

...
...

µ0d . . . µdd

⎤⎥⎥⎥⎥⎦ | = K

gd−1

for some K ∈ Z>0. Thus gd−1Q(∆∗) is an integral weight system, which shows
that gd−1λ(∆∗) is an integer.

For a simplex ∆ ∈ Qd we write ∆ = ∆(P ) with the d× (d + 1) matrix P having the
vertices of ∆ as its columns.

Lemma 1.5.2. Let ∆ a Fano simplex of dimension d ≥ 2 and Gorenstein index g. Let
A(∆) = (α0, . . . , αd) the associated unit fraction partition. Write ∆ = ∆(P ), where

P :=

⎡⎢⎢⎢⎢⎣
1 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦
is in Hermite normal form. Then the following hold:

(i) akk divides αk−1 for all k = 2, . . . , d.
(ii) a22 divides α0.
(iii) If gcd(αi, αk−1) = 1 holds for all i = 0, . . . , k − 2, then we have akk = 1.
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Proof. For item (i) we refer to the proof of Proposition 1.6.2. We prove (ii). Denote the
columns of P by v0, . . . , vd. For the first and the last Gorenstein form of ∆ we have

u0 =
(︃

α0
g
− 1,

a12 − 1
a22

− a12α0
a22g

, u03, . . . , u0d

)︃
∈ 1

g
Z,

ud =
(︃
−1,

a12 − 1
a22

, ud3, . . . , udd

)︃
∈ 1

g
Z.

Taking their difference, we see that a12α0/a22 must be an integer. Since a12 and a22 are
coprime, this means that a22 divides α0. We prove (iii). Assume that gcd(α0, . . . , αk) = 1
holds. We show by induction on l that all = 1 holds for all l ≤ k. For l = 1 there is
nothing to prove. Let l = 2. By item (i), a22 divides α1 and by item (ii), a22 divides
α0. As they are coprime, we obtain a22 = 1. Now assume l > 2 and aii = 1 for all i < l.
Then the ith Gorenstein form for i < l and the last Gorenstein form of ∆ are given by

ui =
(︃
−1, . . . ,

αi−1
g
− 1, . . . ,−1, uil, . . . , uid

)︃
∈ 1

g
Z,

ud = (−1, . . . ,−1, udl, . . . , udd) ∈ 1
g
Z,

where the entry αi−1/g− 1 of ui is at the ith position. Evaluating their difference on the
vector vl−1 = (a1l, . . . , all, 0, . . . , 0) shows that all divides αi−1ail. Since all divides αk−1
by item (i), it is coprime to αi−1. Thus all divides ail. This is only possible if ail = 0.
Now, the column vl−1 is a primitive point in Zd. This yields all = 1.

Proposition 1.5.3. Let ∆ a Fano triangle of Gorenstein index g. If Qred
∆ = (1, 1, 1)

holds then g is odd.

Proof. Let ∆ a Fano triangle with even Gorenstein index g and assume that Qred
∆ = (1, 1, 1)

holds. The unit fraction partition of g associated with ∆ is

A(∆) = (α0, α1, α2) = (3g, 3g, 3g).

Let P ∈ Mat(2, 3;Z) such that ∆(P ) ∼= ∆ holds. We may write

P =
[︄

1 a −(a + 1)
0 b −b

]︄

for some non-negative a, b ∈ Z. Note that for the columns of P to all be primitive, b
must be odd. The Gorenstein forms u0, u1, u2 of ∆ are given by

u0 =
(︃

2,−2a + 1
b

)︃
, u1 =

(︃
−1,

a + 2
b

)︃
, u2 =

(︃
−1,

a− 1
b

)︃
.

Thus the local Gorenstein indices g0, g1, g2 of ∆ all divide b. In particular, the Gorenstein
index g = lcm(g0, g1, g2) divides b. Since g is even, this contradicts the fact that b is odd.
Thus Qred

∆ cannot be equal to (1, 1, 1).
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Proof of Theorem 1.1.2. Let ∆ a d-dimensional IP lattice simplex of Gorenstein in-
dex g and associated unit fraction partition A(∆) = (α0, . . . , αd). We may assume
that α0 ≤ . . . ≤ αd holds. By Lemma 1.5.1, the product gd−1λ(∆∗) is an integer.
In particular gd−1λ(∆∗) ≥ 1 holds. With Proposition 1.3.3 (ii) we obtain the following
volume bound for ∆:

Vol(∆) ≤ gd−1λ(∆∗)Vol(∆) = 1
g

α0 · · ·αd

lcm(α0, . . . , αd) . (1.5.3.1)

Equality holds if and only if λ(∆∗) = 1/gd−1, which by Proposition 1.3.3 (iv) is equivalent
to

λ(∆) = α0 · · ·αd

lcm(α0, . . . , αd)2 .

We use Theorem 1.4.2 (ii) to bound the right hand side of Equation 1.5.3.1 from above.
In case (d, g) = (2, 1) we have

Vol(∆) ≤ 1
g

α0 · · ·αd

lcm(α0, . . . , αd) = α0 · · ·αd

lcm(α0, . . . , αd) ≤ 9.

If equality holds, then we have A(∆) = (3, 3, 3), ie. Qred
∆ = (1, 1, 1). Thus ∆ is isomorphic

to H∆(1, 1, 1) for some 2× 2 integer matrix H with det(H) = λ(∆) = 3. We may assume
that H is in Hermite normal form. Thus we have ∆ ∼= ∆(P ) with

P =
[︄

1 a −(a + 1)
0 3 −3

]︄
,

for a ∈ {1, 2}. The two choices of a lead to isomorphic simplices. We may choose a = 1,
which yields

P =
[︄

1 1 −2
0 3 −3

]︄
.

Now assume (d, g) ̸= (2, 1) holds. Then by Theorem 1.4.2 (ii) we have

Vol(∆) ≤ 1
g

α0 · · ·αd

lcm(α0, . . . , αd) ≤
2t2

g,d

g2 .

If equality holds, then we have A(∆) = A, where A is one of the following:

A = (6, 6, 6), A = (2, 6, 6, 6), A = (sg,1, . . . , sg,d−1, 2tg,d, 2tg,d).

Note that by Proposition 1.5.3 there is no Fano simplex ∆ with associated unit fraction
partition A(∆) = (6, 6, 6). The other two cases give the following reduced weight systems

Q = (3, 1, 1, 1), Q =
(︄

2tg,d

sg,1
, . . . ,

2tg,d

sg,d−1
, 1, 1

)︄
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and ∆ is isomorphic to H∆(Q), where Q is one of the reduced weight systems above
and H is a square integer matrix in Hermite normal form with det(H) = λ(∆). We first
consider the case

A(∆) = (2, 6, 6, 6), g(∆) = 1, Qred
∆ = (3, 1, 1, 1), λ(∆) = 12.

We consider the diagonal entries (a11, a22, a33). Since ∆ has primitive vertices, we
have a11 = 1. Moreover, Propositions 1.6.1 and 1.6.2 tell us that a22 and a33 are both
divisors of 6. As we have

a22 · a33 = det(H) = λ(∆) = 12,

this leaves for the diagonal of H only the two possibilities (a11, a22, a33) = (1, 2, 6)
and (a11, a22, a33) = (1, 6, 2). The second case can be transformed into the first by
switching the second and third column of H and bringing it in Hermite normal form
again. Thus there are 0 ≤ a, b < 5 such that ∆ ∼= ∆(P ), where

P =

⎡⎢⎣ 1 1 a −(4 + a)
0 2 b −(2 + b)
0 0 6 −6

⎤⎥⎦ .

The Gorenstein forms of ∆ are then given by

u0 =
(︃

1,−1,
b− a− 1

6

)︃
, u1 =

(︃
−1, 3,

a− 3b− 1
6

)︃
,

u2 =
(︃
−1, 0,

5 + a

6

)︃
, u3 =

(︃
−1, 0,

a− 1
6

)︃
.

Since ∆ is of Gorenstein index 1, all its Gorenstein forms are integral. The last entry of u3
thus dictates a = 1. Plugging this into P , we obtain u1 = (−1, 3, b/2). We obtain b = 2
and P is the first matrix from Theorem 1.1.2 (ii). Now consider the case

A(∆) = (sg,1, . . . , sg,d−1, 2tg,d, 2tg,d), g(∆) = g,

Qred
∆ =

(︄
2tg,d

sg,1
, . . . ,

2tg,d

sg,d−1
, 1, 1

)︄
, λ(∆) = tg,d

g
.

We have ∆ ∼= H ·∆(Qred
∆ ) = ∆(P ), where the matrices H and P are given by

H =

⎡⎢⎢⎢⎢⎣
1 a12 · · · a1d

0 a22 · · · a2d
... . . . . . . ...
0 · · · 0 add

⎤⎥⎥⎥⎥⎦ , P =

⎡⎢⎢⎢⎢⎣
1 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦ .

The entries b1, . . . , bd in the last column of P can be expressed via the aij by solving the
linear system P ·Qred

∆ = 0. The determinant of H satisfies

det(H) = λ(∆) = tg,d

g
= sg,1 · · · sg,d−1.
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We first consider the case d = 2. Then a22 = sg,1 = g + 1 holds. The last Gorenstein
form of ∆ reads

u2 =
(︃
−1,

a12 − 1
g + 1

)︃
and we have 0 ≤ a12 < g + 1. The entries of u2 are in 1

gZ. Thus a12 − 1 is a multiple
of g + 1. This is only possible for a12 = 1, which yields

P =
[︄

1 1 −(2g + 1)
0 g + 1 −(g + 1)

]︄
=

⎡⎣ 1 (sg,1−g)
sg,1

tg,2
g − (sg,1+g)

sg,1

tg,2
g

0 tg,2
g − tg,2

g

⎤⎦ .

Now assume d > 2. Note that the entries α0, . . . , αd−2 of the ufp A(∆) are pairwise
coprime. By Lemma 1.5.2 (iii) we have akk = 1 for all k = 2, . . . , d − 1. Moreover we
obtain add = det(H) = sg,1 · · · sg,d−1. We now show that akd = (sg,k−g)

sg,k

tg,d

g holds for
all 1 ≤ k ≤ d− 1. We set m := a1d + · · ·+ a(d−1)d − 1. The Gorenstein forms of ∆ are
given by

uk−1 =
(︃
−1, . . . ,

sg,k

g
− 1, . . . ,−1,

m

add
− sg,k akd

g add

)︃
∈ 1

g
Z,

ud =
(︃
−1, . . . ,−1,

m

add

)︃
∈ 1

g
Z,

where k = 1, . . . , d and the entry sg,k/g − 1 of uk−1 is at the kth position. Note that add

is coprime to g. The last entry of ud thus dictates that add divides m. Moreover, by the
last entry of uk−1, the integer akd is a multiple of sg,1 · · · ŝg,k · · · sg,d−1, where ŝg,k means,
that sg,k is omitted in the product. There is thus Λk ∈ Z with

akd = Λk sg,1 · · · ŝg,k · · · sg,d−1.

Using these Λk, we can write the integer m as

m =
a1d + · · ·+ a(d−1)d − 1

add
= Λ1

sg,1
+ · · ·+ Λd−1

sg,d−1
− g

tg,d
.

We now treat the Λ1, . . . , Λd−1 as indeterminates. Note that they only appear in the
last entry of the Gorenstein forms u0, . . . , ud, whereas they appear only in the first d− 1
entries of the last column vd of P . Evaluating u0, . . . , ud−2 on vd thus gives a system
of d− 1 linear equations in the d− 1 variables µ1, . . . , µd−1, which are independent since
the Gorenstein forms u0, . . . , ud−2 are linearly independent. This system thus has at
most one solution. A direct computation shows that the choice Λk = sg,k− g is a solution
for that system. This shows that P is the second matrix in Theorem 1.1.2 (ii), which
completes the proof of the Theorem.

Proof of Theorem 1.1.3. Let ∆ a d-dimensional Fano simplex of Gorenstein index g and
associated unit fraction partition A(∆) = (α0, . . . , αd). We may assume that the entries
of A(∆) satisfy α0 ≤ · · · ≤ αd. By Proposition 1.3.3 (iv) and Lemma 1.5.1 we have

λ(∆) ≤ gd−1λ(∆)λ(∆∗) = α0 · · ·αd

lcm(α0, . . . , αd)2 . (1.5.3.2)
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We prove (i). Let d = 3 and g ∈ {1, 2}. By Theorem 1.4.2 (iii) the right hand side of
Equation 1.5.3.2 is bounded by 16g2. Assume λ(∆) = 16g2 holds. Then we have

A(∆) = (4g, 4g, 4g, 4g), Qred
∆ = (1, 1, 1, 1)

and there is a 3× 3 integer matrix H in Hermite normal form with determinant equal
to λ(∆) = 16g2, such that ∆ ∼= H ·∆(1, 1, 1, 1) holds. Thus we can write ∆ ∼= ∆(P ) with

P =

⎡⎢⎣ 1 a12 a13 −(a12 + a13 + 1)
0 a22 a23 −(a22 + a23)
0 0 a33 −a33

⎤⎥⎦
in Hermite normal form. By Lemma 1.5.2 (i), a22 and a33 each divide 4g. Moreover
we have a22 · a33 = det(H) = 16g2. Thus a22 = a33 = 4g holds. The difference of the
Gorenstein forms u1 and u2 of ∆ is given by

u1 − u2 =
(︃

0,
1
g

,−a23 + 4g

4g2

)︃
∈ 1

g
Z.

Thus 4g divides a23. This is only possible for a23 = 0. The last Gorenstein form of ∆
then reads

u3 =
(︃
−1,

a12 − 1
4g

,
a13 − 1

4g

)︃
,

which yields a12 = 4k + 1 and a13 = 4l + 1 for some k, l ∈ Z. Taking the restrictions
on a12 and a13 into account we obtain 0 ≤ k, l ≤ g − 1. In case g = 1 we have k = 0
and l = 0. In case g = 2 the different choices for k and l lead to isomorphic simplices.
We may thus assume k = l = 0 and P is of the form stated in Theorem 1.1.3 (i).

We prove (ii). Let (d, g) = (4, 1). By Equation 1.5.3.2 and Theorem 1.4.2 (iii) we
have λ(∆) ≤ 128. If equality holds, then we have

A(∆) = (2, 8, 8, 8, 8), Qred
∆ = (4, 1, 1, 1, 1), λ(∆) = 128.

There is a 4 × 4 integer matrix H in Hermite normal form with determinant equal
to λ(∆) = 128, such that ∆ ∼= H ·∆(4, 1, 1, 1, 1) holds. Thus ∆ ∼= ∆(P ) holds with

P =

⎡⎢⎢⎢⎣
1 a12 a13 a14 −(4 + a12 + a13 + a14)
0 a22 a23 a24 −(a22 + a23 + a24)
0 0 a33 a34 −(a33 + a34)
0 0 0 a44 −a44

⎤⎥⎥⎥⎦
in Hermite normal form. By Lemma 1.5.2 we have a22 | 2 and a33, a44 | 8. Moreover the
product of the diagonal entries is the determinant of H. The only possibility for the
diagonal is thus (a22, a33, a44) = (2, 8, 8). Calculating the Gorenstein forms of ∆ and
using the fact that ∆ is of Gorenstein index 1, we obtain

a12 = a13 = a14 = 1, a23 = a24 = 2, a34 = 8.
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This shows that P is the matrix from Theorem 1.1.3 (ii).
We prove (iii). Assume that (d, g) is neither of (3, 1), (3, 2), (4, 1). By Equation 1.5.3.2

and Theorem 1.4.2 (iii) we have

λ(∆) ≤
3t2

g,d−1
g

.

If equality holds, then we have A(∆) = A, where A is one of the following unit fraction
partitions:

A = (12, 12, 12, 12), A = (sg,1, . . . , sg,d−2, 3tg,d−1, 3tg,d−1, 3tg,d−1).

In the first case we are in the situation (d, g) = (3, 3) and we have

A(∆) = (12, 12, 12, 12), Qred
∆ = (1, 1, 1, 1), λ(∆) = 144.

Again, we have ∆ ∼= ∆(P ) with

P =

⎡⎢⎣ 1 a12 a13 −(1 + a12 + a13)
0 a22 a23 −(a22 + a23)
0 0 a33 −a33

⎤⎥⎦
in Hermite normal form. By Lemma 1.5.2 both a22 and a33 are divisors of 12. Moreover
we have a22 · a33 = λ(∆) = 144. Thus a22 = a33 = 12 holds. Calculating the Gorenstein
forms of ∆ and using the fact that ∆ is of Gorenstein index 3, we obtain

a23 = 0, a12 = 4k + 1, a13 = 4l + 1,

where 0 ≤ k, l ≤ 2. The cases k = 2 and l = 2, as well as (k, l) = (0, 0) lead to a
non-primitive column of P . Thus these cases are excluded. All other choices for k, l lead
to isomorphic matrices. We may thus choose (k, l) = (0, 1) and P is the first matrix from
Theorem 1.1.3 (iii). We now consider the second possible unit fraction partition for ∆, ie.
we have (d, g) ̸= (3, 3) and

A(∆) = (sg,1, . . . , sg,d−2, 3tg,d−1, 3tg,d−1, 3tg,d−1),

Qred
∆ =

(︄
3tg,d−1

sg,1
, . . . ,

3tg,d−1
sg,1

, 1, 1, 1
)︄

, λ(∆) =
3t2

g,d−1
g

.

As before, we can write ∆ ∼= ∆(P ), where

P =

⎡⎢⎢⎢⎢⎣
1 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦
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is in Hermite normal form. The entries bk of the last column of P can be computed from
the entries ak,j by solving the linear system P ·Qred

∆ = 0. Moreover we have

a22 · · · add = λ(∆) =
3t2

g,d−1
g

= 3tg,d−1 · sg,1 · · · sg,d−2.

Note that the entries α0, . . . , αd−3 of A(∆) are pairwise coprime. Thus for the diagonal en-
tries of P Lemma 1.5.2 (iii) yields a22 = · · · = a(d−2)(d−2) = 1. Moreover both a(d−1)(d−1)
and add are divisors of 3tg,d−1 by Lemma 1.5.2 (i). Comparing this to the product
of the diagonal entries we obtain that both a(d−1)(d−1) and add are multiples of the
product sg,1 · · · sg,d−2 and that

a(d−1)(d−1) · add = sg,1 · · · sg,d−2 · 3g · sg,1 · · · sg,d−2

holds. We can thus write a(d−1)(d−1) = Λsg,1 · · · sg,d−2 for some divisor ∆ of 3g. We show
that Λ = 1 holds. Set m := a1(d−1) + · · ·+ a(d−2)(d−1) − 1. The Gorenstein forms ud as
well as uk for k = 0, . . . , d− 3 of ∆ are given by

uk =
(︄
−1, . . . ,

αk

g
− 1, . . . ,−1,

m

a(d−1)(d−1)
−

αka(k+1)(d−1)
ga(d−1)(d−1)

, ukd

)︄
∈ 1

g
Z,

ud =
(︄
−1, . . . ,−1,

m

a(d−1)(d−1)
, udd

)︄
∈ 1

g
Z.

Here the entry αk/g − 1 is at the position k + 1 of uk. Let 1 ≤ k ≤ d− 2. Comparing
the second to last entries of uk−1 and ud and using the fact that they are in 1

gZ, we must
have that a(d−1)(d−1) divides αk−1ak(d−1) = sg,kak(d−1). Thus we can write

ak(d−1) = Λksg,1 · · · ŝg,k · · · sg,d−2

for some Λk ∈ Z≥1. Here ŝg,k means that sg,k is omitted. Note that since sg,kak(d−1) is a
multiple of a(d−1)(d−1), the number Λk is a multiple of Λ. So in order for the column vd−2
to be primitive, Λ must be equal to 1. We thus have

a(d−1)(d−1) = sg,1 · · · sg,d−2, add = 3tg,d−1.

It remains show that Λk = (sg,k − g) holds for all k = 1, . . . , d − 2. The situation is
very similar to the last part of the proof of Theorem 1.1.2. However, as we do not have
information about the entries a1d, . . . , a(d−1)d of P , we need to employ a different strategy.
Note that a(d−1)(d−1) is coprime to g. Considering again the last Gorenstein form ud

of ∆, its entry

ud(d−1) = m

a(d−1)(d−1)
=

a1(d−1) + · · ·+ a(d−2)(d−1) − 1
a(d−1)(d−1)

must be an integer. In particular, sg,k divides m for all k = 1, . . . , d− 2. Since al(d−1) is
a multiple of sg,k for l ̸= k, this means that we have

sg,k | Λksg,1 · · · ŝg,k · · · sg,d−2 − 1.
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As sg,l = tg,l + 1 and sg,k | tg,l holds for l > k, this implies that we have

sg,k | sg,1 · · · sg,k−1Λk − 1.

Thus there is B ∈ Z with Bsg,k = sg,1 · · · sg,k−1Λk − 1. Since P is in Hermite normal
form, Λk is in the range 0 ≤ Λk < sg,k. Thus B is at least one, but less than sg,1 · · · sg,k−1.
Moreover, we obtain the identity

sg,1 · · · sg,k−1Λk = Bsg,k + 1 = B(tg,k + 1) + 1,

and since tg,k is a multiple of sg,1, . . . , sg,k−1, this equation is only fulfilled if sg,1 · · · sg,k−1
divides B+1. Comparing this to the possible values of B, we obtain B = sg,1 · · · sg,k−1−1.
Plugging this in for B and solving for Λk, we obtain Λk = sg,k − g. This shows that P is
the second matrix from Theorem 1.1.3. Finally assume g is odd. We plug in the values
for a1d, . . . , a(d−1)d provided in Theorem 1.1.3 (iii) and check that the resulting matrix
has primitive columns. This shows that this is a valid choice for a1d, . . . , a(d−1)d, which
completes the proof.

Proof of Theorem 1.1.4. Let ∆ a d-dimensional IP simplex of Gorenstein index g and
associated unit fraction partition A(∆) = (α0, . . . , αd). We may assume that A is ordered,
ie. that α0 ≤ · · · ≤ αd holds. By Proposition 1.3.3 (i) we have

Vol(∆)Vol(∆∗) = α0 · · ·αd

gd+1 .

By Theorem 1.4.2 (i) the numerator of the right hand side is bounded by t2
g,d+1/g. Thus

we obtain

Vol(∆)Vol(∆∗) ≤
t2
g,d+1
gd+2 .

If equality holds, then by Theorem 1.4.2 (i) we have A(∆) = (sg,1, . . . , sg,d, tg,d+1), which
is equivalent to

Qred
∆ = Q(A(∆)) =

(︄
tg,d+1
sg,1

, . . . ,
tg,d+1
sg,d

, 1
)︄

.

On the other hand, assume that Qred
∆ is of this form. Let ∆′ = ∆(Qred

∆ ). There
is H ∈ GL(d + 1,Q) such that ∆ ∼= H ·∆′ holds. For the Mahler volume of ∆ we thus
obtain

Vol(∆)Vol(∆∗) = Vol(H∆′) Vol((H∗)−1(∆′)∗) = Vol(∆′)Vol((∆′)∗) =
t2
g,d+1
gd+2 .
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1.6 A classification procedure for IP lattice simplices
Throughout this section we develop a procedure for the classification of all IP lattice
simplices of given dimension and Gorenstein index, see Algorithm 1.6.7. It is easily
adapted to only classify Fano simplices, see Remark 1.6.8.

Proposition 1.6.1. Fix an integer d ≥ 2 and d + 2 positive integers g, g0, . . . , gd

with g = lcm(g0, . . . , gd). Let A = (α0, . . . , αd) ∈ Zd+1
≥1 a unit fraction partition of g, ie.

1
g

= 1
α0

+ · · ·+ 1
αd

.

Denote by w = (w0, . . . , wd) = Q(A) the weight system associated with A. Consider the
d× (d + 1) integer matrices of the form

P := [ v0 . . . vd ] :=

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦
such that for all k = 1, . . . , d the entries of P satisfy

(i) akk ∈ Z≥1, akk | αk−1,
(ii) 0 ≤ aik < akk for all 1 ≤ i < k,
(iii) bkwd = akkwk−1 + · · ·+ akdwd−1.

Let ∆ := ∆(P ) the convex hull of the columns of P . Then ∆ is a d-dimensional IP
lattice simplex whose associated weight system satisfies Qred

∆ = (w0, . . . , wd). The k-th
Gorenstein form uk = (uk1, . . . , ukd) of ∆ is explicitly given by

ukj =

⎧⎪⎨⎪⎩
|w|−wk

ajjwk
−
∑︁j−1

l=1 aljukl

ajj
, if j = k + 1,

−1−
∑︁j−1

l=1 aljukl

ajj
, otherwise.

(1.6.1.1)

If each of gkuk is a primitive vector in Zd, then ∆ is of Gorenstein index g with local
Gorenstein indices gk, where k = 0, . . . , d.

Proof. As P is of rank d, the polytope ∆ is full-dimensional. Its vertices are precisely
the columns v0, . . . , vd. It is thus a lattice simplex. By condition (iii) we have P · w = 0.
With βk := wk/|w| we can write

0 = β0v0 + · · ·+ βdvd,

which is a convex combination of v0, . . . , vd with non-vanishing coefficients. Thus the
origin is contained in the interior of ∆, making it an IP lattice simplex. By Remark
1.2.10 (iii) we have Qred

∆ = w. Let uk = (uk1, . . . , ukd) the k-th Gorenstein form of ∆.
Let 1 ≤ j ≤ d. If j ̸= k + 1, then ⟨uk, vj⟩ = −1 holds and for j = k + 1 we have
⟨uk, vj⟩ = |w|/wk− 1. Solving these equations for ukj produces the identities in Equation
1.6.1.1. The last assertion is just the definition of the Gorenstein index and the local
Gorenstein indices of ∆.
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Proposition 1.6.2. Let ∆ a d-dimensional IP lattice simplex of Gorenstein index g.
Then ∆ ∼= ∆(P ) holds with a matrix P as provided by Proposition 1.6.1.

Proof. Write w := Qred
∆ = (w0, . . . , wd) and let A = A(∆) = (α0, . . . , αd) the unit fraction

partition of g associated with ∆. By Proposition 1.3.10 the reduced weight systems w
and Q(A(∆)) coincide. Let P the d × (d + 1) integer matrix whose columns are the
vertices of ∆. By bringing P in Hermite normal form, we may assume

P = [ v0 . . . vd ] =

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦ ,

where akk ∈ Z≥1 holds for all k = 1, . . . , d as well as 0 ≤ aik < akk for all 1 ≤ i < k.
Solving P · w = 0 for the entries bk, we obtain the identity

bkwd = akkwk−1 + · · ·+ akdwd−1

It thus remains to show that for all k the diagonal entry akk divides αk−1. Consider the
following sequence of rational numbers

q1 := − 1
a11

, qj := −1 + a1jq1 + · · ·+ aj−1,jqj−1
ajj

.

Let k ≥ 1 and let uk the k-th Gorenstein form of ∆. For each 1 ≤ j ≤ k we have ⟨uk, vj⟩ =
−1. Solving this for ukj we get ukj = qj . In particular g qk is an integer. Evaluating
uk−1 on vk, we obtain

a1kq1 + · · ·+ a(k−1)kqk−1 + akku(k−1)k = ⟨uk−1, vk⟩ = |w|
wk−1

− 1.

With the definition of qk, we can rewrite this equation as

akk(u(k−1)k − qk) = − |w|
wk−1

.

Note that the g-fold of both u(k−1)k and qk is an integer. Multiplying both sides by g wk−1
thus shows that akkwk−1 is a divisor of g|w| = αk−1wk−1. Clearing wk−1 on both sides,
we see that akk divides αk−1.

Propositions 1.6.1 and 1.6.2 provide us with a procedure to enumerate up to isomorphy
all IP lattice simplices ∆ with a given constellation of local Gorenstein indices (g0, . . . , gd)
and given reduced weight system w. The list produced may contain redundancies, ie.
matrices P and P ′ that give isomorphic simplices ∆(P ) and ∆(P ′). In practice, we want
the list to be redundancy free without having to check each pair of matrices for isomorphy.
The solution to this problem is to define a normal form NF(P ) for these matrices P ,
which has the property that two matrices P and P ′ give isomorphic simplices if and only
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if their normal forms coincide. The normal form we present in Definition 1.6.3 is similar
to the PALP normal form for lattice polytopes described in [61], see also [38]. To fix
some notation, if B is a m× n integer matrix with columns b1, . . . , bn and σ ∈ Sn is a
permutation of {1, . . . , n}, then we denote by Bσ the matrix with columns bσ(1), . . . , bσ(n).
Moreover, by HNF(B) we denote the hermite normal form of B.

Definition 1.6.3. Let P a d× (d + 1) integer matrix whose columns generate Qd as a
convex cone. Let w = (w0, . . . , wd) the reduced weight system and (g0, . . . , gd) the local
Gorenstein indices of the IP lattice simplex ∆(P ). We denote by SP the subset of Sd+1
consisting of all permutations σ ∈ Sd+1 with the following properties:

(i) If σ(i) ≤ σ(j) holds, then wσ(i) ≥ wσ(j).
(ii) If σ(i) ≤ σ(j) and wσ(i) = wσ(j) holds, then gσ(i) ≥ gσ(j).

We define the normal form of P as

NF(P ) := min{HNF(Pσ); σ ∈ SP },

where the minimum is taken lexicographically, ie. we write the entries of the ma-
trix HNF(Pσ) = (hij)ij as a list of integers (h11, . . . , h1d, h21, . . . , h(d+1)d) and take the
lexicographic minimum among those lists.

Proposition 1.6.4. For d× (d + 1) integer matrices P and P ′, whose columns generate
Qd as a convex cone, we have ∆(P ) ∼= ∆(P ′) if and only if their normal forms NF(P )
and NF(P ′) coincide.

Proof. Assume ∆(P ) ∼= ∆(P ′) holds. Then there is a permutation σ ∈ Sd+1 and a d× d
unimodular matrix S such that S ·Pσ = P ′ holds. A quick comparison shows SP = σSP ′ .
Thus the sets of hermite normal forms, among which the lexicographic minimum is chosen,
coincide. We obtain NF(P ) = NF(P ′). On the other hand, if NF(P ) = NF(P ′) holds,
then there are σ, σ′ ∈ Sd+1 and unimodular d× d matrices S and S′ with S ·Pσ = S′ ·P ′

σ′ .
Thus ∆(P ) and ∆(P ′) are isomorphic.

We translate Proposition 1.6.1 into a classification procedure realized in Algo-
rithm 1.6.5. As input it takes a unit fraction partition A = (α0, . . . , αd) of g and
a tuple (g0, . . . , gd) of positive integers with g = lcm(g0, . . . , gd). It then produces a list
of matrices P corresponding to IP lattice simplices ∆(P ) with associated unit fraction
partition A and local Gorenstein indices (g0, . . . , gd). This list is complete, ie. every IP
lattice simplex ∆ with associated unit fraction partition A and local Gorenstein indices
(g0, . . . , gd) is isomorphic to some ∆(P ) with P from that list, and the list is redundancy
free, ie. two different matrices P and P ′ from the list give non-isomorphic simplices ∆(P )
and ∆(P ′).

Algorithm 1.6.5. ClassifySimp( A, [g0, . . . , gd] )
Input: – A unit fraction partition A = [α0, . . . , αd] ∈ Zn+1

≥1 of g,
– A list of positive integers [g0, . . . , gd] ∈ Zn+1

≥1 with g = lcm(g0, . . . , gd)
1: L← [ ]
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2: w ← Q(A)
3: divk ← {Divisors of αk} for k = 0, . . . , d− 1
4: for all (a11, a12, a22, . . . , a1d, . . . , add) with akk ∈ divk−1 and 0 ≤ aik < akk do
5: bk ← (akkwk−1 + · · ·+ akdwd−1)/wd for k = 1, . . . , d

6: P ←

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1d −b1
0 a22 · · · a2d −b2
... . . . . . . ...

...
0 · · · 0 add −bd

⎤⎥⎥⎥⎥⎦
7: uk ← k-th linear form as in Equation 1.6.1.1 for k = 0, . . . , d
8: if bk ∈ Z and gkuk is a primitive point in Zd and NF(P ) ̸∈ L then
9: add NF(P ) to L

10: end if
11: end for
12: return L

With Algorithm 1.6.5 we can classify the d-dimensional IP lattice simplices with a
fixed constellation of local Gorenstein indices and fixed unit fraction partition. To obtain
the classification of all d-dimensional IP lattice simplices of Gorenstein index g, we thus
need a list of all length d + 1 unit fraction partitions of g. This is done by the following
Algorithm, which takes as input a reduced positive rational number p/q and a natural
number n ≥ 1 and produces a list of all ordered unit fraction partitions α1 ≤ · · · ≤ αn of
p/q of length n. For two unit fraction partitions A and A′ we write A ∼ A′, if they only
differ by order.

Algorithm 1.6.6. UFP( p/q, n )
Input: – A reduced positive rational p/q ∈ Q>0

– A positive integer n ∈ Z≥1

1: if n = 1 and p = 1 then
2: return [(p/q)]
3: end if
4: L← [ ]
5: for k = ⌈q/p⌉, . . . , ⌊nq/p⌋ do
6: L2 ← UFP(p/q − 1/k, n− 1)
7: for all (1/α2, . . . , 1/αn) ∈ L2 do
8: if (1/k, 1/α1, . . . , 1/an) ̸∼ A′ for all A′ ∈ L then
9: sort (1/k, 1/α1, . . . , 1/an) decreasingly and add it to L

10: end if
11: end for
12: end for
13: return L

The following Algorithm takes as input integers d ≥ 2 and g ≥ 1 and performs the
classification of all d-dimensional IP lattice simplices of Gorenstein index g. As in the
case of Algorithm 1.6.5, the output list of matrices P is complete and redundancy free.
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Algorithm 1.6.7. ClassifyAllSimp( d, g )
Input: – An integer d ≥ 2

– An integer g ≥ 1
1: L← [ ]
2: for all A ∈ UFP(1/g, d + 1) do
3: L2 ← [ ]
4: for all (g0, . . . , gd) with gk | g such that g = lcm(g0, . . . , gd) do
5: for all P ∈ ClassifySimp(A, (g0, . . . , gd)) do
6: if P ̸∈ L2 then
7: add P to L2
8: end if
9: end for

10: end for
11: Append L2 to L
12: end for
13: return L

Remark 1.6.8. To classify only the Fano ones among the IP lattice simplices of given
dimension d and Gorenstein index g, we perform the following two modifications:

(i) In Algorithm 1.6.5 line 6 we consider those matrices P whose columns are all
primitive vectors in Zd.

(ii) In Algorithm 1.6.7 line 2 we only loop over well-formed unit fraction partitions of
g, see Remark 1.2.10 (ii) and Proposition 1.3.10.

1.7 Classification results
We discuss our classification results for Fano simplices; the complete classification data,
as well as the Julia code [22] to produce these results can be found at [13]. We start in
dimension two.
Theorem 1.7.1. See Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles
of Gorenstein index g ≤ 1000.

The following table contains for each g ≤ 1000 the number N(g) of Fano triangles
of Gorenstein index g. The sequence (N(g))g≥1 is OEIS sequence A145582, available at
[68].

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
N 5 7 18 13 33 26 45 27 51 51 67 53 69 74 133 48 89 81 102 110 178 105 124 109
g 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
N 161 119 164 135 142 187 140 105 274 159 383 169 145 166 329 221 177 266 180 230 404 189 220 213
g 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
N 315 264 384 233 225 260 573 298 420 241 276 393 216 252 593 202 607 394 247 321 540 560 310 353
g 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
N 249 283 701 336 783 458 316 439 464 318 341 557 764 307 638 464 363 612 816 389 639 368 914 432
g 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
N 341 551 893 549 352 583 385 539 1377 383 409 536 377 840 756 580 377 642 1058 512 1010 462 1191 807
g 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
N 702 402 811 478 888 876 416 406 869 946 480 868 1202 483 1321 680 450 772 505 1172 931 522 1395 707
g 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
N 1204 482 1319 540 518 997 499 745 1261 1204 1308 965 493 543 1088 919

47



Chapter 1. Lattice simplices and fake weighted projective spaces

g 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
N 1477 748 517 670 2128 590 635 1160 895 1211 1395 613 562 962 2017 907 1156 646 689 1285
g 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
N 554 1338 1119 864 1442 963 1710 762 1864 1307 655 865 579 661 2507 1025 647 1319 651 1169
g 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
N 1206 665 1781 1236 1642 690 1756 1009 1971 1937 599 787 1350 736 1799 1137 1736 710 1353 1845
g 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
N 1812 1127 743 1266 2152 709 727 1348 721 1578 2935 1088 733 1510 1915 926 1528 1862 886 1632
g 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
N 685 1175 1443 815 2812 1221 2046 1056 1580 1431 894 1818 2264 805 3043 802 753 1291 2020 2038
g 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
N 1989 856 885 1782 2056 1897 1625 929 912 1947 838 1363 3391 879 3055 1642 818 917 2210 2424
g 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
N 790 1377 856 1071 3460 2076 2391 1453 1484 1877 1681 948 904 2012 2383 1249 2850 976 2588 2103
g 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
N 2271 927 1793 1426 2250 1972 938 2473 1860 2026 1005 2087 926 1025 4488 1081 928 1569 2796 1812
g 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
N 1927 2271 2713 1586 3203 973 1919 1446 2760 2926 936 1200 2361 1107 2620 2310 963 1589 1995 2600
g 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
N 2811 2142 2250 1409 4063 1052 1037 2026 1083 3030 3339 1922 981 1748 2795 1338 4351 1206 1286 2648
g 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
N 1840 1106 3122 2561 2555 1646 1068 1677 2638 2301 2894 2000 1091 2691 3684 1651 3009 2783 1105 2855
g 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
N 2155 1200 1203 1768 6332 1141 2799 1285 1219 3465 3270 2295 2265 1239 3054 2866 1105 1249 4731 2305
g 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
N 1116 1885 2957 1390 3915 2826 3158 2565 1115 2555 2287 1358 3398 2556 3205 2165 2492 2949 1431 4108
g 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
N 1094 1217 3078 1760 4164 2023 3040 1500 5493 2644 1378 2278 1219 2933 4870 1425 3631 2018 1358 3754
g 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
N 4423 3008 1237 2359 3292 1353 2650 2466 1379 3274 3514 1447 2560 1414 7089 2848 1253 1398 4114 3378
g 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
N 1373 4169 1293 2138 5160 1406 1421 3172 3335 2915 2590 2064 3658 2278 4860 3652 3369 1547 1588 3338
g 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
N 3188 1401 5700 2548 3406 2281 1344 1830 2754 4192 1404 2668 3902 3328 6896 2038 3814 2330 1416 3011
g 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
N 2913 1613 1657 3799 3520 3272 4384 1576 1494 4305 3575 1640 4517 1503 3701 2737 4273 3403 2996 4267
g 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
N 1478 3104 1466 1802 7509 1634 4037 3564 2789 3212 3868 3678 3737 2476 3887 2106 3155 1718 6181 4065
g 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
N 1420 1575 3027 2885 3867 4836 1465 1770 3682 4529 4392 3504 4015 1618 6008 1820 1620 3368 4072 4936
g 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
N 6390 1592 1552 2965 3889 1689 5544 2333 1652 4795 1602 4434 3271 3852 5863 2908 1549 2706 3169 4176
g 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
N 4269 2612 4576 2233 7696 1736 1722 4184 4322 3590 3298 2372 1718 4234 9257 1951 3366 3875 1881 4389
g 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
N 1574 3728 3972 1866 6423 2696 1722 3098 6950 3522 4622 4139 1644 1836 6694 5131 1649 2773 1736 4341
g 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
N 5618 1870 4809 4156 4346 1802 7274 1959 4514 6352 1612 2433 3333 1823 4371 3354 6323 4188 4520 3635
g 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
N 1715 2916 1823 4506 7074 4319 1933 3365 5292 5106 6968 1946 1741 2920 4675 2804 4320 4422 2027 6340
g 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
N 1778 1907 7743 2702 10245 3736 5199 2225 3779 4070 5059 4770 1785 1975 7115 3138 1800 3010 4765 5302
g 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
N 3703 4377 1932 4516 4614 3880 3765 2694 4884 5691 1879 2204 9817 2016 4935 4245 4979 2058 3967 6113
g 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
N 2006 4880 4827 3846 7448 1979 4874 3689 1899 4258 4962 2968 5426 6400 10949 2430 4126 2273 2346 5396
g 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
N 4971 3142 3797 2211 6642 4539 2031 5772 4310 4074 5131 3557 1995 2170 10340 3594 5315 4129 2017 4953
g 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
N 8510 4641 2029 4253 5087 2140 5199 5744 5462 5214 2016 3193 4254 4889 5371 5749 1994 2193 8978 5904
g 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
N 1980 3312 5242 2458 9606 2233 5766 3489 2119 8985 4011 2268 2107 4317 7042 2956 8393 2360 5875 7332
g 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
N 6100 5006 6667 4496 5100 3398 2075 2481 4397 4630 5611 5867 4901 2220 8460 2466 2260 6880 6078 4896
g 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
N 5314 2253 5600 3984 12112 4939 4437 3058 2309 5814 2171 5646 4392 5038 5581 5234 5700 2350 11102 5643
g 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
N 2153 3545 2238 3159 11531 5398 2283 5397 2187 4884 4469 4285 8861 3765 6056 6464 7017 2620 2694 8441
g 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
N 3965 2269 4384 2431 8326 4714 8833 3382 4553 6596 5856 4319 2288 5164 10993 3328 2356 7478 2312 5801
g 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
N 9136 2547 2497 4697 5718 2446 6730 5484 6534 6917 5540 3252 5557 5321 10713 4270 2334 2542 4902 7522
g 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
N 2460 6670 2344 6160 9235 2471 2423 5080 5915 5214 8441 2714 6693 4007 6512 4990 10773 2695 6610 6814
g 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
N 6272 5506 9442 3258 5816 3838 2399 2809 5908 10177 2550 5709 6829 2558 9287 2764 6498 6340 2496 7013
g 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
N 4939 2718 6713 9004 7724 2584 6153 4575 2529 7322 9182 2842 5078 2779 13868 6796 2430 5740 4960 6454
g 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
N 2449 4071 6991 4101 14187 5486 2486 4802 5801 7129 5081 7792 2524 5155 6491 3133 10846 2883 6745 6675
g 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
N 4205 5672 6246 2775 6352 8171 2564 5300 10330 5464 2671 4823 6707 2774 13411 3500 2540 4188 7462 8759
g 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
N 6201 2733 2678 5591 6671 6360 10574 6643 7241 9723 2559 4449 5145 6171 6583 5017 2633 2858 8000 6407
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Figure 1.1: Volume of Fano triangles plotted against their Gorenstein index.

In Figure 1.1 we plot the volume of all Fano triangles against their Gorenstein index.
The bounding curve on top is the curve y = 2(x + 1)2. The one right below is the curve
y = 3/2(x + 1)2. In fact, all the points in Figure 1.1 that lie above the first limiting
curve, i.e. the first curve where they seem to accumulate, lie on a curve of the form

y = k + 1
k

(x + 1)2.

These are precisely the Fano triangles described by the following Construction.

Construction 1.7.2. For g, k ∈ Z≥1 with k | (g + 1) let

PV (g, k) :=
[︄

1 1 1− (k + 1)(g + 1)
0 g+1

k −(g + 1)

]︄
, ∆V (g, k) := ∆(PV (g, k)).

Then ∆ = ∆V (g, k) has Gorenstein index g(∆) = g and we have

Qred
∆ = ((k + 1)g, k, 1), λ(∆) = g + 1

k
, Vol(∆) = k + 1

k
(g + 1)2.

Remark 1.7.3. In [57, Example 4.2] the authors describe a family of Fano triangles of
Gorenstein index g whose volume grows as O(g2/3). For the family ∆V (g, 1) from 1.7.2
the volume grows as O(g2). This shows that the volume of Fano polygons grows at least
as O(g2).

Plotting the normalized volume of the dual, the multiplicity or the Mahler volume of
all Fano triangles against their Gorenstein index, we obtain very similar pictures, see
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(a) Volume of dual: Vol(∆∗) (b) Multiplicity: λ(∆) (c) Mahler volume: MV(∆)

Figure 1.2: Volume of dual (a), multiplicity (b) and Mahler volume (c) of Fano triangles
plotted against their Gorenstein index.

Figure 1.2. Construction 1.7.4 is the analog of Construction 1.7.2 for the volume of the
dual, providing the Fano triangles that describe the curves in the upper half of Figure
1.2 (a).

Construction 1.7.4. For g, k ∈ Z≥1 with k | (g + 1) let

PV ∗(g, k) :=
[︄

1 0 −(k + 1)g
0 1 −k

]︄
, ∆V ∗(g, k) := ∆(PV ∗(g, k)).

Then ∆ = ∆V ∗(g, k) has Gorenstein index g(∆) = g and we have

Qred
∆ = ((k + 1)g, k, 1), λ(∆) = 1, Vol(∆∗) = k + 1

k

(g + 1)2

g
.

Our final observation in dimension two is that there are no Fano triangles ∆ with
even Gorenstein index and reduced weight system Qred

∆ = (1, 1, 1). This observation is
proved in Proposition 1.5.3. We restate the classification results in dimensions three and
four.

Theorem 1.7.5. See Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices
of dimension three and Gorenstein index g ≤ 30. The number of simplices N(g) for given
Gorenstein index g develops as follows:

g 1 2 3 4 5 6 7 8
N(g) 48 435 1,703 3,042 7,506 14,527 16,627 21,789

g 9 10 11 12 13 14 15 16
N(g) 39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530
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g 17 18 19 20 21 22 23 24
N(g) 133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,989

g 25 26 27 28 29 30
N(g) 515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 1.7.6. See Theorem 1.1.6. Up to isomorphy there are 87,532 Fano simplices
of dimension four and Gorenstein index g ≤ 2. Of those, 1,561 are of Gorenstein index
g = 1. The remaining 85,971 simplices are of Gorenstein index g = 2.

Remark 1.7.7. By the correspondence between Fano simplices and fake weighted
projective spaces, Theorems 1.1.5 - 1.1.7 are also classifications of fake weighted projective
spaces of corresponding dimension and Gorenstein index.

Let us compare our results to existing classifications. In dimension two, Theorem 1.1.5
encompasses in particular the classification by Dais [32] of fake weighted projective
planes of Gorenstein index at most three and the toric part of the classification in [39].
In dimension three we mention [56], where Kasprzyk classifies the three-dimensional
canonical Fano polytopes, ie. those with a single interior lattice point. The overlap with
Theorem 1.1.6 consists of precisely 204 canonical Fano simplices of Gorenstein index
at most 30. There are only 21 three-dimensional canonical Fano simplices that have
Gorenstein index larger than 30. The largest Gorenstein index among those is g = 420.
This data has been taken from [25]. In dimension four we have the classification of
the 1561 reflexive simplices by Kreuzer and Skarke [60], which correspond to the 1561
Fano simplices of Gorenstein index one from Theorem 1.1.7. Note that there is no overlap
between Theorem 1.1.7 and the classification of empty 4-simplices by Iglesias-Valino and
Santos [50] as our simplices have at least one interior lattice point. Let us also mention
Balletti’s recent extensive classification of lattice polytopes by their volume [8], where
the polytopes are classified up to affine unimodular equivalence, ie. also allowing for
translations. As this does not leave the Gorenstein index invariant, their results are not
immediately comparable to Theorems 1.1.5 - 1.1.7.

Remark 1.7.8. Whereas the bounds in Theorems 1.1.2 and 1.1.4 are all sharp, we
obtain sharpness in Theorem 1.1.3 (iii) for odd Gorenstein indices only. Indeed, for even
Gorenstein index g, the values provided for a1, . . . , ad−1 in Theorem 1.1.3 (iii) result in
a matrix P with the last column being non-primitive. In fact our classification results
suggest, that for even Gorenstein index the multiplicity bound in Theorem 1.1.3 (iii) is
too high. We conjecture that in this case, apart from (d, g) = (3, 2), (3, 4), the multiplicity
is bounded by

mult(∆) ≤
2t2

g,d−1
g
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and this bound is sharp, ie. there is a Fano simplex of dimension d and Gorenstein index
g that attains this bound.
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CHAPTER
TWO

GORENSTEIN FANO THREEFOLDS OF PICARD NUMBER
ONE

We classify the non-toric, Q-factorial, Gorenstein, log terminal Fano threefolds of Picard
number one that admit an effective action of a two-dimensional algebraic torus. The
chapter is organized as follows. In Section 2.1 we present our classification results.
Section 2.2 serves to provide the necessary background on the approach to rational
projective varieties X with a torus action of complexity one via the Cox ring based
on [41, 46]. In Picard number one, this approach represents any family of Q-factorial
varieties X in terms of an integral matrix P . Very first constraints arise from log
terminality: Proposition 2.2.24, originally due to [21], shows that log terminality leaves
us with eight types of matrices P to consider. These eight cases are treated in Sections
2.4 to 2.11. The classification tables are presented in Section 2.12. In Section 2.13, we
compute the Hilbert–Poincaré series of our varieties. The results of this chapter have
been achieved under the supervision of Jürgen Hausen and are published in [16].

2.1 Classification results
We work over an algebraically closed field K of characteristic zero. By a Fano variety we
mean a normal projective variety X over K admitting an ample anticanonical divisor −KX .
We classify the non-toric, Q-factorial, log terminal, Gorenstein, Fano threefolds X of
Picard number one that come with an effective action of a two-dimensional torus. Here,
log terminal means discrepancies greater than −1 and Gorenstein means that −KX is
Cartier. We use the Cox ring based approach to rational varieties with a torus action of
complexity one developed in [41,46]. The Cox ring of a normal projective variety X with
finitely generated divisor class group Cl(X) is defined as

R(X) =
⨁︂

Cl(X)
Γ(X,OX(D)),

where we refer to [6] for the details. For our Fano threefolds X of Picard number one
acted on by a two-dimensional torus, the divisor class group Cl(X) is of the form Z⊕ Γ
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with a finite abelian torsion part Γ and the Cox ring R(X) is a finitely generated complete
intersection ring with a very specific system of trinomial relations. Moreover, the variety
X can be reconstructed from the list of generator degrees in Cl(X) and the defining
relations of the Cox ring R(X) which allows us to encode X via these Cox ring data in a
compact manner.

Classification 2.1.1. We obtain 538 families of non-toric, Q-factorial, Gorenstein, log
terminal Fano threefolds of Picard number one acted on effectively by a two-dimensional
torus. Listed according to the possible divisor class groups, we have:

Divisor class group Sporadic varieties True families

Z 242 3 one-dimensional

Z× Z/2Z 163 4 one-dimensional

Z× (Z/2Z)2 46 5 one-dimensional,
1 two-dimensional

Z× (Z/2Z)3 6 1 one-dimensional

Z× Z/2Z× Z/4Z 4 1 one-dimensional

Z× Z/2Z× Z/6Z 1 0

Z× Z/3Z 26 1 one-dimensional

Z× (Z/3Z)2 1 0

Z× Z/4Z 18 1 one-dimensional

Z× Z/5Z 4 0

Z× Z/6Z 8 0

Z× Z/8Z 2 0

Moreover, every non-toric, Q-factorial, Gorenstein, log terminal Fano threefold of Picard
number one with an effective action of a two-dimensional torus is isomorphic to precisely
one member of these 538 families.

The defining data of each of our 538 families are stored in the file [15]. Moreover,
we store in this file geometric invariants such as genus, codimension, anticanonical self
intersection, Hilbert series, etc., which allows to extract varieties with given properties.

Note that being Gorenstein and log terminal, all varieties from Classification 2.1.1 are
canonical. The overlap with the classification of non-toric Mori–Fano threefolds coming
with an action of a two-dimensisonal torus given in [21] consists precisely of the smooth
quadric in P4. As mentioned before, the main tool of [21], which settles the terminal case,
is the anticanonical complex Ac

X associated with X, a polyhedral complex extending
directly the features of the Fano polytope from toric geometry: X is terminal if and
only if Ac

X has only the origin as an interior lattice point. This allows to bound the
possible Cox ring data via the volumes of suitable lattice polytopes constructed out of the
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2.1. Classification results

complex. In the log terminal Gorenstein case, one could think of proceeding analogously
by using canonicity, which, however, appears to end in overflowing computations, even
when building on the classification of canonical threefold singularities with action of a
two-dimensional torus provided in [24]. Instead we can benefit in a completely different
way and much more directly from the Gorenstein property: It gives rise to unit fraction
identities involving the Cox ring data that admit only a finite number of integral solutions;
see Proposition 2.9.3 (i) for an example. Moreover, the computation of these integral
solutions turns out to be easily feasible, which in the end makes the classification possible.
Remark 2.1.2. The following figure shows how the 538 families from the classifi-
cation 2.1.1 are distributed over the genus-codimension landscape of Fano threefolds
presented in [26, Figure 1]. Here the genus of a Fano threefold X is h0(X,−KX)− 2 and
the codimension is taken with respect to embedding into a weighted projective space by
means of a minimal system of homogeneous generators of the anticanonical ring

AX =
⨁︂

n∈Z≥0

Γ(X,−nKX).

Genus

C
od

im
en

sio
n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 21 5
2 15 54 31
3 22
4 37 17
5 62
6 71
7 51
8 41
9 10
10 1
11 41
12
13
14 9
15 20
16
17 12
18
19 4
20 3
21
22
23 4
24 4
25
26 3

Distribution of the 538 families over the genus-codimension landscape.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

2.2 Torus actions of complexity one
We recall the necessary background on rational varieties with a torus action of complexity
one and fix our notation. The reader is assumed to be familiar with the very basics
of toric geometry, in particular the correspondence between fans and toric varieties;
see [30, 33, 37]. We restrict ourselves to spending just a few words on Cox’s quotient
presentation [29] of a toric variety arising from a fan.

Construction 2.2.1. Let Z be the toric variety defined by a fan Σ in a lattice N
such that the primitive generators v1, . . . , vr of the rays of Σ span the rational vector
space NQ = N ⊗Z Q. We have a linear map

P : Zr → N, ei ↦→ vi.

In case N = Zn, we also speak of the generator matrix P = [v1, . . . , vr] of Σ. The divisor
class group and the Cox ring of Z are

Cl(Z) = K := Zr/im(P ∗), R(Z) = K[T1, . . . , Tr], deg(Ti) = Q(ei),

where P ∗ denotes the dual map of P and Q : Zr → K the projection. Now, one defines a
fan Σ̂ in Zr consisting of faces of the positive orthant of Qr by

Σ̂ := {δ0 ⪯ Qr
≥0; P (δ0) ⊆ σ for some σ ∈ Σ}.

The toric variety Ẑ associated with Σ̂ is an open toric subset in Z̄ := Kr. As P is a map
of the fans Σ̂ and Σ, it defines a toric morphism p : Ẑ → Z. The quasitorus

H = SpecK[K] = ker(p) ⊆ Tr = (K∗)r

acts as a subgroup of the torus Tr on Ẑ and the morphism p : Ẑ → Z turns out to be a
good quotient with respect to the H-action.

The quotient presentation of toric varieties is a central piece in the Cox ring based
approach to rational varieties with a torus action of complexity one provided by [41,46];
see also [6, Section 3.4]. The first step, however, is the following purely algebraic
construction of a certain class of graded algebras; see [6, Construction 3.4.2.1] and more
generally [42, Constructions 3.5 and 6.3].

Construction 2.2.2. Fix r ∈ Z≥1, a sequence n0, . . . , nr ∈ Z≥1, set n := n0 + · · ·+ nr,
and fix integers m ∈ Z≥0 and 0 < s < n + m− r. The input data are matrices

A = [a0, . . . , ar] ∈ Mat(2, r + 1;K), P =
[︄

L 0
d d′

]︄
∈ Mat(r + s, n + m;Z),

where A has pairwise linearly independent columns and P is built from an (s×n)-block d,
an (s×m)-block d′ and an (r × n)-block L of the shape

L =

⎡⎢⎣ −l0 l1 . . . 0
...

... . . . ...
−l0 0 . . . lr

⎤⎥⎦ , li = (li1, . . . , lini) ∈ Zni
≥1
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2.2. Torus actions of complexity one

such that the columns vij , vk of P are pairwise different primitive vectors generating Qr+s

as a cone. Consider the polynomial algebra

K[Tij , Sk] := K[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

Denote by I the set of all triples I = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ r and define for
any I ∈ I a trinomial

gI := gi1,i2,i3 := det
[︄

T
li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]︄
, T li

i := T li1
i1 · · ·T

lini
ini

.

Consider the factor group K := Zn+m/im(P∗) and the projection Q : Zn+m → K. We
define a K-grading on K[Tij , Sk] by setting

deg(Tij) := ωij := Q(eij), deg(Sk) := ωk := Q(ek).

Then the trinomials gI just introduced are K-homogeneous and they all share the
same K-degree. In particular, we obtain a K-graded factor algebra

R(A, P ) := K[Tij , Sk]/⟨gI ; I ∈ I⟩.

Example 2.2.3. We choose r = 2, moreover n0 = 2, n1 = n2 = 1 and m = 1 and,
finally s = 2. In this setting, consider the defining matrices

A :=
[︄

0 1 1
1 1 0

]︄
, P :=

⎡⎢⎢⎢⎣
−1 −1 4 0 0
−1 −1 0 2 0

0 0 −3 1 1
0 −2 4 0 0

⎤⎥⎥⎥⎦ .

The algebra R(A, P ) arising from these matrices comes due to r = 2 with a single
trinomial relation and is explicitly given by

R(A, P ) = K[T01, T02, T11, T21, S1]/
⟨︁
T01T02 + T 4

11 + T 2
21
⟩︁
.

We have K = Z5/im(P ∗) = Z⊕ Z/2Z⊕ Z/2Z and the degrees of the Tij and S1 are the
columns of the degree matrix

Q =

⎡⎢⎣ 2 2 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 1̄ 0̄

⎤⎥⎦ .

Theorem 2.2.4. See [6, Theorem 3.4.2.3], also [42, Theorems 3.10 and 6.5]. The
ring R(A, P ) produced by Construction 2.2.2 is a normal complete intersection ring and
its ideal of relations is generated by the trinomials gi = gi,i+1,i+2, where i = 0, . . . , r − 2.

Remark 2.2.5. We call a defining matrix P irredundant if we have li1ni ≥ 2 for
all i = 0, . . . , r. Each R(A, P ) is isomorphic as a graded algebra to some R(A′, P ′)
with P ′ irredundant. Note that for r ≥ 2 and an irredundant P , the ring R(A, P ) is not
a polynomial ring.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Remark 2.2.6. Consider a defining matrix P as in Construction 2.2.2. By an admissible
operation on the matrix P we mean one of the following:

(i) adding a multiple of one of the upper r rows to one of the lower s rows,
(ii) applying a unimodular matrix from the left to the (d, d′) block,
(iii) swapping two columns vij1 and vij2 inside a leaf vi1, . . . , vini ,
(iv) swapping two leafs vi1, . . . , vini and vj1, . . . , vjnj and rearranging the L-block by

elementary row operations into its required shape,
(v) swapping two columns vk1 and vk2 of the d′-block.

If P ′ arises from P via admissible operations, then with a suitable A′, the graded
rings R(A, P ) and R(A′, P ′) are isomorphic.

Remark 2.2.7. The matrix A of a ring R(A, P ) is responsible for the coefficients of
the defining trinomials gi = gi,i+1,i+2. By rescaling variables we can always reduce to
defining relations of the shape

T l0
0 + T l1

1 + T l2
2 , λ1T l1

1 + T l2
2 + T l3

3 , . . . λr−2T
lr−2
r−2 + T

lr−1
r−1 + T lr

r

with pairwise distinct 1 ̸= λi ∈ C∗. In particular, in case of a single defining relation,
there is no need to care about the coefficients. The matrix A is motivated by the geometry
behind R(A, P ), see Remark 2.2.12.

We enter the second step, producing rational normal varieties X with a torus ac-
tion Ts ×X → X of complexity one. Each of the resulting X comes embedded in a toric
variety Z, is defined in homogeneous coordinates by the above trinomials g0, . . . , gr−1
and the torus Ts acting on X is a subtorus of the acting torus Tr+s of Z. The origi-
nal references are again [41, 46]; see also [6, Construction 3.4.3.6] as well as the more
general [42, Constructions 3.5 and 6.13].

Construction 2.2.8. In the situation of Construction 2.2.2, assume r ≥ 2 and that P is
irredundant. Consider the common zero set of the defining relations of R(A, P ):

X̄ := V (gI ; I ∈ I) ⊆ Z̄ := Kn+m.

Let Σ be any fan in N = Zr+s having the columns of P as the primitive generators of its
rays. Then X̂ := X̄ ∩ Ẑ and Construction 2.2.1 yield a commutative diagram

X̄ ⊆

⊆

Z̄

⊆

X̂ →→

//H p
↓↓

Ẑ

//Hp
↓↓

X →→ Z,

where X := X(A, P, Σ) := p(X̂) is a non-toric, closed subvariety of the toric variety Z
arising from Σ. Dimension, divisor class group and Cox ring of X are

dim(X) = s + 1, Cl(X) ∼= K, R(X) ∼= R(A, P ).
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2.2. Torus actions of complexity one

The subtorus Ts ⊆ Tr+s of the acting torus of Z associated with the sublattice Zs ⊆ Zr+s

leaves X invariant and the induced T -action on X is of complexity one.

Example 2.2.9. We continue Example 2.2.3. Let Σ be the fan in Z4 having P as its
generator matrix and the maximal cones

cone(v02, v11, v21, v1), cone(v01, v11, v21, v1), cone(v01, v02, v21, v1),
cone(v01, v02, v11, v1), cone(v01, v02, v11, v21).

The associated toric variety Z is a four-dimensional fake weighted projective space with
divisor class group

Cl(Z) = K = Z⊕ Z/2Z⊕ Z/2Z.

Moreover, H = K∗ × {±1} × {±1} acts on Z̄ = K5 via the weights given by the columns
of the degree matrix Q and Construction 2.2.8 becomes

V
(︁
T01T02 + T 4

11 + T 2
21
)︁

=

⊆

X̄ ⊆

⊆

Z̄
⊆

= K5

⊆

X̄ \ {0} = X̂ →→

//H p
↓↓

Ẑ

//Hp
↓↓

= K5 \ {0}.

X →→ Z

Theorem 2.2.10. See [6, Theorem 4.4.1.6] and [42, Theorems 3.10 and 6.18]. Every
non-toric rational normal projective variety with a torus action of complexity one is
equivariantly isomorphic to some X(A, P, Σ) arising from Construction 2.2.2.

Any variety X = X(A, P, Σ) inherits many geometric properties from its ambient
toric variety Z. A first observation concerns the restriction of the invariant divisors from
Z to X; see [6, Proposition 3.2.4.5].

Remark 2.2.11. Consider X = X(A, P, Σ) as in Construction 2.2.8. The columns vij

and vk of P define prime divisors Dij = VZ(Tij) and Dk = VZ(Tk) on Z. The restrictions
of them DX

ij = VX(Tij) and DX
k = VX(Sk) are prime divisors on X and in the class

group Cl(Z) = K = Cl(X), we have

[Dij ] = deg(Tij) =
[︁
DX

ij

]︁
, [Dk] = deg(Tk) =

[︁
DX

k

]︁
.

We recover the divisors DX
ij as the components of the critical values ci ∈ P1 of a

certain quotient map; see [42, Proposition 3.16] for a general treatment.

Remark 2.2.12. Consider X = X(A, P, Σ) as in Construction 2.2.8. Consider the open
sets of points having finite isotropy groups with respect to the Ts-action:

Z0 = {z ∈ Z; Ts
z is finite}, X0 = X ∩ Z0 = {x ∈ X; Ts

x is finite}.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Then Z0 ⊆ Z is invariant under the torus Tr+s and X0 ⊆ X is invariant under Ts.
Moreover, we have a commutative diagram

X ⊆

⊆

Z

⊆

X0 →→

//Ts πX
↓↓

Z0
//TsπZ
↓↓

P1 →→ Pr,

where πX and πZ are categorical quotients with respect to the actions of Ts on X and Z
respectively and πZ is a toric morphism. Moreover, we obtain

π−1
X (ci) =

ni⋃︂
j=1

DX
ij ⊆ X, π−1

Z (Ci) =
ni⋃︂

j=1
Dij ⊆ Z

with the toric divisors C0, . . . , Cr ⊆ Pr and the points ci ∈ P1 having the i-th column of
A as its homogeneous coordinates. Finally,

|Ts
xij
| = lij

holds for the order of the isotropy group Ts
xij

of the action of the torus Ts at any general
point xij ∈ DX

ij .

The divisors from Remark 2.2.12 also allow an explicit presentation of an anticanonical
divisor; see [6, Proposition 3.4.4.1].

Remark 2.2.13. Let X = X(A, P, Σ) arise from Construction 2.2.8. Then the anti-
canonical divisor class of X is given as

−KX =
∑︂
i,j

deg(Tij) +
∑︂

k

deg(Sk) − (r − 1)
n0∑︂
i=1

l0j deg(T0j) ∈ K = Cl(X).

In particular, due to deg(Tij) = [DX
ij ] and deg(Tk) = [DX

k ], we have the following
anticanonical divisor on X:

DX
0 :=

∑︂
i,j

DX
ij +

∑︂
k

DX
k − (r − 1)

n0∑︂
j=1

l0jDX
0j .

Example 2.2.14. For the variety X from Example 2.2.9, we can compute the anticanon-
ical class as

−KX = deg(T11) + deg(T21) + deg(S1) = (4, 0̄, 0̄) ∈ Z⊕ Z/2Z⊕ Z/2Z = Cl(X).

In particular, we see that the anticanonical class is ample and, consequently, X is a Fano
variety.
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Remark 2.2.15. Let X = X(A, P, Σ) arise from Construction 2.2.8. We call σ ∈ Σ
an X-cone if the corresponding toric orbit Tr+s · zσ ⊆ Z meets X ⊆ Z. A cone σ ∈ Σ is
an X-cone if and only if one of the following holds:

(i) σ is a big cone, that means v0j0 , . . . , vrjr ∈ σ for some j0, . . . , jr,
(ii) σ is a leaf cone, that means σ ⊆ cone(vi1, . . . , vini , v1, . . . , vm) for some i.

Every X-cone σ ∈ Σ defines an affine open subvariety Xσ =: X ∩ Zσ in X by cutting
down the corresponding affine toric chart Zσ ⊆ Z. Note that X is covered by the Xσ,
where σ runs through the X-cones of Σ.

Example 2.2.16. Consider again the variety X from Example 2.2.9. Then the fan Σ
has exactly four maximal X-cones, namely

cone(v02, v11, v21, v1), cone(v01, v11, v21, v1),
cone(v01, v02, v11, v21), cone(v01, v02, v1).

The first three are big cones, whereas the fourth one is a leaf cone. Thus, X is covered
by four open affine subvarieties, given by the maximal X-cones of Σ.

Let us see how to detect Cartier divisors, that means locally principal Weil divisors,
on a variety X = X(A, P, Σ) in terms of the defining data.

Proposition 2.2.17. Let X = X(A, P, Σ) arise from Construction 2.2.8. Consider on Z
and X the Weil divisors

D =
∑︂

aijDij +
∑︂

akDk, DX =
∑︂

aijDX
ij +

∑︂
akDX

k .

In K = Cl(Z) = Cl(X) consider the classes ω = [D] = [DX ], ωij = [Dij ] = [DX
ij ]

and ωk = [Dk] = [DX
k ] and let σ ∈ Σ an X-cone. Then the following statements are

equivalent:
(i) The divisor DX is Cartier on Xσ.
(ii) The divisor D is Cartier on Zσ.
(iii) We have D = div(χu) on Zσ with a character χu of Tr+s.
(iv) There is u ∈ Zr+s with ⟨u, vij⟩ = aij and ⟨u, vk⟩ = ak for all vij , vk ∈ σ.
(v) We have ω ∈ ⟨ωij , ωk; vij , vk ̸∈ σ⟩ in K = Cl(X).

In particular, D is a Cartier divisor on X if and only if one of these conditions holds for
all maximal X-cones σ ∈ Σ.

Proof. The equivalence of (i), (ii) and (v) follows from Proposition [6, Proposition 3.3.1.5].
The rest is basic toric geometry.

A normal variety X is Q-factorial if every Weil divisor D on X admits a Cartier
multiple nD with n ∈ Z≥1.

Corollary 2.2.18. A variety X = X(A, P, Σ) as in Construction 2.2.8 is Q-factorial if
and only if each X-cone σ ∈ Σ is simplicial.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Now, recall that a variety is Gorenstein if its canonical class is Cartier. Combining
Remark 2.2.13 and Proposition 2.2.17, we obtain the following characterization.

Corollary 2.2.19. Consider X = X(A, P, Σ) and let DX =
∑︁

aijDX
ij +

∑︁
akDX

k be an
anticanonical divisor on X. Then X is Gorenstein if and only if for every maximal X-
cone σ, there is a linear form u ∈ Zr+s with

⟨u, vij⟩ = aij , ⟨u, vk⟩ = ak for all vij , vk ∈ σ.

Example 2.2.20. Consider again the variety X from Example 2.2.9 and the four
maximal X-cones given in Example 2.2.16. Listed accordingly, we have linear forms

(2, 0, 1,−1), (0, 0, 1, 1), (−2, 2,−3, 0), (−1, 1, 1, 0)

representing the anticanonical divisor DX
0 on the corresponding affine open subvarieties

of X. In particular, X is Gorenstein.

If X is a Q-factorial Fano variety of Picard number one, then the divisor class
group Cl(X) allows a positive splitting into a free cyclic part and its torsion part Γ, that
means that we have an isomorphism

Cl(X) ∼= Z⊕ Γ

such that for the anticanonical class ωX = (wX , ηX), the Z-part wX is positive. Note
that in this setting the Z-part of any divisor class ω = (w, η) does not depend on the
particular choice of the splitting.

Corollary 2.2.21. Let X = X(A, P, Σ) be Q-factorial, Gorenstein, Fano and of Picard
number one. Then, for every maximal X-cone σ, the Z-parts wij, wk of the generator
degrees and wX of the anticanonical class satisfy

gcd(wij , wk; vij ̸∈ σ, vk ̸∈ σ) | wX .

Proof. As X is Gorenstein, the canonical class ωX represents a Cartier divisor. Propo-
sition 2.2.17 tells us that for every maximal X-cone σ, the ωX lies in the subgroup
of Cl(X) = K generated by the classes ωij , ωk, where vij ̸∈ σ, vk ̸∈ σ. Thus, the Z-
part wX lies in the ideal of Z generated by the Z-parts wij , wk, where vij ̸∈ σ, vk ̸∈ σ.
The assertion follows.

Finally, we discuss log terminality. Recall that given any resolution of singulari-
ties π : X ′ → X of a normal variety, we have the ramification formula

KX′ − π∗KX =
r∑︂

i=1
aiEi

with canonical divisors on X ′ and X and the exceptional divisors Ei, . . . , Er. Then X
is called log terminal if we have ai > −1 for i = 1, . . . , r. We characterize log ter-
minality of a given Q-factorial Fano variety X = X(A, P, Σ). A platonic tuple is a
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tuple (l0, . . . , lr) of positive integers such that after re-ordering the li decreasingly, we
obtain a tuple (a, b, c, 1, . . . , 1) with (a, b, c) one of

(x, y, 1), (y, 2, 2), (5, 3, 2), (4, 3, 2), (3, 3, 2).

Proposition 2.2.22. See [5, Theorem 3.13]. A Q-factorial Fano variety X = X(A, P, Σ)
has at most log terminal singularities if and only if for any X-cone σ = cone(v0j0 , . . . , vrjr )
the exponents l0j0 , . . . , lrjr form a platonic tuple.

Example 2.2.23. For the variety X = X(A, P, Σ) from Example 2.2.9 we have to
consider the X-cones

cone(v02, v11, v21), cone(v01, v11, v21).

Both of them yield the exponent tuple (1, 4, 2) which is platonic. Consequently, X is log
terminal.

Log terminality leads to the following first constraints on the defining matrix P of
our Fano varieties X = X(A, P, Σ).

Proposition 2.2.24. See [21, Lemma 5.2]. Let X = X(A, P, Σ) a non-toric, Q-factorial,
log terminal Fano threefold of Picard number one, where P is irredundant. Then, after
suitable admissible operations, P fits into one of the following cases:

(i) m = 0, r = 2 and n = 5, where n0 = n1 = 2, n2 = 1,
(ii) m = 0, r = 3 and n = 6, where n0 = n1 = 2, n2 = n3 = 1,
(iii) m = 0, r = 4 and n = 7, where n0 = n1 = 2, n2 = n3 = n4 = 1,
(iv) m = 0, r = 2 and n = 5, where n0 = 3, n1 = n2 = 1,
(v) m = 0, r = 3 and n = 6, where n0 = 3, n1 = n2 = n3 = 1,
(vi) m = 1, r = 2 and n = 4, where n0 = 2, n1 = n2 = 1,
(vii) m = 1, r = 3 and n = 5, where n0 = 2, n1 = n2 = n3 = 1,
(viii) m = 2, r = 2 and n = 3, where n0 = n1 = n2 = 1.

Remark 2.2.25. Every rational Gorenstein del Pezzo surface has at most canonical
singularities and thus is in particular log terminal; see [47]. For Gorenstein Fano varieties
of higher dimension even the latter property need not hold. For instance,

P =

⎡⎢⎢⎢⎣
−3 −1 3 1 0
−3 −1 0 0 k
−4 −1 1 0 k

1 0 0 0 −1

⎤⎥⎥⎥⎦
defines for each k ≥ 4 a Q-factorial Fano threefold X = X(A, P, Σ) of Picard number
one, which is not log terminal by Proposition 2.2.22. More explicitly, Σ consists of all
pointed cones generated by columns of P and we have

X = V
(︁
T 3

01T02 + T 3
11T12 + T k

21
)︁
⊆ P1, k−3, 1, k−3, 1,

[−KX ] = k − 3 ∈ Z = Cl(X).
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Chapter 2. Gorenstein Fano threefolds of Picard number one

This example series shows moreover that the Gorenstein and Fano condition together are
even in the specific setting of threefolds with an action of a two-dimensional torus not
enough to guarantee finiteness in fixed dimension and Picard number.

2.3 Proof of Classification 2.1.1: Preparation

Proposition 2.2.24 divides the proof of the classification theorem into cases (i) to (viii).
These cases are treated in Sections 2.4 to 2.11. The strategy in each of these eight cases
is very formulaic. The pattern is as follows.

(i) Using log terminality and the Gorenstein property, we obtain constraints on the
entries of the defining matrix P , such that each row of P admits at most one entry
which is not bounded by other entries of P . See 2.9.2 for an example.

(ii) We establish unit fraction identities involving the Cox ring data, which bound the
entries of the Z-part of the degree matrix Q0. See 2.9.3 for an example.

(iii) Combining items (i) and (ii), and using the fact that P annihilates the transpose
of Q0, we determine the remaining entries of P . This produces a finite list of
candidates for defining matrices P .

(iv) From the resulting list of explicit matrices P we remove those not defining a
Gorenstein Fano variety and remove redundancies, ie. matrices defining isomorphic
varieties.

For item (iv) we need criteria to decide computationally whether or not given defining
data lead to isomorphic varieties. For this, we say that a defining matrix P as in
Construction 2.2.8 has ordered exponents if we have

(i) n0 ≥ · · · ≥ nr,
(ii) li1 ≥ · · · ≥ lini for each i = 0, . . . , r and
(iii) if ni = ni+1 then li1 ≥ li+1,1.

If P has ordered exponents, then we call the data (n0, . . . , nr, m) the format of P .
Note that via admissible column operations, we can always assume that P has ordered
exponents.

Proposition 2.3.1. Let (A, P, Σ) and (A′, P ′, Σ′) be as in Construction 2.2.8 such that
the associated varieties X and X ′ are isomorphic to each other.

(i) There is an isomorphism φ : X → X ′ which is equivariant with respect to the torus
actions.

(ii) If P and P ′ have ordered exponents, then they share the same format and for each i
there is an i′ with ni′ = ni and (li1, . . . , lini) = (l′i′1, . . . , l′i′ni

) such that

⟨deg(Tij); j = 1, . . . , ni⟩ ∼= ⟨deg(Ti′j); j = 1, . . . , ni⟩

holds for the subgroups in Cl(X) and Cl(X ′), respectively, generated by the corre-
sponding degrees.

Proof. For the first assertion, observe that for any isomorphism φ : X → X ′ of varieties,
we can install a torus action on X ′ making φ equivariant. Now, any torus action of
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complexity one on the non-toric X ′ corresponds to a maximal torus in the affine algebraic
group Aut(X ′); see for instance [7, Theorem 2.1]. Thus, the assertion follows from the
fact that any two maximal tori in an affine algebraic group are conjugate. The second
assertion follows from the first one and the fact that any equivariant isomorphism respects
the data described in Remark 2.2.12.

The following Lemma is a combination of Proposition 2.2.17 and Corollary 2.2.21.
Its specific formulation will be used numerous times throughout Sections 2.4 – 2.11.

Lemma 2.3.2. Let X = X(A, P, Σ) as in Construction 2.2.8. Assume X is non-toric,
Q-factorial, Gorenstein, Fano and of Picard number one.

(i) If there is 0 ≤ i0 ≤ r with ni0 > 1, then for every 1 ≤ j0 ≤ ni0 the cone

σi0j0 := cone( vij , vk ; (i, j) ̸= (i0, j0), k = 1, . . . , m )

is a maximal X-cone. In this case the Z-part wi0j0 is a divisor of wX . Moreover,
if −K =

∑︁
aijDX

ij +
∑︁

akDX
k is an anticanonical divisor on X, then there is a

linear form u ∈ Zr+s with

⟨u, vi0j0⟩ = ai0j0 −
wX

wi0j0
; ⟨u, vij⟩ = aij , ⟨u, vk⟩ = ak

for all (i, j) ̸= (i0, j0) and all k = 1, . . . , m.
(ii) If m ≥ 1 holds, then for every 1 ≤ k0 ≤ m the cone

σk0 := cone( vij , vk ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, k ̸= k0 )

is a maximal X-cone. In this case the Z-part wk0 is a divisor of wX . Moreover,
if −K =

∑︁
aijDX

ij +
∑︁

akDX
k is an anticanonical divisor on X, then there is a

linear form u ∈ Zr+s with

⟨u, vk0⟩ = ak0 −
wX

wk0

; ⟨u, vij⟩ = aij , ⟨u, vk⟩ = ak

for all 0 ≤ i ≤ r, 1 ≤ j ≤ ni and all k ̸= k0.

Proof. We prove (i), Item (ii) is proved similarly. The assumption ni0 > 1 guarantees
that σi0j0 is a big cones, see Remark 2.2.15. Its dimension equals that of Σ, thus
it is a maximal X-cone. We use Corollary 2.2.21 to see that wX is divisible by wi0j0 .
Let −K =

∑︁
aijDX

ij +
∑︁

akDX
k an anitcanonical divisor on X. Applying Proposition 2.2.17

to the X-cone σi0j0 , we obtain a linear form u with ⟨u, vij⟩ = aij for all (i, j) ̸= (i0, j0)
and ⟨u, vk⟩ = ak for all k = 1, . . . , m. Note that the defining matrix P annihilates the
transpose of the Z-part Q0 of the degree matrix. Thus we have

0 = u P (Q0)∗ =
∑︂
i,j

⟨u, vij⟩wij +
∑︂

k

⟨u, vk⟩wk

We solve this equation for ⟨u, vi0j0⟩ to obtain the assertion.
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The second tool that we will use extensively throughout Sections 2.4 – 2.11 is an
upper bound on sums of unit fractions. It involves Sylvester’s sequence, which we
already encountered in Chapter 1, see Definition 1.4.1. We state the relevant part of that
definition, the sequences for g = 1.

Definition 2.3.3. See Definition 1.4.1. We define two integer sequences, Sylvester’s
sequence S = (s1, s2, s3, . . . ) and the truncated Sylvester sequence T = (t1, t2, t3 . . . ) via

s1 := 2, sk := sk(sk − 1) + 1 tk := sk − 1.

Lemma 2.3.4. See [31, Thm. I] and [54, Thm. 1]. For any positive integers a1, . . . , an

the following hold.
(i) If

∑︁n
i=0

1
ai

< 1 holds, then we have
n∑︂

i=1

1
ai
≤

n∑︂
i=0

1
si

= 1− 1
tn+1

.

(ii) If
∑︁n

i=0
1
ai

= 1 holds, then we have

ai ≤ tn for all i = 1 . . . , n.

Example 2.3.5. We describe how we use Lemma 2.3.4 to obtain effective bounds on
the denominators of unit fractions. The first six terms of Sylvester’s sequence are

s1 = 2, s2 = 3, s3 = 7, s4 = 43, s5 = 1807, s6 = 3, 263, 443.

Assume we have four positive integers a1, a2, a3, a4 satisfying 1/a1 + · · ·+ 1/a4 = 1. Then
Lemma 2.3.4 (ii) provides the bound ak ≤ 42 for all k and we can use the computer to
easily enumerate all possible solutions (a1, . . . , a4). Looking at the members of Sylvester’s
sequence shows that the effectiveness of this strategy deteriorates quickly with the
number of summands. Already for six summands, there are in the order of 1038 possible
constellations for (a1, . . . , a6). Nevertheless, this strategy is still effective, if we have more
information about the summands. Assume for example that we are interested in the
positive solutions for the equation

1
a1

+ 1
a2

+ 1
a3

+ 3
a4

= 1.

Naively, splitting the last summand into a sum of three unit fractions, we run into the
problem of computational complexity described above. Instead, we can split off the last
summand, to obtain the inequality

1
a1

+ 1
a2

+ 1
a3

< 1.

Lemma 2.3.4 (i) tells us, that the sum is at most 41/42. We can apply this bound to
the summand that was split off, to get the bound a4 ≤ 126. In this way we are able to
obtain bounds on the denominators which allow us to enumerate all possible solutions
via computer in a reasonable time frame.
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2.4 Proof of Classification 2.1.1: Case 1 - format (2, 2, 1, 0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (i). The setting is as follows.

Setting 2.4.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (2, 2, 1, 0). Then

P = [v01, v02, v11, v12, v21] =

⎡⎢⎢⎢⎣
−l01 −l02 l11 l12 0
−l01 −l02 0 0 l21
d011 d021 d111 d121 d211
d012 d022 d112 d122 d212

⎤⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v11, v12 and v21 generating Q4 as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v11, v12, v21), σ02 = cone(v01, v11, v12, v21),

σ11 = cone(v01, v02, v12, v21), σ12 = cone(v01, v02, v11, v21).

We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w11, w12, w21]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w11, w12, w21) is
primitive in Z5 and generates ker(P ).

Very first constraints on the exponents of the defining relation g come from log
terminality of X.

Proposition 2.4.2. Consider X = X(A, P, Σ) as in Setting 2.4.1. Assume that X is
non-toric, Fano and log-terminal. Then the tuple (l01, l11, l21) fits into precisely one of
the following constellations:

(x, 1, y), x ≥ 1, y ≥ 2; (3, 2, z), 3 ≤ z ≤ 5;
(2, 2, y), y ≥ 2; (z, 2, 3), 4 ≤ z ≤ 5;
(y, 2, 2), y ≥ 3; (z, 3, 2), 3 ≤ z ≤ 5.

Proof. We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21) to see that (l01, l11, l21)
is a platonic tuple. As P has ordered exponents, l01 ≥ l11 holds. Moreover, since X
is non-toric, we have l21 ≥ 2. This leaves us with the six constellations for (l01, l11, l21)
stated in the Proposition.

The next series of constraints arises from log terminality and the Gorenstein property
and directly aims for the entries of the defining matrix P .
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Proposition 2.4.3. Consider X = X(A, P, Σ) as in Setting 2.4.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein. Then the following hold:

(i) An anticanonical divisor on X is explicitly given by

−K = DX
01 + DX

02 + DX
11 + DX

12 + (1− l21)DX
21.

(ii) The weights w01, w02, w11 and w12 are divisors of wX .
(iii) We have 1 ≤ l11 ≤ 3 and l12 ≤ l11.
(iv) Admissible row operations turn the defining matrix P into one of the following

forms, according to the possible values of l11 and l12:

P =

⎡⎢⎢⎢⎣
−l01 −l02 l11 1 0
−l01 −l02 0 0 l21
d011 d021 d111 0 d211
d012 d022 0 0 d212

⎤⎥⎥⎥⎦ ,

1≤l11≤3,

0≤d011≤l21
wX
w01

, 0≤d012≤ wX
w01

,

1≤d111≤l11−1+ wX
w11

,

0≤d211,d212<l21,

P =

⎡⎢⎢⎢⎣
−l01 −l02 l l 0
−l01 −l02 0 0 l21
d011 d021 1 1 d211
d012 d022 0 d122 d212

⎤⎥⎥⎥⎦ ,

2≤l≤3,

1−l01− wX
w01

≤d011≤l01−1+ wX
w01

,

0≤d012<l

(︂
l01+l02

(︂
wX
w01

−1
)︂)︂

,

0≤d021,d022<l02, 1≤d122≤ wX
w12

,

P =

⎡⎢⎢⎢⎣
−l01 −l02 3 2 0
−l01 −l02 0 0 2

1 1− wX
w02

1 1 −1
d012 d022 0 0 d212

⎤⎥⎥⎥⎦ ,
−l01− wX

w01
<d012≤ wX

w01
,

0≤d212≤1.

Proof. Item (i) follows immediately from Remark 2.2.13. Item (ii) follows from applying
Corollary 2.2.21 to the four X-cones σ01, σ02, σ11 and σ12. Item (iii) is a consequence of
Proposition 2.4.2. We prove (iv). There are six possible constellations for (l11, l12), which
we group into three cases as follows:

(a) l12 = 1. The possible constellations are (l11, l12) = (1, 1), (2, 1), (3, 1).
(b) l11 = l21 > 1. The possible constellations are (l11, l12) = (2, 2), (3, 3).
(c) (l11, l12) = (3, 2).

We start with case (a). Assume l12 = 1. By adding multiples of the first row to the
third and fourth row of P we achieve d121 = d122 = 0. Moreover, applying a suitable
unimodular 2×2 matrix to the d-block, we may assume d111 > 0 and d112 = 0. Multiplying
the last row of P by −1 if necessary, we may assume that d012 ≥ 0 holds. We add multiples
of the second row of P to the third and fourth to guarantee 0 ≤ d121, d122 < l21. The
matrix P is now of the form

P =

⎡⎢⎢⎢⎣
−l01 −l02 l11 1 0
−l01 −l02 0 0 l21
d011 d021 d111 0 d211
d012 d022 0 0 d212

⎤⎥⎥⎥⎦ ,

with d012 ≥ 0, d111 > 0 and 0 ≤ d211, d212 < l21. We make use of the Gorenstein property.
Consider the X-cone σ11 = cone(v01, v02, v12, v21). By Lemma 2.3.2 there is a linear
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form u ∈ Z4 with
⟨u, v11⟩ = 1− wX

w11
, ⟨u, v12⟩ = 1.

The second equation yields u1 = 1. Plugging this into the first equation and solving
for d111 we obtain

1− l11 −
wX

w11
= d111u3.

Note that the left hand side of this equation is strictly negative. Thus u3 ̸= 0 holds
and d111 is a divisor of l11 − 1 + wX

w11
. In particular, we get the bound

1 ≤ d111 ≤ l11 − 1 + wX

w11
.

Now consider the X-cones σ01 = cone(v02, v11, v12, v21) and σ02 = cone(v01, v11, v12, v21).
By Lemma 2.3.2 there are linear forms u′, u′′ ∈ Z4 with

⟨u′, v01⟩ = 1− wX
w01

, ⟨u′, v02⟩ = 1,

⟨u′, v11⟩ = 1, ⟨u′, v12⟩ = 1,
⟨u′, v21⟩ = 1− l21.

⟨u′′, v01⟩ = 1, ⟨u′′, v02⟩ = 1− wX
w02

,

⟨u′′, v11⟩ = 1, ⟨u′′, v12⟩ = 1,
⟨u′′, v21⟩ = 1− l21.

Consider their difference u := u′ − u′′. Evaluating u on the columns of P yields

⟨u, v01⟩ = −wX
w01

, ⟨u, v02⟩ = wX
w02

,

⟨u, v11⟩ = 0, ⟨u, v12⟩ = 0,
⟨u, v21⟩ = 0.

(2.4.3.1)

Combining the third and fourth equation of 2.4.3.1 we obtain u1 = u3 = 0. Plugging this
into the first equation and multiplying by l21, we obtain

−l21
wX

w01
= −l01l21u2 + u4l21d012 = u4(l01d212 + l21d012). (2.4.3.2)

In the second step we used the identity u2l21 = −u4d212, which we obtain from the last
equation in 2.4.3.1. Note that the left hand side of Equation 2.4.3.2 is strictly negative.
Thus u4 ̸= 0 and l01d212 + l21d012 ̸= 0 holds and l01d212 + l21d012 is a divisor of l21

wX
w01

.
Using the bounds on d212, we obtain

0 ≤ d012 ≤
wX

w01
.

Finally, to get bounds on d011, consider the following 4× 4 integer matrix:

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 −d212 1 l21
0 0 0 1

⎤⎥⎥⎥⎦ .
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It leaves the first two rows of P unchanged and has determinant det(S) = 1. It thus
consists of admissible row operations of P . Multiplying P from the left by multiples of S,
we achieve

0 ≤ d011 ≤ l01d212 + l21d012 ≤ l21
wX

w01
.

Thus the matrix P is of the first form described in Proposition 2.4.3 (iv).
We treat case (b). Assume l11 = l12 > 1 holds. Let l := l11, this is either 2

or 3. Applying a suitable unimodular 2× 2 matrix to the d-block we achieve d112 = 0.
Primitivity of v11 ensures that d111 ̸= 0. Adding multiples of the first row of P to the
third row and multiplying by −1 if necessary, we achieve d111 = 1. Multiplying the last
row by −1 if necessary, we may assume that d122 ≥ 0 holds. The matrix P is now of the
form

P =

⎡⎢⎢⎢⎣
−l01 −l02 l l 0
−l01 −l02 0 0 l21
d011 d021 1 d121 d211
d012 d022 0 d122 d212

⎤⎥⎥⎥⎦ ,

with d122 ≥ 0. We make use of the Gorenstein property. Consider the X-cone cone(v11, v12).
By Lemma 2.3.2 there is a linear form u ∈ Z4 with

⟨u, v11⟩ = 1, ⟨u, v12⟩ = 1. (2.4.3.3)

The first equation ensures that u3 is coprime to l. In particular u3 ̸= 0 holds. Linear
independence of v11 and v12 guarantees that d122 > 0 holds. We show that via admissible
row operations we can achieve d121 = 1. We write d122 = led2, where e ∈ Z≥0 is chosen
such that d2 is not divisible by l. Combining the two equations from 2.4.3.3 we obtain

u3(d121 − 1) = −leu4d2.

As u3 is not divisible by l, and l is prime, there is d1 ∈ Z such that d121 = led1 + 1 holds.
Let c = gcd(ld1, d2). There are α, β, γ, δ ∈ Z with

c = αld1 + βd2, 1 = αγ + βδ,
γc = ld1, δc = d2,

As d2 is not divisible by l, neither are δ and c. Thus γ is divisible by l. We write γ = lγ′

and δ = lδ′ + f , where f = ±1. Consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

−fδ′ 0 fδ −fγ′

−α 0 lα β

⎤⎥⎥⎥⎦ .

The matrix S leaves the first two rows of P unchanged and it has determinant

det(S) = f(αγ + βδ) = ±1.
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It thus consists of admissible row operations of P . Multiplying P from the left by S
transforms it into the matrix

P =

⎡⎢⎢⎢⎣
−l01 −l02 l l 0
−l01 −l02 0 0 l21
d011 d021 1 1 d211
d012 d022 0 lec d212

⎤⎥⎥⎥⎦ ,

which we again call P . We also write again d122 for lec. The entries dijk are understood
to be indeterminates. Transforming P by S changes their actual values. Consider
the X-cone σ12 = cone(v01, v02, v11, v21). By Lemma 2.3.2 there is a linear form u ∈ Z4

with
⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1,
⟨u, v11⟩ = 1, ⟨u, v12⟩ = 1− wX

w12
,

⟨u, v21⟩ = 1− l21.

(2.4.3.4)

Combining the third and fourth equation of 2.4.3.4 we obtain

−wX

w12
= u4d122.

The left hand side is strictly negative. Thus u4 ̸= 0 holds and d122 is a divisor of wX
w12

. In
particular we get the bounds

1 ≤ d122 ≤
wX

w12
.

We treat the remaining entries of the d-block. We add multiples of the second row
of P to the third and fourth row to achieve 0 ≤ d021, d022 < l02. Consider the X-
cone σ01 = cone(v02, v11, v12, v21). By Lemma 2.3.2 there is a linear form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v11⟩ = 1, ⟨u, v12⟩ = 1,
⟨u, v21⟩ = 1

(2.4.3.5)

Combining the third and fourth equation of 2.4.3.5 we obtain u4 = 0 plugging this into
the first equation and multiplying by l02 yields

l02

(︃
1− wX

w01

)︃
= −l01l02(u1 + u2) + u3l02d011 = l01 + u3(l02d011 − l01d021). (2.4.3.6)

In the second step we used the identity l02(u1 + u2) = u3d021 − 1, which we obtain from
the second equation in 2.4.3.5. Not that both u3 and l02d011 − l01d021 are non-trivial.
Subtracting l01 on both sides in Equation 2.4.3.6 and using the bounds on d021 we obtain

1− l01 −
wX

w01
≤ d011 ≤ l01 − 1 + wX

w01
.

To get bounds on d012 consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

−l02 ld021 + l02 l l02 1

⎤⎥⎥⎥⎦ .
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It leaves the first two rows of P unchanged and has determinant det(S) = 1. It thus
consists of admissible row operations of P . Note that S also leaves the columns v02, v11
andv12 unchanged. Multiplying P from the left by multiples of S we achieve

0 ≤ d012 ≤ |l(l02d011 − l01d021)| < l

(︃
l01 + l02

(︃
wX

w01
− 1

)︃)︃
.

This shows that the matrix P is of the second form described in Proposition 2.4.3 (iv).
We treat case (c). Assume (l11, l12) = (3, 2) holds. Note that by Proposition 2.4.2

we then also have l21 = 2. Consider the X-cone σ02 = cone(v01, v11, v12, v21). By
Lemma 2.3.2 there is a linear form u ∈ Z4 with

⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1− wX
w02

,

⟨u, v11⟩ = 1, ⟨u, v12⟩ = 1,
⟨u, v21⟩ = −1.

(2.4.3.7)

Consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

u1 u2 u3 u4
d111d122 − d112d121 0 2d112 − 3d122 3d121 − 2d111

⎤⎥⎥⎥⎦ .

It leaves the first two rows of P unchanged and has determinant

det(S) = (3d121 − 2d111)u3 + (3d122 + 2d112)u4 = 3⟨u, v12⟩ − 2⟨u, v11⟩ = 1.

The matrix S thus consists of admissible row operations of P . Multiplying P from the
left by S transforms it into the matrix

P =

⎡⎢⎢⎢⎣
−l01 −l02 3 2 0
−l01 −l02 0 0 2

1 1− wX
w02

1 1 −1
d012 d022 0 0 d212

⎤⎥⎥⎥⎦ ,

which we again call P . The entries dijk are understood to be indeterminates. Transform-
ing P by S changes their actual values. We add multiples of the second row of P to the
fourth row to achieve

0 ≤ d212 ≤ 1.

Consider now the X-cone σ01 = cone(v02, v11, v12, v21). By Lemma 2.3.2 there is a linear
form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v11⟩ = 1, ⟨u, v12⟩ = 1,
⟨u, v21⟩ = −1.

(2.4.3.8)

Combining the third and fourth equation yields u1 = 0 and u3 = 1. Plugging this into
the first equation and multiplying by 2, we obtain

2− 2 wX

w01
= 2− 2l01u2 + 2u4d012 = 2 + u4(2d012 + l01d212). (2.4.3.9)
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In the second step we used the identity 2u2 = −u4d212, which we obtain from the last
equation of 2.4.3.8. Note that both u4 and 2d012 + l01d212 are non-trivial. Subtracting 2
on both sides of Equation 2.4.3.9 and using the bounds on d212 we obtain

−l01 −
wX

w01
< d012 ≤

wX

w01
.

This shows that the matrix P is of the third form described in Proposition 2.4.3 (iv),
which completes the proof.

The final series of constraints shows that all entries of the Z-part of the degree matrix
Q0 = [w01, w02, w11, w12, w21] are bounded.

Proposition 2.4.4. Consider X = X(A, P, Σ) as in Setting 2.4.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any four positive integers α01, α02, α11 and α12 consider the 6× 5 matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1− α01 1 1− l11 1− l12 1
1 1− α02 1− l11 1− l12 1
1 1 1− l11 − α11 1− l12 1
1 1 1− l11 1− l12 − α12 1
−l01 −l02 l11 l12 0
−l01 −l02 0 0 l21

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix G is of rank at least four. Moreover, rank(G) = 4 holds if and only
if α01, α02, α11, α12 and l01, l02, l11, l12, l21 satisfy the identities(︃

l01
α01

+ l02
α02

)︃
−
(︃

l11
α11

+ l12
α12

)︃
= 0,

1
α01

+ 1
α02

+ 1
α11

+ 1
α12

+
(︃

l11
α11

+ l12
α12

)︃(︃ 1
l21
− 1

)︃
= 1.

(ii) There are unique α01, α02, α11, α12 ∈ Z≥1 with αijwij = wX for all 0 ≤ i ≤ 1 and
all 1 ≤ j ≤ 2 and the corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w11, w12, w21).

(iii) According to the possible constellations of (l01, l11, l21) from Proposition 2.4.2 we
have the following upper bounds on the entries of the matrix G from (ii):

l01 l02 l11 l12 l21 α01 α02 α11 α12
(x, 1, y) 83 42 1 1 12 21 21 42 6
(2, 2, y) 2 2 2 2 24 42 42 42 42
(y, 2, 2) 23 12 2 2 2 6 6 12 3
(3, 2, z) 3 3 2 2 5 21 21 2 21
(z, 2, 3) 5 5 2 2 3 21 21 4 21
(z, 3, 2) 5 5 3 3 2 903 35 15 28
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Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting rows 5 and 6 and column 1:

G(1,2,3,4),(2,3,4,5) = det

⎡⎢⎢⎢⎣
1 1− l11 1− l12 1
1− α02 1− l11 1− l12 1
1 1− l11 − α11 1− l12 1
1 1− l11 1− l12 − α12 1

⎤⎥⎥⎥⎦ = α02α11α12 ̸= 0.

Moreover, G is of rank exactly four if and only if all its 5-minors vanish. Rearranging these
six equations and removing redundancies, we arrive at the identities in α01, α02, α11, α12
and l01, l02, l11, l12, l21.

We prove (ii). By Proposition 2.4.3 (ii) there are positive integers αij for 0 ≤ i ≤ 1
and 1 ≤ j ≤ 2 with

αijwij = w01 + w02 + (1− l11)w11 + (1− l12)w12 + w21.

Moreover, by homogeneity of the defining relation g we have

l01w01 + l02w02 = l11w11 + l12w12 = l21w21.

The matrix G from (i) is the coefficient matrix of the corresponding system of linear
equations. In particular, the integral matrix G has kernel generated by the primitive
vector (w01, w02, w11, w12, w21) ∈ Z5.

We prove (iii). We treat the configuration (l01, l11, l21) = (x, 1, y). In this case the
identities from (i) read

x

α01
+ l02

α02
−
(︃ 1

α11
+ 1

α12

)︃
= 0, (2.4.4.1)

1
y

(︃ 1
α11

+ 1
α12

)︃
+ 1

α01
+ 1

α02
= 1. (2.4.4.2)

The first summand on the left hand side of Equation 2.4.4.2 is positive. The rest of the
sum is thus strictly smaller than one. We can thus apply Lemma 2.3.4 (i) to obtain

1
α01

+ 1
α02

≤ 5
6 ,

1
y

(︃ 1
α11

+ 1
α12

)︃
≥ 1

6 .

Since l11 and l12 are equal, we may assume α11 ≥ α12. Moreover we have x ≥ l02 ≥ 1
and y ≥ 2. From this we get the bounds α12 ≤ 6 and y ≤ 12. On the other hand, we can
apply Lemma 2.3.4 (ii) to Equation 2.4.4.2 directly, to obtain yα01, yα02, α11 ≤ 42. As y
is at least two, this gives the bounds α01, α02 ≤ 21. With these bounds on αij , we can
rewrite Equation 2.4.4.1 to obtain

2 ≥ 1
α11

+ 1
α12

= x

α01
+ l02

α02
≥ 1

42(x + l02).

Since l02 is at least one and bounded from above by x, we obtain the bounds x ≤ 83
and l02 ≤ 42.
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We treat the configuration (l01, l11, l21) = (2, 2, y). In this case the identities from (i)
read (︃ 2

α01
+ l02

α02

)︃
−
(︃ 2

α11
+ l12

α12

)︃
= 0, (2.4.4.3)

1
α01

+ 1
α02

+ 1
α11

+ 1
α12

+
(︃ 2

α01
+ l02

α02

)︃(︃1
y
− 1

)︃
= 1. (2.4.4.4)

Combining these two equations we obtain the following identity

1 = 2− l02
2α02

+ 2− l12
2α12

+ 1
y

(︃ 2
α01

+ l02
α02

)︃
. (2.4.4.5)

As the last summand on the right hand side is positive, the rest of the sum is strictly
smaller than one. Note that the numerators of the first two summands are either 0
or 1, since we have 1 ≤ l02, l12 ≤ 2. Thus each one either vanishes or is a unit fraction.
Applying Lemma 2.3.4 (i) to the first two summands, we thus obtain

2− l02
2α02

+ 2− l12
2α12

≤ 5
6 ,

1
y

(︃ 2
α01

+ l02
α02

)︃
≥ 1

6 .

With the second inequality we can give an upper bound on y by

y ≤ 6
(︃ 2

α01
+ l02

α02

)︃
≤ 24.

In order to obtain bounds on α01 and α02 we rearrange Equation 2.4.4.5. Combining the
fractions that contain α02 in the denominator, we get

1 = (2− l02)y + 2l02
2yα02

+ 2− l12
2α12

+ 2
yα01

. (2.4.4.6)

The first summand on the right hand side is positive, so the remaining sum is strictly
smaller than one. As it consists of at most three unit fractions, we apply Lemma 2.3.4 (i)
to obtain

2− l12
2α12

+ 1
yα01

+ 1
yα01

≤ 41
42 ,

(2− l02)y + 2l02
2yα02

≥ 1
42 .

We solve the second inequality for α02, using y ≥ 2 to obtain α02 ≤ 42. Instead of
splitting off the first summand in Equation 2.4.4.6, we can split off the last summand
and again invoke Lemma 2.3.4 (i) to obtain

(2− l02)y + 2l02
2yα02

+ 2− l12
2α12

≤ 41
42 ,

2
yα01

≥ 1
42 .

The second inequality gives the bound α01 ≤ 42. Note that the equations 2.4.4.3
and 2.4.4.4 are invariant under switching α01 with α11 and α02 with α12. We thus get
the same bounds α11 ≤ 42 and α12 ≤ 42.
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We treat the configuration (l01, l11, l21) = (y, 2, 2). In this case the identities from (i)
read (︃

y

α01
+ l02

α02

)︃
−
(︃ 2

α11
+ l12

α12

)︃
= 0, (2.4.4.7)

1
α01

+ 1
α02

+ 2− l12
2α12

= 1. (2.4.4.8)

Note that the numerator of the last summand in Equation 2.4.4.8 is either 0 or 1. It
is thus a sum of at most three unit fractions. Applying Lemma 2.3.4 (ii) we get the
bounds α01, α02 ≤ 6 and α12 ≤ 3. Using these bounds on α01 and α02, we rearrange
Equation 2.4.4.7 to obtain

4 ≥ 2
α11

+ l12
α12

= y

α01
+ l02

α02
≥ 1

6(y + l02).

Since l02 is at least one and bounded from above by y, we get the bounds y ≤ 23
and l02 ≤ 12. Now solving Equation 2.4.4.7 for α11 and applying the bounds that we
already established, we obtain α11 ≤ 12.

We treat the configuration (l01, l11, l21) = (3, 2, z). In this case the identities from (i)
read (︃ 3

α01
+ l02

α02

)︃
−
(︃ 2

α11
+ l12

α12

)︃
= 0, (2.4.4.9)

1
α01

+ 1
α02

+ 1
α11

+ 1
α12

+
(︃ 3

α01
+ l02

α02

)︃(︃1
z
− 1

)︃
= 1. (2.4.4.10)

We combine these two equations to obtain the following identity:

1 = 6− z

2zα01
+ (2− l02)z + 2l02

2zα02
+ 2− l12

2α12
.

We determine the possible values of the numerators of the three summands on the right.
We have 3 ≤ z ≤ 5. In this range 2z is divisible by 6 − z. The first summand is thus
a unit fraction. The exponent l02 can be either 1, 2 or 3. The numerator of the second
summand thus evaluates to z + 2, 4 or 6− z. In all cases the second summand can be
written as a sum of at most two unit fractions. The numerator of the last summand is
either 0 or 1. Thus the right hand side is a sum of at most four unit fractions and their
denominators are each at least 2αij . We apply Lemma 2.3.4 (ii) to obtain the bounds
α01, α02, α12 ≤ 21. Now solving Equation 2.4.4.9 for α11 and applying the bounds already
established, we obtain α11 ≤ 2.

We treat the configuration (l01, l11, l21) = (z, 2, 3). In this case the identities from (i)
read (︃

z

α01
+ l02

α02

)︃
−
(︃ 2

α11
+ l12

α12

)︃
= 0, (2.4.4.11)

1
α01

+ 1
α02

+ 1
α11

+ 1
α12
− 2

3

(︃ 2
α11

+ l12
α12

)︃
= 1. (2.4.4.12)
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We combine these two equations to obtain the following identity:

1 = 6− z

6α01
+ 6− l02

6α02
+ 2− l12

2α12
.

Just as in the previous case, the right hand side is a sum of at most four unit fractions
with the denominators at least 2αij . We apply Lemma 2.3.4 (ii) to obtain the bounds
α01, α02, α12 ≤ 21. Solving Equation 2.4.4.11 for α11, using the bounds we already
obtained, we get α11 ≤ 4.

We treat the configuration (l01, l11, l21) = (z, 3, 2). In this case the identities from (i)
read (︃

z

α01
+ l02

α02

)︃
−
(︃ 3

α11
+ l12

α12

)︃
= 0, (2.4.4.13)

1
α01

+ 1
α02

+ 1
α11

+ 1
α12
− 1

2

(︃
z

α01
+ l02

α02

)︃
= 1. (2.4.4.14)

We combine these two equations to obtain the following identity:

1 = 6− z

6α01
+ 6− l02

6α02
+ 3− l12

3α12
. (2.4.4.15)

Note that the denominator of the second summand can take the values 1 through 5.
Thus, in contrast to the previous two cases, in this case the bounds on αij we obtain
from directly applying Lemma 2.3.4 (ii) are too large to be useful: The right hand side
is a sum of at most 5 unit fractions. Their denominators are thus bounded from above
by s8 − 1, which is of order 107. Instead we adapt the strategy from the earlier cases.
Note that each summand is non-negative. Splitting off the second summand, the rest is
a sum of at most three unit fractions. Lemma 2.3.4 (i) yields

6− z

6α01
+ 3− l12

3α12
≤ 41

42 ,
6− l02
6α02

≥ 1
42 .

From the second inequality we get the bound α02 ≤ 35. Splitting off the first summand
in Equation 2.4.4.15 instead of the second, the remainder is a sum of at most four unit
fractions and we obtain α01 ≤ 903. Splitting off the last summand, we obtain α12 ≤ 28.
Now we solve Equation 2.4.4.13 for α11 and use the bounds on the αij we obtained to
get α11 ≤ 15.

Corollary 2.4.5. There is a list of 262 explicitly given matrices P of format (2, 2, 1, 0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X(A, P, Σ) of Picard number one.
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Z Z+Z2 Z+Z3 Z+Z4 Z+Z5 Z+Z6 Z+Z2
2 Z+Z2+Z4 Z+Z2

3 Z+Z3
2 sum

(x, 1, y) 94 24 8 3 1 1 2 1 1 135
(2, 2, y) 9 9 1 3 1 23
(y, 2, 2) 31 25 2 4 62
(3, 2, z) 6 1 7
(z, 2, 3) 5 5
(z, 3, 2) 21 8 1 30

sum 166 67 9 6 1 1 9 1 1 1 262
Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2, 2, 1, 0) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.4.4 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w11, w12, w21] by computer. Now, recall
that P annihilates the transpose of Q0. This enables us to determine in the matrix P ,
adjusted according to Proposition 2.4.3 (iv), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P . Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we obtain the list presented in the assertion.

2.5 Proof of Classification 2.1.1: Case 2 - format (2, 2, 1, 1, 0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (ii). The setting is as follows.

Setting 2.5.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (2, 2, 1, 1, 0). Then

P = [v01, v02, v11, v12, v21, v31] =

⎡⎢⎢⎢⎢⎢⎣
−l01 −l02 l11 l12 0 0
−l01 −l02 0 0 l21 0
−l01 −l02 0 0 0 l31
d011 d021 d111 d121 d211 d311
d012 d022 d112 d122 d212 d312

⎤⎥⎥⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v11, v12, v21 and v31 generating Q5

as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v11, v12, v21, v31), σ02 = cone(v01, v11, v12, v21, v31),

σ11 = cone(v01, v02, v12, v21, v31), σ12 = cone(v01, v02, v11, v21, v31).
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We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w11, w12, w21, w31]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w11, w12, w21, w31)
is primitive in Z6 and generates ker(P ).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P .

Proposition 2.5.2. Consider X = X(A, P, Σ) as in Setting 2.5.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) We have l11 = l12 = 1 and the tuple (l01, l11, l21, l31) fits into precisely one of the
following constellations:

(1, 1, x, y), x ≥ y ≥ 2; (2, 1, z, 3), 3 ≤ z ≤ 5;
(2, 1, y, 2), y ≥ 2; (3, 1, z, 2), 3 ≤ z ≤ 5;
(y, 1, 2, 2), y ≥ 3; (z, 1, 3, 2), 4 ≤ z ≤ 5.

(ii) −K = (1− l01)DX
01 + (1− l02)DX

02 + DX
11 + DX

21 is an anitcanonical divisor on X.
In particular, the free part of the anticanonical class is given by

wX = (1− l01)w01 + (1− l02)w02 + w21 + w31.

(iii) Admissible row operations turn the defining matrix P into the form

P =

⎡⎢⎢⎢⎢⎢⎣
−l01 −l02 1 1 0 0
−l01 −l02 0 0 l21 0
−l01 −l02 0 0 0 l31
d011 d021 0 d121 d211 d311
d012 d022 0 0 d212 d312

⎤⎥⎥⎥⎥⎥⎦ ,

l01≥l02≥1, l21≥l31≥2,

0≤d011,d012<l01,

0≤d021<l01
wX
w02

,

− wX
w02

≤d022<l02+ wX
w02

,

1≤d121≤ wX
w12

, 0≤d311,d312<l31,

where w02 | wX and w12 | wX .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21, v31)
to see that (l01, l11, l21, l31) is a platonic tuple. As P has ordered exponents, l01 ≥ l11
and l21 ≥ l31 holds. Moreover, since X is non-toric, we have l31 ≥ 2. Thus we have l11 = 1
and consequently l12 = 1. This leaves us with the six constellations for (l01, l11, l21, l31)
stated in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity
of the defining relations g0 and g1.

We prove (iii). Adding multiples of the first row of P to the fourth and fifth row, we
achieve d111 = d112 = 0. We apply a suitable unimodular 2 × 2 matrix to the d-block
to ensure d122 = 0 and d121 ≥ 0. By linear independence of v11 and v12 the entry d121
is positive. By adding multiples of the second row to the fourth and fifth row, we
may assume 0 ≤ d011, d012 < l01. We make use of the Gorenstein property. Consider
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the X-cone σ12 = cone(v01, v02, v11, v21, v31). By Lemma 2.3.2 we have w12 | wX and
there is a linear form u ∈ Z5 with

⟨u, v01⟩ = 1− l01, ⟨u, v02⟩ = 1− l02,
⟨u, v11⟩ = 0, ⟨u, v12⟩ = −wX

w12
,

⟨u, v21⟩ = 1, ⟨u, v31⟩ = 1.

By the third equation u1 = 0 holds. Plugging this into the fourth equation, we obtain

−wX

w12
= u4d121.

Thus d121 divides wX
w12

. In particular, we get the bounds 1 ≤ d121 ≤ wX
w12

. Now consider
the X-cone σ02 = cone(v01, v11, v12, v21, v31). By Lemma 2.3.2 we have w02 | wX and
there is a linear form u ∈ Z5 with

⟨u, v01⟩ = 1− l01, ⟨u, v02⟩ = 1− l02 − wX
w02

,

⟨u, v11⟩ = 0, ⟨u, v12⟩ = 0,
⟨u, v21⟩ = 1, ⟨u, v31⟩ = 1.

(2.5.2.1)

Again, by the third equation, u1 = 0 holds. Plugging this into the fourth equation now
yields u4 = 0. Plugging this into the second equation and multiplying by l01, we obtain

l01

(︃
1− l02 −

wX

w02

)︃
= −l02l01(u2 +u3)+u5l01d022 = u5(l01d022− l02d012)+ l02(1− l01).

In the second step we used the identity l01(u2 + u3) = l01 + u5d012 − 1, which we obtain
from the firs equation in 2.5.2.1. We subtract l02(1− l01) on both sides to obtain

u5(l01d022 − l02d012) = l01

(︃
1− wX

w02

)︃
− l02.

As the right hand side is negative, the left hand side thus not vanish. Thus we have u5 ̸= 0
as well as (l01d022 − l02d012) ̸= 0 and (l01d022 − l02d012) is a divisor of l01

(︂
1− wX

w02

)︂
− l02.

Solving for d022 und using the bounds on d012, we obtain

−wX

w02
≤ d022 < l02 + wX

w02
.

Adding the d012-fold of the third row and the l01-fold of the fifth row of P to the fourth
row leaves the first, second and third entry unchanged. We repeat this to achieve

0 ≤ d021 < |l01d022 − l02d012| ≤ l01

(︃
wX

w02
− 1

)︃
+ l02 ≤ l01

wX

w02
.

Finally we add multiples of the difference of the second and third row of P to the fourth
and fifth row to obtain 0 ≤ d311, d312 < l31.

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w02, w11, w12, w21, w31] are bounded.
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Proposition 2.5.3. Consider X = X(A, P, Σ) as in Setting 2.5.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any four positive integers α01, α02, α11 and α12 consider the 7× 6 matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− l01 − α01 1− l02 0 0 1 1
1− l01 1− l02 − α02 0 0 1 1
1− l01 1− l02 −α11 0 1 1
1− l01 1− l02 0 −α12 1 1
−l01 −l02 1 1 0 0
−l01 −l02 0 0 l21 0
−l01 −l02 0 0 0 l31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix G is of rank at least 5. Moreover, rank(G) = 5 holds if and only
if α01, α02, α11, α12 and l01, l02, l21, l31 satisfy the identities

l01
α01

+ l02
α02
− 1

α11
− 1

α12
= 0,

1
α01

+ 1
α02

+
(︃

l01
α01

+ l02
α02

)︃(︃ 1
l21

+ 1
l31
− 1

)︃
= 1.

(ii) There are unique α01, α02, α11, α12 ∈ Z≥1 with αijwij = wX for all 0 ≤ i ≤ 1 and
all 1 ≤ j ≤ 2 and the corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w11, w12, w21, w31).

(iii) According to the possible constellations of (l01, l11, l21, l31) from Proposition 2.5.2 (i)
we have the following upper bounds on the entries of the matrix G from (ii). An
empty line indicates that this exponent configuration does not occur.

l01 l02 l11 l12 l21 l31 α01 α02 α11 α12
(1, 1, x, y) 1 1 1 1 42 4 21 2 21 2
(2, 1, y, 2) 2 2 1 1 6 2 12 3 3 3
(y, 1, 2, 2) 3 3 1 1 2 2 2 2 1 1
(2, 1, z, 3)
(3, 1, z, 2) 3 1 1 1 5 2 3 1 1 1
(z, 1, 3, 2)

Proof. We prove (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting rows 5 and 7 and column 1:

det

⎡⎢⎢⎢⎢⎢⎣
1− l02 0 0 1 1
1− l02 − α02 0 0 1 1
1− l02 −α11 0 1 1
1− l02 0 −α12 1 1
−l02 0 0 l21 0

⎤⎥⎥⎥⎥⎥⎦ = −α02α11α12l21 ̸= 0.
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Moreover, G is of rank exactly five if and only if all its 6-minors vanish. Rearranging these
seven equations and removing redundancies, we arrive at the identities in α01, α02, α11, α12
and l01, l02, l21, l31.

We prove (ii). Applying Corollary 2.2.21 to the four maximal X-cones σ01, σ02, σ11,
and σ12 we see that each of w01, w02, w11, and w12 is a divisor of wX and hence we
obtain positive integers αij for 0 ≤ i ≤ 1 and 1 ≤ j ≤ 2 with

αijwij = (1− l01)w01 + (1− l02)w02 + w21 + w31.

Moreover, by homogeneity of the defining relations g0 and g1 we have

l01w01 + l02w02 = w11 + w12 = l21w21 = l31w31.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (w01, w02, w11, w12, w21, w31) ∈ Z6.

We prove (iii). We treat the configuration (l01, l11, l21, l31) = (1, 1, x, y). In this case
the identities from (i) read

1
α01

+ 1
α02
− 1

α11
− 1

α12
= 0, (2.5.3.1)(︃ 1

α01
+ 1

α02

)︃(︃1
x

+ 1
y

)︃
= 1. (2.5.3.2)

Since l01 = l02 and l11 = l12 we may assume α01 ≥ α02 and α11 ≥ α12. Moreover we have
x ≥ y. With these assumptions, Equation 2.5.3.2 immediately gives the bounds α02 ≤ 2
and y ≤ 4. Moreover, we may expand Equation 2.5.3.2 into a sum of four unit fractions.
Lemma 2.3.4 (ii) then gives the bounds α01 ≤ 21 and x ≤ 42. We use Equation 2.5.3.1
and the bounds on α01 and α02 to obtain α11 ≤ 21 and α12 ≤ 2.

We treat the configuration (l01, l11, l21, l31) = (2, 1, y, 2). In this case the identities
from (i) read

2
α01

+ l02
α02
− 1

α11
− 1

α12
= 0, (2.5.3.3)

2− l02
2α02

+ 1
y

(︃ 2
α01

+ l02
α02

)︃
= 1. (2.5.3.4)

We use Equation 2.5.3.3 to replace the term in the brackets in 2.5.3.4 and obtain
2− l02
2α02

+ 1
yα11

+ 1
yα12

= 1,

which is a sum of at most 3 unit fractions. We can thus apply Lemma 2.3.4 (ii) to get the
bounds α11, α12 ≤ 3 and y ≤ 6. Combining this equation with 2.5.3.3 and considering
the two cases l02 = 1 and l02 = 2, we obtain the bounds α01 ≤ 12 and α02 ≤ 3.

We treat the configuration (l01, l11, l21, l31) = (y, 1, 2, 2). In this case the identities
from (i) read

y

α01
+ l02

α02
− 1

α11
− 1

α12
= 0,

1
α01

+ 1
α02

= 1.
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The second equation immediately yields α01 = α02 = 2. Plugging this into the first
equation yields y = 3, l02 = 1 and α11 = α12 = 1.

We treat the configuration (l01, l11, l21, l31) = (2, 1, z, 3). In this case the identities
from (i) read

2
α01

+ l02
α02
− 1

α11
− 1

α12
= 0, (2.5.3.5)

6− z

3zα01
+ (3− 2l02)z + 3l02

3zα02
= 1. (2.5.3.6)

Since l11 = l12 we may assume α11 ≥ α12. We have 3 ≤ z ≤ 5 In this range, 6− z is a
divisor of z. Thus the first summand of Equation 2.5.3.6 is at most 1/3. For the second
summand this means

(3− 2l02)z + 3l02
3zα02

≥ 2
3 .

This inequality is only fulfilled for z = 3, l02 = 1 and α02 = 1 and in this case equality
holds. Thus we also have α01 = 1. Plugging these values into Equation 2.5.3.5, we obtain

1
α11

+ 1
α12

= 3,

which is a contradiction. Thus, the exponent configuration (l01, l11, l21, l31) = (2, 1, z, 3)
does not occur.

We treat the configuration (l01, l11, l21, l31) = (3, 1, z, 2). In this case the identities
from (i) read

3
α01

+ l02
α02
− 1

α11
− 1

α12
= 0, (2.5.3.7)

6− z

2zα01
+ (2− l02)z + 2l02

2zα02
= 1. (2.5.3.8)

As before, 6− z is a divisor of z for 3 ≤ z ≤ 5, thus the first summand in Equation 2.5.3.8
is at most 1/2. For the second summand this means.

(2− l02)z + 2l02
2zα02

≥ 1
2 .

This inequality is only fulfilled for α02 = 1. The second summand in Equation 2.5.3.8 is
a sum of at most two unit fractions. Applying Lemma 2.3.2 (i), we obtain

6− z

2zα01
≥ 1

6 ,

which gives the bound α01 ≤ 3. Plugging these into Equation 2.5.3.7, we get the
bounds l02 = 1, α11 = 1 and α12 = 1.
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We treat the configuration (l01, l11, l21, l31) = (z, 1, 3, 2), where z ≥ 4. In this case the
identities from (i) read

z

α01
+ l02

α02
− 1

α11
− 1

α12
= 0, (2.5.3.9)

6− z

6α01
+ 6− l02

6α02
= 1. (2.5.3.10)

The left hand side of Equation 2.5.3.10 is a sum of at most three unit fractions, each with
denominator at least 2αij . We apply Lemma 2.3.2 (ii) to obtain the bounds α01, α02 ≤ 3.
Combining Equations 2.5.3.9 and 2.5.3.10, we get the identity

1
α11

+ 1
α12

= 6
(︃ 1

α01
+ 1

α02
− 1

)︃
.

This equation is only fulfilled if exactly one of α01 and α02 is equal to one , the other one
is equal to three and α11 = α12 = 1. Plugging this into Equation 2.5.3.9, we obtain

2 = z

α01
+ l02

α02
≥ 4

α01
+ 1

α02
≥ 7

3 ,

which is a contradiction. Thus, the exponent configuration (l01, l11, l21, l31) = (z, 1, 3, 2)
does not occur. This completes the proof.

Corollary 2.5.4. There is a list of 10 explicitly given matrices P of format (2, 2, 1, 1, 0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X(A, P, Σ) of Picard number one.

Z Z+Z2 Z+Z3 Z+Z4 Z+Z2
2 Z+Z2+Z4 sum

(1, 1, x, y) 1 1 1 1 1 5
(2, 1, y, 2) 1 2 1 4
(y, 1, 2, 2) 0
(3, 1, z, 2) 1 1

sum 3 3 1 1 1 1 10
Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2, 2, 1, 1, 0) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.5.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w11, w12, w21, w31] by computer. Recall
that P annihilates the transpose of Q0. This enables us to determine in the matrix P ,
adjusted according to Proposition 2.5.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P . Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we obtain the list presented in the assertion.
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2.6 Proof of Classification 2.1.1: Case 3 - format (2, 2, 1, 1, 1, 0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (iii). The setting is as follows.

Setting 2.6.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (2, 2, 1, 1, 1, 0). Then

P = [v01, v02, v11, v12, v21, v31, v41] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−l01 −l02 l11 l12 0 0 0
−l01 −l02 0 0 l21 0 0
−l01 −l02 0 0 0 l31 0
−l01 −l02 0 0 0 0 l41
d011 d021 d111 d121 d211 d311 d411
d012 d022 d112 d122 d212 d312 d412

⎤⎥⎥⎥⎥⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v11, v12, v21, v31 and v41 generat-
ing Q6 as a cone. We assume P to have ordered exponents. The maximal X-cones of the
fan Σ of Z are given by

σ01 = cone(v02, v11, v12, v21, v31, v41), σ02 = cone(v01, v11, v12, v21, v31, v41),

σ11 = cone(v01, v02, v12, v21, v31, v41), σ12 = cone(v01, v02, v11, v21, v31, v41).

We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w11, w12, w21, w31, w41]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w11, w12, w21, w31, w41)
is primitive in Z7 and generates ker(P ).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P .

Proposition 2.6.2. Consider X = X(A, P, Σ) as in Setting 2.6.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) We have l01 = l02 = 1 as well as l11 = l12 = 1. Moreover, the tuple of expo-
nents (l01, l11, l21, l31, l41) fits into precisely one of the following constellations:

(1, 1, y, 2, 2), y ≥ 2; (1, 1, z, 3, 2), 3 ≤ z ≤ 5.

(ii) −K = (1 − l21)DX
21 + DX

31 + DX
41 is an anticanonical divisor on X. In particular,

the free part of the anticanonical divisor class of X is given by

wX = (1− l21)w21 + w31 + w41.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

(iii) Admissible row operations turn the defining matrix P into the form

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 0 0 0
−1 −1 0 0 l21 0 0
−1 −1 0 0 0 l31 0
−1 −1 0 0 0 0 l41

0 d021 0 d121 d211 d311 d411
0 0 0 d122 d212 d312 d412

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

l21≥l31≥l41>1,

1≤d021≤ wX
w02

,

0≤d121<d122≤ wX
w12

,

0≤d311,d312<l31,

0≤d411,d412<l41,

where w02 | wX and w12 | wX .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21, v31, v41)
to see that (l01, l11, l21, l31, l41) is a platonic tuple. As P has ordered exponents, we
have l01 ≥ l11, l21 ≥ l31 and l31 ≥ l41. Moreover, since X is non-toric, l41 ≥ 2 holds. Thus
we have l01 = 1 as well as l11 = 1 and consequently l02 = l12 = 1. This leaves us with
the two constellations for (l01, l11, l21, l31, l41) stated in the assertion. Item (ii) follows
immediately from Remark 2.2.13 and homogeneity of the defining relations g0, g1 and g2.

We prove (iii). We add multiples of the first row of P to the fifth and sixth row to
achieve d111 = d112 = 0 and we add multiples of the second row to the fifth and sixth
row to achieve d011 = d012 = 0. Multiplying the d-block by a suitable 2× 2 unimodular
matrix, we may assume that d022 = 0 and d021 ≥ 0 holds. Linear independence of v01
and v02 ensures that d021 is positive. Multiplying the last row by −1 if necessary, we
may assume d122 ≥ 0. We make use of the Gorenstein property. Consider the X-
cone σ02 = cone(v01, v11, v12, v21, v31, v41). By Lemma 2.3.2 we have w02 | wX and there
is a linear form u ∈ Z6 with

⟨u, v01⟩ = 0, ⟨u, v02⟩ = −wX
w02

,

⟨u, v11⟩ = 0, ⟨u, v12⟩ = 0,
⟨u, v21⟩ = 1− l21, ⟨u, v31⟩ = 1,
⟨u, v41⟩ = 1.

Combining the first two equations shows that d021 is a divisor of wX/w02. In particular,
we get the bound

1 ≤ d021 ≤
wX

w02
.

Applying Lemma 2.3.2 to the X-cone σ12 = cone(v01, v02, v11, v21, v31, v41), we see
that w12 | wX holds and we obtain a linear form u ∈ Z6 with

⟨u, v01⟩ = 0, ⟨u, v02⟩ = 0,
⟨u, v11⟩ = 0, ⟨u, v12⟩ = −wX

w12
,

⟨u, v21⟩ = 1− l21, ⟨u, v31⟩ = 1,
⟨u, v41⟩ = 1.

Combining the first three equations yields u1 = 0 and u5 = 0. Plugging this into the
fourth equation shows that d122 is a divisor of wX/w12. We add multiples of the sixth
row of P to the fifth row to obtain the bounds

0 ≤ d121 < d122 ≤
wX

w12
.
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Finally we add multiples of the difference of the second and third row to the fifth and
sixth row, to achieve 0 ≤ d311, d312 < l31 and we add multiples of the difference of rows
two and four to rows five and six to achieve 0 ≤ d411, d412 < l41.

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w02, w11, w12, w21, w31, w41] are bounded.

Proposition 2.6.3. Consider X = X(A, P, Σ) as in Setting 2.6.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any four positive integers α01, α02, α11 and α12 consider the 8× 7 matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α01 0 0 0 1− l21 1 1
0 −α02 0 0 1− l21 1 1
0 0 −α11 0 1− l21 1 1
0 0 0 −α12 1− l21 1 1
−1 −1 1 1 0 0 0
−1 −1 0 0 l21 0 0
−1 −1 0 0 0 l31 0
−1 −1 0 0 0 0 l41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix G is of rank at least 6. Moreover, rank(G) = 6 holds if and only
if α01, α02, α11, α12 and l21, l31, l41 satisfy the identities

1
α01

+ 1
α02
− 1

α11
− 1

α12
= 0,(︃ 1

α01
+ 1

α02

)︃(︃ 1
l21

+ 1
l31

+ 1
l41
− 1

)︃
= 1.

(ii) There are unique α01, α02, α11, α12 ∈ Z≥1 with αijwij = wX for all 0 ≤ i ≤ 1 and
all 1 ≤ j ≤ 2 and the corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w11, w12, w21, w31, w41).

(iii) According to the possible constellations of the exponents (l01, l11, l21, l31, l41) from
Proposition 2.6.2 (i) we have the following upper bounds on the entries of the
matrix G from (ii). An empty line indicates that this exponent configuration does
not occur.

l01 l02 l11 l12 l21 l31 l41 α01 α02 α11 α12
(1, 1, y, 2, 2) 1 1 1 1 2 2 2 1 1 1 1
(1, 1, z, 3, 2)
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Proof. We verify (i). In order to see that G is of rank at least six, we just compute the
minor obtained by deleting rows 5 and 8 and column 1:

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1− l21 1 1
−α02 0 0 1− l21 1 1

0 −α11 0 1− l21 1 1
0 0 −α12 1− l21 1 1
−1 0 0 l21 0 0
−1 0 0 0 l31 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= α02α11α12l21l31 ̸= 0.

Moreover, G is of rank exactly six if and only if all its 7-minors vanish. Rearrang-
ing these eight equations and removing redundancies, we arrive at the two identities
in α01, α02, α11, α12 and l21, l31, l41.

We prove (ii). Applying Corollary 2.2.21 to the four maximal X-cones σ01, σ02, σ11,
and σ12 we see that each of w01, w02, w11, and w12 is a divisor of wX and hence we
obtain positive integers αij for 0 ≤ i ≤ 1 and 1 ≤ j ≤ 2 with

αijwij = (1− l21)w21 + w31 + w41.

Moreover, by homogeneity of the defining relations g0, g1 and g2 we have

w01 + w02 = w11 + w12 = l21w21 = l31w31 = l41w41.

The matrix G is the coefficient matrix of the corresponding system of linear equa-
tions. In particular, the kernel of the matrix G is generated by the primitive vec-
tor (w01, w02, w11, w12, w21, w31, w41) ∈ Z7.

We prove (iii). We treat the configuration (l01, l11, l21, l31, l41) = (1, 1, y, 2, 2). In this
case the identities from (i) read

1
α01

+ 1
α02
− 1

α11
− 1

α12
= 0,

1
y

(︃ 1
α01

+ 1
α02

)︃
= 1.

By the second equation we immediately get y = 2 and α01 = α02 = 1. Plugging this into
the first equation, we obtain α11 = α12 = 1.

We treat the configuration (l01, l11, l21, l31, l41) = (1, 1, z, 3, 2). In this case the identi-
ties from (i) read

1
α01

+ 1
α02
− 1

α11
− 1

α12
= 0,

6− z

6z

(︃ 1
α01

+ 1
α02

)︃
= 1.

The second equation implies 2 ≥ 6z
6−z , which is only possible for z = 1. This is a

contradiction to the assumption z ≥ 3. Thus this exponent configuration does not
occur.
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Corollary 2.6.4. For every choice λ1 ∈ K∗ and λ2 ∈ K∗\{λ1} the matrix P of for-
mat (2, 2, 1, 1, 1, 0) given by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 0 0 0
−1 −1 0 0 2 0 0
−1 −1 0 0 0 2 0
−1 −1 0 0 0 0 2

0 1 0 0 −3 1 1
0 0 0 1 −3 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
defines a non-toric Q-factorial, Gorenstein, log terminal Fano threefold X = X(A, P, Σ)
of Picard number one with divisor class group and Cox ring

R(X) ∼= K[T01, T02, T11, T12, T21, T31, T41]/⟨g0, g1, g2⟩,

g0 = T01T02 + T11T12 + T 2
21, g1 = λ1T11T12 + T 2

21 + T 2
31, g2 = λ2T 2

21 + T 2
31 + T 2

41,

Cl(X) ∼= Z⊕ Z/2Z⊕ Z/2Z, Q =

⎡⎢⎣ 1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄

⎤⎥⎦ .

Every non-toric, Q-factorial, log terminal and Gorenstein Fano threefold of Picard number
one of format (2, 2, 1, 1, 1, 0) is isomorphic to X = X(A, P, Σ) for a choice of λ1 and λ2
as above with that matrix P .

Proof. Proposition 2.6.3 provides a single matrix G, namely

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 −1 1 1
0 −1 0 0 −1 1 1
0 0 −1 0 −1 1 1
0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0
−1 −1 0 0 2 0 0
−1 −1 0 0 0 2 0
−1 −1 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Its kernel is generated by the primitive vector

Q0 = [w01, w02, w11, w12, w21, w31] = [1, 1, 1, 1, 1, 1, 1].

Recall that P annihilates the transpose of Q0. This enables us to determine in the matrix
P , adjusted according to Proposition 2.6.2 (iii), all the remaining variables. Checking
the list of possible matrices P for the necessary properties by means of [43] and reducing
via Proposition 2.3.1 to data defining pairwise non-isomorphic varieties, we end up with
the single matrix P presented in the assertion. The description of the Cox ring and the
class group follow from Construction 2.2.2.
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2.7 Proof of Classification 2.1.1: Case 4 - format (3, 1, 1, 0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (iv). The setting is as follows.

Setting 2.7.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (3, 1, 1, 0). Then

P = [v01, v02, v03, v11, v21] =

⎡⎢⎢⎢⎣
−l01 −l02 −l03 l11 0
−l01 −l02 −l03 0 l21
d011 d021 d031 d111 d211
d012 d022 d032 d112 d212

⎤⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v03, v11 and v21 generating Q4 as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v03, v11, v21), σ02 = cone(v01, v03, v11, v21),

σ03 = cone(v01, v02, v11, v21), τ0 = cone(v01, v02, v03).

We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w03, w11, w21]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w03, w11, w21) is
primitive in Z5 and generates ker(P ).

Very first constraints on the exponents of the defining relation g come from log
terminality of X.

Proposition 2.7.2. Consider X = X(A, P, Σ) as in Setting 2.7.1. Assume that X is
non-toric, Fano and log-terminal. Then the tuple (l01, l11, l21) fits into precisely one of
the following constellations:

(1, x, y), x ≥ y ≥ 2; (2, z, 3), 3 ≤ z ≤ 5;
(y, 2, 2), y ≥ 2; (3, z, 2), 3 ≤ z ≤ 5;
(2, y, 2), y ≥ 3; (z, 3, 2), 4 ≤ z ≤ 5.

The following Lemma treats the exponents (l01, l02, l03) of the first monomial of the
defining relation g.
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Lemma 2.7.3. Consider X = X(A, P, Σ) as in Setting 2.7.1. Assume that X is
Gorenstein. If the exponents l01, l02 and l03 coincide, then they must all be equal one.

Proof. Let l := l01 = l02 = l03. Assume l > 1 holds. We apply a suitable unimodular 2×2
matrix to the d-block and add multiples of the first row of P to the third row, so that P
is of the shape

P =

⎡⎢⎢⎢⎣
−l −l −l l11 0
−l −l −l 0 l21

d011 d021 d031 d111 d211
0 d022 d032 d112 d212

⎤⎥⎥⎥⎦ ,

where 0 < d011 < l. Consider the X-cone τ0 = cone(v01, v02, v03). An anticanonical
divisor on X is given by

−K = DX
01 + DX

02 + DX
03 + DX

11 + (1− l21)DX
21.

By Lemma 2.3.2 there is thus a linear form u ∈ Z4 with

⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1, ⟨u, v03⟩ = 1.

This implies d022 ̸= 0, since otherwise we had v01 = v02. We expand the first equation

1 = ⟨u, v01⟩ = −l(u1 + u2) + d011u3.

Thus l and u3 are coprime. In particular, since l > 0, we have u3 ̸= 0. We combine this
with the second and third equation to obtain

u3(d021 − d011) + u4d022 = 0,

u3(d031 − d011) + u4d032 = 0.

Combining these two together, we obtain the following identity

u3(d022(d031 − d011)− d032(d021 − d011)) = 0.

As u3 ̸= 0, the second factor must vanish. This contradicts the fact that the first three
columns v01, v02, v03 of P are linearly independent. Thus we have l = 1, which completes
the proof.

We deviate from the formula established in the other parts of the proof by first
treating the Z-part of the degree matrix Q0 = [w01, w02, w03, w11, w21]. This is our second
series of constraints.
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Proposition 2.7.4. Consider X = X(A, P, Σ) as in Setting 2.7.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) −K = (1− l01)DX
01 + (1− l02)DX

02 + (1− l03)DX
03 + DX

11 + DX
21 is an anticanonical

divisor on X. In particular, the free part of the anticanonical class is given by

wX = (1− l01)w01 + (1− l02)w02 + (1− l03)w03 + w11 + w21.

(ii) For any three positive integers α01, α02 and α03 consider the 5× 5 matrix

G :=

⎡⎢⎢⎢⎢⎢⎣
1− l01 − α01 1− l02 1− l03 1 1
1− l01 1− l02 − α02 1− l03 1 1
1− l01 1− l02 1− l03 − α03 1 1
−l01 −l02 −l03 l11 0
−l01 −l02 −l03 0 l21

⎤⎥⎥⎥⎥⎥⎦ .

The matrix G is of rank at least four. Moreover, we have det(G) = 0 if and only
if α01, α02, α03 and l01, l02, l03, l11, l21 satisfy the identity

1
α01

+ 1
α02

+ 1
α03

+
(︃

l01
α01

+ l02
α02

+ l03
α03

)︃(︃ 1
l11

+ 1
l21
− 1

)︃
= 1.

(iii) There are unique α01, α02, α03 ∈ Z≥1 with α01w01 = α02w02 = α03w03 = wX , and
the corresponding matrix G from (iii) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w03, w11, w21).

(iv) According to the possible constellations of (l01, l11, l21) from Proposition 2.7.2 we
have the following upper bounds on the entries of the matrix G from (ii):

l01 l02 l03 l11 l21 α01 α02 α03
(1, x, y) 1 1 1 126 6 30 10 3
(y, 2, 2) 10 5 1 2 2 6 6 6
(2, y, 2) 2 2 1 30 2 1806 1806 1806
(2, z, 3) 2 2 1 5 3 602 28 28
(3, z, 2) 3 3 2 5 2 903 35 35
(z, 3, 2) 5 5 4 3 2 602 35 35

Proof. We prove (i). We have r = 1 and the defining relation g of the Cox ring is given
by

g = T l01
01 T l02

02 T l03
03 + T l11

11 + T l21
21 .

Thus, deg(g) = l01 deg(T01) + l02 deg(T02) + l03 deg(T03) holds and Remark 2.2.13 shows
that the anticanonical divisor −K is as claimed.
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We prove (ii). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 5 and column 1:

G5,1 = det

⎡⎢⎢⎢⎣
1− l02 1− l03 1 1
1− l02 − α02 1− l03 1 1
1− l02 1− l03 − α03 1 1
−l02 −l03 l11 0

⎤⎥⎥⎥⎦ = −α02α03l11 ̸= 0.

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity in α01, α02, α03 and l01, l02, l03, l11, l21.

We prove (iii). Applying Corollary 2.2.21 to the three maximal X-cones σ01, σ02
and σ03 we see that each of w01, w02 and w03 divides wX and hence we obtain positive
integers α01, α02 and α03 with

α01w01 = α02w02 = α03w03 = (1− l01)w01 + (1− l02)w02 + (1− l03)w03 + w11 + w21.

Moreover, by homogeneity of the defining relation g we have

l01w01 + l02w02 + l03w03 = l11w11 = l21w21.

The matrix G from (i) is the coefficient matrix of the corresponding system of linear
equations. In particular, the integral matrix G has kernel generated by the primitive
vector (w01, w02, w11, w12, w21) ∈ Z5.

We prove (iv). We treat the configuration (l01, l11, l21) = (1, x, y). In this case the
identity from (ii) reads (︃ 1

α01
+ 1

α02
+ 1

α03

)︃(︃1
x

+ 1
y

)︃
= 1. (2.7.4.1)

Since l01 = l02 = l03 holds, we may assume α01 ≥ α02 ≥ α03. We can then directly infer
that α03 ≤ 3 and y ≤ 6 holds. Note that we have x ≥ y ≥ 2. We distinguish two cases.
If x = y = 2, then Equation 2.7.4.1 reduces to

1
α01

+ 1
α02

+ 1
α03

= 1.

Applying Lemma 2.3.4 (ii) yields α01, α02 ≤ 6. If x ≥ 3, then the second factor in
Equation 2.7.4.1 is strictly smaller than one. Lemma 2.3.4 (i) says that the second factor
is at most 5/6 and we get the inequality

6
5 ≤

1
α01

+ 1
α02

+ 1
α03

≤ 2
α02

+ 1.

This gives the bound α02 ≤ 10. To obtain an upper bound for x, we rearrange Equa-
tion 2.7.4.1 to obtain

x =
1

α01
+ 1

α02
+ 1

α03

1−
(︂

1
yα01

+ 1
yα02

+ 1
yα03

)︂ .
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As we are looking for positive solutions, the denominator on the right hand side must be
positive. We can thus invoke Lemma 2.3.4 (i) to obtain

1
yα01

+ 1
yα02

+ 1
yα03

≤ 41
42 .

Plugging this into the equation for x gives the upper bound x ≤ 126. Finally we
solve Equation 2.7.4.1 for α01 and use the established bounds on x, y and α02, α03 to
obtain α01 ≤ 30.

We treat the configuration (l01, l11, l21) = (y, 2, 2). In this case the identity from (ii)
reads

1
α01

+ 1
α02

+ 1
α03

= 1. (2.7.4.2)

This yields α01, α02, α03 ≤ 6 according to Lemma 2.3.4 (ii). Additionally, since l01 = l02
holds, we have w11 = w21. We apply Corollary 2.2.21 to the fourth maximal X-
cone τ0 = cone(v01, v02, v03) to see that there is γ ∈ Z≥1 with wX = γw11 = γw21.
Homogeneity of the defining relation g yields the identity

y

α01
+ l02

α02
+ l03

α03
= 2

γ
. (2.7.4.3)

With the bounds that we obtained for α01, α02, α03 we get the chain of inequalities

2 ≥ 2
γ

= y

α01
+ l02

α02
+ l03

α03
≥ 1

6(y + l02 + l03).

Using y ≥ l02 and l02 ≥ l03, this inequality gives the bounds y ≤ 10 and l02 ≤ 5. We also
obtain the inequality

2 ≥ y

α01
+ l02

α02
+ l03

α03
≥ l03

(︃ 1
α01

+ 1
α02

+ 1
α03

)︃
= l03,

which shows that l03 ≤ 2 holds. If l03 = 2 holds, then these must all be equalities, thus
in this case γ = 1 holds. Plugging γ = 1 and l03 = 2 into Equation 2.7.4.3, we obtain

y − 2
α01

+ l02 − 2
α02

= 0.

Note that both summands on the left are non-negative. This is only possible if we
have y = l02 = 2. This is a contradiction to Lemma 2.7.3, thus l03 = 1 holds.

We treat the configuration (l01, l11, l21) = (2, y, 2). Note that by Lemma 2.7.3 we
immediately get l03 = 1. We rearrange the identity from (ii) to obtain

1 =
(︃ 2

α01y
+ l02

α02y
+ 1

α03y

)︃
+
(︃2− l02

2α02
+ 1

2α03

)︃
. (2.7.4.4)

The first bracket is positive and the second bracket is a sum of at most two unit fractions.
Lemma 2.3.4 (ii) yields(︃2− l02

2α02
+ 1

2α03

)︃
≤ 5

6 ,

(︃ 2
α01y

+ l02
α02y

+ 1
α03y

)︃
≥ 1

6 .
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The inequality on the right gives the bound y ≤ 30. To obtain bounds on α01, α02
and α03 we rearrange Equation 2.7.4.4 in three different ways, each time separating the
term involving a different αij :

1 = 2
α01y

+
(︃

l02
α02y

+ 2− l02
2α02

+ 1
α03y

+ 1
2α03

)︃
= 2l02 + (2− l02)y

2yα02
+
(︃ 2

α01y
+ 1

α03y
+ 1

2α03

)︃
= 2 + y

2yα03
+
(︃ 2

α01y
+ l02

α02y
+ 2− l02

2α02

)︃
.

Note that in each of the three cases, the first summand is positive and the second
summand is a sum of at most four unit fractions. Applying Lemma 2.3.4 (i) we obtain

2
α01y

≥ 1
1806 ,

2l02 + (2− l02)y
2yα02

≥ 1
1806 ,

2 + y

2yα03
≥ 1

1806 .

Solving these inequalities for α01, α02 and α03 we obtain the bounds

α01 ≤ 1806, α02 ≤ 1806, α03 ≤ 1806.

We treat the configuration (l01, l11, l21) = (2, z, 3). Note that by Lemma 2.7.3 we
immediately get l03 = 1. The identity from (ii) reads

6− z

3zα01
+ 3z + (3− 2z)l02

3zα02
+ 3 + z

3zα03
= 1.

Note that the numerator of the second summand is positive for all permitted values of z
and l02. We have 3 ≤ z ≤ 5. In this range 3z is divisible by 6− z. The first summand is
thus a unit fraction. Similarly we see that the second and third summand are each a
sum of at most two unit fractions. Moreover, each of the three summands is positive.
We can thus apply Lemma 2.3.4 (i) for each of the three summands to obtain

6− z

3zα01
≥ 1

1806 ,
3z + (3− 2z)l02

3zα02
≥ 1

42 ,
3 + z

3zα03
≥ 1

42 .

Solving these inequalities for α01, α02 and α03, we get the bounds α01 ≤ 602, α02 ≤ 28
and α03 ≤ 28.

We treat the configuration (l01, l11, l21) = (3, z, 2). Using Lemma 2.7.3 we get the
bound l03 ≤ 2. The identity from (ii) reads

6− z

2zα01
+ 2z + (2− z)l02

2zα02
+ 2z + (2− z)l03

2zα03
= 1.

Note that the numerators are all positive. Moreover, the first summand is a unit fraction,
as 6− z divides 2z, and the second and third summand are each a sum of at most two
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unit fractions. Each of the three summands is positive, so we can apply Lemma 2.3.4 (i)
to obtain

6− z

2zα01
≥ 1

1806 ,
2z + (2− z)l02

2zα02
≥ 1

42 ,
2z + (2− z)l03

2zα03
≥ 1

42 .

Solving these inequalities for α01, α02 and α03, we get the bounds α01 ≤ 903, α02 ≤ 35
and α03 ≤ 35.

We treat the configuration (l01, l11, l21) = (z, 3, 2). Using Lemma 2.7.3 we get the
bound l03 ≤ 4. The identity from (ii) reads

6− z

6α01
+ 6− l02

6α02
+ 6− l03

6α03
= 1.

The first summand is a unit fraction, the second and third summand are each a sum of
at most two unit fractions. Moreover, each of the three summands is positive. We invoke
Lemma 2.3.4 (i) to obtain

6− z

6α01
≥ 1

1806 ,
6− l02
6α02

≥ 1
42 ,

6− l03
6α03

≥ 1
42 .

Solving these inequalities for α01, α02 and α03, we get the bounds α01 ≤ 602, α02 ≤ 35
and α03 ≤ 35.

Proposition 2.7.5. Consider X = X(A, P, Σ) as in Setting 2.7.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein. Then the following hold:

(i) An anticanonical divisor on X is given by

−K = DX
01 + DX

02 + DX
03 + DX

11 + (1− l21)DX
21.

(ii) The weights w01, w02 and w03 are divisors of wX .
(iii) The exponents l01, l02 and l03 fit into precisely one of the following cases:

(a) l03 = 1,
(b) l03 > 1 and l02 = l03 + 1,
(c) (l02, l03) = (2, 2) or (l02, l03) = (3, 3),
(d) (l02, l03) = (4, 2),
(e) (l01, l02, l03) = (5, 5, 2).

(iv) Admissible row operations turn the defining matrix P into one of the following
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forms, according to the cases (a) through (e) from item (ii):

P =

⎡⎢⎢⎢⎣
−l01 −l02 −1 l11 0
−l01 −l02 −1 0 l21
d011 d021 0 d111 d211
d012 0 0 d112 d212

⎤⎥⎥⎥⎦ ,

l01≥l02≥1, l11≥l21≥2,

0≤d011<
wX
w01

, 0<d012≤ wX
w01

,

0<d021≤ wX
w02

,

0≤d211,d212<l21,

P =

⎡⎢⎢⎢⎣
−l01 −(l03 + 1) −l03 l11 0
−l01 −(l03 + 1) −l03 0 2

1 1 1 d111 d211
d012 0 0 d112 d212

⎤⎥⎥⎥⎦ ,

l01≥l03+1, l11≥3,

1≤d012≤ wX
w01

,

0≤d211,d212≤1,

P =

⎡⎢⎢⎢⎣
−l01 −l −l l11 0
−l01 −l −l 0 2
d011 1 1 d111 d211
d012 0 d032 d112 d212

⎤⎥⎥⎥⎦ ,

2≤l≤3, l11≥3,

1− wX
w01

≤d011≤ wX
w01

+4,

0≤d012≤l

(︂
wX
w01

−1
)︂

+l01,

1≤d032≤ wX
w03

, 0≤d211,d212≤1,

P =

⎡⎢⎢⎢⎣
−l01 −4 −2 3 0
−l01 −4 −2 0 2

1− wX
w01

1 1 1 −1
d012 d022 0 d112 d212

⎤⎥⎥⎥⎦ ,

4≤l01≤5,

1− wX
w01

≤d012≤ wX
w01

+1,

0≤d022≤1,

0≤d212≤1,

P =

⎡⎢⎢⎢⎣
−5 −5 −2 3 0
−5 −5 −2 0 2

d d d031 d111 d211
0 d022 d032 d112 d212

⎤⎥⎥⎥⎦ ,

1≤d≤2, 0<d022≤ wX
w02

,

1− wX
w03

≤d031≤ wX
w03

,

0≤d032<5 wX
w03

−3,

0≤d211,d212≤1.

Proof. Item (i) follows from Proposition 2.7.4 (i) and homogeneity of the defining rela-
tion g. Item (ii) is part of Proposition 2.7.4 (iii). We prove (iii). The cases (a) to (e)
are mutually exclusive. We consider the bounds on l03 that we obtained in Proposi-
tion 2.7.4. For the first four constellations of (l01, l11, l21) we have l03 = 1. Thus, they
all fall under case (a). Assume l03 > 1 holds. Then either (l01, l11, l21) = (3, z, 2)
with 3 ≤ z ≤ 5 or (l01, l11, l21) = (z, 3, 2) with 4 ≤ z ≤ 5. For the constella-
tions (l01, l02, l03) = (5, 4, 4), (5, 5, 3) and (5, 5, 4) the identity from Proposition 2.7.4 (ii)
is never fulfilled. The possible constellations for (l01, l02, l03) are thus

(3, 2, 2), (3, 3, 2),
(4, 2, 2), (4, 3, 2), (4, 3, 3), (4, 4, 2), (4, 4, 3),
(5, 2, 2), (5, 3, 2), (5, 3, 3), (5, 4, 2), (5, 4, 3), (5, 5, 2).

In this arrangement, columns one and three fall under case (c), columns two and five fall
under case (b), column four is case (d) and column six is case (e).

We prove (iv). We start with case (a). Assume l03 = 1 holds. We add multiples of the
first row of P to the third and fourth row to achieve d031 = d032 = 0. Applying a suitable
unimodular 2 × 2 matrix to the d block, we may assume that d022 = 0 and d021 ≥ 0
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holds. Linear independence of v02 and v03 ensures that d021 is positive. Furthermore,
by linear independence of the first three columns of P , we have d012 ̸= 0 and we may
assume d012 > 0 by multiplying the last row of P by −1 if necessary. We add multiples
of the fourth row of P to the third row to achieve 0 ≤ d011 < d012. Now P is of the form

P =

⎡⎢⎢⎢⎣
−l01 −l02 −1 l11 0
−l01 −l02 −1 0 l21
d011 d021 0 d111 d211
d012 0 0 d112 d212

⎤⎥⎥⎥⎦
with d012, d021 > 0 and 0 ≤ d011 < d012. Let u′, u′′ ∈ Z4 the linear forms that Lemma 2.3.2
provides for the X-cones σ01 = cone(v02, v03, v11, v21) and σ02 = cone(v01, v03, v11, v21).
For their difference u := u′ − u′′ we have

⟨u, v01⟩ = −wX
w01

, ⟨u, v02⟩ = wX
w02

,

⟨u, v03⟩ = 0, ⟨u, v11⟩ = 0,
⟨u, v21⟩ = 0.

Combining the second and third equation, we see that d021 is a divisor of wX/w02. In
particular we obtain

0 < d021 ≤
wX

w02
.

Let u′′′ ∈ Z4 the linear form provided by Lemma 2.3.2 for the X-cone τ0 = cone(v01, v02, v03).
It evaluates to one on each of v01, v02 and v03. For the difference u := u′ − u′′′, where as
before u′ is the linear form for the X-cone σ01, we have

⟨u, v01⟩ = −w01
wX

, ⟨u, v02⟩ = 0, ⟨u, v03⟩ = 0.

By the second and third equation we have u1 + u2 = u3 = 0. The first equation then
tells us that d012 is a divisor of wX/w01 and in particular we obtain

0 < d012 ≤
wX

w01
.

Finally we add multiples of the difference of the first two rows of P to the third and
fourth row to achieve 0 ≤ d211, d212 < l21. This shows that P is of the first form described
in Proposition 2.4.3 (iv).

We consider case (b). Assume l03 > 1 and l02 = l03 + 1. Note that we have l21 = 2.
Consider the X-cone τ0 = cone(v01, v02, v03). Lemma 2.3.2 provides us with a linear form
u ∈ Z4 that evaluates to 1 on each of v01, v02 and v03. Consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

u1 u2 u3 u4
d022d031 − d021d032 0 l03d022 − (l03 + 1)d032 (l03 + 1)d031 − l03d021

⎤⎥⎥⎥⎦ .
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It leaves the first two rows of P unchanged and has determinant

det(S) = (l03 + 1)⟨u, v03⟩ − l03⟨u, v02⟩ = 1.

Thus S consists of admissible row operations on P and multiplying P from the left by S
we obtain the matrix

P =

⎡⎢⎢⎢⎣
−l01 −(l03 + 1) −l03 l11 0
−l01 −(l03 + 1) −l03 0 2

1 1 1 d111 d211
d012 0 0 d112 d212

⎤⎥⎥⎥⎦ ,

which we again call P . Here the entries dijk are understood to be indeterminates. Their
actual values are affected by transforming P by S. Multiplying the last row of P by −1
if necessary we may assume that d012 is non-negative. Moreover we add multiples of the
difference of the first two rows of P to the third and fourth row to ensure 0 ≤ d211, d212 ≤ 1.
Consider the X-cone σ01 = cone(v02, v03, v11, v21). Lemma 2.3.2 provides us with a linear
form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v03⟩ = 1, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = −1.

The second and third equation yield u1 + u2 = 0 and u3 = 1. Plugging this into the first
equation, we see that d012 is a divisor of wX/w01. In particular we obtain the bounds

0 < d012 ≤
wX

w01
.

This shows that P is of the second form described in Proposition 2.4.3 (iv).
We consider case (c). Assume l02 = l03 = l where l = 2 or l = 3. Note that we

have l21 = 2. Applying a suitable unimodular 2 × 2 matrix to the d-block, we may
assume d022 = 0 and d021 ≥ 0. Primitivity of v02 ensures that d021 > 0 holds. By adding
multiples of the first row of P to the third row and multiplying by −1 if necessary, we
achieve d021 = 1. We write d032 = led2, where we choose e ∈ Z≥0 such that d2 is not
divisible by l. Applying Corollary 2.2.19 to the X-cone cone(v02, v03), we obtain a linear
form u ∈ Z4 with ⟨u, v02⟩ = 1 and ⟨u, v03⟩ = 1. The first equation ensures that u3 is
coprime to l. In particular, u3 ̸= 0 holds. Combining the two equations we get the
identity

u3(d031 − 1) = −u4led2.

As u3 is not divisible by l, and l is prime, there is d1 ∈ Z such that d031 = le03d1 + 1 holds.
Let c = gcd(ld1, d2). There are α, β, γ, δ ∈ Z with

c = αld1 + βd2, 1 = αγ + βδ,
γc = ld1, δc = d2,
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As d2 is not divisible by l, neither are δ and c. Thus γ is divisible by l. We write γ = lγ′

and δ = lδ′ + f , where f = ±1. Consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

−fδ′ 0 fδ −fγ′

−α 0 lα β

⎤⎥⎥⎥⎦ .

The matrix S leaves the first two rows of P unchanged and it has determinant

det(S) = f(αγ + βδ) = ±1.

It thus consists of admissible row operations of P . Multiplying P from the left by S
transforms it into the matrix

P =

⎡⎢⎢⎢⎣
−l01 −l −l l11 0
−l01 −l −l 0 2
d011 1 1 d111 d211
d012 0 lec d112 d212

⎤⎥⎥⎥⎦ ,

which we again call P . We also write again d032 for the entry lec. Here the entries dijk

are understood to be indeterminates. Their actual values are affected by transforming P
by S. Note that linear independence of v02 and v03 ensures d032 ̸= 0 and by multiplying
the last row of P by −1 if necessary, we may assume that d032 > 0 holds. Consider
the X-cone σ03 = cone(v01, v02, v11, v21). By Lemma 2.3.2 there is a linear form u ∈ Z4

with
⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1,
⟨u, v03⟩ = 1− wX

w03
, ⟨u, v11⟩ = 1,

⟨u, v21⟩ = −1.

Combining equations two and three we see that d032 is a divisor of wX/w03. In particular,
we obtain the bounds

1 ≤ d032 ≤
wX

w03
.

We apply Lemma 2.3.2 to the X-cone σ01 = cone(v02, v03, v11, v21) to obtain a linear
form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v03⟩ = 1, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = −1.

Equations two and three yield u4 = 0. Plugging this into the first equation and multiplying
by l, we obtain

l

(︃
1− wX

w01

)︃
= −l01l(u1 + u2) + u3ld011 = l01 + u3(ld011 − l01).

Note that this implies u3 ̸= 0 and (ld011 − l01) ̸= 0. Subtracting l01 on both sides we see
that (ld011 − l01) is a divisor of l(1− wX

w01
)− l01. Using the bounds on l01, we obtain

1− wX

w01
≤ d011 ≤

wX

w01
+ 4.
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Now consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 0 l 1

⎤⎥⎥⎥⎦ .

It leaves the first two rows of P unchanged and it has determinant one. It thus consists
of admissible row operations on P . Multiplying P from the left by multiples of S leaves
the columns v02 and v03 unchanged and we can achieve

0 ≤ d012 < |ld011 − l01| ≤ l

(︃
wX

w01
− 1

)︃
+ l01.

Finally, we add multiples of the difference of the first two rows of P to the fourth and
fifth row to ensure 0 ≤ d211, d212 ≤ 1. This shows that P is of the third form described
in Proposition 2.4.3 (iv).

We consider case (d). Assume (l02, l03) = (4, 2). Note that we have l11 = 3 and l21 = 2.
Lemma 2.3.2 applied to the X-cone σ01 = cone(v02, v03, v11, v21) provides us with a linear
form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v03⟩ = 1, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = −1.

Let d = d022d031 − d021d032 and consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

u1 u2 u3 u4
−du1 −du2 d022 − 2d032 − du3 2d031 − d021 − du4

⎤⎥⎥⎥⎦ .

It leaves the first two rows of P unchanged and it has determinant

det(S) = u3(2d031 − d021) + u4(2d032 − d022)
= 2⟨u, v03⟩ − ⟨u, v02⟩
= 1.

Multiplying P from the left by S transforms it into the matrix

P =

⎡⎢⎢⎢⎣
−l01 −4 −2 3 0
−l01 −4 −2 0 2

1− wX
w01

1 1 1 −1
d012 d 0 d112 d212

⎤⎥⎥⎥⎦ ,

which we again call P . We also write again d022 for the entry d. Here the entries dijk

are understood to be indeterminates. Their actual values are affected by transforming P
by S. Adding multiples of the second and the two-fold of the third row of P to the fourth
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row, we achieve 0 ≤ d022 ≤ 1. Consider the X-cone σ01 = cone(v02, v03, v11, v21). By
Lemma 2.3.2 there is a linear form u ∈ Z4 with

⟨u, v01⟩ = 1− wX
w01

, ⟨u, v02⟩ = 1,

⟨u, v03⟩ = 1, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = −1.

Combining equations two and three, we obtain u3 = d022u4 and 2(u1 + u2) = d022u4.
Note that this implies u4 ̸= 0. Plugging this into equation one, we obtain

2
(︃

1− wX

w01

)︃
= u4(d022(1− l01) + 2d012).

This shows that d022(1− l01) + 2d012 is a divisor of 2
(︂
1− wX

w01

)︂
. Using the bounds on l01

and d022, we obtain
1− wX

w01
≤ d012 ≤

wX

w01
+ 1.

Finally we add multiples of the difference of the first and second row of P to the fourth
row to achieve 0 ≤ d212 ≤ 1. This shows that P is of the fourth form described in
Proposition 2.4.3 (iv).

We consider case (e). Assume (l01, l02, l03) = (5, 5, 2). We have l11 = 3 and l21 = 2.
Applying a suitable unimodular 2 × 2 matrix to the d-block, we achieve d012 = 0 and
d011 ≥ 0. By primitivity of v01 we have m := d011 > 0. We add multiples of the first row of
P to the third row to achieve 1 ≤ m ≤ 4. We write d022 = 5ed2, where we choose e ∈ Z≥0
such that d2 is not divisible by 5. Consider the X-cone τ0 = cone(v01, v02, v03). Corollary
2.2.19 provides us with a linear form u ∈ Z4 with

⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1, ⟨u, v03⟩ = 1.

The first equation implies that u3 is coprime to 5. In particular u3 ̸= 0 holds. Combining
the first and second equation, we obtain

u3(d021 −m) = u45ed2.

There is thus d1 ∈ Z with d021 = 5ed1 + m. Let c = gcd(5d1, d2). There are α, β, γ, δ ∈ Z
with

c = α5d1 + βd2, 1 = αγ + βδ,
γc = 5d1, δc = d2,

As d2 is not divisible by 5, neither are δ and c. Thus γ is divisible by 5. We write γ = 5γ′

and δ = 5δ′ + f , where 1 ≤ f ≤ 4. Consider the 4× 4 integer matrix

S =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0

δ′m 0 δ −γ′

αm 0 5α β

⎤⎥⎥⎥⎦ .
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The matrix S leaves the first two rows of P unchanged and it has determinant det(S) = 1.
It thus consists of admissible row operations of P . Multiplying P from the left by S
transforms it into the matrix

P =

⎡⎢⎢⎢⎣
−5 −5 −2 3 0
−5 −5 −2 0 2
mf mf d031 d111 d211

0 5ec d032 d112 d212

⎤⎥⎥⎥⎦ ,

which we again call P . Moreover we again write d022 for the entry 5ec. The entries dijk

are understood to be indeterminates. Their actual values are affected by transforming P
by S. We add multiples of the first row to the third row and multiply by −1, if
necessary, to replace the entry mf by d, where 1 ≤ d ≤ 2. Consider the maximal X-
cone σ02 = cone(v01, v03, v11, v21). By Lemma 2.3.2 there is a linear form u ∈ Z4 with

⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1− wX
w02

,

⟨u, v03⟩ = 1, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = −1.

Combining the first and second equation we see that d022 divides wX/w02. In particular
we obtain the bounds

1 ≤ d022 ≤
wX

w02
.

Now consider the X-cone σ03 = cone(v01, v02, v11, v21). Lemma 2.3.2 provides a linear
form u ∈ Z4 with

⟨u, v01⟩ = 1, ⟨u, v02⟩ = 1,
⟨u, v03⟩ = 1− wX

w03
, ⟨u, v11⟩ = 1,

⟨u, v21⟩ = −1.

Combining the first and second equation, we obtain u4 = 0 and 5(u1 + u2) = du3 − 1.
Plugging this into the third equation and multiplying by 5, we get

5
(︃

1− wX

w03

)︃
= −10(u1 + u2) + 5u3d031 = 2− u3(5d031 − 2d).

Note that this implies u3 ̸= 0 as well as 5d031 − 2d ̸= 0 and that (5d031 − 2d) is a divisor
of 5 wX

w03
− 3. For d031 we thus obtain the bounds

1− wX

w03
≤ d031 ≤

wX

w03
.

Adding the d-fold of the first row and the 5-fold of the third row of P to the fourth row
leaves the first two entries unchanged. Repeating this we achieve

0 ≤ d032 < |5d031 − 2d| ≤ 5 wX

w03
− 3.

Finally we add multiples of the difference of the first and second row of P to the third
and fourth row to achieve 0 ≤ d211, d212 ≤ 1. This shows that P is of the fifth form
described in Proposition 2.4.3 (iv), which completes the proof.
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Corollary 2.7.6. There is a list of 87 explicitly given matrices P of format (3, 1, 1, 0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X(A, P, Σ) of Picard number one.

Z Z+Z2 Z+Z3 Z+Z4 Z+Z5 Z+Z6 Z+Z8 Z+Z2+Z2 Z+Z2+Z4 Z+Z2+Z6 sum
(1, x, y) 5 4 4 4 2 3 2 1 1 26
(y, 2, 2) 3 3
(2, y, 2) 9 13 1 3 26
(2, z, 3) 1 1
(3, z, 2) 7 6 1 14
(z, 3, 2) 15 2 17

sum 36 28 6 5 2 3 2 3 1 1 87
Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (3, 1, 1, 0) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.7.4 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w03, w11, w21] by computer. Recall that P
annihilates the transpose of Q0. This enables us to determine in the matrix P , adjusted
according to Proposition 2.7.5 (iv), all the remaining variables. So, we are left with a
finite list of explicitly given possible defining matrices P . Checking for the necessary
properties by means of [43] and reducing via Proposition 2.3.1 to data defining pairwise
non-isomorphic varieties, we obtain the list presented in the assertion.

2.8 Proof of Classification 2.1.1: Case 5 - format (3, 1, 1, 1, 0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (v). The setting is as follows.

Setting 2.8.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (3, 1, 1, 1, 0). Then

P = [v01, v02, v03, v11, v21, v31] =

⎡⎢⎢⎢⎢⎢⎣
−l01 −l02 −l03 l11 0 0
−l01 −l02 −l03 0 l21 0
−l01 −l02 −l03 0 0 l31
d011 d021 d031 d111 d211 d311
d012 d022 d032 d112 d212 d312

⎤⎥⎥⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v03, v11, v21 and v31 generating Q5

as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v03, v11, v21, v31), σ02 = cone(v01, v03, v11, v21, v31),
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2.8. Proof of Classification 2.1.1: Case 5 - format (3, 1, 1, 1, 0)

σ03 = cone(v01, v02, v11, v21, v31), τ0 = cone(v01, v02, v03).

We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w03, w11, w21, w31]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w03, w11, w21, w31)
is primitive in Z6 and generates ker(P ).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P .

Proposition 2.8.2. Consider X = X(A, P, Σ) as in Setting 2.8.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) We have l01 = l02 = l03 = 1. Moreover, the tuple of exponents (l01, l11, l21, l31) fits
into precisely one of the following constellations:

(1, y, 2, 2), y ≥ 2; (1, z, 3, 2), 3 ≤ z ≤ 5.

(ii) −K = (1 − l11)DX
11 + DX

21 + DX
31 is an anticanonical divisor on X. In particular,

the free part of the anticanonical class of X is given by

wX = (1− l11)w11 + w21 + w31.

(iii) Admissible row operations turn the defining matrix P into the form

P =

⎡⎢⎢⎢⎢⎢⎣
−1 −1 −1 l11 0 0
−1 −1 −1 0 l21 0
−1 −1 −1 0 0 l31

0 d021 d031 d111 d211 d311
0 0 d032 d112 d212 d312

⎤⎥⎥⎥⎥⎥⎦ ,

l11≥l21≥l31>1,

0<d021≤ wX
w02

,

0≤d031<d032≤ wX
w03

,

0≤d211,d212<l21,

0≤d311,d312<l31,

where w02 | wX and w03 | wX .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21, v31) to
see that (l01, l11, l21, l31) is a platonic tuple. As P has ordered exponents, we have l11 ≥ l21
and l21 ≥ l31. Moreover, since X is non-toric, l31 ≥ 2 holds. Thus we have l01 = 1 and
consequently l02 = l03 = 1. This leaves us with the two constellations for (l01, l11, l21, l31)
stated in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity
of the defining relations g0 and g1.

We prove (iii). Adding multiples of the first row of P to the fourth and fifth row,
we achieve d011 = d012 = 0. Multiplying the d-block by a suitable unimodular 2 × 2
matrix, we may assume d022 = 0 and d021 ≥ 0. Linear independence of v01 and v02
ensures that d021 is positive. Multiplying the last row of P by −1 if necessary, we
may assume that d032 ≥ 0 holds. We make use of the Gorenstein property. Consider
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the X-cone σ02 = cone(v01, v03, v11, v21, v31). By Lemma 2.3.2 we have w02 | wX and
there is a linear form u ∈ Z5 with

⟨u, v01⟩ = 0, ⟨u, v02⟩ = −wX
w02

,

⟨u, v03⟩ = 0, ⟨u, v11⟩ = 1− l11,
⟨u, v21⟩ = 1, ⟨u, v31⟩ = 1.

By the first equation, u1 + u2 + u3 = 0 holds. Plugging this into the second equation, we
see that d021 is a divisor of wX/w02. In particular, we obtain the bound

1 ≤ d021 ≤
wX

w02
.

Applying Lemma 2.3.2 to the X-cone σ03 = cone(v01, v02, v11, v21, v31) we see that w03 is
a divisor of wX and we obtain a linear form u ∈ Z5 with

⟨u, v01⟩ = 0, ⟨u, v02⟩ = 0,
⟨u, v03⟩ = −wX

w03
, ⟨u, v11⟩ = 1− l11,

⟨u, v21⟩ = 1, ⟨u, v31⟩ = 1.

Combining the first two equations, we obtain u1 + u2 + u3 = 0 and u4 = 0. Plugging this
into the third equation, we see that d032 is a divisor of wX/w03. We add multiples of the
last row of P to the fourth row to achieve

0 ≤ d031 < d032 ≤
wX

w03
.

Finally we add multiples of the difference of the first and second row of P to the fourth
and fifth row to get 0 ≤ d211, d212 ≤ l21 and we do the same for the first and third row to
get 0 ≤ d311, d312 ≤ l31.

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w02, w03, w11, w21, w31] are bounded.

Proposition 2.8.3. Consider X = X(A, P, Σ) as in Setting 2.8.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any three positive integers α01, α02 and α03 consider the 6× 6 matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−α01 0 0 1− l11 1 1
0 −α02 0 1− l11 1 1
0 0 −α03 1− l11 1 1
−1 −1 −1 l11 0 0
−1 −1 −1 0 l21 0
−1 −1 −1 0 0 l31

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix G is of rank at least 5. Moreover, we have det(G) = 0 if and only
if α01, α02, α03 and l11, l21, l31 satisfy the identity(︃ 1

α01
+ 1

α02
+ 1

α03

)︃(︃ 1
l11

+ 1
l21

+ 1
l31
− 1

)︃
= 1.
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(ii) There are unique α01, α02, α03 ∈ Z≥1 with α01w01 = α02w02 = α03w03 = wX and
the corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w03, w11, w21, w31).

(iii) According to the possible constellations of the exponents (l01, l11, l21, l31) from Propo-
sition 2.8.2 (i), we have the following upper bounds on the entries of the matrix G
from (ii). An empty line indicates that this exponent configuration does not occur.

l01 l02 l03 l11 l21 l31 α01 α02 α03
(1, y, 2, 2) 1 1 1 3 2 2 2 2 1
(1, z, 3, 2)

Proof. We verify (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting row 6 and column 1:

G6,1 = det

⎡⎢⎢⎢⎢⎢⎣
0 0 1− l11 1 1

−α02 0 1− l11 1 1
0 −α03 1− l11 1 1
−1 −1 l11 0 0
−1 −1 0 l21 0

⎤⎥⎥⎥⎥⎥⎦ = α02α03l11l21 ̸= 0.

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on α01, α02, α03 and l11, l21, l31.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones σ01, σ02 and
σ03 we see that each of w01, w02 and w03 is a divisor of wX and hence we obtain positive
integers α01, α02 and α03 with

α01w01 = α02w02 = α03w03 = (1− l11)w11 + w21 + w31.

Moreover, by homogeneity of the defining relations g0 and g1 we have

w01 + w02 + w03 = l11w11 = l21w21 = l31w31.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (w01, w02, w03, w11, w21, w31) ∈ Z6.

We prove (iii). We treat the configuration (l01, l11, l21, l31) = (1, y, 2, 2). In this case
the identity from (i) reads

1
y

(︃ 1
α01

+ 1
α02

+ 1
α03

)︃
= 1.

Since we have l01 = l02 = l03, we may assume that α01 ≥ α02 ≥ α03 holds. We
immediately get the bounds α03 = 1 and y ≤ 3. Plugging the two possible values for y
into the equation yields α01, α02 ≤ 2.
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We treat the configuration (l01, l11, l21, l31) = (1, z, 3, 2). In this case the identity from
(i) reads

6− z

6z

(︃ 1
α01

+ 1
α02

+ 1
α03

)︃
= 1.

This equation can only be fulfilled for z ≥ 2, which is a contradiction to the assumption
z ≥ 3. Thus this exponent configuration does not occur.

Corollary 2.8.4. For every choice λ1 ∈ K∗ the matrix P of format (3, 1, 1, 1, 0) given by

P =

⎡⎢⎢⎢⎢⎢⎣
−1 −1 −1 2 0 0
−1 −1 −1 0 2 0
−1 −1 −1 0 0 2

0 2 0 −3 1 1
0 0 1 −3 1 1

⎤⎥⎥⎥⎥⎥⎦
defines a non-toric Q-factorial, Gorenstein, log terminal Fano threefold X = X(A, P, Σ)
of Picard number one with divisor class group and Cox ring

R(X) ∼= K[T01, T02, T03, T11, T21, T31]/⟨g0, g1⟩,

g0 = T01T02T03 + T 2
11 + T 2

21, g1 = λ1T 2
11 + T 2

21 + T 2
31,

Cl(X) ∼= Z⊕ Z/2Z⊕ Z/2Z, Q =

⎡⎢⎣ 1 1 2 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄ 1̄ 1̄

⎤⎥⎦ .

Every non-toric, Q-factorial, log terminal and Gorenstein Fano threefold of Picard number
one of format (3, 1, 1, 1, 0) is isomorphic to X = X(A, P, Σ) for a choice of λ1 as above
with that matrix P .

Proof. Proposition 2.6.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w11, w12, w21, w31]. Excplicitly, there are
the following two possibilities for Q0:

(2, 2, 2, 2, 3, 3), (1, 1, 2, 2, 2, 2).

The matrix P annihilates the transpose of Q0. This enables us to determine in the
matrix P , adjusted according to Proposition 2.8.2 (iii), all the remaining variables. So,
we are left with a finite list of explicitly given possible defining matrices P . We check
for the necessary properties by means of [43] and reduce via Proposition 2.3.1 to data
defining pairwise non-isomorphic varieties. The first candidate for Q0 does not produce
any valid matrices P . For the second candidate, there is up to admissible operations only
one matrix P , namely the one presented in the assertion. The description of the Cox
ring and the class group follow from Construction 2.2.2.
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2.9 Proof of Classification 2.1.1: Case 6 - format (2, 1, 1, 1)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (vi). The setting is as follows.
Setting 2.9.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (2, 1, 1, 1). Then

P = [v01, v02, v11, v21, v1] =

⎡⎢⎢⎢⎣
−l01 −l02 l11 0 0
−l01 −l02 0 l21 0
d011 d021 d111 d211 d11
d012 d022 d112 d212 d12

⎤⎥⎥⎥⎦ .

holds with pairwise different primitive columns v01, v02, v11, v21 and v1 generating Q4 as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v11, v21, v1), σ02 = cone(v01, v11, v21, v1),

σ1 = cone(v01, v02, v11, v21), τ0 = cone(v01, v02, v1).
We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w11, w21, w1]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w11, w21, w1) is
primitive in Z5 and generates ker(P ).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P .
Proposition 2.9.2. Consider X = X(A, P, Σ) as in Setting 2.9.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) The tuple of exponents (l01, l11, l21) fits into precisely one of the following constella-
tions:

(1, x, y), x ≥ y > 1; (2, z, 3), 3 ≤ z ≤ 5;
(y, 2, 2), y ≥ 2; (3, z, 2), 3 ≤ z ≤ 5;
(2, y, 2), y ≥ 3; (z, 3, 2), 4 ≤ z ≤ 5.

(ii) −K = (1− l01)DX
01 + (1− l02)DX

02 + DX
11 + DX

21 + DX
1 is an anticanonical divisor

on X. In particular, the free part of the anticanonical class of X is given by

wX = (1− l01)w01 + (1− l02)w02 + w11 + w21 + w1.

(iii) Admissible row operations turn the defining matrix P into the shape

P =

⎡⎢⎢⎢⎣
−l01 −l02 l11 0 0
−l01 −l02 0 l21 0

1− l01 1− l02 d111 d211 1
d012 d022 d112 d212 0

⎤⎥⎥⎥⎦ ,

l01 ≥ l02 ≥ 1, l11 ≥ l21 ≥ 2,
0 ≤ d012 < l01,
− wX

w02
≤ d022 < l02+ wX

w02
,

0 ≤ d211, d212 < l21,

where w02 | wX .
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Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21) to
see that (l01, l11, l21) is a platonic tuple. As P has ordered exponents, we have l11 ≥ l21.
Moreover, since X is non-toric, l21 ≥ 2 holds. This leaves us with the six constellations
for (l01, l11, l21) stated in the assertion.

For the second assertion note that we have r = 2 and that the defining relation of the
Cox ring is given as

g = T l01
01 T l02

02 + T l11
11 + T l21

21 .

Thus deg(g) = l01 deg(T01) + l02 deg(T02) holds and Remark 2.2.13 shows that the
anticanonical divisor −K is as claimed.

We prove (iii). We care about the entries of the (d, d′)-block of P . Since v1 ∈ Z4 is
primitive, we can apply a suitable unimodular 2× 2 matrix from the left to the (d, d′)
block to ensure

d11 = 1, d12 = 0.

We now make use of the assumption that X is Gorenstein. First consider the X-
cone τ0 = cone(v01, v02, v1). Then Corollary 2.2.19 provides a linear form u ∈ Z4 such
that

⟨u, v01⟩ = 1− l01, ⟨u, v02⟩ = 1− l02, ⟨u, v1⟩ = 1.

The last equation tells us in particular u3 = 1. Plugging this into the first two equations
yields

d011 = l01(u1 + u2)− u4d012 + 1− l01, d021 = l02(u1 + u2)− u4d022 + 1− l02.

Thus, adding the (u1 + u2)-fold of the first and the u4-fold of the fourth row of P to the
third one, we obtain

d011 = 1− l01, d021 = 1− l02.

Moreover, adding an appropriate multiple of the first row of P to the fourth one, we
achieve

0 ≤ d012 < l01.

Now consider the maximal X-cone σ02 = cone(v01, v11, v21, v1). Let u ∈ Z4 be a linear
form representing DX

0 on Xσ02 according to Corollary 2.2.19(iii). Then

0 = Q0 · P ∗ · u =
∑︂
⟨u, vij⟩wij + ⟨u, v1⟩w1 = wX + (u4d022 − l02(u1 + u2))w02.

In particular, we see that w02 divides wX . Moreover, we must have u3 = 1. We obtain

1− l01 = ⟨u, v01⟩ = −l01u1 − l01u2 + 1− l01 + u4d012.

This merely means l01(u1 + u2) = u4d012. Plugging this into the previous equation yields

−l01
wX

w02
= u4(d022l01 − d012l02).

Thus, (d022l01−d012l02) divides l01
wX
w02

. As a consequence, we can estimate d022 as follows:

l02
d012
l01
− wX

w02
≤ d022 ≤ l02

d012
l01

+ wX

w02
.
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2.9. Proof of Classification 2.1.1: Case 6 - format (2, 1, 1, 1)

Combining this with 0 ≤ d012 < l01, we arrive at the desired bounds for d022. Finally, we
achieve

0 ≤ d211, d212 < l21

by adding suitable multiples of the difference of the first two rows of P to third and the
fourth one.

The second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w02, w11, w21, w1] are bounded.

Proposition 2.9.3. Consider X = X(A, P, Σ) as in Setting 2.9.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any three positive integers α01, α02 and β1 consider the 5× 5

G :=

⎡⎢⎢⎢⎢⎢⎣
1− l01 − α01 1− l02 1 1 1

1− l01 1− l02 − α02 1 1 1
1− l01 1− l02 1 1 1− β1
−l01 −l02 l11 0 0
−l01 −l02 0 l21 0

⎤⎥⎥⎥⎥⎥⎦ .

The matrix G is of rank at least four. Moreover, det(G) = 0 holds if and only
if α01, α02, β1 and l01, l02, l11, l21 satisfy the identity

1
β1

+ 1
α01

+ 1
α02

+
(︃

l01
α01

+ l02
α02

)︃(︃ 1
l11

+ 1
l21
− 1

)︃
= 1.

(ii) There are unique α01, α02, β1 ∈ Z≥1 with α01w01 = α02w02 = β1w1 = wX and the
corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w11, w21, w1).

(iii) According to the possible constellations of (l01, l11, l21) from Proposition 2.9.2 (i)
we have the following upper bounds on the entries of the matrix G from (ii):

l01 l02 l11 l21 α01 α02 β1
(1, x, y) 1 1 84 8 42 4 36
(y, 2, 2) 11 6 2 2 6 6 6
(2, y, 2) 2 2 24 2 28 35 1806
(2, z, 3) 2 2 5 3 14 4 42
(3, z, 2) 3 3 5 2 14 5 42
(z, 3, 2) 5 5 3 2 14 5 42

Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 3 and column 1:

G3,1 = det

⎡⎢⎢⎢⎣
1− l02 1 1 1

1− l02 − α02 1 1 1
−l02 l11 0 0
−l02 0 l21 0

⎤⎥⎥⎥⎦ = α02l11l21 ̸= 0.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on α01, α02, β1 and l01, l02, l11, l21.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones σ01, σ02 and σ1
shows that each of w01, w02 and w1 is a multiple of wX and hence we obtain positive
integers α01, α02 and β1 with

α01w01 = α02w02 = β1w1 = (1− l01)w01 + (1− l02)w02 + w11 + w21 + w1.

Moreover, by homogeneity of the defining relation g we have

l01w01 + l02w02 = l11w11 = l21w21.

The matrix G is the coefficient matrix of the corresponding system of linear equations.
In particular, ker(G) is generated by the primitive vector (w01, w02, w11, w21, w1) ∈ Z5.

We turn to (iii). We treat the configuration (l01, l11, l21) = (1, x, y). In this case the
identity from (i) reads

1
β1

+
(︃ 1

α01
+ 1

α02

)︃(︃1
x

+ 1
y

)︃
= 1. (2.9.3.1)

Since l01 = l02 holds, we may assume α01 ≥ α02. We immediately get the bounds

β1 ≥ 2, α02 ≤ 4, y ≤ 8.

Restricting Equation 2.9.3.1 to partial sums, we obtain the inequalities

1
α02x

+ 1
α02y

+ 1
β1

< 1,

1
α01y

+ 1
α02y

+ 1
β1

< 1.

In both cases, we can apply Lemma 2.3.4 (i), which tells us the sum on the left is at
most 41/42. This gives lower bounds on the parts of the sum in Equation 2.9.3.1 that
were split off, which yields the bounds α01 ≤ 42 and x ≤ 84. Finally, we solve Equation
2.9.3.1 for β1 and check the possible values within the established bounds for x,y, α01
and α02 to obtain β1 ≤ 36.

We treat the configuration (l01, l11, l21) = (y, 2, 2). In this case the identity from (i)
reads

1
α01

+ 1
α02

+ 1
β1

= 1.

This gives the bounds α01, α02, β1 ≤ 6. Additionally, since l11 equals l21 in this case, we
have w11 = w21. Applying Corollary 2.2.19 to the X-cone τ0 = cone(v01, v02, v1), we see
that there is γ ∈ Z≥1 with γw11 = γw21 = wX . Homogeneity of the defining relation g
yields

y

α01
+ l02

α02
= 2

γ
.

Using the bounds for α01 and α02, we obtain y ≤ 11 and l02 ≤ 6.
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2.9. Proof of Classification 2.1.1: Case 6 - format (2, 1, 1, 1)

We treat the configuration (l01, l11, l21) = (2, y, 2). In this case the identity from (i)
reads

1
β1

+ 2− l02
2α02

+ 1
y

(︃ 2
α01

+ l02
α02

)︃
= 1. (2.9.3.2)

Note that the second summand is either 0 or a unit fraction. Moreover, each summand si
positive. By splitting of the summands that contain y, respectively α01 and α02 in their
denominators, we can apply Lemma 2.3.4 (i) to obtain

1
y

(︃ 2
α01

+ l02
α02

)︃
≥ 1

6 ,
2

α01y
≥ 1

42 ,
(2− l02)y + 2l02

2yα02
≥ 1

42 .

The first inequality gives the bound y ≤ 24, the second gives α01 ≤ 28 and the third
gives α02 ≤ 35. To get a bound on β1, we expand the left hand side of Equation 2.9.3.2.
It is a sum of at most five unit fractions. We apply Lemma 2.3.4 (ii) to obtain β1 ≤ 1806.

We treat the configuration (l01, l11, l21) = (2, z, 3). In this case the identity from (i)
reads

1
β1

+ 6− z

3α01z
+ 3l02 + (3− 2l02)z

3α02z
= 1. (2.9.3.3)

Note that we have 3 ≤ z ≤ 5 and in this range 6− z is a divisor of z. Thus the first two
summands are unit fractions. We apply Lemma 2.3.4 (i) to obtain

3l02 + (3− 2l02)z
3α02z

≥ 1
6 .

Solving this for α02, we get the bound α02 ≤ 4. Note that the third summand in
Equation 2.9.3.3 is a sum of at most two unit fractions. Applying Lemma 2.3.4 (iii) to
that sum thus yields

1
β1
≤ 1

42 ,
6− z

3α01z
≤ 1

42 .

From this we obtain the bounds α01 ≤ 14 and β1 ≤ 42.
We treat the configuration (l01, l11, l21) = (3, z, 2). In this case the identity from (i)

reads
1
β1

+ 6− z

2α01z
+ 2l02 + (2− l02)z

2α02z
= 1.

Applying exactly the same arguments as for the previous configuration, we now get the
bounds α01 ≤ 14, α02 ≤ 5 and β1 ≤ 42.

We treat the configuration (l01, l11, l21) = (z, 3, 2). In this case the identity from (i)
reads

1
β1

+ 6− z

6α01
+ 6− l02

6α02
= 1.

Again, the same arguments apply as for the previous two exponent configurations, now
giving the bounds α01 ≤ 14, α02 ≤ 5 and β ≤ 42.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Corollary 2.9.4. There is a list of 155 explicitly given generator matrices P of for-
mat (2, 1, 1, 1) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X(A, P, Σ) of Picard number one.

Z Z+Z2 Z+Z3 Z+Z4 Z+Z5 Z+Z6 Z+Z2
2 Z+Z2+Z4 Z+Z3

2 sum
(1, x, y) 13 19 6 4 1 3 4 2 52
(y, 2, 2) 12 3 9 1 25
(2, y, 2) 13 24 8 1 46
(z, 3, 2) 10 7 1 18
(2, z, 3) 2 3 1 6
(3, z, 2) 2 5 1 8

sum 40 67 9 7 1 4 23 2 2 155
Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2, 1, 1, 1) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.9.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w11, w21, w1] by computer. Now, recall
that P annihilates the transpose of Q0. This enables us to determine in the matrix P ,
adjusted according to Proposition 2.9.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P . Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion.

2.10 Proof of Classification 2.1.1: Case 7 - format (2, 1, 1, 1, 1)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (vii). The setting is as follows.

Setting 2.10.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (2, 1, 1, 1, 1). Then

P = [v01, v02, v11, v21, v31, v1] =

⎡⎢⎢⎢⎢⎢⎣
−l01 −l02 l11 0 0 0
−l01 −l02 0 l21 0 0
−l01 −l02 0 0 l31 0
d011 d021 d111 d211 d311 d11
d012 d022 d112 d212 d312 d12

⎤⎥⎥⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v02, v11, v21, v31 and v1 generating Q5

as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ
of Z are given by

σ01 = cone(v02, v11, v21, v31, v1), σ02 = cone(v01, v11, v21, v31, v1),
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2.10. Proof of Classification 2.1.1: Case 7 - format (2, 1, 1, 1, 1)

σ1 = cone(v01, v02, v11, v21, v31), τ0 = cone(v01, v02, v1).

We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w02, w11, w21, w31, w1]

for the free part of the degree matrix Q. Note that the vector (w01, w02, w11, w21, w31, w1)
is primitive in Z6 and generates ker(P ).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P .

Proposition 2.10.2. Consider X = X(A, P, Σ) as in Setting 2.10.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) We have l01 = l02 = 1. Moreover, the tuple of exponents (l01, l11, l21, l31) fits into
precisely one of the following constellations:

(1, y, 2, 2), y ≥ 2, (1, z, 3, 2), 3 ≤ z ≤ 5.

(ii) −K = (1−l11)DX
11 +DX

21 +DX
31 +DX

1 is an anticanonical divisor on X. In particular,
the free part of the anticanonical class of X is given by

wX = (1− l11)w11 + w21 + w31 + w1.

(iii) Admissible row operations turn the defining matrix P into the form

P =

⎡⎢⎢⎢⎢⎢⎣
−1 −1 l11 0 0 0
−1 −1 0 l21 0 0
−1 −1 0 0 l31 0

0 0 d111 d211 d311 1
0 d022 d112 d212 d312 0

⎤⎥⎥⎥⎥⎥⎦ ,

l11≥l21≥l31>1,

0<d022≤ wX
w02

,

0≤d211,d212<l21,

0≤d311,d312<l31,

where w02 | wX .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21, v31) to
see that (l01, l11, l21, l31) is a platonic tuple. As P has ordered exponents, we have l11 ≥ l21
and l21 ≥ l31. Moreover, since X is non-toric, l31 ≥ 2 holds. Thus we have l01 = 1 and
consequently l02 = 1. This leaves us with the two constellations for (l01, l11, l21, l31) stated
in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity of
the defining relations g0 and g1.

We prove (iii). Multiplying the (d, d′)-block by a suitable unimodular 2× 2 matrix,
we may assume d11 = 1 and d12 = 0. Adding multiples of the first row of P to the fourth
and fifth, we achieve d011 = d012 = 0. We make use of the Gorenstein property. Consider
the X-cone τ0 = cone(v01, v02, v1). By Corollary 2.2.19 there is a linear form u ∈ Z5 with

⟨u, v01⟩ = 0, ⟨u, v21⟩ = 0, ⟨u, v1⟩ = 1.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Equations one and three yield u1 + u2 + u3 = 0 and u4 = 1. Plugging this into the second
equation, we see that d022 is a divisor of d021. Note that linear independence of v01 and v02
demands that d022 is not zero. We add the u4-fold of the fifth row of P to the fourth
row to achieve d021 = 0. By multiplying the last row of P by −1 if necessary, we may
assume d022 > 0. We add an appropriate multiple of the difference of the first and second
row to the fourth and fifth to achieve 0 ≤ d211, d212 < l21. Doing the same for the first and
third row yields 0 ≤ d311, d312 < l31. Consider the X-cone σ02 = cone(v01, v11, v21, v31, v1).
By Lemma 2.3.2 we have w02 | wX and there is a linear form u ∈ Z5 with

⟨u, v01⟩ = 0, ⟨u, v02⟩ = −wX
w02

,

⟨u, v11⟩ = 1− l11, ⟨u, v21⟩ = 1,
⟨u, v31⟩ = 1, ⟨u, v1⟩ = 1.

The first and second equation show that d022 is a divisor of wX/w02, which established
the bound on d022.

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w02, w11, w21, w31, w1] are bounded.

Proposition 2.10.3. Consider X = X(A, P, Σ) as in Setting 2.10.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any three positive integers α01, α02 and β1 consider the 6× 6 matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−α01 0 1− l11 1 1 1
0 −α02 1− l11 1 1 1
0 0 1− l11 1 1 1− β1
−1 −1 l11 0 0 0
−1 −1 0 l21 0 0
−1 −1 0 0 l31 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix G is of rank at least five. Moreover, we have det(G) = 0 if and only
if α01, α02, β1 and l11, l21, l31 satisfy the identity

1
β1

+
(︃ 1

α01
+ 1

α02

)︃(︃ 1
l11

+ 1
l21

+ 1
l31
− 1

)︃
= 1.

(ii) There are unique α01, α02, β1 ∈ Z≥1 with α01w01 = α02w02 = β1w1 = wX , and the
corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w02, w11, w21, w31, w1).

(iii) According to the possible constellations of the exponents (l01, l11, l21, l31) from Propo-
sition 2.10.2 (i) we have the following upper bounds on the entries of the matrix G
from (ii). An empty line indicates that this exponent configuration does not occur.
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2.10. Proof of Classification 2.1.1: Case 7 - format (2, 1, 1, 1, 1)

l01 l02 l11 l21 l31 α01 α02 β1
(1, y, 2, 2) 1 1 4 2 2 3 2 4
(1, z, 3, 2)

Proof. We prove (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting row 3 and column 1:

G3,1 = det

⎡⎢⎢⎢⎢⎢⎣
0 1− l11 1 1 1

−α02 1− l11 1 1 1
−1 l11 0 0 0
−1 0 l21 0 0
−1 0 0 l31 0

⎤⎥⎥⎥⎥⎥⎦ = α02l11l21l31 ̸= 0.

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on α01, α02, β1 and l11, l21, l31.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones σ01, σ02 and
σ1 shows that each of w01, w02 and w1 is a multiple of wX and hence we obtain positive
integers α01, α02 and β1 with

α01w01 = α02w02 = β1w1 = (1− l11)w11 + w21 + w31 + w1.

Moreover, by homogeneity of the defining relations g0 and g1 we have

w01 + w02 = l11w11 = l21w21 = l31w31.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (w01, w02, w11, w21, w31, w1) ∈ Z6.

We prove (iii). We treat the configuration (l01, l11, l21, l31) = (1, y, 2, 2). In this case
the identity from (i) reads

1
β1

+ 1
y

(︃ 1
α01

+ 1
α02

)︃
= 1.

Since l01 = l02 holds, we may assume α01 ≥ α02. We immediately get the bounds α02 ≤ 2
and y ≤ 4. Expanding the left hand side, we see that it is a sum of three unit fractions.
Applying 2.3.4 (ii) shows that the denominator of each summand is at most 6. Taking
into account y ≥ 2, this gives the bounds α01 ≤ 3 and β1 ≤ 6.

We treat the configuration (l01, l11, l21, l31) = (1, z, 3, 2). In this case the identity
from (i) reads

1
β1

+ 6− z

6z

(︃ 1
α01

+ 1
α02

)︃
= 1.

Note that 6− z is a divisor of z for 3 ≤ z ≤ 5. Thus the left hand side is a sum of three
unit fractions, two of them have denominator at least 6. This cannot add up to one.
Thus this exponent configuration does not occur.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Corollary 2.10.4. There is a list of 5 explicitly given generator matrices P of for-
mat (2, 1, 1, 1, 1) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X(A, P, Σ) of Picard number one.

Z+Z2 Z+Z2
2 Z+Z3

2 sum
(1, y, 2, 2) 1 3 1 5

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2, 1, 1, 1, 1) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.10.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w02, w11, w21, w31, w1] by computer. Now,
recall that P annihilates the transpose of Q0. This enables us to determine in the matrix
P , adjusted according to Proposition 2.10.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P . Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion.

2.11 Proof of Classification 2.1.1: Case 8 - format (1, 1, 1, 2)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (viii). The setting is as follows.

Setting 2.11.1. Let X = X(A, P, Σ) a Q-factorial threefold of Picard number one of
format (1, 1, 1, 2). Then

P = [v01, v11, v21, v1, v2] =

⎡⎢⎢⎢⎣
−l01 l11 0 0 0
−l01 0 l21 0 0
d011 d111 d211 d11 d21
d012 d112 d212 d12 d22

⎤⎥⎥⎥⎦
holds with pairwise different primitive columns v01, v11, v21, v1 and v2 generating Q4 as a
cone. We assume P to have ordered exponents. The maximal X-cones of the fan Σ of Z
are given by

σ1 = cone(v01, v11, v21, v2), σ2 = cone(v01, v11, v21, v1),

τ0 = cone(v01, v1, v2), τ1 = cone(v11, v1, v2), τ2 = cone(v21, v1, v2).
We have K = Z ⊕ Γ with the torsion part Γ and denote deg(Tij) = (wij , ηij) as well
as deg(Tk) = (wk, ηk) accordingly. In particular, we write

Q0 = [w01, w11, w21, w1, w2]

for the free part of the degree matrix Q. Note that the vector (w01, w11, w21, w1, w2) is
primitive in Z5 and generates ker(P ).
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2.11. Proof of Classification 2.1.1: Case 8 - format (1, 1, 1, 2)

Proposition 2.11.2. Consider X = X(A, P, Σ) as in Setting 2.11.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) The tuple of exponents (l01, l11, l21) fits into precisely one of the following constella-
tions:

(y, 2, 2), y ≥ 2, (z, 3, 2), 3 ≤ z ≤ 5.

(ii) −K = (1− l01)DX
01 + DX

11 + DX
21 + DX

1 + DX
2 is an anticanonical divisor on X. In

particular, the free part of the anticanonical class of X is given by

wX = (1− l01)w01 + w11 + w21 + w1 + w2.

(iii) Admissible row operations turn the defining matrix P into the form

P =

⎡⎢⎢⎢⎣
−l01 l11 0 0 0
−l01 0 l21 0 0
d011 1 1 1 1
d012 d112 d212 0 d22

⎤⎥⎥⎥⎦ ,

l01≥l11≥l21≥2,

0≤d112<l11,

0≤d212<l21,

0<d22≤ wX
w2

,

where w2 | wX .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(v01, v11, v21) to
see that (l01, l11, l21) is a platonic tuple. As P has ordered exponents, we have l01 ≥ l11
and l11 ≥ l21. Moreover, since X is non-toric, l21 ≥ 2 holds. This leaves us with the two
constellations for (l01, l11, l21) stated in the assertion.

For the second assertion note that we have r = 2 and that the defining relation of the
Cox ring is given as

g = T l01
01 + T l11

11 + T l21
21 .

Thus deg(g) = l01 deg(T01) holds and Remark 2.2.13 shows that the anticanonical
divisor −K is as claimed.

We prove (iii). Applying a suitable unimodular 2× 2 matrix to the (d, d′)-block, we
may assume d11 = 1 and d12 = 0. We make use of the Gorenstein property. Consider
the X-cone τ2 = cone(v21, v1, v2). There is a linear form u ∈ Z4 with

⟨u, v21⟩ = 1, ⟨u, v1⟩ = 1, ⟨u, v2⟩ = 1.

The second equation shows that u3 = 1 holds. The other two equations the read

1 = u2l21 + d211 + u4d212,

1 = d21 + u4d22.

By adding the u2-fold of the second row of P and the u4-fold of the fourth row to the
third, we achieve d211 = 1 and d21 = 1. Note that linear independence of v1 and v2
demands that d22 is not zero. Multiplying the last row of P by −1 if necessary, we may
assum that d22 is positive. Now consider the X-cone τ1 = cone(v11, v1, v2). Again, there
is a linear form u ∈ Z4 with

⟨u, v21⟩ = 1, ⟨u, v1⟩ = 1, ⟨u, v2⟩ = 1.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

The second and third equation yield u3 = 1 and u4 = 0. The first equation thus reads

1 = u1l11 + d111.

Thus, adding the u1-fold of the first equation of P to the third, we achieve d111 = 1.
Finally consider the X-cone σ2 = cone(v01, v11, v21, v1). By Lemma 2.3.2 we have w2 | wX

and there is a linear form u ∈ Z4 with

⟨u, v01⟩ = 1− l01, ⟨u, v11⟩ = 1,
⟨u, v21⟩ = 1, ⟨u, v1⟩ = 1,
⟨u, v2⟩ = 1− wX

w2
.

Combining the fourth and fifth equation shows that d22 is a divisor of wX/w2. In
particular, we get the bound

1 ≤ d22 ≤
wX

w2
.

Finally, we add multiples of the first and the second row of P to the last row to
achieve 0 ≤ d112 < l11 and 0 ≤ d212 < l21.

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q0 = [w01, w11, w21, w1, w2] are bounded.

Proposition 2.11.3. Consider X = X(A, P, Σ) as in Setting 2.11.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) For any three positive integers α01, β1 and β2 consider the 5× 5 matrix

G :=

⎡⎢⎢⎢⎢⎢⎣
1− l01 − α01 1 1 1 1

1− l01 1 1 1− β1 1
1− l01 1 1 1 1− β2
−l01 l11 0 0 0
−l01 0 l21 0 0

⎤⎥⎥⎥⎥⎥⎦ .

The matrix G is of rank at least five. Moreover, we have det(G) = 0 if and only
if α01, β1, β2 and l01, l11, l21 satisfy the identity

1
α01

+ 1
β1

+ 1
β2

+ l01
α01

(︃ 1
l11

+ 1
l21
− 1

)︃
= 1.

(ii) There are unique α01, β1, β2 ∈ Z≥1 with α01w01 = β1w1 = β2w2 = wX , and the
corresponding matrix G from (i) satisfies

ker(G) = ker(P ) = Z · (w01, w11, w21, w1, w2).

(iii) According to the possible constellations of (l01, l11, l21) from Proposition 2.11.2 (i)
we have the following upper bounds on the entries of the matrix G from (ii):
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2.11. Proof of Classification 2.1.1: Case 8 - format (1, 1, 1, 2)

l01 l11 l21 α01 β1 β2
(y, 2, 2) 12 2 2 6 6 6
(z, 3, 2) 5 3 2 3 6 6

Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 3 and column 1:

G3,1 = det

⎡⎢⎢⎢⎣
1 1 1 1
1 1 1− β1 1

l11 0 0 0
0 l21 0 0

⎤⎥⎥⎥⎦ = β1l11l21 ̸= 0.

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on α01, β1, β2 and l01, l11, l21.

We prove (ii). Applying Corollary 2.2.21 to the maximal X-cones σ1 and σ2 shows
that each of w1 and w2 is a multiple of wX and hence we obtain positive integers β1
and β2 with

β1w1 = β2w2 = (1− l01)w01 + w11 + w21 + w1 + w2.

By applying admissible row operations to the matrix P , we may assume that it is of the
form presented in Proposition 2.11.2 (iii). Note that P annihilates the transpose of Q0.
Thus from the third row of P , we obtain the identity

d011w01 + w11 + w21 + w1 + w2 = 0.

Set α01 := 1− l01 − d011. Then we obtain the identity

α01w01 = (1− l01)w01 + w11 + w21 + w1 + w2.

Moreover, by homogeneity of the defining relation g we have

w01 + w02 = l11w11 = l21w21 = l31w31.

Now, G from (i) is the coefficient matrix of the corresponding system of linear equations.
In particular, for any choice of α01, β1 and β2 the integral matrix G has kernel generated
by the primitive vector (w01, w11, w21, w1, w2) ∈ Z5.

We prove (iii). We treat the configuration (l01, l11, l21) = (y, 2, 2). In this case the
identity from (i) reads

1
α01

+ 1
β1

+ 1
β2

= 1.

We apply Lemma 2.3.4 (ii) to get the bounds α01 ≤ 6, β1 ≤ 6 and β2 ≤ 6. Additionally,
since l11 = l21 holds, we have w11 = w21. Thus, applying Corollary 2.2.21 to the X-
cone τ0 = cone(v01, v1, v2), we see that there is γ ∈ Z≥1 with γw11 = γw21 = wX .
Homogeneity of the defining relation g yields

y

α01
= 2

γ
.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Using the bound on α01, we obtain y ≤ 12.
We treat the configuration (l01, l11, l21) = (z, 3, 2). In this case the identity from (i)

reads
6− z

6α01
+ 1

β1
+ 1

β2
= 1.

Note that 6− z is a divisor of 6 for 3 ≤ z ≤ 5. Thus the left hand side is a sum of three
unit fractions. By Lemma 2.3.4 (ii) we obtain the bounds α01 ≤ 3, β1 ≤ 6 and β2 ≤ 6.

Corollary 2.11.4. There is a list of 17 explicitly given generator matrices P of for-
mat (1, 1, 1, 2) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X(A, P, Σ) of Picard number one.

Z+Z2 Z+Z3 Z+Z2
2 Z+Z3

2 sum
(y, 2, 2) 2 11 3 16
(z, 3, 2) 1 1

sum 2 1 11 3 17
Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (1, 1, 1, 2) is isomorphic to an X = X(A, P, Σ) with P from the list.

Proof. Proposition 2.11.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q0 = [w01, w11, w21, w1, w2] by computer. Now, recall
that P annihilates the transpose of Q0. This enables us to determine in the matrix P ,
adjusted according to Proposition 2.11.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P . Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion.

2.12 Classification lists

Here we provide the detailed presentation of our classification result. Let us briefly recall
the background. Each non-toric, Q-factorial, Gorenstein, log terminal Fano threefold X of
Picard number one coming with an effective action of a two-dimensional torus is uniquely
determined by its Cox ring. In particular, X can be encoded by the degree matrix Q, that
means the list of degrees of the Cox ring generators in Cl(X) and the defining trinomial
relations g0, . . . , gr−1. For instance, our example variety X from Examples 2.2.3, 2.2.9,
2.2.16 and 2.2.20 is encoded by

Q =

⎡⎢⎣2 2 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 1̄ 0̄

⎤⎥⎦, g0 = T1T2 + T 4
3 + T 2

4 ,
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2.12. Classification lists

where the columns of Q live in Z ⊕ Z/2Z ⊕ Z/2Z. Indeed, the defining matrix P is
determined up to admissible operations by Q, the format (2, 1, 1, 1) and the list of
exponents of g0. Alternatively, X is the hypersurface defined by g0 in the fake weighted
projective space Z = Ẑ/H, where Ẑ = K5 \ {0} and the quasitorus H and its action on
K5 are given by

H = K∗ × {±1} × {±1}, (t, ζ, η) · z =
(︁
t2ζηz1, t2ζηz2, tηz3, t2ηz4, tz5

)︁
.

We turn to the classification lists. Every non-toric, Q-factorial, Gorenstein, log
terminal Fano threefold X of Picard number one coming with an effective action of a
two-dimensional torus is isomorphic to precisely one of the listed varieties. Conversely,
each of the listed data defines a non-toric, Q-factorial, Gorenstein, log terminal Fano
threefold X of Picard number one coming with an effective action of a two-dimensional
torus.

Each of the lists represents a possible divisor class group and format. Each variety in
such a list is specified by its matrix Q of generator degrees and its defining trinomial
relations; observe that we number the variables of the relation conventionally and not
in accordance with the double-indexed enumeration of the columns of the associated
defining matrix P . Besides the specifying data, we list the anticanonical self intersection.
A file containing also the defining matrices P and further invariants is available at [15].

Classification list 2.12.1. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

10 T 5
1 T2+T 3

3 T 3
4 +T 2

5 [1 1 1 1 3] 2

11 T 4
1 T 3

2 +T 3
3 T 2

4 +T 2
5 [1 2 2 2 5] 2

14 T 5
1 T2+T 3

3 T 2
4 +T 2

5 [2 4 4 1 7] 4

15 T 3
1 T 2

2 +T 3
3 T 2

4 +T 2
5 [2 4 4 1 7] 4

16 T 3
1 T 2

2 +T 3
3 T 2

4 +T 2
5 [2 1 2 1 4] 4

17 T 5
1 T 3

2 +T 3
3 T4+T 2

5 [1 1 2 2 4] 4

18 T 3
1 T2+T 3

3 T 2
4 +T 2

5 [4 2 4 1 7] 4

31 T 3
1 T2+T 3

3 T4+T 2
5 [3 1 3 1 5] 6

32 T 4
1 T2+T 2

3 T 2
4 +T 3

5 [1 2 2 1 2] 6

33 T 5
1 T2+T 2

3 T4+T 3
5 [1 1 2 2 2] 6

34 T 4
1 T 2

2 +T 2
3 T4+T 3

5 [1 1 2 2 2] 6

35 T 3
1 T2+T 2

3 T 2
4 +T 3

5 [2 6 3 3 4] 6

36 T 3
1 T 2

2 +T 2
3 T4+T 3

5 [1 6 6 3 5] 6

37 T 3
1 T 2

2 +T 2
3 T4+T 3

5 [2 3 3 6 4] 6

38 T 16
1 T2+T 2

3 T4+T 2
5 [1 2 6 6 9] 6

39 T 12
1 T 3

2 +T 2
3 T4+T 2

5 [1 2 6 6 9] 6

ID relations gd-matrix −K3

40 T 8
1 T 5

2 +T 2
3 T4+T 2

5 [1 2 6 6 9] 6

41 T 7
1 T 4

2 +T 2
3 T4+T 2

5 [2 1 6 6 9] 6

42 T 4
1 T2+T 2

3 T4+T 2
5 [3 2 6 2 7] 6

52 T 4
1 T2+T 3

3 T 3
4 +T 2

5 [1 2 1 1 3] 8

53 T 4
1 T 3

2 +T 3
3 T4+T 2

5 [1 2 2 4 5] 8

54 T 11
1 T2+T 2

3 T4+T 2
5 [1 1 4 4 6] 8

55 T 9
1 T 3

2 +T 2
3 T4+T 2

5 [1 1 4 4 6] 8

56 T 8
1 T2+T 2

3 T4+T 2
5 [1 2 4 2 5] 8

57 T 7
1 T 5

2 +T 2
3 T4+T 2

5 [1 1 4 4 6] 8

58 T 4
1 T 3

2 +T 2
3 T4+T 2

5 [1 2 4 2 5] 8

65 T 3
1 T2+T 2

3 T4+T 5
5 [1 2 2 1 1] 10

66 T 2
1 T2+T 2

3 T4+T 5
5 [2 1 2 1 1] 10

67 T 15
1 T2+T3T4+T 5

5 [1 5 10 10 4] 10

68 T 10
1 T 2

2 +T3T4+T 5
5 [1 5 10 10 4] 10

69 T 5
1 T 3

2 +T3T4+T 5
5 [1 5 10 10 4] 10

70 T 5
1 T2+T3T4+T 5

5 [2 5 5 10 3] 10
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Chapter 2. Gorenstein Fano threefolds of Picard number one

ID relations gd-matrix −K3

77 T 3
1 T2+T 3

3 T 3
4 +T 2

5 [2 6 3 1 6] 12

78 T 3
1 T2+T 3

3 T 2
4 +T 2

5 [2 12 4 3 9] 12

79 T 5
1 T2+T 2

3 T4+T 3
5 [1 4 4 1 3] 12

80 T 10
1 T2+T 2

3 T4+T 2
5 [1 2 3 6 6] 12

81 T 7
1 T2+T 2

3 T4+T 2
5 [2 4 3 12 9] 12

82 T 6
1 T 3

2 +T 2
3 T4+T 2

5 [1 2 3 6 6] 12

83 T 5
1 T 2

2 +T 2
3 T4+T 2

5 [2 4 3 12 9] 12

84 T 5
1 T 2

2 +T 2
3 T4+T 2

5 [2 1 3 6 6] 12

85 T 4
1 T2+T 2

3 T4+T 2
5 [4 2 3 12 9] 12

86 T 3
1 T 3

2 +T 2
3 T4+T 2

5 [2 4 3 12 9] 12

87 T 2
1 T2+T 2

3 T4+T 3
5 [4 1 4 1 3] 12

88 T 2
1 T2+T 2

3 T4+T 2
5 [3 2 3 2 4] 12

89 T 21
1 T2+T3T4+T 3

5 [1 3 12 12 8] 12

90 T 18
1 T 2

2 +T3T4+T 3
5 [1 3 12 12 8] 12

91 T 12
1 T 4

2 +T3T4+T 3
5 [1 3 12 12 8] 12

92 T 10
1 T2+T3T4+T 4

5 [1 2 6 6 3] 12

93 T 9
1 T 5

2 +T3T4+T 3
5 [1 3 12 12 8] 12

94 T 9
1 T2+T3T4+T 6

5 [1 3 6 6 2] 12

95 T 7
1 T 3

2 +T3T4+T 3
5 [3 1 12 12 8] 12

96 T 6
1 T 3

2 +T3T4+T 4
5 [1 2 6 6 3] 12

97 T 5
1 T 2

2 +T3T4+T 4
5 [2 1 6 6 3] 12

98 T 3
1 T 2

2 +T3T4+T 12
5 [2 3 6 6 1] 12

99 T 3
1 T2+T3T4+T 3

5 [4 3 3 12 5] 12

100 T 2
1 T2+T3T4+T 2

5 [3 4 4 6 5] 12

106 T 4
1 T2+T 3

3 T 2
4 +T 2

5 [1 4 2 1 4] 16

107 T 3
1 T2+T 3

3 T 2
4 +T 2

5 [2 8 4 1 7] 16

108 T 3
1 T2+T 3

3 T4+T 2
5 [1 1 1 1 2] 16

109 T 3
1 T2+T 2

3 T4+T 4
5 [1 1 1 2 1] 16

110 T 7
1 T2+T 2

3 T4+T 2
5 [1 1 2 4 4] 16

111 T 5
1 T 3

2 +T 2
3 T4+T 2

5 [1 1 2 4 4] 16

112 T 4
1 T2+T 2

3 T4+T 2
5 [1 2 2 2 3] 16

113 T 8
1 T2+T3T4+T 4

5 [1 4 4 8 3] 16

114 T 7
1 T2+T3T4+T 4

5 [1 1 4 4 2] 16

115 T 6
1 T2+T3T4+T 8

5 [1 2 4 4 1] 16

116 T 5
1 T 3

2 +T3T4+T 4
5 [1 1 4 4 2] 16

ID relations gd-matrix −K3

117 T 3
1 T 2

2 +T3T4+T 8
5 [2 1 4 4 1] 16

126 T 4
1 T2+T 3

3 T 2
4 +T 2

5 [1 6 2 2 5] 18

127 T 5
1 T2+T 3

3 T4+T 2
5 [1 1 1 3 3] 18

128 T 3
1 T2+T 3

3 T 3
4 +T 2

5 [1 3 1 1 3] 18

129 T 8
1 T2+T 2

3 T4+T 2
5 [1 2 2 6 5] 18

130 T 4
1 T 3

2 +T 2
3 T4+T 2

5 [1 2 2 6 5] 18

131 T 15
1 T2+T3T4+T 3

5 [1 9 6 18 8] 18

132 T 11
1 T2+T3T4+T 3

5 [1 1 6 6 4] 18

133 T 10
1 T 2

2 +T3T4+T 3
5 [1 1 6 6 4] 18

134 T 8
1 T 4

2 +T3T4+T 3
5 [1 1 6 6 4] 18

135 T 7
1 T 5

2 +T3T4+T 3
5 [1 1 6 6 4] 18

136 T 7
1 T2+T3T4+T 3

5 [1 2 3 6 3] 18

137 T 6
1 T 2

2 +T3T4+T 3
5 [1 9 6 18 8] 18

138 T 6
1 T2+T3T4+T 3

5 [2 9 3 18 7] 18

139 T 5
1 T 2

2 +T3T4+T 3
5 [1 2 3 6 3] 18

140 T 5
1 T2+T3T4+T 6

5 [1 1 3 3 1] 18

141 T 4
1 T2+T3T4+T 3

5 [2 1 3 6 3] 18

142 T 3
1 T2+T3T4+T 9

5 [2 3 3 6 1] 18

143 T 2
1 T2+T3T4+T 3

5 [2 2 3 3 2] 18

145 T 3
1 T2+T 3

3 T4+T 2
5 [2 10 5 1 8] 20

146 T 26
1 T2+T3T4+T 2

5 [1 4 10 20 15] 20

147 T 18
1 T 3

2 +T3T4+T 2
5 [1 4 10 20 15] 20

148 T 10
1 T 5

2 +T3T4+T 2
5 [1 4 10 20 15] 20

149 T 7
1 T 2

2 +T3T4+T 2
5 [4 1 10 20 15] 20

150 T 3
1 T 2

2 +T3T4+T 2
5 [4 5 2 20 11] 20

151 T 2
1 T2+T3T4+T 4

5 [5 2 2 10 3] 20

160 T 4
1 T2+T 3

3 T4+T 2
5 [1 6 3 1 5] 24

161 T 4
1 T2+T 2

3 T4+T 3
5 [1 2 1 4 2] 24

162 T 3
1 T2+T 2

3 T4+T 3
5 [1 12 6 3 5] 24

163 T 2
1 T 2

2 +T 2
3 T4+T 3

5 [1 2 1 4 2] 24

164 T 2
1 T2+T 2

3 T4+T 6
5 [1 4 2 2 1] 24

165 T 2
1 T2+T 2

3 T4+T 4
5 [3 2 1 6 2] 24

166 T 2
1 T2+T 2

3 T4+T 3
5 [1 1 1 1 1] 24

167 T 22
1 T2+T3T4+T 2

5 [1 8 6 24 15] 24

168 T 16
1 T2+T3T4+T 2

5 [1 2 6 12 9] 24
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ID relations gd-matrix −K3

169 T 13
1 T2+T3T4+T 2

5 [1 3 4 12 8] 24

170 T 12
1 T 3

2 +T3T4+T 2
5 [1 2 6 12 9] 24

171 T 9
1 T2+T3T4+T 3

5 [1 6 3 12 5] 24

172 T 8
1 T 5

2 +T3T4+T 2
5 [1 2 6 12 9] 24

173 T 7
1 T 4

2 +T3T4+T 2
5 [2 1 6 12 9] 24

174 T 7
1 T 3

2 +T3T4+T 2
5 [1 3 4 12 8] 24

175 T 6
1 T 3

2 +T3T4+T 2
5 [1 8 6 24 15] 24

176 T 6
1 T2+T3T4+T 2

5 [3 8 2 24 13] 24

177 T 5
1 T2+T3T4+T 4

5 [1 3 2 6 2] 24

178 T 5
1 T2+T3T4+T 3

5 [1 1 2 4 2] 24

179 T 5
1 T2+T3T4+T 2

5 [3 1 4 12 8] 24

180 T 4
1 T 2

2 +T3T4+T 3
5 [1 1 2 4 2] 24

181 T 4
1 T2+T3T4+T 6

5 [1 2 2 4 1] 24

182 T 4
1 T2+T3T4+T 2

5 [1 6 4 6 5] 24

183 T 4
1 T2+T3T4+T 2

5 [1 2 3 3 3] 24

184 T 4
1 T2+T3T4+T 2

5 [3 2 2 12 7] 24

185 T 3
1 T 2

2 +T3T4+T 3
5 [1 6 3 12 5] 24

186 T 3
1 T2+T3T4+T 3

5 [1 3 3 3 2] 24

187 T 2
1 T2+T3T4+T 8

5 [3 2 2 6 1] 24

190 T 3
1 T2+T 3

3 T4+T 2
5 [1 15 5 3 9] 30

191 T 2
1 T2+T 2

3 T4+T 3
5 [1 10 5 2 4] 30

192 T 13
1 T2+T3T4+T 2

5 [1 5 3 15 9] 30

193 T 7
1 T2+T3T4+T 3

5 [1 5 2 10 4] 30

194 T 3
1 T 3

2 +T3T4+T 2
5 [1 5 3 15 9] 30

195 T 2
1 T 2

2 +T3T4+T 3
5 [1 5 2 10 4] 30

196 T1T2+T3T4+T 5
5 [2 3 2 3 1] 30

203 T 5
1 T2+T 2

3 T4+T 2
5 [1 1 1 4 3] 32

204 T 4
1 T2+T 2

3 T4+T 2
5 [2 2 1 8 5] 32

205 T 3
1 T 3

2 +T 2
3 T4+T 2

5 [1 1 1 4 3] 32

206 T 3
1 T 2

2 +T 2
3 T4+T 2

5 [2 2 1 8 5] 32

207 T 2
1 T2+T 2

3 T4+T 2
5 [1 2 1 2 2] 32

208 T 11
1 T2+T3T4+T 2

5 [1 1 4 8 6] 32

ID relations gd-matrix −K3

209 T 9
1 T 3

2 +T3T4+T 2
5 [1 1 4 8 6] 32

210 T 8
1 T2+T3T4+T 2

5 [1 2 2 8 5] 32

211 T 7
1 T 5

2 +T3T4+T 2
5 [1 1 4 8 6] 32

212 T 4
1 T 3

2 +T3T4+T 2
5 [1 2 2 8 5] 32

213 T 3
1 T2+T3T4+T 2

5 [1 1 2 2 2] 32

214 T 2
1 T2+T3T4+T 4

5 [1 2 2 2 1] 32

215 T 2
1 T2+T3T4+T 2

5 [1 4 2 4 3] 32

217 T 6
1 T2+T 2

3 T4+T 2
5 [1 2 1 6 4] 36

218 T 5
1 T2+T 2

3 T4+T 2
5 [2 4 1 12 7] 36

219 T 3
1 T 2

2 +T 2
3 T4+T 2

5 [2 4 1 12 7] 36

220 T 3
1 T 2

2 +T 2
3 T4+T 2

5 [2 1 1 6 4] 36

221 T 3
1 T2+T 2

3 T4+T 2
5 [4 2 1 12 7] 36

222 T 10
1 T2+T3T4+T 2

5 [1 4 2 12 7] 36

223 T 7
1 T2+T3T4+T 2

5 [1 1 2 6 4] 36

224 T 5
1 T 3

2 +T3T4+T 2
5 [1 1 2 6 4] 36

225 T 3
1 T 2

2 +T3T4+T 2
5 [4 1 2 12 7] 36

226 T 3
1 T2+T3T4+T 4

5 [1 1 1 3 1] 36

227 T1T2+T3T4+T 2
5 [3 1 2 2 2] 36

230 T 3
1 T2+T3T4+T 5

5 [1 2 1 4 1] 40

231 T 2
1 T2+T3T4+T 5

5 [2 1 1 4 1] 40

232 T 5
1 T2+T3T4+T 2

5 [3 7 1 21 11] 42

233 T 4
1 T2+T3T4+T 3

5 [2 7 1 14 5] 42

234 T 2
1 T2+T3T4+T 7

5 [2 3 1 6 1] 42

235 T 5
1 T2+T3T4+T 3

5 [1 4 1 8 3] 48

236 T 2
1 T2+T3T4+T 3

5 [4 1 1 8 3] 48

237 T1T2+T3T4+T 3
5 [1 2 1 2 1] 48

238 T1T2+T3T4+T 2
5 [1 3 1 3 2] 48

241 T 5
1 T2+T3T4+T 2

5 [1 1 1 5 3] 50

242 T 3
1 T 3

2 +T3T4+T 2
5 [1 1 1 5 3] 50

243 T 7
1 T2+T3T4+T 2

5 [1 3 1 9 5] 54

244 T 3
1 T2+T3T4+T 2

5 [3 1 1 9 5] 54

245 T1T2+T3T4+T 2
5 [1 1 1 1 1] 54
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Classification list 2.12.2. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

30
T 3

1 T2+T3T4+T 3
5 ,

λT3T4+T 3
5 +T 2

6
[1 3 3 3 2 3] 6

76
T 2

1 T2+T3T4+T 3
5 ,

λT3T4+T 3
5 +T 2

6
[1 4 2 4 2 3] 12

ID relations gd-matrix −K3

189
T1T2+T3T4+T 3

5 ,

λT3T4+T 3
5 +T 2

6
[1 5 1 5 2 3] 30

Classification list 2.12.3. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

3 T 5
1 T 3

2 T 2
3 +T 3

4 +T 2
5 [1 1 2 4 6] 2

4 T 4
1 T 3

2 T 2
3 +T 3

4 +T 2
5 [1 2 1 4 6] 2

5 T 5
1 T 5

2 T3+T 3
4 +T 2

5 [1 1 2 4 6] 2

6 T 5
1 T 3

2 T3+T 3
4 +T 2

5 [1 2 1 4 6] 2

7 T 5
1 T2T3+T 3

4 +T 2
5 [2 1 1 4 6] 2

8 T 4
1 T 3

2 T3+T 3
4 +T 2

5 [2 1 1 4 6] 2

9 T 3
1 T 2

2 T3+T 5
4 +T 2

5 [2 1 2 2 5] 2

13 T 2
1 T 2

2 T3+T 7
4 +T 2

5 [4 1 4 2 7] 4

25 T 5
1 T 2

2 T3+T 3
4 +T 2

5 [2 1 6 6 9] 6

26 T 4
1 T 4

2 T3+T 3
4 +T 2

5 [2 1 6 6 9] 6

27 T 4
1 T 2

2 T3+T 3
4 +T 2

5 [1 6 2 6 9] 6

28 T 3
1 T2T3+T 3

4 +T 2
5 [2 3 3 4 6] 6

29 T 2
1 T2T3+T 7

4 +T 2
5 [3 2 6 2 7] 6

46 T 5
1 T 3

2 T3+T 3
4 +T 2

5 [1 1 4 4 6] 8

47 T 4
1 T 4

2 T3+T 3
4 +T 2

5 [1 1 4 4 6] 8

48 T 4
1 T2T3+T 3

4 +T 2
5 [1 1 1 2 3] 8

49 T 3
1 T 2

2 T3+T 3
4 +T 2

5 [1 4 1 4 6] 8

50 T 3
1 T 2

2 T3+T 3
4 +T 2

5 [1 1 1 2 3] 8

ID relations gd-matrix −K3

51 T 2
1 T 2

2 T3+T 5
4 +T 2

5 [2 1 4 2 5] 8

63 T1T2T3+T 7
4 +T 3

5 [1 10 10 3 7] 10

64 T1T2T3+T 3
4 +T 2

5 [2 5 5 4 6] 10

75 T 3
1 T 3

2 T3+T 3
4 +T 2

5 [3 1 12 8 12] 12

104 T 2
1 T2T3+T 7

4 +T 2
5 [1 4 8 2 7] 16

105 T 2
1 T2T3+T 3

4 +T 2
5 [1 2 2 2 3] 16

121 T 5
1 T2T3+T 3

4 +T 2
5 [1 6 1 4 6] 18

122 T 4
1 T 2

2 T3+T 3
4 +T 2

5 [1 1 6 4 6] 18

123 T 3
1 T 3

2 T3+T 3
4 +T 2

5 [1 1 6 4 6] 18

124 T 2
1 T2T3+T 5

4 +T 2
5 [1 2 6 2 5] 18

125 T1T2T3+T 7
4 +T 2

5 [1 9 18 4 14] 18

144 T 2
1 T 2

2 T3+T 3
4 +T 2

5 [4 1 20 10 15] 20

158 T 4
1 T2T3+T 3

4 +T 2
5 [1 12 2 6 9] 24

159 T 2
1 T 2

2 T3+T 3
4 +T 2

5 [2 1 12 6 9] 24

188 T1T2T3+T 3
4 +T 2

5 [1 5 30 12 18] 30

201 T 3
1 T2T3+T 3

4 +T 2
5 [1 8 1 4 6] 32

202 T 2
1 T 2

2 T3+T 3
4 +T 2

5 [1 1 8 4 6] 32

240 T1T2T3+T 3
4 +T 2

5 [1 1 10 4 6] 50

Classification list 2.12.4. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z and format (2, 1, 1, 1).

126



2.12. Classification lists

ID relations gd-matrix −K3

1 T 5
1 T 2

2 +T 3
3 +T 2

4 [2 1 4 6 1] 2

2 T 3
1 T 2

2 +T 5
3 +T 2

4 [2 2 2 5 1] 2

12 T 2
1 T2+T 4

3 +T 3
4 [4 4 3 4 1] 4

19 T 3
1 T 2

2 +T 3
3 +T 2

4 [2 3 4 6 3] 6

20 T 3
1 T 2

2 +T 3
3 +T 2

4 [2 6 6 9 1] 6

21 T 3
1 T2+T 3

3 +T 2
4 [3 3 4 6 2] 6

22 T 2
1 T2+T 4

3 +T 3
4 [3 6 3 4 2] 6

23 T 2
1 T2+T 9

3 +T 2
4 [6 6 2 9 1] 6

24 T 2
1 T2+T 7

3 +T 2
4 [6 2 2 7 3] 6

43 T 5
1 T2+T 3

3 +T 2
4 [1 1 2 3 1] 8

44 T 3
1 T2+T 5

3 +T 2
4 [2 4 2 5 1] 8

45 T 2
1 T2+T 5

3 +T 2
4 [4 2 2 5 1] 8

59 T 2
1 T2+T 5

3 +T 2
4 [5 10 4 10 1] 10

60 T 2
1 T2+T 3

3 +T 2
4 [5 2 4 6 5] 10

61 T1T2+T 5
3 +T 4

4 [10 10 4 5 1] 10

62 T1T2+T 5
3 +T 3

4 [5 10 3 5 2] 10

71 T 4
1 T2+T 3

3 +T 2
4 [3 12 8 12 1] 12

72 T 2
1 T2+T 9

3 +T 2
4 [3 12 2 9 4] 12

73 T1T2+T 8
3 +T 3

4 [12 12 3 8 1] 12

74 T1T2+T 5
3 +T 3

4 [3 12 3 5 4] 12

ID relations gd-matrix −K3

101 T 4
1 T2+T 3

3 +T 2
4 [1 2 2 3 2] 16

102 T 2
1 T2+T 3

3 +T 2
4 [2 2 2 3 1] 16

103 T1T2+T 4
3 +T 3

4 [4 8 3 4 1] 16

118 T 2
1 T2+T 5

3 +T 2
4 [2 6 2 5 1] 18

119 T 2
1 T2+T 3

3 +T 2
4 [2 2 2 3 3] 18

120 T1T2+T 5
3 +T 4

4 [2 18 4 5 9] 18

152 T1T2+T 8
3 +T 3

4 [2 22 3 8 11] 22

153 T 3
1 T2+T 3

3 +T 2
4 [1 3 2 3 3] 24

154 T 3
1 T2+T 3

3 +T 2
4 [2 12 6 9 1] 24

155 T1T2+T 9
3 +T 2

4 [6 12 2 9 1] 24

156 T1T2+T 7
3 +T 2

4 [2 12 2 7 3] 24

157 T1T2+T 3
3 +T 2

4 [3 3 2 3 1] 24

197 T 4
1 T2+T 3

3 +T 2
4 [1 8 4 6 1] 32

198 T 2
1 T2+T 5

3 +T 2
4 [1 8 2 5 2] 32

199 T 2
1 T2+T 3

3 +T 2
4 [1 4 2 3 4] 32

200 T1T2+T 5
3 +T 2

4 [2 8 2 5 1] 32

216 T 2
1 T2+T 7

3 +T 2
4 [1 12 2 7 4] 36

228 T1T2+T 7
3 +T 3

4 [1 20 3 7 10] 40

229 T1T2+T 3
3 +T 2

4 [1 5 2 3 5] 40

239 T 2
1 T2+T 3

3 +T 2
4 [1 10 4 6 1] 50

Classification list 2.12.5. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z⊕ Z/2Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

252 T 4
1 T 2

2 +T 3
3 T 2

4 +T 2
5

[︂
1 2 2 1 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
2

253 T 3
1 T 2

2 +T 3
3 T 2

4 +T 2
5

[︂
2 1 2 1 4
0̄ 1̄ 0̄ 0̄ 1̄

]︂
2

254 T 4
1 T 4

2 +T 3
3 T4+T 2

5

[︂
1 1 2 2 4
1̄ 0̄ 0̄ 0̄ 1̄

]︂
2

271 T 4
1 T2+T 3

3 T 3
4 +T 2

5

[︂
1 2 1 1 3
0̄ 0̄ 1̄ 1̄ 0̄

]︂
4

272 T 4
1 T 2

2 +T 3
3 T4+T 2

5

[︂
2 1 2 4 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

273 T 4
1 T2+T 2

3 T 2
4 +T 2

5

[︂
2 2 1 4 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

274 T 3
1 T 2

2 +T 2
3 T 2

4 +T 2
5

[︂
2 2 1 4 5
0̄ 1̄ 1̄ 0̄ 0̄

]︂
4

275 T 8
1 T 4

2 +T 2
3 T4+T 2

5

[︂
1 1 4 4 6
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

ID relations gd-matrix −K3

276 T 4
1 T 2

2 +T 2
3 T4+T 2

5

[︂
2 1 4 2 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

291 T 10
1 T2+T 2

3 T4+T 2
5

[︂
1 2 3 6 6
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

292 T 8
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 2 3 6 6
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

293 T 6
1 T 3

2 +T 2
3 T4+T 2

5

[︂
1 2 3 6 6
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

294 T 5
1 T 2

2 +T 2
3 T4+T 2

5

[︂
2 1 3 6 6
0̄ 1̄ 0̄ 0̄ 1̄

]︂
6

295 T 4
1 T 4

2 +T 2
3 T4+T 2

5

[︂
1 2 3 6 6
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

296 T 2
1 T2+T 2

3 T4+T 2
5

[︂
3 2 3 2 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

320 T 4
1 T2+T 3

3 T 2
4 +T 2

5

[︂
1 4 2 1 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8
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Chapter 2. Gorenstein Fano threefolds of Picard number one

ID relations gd-matrix −K3

321 T 3
1 T2+T 3

3 T4+T 2
5

[︂
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
8

322 T 3
1 T2+T 2

3 T4+T 4
5

[︂
1 1 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
8

323 T 7
1 T2+T 2

3 T4+T 2
5

[︂
1 1 2 4 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

324 T 6
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 1 2 4 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

325 T 6
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 1 2 4 4
0̄ 1̄ 1̄ 0̄ 0̄

]︂
8

326 T 5
1 T 3

2 +T 2
3 T4+T 2

5

[︂
1 1 2 4 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

327 T 4
1 T 4

2 +T 2
3 T4+T 2

5

[︂
1 1 2 4 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

328 T 4
1 T 4

2 +T 2
3 T4+T 2

5

[︂
1 1 2 4 4
1̄ 0̄ 0̄ 0̄ 1̄

]︂
8

329 T 4
1 T2+T 2

3 T4+T 2
5

[︂
1 2 2 2 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

330 T 2
1 T 2

2 +T 2
3 T4+T 4

5

[︂
1 1 1 2 1
0̄ 1̄ 1̄ 0̄ 0̄

]︂
8

331 T 2
1 T2+T 2

3 T 2
4 +T 2

5

[︂
2 2 2 1 3
1̄ 0̄ 0̄ 0̄ 1̄

]︂
8

332 T 2
1 T2+T 2

3 T 2
4 +T 2

5

[︂
2 2 2 1 3
1̄ 0̄ 1̄ 0̄ 0̄

]︂
8

333 T 6
1 T 2

2 +T3T4+T 4
5

[︂
1 1 4 4 2
0̄ 1̄ 0̄ 0̄ 1̄

]︂
8

334 T 4
1 T 2

2 +T3T4+T 8
5

[︂
1 2 4 4 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
8

335 T 4
1 T 2

2 +T3T4+T 4
5

[︂
1 4 4 8 3
0̄ 1̄ 0̄ 0̄ 1̄

]︂
8

350 T 4
1 T2+T 3

3 T4+T 2
5

[︂
1 6 3 1 5
0̄ 0̄ 1̄ 1̄ 0̄

]︂
12

351 T 2
1 T 2

2 +T 2
3 T4+T 3

5

[︂
1 2 1 4 2
1̄ 1̄ 0̄ 0̄ 0̄

]︂
12

352 T 2
1 T2+T 2

3 T4+T 6
5

[︂
2 2 1 4 1
1̄ 0̄ 1̄ 0̄ 0̄

]︂
12

353 T 2
1 T2+T 2

3 T4+T 4
5

[︂
1 6 3 2 2
0̄ 0̄ 1̄ 0̄ 1̄

]︂
12

354 T 2
1 T2+T 2

3 T4+T 3
5

[︂
1 1 1 1 1
1̄ 0̄ 1̄ 0̄ 0̄

]︂
12

355 T 10
1 T 4

2 +T3T4+T 2
5

[︂
1 2 6 12 9
0̄ 1̄ 0̄ 0̄ 1̄

]︂
12

356 T 9
1 T2+T3T4+T 3

5

[︂
1 6 3 12 5
0̄ 1̄ 1̄ 0̄ 1̄

]︂
12

357 T 8
1 T 2

2 +T3T4+T 2
5

[︂
2 1 6 12 9
1̄ 1̄ 0̄ 0̄ 0̄

]︂
12

358 T 5
1 T2+T3T4+T 3

5

[︂
1 1 2 4 2
0̄ 1̄ 1̄ 0̄ 1̄

]︂
12

359 T 4
1 T 4

2 +T3T4+T 2
5

[︂
1 3 4 12 8
0̄ 1̄ 0̄ 0̄ 1̄

]︂
12

360 T 4
1 T 2

2 +T3T4+T 2
5

[︂
2 3 2 12 7
1̄ 0̄ 0̄ 0̄ 1̄

]︂
12

ID relations gd-matrix −K3

361 T 4
1 T2+T3T4+T 2

5

[︂
1 2 3 3 3
0̄ 0̄ 1̄ 1̄ 0̄

]︂
12

362 T 3
1 T2+T3T4+T 3

5

[︂
1 3 3 3 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
12

363 T 3
1 T2+T3T4+T 3

5

[︂
1 3 3 3 2
0̄ 1̄ 0̄ 1̄ 1̄

]︂
12

364 T 2
1 T 2

2 +T3T4+T 4
5

[︂
1 3 2 6 2
0̄ 1̄ 0̄ 0̄ 1̄

]︂
12

381 T 5
1 T2+T 2

3 T4+T 2
5

[︂
1 1 1 4 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
16

382 T 4
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 1 1 4 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
16

383 T 4
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 1 1 4 3
0̄ 1̄ 1̄ 0̄ 0̄

]︂
16

384 T 4
1 T2+T 2

3 T4+T 2
5

[︂
2 2 1 8 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
16

385 T 3
1 T 3

2 +T 2
3 T4+T 2

5

[︂
1 1 1 4 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
16

386 T 3
1 T 2

2 +T 2
3 T4+T 2

5

[︂
2 2 1 8 5
0̄ 1̄ 0̄ 0̄ 1̄

]︂
16

387 T 2
1 T2+T 2

3 T4+T 2
5

[︂
1 2 1 2 2
0̄ 0̄ 1̄ 0̄ 1̄

]︂
16

388 T 8
1 T 4

2 +T3T4+T 2
5

[︂
1 1 4 8 6
1̄ 0̄ 0̄ 0̄ 1̄

]︂
16

389 T 4
1 T 2

2 +T3T4+T 2
5

[︂
2 1 2 8 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
16

390 T 3
1 T2+T3T4+T 2

5

[︂
1 1 2 2 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

391 T 2
1 T2+T3T4+T 4

5

[︂
1 2 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

392 T 2
1 T2+T3T4+T 2

5

[︂
1 4 2 4 3
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

400 T 6
1 T2+T 2

3 T4+T 2
5

[︂
1 2 1 6 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
18

401 T 4
1 T 2

2 +T 2
3 T4+T 2

5

[︂
1 2 1 6 4
0̄ 0̄ 1̄ 0̄ 1̄

]︂
18

402 T 3
1 T 2

2 +T 2
3 T4+T 2

5

[︂
2 1 1 6 4
0̄ 1̄ 0̄ 0̄ 1̄

]︂
18

403 T 4
1 T 4

2 +T3T4+T 2
5

[︂
1 1 2 6 4
1̄ 0̄ 0̄ 0̄ 1̄

]︂
18

405 T 3
1 T2+T3T4+T 5

5

[︂
1 2 1 4 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
20

408 T 5
1 T2+T3T4+T 3

5

[︂
1 4 1 8 3
0̄ 1̄ 1̄ 0̄ 1̄

]︂
24

409 T1T2+T3T4+T 3
5

[︂
1 2 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄

]︂
24

410 T1T2+T3T4+T 3
5

[︂
2 1 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
24

411 T1T2+T3T4+T 2
5

[︂
1 3 1 3 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
24
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2.12. Classification lists

Classification list 2.12.6. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z⊕ Z/2Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

269
T 2

1 T2+T3T4+T 4
5 ,

λT3T4+T 4
5 +T 2

6

[︂
1 2 2 2 1 2
0̄ 0̄ 0̄ 0̄ 1̄ 1̄

]︂
4

270
T 2

1 T2+T3T4+T 2
5 ,

λT3T4+T 2
5 +T 2

6

[︂
2 2 2 4 3 3
1̄ 0̄ 0̄ 0̄ 0̄ 1̄

]︂
4

ID relations gd-matrix −K3

349
T1T2+T3T4+T 4

5 ,

λT3T4+T 4
5 +T 2

6

[︂
1 3 1 3 1 2
1̄ 1̄ 1̄ 1̄ 0̄ 1̄

]︂
12

Classification list 2.12.7. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z⊕ Z/2Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

248 T 3
1 T 3

2 T3+T 4
4 +T 2

5

[︂
1 1 2 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
2

249 T 3
1 T 2

2 T3+T 4
4 +T 2

5

[︂
1 2 1 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
2

250 T 3
1 T2T3+T 4

4 +T 2
5

[︂
2 1 1 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
2

251 T 2
1 T 2

2 T3+T 8
4 +T 2

5

[︂
2 1 2 1 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
2

263 T 4
1 T 4

2 T3+T 3
4 +T 2

5

[︂
1 1 4 4 6
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

264 T 4
1 T2T3+T 3

4 +T 2
5

[︂
1 1 1 2 3
0̄ 1̄ 1̄ 0̄ 0̄

]︂
4

265 T 3
1 T 2

2 T3+T 3
4 +T 2

5

[︂
1 1 1 2 3
1̄ 0̄ 1̄ 0̄ 0̄

]︂
4

266 T 2
1 T 2

2 T3+T 6
4 +T 2

5

[︂
1 1 2 1 3
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

267 T 2
1 T 2

2 T3+T 5
4 +T 2

5

[︂
2 1 4 2 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

268 T 2
1 T2T3+T 10

4 +T 2
5

[︂
2 2 4 1 5
1̄ 0̄ 0̄ 0̄ 1̄

]︂
4

288 T 2
1 T 2

2 T3+T 4
4 +T 2

5

[︂
2 1 6 3 6
0̄ 0̄ 0̄ 1̄ 1̄

]︂
6

289 T 4
1 T 2

2 T3+T 2
4 +T 2

5

[︂
1 3 2 6 6
0̄ 1̄ 0̄ 1̄ 0̄

]︂
6

290 T1T2T3+T 4
4 +T 2

5

[︂
2 3 3 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
6

311 T 3
1 T2T3+T 4

4 +T 2
5

[︂
1 4 1 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

ID relations gd-matrix −K3

312 T 2
1 T 2

2 T3+T 4
4 +T 2

5

[︂
1 1 4 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

313 T 2
1 T 2

2 T3+T 4
4 +T 2

5

[︂
1 1 4 2 4
1̄ 0̄ 0̄ 0̄ 1̄

]︂
8

314 T 2
1 T2T3+T 8

4 +T 2
5

[︂
1 2 4 1 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

315 T 2
1 T2T3+T 4

4 +T 2
5

[︂
1 1 1 1 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

316 T 2
1 T2T3+T 4

4 +T 2
5

[︂
1 1 1 1 2
0̄ 1̄ 1̄ 1̄ 1̄

]︂
8

317 T 2
1 T2T3+T 3

4 +T 2
5

[︂
1 2 2 2 3
0̄ 1̄ 1̄ 0̄ 0̄

]︂
8

318 T 4
1 T 2

2 T3+T 2
4 +T 2

5

[︂
1 1 2 4 4
0̄ 1̄ 0̄ 1̄ 0̄

]︂
8

319 T 3
1 T 2

2 T3+T 2
4 +T 2

5

[︂
1 2 1 4 4
0̄ 1̄ 0̄ 1̄ 0̄

]︂
8

337 T1T2T3+T 8
4 +T 2

5

[︂
1 5 10 2 8
0̄ 0̄ 0̄ 1̄ 1̄

]︂
10

347 T 2
1 T 2

2 T3+T 3
4 +T 2

5

[︂
2 1 12 6 9
1̄ 0̄ 0̄ 0̄ 1̄

]︂
12

348 T1T2T3+T 4
4 +T 2

5

[︂
1 3 12 4 8
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

380 T 2
1 T 2

2 T3+T 3
4 +T 2

5

[︂
1 1 8 4 6
1̄ 0̄ 0̄ 0̄ 1̄

]︂
16

399 T1T2T3+T 4
4 +T 2

5

[︂
1 1 6 2 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
18

Classification list 2.12.8. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z⊕ Z/2Z and format (2, 1, 1, 1).
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ID relations gd-matrix −K3

246 T 3
1 T 2

2 +T 4
3 +T 2

4

[︂
2 1 2 4 1
0̄ 1̄ 0̄ 1̄ 0̄

]︂
2

247 T 3
1 T 2

2 +T 4
3 +T 2

4

[︂
2 1 2 4 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
2

256 T 5
1 T2+T 3

3 +T 2
4

[︂
1 1 2 3 1
0̄ 0̄ 0̄ 1̄ 1̄

]︂
4

257 T 4
1 T 2

2 +T 3
3 +T 2

4

[︂
1 4 4 6 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
4

258 T 4
1 T 2

2 +T 3
3 +T 2

4

[︂
1 1 2 3 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
4

259 T 4
1 T 2

2 +T 3
3 +T 2

4

[︂
1 1 2 3 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
4

260 T 2
1 T 2

2 +T 5
3 +T 2

4

[︂
4 1 2 5 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
4

261 T 2
1 T2+T 12

3 +T 2
4

[︂
4 4 1 6 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
4

262 T 2
1 T2+T 10

3 +T 2
4

[︂
4 2 1 5 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
4

277 T 3
1 T2+T 4

3 +T 2
4

[︂
2 6 3 6 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
6

278 T 2
1 T2+T 12

3 +T 2
4

[︂
3 6 1 6 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
6

279 T 2
1 T2+T 6

3 +T 2
4

[︂
3 6 2 6 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
6

280 T 2
1 T2+T 6

3 +T 2
4

[︂
3 6 2 6 1
1̄ 0̄ 1̄ 0̄ 0̄

]︂
6

281 T 2
1 T2+T 4

3 +T 2
4

[︂
3 2 2 4 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
6

282 T 2
1 T2+T 4

3 +T 2
4

[︂
3 2 2 4 3
1̄ 0̄ 1̄ 1̄ 1̄

]︂
6

283 T 10
1 T2+T 2

3 +T 2
4

[︂
1 2 6 6 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

284 T 6
1 T 3

2 +T 2
3 +T 2

4

[︂
1 2 6 6 3
0̄ 0̄ 1̄ 0̄ 1̄

]︂
6

285 T 5
1 T 2

2 +T 2
3 +T 2

4

[︂
2 1 6 6 3
0̄ 1̄ 1̄ 0̄ 0̄

]︂
6

286 T 3
1 T 2

2 +T 2
3 +T 2

4

[︂
2 3 6 6 1
0̄ 1̄ 1̄ 0̄ 0̄

]︂
6

287 T1T2+T 6
3 +T 4

4

[︂
6 6 2 3 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
6

297 T 4
1 T2+T 3

3 +T 2
4

[︂
1 2 2 3 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

298 T 3
1 T2+T 4

3 +T 2
4

[︂
1 1 1 2 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
8

299 T 3
1 T2+T 4

3 +T 2
4

[︂
1 1 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄

]︂
8

300 T 2
1 T 2

2 +T 3
3 +T 2

4

[︂
2 1 2 3 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

301 T 2
1 T 2

2 +T 3
3 +T 2

4

[︂
2 1 2 3 2
1̄ 0̄ 0̄ 0̄ 1̄

]︂
8

302 T 2
1 T2+T 8

3 +T 2
4

[︂
2 4 1 4 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
8

303 T 2
1 T2+T 8

3 +T 2
4

[︂
2 4 1 4 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
8

ID relations gd-matrix −K3

304 T 2
1 T2+T 6

3 +T 2
4

[︂
2 2 1 3 2
1̄ 0̄ 0̄ 1̄ 0̄

]︂
8

305 T 2
1 T2+T 6

3 +T 2
4

[︂
2 2 1 3 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
8

306 T 2
1 T2+T 3

3 +T 2
4

[︂
2 2 2 3 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
8

307 T 7
1 T2+T 2

3 +T 2
4

[︂
1 1 4 4 2
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

308 T 6
1 T2+T 2

3 +T 2
4

[︂
1 2 4 4 1
1̄ 0̄ 1̄ 0̄ 0̄

]︂
8

309 T 5
1 T 3

2 +T 2
3 +T 2

4

[︂
1 1 4 4 2
0̄ 0̄ 1̄ 0̄ 1̄

]︂
8

310 T 3
1 T 2

2 +T 2
3 +T 2

4

[︂
2 1 4 4 1
0̄ 1̄ 1̄ 0̄ 0̄

]︂
8

336 T1T2+T 6
3 +T 4

4

[︂
2 10 2 3 5
0̄ 0̄ 1̄ 0̄ 1̄

]︂
10

340 T 3
1 T2+T 3

3 +T 2
4

[︂
1 3 2 3 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

341 T 4
1 T2+T 2

3 +T 2
4

[︂
1 2 3 3 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

342 T1T2+T 18
3 +T 2

4

[︂
6 12 1 9 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

343 T1T2+T 16
3 +T 2

4

[︂
4 12 1 8 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

344 T1T2+T 10
3 +T 2

4

[︂
4 6 1 5 6
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

345 T1T2+T 3
3 +T 2

4

[︂
3 3 2 3 1
1̄ 1̄ 0̄ 0̄ 0̄

]︂
12

346 T1T2+T 2
3 +T 2

4

[︂
2 4 3 3 6
0̄ 0̄ 0̄ 1̄ 1̄

]︂
12

365 T 4
1 T2+T 3

3 +T 2
4

[︂
1 8 4 6 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
16

366 T 2
1 T2+T 6

3 +T 2
4

[︂
1 4 1 3 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
16

367 T 2
1 T2+T 6

3 +T 2
4

[︂
1 4 1 3 1
1̄ 0̄ 1̄ 0̄ 0̄

]︂
16

368 T 2
1 T2+T 5

3 +T 2
4

[︂
1 8 2 5 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
16

369 T 2
1 T2+T 4

3 +T 2
4

[︂
1 2 1 2 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

370 T 2
1 T2+T 4

3 +T 2
4

[︂
1 2 1 2 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
16

371 T 2
1 T2+T 3

3 +T 2
4

[︂
1 4 2 3 4
1̄ 0̄ 0̄ 0̄ 1̄

]︂
16

372 T 3
1 T2+T 2

3 +T 2
4

[︂
1 1 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
16

373 T 2
1 T2+T 2

3 +T 2
4

[︂
1 2 2 2 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
16

374 T1T2+T 12
3 +T 2

4

[︂
4 8 1 6 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

375 T1T2+T 10
3 +T 2

4

[︂
2 8 1 5 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
16

376 T1T2+T 6
3 +T 2

4

[︂
2 4 1 3 4
1̄ 1̄ 0̄ 1̄ 1̄

]︂
16
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ID relations gd-matrix −K3

377 T1T2+T 6
3 +T 2

4

[︂
2 4 1 3 4
0̄ 0̄ 0̄ 1̄ 1̄

]︂
16

378 T1T2+T 4
3 +T 2

4

[︂
2 2 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄

]︂
16

379 T1T2+T 4
3 +T 2

4

[︂
2 2 1 2 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
16

393 T 2
1 T2+T 8

3 +T 2
4

[︂
1 6 1 4 2
0̄ 0̄ 1̄ 1̄ 0̄

]︂
18

394 T 2
1 T2+T 4

3 +T 2
4

[︂
1 6 2 4 1
1̄ 0̄ 0̄ 1̄ 0̄

]︂
18

395 T 2
1 T2+T 4

3 +T 2
4

[︂
1 6 2 4 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
18

396 T 2
1 T2+T 2

3 +T 2
4

[︂
1 2 2 2 3
1̄ 0̄ 1̄ 0̄ 0̄

]︂
18

ID relations gd-matrix −K3

397 T1T2+T 8
3 +T 2

4

[︂
2 6 1 4 1
0̄ 0̄ 1̄ 1̄ 0̄

]︂
18

398 T1T2+T 4
3 +T 2

4

[︂
2 2 1 2 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
18

404 T1T2+T 3
3 +T 2

4

[︂
1 5 2 3 5
1̄ 1̄ 0̄ 0̄ 0̄

]︂
20

406 T1T2+T 4
3 +T 2

4

[︂
1 3 1 2 3
1̄ 1̄ 0̄ 1̄ 1̄

]︂
24

407 T1T2+T 4
3 +T 2

4

[︂
1 3 1 2 3
0̄ 0̄ 0̄ 1̄ 1̄

]︂
24

412 T1T2+T 2
3 +T 2

4

[︂
1 1 1 1 2
0̄ 0̄ 0̄ 1̄ 1̄

]︂
32

Classification list 2.12.9. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z⊕ Z/2Z and format (2, 1, 1, 1, 1).

ID relations gd-matrix −K3

255
T1T2+T 3

3 +T 2
4 ,

λT 3
3 +T 2

4 +T 2
5

[︂
4 2 2 3 3 2
0̄ 0̄ 0̄ 1̄ 0̄ 1̄

]︂
4

Classification list 2.12.10. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z and format (1, 1, 1, 2).

ID relations gd-matrix −K3

338 T 3
1 +T 2

2 +T 2
3

[︂
2 3 3 6 4
0̄ 0̄ 1̄ 1̄ 0̄

]︂
12

ID relations gd-matrix −K3

339 T 3
1 +T 2

2 +T 2
3

[︂
2 3 3 3 1
0̄ 1̄ 0̄ 1̄ 0̄

]︂
12

Classification list 2.12.11. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

480 T 4
1 T 2

2 +T 2
3 T 2

4 +T 2
5

[︃
1 1 2 1 3
0̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

]︃
2

491 T 6
1 T 2

2 +T 2
3 T4+T 2

5

[︃
1 1 2 4 4
0̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
4

492 T 4
1 T 4

2 +T 2
3 T4+T 2

5

[︃
1 1 2 4 4
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄

]︃
4

493 T 2
1 T 2

2 +T 2
3 T 2

4 +T 2
5

[︃
1 1 1 1 2
1̄ 0̄ 1̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

]︃
4

494 T 2
1 T 2

2 +T 2
3 T4+T 4

5

[︃
1 1 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 0̄ 0̄

]︃
4

ID relations gd-matrix −K3

495 T 2
1 T2+T 2

3 T 2
4 +T 2

5

[︃
2 2 2 1 3
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

]︃
4

501 T 3
1 T2+T3T4+T 3

5

[︃
1 3 3 3 2
0̄ 1̄ 0̄ 1̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄

]︃
6

518 T 4
1 T 2

2 +T 2
3 T4+T 2

5

[︃
1 1 1 4 3
0̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
8

520 T1T2+T3T4+T 3
5

[︃
1 2 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄

]︃
12
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Classification list 2.12.12. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

479
T 2

1 T 2
2 +T3T4+T 2

5 ,

λT3T4+T 2
5 +T 2

6

[︃
1 1 2 2 2 2
0̄ 1̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄ 1̄ 1̄

]︃
2

Classification list 2.12.13. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (2, 2, 1, 1, 1, 0).

ID relations gd-matrix −K3

478

T1T2+T3T4+T 2
5 ,

λ1T3T4+T 2
5 +T 2

6 ,

λ2T 2
5 +T 2

6 +T 2
7

[︃
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄

]︃
2

Classification list 2.12.14. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

477 T 2
1 T 2

2 T3+T 6
4 +T 2

5

[︃
1 1 2 1 3
0̄ 0̄ 0̄ 1̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

]︃
2

489 T 2
1 T 2

2 T3+T 4
4 +T 2

5

[︃
1 1 4 2 4
1̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

]︃
4

ID relations gd-matrix −K3

490 T 2
1 T2T3+T 4

4 +T 2
5

[︃
1 1 1 1 2
0̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 1̄

]︃
4

Classification list 2.12.15. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (3, 1, 1, 1, 0).

ID relations gd-matrix −K3

476
T1T2T3+T 2

4 +T 2
5 ,

λT 2
4 +T 2

5 +T 2
6

[︃
1 1 2 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄ 1̄ 1̄

]︃
2

Classification list 2.12.16. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (2, 1, 1, 1).
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ID relations gd-matrix −K3

474 T 4
1 T 2

2 +T 3
3 +T 2

4

[︃
1 1 2 3 1
0̄ 1̄ 0̄ 1̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
2

475 T 2
1 T 2

2 +T 6
3 +T 2

4

[︃
2 1 1 3 1
0̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
2

481 T 3
1 T2+T 4

3 +T 2
4

[︃
1 1 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
4

482 T 2
1 T 2

2 +T 4
3 +T 2

4

[︃
1 1 1 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
4

483 T 2
1 T 2

2 +T 4
3 +T 2

4

[︃
1 1 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
4

484 T 2
1 T 2

2 +T 3
3 +T 2

4

[︃
2 1 2 3 2
1̄ 0̄ 0̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄

]︃
4

485 T 2
1 T2+T 8

3 +T 2
4

[︃
2 4 1 4 1
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
4

486 T 2
1 T2+T 6

3 +T 2
4

[︃
2 2 1 3 2
1̄ 0̄ 0̄ 0̄ 1̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
4

487 T 6
1 T 2

2 +T 2
3 +T 2

4

[︃
1 1 4 4 2
0̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄ 1̄

]︃
4

488 T 4
1 T 2

2 +T 2
3 +T 2

4

[︃
1 2 4 4 1
0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄

]︃
4

499 T 4
1 T2+T 2

3 +T 2
4

[︃
1 2 3 3 3
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

]︃
6

500 T 2
1 T 2

2 +T 2
3 +T 2

4

[︃
2 1 3 3 3
0̄ 0̄ 0̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
6

ID relations gd-matrix −K3

509 T 2
1 T2+T 6

3 +T 2
4

[︃
1 4 1 3 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
8

510 T 2
1 T2+T 4

3 +T 2
4

[︃
1 2 1 2 2
0̄ 0̄ 1̄ 0̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
8

511 T 3
1 T2+T 2

3 +T 2
4

[︃
1 1 2 2 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

]︃
8

512 T 2
1 T 2

2 +T 2
3 +T 2

4

[︃
1 1 2 2 2
1̄ 0̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
8

513 T 2
1 T 2

2 +T 2
3 +T 2

4

[︃
1 1 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄

]︃
8

514 T 2
1 T 2

2 +T 2
3 +T 2

4

[︃
1 1 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

]︃
8

515 T 2
1 T2+T 2

3 +T 2
4

[︃
1 2 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 0̄ 1̄ 0̄ 0̄

]︃
8

516 T1T2+T 6
3 +T 2

4

[︃
2 4 1 3 4
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 1̄

]︃
8

517 T1T2+T 4
3 +T 2

4

[︃
2 2 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 1̄ 0̄

]︃
8

519 T1T2+T 4
3 +T 2

4

[︃
1 3 1 2 3
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 1̄

]︃
12

523 T1T2+T 2
3 +T 2

4

[︃
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

]︃
16

Classification list 2.12.17. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (2, 1, 1, 1, 1).

ID relations gd-matrix −K3

473
T1T2+T 4

3 +T 2
4 ,

λT 4
3 +T 2

4 +T 2
5

[︃
2 2 1 2 2 1
0̄ 0̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄

]︃
2

507
T1T2+T 2

3 +T 2
4 ,

λT 2
3 +T 2

4 +T 2
5

[︃
1 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄

]︃
8

ID relations gd-matrix −K3

508
T1T2+T 2

3 +T 2
4 ,

λT 2
3 +T 2

4 +T 2
5

[︃
1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄

]︃
8

Classification list 2.12.18. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z and format (1, 1, 1, 2).

ID relations gd-matrix −K3

496 T 6
1 +T 2

2 +T 2
3

[︃
1 3 3 3 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
6

ID relations gd-matrix −K3

497 T 3
1 +T 2

2 +T 2
3

[︃
2 3 3 3 1
0̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 0̄ 1̄ 0̄

]︃
6
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ID relations gd-matrix −K3

498 T 2
1 +T 2

2 +T 2
3

[︃
3 3 3 2 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
6

502 T 4
1 +T 2

2 +T 2
3

[︃
1 2 2 1 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
8

503 T 4
1 +T 2

2 +T 2
3

[︃
1 2 2 2 1
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 1̄ 0̄

]︃
8

504 T 4
1 +T 2

2 +T 2
3

[︃
1 2 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
8

505 T 2
1 +T 2

2 +T 2
3

[︃
2 2 2 1 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
8

ID relations gd-matrix −K3

506 T 2
1 +T 2

2 +T 2
3

[︃
2 2 2 1 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
8

521 T 2
1 +T 2

2 +T 2
3

[︃
1 1 1 1 2
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
16

522 T 2
1 +T 2

2 +T 2
3

[︃
1 1 1 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄

]︃
16

524 T 2
1 +T 2

2 +T 2
3

[︃
1 1 1 3 2
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︃
18

Classification list 2.12.19. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

533 T 2
1 T 2

2 +T 2
3 T 2

4 +T 2
5

[︄
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

]︄
2

Classification list 2.12.20. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

532 T 2
1 T 2

2 +T 4
3 +T 2

4

[︄
1 1 1 2 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 0̄ 1̄ 0̄ 0̄

]︄
2

ID relations gd-matrix −K3

537 T 2
1 T 2

2 +T 2
3 +T 2

4

[︄
1 1 2 2 2
1̄ 0̄ 1̄ 1̄ 1̄
1̄ 0̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

]︄
4

Classification list 2.12.21. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z and format (2, 1, 1, 1, 1).

ID relations gd-matrix −K3

536
T1T2+T 2

3 +T 2
4 ,

λT 2
3 +T 2

4 +T 2
5

[︄
1 1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 1̄ 0̄

]︄
4
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Classification list 2.12.22. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z and format (1, 1, 1, 2).

ID relations gd-matrix −K3

534 T 4
1 +T 2

2 +T 2
3

[︄
1 2 2 2 1
1̄ 0̄ 0̄ 1̄ 0̄
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 1̄ 0̄

]︄
4

535 T 2
1 +T 2

2 +T 2
3

[︄
2 2 2 1 1
1̄ 1̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︄
4

ID relations gd-matrix −K3

538 T 2
1 +T 2

2 +T 2
3

[︄
1 1 1 2 1
1̄ 1̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

]︄
8

Classification list 2.12.23. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/4Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

529 T 2
1 T 2

2 +T3T4+T 2
5

[︃
1 1 2 2 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 3̄ 2̄ 0̄ 1̄

]︃
4

Classification list 2.12.24. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/4Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

528
T1T2+T3T4+T 2

5 ,

λT3T4+T 2
5 +T 2

6

[︃
1 1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
3̄ 1̄ 3̄ 1̄ 2̄ 0̄

]︃
4

Classification list 2.12.25. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/4Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

527 T1T2T3+T 2
4 +T 2

5

[︃
1 1 2 2 2
1̄ 0̄ 1̄ 1̄ 1̄
2̄ 0̄ 0̄ 3̄ 1̄

]︃
4

Classification list 2.12.26. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/4Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

526 T1T2+T 4
3 +T 4

4

[︃
2 2 1 1 2
1̄ 1̄ 0̄ 0̄ 0̄
3̄ 1̄ 3̄ 0̄ 3̄

]︃
4

ID relations gd-matrix −K3

530 T1T2+T 2
3 +T 2

4

[︃
1 1 1 1 2
0̄ 0̄ 0̄ 1̄ 1̄
2̄ 0̄ 1̄ 3̄ 0̄

]︃
8
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Classification list 2.12.27. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/2Z⊕ Z/6Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

531 T1T2T3+T 3
4 +T 3

5

[︃
1 1 1 1 1
1̄ 0̄ 1̄ 0̄ 0̄
5̄ 5̄ 2̄ 4̄ 0̄

]︃
2

Classification list 2.12.28. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

424 T 3
1 T2+T 3

3 T 3
4 +T 2

5

[︂
1 3 1 1 3
0̄ 0̄ 2̄ 1̄ 0̄

]︂
6

425 T 9
1 T 3

2 +T3T4+T 3
5

[︂
1 1 6 6 4
0̄ 1̄ 0̄ 0̄ 2̄

]︂
6

426 T 3
1 T 3

2 +T3T4+T 3
5

[︂
1 2 3 6 3
0̄ 1̄ 0̄ 0̄ 2̄

]︂
6

432 T 10
1 T2+T3T4+T 2

5

[︂
1 4 2 12 7
0̄ 1̄ 1̄ 0̄ 2̄

]︂
12

433 T 7
1 T2+T3T4+T 2

5

[︂
1 1 2 6 4
0̄ 1̄ 1̄ 0̄ 2̄

]︂
12

ID relations gd-matrix −K3

434 T1T2+T3T4+T 2
5

[︂
1 3 2 2 2
2̄ 0̄ 2̄ 0̄ 1̄

]︂
12

437 T 7
1 T2+T3T4+T 2

5

[︂
1 3 1 9 5
0̄ 1̄ 1̄ 0̄ 2̄

]︂
18

438 T1T2+T3T4+T 2
5

[︂
1 1 1 1 1
0̄ 0̄ 1̄ 2̄ 0̄

]︂
18

439 T1T2+T3T4+T 2
5

[︂
1 1 1 1 1
2̄ 1̄ 2̄ 1̄ 0̄

]︂
18

Classification list 2.12.29. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

423
T1T2+T3T4+T 3

5 ,

λT3T4+T 3
5 +T 3

6

[︂
2 1 1 2 1 1
2̄ 1̄ 1̄ 2̄ 2̄ 0̄

]︂
6

Classification list 2.12.30. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

414 T 2
1 T 2

2 T3+T 3
4 +T 3

5

[︂
1 1 2 2 2
0̄ 0̄ 0̄ 1̄ 2̄

]︂
2

415 T 2
1 T2T3+T 3

4 +T 3
5

[︂
2 1 1 2 2
1̄ 2̄ 2̄ 2̄ 0̄

]︂
2

416 T1T2T3+T 9
4 +T 3

5

[︂
1 4 4 1 3
1̄ 1̄ 1̄ 0̄ 1̄

]︂
4

421 T 3
1 T 3

2 T3+T 3
4 +T 2

5

[︂
1 1 6 4 6
1̄ 0̄ 0̄ 2̄ 0̄

]︂
6

ID relations gd-matrix −K3

422 T1T2T3+T 3
4 +T 3

5

[︂
1 2 6 3 3
0̄ 0̄ 0̄ 1̄ 2̄

]︂
6

429 T1T2T3+T 3
4 +T 3

5

[︂
1 1 4 2 2
0̄ 0̄ 0̄ 1̄ 2̄

]︂
8

430 T1T2T3+T 3
4 +T 3

5

[︂
1 1 1 1 1
1̄ 1̄ 1̄ 2̄ 0̄

]︂
8
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Classification list 2.12.31. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

413 T 2
1 T 2

2 +T 3
3 +T 3

4

[︂
2 1 2 2 1
0̄ 0̄ 1̄ 2̄ 0̄

]︂
2

418 T1T2+T 12
3 +T 3

4

[︂
6 6 1 4 1
0̄ 0̄ 1̄ 2̄ 0̄

]︂
6

419 T1T2+T 9
3 +T 3

4

[︂
3 6 1 3 2
0̄ 0̄ 0̄ 1̄ 2̄

]︂
6

420 T1T2+T 3
3 +T 3

4

[︂
3 3 2 2 2
0̄ 0̄ 2̄ 0̄ 1̄

]︂
6

427 T 2
1 T2+T 3

3 +T 3
4

[︂
1 4 2 2 1
0̄ 0̄ 1̄ 2̄ 0̄

]︂
8

ID relations gd-matrix −K3

428 T 2
1 T2+T 3

3 +T 3
4

[︂
1 1 1 1 1
0̄ 0̄ 1̄ 2̄ 0̄

]︂
8

431 T1T2+T 12
3 +T 3

4

[︂
2 10 1 4 5
1̄ 2̄ 0̄ 1̄ 1̄

]︂
10

435 T1T2+T 9
3 +T 3

4

[︂
1 8 1 3 4
1̄ 2̄ 0̄ 1̄ 1̄

]︂
16

436 T1T2+T 3
3 +T 3

4

[︂
1 2 1 1 2
1̄ 2̄ 2̄ 0̄ 2̄

]︂
16

Classification list 2.12.32. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z and format (1, 1, 1, 2).

ID relations gd-matrix −K3

417 T 3
1 +T 3

2 +T 2
3

[︂
2 2 3 3 2
1̄ 0̄ 0̄ 0̄ 2̄

]︂
6

Classification list 2.12.33. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/3Z⊕ Z/3Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

525 T1T2+T3T4+T 2
5

[︃
1 1 1 1 1
2̄ 1̄ 2̄ 1̄ 0̄
2̄ 1̄ 0̄ 0̄ 0̄

]︃
6

Classification list 2.12.34. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/4Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

452 T 5
1 T2+T 2

3 T4+T 2
5

[︂
1 1 1 4 3
0̄ 2̄ 3̄ 0̄ 1̄

]︂
8

453 T 3
1 T 3

2 +T 2
3 T4+T 2

5

[︂
1 1 1 4 3
2̄ 0̄ 3̄ 0̄ 1̄

]︂
8

454 T 2
1 T2+T 2

3 T4+T 2
5

[︂
1 2 1 2 2
0̄ 2̄ 3̄ 0̄ 1̄

]︂
8

ID relations gd-matrix −K3

455 T 10
1 T 2

2 +T3T4+T 2
5

[︂
1 1 4 8 6
0̄ 1̄ 2̄ 0̄ 3̄

]︂
8

456 T 6
1 T 2

2 +T3T4+T 2
5

[︂
1 2 2 8 5
0̄ 1̄ 2̄ 0̄ 3̄

]︂
8

457 T 2
1 T 2

2 +T3T4+T 2
5

[︂
1 1 2 2 2
0̄ 3̄ 0̄ 2̄ 1̄

]︂
8

137



Chapter 2. Gorenstein Fano threefolds of Picard number one

Classification list 2.12.35. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/4Z and format (2, 2, 1, 1, 0).

ID relations gd-matrix −K3

451
T1T2+T3T4+T 2

5 ,

λT3T4+T 2
5 +T 2

6

[︂
1 1 1 1 1 1
1̄ 3̄ 3̄ 1̄ 2̄ 0̄

]︂
8

Classification list 2.12.36. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/4Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

443 T1T2T3+T 10
4 +T 2

5

[︂
1 3 6 1 5
3̄ 3̄ 2̄ 0̄ 2̄

]︂
6

444 T1T2T3+T 2
4 +T 2

5

[︂
1 2 3 3 3
3̄ 2̄ 3̄ 2̄ 0̄

]︂
6

448 T 2
1 T 2

2 T3+T 3
4 +T 2

5

[︂
1 1 8 4 6
1̄ 0̄ 0̄ 2̄ 3̄

]︂
8

ID relations gd-matrix −K3

449 T1T2T3+T 2
4 +T 2

5

[︂
1 1 2 2 2
3̄ 3̄ 0̄ 3̄ 1̄

]︂
8

450 T1T2T3+T 2
4 +T 2

5

[︂
1 1 2 2 2
3̄ 1̄ 2̄ 3̄ 1̄

]︂
8

Classification list 2.12.37. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/4Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

440 T1T2+T 8
3 +T 4

4

[︂
4 4 1 2 1
0̄ 0̄ 1̄ 3̄ 0̄

]︂
4

441 T 3
1 T2+T 2

3 +T 2
4

[︂
1 3 3 3 2
0̄ 2̄ 1̄ 3̄ 0̄

]︂
6

442 T1T2+T 8
3 +T 4

4

[︂
2 6 1 2 3
2̄ 2̄ 0̄ 1̄ 1̄

]︂
6

445 T 3
1 T2+T 2

3 +T 2
4

[︂
1 1 2 2 2
0̄ 2̄ 1̄ 3̄ 0̄

]︂
8

ID relations gd-matrix −K3

446 T 2
1 T2+T 2

3 +T 2
4

[︂
1 2 2 2 1
0̄ 2̄ 1̄ 3̄ 0̄

]︂
8

447 T1T2+T 4
3 +T 4

4

[︂
2 2 1 1 2
1̄ 3̄ 3̄ 0̄ 3̄

]︂
8

458 T1T2+T 2
3 +T 2

4

[︂
1 1 1 1 2
2̄ 0̄ 3̄ 1̄ 0̄

]︂
16

Classification list 2.12.38. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/5Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

462 T 3
1 T 3

2 +T3T4+T 2
5

[︂
1 1 1 5 3
3̄ 0̄ 4̄ 0̄ 2̄

]︂
10

Classification list 2.12.39. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/5Z and format (3, 1, 1, 0).
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ID relations gd-matrix −K3

459 T1T2T3+T 5
4 +T 5

5

[︂
1 2 2 1 1
2̄ 4̄ 4̄ 4̄ 0̄

]︂
2

ID relations gd-matrix −K3

461 T1T2T3+T 3
4 +T 2

5

[︂
1 1 10 4 6
1̄ 0̄ 0̄ 2̄ 3̄

]︂
10

Classification list 2.12.40. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/5Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

460 T1T2+T 5
3 +T 5

4

[︂
1 4 1 1 2
2̄ 3̄ 4̄ 0̄ 4̄

]︂
8

Classification list 2.12.41. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/6Z and format (2, 2, 1, 0).

ID relations gd-matrix −K3

469 T 4
1 T 4

2 +T3T4+T 2
5

[︂
1 1 2 6 4
1̄ 0̄ 4̄ 0̄ 5̄

]︂
6

Classification list 2.12.42. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/6Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

465 T1T2T3+T 3
4 +T 3

5

[︂
1 1 4 2 2
3̄ 0̄ 0̄ 5̄ 1̄

]︂
4

466 T1T2T3+T 3
4 +T 3

5

[︂
1 1 1 1 1
2̄ 5̄ 5̄ 4̄ 0̄

]︂
4

ID relations gd-matrix −K3

468 T1T2T3+T 4
4 +T 2

5

[︂
1 1 6 2 4
2̄ 0̄ 0̄ 5̄ 1̄

]︂
6

Classification list 2.12.43. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/6Z and format (2, 1, 1, 1).

ID relations gd-matrix −K3

463 T 2
1 T2+T 3

3 +T 3
4

[︂
1 1 1 1 1
0̄ 3̄ 5̄ 1̄ 0̄

]︂
4

464 T1T2+T 6
3 +T 6

4

[︂
2 4 1 1 2
2̄ 4̄ 5̄ 0̄ 5̄

]︂
4

ID relations gd-matrix −K3

467 T1T2+T 4
3 +T 2

4

[︂
2 2 1 2 3
2̄ 4̄ 0̄ 3̄ 3̄

]︂
6

470 T1T2+T 3
3 +T 3

4

[︂
1 2 1 1 2
5̄ 1̄ 4̄ 0̄ 4̄

]︂
8

Classification list 2.12.44. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z⊕ Z/8Z and format (3, 1, 1, 0).

ID relations gd-matrix −K3

471 T1T2T3+T 4
4 +T 4

5

[︂
1 1 2 1 1
3̄ 7̄ 6̄ 6̄ 0̄

]︂
2

ID relations gd-matrix −K3

472 T1T2T3+T 6
4 +T 2

5

[︂
1 1 4 1 3
2̄ 0̄ 0̄ 3̄ 5̄

]︂
4
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Chapter 2. Gorenstein Fano threefolds of Picard number one

2.13 Hilbert-Poincaré series
Here we present the Hilbert-Poincaré series of our Fano varieties. Recall that the Hilbert-
Poincaré series of a finitely generated Z≥0-graded K-algebra A = ⊕kAk is the formal
power series

HPA(t) :=
∑︂
k≥0

dimK(Ak)tk.

Assume that f1, . . . , fr ∈ A are homogeneous of degrees w1, . . . , wr respectively and
generate A as an algebra. Then there is a polynomial qA ∈ Z[t] such that

HPA(t) = qA(t)∏︁r
i=1(1− twi) .

Given a Fano variety X, we associate with it the Hilbert-Poincaré series HPX(t) of
its anticanonical ring AX and we define the corresponding polynomial qX(t) with respect
to a minimal system of homogeneous generators of the anticanonical ring AX .

Proposition 2.13.1. The following table lists for each possible pair (g, c) of genus and
codimension the classification IDs from Section 2.12 of the varieties X attaining (g, c)
and the cancelled presentation of the associated Hilbert-Poincaré series together with its
first eight terms.

(g, c) HPX(t) IDs

(2, 1)
1+t3

1−t4

1+4t+10t2+21t3+39t4+66t5+104t6+155t7+...

2, 9, 10, 11, 246, 251, 252, 253, 254,
459, 471, 473, 474, 475, 477, 478,
479, 480, 531, 532, 533

(2, 2)
1+t3

1−t4

1+4t+10t2+21t3+39t4+66t5+104t6+155t7+...

1, 3, 4, 5, 6, 7, 8, 247, 248, 249, 250,
413, 414, 415, 476

(3, 1)
1+t+t2+t3

1−t4

1+5t+15t2+35t3+69t4+121t5+195t6+295t7+...

12, 416, 440, 472, 529

(3, 2)
1+t+t2+t3

1−t4

1+5t+15t2+35t3+69t4+121t5+195t6+295t7+...

13, 14, 15, 16, 17, 18, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 276, 463, 464,
465, 466, 481, 482, 483, 484, 485,
486, 487, 488, 489, 490, 491, 492,
493, 494, 495, 526, 527, 528, 534,
535, 536, 537

(4, 2)
1+2t+2t2+t3

1−t4

1+6t+20t2+49t3+99t4+176t5+286t6+435t7+...

19, 21, 22, 28, 30, 32, 33, 34, 35, 36,
37, 280, 282, 287, 290, 417, 418, 419,
420, 421, 423, 424, 425, 426, 442,
443, 467, 468, 469, 501, 525

(4, 4)
1+2t+2t2+t3

1−t4

1+6t+20t2+49t3+99t4+176t5+286t6+435t7+...

20, 23, 24, 25, 26, 27, 29, 31, 38, 39,
40, 41, 42, 277, 278, 279, 281, 283,
284, 285, 286, 288, 289, 291, 292,
293, 294, 295, 296, 422, 441, 444,
496, 497, 498, 499, 500
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(g, c) HPX(t) IDs

(5, 3)
1+3t+3t2+t3

1−t4

1+7t+25t2+63t3+129t4+231t5+377t6+575t7+...

301, 317, 321, 322, 325, 330, 332,
333, 334, 335, 448, 451, 452, 453,
454, 455, 456, 457, 503, 516, 517,
530

(5, 6)
1+3t+3t2+t3

1−t4

1+7t+25t2+63t3+129t4+231t5+377t6+575t7+...

43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 297, 298, 299,
300, 302, 303, 304, 305, 306, 307,
308, 309, 310, 311, 312, 313, 314,
315, 316, 318, 319, 320, 323, 324,
326, 327, 328, 329, 331, 427, 428,
429, 430, 445, 446, 447, 449, 450,
460, 470, 502, 504, 505, 506, 507,
508, 509, 510, 511, 512, 513, 514,
515, 518, 538

(6, 4)
1+4t+4t2+t3

1−t4

1+8t+30t2+77t3+159t4+286t5+468t6+715t7+...

59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 336, 337, 431, 461, 462

(7, 5)
1+5t+5t2+t3

1−t4

1+9t+35t2+91t3+189t4+341t5+559t6+855t7+...

71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 338, 339, 340, 341, 342, 343,
344, 345, 346, 347, 348, 349, 350,
351, 352, 353, 354, 355, 356, 357,
358, 359, 360, 361, 362, 363, 364,
432, 433, 434, 519, 520

(9, 7)
1+7t+7t2+t3

1−t4

1+11t+45t2+119t3+249t4+451t5+741t6+1135t7+...

101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 365, 366, 367, 368,
369, 370, 371, 372, 373, 374, 375,
376, 377, 378, 379, 380, 381, 382,
383, 384, 385, 386, 387, 388, 389,
390, 391, 392, 435, 436, 458, 521,
522, 523

(10, 8)
1+8t+8t2+t3

1−t4

1+12t+50t2+133t3+279t4+506t5+832t6+1275t7+...

118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 393, 394,
395, 396, 397, 398, 399, 400, 401,
402, 403, 437, 438, 439, 524

(11, 9)
1+9t+9t2+t3

1−t4

1+13t+55t2+147t3+309t4+561t5+923t6+1415t7+...

144, 145, 146, 147, 148, 149, 150,
151, 404, 405

(12, 10)
1+10t+10t2+t3

1−t4

1+14t+60t2+161t3+339t4+616t5+1014t6+1555t7+...

152

(13, 11)
1+11t+11t2+t3

1−t4

1+15t+65t2+175t3+369t4+671t5+1105t6+1695t7+...

153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187,
406, 407, 408, 409, 410, 411

(16, 14)
1+14t+14t2+t3

1−t4

1+18t+80t2+217t3+459t4+836t5+1378t6+2115t7+...

188, 189, 190, 191, 192, 193, 194,
195, 196

(17, 15)
1+15t+15t2+t3

1−t4

1+19t+85t2+231t3+489t4+891t5+1469t6+2255t7+...

197, 198, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 412

(19, 17)
1+17t+17t2+t3

1−t4

1+21t+95t2+259t3+549t4+1001t5+1651t6+2535t7+...

216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227
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Chapter 2. Gorenstein Fano threefolds of Picard number one

(g, c) HPX(t) IDs

(21, 19)
1+19t+19t2+t3

1−t4

1+23t+105t2+287t3+609t4+1111t5+1833t6+2815t7+...

228, 229, 230, 231

(22, 20)
1+20t+20t2+t3

1−t4

1+24t+110t2+301t3+639t4+1166t5+1924t6+2955t7+...

232, 233, 234

(25, 23)
1+23t+23t2+t3

1−t4

1+27t+125t2+343t3+729t4+1331t5+2197t6+3375t7+...

235, 236, 237, 238

(26, 24)
1+24t+24t2+t3

1−t4

1+28t+130t2+357t3+759t4+1386t5+2288t6+3515t7+...

239, 240, 241, 242

(28, 26)
1+26t+26t2+t3

1−t4

1+30t+140t2+385t3+819t4+1496t5+2470t6+3795t7+...

243, 244, 245

Proof. Observe that the anticanonical ring is the Veronese subalgebra of the Cox ring
associated to the subgroup generated by the anticanonical class. Thus, we can use the
Cox ring data from the classification lists in Section 2.12 to compute a minimal system
of generators and the associated relations. This provides us in particular with genus and
codimension. Moreover, it allows us to compute the Hilbert-Poincaré series; we used the
computer algebra system Singular.

Corollary 2.13.2. The Hilbert-Poincaré series of a non-toric, Q-factorial, log-terminal,
Gorenstein, Fano threefold X of Picard number one with an effective action of a two-
dimensional torus only depends on the genus g of X and can be explicitly written down
as

HPX(t) = 1 + (g − 2)(t + t2) + t3

(1− t)4 .

142



CHAPTER
THREE

LOCALLY FACTORIAL FANO FOURFOLDS OF PICARD
NUMBER TWO

We classify the locally factorial Fano fourfolds of Picard number two with a hypersurface
Cox ring that admit an effective action of a three-dimensional torus. The chapter is
organized as follows. In Section 3.1 we present our classification results. Section 3.2
serves to provide the necessary background on Cox rings. In Section 3.3 we establish two
general facts, essentially supporting our classification: First, Proposition 3.3.1 shows that
in our setting we always have a torsion-free Picard group and second, Proposition 3.3.2
supplies us with an explicit smoothing procedure. The complete proof of the classification
spans the Sections 3.4 – 3.9. The classification tables are presented in Section 3.10. The
results of this chapter have been achieved in cooperation with equal contributions by
Christian Mauz and the author and are published in the joint work [17].

3.1 Main result

We study locally factorial Fano fourfolds of Picard number two that admit an effective
action of a three-dimensional torus. Locally factorial means that every Weil divisor is
locally principal. Whereas in the toric case smoothness and local factoriality coincide,
the latter setting turns out to be much more general for torus actions of complexity one;
for instance, the varieties need not be log terminal any more and we find infinite series
of non-isomorphic Fanos in fixed dimensions. We settle the case of a Cox ring defined
by a single relation. Our main result considerably extends the corresponding one in the
smooth case [35, Thm. 1.2].

Theorem 3.1.1. There are 447 sporadic cases and 106 infinite series of locally factorial
Fano fourfolds of Picard number two coming with an effective action of a three-dimensional
torus and a Cox ring defined by a single relation.

Our varieties in question are uniquely determined by the generator degrees and the
relation in their Cox ring. Classification lists 3.10.1 to 3.10.11 provide the complete
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

and redundancy free presentation of the specifying data for Theorem 3.1.1. A data file
containing the complete classification data is also available at [18].

For the proof of Theorem 3.1.1 we distinguish two main cases. The first one treats
an ample relation degree. There, we provide a smoothing procedure via Bertini’s
theorem which allows us to infer first constraints on the relevant invariants from the
classification of smooth Fano fourfoulds of Picard number two with a hypersurface Cox
ring [45, Thm. 1.1]. The situation becomes more involved when the relation degree is
not ample. In this situation, we have to classify case by case according to the possible
constellations of the Cox ring generator degrees in the effective cone, making heavy use
of the combinatorial description of varieties with a torus action of complexity one from
[41,46], see also [6, Sec. 3.4].

3.2 Background on Cox rings

By a Mori dream space we mean an irreducible, normal, projective complex variety X
with finitely generated divisor class group Cl(X) and finitely generated Cox ring R(X).
We give a brief summary on the combinatorial approach [6, 20, 40] to Mori dream spaces,
adapted to our needs. By a K-graded affine algebra, where K is a finitely generated
abelian group, we mean an affine C-algebra R coming with a direct sum decomposition
into C-vector subspaces

R =
⨁︂

w∈K

Rw

such that RwRw′ ⊆ Rw+w′ holds for all w, w′ ∈ K. An element f ∈ R is called
homogeneous if f ∈ Rw holds for some w ∈ K. In that case w is the degree of f and we
write w = deg(f). Geometrically, we have the affine variety X̄ with R as its algebra of
global functions and the quasitorus H with K as its character group:

X̄ = Spec R, H = SpecC[K].

The K-grading of R defines an algebraic action of H on X̄. By KQ := K ⊗ZQ we denote
the Q-vector space associated with K.

(i) The effective cone of R is

Eff(R) := cone( w ∈ K; Rw ̸= 0 ) ⊆ KQ.

(ii) For x ∈ X̄ we have the orbit cone

ωx := cone( w ∈ K; f(x) ̸= 0 for some f ∈ Rw ) ⊆ KQ.

(iii) For w ∈ Eff(R) we have the GIT-cone

λw :=
⋂︂

x∈X̄,w∈ωx

ωx ⊆ KQ.
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The K-grading of R is called pointed if R0 = C holds and Eff(R) contains no line. The
effective cone, as well as orbit cones and GIT-cones are convex polyhedral cones and
there are only finitely many of them. The GIT-cones form a (quasi-) fan Λ(R) in KQ
called the GIT-fan of R, having the effective cone Eff(R) as its support. We recall Cox’s
quotient presentation [29] for projective toric varieties.

Construction 3.2.1. Let S = C[T1, . . . , Tr] and consider a pointed K-grading on S,
such that the variables T1, . . . , Tr are homogeneous. Write wi := deg(Ti) ∈ K for the
generator degrees, also when considered in KQ. We denote the grading map by

Q : Zr → K, ei ↦→ wi.

We have the action of the quasitorus H on the affine toric variety Z̄, where

H := SpecC[K], Z̄ := Spec S = Cr.

We assume that any r − 1 of the degrees w1, . . . , wr generate K as a group, ie. the K-
grading is almost free. Moreover we assume that the moving cone

Mov(S) :=
r⋂︂

i=1
cone( wj ; j ̸= i ) ⊆ KQ

is of full dimension. Fix a GIT-cone τ ∈ Λ(S) with τ◦ ⊆ Mov(S)◦. There is the H-
invariant open set of semistable points ˆ︁Z and the corresponding good quotient Z:

ˆ︁Z := Z̄
ss(τ) = {x ∈ Z̄; λ ⊆ ωx }, Z := ˆ︁Z//H.

The quotient variety Z is a projective toric variety of dimension r−dim(KQ) with divisor
class group Cl(Z) = K and Cox ring R(Z) = S.

The following construction produces Mori dream spaces as hypersurfaces in projective
toric varieties. A K-graded algebra R is called K-factorial, or the K-grading of R is
called factorial, if R is integral and every homogeneous non-zero non-unit is a product
of K-primes. A K-prime is a homogeneous non-zero non-unit f ∈ R with the property
that f | gh for homogeneous g, h ∈ R implies that f | g or f | h holds.

Construction 3.2.2. See [6, Sec. 3.2, 3.3] and [45, Constr. 4.1, Rem. 4.2]. In the setting
of Construction 3.2.1 fix 0 ̸= µ ∈ K and g ∈ Sµ and set

Rg := S/⟨g⟩, X̄g := V (g) ⊆ Z̄, ˆ︁Xg := X̄g ∩ ˆ︁Z, Xg := ˆ︁Xg//H ⊆ Z.

Then the factor algebra Rg inherits a K-grading from S and the quotient Xg ⊆ Z is a
closed subvariety. Moreover, there is a GIT-cone λ ∈ Λ(Rg) with

ˆ︁Xg = X̄
ss
g (λ) = {x ∈ X̄g; λ ⊆ ωx }.

We assume that Rg is integral and normal with R∗
g = C∗, the induced K-grading is

factorial and T1, . . . , Tr define a minimal system of pairwise non-associated K-primes
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

in Rg. Then Xg is a normal, projective variety with dimension, divisor class group and
Cox ring given by

dim(Xg) = dim(Z)− 1, Cl(Xg) = K, R(Xg) = Rg.

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in the rational divisor class group Cl(Xg)Q = KQ by

Eff(Xg) = Eff(Rg), Mov(Xg) = Mov(Rg) = Mov(S),

SAmple(Xg) = λ, Ample(Xg) = λ◦.

Remark 3.2.3. Let X = Xg as in Construction 3.2.2. The minimal ambient toric variety
of X is the unique minimal open toric subvariety Zg ⊆ Z containing X. For the ample
cones of X, Zg and Z we have

τ◦ = Ample(Z) ⊆ Ample(Zg) = Ample(X) = λ◦.

Remark 3.2.4. A Mori dream space X with divisor class group Cl(X) = K has a
hypersurface Cox ring if there is an irredundant K-graded presentation

R(X) = C[T1, . . . , Tr]/⟨g⟩,

meaning that the ideal ⟨g⟩ contains no element Ti−hi with hi ∈ K[T1, . . . , Tr] not depend-
ing on Ti. If such a presentation exists, then we have X = Xg as in Construction 3.2.2.

Proposition 3.2.5. See [6, Prop. 3.3.3.2]. Let X = Xg as in Construction 3.2.2. Then
the anticanonical class of X is given in K = Cl(X) by

−K = w1 + · · ·+ wr − µ.

There is a decomposition of X = Xg into locally closed subsets as follows. Denote
by γ the positive orthant in Qr. A face γ0 ⪯ γ is called an X̄g-face if there is x ∈ X̄g

with
xi ̸= 0 ⇐⇒ ei ∈ γ0.

The orbit cones of X̄g are precisely the cones Q(γ0), where γ0 is an X̄g-face. An X-face
is an X̄g-face γ0 with λ◦ ⊆ Q(γ0)◦. Write rlv(X) for the set of X-faces. We have

X =
⋃︂

γ0∈rlv(X)
X(γ0), X(γ0) := {x ∈ X̄g; xi ̸= 0 ⇐⇒ ei ∈ γ0}//H.

Proposition 3.2.6. See [6, Cor. 3.3.1.8]. For X = Xg as in Construction 3.2.2 the
following hold.

(i) X is Q-factorial if and only if the cone λ = SAmple(X) ⊆ KQ is full-dimensional.
(ii) X is locally factorial if and only if for every X-face γ0 ⪯ γ, the group K is generated

by Q(γ0 ∩ Zr).
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For locally factorial X of Picard number two, Proposition 3.2.6 (ii) in particular
yields the following two statements.

Lemma 3.2.7. See [45, Lemma 5.6]. Let X = Xg as in Construction 3.2.2. Assume
X is locally factorial and of Picard number two. Let 1 ≤ i, j ≤ r with λ ⊆ cone(wi, wj).
Then either wi, wj generate K as a group, or g has precisely one monomial of the form
T li

i T
lj
j , where li + lj > 0.

Let X = Xg from Construction 3.2.2 be of Picard number two. Then we decompose
the effective cone into the convex sets

Eff(Rg) = λ− ∪ λ◦ ∪ λ+,

where λ− and λ+ are the convex polyhedral cones not intersecting λ◦ and the intersection
λ+ ∩ λ− consists only of the origin.

Lemma 3.2.8. See [45, Lemma 5.7]. Let X = Xg as in Construction 3.2.2. Assume X
is locally factorial and of Picard number two. Let 1 ≤ i < j < k ≤ r. Then wi, wj , wk

generate K as a group, provided that one of the following holds:
(i) wi, wj ∈ λ−, wk ∈ λ+ and g has no monomial of the form T lk

k ,
(ii) wi ∈ λ−, wj , wk ∈ λ+ and g has no monomial of the form T li

i ,
(iii) wi ∈ λ−, wj ∈ λ◦, wk ∈ λ+.

Moreover, if (iii) holds, then g has a monomial of the form T
lj
j where lj is divisible by

the order of the factor group K/⟨wi, wk⟩.

We turn to rational varieties with a complexity one torus action. For the general
theory see [41,42,46], also [6, Sec. 3.4]. Here we focus on the case of hypersurface Cox
rings.

Proposition 3.2.9. For a Mori dream space X with a hypersurface Cox ring the following
are equivalent:

(i) X admits a torus action of complexity one.
(ii) The Cox ring of X has an irredundant Cl(X)-graded presentation

R(X) = C[T1, . . . , Tr]/⟨g⟩,

where g is a trinomial consisting of pairwise coprime monomials.

Proof. We write K = Cl(X) for the divisor class group and R = R(X) for the Cox ring
of X. Assume that (i) holds. Then by [6, Thm. 4.4.1.6] there is an irredundant K-graded
presentation

R = C[T1, . . . , Tr]/⟨g1, . . . , gt⟩,

such that the variables define pairwise non-associated K-prime generators and the
polynomials g1, . . . , gt ∈ C[T1, . . . , Tr] are homogeneous trinomials, each one consisting
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of pairwise coprime monomials. Moreover, since X has a hypersurface Cox ring, there is
an irredundant K-graded presentation

R = C[T1, . . . , Tr′ ]/⟨g⟩.

The graded isomorphism between these two presentations of R lifts to a graded isomor-
phism C[T1, . . . , Tr]→ C[T1, . . . , Tr′ ], see [44, Lemma 2.4]. This yields r = r′ and t = 1.
Now assume that (ii) holds. Using [6, Constr. 3.2.4.2] we construct the gradiator of g.
This is the maximal effective grading of K[T1, . . . , Tr] for which the variables T1, . . . , Tr

and the polynomial g are homogeneous. Geometrically, this grading yields an effective
action of a quasitorus Hg on X. The coprimeness of the monomials of g guarantees
that the quasitorus Hg contains a torus T of dimension dim(T ) = dim(X)− 1. Thus X
admits an effective torus action of complexity one.

We conclude this section by quoting two results used in the proof of Theorem 3.1.1.
For a torsion-free grading group K the notions of K-factoriality and factoriality coincide,
see [6, Thm. 3.4.1.11].

Remark 3.2.10. See [41, Thm. 1.1]. For l1, l2, l3 ∈ Zr
≥0 assume that the monomi-

als T l1 , T l2 , T l3 ∈ C[T1, . . . , Tr] are pairwise coprime. Then the ring

R = C[T1, . . . , Tr]/⟨T l1 + T l2 + T l3⟩

is a unique factorization domain if and only if the integers gcd(l1), gcd(l2) and gcd(l3)
are pairwise coprime.

Remark 3.2.11. See [45, Prop. 2.4]. Let X = Xg as in Construction 3.2.2. Then we
have

µ ∈
⋂︂

1≤i<j≤r

cone( wk; k ̸= i, k ̸= j ) ⊆ KQ.

3.3 Picard group and smoothability
In this section we establish two general facts, being essential for our proof of Theorem
3.1.1. The first is Proposition 3.3.1, which shows that in our setting the Picard group is
always torsion-free. The second is Proposition 3.3.2, which in particular gives rise to an
explicit smoothing procedure in the case of an ample relation degree µ = deg(g) in the
Cox ring; see also Remark 3.10.13.

Proposition 3.3.1. Let X = Xg as in Construction 3.2.2. Assume that X is Q-factorial,
Fano, of Picard number two and admits a torus action of complexity one. Then the
Picard group Pic(X) is torsion-free.

Proof. By [6, Cor. 3.3.1.6] we have the identity

Pic(X) =
⋂︂

γ0 X-face
Q(lin(γ0) ∩ Zr).
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It therefore suffices to show that there is a two-dimensional X-face. By Proposition 3.2.9
we may assume that g ∈ S is a trinomial consisting of pairwise coprime monomials. We
write ρ1, . . . , ρs for the rays generated by the generator degrees w1, . . . , w7. The effective
cone of R := Rg is given by Eff(R) = ρ1 + ρs. We distinguish two cases. First, assume
µ = deg(g) is contained in Eff(R)◦. In this case we can find generator degrees wi, wj

that satisfy the following conditions:
(i) λ◦ ⊆ cone(wi, wj).
(ii) µ ∈ cone(wi, wj)◦.
(iii) g does not contain a monomial of the form T li

i T
lj
j .

Explicitly, we do the following: Taking wi ∈ ρ1 and wj ∈ ρs satisfies (i) and (ii). If
g contains a monomial of the form T li

i T
lj
j , then, since µ is contained in the interior of

Eff(R), the exponents li and lj are positive. The definition of Mov(R) and Remark 3.2.11
ensure that we can replace either wi or wj with a different generator degree, such that
the new pair (wi′ , wj′) still satisfies (i) and (ii). Since the monomials of g are pairwise
coprime, this pair also satisfies (iii). The face γ0 of the positive orthant γ spanned by ei′

and ej′ is thus a two-dimensional X-face.
Now assume that µ lies on one of the bounding rays of Eff(Rg). We may assume

that µ ∈ ρ1 holds. Since g is a trinomial and its monomials are pairwise coprime, the
ray ρ1 contains at least three generator degrees. If ρ1 contains four or more generator
degrees, then there is wi ∈ ρ1 such that g does not contain a monomial of the form
T li

i . Choose any wj ∈ ρs. Then the face γ0 := cone(ei, ej) is again a two-dimensional
X-face. Now assume that ρ1 contains exactly three generator degrees, say w1, w2 and
w3. The ample cone λ of X is of the form λ = ρk + ρk+1 for some k = 1, . . . , s − 1. If
λ ̸= ρ1 + ρ2, then we take wi and wj from each of the bounding rays of λ. The face
γ0 := cone(ei, ej) is again a two-dimensional X-face. It remains to consider the case
λ = ρ1 + ρ2. Applying a unimodular transformation, we achieve that ρ1 is the ray
generated by e1. We write w1 = (a1, 0), w2 = (a2, 0) and w3 = (a3, 0). Switching the
roles of w1, w2 and w3 if necessary, we may assume that a1 ≥ a2 ≥ a3 holds. Homogeneity
of g yields l1a1 = l2a2 = l3a3. As X is Fano, it’s anticanonical class is ample. By
Proposition 3.2.5, this means

(1− l1)w1 + w2 + w3 + w4 + · · ·+ wr ∈ λ◦ = (ρ1 + ρ2)◦.

The point w := w4 + · · · + wr is contained in the cone ρ2 + (−ρ1). Thus, for the sum
to lie in the interior of λ, we must have (1 − l1)w1 + w2 + w3 ∈ ρ1. This is equivalent
to (l1 − 1)a1 < a2 + a3. Since a1 is at least as big as a2 and a3, this yields l1 = 2.
Homogeneity of g thus yields a2 = 2a1/l2 and a3 = 2a1/l3. With this, the exponents l2
and l3 satisfy the following inequality:

1 <
2
l2

+ 2
l3

.

Since a2 ≥ a3, we have l3 ≥ l2. Moreover, both exponents are at least two by irredundancy
of the presentation of R. The triple (l1, l2, l3) is therefore one of the following:

(l1, l2, l3) = (2, 2, y), (l1, l2, l3) = (2, 3, 3),
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(l1, l2, l3) = (2, 3, 4), (l1, l2, l3) = (2, 3, 5),

where y ≥ 2. Thus, by [5, Thm. 3.13] the variety X has at most log terminal singularities.
With this, we are in the situation of [70, Prop. 2.1.2], which tells us that the Picard
group Pic(X) is torsion-free.

Proposition 3.3.2. Let X = Xg as in Construction 3.2.2 be locally factorial and of
Picard number two. Assume that

µ ∈ SAmple(X) ∩Mov(X)◦.

Then there is a non-empty open subset U ⊆ Sµ such that for all h ∈ U the variety Xh ⊆ Z
is smooth with divisor class group Cl(Xh) = K and Cox ring R(Xh) = Rh.

The remainder of this section is devoted to the proof of Proposition 3.3.2. We adopt
the notation of Construction 3.2.1 and Construction 3.2.2. A homogeneous polynomial
h ∈ Sµ is called spread, if every monomial T ν ∈ S of degree µ = deg(h) is a convex
combination of monomials of h. We say that Rh is spread, if h is spread, see [45, Def. 4.3].
Here we identify a monomial T ν = T ν1

1 · · ·T νr
r with its exponent vector ν ∈ Qr. If

h, h′ ∈ Sµ are spread, then the minimal ambient toric varieties Zh of Xh and Zh′ of Xh′

coincide. Thus the toric variety Zµ := Zh is well-defined. It is called the µ-minimal
ambient toric variety, see [45, Def. 4.18]. The following two Propositions, originally
[45, Prop. 4.11] and [45, Cor. 4.19], are essential to the proof of Proposition 3.3.2.

Proposition 3.3.3. See [45, Cor. 4.19]. In the setting of Construction 3.2.2, as-
sume rank(K) = 2 and that Zµ ⊆ Z is smooth. If µ ∈ τ holds, then µ is basepoint free.
Moreover, then there is a non-empty open subset of polynomials g ∈ Sµ such that Xg is
smooth.

Proposition 3.3.4. See [45, Prop. 4.11]. In the setting of Construction 3.2.2 assume
that K is of rank at most r − 4 and torsion-free, there is g ∈ Sµ such that T1, . . . , Tr

define primes in Rg, we have µ ∈ τ◦ and µ is basepoint free on Z. Then there is a
non-empty open subset of polynomials g ∈ Sµ such that Rg is a UFD.

For the rest of this section it is assumed that we have X = Xg as in Construction 3.2.2
and that X is locally factorial and of Picard number two. For any homogeneous h ∈ Sµ we
denote by λh ∈ Λ(Rh) the smallest GIT-cone that contains τ . Note that local factoriality
of X in particular implies Q-factoriality. Thus by Proposition 3.2.6 (i) the cone λ is
full-dimensional.

Lemma 3.3.5. Let h ∈ Sµ such that each monomial of g is also a monomial of h. Then
λ ⊆ λh holds.

Proof. The cone λh ∈ Λ(Rh) is the smallest GIT-cone that contains τ . Thus in the
case τ = λ there is nothing to show. So we may assume that τ ⊊ λ holds. We
write λ = cone(wi, wj) and τ = cone(wk, wl). Since τ is a proper subset of λ, one of
its ray generators is contained in the interior of λ, say wk ∈ λ◦. By [45, Prop. 2.8] the
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degree wk is the only generator degree that is contained in the interior of λ. Moreover, µ
lies on the ray of wk and the relation g contains a monomial of the form T lk

k . Since h

contains each monomial of g, it also contains the monomial T lk
k . Therefore, each projected

X̄h-face Q(γ0), that contains τ , necessarily also contains generator degrees on both sides
of wk. Since wk is the only generator degree in the interior of λ, the cone Q(γ0) also
contains λ. This implies the assertion.

Proposition 3.3.6. The µ-minimal ambient toric variety Zµ ⊆ Z is smooth.

Proof. Let h ∈ Sµ spread such that each monomial of g is also a monomial of h and let
γ0 ⪯ γ with λ◦

h ⊆ Q(γ0)◦. Write γ0 = cone(ei1 , . . . , eim). By Proposition 3.2.6 (ii) we
have to show that either wi1 , . . . , wim generate K as a group, or γ0 is not an X̄h-face.
Assume that wi1 , . . . , wim do not generate K. We show that γ0 is not an X̄h-face. By
Lemma 3.3.5, we have λ◦ ⊆ Q(γ0)◦. Since λ is of full dimension, γ0 is at least two-
dimensional. In particular we have m ≥ 2. None of the degrees wi1 , . . . , wim lies in λ◦: If
one of them did, say wi1 ∈ λ◦, then by [45, Prop. 2.8] it is the only generator degree in the
interior of λ and g contains a monomial of the form T

li1
i1

. Moreover, in this case we have
m ≥ 3. We may assume that wi2 and wi3 each lie in one of the bounding rays of Q(γ0).
The degrees wi2 , wi3 do not generate K as a group. Thus, since X is locally factorial, by
Proposition 3.2.6 (ii) the cone spanned by ei2 and ei3 is not a X̄-face. This means that
g contains a monomial of the form T

li2
i2

T
li3
i3

. But then the cone spanned by ei1 , ei2 and
ei3 is an X̄-face and thus wi1 , wi2 , wi3 generate K. A contradiction. Thus none of the
degrees wi1 , . . . , wim lies in λ◦. We may assume that the generator degrees are sorted
in such a way that for all v ∈ λ◦ we have det(v, wij ) < 0 if j ≤ k and det(v, wij ) > 0 if
j > k for some fixed 1 ≤ k ≤ m. We show that either k = 1 or k + 1 = m holds. If 1 < k
and k + 1 < m, then we have m ≥ 4 and neither wi1 , wim−1 , nor wi2 , wim generate K. By
local factoriality of X and Proposition 3.2.6 (ii), the relation g then contains monomials
of the form T

li1
i1

T
im−1
im−1

and T
li2
i2

T im
im

. Thus γ′
0 = cone(wi1 , wi2 , wim−1 , wim) is an X̄-face

and wi1 , wi2 , wim−1 , wim generate K. A contradiction. We may thus assume that k = 1
holds. If m = 2, then g contains a monomial of the form T

li1
i1

T
li2
i2

and this is the only
monomial in Sµ only depending on these two variables. Therefore γ0 is not an X̄h-face.
If m > 2, then by Proposition 3.2.6 (ii), the relation g contains a monomial of the form
T

li1
i1

and this is the only monomial in Sµ only depending on the variables Ti1 , . . . , Tim .
Thus also in this case γ0 is not an X̄h-face.

Lemma 3.3.7. If µ ∈ λ holds, then we also have µ ∈ τ .

Proof. In case τ and λ coincide, there is nothing to show. So we assume that τ ⊊ λ
holds. Write λ = cone(wi, wj) and τ = cone(wk, wl). Since τ is a proper subset of λ, one
of the generator degrees in its bounding rays lies in the interior of λ, say wk ∈ λ◦. By
[45, Prop. 2.8], it is the only generator degree that lies in λ◦ and g contains a monomial
of the form T lk

k . This shows that µ ∈ τ holds.
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Proposition 3.3.8. Assume that µ ∈ λ ∩Mov(Rg)◦ holds. Then there is a non-empty
open subset U ⊆ Sµ such that Rh is a UFD for each h ∈ U .

Proof. By Lemma 3.3.7 the relation degree µ is contained in the cone τ . We distinguish
two cases. First assume that µ ∈ τ◦ holds. As Zµ is smooth by Proposition 3.3.6, the
class µ is basepoint free by Proposition 3.3.3. We can thus apply Proposition 3.3.4,
which yields the assertion. Now assume that µ ∈ ∂τ holds. Let τµ ∈ Λ(S) the unique
GIT-cone that contains µ in its interior, ie. τµ is the bounding ray of τ containing
µ. We write Z(τµ) := Z̄

ss(τµ)//H for the projective toric variety associated with τµ

as in Construction 3.2.1. We show that µ is basepoint free on Z(τµ). Note that µ is
semiample. Thus by [30, Thm. 6.3.12] it suffices to show that µ is Cartier on Z(τµ). By
[6, Cor. 3.3.1.6] this is the case if and only if

µ ∈
⋂︂

γ0∈rlv(Z(τµ))
Q(γ0 ∩ Zr)

holds. Let γ0 ∈ rlv(Z(τµ)). If Q(γ0) is two-dimensional, then λ◦ ⊆ Q(γ0)◦ holds and by
Proposition 3.3.6 we have Q(γ0 ∩ Zr) = K. So assume that Q(γ0) is one-dimensional,
ie. Q(γ0) = τµ. We distinguish two cases. First assume µ ∈ λ◦. Then by [45, Prop. 2.8],
τµ contains a single generator degree wk and µ is a multiple of wk. Thus in this case
µ ∈ Q(γ0 ∩ Zr) holds. Now we assume that µ ∈ ∂λ holds. Then τµ is one of the
bounding rays of λ. Write γ0 = cone(ei1 , . . . , eim) and let wk a generator degree in the
other bounding ray of µ. If wi1 , . . . , wim , wk generate K, then µ is a linear combination
of wi1 , . . . , wim and thus µ ∈ Q(γ0 ∩ Zr) holds. If they do not generate K, then by
Proposition 3.2.6 (ii) the relation g contains a single monomial only depending on
Ti1 , . . . , Tim , Tk. Since µ is contained in τµ, this monomial can not depend on Tk. Thus µ
is again a linear combination of the degrees wi1 , . . . , wim and thus µ ∈ Q(γ0 ∩ Zr) holds.
This shows that µ is basepoint free on Z(τµ). We again apply Proposition 3.3.4, which
yields the assertion.

Proof of Proposition 3.3.2. The set U1 ⊆ Sµ of polynomials h such that Rh is a UFD is
open and non-empty by Proposition 3.3.8. The set U2 ⊆ Sµ of polynomials h such that
T1, . . . , Tr form a minimal system of non-associated K-prime generators in Rh is open
by [45, Prop. 4.10] and since Rg has that property, the set U2 is non-empty. Finally,
the set U3 ⊆ Sµ of polynomials h such that Xh is smooth is open and non-empty by
Proposition 3.3.3 and Proposition 3.3.6. Now for any h in the intersection

U = U1 ∩ U2 ∩ U3

the affine K-algebra Rh is a UFD and the variables T1, . . . , Tr define pairwise non-
associated primes in Rh. Being a UFD implies that Rh is normal and that the K-grading
is factorial. The grading is also pointed, as this is inherited from S. In particular this
implies that R∗

h = C∗ holds. We are thus in the situation of Construction 3.2.2. So Rh is
the Cox ring of the smooth projective variety Xh.
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3.4 Proof of Theorem 3.1.1: Preparation
We are ready to enter the proof of Theorem 3.1.1. We start by fixing the setting.

Setting 3.4.1. Let X be a locally factorial Fano fourfold of Picard number ρ = 2 with a
hypersurface Cox ring R = R(X). Write K = Cl(X) and let

R = C[T1, . . . , T7]/⟨g⟩

an irredundant K-graded presentation of R such that the variables T1, . . . , T7 define
pairwise non-associated K-prime generators of R. We have X = Xg as in Construc-
tion 3.2.2. We assume that X is of complexity c = 1. By Proposition 3.3.1 the group K
is torsion-free and we identify K = Z2. By [6, Thm. 3.4.1.11] the ring R is a UFD. By
Proposition 3.2.9 and Remark 3.2.10 we may thus assume that g satisfies the following
two conditions.
(C1) The relation g is of the form

g = T l1 + T l2 + T l3

with l1, l2, l3 ∈ Z7
≥0 such that each variable T1, . . . , T7 divides at most one monomial

of g.
(C2) The integers gcd(l1), gcd(l2) and gcd(l3) are pairwise coprime.
We turn to the grading map Q of R. Write wi := Q(ei) = deg(Ti) and µ := deg(g) for
the degrees in K, also when regarded in KQ. Suitably ordering w1, . . . , w7 we ensure

det(wi, wj) ≥ 0

whenever i ≤ j. Some of the degrees wi may share a common ray. We denote by s the
number of distinct rays ρ1, . . . , ρs generated by the degrees w1, . . . , w7,

s := #{ cone(wi); i = 1, . . . , 7 }.

Moreover, we denote the number of generator degrees wj contained in the ray ρi by ni.
We have s ≤ 7 and

n1 + · · ·+ ns = 7.

Each ray ρj in the GIT-fan Λ(R) is of the form ρj = cone(wi) for some wi, but the
converse may not hold. As X is locally factorial, it is in particular Q-factorial. By
Proposition 3.2.6 (i) this means that the cone λ = SAmple(X) is full-dimensional. As
a GIT-cone in KQ = Q2, the cone λ is the intersection of two projected X̄g-faces and
thus each bounding ray of λ contains at least one of the degrees wi. We decompose the
effective cone Eff(R) into the three convex sets

Eff(X) = λ− ∪ λ◦ ∪ λ+,

where λ− and λ+ are the convex polyhedral cones not intersecting λ◦ = Ample(X) and
the intersection λ+∩λ− consists only of the origin. Each of the cones λ+ and λ− contains
at least two of the generator degrees w1, . . . , w7. However, λ+ as well as λ− may be
one-dimensional. The following picture illustrates the situation for the case s = 4.
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λ◦

λ−

λ+

w1

w7

The black dots represent the generator degrees w1, . . . , w7. The white dot represents the
relation degree µ. In this example the cones λ+ and λ− are full-dimensional.

Remark 3.4.2. Let X as in Setting 3.4.1.
(i) The variety X is uniquely determined by it’s specifying data (Q, g): The vari-

ety X(Q, g) := Xg as in Construction 3.2.2 satisfies X ∼= X(Q, g).
(ii) Up to reversing order, the tuple (n1, . . . , ns) is invariant under automorphisms of

K. We call it the degree constellation of X.

Remark 3.4.3. Given specifying data (Q, g) and (Q′, g′), we need criteria to decide
computationally whether or not the varieties X(Q, g) and X(Q′, g′) are isomorphic. Here
we can make use of Proposition 2.3.1; see also [16, Prop. 3.4]: If X(Q, g) and X(Q′, g′)
are isomorphic, then g and g′ coincide up to permutation of variables.

Setting 3.4.1 divides the proof of Theorem 3.1.1 into six cases, according to the
number s of rays spanned by the degrees w1, . . . , w7. The case s = 7 does not occur, see
Proposition 3.4.8. The other five cases s = 2, . . . , 6 are treated in the coming Sections 3.5
to 3.9. Before we jump into the specific cases, we first gather some general observations
that will be used throughout the proof.

Lemma 3.4.4. Let b > a > 1 coprime integers. If ab ≤ 2 + a + b holds, then we
have a = 2 and b = 3.

Proof. Dividing both sides of the inequality in the assertion by ab, we obtain

1 ≤ 2
ab

+ 1
b

+ 1
a

.

We have ab ≥ 6 as well as 1/b < 1/a. With this we obtain a = 2. The original inequality
turns into 2b ≤ 4 + b. As b > a holds and a and b are coprime, this is only fulfilled for
b = 3.

Lemma 3.4.5. In the situation of Setting 3.4.1, for each ray ρj, at most two of the
generator degrees wi contained in ρj are non-primitive lattice points.

Proof. Assume that ρj contains three non-primitive generator degrees wi1 , wi2 and wi3 .
Applying a unimodular transformation if necessary, we may assume that ρj is the ray
generated by the first standard basis vector. Write

wi1 = (ai1 , 0), wi2 = (ai2 , 0), wi3 = (ai3 , 0).
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As the degrees wi1 , wi2 , wi3 are non-primitive, we have ai1 , ai2 , ai3 > 1. By [45, Prop. 2.8]
the ray ρj does not lie in the interior of λ. Thus there is a generator degree wk such that
λ is contained in the two-dimensional cone τm = cone(wim , wk) for m = 1, 2, 3. Since wim

is not primitive, the degrees wim and wk do not generate K as a group. Lemma 3.2.7
thus tells us that the relation g contains monomials of the form T

lim
im

T
lk(m)
k . As the

monomials of g a pairwise coprime, at least two of the exponent lk(m) must be zero. By
homogeneity of g we obtain lk(1) = lk(2) = lk(3) = 0 and µ lies in ρj . In particular, we
have

µ = li1wi1 = li2wi2 = li3wi3 .

By the condition (C2) from Setting 3.4.1, the integers li1 , li2 , li3 are pairwise coprime.
Moreover, they are all bigger than one by irredundancy of the presentation of R. Let p a
prime divisor of li1 . Then p must divide both ai2 and ai3 . In particular, ai2 and ai3 are
not coprime. Thus the three degrees wi2 , wi3 and wk do not generate K as a group. By
Lemma 3.2.8 the relation g must therefore contain a monomial of the form wlk

k . This is a
contradiction to the position of µ. Thus at least one of wi1 , wi2 , wi3 is primitive.

Lemma 3.4.6. In the situation of Setting 3.4.1, assume that µ ∈ λ+\λ holds. Then the
following hold.

(i) The cone λ is regular and every generator degree lying on its boundary is primitive.
(ii) All generator degrees contained in λ− coincide. In particular, n1 ≥ 2 holds and

λ− = ρ1 is a bounding ray of λ.

Proof. We prove (i). Let 1 ≤ i < j ≤ 7 such that λ = cone(wi, wj) holds. Since the
relation degree µ is not contained in λ, the relation g does not contain a monomial of the
form T li

i T
lj
j . By Lemma 3.2.7, the generator degrees wi and wj generate K as a group.

We prove (ii). Let 1 ≤ i < j ≤ 7 such that λ = cone(wi, wj) holds. By (i) we may assume
that wi = (1, 0) and wj = (0, 1) holds. We write w1 = (a1,−b1) for some a1, b1 ∈ Z≥0.
Applying Lemma 3.2.7 to the generator degrees w1 and wj shows that a1 = 1 holds. So in
order to verify item (ii) it suffices to show that b1 = 0 holds. For this we first show that
Eff(R) contains a lattice point v ∈ Z2 of the form v = (−a, 1) for some a ∈ Z≥1. Note
that w5, w6, w7 do not lie in λ. Write wk = (−ak, bk) for k = 5, 6, 7. If bk = 1 holds for
one of those, then we have found such a point v. Otherwise we have b5, b6, b7 > 1. Thus
det(wi, wk) = bk > 1 holds and by Lemma 3.2.7, the relation g contains monomials of
the form T ki

i T k5
5 , T li

i T l6
6 and T mi

i T m7
7 . Since only at most one monomial of g is divisible

by Ti, we conclude that two of the exponents ki, li and mi must be zero. Homogeneity of
g thus implies that two of the generator degrees w5, w6, w7 lie on the ray through µ. Let
v = (v1, v2) ∈ Z2 denote the primitive lattice vector on this ray. We apply Lemma 3.2.8
to wi and the two generator degrees on the ray through µ to infer v2 = det(wi, v) = 1.
Thus v is a lattice point of the desired form. From w1 ∈ λ− and v ∈ λ+ we infer

0 < det(w1, v) = 1− ab1.

As a is positive, this inequality can only be fulfilled by b1 = 0. Hence w1 = (1, 0) holds,
which proves the assertion.
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Lemma 3.4.7. In the situation of Setting 3.4.1 assume that µ ∈ ρ1 holds. Then we have
s ≤ 3 and n1 ≥ 4.

Proof. Since the relation g is a trinomial consisting of pairwise coprime monomials, the
ray ρ1 contains at least the three generator degrees w1, w2, w3. Applying a unimodular
transformation we may assume that ρ1 is the ray generated by the first standard basis
vector. We write wi = (ai, 0) with positive integers a1, a2, a3. By Lemma 3.4.5 at least
one of a1, a2, a3 is equal to one. Renaming variables if necessary, we may assume a1 = 1.
If no other generator degree is contained in ρ1, then g must be of the form

g = T l1
1 + T l2

2 + T l3
3 .

Homogeneity of g thus yields l1 = a2l2, which contradicts condition (C2) from Setting 3.4.1.
Thus the ray ρ1 contains at least the four generator degrees w1, w2, w3, w4. In particular
we have s ≤ 4. Assume that s = 4 holds. Applying Lemma 3.2.8 to the triples (w1, w2, w5),
(w1, w2, w6) and (w1, w2, w7) shows that w5, w6, w7 are primitive. We apply a unimodular
transformation to achieve

Q =
[︄

1 1 a3 a4 a b 0
0 0 0 0 1 1 1

]︄
, µ = (µ1, 0),

where a > b > 0 and a4 ≥ a3. Lemma 3.2.8 applied to the triple (w3, w4, w7) shows
that a3 and a4 are coprime. The moving cone is given by Mov(R) = ρ1 + ρ3 and it is
subdivided by ρ2 into two two-dimensional chambers. One of them is λ. If λ = ρ2 + ρ3
holds, then by Lemma 3.4.6 the degrees w6 and w7 must coincide, which contradicts the
assumption s = 4. Thus λ = ρ1 + ρ2 holds. To satisfy the conditions (C1) and (C2) from
Setting 3.4.1, the relation g must be of the form

g = T l1
1 T l2

2 + T l3
3 + T l4

4 ,

where l3 and l4 are coprime. By homogeneity of g we obtain l3a3 = l4a4. In particular
a3 = l4 and a4 = l3 and µ1 = a3a4 holds. By Proposition 3.2.5, the anticanonical class of
X is given by

−K =
[︄

2 + a3 + a4 − µ1 + a + b
3

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequality

0 ≤ 1 + a3 + a4 − µ1 + b− 2a.

Since b− 2a is negative, we must have µ1 < 1 + a3 + a4. We are thus in the setting of
Lemma 3.4.4, which yields a3 = 2 and a4 = 3 and µ1 = 6. However, this yields 2a ≤ b,
which contradicts the fact that a > b holds. Thus we must have s ≤ 3.

Proposition 3.4.8. In the situation of Setting 3.4.1 we have s ≤ 6.
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Proof. Let X as in 3.4.1 and assume that s = 7 holds. Then each of the seven rays
ρ1, . . . , ρ7 contains a single generator degree. In particular, Lemma 3.4.6 (ii) tells us
that we must have µ ∈ λ. The Moving cone is given by Mov(R) = ρ2 + ρ6 and by
Remark 3.2.11 the relation degree µ is contained in the cone ρ3 + ρ5. In particular, µ lies
in the interior of Mov(R). We are thus in the situation of Proposition 3.3.2 which tells
us that for a general polynomial h ∈ C[T1, . . . , T7] of degree deg(h) = µ, the variety Xh

is smooth with divisor class group Cl(Xh) = K and Cox ring R(Xh) = Rh. Moreover, by
Proposition 3.2.5 Xh is Fano. Thus, Xh is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix Q = (w1, . . . , w7) together with the relation degree µ = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. However, there is no entry in that
list with generator degrees w1, . . . , w7 distributed among seven different rays. Thus we
have s ≤ 6.

3.5 Proof of Theorem 3.1.1: Case s = 2
Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2, . . . , 6, according to the number of rays spanned by the degrees w1, . . . , w7.
In this section we treat the case s = 2.

Theorem 3.5.1. The table from 3.10.1 provides specifying data (Q, g) for 18 locally
factorial Fano fourfolds of Picard number ρ = 2 and complexity c = 1 with a hypersurface
Cox ring and s = 2. Moreover, any locally factorial Fano fourfold with a hypersurface Cox
ring and invariants (ρ, c, s) = (2, 1, 2) is isomorphic to precisely one X(Q, g) with (Q, g)
from that table.

Proof. With the tools provided in Section 3.2 we verify that each specifying data (Q, g)
from the table in 3.10.1 defines a locally factorial Fano fourfold X(Q, g) with a hypersur-
face Cox ring and invariants (ρ, c, s) = (2, 1, 2). Moreover, with the help of Remark 3.4.3
we verify that distinct specifying data from the table in 3.10.1 define pairwise non-
isomorphic varieties. This proves the first assertion in Theorem 3.5.1. For the second
assertion let X as in Setting 3.4.1 with invariants (ρ, c, s) = (2, 1, 2). We show that X is
isomorphic to X(Q, g) with (Q, g) from the table in 3.10.1. By assumption the generator
degrees w1, . . . , w7 lie on two distinct rays. In particular, the GIT-fan of X contains a
single full-dimensional cone. Since λ is full-dimensional, we have

Eff(R) = Mov(R) = λ.

We distinguish two cases, depending on the position of the relation degree µ relative to λ.

Case 3.5.1.1: µ ∈ λ◦. We can apply Proposition 3.3.2, which tells us that for a general
polynomial h ∈ C[T1, . . . , T7] of degree deg(h) = µ, the variety Xh is a smooth Fano
fourfold of Picard number two with a spread hypersurface Cox ring. Thus the grading
matrix Q = (w1, . . . , w7) together with the relation degree µ = deg(g) appear in the
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classification list presented in [45, Thm. 1.1]. For each such entry (Q, µ) with s = 2 we
determine all trinomials g of degree deg(g) = µ that satisfy the conditions of Setting 3.4.1
and filter the resulting list by isomorphy. This yields the specifying data with ID’s 1 to 7
in Classification list 3.10.1. The variety X is isomorphic to precisely one variety with
specifying data (Q, g) from that list.

Case 3.5.1.2: µ ∈ ∂λ. The relation degree µ is contained in one of the bounding rays
of the effective cone. Reversing orientation if necessary, we may assume that µ ∈ ρ1
holds. Let m = n1. By Remark 3.2.11 we have m ≥ 3. Moreover, by the definition of
Mov(R), we also have m ≤ 5. Applying Lemma 3.2.8 to the generator degrees w1, w2, wi,
where i ≥ m + 1 shows that the effective cone is regular and that every generator degree
contained ρ2 is primitive. For the grading matrix Q and relation degree µ we can thus
write

Q =
[︄

a1 . . . am 0 . . . 0
0 . . . 0 1 . . . 1

]︄
, µ = (µ1, 0),

with a1, . . . , am ∈ Z≥1 and we may assume a1 ≤ · · · ≤ am. Again applying Lemma 3.2.8
to the generator degrees wi, wj , w7 with 1 ≤ i < j ≤ m shows that the integers a1, . . . , am

are pairwise coprime. Moreover, the relation g only depends on the variables T1, . . . , Tm.
Assume m = 3 holds. Since the monomials of g are pairwise coprime, we have

g = T l1
1 + T l2

2 + T l3
3

with l1a1 = l2a2 = l3a3. Since R is a UFD, the exponents l1, l2, l3 are pairwise coprime;
see Remark 3.2.10. This is not possibly due to the coprimeness of a1, a2, a3. Thus m ≥ 4
holds and the degree constellation (n1, n2) of X is one of the following:

(n1, n2) = (5, 2), (n1, n2) = (4, 3).

Case 3.5.1.2.1: (n1, n2) = (5, 2). Applying Lemma 3.2.8 to the generator degrees
wi, w6, w7 for i = 1, . . . , 5 shows that at most three of the degrees w1, . . . , w5 are non-
primitive. Thus a1 = a2 = 1 holds. If a3 > 1 holds, then g is of the form g = T l3

3 +T l4
4 +T l5

5
with pairwise coprime exponents l3, l4, l5. This is not possible due to the coprimeness
of a3, a4, a5. Therefore a3 = 1 holds and we have

Q =
[︄

1 1 1 a4 a5 0 0
0 0 0 0 0 1 1

]︄
, µ = (µ1, 0).

The anticanonical class is given by −K = (3 + a4 + a5 − µ1, 2). The Fano condition on X
yields

µ1 ≤ 2 + a4 + a5. (3.5.1.1)

We distinguish three cases, depending on the values of a4 and a5.
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Case 3.5.1.2.1.1: a4, a5 > 1. We can apply Lemma 3.4.4 to obtain a4 = 2, a5 = 3
and µ1 = 6. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 1 2 3 0 0
0 0 0 0 0 1 1

]︄
, µ = (6, 0).

Applying Lemma Lemma 3.2.7 to the pairs (w4, w7) and (w5, w7) shows that g is of the
form

g = T l1
1 T l2

2 T l3
3 + T 3

4 + T 2
5 .

By homogeneity of g we have l1 + l2 + l3 = 6. Since R is a UFD, l1, l2, l3 must be coprime;
see Remark 3.2.10. Filtering by isomorphy, this leads to the specifying data no. 11, 12
and 13.

Case 3.5.1.2.1.2: a4 = 1, a5 > 1. Applying Lemma 3.2.7 to the pair (w5, w6) shows
that g contains a monomial of the form T l5

5 with l5 > 1. In particular we have µ1 = l5a5
and Equation 3.5.1.1 yields

(l5 − 1)a5 ≤ 3.

There are thus two cases for a5 and l5, namely (a5, l5) = (2, 2) and (a5, l5) = (3, 2). In
the first case the grading matrix and relation degree are given by

Q =
[︄

1 1 1 1 2 0 0
0 0 0 0 0 1 1

]︄
, µ = (4, 0).

We check all trinomials g of degree (4, 0) that contain the monomial T 2
5 for the conditions

from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the single
specifying data no. 14. In the second case the grading matrix and relation degree are
given by

Q =
[︄

1 1 1 1 3 0 0
0 0 0 0 0 1 1

]︄
, µ = (6, 0).

Again we check all trinomials g of degree (6, 0) that contain the monomial T 2
5 for the

conditions from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the
specifying data no. 9 and no. 10.

Case 3.5.1.2.1.3: a4 = a5 = 1. Equation 3.5.1.1 yields µ1 ≤ 4. By assumption the
presentation of R is irredundant. Thus µ1 ≥ 2 holds. We have

Q =
[︄

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]︄
, µ = (µ1, 0), 2 ≤ µ1 ≤ 4.

For each value of µ1 we determine all trinomials g of degree µ satisfying the conditions
from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the specifying
data no. 15, 16 and 17.
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Case 3.5.1.2.2: (n1, n2) = (4, 3). With the same arguments as in the case 2.1 we
obtain a1 = a2 = 1 and that a3 and a4 are coprime. The relation g only depends on the
variables T1, . . . , T4. Since its monomials are pairwise coprime, the relation g contains at
least two monomials that only depend on a single variable. Moreover, as R is a UFD,
their exponents must be coprime, see Remark 3.2.10. This is only possible if g is of the
form

g = T l1
1 T l2

2 + T l3
3 + T l4

4 .

By homogeneity of g we have µ1 = l3a3 = l4a4. Coprimeness of l3 and l4 yields a3, a4 > 1
and that they are coprime. We can thus apply Lemma 3.4.4 to obtain a3 = 2, a4 = 3
and µ1 = 6. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 2 3 0 0 0
0 0 0 0 1 1 1

]︄
, µ = (6, 0).

The exponents of the first monomial of g are coprime and satisfy l1 + l2 = 6. Filtering by
isomorphy, this leads to specifying data no. 18.

3.6 Proof of Theorem 3.1.1: Case s = 3
Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2, . . . , 6, according to the number of rays spanned by the degrees w1, . . . , w7.
In this section we treat the case s = 3.

Theorem 3.6.1. The tables from 3.10.2, 3.10.3 and 3.10.4 provide specifying data (Q, g)
for 223 sporadic cases and 4 infinite series of locally factorial Fano fourfolds of Picard
number ρ = 2 and complexity c = 1 with a hypersurface Cox ring and s = 3. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (ρ, c, s) =
(2, 1, 3) is isomorphic to precisely one X(Q, g) with (Q, g) from these tables.

The proof of Theorem 3.6.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q, g) from the tables in 3.10.2, 3.10.3
and 3.10.4 defines a locally factorial Fano fourfold X(Q, g) with a hypersurface Cox ring
and invariants (ρ, c, s) = (2, 1, 3). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.2, 3.10.3 and 3.10.4 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (ρ, c, s) = (2, 1, 3) is isomorphic to
X(Q, g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

µ ∈ SAmple(X), µ ̸∈ SAmple(X).

The case µ ∈ SAmple(X) will be treated in Proposition 3.6.2. In Proposition 3.6.3 we
treat the case µ ̸∈ SAmple(X).
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3.6. Proof of Theorem 3.1.1: Case s = 3

Proposition 3.6.2. Let X as in Setting 3.4.1 with s = 3. Assume that µ ∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.2.

Proof. We divide the proof into the two cases µ ∈ Mov(R)◦ and µ ∈ ∂ Mov(R).

Case 3.6.2.1: µ ∈ Mov(R)◦. We are in the situation of Proposition 3.3.2. Thus, for a
general polynomial h ∈ C[T1, . . . , T7] of degree deg(h) = µ, the projective variety Xh is
smooth with divisor class group Cl(Xh) = K and Cox ring R(Xh) = Rh. Moreover, by
Proposition 3.2.5 Xh is Fano. Thus, Xh is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix Q = (w1, . . . , w7) together with the relation degree µ = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. For each such entry (Q, µ) with
s = 3 we determine all trinomials g of degree deg(g) = µ that satisfy the conditions (C1)
and (C2) from Setting 3.4.1 and filter the resulting list by isomorphy. This yields the
specifying data no. 19 to 80 in Classification list 3.10.2.

Case 3.6.2.2: µ ∈ ∂ Mov(R). The relation degree µ is contained in one of the
rays ρ1, ρ2, ρ3. Reversing the order of the variables if necessary, we may assume that
λ = ρ1 + ρ2 holds and that µ is contained in either ρ1 or ρ2.

Case 3.6.2.2.1: µ ∈ ρ2. The ray ρ2 is a bounding ray of Mov(R). Thus in this
configuration the cones λ and Mov(R) coincide. By the definition of Mov(R) we must
have n3 = 1 and n1 ≥ 2. Moreover, Remark 3.2.11 yields n2 ≥ 2. Applying Lemma 3.2.8
to the generator degrees w1, w2, w7 shows that the cone Eff(R) is regular and that w7 is
primitive. We may thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1)
holds. Applying Lemma 3.2.8 to the triples (w1, w5, w6) and (w2, w5, w6) shows that the
primitive generator v of ρ2 is of the form v = (c, 1) for some c ≥ 1. We obtain

w1 = w2 = (1, 0), w5 = (a5c, a5), w6 = (a6c, a6),

where a5, a6, c ∈ Z≥1 and a5, a6 are coprime. We may assume that a6 ≥ a5 holds. There
are three possible degree constellations (n1, n2, n3) for X, displayed in the following
pictures.

λ

(n1, n2, n3) = (4, 2, 1)

λ

(n1, n2, n3) = (3, 3, 1)

λ

(n1, n2, n3) = (2, 4, 1)

The black dots represent the generator degrees w1, . . . , w7, the white circle represents
the relation degree µ. We distinguish three cases, according to the degree constellation.

Case 3.6.2.2.1.1: (n1, n2, n3) = (4, 2, 1). We apply Lemma 3.2.8 to the triples
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(w3, w5, w6) and (w4, w5, w6) to obtain w3 = w4 = (1, 0). Grading matrix and rela-
tion degree are given by

Q =
[︄

1 1 1 1 a5c a6c 0
0 0 0 0 a5 a6 1

]︄
, µ = (kc, k)

for some k ∈ Z≥1. As g is a trinomial with pairwise coprime monomials of degree µ, each
monomial of g is divisible by precisely one of T5, T6, T7. Due to the constellation of the
generator degrees w1, . . . , w7, the relation g thus contains a monomial of the form T l5

5
and a monomial of the form T l6

6 , where l5, l6 > 1. The relation degree therefore satisfies
k = l5a5 = l6a6. Note that by Remark 3.2.10, the exponents l5 and l6 are coprime. The
coprimeness of a5 and a6 thus yields

l5 = a6, l6 = a6, k = a5a6.

By Proposition 3.2.5 the anticanonical class of X is given by

−K =
[︄

4 + (a5 + a6 − k)c
1 + a5 + a6 − k

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequality k ≤ a5 + a6. We have a5 ≤ a6.
Note that a5 and a6 are both bigger than one and coprime. Thus a5 < a6 holds. Since k
is divisible by both a5 and a6 we have k > a5 + a6. A contradiction. Thus this case does
not occur.

Case 3.6.2.2.1.2: (n1, n2, n3) = (3, 3, 1). We apply Lemma 3.2.8 to the triple
(w3, w5, w6) to obtain w3 = (1, 0). By Lemma 3.4.5 at least one of w4, w5, w6 is primitive.
We may assume that w4 is primitive. Grading matrix and relation degree are given by

Q =
[︄

1 1 1 c a5c a6c 0
0 0 0 1 a5 a6 1

]︄
, µ = (kc, k)

for some k ∈ Z≥1. Note that by irredundancy of the presentation of R we have k ≥ 2.
Let 5 ≤ i ≤ 6. Assume that ai > 1 holds. Then by Lemma 3.2.8, applied to the tuple
(w1, wi), the relation g has a monomial of the form T li

i with li ≥ 2. By homogeneity of g
we have k = liai. If ai = 1, then clearly k is a multiple of ai. The relation degree thus
satisfies

k = l5a5 = l6a6

with l5 ≥ l6 ≥ 2. By Proposition 3.2.5 the anticanonical class −K of X is given by

−K =
[︄

3 + (1 + a5 + a6 − k)c
2 + a5 + a6 − k

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequalities

k ≤ 1 + a5 + a6, (3.6.2.1)
c ≤ 2. (3.6.2.2)
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We distinguish three cases, depending on the values of a5 and a6.

Case 3.6.2.2.1.2.1: a5 = a6 = 1. Equation 3.6.2.1 yields the bound k ≤ 3. Grading
matrix and relation degree are given by

Q =
[︄

1 1 1 c c c 0
0 0 0 1 1 1 1

]︄
, µ = (kc, k)

with 2 ≤ k ≤ 3 and 1 ≤ c ≤ 2. For the possible values of k and c we check each
homogeneous trinomial g of degree deg(g) = µ for the conditions (C1) and (C2) from
Setting 3.4.1 and filter by isomorphy. Depending on the values of k and c this leads to
the following specifying data from Classification list 3.10.2:

(k, c) (2, 1) (3, 1) (2, 2) (3, 2)

ID 149 150, 152, 154, 155, 156,
151 153 157, 158

Case 3.6.2.2.1.2.2: a5 = 1, a6 > 1. Equation 3.6.2.1 yields a6 = 2 and l6 = 2. Grading
matrix and relation degree are given by

Q =
[︄

1 1 1 c c 2c 0
0 0 0 1 1 2 1

]︄
, µ = (4c, 4).

For the two values of c we check each homogeneous trinomial g of degree deg(g) = µ for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For c = 1 this
leads to specifying data no. 159 and 160. For c = 2 we get the specifying data no. 161 to
no. 166.

Case 3.6.2.2.1.2.3: a5, a6 > 1. We have a5 = l6, a6 = l5 and k = a5a6. Thus we can
apply Lemma 3.4.4 to obtain a5 = 2, a6 = 3 and k = 6. Grading matrix and relation
degree are given by

Q =
[︄

1 1 1 c 2c 3c 0
0 0 0 1 2 3 1

]︄
, µ = (6c, 6).

For the two values of c we check each homogeneous trinomial g of degree deg(g) = µ for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For c = 1 this
leads to specifying data no. 167 to 180. For c = 2 we get the specifying data no. 181 to
no. 219.

Case 3.6.2.2.1.3: (n1, n2, n3) = (2, 4, 1). By Lemma 3.4.5 at least two of w3, w4, w5, w6
are primitive. We may assume that w3 and w4 are primitive. Grading matrix and relation
degree are given by

Q =
[︄

1 1 c c a5c a6c 0
0 0 1 1 a5 a6 1

]︄
, µ = (kc, k)
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for some k ∈ Z≥1. By irredundancy of the presentation of R we have k ≥ 2. By
Proposition 3.2.5 the anticanonical class −K of X is given by

−K =
[︄

2 + (2 + a5 + a6 − k)c
3 + a5 + a6 − k

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequalities

k ≤ 2 + a5 + a6, (3.6.2.3)
c ≤ 1. (3.6.2.4)

Thus c = 1 holds. We distinguish three cases, depending on the values of a5 and a6.

Case 3.6.2.2.1.3.1: a5 = a6 = 1. Equation 3.6.2.3 yields the bound k ≤ 4. Grading
matrix and relation degree are given by

Q =
[︄

1 1 1 1 1 1 0
0 0 1 1 1 1 1

]︄
, µ = (k, k),

with 2 ≤ k ≤ 4. For the three values of k we check each homogeneous trinomial g of
degree deg(g) = µ for the conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For k = 2 we get specifying data no. 81 to 84, for k = 3 we get specifying
data no. 85 to 91 and for k = 4 we get specifying data no. 92 to 101.

Case 3.6.2.2.1.3.2: a5 = 1, a6 > 1. Equation 3.6.2.3 yields l6 = 2 and a6 ≤ 3. Grading
matrix and relation degree are given by

Q =
[︄

1 1 1 1 1 a6 0
0 0 1 1 1 a6 1

]︄
, µ = (2a6, 2a6).

For the two values of a6 we check each homogeneous trinomial g of degree deg(g) = µ for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a6 = 2 this
leads to specifying data no. 102 to 107. For a6 = 3 we get the specifying data no. 108 to
no. 129.

Case 3.6.2.2.1.3.3: a5, a6 > 1. By Lemma 3.2.8 applied to (w1, w5, w6), the integers
a5, a6 are coprime. With Remark 3.2.10 we obtain a5 = l6, a6 = l5 and k = a5a6. Thus
we can apply Lemma 3.4.4 to obtain a5 = 2, a6 = 3 and k = 6. Grading matrix and
relation degree are given by

Q =
[︄

1 1 1 1 2 3 0
0 0 1 1 2 3 1

]︄
, µ = (6, 6).

We check each homogeneous trinomial g of degree deg(g) = µ for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.
130 to 148.

164



3.6. Proof of Theorem 3.1.1: Case s = 3

Case 3.6.2.2.2: µ ∈ ρ1. By Remark 3.2.11 we have n1 ≥ 3. Assume n1 = 3. Then g is
of the form g = T l1

1 + T l2
2 + T l3

3 . By irredundancy of the presentation of R, the exponents
l1, l2, l3 are all at least two. By Lemma 3.4.5, at least one of w1, w2, w3 is primitive, say
w1. Then l1 is a multiple of l2. In particular, l1 and l2 are not coprime. By Remark 3.2.10
this is a contradiction to factoriality of R. Thus n1 ≥ 4 holds. Applying Lemma 3.2.8
to the triple (w1, w2, w7) shows that the cone Eff(R) is regular and that w7 is primitive.
We may thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. By
Lemma 3.4.5 at least two of the generator degrees contained in ρ1 are primitive. We may
thus assume that w1 = w2 = (1, 0) holds. There are three possible degree constellations
(n1, n2, n3) for X, displayed in the following pictures.

λ

(4, 2, 1)

λ

(4, 1, 2)

λ

(5, 1, 1)

The black dots represent the generator degrees w1, . . . , w7, the white circle represents
the relation degree µ. We distinguish three cases, according to the degree constellation.

Case 3.6.2.2.2.1: (n1, n2, n3) = (4, 2, 1). Applying Lemma 3.2.8 to the triples
(w1, w2, w5) and (w1, w2, w6) shows that w5 = w6 = (c, 1) holds for some c ≥ 1. Grading
matrix and relation degree are thus given by

Q =
[︄

1 1 a3 a4 c c 0
0 0 0 0 1 1 1

]︄
, µ = (µ1, 0).

By Proposition 3.2.5 the anticanonical class −K of X is given by

−K =
[︄

2 + 2c + a3 + a4 − µ1
3

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequality

µ1 ≤ a3 + a4. (3.6.2.5)

Note that the relation g only depends on the variables T1, . . . , T4. As g is a trinomial of
coprime monomials, it contains at least two monomials which only depend on a single
variable. Having in mind the restrictions imposed on g by Remark 3.2.10, the only
possible form for g is

g = T l1
1 T l2

2 + T l3
3 + T l4

4 ,

where l3 and l4 are larger than one and coprime. By homogeneity of g, the integers a3, a4
are also larger than one and due to Lemma 3.2.8 applied to (w3, w4, w7), they also must
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be coprime. Thus we have a3 = l4, a4 = l3 and µ1 = a3a4. In particular µ1 > a3 + a4
holds. This is a contradiction to Equation 3.6.2.5. Thus this case does not occur.

Case 3.6.2.2.2.2: (n1, n2, n3) = (4, 1, 2). Applying Lemma 3.2.8 to the triples
(w1, w2, w5) and (w1, w2, w6) shows that w5 = (c, 1) holds for some c ≥ 1 and w6 = (0, 1).
Grading matrix and relation degree are thus given by

Q =
[︄

1 1 a3 a4 c 0 0
0 0 0 0 1 1 1

]︄
, µ = (µ1, 0).

By Proposition 3.2.5 the anticanonical class −K of X is given by

−K =
[︄

2 + c + a3 + a4 − µ1
3

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequality

µ1 ≤ a3 + a4 − 1.

As in the previous case, the relation g only depends on the variables T1, . . . , T4. Since
g is a trinomial consisting of coprime monomials, it contains at least two monomials
which only depend on a single variable. Having in mind the restrictions imposed on g by
Remark 3.2.10, the only possible form for g is

g = T l1
1 T l2

2 + T l3
3 + T l4

4 ,

where l3 and l4 are larger than one and coprime. By homogeneity of g, the integers a3, a4
are also larger than one and due to Lemma 3.2.8 applied to (w3, w4, w7), they also must
be coprime. Thus we have a3 = l4, a4 = l3 and µ1 = a3a4. In particular µ1 > a3 + a4
holds. This is a contradiction to Equation 3.6.2.5. Thus this case does not occur.

Case 3.6.2.2.2.3: (n1, n2, n3) = (5, 1, 1). By Lemma 3.4.5, at least one of w3, w4, w5
is primitive, We may thus assume w3 = (1, 0). Applying Lemma 3.2.8 to the triple
(w1, w2, w6) shows that w6 = (c, 1) holds for some c ≥ 1. Grading matrix and relation
degree are thus given by

Q =
[︄

1 1 1 a4 a5 c 0
0 0 0 0 0 1 1

]︄
, µ = (µ1, 0).

By Proposition 3.2.5 the anticanonical class −K of X is given by

−K =
[︄

3 + c + a4 + a5 − µ1
2

]︄
.

From X being Fano, ie. −K ∈ λ, we infer the inequality

µ1 ≤ 2− c + a4 + a5. (3.6.2.6)
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Note that µ1 is a multiple of both a4 and a5. This is only possible if c ≥ 2 holds. We
distinguish three cases, depending on the values of a4 and a5.

Case 3.6.2.2.2.3.1: a4 = a5 = 1. Equation 3.6.2.6 yields the bound µ1 ≤ 3. Grading
matrix and relation degree are given by

Q =
[︄

1 1 1 1 1 c 0
0 0 0 0 0 1 1

]︄
, µ = (k, 0),

with 2 ≤ k ≤ 3. For the possible values of k and c we check each homogeneous trinomial
g of degree deg(g) = µ for the conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For (k, c) = (2, 1) we get specifying data no. 225, for (k, c) = (3, 1) we get
specifying data no. 224 and for (k, c) = (2, 2) we get specifying data no. 226.

Case 3.6.2.2.2.3.2: a4 = 1, a5 > 1. Equation 3.6.2.6 yields c = 1 and a5 = 2 and
l5 = 2. Grading matrix and relation degree are given by

Q =
[︄

1 1 1 1 2 1 0
0 0 0 0 0 1 1

]︄
, µ = (4, 0).

We check each homogeneous trinomial g of degree deg(g) = µ for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.
223.

Case 3.6.2.2.2.3.3: a4, a5 > 1. By Lemma 3.2.8 applied to (w4, w5, w7), the integers
a4, a5 are coprime. With Remark 3.2.10 we obtain a4 = l5, a5 = l4 and µ1 = a4a5. Thus
we can apply Lemma 3.4.4 to obtain a4 = 2, a5 = 3 and k = 6. Plugging these values
into Equation 3.6.2.6, we obtain c = 1. Grading matrix and relation degree are given by

Q =
[︄

1 1 1 2 3 1 0
0 0 0 0 0 1 1

]︄
, µ = (6, 0).

We check each homogeneous trinomial g of degree deg(g) = µ for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This yields the specifying data
no. 220, 221 and 222.

Proposition 3.6.3. Let X as in Setting 3.4.1 with s = 3. Assume that µ ̸∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.3 or in Classification list 3.10.4.

Proof. Reversing the order of the variables if necessary, we may assume that λ = ρ1 + ρ2
holds. By assumption µ is not contained in λ, so we have µ ∈ (ρ2 + ρ3)\ρ2. By
Lemma 3.4.6 we have n1 ≥ 2 and w1 = w2 is the primitive point in ρ1. Moreover,
by Remark 3.2.11 we have n3 ≥ 3. Applying Lemma 3.2.8 to the triple (w1, w6, w7)
shows that the cone Eff(R) is regular. We may thus assume that Eff(R) is the positive
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quadrant in Q2 and that w1 = w2 = (1, 0) holds. We distinguish the two cases µ ∈ ρ3
and µ ∈ (ρ2 + ρ3)◦.

Case 3.6.3.1: µ ∈ ρ3. By Lemma 3.4.7 we have n3 ≥ 4. Thus X has degree constellation
(n1, n2, n3) = (2, 1, 4). By Lemma 3.4.5 at least two of the generator degrees w4, . . . , w7 are
primitive. We may therefore assume that w4 = w5 = (0, 1) holds. Applying Lemma 3.2.8
to the triple (w1, w2, w3), we obtain w3 = (c, 1) for some c ≥ 1. Grading matrix and
relation degree are given by

Q =
[︄

1 1 c 0 0 0 0
0 0 1 1 1 b6 b7

]︄
, µ = (0, k)

for some b6, b7, k ≥ 1. We may assume that b6 ≤ b7 holds. The relation g only depends on
the variables T4, . . . , T7. As g is a trinomial with pairwise coprime monomials, it contains
two monomials that each only depend on a single variable. To fulfill the conditions (C1)
and (C2) on g from Setting 3.4.1, the only possible form for g is

g = T l4
4 T l5

5 + T l6
6 + T l7

7 ,

where l6, l7 and gcd(l4, l5) are pairwise coprime. Moreover, due do irredundancy of the
presentation of R, the exponents l6 and l7 are at least two and homogeneity of g yields
l6b6 = l7b7. Furthermore, applying Lemma 3.2.8 to the triple (w1, w6, w7) shows that b6
and b7 are coprime. Thus we have b5 = l6 and b6 = l5 and k = b5b6. By Proposition 3.2.5,
the anticanonical class of X is given by

−K =
[︄

2 + c
3 + b6 + b7 − k

]︄
.

Form X being Fano, ie. −K ∈ λ◦, we infer the inequalities

k ≤ 2 + b6 + b7, (3.6.3.1)
0 ≤ 1− 2c− (b6 + b7 − k)c. (3.6.3.2)

Equation 3.6.3.1 together with Lemma 3.4.4 yields b6 = 2, b7 = 3 and k = 6. Plugging
these values into Equation 3.6.3.2, we obtain c = 1. Grading matrix and relation degree
are thus given by

Q =
[︄

1 1 1 0 0 0 0
0 0 1 1 1 2 3

]︄
, µ = (0, 6).

We check each homogeneous trinomial g of degree deg(g) = µ for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.
241.
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3.6. Proof of Theorem 3.1.1: Case s = 3

Case 3.6.3.2: µ ∈ (ρ2 +ρ3)◦. By Remark 3.2.11 we have n3 ≥ 3. Applying Lemma 3.2.8
to the triple (w1, w2, wi) with wi ∈ ρ2∪ρ3 or the triple (wj , w6, w7), where wj ∈ ρ1, shows
that every generator degree is primitive. In particular we have w5 = w6 = w7 = (0, 1).
The primitive point v ∈ ρ2 is of the form v = (a, 1) for some a ≥ 1. There are three
possible degree constellations (n1, n2, n3) for X, displayed in the following pictures.

λ

(3, 1, 3)

λ

(2, 2, 3)

λ

(2, 1, 4)

The black dots represent the generator degrees w1, . . . , w7, the white circle represents
the relation degree µ. We distinguish three cases, according to the degree constellation.

Case 3.6.3.2.1: (n1, n2, n3) = (3, 1, 3). Grading matrix and anticanonical class of X
are given by

Q =
[︄

1 1 1 a 0 0 0
0 0 0 1 1 1 1

]︄
, −K =

[︄
3 + a− µ1

4− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 3, (3.6.3.3)
µ1 ≤ 2− (3− µ2)a. (3.6.3.4)

In particular, we have 2 ≤ µ2 ≤ 3. We first consider the case µ2 = 2. As µ1 is positive,
Equation 3.6.3.4 yields a = 1 and µ1 = 1. Grading matrix and relation degree are thus
given by

Q =
[︄

1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︄
, µ = (1, 2).

Up to isomorphy this leads to specifying data no. 227 and 228. Now consider the case
µ2 = 3. Then Equation 3.6.3.4 yields 1 ≤ µ1 ≤ 2. We first consider the case µ = (1, 3).
The relation g is a trinomial with pairwise coprime monomials. Due to the position of λ,
each monomial of g is divisible by one of T1, . . . , T4. If T4 divides a monomial of g, then
by homogeneity we have a = 1. Up to isomorphy this yields specifying data no. 229. If
T4 does not appear in g, then each monomial of the relation is divisible by precisely one
of T1, . . . , T3. Moreover, by the same argument, each monomial is divisible by precisely
one of T5, . . . , T7. Thus up to permutation of variables, the relation g is of the form

g = T1T 3
5 + T2T 3

6 + T3T 3
7 .

Any choice for a ≥ 1 yields valid specifying data. This is series S1. Finally we consider the
case µ = (2, 3). Again, if T4 divides a monomial of g, then homogeneity yields a ≤ 2. For

169



Chapter 3. Locally factorial Fano fourfolds of Picard number two

the two possible values of a we check each homogeneous trinomial g of degree deg(g) = µ
for the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a = 1
we get specifying data no. 230 to 232. For a = 2 we get specifying data no. 233 and 234.
If T4 does not appear in g, then up to permutation of variables, the relation g is of the
form

g = T 2
1 T 3

5 + T 2
2 T 3

6 + T 2
3 T 3

7

Any choice for a ≥ 1 yields valid specifying data. This is series S2.

Case 3.6.3.2.2: (n1, n2, n3) = (2, 2, 3). Grading matrix and anticanonical class of X
are given by

Q =
[︄

1 1 a a 0 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + 2a− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.6.3.5)
µ1 ≤ 1− (3− µ2)a. (3.6.3.6)

In particular we have 3 ≤ µ2 ≤ 4. We first consider the case µ2 = 3. Then by Equation
3.6.3.6 we have µ1 = 1. The relation g is a trinomial with pairwise coprime monomials.
Due to the position of λ, each monomial of g is divisible by one of T1, . . . , T4. In particular,
at least one monomial of g is divisible by T3 or T4. With homogeneity of g we obtain
a = 1. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 1 1 0 0 0
0 0 1 1 1 1 1

]︄
, µ = (1, 3).

This leads to specifying data no. 235 and 236. We discuss the case µ2 = 4. In that case
Equation 3.6.3.6 yields µ1 ≤ a + 1. Each monomial of g is divisible by exactly one of
T5, T6, T7. Moreover, g contains a monomial that is not divisible by T1 or T2. Thus we
may assume that g contains a monomial of the form T l3

3 T l4
4 T l7

7 , where l3 + l4 > 0 and
l3 + l4 + l7 = 4. The relation degree thus satisfies µ = ((l3 + l4)a, 4). With the bound on
µ1, we obtain

(l3 + l4)a ≤ a + 1.

Assume l3 + l4 > 1 holds. This is only possible for l3 + l4 = 2 and a = 1. In this case the
relation has degree µ = (2, 4). Up to permutation of variables of the same degree, the
homogeneous trinomials g of degree deg(g) = (2, 4) with coprime monomials are:

g = T 2
1 T 4

5 + T 2
2 T 4

6 + T3T4T 2
7 , g = T 2

1 T 4
5 + T 2

2 T 4
6 + T 2

4 T 2
7 ,

g = T 2
1 T 4

5 + T3T2T 3
6 + T 2

4 T 2
7 , g = T 2

1 T 4
5 + T 2

3 T 2
6 + T 2

4 T 2
7 .

None of these satisfy the condition (C1) in 3.4.1. Thus l3 + l4 = 1 holds. Switching
the roles of T3 and T4 if necessary, we may assume that g contains the monomial T4T 3

7 .
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The other two monomials of g are divisible by precisely one of T5 and T6. Checking all
trinomials of degree µ = (a, 4) with these properties, that satisfy the conditions (C1)
and (C2) in 3.4.1 and filtering by isomorphy leads to series S3 and S4.

Case 3.6.3.2.3: (n1, n2, n3) = (2, 1, 4). Grading matrix and anticanonical class of X
are given by

Q =
[︄

1 1 a 0 0 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.6.3.7)
µ1 ≤ 1− (4− µ2)a. (3.6.3.8)

These inequalities are only simultaneously fulfilled for µ1 = 1 and µ2 = 4. The relation g
is a trinomial with pairwise coprime monomials. Due to the position of λ, each monomial
of g is divisible by precisely one of T1, T2, T3. Homogeneity of g thus yields a = 1. This
leads to specifying data no. 237 to no. 240.

3.7 Proof of Theorem 3.1.1: Case s = 4
Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2, . . . , 6, according to the number of rays spanned by the degrees w1, . . . , w7.
In this section we treat the case s = 4.

Theorem 3.7.1. The tables from 3.10.5, 3.10.6 and 3.10.7 provide specifying data (Q, g)
for 169 sporadic cases and 32 infinite series of locally factorial Fano fourfolds of Picard
number ρ = 2 and complexity c = 1 with a hypersurface Cox ring and s = 4. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (ρ, c, s) =
(2, 1, 4) is isomorphic to precisely one X(Q, g) with (Q, g) from these tables.

The proof of Theorem 3.7.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q, g) from the tables in 3.10.5, 3.10.6
and 3.10.7 defines a locally factorial Fano fourfold X(Q, g) with a hypersurface Cox ring
and invariants (ρ, c, s) = (2, 1, 4). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.5, 3.10.6 and 3.10.7 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (ρ, c, s) = (2, 1, 4) is isomorphic to
X(Q, g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

µ ∈ SAmple(X), µ ̸∈ SAmple(X).

The case µ ∈ SAmple(X) will be treated in Proposition 3.7.2. In Proposition 3.7.3 we
treat the case µ ̸∈ SAmple(X).
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Proposition 3.7.2. Let X as in Setting 3.4.1 with s = 4. Assume that µ ∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.5.

Proof. We divide the proof into the two cases µ ∈ Mov(R)◦ and µ ∈ ∂ Mov(R).

Case 3.7.2.1: µ ∈ Mov(R)◦. We are in the situation of Proposition 3.3.2. Thus, for a
general polynomial h ∈ C[T1, . . . , T7] of degree deg(h) = µ, the projective variety Xh is
smooth with divisor class group Cl(Xh) = K and Cox ring R(Xh) = Rh. Moreover, by
Proposition 3.2.5 Xh is Fano. Thus, Xh is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix Q = (w1, . . . , w7) together with the relation degree µ = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. For each such entry (Q, µ) with
s = 4 we determine all trinomials g of degree deg(g) = µ that satisfy the conditions (C1)
and (C2) from Setting 3.4.1 and filter the resulting list by isomorphy. This yields the
specifying data no. 242, 243 and 246-251.

Case 3.7.2.2: µ ∈ ∂ Mov(R). The relation degree µ is contained in one of the
rays ρ1, . . . , ρ4. By Lemma 3.4.7, µ is neither contained in ρ1 nor in ρ4. Reversing
the order of the variables if necessary, we may assume that µ ∈ ρ3 holds. By assumption
µ lies in the boundary of Mov(R). Thus we have n4 = 1. Moreover, Remark 3.2.11 yields
n3 ≥ 2. The relation degree µ lies in the boundary of λ, which is contained in Mov(R).
So λ = ρ2 + ρ3 holds. There are six possible degree constellations (n1, n2, n3, n4) for X,
displayed in the following pictures.

λ

(3, 1, 2, 1)

λ

(2, 2, 2, 1)

λ

(2, 1, 3, 1)

λ

(1, 3, 2, 1)

λ

(1, 2, 3, 1)

λ

(1, 1, 4, 1)

The black dots represent the generator degrees w1, . . . , w7, the white circle represents
the relation degree µ. We distinguish six cases, according to the degree constellation.

Case 3.7.2.2.1: (n1, n2, n3, n4) = (3, 1, 2, 1). Applying Lemma 3.2.8 to the triple
(w1, w2, w7) shows that the cone Eff(R) is regular and that w7 is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. Moreover,
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Lemma 3.2.8 applied to (wi, w5, w6) with i = 1, 2, 3 shows that w1 = w2 = w3 = (1, 0)
holds, that the primitive point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1 and that
w5, w6 are coprime multiples of v. The grading matrix is thus given by

Q =
[︄

1 1 1 a4 a5c a6c 0
0 0 0 b4 a5 a6 1

]︄
, a4, a5, a6, b4, c ∈ Z≥1

with gcd(a5, a6) = 1. Lemma 3.2.8 applied to (w4, w5, w6) shows that w4 is primitive.
Thus gcd(a4, b4) = 1 holds. For the relation degree we have µ = (kc, k). THe relation g is
a trinomial with pairwise coprime monomials. Due to the position of µ, each monomial of
g is divisible by precisely one of T5, T6, T7. Thus there are l5, l6 ≥ 2 with k = l5a5 = l6a6.
In particular we have k ≥ a5 + a6. The anticanonical class of X is given by

−K =
[︄

3 + a4 + (a5 + a6 − k)c
b4 + a5 + a6 − k

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequality

0 < det(w4,−K) = −3b4 + (a5 + a6 − k)(a4 − b4c).

By the ordering of the generator degrees, we have a4 − b4c > 0. As k ≥ a5 + a6, the
scond summand on the right hand side is negative. This is a contradiction. Thus the
degree constellation (3, 1, 2, 1) does not occur.

Case 3.7.2.2.2: (n1, n2, n3, n4) = (2, 2, 2, 1). Applying Lemma 3.2.8 to the triple
(w1, w2, w7) shows that the cone Eff(R) is regular and that w7 is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. Moreover,
Lemma 3.2.8 applied to (wi, w5, w6) with i = 1, 2 shows that w1 = w2 = (1, 0) holds, that
the primitive point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1 and that w5, w6 are
coprime multiples of v. Finally, applying Lemma 3.2.8 applied to (w3, w4, w7) shows that
the primitive point u ∈ ρ2 is of the form v = (1, b) for some b ≥ 1 and that w3, w4 are
coprime multiples of v. The grading matrix is thus given by

Q =
[︄

1 1 a3 a4 a5c a6c 0
0 0 a3b a4b a5 a6 1

]︄
, a3, a4, a5, a6, b, c ∈ Z≥1

with gcd(a3, a4) = 1 and gcd(a5, a6) = 1. By the ordering of the generator degrees, we
have

0 < det(u, v) = 1− bc.

This is a contradiction, as bc ≥ 1 holds. Thus the degree constellation (2, 2, 2, 1) does not
occur.

Case 3.7.2.2.3: (n1, n2, n3, n4) = (2, 1, 3, 1). Applying Lemma 3.2.8 to the triple
(w1, w2, w7) shows that the cone Eff(R) is regular and that w7 is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. Moreover,
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Lemma 3.2.8 applied to (wi, w5, w6) with i = 1, 2 shows that w1 = w2 = (1, 0) holds, that
the primitive point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1. By Lemma 3.4.5,
at least one of w4, w5, w6 is primitive. We may assume that w4 = v holds. Write
w5 = (a5c, a5) and w5 = (a6c, a6). Lemma 3.2.8 applied to (w1, w5, w6) shows that a5, a6
are coprime. The grading matrix is thus given by

Q =
[︄

1 1 a3 c a5c a6c 0
0 0 b3 1 a5 a6 1

]︄
, a3, a5, a6, b3, c ∈ Z≥1

with gcd(a5, a6) = 1. We may assume a5 ≤ a6. For the relation degree we have µ = (kc, k)
for some k ≥ 2. If w5 is not primitive, then by Lemma 3.2.7 applied to w1 and w5, the
relation g contains a monomial of the form T l5

5 . The same holds for w6. Thus in any case
there are l5, l6 ≥ 2 with k = l5a5 = l6a6. The anticanonical class of X is given by

−K =
[︄

2 + a3 + (1 + a5 + a6 − k)c
2 + b3 + a5 + a6 − k

]︄
.

From X being Fano, ie. −K ∈ λ◦ we infer the inequalities

0 < a3 − 2b3 + (1 + a5 + a6 − k)(a3 − b3c), (3.7.2.1)
c ≤ 1 + a3 − b3c. (3.7.2.2)

By Lemma 3.2.8 applied to (w3, w4, w5), the degrees w3 and w4 generate K as a group.
Thus we have

1 = det(w3, w4) = a3 − b3c. (3.7.2.3)

Plugging this into Equations 3.7.2.1 and 3.7.2.2, we obtain

k ≤ 1 + a5 + a6, (3.7.2.4)
c ≤ 2. (3.7.2.5)

Note that by Equation 3.7.2.3 we have a3 = b3c + 1. In particular, a3 is at least two. This
means that w3 and w7 do not generate K as a group. Thus, by Lemma 3.2.7, the relation
g contains a monomial of the form T l3

3 T l7
7 . By homogeneity of g we obtain kc = l3a3 and

k = l3b3 + l7. Combining these two equations yields

l3 = l7c, k = l7(b3c + 1). (3.7.2.6)

The relation g is a trinomial with pairwise coprime monomials. Due to the position of
µ, the remaining two monomials only depend on the variables T4, T5, T6. We may thus
assume that g contains the monomial T l6

6 . We distinguish three cases, depending on the
values of a5 and a6.

Case 3.7.2.2.3.1: a5, a6 > 1. By Lemma 3.2.7 applied to the tuples (w1, w5) and
(w1, w6), the relation g contains the monomials T l5

5 and T l6
6 and by condition (C2) from

Setting 3.4.1 the exponents l5 and l6 are coprime. With the coprimeness of a5 and a6 we
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obtain k = a5a6. We are thus in the situation of 3.4.4, which yields a5 = 2, a6 = 3 and
k = 6. Plugging these values into Equation 3.7.2.1 yields 0 < a3 − 2b3. Combining this
with Equations 3.7.2.3 and 3.7.2.5 yields c = 2. Grading matrix and relation degree are
thus given by

Q =
[︄

1 1 a3 2 4 6 0
0 0 b3 1 2 3 1

]︄
, µ = (12, 6).

For the relation we have g = T l3
3 T l7

7 + T 3
5 + T 2

6 . Equation 3.7.2.6 yields

l3 = 2l7, 6 = l7(2b3 + 1).

In particular, l7 is a proper divisor of 6. Moreover, by the second identity, l7 is even.
Since b3 is at least one ,we have l7 = 2. This yields l3 = 4. But then g does not satisfy
the condition (C2) from Setting 3.4.1. A contradiction. Thus, this case does not occur.

Case 3.7.2.2.3.2: a5 = 1, a6 > 1. Equation 3.7.2.4 in this case reads (l6 − 1)a6 ≤ 2,
which yields a6 = 2 and l6 = 2. Plugging these values into Equation 3.7.2.1 yields
0 < a3 − 2b3. Combining this with Equations 3.7.2.3 and 3.7.2.5 yields c = 2. Grading
matrix and relation degree are thus given by

Q =
[︄

1 1 a3 2 2 4 0
0 0 b3 1 1 2 1

]︄
, µ = (8, 4).

Equation 3.7.2.6 yields
l3 = 2l7, 4 = l7(2b3 + 1).

Note that the second identity cannot be fulfilled for b3 > 0. A contradiction. Thus, this
case does not occur.

Case 3.7.2.2.3.3: a5 = a6 = 1. Equation 3.7.2.4 in this case yields k ≤ 3. First assume
k = 2. Then Equation 3.7.2.6 yields l7 = 1, b3 = 1 and c = 1. Thus grading matrix and
relation degree are given by

Q =
[︄

1 1 2 1 1 1 0
0 0 1 1 1 1 1

]︄
, µ = (2, 2).

The relation g is of the form g = T3T7 + T l4
4 T l5

5 + T 2
6 . Homogeneity of g together with

condition (C2) form Setting 3.4.1 yield l4 = l5 = 1. This is specifying data no. 244. Now
assume k = 3. In this case Equation 3.7.2.1 yields 0 < a3 − 2b3. Combining this with
Equations 3.7.2.3 and 3.7.2.5 yields c = 2. With the help of Equation 3.7.2.6 we obtain
l7 = 1 and b3 = 1. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 3 2 2 2 0
0 0 1 1 1 1 1

]︄
, µ = (6, 3),
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The relation g is of the form g = T 2
3 T7 + T l4

4 T l5
5 + T 3

6 and we may assume that l4 ≥ l5
holds. Homogeneity of g together with condition (C2) form Setting 3.4.1 yield l4 = 2
and l5 = 1. This is specifying data no. 245.

Case 3.7.2.2.4: (n1, n2, n3, n4) = (1, 3, 2, 1). Applying Lemma 3.2.8 to the triple
(w1, w5, w6) shows that the cone ρ1 + ρ3 is regular and that w1 is primitive. We may
thus assume that ρ1 + ρ3 is the positive quadrant and that w1 = (1, 0) holds. Moreover,
Lemma 3.2.8 applied to (wi, w5, w6) with i = 2, 3, 4 shows that wi = (1, b) holds for some
b ≥ 1. The grading matrix is thus given by

Q =
[︄

1 1 1 1 0 0 −a7
0 b b b b5 b6 b7

]︄
, a7, b, b5, b6, b7 ∈ Z≥1.

Applying Lemma 3.2.8 to the triple w2, w3, w7 shows that w7 is primitive and that w2
and w7 generate K as a group. We thus have

1 = det(w2, w7) = b7 + a7b.

However, since a7, b, b7 are positive, the right hand side is at least two. A contradiction.
Thus the degree constellation (1, 3, 2, 1) does not occur.

Case 3.7.2.2.5: (n1, n2, n3, n4) = (1, 2, 3, 1). Applying Lemma 3.2.8 to the triple
(w1, w5, w6) shows that the cone ρ1 + ρ3 is regular and that w1 is primitive. We may thus
assume that ρ1 + ρ3 is the positive quadrant and that w1 = (1, 0) holds. By Lemma 3.4.5,
at least one of w4, w5, w6 is primitive. We may thus assume that w4 = (0, 1) holds.
Moreover, Lemma 3.2.8 applied to (wi, w5, w6) with i = 2, 3 shows that wi = (1, b) holds
for some b ≥ 1. The grading matrix is thus given by

Q =
[︄

1 1 1 0 0 0 −a7
0 b b 1 b5 b6 b7

]︄
, a7, b, b5, b6, b7 ∈ Z≥1.

Applying Lemma 3.2.8 to the triple w2, w3, w7 shows that w7 is primitive and that w2
and w7 generate K as a group. We thus have

1 = det(w2, w7) = b7 + a7b.

However, since a7, b, b7 are positive, the right hand side is at least two. A contradiction.
Thus the degree constellation (1, 2, 3, 1) does not occur.

Case 3.7.2.2.6: (n1, n2, n3, n4) = (1, 1, 4, 1). Applying Lemma 3.2.8 to the triple
(w1, w3, w4) shows that the cone ρ1 + ρ3 is regular and that w1 is primitive. We may thus
assume that ρ1 + ρ3 is the positive quadrant and that w1 = (1, 0) holds. By Lemma 3.4.5,
at least two of w3, w4, w5, w6 are primitive. We may thus assume that w3 = w4 = (0, 1)
holds. Moreover, Lemma 3.2.8 applied to (w2, w3, w4) shows that w2 = (1, b) holds for
some b ≥ 1. The grading matrix is thus given by

Q =
[︄

1 1 0 0 0 0 −a7
0 b 1 1 b5 b6 b7

]︄
, a7, b, b5, b6, b7 ∈ Z≥1.
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By Lemma 3.2.8 for (w1, w5, w6) the integers b5 and b6 are coprime. We may assume
b5 ≤ b6. We have

det(w2, w7) = b7 + a7b > 1.

In particular, w2 and w7 do not generate K as a group. Thus by Lemma 3.2.7 the relation
g contains a monomial of the form T l2

2 T l7
7 . Since the monomials of g are coprime, the

relation does not contain a monomial of the form T l1
1 T l7

7 . Lemma 3.2.7 thus yields

1 = det(w1, w7) = b7.

For the relation degree we have µ = (0, k) for some k ≥ 2. We have already determined
one monomial of the trinomial g. Due to the position of µ, the other two monomials of
g only depend on the variables T4, . . . , T6. If w5 is not primitive, then by Lemma 3.2.7
applied to (w1, w5), g contains a monomial of the form T l5

5 . The same holds for w6. Thus,
in any case there are l5, l6 ≥ 2 with k = l5b5 = l6b6. In particular we have k ≥ b5 + b6.
By Proposition 3.2.5 the anticanonical class of X is given by

−K =
[︄

2− a7
3 + b + b5 + b6 − k

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

k ≤ 2 + (a7 − 1)b + b5 + b6, (3.7.2.7)
a7 ≤ 1. (3.7.2.8)

In particular, Equation 3.7.2.8 yields a7 = 1. Grading matrix and relation degree are
given by

Q =
[︄

1 1 0 0 0 0 −1
0 b 1 1 b5 b6 1

]︄
, µ = (0, k).

The relation g contains a monomial of the form T l2
2 T l7

7 . Homogeneity of g yields

l2 = l7, k = l2(b + 1). (3.7.2.9)

Plugging the value for a7 into Equation 3.7.2.7, we obtain the inequality

k ≤ 2 + b5 + b6. (3.7.2.10)

We distinguish three cases, depending on the values of b5 and b6.

Case 3.7.2.2.6.1: b5, b6 > 1. Applying Lemma 3.2.7 to the pairs (w1, w5) and (w1, w6)
shows that g contains the monomials T l5

5 and T l6
6 . By condition (C2) from Setting 3.4.1

the exponents l5 and l6 are coprime. This yields b5 = l6 and b6 = l5 and k = b5b6. We
are thus in the situation of 3.4.4, which yields b5 = 2, b6 = 3 and k = 6. By 3.7.2.9 the
relation g satisfies

g = T l2
2 T l2

7 + T 3
5 + T 2

6 , 6 = l2(b + 1).

177



Chapter 3. Locally factorial Fano fourfolds of Picard number two

Thus l2 is a proper divisor of 6 and by condition (C2) from Setting 3.4.1, l2 is neither
two nor three. Thus l2 = 1 and b = 5 holds. This means that w2, w6, w7 do not generate
K as a group. By Lemma 3.2.8 g contains a single monomial that only depends on T2, T6
and T7. But this is not the case. A contradiction. Thus, this case does not occur.

Case 3.7.2.2.6.2: b5 = 1, b6 > 1. Equation 3.7.2.10 reduces to (l6 − 1)b6 ≤ 3. Thus we
have l6 = 2 and 2 ≤ b6 ≤ 3. By Lemma 3.2.7 applied to (w1, w6), the relation g contains
the monomial T 2

6 . It is thus of the form

g = T l2
2 T l2

7 + T l3
3 T l4

4 T l5
5 + T 2

6 .

Assume b6 = 2. Then k = 4 holds and 3.7.2.9 yields 4 = l2(b + 1). By condition (C2)
from Setting 3.4.1, l2 is not divisible by two. This means that w2, w6, w7 do not generate
K as a group. By Lemma 3.2.8 g contains a single monomial that only depends on T2, T6
and T7. But this is not the case. A contradiction. Thus we must have b6 = 3. Then
k = 6 holds and 3.7.2.9 yields 6 = l2(b + 1). So l2 is a proper divisor of six, different from
two. We have seen that the case b = 5 leads to a contradiction. Thus we have l2 = 3 and
b = 1. Grading matrix and relation are thus given by

Q =
[︄

1 1 0 0 0 0 −1
0 1 1 1 1 3 1

]︄
, g = T 3

2 T 3
7 + T l3

3 T l4
4 T l5

5 + T 2
6 ,

where l3 + l4 + l5 = 6. Filtering by isomorphy, this leads to specifying data no. 262
to 264.

Case 3.7.2.2.6.3: b5 = b6 = 1. Grading matrix and relation degree are given by

Q =
[︄

1 1 0 0 0 0 −1
0 b 1 1 1 1 1

]︄
, µ = (0, k).

The relation g contains the monomial T l2
2 T l2

7 , where l2 is a proper divisor of k. Equation
3.7.2.10 reduces to k ≤ 4. We distinguish three cases.

Case 3.7.2.2.6.3.1: k = 2. In this case we have l2 = 1 and b = 1. Grading matrix and
relation degree are given by

Q =
[︄

1 1 0 0 0 0 −1
0 1 1 1 1 1 1

]︄
, µ = (0, 2).

The relation g contains the monomial T3T7 and the other two monomials only depend on
T4, T5, T6. Up to isomorphy this leads to specifying data no. 252 and 253.

Case 3.7.2.2.6.3.2: k = 3. In this case we have l2 = 1 and b = 2. Grading matrix and
relation degree are given by

Q =
[︄

1 1 0 0 0 0 −1
0 2 1 1 1 1 1

]︄
, µ = (0, 3).
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The relation g contains the monomial T3T7 and the other two monomials only depend on
T4, T5, T6. Up to isomorphy this leads to specifying data no. 255 to 257.

Case 3.7.2.2.6.3.3: k = 4. In this case we either have (l2, b) = (2, 1) or (l2, b) = (1, 3).
In the first case grading matrix and relation degree are given by

Q =
[︄

1 1 0 0 0 0 −1
0 1 1 1 1 1 1

]︄
, µ = (0, 4).

The relation g contains the monomial T 2
3 T 2

7 and the other two monomials only depend
on T4, T5, T6. Up to isomorphy this leads to specifying data no. 254. In the second case
grading matrix and relation degree are given by

Q =
[︄

1 1 0 0 0 0 −1
0 3 1 1 1 1 1

]︄
, µ = (0, 4).

The relation g contains the monomial T3T7 and the other two monomials only depend on
T4, . . . , T6. Up to isomorphy this leads to specifying data no. 258 to 261.

Proposition 3.7.3. Let X as in Setting 3.4.1 with s = 4. Assume that µ ̸∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.6 or in Classification list 3.10.7.
Proof. We have µ ̸∈ λ. Reversing the ordering of the variables if necessary, we may assume
that µ ∈ λ+\λ holds. We are thus in the situation of Lemma 3.4.6. Thus λ = ρ1 + ρ2
holds. Moreover, we have n1 ≥ 2 and all generator degrees contained in ρ1 are primitive.
By Lemma 3.4.7, µ is contained in the interior of Eff(R). Thus, applying Lemma 3.2.8
to the triples (w1, w2, wi), where wi ∈ ρ4, shows that the cone Eff(R) is regular and that
wi is primitive. We may thus assume that Eff(R) is the positive quadrant and that

w1 = w2 = (1, 0), w7 = (0, 1)

holds. Since µ is contained in the interior of Eff(R), but lies outside of λ, we have
µ ∈ (ρ2 + ρ4)◦. Remark 3.2.11 thus yields n3 + n4 ≥ 3. There are seven possible degree
constellations (n1, n2, n3, n4) for X, displayed in the following pictures.

λ

(3, 1, 2, 1)

λ

(3, 1, 1, 2)

λ

(2, 2, 2, 1)

λ

(2, 2, 1, 2)

λ

(2, 1, 3, 1)

λ

(2, 1, 2, 2)

λ

(2, 1, 1, 3)
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The black dots represent the generator degrees w1, . . . , w7. We distinguish seven
cases, according to the degree constellation.

Case 3.7.3.1: (n1, n2, n3, n4) = (3, 1, 2, 1). Applying Lemma 3.2.7 to the pair (w3, w4)
shows that w4 = (a, 1) holds for some a ≥ 1. Moreover, applying Lemma 3.2.8 to the
triple (w1, w5, w6) shows that the primitive point v ∈ ρ3 is of the form v = (c, 1) for some
c ≥ 1. The grading matrix is thus given by

Q =
[︄

1 1 1 a a5c a6c 0
0 0 0 1 a5 a6 1

]︄
, a, a5, a6, c ∈ Z≥1.

Applying Lemma 3.2.8 to (w1, w5, w6) shows that the integers a5 and a6 are coprime. By
Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We may assume a6 ≥ a5. We distinguish the
two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.7.3.1.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to (w1, w2, w5) and (w1, w2, w6)
yields a5 = a6 = 1. Grading matrix and anticanonical class of X are thus given by

Q =
[︄

1 1 1 a c c 0
0 0 0 1 1 1 1

]︄
, −K =

[︄
3 + a + 2c− µ1

4− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦ we infer the inequalities

µ2 ≤ 3, (3.7.3.1)
µ1 ≤ 2 + 2c + (µ2 − 3)a. (3.7.3.2)

From the position of µ, we obtain the inequality µ2c + 1 ≤ µ1. Moreover, by the ordering
of the generator degrees, we have c ≤ a− 1. Combining this with Equation 3.7.3.2 yields

0 ≤ µ2 − a− 1.

Having in mind 3.7.3.1, this yields µ2 = 3 and a = 2. With this we directly get c = 1
and µ1 = 4. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 1 2 1 1 0
0 0 0 1 1 1 1

]︄
, µ = (4, 3).

Checking all trinomials g of degree deg(g) = µ that satisfy the conditions (C1) and (C2)
in 3.4.1 and filtering by isomorphy leads to specifying data no. 265 to 270.

Case 3.7.3.1.2: µ ∈ ρ3. The relation degree satisfies µ = (kc, k) for some k ≥ 2.
Grading matrix and anticanonical class of X are thus given by

Q =
[︄

1 1 1 a a5c a6c 0
0 0 0 1 a5 a6 1

]︄
, −K =

[︄
3 + a + (a5 + a6 − k)c

2 + a5 + a6 − k

]︄
.
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From X being Fano, ie. −K ∈ λ◦ we infer the inequalities

k ≤ 1 + a5 + a6, (3.7.3.3)
0 ≤ 2− c + (1 + a5 + a6 − k)(c− a). (3.7.3.4)

The relation g is a trinomial with coprime monomials. Due to the position of µ, the
relation g has monomials of the form T l5

5 and T l6
6 with l5, l6 ≥ 2. By Remark 3.2.10, the

exponents l5 and l6 are coprime. Using homogeneity of g we see that l5 divides a6 and
l6 divides a5. In particular, we have a5, a6 > 1. As a5 and a6 are coprime, we obtain
k = a5a6. By Equation 3.7.3.3 we are in the situation of Lemma 3.4.4, which tells us that
a5 = 2 and a6 = 3 as well as k = 6 hold. Plugging these values into Equation 3.7.3.4, we
obtain c ≤ 2. Thus, grading matrix and relation degree are given by

Q =
[︄

1 1 1 a 2c 3c 0
0 0 0 1 2 3 1

]︄
, µ = (6c, 6), c ≤ 2.

If T4 does not appear in g, then it is of the form

g = T l1
1 T l2

2 T l3
3 T 6

7 + T 3
5 + T 2

6 ,

where l1 + l2 + l3 = 6c. Apart from a > c, there is no restriction on the value of a.
For each possible combination of exponents l1, l2, l3 we check the trinomial g for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For c = 1 we obtain
the series S5 to S7. For c = 2 we obtain the series S8 to S17. If T4 does appear in g, then
homogeneity of g yields the inequality a ≤ 6c. There are thus 15 possible combinations
for the values of a and c. Checking in each case all trinomials g of degree deg(g) = µ for
the conditions (C1) and (C2) from Setting 3.4.1 and filtering by isomorphy, we obtain
the following specifying data:

(a, c) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (3, 2)
ID 271-275 276-278 279-280 281 282 283-300

(a, c) (4, 2) (5, 2) (6, 2) (7, 2) (8, 2) (9, 2)
ID 301-312 313-321 322-328 329-333 334-337 338-340

(a, c) (10, 2) (11, 2) (12, 2)
ID 341-342 343 344

Case 3.7.3.2: (n1, n2, n3, n4) = (3, 1, 1, 2). Applying Lemma 3.2.7 to the pair (w1, w4)
shows that w4 = (a, 1) holds for some a ≥ 1. The grading matrix is thus of the form

Q =
[︄

1 1 1 a a5 0 0
0 0 0 1 b5 1 1

]︄
, a, a5, b5 ∈ Z≥1.

By Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We distinguish the two cases µ ∈ (ρ2 + ρ3)◦

and µ ∈ ρ3.
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Case 3.7.3.2.1: µ ∈ (ρ2 + ρ3)◦. By Lemma 3.2.8, applied to the triple (w1, w2, w5), we
have b5 = 1. Grading matrix and anticanonical class of X are given by

Q =
[︄

1 1 1 a c 0 0
0 0 0 1 1 1 1

]︄
, −K =

[︄
3 + a + c− µ1

4− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 3, (3.7.3.5)
µ1 ≤ 2 + c + (µ2 − 3)a. (3.7.3.6)

From the position of µ, we get the inequality µ2c + 1 ≤ µ1. Combining this with
Equation 3.7.3.6, we obtain

0 ≤ 1 + (1− µ2)c + (µ2 − 3)a.

The right hand side is negative due to 3.7.3.5. A contradiction. Thus this case does not
occur.

Case 3.7.3.2.2: µ ∈ ρ3. The relation degree satisfies µ = (kc, k) for some k ≥ 2.
Grading matrix and anticanonical class of X are given by

Q =
[︄

1 1 1 a a5c 0 0
0 0 0 1 a5 1 1

]︄
, −K =

[︄
3 + a + (a5 − k)c

3 + a5 − k

]︄
.

From X being Fano we infer the inequalities

k ≤ 2 + a5, (3.7.3.7)
0 ≤ 2− 2c + (k − a5 − 2)(a− c). (3.7.3.8)

By the ordering of the generator degrees we have c ≤ a− 1. Thus, combining these two
inequalities, we obtain c = 1 and k = a5 + 2. The relation g is a trinomial with pairwise
coprime monomials. Due to the position of µ, each monomial of g is divisible by precisely
one of T5, T6, T7. In particular, g has a monomial of the form T l5

5 with l5 ≥ 2. Thus
k = a5l5 holds. This, together with the identity k = a5 + 2 yields (l5 − 1)a5 = 2. There
are two cases, either (a5, l5) = (2, 2) or (a5, l5) = (1, 3). We note that one monomial of
g is divisible by T4: Assume this is not the case. Switching the roles of T6 and T7 and
permuting T1, T2, T3 if necessary, we may assume that g contains the monomial T kc

1 T k
6 .

But then g does not satisfy condition (C2) from Setting 3.4.1. A contradiction. Thus
T4 appears in g. In particular, homogeneity of g gives the bound a ≤ l5a5. In case
(a5, l5) = (2, 2) grading matrix and relation degree are given by

Q =
[︄

1 1 1 a 2 0 0
0 0 0 1 2 1 1

]︄
, µ = (4, 4), 2 ≤ a ≤ 4,
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For each value of a we check all trinomials homogeneous g of degree deg(g) = µ for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a = 2 we obtain
specifying data no. 345. For a = 3 we obtain specifying data no. 346. For a = 4 we
obtain specifying data no. 347 and 348. In case (a5, l5) = (1, 3) grading matrix and
relation degree are given by

Q =
[︄

1 1 1 a 1 0 0
0 0 0 1 1 1 1

]︄
, µ = (3, 3), 2 ≤ a ≤ 3.

For each value of a we check all trinomials homogeneous g of degree deg(g) = µ for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a = 2 we obtain
specifying data no. 349. For a = 3 we obtain specifying data no. 350 and 351.

Case 3.7.3.3: (n1, n2, n3, n4) = (2, 2, 2, 1). By Lemma 3.4.6 (i) we have w3 = w4 = (a, 1)
for some a ≥ 1. Applying Lemma 3.2.8 to the triple (w1, w5, w6) shows that the primitive
point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1. The grading matrix of X is thus
given by

Q =
[︄

1 1 a a a5c a6c 0
0 0 1 1 a5 a6 1

]︄
, a, a5, a6, c ∈ Z≥1.

By Lemma 3.2.8 applied to (w1, w5, w6) the integers a5 and a6 are coprime. We may
assume a5 ≤ a6. By Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We distinguish the two
cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.7.3.3.1: µ ∈ (ρ2 + ρ3)◦. Lemma 3.2.8 applied to the triples (w1, w2, w5) and
(w1, w2, w6) yields a5 = a6 = 1. Grading matrix and anticanonical class of X are given
by

Q =
[︄

1 1 a a c c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + 2a + 2c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.7.3.9)
µ1 ≤ 1 + 2c + (µ2 − 3)a. (3.7.3.10)

The position of µ yields the inequality µ2c+1 ≤ µ1. Combining this with Equation 3.7.3.10,
we obtain

0 ≤ (2− µ2)c + (µ2 − 3)a.

Due to Equation 3.7.3.10 and the fact that c is strictly smaller than a, this is only fulfilled
for µ2 = 4. With this, Equation 3.7.3.10 turns into

µ1 ≤ 1 + 2c + a. (3.7.3.11)

The relation g is a trinomial with pairwise coprime monomials. Due to the position of
µ, each monomial of g is divisible by precisely one of T5, T6, T7 and by at least one of
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T1, . . . , T4. Thus there is a monomial divisible by either T3 or T4. For the monomial m
with T5 we write m = T l1

1 T l2
2 T l3

3 T l4
4 T l5

5 . Set l := l1 + l2 and l′ := l3 + l4. Homogeneity of
g then yields l′ = 4 − l5 and µ1 = l + l′a + l5c. With Equation 3.7.3.11 we obtain the
inequality

0 ≤ 1− l + (2− l5)c + (l5 − 3)a.

Since a is strictly bigger than c, this yields 3 ≤ l5 ≤ 4. Similarly we obtain 3 ≤ l6 ≤ 4
and 2 ≤ l7 ≤ 4. We distinguish between the different possible values for l5, l6, l7. As a
first step, we consider the cases l7 = 2 and l7 ≥ 3.

Case 3.7.3.3.1.1: l7 = 2. For the monomial m of g that contains T7 we write
m = T l1

1 T l2
2 T l3

3 T l4
4 T 2

7 . By homogeneity of g we have l3 + l4 = 2. If l3 and l4 are both
positive, then, by coprimeness of the monomials of the trinomial g, it must be of the form

g = T
l′1
1 T 4

5 + T
l′2
2 T 4

6 + T3T4T 2
7 .

The relation has degree µ = (2a, 4). Thus l′1 = l′2 = 2a − 4c holds. In particular they
are even, which contradicts condition (C2) form Setting 3.4.1. Thus we have l3 = 0 or
l4 = 0. We may assume l3 = 0 and l4 = 2. To avoid a contradiction to condition (C2),
the variable T3 must appear among the other two monomials of g. Switching the roles
of T5 and T6 if necessary, we may assume that g contains the monomials T l1

1 T l2
2 T 4

5 and
T

l′2
2 T3T 3

6 , where at least one of l2, l′2 is zero. If l′2 > 0, then l2 = 0 holds and l1 is even,
leading to the same contradiction as before. Thus l′2 = 0 holds. The relation g is thus of
the form

g = T l1
1 T l2

2 T 4
5 + T3T 3

6 + T
l′2
2 T 2

4 T 2
7 .

Homogeneity of g, together with Equation 3.7.3.11 yield the following conditions on a
and c:

a + 3c ≤ 1 + 2c + a, a + 3c = 2a + l′2.

This yields c = 1 and a + l′2 = 3. Thus we have 2 ≤ a ≤ 3 and l′2 = 3 − a. For a = 2
grading matrix and relation are given by

Q =
[︄

1 1 2 2 1 1 0
0 0 1 1 1 1 1

]︄
, g = T1T 4

5 + T3T 3
6 + T2T 2

4 T 2
7 .

This is specifying data no. 352. For a = 3 grading matrix and relation are given by

Q =
[︄

1 1 3 3 1 1 0
0 0 1 1 1 1 1

]︄
, g = T1T2T 4

5 + T3T 3
6 + T 2

4 T 2
7 .

This is specifying data no. 353.

Case 3.7.3.3.1.2: l7 ≥ 3. We divide this case further depending on the values of l5, l6
and l7. We have seen earlier, that 3 ≤ l5, l6 ≤ 4 holds. Switching the roles of T5 and
T6 if necessary, we may assume that l5 ≥ l6 holds. Moreover, due to the position of µ,
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the cases (l5, l6, l7) = (3, 3, 3) and (l5, l6, l7) = (4, 4, 4) cannot occur. We thus distinguish
tthe following four cases:

(l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 4, 3),

(l5, l6, l7) = (3, 3, 4), (l5, l6, l7) = (4, 3, 4).

Case 3.7.3.3.1.2.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T l1
1 T l2

2 T 4
5 + T k2

2 T3T 3
6 + T m2

2 T4T 3
7 ,

where l1 > 0 and at most one of l2, k2, m2 is non-zero. By homogeneity of g we have
m2 = 3c + k2. Thus m2 = 3c and l2 = k2 = 0 holds and the relation degree is
µ = (a + 3c, 4). Comparing this to the first monomial of g, we obtain l1 = a− c. Plugging
the value for µ1 into Equation 3.7.3.11 yields c = 1. Grading matrix and relation are
thus given by

Q =
[︄

1 1 a a 1 1 0
0 0 1 1 1 1 1

]︄
, g = T a−1

1 T 4
5 + T3T 3

6 + T 3
2 T4T 3

7 .

This is series S21.

Case 3.7.3.3.1.2.2: (l5, l6, l7) = (4, 4, 3). Switching roles of T3 and T4 if necessary, we
can write g as

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T4T 3
7 .

Homogeneity of g yields l1 = l2 = a − 4c. In particular we have a ≥ 4c + 1. Grading
matrix and relation are thus given by

Q =
[︄

1 1 a a c c 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a−4c

2 T 4
6 + T4T 3

7 .

For g to satisfy condition (C2) from Setting 3.4.1, a must be odd. This is series S18.

Case 3.7.3.3.1.2.3: (l5, l6, l7) = (3, 3, 4). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T l1
1 T3T 3

5 + T k1
1 T4T 3

6 + T m1
1 T m2

2 T 4
7 ,

where m2 > 0 and at most one of l1, k1, m1 is non-zero. By homogeneity of g we have
l1 = k1 and thus l1 = k1 = 0 holds. The relation degree is µ = (a + 3c, 4). Plugging the
value for µ1 into Equation 3.7.3.11 yields c = 1. Comparing µ to the degree of the third
monomial, we see m1 = a + 3c−m2. Grading matrix and relation are thus given by

Q =
[︄

1 1 a a 1 1 0
0 0 1 1 1 1 1

]︄
, g = T3T 3

5 + T4T 3
6 + T a+3c−l

1 T l
2T 4

7 .
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This is series S19.

Case 3.7.3.3.1.2.4: (l5, l6, l7) = (4, 3, 4). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T l1
1 T 4

5 + T3T 3
6 + T l2

2 T 4
7 ,

The relation degree is µ = (a + 3c, 4). Homogeneity of g yields l1 = a− c and l2 = a + 3c.
Plugging the value for µ1 into Equation 3.7.3.11 yields c = 1. Grading matrix and relation
are thus given by

Q =
[︄

1 1 a a 1 1 0
0 0 1 1 1 1 1

]︄
, g = T a−1

1 T 4
5 + T3T 3

6 + T a+3
2 T 4

7 .

For g to satisfy condition (C2) from Setting 3.4.1, a must be even. This is series S20.

Case 3.7.3.3.2: µ ∈ ρ3. The relation degree satisfies µ = (kc, k) for some k ≥ 2.
Grading matrix and relation degree are thus given by

Q =
[︄

1 1 a a a5c a6c 0
0 0 1 1 a5 a6 1

]︄
, µ = (kc, k).

As g is a trinomial with pairwise coprime monomials, the position of µ requires that
g contains monomials of the form T l5

5 and T l6
6 . By irredundancy of the presentation

of R we have l5, l6 ≥ 2. Homogeneity of g yields k = l5a5 = l6a6. Due to condition
(C2) from Setting 3.4.1 the exponents l5 and l6 are coprime. Coprimeness of a5 and a6
yields a5 = l6 and a6 = l5 and k = a5a6. We are thus in the situation of Lemma 3.4.4,
which yields a5 = 2, a6 = 3 and k = 6. Grading matrix and anticanonical class, due to
Proposition 3.2.5, are given by

Q =
[︄

1 1 a a 2c 3c 0
0 0 1 1 2 3 1

]︄
, −K =

[︄
2 + 2a− c

2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequality

0 < det(−K, w3) = 2− c,

which yields c = 1. The relation is of the form

g = T l1
1 T l2

2 T l3
3 T l4

4 T l7
7 + T 3

5 + T 2
6 ,

where l1 + l2 = l7 and l3 + l4 + l7 = 6. We distinguish the two cases l3 + l4 = 0 and
l3 + l4 > 0.

Case 3.7.3.3.2.1: l3 + l4 = 0. We have l1 + l2 = l7 = 6. For g to satisfy condition (C2)
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from Setting 3.4.1, up two switching T1 and T2, we have l1 = 5 and l2 = 1. Grading
matrix and relation are given by

Q =
[︄

1 1 a a 2 3 0
0 0 1 1 2 3 1

]︄
, g = T 5

1 T2T 6
7 + T 3

5 + T 2
6 .

This is series S22.

Case 3.7.3.3.2.2: l3 + l4 > 0. By homogeneity of g we have l1 + l2 + (l3 + l4)a = 6,
which yields a ≤ 6. For each possible value of a we determine all homogeneous trinomials
g of degree deg(g) = µ and filter for isomorphy. According to the value of a we obtain
the following specifying data

a 2 3 4 5 6
ID 354-360 361-363 364-365 366 367

Case 3.7.3.4: (n1, n2, n3, n4) = (2, 2, 1, 2). By Lemma 3.4.6 (i) we have w3 = w4 = (a, 1)
for some a ≥ 1. The grading matrix of X is thus of the form

Q =
[︄

1 1 a a a5 0 0
0 0 1 1 b5 1 1

]︄
, a, a5, b5 ∈ Z≥1.

By Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We distinguish the two cases µ ∈ (ρ2 + ρ3)◦

and µ ∈ ρ3.

Case 3.7.3.4.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triple (w1, w2, w5) yields
b5 = 1. Set c := a5. Grading matrix and the anticanonical class, due to Proposition 3.2.5,
are given by

Q =
[︄

1 1 a a c 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + 2a + c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.7.3.12)
µ1 ≤ 1 + c + (µ2 − 3)a. (3.7.3.13)

The position of µ yields the inequality µ2c+1 ≤ µ1. Combining this with Equation 3.7.3.13
yields

0 ≤ (1− µ2)c + (µ2 − 3)a.

Having in mind 3.7.3.12, this inequality yields µ2 = 4. Plugging this into Equation 3.7.3.13,
we obtain the bound

µ1 ≤ 1 + a + c. (3.7.3.14)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is divisible by precisely one of T5, T6, T7. We establish
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bounds for the exponents l5, l6, l7. First consider the monomial m of g containing T5. It
is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l5
5 .

Set l := l1 + l2 and l′ := l3 + l4. By homogeneity of g we obtain l + l′a + l5c = µ1 and
l′ + l5 = 4. In combination with the bound 3.7.3.14 we obtain the inequality

0 ≤ 1 + (l5 − 3)a + (1− l5)c.

This is only fulfilled by l5 = 4. With the same arguments we obtain the following bound
on l6:

0 ≤ 1 + (l6 − 3)a + c.

Having in mind that a > 4c holds due to the position of µ, this inequality yields l6 ≥ 3.
Since w6 = w7, we also obtain l7 ≥ 3. Moreover, switching the roles of T6 and T7 if
necessary, we may assume that l6 ≥ l7 holds. Note that the case (l5, l6, l7) = (4, 4, 4)
cannot occur. We thus distinguish the two cases (l5, l6, l7) = (4, 3, 3) and (l5, l6, l7) =
(4, 4, 3).

Case 3.7.3.4.1.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T3 and T4 if necessary, we
can write g as

g = T l1
1 T l2

2 T 4
5 + T3T 3

6 + T4T 3
7 .

The relation degree is µ = (a, 4). Comparing this to the degree of the first monomial, we
obtain l1 = a− l2. Grading matrix and relation are thus given by

Q =
[︄

1 1 a a c 0 0
0 0 1 1 1 1 1

]︄
, g = T a−l

1 T l
2T 4

5 + T3T 3
6 + T4T 3

7 .

This is series S24.

Case 3.7.3.4.1.2: (l5, l6, l7) = (4, 4, 3). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T4T 3
7 .

The relation degree is µ = (a, 4). Homogeneity of g yields l1 = a−4c and l2 = a. Grading
matrix and relation are thus given by

Q =
[︄

1 1 a a c 0 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a

2 T 3
6 + T4T 3

7 .

This is series S23.

Case 3.7.3.4.2: µ ∈ ρ3. The relation degree µ and the generator degree w5 lie on the
same ray. Since g is a trinomial consisting of pairwise coprime monomials, each monomial
of g is divisible by precisely one of T5, T6, T7. In particular, g has a monomial of the form
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T l5
5 with l5 ≥ 2. Thus µ = (l5a5, l5b5) holds. Grading matrix and anticanonical class of

X, due to 3.2.5, are given by

Q =
[︄

1 1 a a a5 0 0
0 0 1 1 b5 1 1

]︄
, −K =

[︄
2 + 2a + (1− l5)a5

4 + (1− l5)b5

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

(l5 − 1)b5 ≤ 3, (3.7.3.15)
0 ≤ 1− 2a + (l5 − 1)(ab5 − a5). (3.7.3.16)

In particular, by the first inequality, we have 1 ≤ b5 ≤ 3. We distinguish three cases,
depending on the value of b5.

Case 3.7.3.4.2.1: b5 = 1. In this case we have a > a5. Equation 3.7.3.16 reads

0 ≤ 1 + (l5 − 3)a− (l5 − 1)a5.

Having in mind 3.7.3.15, this yields l5 = 4. Plugging the value for l5 back into that
inequality, we also obtain a ≥ 3a5−1. We establish bounds for the values of the exponents
l6 and l7. For the monomial m of g containing T6 we write

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

We set l := l1+l2 and l′ := l3+l4. Homogeneity of g yields l′ = 4−l6 and 4a5 = l+(4−l6)a.
Together with the inequality a ≥ 3a5 − 1, we see that l6 ≥ 2 holds. Assume l6 = 2.
Then we have l3 + l4 = 2. To satisfy condition (C2) from Setting 3.4.1, we must have
l3 = l4 = 1. Moreover, we obtain the inequality

4a5 ≥ 6a5 + l − 2,

which is only fulfilled for a5 = 1, a = 2 and l = 0. Up to switching the roles of T1 and T2,
grading matrix and relation are thus given by

Q =
[︄

1 1 2 2 1 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T4T 2
6 + T 5

1 T2T 4
7 .

This is specifying data no. 368. Switching the roles of T6 and T7, this also includes the
case l7 = 2. Thus we may now assume that l6, l7 ≥ 3 holds. Moreover, we may assume
l6 ≥ l7. Note that the case (l5, l6, l7) = (4, 4, 4) cannot occur. We thus distinguish the
two cases (l5, l6, l7) = (4, 3, 3) and (l5, l6, l7) = (4, 4, 3).

Case 3.7.3.4.2.1.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m2
2 T4T 3

7 ,
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where at most one of l2, m2 is non-zero. The relation degree is µ = (4c, 4). Homogeneity
of g yields l2 = 0 and l1 = m2 = a− 4c. In particular a > 4c holds. Grading matrix and
relation are given by

Q =
[︄

1 1 a a c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T a−4c
1 T3T 3

6 + T a−4c
2 T4T 3

7 .

This is series S25.

Case 3.7.3.4.2.1.2: (l5, l6, l7) = (4, 4, 3). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T 4
5 + T l1

1 T l2
2 T 4

6 + T m2
2 T4T 3

7 ,

where at most one of l2, m2 is non-zero. To satisfy the condition (C2) from Setting 3.4.1,
we must have m2 = 0 and l1, l2 must be odd. The relation degree is µ = (4c, 4).
Homogeneity of g yields a = 4c and l1 = 4c− l2. Grading matrix and relation are given
by

Q =
[︄

1 1 4c 4c c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−l
1 T l

2T 4
6 + T4T 3

7 .

This is series S26.

Case 3.7.3.4.2.2: b5 = 2. By Equation 3.7.3.15 we have l5 = 2. Plugging these values
into Equation 3.7.3.16, we obtain a5 = 1. Thus the relation g has degree µ = (2, 4). Note
that in order to fulfill the condition (C2) from Setting 3.4.1, at least one of T3, T4 must
appear in g. This then yields the bound a ≤ 2. Grading matrix and relation degree are
thus given by

Q =
[︄

1 1 a a 1 0 0
0 0 1 1 2 1 1

]︄
, µ = (2, 4), a ≤ 2.

For each of the two values of a we determine all homogeneous trinomials g of degree
deg(g) = µ that satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For a = 1 this leads to specifying data no. 369. For a = 2 this leads to
specifying data no. 370.

Case 3.7.3.4.2.3: b5 = 3. By Equation 3.7.3.15 we have l5 = 2. Thus the relation g has
degree µ = (2a5, 6). We establish bounds for the exponents l6 and l7. By homogeneity of
g we have l6, l7 ≤ 6. Switching the roles of T6 and T7 if necessary, we may assume l6 ≥ l7.
Consider the monomial m of g that contains T7. It is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l7
7 .

We set l := l1+l2 and l′ := l3+l4. Homogeneity of g yields l′ = 6−l7 and 2a5 = l+(6−l7)a.
Together with Equation 3.7.3.15 we obtain

(4− l7)a ≤ 2. (3.7.3.17)
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Thus we have l7 ≥ 2. With the same arguments we obtain l7 ≥ 2. We distinguish two
cases, depending on the value of l7.

Case 3.7.3.4.2.3.1: l7 ≥ 4. In this case we also have l6 ≥ 4. To fulfill the condition
(C2) from Setting 3.4.1, at least one of T3, T4 must appear in g. Thus l7 ≤ 5 holds. If
l7 = 4, then both T3 and T4 must be paired with T7 in order for g to satisfy condition
(C2) from 3.4.1. Thus in this case l6 = 6 holds. We thus distinguish the following three
cases:

(l5, l6, l7) = (2, 6, 4), (l5, l6, l7) = (2, 5, 5), (l5, l6, l7) = (2, 6, 5).

Case 3.7.3.4.2.3.1.1: (l5, l6, l7) = (2, 6, 4). The relation is of the form

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T3T4T 4
7 .

The relation degree is µ = (2a5, 2). Homogeneity yields l1 = 2a5− l2 and a = a5. Grading
matrix and relation are thus given by

Q =
[︄

1 1 a a a 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2a−l
1 T l

2T 6
6 + T3T4T 4

7 .

This is series S28.

Case 3.7.3.4.2.3.1.2: (l5, l6, l7) = (2, 5, 5). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T 2
5 + T l1

1 T3T 5
6 + T l2

2 T4T 5
7 .

The relation degree is µ = (2a5, 2). Homogeneity yields l1 = l2 = 2a5 − a. In particular
we have a < 2a5. Setting c := a5, grading matrix and relation are given by

Q =
[︄

1 1 a a c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−a
1 T3T 5

6 + T 2c−a
2 T4T 5

7 .

This is series S27.

Case 3.7.3.4.2.3.1.3: (l5, l6, l7) = (2, 6, 5). In order to satisfy condition (C2) from
Setting 3.4.1, T1 and T2 must both be paired with T6. Switching roles of T3 and T4 if
necessary, we can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T4T 5
7 .

The relation degree is µ = (2a5, 2). Homogeneity yields a = 2a5 and l1 = 2a5− l2. Setting
c := a5, grading matrix and relation are given by

Q =
[︄

1 1 2c 2c c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−l
1 T l

2T 6
6 + T4T 5

7 .
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This is series S29.

Case 3.7.3.4.2.3.2: l7 < 4. In this case 4− l7 is positive. Thus Equation 3.7.3.17 yields
a ≤ 2. Moreover, by Equation 3.7.3.16 we have a5 ≤ a + 1 ≤ 3. By the ordering of the
degrees we have 3a > a5 and the restriction l7 < 4 yields 2a5 ≥ 3a. The possible values
for a and a5 are thus (a, a5) = (1, 2) and (a, a5) = (2, 3). In both cases we determine
all homogeneous trinomials g of degree deg(g) = µ with l7 ≤ 3 that satisfy conditions
(C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For (a, a5) = (1, 2) we obtain
specifying data no. 371 to 373. For (a, a5) = (2, 3) we obtain specifying data no. 374 to
377.

Case 3.7.3.5: (n1, n2, n3, n4) = (2, 1, 3, 1). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a ≥ 1. Applying Lemma 3.2.8 to the triple (w1, w4, w5) shows that the primitive
point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1. By Lemma 3.4.5, at least one of
w4, w5, w6 is primitive. We may assume that w4 = v holds. The grading matrix of X is
thus of the form

Q =
[︄

1 1 a c a5c a6c 0
0 0 1 1 a5 a6 1

]︄
, a, a5, a6, c ∈ Z≥1.

Applying Lemma 3.2.8 to the triple (w1, w5, w6) shows that a5 and a6 are coprime. We
may assume a5 ≤ a6. By Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We distinguish the
two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.7.3.5.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triples (w1, w2, w5) and
(w1, w2, w6) shows that a5 = a6 = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a c c c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + 3c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦ we infer the inequalities

µ2 ≤ 4, (3.7.3.18)
µ1 ≤ 1 + 3c + (µ2 − 4)a. (3.7.3.19)

The position of µ yields the inequality µ2c+1 ≤ µ1. Combining this with Equation 3.7.3.19,
we obtain

0 ≤ (3− µ2)c + (µ2 − 4)a.

Having in mind Equation 3.7.3.18 and a > c, this inequality is only fulfilled for µ2 = 4.
Plugging this into Equation 3.7.3.19 yields µ1 ≤ 3c + 1. However, by the position of µ,
we have µ1 > µ2c = 4c. A contradiction. Thus the case µ ∈ (ρ2 + ρ3)◦ thus not occur.

Case 3.7.3.5.2: µ ∈ ρ3. The relation degree satisfies µ = (kc, k) for some k ≥ 2.
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Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a c a5c a6c 0
0 0 1 1 a5 a6 1

]︄
, −K =

[︄
2 + a + (1 + a5 + a6 − k)c

3 + a5 + a6 − k

]︄
.

From X being Fano, ie −K ∈ λ◦, we infer the inequalities

k ≤ 2 + a5 + a6, (3.7.3.20)
0 ≤ 1− a + (1 + a5 + a6 − k)(c− a). (3.7.3.21)

We distinguish three cases, depending on the values of a5 and a6.

Case 3.7.3.5.2.1: a5 = a6 = 1. Equations 3.7.3.20 and 3.7.3.21 yield

0 ≤ 1 + (k − 4)a + (3− k)c, k ≤ 4.

Since a > c, this is only fulfilled for k = 4 and in this case we have c = 1. Grading matrix
and relation degree are thus given by

Q =
[︄

1 1 a 1 1 1 0
0 0 1 1 1 1 1

]︄
, µ = (4, 4).

If T3 does not appear in g, then permuting T4, T5, T6 if necessary, the relation g is of the
form

g = T l1
1 T l2

2 T 4
7 + T l4

4 T l5
5 + T 4

6

with l1 + l2 = l4 + l5 = 4. To fulfill condition (C2) from Setting 3.4.1, up to switching T1
and T2, respectively T4 and T5, we have l1 = l4 = 3 and l2 = l5 = 1. This is series S30. If
T3 does appear in g, then homogeneity of g yields the bound a ≤ 4. For each possible
value of a we determine all homogeneous trinomials g of degree deg(g) = µ that contain
T3 and satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For
a = 2 we obtain specifying data no. 378 and 379. For a = 3 we obtain specifying data
no. 380. For a = 4 we obtain specifying data no. 381.

Case 3.7.3.5.2.2: a5 = 1, a6 > 1. Applying Lemma 3.2.7 to the pair (w1, w6) shows
that g contains a monomial of the form T l6

6 with l6 ≥ 2. In particular we have k = l6a6.
Equation 3.7.3.20 turns into (l6− 1)a6 ≤ 3, which yields l6 = 2 and 2 ≤ a6 ≤ 3. Plugging
this into Equation 3.7.3.21, we obtain the inequality

0 ≤ 1 + (2− a6)c + (a6 − 3)a.

Since a > 1, this yields a6 = 3. Moreover we obtain c = 1. Grading matrix and relation
degree are thus given by

Q =
[︄

1 1 a 1 1 3 0
0 0 1 1 1 3 1

]︄
, µ = (6, 6).
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If T3 does not appear in g, then permuting T4, T5, T6 if necessary, the relation g is of the
form

g = T l1
1 T l2

2 T 6
7 + T l4

4 T l5
5 + T 2

6

with l1 + l2 = l4 + l5 = 6. Checking each possible combination of exponents (l1, l2, l4, l5)
for condition (C2) from Setting 3.4.1 and filtering by isomorphy, we obtain series S31 to
S33. If T3 does appear in g, then homogeneity of g yields the bound a ≤ 6. For each
possible value of a we determine all homogeneous trinomials g of degree deg(g) = µ
that contain T3 and satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. Depending on the value of a, we obtain the following specifying data:

a 2 3 4 5 6
ID 382-390 391-394 395-398 399-400 401-402

Case 3.7.3.5.2.3: a5, a6 > 1. Applying Lemma 3.2.7 to the pairs (w1, w5) and (w1, w6)
shows that g contains monomials of the form T l5

6 and T l6
6 with l5, l6 ≥ 2. In particular

we have k = l5a5 = l6a6. By condition (C2) from Setting 3.4.1, the exponents l5 and l6
are coprime. With coprimeness of a5 and a6 we obtain a5 = l6 and a6 = l5 and k = a5a6.
We are thus in the situation of Lemma 3.4.4, which yields a5 = 2, a6 = 3 and k = 6.
Plugging these values into Equation 3.7.3.21, we obtain a ≤ 1. This is a contradiction to
a > c ≥ 1. Thus this case does not occur.

Case 3.7.3.6: (n1, n2, n3, n4) = (2, 1, 2, 2). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a ≥ 1. Applying Lemma 3.2.8 to the triple (w1, w4, w5) shows that the primitive
point v ∈ ρ3 is of the form v = (c, 1) for some c ≥ 1. The grading matrix of X is thus of
the form

Q =
[︄

1 1 a a4c a5c 0 0
0 0 1 a4 a5 1 1

]︄
, a, a4, a5, c ∈ Z≥1,

Applying Lemma 3.2.8 to the triple (w1, w4, w5) shows that a4 and a5 are coprime. We
may assume a4 ≤ a5. By Remark 3.2.11 we have µ ∈ (ρ2 + ρ3)\ρ2. We distinguish the
two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.7.3.6.1: µ ∈ (ρ2 + ρ3)◦. Lemma 3.2.8 applied to the triples (w1, w2, w4) and
(w1, w2, w5) yields a4 = a5 = 1. Grading matrix and anticanonical class of X, due to
Proposition 3.2.5, are given by

Q =
[︄

1 1 a c c 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + 2c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.7.3.22)
µ1 ≤ 1 + 2c + (µ2 − 4)a. (3.7.3.23)
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The position of µ yields the inequality µ2c + 1 ≤ µ1 Combined with Equation 3.7.3.23,
we obtain the inequality

0 ≤ (2− µ2)c + (µ2 − 4)a,

the right hand side of which is negative for µ2 ≤ 4. This is a contradiction to Equa-
tion 3.7.3.22. Thus the case µ ∈ (ρ2 + ρ3)◦ does not occur.

Case 3.7.3.6.2: µ ∈ ρ3. The relation degree satisfies µ = (kc, k) for some k ≥ 2.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a a4c a5c 0 0
0 0 1 a4 a5 1 1

]︄
, −K =

[︄
2 + a + (a4 + a5 − k)c

3 + a4 + a5 − k

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

k ≤ 2 + a4 + a5, (3.7.3.24)
0 ≤ 1− (2 + a4 + a5 − k)a + (a4 + a5 − k)c. (3.7.3.25)

If a4 > 1, then Lemma 3.2.7 applied to the pair (w1, w4) shows that g contains a monomial
to the form T l4

4 with l4 ≥ 2. Thus in this case µ is a multiple of w4. If a4 = 1, then w4
is primitive and µ is a multiple of w4 as well. The same holds for w5. There are thus
l4, l5 ≥ 2 with k = l4a4 = l5a5. In particular we have k ≥ a4 + a5. This, together with
Equation 3.7.3.24 shows that the right hand side of Equation 3.7.3.25 is strictly negative.
A contradiction. Thus the case µ ∈ ρ3 thus not occur.

Case 3.7.3.7: (n1, n2, n3, n4) = (2, 1, 1, 3). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a ≥ 1. The grading matrix of X is thus of the form

Q =
[︄

1 1 a a4 0 0 0
0 0 1 b4 1 1 1

]︄
, a, a4, b4 ∈ Z≥1,

By Lemma 3.4.7 we have µ ∈ (ρ2 + ρ4)◦. We distinguish the three cases

µ ∈ (ρ2 + ρ3)◦, µ ∈ ρ3, µ ∈ (ρ3 + ρ4)◦.

Case 3.7.3.7.1: µ ∈ (ρ2+ρ3)◦. Lemma 3.2.8 applied to the triple (w1, w2, w4) yields b4 =
1. We set c := a4. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

Q =
[︄

1 1 a c 0 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + c− µ1

5− µ2

]︄
.

From X being Fano, ie −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.7.3.26)
µ1 ≤ 1 + c + (µ2 − 4)a. (3.7.3.27)
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The position of µ yields the inequality µ2c + 1 ≤ µ1. Combined with Equation 3.7.3.27,
we obtain the inequality

0 ≤ (1− µ2) + (µ2 − 4)a,

the right hand side of which is negative for µ2 ≤ 4. This is a contradiction to Equa-
tion 3.7.3.26. Thus the case µ ∈ (ρ2 + ρ3)◦ does not occur.

Case 3.7.3.7.2: µ ∈ ρ3. Relation degree µ and generator degree w4 lie on the same ray.
If w4 is primitive, then µ is a multiple of w4. If w4 is not primitive, then Lemma 3.2.7
applied to the pair (w1, w4) shows that g contains a monomial of the form T l4

4 with l4 ≥ 2.
Thus in any case there is l4 ≥ 2 such that µ = (l4a4, l4b4) holds. Grading matrix and
anticanonical class of X, due to Setting 3.4.1, are thus given by

Q =
[︄

1 1 a a4 0 0 0
0 0 1 b4 1 1 1

]︄
, −K =

[︄
2 + a + (1− l4)a4

4 + (1− l4)b4

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

(l4 − 1)b4 ≤ 3, (3.7.3.28)
0 ≤ 1− 3a + (l4 − 1)(ab4 − a4). (3.7.3.29)

By Equation 3.7.3.28 we have b4 ≤ 3. Assume b4 = 1 holds. Then by Equation 3.7.3.28
we have l4 ≤ 4 and Equation 3.7.3.29 yields

0 ≤ 1 + (l4 − 4)a− (1− l4)a4.

The right hand side is strictly negative for all possible values of l4. A contradiction. Thus
b4 > 1 holds. This yields l4 = 2. For b4 = 2, Equation 3.7.3.29 yields

0 ≤ 1− a− a4.

The right hand side is strictly negative. A contradiction. Thus b4 = 3 holds. Equa-
tion 3.7.3.29 then yields a4 = 1. Grading matrix and relation degree are thus given
by

Q =
[︄

1 1 a 1 0 0 0
0 0 1 3 1 1 1

]︄
, µ = (2, 6).

Assume T3 does not appear in g. Then, in order for g to satisfy condition (C1) from
Setting 3.4.1, up to permuting variables of the same degree g is given by

g = T 2
1 T 6

5 + T 2
2 T l6

6 T l7
7 + T 2

4 ,

where l6 + l7 = 6. This trinomial does not satisfy condition (C2) from Setting 3.4.1. A
contradiction. Thus the variable T3 appears in g. By homogeneity of g we obtain the
bound a ≤ 2. For each of the two possible values of a we determine all homogeneous
trinomials g of degree deg(g) = µ that contain T3 and satisfy condition (C1) and (C2)
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from Setting 3.4.1 and filter by isomorphy. For a = 1 we obtain specifying data no. 403
and 404. For a = 2 we obtain specifying data no. 405 to 410.

Case 3.7.3.7.3: µ ∈ (ρ3 + ρ4)◦. Lemma 3.2.7 applied to the pair (w1, w4) yields b4 = 1.
We set c := a4. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

Q =
[︄

1 1 a c 0 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.7.3.30)
µ1 ≤ 1 + c + (µ2 − 4)a. (3.7.3.31)

The component µ1 is positive. Since a > c holds, Equation 3.7.3.31 is only fulfilled
for µ2 ≥ 4. With Equation 3.7.3.30 we obtain µ2 = 4. Plugging the value for µ2 into
Equation 3.7.3.31, we obtain the bound µ1 ≤ c+1. The relation g is a trinomial consisting
of pairwise coprime monomials. Due to the position of µ, each monomial of g is divisible
by precisely one of T5, T6, T7. If T3 does not appear in g, then up to permuting variables
of the same degree, g is of the form

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T l4
4 T 4−l4

7 .

By homogeneity of g we obtain l1 = l2 = l4c. Moreover, the bound on µ1 yields
(l4− 1)c ≤ 1. If l4 > 1, then this yields l4 = 2 and c = 1. We obtain l1 = l2 = 2, which is
a contradiction to condition (C2) from Setting 3.4.1. Thus l4 = 1 holds. Grading matrix
and relation are thus given by

Q =
[︄

1 1 a c 0 0 0
0 0 1 1 1 1 1

]︄
, g = T c

1 T 4
5 + T c

2 T 4
6 + T4T 3

7 .

For g to satisfy condition (C2) from Setting 3.4.1, c must be odd. This is series S34.
If T3 does appear in g, then the bound on µ1 yields a = µ1 = c + 1. Up to permuting
variables of the same degree, the relation g is of the form

g = T c+1
1 T 4

5 + T l2
2 T l4

4 T l6
6 + T3T 3

7 ,

where l2 + l4c = c + 1 and l4 + l6 = 4. In particular we have 0 ≤ l4 ≤ 1. For l4 = 1 we
obtain series S35. For l4 = 0 we obtain series S36.
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3.8 Proof of Theorem 3.1.1: Case s = 5
Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2, . . . , 6, according to the number of rays spanned by the degrees w1, . . . , w7.
In this section we treat the case s = 5.

Theorem 3.8.1. The tables from 3.10.8, 3.10.9 and 3.10.10 provide specifying data (Q, g)
for 37 sporadic cases and 39 infinite series of locally factorial Fano fourfolds of Picard
number ρ = 2 and complexity c = 1 with a hypersurface Cox ring and s = 5. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (ρ, c, s) =
(2, 1, 5) is isomorphic to precisely one X(Q, g) with (Q, g) from these tables.

The proof of Theorem 3.8.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q, g) from the tables in 3.10.8, 3.10.9
and 3.10.10 defines a locally factorial Fano fourfold X(Q, g) with a hypersurface Cox
ring and invariants (ρ, c, s) = (2, 1, 5). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.8, 3.10.9 and 3.10.10 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (ρ, c, s) = (2, 1, 5) is isomorphic to
X(Q, g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

µ ∈ SAmple(X), µ ̸∈ SAmple(X).

The case µ ∈ SAmple(X) will be treated in Proposition 3.8.2. In Proposition 3.8.3 we
treat the case µ ̸∈ SAmple(X).

Proposition 3.8.2. Let X as in Setting 3.4.1 with s = 5. Assume that µ ∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.8.

Proof. We show that µ ∈ Mov(R)◦ holds. Assume µ ∈ ∂ Mov. The relation degree µ is
contained in one of the rays ρ1, . . . , ρ5. By Lemma 3.4.7, µ is neither contained in ρ1 nor
in ρ5. Reversing the order of the variables if necessary, we may assume that µ ∈ ρ2 ∪ ρ3
holds. By assumption µ lies in the boundary of Mov(R). This is not possible if µ lies in
ρ3. Thus we have µ ∈ ρ2. Moreover we have n1 = 1 and, by Remark 3.2.11, also n2 ≥ 2
holds. The relation degree µ lies in the boundary of λ, which is contained in Mov(R). So
we have λ = ρ2 + ρ3. Denote by vi the primitive point on the ray ρ1. Since n2 ≥ 2 holds
and µ lies on ρ2, we can apply Lemma 3.2.8 to v2, vi for i = 3, 4, 5, which tells us that
each of the cones ρ2 + ρi is regular. By applying a suitable unimodular transformation
we achieve

[v1, v2, v3, v4, v5] =
[︄

a1 1 a b 0
−b1 0 1 1 1

]︄
,

where a1, b1, a, b are positive integers. Let wi ∈ ρ3 and wj ∈ ρ4. Since det(v1, v3) > 1
and det(v1, v4) > 1, Lemma 3.2.7 tells us that the relation g contains monomials of the
form T l1

1 T l3
3 and T

l′1
1 T

l′4
4 . Due to the position of µ, we have l1, l′1, l3, l′4 > 0. This is a
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contradiction to the fact that the monomials of g are pairwise coprime. Thus µ ∈ Mov(R)◦

holds.
By assumption we have µ ∈ λ and we have just seen that µ ∈ Mov(R)◦ holds.

We are therefore in the situation of Proposition 3.3.2. Thus, for a general polynomial
h ∈ C[T1, . . . , T7] of degree deg(h) = µ, the projective variety Xh is smooth with divisor
class group Cl(Xh) = K and Cox ring R(Xh) = Rh. Moreover, by Proposition 3.2.5
Xh is Fano. Thus, Xh is a smooth Fano fourfold of Picard number two with a spread
hypersurface Cox ring. In particular, up to unimodular equivalence, the grading matrix
Q = (w1, . . . , w7) together with the relation degree µ = deg(g) appear in the classification
list presented in [45, Thm. 1.1]. For each such entry (Q, µ) with s = 4 we determine
all trinomials g of degree deg(g) = µ that satisfy the conditions (C1) and (C2) from
Setting 3.4.1 and filter the resulting list by isomorphy. This yields the specifying data
no. 411 to 414 in Classification list 3.10.8.

Proposition 3.8.3. Let X as in Setting 3.4.1 with s = 5. Assume that µ ̸∈ λ holds.
Then X is isomorphic to an X(Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.9 or in Classification list 3.10.10.

Proof. We have µ ̸∈ λ. Reversing the ordering of the variables if necessary, we may assume
that µ ∈ λ+\λ holds. We are thus in the situation of Lemma 3.4.6. Thus λ = ρ1 + ρ2
holds. Moreover, we have n1 ≥ 2 and all generator degrees contained in ρ1 are primitive.
By Lemma 3.4.7, µ is contained in the interior of Eff(R). Thus applying Lemma 3.2.8 to
the triples (w1, w2, wi), where wi ∈ ρ5, shows that the cone Eff(R) is regular and that wi

is primitive. We may thus assume that Eff(R) is the positive quadrant and that

w1 = w2 = (1, 0), w7 = (0, 1)

holds. Since µ is contained in the interior of Eff(R), but lies outside of λ, we have
µ ∈ (ρ2 + ρ5)◦. As there are only seven generator degrees, n5 ≤ 2 holds. Thus
Remark 3.2.11 even yields µ ∈ (ρ2 + ρ4)\ρ2. There are five possible degree constellations
(n1, n2, n3, n4, n5) for X, displayed in the following pictures.

λ

(3, 1, 1, 1, 1)

λ

(2, 2, 1, 1, 1)

λ

(2, 1, 2, 1, 1)

λ

(2, 1, 1, 2, 1)

λ

(2, 1, 1, 1, 2)
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The black dots represent the generator degrees w1, . . . , w7. We distinguish five cases,
according to the degree constellation.

Case 3.8.3.1: (n1, n2, n3, n4, n5) = (3, 1, 1, 1, 1). Applying Lemma 3.2.7 to the pair
(w1, w4) shows that w4 = (a4, 1) holds with a4 ≥ 1. By Remark 3.2.11 we have λ ∈
(ρ2 +ρ3)\ρ2. Applying Lemma 3.2.8 to the triple (w1, w2, w6) thus shows that w6 = (a6, 1)
holds with a6 ≥ 1. The grading matrix is given by

Q =
[︄

1 1 1 a4 a5 a6 0
0 0 0 1 b5 1 1

]︄
, a4, a5, a6, b5 ∈ Z≥1,

We distinguish the two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.8.3.1.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triple (w1, w2, w6) yields
b5 = 1. Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given
by

Q =
[︄

1 1 1 a4 a5 a6 0
0 0 0 1 1 1 1

]︄
, −K =

[︄
3 + a4 + a5 + a6 − µ1

4− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 3, (3.8.3.1)
µ1 ≤ 2 + a5 + a6 + (µ2 − 3)a4. (3.8.3.2)

By the ordering of the generator degrees we have a4 > a5 > a6. With this, Equation
3.8.3.2 turns into

µ1 ≤ (µ2 − 1)a4 − 1.

However, due to the position of µ, we have µ1 > µ2a4. This is a contradiction. Thus the
case µ ∈ (ρ2 + ρ3)◦ does not occur.

Case 3.8.3.1.2: µ ∈ ρ3. The relation g is a trinomial consisting of pairwise coprime
monomials. Due to the position of µ, the relation g thus contains a monomial of the
form T l5

5 with l5 ≥ 2. So the relation degree satisfies µ = (l5a5, l5b5). Grading matrix
and anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 1 a4 a5 a6 0
0 0 0 1 b5 1 1

]︄
, −K =

[︄
3 + a4 + (1− l5)a5 + a6

3 + (1− l5)b5

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

(l5 − 1)b5 ≤ 2 (3.8.3.3)
0 ≤ 2 + a6 − 2a4 + (l5 − 1)(a4b5 − a5). (3.8.3.4)
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By Equation 3.8.3.3 we have b5 ≤ 2 and l5 ≤ 3. Assume b5 = 1. The Equation 3.8.3.4
yields

0 ≤ 2 + (l5 − 3)a4 − (l5 − 1)a5 + a6.

By the ordering of the generator degrees we have a4 > a5 > a6. Thus the right hand side
is strictly negative. A contradiction. Thus b5 = 2 holds. By Equation 3.8.3.3 we have
l5 = 2. Equation 3.8.3.4 turns into

a5 ≤ 2 + a6.

By the ordering of the generator degrees, we have 0 < det(w5, w6) = a5 − 2a6. This
yields a6 = 1 and a5 = 3. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 1 a4 3 1 0
0 0 0 1 2 1 1

]︄
, µ = (6, 4).

The relation g contains the monomial T 2
5 . If T4 does not occur in g, then up to switching

the roles of T1, T2 and T3, it either contains the monomial T 6
3 T 4

7 or the monomial T 2
3 T 4

6 .
Both of those contradict condition (C2) from Setting 3.4.1. Thus T4 appears in g. In
particular, by homogeneity of g, we obtain the bound a4 ≤ 6. For each possible value of
a4 we determine all homogeneous trinomials g of degree deg(g) = µ that satisfy conditions
(C1) and (C2) from Setting 3.4.1 and filter by isomorphy. Depending on the value of a4,
we obtain the following specifying data:

a4 2 3 4 5 6
ID 415-418 419-422 423 424 425

Case 3.8.3.2: (n1, n2, n3, n4, n5) = (2, 2, 1, 1, 1). Applying Lemma 3.2.7 to the pairs
(w1, w3) and (w1, w4) shows that w3 = w4 = (a, 1) holds for some a ≥ 1. By Remark 3.2.11
we have λ ∈ (ρ2 + ρ3)\ρ2. Applying Lemma 3.2.8 to the triple (w1, w2, w6) thus shows
that w6 = (c, 1) holds for some c ≥ 1. The grading matrix is given by

Q =
[︄

1 1 a a a5 c 0
0 0 1 1 b5 1 1

]︄
, a, a5, b5, c ∈ Z≥1,

We distinguish the two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.8.3.2.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triple (w1, w2, w5) yields
b5 = 1. Set b := a5. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + 2a + b + c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.5)
µ1 ≤ 1 + b + c + (µ2 − 3)a. (3.8.3.6)
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By the position of µ, we have the inequality µ1 ≥ µ2b + 1. This, together with the
inequality b > c, Equation 3.8.3.2 turns into

1 ≤ (2− µ2)b + (µ2 − 3)a.

Having in mind Equation 3.8.3.5, this is only fulfilled for µ2 = 4. With this, Equa-
tion 3.8.3.6 yields the bound

µ ≤ 1 + a + b + c. (3.8.3.7)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is therefore divisible by precisely one of T5, T6, T7.
We establish bounds on the exponents l5, l6, l7. Since µ2 = 4, homogeneity of g yields
l5, l6, l7 ≤ 4. Consider the monomial m of g containing T5. It is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l5
5 .

Set l := l1 + l2 and l′ := l3 + l4. By homogeneity of g we have l′ = 4− l5 and the bound
3.8.3.7 yields

0 ≤ 1 + (l5 − 3)a + (1− l5)b + c.

This inequality is only fulfilled for l5 = 4. Similarly we obtain l6 ≥ 3 and l7 ≥ 2. Assume
l7 = 2 holds. Switching the roles of T1 and T2 as well as T3 and T4 if necessary, we can
write g as

g = T l1
1 T l2

2 T 4
5 + T m2

2 T 4−l6
3 T l6

6 + T k2
2 T k3

3 T k4
4 T 2

7 ,

where l1 > 0, at most one of l2, m2, k2 is non-zero, k3 + k4 = 2 holds and either k3 = 0 or
l6 = 4. If k3 and k4 are positive, then l6 = 4 as well as m2 > 0 holds. By homogeneity of
g, both l1 and m2 are even. This violates condition (C2) from Setting 3.4.1. Thus either
k3 = 0 or k4 = 0 holds. We may assume k3 = 0 and k4 = 2. The case l6 = 4 again leads
to the same contradiction. Thus l6 = 3 holds. Moreover, if l2 = 0, then by homogeneity
l1 is even, leading to a violation of condition (C2) from Setting 3.4.1. Thus g is of the
form

g = T l1
1 T l2

2 T 4
5 + T3T 3

6 + T 2
4 T 2

7 .

Comparing the degrees of the second and third monomial, we obtain a = 3c. Thus
µ1 = 6c holds. Moreover, the degree of the first monomial yields 4b < 6c. Combining this
with Equation 3.8.3.7, we obtain c = 1. Since b ≥ 2 holds, this yields 8 ≤ 4b < 6c = 6. A
contradiction. Thus the case l7 = 2 does not occur. Moreover, the case (l5, l6, l7) = (4, 4, 4)
cannot occur. We therefore distinguish the following three cases

(l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 3, 4), (l5, l6, l7) = (4, 4, 3).

Case 3.8.3.2.1.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T l1
1 T l2

2 T 4
5 + T m2

2 T3T 3
6 + T k2

2 T4T 3
7 ,
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where l1 > 0 and at most one of l2, m2, k2 is non-zero. By homogeneity of g we obtain
l2 = m2 = 0 and k2 = 3c. This also yields l1 = a− 4b + 3c. Grading matrix and relation
are thus given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, g = T a−4b+3c

1 T 4
5 + T3T 3

6 + T 3c
2 T4T 3

7 .

This is series S37.

Case 3.8.3.2.1.2: (l5, l6, l7) = (4, 3, 4). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T l1
1 T 4

5 + T3T 3
6 + T l2

2 T 4
7 ,

By homogeneity of g we obtain l1 = a− 4b + 3c and l2 = a + 3c. Grading matrix and
relation are thus given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, g = T a−4b+3c

1 T 4
5 + T3T 3

6 + T a+3c
2 T 4

7 .

This is series S38.

Case 3.8.3.2.1.3: (l5, l6, l7) = (4, 4, 3). Switching roles of T1 and T2 as well as T3 and
T4 if necessary, we can write g as

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T4T 3
7 .

By homogeneity of g we obtain l1 = a− 4b and l2 = a− 4c. Grading matrix and relation
are thus given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, g = T a−4b

1 T 4
5 + T a−4c

2 T 4
6 + T 3c

2 T4T 3
7 .

This is series S39.

Case 3.8.3.2.2: µ ∈ ρ3. The relation degree µ and the generator degree l5 lie on the
same ray. If l5 is not primitive, then applying Lemma 3.2.7 to the pair w1, w5 shows
that g contains a monomial of the form T l5

5 . In particular, µ is a multiple of w5. If
w5 is primitive, then clearly µ is a multiple of w5. Thus in any case there is l5 ≥ 2
with µ = l5w5 = (l5a5, l5b5). Grading matrix and anticanonical class of X, due to
Proposition 3.2.5, are given by

Q =
[︄

1 1 a a a5 c 0
0 0 1 1 b5 1 1

]︄
, −K =

[︄
2 + 2a + (1− l5)a5 + c

4 + (1− l5)b5

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

(l5 − 1)b5 ≤ 3, (3.8.3.8)
0 ≤ 1− 2a + c + (l5 − 1)(ab5 − a5). (3.8.3.9)
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Thus, by Equation 3.8.3.8 we have b5 ≤ 3. We distinguish three cases, depending to the
value of b5.

Case 3.8.3.2.2.1: b5 = 1. By Equation 3.8.3.8 we have l5 ≤ 4. Set b := 5. Euqation
3.8.3.9 yields the inequality

0 ≤ 1 + (l5 − 3)a + (1− l5)b + c,

the right hand side of which is only non-negative for l5 ≥ 4. Thus l5 = 4 holds. Grading
matrix and relation degree are thus given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, µ = (4b, 4).

Moreover, plugging the value for l5 into Equation 3.8.3.9, we obtain the bound

µ1 ≤ 1 + a + b + c. (3.8.3.10)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is divisible by precisely one of T5, T6, T7. We have
already seen that g contains the monomial T 4

5 . Thus one of the remaining monomials is
divisible by T6, the other one by T7. We establish bounds for the exponents l6, l7. Since
mu2 = 4 holds, we have l6, l7 ≤ 4. Consider the monomial m of g containing T6. It is of
the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

Set l := l1 + l2 and l′ := l3 + l4. By homogeneity of g we have l′ = 4 − l6 and
Equation 3.8.3.10 yields

0 ≤ 1 + (l6 − 3)a + b + (1− l6)c.

The right hand side is only non-negative for l6 ≥ 3. Similarly we obtain l7 ≥ 2. We
distinguish the following six cases:

(l5, l6, l7) = (4, 3, 2), (l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 3, 4),

(l5, l6, l7) = (4, 4, 2), (l5, l6, l7) = (4, 4, 3), (l5, l6, l7) = (4, 4, 4).

Case 3.8.3.2.2.1.1: (l5, l6, l7) = (4, 3, 2). Switching the roles of T3 and T4 if necessary,
we can write g as

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m1
1 T m2

2 T 2
4 T 2

7 ,

where either l1 = 0 or m1 = 0, as well as either l2 = 0 or m2 = 0. To satisfy condition
(C2) from Setting 3.4.1, the exponents m1 and m2 must be odd. Thus l1 = l2 = 0 holds.
Let l := l′1 + l′2. Homogeneity of g yields the identities

4b = a + 3c, (3.8.3.11)
4b = 2a + l. (3.8.3.12)
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By Equation 3.8.3.11 we have a = 4b − 3c. Plugging this into Equation 3.8.3.12, we
obtain l = 6c− 4b. In particular, we get the bounds

3c < 4b < 6c.

Combining Equation 3.8.3.11 with the bound 3.8.3.10, we obtain 2c ≤ 1 + b. Together
with the bound on b, this yields b < 3. Thus we have b = 2 and c = 1. But then 4b > 6c
holds. A contradiction. Thus the case (l5, l6, l7) = (4, 3, 2) does not occur.

Case 3.8.3.2.2.1.2: (l5, l6, l7) = (4, 3, 3). Switching the roles of T3 and T4 if necessary,
we can write g as

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m1
1 T m2

2 T4T 3
7 ,

where either l1 = 0 or m1 = 0, as well as either l2 = 0 or m2 = 0. By homogeneity of
g we have m1 + m2 > 0 and we may assume that m2 is positive. Thus we have l2 = 0.
If l1 = 0 holds, then homogeneity of g yields a = 4b− 3c and m1 = 3c−m2. Grading
matrix and relation are thus given by

Q =
[︄

1 1 4b− 3c 4b− 3c b c 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T 3
6 + T 3c−l

1 T l
2T4T 3

7 .

This is series S40. If l1 > 0 holds, then we have m1 = 0 and homogeneity of g yields
l1 = 4b− a− 3c and l2 = 4b− a. Grading matrix and relation are thus given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T
(4b−a−3c)
1 T3T 3

6 + T
(4b−a)
2 T4T 3

7 .

This is series S42.

Case 3.8.3.2.2.1.3: (l5, l6, l7) = (4, 3, 4). Switching the roles of T3 and T4 if necessary,
we can write g as

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m1
1 T m2

2 T 4
7 ,

where either l1 = 0 or m1 = 0, as well as either l2 = 0 or m2 = 0. To satisfy the condition
(C2) from Setting 3.4.1, the exponents m1, m2 must be positive and odd. Thus l1 = l2 = 0
holds. Homogeneity of g yields a = 4b − 3c and m1 = 4b −m2. Grading matrix and
relation are thus given by

Q =
[︄

1 1 4b− 3c 4b− 3c b c 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T 3
6 + T 4b−l

1 T l
2T 4

7 .

This is series S41.

Case 3.8.3.2.2.1.4: (l5, l6, l7) = (4, 4, 2). The relation g is of the form

g = T 4
5 + T l1

1 T l2
2 T 4

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 2
7 ,
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where m3 + m4 = 2 and l1m1 = 0 and l2m2 = 0. To satisfy condition (C2) from
Setting 3.4.1, the exponents l1 and l2 must be positive and odd. Thus m1 = m2 = 0
holds. This in turn yields m3 = m4 = 1 with the same argument. By homogeneity of
g we thus obtain a = 2b. Plugging this into the bound 3.8.3.10, we obtain b = c + 1.
Using homogeneity of g again, we obtain l1 + l2 = 4. Switching the roles of T1 and T2 if
necessary, we may assume l1 = 3 and l2 = 1. Grading matrix and relation are thus given
by

Q =
[︄

1 1 2c + 2 2c + 2 c + 1 c 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 3
1 T2T 4

6 + T3T4T 2
7 .

This is series S43.

Case 3.8.3.2.2.1.5: (l5, l6, l7) = (4, 4, 3). Switching roles of T3 and T4 if necessary, we
can write g as

g = T 4
5 + T l1

1 T l2
2 T 4

6 + T m2
2 T4T 3

7 ,

where l1 > 0 and either l2 = 0 or m2 = 0. To satisfy condition (C2) from Setting 3.4.1,
the exponents l1 and l2 must be positive and odd. Thus m2 = 0 holds. Homogeneity of g
yields a = 4b and l1 = 4b− 4c− l2. Grading matrix and relation are thus given by

Q =
[︄

1 1 4b 4b b c 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4b−4c−l
1 T l

2T 4
6 + T4T 3

7 .

This is series S44.

Case 3.8.3.2.2.1.6: (l5, l6, l7) = (4, 4, 4). In this case the variables T3 and T4 do not
appear in g. Thus, up to switching T1 and T2, the relation g is of the form

g = T 4
5 + T l1

1 T 4
6 + T l2

2 T 4
7 .

By homogeneity of g, the exponents l1 and l2 are even. This violates condition (C2) from
Setting 3.4.1. Thus the case (l5, l6, l7) = (4, 4, 4) does not occur.

Case 3.8.3.2.2.2: b5 = 2. Equation 3.8.3.8 yields l5 = 2. Plugging the values for b5 and
l5 into Equation 3.8.3.9, we obtain a5 = c + 1. This yields det(w5, w6) ≤ 0, contradicting
the ordering of the generator degrees. Thus the case b5 = 2 does not occur.

Case 3.8.3.2.2.3: b5 = 3. Equation 3.8.3.8 yields l5 = 2. Set b := a5. Grading matrix
and relation degree are given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 3 1 1

]︄
, µ = (2b, 6).

Plugging the values for b5 and l5 into Equation 3.8.3.9 and combining it with homogeneity
of g, we obtain the bound

µ1 = 2b ≤ 2 + 2a + 2c. (3.8.3.13)
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The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial is divisible by precisely one of T5, T6, T7. The relation g
contains the monomial T 2

5 . The other two monomials are thus each divisible by precisely
one of T6 and T7. We establish bounds on the exponents l6 and l7. Since µ2 = 6 holds,
we have l6, l7 ≤ 6. Consider the monomial m of g containing T6. It is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

Set l := l1 + l2 and l′ := l3 + l4. By homogeneity of g we have l′ = 6− l6. Equation 3.8.3.13
yields

0 ≤ 2 + (l6 − 4)a + (2− l6)c.

The right hand side is only non-negative for l6 ≥ 4. Similarly we obtain l7 ≥ 2. We
distinguish three cases:

(i) l6 = 4, (ii) l7 = 2, (iii) l6 ≥ 5, l7 ≥ 3.

Case 3.8.3.2.2.3.1: l6 = 4. With the notation from above, we have

2b = µ1 = l + (6− l6)a + l6c = l + 2a + 4c.

The bound on µ1 3.8.3.13 yields c = 1. With this, we obtain l = 0 and b = a + 2. Grading
matrix and relation degree are thus given by

Q =
[︄

1 1 a a a + 2 1 0
0 0 1 1 3 1 1

]︄
, µ = (2a + 4, 6).

The monomial of g containing T6 is of the form m = T l3
3 T l4

4 T 4
6 with l3 + l4 = 2. By

condition (C2) from Setting 3.4.1 we have l3 = l4 = 1. The relation g is threfore of the
form

g = T 2
5 + T3T4T 4

6 + T l1
1 T l2

2 T 6
7 .

By homogeneity of g we have l1 = 2a + 4− l2 and by condition (C2) from Setting 3.4.1,
l1 is odd. This is series S45.

Case 3.8.3.2.2.3.2: l7 = 2. Similar to above, we consider the monomial m of g containig
T7 and write

m = T l1
1 T l2

2 T l3
3 T l4

4 T 2
7 .

We set l := l1 + l2 and l′ := l3 + l4. By homogeneity of g we obtain l′ = 4 and

2b = µ1 = l + 4a.

The bound on µ1 3.8.3.13 yields a = c + 1 and l = 0. Homogeneity then yields b = 2a =
2c + 2. By the ordering of the generator degrees we have

0 < det(w5, w6) = 2− c.
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This yields c = 1. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 2 2 4 1 0
0 0 1 1 3 1 1

]︄
, µ = (8, 6).

By condition (C2) from Setting 3.4.1, both l3 and l4 are positive and odd. Up to switching
the roles of T3 and T4, the relation g is of the form

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T 3
3 T4T 2

7

with l1 + l2 = 2. Again using condition (C2) yields l1 = l2 = 1. This is specifying data
no. 426.

Case 3.8.3.2.2.3.3: l6 ≥ 5, l7 ≥ 3. We further distinguish the following eight exponent
constellations for (l5, l6, l7):

(2, 5, 3), (2, 5, 4), (2, 5, 5), (2, 5, 6),

(2, 6, 3), (2, 6, 4), (2, 6, 5), (2, 6, 6).

Case 3.8.3.2.2.3.3.1: (l5, l6, l7) = (2, 5, 3). Switching roles of T3 and T4 if necessary,
we can write g as

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T 3
4 T 3

7 , (3.8.3.14)

where l1m1 = 0 and l2m2 = 0. Homogeneity of g together with the bound on µ1 3.8.3.13
yield the inequalities

l1 + l2 + a + 5c ≤ 2 + 2a + 2c

m1 + m2 + 3a ≤ 2 + 2a + 2c.

From the first one, we obtain a ≥ 3c− 2, from the second one a ≤ 2c + 2. Combining
these two, we get the bound c ≤ 4. Plugging this back into the second inequality, we
obtain a ≤ 10. The bound on µ1 then yields b ≤ 30. For all possible combinations of
a, b and c within these bounds we determine all homogeneous trinomials g of degree
deg(g) = µ of the form 3.8.3.14 that satisfy conditions (C1) and (C2) from Setting 3.4.1
and filter by isomorphy. Not all combinations of values for a, b, c do actually produce
valid specifying data. Depending on the values of a, b, c we obtain the following specifying
data

(a, b, c) (2, 4, 1) (3, 5, 1) (4, 6, 1) (4, 7, 2) (5, 8, 2) (6, 9, 2)
ID 427 428 429-430 431-432 433 434-435

(a, b, c) (7, 11, 3) (8, 12, 3) (10, 15, 4)
ID 436 437 438
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Case 3.8.3.2.2.3.3.2: (l5, l6, l7) = (2, 5, 4). Switching roles of T3 and T4 if necessary,
we can write g as

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T 2
4 T 4

7 ,

where l1m1 = 0 and l2m2 = 0. To satisfy condition (C2) from Setting 3.4.1, the exponents
m1 and m2 must both be positive and odd. Thus l1 = l2 = 0 holds. Homogeneity of g
yields a = 2b− 5c and m1 = 10c− 2b−m2. Grading matrix and relation are thus given
by

Q =
[︄

1 1 2b− 5c 2b− 5c b c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 10c−2b−l

1 T l
2T 2

4 T 4
7 .

The Fano condition on X, ie −K ∈ λ◦ yields b ≥ 4c− 1. This is series S46.

Case 3.8.3.2.2.3.3.3: (l5, l6, l7) = (2, 5, 5). Switching roles of T3 and T4 if necessary,
we can write g as

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T4T 5
7 ,

where l1m1 = 0 and l2m2 = 0. Comparing degrees of the second and third monomial
shows that m1 + m2 > 0 holds. We may assume m2 > 0. Then we have l2 = 0. If l1 = 0,
then g is of the form

g = T 2
5 + T3T 5

6 + T m1
1 T m2

2 T4T 5
7 .

Homogeneity of g yields a = 2b− 5c and m1 = 5c−m2. Grading matrix and relation are
thus given by

Q =
[︄

1 1 2b− 5c 2b− 5c b c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 5c−l

1 T l
2T4T 5

7 .

This is series S47. If l1 > 0, then g is of the form

g = T 2
5 + T l1

1 T3T 5
6 + T m2

2 T4T 5
7 .

Homogeneity of g yields l1 = 2b − 5c − a and m2 = 2b − a. This in particular yields
a < 2b− 5c. Note that the right hand side is positive by the ordering of the generator
degrees. Grading matrix and relation are given by

Q =
[︄

1 1 a a b c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2b−5c−a
1 T3T 5

6 + T 2b−a
2 T4T 5

7 .

The Fano condition on X, ie. −K ∈ λ◦, yields b ≥ 4c. This is series S49.

Case 3.8.3.2.2.3.3.4: (l5, l6, l7) = (2, 5, 6). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T 2
5 + T l1

1 T3T 5
6 + T m1

1 T m2
2 T 6

7 ,
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where m2 > 0 and l1m1 = 0. To satisfy condition (C2) from Setting 3.4.1, m1 and m2
must both be positive and odd. Thus l1 = 0 holds. Homogeneity of g yields a = 2b− 5c
and m1 = 2b−m2. Grading matrix and relation are thus given by

Q =
[︄

1 1 2b− 5c 2b− 5c b c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 2b−l

1 T l
2T 6

7 .

This is series S48.

Case 3.8.3.2.2.3.3.5: (l5, l6, l7) = (2, 6, 3). Switching roles of T1 and T2 if necessary,
we can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 3

7 ,

where l1 > 0, at most one of l2, m2 is non-zero and m3 + m4 = 3 holds. By condition (C2)
from Setting 3.4.1, the exponents l1 and l2 are both positive and odd. Thus m2 = 0 holds.
Comparing the degrees of the first and third monomial of g, we see that there is an integer
d such that b = 3d and a = 2d holds. The bound on µ1 thus yields 6d ≤ 2 + 4d + 2c, or
equivalently d ≤ c + 1. Comparing the first and second monomial of g yields d > c. Thus
d = c + 1 holds. This also yields l1 + l2 = 6. Thus grading matrix and relation are given
by

Q =
[︄

1 1 2c + 2 2c + 2 3c + 3 c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T l1
1 T l2

2 T 6
6 + T m3

3 T m4
4 T 3

7 ,

where l1 + l2 = 6 and m3 + m4 = 3. Having in mind condition (C2) from Setting 3.4.1,
up to isomorphy this leads to series S50 to S52.

Case 3.8.3.2.2.3.3.6: (l5, l6, l7) = (2, 6, 4). Switching roles of T1 and T2 if necessary,
we can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 4

7 ,

where l1 > 0, at most one of l2, m2 is non-zero and m3 + m4 = 2 holds. To satisfy
condition (C2) from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd.
Thus m2 = 0 holds. By the same argument we also obtain m3 = m4 = 1. Homogeneity
of g yields a = b and l1 = 2a− 6c− l2. Grading matrix and relation are thus given by

Q =
[︄

1 1 a a a c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2a−6c−l
1 T l

2T 6
6 + T3T4T 4

7 .

This leads to series S53.

Case 3.8.3.2.2.3.3.7: (l5, l6, l7) = (2, 6, 5). Switching roles of T1 and T2 as well as T3
and T4 if necessary, we can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T4T 5

7 ,
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where l1 > 0 and at most one of l2, m2 is non-zero. To satisfy condition (C2) from
Setting 3.4.1, the exponents l1 and l2 must both be positive and odd. Thus m2 = 0 holds.
Homogeneity of g yields a = 2b and l1 = a− l2. Grading matrix and relation are thus
given by

Q =
[︄

1 1 2b 2b b c 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2b−l
1 T l

2T 6
6 + T4T 5

7 .

This leads to series S54.

Case 3.8.3.2.2.3.3.8: (l5, l6, l7) = (2, 6, 6). Switching roles of T1 and T2 if necessary,
we can write g as

g = T 2
5 + T l1

1 T 6
6 + T l2

2 T 6
7 .

By homogeneity of g, the exponents l1 and l2 are both odd. This violates condition (C2)
from Setting 3.4.1. Thus the case (l6, l7) = (6, 6) does not occur.

Case 3.8.3.3: (n1, n2, n3, n4, n5) = (2, 1, 2, 1, 1). Applying Lemma 3.2.7 to the pair
(w1, w3) shows that w3 = (a, 1) holds for some a ≥ 1. Moreover, applying Lemma 3.2.8 to
the triple (w1, w4, w5) shows that the primitive point v ∈ ρ3 is of the form v = (b, 1) for
some b ≥ 1. By Remark 3.2.11 we have λ ∈ (ρ2 + ρ3)\ρ2. Thus applying Lemma 3.2.8 to
the triple (w1, w2, w6) shows that w6 = (c, 1) holds for some c ≥ 1. The grading matrix
is given by

Q =
[︄

1 1 a a4b a5b c 0
0 0 1 a4 a5 1 1

]︄
, a, a4, a5, b, c ∈ Z≥1.

By Lemma 3.2.8 applied to the triple (w1, w4, w5), the integers a4 and a5 are coprime.
We distinguish the two cases µ ∈ (ρ2 + ρ3)◦ and µ ∈ ρ3.

Case 3.8.3.3.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triples (w1, w2, w4) and
(w1, w2, w5) shows that a4 = a5 = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a b b c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + 2b + c− µ1

5− µ2

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.15)
µ1 ≤ 1 + (µ2 − 4)a + 2b + c. (3.8.3.16)

The position of µ yields the inequality µ2b+1 ≤ µ1. Combining this with Equation 3.8.3.16,
we obtain

0 ≤ (µ2 − 4)a + (2− µ2)b + c.
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Having in mind the ordering of the generator degrees, the right hand side is negative for
µ2 ≤ 4. This is a contradiction to Equation 3.8.3.15. Thus the case µ ∈ (ρ2 + ρ3)◦ does
not occur.

Case 3.8.3.3.2: µ ∈ ρ3. The relation degree satisfies µ = (kb, k) for some k ≥ 2.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a a4b a5b c 0
0 0 1 a4 a5 1 1

]︄
, −K =

[︄
2 + a + (a4 + a5 − k)b + c

3 + a4 + a5 − k

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

k ≤ 2 + a4 + a5, (3.8.3.17)
0 ≤ 1 + c− 2a + (a4 + a5 − k)(b− a). (3.8.3.18)

The second inequality can also be written as

0 ≤ c + 2− 2b + (2 + a4 + a5 − k)(b− a). (3.8.3.19)

By the ordering of the generator degrees we have c + 2 − 2b < 0 as well as b − a < 0.
Thus, by Equation 3.8.3.17, the right hand side of Equation 3.8.3.19 is negative. A
contradiction. Thus the case µ ∈ ρ3 does not occur. This Case 3.

Case 3.8.3.4: (n1, n2, n3, n4, n5) = (2, 1, 1, 2, 1). Applying Lemma 3.2.7 to the pair
(w1, w3) shows that w3 = (a, 1) holds for some a ≥ 1. Moreover, applying Lemma 3.2.8
to the triple (w1, w5, w6) shows that the primitive point v ∈ ρ4 is of the form v = (c, 1)
for some c ≥ 1. The grading matrix is given by

Q =
[︄

1 1 a a4 a5c a6c 0
0 0 1 b4 a5 a6 1

]︄
, a, a4, a5, a6, b4, c ∈ Z≥1.

Lemma 3.2.8 for the triple (w1, w5, w6) shows that a5 and a6 are coprime. We may
assume that a5 ≤ a6 holds. By Remark 3.2.11 we have µ ∈ (ρ2 + ρ4)\ρ2. We distinguish
the following four cases:

µ ∈ (ρ2 + ρ3)◦, µ ∈ ρ3, µ ∈ (ρ3 + ρ4)◦, µ ∈ ρ4.

Case 3.8.3.4.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the generator degree triples
(w1, w2, w4), (w1, w2, w5) and (w1, w2, w6) shows that b4 = a5 = a6 = 1 holds. Grading
matrix and anticanonical class of X, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a b c c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + 2c− µ1

5− µ2

]︄
.
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From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.20)
µ1 ≤ 1 + (µ2 − 4)a + 2b + c. (3.8.3.21)

The position of µ yields µ2b + 1 ≤ µ1. Combining this with Equation 3.8.3.21, we obtain

0 ≤ (µ2 − 4)a + (2− µ2)b + c.

Due to the ordering of the generator degrees, the reight hand side of this inequality
is negative for µ2 ≤ 4. This is a contradiction to Equation 3.8.3.20. Thus the case
µ ∈ (ρ2 + ρ3)◦ does not occur.

Case 3.8.3.4.2: µ ∈ ρ3. The relation degree µ and the generator degree w4 lie on
the same ray. If w4 is not primitive, then Lemma 3.2.7 applied to the pair (w1, w4)
shows that g contains a monomial of the form T l4

4 . Thus µ is a multiple of w4. If w4
is primitive, then clearly µ is a multiple of w4. So in any case there is k ≥ 2 with
µ = kw4. Moreover, applying Lemma 3.2.8 to the generator degree triples (w1, w2, w5)
and (w1, w2, w6) shows that a5 = a6 = 1 holds. Grading matrix and anticanonical class
of X, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a a4 c c 0
0 0 1 b4 1 1 1

]︄
, −K =

[︄
2 + a + 2c + (1− k)a4

4 + (1− k)b4

]︄
.

From X being Fano, ie. −K ∈ λ◦, we infer the inequalities

(k − 1)b4 ≤ 3, (3.8.3.22)
0 ≤ 1 + 2c− 3a + (k − 1)(ab4 − a4). (3.8.3.23)

Since det(w4, w5) > 0 holds, we can rewrite Equation 3.8.3.23 to obtain the inequality

0 ≤ 2− k − c + (3− (k − 1)b4)(c− a).

By the ordering of the generator degrees and Equation 3.8.3.22, the right hand side of
this inequality is strictly negative. A contradiction. Thus the case µ ∈ ρ3 does not occur.

Case 3.8.3.4.3: µ ∈ (ρ3 + ρ4)◦. Applying Lemma 3.2.8 to the generator degree triples
(w1, w2, w4), (w1, w2, w5) and (w1, w2, w6) shows that b4 = a5 = a6 = 1 holds. Grading
matrix and anticanonical class, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a b c c 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + 2c− µ1

5− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.24)
µ1 ≤ 1 + b + 2c + (µ2 − 4)a. (3.8.3.25)
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The position of µ yields µ2c + 1 ≤ µ1. Combining this with Equation 3.8.3.25, we obtain

0 ≤ 1 + (µ2 − 4)a + b + (2− µ2)c.

Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for µ2 < 4. Together with Equation 3.8.3.24 we obtain µ2 = 4. Plugging this
into Equation 3.8.3.25, we obtain the bound

µ1 ≤ 1 + b + 2c. (3.8.3.26)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is thus divisible by precisely one of T5, T6, T7. We
establish bounds for l5, l6, l7. Since µ2 = 4 holds, we have l5, l6, l7 ≤ 4. Consider the
monomial m of g containing T5. We write

m = T l1
1 T l2

2 T l3
3 T l4

4 T l5
5 .

Set l := l1 + l2. By homogeneity of g we have l3 + l4 + l5 = 4 and l + l3a + l4b + l5c = µ1.
Combining this with the bound 3.8.3.26, we obtain

l5c + (4− l5)b ≤ l5c + l3a + l4b ≤ µ1 ≤ 1 + b + 2c. (3.8.3.27)

This inequality is only fulfilled for l5 ≥ 3. Similarly we obtain l6 ≥ 3 and l7 ≥ 2.
Interchanging T5 and T6 if necessary, we may assume that l5 ≥ l6 holds. Assume l5 = 3.
Then we have l6 = 3. Switching roles of T3 and T4 as well as T5 and T6 if necessary, we
can write

g = T3T 3
5 + T a−b

1 T4T 3
6 + T a+3c

2 T 4
7 .

With the bound on µ1 we obtain

a + 3c = µ1 ≤ 1 + b + 2c ≤ a + 2c.

A contradiction. Thus l5 = 4 holds. In particular, the monomial of g containing T5 is
of the form T l1

1 T l2
2 T 4

5 and we may assume that l1 > 0 holds. We distinguish the cases
l6 = 3 and l6 = 4.

Case 3.8.3.4.3.1: l6 = 3. Consider the monomial m of g containing T6. It is of the
form

m = T l2
2 T l3

3 T l4
4 T 3

6

with l3 + l4 = 1. The bound 3.8.3.26 yields l3a + l4b + c ≤ b + 1. This inequality is only
fulfilled for l3 = 0, l4 = 1 and c = 1. Thus m is of the form

m = T l2
2 T4T 3

6

We distinguish three cases, depending on the value of l7.

214



3.8. Proof of Theorem 3.1.1: Case s = 5

Case 3.8.3.4.3.1.1: (l5, l6, l7) = (4, 3, 2). The relation g is of the form

g = T l1
1 T l2

2 T 4
5 + T k2

2 T4T 3
6 + T m2

2 T 2
3 T 2

7 ,

where at most one of l2, k2, m2 is non-zero. Applying the bound 3.8.3.26 to the degree of
the third monomial, we obtain

2a ≤ 2a + m2 = µ1 ≤ 1 + b + 2c = b + 3.

This yields a ≤ 2. However, by the ordering of the generator degrees, a ≥ 3 holds. A
contradiction. Thus the case (l5, l6, l7) = (4, 3, 2) does not occur.

Case 3.8.3.4.3.1.2: (l5, l6, l7) = (4, 3, 3). The relation g is of the form

g = T l1
1 T l2

2 T 4
5 + T4T 3

6 + T m2
2 T3T 3

7 ,

where l2 = 0 or m2 = 0. Homogeneity of g yields a = b + 3−m2 ≤ b + 3. By the ordering
of the generator degrees, we have a ≥ b + 1. We thus distinguish the three cases a = b + 1,
a = b + 2 and a = b + 3.

Case 3.8.3.4.3.1.2.1: a = b + 1. We have m2 = 2. Grading matrix and relation are
given by

Q =
[︄

1 1 b + 1 b 1 1 0
0 0 1 1 1 1 1

]︄
, g = T b−1

1 T 4
5 + T4T 3

6 + T 2
2 T3T 3

7 .

This is series S55.

Case 3.8.3.4.3.1.2.2: a = b + 2. We have m2 = 1. Grading matrix and relation are
given by

Q =
[︄

1 1 b + 2 b 1 1 0
0 0 1 1 1 1 1

]︄
, g = T b−1

1 T 4
5 + T4T 3

6 + T2T3T 3
7 .

This is series S56.

Case 3.8.3.4.3.1.2.3: a = b + 3. We have m2 = 0. Grading matrix and relation are
given by

Q =
[︄

1 1 b + 3 b 1 1 0
0 0 1 1 1 1 1

]︄
, g = T b−1−l

1 T l
2T 4

5 + T4T 3
6 + T3T 3

7 .

This is series S57.

Case 3.8.3.4.3.1.3: (l5, l6, l7) = (4, 3, 4). The relation g is of the form

g = T l1
1 T 4

5 + T4T 3
6 + T l2

2 T 4
7 .
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Homogeneity of g yields l1 = b− 1 and l2 = b + 3. Grading matrix and relation are thus
given by

Q =
[︄

1 1 a b 1 1 0
0 0 1 1 1 1 1

]︄
, g = T b−1

1 T 4
5 + T4T 3

6 + T b+3
2 T 4

7 .

To satisfy condition (C2) from Setting 3.4.1, b must be even. This is series S58.

Case 3.8.3.4.3.2: l6 = 4. Since µ2 = 4 holds and T1 appears in the monomial of T5,
the monomial m of g containing T6 is now of the form

m = T l2
2 T 4

6

We distinguish three cases, depending on the value of l7.

Case 3.8.3.4.3.2.1: (l5, l6, l7) = (4, 4, 2). The relation g is of the form

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T l3
3 T l4

4 T 2
7 ,

where l3 + l4 = 2. If l3 = 0, then l4 = 2 holds and the relation has degree µ = (2b, 4).
Homogeneity of g yields l1 = l2 = 2b. This violates condition (C2) from Setting 3.4.1.
Similarly for the case l4 = 0. Thus l3 = l4 = 1 holds. Applying the bound 3.8.3.26 to the
degrees of the second and third monomial of g, we obtain

2c ≤ b < a ≤ 2c + 1.

This is only fulfilled for b = 2c and a = 2c + 1. Moreover we obtain l1 = l2 = 1. Grading
matrix and relation are thus given by

Q =
[︄

1 1 2c + 1 2c c c 0
0 0 1 1 1 1 1

]︄
, g = T1T 4

5 + T2T 4
6 + T3T4T 2

7 .

This is series S59.

Case 3.8.3.4.3.2.2: (l5, l6, l7) = (4, 4, 3). The relation g is of the form

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T l3
3 T l4

4 T 3
7 ,

where l3 + l4 = 1. Homogeneity of g yields l1 = l2 =: l and l = l3a + l4b− 4c. If l3 = 1,
then l4 = 0 holds. This yields l = a− 4c. Grading matrix and relation are given by

Q =
[︄

1 1 a b c c 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a−4c

2 T 4
6 + T3T 3

7 .

To satisfy condition (C2) from Setting 3.4.1, a must be odd. This is series S60. Now
assume l4 = 1. Then l3 = 0 holds. This yields l = b− 4c. Grading matrix and relation
are given by

Q =
[︄

1 1 a b c c 0
0 0 1 1 1 1 1

]︄
, g = T b−4c

1 T 4
5 + T b−4c

2 T 4
6 + T4T 3

7 .
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To satisfy condition (C2) from Setting 3.4.1, b must be odd. This is series S61.

Case 3.8.3.4.3.2.3: (l5, l6, l7) = (4, 4, 4). Since µ2 = 4, the variables T3, T4 do not
appear in g. The relation g consists of pairwise coprime monomials. It is not possible to
form g with only the variables T1, T2, T5, T6, T7. Thus the case (l5, l6, l7) = (4, 4, 4) does
not occur.

Case 3.8.3.4.4: µ ∈ ρ4. The relation degree is of the form µ = (kc, k) for some
k ≥ 2. The relation g is a trinomial consisting of pairwise coprime monomials. Due
to the position of µ, the relation g contains monomials of the form T l5

5 and T l6
6 with

l5, l6 > 1. By homogeneity of g we obtain k = l5a5 = l6a6. To satisfy condition (C2)
from Setting 3.4.1, the exponents l5 and l6 must be coprime. The coprimeness of a5 and
a6 yields a5 = l6, a6 = l5 and k = a5a6. We are thus in the situation of Lemma 3.4.4,
which yields a5 = 2, a6 = 3 and k = 6. Grading matrix and anticanonical class of X, due
to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a b 2c 3c 0
0 0 1 1 2 3 1

]︄
, −K =

[︄
2 + a + b− c

2

]︄
.

From X being Fano we infer the inequality

0 ≤ 1 + b− a− c.

As a is strictly larger than b, the right hand side of this inequality is strictly negative.
Thus the case µ ∈ ρ4 does not occur.

Case 3.8.3.5: (n1, n2, n3, n4, n5) = (2, 1, 1, 1, 2). Applying Lemma 3.2.7 to the pair
(w1, w3) shows that w3 = (a, 1) holds for some a ≥ 1. The grading matrix is given by

Q =
[︄

1 1 a a4 a5 0 0
0 0 1 b4 b5 1 1

]︄
, a, a4, a5, b4, b5 ∈ Z≥1,

By Remark 3.2.11 we have µ ∈ (ρ2 + ρ4)\ρ2. We distinguish the following four cases:

µ ∈ (ρ2 + ρ3)◦, µ ∈ ρ3, µ ∈ (ρ3 + ρ4)◦, µ ∈ ρ4.

Case 3.8.3.5.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the generator degree
triples (w1, w2, w4) and (w1, w2, w5) shows that b4 = b5 = 1 holds. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + c− µ1

5− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.28)
µ1 ≤ 1 + (µ2 − 4)a + b + c. (3.8.3.29)
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The position of µ yields µ2b + 1 ≤ µ1. Combining this with Equation 3.8.3.29, we obtain

0 ≤ (µ2 − 4)a + (1− µ2)b + c.

Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for µ2 ≤ 4. This is a contradiction to Equation 3.8.3.28. Thus the case
µ ∈ (ρ2 + ρ3)◦ does not occur.

Case 3.8.3.5.2: µ ∈ ρ3. Applying Lemma 3.2.8 to the triple (w1, w2, w5) shows that
b5 = 1 holds. The relation degree µ and the generator degree w4 lie on the same ray. If
w4 is not primitive, then Lemma 3.2.7 applied to the pair (w1, w4) shows that g contains
a monomial of the form T l4

4 . In particular, µ is a multiple of w4. If w4 is primitive, then
clearly µ is a multiple of w4. So in any case there is k ≥ 2 with µ = kw4. Grading matrix
and anticanonical class of X, due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a a4 c 0 0
0 0 1 b4 1 1 1

]︄
, −K =

[︄
2 + a + c + (1− k)a4

4 + (1− k)b4

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

(k − 1)b4 ≤ 3, (3.8.3.30)
0 ≤ 1 + c− 3a + (k − 1)(ab4 − a4). (3.8.3.31)

By the ordering of the generator degrees we have det(w4, w5) > 0. With this, we can
rewrite Equation 3.8.3.31 to obtain

0 ≤ (3− (k − 1)b4)(a− c) + 1− 2c.

Note that a is strictly larger than c. Thus by Equation 3.8.3.30, the right hand side of
this inequality is strictly negative. A contradiction. Therfore the case µ ∈ ρ3 does not
occur.

Case 3.8.3.5.3: µ ∈ (ρ3 + ρ4)◦. Applying Lemma 3.2.8 to the triples (w1, w2, w4) and
(w1, w2, w5) shows that b4 = b5 = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + c− µ1

5− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.8.3.32)
µ1 ≤ 1 + (µ2 − 4)a + b + c. (3.8.3.33)

The position of µ yields µ2c + 1 ≤ µ1. Combining this with Equation 3.8.3.33, we obtain

0 ≤ (µ2 − 4)a + b + (1− µ2)c.

218



3.8. Proof of Theorem 3.1.1: Case s = 5

Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for µ2 < 4. Together with 3.8.3.32 this yields µ2 = 4. Plugging this into
Equation 3.8.3.33, we obtain the bound

µ1 ≤ 1 + b + c. (3.8.3.34)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is therefore divisible by precisely one of T5, T6, T7. We
establish bounds for the exponents l5, l6, l7. Since µ2 = 4 holds, we immediately obtain
l5, l6, l7 ≤ 4. Consider the monomial m of g divisible by T5. We write

m = T l1
1 T l2

2 T l3
3 T l4

4 T l5
5 .

By homogeneity of g we have l3 + l4 + l5 = 4. Combining this with the bound 3.8.3.34,
we obtain

l5c + (4− l5)b ≤ l5c + l3a + l4b ≤ µ1 ≤ 1 + b + c. (3.8.3.35)

This inequality is only fulfilled for l5 = 4. In particular, the monomial of g containing
T5 is of the form T l1

1 T l2
2 T 4

5 and we may assume that l1 > 0 holds. Similarly we obtain
l6, l7 ≥ 2. Switching the roles of T6 and T7 if necessary, we may assume that l6 ≥ l7 holds.
Note that due to the bound 3.8.3.34, the variable T3 appears in g with exponent at most
one. In particular this yields l6 ≥ 3. We show that l7 ≥ 3 holds. Assume l7 = 2. The
monomial m of g containing T7 is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T 2
7 ,

where l3 + l4 = 2. With 3.8.3.34 we have

l3a + l4b ≤ 1 + b + c.

This yields l3 = 0 and l4 = 2 as well as b = c + 1. Thus we can write

g = T l1
1 T l2

2 T 4
5 + T k2

2 T 4−l6
3 T l6

6 + T m2
2 T 2

4 T 2
7 ,

where at most one of l2, k2, m2 is non-zero. Since b = c + 1 holds, the bound 3.8.3.34 now
reads µ1 ≤ 2c + 2. Applying this to the first monomial of g, we obtain

2c + l1 ≤ 2.

A contradiction, since l1 and c are both positive. Thus l7 ≥ 3 holds. Note that l5, l6, l7
cannot all be equal to four. We therefore distinguish the two cases (l5, l6, l7) = (4, 3, 3)
and (l5, l6, l7) = (4, 4, 3).

Case 3.8.3.5.3.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T6 and T7 if necessary, we
can write

g = T l1
1 T 4

5 + T l2
2 T3T 3

6 + T m2
2 T4T 3

7 ,
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where l2 = 0 or m2 = 0. Comparing degrees of the second and third monomial shows
that l2 = 0 and m2 = a− b holds. Moreover we have l1 = a− 4c by homogeneity of g.
Grading matrix and relation are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T3T 3

6 + T a−b
2 T4T 3

7 .

This is series S62.

Case 3.8.3.5.3.2: (l5, l6, l7) = (4, 4, 3). The relation g is of the form

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T l3
3 T l4

4 T 3
7 ,

where l3 + l4 = 1. If l3 = 1, then l4 = 0 holds and homogeneity of g yields l1 = a− 4c
and l2 = a. Grading matrix and relation are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a

2 T 4
6 + T3T 3

7 .

To satisfy condition (C2) from Setting 3.4.1, a must be odd. This is series S63. If l4 = 1,
then l3 = 0 holds and homogeneity of g yields l1 = b− 4c and l2 = b. Grading matrix
and relation are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, g = T b−4c

1 T 4
5 + T b

2 T 4
6 + T4T 3

7 .

To satisfy condition (C2) from Setting 3.4.1, b must be odd. This is series S64.

Case 3.8.3.5.4: µ ∈ ρ4. Applying Lemma 3.2.8 to the generator degree triple
(w1, w2, w4) shows that b4 = 1 holds. The relation degree µ and the generator de-
gree w5 lie on the same ray. If w5 is not primitive, then Lemma 3.2.7 applied to the pair
(w1, w5) shows that g contains a monomial of the form T l5

5 . In particular, µ is a multiple
of w5. If w5 is primitive, then clearly µ is a multiple of w5. So in any case there is k ≥ 2
with µ = kw5. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

Q =
[︄

1 1 a b a5 0 0
0 0 1 1 b5 1 1

]︄
, −K =

[︄
2 + a + b + (1− k)a5

4 + (1− k)b5

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

(k − 1)b5 ≤ 3, (3.8.3.36)
0 ≤ 1− 3a + b + (k − 1)(ab5 − a5). (3.8.3.37)

Equation 3.8.3.36 yields b5 ≤ 3. We distinguish three cases, depending on the value of b5.
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Case 3.8.3.5.4.1: b5 = 1. Equation 3.8.3.36 yields k ≤ 4. Set c := a5. Plugging the
value for b5 into Equation 3.8.3.37, we obtain

0 ≤ 1 + (k − 4)a + b + (1− k)c.

By the ordering of the generator degrees, the right hand side of this inequality is negative
for k < 4. Thus k = 4 holds. Grading matrix and relation degree are given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, µ = (4c, 4).

Moreover, Equation 3.8.3.37 yields the bound

µ1 ≤ 1 + b + c. (3.8.3.38)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is therefore divisible by precisely one of T5, T6, T7.
We have already seen that g contains the monomial T 4

5 . We establish bounds for the
exponents l6 and l7. Since µ2 = 4 holds, we immediately obtain l6, l7 ≤ 4. Consider the
monomial m of g divisible by T6. We write

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

By homogeneity of g we have l3 + l4 + l6 = 4. Combining this with the bound 3.8.3.38,
we obtain

(4− l6)b ≤ l3a + l4b ≤ µ1 ≤ 1 + b + c.

This inequality is only fulfilled for l6 ≥ 2. Similarly we obtain l7 ≥ 2. Switching the roles
of T6 and T7 if necessary, we may assume that l6 ≥ l7 holds. Note that due to the bound
3.8.3.38, the variable T3 appears in g with exponent at most one. In particular this yields
l6 ≥ 3. We show that l7 ≥ 3 holds. Assume l7 = 2. The monomial m of g containing T7
is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T 2
7 ,

where l3 + l4 = 2. With 3.8.3.38 we have

l3a + l4b ≤ 1 + b + c.

This yields l3 = 0 and l4 = 2 as well as b = c + 1. Thus we can write

g = T 4
5 + T l1

1 T l2
2 T 4−l6

3 T l6
6 + T m1

1 T m2
2 T 2

4 T 2
7 ,

where l1m1 = 0 and l2m2 = 0. Since b = c + 1 holds, the bound 3.8.3.38 now reads
µ1 ≤ 2c + 2. As µ1 = 4c holds, this yields c = 1. Thus the relation has degree µ = (4, 4).
Comparing this to the degree of the third monomial shows m1 = m2 = 0. But then
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g violates condition (C2) from Setting 3.4.1. A contradiction. Thus l7 ≥ 3 holds. We
distinguish the following three cases:

(l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 4, 3), (l5, l6, l7) = (4, 4, 4).

Case 3.8.3.5.4.1.1: (l5, l6, l7) = (4, 3, 3). Switching roles of T6 and T7 if necessary, we
write g as

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m1
1 T m2

2 T4T 3
7 ,

where l1m1 = 0 and l2m2 = 0. Comparing degrees of the second and third monomial
shows that m1 + m2 > 0 holds. We may assume m2 > 0. Then l2 = 0 holds. Assume
l1 = 0. Then homogeneity of g yields a = 4c and m1 = 4c− b−m2. Grading matrix and
relation are given by

Q =
[︄

1 1 4c b c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T 3
6 + T 4c−b−l

1 T l
2T4T 3

7 .

This is series S65. If l1 > 0, then we have m1 = 0 and homogeneity of g yields l1 = 4c− a
and l2 = 4c− b. Grading matrix and relation are given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−a
1 T3T 3

6 + T 4c−b
2 T4T 3

7 .

This is series S67.

Case 3.8.3.5.4.1.2: (l5, l6, l7) = (4, 4, 3). Switching roles of T1 and T2 if necessary, we
can write g as

g = T 4
5 + T l1

1 T l2
2 T 4

6 + T m2
2 T m3

3 T m4
4 T 3

7 ,

where l1 > 0, either l2 = 0 or m2 = 0 and m3 + m4 = 1 holds. To satisfy condition (C2)
from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd. Thus m2 = 0
holds. In case m3 = 1, we have m4 = 0. Homogeneity of g yields a = 4c and l1 = 4c− l2.
Grading matrix and relation are given by

Q =
[︄

1 1 4c b c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−l
1 T l

2T 4
6 + T3T 3

7 .

To satisfy condition (C2) from Setting 3.4.1, l must be odd. This is series S66. If m4 = 1,
then m3 = 0 holds and homogeneity of g yields b = 4c and l1 = 4c− l2.

Q =
[︄

1 1 a 4c c 0 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−l
1 T l

2T 4
6 + T4T 3

7 .

To satisfy condition (C2) from Setting 3.4.1, l must be odd. This is series S68.
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Case 3.8.3.5.4.1.3: (l5, l6, l7) = (4, 4, 4). Since µ2 = 4, the variables T3 and T4 do not
appear in g. Up to switching the roles of T1 and T2, the relation g is given by

g = T 4
5 + T 4c

1 T 4
6 + T 4c

2 T 4
7 .

This violates condition (C2) from Setting 3.4.1. Thus the case (l5, l6, l7) = (4, 4, 4) thus
not occur.

Case 3.8.3.5.4.2: b5 = 2. Equation 3.8.3.36 yields k = 2. Plugging the values for b5
and k into Equation 3.8.3.37, we obtain

0 ≤ 1 + b− a− a5 < 0.

A contradiction. Thus the case b5 = 2 does not occur.

Case 3.8.3.5.4.3: b5 = 3. Equation 3.8.3.36 yields k = 2. Set c := a5. Grading matrix
and the relation degree are given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 3 1 1

]︄
, µ = (2c, 6).

Plugging the values for b5 and k into Equation 3.8.3.37, we obtain the bound

µ1 ≤ 1 + b + c. (3.8.3.39)

In particular, we obtain c ≤ b + 1. The relation g is a trinomial consisting of pairwise
coprime monomials. Due to the position of µ, each monomial of g is therefore divisible
by precisely one of T5, T6, T7. We have already seen that g contains the monomial T 2

5 .
We establish bounds for the exponents l6 and l7. Since µ2 = 6 holds, we immediately
obtain l6, l7 ≤ 6. Consider the monomial m of g containing T6. It is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 ,

where l3 + l4 + l6 = 6. Homogeneity of g together with Equation 3.8.3.39 yield

(6− l6)b ≤ µ1 ≤ 1 + b + c ≤ 2b + 2.

This yields l6 ≥ 2. Similarly we obtain l7 ≥ 2. Switching the roles of T6 and T7 if
necessary, we may assume that l6 ≥ l7 holds. We show that l7 ≥ 3 holds. Assume l7 = 2.
Then the bound 3.8.3.39 yields b = 1. Moreover we obtain and c ≤ 2. The monomial m
of g containing T7 is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T 2
7

with l3 + l4 = 4. Thus homogeneity of g yields

l3a + 4− l3 = l3a + l4b ≤ µ1 = 2c ≤ 4.
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This yields l3 = 0 and l4 = 4. Moreover we obtain c = 2. Th relation g thus contains the
monomial m = T 4

4 T 2
7 . This violates condition (C2) from Setting 3.4.1. Thus l7 ≥ 3 holds.

Note that by the bound 3.8.3.39 the T3 appears in g with exponent at most one. Thus
we have l6 ≥ 5. Moreover, due to the position of µ, the case l6 = l7 = 6 cannot occur.
We thus distinguish the following six cases:

(l5, l6, l7) = (2, 5, 3), (l5, l6, l7) = (2, 5, 4), (l5, l6, l7) = (2, 5, 5),

(l5, l6, l7) = (2, 6, 3), (l5, l6, l7) = (2, 6, 4), (l5, l6, l7) = (2, 6, 5).

Case 3.8.3.5.4.3.1: (l5, l6, l7) = (2, 5, 3). The relation g is of the form

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T 3
4 T 3

7 ,

where l1m1 = 0 and l2m2 = 0. Applying the bound 3.8.3.39 to the third monomial of g,
we obtain

m1 + m2 + 3b ≤ µ1 ≤ 1 + b + c ≤ 2b + 2.

This yields b ≤ 2. Moreover, since c ≤ b + 1 holds, we obtain the bound c ≤ 3. In
particular, this yields mu1 ≤ 6. Applying this to the second monomial of g, we obtain the
bound a ≤ 6. For each triple of possible values for a, b, c we determine all homogeneous
trinomials g of degree deg(g) = µ that satisfy conditions (C1) and (C2) from Setting 3.4.1
and filter by isomorphy. Depending on the values of a, b, c we obtain the following
specifying data

(a, b, c) (3, 2, 3) (4, 2, 3) (5, 2, 3) (6, 2, 3) (3, 1, 2) (4, 1, 2)
ID 439-440 441-442 443 444 445 446

Case 3.8.3.5.4.3.2: (l5, l6, l7) = (2, 5, 4). The relation g is of the form

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T 2
4 T 4

7 ,

where l1m1 = 0 and l2m2 = 0. To satisfy condition (C2) from Setting 3.4.1, the exponents
m1 and m2 must both be positive and odd. Thus l1 = l2 = 0 holds. By homogeneity of g
we obtain a = 2c. Moreover, the bound 3.8.3.39, together with the inequality c ≤ b + 1,
yield m1 = m2 = 1 and b = c− 1. Grading matrix and relation are thus given by

Q =
[︄

1 1 2c c− 1 c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T1T2T 2

4 T 4
7 .

This is series S69.

Case 3.8.3.5.4.3.3: (l5, l6, l7) = (2, 5, 5). Switching roles of T6 and T7 if necessary, we
can write g as

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T4T 5
7 ,
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where l1m1 = 0 and l2m2 = 0. Comparing the degrees of the second and third monomial
of g shows that m1 + m2 > 0 holds. We may assume m2 > 0. Thus we have l2 = 0. If
l1 = 0 holds, then by homogeneity of g we obtain a = 2c and m1 = 2c− b−m2. Grading
matrix and relation are thus given by

Q =
[︄

1 1 2c b c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 2c−b−l

1 T l
2T4T 5

7 .

This is series S70. If l1 > 0 holds, then we have m1 = 0. By homogeneity of g we obtain
l1 = 2c− a and l2 = 2c− b. Grading matrix and relation are thus given by

Q =
[︄

1 1 a b c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−a
1 T3T 5

6 + T 2c−b
2 T4T 5

7 .

This is series S71.

Case 3.8.3.5.4.3.4: (l5, l6, l7) = (2, 6, 3). Switching roles of T1 and T2 if necessary, we
can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 3

7 ,

where l1 > 0, either l2 = 0 or m2 = 0 and l3 + l4 = 3 holds. To satisfy condition (C2)
from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd. Thus m2 = 0
holds. Applying the bound 3.8.3.39 to the third monomial of g and having in mind that
c ≤ b + 1 holds, we obtain

3b ≤ l3a + l4b ≤ µ1 ≤ 1 + b + c ≤ 2b + 2.

This yields b ≤ 2 and c ≤ 3. Note the by the bound 3.8.3.39 the exponent m3 is at most
one. If m3 = 0 holds, then by homogeneity of g we have 2c = 3b. This yields b = 2 and
c = 3. Grading matrix and relation are thus given by

Q =
[︄

1 1 a 2 3 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T l1
1 T l2

2 T 6
6 + T 3

4 T 3
7 ,

where l1 + l2 = 6. To satisfy condition (C2) from Setting 3.4.1, up to switching roles
of T1 and T2 we have l1 = 5 and l2 = 1. This is series S72. If m3 = 1 holds, then by
homogeneity of g we obtain a + 2b = 2c ≤ 2b + 2. Thus a = 2 holds. We also obtain
b = 1 and c = 2. Grading matrix and relation are thus given by

Q =
[︄

1 1 2 1 2 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T l1
1 T l2

2 T 6
6 + T3T 2

4 T 3
7 ,

where l1 + l2 = 4. To satisfy condition (C2) from Setting 3.4.1, up to switching roles of
T1 and T2, we have l1 = 3 and l2 = 1. This is specifying data no. 447.

Case 3.8.3.5.4.3.5: (l5, l6, l7) = (2, 6, 4). Switching roles of T1 and T2 if necessary, we
can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 4

7 ,
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where l1 > 0, either l2 = 0 or m2 = 0 and m3 + m4 = 2 holds. To satisfy condition
(C2) from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd. Thus
m1 = m2 = 0 holds. With the same argument we obtain l3 = l4 = 1. Homogeneity of g
together with the bound 3.8.3.39 yields a = c + 1 and b = c − 1. Grading matrix and
relation are thus given by

Q =
[︄

1 1 c + 1 c− 1 c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T l1
1 T l2

2 T 6
6 + T3T4T 4

7 ,

where l1 + l2 = 2c. This is series S73.

Case 3.8.3.5.4.3.6: (l5, l6, l7) = (2, 6, 5). Switching roles of T1 and T2 if necessary, we
can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 5
7 ,

where l1 > 0, either l2 = 0 or m2 = 0 and m3 + m4 = 1 holds. To satisfy condition
(C2) from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd. Thus
m1 = m2 = 0 holds. If m3 = 1, then we have m4 = 0. By homogeneity of g we obtain
a = 2c and l1 = 2c− l2. Grading matrix and relation are given by

Q =
[︄

1 1 2c b c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−l
1 T l

2T 6
6 + T3T 5

7 .

This is series S74. If m4 = 1, then we have m3 = 0. By homogeneity of g we obtain
b = 2c. Moreover we have l1 = 2c− l2. Grading matrix and relation are given by

Q =
[︄

1 1 a 2c c 0 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−l
1 T l

2T 6
6 + T4T 5

7 .

This leads to series S75.

3.9 Proof of Theorem 3.1.1: Case s = 6

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2, . . . , 6, according to the number of rays spanned by the degrees w1, . . . , w7.
In this section we treat the case s = 6.

Theorem 3.9.1. The tables from 3.10.11 provide specifying data (Q, g) for 31 infinite
series of locally factorial Fano fourfolds of Picard number ρ = 2 and complexity c = 1
with a hypersurface Cox ring and s = 6. Moreover, any locally factorial Fano fourfold
with a hypersurface Cox ring and invariants (ρ, c, s) = (2, 1, 6) is isomorphic to precisely
one X(Q, g) with (Q, g) from these tables.
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The proof of Theorem 3.9.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q, g) from the tables 3.10.11 defines
a locally factorial Fano fourfold X(Q, g) with a hypersurface Cox ring and invariants
(ρ, c, s) = (2, 1, 6). Moreover, with the help of Remark 3.4.3 we verify that distinct
specifying data from the tables in 3.10.11 define pairwise non-isomorphic varieties. The
second part is to show that any locally factorial Fano fourfold with a hypersurface Cox
ring and invariants (ρ, c, s) = (2, 1, 6) is isomorphic to X(Q, g) with (Q, g) from these
tables. This is done in Proposition 3.9.3.

Lemma 3.9.2. Let X as in Setting 3.4.1. If s = 6, then µ ̸∈ λ holds.

Proof. By Lemma 3.4.7 we have µ ∈ Eff(R)◦. Thus µ ∈ (ρ2 + ρ5) holds. Assume µ ∈ λ.
If µ ∈ Mov(R)◦, then by Proposition 3.3.2 the grading matrix Q = (w1, . . . , w7) and the
relation degree µ appear in the classification list of [45, Thm. 1.1]. However, there is no
entry in that list with s = 6. Thus we must have µ ∈ ∂ Mov(R). By the definition of the
moving cone, we have (ρ2 + ρ5) ⊆ Mov(R). This means that µ lies either on the ray ρ2 or
on the ray ρ5. Reversing ordering of the generator degrees if necessary we achieve µ ∈ ρ2.
As ρ2 is a bounding ray of Mov(R), we have n1 = 1. Moreover, by Remark 3.2.11, we
have n2 = 2. Thus the degree constellation of X is (n1, . . . , n6) = (1, 2, 1, 1, 1, 1). The
cone λ is contained in Mov(R) and has µ in it’s bounding ray. By [45, Prop. 2.8] no
generator degree lies in the interior of λ. This means that λ = ρ2 + ρ3 holds. Applying
Lemma 3.2.8 to the triples (w2, w3, wi) for i = 4, . . . , 7 shows that the cones ρ2 + ρi are
all regular. We can thus apply a unimodular transformation to achieve

Q =
[︄

a1 a2 a3 a4 a5 a6 0
−b1 0 0 1 1 1 1

]︄
, µ = (µ2, 0).

Note that we have det(w1, w4) > 1 as well as det(w1, w5) > 1. Thus by Lemma 3.2.7, the
relation g contains monomials of the form T l1

1 T l4
4 and T m1

1 T m5
5 . By homogeneity of g and

the position of µ, the exponents l1, l4, m1, m5 are all positive. This violates condition
(C1) from Setting 3.4.1. Thus µ ̸∈ λ holds.

Proposition 3.9.3. Let X as in Setting 3.4.1 with s = 6. Then X is isomorphic to an
X(Q, g) with specifying data (Q, g) appearing in Classification list 3.10.11.

Proof. By Lemma 3.9.2 the relation degree µ is not contained in λ. We are thus in the
situation of Lemma 3.4.6, which tells us that either λ+ or λ− is one-dimensional. By
reversing the order of the variables if necessary, we may assume that λ = ρ1 + ρ2 holds.
Moreover, we have n1 ≥ 2 and all generator degrees contained in ρ1 are primitive. Since
there are six rays and seven generator degrees, this already fixes the degree constellation
of X to be (n1, . . . , n6) = (2, 1, 1, 1, 1, 1). By Lemma 3.4.7, µ is contained in the interior
of Eff(R). Thus applying Lemma 3.2.8 to the triple (w1, w2, w7) shows that the cone
Eff(R) is effective and that w7 is primitive. We may thus assume that Eff(R) is the
positive quadrant and that

w1 = w2 = (1, 0), w7 = (0, 1)
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holds. By Remark 3.2.11 we have µ ∈ (ρ2 + ρ4)\ρ2. Applying Lemma 3.2.8 to the triples
(w1, w2, w3) and (w1, w2, w6) shows that the cones ρ1 + ρ2 and ρ1 + ρ5 are regular and
that w3 and w6 are primitive. The grading matrix of X is thus of the form

Q =
[︄

1 1 a a4 a5 d 0
0 0 1 b4 b5 1 1

]︄
, a, a4, a5, b4, b5, d ∈ Z≥1 .

There are four possible positions of µ, displayed in the following pictures.

λ

µ ∈ (ρ2 + ρ3)◦

λ

µ ∈ ρ3

λ

µ ∈ (ρ3 + ρ4)◦

λ

µ ∈ ρ4

The black dots represent the generator degrees w1, . . . , w7, the white circle represents
the relation degree µ. We distinguish four cases, according to the position of µ.

Case 3.9.3.1: µ ∈ (ρ2 + ρ3)◦. Applying Lemma 3.2.8 to the triples (w1, w2, w4) and
(w1, w2, w5) shows that b4 = b5 = 1 holds. Set b := a4 and c := a5. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + c + d− µ1

5− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.9.3.1)
µ1 ≤ 1 + (µ2 − 4)a + b + c + d. (3.9.3.2)

The position of µ yields µ2b + 1 ≤ µ1. Combining this with Equation 3.9.3.2, we obtain

0 ≤ (µ2 − 4)a + (1− µ2)b + c + d.

By the ordering of the generator degrees, the right hand side of this inequality is negative
for µ2 ≤ 4. This is a contradiction to Equation 3.9.3.1. Thus the case µ ∈ (ρ2 + ρ3)◦

does not occur.

Case 3.9.3.2: µ ∈ ρ3. Applying Lemma 3.2.8 to the triple (w1, w2, w5) shows that
b5 = 1 holds. The relation degree µ and the generator degree w4 lie on the same ray. If
w4 is not primitive, then Lemma 3.2.7 applied to the pair (w1, w4) shows that g contains
a monomial of the form T l4

4 . In particular, µ is a multiple of w4. If w4 is primitive, then
clearly µ is a multiple of w4. So in any case there is k ≥ 2 with µ = kw4. Set c := a5.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a a4 c d 0
0 0 1 b4 1 1 1

]︄
, −K =

[︄
2 + a + (1− k)a4 + c + d

4 + (1− k)b4

]︄
.
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From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

(k − 1)b4 ≤ 3, (3.9.3.3)
0 ≤ 1 + ((k − 1)b4 − 3)a + (1− k)a4 + c + d. (3.9.3.4)

By Equation 3.9.3.3 we have b4 ≤ 3. We distinguish three cases, depending on the value
of b4.

Case 3.9.3.2.1: b4 = 1. Plugging the value for b4 into Equation 3.9.3.4, we obtain

0 ≤ 1 + (k − 4)a + (1− k)a4 + c + d.

By the ordering of the generator degrees, the right hand side of this inequality is negative
for k ≤ 4. This is a contradiction to Equation 3.9.3.3. Thus the case b4 = 1 does not
occur.

Case 3.9.3.2.2: b4 = 2. By Equation 3.9.3.3 we have k = 2. Plugging the values for b4
and k into Equation 3.9.3.4, we obtain

0 ≤ 1− a− a4 + c + d.

By the ordering of the generator degrees, the right hand side of this inequality is negative.
A contradiction. Thus the case b4 = 2 does not occur.

Case 3.9.3.2.3: b4 = 3. By Equation 3.9.3.3 we have k = 2. Plugging the values for b4
and k into Equation 3.9.3.4, we obtain

0 ≤ 1− 2a4 + c + d.

By the ordering of the generator degrees, the right hand side of this inequality is negative.
A contradiction. Thus the case b4 = 3 does not occur.

Case 3.9.3.3: µ ∈ (ρ3 + ρ4)◦. Applying Lemma 3.2.8 to the triples (w1, w2, w4) and
(w1, w2, w5) shows that b4 = b5 = 1 holds. Set b := a4 and c := a5. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, −K =

[︄
2 + a + b + c + d− µ1

5− µ2

]︄
.

From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

µ2 ≤ 4, (3.9.3.5)
µ1 ≤ 1 + (µ2 − 4)a + b + c + d. (3.9.3.6)

The position of µ yields µ2c + 1 ≤ µ1. Combining this with Equation 3.9.3.6, we obtain

0 ≤ (µ2 − 4)a + b + (1− µ2)c + d.
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The right hand side of the inequality is negative for µ2 < 4. Thus, by Equation 3.9.3.5,
we obtain µ2 = 4. Plugging this into Equation 3.9.3.2, we obtain the bound

µ1 ≤ 1 + b + c + d. (3.9.3.7)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is thus divisible by precisely one of T5, T6, T7. We
establish bounds on the exponents l5, l6, l7. Since µ2 = 4 holds, we immediately obtain
l5, l6, l7 ≤ 4. Consider the monomial m of g containing T5. It is of the form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l5
5 .

Homogeneity of g yields l3 + l4 + l5 = 4 and l1 + l2 + l3a + l4b + l5c = µ1. Combining
this with the bound 3.9.3.7, we obtain

0 ≤ 1 + (l5 − 3)b + (1− l5)c + d.

The right hand side of this inequality is negative for l5 ≤ 3. Thus l5 = 4 holds. This
also yields l3 = l4 = 0. The monomial m is therefore of the form m = T l1

1 T l2
2 T 4

5 with
l1 + l2 > 0. We may assume l1 > 0. So the variable T1 does not appear in the other
two monomials of g. Similarly we obtain l6 ≥ 3 and l7 ≥ 2. We show that l7 ≥ 3 holds.
Assume l7 = 2. For the monomial m of g containing T7 we write

m = T l2
2 T l3

3 T l4
4 T 2

7 .

By homogeneity of g we have l3 + l4 = 2. With the bound 3.9.3.7 we obtain

2b ≤ l3a + l4b ≤ µ1 ≤ 1 + b + c + d ≤ b + 2c.

Thus we have b ≤ 2c. Applying the bound 3.9.3.7 to the monomial of g containing T5,
we obtain

4c < l1 + l2 + 4c = µ1 ≤ 1 + b + c + d ≤ b + 2c.

Thus b > 2c holds. A contradiction. Thus we must have l7 ≥ 3. Note that due to the
location of µ, the case l5 = l6 = l7 = 4 does not occur. We now distinguish the following
three cases:

(l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 3, 4), (l5, l6, l7) = (4, 4, 3).

Case 3.9.3.3.1: (l5, l6, l7) = (4, 3, 3). The relation g is of the form

g = T l1
1 T l2

2 T 4
5 + T k2

2 T k3
3 T k4

4 T 3
6 + T m2

2 T m3
3 T m4

4 T 3
7 ,

where at most one of l2, k2, m2 is non-zero and the other exponents in g satisfy the
following conditions:

l1 > 1, k3 + k4 = 1, m3 + m4 = 1, k3m3 = 1, k4m4 = 1.
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We distinguish two cases, depending on the value of l3.

Case 3.9.3.3.1.1: l3 = 1. We have m3 = 0, l4 = 0 and m4 = 1. Comparing degrees of
the second and third monomial of g shows that m2 > 0 holds. Thus we have l2 = k2 = 0.
Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T a−4c+3d

1 T 4
5 + T3T 3

6 + T a−b+3d
2 T4T 3

7 .

This is series S76.

Case 3.9.3.3.1.2: l3 = 0. We have m3 = 1, l4 = 1 and m4 = 0. The relation g is of the
form

g = T l1
1 T l2

2 T 4
5 + T k2

2 T4T 3
6 + T m2

2 T3T 3
7 .

We further distinguish three cases, depending on the values of l2, k2, m2.

Case 3.9.3.3.1.2.1: l2 > 0. We have k2 = m2 = 0. Using homogeneity of g, we obtain
a = b + 3d. Grading matrix and relation are given by

Q =
[︄

1 1 b + 3d b c d 0
0 0 1 1 1 1 1

]︄
, g = T b−4c+3d−l

1 T l
2T 4

5 + T4T 3
6 + T3T 3

7 .

This is series S78.

Case 3.9.3.3.1.2.2: k2 > 0. We have l2 = m2 = 0. Using homogeneity of g, we obtain
a = b + 3d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a−b−3d

2 T4T 3
6 + T3T 3

7 .

This is series S79.

Case 3.9.3.3.1.2.3: m2 > 0. We have l2 = k2 = 0. Using homogeneity of g, we obtain
a = b + 3d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T b−4c+3d

1 T 4
5 + T4T 3

6 + T b+3d−a
2 T3T 3

7 .

This is series S81.

Case 3.9.3.3.2: (l5, l6, l7) = (4, 3, 4). The relation g is of the form

g = T l1
1 T 4

5 + T l3
3 T l4

4 T 3
6 + T l2

2 T 4
7 ,

where l3 + l4 = 1. We distinguish two cases, depending on the values of l3 and l4.
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Case 3.9.3.3.2.1: l3 = 1. We have l4 = 0. Homogeneity of g yields l1 = a + 3d− 4c
and l2 = a + 3d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T a−4c+3d

1 T 4
5 + T3T 3

6 + T a+3d
2 T 4

7 .

This is series S77.

Case 3.9.3.3.2.2: l4 = 1. We have l3 = 0. Homogeneity of g yields l1 = b + 3d − 4c
and l2 = b + 3d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T b−4c+3d

1 T 4
5 + T4T 3

6 + T b+3d
2 T 4

7 .

This is series S82.

Case 3.9.3.3.3: (l5, l6, l7) = (4, 4, 3). The relation g is of the form

g = T l1
1 T 4

5 + T l2
2 T 4

6 + T l3
3 T l4

4 T 3
7 ,

where l3 + l4 = 1. We distinguish two cases, depending on the values of l3 and l4.

Case 3.9.3.3.3.1: l3 = 1. We have l4 = 0. Homogeneity of g yields l1 = a − 4c and
l2 = a− 4d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T a−4c

1 T 4
5 + T a−4d

2 T 4
6 + T3T 3

7 .

This is series S80.

Case 3.9.3.3.3.2: l4 = 1. We have l3 = 0. Homogeneity of g yields l1 = b − 4c and
l2 = b− 4d. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T b−4c

1 T 4
5 + T b−4d

2 T 4
6 + T4T 3

7 .

This is series S83.

Case 3.9.3.4: µ ∈ ρ4. Applying Lemma 3.2.8 to the triple (w1, w2, w4) shows that
b4 = 1 holds. The relation degree µ and the generator degree w5 lie on the same ray. If
w5 is not primitive, then Lemma 3.2.7 applied to the pair (w1, w5) shows that g contains
a monomial of the form T l5

5 . In particular, µ is a multiple of w5. If w5 is primitive, then
clearly µ is a multiple of w5. So in any case there is k ≥ 2 with µ = kw5. Set b := a4.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

Q =
[︄

1 1 a b a5 d 0
0 0 1 1 b5 1 1

]︄
, −K =

[︄
2 + a + b + (1− k)a5 + d

4 + (1− k)b5

]︄
.
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From X being Fano, ie. µ ∈ λ◦, we infer the inequalities

(k − 1)b5 ≤ 3, (3.9.3.8)
0 ≤ 1 + ((k − 1)b5 − 3)a + b− (k − 1)a5 + d. (3.9.3.9)

Equation 3.9.3.8 yields b5 ≤ 3. We distinguish three cases, depending on the value of b5.

Case 3.9.3.4.1: b5 = 1. Equation 3.9.3.8 yields k ≤ 4. Plugging the value for b5 into
Equation 3.9.3.9, we obtain

0 ≤ 1 + (k − 4)a + b− (k − 1)a5 + d.

The right hand side is negative for k ≤ 3. Thus k = 4 holds. Set c := a5. Grading matrix
and relation degree are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, µ = (4c, 4).

From Equation 3.9.3.9, we obtain the bound

µ1 ≤ 1 + b + c + d. (3.9.3.10)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is thus divisible by precisely one of T5, T6, T7. The
relation g contains the monomial T 4

5 . The other two monomials are each divisible by
one of T6, T7. We establish bounds on the exponents l6 and l7. Since µ2 = 4 holds, we
immediately obtain l6, l7 ≤ 4. Consider the monomial m of g containing T6. It is of the
form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

By homogeneity of g we have l3 + l4 + l6 = 4 and l1 + l2 + l3a + l4b + l6d = µ1. Combining
this with the bound 3.9.3.10, we obtain

0 ≤ 1 + (l6 − 3)b + c + (1− l6)d.

The right hand side of this inequality is negative for l6 ≤ 2. Thus l6 ≥ 3 holds. Similarly
we obtain l7 ≥ 2. We show that l7 ≥ 3 holds. Assume l7 = 2. For the monomial m of g
containing T7 we have

m = T l1
1 T l2

2 T l3
3 T l4

4 T 2
7 ,

where l3 + l4 = 2. Applying the bound 3.9.3.10 to the degree of m, we obtain b ≥ 2c. On
the other hand, the bound 3.9.3.10 applied to the degree of T 4

5 , we obtain b ≥ 2c. Thus
b = 2c holds. This yields l4 = 2 and l1 = l2 = l3 = 0. The relation g thus contains the
monomials T 4

5 and T 2
4 T 2

7 . This violates condition (C2) from 3.4.1. Thus l7 ≥ 3 holds.
Note that due to condition (C2) from Setting 3.4.1 the case l5 = l6 = l7 = 4 cannot occur.
We thus distinguish the following three cases:

(l5, l6, l7) = (4, 3, 3), (l5, l6, l7) = (4, 3, 4), (l5, l6, l7) = (4, 4, 3).
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Case 3.9.3.4.1.1: (l5, l6, l7) = (4, 3, 3). The relation g is of the form

g = T 4
5 + T l1

1 T l2
2 T l3

3 T l4
4 T 3

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 3
7 ,

where the exponents in g satisfy

l1m1 = 0, l2m2 = 0, l3m3 = 0, l4m4 = 0, l3 + l4 = 1, m3 + m4 = 1.

We distinguish two cases, depending on the value of T3.

Case 3.9.3.4.1.1.1: l3 = 1. We have l4 = m3 = 0 and m4 = 1. The relation g is of the
form

g = T 4
5 + T l1

1 T l2
2 T3T 3

6 + T m1
1 T m2

2 T4T 3
7 .

Comparing the degrees of the second and third monomial of g shows that m1 + m2 > 0
holds. We may assume m2 > 0. So we have l2 = 0. If l1 = 0, then homogeneity of g
yields a = 4c− 3d and m1 = 4c− b− l2. Grading matrix and relation are given by

Q =
[︄

1 1 4c− 3d b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T 3
6 + T 4c−b−l

1 T l
2T4T 3

7 .

This is series S84. If l1 > 0, then m1 = 0 holds. Homogeneity of g yields l1 = 4c− a− 3d
and m2 = 4c− b. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−a−3d
1 T3T 3

6 + T 4c−b
2 T4T 3

7 .

This is series S86.

Case 3.9.3.4.1.1.2: l3 = 0. We have l4 = m3 = 1 and m4 = 0. The relation g is of the
form

g = T 4
5 + T l1

1 T l2
2 T4T 3

6 + T m1
1 T m2

2 T3T 3
7 .

We distinguish four cases, depending on the values of l1 + l2 and m1 + m2.

Case 3.9.3.4.1.1.2.1: l1 = l2 = m1 = m2 = 0. Homogeneity of g yields b = 4c − 3d
and a = 4c. Grading matrix and relation are given by

Q =
[︄

1 1 4c 4c− 3d c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T4T 3
6 + T3T 3

7 .

This is series S88.

Case 3.9.3.4.1.1.2.2: l1 + l2 > 0, m1 = m2 = 0. Homogeneity of g yields l1 =
4c− b− 3d− l2 and a = 4c. Grading matrix and relation are given by

Q =
[︄

1 1 4c b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−b−3d−l
1 T l

2T4T 3
6 + T3T 3

7 .
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This is series S89.

Case 3.9.3.4.1.1.2.3: l1 = l2 = 0, m1 + m2 > 0. Homogeneity of g yields b = 4c− 3d
and m1 = 4c− a−m2. Grading matrix and relation are given by

Q =
[︄

1 1 a 4c− 3d c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T4T 3
6 + T 4c−a−l

1 T l
2T3T 3

7 .

This is series S91.

Case 3.9.3.4.1.1.2.4: l1 + l2 > 0, m1 + m2 > 0. Switching the roles of T1 and T2 if
necessary, we may assume l1 > 0 and m2 > 0. So we have l2 = m1 = 0. Homogeneity of
g yields l1 = 4c− b− 3d and m2 = 4c− a. Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−b−3d
1 T4T 3

6 + T 4c−a
2 T3T 3

7 .

This is series S87.

Case 3.9.3.4.1.2: (l5, l6, l7) = (4, 3, 4). The relation g is of the form

g = T 4
5 + T l1

1 T l2
2 T l3

3 T l4
4 T 3

6 + T m1
1 T m2

2 T 4
7 ,

where l1m1 = 0, l2m2 = 0 and l3 + l4 = 1. To satisfy condition (C2) from Setting 3.4.1,
the exponents m1 and m2 must both be positive and odd. Thus l1 = l2 = 0 holds. If
l3 = 1, then l4 = 0 holds. Homogeneity of g yields a = 4c − 3d and m1 = 4c − m2.
Grading matrix and relation are given by

Q =
[︄

1 1 4c− 3d b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T3T 3
6 + T 4c−l

1 T l
2T 4

7 .

This is series S85. If l4 = 1, then l3 = 0 holds. Homogeneity of g yields b = 4c− 3d and
m1 = 4c−m2. Grading matrix and relation are given by

Q =
[︄

1 1 a 4c− 3d c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T4T 3
6 + T 4c−l

1 T l
2T 4

7 .

This is series S92.

Case 3.9.3.4.1.3: (l5, l6, l7) = (4, 4, 3). The relation g is of the form

g = T 4
5 + T l1

1 T l2
2 T 4

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 3
7 ,

where l1m1 = 0, l2m2 = 0 and m3 + m4 = 1. To satisfy condition (C2) from Setting 3.4.1,
the exponents l1 and l2 must both be positive and odd. Thus m1 = m2 = 0 holds. If
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m3 = 1, then m4 = 0 holds. Homogeneity of g yields a = 4c and l1 = 4c − 4d − l2.
Grading matrix and relation are given by

Q =
[︄

1 1 4c b c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−4d−l
1 T l

2T 4
6 + T3T 3

7 .

This is series S90. If m4 = 1, then m3 = 0 holds. Homogeneity of g yields b = 4c and
l1 = 4c− 4d− l2. Grading matrix and relation are given by

Q =
[︄

1 1 a 4c c d 0
0 0 1 1 1 1 1

]︄
, g = T 4

5 + T 4c−4d−l
1 T l

2T 4
6 + T4T 3

7 .

This is series S93.

Case 3.9.3.4.2: b5 = 2. Equation 3.9.3.8 yields k = 2. Plugging the values for b5 and k
into Equation 3.9.3.9, we obtain

0 ≤ 1− a + b− a5 + d

By the ordering of the generator degrees, the right hand side is negative. A contradiction.
Thus the case b5 = 2 does not occur.

Case 3.9.3.4.3: b5 = 3. Equation 3.9.3.8 yields k = 2. Set c := a5. Grading matrix and
relation degree are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 3 1 1

]︄
, µ = (2c, 6).

Plugging the values for b5 and k into Equation 3.9.3.9, we obtain the bound

µ1 ≤ 1 + b + c + d. (3.9.3.11)

The relation g is a trinomial consisting of pairwise coprime monomials. Due to the
position of µ, each monomial of g is thus divisible by precisely one of T5, T6, T7. The
relation g contains the monomial T 2

5 . The other two monomials are each divisible by
one of T6, T7. We establish bounds on the exponents l6 and l7. Since µ2 = 6 holds, we
immediately obtain l6, l7 ≤ 6. Consider the monomial m of g containing T6. It is of the
form

m = T l1
1 T l2

2 T l3
3 T l4

4 T l6
6 .

Homogeneity of g yields l3 + l4 + l6 = 6 and l1 + l2 + l3a + l4b + l6d = µ1. Combining
this with the bound 3.9.3.11, we obtain

0 ≤ 1 + (l6 − 5)b + c + (1− l6)d.

The right hand side of this inequality is negative for l6 < 5. Thus l6 ≥ 5 holds. Similarly
we obtain l7 ≥ 4. Note that by condition (C2) from Setting 3.4.1 the case l6 = l7 = 6
cannot occur. We thus distinguish the followingh five cases:

(l5, l6, l7) = (2, 5, 4), (l5, l6, l7) = (2, 5, 5), (l5, l6, l7) = (2, 5, 6),
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(l5, l6, l7) = (2, 6, 4), (l5, l6, l7) = (2, 6, 5).

Case 3.9.3.4.3.1: (l5, l6, l7) = (2, 5, 4). The relation g is of the form

g = T 2
5 + T l1

1 T l2
2 T l3

3 T l4
4 T 5

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 4
7 ,

where the exponents in g satisfy the following conditions:

l3 + l4 = 1, m3 + m4 = 2, l1m1 = 0, l2m2 = 0, l3m3 = 0, l4m4 = 0.

Thus either m3 = 2 or m4 = 2 holds. To satisfy condition (C2) from Setting 3.4.1, the
exponents m1 and m2 must be positive and odd. Thus l1 = l2 = 0 holds. We distinguish
two cases, depending on the values of m3 and m4.

Case 3.9.3.4.3.1.1: m3 = 2, m4 = 0. We have l4 = 1 and l3 = 0. Homogeneity of g
yields b = 2c− 5d and m1 = 2c− 2a−m2. Grading matrix and relation are given by

Q =
[︄

1 1 a 2c− 5d c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T4T 5
6 + T 2c−2a−l

1 T l
2T 2

3 T 4
7 .

This is series S94.

Case 3.9.3.4.3.1.2: m3 = 0, m4 = 2. We have l3 = 1 and l4 = 0. Homogeneity of g
yields a = 2c− 5d and m1 = 2c− 2b−m2. Grading matrix and relation are given by

Q =
[︄

1 1 2c− 5d b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 2c−2b−l

1 T l
2T 2

4 T 4
7 .

This is series S97.

Case 3.9.3.4.3.2: (l5, l6, l7) = (2, 5, 5). The relation g is of the form

g = T 2
5 + T l1

1 T l2
2 T l3

3 T l4
4 T 5

6 + T m1
1 T m2

2 T m3
3 T m4

4 T 5
7 ,

where the exponents in g satisfy the following conditions:

l3 + l4 = 1, m3 + m4 = 1, l1m1 = 0, l2m2 = 0, l3m3 = 0, l4m4 = 0.

We distinguish two cases, depending on the value of l3.

Case 3.9.3.4.3.2.1: l3 = 1. We have l4 = m3 = 0 and m4 = 1. The relation g is of the
form

g = T 2
5 + T l1

1 T l2
2 T3T 5

6 + T m1
1 T m2

2 T4T 5
7 .

By homogeneity of g we have m1 + m2 > 0. We may assume that m2 > 0 holds. So we
have l2 = 0. If l1 = 0, then homogeneity of g yields a = 2c− 5d and m1 = 2c− b−m2.
Grading matrix and relation are thus given by

Q =
[︄

1 1 2c− 5d b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 2c−b−l

1 T l
2T4T 5

7 .
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This is series S98. If l1 > 0, then we have m1 = 0. Homogeneity of g yields l1 = 2c−a−5d
and m2 = 2c− a. Grading matrix and relation degree are thus given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−a−5d
1 T3T 5

6 + T 2c−b
2 T4T 5

7 .

This is series S100.

Case 3.9.3.4.3.2.2: l3 = 0. We have l4 = m3 = 1 and m4 = 0. The relation g is of the
form

g = T 2
5 + T l1

1 T l2
2 T4T 5

6 + T m1
1 T m2

2 T3T 5
7 .

We distinguish four cases, depending on the values of l1 + l2 and m1 + m2.

Case 3.9.3.4.3.2.2.1: l1 = l2 = m1 = m2 = 0. Homogeneity of g yields b = 2c − 5d
and a = 2c. Grading matrix and relation are given by

Q =
[︄

1 1 2c 2c− 5d c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T4T 5
6 + T3T 5

7 .

This is series S102.

Case 3.9.3.4.3.2.2.2: l1 + l2 > 0, m1 = m2 = 0. Homogeneity of g yields l2 =
2c− b− 5d− l2 and a = 2c. Grading matrix and relation are given by

Q =
[︄

1 1 2c b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−b−5d−l
1 T l

2T4T 5
6 + T3T 5

7 .

This is series S103.

Case 3.9.3.4.3.2.2.3: l1 = l2 = 0, m1 + m2 > 0. Homogeneity of g yields b = 2c− 5d
and m1 = 2c− a−m2. Grading matrix and relation are given by

Q =
[︄

1 1 a 2c− 5d c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T4T 5
6 + T 2c−a−l

1 T l
2T3T 5

7 .

This is series S95.

Case 3.9.3.4.3.2.2.4: l1 + l2 > 0, m1 + m2 > 0. We may assume l1 > 0 and m2 > 0.
Then l2 = m1 = 0 holds. Homogeneity of g yields l1 = 2c − b − 5d and m2 = 2c − a.
Grading matrix and relation are given by

Q =
[︄

1 1 a b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−b−5d
1 T4T 5

6 + T 2c−a
2 T3T 5

7 .

This is series S101.
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Case 3.9.3.4.3.3: (l5, l6, l7) = (2, 5, 6). Switching roles of T1 and T2 if necessary, we
may write g as

g = T 2
5 + T l1

1 T l3
3 T l4

4 T 5
6 + T m1

1 T m2
2 T 6

7 ,

where m2 > 0, at most one of l1, m1 is non-zero and l3 + l4 = 1. To satisfy condition
(C2) from Setting 3.4.1, the exponents m1 and m2 must both be positive and odd. Thus
we have l1 = 0. If l3 = 1, then l4 = 0 holds. Homogeneity of g yields a = 2c− 5d and
m1 = 2c−m2. Grading matrix and relation are given by

Q =
[︄

1 1 2c− 5d b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T3T 5
6 + T 2c−l

1 T l
2T 6

7 .

This is series S99. If l4 = 1, then l3 = 0 holds. Homogeneity of g yields b = 2c− 5d and
m1 = 2c−m2. Grading matrix and relation are given by

Q =
[︄

1 1 a 2c− 5d c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T4T 5
6 + T 2c−l

1 T l
2T 6

7 .

This is series S96.

Case 3.9.3.4.3.4: (l5, l6, l7) = (2, 6, 4). Switching roles of T1 and T2 if necessary, we
may write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 4

7 ,

where l1 > 0, at most one of l2, m2 is non-zero and m3 + m4 = 2 holds. To satisfy
condition (C2) from Setting 3.4.1, the exponents l1 and l2 must both be positive and
odd. Thus we have m2 = 0. With the same argument also we obtain m3 = m4 = 1.
Homogeneity of g yields l1 = 2c− 6d− l2 and a = 2c− b. Grading matrix and relation
are given by

Q =
[︄

1 1 2c− b b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−6d−l
1 T l

2T 6
6 + T3T4T 4

7 .

This is series S105.

Case 3.9.3.4.3.5: (l5, l6, l7) = (2, 6, 5). Switching roles of T1 and T2 if necessary, we
can write g as

g = T 2
5 + T l1

1 T l2
2 T 6

6 + T m2
2 T m3

3 T m4
4 T 5

7 ,

where l1 > 0, at most one of l2, m2 is non-zero and m3 + m4 = 1 holds. To satisfy
condition (C2) from Setting 3.4.1, the exponents l1 and l2 must both be positive and odd.
Thus we have m2 = 0. If m3 = 1, then m4 = 0 holds. Homogeneity of g yields a = 2c
and l1 = 2c− 6d− l2. Grading matrix and relation are given by

Q =
[︄

1 1 2c b c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−6d−l
1 T l

2T 6
6 + T3T 5

7 .
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This is series S104. If m4 = 1, then m3 = 0 holds. Homogeneity of g yields b = 2c and
l1 = 2c− 6d− l2. Grading matrix and relation are given by

Q =
[︄

1 1 a 2c c d 0
0 0 1 1 3 1 1

]︄
, g = T 2

5 + T 2c−6d−l
1 T l

2T 6
6 + T3T 5

7 .

This is series S106.

3.10 Classification lists
Here we provide the detailed presentation of our classification results. Let us briefly
recall the background. Each locally factorial Fano fourfould X of Picard number two
and complexity one with a hypersurface Cox ring can be encoded by the degree matrix
Q, that means the list [w1, . . . , w7] of degrees of the Cox ring generators in Cl(X) = Z2,
and the defining trinomial g. Each such variety X is isomorphic to precisely one X(Q, g)
with specifying data Q = [w1, . . . , w7] and g appearing in the Classification lists 3.10.1 to
3.10.11. Here X(Q, g) = Xg is the variety from Construction 3.2.2 associated with the
Z2-graded C-algebra Rg, where the grading is given by deg(Ti) = wi.

To make the classification easier to navigate, we split it into several lists, each one
containing the specifying data for a given number s of rays generated by the degrees
w1, . . . , w7, with either µ ∈ λ or µ ̸∈ λ. Moreover, in the case µ ̸∈ λ we separate the
sporadic cases from the infinite series of specifying data. Apart from the specifying data
(Q, g), the classification lists also contain the relation degree µ = deg(g), the anticanonical
class −K ∈ Z2 and, for the sporadic cases, also the anticanonical degree K4. A data file
containing the complete classification data is also available at [18].

Classification list 3.10.1. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the case
with s = 2.

ID [w1, . . . , w7] µ −K K4 g

1
[︂

1 1 1 1 0 0 0
0 0 0 0 1 1 1

]︂
(1, 1) (3, 2) 432 T1T6 + T2T5 + T4T7

2 [︂
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]︂
(2, 1) (2, 2) 256 T 2

1 T6 + T2T3T7 + T 2
4 T5

3 T 2
1 T6 + T 2

3 T7 + T 2
4 T5

4 [︂
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]︂
(3, 1) (1, 2) 80 T 3

1 T7 + T 3
3 T5 + T 3

4 T6
5 T 3

1 T5 + T 2
2 T4T6 + T 3

3 T7

6
[︂

1 1 1 1 0 0 0
0 0 0 0 1 1 1

]︂
(1, 2) (3, 1) 270 T1T 2

6 + T2T 2
7 + T3T 2

5

7 [︂
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]︂
(3, 2) (1, 1) 26 T 3

1 T 2
7 + T 3

2 T 2
6 + T 2

3 T4T 2
5

8 T 3
1 T 2

5 + T 3
3 T 2

6 + T 3
4 T 2

7
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ID [w1, . . . , w7] µ −K K4 g

9 [︂
1 1 1 1 3 0 0
0 0 0 0 0 1 1

]︂
(6, 0) (1, 2) 16 T 3

1 T 3
3 + T 5

2 T4 + T 2
5

10 T1T 5
4 + T 5

2 T3 + T 2
5

11 [︂
1 1 1 2 3 0 0
0 0 0 0 0 1 1

]︂
(6, 0) (2, 2) 64

T 4
1 T2T3 + T 3

4 + T 2
5

12 T 5
1 T3 + T 3

4 + T 2
5

13 T 3
1 T 2

2 T3 + T 3
4 + T 2

5

14
[︂

1 1 1 1 2 0 0
0 0 0 0 0 1 1

]︂
(4, 0) (2, 2) 128 T1T 3

3 + T 3
2 T4 + T 2

5

15
[︂

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]︂
(2, 0) (3, 2) 432 T1T3 + T2T5 + T 2

4

16
[︂

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]︂
(3, 0) (2, 2) 192 T 2

1 T4 + T 2
2 T5 + T 3

3

17
[︂

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]︂
(4, 0) (1, 2) 32 T 3

1 T2 + T 3
3 T4 + T 4

5

18
[︂

1 1 2 3 0 0 0
0 0 0 0 1 1 1

]︂
(6, 0) (1, 3) 54 T 5

1 T2 + T 3
3 + T 2

4

Classification list 3.10.2. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases
with s = 3 and µ ∈ λ.

ID [w1, . . . , w7] µ −K K4 g

19 [︂
1 1 1 1 0 0 −1
0 0 0 0 1 1 1

]︂
(1, 1) (2, 2) 416 T 2

2 T7 + T1T5 + T3T6
20 T3T4T7 + T1T6 + T2T5

21 [︂
1 1 1 1 0 0 −1
0 0 0 0 1 1 1

]︂
(1, 2) (2, 1) 163 T2T 2

3 T 2
7 + T1T 2

5 + T4T 2
6

22 T 3
3 T 2

7 + T2T 2
5 + T4T 2

6

26 [︂
1 1 1 1 0 0 −2
0 0 0 0 1 1 1

]︂
(1, 1) (1, 2) 464 T 3

4 T7 + T2T5 + T3T6
27 T 2

3 T4T7 + T1T6 + T2T5

31 [︂
1 1 1 1 1 0 0
0 0 0 0 1 1 1

]︂
(2, 1) (3, 2) 352 T1T4T6 + T 2

3 T7 + T2T5
32 T 2

1 T7 + T 2
4 T6 + T3T5

33 [︂
1 1 1 1 1 0 0
0 0 0 0 1 1 1

]︂
(3, 2) (2, 1) 81 T 3

1 T 2
7 + T 2

2 T4T 2
6 + T3T 2

5
34 T 3

3 T 2
6 + T 3

4 T 2
7 + T1T 2

5

44 [︂
1 1 1 1 0 0 0

−1 0 0 0 1 1 1

]︂
(1, 1) (3, 1) 432 T1T 2

5 + T3T6 + T4T7
45 T2T7 + T3T5 + T4T6

46 [︂
1 1 1 1 0 0 0
0 0 1 1 1 1 1

]︂
(2, 2) (2, 3) 272 T 2

1 T5T7 + T2T4T6 + T 2
3

47 T 2
1 T6T7 + T 2

2 T 2
5 + T3T4

51 [︂
1 1 1 2 0 0 0
0 0 1 2 1 1 1

]︂
(4, 4) (1, 2) 34 T 4

2 T6T 3
7 + T1T 3

3 T5 + T 2
4

52 T 4
2 T 3

5 T6 + T 3
1 T3T 3

7 + T 2
4
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ID [w1, . . . , w7] µ −K K4 g

72
[︂

1 1 1 0 0 0 0
0 0 1 1 1 1 1

]︂
(2, 2) (1, 3) 216 T 2

1 T4T7 + T 2
2 T5T6 + T 2

3

73
[︂

1 1 1 0 0 0 0
0 0 2 1 1 1 1

]︂
(2, 4) (1, 2) 64 T 2

1 T4T 3
6 + T 2

2 T5T 3
7 + T 2

3

77
[︂

1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︂
(2, 2) (2, 2) 192 T1T3T 2

7 + T 2
2 T5T6 + T 2

4

78
[︂

1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︂
(3, 3) (1, 1) 18 T 3

1 T5T 2
6 + T2T 2

3 T 3
7 + T 3

4

79
[︂

1 1 1 2 0 0 0
0 0 0 1 1 1 1

]︂
(4, 2) (1, 2) 48 T 3

1 T2T 2
5 + T 4

3 T6T7 + T 2
4

80
[︂

1 1 1 2 0 0 0
0 0 0 2 1 1 1

]︂
(4, 4) (1, 1) 12 T1T 3

2 T 4
7 + T 4

3 T 3
5 T6 + T 2

4

149
[︂

1 1 1 1 0 0 0
0 1 1 1 1 1 1

]︂
(2, 2) (2, 4) 352 T 2

1 T5T6 + T 2
2 + T3T4

150 [︂
1 1 1 1 0 0 0
0 1 1 1 1 1 1

]︂
(3, 3) (1, 3) 99 T 3

1 T5T 2
6 + T 3

2 + T3T 2
4

151 T 3
1 T5T6T7 + T2T 2

4 + T 3
3

152 [︂
1 1 1 1 0 0 0
0 2 2 2 1 1 1

]︂
(2, 4) (2, 5) 304 T 2

1 T5T 3
6 + T2T4 + T 2

3
153 T 2

1 T5T 2
6 T7 + T2T3 + T 2

4

159 [︂
1 1 1 2 0 0 0
0 1 1 2 1 1 1

]︂
(4, 4) (1, 3) 66 T 4

1 T5T 3
7 + T2T 3

3 + T 2
4

160 T 4
1 T5T6T 2

7 + T 3
2 T3 + T 2

4

223
[︂

1 1 1 1 2 1 0
0 0 0 0 0 1 1

]︂
(4, 0) (3, 2) 160 T1T 3

3 + T 3
2 T4 + T 2

5

224
[︂

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]︂
(3, 0) (3, 2) 240 T 2

1 T4 + T 2
2 T5 + T 3

3

225
[︂

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]︂
(2, 0) (4, 2) 480 T1T3 + T2T5 + T 2

4

226
[︂

1 1 1 1 1 2 0
0 0 0 0 0 1 1

]︂
(2, 0) (5, 2) 624 T1T3 + T2T5 + T 2

4

Q =
[︂

1 1 1 1 0 0 −1
0 0 0 0 1 1 1

]︂
µ = (2, 1) −K = (1, 2) K4 = 224

ID g ID g ID g

23 T 2
1 T3T7+T 2

2 T6+T 2
4 T5 24 T 3

3 T7+T 2
2 T5+T 2

4 T6 25 T 3
4 T7+T1T3T5+T 2

2 T6

Q =
[︂

1 1 1 1 0 0 −2
0 0 0 0 1 1 1

]︂
µ = (1, 2) −K = (1, 1) K4 = 98

ID g ID g ID g

28 T 4
1 T3T 2

7 +T2T 2
5 +T4T 2

6 29 T 3
1 T 2

2 T 2
7 +T3T 2

5 +T4T 2
6 30 T 5

4 T 2
7 +T2T 2

6 +T3T 2
5
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Q =
[︂

1 1 1 1 0 0 0
−1 0 0 0 1 1 1

]︂
µ = (3, 1) −K = (1, 1) K4 = 38

ID g ID g ID g

35 T 3
1 T 4

7 +T 3
2 T6+T3T 2

4 T5 36 T 3
2 T5+T 3

3 T7+T 3
4 T6 37 T1T 2

3 T 2
5 +T 3

2 T6+T 3
4 T7

38 T 3
1 T 4

7 +T 3
2 T5+T 3

4 T6 39 T 2
1 T3T 3

6 +T 3
2 T7+T 3

4 T5

Q =
[︂

1 1 1 1 0 0 0
−1 0 0 0 1 1 1

]︂
µ = (2, 1) −K = (2, 1) K4 = 192

ID g ID g ID g

40 T1T4T 2
5 +T 2

2 T7+T 2
3 T6 41 T 2

1 T 3
7 +T2T4T6+T 2

3 T5 42 T 2
2 T7+T 2

3 T5+T 2
4 T6

43 T 2
1 T 3

6 +T 2
3 T7+T 2

4 T5

Q =
[︂

1 1 1 1 0 0 0
0 0 1 1 1 1 1

]︂
µ = (3, 3) −K = (1, 2) K4 = 51

ID g ID g ID g

48 T 3
2 T5T 2

6 +T1T 2
4 T7+T 3

3 49 T 3
2 T 2

5 T7+T 2
1 T4T 2

6 +T 3
3 50 T 3

1 T6T 2
7 +T 3

2 T 3
5 +T3T 2

4

Q =
[︂

1 1 2 3 0 0 0
0 0 2 3 1 1 1

]︂
µ = (6, 6) −K = (1, 2) K4 = 17

ID g ID g ID g

53 T1T 5
2 T5T6T 4

7 +T 3
3 +T 2

4 54 T1T 5
2 T 3

5 T6T 2
7 +T 3

3 +T 2
4 55 T1T 5

2 T5T 5
7 +T 3

3 +T 2
4

56 T 2
1 T 4

2 T5T 5
6 +T 3

3 +T 2
4 57 T 6

1 T 5
5 T6+T 3

3 +T 2
4 58 T 2

1 T 4
2 T 3

5 T 3
7 +T 3

3 +T 2
4

59 T 6
1 T 2

5 T6T 3
7 +T 3

3 +T 2
4 60 T 6

1 T 4
5 T6T7+T 3

3 +T 2
4 61 T 3

1 T 3
2 T 2

5 T6T 3
7 +T 3

3 +T 2
4

62 T 4
1 T 2

2 T 3
5 T6T 2

7 +T 3
3 +T 2

4 63 T 5
1 T2T 4

5 T 2
6 +T 3

3 +T 2
4 64 T 5

1 T2T 2
5 T 2

6 T 2
7 +T 3

3 +T 2
4

65 T 3
1 T 3

2 T 5
5 T6+T 3

3 +T 2
4 66 T 3

1 T 3
2 T 2

5 T 4
7 +T 3

3 +T 2
4 67 T1T 5

2 T 6
7 +T 3

3 +T 2
4

68 T 2
1 T 4

2 T 4
5 T6T7+T 3

3 +T 2
4 69 T1T 5

2 T 3
5 T 3

6 +T 3
3 +T 2

4 70 T 3
1 T 3

2 T5T6T 4
7 +T 3

3 +T 2
4

71 T 3
1 T 3

2 T 2
5 T 2

6 T 2
7 +T 3

3 +T 2
4

Q =
[︂

1 1 1 0 0 0 0
0 0 3 1 1 1 1

]︂
µ = (2, 6) −K = (1, 1) K4 = 8

ID g ID g ID g

74 T 2
1 T 5

5 T7+T 2
2 T4T 5

6 +T 2
3 75 T 2

1 T 5
5 T6+T 2

2 T 3
4 T 3

7 +T 2
3 76 T 2

1 T 3
6 T 3

7 +T 2
2 T 3

4 T 3
5 +T 2

3

Q =
[︂

1 1 1 1 1 0 0
0 1 1 1 1 1 1

]︂
µ = (2, 2) −K = (3, 4) K4 = 378

ID g ID g ID g

81 T1T2T7+T 2
3 +T4T5 82 T 2

1 T 2
6 +T2T3+T4T5 83 T 2

1 T6T7+T3T5+T 2
4

84 T 2
1 T6T7+T2T4+T3T5

Q =
[︂

1 1 1 1 1 0 0
0 1 1 1 1 1 1

]︂
µ = (3, 3) −K = (2, 3) K4 = 144

ID g ID g ID g

85 T 2
1 T5T 2

7 +T 2
2 T4+T 3

3 86 T 3
1 T 2

6 T7+T2T 2
5 +T3T 2

4 87 T 3
1 T6T 2

7 +T 3
3 +T4T 2

5

88 T1T 2
5 T7+T 3

2 +T3T 2
4 89 T 3

1 T 3
6 +T 2

2 T4+T 2
3 T5 90 T 2

1 T4T6T7+T 2
2 T3+T 3

5

91 T 3
1 T 2

6 T7+T2T3T5+T 3
4
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Q =
[︂

1 1 1 1 1 0 0
0 1 1 1 1 1 1

]︂
µ = (4, 4) −K = (1, 2) K4 = 20

ID g ID g ID g

92 T 3
1 T4T 3

6 +T2T 3
5 +T 4

3 93 T 3
1 T2T 2

6 T7+T 4
3 +T4T 3

5 94 T 4
1 T6T 3

7 +T2T 3
5 +T 3

3 T4

95 T 4
1 T 3

6 T7+T2T 3
3 +T 2

4 T 2
5 96 T 2

1 T 2
2 T6T7+T 3

3 T5+T 4
4 97 T1T 3

5 T7+T 3
2 T4+T 4

3

98 T 4
1 T6T 3

7 +T2T 3
5 +T 4

4 99 T 4
1 T 2

6 T 2
7 +T 3

2 T4+T3T 3
5 100 T 4

1 T 3
6 T7+T2T 2

3 T4+T 4
5

101 T 4
1 T 4

6 +T2T 3
3 +T4T 3

5

Q =
[︂

1 1 1 1 2 0 0
0 1 1 1 2 1 1

]︂
µ = (4, 4) −K = (2, 3) K4 = 96

ID g ID g ID g

102 T 3
1 T4T6T 2

7 +T 3
2 T3+T 2

5 103 T1T 3
2 T7+T 3

3 T4+T 2
5 104 T 4

1 T 3
6 T7+T2T 2

3 T4+T 2
5

105 T 4
1 T6T 3

7 +T 3
3 T4+T 2

5 106 T 3
1 T4T 3

6 +T 3
2 T3+T 2

5 107 T 2
1 T 2

3 T6T7+T2T 3
4 +T 2

5

Q =
[︂

1 1 1 1 3 0 0
0 1 1 1 3 1 1

]︂
µ = (6, 6) −K = (1, 2) K4 = 10

ID g ID g ID g

108 T 5
1 T2T 5

7 +T3T 5
4 +T 2

5 109 T1T 5
4 T7+T 5

2 T3+T 2
5 110 T 5

1 T3T 3
6 T 2

7 +T2T 5
4 +T 2

5

111 T 6
1 T 5

6 T7+T 3
2 T 2

3 T4+T 2
5 112 T 5

1 T3T 5
6 +T 3

2 T 3
4 +T 2

5 113 T 4
1 T 2

2 T6T 3
7 +T 3

3 T 3
4 +T 2

5

114 T 3
1 T 3

3 T 2
6 T7+T 3

2 T 3
4 +T 2

5 115 T 6
1 T 3

6 T 3
7 +T2T3T 4

4 +T 2
5 116 T 5

1 T4T 4
6 T7+T 3

2 T 3
3 +T 2

5

117 T 4
1 T 2

3 T 3
6 T7+T2T 5

4 +T 2
5 118 T 6

1 T 5
6 T7+T 5

3 T4+T 2
5 119 T 6

1 T 3
6 T 3

7 +T2T 5
4 +T 2

5

120 T 2
1 T 4

2 T6T7+T 5
3 T4+T 2

5 121 T 3
1 T 3

2 T 3
7 +T3T 5

4 +T 2
5 122 T 3

1 T 3
4 T6T 2

7 +T2T 5
3 +T 2

5

123 T 6
1 T 5

6 T7+T 3
3 T 3

4 +T 2
5 124 T 5

1 T3T6T 4
7 +T2T 5

4 +T 2
5 125 T 6

1 T 3
6 T 3

7 +T 2
2 T 3

3 T4+T 2
5

126 T 6
1 T6T 5

7 +T 4
2 T3T4+T 2

5 127 T 5
1 T4T 2

6 T 3
7 +T 3

2 T 3
3 +T 2

5 128 T 2
1 T 4

4 T6T7+T 3
2 T 3

3 +T 2
5

129 T1T 5
4 T7+T 3

2 T 3
3 +T 2

5

Q =
[︂

1 1 1 2 3 0 0
0 1 1 2 3 1 1

]︂
µ = (6, 6) −K = (2, 3) K4 = 48

ID g ID g ID g

130 T 4
1 T 2

3 T6T 3
7 +T 3

4 +T 2
5 131 T 4

1 T2T3T6T 3
7 +T 3

4 +T 2
5 132 T 3

1 T 2
2 T3T 3

6 +T 3
4 +T 2

5

133 T 2
1 T2T 3

3 T6T7+T 3
4 +T 2

5 134 T1T 4
2 T3T6+T 3

4 +T 2
5 135 T 4

1 T2T3T 4
6 +T 3

4 +T 2
5

136 T1T 2
2 T 3

3 T7+T 3
4 +T 2

5 137 T 2
1 T 4

2 T6T7+T 3
4 +T 2

5 138 T 5
2 T3+T 3

4 +T 2
5

139 T 2
1 T2T 3

3 T 2
6 +T 3

4 +T 2
5 140 T 5

1 T3T6T 4
7 +T 3

4 +T 2
5 141 T 3

1 T 3
2 T6T 2

7 +T 3
4 +T 2

5

142 T 5
1 T3T 5

6 +T 3
4 +T 2

5 143 T 6
1 T 5

6 T7+T 3
4 +T 2

5 144 T 4
1 T2T3T 2

6 T 2
7 +T 3

4 +T 2
5

145 T 5
1 T2T 2

6 T 3
7 +T 3

4 +T 2
5 146 T1T 5

3 T6+T 3
4 +T 2

5 147 T 3
1 T2T 2

3 T 2
6 T7+T 3

4 +T 2
5

148 T 2
1 T 2

2 T 2
3 T6T7+T 3

4 +T 2
5

Q =
[︂

1 1 1 1 0 0 0
0 2 2 2 1 1 1

]︂
µ = (3, 6) −K = (1, 3) K4 = 54

ID g ID g ID g

154 T 3
1 T 2

5 T6T 3
7 +T 2

2 T4+T 3
3 155 T 3

1 T 2
5 T 4

7 +T 3
2 +T 2

3 T4 156 T 3
1 T 4

5 T6T7+T 3
2 +T 2

3 T4

157 T 3
1 T6T 5

7 +T 2
2 T3+T 3

4 158 T 3
1 T 2

5 T 2
6 T 2

7 +T2T 2
3 +T 3

4

Q =
[︂

1 1 1 2 0 0 0
0 2 2 4 1 1 1

]︂
µ = (4, 8) −K = (1, 3) K4 = 36

ID g ID g ID g

161 T 4
1 T 5

5 T6T 2
7 +T2T 3

3 +T 2
4 162 T 4

1 T5T 4
6 T 3

7 +T 3
2 T3+T 2

4 163 T 4
1 T 3

5 T 5
6 +T2T 3

3 +T 2
4
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Q =
[︂

1 1 1 2 0 0 0
0 2 2 4 1 1 1

]︂
µ = (4, 8) −K = (1, 3) K4 = 36

ID g ID g ID g

164 T 4
1 T 2

5 T 3
6 T 3

7 +T 3
2 T3+T 2

4 165 T 4
1 T 7

5 T7+T2T 3
3 +T 2

4 166 T 4
1 T 6

5 T6T7+T2T 3
3 +T 2

4

Q =
[︂

1 1 2 3 0 0 0
0 1 2 3 1 1 1

]︂
µ = (6, 6) −K = (1, 3) K4 = 33

ID g ID g ID g

167 T 6
1 T5T 2

6 T 3
7 +T 3

3 +T 2
4 168 T 6

1 T 5
6 T7+T 3

3 +T 2
4 169 T1T 5

2 T7+T 3
3 +T 2

4

170 T 3
1 T 3

2 T 2
6 T7+T 3

3 +T 2
4 171 T 5

1 T2T 3
5 T6T7+T 3

3 +T 2
4 172 T 5

1 T2T 2
5 T 3

6 +T 3
3 +T 2

4

173 T 2
1 T 4

2 T5T7+T 3
3 +T 2

4 174 T 6
1 T 4

5 T6T7+T 3
3 +T 2

4 175 T 5
1 T2T 4

5 T6+T 3
3 +T 2

4

176 T 5
1 T2T 5

5 +T 3
3 +T 2

4 177 T 4
1 T 2

2 T5T 3
6 +T 3

3 +T 2
4 178 T 5

1 T2T5T 2
6 T 2

7 +T 3
3 +T 2

4

179 T 4
1 T 2

2 T5T6T 2
7 +T 3

3 +T 2
4 180 T 3

1 T 3
2 T5T6T7+T 3

3 +T 2
4

Q =
[︂

1 1 2 3 0 0 0
0 2 4 6 1 1 1

]︂
µ = (6, 12) −K = (1, 3) K4 = 18

ID g ID g ID g

181 T1T 5
2 T 2

5 +T 3
3 +T 2

4 182 T 6
1 T 5

6 T 7
7 +T 3

3 +T 2
4 183 T 6

1 T 5
5 T 2

6 T 5
7 +T 3

3 +T 2
4

184 T 5
1 T2T 3

5 T 5
6 T 2

7 +T 3
3 +T 2

4 185 T 5
1 T2T 9

5 T7+T 3
3 +T 2

4 186 T 5
1 T2T 3

5 T 7
6 +T 3

3 +T 2
4

187 T 3
1 T 3

2 T 3
5 T6T 2

7 +T 3
3 +T 2

4 188 T 4
1 T 2

2 T5T6T 6
7 +T 3

3 +T 2
4 189 T 6

1 T 4
5 T 3

6 T 5
7 +T 3

3 +T 2
4

190 T 3
1 T 3

2 T 4
5 T6T7+T 3

3 +T 2
4 191 T 4

1 T 2
2 T 5

5 T 3
6 +T 3

3 +T 2
4 192 T 5

1 T2T 6
5 T 2

6 T 2
7 +T 3

3 +T 2
4

193 T 3
1 T 3

2 T 5
5 T7+T 3

3 +T 2
4 194 T 6

1 T 11
5 T7+T 3

3 +T 2
4 195 T 6

1 T 7
5 T 3

6 T 2
7 +T 3

3 +T 2
4

196 T 6
1 T5T 10

6 T7+T 3
3 +T 2

4 197 T 5
1 T2T 7

5 T6T 2
7 +T 3

3 +T 2
4 198 T 2

1 T 4
2 T5T 3

6 +T 3
3 +T 2

4

199 T 6
1 T5T 7

6 T 4
7 +T 3

3 +T 2
4 200 T 6

1 T 9
5 T6T 2

7 +T 3
3 +T 2

4 201 T 4
1 T 2

2 T 2
5 T 3

6 T 3
7 +T 3

3 +T 2
4

202 T 4
1 T 2

2 T 5
5 T 2

6 T7+T 3
3 +T 2

4 203 T 6
1 T 5

5 T6T 6
7 +T 3

3 +T 2
4 204 T 5

1 T2T 3
5 T 4

6 T 3
7 +T 3

3 +T 2
4

205 T 5
1 T2T 8

5 T 2
7 +T 3

3 +T 2
4 206 T 3

1 T 3
2 T 2

5 T 4
7 +T 3

3 +T 2
4 207 T 5

1 T2T 4
5 T 5

6 T7+T 3
3 +T 2

4

208 T 5
1 T2T 10

7 +T 3
3 +T 2

4 209 T 5
1 T2T 2

5 T 4
6 T 4

7 +T 3
3 +T 2

4 210 T 5
1 T2T 3

5 T 6
6 T7+T 3

3 +T 2
4

211 T1T 5
2 T6T7+T 3

3 +T 2
4 212 T 5

1 T2T 8
5 T6T7+T 3

3 +T 2
4 213 T 4

1 T 2
2 T5T 3

6 T 4
7 +T 3

3 +T 2
4

214 T 2
1 T 4

2 T5T 2
6 T7+T 3

3 +T 2
4 215 T 4

1 T 2
2 T5T 7

6 +T 3
3 +T 2

4 216 T 5
1 T2T 5

6 T 5
7 +T 3

3 +T 2
4

217 T 5
1 T2T 6

5 T 4
6 +T 3

3 +T 2
4 218 T 6

1 T5T 8
6 T 3

7 +T 3
3 +T 2

4 219 T 3
1 T 3

2 T 2
5 T 2

6 T 2
7 +T 3

3 +T 2
4

Q =
[︂

1 1 1 2 3 1 0
0 0 0 0 0 1 1

]︂
µ = (6, 0) −K = (3, 2) K4 = 80

ID g ID g ID g

220 T 4
1 T2T3+T 3

4 +T 2
5 221 T 5

1 T3+T 3
4 +T 2

5 222 T 3
1 T 2

2 T3+T 3
4 +T 2

5

Classification list 3.10.3. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic
cases with s = 3 and µ ̸∈ λ.

ID [w1, . . . , w7] µ −K K4 g

227 [︂
1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︂
(1, 2) (3, 2) 352 T1T 2

5 + T2T 2
6 + T3T 2

7
228 T1T 2

5 + T2T 2
6 + T4T7
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ID [w1, . . . , w7] µ −K K4 g

229
[︂

1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︂
(1, 3) (3, 1) 140 T1T 3

5 + T2T 3
6 + T4T 2

7

230 [︂
1 1 1 1 0 0 0
0 0 0 1 1 1 1

]︂
(2, 3) (2, 1) 65

T 2
1 T 3

5 + T 2
2 T 3

6 + T3T4T 2
7

231 T 2
1 T 3

5 + T 2
2 T 3

6 + T 2
4 T7

232 T 2
1 T 3

5 + T2T3T 3
6 + T 2

4 T 2
7

233 [︂
1 1 1 2 0 0 0
0 0 0 1 1 1 1

]︂
(2, 3) (3, 1) 122 T 2

1 T 3
5 + T 2

2 T 3
6 + T4T 2

7
234 T 2

1 T 3
5 + T2T3T 3

6 + T4T 2
7

235 [︂
1 1 1 1 0 0 0
0 0 1 1 1 1 1

]︂
(1, 3) (3, 2) 208 T1T 3

5 + T2T 3
6 + T4T 2

7
236 T1T 3

5 + T3T 2
6 + T4T 2

7

237 [︂
1 1 1 0 0 0 0
0 0 1 1 1 1 1

]︂
(1, 4) (2, 1) 29

T1T 4
4 + T2T 4

6 + T3T 3
7

238 T1T 3
4 T5 + T2T 4

6 + T3T 3
7

239 T1T 2
4 T 2

5 + T2T 4
6 + T3T 3

7
240 T1T 4

4 + T2T 4
5 + T3T6T 2

7

241
[︂

1 1 1 0 0 0 0
0 0 1 1 1 2 3

]︂
(0, 6) (3, 2) 80 T 5

4 T5 + T 3
6 + T 2

7

Classification list 3.10.4. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the series
with s = 3.

ID [w1, . . . , w7] µ −K g

S1
[︂

1 1 1 a 0 0 0
0 0 0 1 1 1 1

]︂
(1, 3) (a+2, 1) T1T 3

5 + T2T 3
6 + T3T 3

7 a ≥ 1

S2
[︂

1 1 1 a 0 0 0
0 0 0 1 1 1 1

]︂
(2, 3) (a+1, 1) T 2

1 T 3
5 + T 2

2 T 3
6 + T 2

3 T 3
7 a ≥ 1

S3 [︂
1 1 a a 0 0 0
0 0 1 1 1 1 1

]︂
(a, 4) (a+2, 1) T a−l

1 T l
2T 4

5 + T3T 3
6 + T4T 3

7 a ≥ 1, 0 ≤ l ≤ a/2
S4 T a

1 T 4
5 + T a

2 T 4
6 + T4T 3

7 a ≥ 1, a odd

Classification list 3.10.5. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases
with s = 4 and µ ∈ λ.

ID [w1, . . . , w7] µ −K K4 g

242 [︂
1 1 1 1 1 0 0

−1 0 0 0 1 1 1

]︂
(3, 1) (2, 1) 113 T2T 2

4 T7 + T 3
3 T6 + T1T 2

5
243 T 3

3 T6 + T 3
4 T7 + T1T 2

5
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ID [w1, . . . , w7] µ −K K4 g

244
[︂

1 1 1 1 1 0 0
0 1 1 1 2 1 1

]︂
(2, 2) (3, 5) 433 T1T5 + T2T4 + T 2

3

245
[︂

1 1 1 1 1 0 0
0 2 2 2 3 1 1

]︂
(3, 6) (2, 5) 145 T1T 2

5 + T 2
2 T3 + T 3

4

246 [︂
1 1 1 1 0 0 0
0 1 1 2 1 1 1

]︂
(2, 4) (2, 3) 144 T 2

1 T6T 3
7 + T2T3T 2

5 + T 2
4

247 T1T3T 3
6 + T 2

2 T5T7 + T 2
4

248 [︂
1 1 1 2 0 0 0
0 1 1 3 1 1 1

]︂
(4, 6) (1, 2) 22

T 4
1 T5T 5

7 + T2T 3
3 T 2

6 + T 2
4

249 T1T 3
3 T 3

6 + T 4
2 T5T7 + T 2

4
250 T 3

1 T2T 5
7 + T 4

3 T5T6 + T 2
4

251 T 4
1 T 3

6 T 3
7 + T 3

2 T3T 2
5 + T 2

4

252 [︂
1 1 1 1 1 1 0

−1 0 0 0 0 1 1

]︂
(2, 0) (4, 1) 431 T1T6 + T2T4 + T 2

3
253 T1T6 + T2T3 + T4T5

254
[︂

1 1 1 1 1 1 0
−1 0 0 0 0 1 1

]︂
(4, 0) (2, 1) 62 T 2

1 T 2
6 + T 3

2 T4 + T 3
3 T5

255 [︂
1 1 1 1 1 2 0

−1 0 0 0 0 1 1

]︂
(3, 0) (4, 1) 376

T 2
2 T3 + T 3

4 + T1T6
256 T2T 2

5 + T 2
3 T4 + T1T6

257 T2T3T5 + T 3
4 + T1T6

258 [︂
1 1 1 1 1 3 0

−1 0 0 0 0 1 1

]︂
(4, 0) (4, 1) 341

T 3
2 T4 + T 2

3 T 2
5 + T1T6

259 T 3
2 T3 + T4T 3

5 + T1T6
260 T 4

2 + T3T 3
4 + T1T6

261 T2T 2
3 T5 + T 4

4 + T1T6

262 [︂
1 1 1 1 3 1 0

−1 0 0 0 0 1 1

]︂
(6, 0) (2, 1) 31

T 3
1 T 3

6 + T2T3T 4
4 + T 2

5
263 T 3

1 T 3
6 + T 5

3 T4 + T 2
5

264 T 3
1 T 3

6 + T2T 3
3 T 2

4 + T 2
5

Classification list 3.10.6. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic
cases with s = 4 and µ ̸∈ λ.

ID [w1, . . . , w7] µ −K K4 g

279 [︂
1 1 1 4 2 3 0
0 0 0 1 2 3 1

]︂
(6, 6) (6, 1) 117 T 2

1 T4T 5
7 + T 3

5 + T 2
6

280 T1T2T4T 5
7 + T 3

5 + T 2
6

281
[︂

1 1 1 5 2 3 0
0 0 0 1 2 3 1

]︂
(6, 6) (7, 1) 157 T1T4T 5

7 + T 3
5 + T 2

6

282
[︂

1 1 1 6 2 3 0
0 0 0 1 2 3 1

]︂
(6, 6) (8, 1) 203 T4T 5

7 + T 3
5 + T 2

6

341 [︂
1 1 1 10 4 6 0
0 0 0 1 2 3 1

]︂
(12, 6) (11, 1) 322 T 2

1 T4T 5
7 + T 3

5 + T 2
6

342 T1T2T4T 5
7 + T 3

5 + T 2
6
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ID [w1, . . . , w7] µ −K K4 g

343
[︂

1 1 1 11 4 6 0
0 0 0 1 2 3 1

]︂
(12, 6) (12, 1) 387 T1T4T 5

7 + T 3
5 + T 2

6

344
[︂

1 1 1 12 4 6 0
0 0 0 1 2 3 1

]︂
(12, 6) (13, 1) 458 T4T 5

7 + T 3
5 + T 2

6

345
[︂

1 1 1 2 2 0 0
0 0 0 1 2 1 1

]︂
(4, 4) (3, 1) 68 T 3

1 T2T 4
6 + T 2

3 T4T 3
7 + T 2

5

346
[︂

1 1 1 3 2 0 0
0 0 0 1 2 1 1

]︂
(4, 4) (4, 1) 114 T 3

1 T2T 4
6 + T3T4T 3

7 + T 2
5

347 [︂
1 1 1 4 2 0 0
0 0 0 1 2 1 1

]︂
(4, 4) (5, 1) 172 T 3

1 T2T 4
6 + T4T 3

7 + T 2
5

348 T 2
1 T2T3T 4

6 + T4T 3
7 + T 2

5

349
[︂

1 1 1 2 1 0 0
0 0 0 1 1 1 1

]︂
(3, 3) (3, 1) 102 T 2

1 T2T 3
6 + T3T4T 2

7 + T 3
5

350 [︂
1 1 1 3 1 0 0
0 0 0 1 1 1 1

]︂
(3, 3) (4, 1) 171 T 2

1 T2T 3
6 + T4T 2

7 + T 3
5

351 T1T2T3T 3
6 + T4T 2

7 + T 3
5

352
[︂

1 1 2 2 1 1 0
0 0 1 1 1 1 1

]︂
(5, 4) (3, 1) 29 T1T 4

6 + T2T 2
4 T 2

7 + T3T 3
5

353
[︂

1 1 3 3 1 1 0
0 0 1 1 1 1 1

]︂
(6, 4) (4, 1) 38 T1T2T 4

6 + T3T 3
5 + T 2

4 T 2
7

364 [︂
1 1 4 4 2 3 0
0 0 1 1 2 3 1

]︂
(6, 6) (9, 2) 144 T 2

1 T3T 5
7 + T 3

5 + T 2
6

365 T1T2T3T 5
7 + T 3

5 + T 2
6

366
[︂

1 1 5 5 2 3 0
0 0 1 1 2 3 1

]︂
(6, 6) (11, 2) 176 T1T3T 5

7 + T 3
5 + T 2

6

367
[︂

1 1 6 6 2 3 0
0 0 1 1 2 3 1

]︂
(6, 6) (13, 2) 208 T3T 5

7 + T 3
5 + T 2

6

368
[︂

1 1 2 2 1 0 0
0 0 1 1 1 1 1

]︂
(4, 4) (3, 1) 32 T 3

1 T2T 4
6 + T3T4T 2

7 + T 4
5

369
[︂

1 1 1 1 1 0 0
0 0 1 1 2 1 1

]︂
(2, 4) (3, 2) 128 T1T3T 3

6 + T2T4T 3
7 + T 2

5

370
[︂

1 1 2 2 1 0 0
0 0 1 1 2 1 1

]︂
(2, 4) (5, 2) 192 T3T 3

6 + T4T 3
7 + T 2

5

378 [︂
1 1 2 1 1 1 0
0 0 1 1 1 1 1

]︂
(4, 4) (3, 1) 32 T 2

1 T3T 3
7 + T 4

4 + T 3
5 T6

379 T1T2T3T 3
7 + T 4

4 + T 3
5 T6

380
[︂

1 1 3 1 1 1 0
0 0 1 1 1 1 1

]︂
(4, 4) (4, 1) 44 T1T3T 3

7 + T 4
4 + T 3

5 T6

381
[︂

1 1 4 1 1 1 0
0 0 1 1 1 1 1

]︂
(4, 4) (5, 1) 56 T3T 3

7 + T 4
4 + T 3

5 T6

399 [︂
1 1 5 1 1 3 0
0 0 1 1 1 3 1

]︂
(6, 6) (6, 1) 34 T1T3T 5

7 + T 5
4 T5 + T 2

6
400 T1T3T 5

7 + T 3
4 T 3

5 + T 2
6

401 [︂
1 1 6 1 1 3 0
0 0 1 1 1 3 1

]︂
(6, 6) (7, 1) 40 T3T 5

7 + T 5
4 T5 + T 2

6
402 T3T 5

7 + T 3
4 T 3

5 + T 2
6

403 [︂
1 1 1 1 0 0 0
0 0 1 3 1 1 1

]︂
(2, 6) (2, 1) 14 T 2

2 T 5
5 T6 + T1T3T 5

7 + T 2
4

404 T 2
2 T 3

5 T 3
6 + T1T3T 5

7 + T 2
4
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3.10. Classification lists

Q =
[︂

1 1 1 1 0 0 −1
0 0 0 1 1 1 1

]︂
µ = (1, 3) −K = (2, 1) K4 = 83

ID g ID g ID g

265 T 2
3 T4T 2

7 +T1T 3
5 +T2T 3

6 266 T 4
2 T 3

7 +T1T 3
5 +T4T 2

6 267 T 4
2 T 3

7 +T1T 3
5 +T3T 3

6

268 T 3
2 T3T 3

7 +T1T 3
6 +T4T 2

5 269 T 2
1 T 2

2 T 3
7 +T3T 3

6 +T4T 2
5 270 T1T 3

5 +T3T 3
6 +T 2

4 T7

Q =
[︂

1 1 1 2 2 3 0
0 0 0 1 2 3 1

]︂
µ = (6, 6) −K = (4, 1) K4 = 55

ID g ID g ID g

271 T1T2T 2
4 T 4

7 +T 3
5 +T 2

6 272 T 4
1 T4T 5

7 +T 3
5 +T 2

6 273 T 3
1 T2T4T 5

7 +T 3
5 +T 2

6

274 T 2
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6 275 T 2

1 T2T3T4T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 1 3 2 3 0
0 0 0 1 2 3 1

]︂
µ = (6, 6) −K = (5, 1) K4 = 83

ID g ID g ID g

276 T 3
1 T4T 5

7 +T 3
5 +T 2

6 277 T 2
1 T2T4T 5

7 +T 3
5 +T 2

6 278 T1T2T3T4T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 1 3 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (4, 1) K4 = 35

ID g ID g ID g

283 T 2
1 T2T 3

4 T 3
7 +T 3

5 +T 2
6 284 T1T2T3T 3

4 T 3
7 +T 3

5 +T 2
6 285 T 5

1 T2T 2
4 T 4

7 +T 3
5 +T 2

6

286 T 3
1 T 3

2 T 2
4 T 4

7 +T 3
5 +T 2

6 287 T 4
1 T2T3T 2

4 T 4
7 +T 3

5 +T 2
6 288 T 3

1 T 2
2 T3T 2

4 T 4
7 +T 3

5 +T 2
6

289 T 9
1 T4T 5

7 +T 3
5 +T 2

6 290 T 8
1 T2T4T 5

7 +T 3
5 +T 2

6 291 T 7
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6

292 T 6
1 T 3

2 T4T 5
7 +T 3

5 +T 2
6 293 T 5

1 T 4
2 T4T 5

7 +T 3
5 +T 2

6 294 T 7
1 T2T3T4T 5

7 +T 3
5 +T 2

6

295 T 6
1 T 2

2 T3T4T 5
7 +T 3

5 +T 2
6 296 T 5

1 T 3
2 T3T4T 5

7 +T 3
5 +T 2

6 297 T 4
1 T 4

2 T3T4T 5
7 +T 3

5 +T 2
6

298 T 5
1 T 2

2 T 2
3 T4T 5

7 +T 3
5 +T 2

6 299 T 4
1 T 3

2 T 2
3 T4T 5

7 +T 3
5 +T 2

6 300 T 3
1 T 3

2 T 3
3 T4T 5

7 +T 3
5 +T 2

6

Q =
[︂

1 1 1 4 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (5, 1) K4 = 58

ID g ID g ID g

301 T 3
1 T2T 2

4 T 4
7 +T 3

5 +T 2
6 302 T 2

1 T2T3T 2
4 T 4

7 +T 3
5 +T 2

6 303 T 8
1 T4T 5

7 +T 3
5 +T 2

6

304 T 7
1 T2T4T 5

7 +T 3
5 +T 2

6 305 T 6
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6 306 T 5

1 T 3
2 T4T 5

7 +T 3
5 +T 2

6

307 T 4
1 T 4

2 T4T 5
7 +T 3

5 +T 2
6 308 T 6

1 T2T3T4T 5
7 +T 3

5 +T 2
6 309 T 5

1 T 2
2 T3T4T 5

7 +T 3
5 +T 2

6

310 T 4
1 T 3

2 T3T4T 5
7 +T 3

5 +T 2
6 311 T 4

1 T 2
2 T 2

3 T4T 5
7 +T 3

5 +T 2
6 312 T 3

1 T 3
2 T 2

3 T4T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 1 5 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (6, 1) K4 = 87

ID g ID g ID g

313 T1T2T 2
4 T 4

7 +T 3
5 +T 2

6 314 T 7
1 T4T 5

7 +T 3
5 +T 2

6 315 T 6
1 T2T4T 5

7 +T 3
5 +T 2

6

316 T 5
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6 317 T 4

1 T 3
2 T4T 5

7 +T 3
5 +T 2

6 318 T 5
1 T2T3T4T 5

7 +T 3
5 +T 2

6

319 T 4
1 T 2

2 T3T4T 5
7 +T 3

5 +T 2
6 320 T 3

1 T 3
2 T3T4T 5

7 +T 3
5 +T 2

6 321 T 3
1 T 2

2 T 2
3 T4T 5

7 +T 3
5 +T 2

6

Q =
[︂

1 1 1 6 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (7, 1) K4 = 122

ID g ID g ID g

322 T 6
1 T4T 5

7 +T 3
5 +T 2

6 323 T 5
1 T2T4T 5

7 +T 3
5 +T 2

6 324 T 4
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6
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Q =
[︂

1 1 1 6 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (7, 1) K4 = 122

ID g ID g ID g

325 T 3
1 T 3

2 T4T 5
7 +T 3

5 +T 2
6 326 T 4

1 T2T3T4T 5
7 +T 3

5 +T 2
6 327 T 3

1 T 2
2 T3T4T 5

7 +T 3
5 +T 2

6

328 T 2
1 T 2

2 T 2
3 T4T 5

7 +T 3
5 +T 2

6

Q =
[︂

1 1 1 7 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (8, 1) K4 = 163

ID g ID g ID g

329 T 5
1 T4T 5

7 +T 3
5 +T 2

6 330 T 4
1 T2T4T 5

7 +T 3
5 +T 2

6 331 T 3
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6

332 T 3
1 T2T3T4T 5

7 +T 3
5 +T 2

6 333 T 2
1 T 2

2 T3T4T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 1 8 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (9, 1) K4 = 210

ID g ID g ID g

334 T 4
1 T4T 5

7 +T 3
5 +T 2

6 335 T 3
1 T2T4T 5

7 +T 3
5 +T 2

6 336 T 2
1 T 2

2 T4T 5
7 +T 3

5 +T 2
6

337 T 2
1 T2T3T4T 5

7 +T 3
5 +T 2

6

Q =
[︂

1 1 1 9 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (10, 1) K4 = 263

ID g ID g ID g

338 T 3
1 T4T 5

7 +T 3
5 +T 2

6 339 T 2
1 T2T4T 5

7 +T 3
5 +T 2

6 340 T1T2T3T4T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 2 2 2 3 0
0 0 1 1 2 3 1

]︂
µ = (6, 6) −K = (5, 2) K4 = 80

ID g ID g ID g

354 T 2
3 T4T 3

7 +T 3
5 +T 2

6 355 T1T2T 2
3 T 4

7 +T 3
5 +T 2

6 356 T 2
1 T3T4T 4

7 +T 3
5 +T 2

6

357 T1T2T3T4T 4
7 +T 3

5 +T 2
6 358 T 4

1 T3T 5
7 +T 3

5 +T 2
6 359 T 3

1 T2T3T 5
7 +T 3

5 +T 2
6

360 T 2
1 T 2

2 T3T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 3 3 2 3 0
0 0 1 1 2 3 1

]︂
µ = (6, 6) −K = (7, 2) K4 = 112

ID g ID g ID g

361 T3T4T 4
7 +T 3

5 +T 2
6 362 T 3

1 T3T 5
7 +T 3

5 +T 2
6 363 T 2

1 T2T3T 5
7 +T 3

5 +T 2
6

Q =
[︂

1 1 1 1 2 0 0
0 0 1 1 3 1 1

]︂
µ = (4, 6) −K = (2, 1) K4 = 12

ID g ID g ID g

371 T 3
1 T2T 6

6 +T 3
3 T4T 2

7 +T 2
5 372 T1T 3

3 T 3
6 +T2T 3

4 T 3
7 +T 2

5 373 T 3
1 T3T 5

6 +T2T 3
4 T 3

7 +T 2
5

Q =
[︂

1 1 2 2 3 0 0
0 0 1 1 3 1 1

]︂
µ = (6, 6) −K = (3, 1) K4 = 16

ID g ID g ID g

374 T1T2T 2
3 T 4

6 +T 3
4 T 3

7 +T 2
5 375 T 4

1 T3T 5
6 +T 3

4 T 3
7 +T 2

5 376 T 3
1 T2T3T 5

6 +T 3
4 T 3

7 +T 2
5

377 T 2
1 T 2

2 T3T 5
6 +T 3

4 T 3
7 +T 2

5
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Q =
[︂

1 1 2 1 1 3 0
0 0 1 1 1 3 1

]︂
µ = (6, 6) −K = (3, 1) K4 = 16

ID g ID g ID g

382 T 3
3 T 3

7 +T 5
4 T5+T 2

6 383 T1T2T 2
3 T 4

7 +T 5
4 T5+T 2

6 384 T1T2T 2
3 T 4

7 +T 3
4 T 3

5 +T 2
6

385 T 4
1 T3T 5

7 +T 5
4 T5+T 2

6 386 T 4
1 T3T 5

7 +T 3
4 T 3

5 +T 2
6 387 T 3

1 T2T3T 5
7 +T 5

4 T5+T 2
6

388 T 3
1 T2T3T 5

7 +T 3
4 T 3

5 +T 2
6 389 T 2

1 T 2
2 T3T 5

7 +T 5
4 T5+T 2

6 390 T 2
1 T 2

2 T3T 5
7 +T 3

4 T 3
5 +T 2

6

Q =
[︂

1 1 3 1 1 3 0
0 0 1 1 1 3 1

]︂
µ = (6, 6) −K = (4, 1) K4 = 22

ID g ID g ID g

391 T 3
1 T3T 5

7 +T 5
4 T5+T 2

6 392 T 3
1 T3T 5

7 +T 3
4 T 3

5 +T 2
6 393 T 2

1 T2T3T 5
7 +T 5

4 T5+T 2
6

394 T 2
1 T2T3T 5

7 +T 3
4 T 3

5 +T 2
6

Q =
[︂

1 1 4 1 1 3 0
0 0 1 1 1 3 1

]︂
µ = (6, 6) −K = (5, 1) K4 = 28

ID g ID g ID g

395 T 2
1 T3T 5

7 +T 5
4 T5+T 2

6 396 T 2
1 T3T 5

7 +T 3
4 T 3

5 +T 2
6 397 T1T2T3T 5

7 +T 5
4 T5+T 2

6

398 T1T2T3T 5
7 +T 3

4 T 3
5 +T 2

6

Q =
[︂

1 1 2 1 0 0 0
0 0 1 3 1 1 1

]︂
µ = (2, 6) −K = (3, 1) K4 = 20

ID g ID g ID g

405 T 2
1 T 5

5 T6+T3T 5
7 +T 2

4 406 T 2
1 T 3

5 T 3
6 +T3T 5

7 +T 2
4 407 T1T2T 6

5 +T3T 5
7 +T 2

4

408 T1T2T 5
5 T6+T3T 5

7 +T 2
4 409 T1T2T 4

5 T 2
6 +T3T 5

7 +T 2
4 410 T1T2T 3

5 T 3
6 +T3T 5

7 +T 2
4

Classification list 3.10.7. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the series
with s = 4.

ID [w1, . . . , w7]
[︂

µ
−K

]︂
g

S18
[︂

1 1 a a c c 0
0 0 1 1 1 1 1

]︂
(a, 4)

(a+2c+2, 1) T
(a−4c)
1 T 4

5 + T
(a−4c)
2 T 4

6 + T4T 3
7

c ≥ 1, a > 4c,
a odd

S22
[︂

1 1 a a 2 3 0
0 0 1 1 2 3 1

]︂
(6, 6)

(2a+1, 2) T 5
1 T2T 6

7 + T 3
5 + T 2

6 a ≥ 2

S25
[︂

1 1 a a c 0 0
0 0 1 1 1 1 1

]︂
(4c, 4)

(2a−3c+2, 1) T
(a−4c)
1 T3T 3

6 + T
(a−4c)
2 T4T 3

7 + T 4
5 c ≥ 1, a > 4c

S26
[︂

1 1 4a 4a a 0 0
0 0 1 1 1 1 1

]︂
(4a, 4)

(5a+2, 1) T
(4a−l)
1 T l

2T 4
6 + T4T 3

7 + T 4
5

a ≥ 1, l odd,
0 ≤ l < 2c

S27
[︂

1 1 a a c 0 0
0 0 1 1 3 1 1

]︂
(2c, 6)

(2a−c+2, 1) T
(2c−a)
1 T3T 5

6 + T
(2c−a)
2 T4T 5

7 + T 2
5

a, c ≥ 1,
c−1 ≤ a < 2c

S28
[︂

1 1 a a a 0 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(a+2, 1) T
(2a−l)
1 T l

2T 6
6 + T3T4T 4

7 + T 2
5

a ≥ 1, l odd,
1 ≤ l ≤ a

251



Chapter 3. Locally factorial Fano fourfolds of Picard number two

ID [w1, . . . , w7]
[︂

µ
−K

]︂
g

S29
[︂

1 1 2a 2a a 0 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(3a+2, 1) T 2
5 + T

(2a−l)
1 T l

2T 6
6 + T4T 5

7
a ≥ 1, l odd,
1 ≤ l ≤ a

S30
[︂

1 1 a 1 1 1 0
0 0 1 1 1 1 1

]︂
(4, 4)

(a+1, 1) T 3
1 T2T 4

7 + T 3
4 T5 + T 4

6 a ≥ 2

S34
[︂

1 1 a c 0 0 0
0 0 1 1 1 1 1

]︂
(c, 4)

(a+2, 1) T c
1 T 4

5 + T c
2 T 4

6 + T4T 3
7

c ≥ 1, a > c,
c odd

Q =
[︂

1 1 1 a 2 3 0
0 0 0 1 2 3 1

]︂
µ = (6, 6) −K = (a+2, 1)

ID g ID g ID g

S5 T 5
1 T2T 6

7 +T 3
5 +T 2

6 ,

a ≥ 2 S6 T 4
1 T2T3T 6

7 +T 3
5 +T 2

6 ,

a ≥ 2 S7 T 3
1 T 2

2 T3T 6
7 +T 3

5 +T 2
6 ,

a ≥ 2

Q =
[︂

1 1 1 a 4 6 0
0 0 0 1 2 3 1

]︂
µ = (12, 6) −K = (a+1, 1)

ID g ID g

S8 T 11
1 T2T 6

7 +T 3
5 +T 2

6 ,

a ≥ 3 S9 T 7
1 T 5

2 T 6
7 +T 3

5 +T 2
6 ,

a ≥ 3 S10 T 10
1 T2T3T 6

7 +T 3
5 +T 2

6 ,

a ≥ 3

S11 T 9
1 T 2

2 T3T 6
7 +T 3

5 +T 2
6 ,

a ≥ 3 S12 T 8
1 T 3

2 T3T 6
7 +T 3

5 +T 2
6 ,

a ≥ 3 S13 T 7
1 T 4

2 T3T 6
7 +T 3

5 +T 2
6 ,

a ≥ 3

S14 T 6
1 T 5

2 T3T 6
7 +T 3

5 +T 2
6 ,

a ≥ 3 S15 T 7
1 T 3

2 T 2
3 T 6

7 +T 3
5 +T 2

6 ,

a ≥ 3 S16 T 5
1 T 5

2 T 2
3 T 6

7 +T 3
5 +T 2

6 ,

a ≥ 3

S17 T 5
1 T 4

2 T 3
3 T 6

7 +T 3
5 +T 2

6 ,

a ≥ 3

Q =
[︂

1 1 a a 1 1 0
0 0 1 1 1 1 1

]︂
µ = (a+3, 4) −K = (a+1, 1)

ID g ID g

S19 T3T 3
5 +T4T 3

6 +T
(a+3−l)
1 T l

2T 4
7 ,

a ≥ 2, 0 ≤ l ≤ (a+3)/2
S20 T

(a−1)
1 T 4

5 +T3T 3
6 +T

(a+3)
2 T 4

7 ,

a ≥ 2, a even

S21 T
(a−1)
1 T 4

5 +T3T 3
6 +T 3

2 T4T 3
7 ,

a ≥ 2

Q =
[︂

1 1 a a c 0 0
0 0 1 1 1 1 1

]︂
µ = (a, 4) −K = (a+c+2, 1)

ID g ID g

S23 T
(a−4c)
1 T 4

5 +T a
2 T 4

6 +T4T 3
7 ,

c ≥ 1, a > 4c
S24 T

(a−l)
1 T l

2T 4
5 +T3T 3

6 +T4T 3
7 ,

c ≥ 1, a > 4c, 0 ≤ l ≤ a/2
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Q =
[︂

1 1 a 1 1 3 0
0 0 1 1 1 3 1

]︂
µ = (6, 6) −K = (a+1, 1)

ID g ID g

S31 T 5
1 T2T 6

7 +T 5
4 T5+T 2

6 ,

a ≥ 2 S32 T 5
1 T2T 6

7 +T 3
4 T 3

5 +T 2
6 ,

a ≥ 2

S33 T 3
1 T 3

2 T 6
7 +T 5

4 T5+T 2
6 ,

a ≥ 2

Q =
[︂

1 1 a + 1 a 0 0 0
0 0 1 1 1 1 1

]︂
µ = (a+1, 4) −K = (a+2, 1)

ID g ID g

S35 T
(a+1)
1 T 4

5 +T2T4T 3
6 +T3T 3

7 ,

a ≥ 1
S36 T

(a+1)
1 T 4

5 +T
(a+1)
2 T 4

6 +T3T 3
7 ,

a ≥ 1, a even

Classification list 3.10.8. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases
with s = 5 and µ ∈ λ.

ID [w1, . . . , w7] µ −K K4 g

411 [︂
1 1 1 2 1 0 0
0 1 1 3 2 1 1

]︂
(4, 6) (2, 3) 65

T 3
2 T3T 2

7 + T1T 3
5 + T 2

4
412 T 3

2 T3T6T7 + T1T 3
5 + T 2

4
413 T 4

2 T6T7 + T1T 3
5 + T 2

4
414 T 2

2 T 2
3 T6T7 + T1T 3

5 + T 2
4

Classification list 3.10.9. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic
cases with s = 5 and µ ̸∈ λ.

ID [w1, . . . , w7] µ −K K4 g

415 [︂
1 1 1 2 3 1 0
0 0 0 1 2 1 1

]︂
(6, 4) (3, 1) 50

T 4
3 T4T 3

7 + T1T2T 4
6 + T 2

5
416 T1T2T 4

6 + T 3
4 T7 + T 2

5
417 T 5

1 T2T 4
7 + T3T4T 3

6 + T 2
5

418 T 3
1 T 3

2 T 4
7 + T3T4T 3

6 + T 2
5

419 [︂
1 1 1 3 3 1 0
0 0 0 1 2 1 1

]︂
(6, 4) (4, 1) 90

T 3
3 T4T 3

7 + T1T2T 4
6 + T 2

5
420 T 5

1 T2T 4
7 + T4T 3

6 + T 2
5

421 T 4
1 T2T3T 4

7 + T4T 3
6 + T 2

5
422 T 3

1 T 2
2 T3T 4

7 + T4T 3
6 + T 2

5
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ID [w1, . . . , w7] µ −K K4 g

423
[︂

1 1 1 4 3 1 0
0 0 0 1 2 1 1

]︂
(6, 4) (5, 1) 142 T1T2T 4

6 + T 2
3 T4T 3

7 + T 2
5

424
[︂

1 1 1 5 3 1 0
0 0 0 1 2 1 1

]︂
(6, 4) (6, 1) 206 T1T2T 4

6 + T3T4T 3
7 + T 2

5

425
[︂

1 1 1 6 3 1 0
0 0 0 1 2 1 1

]︂
(6, 4) (7, 1) 282 T1T2T 4

6 + T4T 3
7 + T 2

5

426 [︂
1 1 2 2 4 1 0
0 0 1 1 3 1 1

]︂
(8, 6) (3, 1) 14 T1T2T 6

6 + T 3
3 T4T 2

7 + T 2
5

427 T 2
2 T 3

4 T 3
7 + T1T3T 5

6 + T 2
5

428
[︂

1 1 3 3 5 1 0
0 0 1 1 3 1 1

]︂
(10, 6) (4, 1) 18 T 2

1 T3T 5
6 + T2T 3

4 T 3
7 + T 2

5

429 [︂
1 1 4 4 6 1 0
0 0 1 1 3 1 1

]︂
(12, 6) (5, 1) 22 T 3

1 T3T 5
6 + T 3

4 T 3
7 + T 2

5
430 T 2

1 T2T3T 5
6 + T 3

4 T 3
7 + T 2

5

431 [︂
1 1 4 4 7 2 0
0 0 1 1 3 1 1

]︂
(14, 6) (5, 1) 20 T 2

2 T 3
4 T 3

7 + T3T 5
6 + T 2

5
432 T1T2T 3

4 T 3
7 + T3T 5

6 + T 2
5

433
[︂

1 1 5 5 8 2 0
0 0 1 1 3 1 1

]︂
(16, 6) (6, 1) 24 T1T3T 5

6 + T2T 3
4 T 3

7 + T 2
5

434 [︂
1 1 6 6 9 2 0
0 0 1 1 3 1 1

]︂
(18, 6) (7, 1) 28 T 2

1 T3T 5
6 + T 3

4 T 3
7 + T 2

5
435 T1T2T3T 5

6 + T 3
4 T 3

7 + T 2
5

436
[︂

1 1 7 7 11 3 0
0 0 1 1 3 1 1

]︂
(22, 6) (8, 1) 30 T2T 3

4 T 3
7 + T3T 5

6 + T 2
5

437
[︂

1 1 8 8 12 3 0
0 0 1 1 3 1 1

]︂
(24, 6) (9, 1) 34 T1T3T 5

6 + T 3
4 T 3

7 + T 2
5

438
[︂

1 1 10 10 15 4 0
0 0 1 1 3 1 1

]︂
(30, 6) (11, 1) 40 T3T 5

6 + T 3
4 T 3

7 + T 2
5

439 [︂
1 1 3 2 3 0 0
0 0 1 1 3 1 1

]︂
(6, 6) (4, 1) 22 T 3

1 T3T 5
6 + T 3

4 T 3
7 + T 2

5
440 T 2

1 T2T3T 5
6 + T 3

4 T 3
7 + T 2

5

441 [︂
1 1 4 2 3 0 0
0 0 1 1 3 1 1

]︂
(6, 6) (5, 1) 28 T 2

1 T3T 5
6 + T 3

4 T 3
7 + T 2

5
442 T1T2T3T 5

6 + T 3
4 T 3

7 + T 2
5

443
[︂

1 1 5 2 3 0 0
0 0 1 1 3 1 1

]︂
(6, 6) (6, 1) 34 T1T3T 5

6 + T 3
4 T 3

7 + T 2
5

444
[︂

1 1 6 2 3 0 0
0 0 1 1 3 1 1

]︂
(6, 6) (7, 1) 40 T3T 5

6 + T 3
4 T 3

7 + T 2
5

445
[︂

1 1 3 1 2 0 0
0 0 1 1 3 1 1

]︂
(4, 6) (4, 1) 24 T1T3T 5

6 + T2T 3
4 T 3

7 + T 2
5

446
[︂

1 1 4 1 2 0 0
0 0 1 1 3 1 1

]︂
(4, 6) (5, 1) 30 T2T 3

4 T 3
7 + T3T 5

6 + T 2
5

447
[︂

1 1 2 1 2 0 0
0 0 1 1 3 1 1

]︂
(4, 6) (3, 1) 18 T 3

1 T2T 6
6 + T3T 2

4 T 3
7 + T 2

5

Classification list 3.10.10. Locally factorial Fano fourfoulds of Picard number two
with a hypersurface Cox ring and an effective three-torus action: Specifying data for the
series with s = 5.
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ID [w1, . . . , w7]
[︂

µ
−K

]︂
g

S39
[︂

1 1 a a b c 0
0 0 1 1 1 1 1

]︂
(a, 4)

(a+c+b+2, 1)
T

(a−4b)
1 T 4

5 +T
(a−4c)
2 T 4

6 +T4T 3
7 ,

b > c ≥ 1, a > 4b, a odd

S42
[︂

1 1 a a b c 0
0 0 1 1 1 1 1

]︂
(4a, 4)

(c+b−2a+2, 1)
T 4

5 +T
(4b−a−3c)
1 T3T 3

6 +T
(4b−a)
2 T4T 3

7 ,

b > c ≥ 1, b > 2c−1, 3b−c−1 ≤ a < 4b−3c

S43
[︂

1 1 2a+2 2a+2 a+1 a 0
0 0 1 1 1 1 1

]︂
(4a+4, 4)
(2a+3, 1)

T 3
1 T 2

2 T 4
6 +T3T4T 2

7 +T 4
5 ,

a ≥ 1

S44
[︂

1 1 4a 4a a b 0
0 0 1 1 1 1 1

]︂
(4a, 4)

(5a+b+2, 1)
T 4

5 +T
(4a−4b−l)
1 T l

2T 4
6 +T4T 3

7 ,

a > b ≥ 1, 0 < l < 2a+2b, l odd

S45
[︂

1 1 a a a+2 1 0
0 0 1 1 3 1 1

]︂
(2a+4, 6)
(a+1, 1)

T 2
5 +T3T4T 4

6 +T
(2a+4−l)
1 T l

2T 6
7 ,

a ≥ 1, 0 < l ≤ a+2, l odd

S49
[︂

1 1 a a b c 0
0 0 1 1 3 1 1

]︂
(2b, 6)

(2a−b+c+2, 1)
T 2

5 +T
(2b−5c−a)
1 T3T 5

6 +T
(2b−a)
2 T4T 5

7 ,

c ≥ 1, b ≥ 4c, b/3 < a < 2b−5c

S53
[︂

1 1 a a a b 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(a+b+2, 1)
T 2

5 +T
(2a−6b−l)
1 T l

2T 6
6 +T3T4T 4

7 ,

b ≥ 1, a > 3b, 0 < l ≤ a−3b, l odd

S54
[︂

1 1 2a 2a a b 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(b+3a+2, 1)
T 2

5 +T
(2a−l)
1 T l

2T 6
6 +T4T 5

7 ,

b ≥ 1, a > 3b, 0 < l ≤ a, l odd

S55
[︂

1 1 a+1 a 1 1 0
0 0 1 1 1 1 1

]︂
(a+3, 4)
(a+2, 1)

T
(a−1)
1 T 4

5 +T4T 3
6 +T 2

2 T3T 3
7 ,

a ≥ 2

S56
[︂

1 1 a+2 a 1 1 0
0 0 1 1 1 1 1

]︂
(a+3, 4)
(a+3, 1)

T
(a−1)
1 T 4

5 +T4T 3
6 +T2T3T 3

7 ,

a ≥ 2

S57
[︂

1 1 a+3 a 1 1 0
0 0 1 1 1 1 1

]︂
(a+3, 4)
(a+4, 1)

T
(a−1−l)
1 T l

2T 4
5 +T4T 3

6 +T3T 3
7 ,

a ≥ 2, 0 ≤ l ≤ (a−1)/2

S58
[︂

1 1 a b 1 1 0
0 0 1 1 1 1 1

]︂
(b+3, 4)
(a+1, 1)

T
(b−1)
1 T 4

5 +T4T 3
6 +T

(b+3)
2 T 4

7 ,

a > b ≥ 2, b even

S59
[︂

1 1 2a+1 2a a a 0
0 0 1 1 1 1 1

]︂
(4a+1, 4)
(2a+2, 1)

T1T 4
5 +T2T 4

6 +T3T4T 2
7 ,

a ≥ 1

S60
[︂

1 1 a b c c 0
0 0 1 1 1 1 1

]︂
(a, 4)

(2c+b+2, 1)
T

(a−4c)
1 T 4

5 +T
(a−4c)
2 T 4

6 +T3T 3
7 ,

c ≥ 1, b > 2c−1, 4c < a ≤ 1+b+2c, a odd

S61
[︂

1 1 a b c c 0
0 0 1 1 1 1 1

]︂
(b, 4)

(a+2c+2, 1)
T

(b−4c)
1 T 4

5 +T
(b−4c)
2 T 4

6 +T4T 3
7 ,

c ≥ 1, b > 4c, a > b, b odd

S64
[︂

1 1 a b c 0 0
0 0 1 1 1 1 1

]︂
(b, 4)

(a+c+2, 1)
T

(b−4c)
1 T 4

5 +T b
2 T 4

6 +T4T 3
7 ,

c ≥ 1, b > 4c, b < a ≤ 1+b+c, b odd

S67
[︂

1 1 a b c 0 0
0 0 1 1 1 1 1

]︂
(4c, 4)

(a+b−3c+2, 1)
T 4

5 +T
(4c−a)
1 T3T 3

6 +T
(4c−b)
2 T4T 3

7 ,

c ≥ 1, a > b > 4c

S68
[︂

1 1 a 4b b 0 0
0 0 1 1 1 1 1

]︂
(4b, 4)

(a+b+2, 1)
T 4

5 +T
(4b−l)
1 T l

2T 4
6 +T4T 3

7 ,

b ≥ 1, 4b < a ≤ 5b+1, 0 < l < 2b, l odd

S69
[︂

1 1 2a a−1 a 0 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(1+2a, 1)
T1T2T 2

4 T 4
7 +T3T 5

6 +T 2
5 ,

a ≥ 2

S70
[︂

1 1 2b a b 0 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(3b−a+2, 1)
T 2

5 +T3T 5
6 +T

(2b−a−l)
1 T l

2T4T 5
7 ,

a, b ≥ 1, b−1 ≤ a < 2b
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ID [w1, . . . , w7]
[︂

µ
−K

]︂
g

S71
[︂

1 1 a b c 0 0
0 0 1 1 3 1 1

]︂
(2c, 6)

(a+b−c+2, 1)
T 2

5 +T
(2c−a)
1 T3T 5

6 +T
(2c−b)
2 T4T 5

7 ,

c ≥ 1, c−1 ≤ b < 2c, b < a < 2c

S72
[︂

1 1 a 2 3 0 0
0 0 1 1 3 1 1

]︂
(6, 6)

(a+1, 1)
T 5

1 T2T 6
6 +T 3

4 T 3
7 +T 2

5 ,

a ≥ 3

S73
[︂

1 1 a+1 a−1 a 0 0
0 0 1 1 3 1 1

]︂
(2a, 6)

(a+2, 1)
T

(2a−l)
1 T l

2T 6
6 +T3T4T 4

7 +T 2
5 ,

a ≥ 2, 0 < l ≤ a, l odd

S74
[︂

1 1 2b a b 0 0
0 0 1 1 3 1 1

]︂
(2b, 6)

(a+b+2, 1)
T 2

5 +T
(2b−l)
1 T l

2T 6
6 +T3T 5

7 ,

a, b ≥ 1, b−1 ≤ a < 2b, 0 < l ≤ b, l odd

S75
[︂

1 1 a 2b b 0 0
0 0 1 1 3 1 1

]︂
(2b, 6)

(a+b+2, 1)
T 2

5 +T
(2b−l)
1 T l

2T 6
6 +T4T 5

7 ,

b ≥ 1, a > 2b, 0 < l ≤ b, l odd

Q =
[︂

1 1 a a b c 0
0 0 1 1 1 1 1

]︂
µ = (a+3c, 4) −K = (a−2c+b+2, 1)

ID g ID g

S37 T
(a+3c−4b)
1 T 4

5 +T3T 3
6 +T 3c

2 T4T 3
7 ,

b > c ≥ 1, b ≥ 2c−1, a > 4b−3c
S38 T

(a+3c−4b)
1 T 4

5 +T3T 3
6 +T

(a+3c)
2 T 4

7 ,

b > c ≥ 1, b ≥ 2c−1, a > 4b−3c, a or c odd

Q =
[︂

1 1 4a−3b 4a−3b a b 0
0 0 1 1 1 1 1

]︂
µ = (4a, 4) −K = (5a−5b+2, 1)

ID g ID g

S40 T 4
5 +T3T 3

6 +T
(3b−l)
1 T l

2T4T 3
7 ,

a > b ≥ 1, a ≥ 2b−1, 0 ≤ l ≤ 3b/2
S41 T 4

5 +T3T 3
6 +T

(4a−l)
1 T l

2T 4
7 ,

a > b ≥ 1, a ≥ 2b−1, 0 < l < 2a, l odd

Q =
[︂

1 1 2a−5b 2a−5b a b 0
0 0 1 1 3 1 1

]︂
µ = (2a, 6) −K = (3a−9b+2, 1)

ID g ID g

S46 T 2
5 +T3T 5

6 +T
(10b−2a−l)
1 T l

2T 2
4 T 4

7 ,

b ≥ 1, 4b−1 ≤ a < 5b
S47 T 2

5 +T3T 5
6 +T

(5b−l)
1 T l

2T4T 5
7 ,

b ≥ 1, a ≥ 4b−1, 0 ≤ l ≤ 5b/2

S48 T 2
5 +T3T 5

6 +T
(2a−l)
1 T l

2T 6
7 ,

b ≥ 1, a ≥ 4b−1, 0 < l ≤ a, l odd

Q =
[︂

1 1 2a+2 2a+2 3a+3 a 0
0 0 1 1 3 1 1

]︂
µ = (6a+6, 6) −K = (2a+3, 1)

ID g ID g

S50 T 5
1 T2T 6

6 +T 2
3 T4T 3

7 +T 2
5 ,

a ≥ 1 S51 T 5
1 T2T 6

6 +T 3
3 T 3

7 +T 2
5 ,

a ≥ 1

S52 T 3
1 T 3

2 T 6
6 +T 2

3 T4T 3
7 +T 2

5 ,

a ≥ 1
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Q =
[︂

1 1 a b c 0 0
0 0 1 1 1 1 1

]︂
µ = (a, 4) −K = (c+b+2, 1)

ID g ID g

S62 T
(a−4c)
1 T 4

5 +T3T 3
6 +T

(a−b)
2 T4T 3

7 ,

c ≥ 1, b > 3c−1, 4c < a ≤ 1+b+c
S63 T

(a−4c)
1 T 4

5 +T a
2 T 4

6 +T3T 3
7 ,

c ≥ 1, b > 3c−1, 4c < a ≤ 1+b+c, a odd

Q =
[︂

1 1 4b a b 0 0
0 0 1 1 1 1 1

]︂
µ = (4b, 4) −K = (a+b+2, 1)

ID g ID g

S65 T 4
5 +T3T 3

6 +T
(4b−a−l)
1 T l

2T4T 3
7 ,

b ≥ 1, 3b−1 ≤ a < 4b, 0 ≤ l ≤ (4b−a)/2
S66 T 4

5 +T
(4b−l)
1 T l

2T 4
6 +T3T 3

7 ,

b ≥ 1, 3b−1 ≤ a < 4b, 0 < l < 2b, l odd

Classification list 3.10.11. Locally factorial Fano fourfoulds of Picard number two
with a hypersurface Cox ring and an effective three-torus action: Specifying data for the
series with s = 6.

ID [w1, . . . , w7]
[︂

µ
−K

]︂
g

S78
[︂

1 1 b + 3d b c d 0
0 0 1 1 1 1 1

]︂
(b+3d, 4)

(b+d+c+2, 1)

T
(b−4c+3d−l)
1 T l

2T 4
5 +T4T 3

6 +T3T 3
7 ,

c > d ≥ 1, c ≥ 2d−1, b > 4c−3d,

0 ≤ l ≤ (b−4c+3d)/2

S83
[︂

1 1 a b c d 0
0 0 1 1 1 1 1

]︂
(b, 4)

(d+c+a+2, 1)
T

(b−4c)
1 T 4

5 +T
(b−4d)
2 T 4

6 +T4T 3
7 ,

c > d ≥ 1, b > 4c, a > b, b odd

S88
[︂

1 1 4c 4c−3d c d 0
0 0 1 1 1 1 1

]︂
(4c, 4)

(5c−2d+2, 1)
T3T 3

7 +T4T 3
6 +T 4

5 ,

c > d ≥ 1, c ≥ 2d−1

S93
[︂

1 1 a 4c c d 0
0 0 1 1 1 1 1

]︂
(4c, 4)

(d+c+a+2, 1)
T 4

5 +T
(4c−4d−l)
1 T l

2T 4
6 +T4T 3

7 ,

c > d ≥ 1, a > 4c, 0 < l < 2c−2d, l odd

S102
[︂

1 1 2c 2c−5d c d 0
0 0 1 1 3 1 1

]︂
(2c, 4)

(3c−4d+2, 3)
T3T 5

7 +T4T 5
6 +T 2

5 ,

d ≥ 1, c > 3, c ≥ 4d−1

S105
[︂

1 1 2c − b b c d 0
0 0 1 1 3 1 1

]︂
(2c, 4)

(c+d+2, 3)

T 2
5 +T

(2c−6d−l)
1 T l

2T 6
6 +T3T4T 4

7 ,

d ≥ 1, c > 3d, b > 1, c−d−1 ≤ b < c,

0 < l ≤ c−3d, l odd

S106
[︂

1 1 a 2c c d 0
0 0 1 1 3 1 1

]︂
(2c, 4)

(d+c+a+2, 3)
T 2

5 +T
(2c−6d−l)
1 T l

2T 6
6 +T4T 5

7 ,

d ≥ 1, c > 3d, a > 2c, 0 < l ≤ c−3d, l odd
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Q =
[︂

1 1 a b c d 0
0 0 1 1 1 1 1

]︂
µ = (a+3d, 4) −K = (c+b−2d+2, 1)

ID g ID g

S76
T

(a−4c+3d)
1 T 4

5 +T3T 3
6 +T

(a−b+3d)
2 T4T 3

7 ,

b > c > d ≥ 1, a > 4c−3d,

a > b−3d, a ≤ 1+b+c−2d

S77
T

(a−4c+3d)
1 T 4

5 +T3T 3
6 +T

(a+3d)
2 T 4

7 ,

b > c > d ≥ 1, 4c−3d < a ≤ 1+b+c−2d,

a+3d odd

Q =
[︂

1 1 a b c d 0
0 0 1 1 1 1 1

]︂
µ = (a, 4) −K = (b+d+c+2, 1)

ID g ID g

S79
T

(a−4c)
1 T 4

5 +T
(a−b−3d)
2 T4T 3

6 +T3T 3
7 ,

b > c > d ≥ 1, a > 4c, a > b+3d,

a ≤ 1+b+c+d

S80
T

(a−4c)
1 T 4

5 +T
(a−4d)
2 T 4

6 +T3T 3
7 ,

c > d ≥ 1, b ≥ 3c−d, 4c < a ≤ 1+b+c+d,

a odd

Q =
[︂

1 1 a b c d 0
0 0 1 1 1 1 1

]︂
µ = (b+3d, 4) −K = (c+a−2d+2, 1)

ID g ID g

S81 T
(b−4c+3d)
1 T 4

5 +T4T 3
6 +T

(b+3d−a)
2 T3T 3

7 ,

c > d ≥ 1, b > 4c−3d, b < a < b+3d
S82

T
(b−4c+3d)
1 T 4

5 +T4T 3
6 +T

(b+3d)
2 T 4

7 ,

c > d ≥ 1, c ≥ 2d−1, b > 4c−3d,

a > b, b+3d odd

Q =
[︂

1 1 4c−3d b c d 0
0 0 1 1 1 1 1

]︂
µ = (4c, 4) −K = (c+b−2d+2, 1)

ID g ID g

S84 T 4
5 +T3T 3

6 +T
(4c−b−l)
1 T l

2T4T 3
7 ,

c > d ≥ 1, 3c−d−1 ≤ b < 4c−3d
S85

T 4
5 +T3T 3

6 +T
(4c−l)
1 T l

2T 4
7 ,

d ≥ 1, c > 2d−1, 3c−d−1 ≤ b < 4c−3d,

0 < l < 2c, l odd

Q =
[︂

1 1 a b c d 0
0 0 1 1 1 1 1

]︂
µ = (4c, 4) −K = (d+b+a−3c+2, 1)

ID g ID g

S86 T 4
5 +T

(4c−a−3d)
1 T3T 3

6 +T
(4c−b)
2 T4T 3

7 ,

c > d ≥ 1, 3c−d−1 ≤ b < 4c, a > 4c−3d
S87

T 4
5 +T

(4c−b−3d)
1 T4T 3

6 +T
(4c−a)
2 T3T 3

7 ,

d ≥ 1, c > 2d−1, 3c−d−1 ≤ b < 4c−3d,

b < a < 4c

Q =
[︂

1 1 4c b c d 0
0 0 1 1 1 1 1

]︂
µ = (4c, 4) −K = (b+d+c+2, 1)

ID g ID g

S89 T 4
5 +T

(4c−b−3d−l)
1 T l

2T4T 3
6 +T3T 3

7 ,

d ≥ 1, c > 2d−1, 3c−d−1 ≤ b < 4c−3d
S90

T 4
5 +T

(4c−4d−l)
1 T l

2T 4
6 +T3T 3

7 ,

c > d ≥ 1, 3c−d−1 ≤ b < 4c,

0 < l < 2c−2d, l odd

Q =
[︂

1 1 a 4c−3d c d 0
0 0 1 1 1 1 1

]︂
µ = (4c, 4) −K = (c+a−2d+2, 1)

ID g ID g

S91 T 4
5 +T4T 3

6 +T
(4c−a−l)
1 T l

2T3T 3
7 ,

c > d ≥ 1, c ≥ 2d−1, 4c−3d < a < 4c
S92

T 4
5 +T4T 3

6 +T
(4c−l)
1 T l

2T 4
7 ,

c, d ≥ 1, c ≥ 2d−1, a > 4c−3d,

0 < l < 2c, l odd
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Q =
[︂

1 1 a 2c−5d c d 0
0 0 1 1 3 1 1

]︂
µ = (2c, 4) −K = (c−4d+a+2, 3)

ID g ID g

S94
T 2

5 +T4T 5
6 +T

(2c−2a−l)
1 T l

2T 2
3 T 4

7 ,

d ≥ 1, c > 3d, 4d−1 ≤ c < 5d,

2c−5d < a < c, 0 < l ≤ c−a, l odd
S95

T 2
5 +T4T 5

6 +T
(2c−a−l)
1 T l

2T3T 5
7 ,

d ≥ 1, c > 3, c ≥ 4d−1, 2c−5d < a < 2c,

0 ≤ l ≤ (2c−a)/2

S96
T 2

5 +T4T 5
6 +T

(2c−l)
1 T l

2T 6
7 ,

d ≥ 1, c > 3, c ≥ 4d−1, a > 2c−5d,

0 < l ≤ c, l odd

Q =
[︂

1 1 2c−5d b c d 0
0 0 1 1 3 1 1

]︂
µ = (2c, 4) −K = (c−4d+b+2, 3)

ID g ID g

S97
T 2

5 +T3T 5
6 +T

(2c−2b−l)
1 T l

2T 2
4 T 4

7 ,

d ≥ 1, c > 4d−1, c−d−1 ≤ b < c,

b < 2c−5d, 0 < l ≤ c−b, l odd
S98

T 2
5 +T3T 5

6 +T
(2c−b−l)
1 T l

2T4T 5
7 ,

d ≥ 1, c > 3d, c−d−1 ≤ b < 2c−5d,

0 ≤ l ≤ (2c−b)/2

S99
T 2

5 +T3T 5
6 +T

(2c−l)
1 T l

2T 6
7 ,

d ≥ 1, c > 4d−1, b > 1, c−d−1 ≤ b < 2c−5d,

0 < l ≤ c odd

Q =
[︂

1 1 a b c d 0
0 0 1 1 3 1 1

]︂
µ = (2c, 4) −K = (d+b+a−c+2, 3)

ID g ID g

S100 T 2
5 +T

(2c−a−5d)
1 T3T 5

6 +T
(2c−b)
2 T4T 5

7 ,

d ≥ 1, c > 3d, c−d−1 ≤ b < a < 2c−5d
S101

T 2
5 +T

(2c−b−5d)
1 T4T 5

6 +T
(2c−a)
2 T3T 5

7 ,

d ≥ 1, c > 4d−1, b > 1, c−d−1 ≤ b < 2c−5d,

b < a < 2c

Q =
[︂

1 1 2c b c d 0
0 0 1 1 3 1 1

]︂
µ = (2c, 4) −K = (b+d+c+2, 3)

ID g ID g

S103
T 2

5 +T
(2c−b−5d−l)
1 T l

2T4T 5
6 +T3T 5

7 ,

d ≥ 1, c > 4d−1, c−d−1 ≤ b < 2c−5d,

0 ≤ l ≤ (2c−b−5d)/2
S104

T 2
5 +T

(2c−6d−l)
1 T l

2T 6
6 +T3T 5

7 ,

d ≥ 1, c > 3d, b > 1, c−d−1 ≤ b < 2c,

0 < l ≤ c−3d, l odd

Finally, let us compare our results with existing classifications.

Remark 3.10.12. The 447 sporadic cases from Classification lists 3.10.1 to 3.10.11
encompass in particular the smooth Fano fourfolds with hypersurface Cox ring of Picard
number two and torus action of complexity one. The following table translates their ID’s
in the present classification to the cases of [35, Thm. 1.2].

Theorem 1.2 in [35] ID
1 84 (3.10.2)
2 20 (3.10.2)
4.A: m = 1, c = −1 45 (3.10.2)
4.A: m = 1, c = 0 1 (3.10.1)
4.B: m = 1 44 (3.10.2)
4.C: m = 1 6 (3.10.1)

Theorem 1.2 in [35] ID
5: m = 1, a = 0 228 (3.10.3)
7: m = 1 253 (3.10.5)
10: m = 2 244 (3.10.5)
11: m = 2, a2 = 1 225 (3.10.2)
11: m = 2, a2 = 2 226 (3.10.2)
12: m = 2 15 (3.10.1)
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Remark 3.10.13. At least 268 varieties from our classification admit a one-parameter
smoothing to a smooth Fano fourfold of Picard number two. Here, by a one-parameter
smoothing of X we mean a flat morphism of varieties φ : X → C such that X0 := φ−1(0)
is isomorphic to X and there is a non-empty open subset U ⊆ C such that Xt := φ−1(t)
is smooth for all t ∈ U . The procedure to explicitly construct such a smoothing goes as
follows: Let X = X(Q, g) with (Q, g) from the lists 3.10.1 to 3.10.11 and assume that up
to a unimodular transformation the data Q = [w1, . . . , w7] and µ = deg(g) appears in
[45, Thm. 1.1]. Then there is a homogeneous spread polynomial h of degree deg(h) = µ
such that Xh is a smooth Fano fourfold with general hypersurface Cox ring. We extend
the action of H = (C∗)2 on C7 given by the grading map Q to C8 by letting H act
trivially on the last coordinate. We set

Z̄ = C8, ˆ︁Z = Z̄ss(τ), Z = ˆ︁Z // H,

where τ ∈ Λ(C[T1, . . . , T7, T ]) is the unique GIT-cone that contains the anticanonical
class −KX in its interior. Moreover we set

X̄ := V ((1− T )g + Th) ⊆ C8, ˆ︁X = X̄ ∩ ˆ︁Z, X = ˆ︁X // H.

The projection pr: ˆ︁X → C to the last coordinate is H-invariant and thus factors through
a morphism φ : X → C. We have X ∼= φ−1(0) and φ is a smoothing of X with fiber over
t = 1 isomorphic to Xh. In the following table, for each entry (Q, µ) from the table in
[45, Thm. 1.1] we list the IDs of the varieties X(Q, g) from the present classification that
admit such an explicit smoothing to a smooth Fano fourfold of Picard number two with
a general hypersurface Cox ring and data (Q, µ).

[45, Thm. 1.1] IDs
1 1
2 2, 3
3 4, 5
4 6
5 -
6 7, 8
7 19, 20
8 21, 22
9 23 - 25
10 -
11 26, 27
12 28 - 30
13 227, 228

14 230 - 232;
S2: a = 1

15 265 - 270
16 31, 32
17 33, 34
18 35 - 39

[45, Thm. 1.1] IDs
19 40 - 43
20 44, 45
21 242, 243
22 46, 47
23 48 - 50
24 51, 52
25 53 - 71
26 72
27 73
28 74 - 76
29 77
30 78
31 79
32 80
33 415 - 418
34 81 - 84
35 85 - 91
36 92 - 101
37 102 - 107
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[45, Thm. 1.1] IDs
38 108 - 129
39 130 - 148
40 149
41 150, 151
42 152, 153
43 154 - 158
44 159, 160
45 161 - 166
46 167 - 180
47 181 - 219
48 244
49 245
50 246, 247
51 248 - 251
52 411 - 414

[45, Thm. 1.1] IDs
53 252, 253
54 254
55 255 - 257
56 258 - 261
57 262 - 264
58 9, 10
59 11 - 13
60 220 - 222
61 14
62 223
63 16
64 224
65 15
66 225
67 226

With the smoothing procedure from above one obtains a one-parameter smoothing of
the variety no. 17 in Classification list 3.10.1 to X = Y × P1, where Y ⊆ P4 is a smooth
quartic. The specifying data of X is missing from [45, Thm. 1.1].
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