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Abstract

Historical linguists have successfully reconstructed numerous unattested ances-
tral languages for over a century, mainly by applying the comparative method, a
powerful procedure for recovering extinct languages and understanding how they
developed into their modern daughter languages. With the exponential rise of
computational power, scholars have been trying to develop computational solu-
tions for tasks in historical linguistics for roughly two decades. The success of
these methods, however, is limited to solving some individual tasks satisfyingly,
while there are still no good solutions for other tasks. Part of the reason why
scholars were not able to find good computational methods for some parts of the
comparative method is that historical linguists often rely on their intuition and
general linguistic knowledge when reconstructing ancestral languages, a compo-
nent that computational models naturally lack.

This thesis presents a neural model that aims at bridging that gap by providing
typological information about the likelihood of sound changes. The model was
trained on large-scale global lexical data and is therefore able to assess whether a
queried sound change is common or uncommon on a global scale. Since it operates
on phonological features, it is able to process any given sound change between two
arbitrary IPA symbols.

The model was trained on sound changes observed in Maximum Parsimony re-
constructions on a large-scale global lexical dataset. The model was trained as a
binary classifier in a noise-contrastive estimation setting, where the observed sound
changes contributed positive training data which was weighed against randomly
generated negative training data.

Applying a weighted version of Maximum Parsimony, in which the weights were
derived from the model, produced better reconstructions for Proto-Austronesian
and Proto-Oceanic than unweighted Maximum Parsimony reconstructions. That
showed that the model was able to learn common sound changes, including the di-
rection in which they tend to happen. While it requires further systematic testing,
the model shows the potential to enhance tasks in computational historical linguis-
tics by simulating implicit linguistic knowledge as a component of the comparative
method.
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Introduction

In the nineteenth century, a school of linguists who called themselves the Neogram-
marians discovered that different sounds in related languages correspond to each
other in a strikingly systematic way. Based on this observation, they claimed that
sounds change in a completely regular manner without any exceptions, and that
these changes can be expressed by sound laws. This claim gave rise to the com-
parative method, a powerful toolset that enables historical linguists to reconstruct
ancient languages by comparing modern related languages to each other.

While the absolute claim of regularity has been falsified by now, the compar-
ative method is still the most popular and reliable tool for reconstructing ex-
tinct languages — while not completely without exceptions, the majority of sound
changes do follow regular patterns. For quite some decades, a many unattested
proto-languages have been successfully reconstructed by applying the compara-
tive method, which up to this day is “heralded as one of the major intellectual
achievements of the nineteenth century” (Campbell, 2013).

With the rapidly increasing availability of computing power over the last decades,
computational approaches towards language comparison and reconstruction have
recently gained popularity and now form a relatively young line of research com-
monly referred to as computational historical linguistics. Most researchers aim at
models that imitate the comparative method or parts of it. However, the field of
computational historical linguistics is still in its infancy, and no model so far is
able to fully automate the comparative method. Scholars have rather addressed
individual sub-problems, such as cognate detection or ancestral state reconstruc-
tion.

For some of those tasks, researches have developed some techniques that work
reasonably well. For other tasks, however, there are still no satisfying solutions.
Only a few models have been proposed for ancestral state reconstruction, the task
to reconstruct the phonological or phonetic value of a word in a given proto-
language. None of these models has posed a convincing solution for this task,
which has shown to be quite challenging.

But what makes ancestral state reconstruction so much harder than other tasks
in computational historical linguistics? Naturally, there is no single answer to this
question, but a major part of the answer is that linguists employ a good deal of
implicit knowledge when reconstructing proto-languages. A trained linguist knows
which sounds are commonly used in languages and has an intuition about which
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kinds of sound changes are plausible and which ones are not. All this knowledge
was acquired by experience with many different languages and language families
— it can not be deducted from a piece of linguistic data alone.

Computational methods, however, completely rely on the data they are working
on — it is the only source from which they can learn linguistic patterns! Therefore,
they are obviously not able to apply patterns observed beyond the scope of the
present data, which plays a major role in manual linguistic reconstruction. This
thesis introduces a neural model which serves the purpose of bridging this gap by
providing global information about the plausibility of sound change. By learning
on large-scale global lexical data, it is able to capture general sound change ten-
dencies and assess how common or uncommon a given sound change is. Since it
operates on phonological features, rather than on discrete IPA sounds, it is able to
process any sound and therefore even assess sound changes that have not been seen
in the training data. Techniques for ancestral state reconstruction can benefit from
such a model in two ways. First of all, it enables those techniques to reconstruct
sounds that are not present in the given data, since the model is able to generalize
over all kinds of sounds and sound changes. This alleviates a strong limitation that
all techniques for this task suffer from so far, that they are only able to operate on
a fixed alphabet of sounds that are present in the data. Furthermore, the model
can serve as a typological prior for sound change probabilities, which can enhance
models that focus on local patterns within the data.

In Chapter 1, I introduce the core concepts for phonological reconstruction. I
explain the general workflow of the comparative method and discuss its theoret-
ical foundation, strengths and limitations. I then elaborate how and why sound
changes, and conclude the chapter by briefly discussing how realistic reconstructed
forms and languages can be.

Chapter 2 gives an overview of related work in computational historical linguis-
tics, discussing approaches to common individual sub-tasks and addressing open
problems in the field.

Chapter 3 provides a detailed explanation of my methodology and describes the
full workflow for developing and applying the model. I describe which lexical data
was used, how it was processed in order to generate training data for the model,
and how the model was trained and post-processed.

Chapter 4 describes the set-up for evaluating the model by applying it to existing
techniques for ancestral state reconstruction. I discuss the results of this evaluation
quantitatively and qualitatively in chapter 5. Finally, chapter 6 concludes this
thesis and suggests immediate improvements to the workflow outlined in this thesis,
as well as possible future work in the field.



Phonological Reconstruction

1.1 The Comparative Method

The comparative method is the most successful tool to reconstruct ancient lan-
guages that did not leave any records behind and is therefore central to historical
linguistics. It relies on the assumption that sounds change in a completely regular
way which can be predicted by stating according sound laws. These regular sound
changes result in systematic sound correspondences in related modern languages.
For example, compare the German words Apfel, Pfad, and Pfennig to their English
counterparts apple, path, and penny: German consistently has a pf in places where
English features a p.

Correspondences like this one are no coincidence — they can frequently be observed
in related languages and provide strong evidence in favor of the regularity assump-
tion. While this assumption in its strict sense is falsified by now, since there are
clear instances of irregular sound changes, it still holds true for the vast majority of
historical sound changes. This quasi-regularity of sound change enables linguists
to reconstruct ancient language states by comparing documented languages that
are related to each other (Campbell, 2013). If sound changes did not exhibit a high
degree of regularity, it would not be possible for linguist to detect systematic sound
correspondences in related languages in the first place, which then enables them to
postulate sound changes and reconstruct proto-languages — which are essentially
the core principles of the comparative method.

Throughout this chapter, I will demonstrate these principles and how they are
applied, then I will discuss the regularity assumption and its implications, and
finally I will turn to the limitations of the comparative method.

1.1.1 Procedure

Despite what its name suggests, the comparative method is not a uniform, fully
defined pipeline of concrete techniques that should be applied in a certain order.
It rather serves as an overarching term under which certain principles are collected
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Figure 1.1: Workflow of the Comparative Method by Ross and Durie (1996), adapted and
illustrated by List (2022).

that should be applied when reconstructing proto-languages by the means of com-
paring their extant daughter languages. While there is no clear consensus about
the exact techniques to be used and their concrete ordering, linguists largely agree
on some basic principles that are to be considered in comparative linguistics.

Figure illustrates a possible workflow of the comparative method as it was
outlined by (Ross and Durie, 1996). In this section, I will use this structure to
explain the important principles for the comparative method, mainly because it
nicely mirrors common subtasks in computational historical language comparison,
as T will show in Section P (List, 2022). However, there are many other possibilities
to declare tasks and techniques in the comparative method, which are not inher-
ently more or less valuable (Crowley and Bowern, 2010; Campbell, 2013) — the
structure chosen here is merely one of many ways to bundle numerous principles
in subtasks of a workflow. Whichever exact approach one chooses, the comparative
method is a highly iterative process, and each part of it needs to be constantly
revisited and checked against new findings from other stages. An etymological sce-
nario should therefore be constantly self-optimizing, rather than being a product
of the subsequential application of a number of techniques — this is also indicated
by the backwards-pointing arrows in Figure Il_l[

This section will use the workflow proposed by Ross and Durig (1996) to subse-
quently illustrate the core principles and ideas of the comparative method and how
to successfully apply it.

1.1.1.1 Proof of relatedness

The first step outlined by Ross and Durie (1996) is often overlooked and seems
counterintuitive at first glance — is it not the exact purpose of the Comparative
Method to establish relationships between languages? Many scholars consider
the successful application of the comparative method to prove the relatedness of
the languages in question (Campbell and Posen, 2008). Nicholg (1996) however
argues that in fact, quite the opposite is the case: Determining the relatedness of
languages is an independent task from reconstructing a proto-language by applying
the later steps of the comparative method.

The core of this claim becomes more apparent when the notion “proof of relat-
edness” is rephrased: In order to successfully apply the comparative method, one
needs to assume that the languages in question are related to each other in the

4
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first place. The comparative method assumes a strict regularity of sound change
which accounts for regular and systematic sound correspondences in the daughter
languages, which are the basic building blocks for the comparative reconstruction
of a proto-language (discussed in the following sections). If two languages are not
related to each other, there is no systematic distribution of the languages’ sounds
with regard to each other — therefore, it would be impossible to find systematic
sound correspondences and to apply the comparative method in a meaningful
way.

In fact, the first applications of the comparative method for Indo-European lan-
guages did not really consider the question of relatedness — it was just apparent that
the languages that were compared to each other were related. Slavonic philologists
have been treating Slavic languages as a genetic unit ever since; their relatedness
has never been disputed. Both, the fact that Slavic languages up to this day are
quite similar to each other and are mutually intelligible to a certain degree, and
that there is a traditional shared Slavic identity, lead to the conclusion that their
genetic relatedness is self-evident and does not require any further formal proof
(Jagié, 1910; Nichols, 1993, 1996).

Although not as obvious as for Slavic language, the same self-evident relatedness
applies to Indo-European languages. Consider the well-known quote by Sir William
Jones:

The Sanskrit language, whatever may be its antiquity, is of wonderful
structure; more perfect than the Greek, more copious than the Latin,
and more exquisitely refined than either; yet bearing to both of them a
stronger affinity, both in the roots of verbs and in the forms of grammar,
than could have been produced by accident; so strong that no philologer
could examine all three without believing them to have sprung from
some common source, which, perhaps, no longer exists. There is a
similar reason, though not quite so forcible, for supposing that both
the Gothic and Celtic, though blended with a different idiom, had the
same origin with the Sanskrit; and the old Persian might be added to
the same family. (quoted from Nicholg [1996)

The main innovation attributed to this work by Jones lies within the idea that
related languages descend from a common ancestor language that does not exist
anymore. At his time, it was already well known that languages are related to each
other in some way, and philologists have been studying the structure of languages
like Latin or Greek for a long time, but there was a prevalent conception of some
languages representing newer stages of other languages that still exist — for exam-
ple, it was assumed that Latin was a newer or even a “corrupted” form of Greek for
a long time (Nichols, 1996). The concept of older language stages that no longer
exist essentially built the foundation for reconstructing such extinct languages by
comparing their modern descendants, i.e. the comparative method.

More striking in this context, however, is the strong claim about the relatedness
of the languages. Note how Jones does not refer to lexical similarity at any given
point, but rather bases his claim on structural properties, namely the “roots of
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verbs and |[...| the forms of grammar”, which in modern terms refers to the in-
flectional morphology of verbs and nouns. More generally even, none of the well
established language families today has been assembled merely based on lexical ev-
idence. To safely group languages together as a family, they need to share certain
structural features in function and form. Consider the parallel adjective paradigms
from Latin and Ancient Greek in Table E Not only do both languages have a
very similar case system, where the individual cases are used in similar ways; but
the paradigms also show syncretisms at the same places, using the same suffix for
the masculine accusative and both neuter nominative and accusative. There is
also a clear correspondence between individual sounds, like Latin v and m corre-
sponding to Greek o and n respectively. It is clearly visible how these paradigms
in the two languages mirror each other both in function, the case system; and in
form, that is the syncretisms and sound correspondences (Nichols, 1996).

Masculine Feminine Neuter

Latin:

Nominative -us -a -um
Accusative  -um -am -um
Greek:

Nominative -os (*)-a -on
Accusative  -on (*)-an -on

Table 1.1: Reduced adjective paradigm in Latin and Ancient Greek, taken from Nichols
(1996).

Lexical similarity on the other hand can only provide very weak evidence for lan-
guage relatedness. On the one side, lexical items are borrowed at much more easily
than morphological or syntactical features, so the vocabulary of a language is very
prone to being affected and altered due to language contact. On the other side,
semantic change happens unsystematically and is therefore unpredictable, so it is
easy to find words that resemble each other by chance in the comparison of ar-
bitrary languages if you allow for enough semantic variation. Macro-families like
Nostratic (Dolgopolsky, 2008) or Amerind (Greenberg and Ruhlen, 2007) have
been proposed based on such multilateral lexical comparisons, but it has been
shown that their suggested evidence does not meet the criteria of statistical signif-
icance — it is more likely that the found similarities have developed independently
from each other by mere chance (Ringe, 1992, 1999; Nichols, 1996).

In essence, the comparative method can only be successfully applied on languages
that are related to each other. While Nicholg (1996) claims that this relatedness
between the languages has to been proven independently from the comparative
method, her main criteria for determining language relatedness fall in line with
what most scholars that see the comparative method as a proof for language relat-
edness agree on: Besides sharing a large part of their core vocabulary, languages
should also exhibit systematic sound correspondences and similarities in morphol-
ogy and syntax in order to be classified as related (Campbell and Poser, 2008).

6
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In simpler terms, lexical evidence alone is not enough to establish language re-
latedness, which draws the line between established families like Indo-European,
and speculative macro-families like Nostratic: “Dictionaries of groupings like Indo-
European are compiled only after relatedness is assumed or proven, and they serve
to reconstruct and subgroup, while dictionaries of the long-range groupings are of-
fered as evidence of relatedness” (Nichols, 1996). The successful application of the
comparative method can provide strong evidence supporting that certain languages
are related, if it is applied to an extent where complete etymological scenarios, in-
cluding inflectional and derivational morphology, can be reconstructed; however,
language families that are proposed mainly based on lexical evidence like those
mentioned above usually do not meet the criteria for safely establishing language
relatedness — even if parts of the comparative method have been applied.

1.1.1.2 Detection of cognates and sound correspondences

Cognate sets are the basic building blocks of the application of the compara-
tive method, since they reflect to which forms a single proto-word has evolved in
the modern languages. Cognacy is used in a strict sense here — only words that
are directly inherited from a common ancestor should be considered. Since the
comparative method aims at reconstructing how the proto-language has changed
and split into its daughter languages, only directly inherited forms that can tell
this story should be considered. Borrowed words should be disregarded, even if
they ultimately happen to trace back to the same origin: Loanwords follow differ-
ent phonological rules than native vocabulary, and they have undergone different
sound changes in their history. The English word egg for example should not be
considered when reconstructing Proto-West-Germanic since it was borrowed from
Old Norse — even though it originates from Proto-Germanic *ajjg, just like the
direct reflexes of other West Germanic languages (Kroonen, 2013).

Putative cognate sets can be assembled in the first place by comparing languages’
basic vocabularies, which are generally considered to be quite stable and therefore
less prone to borrowing and semantic shift than other parts of the vocabulary.
Words in related languages that are similar in both meaning and form are un-
likely to coexist next to each other by accident, or in other words, are likely to
be cogélates. Consider the following basic concepts from four Polynesian lan-
guages™:

Tongan Samoan Rarotongan Hawai’ian

tapu tapu tapu kapu ‘forbidden’
tagaka tapgaka  tapaka kanaka ‘man’
mana marna mana mana ‘branch’
puhi feula pu’i puhi ‘blow’

Table 1.2: Cognate sets for basic concepts in Polynesian languages, taken from Crowley and
Bowern (2010).

!The grapheme ’is used to express the glottal stop /?/ in Polynesian languages.

7
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It is obvious that the first three concepts are full cognate sets, since the words in
all languages have the same meaning and resemble each other strongly. The same
observation can be made for Tongan, Rarotongan, and Hawai’ian in the fourth
set, however Samoan feula looks substantially different and is therefore likely not
a cognate to the other three forms.

Naturally, the first assessment of cognacy can often be speculative to some degree,
since only the similarity on the surface is considered. Cognate sets are therefore
constantly revisited in the later steps of the comparative method — new findings
regarding sound correspondences and sound laws can provide new evidence for or
against certain cognacy judgements. English egg would probably be seen as prob-
able cognate to German FEi in the initial stage, but since it would contradict sound
laws found at a later stage, it can be safely classified as a borrowing at that point.
Some true cognates on the other hand require a certain understanding of sound
laws: Although Nganasan bi’, Nenets ju’, and Selkup kot have all regularly evolved
from Proto-Samoyedic *wiit, they appear to be quite different on the surface and
would therefore not be recognized as cognates instantly (Daneyko, 2020).

Understanding sound correspondences and sound laws is therefore crucial towards
showing whether certain words are actually cognates, but those can only be es-
tablished by assembling putative cognate sets in the first place. The comparative
method therefore is a strongly iterative process: New insights about sound laws
can show or discard putative cognate sets; the newly assessed cognate sets in
return can provide new sound correspondences, giving evidence for or against cer-
tain sound laws. Applying well-established sound laws can prove cognacy relations
between words whose semantics seem too dissimilar to be considered cognates ini-
tially, like German walken ‘to knead’ and English walk, which both have regularly
developed from Proto-Germanic *walkan ‘to roll’ (Daneyko, 2020). By the same
means, ‘false friends’ — words that look like they are cognates, but are in fact not
— can be identified: English have and Latin habére look very similar and share
the same meaning. However, Grimm’s law states that voiceless stops change into
voiceless fricatives from Proto-Indo-European to Proto-Germanic, so the English
initial h- traces back to Proto-Indo-European *k-, which Latin has retained —
have and habere therefore can not be cognates! In fact, English have comes from
Proto-Indo-European *keh,p-, which makes it a cognate of Latin capere ‘to take’
(Kroonen, 2013; De Vaan, 2018).

Whether having being established based on known sound laws or merely based on
superficial similarities, as needs to be done in the first stage, cognate sets provide
valuable information about sound correspondences — which sounds in language A
regularly correspond to which sounds in language B. Looking at the cognate sets
from Table [L.2, some interesting observations can be made: Hawai’ian k seems to
systematically correspond to ¢ in the other three languages, and likewise Hawai’ian
seems to have n in the same places where the other three languages feature an 7.
Following the convention by Crowley and Bowern (2010), these sound correspon-
dences can formally be denoted as ¢t : ¢t : t: kand p : § : 7§ : n respectively,
denoting which language uses which sound in a given correspondence (using the
same order of languages as the table above).

8
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A further sound correspondence that can be observed in the fourth example is that
Rarotongan ’ corresponds to Tongan and Hawai’ian h. Since there is no Samoan
reflex for this cognate set, however, it is impossible to know the corresponding
Samoan sound! In cases like this, the sound correspondence has to be denoted
as incomplete for the moment . Throughout this thesis, I will follow the notation
introduced by [List (2019a) and denote incomplete sound correspondences like this
as h : ¢ : 7 : h. Unlike Crowley and Bowern (2010), I will use the symbol ¢
only for denoting a missing reflex in a sound correspondence. Indicating a gap in
a sound correspondence, where a certain sound in a given language systematically
corresponds to the absence of a sound in another language, will be denoted by the
gap symbol -. For example, Tongan ’ahu ‘gall’ is cognate with au in the other
three languages that lack the consonants in this word. Therefore, Tongan ”and h
correspond to a gap in the other languages, which is denoted as ": - : - : -and h
© - - -respectively. The gap symbol therefore indicates that the cognate sets
show the systematic absence of a certain sound in a certain language, while ¢ is
used to show that the corresponding sound of the respective language is unknown
due to a missing reflex.

All sound correspondences that have been introduced so far were perfect corre-
spondences, where each sound of a given language could be mapped to exactly
one sound in another language. In many cases however, things are not as simple,
and sound correspondences can be overlapping. Consider the following minimal
example, consisting of two cognate sets from four Romance languages:

Italian Spanish Portuguese French
caro /karo/ caro /karo/  caro /karu/ cher /fer/ ‘dear’
colore /kolore/ color /kolor/ cor /kor/ couleur /kulcer/ ‘colour’

Table 1.3: Minimal example of overlapping sound correspondences in four Romance languages,
taken from Campbell (2013).

The initial k- in Italian, Spanish, and Portuguese corresponds to French / in the
first example, but to French £ in the second one; yielding the overlapping sound
correspondences k : k: k: [fand k : k : k : k. Unlike the examples seen before,
in this case it is impossible to predict the French form from the other languages
— initial k- could either correspond to French /- or k-. Overlapping sound corre-
spondences like this one hint towards conditioned sound changes, whereas perfect
sound correspondences usually are a result of unconditioned sound changes.

1.1.1.3 Phonological reconstruction and sound law inference

After having identified the systematic and frequent sound correspondences, a his-
torical linguist will turn to reconstructing the respective proto-sounds and inferring
the sound laws involved. Since understanding how sound changes work and how
linguists use these pieces of information to “reverse-engineer” them is a central

2Later evidence can always be included to complete a sound correspondence. In this case, a
cognate set like ahi - afi - a’i - ahi ‘fire’ can show the complete sound correspondence h : f: 7 : h.

9



A GENERALIZED MODEL OF SOUND CHANGE Arne Rubehn

part of this thesis, I will discuss this topic in detail in Section @ For the purpose
of illustrating the work flow of the comparative method concisely, I will use this
section to merely show the implications that reconstructed proto-sounds have on
the workflow, assuming that the correct proto-sound was reconstructed.

First of all, there are some hard structural constraints on which proto-sounds can
be reconstructed. For each sound correspondence that has been determined in
the previous step, exactly one proto-sound has to be reconstructed, following the
assumption that sound change is strictly regular (Campbell, 2013). For illustration
purposes, I will just use the reconstruction principle of the majority vote and
postulate the sound that is reflected in the majority of extant languages as proto-
sound. As we will later see, this is only one of several rules of thumb to choose
the most likely proto-sound, but it is sufficient for the examples we have seen so
far.

By the means of this simple principle, *¢ would be the best candidate for the
Proto-Polynesian sound that is reflected in the sound correspondence t : t : ¢
- k. Reconstructing *t implies that there was a sound change from /t/ to /k/
in Hawai’ian, which can formally be denoted as /t/ > /k/. Likewise, the sound
correspondence 7 : 7 : 7 : nimplies a sound change /1/ > /n/ for Hawai’ian.

Since these sound correspondences are not overlapping, it is easy and straightfor-
ward to posit the respective sound changes. These sound changes for Hawai’ian
are unconditioned, so they can be stated quite simply — every Proto-Polynesian
/t/ is reflected as a /k/ in Hawai’ian. Things become a bit more complicated
when dealing with overlapping sound correspondences, like the one observed in
Table |1_3 Following the majority vote principle, we reconstruct the proto-sound
*L for both sound correspondences, k : k : k: [and k : k : k : k. That leads to
a problem: We need to come up with sound laws that explain how Latin /k/ in
some cases turned into /[/, but stayed /k/ in others.

As already briefly mentioned above, this is a case of conditioned sound change —
/k/ became /[/ in French only under certain conditions and stayed /k/ otherwise.
Historical linguists usually denote such sound laws in the same way that phono-
logical rules are defined by generative phonologists. In this case, the sound change
is conditioned by the following vowel — /k/ only becomes /[/ if followed by a front
vowel. This rule is commonly written as:

/k/ — /[/ \_|-cons,-back]

Just like generative phonologists, historical linguists commonly make use of phono-
logical feature representation to express structural similarities of sounds and bun-
dle them together by those means — in that case, all vowels that are not back
vowels (/i, e, €, a/ in Old French) trigger the sound change. Sound laws have to
be stated in a way that they derive the modern reflexes reliably and determinis-
tically from the proto-forms: For each reconstructed proto-form, there can only
be one possible reflex in the daughter languages by rigorously applying the sound
laws, so there is no room for ambiguity.

Another parallel to derivational phonology is that some rules will affect the same
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target sounds, in which cases a rule ordering has to be defined. The intuition
behind rule ordering is actually a lot simpler in the case of historical linguistics:
For derivational phonology, the idea is that one rule is applied before another one
in an abstract, hypothetical cognitive derivation process — the interpretation for
historical linguistics is just that a certain sound change happened at an earlier point
in time than another one. For example, Old French /an/ changed to /d/ at some
point, deriving the modern surface form /[at/ for (je) chante ‘sing (1.sg.)’ from
/fant/, which is ultimately derived from Latin canto /kanto:/. In combination,
both sound laws derive the French form from the Latin form like this (ignoring
the loss of the final vowel):

/kanto:/ > /fant/ > /[at/

This derivation implies that /k/ has become /[/ before /an/ has turned to /a/
(Pope, 1934). If the rules were applied in the reversed order, the latter rule would
take away the context for the first rule to apply by shifting the vowel to a back
vowel, and /k/ would not change to /[/ — which would be equivalent to bleeding in
terms of derivational phonology. This however does not happen, since both rules
do apply, which shows that the former sound change happened before the latter
one.

That exemplifies how sound laws have to be inferred from the identified sound
correspondences according to two important principles. The set of inferred sound
laws needs to explain all regular sound correspondences by properly defining both
the right conditions and the right order for the sound changes to apply. Coming
from a reconstructed proto-form, this set of rules should be able to derive the
extant forms in a deterministic, non-ambiguous manner.

1.1.1.4 Reconstruction of an etymological scenario

The final step of the comparative method is to collect all the evidence that has
been gathered by recursively applying the aforementioned steps and to flesh out
a full etymological theory. This theory — usually compiled in an etymological dic-
tionary — should tell the story about how all extant languages have derived from
the reconstructed proto-language (Ross and Durie, 1996). That includes not only
providing systematic reconstructions for all cognate sets from the data, but also
to to reconstruct grammatical morphemes in form and function. In essence, an
etymological dictionary should systematically explain the heritage of the grand
share of lexemes in the data, including how inflectional and derivational morphol-
ogy has developed over time. For partial cognates, where for example two words
in the extant languages share the same stem but include some other morpheme,
the theory needs to be able to thoroughly explain which morphological processes
have occurred that lead to the forms we find in the data. That means, that the et-
ymological scenario would not only need to provide reconstructions for the shared
stem, but also for the other (functional) morphemes.

In some cases however, it is not possible to fully reconstruct a proto-form, because
its reflexes have not been retained in all daughter languages. This leads to an
incomplete sound correspondence in the respective cognate set, as described pre-
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viously in Section . Since sound correspondences can be overlapping, such
incomplete correspondence sets can sometimes not be clearly mapped to one full
sound correspondence. In such cases, it is common practice to underspecify the
sound that can not be reconstructed with full certainty. Indo-European philolo-
gists for example regularly use the symbol H to denote any of the three laryngeals
in cases where there is no evidence from Greek (List, 2019b).

Finally, an etymological theory also needs to account for forms that have not
been passed down from mother to daughter language in a regular fashion, as the
comparative method strictly assumes. That includes explaining how and why
some irregular changes have happened that violate the rigorous assumption of
regularity; these kinds of changes will be discussed in Section m Another
obvious case that needs to be considered is borrowing: Loanwords (or any other
piece of language that has been borrowed) also call for explanation. The theory
should be clear about which words have been borrowed from which donor language
within which timeframe. That requires the inclusion of some external information,
ranging from linguistic knowledge about other language families to geographical,
cultural, and social factors throughout history. Naturally, the theory therefore
also needs a concise explanation when the population that spoke a given proto-
language lived in which geographical area, and to which other communities they
have had contact at which point in time. To frame it in an exaggerated example, it
would be unreasonable to assume that the same community of speakers borrowed
a word from a language spoken in South-East Asia, and another one from a South
African language.

Ultimately, a good etymological scenario should provide some deeper understand-
ing of the history of the respective language family. That can enable historical
linguists to base new claims on that acquired knowledge, or to analyze new findings
in the context of what is known about the family’s history. Prominently, this refers
to recognizing new languages as members of a family. Revisiting Jones” quote from
earlier, he proposed that Gothic, Celtic, and Persian might as well belong to the
Indo-European family — a hypothesis that could be confirmed at a later point,
after already gaining some knowledge about how early stages of Indo-European
must have looked like based on the evidence of Sanskrit, Ancient Greek, and Latin.
Since the potential new family members could easily be derived from the proposed
proto-language, it was evident that these languages were in fact Indo-European
as well. This understanding of the structure of (Proto-)Indo-European also en-
abled researchers to identify the Tocharian languages as Indo-European after they
were discovered (Ross and Durie, 1996; Nichols, 1996). After all, the comparative
method, and in a broader sense linguistic reconstruction, is highly recursive in
nature, and every new piece of evidence can change parts of a theory.

1.1.2 On regularity of sound change

In the previous sections, I have already hinted at the fact that the comparative
method relies on some rigorous assumptions, most prominently that sound change
occurs in a regular manner without any exceptions. Ross and Durie (1996) explain
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that the comparative method is not to be seen as a tool on its own, but is strongly
associated to the Neogrammarian hypothesis (Osthoff and Brugmann|, [1878), which
explicitly claims the strict regularity of sound change. This theory was a result of
a heavy Darwinist thinking that was prevalent among contemporary scientists —
Schleicher ([1863) considered languages to be natural organisms that follow natural,
exceptionless laws. He therefore claimed that linguistics were a natural science,
since according to his view, it investigated natural organisms, just like for example
biology. This idea also gave rise to depict the genetic relation of languages to each
other by means of trees, analogously to the tree of life — a model that, despite its
drawbacks and inaccuracies, is still widely used today.

The same holds true for the comparative method and its assumption of regular
sound change. As of today, there is plenty of evidence that sound change is not
completely regular. In fact, there are many reasons why sounds can change in a
different way than sound laws would predict, which include analogy, onomatopoe-
sia, sound symbolism, avoidance of homophony, tabooization, and bilingualism
(Ross and Durie, 1996). According to Grimm’s and Verner’s Laws, English father
should surface as **[fado(r)], however the medial consonant has become a [3] in
analogy to brother which exhibits the same medial consonant (which has devel-
oped regularly in the latter case). Analogical sporadic sound change often occurs
in words that are found in narrow semantic fields like kinship terms or lists like
numerals (McMahon, 1994). Latin lupus ‘wolf’ has been borrowed from Sabellic
*lupo- in order to avoid the direct utterance of a taboo term; the direct Latin reflex
would have been **lucus (De Vaan, 2018). Bantu languages of Southern Africa
borrowed click consonants from adjacent Khoisan languages which would partially
replace their native consonant inventory (Daneyko and Bentz, 2019). In Northern
Estonian, final n was lost regularly, except in first person singular verb forms to
avoid homophony with the singular imperative form; retaining forms like kannan
‘I carry’ (Campbell, 1996).

All of these examples violate the regularity assumption made by the comparative
method and therefore can not be accounted for by applying it in a strict sense. Nev-
ertheless, it is indisputable that sound changes exhibit a strong tendency towards
being regular, and examples of sporadic changes tend to be the exception rather
than the rule. Such cases can not be handled by the comparative method, but
require case-by-case examination. While the claim of regularity of sound change
without exceptions has to be falsified, the principle of regularity still holds true
for most cases and allows historical linguists to systematically reconstruct older
language stages. Campbell (1996) concludes that “although irregularities in sound
change undoubtedly occur, we should not give up the basic concept of the regu-
larity of sound change since many irregularities can be explained by linguistic and
sociocultural factors which may ‘interfere’ with regularity but do not undermine
the principle of regularity itself.”
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1.1.3 Limitations

Besides the regularity assumption discussed in the last section, the comparative
method is further limited by strongly relying on the tree model: It assumes that
languages change along the branches of a phylogenetic tree, and that there is
exactly one uniform (proto-)language at each of its nodes (Campbell, 2013).

These assumptions should be treated in a similar way as the regularity assump-
tion — representing languages as leaves and nodes on a tree is a model that can
capture certain phenomena, but does not reflect the whole truth. The compara-
tive method aims at reconstructing one uniform proto-language, disregarding any
sort of internal variation. However, it is safe to assume that extinct languages
behaved like modern languages and featured dialects, sociolects, and diastratic
variation. Disregarding these layers of variation by assuming the uniformity of a
language (which is also frequently done for modern languages) already constitutes
an abstraction of the actual reality of the spoken language.

According to the tree model, a proto-language would split up into multiple daugh-
ter languages at a certain point in time, which then are located on different
branches on the tree. This has two further implications: First of all, it implies
that there is an abrupt, non-gradual change from mother to daughter language.
Of course, no linguist would assume that language evolves this way, but it is
worthwhile to note that the tree model is technically not able to model the grad-
ual transition between different language stages — that requires further human
interpretation outside of the model. The second implication however is the more
important one for the application of the comparative method: Once a language has
split into different daughter languages, these languages will evolve independently
from each other. The tree model therefore is not able to account for horizontal
contact between languages after they have split up — and in a broader sense, it
is not able to model language contact and its effects at all. For example, Norwe-
gian Bokmal is considered to be a descendant of Old West Norse, just like Faroese
and Icelandic. Swedish and Danish on the other hand have evolved from Old East
Norse — that implies that Norwegian is more closely related to Icelandic and Faroese
than to Swedish and Danish (Hammarstrom et al., 2022). While this might reflect
the historical evolution of the languages, it completely disregards the factors of
geography and thus language contact: Norwegian has been in close contact with
the mainland Scandinavian languages over the last centuries, while being isolated
from its ‘siblings’ spoken on islands. As a result, Norwegian today is much more
similar to Swedish and Danish, whose speakers can understand each other most
of the times. Icelandic and Faroese on the other hand are now too different from
Norwegian to retain mutual intelligibility. In order to successfully reconstruct re-
spective proto-languages, a historical linguist is bound to deviate from the tree
model in order to account for the geographic reality of these languages and the
degree of contact they have had with each other.

Last but not least, the quality of reconstructions is naturally directly dependent
of the availability of data. The more languages of a family are known and can
provide data, the better a linguist can understand the history of the family and
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reconstruct earlier language stages. If French and English were the only surviving
Indo-European languages, it would not even be able to identify them as belonging
to the same family (Meillet, 1958), leave alone to reconstruct a common ances-
tor. For Latin, most lexical items and phonological structures can successfully
be reconstructed from the modern Romance languages, but there is not enough
evidence for the extensive case system and verbal inflections, since no modern
descendant has retained these features systematically (Campbell, 2013). Recon-
structions for families with bad availability of data are therefore more speculative
and less accurate in nature.

1.2 Sound change

1.2.1 How sounds change

A number of frameworks have extensively dealt with the question how sounds
change over time and have come up with different explanations and models.
Neogrammarians believed that sound changes arise at a given point in time and
affect the whole lexicon simultaneously, following the rigorous principle of regu-
larity. Structuralists focused on the phonological structure of a language, seeking
the main motivation for sound change in the different functions that phonemes
(should) have in a language to make its phonology efficient. According to this
theory, languages tend to avoid asymmetric and therefore inefficient phonological
systems. Generativists viewed diachronic sound change in the framework of gen-
erative phonology, concluding that every phonological change can be explained by
a change in either phonological rules, their ordering, or the underlying represen-
tations (McMahon, 1994).

As of today, there seems to be a consensus among scholars that sound changes do
not happen abruptly (as claimed by the Neogrammarians), but rather gradually.
Any given sound change therefore starts as an innovation that affects a small part
of the lexicon, and from there gradually spreads to other lexical items. Given
enough time for the sound change to happen without other processes interfering,
it will eventually affect the whole lexicon and therefore fulfil the Neogrammarians’
regularity claim. However, this model of lexical diffusion can also explain residual
effects, sporadic cases where a sound change did not affect individual words that
should have been affected — basically, a sound change can just ‘die’ before having
affected the whole lexicon (McMahon, 1994; Crowley and Bowern, 2010). This
nicely accounts for the evident quasi-regularity of sound change with both truths
that come with it, that there is an undeniable regularity on the one hand, but also
some clear exceptions on the other hand. Likewise, this model can also account
for sporadic sound changes, in which case that change has gone essentially unpro-
ductive before affecting the grand share of the vocabulary. If a sound change is
rejected by the community of speakers early enough, it might even be reverted
completely (Blust, 1996).

Sound changes do not only propagate gradually through the lexicon, but also
through a community of speakers. Just like changes do not affect all lexical items
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immediately at the same time, they are not instantly applied by all speakers of a
community. Whether a speaker chooses to integrate an ongoing sound change to
their idiolect can heavily depend on different sociolinguistic factors like age, gender,
or social status; or simply based on where they live, i.e. whether a sound change has
spread to their home region — a dimension that dialectologists frequently represent
as isoglosses. Due to those factors, Ross and Durie (1996) argue for framing
language change in a speaker-oriented paradigm rather than a language-oriented
one. They claim that language should not be seen as a natural organism that lives
and changes on its own, but as a human-made tool that can be applied and shaped
to fit its speakers’ needs, leaving space for both regularity and irregularity.

Although having established a reasonably good understanding of how innovations
diffuse through the lexicon and the speakers over time and how this effectively
changes languages, the question why sound changes arise in the first place still
leaves much to be investigated. The Neogrammarians suggested that sound change
can be attributed to physiological reasons — sounds or sound clusters that are hard
to pronounce give way to those that take less effort to articulate. Latin obstruent
clusters were systematically reduced to a geminate of its last segment, as in septem
> sette ‘seven’ or octo > otto ‘eight’. While this reasoning seems very attractive
and should not be disregarded, it can not account for all sound changes: If that
was the case, the same kind of sound changes would be applied in the same con-
texts in all languages of the world, which would make sound change essentially
universally predictable (McMahon, [1994). Since that is not the case, there are
necessarily some additional factors that lead to sound change. The most widely
accepted explanation is that sounds that are frequently confused with each other
are also likely to change into each other. This includes both errors on the speaker’s
and on the listener’s side. The former one partially overlaps with the Neogram-
marians’ claim: Voiceless obstruents often become voiced intervocalically, because
it is easier to articulate the whole vowel-obstruent-vowel sequence as voiced, rather
than articulating only the obstruent unvoiced, which leads speakers to frequently
mispronounce the obstruent as voiced. Including the role of the listener however
is crucially different from attributing all sound changes to the ease of articulation
— some differences are simply harder to perceive than others. Nasal consonants
therefore are commonly subject to deletions, although they are not particularly
hard to articulate, but they are hard to perceive due to their weak acoustic signal.
If a listener therefore commonly misunderstands some words or sound sequences,
they will naturally reproduce them how they have perceived them and therefore
articulate some pieces of language differently than other speakers.

1.2.2 Phonemic and phonetic change

When applying the comparative method, linguists aim at providing a good phono-
logical reconstruction of a proto-language. This term implies that the recon-
structed sounds are actually phonemes, and not phones; representing the structure
of the proto-language’s phonological system rather than their exact phonetic re-
alizations. By extension, that means that sound changes that only change the
phonetic realization of a sound, without changing any part of the phonological
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structure of the language, are usually not considered in reconstruction. Such
changes are called phonetic or sub-phonemic changes (Crowley and Bowern, 2010;
Campbell, 2013). An example of this is the English phoneme /r/, that used to be
articulated as a trill [r] or a flap [c], but in modern days has changed to an approx-
imant [1]. However, since this change does not interfere with any other phonemes,
it does not change the phonological structure of English — and the underlying
phoneme /r/ is still the same, because it still fulfils the exact same function in the
phonological system (Crowley and Bowern, 2010). Allophonic change is another
example of sound change that occurs on a sub-phonemic level and is therefore dis-
regarded by phonological reconstruction. In many Spanish dialects, word-final /n/
surfaces as [p]. Again, this does not change the phonological structure of the lan-
guage and is perfectly predictable from synchronous data, so a historical linguist
would not bother to explain where the surface [g] comes from (Campbell, 2013).
Since modern languages frequently display allophonic variation, it is safe to assume
that languages in the past behaved in the same way — however, it is impossible
to reliably reconstruct how different phones might have had the same structural
function due to being allophones of the same phoneme. Strictly speaking, we can
only reconstruct the function of a phoneme within the language system, but not its
phonetic value(s); this issue will be elaborated further in Section [1.3. For now, it
is sufficient to bear in mind that historical linguists are only concerned with sound
changes that occur on a phonemic level and thus alter the phonological structure
of the language.

The structuralist typology of phonemic change (Hoenigswald, 1960) essentially
describes two types of sound change that impact the phonemic system: Splits
describe the process of one phoneme splitting up in two different ones; whereas
mergers involve two phonemes collapsing to a single phoneme (McMahon, 1994).
As any other kind of sound change, splits and merges can be unconditioned or
conditioned. So where does a sound change start changing the phonological system
of its language?

Unconditioned mergers are the most intuitive and simple example to illustrate
phonemic change. They describe sound changes where the phonetic realization of
a phoneme changes in all environments, such that the new phonetic realization
coincides with the phonetic value of another phoneme. Spanish [/ used to denote
the phoneme /£/, but its phonetic realization has shifted to [j] in most dialects.
Since Spanish already has a phoneme /j/ (written y) that has the same phonetic
value, the phonemic distinction between /£/ and /j/ has been lost. In other words,
the two phonemes have merged into one phoneme /j/, resulting in the loss of the
phoneme /£/ (Campbell, 2013).

Splits on the other hand occur when a phoneme develops two different phonetic
realizations, whose distributions can not be explained synchronously by allophony
and phonological rules. Hoenigswald (1960) distinguishes between primary and
secondary splits. The former always comes paired with conditional mergers, as il-
lustrated in Figure : When two allophones stand in complementary distribution
to each other, it is possible that one of them coincides with the phonetic realization
of another phoneme. In Latin for example, intervocalic /s/ changed into [r]. Since
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Figure 1.2: lllustration of mergers and splits, taken from McMahon (1994).

that was also the phonetic value of /r/, it made a [r| that is derived from /s/ indis-
tinguishable from one that belonged to /r/ — in essence, all instances of the phone
[r] were then reanalyzed as belonging to /r/. The intervocalic /s/ > [r]| therefore
first split off from /s/ (primary split), and then merged with /r/, conditioned by
the context that triggered the phonological rule (McMahon, 1994).

In order to understand secondary splits, one needs to understand the axiom that
splits follow mergers (Campbell, 2013). As already discussed, sound change is
only considered phonemic when the surface forms can not be mapped back to
their original phonemes deterministically, like for example the Latin [r] that could
originally be derived from /r/ or /s/. Just as primary splits, secondary splits are
also the result of a complementary distribution of allophones. However, as long
as the phonetic value is cleary predictable by the context, there is clearly only
one underlying phoneme. In order for this phoneme to split up in two phonemes,
the context has to change, rather than the phonetic realization itself: When the
context that originally determined the phonetic value of the phoneme is taken away
or changed in a way that it loses its predictive power, the phonetic realizations
suddenly become phonemically contrastive. For example, Nahuatl /s/ regularly
surfaced as [[] before [i] — obviously a clear case of allophony in complementary
distribution. The phonological rule would apply for words like /sima/ > |[[ima]
‘to shave’, but not in words like /sima/ > [sima| ‘to prepare plant leaves for
extracting fibres’. However, Nahuatl has undergone an unconditioned merger that
changed /i/ to /i/, essentially losing the phoneme /i/. Following that change, the
previously introduced forms surfaced as [[ima] and [sima], constituting a minimal
pair and therefore creating a phonemic distinction between /s/ and /[/. Note how
the phonetic value of the sounds in question has not changed at all, but a merge in
the context turned this allophonic to a phonemic distinction. The same principle
applies when the context triggering an allophonic change disappears completely:
If we postulate the deletion of the segment in question as a merger with the ‘zero
morphome’ (that does not have any phonetic value), it again results in a split that
was only brought to life by a previous merger (Campbell, 2013).

1.2.3 Guidelines for reconstructing proto-sounds

In Section , I have already hinted that there are some rules of thumb which
help the linguist to determine the best proto-sound that reflects a given sound
correspondence in a proto-language. Despite the fact that reconstructions can
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only take place on a phonological level, which is naturally a certain abstraction of
the phonetic reality of the spoken language, we still attempt to reconstruct a proto-
sound that is as close as possible to how it was actually pronounced (Campbell,
2013). In order to do so, Campbell (2013) outlines some guidelines for phonological
reconstructions, which I will summarize in this section.

The simplest principle is the majority vote principle, which was already introduced
in Section !.1.1.§]. If no other factors suggest that one of the candidates seems
more likely, we just let the majority win, as already exemplified in that section.
The intuition behind that is quite simply that it is less likely for the same sound
change to occur independently multiple times; so the reconstruction that implies
less changes is considered the most likely.

Closely related to that is the principle of economy, which is based on the same idea
of minimizing independent changes. Both principles are based on Occam’s razor
or the principle of parsimony, that processes should be explained with the fewest
possible assumptions, i.e. that the simplest explanation is more likely to be true
than more complex ones. The principle of economy, in contrast to the majority
vote, is concerned with minimizing changes globally rather than locally. Since the
comparative method assumes that languages change along the branches of a phy-
logenetic tree, its application implies the reconstruction of different intermediary
nodes within the tree. At each node, the majority vote would strictly reconstruct
the sound that is most commonly found in the direct descendants. The economy
principle rather minimizes the number of independent sound changes across the
whole tree: If the reconstructions at the different nodes of a tree imply that a
given sound change has occurred multiple times within the language family, it is
often more likely that this sound change has only happened once at an earlier
stage, and the resulting sounds in the modern languages are a reflex of that sound
change.

In cases where there are multiple different reflexes of the same proto-sounds in the
extant languages, comparing the shared phonological features between the sounds
can narrow down likely proto-sound candidates. Consider the cognate set for
the word ‘goat’ in the four Romance languages that have been introduced previ-
ously; Italian capra /kapra/, Spanish cabra /kabra/, Portuguese cabra /kabra/,
and French chévre /[evr(e)/. This cognate set contains the interesting sound cor-
respondence p : b : b : v between the first vowel and the r. Based on the
reconstruction principles that we have seen so far, there is no obvious choice for
the best proto-sound, however all sounds in question are labial obstruents. Since
all sounds in the correspondence share these phonological features, it is very likely
that the proto-sound was a labial obstruent too, and it is highly unlikely for it to
lack one of these features.

But how can we determine the best proto-sound for that sound correspondence?
This is where the principle of directionality comes in handy: Certain sound changes
are more common than others, which also implies that between pairs of sounds,
a change in one direction is often more likely than the inverse sound change.
The sound correspondence in our example occurs between a vowel and the trill
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Figure 1.3: The internal structure of Romance, reduced to four exemplary languages.

/r/, both voiced sounds with high sonority. In this context, it is very likely for
voiceless obstruents to become voiced, whereas the opposite case is quite unlikely.
This tendency makes *p the most likely proto-sound candidate, even though it is
only retained in one language, Italian.

But wouldn’t that violate the majority vote principle? At first sight, yes — we
observe b in both Portuguese and Spanish, so it occurs more often than the other
candidates. However, so far we have disregarded the internal structure of the
Romance language and, for the sake of simplicity, pretended that they all were
direct descendants of “Proto-Romance”. Of course this is not true, as shown in
Figure . Portuguese and Spanish are closely related to each other, and then are
joined with French to form the Western Romance subgroup. Italian as the only
Eastern Romance language in this sample is therefore more distantly related to
the other languages than they are among each other. This has some important
implications for the economy and the majority vote principles: Instead of trying to
reconstruct Proto-Romance directly from the four extant languages at the same
time, we now have intermediary nodes, allowing for a more precise understanding
about which changes happened at which time. For the sound correspondence p : b
;b : v, it does not matter which of the three sounds we postulate as proto-sound
in terms of economy: Each option requires two sound changes along the tree; one
from Romance to one of its children, and another one from Western Romance to
either Ibero-Romance or French. Proposing *b as the proto-sound therefore would
require a sound change b > p for Eastern Romance, and b > v for French. In
terms of economy, this has the same implication as proposing *p as the proto-
sound — either way, there are two different sound changes that happened along
different branches of the tree. Due to the implications of directionality however, it
is much more likely to reconstruct *p, suggesting p > b for Western Romance, than
to reconstruct *b which would imply the typologically marked devoicing between
voiced sounds.

Earlier, we also accepted that *k is the best reconstruction for the sound correspon-
dence k : k: k : /. Revisiting this correspondence, both economy and directionality
provide additional evidence for reconstructing *%: On the one hand, the reconstruc-
tion of */" would require the sound change / > k to happen twice independently
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from each other; once for Eastern Romance, and once for Ibero-Romance. This
violates the principle of economy. On the other hand, the palatalization of k£ to [
(usually via t/; which was also the case for French) is typologically quite common,
while a (t)/ hardly ever becomes k. The sounds in question therefore exhibit a
clear directionality which also shows *k to be the preferable proto-sound.

The principle of directionality is therefore arguably the most important principle
to reconstruct the most likely proto-sound. However, it poses a major problem:
It completely relies on the experience and the intuition of the operating linguist.
While the other principles can be applied directly on the data, the judgement
about the plausibility of a sound change relies strongly on the linguist’s intuition.
Some phenomena occur frequently enough across different language families for
linguists to agree that they are, in fact, very likely to happen; that includes vir-
tually all sound changes that have been introduced so far, like k-palatalization,
voicing of intervocalic obstruents, or loss of word-final nasals. For less frequent
sound changes however, the intuition about the plausibility of a sound change
might differ drastically from linguist to linguist, depending on their area of spe-
cialization and thus their experience (Kiimmel, 2007). Most historical linguists are
specialized on either a geographical area or a certain language family, and some
sound changes can frequently occur within such a sample of languages while being
infrequent outside of it. However, linguists are bound to rely on their intuition
when assessing whether a sound change is likely or not — up to this day, there are
hardly any frameworks that successfully quantify the typology of sound change.
The closest approximation to that are two documents that exhaustively collect
reconstructed sound changes for a given set of languages. Kiimmel (2007) collects
data about which sound changes can be found in which languages, and by exten-
sion provides information about which sound changes can be commonly observed
in his data. However, his works mainly relies on Indo-European data, with the
addition of some Uralic and Afro-Asiatic data, and therefore can not be regarded
typologically independent. The second corpus is the [ndex Diachronica (2016) that
collects a plethora of sound changes, indexed by language (sub-)family. While this
technically would allow a reader to assess how common a given sound change is
typologically, the indexing strategy would require them to go through each node
of each family and to check whether the sound change in question is present there.
It must also be noted that the Index Diachronica is an open source project whose
contributors and editors are conlangers, an internet community of people who in-
vent constructed languages for fun. It has therefore never been peer-reviewed by
experts and is therefore likely to contain some inaccuracies. Directionality and by
extension the typological markedness of a sound change in question therefore still
mainly rely on the linguist’s intuition and can hardly be backed quantitatively in
a systematic way.

The last important factors to determine the ideal proto-sound reconstruction is
what Campbell (2013) calls phonological and typological fit. Simply speaking, the
set of reconstructed proto-sounds should result in a sensible phonological system
for the proto-language. The phonological fit hereby is concerned with the structure
of the phonology and exploits the strong tendency of languages to have a certain
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symmetricity in their phoneme inventory. For example, if a language has a series
of voiceless stops /p, t, k/ and if it has voiced stops, it is likely that they are /b,
d, g/, mirroring the structure of the voiceless stops. This kind of symmetricity
is often observed in languages all across the world and is therefore also likely to
be observed in proto-languages. Consider the case where two related languages
exhibit the sound correspondence d : r. Both sounds are quite likely to change into
each other, so the principle of directionality can not help to determine which of
these two sounds has been the proto-sound; and without further information from
other hypothetical related languages, the other principles can not be applied either.
However, if the reconstructed phoneme inventory contains the three voiceless stops
*n, *t, *k, as well as the voiced stops *b, *g, it is very likely that the proto-language
also contained *d, making it the more probable candidate.

The closely related typological fit is concerned with choosing sounds that commonly
occur in phoneme inventories across different languages over sounds that are not
found in many languages: Typologically unmarked sounds should be preferred over
typologically marked ones, and the resulting phoneme inventory should exhibit ty-
pologically common patterns. Structuralists have proposed some universals about
the systematicity of phonological systems. For example, Jakobson (1958) claimed
that the presence of aspirated voiced stops in a phonological system strictly im-
plies that the language in question also contains plain (=unaspirated) voiced stops.
While the strict implication does not hold true — there are in fact some languages
that exhibit such a system — it still applies to the grand share of phonological
systems across the world (Kiimmel, 2007). A historical linguist therefore should
refrain from reconstructing typologically marked sounds like aspirated voiced stops
in absence of their unmarked (non-aspirated) counterparts, unless they have a very
good reason for doing so.

Reconstructing the correct, or at least most likely proto-sound therefore often
requires a delicate balance between evidence from the data and typological guide-
lines. In cases where these two factors contradict each other and suggest different
reconstruction options, linguists have to make sensible case-by-case decisions: Ei-
ther, they have to suggest typologically marked phenomena based on good evidence
in the data, or they have to propose reconstructions that seem less plausible based
on the data, but are typologically justified.

1.3 The abstractionist-realist debate

In previous sections, I have already made clear that reconstructions are of phono-
logical rather than phonetic nature. They are therefore not able to represent how
exactly a proto-language sounded like — just as synchronous phonology is already
an abstraction of the actual, physical properties of the sounds and the language.
Symbols like /t/ and /d/ are regularly used to denote coronal stops in Spanish and
English, disregarding that they are usually articulated as dentals in the former and
as alveolars in the latter language. Likewise, /r/ is often used to encompass all
kinds of rhotic sounds, regardless of their exact articulatory realization — as long as
there is no phonemic difference between them, phonologists are happy to attribute

22



1.3. Abstractionists and realists 1. PHONOLOGICAL RECONSTRUCTION

phones like [r, ¢, 1, 8] to the phoneme /r/, following the intuition that those are
slightly different phonetic realizations of the same sound (Hayes, 2008).

Naturally, that raises the question how realistic phonological reconstructions can
be, when we already encounter such abstractions in synchronous phonology. After
all, the successful application of the comparative method in a strict sense only
produces a set of contrastive units by accumulating sound correspondences and
grouping non-contrastive units together. The symbol for each of these units how-
ever has to be chosen by the linguist (Anttila, 1989). For theory-created objects
like these, there are two polar philosophical stances on how to interpret them:
Realists argue that theories can generate realia, real world objects of some kind;
whereas abstractionists view these generated objects as devices of a pure algebraic
nature, that can and should be used for calculations within the theory, but do
not have any real world value (Lass, 2017). In our particular case, abstraction-
ists therefore see reconstructed proto-sounds as purely relational symbols that can
express the phonemic structure of the proto-language, but are completely indepen-
dent from any phonetic value. For realists on the other side, every reconstructed
phoneme inherently holds a phonetic value that they try to reconstruct as faithfully
as possible.

The abstractionalist stance has been strongly represented by the structuralist
school. Famously, Kurylowicz (1964) even argued that phonetics are not to be
considered part of linguistics in a strict sense:

Physiological speculations [...] do not grasp the linguistic essence of |...]
changes, the shift of the internal relations of the elements in question
being the only pertinent fact. Once we leave language sensu stricto
and appeal to extralinguistic factors, a clear delimitation of the field
of language research is lost. (cited from Lasg 2017)

Essentially, Kurytowicz proposes to separate phonology completely from phonet-
ics. After all, the structural relations between phonemes — both synchronously
and diachronically — can be expressed by any set of arbitrary symbols. However,
reducing proto-sounds to such arbitrary symbols regardless of any phonetic value
poses a problem: It completely disregards the phonetic reality of the data, the
languages we base our reconstructions on (Lass, 1993, 2017). Consider a cognate
set like {Sanskrit pitar-, Latin pater, Old English feeder, German Vater} for the
concept father, where all reflexes have a labial obstruent as their initial sound.
It would be unreasonable to disregard these obvious phonetic similarities! How
could we explain that the reflexes of this sound correspondence regularly surface
as labial obstruents, if we do not assume any phonetic value for the proto-sound
(Lass, 2017)?

Cognacy is proven by successfully applying sound laws and demonstrating system-
atic sound correspondences. It is true that this can technically be done only by the
means of relational symbols, an algebra linking abstract phoneme representations.
However, that poses a major problem in the initial stage — at the first assessment of
the language data, nothing about sound correspondences and sound laws is known.
As described in Section !.1.1.2, the first step must be to identify preliminary sets
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of putative cognates. For this first cognacy judgement, phonetic similarity is re-
quired as a heuristic — disregarding phonetic information would essentially result
in an infinite search space, where each pair of words can be compared in search
for regular sound correspondences.

“Phonology without phonetics is perverse”, states Lass (2017) and concludes that
linguistic reconstructions therefore must be at least realist to a certain extent:
They must resemble a language in a form that it might have been spoken at some
point in time by a real community. Following the Uniformitarian Principle, we
must assume that languages that have been spoken in the past behave just like
languages that are spoken nowadays, and therefore observed tendencies of modern
languages also hold true for extinct ones. Besides that, the comparative method
crucially exploits how sound changes occur in a quasi-regular way, and how certain
kinds of sound changes can frequently be observed in various languages across the
world — an aspect that explicitly relies on the phonetic nature of sounds and can
not be separated from it (Anthony and Ringe, 2015).

However, the weaker implication of the abstractionist stance must not be disre-
garded either. Reconstructed proto-sounds can not fully reflect the phonetic value
of a proto-sound, it can provide an approximation at best, which can be more or
less accurate depending on the circumstances. A reconstructed *k/ for example
does not specify any exact phonetic information, like the location of the dorso-
velar closure, or the voice onset timing (Lass, 1993), and this kind of information
is arguably impossible to collect without recordings of the language (which can
not be obtained unless time machines are invented). However, */k/ is not just an
arbitrary symbol to label a given sound correspondence either — it suggests that
the sound in question was probably realized as a velar (or at least dorsal) stop of
some kind, based on the evidence from the modern languages.

As it is so often, the truth lies somewhere in between the two polar nodes, although
the realist side in this case seems to have a stronger claim for their position (Anttila,
1989). All reconstructed symbols imply at least some phonological features, they
contain some information about their probable phonetic realization. Every symbol
that represents a proto-sound must be viewed as a broad symbol that encompasses
many different phonetic realizations, just as in synchronous phonology. Some
symbols however are broader than others (Lass, 2017): The phonetic value of
the Indo-European laryngeals up to this day are highly disputed, which is why
scholars use abstract symbols to represent them. However, all laryngeals must be
viewed as realia, since they have had a phonetic value, although it is unknown to
us. When reconstructing prehistoric languages, the goal must be to approximate
the phonetic reality of these languages as closely as possible, while accepting that
the exact physical and articulatory details can not be recovered. If we had a time
machine which enabled us to talk to speakers of a reconstructed proto-languge, like
Proto-Indo-European, we would therefore expect that the actual language would
not sound exactly as the reconstruction, but resemble it enough to be intelligible to
some degree (Lass, 1993, 2017). As Lasg (1993) concludes: “Reconstruction does
not give us back a language [...], but it is not an uninterpreted algebra without
substantive content either.”
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Computational Approaches

With the rapidly expanding availability of computational power, computational
historical linguistics have emerged as a new branch in computational linguistics
over the past two decades, and the model described in this thesis is a further
contribution to this relatively young line of research. Throughout this chapter, I
will give an overview over the history and current state-of-the-art methods applied
in computer-assisted language comparison and discuss their respective strengths
and shortcomings. I will then introduce EtInEn, the framework within which
this thesis and the corresponding model was developed, and finally I will describe
which open problems my model addresses and thus its main innovations towards

the field.

2.1 Computer-Assisted Language Comparison

For roughly two decades, scholars have been investigating the potential of en-
hancing historical linguistics by the means of computational methods (List, 2022).
Most of these approaches aim at imitating the comparative method or parts of
it by applying statistical models and machine-learning algorithms on multilingual
lexical data. The majority of work in this field has focused on finding good compu-
tational solutions for sub-tasks of the comparative method, like detecting cognates
or reconstructing proto-forms from a priori defined cognate sets. A few notable
exceptions that actually intend to set up a computational pipeline that imitates
the whole comparative method are described in Section m as well.

I will discuss current approaches to different tasks over the course of the next
subsection, defining commonly addressed sub-tasks following List (2022), whose
structure itself is based on the workflow outlined Ross and Duri¢ (1996), which I
have used in the previous section.
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2.1.1 Proof of relatedness

Scholars are generally quite hesitant to employ computational methods when it
comes to showing that languages are genetically related, and there is so far no sta-
tistical test that is generally accepted for that purpose. The reluctance to use such
tests can be explained by three main factors: Firstly, all tests proposed so far only
rely on lexical data. However, most scholars demand evidence beyond lexical sim-
ilarities in order to accept a genetic relationship between languages, as discussed
in Section [L.1.1.1. Even the best tools for identifying cognates could therefore
not satisfy the requirement of offering structural evidence for a proposed genetic
relationship. Secondly, the philosophical stance of classical historical linguists on
identifying genetic relationships is quite distinct — the task is essentially treated
like a mathematical proof, which is required to reconstruct a proto-language. A
proof leaves no room for uncertainties; either something is proven, or it is not.
A test on the other hand is fundamentally different in design, since its result lie
in a continuous space of belief or significance. This merely offers approximations
to a problem, resulting in false positives and false negatives — byproducts that
the strict idea of a proof does not allow (List, 2022). At last, most of the code
and/or data from the tests has not been made public, which makes it impossible
to quickly replicate the results or to apply a proposed test on another dataset.
That would require building the whole method from scratch, which would be an
unreasonable effort, given that scholars usually work with already well-established
language families (List, 2022).

The tests that have been designed for showing genetic relatedness all rely on a
basic idea. They compare the basic vocabulary of the languages in scope with
each other, typically using a Swadesh list (Swadesh, 1955) or some variation of it.
They observe correspondences in this lexical data and cast them into probability
distributions in order to calculate the probability of obtaining a distribution like
the one observed in the data. The principle of statistical significance can then be
applied: If the probability for randomly generating the correspondences found in
the data is below a certain, quite low threshold, there is a statistically significant
correlation, which indicates that the languages in question are related.

Different strategies for observing and counting correspondences between the lan-
guages have been employed. Ringe (1992) and Baxter and Manaster-Ramer (1996)
only consider the first consonant in word pairs and calculate the probabilities of a
given pair by estimating probability distributions from the observed pairs. [Turchin
et al. (2010) and Kassian et al, (2015) follow a similar approach and also compare
only initial consonants to each other, but conflate them into 10 consonant classes
defined by Dolgopolsky (1964) and only count exact matches. Blevins and Sproat
(2021) infer similarity metrics from pairwise alignments and test the data against
artificial wordlists that are randomly generated by lexical language models, which
combine sounds to word forms following a probability distribution over n-grams
(Miller et al., 2020). The former approaches only compare words that are identical
in meaning, whereas the latter method also considers word pairs with similar, but
not identical meanings, making use of colexifications obtained from the CLICS?
database (Rzymski et al., 2020).
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None of these methods however has found general acceptance among scholars so
far, mainly due to the aforementioned drawbacks. [List (2022) argues that this
can only change as soon as some crucial prerequisites are fulfilled. He demands a
uniform gold standard dataset paired with clear and sensible error metrics that can
quantify how well a proposed test performs on different languages and language
families. Furthermore, authors should release the source code for their tests in
order to make it possible to measure their performance on other datasets. As soon
as different statistical tests are available that can be used easily across different
datasets, and as soon as there is a way of assessing the strengths, weaknesses, and
overall quality of those tests, they have the potential to become a powerful tool to
provide evidence for suggesting deep language relationships.

2.1.2 Detection of cognates and sound correspondences

The next step of the outlined workflow consists in detecting cognates and system-
atic sound correspondences. Both tasks were considered to be quite difficult to
solve computationally, and while there are still very few approaches to automati-
cally identifying sound correspondences, the task of automated cognate detection
has received quite some attention over the last decade, resulting in some promising
techniques (List, 2022).

The vast majority of workflows for cognate detection consists of two main stages.
In the first stage, all words of a multilingual wordlist that express the same concept
are compared to each other pairwise. For each form pair, some sort of similarity
or distance metric is calculated, indicating how similar the two phonetic forms are
to each other. In the second stage, the forms are then clustered in cognate sets
based on the individual values. This is usually done by means of agglomerative
clustering approaches like UPGMA (Sokal and Michener], 1958), joining forms and
clusters together until a certain, typically user-defined threshold is reached (List,
2022).

The technicalities of different methods usually differ from each other in terms of
how they calculate phonetic similarity, which clustering algorithm they employ,
and which threshold is chosen. For calculating phonetic similarity, Hall and Klein
(2010) employ a parameterized edit distance, which Hauer and Kondrak (2011)
enhance by adding various string similarity features such as longest common prefix
or the number of common bigrams. More recent statistical approaches are based on
pairwise language-specific scoring schemes (List, 2014; Rama, 2016) or on pairwise
similarities between sounds by the means of Pointwise Mutual Information (Jager,
2013; Jdger et al., 2017; Dellert;, 2018). Furthermore, there are some variants of this
workflow that try to identify partial cognates or cognate morphemes (List et al.,
2016b), search for cognates across different concepts (Wu et al., 2020), or employ
methods for community detection instead of applying flat clustering algorithms
(List et al., 2017).

A quick and easy alternative to calculating phonetic similarity metrics is again to
resort to consonant classes or sound classes ([Turchin et all, 2010; List, 2014; Rama
and List, 2019). This approach is much faster and computationally less expensive
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than those based on pairwise phonetic similarity, however they can not compete
with them in terms of accuracy (List et al), 2017; List, 2022).

Hardly any reliable methods for identifying sound correspondence patterns have
been proposed so far. The main challenge in identifying those correspondences is
that most cognate sets in wordlists are not complete — there is not a reflex for
every proto-form in every extant language that is reflected in the database. I
have briefly discussed incomplete correspondence patterns and how they belong
to full correspondence patterns in Section 1.1.1.2. When aligning incomplete cog-
nate sets, such incomplete correspondence patterns are frequently found. All of
these incomplete correspondence patterns must then be matched and clustered
together to full correspondence patterns. List (2019a) employs a clique covering
technique to partition all individual correspondences to the smallest possible num-
ber of ‘cliques’, where each clique only contains (incomplete) correspondences that
are compatible with each other. Two correspondence patterns are compatible with
each other when they either have the same sound for the same language, or at least
one of them underspecifies it (has a gap for that language). p : b : g therefore is
compatible with p : b : bor p: ¢ : b, but not with b : b : b.

Bodt and List (2022) report that the approach by List (2019a) performs well for
predicting missing reflexes, however [List (2022) points out that this techniques
still “needs to be tested and applied to more language families”. Nonetheless, this
technique currently states the only feasible solution for this task.

2.1.3 Phonological reconstruction and sound law inference

In the classical application of the comparative method, phonological reconstruc-
tion goes hand in hand with the induction of sound laws, as already described
in Section [1.1.1.3. [List (2022) states that scholars have not tried to imitate this
classical iterative process, but instead have been focusing on the two related tasks
of supervised phonological reconstruction and ancestral state reconstruction. The
former task is solved in a supervised machine-learning setting by training a model
to learn correspondences from source to target language, which it then applies to
predict unseen forms in the target language. The latter task iterates over a phy-
logenetic reference tree and uses the synchronous forms from pre-defined cognate
sets to reconstruct the most likely proto-forms.

In contrast to several approaches towards automated phonological reconstruction,
the task of identifying sound laws has received little to no attention so far. Hr-
uschka et al. (2015) employ a Markov Chain Monte Carlo model as used for inves-
tigating concerted evolution in biology, however, their model is only able to infer
unconditioned sound laws. The only approach towards automatically inferring con-
ditioned sound laws was presented by Daneyko (2020) who uses Probabilistic Soft
Logic (PSL) and trigram models based on observed sound correspondences.

The task of supervised phonological reconstruction is technically identical to the
task of reflex prediction (List, 2022), since in both cases, there is attested training
data form the target language, from which the model should learn to generalize
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and predict forms outside the scope of the training data. Whether that target
language is extinct or still spoken today makes no difference to the technical set-
up. The main difference lies in the availability of data — reflex prediction can be
used for any modern language with a basic amount of available data, and Bodt
and List (2022) argue that it can be a useful tool for extending lexical data of low
resource languages. Reflex prediction is mostly viewed as a machine translation
task (Beinborn et al., 2013; Dekker and Zuidema, 2020; Fourrier et al), 2021), an
alternative approach is outlined by Bodt and List (2022) who identify systematic
sound correspondences (using a clique-covering introduced by [List 20194) and use
them to recover missing reflexes.

The only usage of such a technique for reconstructing proto-forms of an extinct
language was proposed by Ciobanu and Dinu (2018) and expanded by Meloni
et al, (2019), who reconstruct Latin forms from five modern Romance languages.
In both papers, the supervised reconstruction is seen as a machine translation
task, for which the earlier employs conditional random fields, while the later uses
recurrent neural networks. However, there are hardly any extinct languages that
are documented well enough to make a supervised approach feasible, and already
having attested data from the proto-language essentially defeats the purpose of
the comparative method, which is used for recovering ancient languages without
surviving records. The application of supervised methods for reconstructing proto-
languages is therefore quite limited.

The task of ancestral state reconstruction is conceptually closer to the comparative
method, since it does not rely on previous expert annotations or reconstructions.
These techniques only need a phylogenetic tree, along whose branches a proto-
form has evolved into its modern reflexes, and cognacy judgements. Jager and
List (2016) employ some conceptually simple algorithms for reconstructing proto-
forms, including all intermediary stages such that a proto-form is reconstructed
for all nodes of the phylogenetic tree. Despite the conceptually simple approach,
they report moderately good results, indicating the potential of employing more
sophisticated methods for ancestral state reconstruction. Omne of the employed
reconstruction principles, Maximum Parsimony (which is roughly equivalent to
the reconstruction principle of economy, see Section m% is explained in more
detail in Section B.1.2.

Jager (2019) applies this approach to reconstruct Latin forms from modern Ro-
mance languages taken from the ASJP database (Wichmann et al., 2013), how-
ever he reports rather disappointing results. The underwhelming quality of the
reconstructed forms can be explained by several factors: The model reconstructs
Proto-Romance, but is evaluated against Classical Latin, which is not identical.
Furthermore, the employed reconstruction method simply chooses the most prob-
able proto-sound per column in the sequence alignment from a fixed alphabet. It
is therefore neither aware of the context of the sound, nor of the phonology of the
proto-language in question — both of which are important factors for a successful
reconstructions, as previously discussed. Up to this day, the grand share of tech-
niques for ancestral state reconstruction struggle with overcoming these problems
and including these important pieces of information. Over the course of the thesis,
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I will use the terms naive and language-agnostic for describing reconstruction algo-
rithms that do not process information about the context and the proto-language
respectively.

A notable exception to this problem is the work by Bouchard-Coété et al. (2013) who
use stochastic string transducers to reconstruct Austronesian proto-forms, based
on lexical items from the Austronesian Basic Vocabulary Database (Greenhill
et al., 2008). Following earlier experiments on Romance lexical data, they employ
phoneme-level edit models conditioned on the immediate neighbors (Bouchard-
Coté et al., 2007a,b) and language-specific n-gram models called markedness (Bou-
chard-Coté et al., 2009). The former feature allows the model to reconstruct proto-
sounds with regard to the context they stand in, while markedness efficiently re-
stricts the number of plausible proto-sounds and sound sequences. Furthermore,
some parameters are shared across the branches of the tree, enabling the model to
learn general tendencies (Bouchard-Cété et al., 2009; Bouchard-Coté et al., 2013).
The authors report very good results for reconstructing Austronesian, which needs
to be taken with a grain of salt nonetheless, since Austronesian seems to be one
of the simpler test cases, as suggested by Jager and List (2018) who compare the
performance of ancestral state techniques across different datasets.

Following that line of research, He et al| (2022) recently proposed a neural edit
model that learns the probability of edit operations (insertions, deletions, substi-
tutions) for individual branches in an estimation-maximization setting, guided by
a bigram model for the proto-language. They report improved results for recon-
structing Latin from modern Romance language, however they concede that their
model is focused on optimizing parameters along branches locally and comes short
in propagating information across the tree. Their model assumes a flat language
tree, with Latin as the root and the modern languages as the leaves, which is not
feasible for phonological reconstruction with higher time depth.

Although the task of ancestral state reconstruction per se only requires the cog-
nate sets and the language phylogeny, it is notable that both Bouchard-Coté et al.
(2013) and Jager (2019) outline a full pipeline that includes automated cognate
detection; the latter work even includes methods for demonstrating language re-
latedness and phylogenetic inference. This is arguably the closest approximation
to automating the comparative method so far.

2.1.4 Open problems

Due to its relatively young age, the field of computational historical linguistics
still exhibits a notable discrepancy between well-established methods and prob-
lems that have hardly been successfully addressed at all. Among the major open
problems, List (2022) names that there is no generally accepted procedure for
testing relationships between languages, that there are hardly any well-established
methods for cognate detection beyond full cognates between words with the same
meaning, and that automated induction of sound laws has been addressed sporad-
ically at best. Furthermore, the techniques for most individual tasks can still be
substantially refined, as discussed in the previous sections.
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No computational method so far has been able to produce full-fledged etymolog-
ical scenarios. Besides refining techniques for imitating individual steps of the
comparative method, that essentially includes to detect and explain borrowings.
While the automated detection of borrowing events has received some attention —
mainly by treating them analogously to horizontal gene transfer in bioinformatics
— all techniques that are currently available produced rather disappointing results
(Kollner, 2021)). An alternative approach to the automated detection of loanwords
was recently proposed by Blaschke et al. (2022), who define a set of heuristics and
employ them as rules within a PSL (Probabilistic Soft Logic) framework. While
their approach looks promising on first individual test cases, it requires further,
more systematic testing in the future.

2.2 EtInEn

This thesis and the model described in it were developed as part of EtInEn
(Etymological Inference Engine). EtInEn is an interactive software for histor-
ical linguists which is currently under development at the Linguistic Department
of the University of Tiibingen. It “works and communicates with the user in clas-
sical terms, but is supported by a probabilistic model that is used to quantify
strength of evidence” (Dellert, 2019).

EtInEn provides the user with state-of-the-art methods for many tasks in compu-
tational historical linguistics, like cognate detection, sound correspondence identi-
fication, phonological reconstruction, sound law inference, and loanword detection.
While EtInEn can technically be used as a fully automated pipeline for suggesting
an etymological scenario, it is designed to be used step-by-step in an interactive
way so the user can explore different ideas. By automating many routine tasks, it
is able to indicate whether certain ideas are coherent with the data and/or pre-
viously defined ideas. EtInEn is able to process custom user-defined ideas and to
base its suggestions according to them.

The model presented in this thesis will be used in two places within EtInEn. It
will be used to inform the sound law inference module (Daneyko, 2020) about
the typological markedness of sound changes, assisting it in inferring phoneme
inventories of proto-languages and sound laws. Furthermore, it can be used to
generate naive, language-agnostic reconstructions that can serve as a first, rough
approximation to what a proto-language could have looked like.

2.3 Attempts at innovation

All models for ancestral state reconstruction that have been proposed so far are
limited by the data they work on when predicting proto-sounds. Since the sounds
from the input data are usually processed as atomic units, it is impossible for
models to reconstruct any sound that has not been seen in the training data. [List
(2022) proposes that models could overcome this issue by either “learn|ing] com-
mon sound change processes from training datasets, or [...] turn[ing] to feature
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representations of sounds”. The core result of my thesis is a neural model that
combines both ideas by learning common sound changes from global lexicostatis-
tical data and operating on phonological feature representations, enabling it to
predict the likelihood of sound changes between arbitrary sounds.

This comes with two crucial innovations. First of all, using phonological features
makes the model very robust and enables it to process arbitrary sound changes
— as long as both sounds in question can be represented by the means of phono-
logical features. That drastically alleviates the problem that current models for
phonological reconstruction have, which can only process a defined, finite alphabet
of sounds that has been learnt.

Secondly, the model presented in this thesis constitutes a first step towards a quan-
titative typology of sound change. In Section m I have already outlined that
there are no exhaustive frameworks that contain information about the frequency
of certain sound changes and thus their likeliness. In classical historical linguis-
tics, the assessment whether a sound change is plausible or not is mainly based
on the linguist’s intuition. Computational approaches naturally lack such an in-
tuition — they can merely learn common sound correspondences from the present
data. Since my model has been trained on large-scale global lexicostatistical data,
it can simulate human intuition by informing reconstruction modules about the
typological markedness of a given sound change.
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3.1 Preparing training data

3.1.1 Source datasets

The lack of quantitative data for sound changes that contain information about
how often certain changes occur — and thus, which changes are typologically
marked and which ones can be expected frequently — has been discussed in previous
sections. That entails that a model can not be trained directly on such data, but
that a workaround is required. Reconstructed proto-forms can serve that purpose:
By aligning proto-forms with their respective reflexes in the daughter languages,
it is possible to count the frequencies of transition between sounds.

The most straightforward way to generate data over sound transition counts would
be to use either attested proto-forms (like Latin or Sanskrit) or expert reconstruc-
tions. However, this approach poses two problems: On the one hand, lexical data
that includes reconstructions is still only sparsely available in a digital format,
on the other hand, the little data that can be used is mostly limited to a few
well-studies language families like Indo-European or Austronesian. Using such
data would therefore result in a model that is likely to be poorly informed due to
the low amount of training data, and even if it happened to learn well from the
training data, it would be heavily biased towards sound changes that are specific
to a few language families and therefore would not meet the requirement to be
typologically relevant.

In order to come up with a good quantity of typologically diverse data, we must
therefore turn to automatic reconstructions from synchronous lexical data. The
amount of such data in digital formats is constantly increasing and convenient
efforts towards a standardized data format have been made, enabling researchers
to work on different databases with the same technical set-up. The most notable
and resourceful collection of standardized lexical data is Lexibank (List et al),
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Dataset Reference Concepts Varieties Family / Genus
abvdoceanic Greenhill et all (2008) 191 418 Oceanic (Austronesian)
birchallchapacuran Birchall et al ( 125 10 Chapacuran
bodtkhobwa Bodt and List (2019) 662 8 Kho-Bwa (Sino-Tibetan)
bowernpny Bowern and Atkinson (2012) 344 190 Pama-Nyungan
carvalhopurus e Carvalho (2021) 205 4 Purus (Arawakan)
chaconarawakan ) 102 8 Arawakan

chaconbaniwa (R019) 243 14 Arawakan
chaconcolumbian Chacon (2017) 128 69 Colombia*
constenlachibchan Constenla Umana (2005) 110 25 Chibchan

crossandean ) 150 50 Andes*
davletshinaztecan 100 9 Uto-Aztecan

dravlex (2018) 100 20 Dravidian

dunnaslian 146 32 Aslian (Austro-Asiatic)
felekesemitic d (2021 150 21 Semitic (Afro-Asiatic)
galuciotupi Galucio et al. (2015) 100 23 Tupian

gerarditupi Ferraz Gerardi and Reichert (2021) 244 38 Tupian
grollemundbantu Grollemund et al. (2015) 100 424 Bantu (Atlantic-Congo)
hsiuhmongmien Hsiu (2015) - 315 12 Hmong-Mien

leeainu Lee and Hasegawa (2013) 199 19 Ainu

leejaponic Lee and Hasegawa (2011) 210 59 Japonic

leekoreanic 246 15 Koreanic
lionnetyotonahua 364 15 Uto-Aztecan

liusinitic 203 19 Sinitic (Sino-Tibetan)
luangthongkumkaren 341 11 Karenic (Sino-Tibetan)
lundgrenomagoa 1,807 3 Tupian

mannburmish 391 7 Burmish (Sino-Tibetan)
mcelhanonhuon 140 14 Nuclear Trans New Guinea
meloniromance 5,419 6 Ttalic (Indo-European)
nagarajakhasian j ( 200 6 Khasian (Austro-Asiatic)
northeuralex Dellert et al. (2020) 1,016 107 Eurasia*
peirosaustroasiatic Peirog (2004b) 100 109 Austro-Asiatic

peirosst Peiros (2004a) 110 128 Sino-Tibetan
pharaocoracholaztecan  Pharao Hansenl (2020) 100 9 Uto-Aztecan
ratcliffearabic Ratcliffe (2021) 100 14 Arabic (Afro-Asiatic)
robinsonap Robinson and Holton (2012) 398 13 Alor-Pantar
saenkoromance Saenko (2015) 110 43 Romance (Indo-European)
sagartst Sagart et al. (2019) 250 50 Sino-Tibetan
savelyevturkic Savelyev and Robbeetd (2020) 254 32 Turkic

sidwellbahnaric Sidwell (2015) 200 24 Austro-Asiatic
sidwellvietic Sidwell and Alved (2021) 116 33 Vietic (Austro-Asiatic)
simsrma Sims (2020) 233 11 Qiangic (Sino-Tibetan)
starostinhmongmien Starostin (20154 110 20 Hmongic (Hmong-Mien)
starostintujia Starostin (2015H) 109 5 Tujia (Sino-Tibetan)
syrjaenenuralic Syrjénen et al, (2013) 173 7 Uralic

utoaztecan Greenhill et all (2022) 121 46 Uto-Aztecan
walworthpolynesian Walworthl (2018) 210 31 Polynesian (Austronesian)
wichmannmixezoquean [Cysouw et al! (2006) 110 10 Mixe-Zoque

yanglalo Yang et al. (2010) 1,000 8 Lalo (Sino-Tibetan)
zhangrgyalrong Zhang et al. (2019) 120 7 Sino-Tibetan

Table 3.1: Overview of Lexibank datasets used for generating training data. Entries in the
last column marked with an asterisk (*) do not refer to phylogenetic classifications, but to
geographical areas from which the respective dataset encompasses genetically diverse data.
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2022a), which currentlym contains 147 multilingual wordlists in a standardized
Cross-Linguistic Data Format (CLDF; Forkel et al|2018). Besides providing data
in a standardized format, Lexibank also adds relevant meta-data to the databases
by linking its contents to external frameworks: Language varieties are provided
with references to Glottolog (Hammarstrém et al., 2022), concepts are linked to
Concepticon (List et al., 2016a), and sounds are further standardized by a reference
to the Cross-Linguistics Transcription System (CLTS; Anderson et al. 2018).

Lexibank is therefore a good and convenient resource to accumulate lexical data
from different sources that meets the requirement of being typologically and ge-
netically as diverse as possible. Table liﬂ lists the Lexibank datasets that I used
to compile my dataset, based on which the training data was produced later. All
of these databases fulfil two relevant criteria, as they are cognacy-annotated and
include phonetic transcriptions in IPA. The need for the latter criterion is straight-
forward, since IPA representations are required to describe sounds in a standard-
ized way and thus count transitions between them on a global scale. Cognacy
annotations on the other hand are not a technical requirement per se, since there
are relatively good methods for automated cognate detection (see Section );
however adding another layer of automation would add a higher degree of noise
in the data due to errors of the algorithm. Since the automatic reconstructions
are already expected to be quite noisy (the details will be discussed in Section
B.1.2), and there is already a substantial amount of cognacy-annotated data that
can be obtained from Lexibank, datasets that lack cognacy annotations were not
regarded.

The basic idea of merging the source databases into one large database is simple
enough, however, there are some special cases to consider when different source
datasets overlap with regard to the languages they investigate — after all, it is
not desired to process the same data from the same language multiple times.
Two important questions therefore had to be answered: How should duplicate
languages (that are included in more than one source database) be handled? And
should lexical items that stem from different datasets even be compared to each
other?

It is probably best to discuss these questions by means of a concrete example
where the scopes of two datasets overlap. The lundgrenomagoa database (Lund-
oren, 2020) investigates the closely related Tupian languages of Kokama, Omagua,
and Tupinambé — all of which are also included in gerarditupi (Ferraz Gerardi
and Reichert, 2021)), which is a collection of lexical data from 38 Tupian lan-
guages. The languages included in lundgrenomagoa are therefore a proper subset
of those in gerarditupi; however, the former dataset encompasses a much larger
amount of concepts. Of course, we would like to exploit both the concept depth
of lundgrenomagoa and the language coverage of gerarditupi — but at the same
time, we want to avoid having the same information twice in the final dataset.

There are two thinkable approaches to handling this situation, and which one to
use depends on how the second of the questions stated above is answered. If it is

laccessed on Nov 3rd, 2022
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desired that words from different source databases are directly compared to each
other, it is technically possible to merge the datasets via their Concepticon ID.
Although the concept IDs within the individual databases naturally differ from
each other, one can assume that two concepts (from different databases) that
map to the same Concepticon ID are identical. By analogy, that means that
lexical items that map to the same Concepticon ID and the same Glottocode (the
unique identifiers within Glottolog) are identical in meaning and language, and
should therefore refer to the same lexeme. Removing duplicates after merging two
partially overlapping datasets, so that there is only one entry per language and
concept, is technically feasible.

If all of these duplicates were actually identical (i.e., containing the same pho-
netic transcriptions and referring to the same cognate sets), there would be no
conceptual problem with merging partially overlapping datasets, while retaining
all information from both. However, given the non-discrete nature of sounds in
human speech, different sources often provide slightly different transcriptions for
the same sounds or words. If we wanted to merge two datasets where some iden-
tical forms are transcribed differently, the question arises: Which form should be
used and which form should be disregarded? Choosing one dataset over the other
in such cases of “merge conflict” might lead to systematic inconsistencies in the
transcriptions of the merged dataset, but is arguably still better than choosing a
random form each time, which would lead to asystematic inconsistencies. But even
with the inconsistencies being systematic, we would encounter many cases where
they would suggest sound correspondences (and, via analogy, also sound changes)
between two sounds in seperate languages that actually refer to the same sound,
which is just transcribed differently in different sources. While it might be true
that sounds pairs (or sets) where this happens are usually phonetically so similar
to each other that they can easily change into one another, we are only interested
in capturing phonemic sound changes rather than subphonemic ones. Since the
model’s main purpose is to assist in phonological reconstruction, the training data
is designed to emphasize phonemic sound changes over merely phonetic ones.

In order to avoid the aforementioned challenges that can arise from differences
in phonetic transcription, I decided to include data from only one dataset per
language. In cases of multiple datasets covering the same language, only data
from the dataset with the most concepts was preserved, while data from the other
datasets for the language in question was disregarded. In the case of our examples,
the data from lundgrenomagoa was used for Kokama, Omagua, and Tupinamb4,
while the gerarditupi data for those three languages was disregarded. The latter
dataset was however still used as a data source for all other languages it con-
tains. As discussed previously, it is also not desirable to reconstruct proto-forms
from data stemming from different sources; therefore, merging cognate sets via
Concepticon was deliberately left out. In practice, that means that the three lan-
guages from lundgrenomagoa are excluded when reconstructing Proto-Tupian from
gerarditupi data — neither do we want to include data from lundgrenomagoa due
to the aforementioned risk of inconsistent transcriptions distorting the observed
sound changes; nor do we want to end up with duplicate information, which would
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happen when including data for those languages from gerarditupi.

The core principle that results from these choices is that information from different
source should be kept separated in the combined dataset. This choice was made
in order to avoid observing sound changes that are not phonemic, but rather a
result of different transcription practices. For every language, only information
from one source can be retained, for which the source dataset that contains the
most concepts is chosen, in order to retain as much data as possible. Merging
all datasets listed in Table according to these principles resulted in a large,
combined dataset that contains a total of 379,407 lexemes and 97,564 cognate
sets (36,878 of which are singletons), while including 1,942 languages from all
continents and 51 different language families.

3.1.2 Estimating sound transitions

In order to count sound transitions and by that make claims about frequency
or markedness of sound changes, it is necessary to reconstruct a proto-form at
every relevant node within a language tree. The cognate sets from the lexical
data described in the previous section, paired with a reduced phylogenetic tree for
the languages in question, builds the foundation for obtaining these reconstruc-
tions.

The initial reconstructions follow the simple and intuitive principle of Maximum
Parsimony, denoting that the optimal phylogenetic tree should contain the least
possible changes. Originating from evolutionary biology, the principle was first
outlined by Farris (1970) and Fitch (1970) and was originally applied to find the
optimal phylogenetic tree from unclassified sequences. Sankoff (1975) then de-
vised an algorithm that was able to reconstruct missing forms in a given, finite
tree, according to the same maxim. Whether applied for phylogenetic inference or
for reconstruction, the target of the principle stays the same: The resulting tree
should be the one with the lowest possible sum of branch lengths. Branch lengths
can be measured by a distance metric between a parent and a daughter node; in
the simplest case, it is just the normal edit distance (Levenshtein, 1966). A Maxi-
mum Parsimony tree therefore globally minimizes the distances across its branches,
which is equal to the total number of edits when employing edit distance.

Sankoff’s algorithm requires all input sequences — the words within a cognate set —
to be aligned to each other, because it needs the information about which sounds
correspond to each other. Multiple sequence alignments were obtained using the
implementation of T-Coffee (Notredame et al., 2000) contained in EtInEn, an algo-
rithm that aligns multiple sequences based on all pairwise alignments between the
relevant sequences. Those pairwise alignments were generated using Information-
Weighted Sequence Alignment (IWSA; Dellert 2018), a modified version of the
Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). Gaps that nat-
urally result from aligning sequences of unequal lenghts are henceforth treated
as regular symbols, as if it were a usual sound. Based on the aligned cognate
sets, Sankoft’s algorithm was applied to reconstruct proto-forms according to the
Maximum Parsimony princple.
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Figure 3.1: lllustration of a Maximum Parsimony reconstruction based on a cognate set from
five Polynesian languages.

To illustrate what Maximum Parsimony reconstructions look like in practice, con-
sider the cognate set given in Figure E Those words in the five chosen Polynesian
languages mean side or edge and are clearly cognates (Campbell, 2013). The fig-
ure shows how a minimal language tree is reduced from Glottolog (Hammarstréom
et al), 2022) such that its only leaves are the languages contained in the cognate
set in question — in this case, the five Polynesian languages of Hawai’ian, Maori,
Rarotonganﬂ, Samoan, and Tongan. Hawai’ian, Maori, and Rarotongan all belong
to the Central-Eastern Polynesian group (the lowest node), which itself belongs
to the Nuclear Polynesian group (the middle node), just like Samoan. The root
node of the minimal tree is always the lowest common ancestor of the languages re-
flected in a cognate set, which in this case is Proto-Polynesian. Of course, there are
many more linguistic subdivisions of the Polynesian languages than those reflected
in this minimal tree; however the tree’s purpose is only to reflect the relatedness
between the languages in a cognate set.

The tree in Figure lS_l[ contains the optimal reconstruction at each node to fulfil
the requirement of Maximum Parsimony — having the least possible changes in
the whole tree. The numbers on the branches indicate the number of changes
required to convert the proto-form at the parent node to the form at the daughter
node. A total of three changes can be observed in the tree: Medial [f] changes
into [h] in Central-Eastern Polynesian, initial [t] to [k| in Hawai’ian, and medial
[h] to [?]! in Rarotongan. This nicely illustrates how the Maximum Parsimony
principle minimizes homoplasy, i.e. observing the same innovation multiple times
in a tree. Each innovation (the sound changes described above) can only be ob-
served at one single branch of the tree, which falls in line with the reconstruction
principle of economy discussed in Section 2 — it is more likely that a certain sound
change happened once in a family (and the affected proto-language passed it on

2called Cook Island Maori in Glottolog
3The letter ’used in the figure denotes the glottal stop [?]. All other used letters are identical
to their IPA representations.
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to its descendants), than for it to happen multiple times within the same family
independently.

This rules out other possible reconstructions for the intermediary nodes. Only
looking at its daughters, *tafa and *taha would both be equally valid recon-
structions for Proto-Nuclear Polynesian, since both proto-forms would require one
change to one of its daughters. Assuming the proto-form *taha however would as-
sume that the sound change |h] to [f] happened twice in the tree — once for Tongan
and once for Samoan. Since that option would also increase the total number of
innovations in the tree to four, this reconstruction is ruled out by the Maximum
Parsimony principle. This demonstrates how valuable it is that Sankoff’s algo-
rithm manages to find the best reconstructions globally, and not only locally for
each node, which would imply only minimizing changes from the node to its direct
descendants.

In this case, Maximum Parsimony is actually sufficient to find the correct proto-
form (Greenhill and Clark, 2011). Of course, that is not always the case, since
there is much more to linguistic reconstruction than merely minimizing the number
of innovations. However, it is able to provide good approximations in many cases,
and given the enormous amount of lexical data that it is applied on, it is expected
to roughly quantify which sound changes tend to occur more often than others.
Naturally, sounds that often correspond to each other in the synchronous data
will be frequently observed changing into each another. Maximum Parsimony
reconstructions however can also give some information about the directionality
of those changes, as can be seen in the minimal example above: Debuccalization
is a commonly observed sound change, and therefore it is more likely for a [f] to
change into a [h] than vice versa. The sound change observed in the example
follows that assumption and provides quantitative evidence for this asymmetric
directionality.

Maximum Parsimony reconstructions were performed for all cognate sets in the
data, and all observed transitions were stored in a transition matrix. This matrix
is of shape n x n, where n is the size of the alphabet ¥ — the set of all different
sounds observed in the training data, including the gap symbol. More formally, the
transition matrix M € Nj*", where n = |X|, contains the information about how
often i transitioned into j for every possible 7,5 € ¥. M was filled by inspecting
each branch of the tree and iterating over the columns of the sequence alignment,
counting each transition from parent to daughter language. For example, for the
branch between Nuclear Polynesian *tafa and Central-Eastern Polynesian *taha,
the four transitions t —t, a — a, f — h, and a — a would be counted and added
to M.

Table B_Z exemplifies the shape of such a transition matrix based on the example
that was discussed earlier. The rows indicate the source sounds, and likewise
the columns correspond to the target sounds. Each row therefore contains the
information about how often a certain sound developed into other sounds — looking
at the second row for example, it is visible that [f] changed into a [h] once and
stayed [f] three times. Likewise, the third column indicates that [h| originated
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| la f h k t ?|
all4 0 0 0 0 0
f10 31 000
hjo 02 0 01
k{0 00 000
t{0 00 1 6 0
/0 00 0 0 0

Table 3.2: Transition matrix for reconstructions in Figure B.1.

from [f] once and was passed on unchanged twice.

The transition matrix resulting from the dataset contains information about a total
of 9,840,192 transitions between 1,184 distinct sounds, including the gap. In an
estimation-maximization fashion (Moon|, 1996), reconstructions were re-generated
in three iterations. Those reconstructions do not measure the branch lengths of the
tree by plain, but by weighted edit distance. The substitution cost (¢) for a given
sound change was inferred from the transition matrix of the previous iteration (M)
by substracting the probability of that sound change from 1:

.. My
c(t,7) =1— ==

(i,7) S0
Penalizing uncommon sound changes more than common ones is expected to re-
fine the quality of Maximum Parsimony reconstructions. Finally, both transition
matrices — the one obtained after the estimation-maximization iterations and the

one before — are used to generate training data for different models, which are
evaluated against each other in Section E]

3.2 Training the model

The transition matrix described in the previous section contains information about
the frequency of sound changes within the finite set of sounds observed in the data.
Despite the matrix spanning over more than a thousand sounds, there is still a
plethora of possible sound changes about which there is either insufficient infor-
mation that can be deduced from the data, or no information at all. Therefore,
a model that has the goal of robustly estimating some kind of typological plausi-
bility value for every possible sound transition must be able to generalize, it must
be able to predict probabilities for unknown sound changes based on information
about known changes. 1 will first discuss how representing sounds in terms of
phonological features enables this kind of generalization, then I will explain how
training data was generated based on a transition matrix, and lastly I will outline
the model architecture and the parameters used for training.
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3.2.1 Phonological feature representations

Expressing structural patterns in sound by the means of phonological features is
almost universal among linguists (Mortensen et al., 2016), and as seen in Section
[1.1.1.3, historical linguists regularly make use of them when expressing soundlaws.
Feature vectors are therefore an obvious choice to represent sounds as numerical
vectors that can serve as input for a neural model, which is then able to process
any possible combination of features in a continuous space and predict an outcome
value. Learning tendencies regarding sound change likelihood based on phonolog-
ical features, rather than on discrete symbols, thus allows the model to generalize
observed patterns to unseen sounds.

The feature representation used in this thesis is an extended version of PanPhon
(Mortensen et al., 2016), a database that is able to represent more than 5,000
simple and complex IPA segments in terms of 21 articulatory features. Each feature
can be either present (+), absent (-), or not applicable (0). Strictly speaking, that
contradicts the idea of binary feature encoding (where a feature can either be
present or absent), but especially for using feature vectors for computation, it is
worthwhile to distinguish whether a feature is absent because it does not apply
in a given context, or whether it would actually be possible for that feature to be
present in this context. Explicitly marking when a feature does not apply (like
consonantal features in vowels) draws a stronger line between certain sound classes
and therefore emphasizes the significance of an applicable, but absent feature.

In order to account for polyphthongs and complex tones as well, I expanded the
PanPhon feature inventory by 13 additional features, tailored towards these two
sound classes that can not be encoded in PanPhon. Since the base PanPhon
features are well documented in the original paper, I will only discuss the features
that were added for encoding polyphthongs and complex tones.

The six features that were added to describe polyphthongs are listed below. Since
they were developed for diphthongs initially and their interpretation for triph-
thongs is less intuitive, the short descriptions provided below will only consider
diphthongs; I will later discuss how these features are used to encode triphthongs.
Every polyphthong is based on its first vowel feature-wise, so it defines all monoph-
thongic vowel features for the whole polyphthong.

backshift. Is the second vowel further back than the first vowel?
frontshift. Is the second vowel more fronted than the first vowel?
opening. Is the second vowel more open than the first vowel?
closing. Is the second vowel more closed than the first vowel?
centering. Is the second vowel a central or centered vowel?
longdistance. Is there a long vertical trajectory of the diphthong?

secondrounded. Is the second vowel rounded?

The first four features, as well as the last one, are straightforward and do not
require any further explanation. Centering is applied when the second vowel is
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either a “true” central vowel (like [o]) or the centralized version of a peripheral vowel
(like [1] or [e]). The feature is therefore used for distinctions between diphthongs
like [00] and [og] in the first case, and likewise for distinguishing for example [ai]
from [ai] in the second case. More precisely, a diphthong is [+closing] if one of the
following conditions is true:

e The second vowel is the central vowel [o].

e The second vowel is an open-mid central vowel.

e The second vowel is a close-mid central vowel.

e The second vowel is a near-open vowel and the first vowel is not a near-open vowel.
e The second vowel is a near-close vowel and the first vowel is not a near-close vowel.
e The second vowel is an open-mid vowel and the first vowel is a (near-)open vowel.

e The second vowel is an close-mid vowel and the first vowel is a (near-)close vowel.

The second feature that calls for further explanation is longdistance, which is
applied when there is a long vertical trajectory. Its main purpose is to distinguish
between diphthongs like [ai] and diphthongs like [ae]. A diphthong is [+longdis-
tance| if one of the following conditions is true:

e The first vowel is an open-mid or near-open vowel and the second vowel is a closed
vowel.

e The first vowel is a close-mid or near-close vowel and the second vowel is an open
vowel.

e The first vowel is an open vowel and the second vowel is a (near-)close vowel.

e The first vowel is a closed vowel and the second vowel is a (near-)open vowel.

Triphthongs are basically treated as the combination of two diphthongs, and are
therefore encoded by the union of positive features that characterize these diph-
thongs. For example, the triphthong [ais| is treated as the combination of [ai] and
[i] - the latter diphthong makes the triphthong [+ backshift, - opening, | centering],
the former one adds [+frontshift,+closing,+longdistance| to the triphthong’s fea-
ture representation. Combined with the base vowel features of [a], that feature
vector implies a triphthong that started at the open back vowel and followed a
trajectory that would first close and front the vowel, and then retracting it again
to a more central position.

The only exception to that logic is how to encode rounding within a triphthong.
Since [ava] seems phonetically closer to [va] than to [au], we would like to encode
the rounded element in the fashion of the former diphthong rather than the latter
one. Therefore, if the second vowel of a triphthong is rounded, the triphthong will
be [+rounded| — [+secondrounded] is only applied when the last vowel is rounded
as well.

The second shortcoming of the PanPhon feature inventory is the lack of possibilities
to express complex tones which include different pitch contours. Three features
have been added in order to encode complex tones, displayed as the concatenation
of up to three canonical IPA tones:
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rising. Does the tone start with a rising pitch?
falling. Does the tone start with a falling pitch?

contour. Does the tone include a contour (i.e. falling after rising pitch or
vice versa)?

Similar to the handling of polyphthongs, the first tone of a complex tone serves
as a base and defines its other phonological features. Rising and falling are then
assigned according to whether the second tonal segment is higher or lower than the
first one. For tones that are represented by three tonal pitch segments, contour
applies when tone first rises, then falls again, or vice versa.

Using this expanded PanPhon feature representation, each sound can be repre-
sented by means of 34 phonological features. In order to be processed by a neural
network, feature vectors have to be numericalized, which is done by assigning the
values of 1, -1, and 0 for present, absent, and non-applicable features respectively.
A sound change between two arbitrary sounds is represented by the concatenation
of their individual feature vectors, with the target sound vector following the vec-
tor of the source sound. The model therefore expects input vectors with a length
of 68.

3.2.2 From transition counts to training data

The simplest and most intuitive approach would be to train a model that is able to
predict the raw frequency of a given sound change, such that it would learn from
the cell values of the transition matrix and predict a frequency for a prompted
sound change. This approach however does not work due to the fact that such
a generalization could only be based on the similarity of certain sounds, which
can be inferred from their feature representation; the typological markedness of
a certain sound in contrast can not be deduced from its feature and would thus
be disregarded by such an approach. The markedness of a sound however plays a
large role in how frequent certain sound changes are — [a] to [a] will be observed
much more often than [a] to [a]. It would be unreasonable to assume that the
second pair is phonetically much more dissimilar than the first one; the reason
that the first sound change appears more frequently is simply that plain vowels
are more common than the typologically marked creaky vowels.

For that reason, aiming at absolute predictions about the frequency of a sound
change is not very feasible — it makes more sense for the model to learn how likely
a certain sound change is in relation to other candidates. In the end, the designed
use case of the model is to obtain some sort of probability distribution over a set of
candidate sound changes — usually with the goal of finding out where a given sound
comes from, or what a given sound can turn into. That means that for the usual
application, only one sound is considered as source or target, and only the values
within the corresponding row or column from the transition matrix are relevant for
estimating relevant sound change likelihoods. Viewing the transition matrix as an
unnormalized joint probability distribution, the model should learn to generalize
from its conditional distributions, rather than from the entire distribution.
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Algorithm 1 Generating a random transition matrix for negative training data

N < zero matrix of shape M

for row in M do
for i in sum(row) do
r < random from {0, 1, ...,row.length — 1}
N’row,'r — Nrow,r +1
end for
end for

for column in M do
for i in sum(column) do
r < random from {0, 1, ..., column.length — 1}
Nr,column — Nr,column +1
end for
end for

Still the question remains how the model can learn this relative information from
the absolute counts. This thesis poses as solution a binary classifier that weighs the
observed evidence against statistical noise, or more intuitively speaking, it quan-
tifies how the observed frequency of a given sound changes relates to its expected
value, assuming that sound changes followed a completely random distribution.
Conceptually, this is an application of noise-contrastive estimation (Smith and
Eisnen, 2005; Gutmann and Hyvérinen, 2010), a technique where observed posi-
tive evidence is normalized by artificially generated negative data.

Algorithm |i] illustrates how a second transition matrix N is generated by iterat-
ing over the rows and columns of the true transition matrix M and generating
random conditional distributions. By iterating over the rows and columns of M
and generating corresponding conditional distributions, N implicitly contains in-
formation about the frequency (and thus markedness) of a sound. N therefore is
an artificially generated transition matrix of a form that would be expected under
the assumption that sound change happened completely randomly, with respect
to the general frequency of the individual sounds. Even if there were no structural
or phonetic processes involved in sound change, we would still expect to see [a|] —
[a] more often than [a] — [a] just based on the raw frequencies of the individual
sounds!

Since the process that generates N iterates twice over M, a negative example is
generated for each observed transition, leading to the fact that > N = 2> M,
meaning that N contains exactly twice as many data points than M. Since the
number of negative and positive data points should be the same, M is scaled up
by the factor 2.

Containing the same amount of data points, M and N are used to generate training
data for a binary classification task. For each possible sound change 7, j (indicating
that ¢ changes to j), m;; positive data points (with y;; = 1) and n,; negative data
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points (with y;; = 0) are added to the training data. The input feature vector X;
is generated based on the phonological features of ¢ and j as described in Section

Sampling training data according to the transition counts from M and N like
this makes the model learn on contradicting data — for virtually every possible
sound change (and its corresponding feature vector serving as the model input),
there will be multiple data points, some of which claim to belong to the positive
class, others labeled as negative. This forces the model to compromise between the
contradicting data points in order to minimize its loss — the ideal (loss-minimizing)
prediction for a certain input is not 0 or 1 (as in usual applications of binary
classifiers), but a value between 0 and 1, the ratio of positive to negative examples.
Given the loss function used to train this model is binary cross-entropy, which is
defined as

L(g:) = —(yilog(¥:) + (1 — yi)log(1 — 4s))
for a single data point. We can generalize that function to calculating the ag-

gregated loss for a given sound change 4, j, given the training data contains m;
positive and n;; negative examples for the corresponding feature vector:

L(Y;) = —(mijlog(di) + nijlog(1 — 7))

It can analytically be shown that the loss function has a minimum at mm+Jn -, which
ij ij
is the ratio of positive examples in the training data for 7, 7. The derivation of the

loss function is:

~ N;i mii
L'(Yy) = 1 -
— Yij Yij
L has a minimum where £’ = 0, which is at y;; = mm+Jn, as shown below.
ij ij
nij ml-j mij
———=0 |+ —
L—0i; Ui Yij
Ny My N
= | * Gy
— Yij Yij
i Yij A
P [ (1= i)
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Figure 3.2: Total loss for different values of m (positive examples) with (m + n) = 100

Figure B.2 exemplifies how the loss functions behaves for different amounts of pos-
itive data points, given a constant number of total training points. The previously
discussed minima when ¢;; corresponds to the positive rate in the data points is
clearly visible. The more this loss-minimizing value approaches the vertical asymp-
totes at ¢;; = 0 and ¢,;; = 1, the steeper the slope of the function becomes, such
that wrong predictions for datapoints with strong evidence for being very likely
or unlikely get penalized more than training examples where the observed sound
change frequency is similar to the randomly generated one.

This adaptation of noise-contrastive learning produces a model which is able to
predict pseudo-probabilities for certain sound changes, which can be used directly
to inform a reconstruction module. Alternatively, the model can be used to query
a probability distribution for a set of sound changes, which usually would be a
conditional distribution based on one source or target sound. To obtain such a
distribution, one can easily use add a softmax layer on top of the models’ logits,
as is standard practice for many classification tasks with multiple classes.

3.2.3 Model architecture

A simple feed-forward artificial neural networkH with 3 hidden layers and a hidden
size of 128 is applied to learn pseudo-probabilities as described in the previous
section. The activation function employed to the hidden layers is GELU (Gaussian
Error Linear Units; Hendrycks and Gimpel 2016) which slightly outperformed
other activation functions; employing dropout layers did not seem to have any
beneficial effects to the model’s performance. The model is trained according to

4 Artificial neural networks are considered to be a standard technique in the domain of machine
learning and therefore not explained in detail. The interested reader is referred to introductory
books like Haykin (1999) or Hertz et al. (2018).
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standard practices for binary classifiers, applying a sigmoid activation function to
the output layer and using binary cross-entropy as the loss function, the effects
of which in this particular set-up have been thoroughly discussed in Section BQ_?!
The model was trained over two epochs, which was sufficient due to the large
amount of training data points within one single epoch, using the Adam optimizer
(Kingma and Ba, 2014). 90% of the generated data was used as training data,
the remaining 10% was used for testing the model’s performance. The entire
development of the model was done in Python, using the TensorFlow package
(Abadi et al., 2015) for conveniently wrapping all parameters and architecture
decisions discussed above.

3.3 Post-Processing

3.3.1 Integration to EtInEn

The weights and the biases of the model that was trained in Python were exported
to a text file in order to make them readable for other frameworks. Since EtInkEn
is written completely in Java, I had to manually implement classes for a feed-
forward neural network and its individual layers, mirroring the previously discussed
architecture of the model trained in Python. Since such simple networks are
nothing else than mere matrix multiplications with an activation function on top,
implementing an already trained model was straightforward.

Within EtInEn, the model’s primary use is to serve as a typological prior for phono-
logical reconstructions, that is quantifying how likely certain candidate sound
changes are in general before applying language-specific layers like sound laws
or phonotactics. The model is used in a reconstruction module that generates
language-agnostic reconstruction candidates, which then are evaluated against the
inferred sound laws from the proto-language to its respective daughter language.
While for example there might be several reconstruction candidates that are gener-
ally justifiable (without applying specific knowledge about the languages in ques-
tion), some candidates might violate an established sound law and therefore be
considered unlikely. Inversely, good candidates that also follow the sound laws
would be considered even more probable.

k a h a (Hawaiian)
t a h a (Maori)
t a ? a (Rarotongan)

Table 3.3: Example of a Multiple Sequence Alignment.

As is standard practice in automated reconstruction algorithms, the EtInEn recon-
struction module takes the forms of the immediate descendants of the node that
shall be reconstructed as input, and requires those forms to be aligned. Table
illustrates such a multiple sequence alignment for forms that have been previously
introduced in Figure liﬂ[ The node in question, for which a proto-form should be
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reconstructed in this case, is Central-Eastern Polynesian; therefore the input forms
come from the immediate descendantst Hawai’ian, Maori, and Rarotongan.

Given the multiple sequence alignment, the algorithm iterates over each column.
The first input column therefore provides the sounds (%, ¢, t), which we denote as
a tuple of target sounds T' = ([k], [t], [t]). Based on these input or target sounds,
a probability distribution over a set of candidate source sounds S can be inferred
by means of the following formula:

[Licrp(s.t)
ES’GS HteT p(s,t)

S can be every arbitrarily chosen set of sounds. The probability of a particular
sound change between a source sound s and a target sound ¢ is denoted as p(s, t)
and is predicted by the neural model. For normalizing those frequency estimations
into distributions, I implemented methods for obtaining conditional distributions
over either source or target sounds; in these cases, p(s,t) would actually be p(s|t) or
p(t|s) respectively. Since the probability mass has to be normalized again (as seen
in the function), it is also possible to work with the raw probability estimations
the model was trained on, which is the final logit (for a single sound change) nor-
malized by the sigmoid function. Those three possibilities to query the model and
to normalize probabilities naturally lead to different posterior probability distri-
butions. In my evaluation, I use p(s|t) in order to obtain a probability distribution
over possible source sound for each observed sound in the column. While this
is the most intuitive approach for determining the most likely proto-sound for a
set of observed sounds, there exist other possibilities to obtain probabilities from
the model, which unfortunately could not be explored due to the computational
expenses connected to the reconstruction technique.

P(s) = Vse S

Either way, the algorithm calculates a probability distribution over the candidate
sounds S by obtaining probabilities for each sound change (s,t) € S x T and
normalizing them as stated in the formula above. After calculating a probability
distribution for every column of the alignment, the best reconstruction consists of
the most likely proto-sound for each column.

The full-fledged EtInEn workflow for reconstructing proto-forms will finally include
other pieces of information, like inferred sound laws (Daneyko, 2020), potential re-
constructions of parent nodes, or belief values of reconstruction candidates in the
descendants when moving higher up the tree. Since my workflow only produces
naive, language-agnostic reconstructions that disregard this information, the de-
tails of how EtInEn includes these factors are not discussed here.

3.3.2 Bias tuning for boundary cases

Before applying the evaluation, the model’s performance was tested by manu-
ally analyzing automatically generated reconstructions that were only informed

>The three languages in question are immediate descendants according to the reduced tree for
the exemplary language sample introduced in Section ; not in a strict linguistic sense.
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by the probabilities predicted by the model. Additional information that would
be added later within the EtInEn workflow was not regarded, as discussed in
the previous section. Manually inspecting some test cases has the advantage of
gaining a first impression about how well the model was able to learn certain tran-
sition probabilities, and check the model’s tendencies against the human linguistic
intuition. This intermediary step between the training of the model and its eval-
uation also made it possible to manually add some biases for boundary cases, in
which the model did not behave exactly as intended. I used the NorthEuralex
database (Dellert et al., 2020) for my test cases, automatically reconstructing
Proto-Germanic, Proto-Balto-Slavic, Proto-Uralic, and Proto-Turkic. Two bound-
ary cases that required some manual adjustment became apparent: Transitions
between equivalent symbols and transitions including gaps. Both problems were
addressed by manually adding a defined bias value to the logit of the respective
sound change.

The first boundary case simply involves the predicted probability for a sound
staying the same, i.e. not changing at all. Two issues that were related to these
values were sporadically observed: Firstly, the model would sometimes suggest
sound changes without any need, despite having the same sound in the entire
column of the respective multiple sequence alignment, violating the principle of
economy. This occasionally happened for sounds that are generally considered to
be unstable, like nasal consonants or [h|, which on the side leads to the pleasant
conclusion that the model was able to learn that those sounds tend to change
rather frequently. However, it should obviously not assume that it is less likely for
a sound itself to derive from another sound, rather than from itself. The second
related case occurred when two proto-sound candidates shared the same feature
encoding, which sometimes happens between closely related sounds like [r] and [¢],
despite the use of a rich phonological feature representation. Naturally, in cases
like this where two sounds (and therefore the sound changes involving one of those
two sounds) have the same feature representation, the model has no chance to tell
them apart and will predict the same value. The principle of economy applies
here again in quite an intuitive way — it is much more likely that there was no
change of the articulatory and phonetic properties of the sound, than assuming
that some sort of change happened, without having solid arguments for proposing
such a change. In order to address these two problems, I added a bias of +2 to
each logit where the string representation of the input symbol is equivalent to the
output symbol string.

The second boundary cases concerns sound changes including the gap symbol,
which has so far been treated as if it were a regular segment. This does obviously
not reflect the nature of the gap symbol, since it does not represent a physicial
sound, but is only generated to indicate that some part of a sequence does not
correspond to any part of another sequence. More concretely speaking, correspon-
dences between sounds and gaps in sequence alignments used for reconstructions
(assuming that those alignments are correct) imply that either an insertion or a
deletion must have happened.

The special role of the gap symbol has been addressed already in the infancy of
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automated sequence comparison for historical linguistics (Covington, 1996; Kon-
drak, 2000) and has been continuously receiving attention ever since (List, 2014).
For most proposed automated methods towards sequence comparison or even an-
cestral state reconstruction, gaps are bound to cause problems if they are not
specifically addressed. In my test cases, the model would frequently reconstruct
gaps in cases of alignment columns that include both gaps and actual sounds;
considering epentheses more likely than elisions. However, in most circumstances
the opposite should be the case, since sounds generally seem to be more likely to
be lost than to appear “out of the blue” (Kiimmel, 2007; Campbell, 2013). The
Maximum Parsimony reconstructions that were used to generate the training data
are naturally not aware of such tendencies, and furthermore the training data con-
tained much noise from inflectional affixes (e.g. the German infinitive ending -en
which has been lost in English), leading to many gap alignments that are results of
morphological rather than phonological processes. Moreover, since no information
about phonotactics or language models were included in the reconstruction algo-
rithm, no case-by-case distinction could be made whether the resulting proto-form
after removing a vowel would still consist of valid syllables or commonly found
n-grams. These factors lead to many reconstructions where syllable nuclei were
removed, partially producing proto-forms that did not contain any vowels any-
more. Albeit not as apparent as in vowels, the same tendency to overgenerate
epentheses could also be observed for consonants. In order to avoid the excessive
reconstruction of gaps, I drastically increased the threshold of reconstructing gaps
from vowels by adding a bias of -4 to the logits of respective sound changes. For
consonants, a slight bias towards favoring deletions over insertions was applied by
adding -1 to the logits of sound changes from gap to consonant.

Resulting from these biases were improved automated reconstructions like Proto-
Uralic **voko and **sopok, which had been previously reconstructed as **vk and
**spk. The reconstructions in the development set also exposed that the auto-
matic inference of proto-sound inventories by SoInEn (Soundlaw Inference En-
ginge; Daneyko 202(0) did not work as intended in this setting. It produced way
too small proto-inventories, which of course was responsible for some rather poor
reconstructions. For the evaluation therefore, a global alphabet of possible proto-
sounds had to be defined beforehand. Given the at times questionable proto-sound
inventories in the development set, applying the biases lead to significantly better
reconstructions, where the model was usually able to choose a reasonable proto-
sound.
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In order to evaluate the model’s performance, two different reconstruction algo-
rithms are employed that make use of probabilities obtained by the model. The
first of these techniques is to recursively generate naive and language-agnostic
reconstructions up the tree. To reconstruct a given proto-language, every inter-
mediary node in the language tree between the leaves (the modern languages) and
the proto-language is reconstructed, traversing the tree in a bottom-up fashion.
Therefore, proto-forms of nodes that are located lower in the tree, and therefore
temporally closer to the modern languages, are reconstructed first, and then serve
as reconstruction inputs for nodes higher up in the tree, i.e. for older proto-
languages. As described in Section m, the reconstruction algorithm employed
here only works with the direct descendants of the respective node as input, dis-
regarding information from forms that are located at other points in the tree. For
each node, all proto-forms that have reflexes in at least one daughter language are
reconstructed before moving on to reconstructing the next node in the tree.

As described in Section m, the probability distributions for this bottom-up
reconstruction are inferred by applying a softmax layer over the logits obtained
for a given target sound. This yields conditional probability distributions that
contain information about the most probable sources of a certain target sound.
Recursive bottom-up reconstructions are computationally quite expensive, and it
was therefore not possible to explore other distributions within the timeframe of
this thesis.

Besides this recursive bottom-up reconstruction technique, another set of proto-
forms is reconstructed by employing weighted Maximum Parsimony. The principle
of Maximum Parsimony has already been discussed in detail in Section B.2.2 where
it was used to generate training data. In the weighted variant, the neural model
is used to dynamically calculate substitution costs between sounds. The branch
length between a daughter and a parent node therefore represents the phonetic
similarity between the two forms, rather than just the number of required edit
operations.
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For the weighted Maximum Parsimony reconstructions, substitution costs between
all possible symbols need to be inferred from the probability distribution obtained
by the model. However, simply substracting the inferred probability from 1 does
not yield useful transition costs, because the vast majority of the resulting prob-
abilities is very close to 0, especially for larger alphabets. In order to counteract
this phenomenon and to obtain a signal that is strong enough to actually impact
the algorithm, two measures are taken to convert the information obtained from
the model into useful transition costs.

As introduced in Section m, I use S to describe the defined set of possible source
sounds, whereas T" denotes the set of target sounds, i.e. the sounds that are present
in a given column of the multiple sequence alignment. For employing weighted
Maximum Parsimony reconstructions, a global alphabet of possible source sounds
) is defined a priori. For each column in the alignment, S is defined as X UT; the
union of the global alphabet and the sounds present in the column.

To obtain sensible substitution costs, a stochastic transition matrix over the sym-
bols S x S is generated, containing probability distributions of sound changes that
are conditioned by the source sound. Essentially, conditioned probability distribu-
tions P(s'|s)Vs',s € S x S are inferred by applying a softmax layer on the model’s
output logits. The first measure that is taken to emphasize differences in proba-
bilities is to exclude pairs of identical sounds from the output distribution before
employing the softmax layer. This measure is taken because the vast majority of
the probability mass is otherwise assigned to the sound staying the same. With
reasonably sized alphabets (with at least 20 symbols), this identity transition usu-
ally amounts over 99% of the probability mass, while all other transitions share
the last percent among themselves. Due to the resulting small probabilities, the
model’s prediction about how likely a given sound change is in relation to oth-
ers is therefore essentially lost. By removing the largest attractor of probability
mass, much higher probability values are assigned to transitions that involve actual
sound change. The cost for a sound not changing is set to 0 globally.

This measure already emphasizes the relative differences between the predicted
transition probabilities. However, most of the resulting probabilities are still too
close to 0 to contribute a meaningful signal to the algorithm. The resulting prob-
ability distribution resembles a power distribution: The bulk of the probability
mass is shared among the few most probable target sound, while there is a long
tail of unlikely target sounds with probabilities near 0. This distribution shape
is addressed by employing a logarithmic transformation: The closer probabilities
are to 0, the stronger they are affected by the transformation. The cost ¢ for a
given sound change s — t is calculated by applying such a log—transformationﬁ] and
substracting the log-normalized probability from 1:

ifs#t

1 _ 1
c(s,t) = {1 R (_l°92(0-5p(t\8))) =1+ log2(0.5p(tls))
, , otherwise

'Rudimentary experiments on employing such a log-transformation for the bottom-up recon-
structions showed no beneficial effect.
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These scaling measures make it possible to extract costs with substantial and
meaningful differences from the probabilities provided by the model. The obtained
cost enable Sankoff’s algorithm to use the model’s power to quantify how likely
certain sound changes are in relation to each other. However, adding this infor-
mation to enhance existing reconstruction algorithms is only one of many possible
use cases for the model — the same information can be valuable for other tasks,
such as the detection of sound correspondences or the induction of sound laws. I
would like to emphasize again that providing better automated reconstructions is
not the core contribution of this thesis, but merely an application to showcase the
model’s potential for improving computational models of language change.

4.1 Evaluation dataset

Up to this day, computational historical linguists still struggle with a shortage of
expert reconstructions that are available digitally. That severely limits the num-
ber of datasets that can provide a gold standard for automated reconstructions,
essentially reducing it to a handful of datasets that contain information about
proto-forms across all concepts covered (List et al., 2022b).

For my evaluation, I use the Austronesian basic vocabulary database (ABVD;
Greenhill et al. 2008), which contains 325,947 lexical items from 1,692 languages
spoken throughout the Pacific region. Based on ABVD, Proto-Austronesian and
Proto-Oceanic are reconstructed and evaluated against respective gold standard
reconstructions contained in ABVD. Proto-Austronesian expert reconstructions
are provided by Blust (1999); for Proto-Oceanic, ABVD actually contains two
sets of gold standard reconstructions, one by Blust (1993) and another one by
Andrew Pavvley.B Evaluating the automatically produced reconstructions against
these lists of expert reconstruction mirrors the evaluation employed by Bouchard-
Coté et al. (2013) and makes my results directly comparable to theirs. In order to
keep this symmetry, ABVD-based evaluations are limited to the set of reconstruc-
tions discussed by Bouchard-Coté et al. (2013), which are listed in their appendix.
Furthermore, the same global alphabet of proto-sound candidates was used, which
was defined as the union of the sound inventories of their subset of ABVD.

4.2 Evaluation metrics

The automatically produced reconstructions are evaluated against their corre-
sponding gold standards by the means of Normalized Edit Distance and B-Cubed
F-Scores, both indicating how closely a produced reconstruction resembles the
actual proto-form.

Normalized Edit Distance is obtained when dividing the plain edit distance (Lev-
enshtein, [1966) of a pairwise alignment by the length of the alignment and has

2There seems to be no publication explicitly covering the reconstructions for the ABVD con-
cepts; however there is a strong overlap with reconstructions discussed in Ross et al| (2007).
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been used frequently to evaluate the quality of automatic reconstructions (Bou-
chard-Coété et al., 2009; Bouchard-Coté et al., 2013; Ciobanu and Dinu, 2018; Hall
and Klein, 2010; Jager, 2019; Meloni et al., 2019). Normalized Edit Distances
quantify by simple means how different two sequences are, making it an obvious
choice for measuring to which extend an automatic reconstruction deviates from
its gold standard. Both its easy application and its intuitive interpretation have
made (normalized) edit distance the most popular metric to evaluate ancestral
state reconstruction methods.

Using B-Cubed scores (Amigé et al., 2009) for evaluating the quality of recon-
structions, on the other hand, has recently been proposed by LList (2019b) in order
to measure structural similarity between two sets of reconstructions, rather than
pure phonetic similarity. This accounts for the fact that reconstructions are by na-
ture abstract to a certain degree, since the exact phonetic value of a reconstructed
sound can not be predicted with full certainty, but some of their articulatory prop-
erties can be estimated from the data. This trade-off between reconstructing the
structural function of a phoneme and its phonetic representation is known as the
abstractionist-realist debate which has been summarized in Section l1_3

Edit distances come with the drawback of not being able to identify the phonolog-
ical structure within a set of reconstructions. If, for example, one scholar chooses
to reconstruct a certain phoneme as [a|, while another scholar reconstructs the
same phoneme as [a], the reconstructions of the two scholars would be structurally
identical (and both equally valid). Comparing these two reconstruction systems
by means of edit distance, however, would count a mismatch for each [a - a] cor-
respondence, counting differences as errors that are arguably too fine-grained to
be really considered as such. B-Cubed scores on the other hand measure how well
one cluster can predict another cluster — in this case, where [a] and [a] perfectly
correspond to each other, one can predict with full certainty that there will be
an |a| in the second reconstruction system wherever an [a] is encountered in the
first one. In contrast to edit distances, B-Cubed scores therefore don’t penal-
ize subphonemic differences, but quantify the structural similarity of two sets of
reconstructions.

When comparing two clusters for structural similarity, a precision and a recall
score are obtained. The former quantifies how well the first cluster predicts the
second cluster, while the latter one measures the inverse relation. When evaluating
an automatically generated set of forms against a gold standard, precision usually
denotes how well the generated forms predict the reference forms (and likewise
recall is used to measure how well the generated forms can be predicted from the
gold standard forms). To illustrate how this relation is not symmetrical, consider
the sequences [A B C D] and [A A B BJ: The first sequence can perfectly predict
the second sequence, since each of its symbols map to exactly one symbol from
the second sequence. However, both symbols of the second sequence map to two
different symbols of the first sequence respectively — it is not possible to predict
the first sequence from the second one. This minimal example therefore would
yield a perfect precision, but a rather low recall (List, 2019b). The overall mutual
predictive strength — and therefore structural similarity — between two clusters
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is denoted by the B-Cubed F-Score, which is defined as the harmonic mean of
precision and recall.

Due to its initial purpose of evaluating clustering tasks (Amigé et all, 2009), B-
Cubed scores have been introduced early to automated language comparison when
it comes to the task of automatic cognate clustering (Hauer and Kondrak, 2011;
Jager et all, 2017; List et al., 2017). The main innovation by List (2019h) consists
in understanding ancestral state reconstruction as a partitioning or clustering task,
emphasizing the abstractist, structural component of reconstructions over the real-
ist, phonetic component. Since then, B-Cubed scores have been used as evaluation
metrics for the closely related task of reflex prediction (Celanog, 2022; Dekker and
Zuidema, 2020; Kirov et alJ, 2022; [List et all, 2022c) with essentially the same intu-
ition, that the predicted forms should be as similar to the gold standard as possible.
Apart from List et al| (2022b), however, I am not aware of any further publica-
tions that make use of B-Cubed score for evaluating the quality of automatic
reconstructions, which can arguably be partially attributed to the aforementioned
lack of good gold standards for the vast majority of proto-languages.

4.3 Baseline models

All reconstructions generated by my model are evaluated against the respective
gold standards using the metrics described above. To compare those metrics,
Maximum Parsimony reconstructions (as described in Section w) serve as a
simple baseline model. Furthermore, the performance on ABVD is compared to
the reconstructed forms reported by Bouchard-Coté et al. (2013).

Since Bouchard-Cété et al. (2013) employ more sophisticated reconstruction algo-
rithms that include some kind of awareness for a specific language and the context
of a certain sound correspondence, it can not be expected that my model will out-
perform theirs. Comparing my reconstructions against their model has the primary
goal of understanding to which extent language- and context-agnostic reconstruc-
tions can approximate those generated by models that take this information into
account. After all, the core of this thesis is a model that can predict markedness
for arbitrary sound changes, and not an improved reconstruction algorithm; there-
fore it is neither my intention nor my expectation to outperform state-of-the-art
models.
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Results and Discussion

Tables and b.2 show the overall performances of the different reconstruction
algorithms by means of the two metrics introduced in Section @, the average
normalized edit distance and the B-Cubed F-Score. The two algorithms that were
informed by the neural sound change model, Naive Bottom-Up Reconstruction
and Weighted Maximum Parsimony, are compared to the model by Bouchard-
Coté et al) (2013) and to unweighted Maximum Parsimony Reconstructions that
serve as a simple baseline. Over the course of this chapter, I will use the abbrevi-
ations (W)MP, BU, and BC to refer to the automated reconstructions produced
by (Weighted) Maximum Parsimony, Bottom-Up reconstruction, and the model
by Bouchard-Coté respectively.

The first observation is that employing an Estimation-Maximation (EM) technique
for generating the training data, as described in Section , does not seem to
be substantially beneficial to the model’s performance — for the Proto-Oceanic re-
constructions, it was even the model that was trained without any EM component
that achieved the best results. However, these differences between the different
models and the resulting reconstructions are barely noticeable. This can be at-
tributed to two factors in the set-up of the EM module: Firstly, the substitution
costs were directly inferred from the probabilities without any scaling or further
modifications. In Section B!, I have discussed the necessity of scaling costs away
from 1 in order to generate a signal that is strong enough for the algorithm to pro-
cess — a challenge that was addressed by employing a logarithmic transformation
to the probabilities for the WMP reconstructions. Such an adjustment of costs,
however, was not employed to the EM module. The resulting cost matrix would
therefore have values very close to 0 along the diagonals (wherever a sound does
not change) and thus close to 1 everywhere else. A cost matrix of this shape is not
able to provide Sankoft’s algorithm with a useful signal, and a first exploratory run
on ABVD even showed that WMP reconstructions that rely on such a matrix even
produce slightly worse results than plain unweighted MP reconstructions.

The second issue with the EM module is that all transitions are counted equally
along every branch in the tree. However, that disregards that different branches
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Algorithm Edit Distance B-Cubed F-Score
Weighted Maximum Parsimony
after 0 EM iterations 0.33 0.64
after 1 EM iteration 0.31 0.66
after 2 EM iterations 0.33 0.65
after 3 EM iterations 0.31 0.66
Bottom-Up 0.36 0.57
Maximum Parsimony 0.32 0.63
Bouchard-Coté et al. (2013) 0.15 0.8

Table 5.1: Evaluation metrics for Proto-Austronesian reconstructions against the gold stan-
dard reconstructions by Blust (1999).

of the phylogenetic tree can have vastly different time depths. The larger the
temporal distance between a daughter and a parent node, the more innovations
are expected to occur on this branch. While it is not really feasible to measure the
actual time depth of a branch in question, it is trivial to quantify its innovativeness
— which is the actually relevant piece of information. Observing a given sound
change on an otherwise highly conservative branch is a stronger evidence for its
commonness than observing it on a branch that is generally innovative. Daneyko
(2020) proposes a method to count transitions weighted by the innovativeness
of the respective branch, which could easily be implemented in my workflow as
well.

Addressing these two problems in future work could significantly improve the EM
module by providing it with useful substitution costs with respect to the innova-
tiveness of individual branches. An improved EM module would in turn generate
better training data, which would naturally result in better models. For now, I
have to leave these ideas up to future work, and report that the EM module did
not significantly impact the resulting models for better or worse. Throughout
this chapter, I will focus on discussing the reconstructions generated by the model
trained after the last EM iteration, since that model produced the best WMP re-
constructions for Proto-Austronesian. Using that model furthermore enables me
to compare WMP directly to BU, since it was informed by the same model. Since
BU reconstructions are computationally much more demanding, it was not feasible
for me to compare different models’ performances for that technique within the
timeframe of this thesis.

Shifting back to the reported metrics, another striking observation can be made:
The MP reconstructions, that are intended to serve as a baseline, outperform the
BU reconstructions. This might seem surprising at fist sight, however, MP has a
conceptual advantage over BU, since it optimizes all the reconstructions globally,
whereas BU is only able to reconstruct forms locally, based on the immediate
descendants of the node in question. That bears the risk of propagating false
or misleading information up the tree that can not be corrected afterwards by
considering information from more distantly related languages and nodes higher
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Algorithm ED (B) B3 (B) ED (P) B? (P)
Weighted Maximum Parsimony
after 0 EM iterations 0.3 0.7 0.28 0.72
after 1 EM iteration 0.31 0.69 0.29 0.72
after 2 EM iterations 0.33 0.67 0.31 0.69
after 3 EM iterations 0.3 0.69 0.28 0.71
Bottom-Up 0.38 0.55 0.37 0.56
Maximum Parsimony 0.31 0.68 0.3 0.7
Bouchard-Coté et al. (2013) 0.24 0.75 0.23 0.75

Table 5.2: Evaluation metrics for Proto-Oceanic reconstructions against the gold standard
reconstructions by Blust (B) and Pawley (P). ED = Average normalized Edit Distance, B3 =
B-Cubed F-Score.

up the tree — which implicitly happens when optimizing a whole tree rather than
recursively reconstructing individual nodes. The larger and deeper a language
tree is, the stronger this effect is expected to happen — a tendency from which
BU severely suffers in this case, since Austronesian is the second largest language
family in the world (measured by the number of modern languages; Hammarstréom
et al|2022).

Due to the poor performance of BU, I will focus on WMP reconstructions when
discussing some Proto-Austronesian and Proto-Oceanic reconstructions in detail.
After all, employing techniques for ancestral state reconstruction merely serves
the purpose of getting an impression of the neural model’s predictive power, as
measured by its ability to contribute to good reconstructions.

5.1 Proto-Austronesian

Since the metrics for Proto-Austronesian reconstructions generated by MP and
WMP only differ slightly, it does not come as a surprise that most of these re-
constructions are identical. Nevertheless, there are some interesting differences,
part of which can be attributed to the refined substitution costs which were de-
duced from the neural model. With an average normalized edit distance of 0.32
and a B-Cubed F-Score of 0.63, however, MP obtained surprisingly good results
for a conceptually simple baseline. That strengthens the conclusions drawn by
Jager and List (2018) that ABVD is a relatively simple dataset for ancestral state
reconstruction.

For Proto-Austronesian, MP struggled to reconstruct word-initial and word-final
*/1/ and reconstructed **r/ instead. Informed by the fact that /1/ frequently
changes into /r/, however, WMP was able to reconstruct *1/ correctly in these
cases. This can be observed in forms like */likud/ ‘back’ (MP: **/rikus/; WMP:
*#/likus/), /liger/ ‘neck’ (MP: *¥ril/; WMP: /lil/), or */qebel/ ‘smoke’ (MP:
¥/ Pobor /; WMP: **/?abol /).
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In other cases, the information from the sound change model could be used to
interpolate between different vowel qualities and reconstruct a better proto-sound.
This was the case for */beli/ ‘to buy’, which was correctly reconstructed by WMP,
but predicted as **/bali/ by MP. The extant forms frequently feature different
(close-)mid vowels like /e, o, o/. The neural model is able to predict reasonably
high transition probabilities between those vowels based on their common features.
The unweighted MP algorithm on the other hand has no access to this information
and renders all of these sounds as different, completely unrelated symbols. Due
to that, **¥a/ is reconstructed as the proto-sound that generates a word tree with
the least possible changes, whereas WMP successfully reconstructs */e/ based on
the information of the vowel similarities. Another case where the sound change
model lead to a better reconstruction of vowels was */ ma-buraq/ ‘rotten’, which
was reconstructed */buruk/ by WMP and */baruk/ by MP.

The last example already exhibits the two major shortcomings of both MP and
WMP. Firstly, all reconstruction algorithms struggled with reconstructing */q/,
probably due to its typological markedness, and instability throughout the Aus-
tronesian languages. Even Bouchard-Coté et al| (2013) report that this proto-
sound was their main systematic source of errors, although their model still man-
ages to reconstruct */q/ significantly better than my models. For example, the final
segment of */biraq/ ‘leaf’ could not be reconstructed correctly by either model:
BC reconstructs **/bela/, BU predicts **/biafi/, whereas both MP and WMP pro-
duce **/bia/. Especially MP and WMP consistently struggled to reconstruct */q/,
reconstructing either a gap or *k/ instead.

The second issue that can be noticed is that the prefix *ma- wreaked havoc for
both models, since it has been lost in many of the extant languages. The models’
inability to reconstruct affixes in such cases can also be seen in forms like */ma-
lawas/ ‘wide’ or */i-kamu/ ‘you’, which were reconstructed as **/lawa/, **/kamu/
(WMP), and *¥lawa/, **kamu,/ (MP) respectively.

In general, both MP and especially WMP tend to overpredict gaps in the proto-
form, which constantly leads to shorter proto-forms than desired. The overpre-
diction of gaps is the one major weakness that WMP has compared to MP, and
it comes to no surprise: In Section B.ﬂ, I discussed how the neural model tends
to overestimate the probability of insertions, and how I addressed this issue by
modifying the corresponding logits. However, this measure was aimed at the
Bottom-Up reconstruction process, where conditional probability distributions are
inferred with respect to the given target sounds. WMP on the other hand is in-
formed by a stochastic cost matrix, that is based on distributions conditioned by
the source sound. Therefore, the softmax layer in this case is only applied to
all the logits predicted to insertions — which all are affected by the applied bias.
Essentially, the cost matrix therefore loses the intended bias against insertions in
favor of deletions.

While this overprediction of gaps in WMP can be observed in many places, it
is often not detrimental to the metrics in comparison to MP, since the latter al-
gorithm often reconstructed the wrong sound in such cases. Examples for that
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phenomenon are */pajan/ ‘name’ (MP: **¥pagan/; WMP: **/paan/), */ qabara/
‘shoulder’ (MP: */abafa/; WMP: **abaa/), or ¥ ma-baqeru/ ‘new’ (MP: **/baru/;
WMP: *#¥/bau/). For forms that are predicted too short by WMP, however, it can
often be observed that BU generates better reconstructions that usually mirror the
syllable structure of the gold proto-form, indicating that the bias against inser-
tions works as intended for its original purpose. Adjusting the costs for insertions
and deletions definitely would be one major point that future work on the WMP
approach should address.

Due to its bias against reconstructing gaps without strong evidence, BU recon-
structions however suffered from the opposite effect, especially in cases where the
cognate set contained many partial cognates with additional affixes. Many mod-
ern reflexes of Proto-Austronesian */mula/ ‘to plant’ are formed together with a
derivational affix, like Bolaang Mongondow mo-mula or Malagasy mam-bole/mam-
boly. The fact that many of the modern forms were only partial cognates which
could not be properly aligned made the model reconstruct the unreasonably long
proto-form **/mamamamoah/, trying to avoid reconstructing gaps.

A further complication for my reconstructions lies within the shape of the source
database. ABVD contains different expert cognacy judgements that can be com-
peting, which is displayed by linking the same word to different cognate sets in
case of conflict. This caused issues when importing the database to EtInEn, which
expects that each word is only part of one single cognate set. Due to that, only
the first assignment to a cognate set for each lexeme was considered, ignoring all
others. That could lead to some incomplete cognate sets in cases where some forms
had been assigned to another cognate set earlier.

ABVD furthermore does not contain gold tokenizations for the data, which forced
me to rely on automated tokenization techniques. While that seemed to work well
in most cases, there were some faulty tokenizations where diacritica were consid-
ered to be individual segments. That was the case for words like Tasmate /ta’ar-
i”i/ or Letemboi /rege*dao/ ‘small’. Ideally, automated reconstructions should be
based on consistent cognacy annotations with good tokenizations and alignments.
While none of these factors had a noticeable effect in the end, they have definitely
caused some noise in the data.

In order to realistically compare automated reconstructions to Bouchard-Coété
et al. (2013), it would be necessary to use the exact same data instead of us-
ing the Lexibank version. On the one side, Bouchard-Coté et al| (2013) employed
some pre-processing to clean up the data, addressing the aforementioned prob-
lems. On the other side, ABVD is still being expanded and edited, so the version
that I use contained slightly other data than the one used by Bouchard-Coté et al.
(2013).

5.2 Proto-Oceanic

Most of the observations made on Proto-Austronesian reconstructions also ap-
ply to the corresponding Proto-Oceanic reconstructions — all models struggled to
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reconstruct ¥/ q/, WMP severely overpredicted gaps, while BU was especially vul-
nerable to trailing affixes and noisy alignments. The aforementioned issues with
the source data naturally affected the Proto-Oceanic reconstructions in the same
way as was the case for Proto-Austronesian. Nonetheless, there are some further
interesting cases to discuss that are specific to Proto-Oceanic.

Besides */q/, MP and WMP also consistently failed to reconstruct */r/ and pre-
dicted a gap instead. Both issues are reflected in the faulty reconstruction **/ua/
which actually should be */ruqa/ ‘neck’. Another instance of that issue is */wair/
‘water’, which is reconstructed as **/wai/. While this tendency can also be oc-
casionally observed in Proto-Austronesian reconstructions, it is very prominent in
Proto-Oceanic.

Generally, word-final consonants tend to cause problems, since they have disap-
peared in many modern languages. */manuk/ ‘bird’ is reconstructed as **/manu/
by all algorithms (including BC), and analogically */nanuk/ ‘mosquito’ lacks the
final ¥k/ in all automatic reconstructions as well.

On a more positive note, there were again some phenomena that were not recon-
structed correctly with unweighted MP, but could be handled successfully with
substitution costs generated by the neural model. Intervocalic */p/ for example
was correctly reconstructed by WMP, but predicted as */f/ by MP. The form
*api/ ‘fire’ was therefore correctly reconstructed by WMP, the same correspon-
dence was successfully rendered in */mapanas/ ‘warm’ which was reconstructed
as **mapana/. Unweighted MP on the other hand reconstructed **afi/ and
**/mafana/ respectively. That suggests that the neural model was actually ca-
pable of predicting that the lenition of /p/ to /f/ is more likely than the inverse
change.

Despite its overall tendency to overpredict gaps, WMP was able to retain some
segments that were not reconstructed in MP. In particular, that refers to the second
vowel in bisyllabic words like */kutu/ ‘louse’ or */patu/ ‘stone’ — for both words,
the final */u/ is only predicted by WMP. While the former form is reconstructed
correctly, the latter one is reconstructed as **/vatu/. In this case, the algorithm
fails to capture another instance of spirantization, which it successfully did in the
previous case for intervocalic */p/. The MP reconstructions for the two words in
question here are identical to the WMP reconstructions apart from the lacking

final %/u/.

It is notable that the BC reconstructions for Proto-Oceanic are substantially worse
than those for Proto-Austronesian, and many of their faulty reconstructions exhibit
similar issues as my reconstructions. The challenge to reconstruct *q/ in word-
final positions is much more apparent in Proto-Oceanic, as seen in predictions
like **/mama/ (instead of */mamaq/ ‘to chew’) or **/pana/ (instead of * panaq/
‘to shoot’). BC generally seemed to struggle with word-final obstruents in Proto-
Oceanic to a similar extent as my reconstruction models.

While the BC reconstructions for Proto-Oceanic are still better than the WMP
reconstructions — which is not surprising at all, given the different complexities
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of the models — the gap in performances is significantly smaller. In some cases,
WMP even produced better reconstructions than BC, which was hardly ever the
case for Proto-Austronesian. Instances of this are */piliq/ ‘to choose’ (WMP:
*/pili/; BC: *¥/vili/), *puga/ ‘lower’ (WMP: */pupa/; BC */vuga/), or */pulan/
‘moon’ (WMP: *#/pula/; BC: *¥vula/). In all of these cases, WMP correctly
reconstructed word-initial */p/ instead of **/v/. For the aforementioned example
of */patu/ ‘stone’, however, the opposite is the case: BC correctly reconstructs the
stop, where WMP predicts the fricative.

The fact that these two opposing observations coexist within the relatively small
sample data has two implications. First of all, it shows how purely probabilis-
tic models have no concept of regularity or symbolism — otherwise, it would not
be possible to reconstruct different proto-sounds for the same sound correspon-
dence. It furthermore shows the value of a good model for assessing the likelihood
of sound changes: From the data alone, both */p/ and */v/ seem to be likely
proto-sound candidates. One of the main reasons why linguists reconstruct */p/
is their implicit knowledge of directionality! The aformentioned set of forms is a
good example to show how ancestral state reconstruction techniques can benefit
from both, a more systematic notion of sound correspondences, and a model that
contains quantitative information about the typology of sound changes.
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Summary and Outlook

In this thesis, I have presented a neural model that is able to predict probabili-
ties for arbitrary sound changes. The model contributes two innovations to the
field of computational historical linguistics: It is able to provide general informa-
tion about the directionality and typological markedness of sound changes, factors
where classical historical linguists usually rely on their intuition and implicit knowl-
edge rather than on rules or empirical methods. The model therefore simulates
such an intuition about which sound changes are generally likely or unlikely on a
global scale. Furthermore, the model is able to process any IPA symbol, since it
operates on phonological feature representations. Current methods in computa-
tional historical linguistics can only process sounds that have been learned, limiting
them to an alphabet of a fixed size. Representing individual sounds in terms of
their phonological features bears great potential to overcome this limitation and
build robust models that are able to process arbitrary IPA strings.

To showcase the potential of this model, ancestral state reconstructions were per-
formed for Proto-Austronesian and Proto-Oceanic, based on ABVD, a dataset that
contains lexical data from many modern Austronesian languages. Two techniques
that were informed by the neural model were used for this task, namely Weighted
Maximum Parsimony and Naive Bottom-Up Reconstruction. The latter technique,
however, was severely limited by the fact that it could only optimize reconstruc-
tions locally for each node. It therefore came short even to the Unweighted Max-
imum Parsimony baseline model which had the advantage of globally optimizing
reconstructions over the whole tree. In order to counteract this major weakness,
Bottom-Up reconstructions could benefit from iterative processes that propagate
information along the tree in both directions, from bottom to top and from top to
bottom. This way, reconstructions at each node could factor in information from
all languages and not only from its immediate descendants.

The Weighted Maximum Parsimony reconstructions performed better and pro-
duced reasonably good reconstructions in many cases. While many reconstruc-
tions were identical to those predicted by the unweighted baseline, there were
some interesting cases where the weighted model could actually make use of the
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information obtained from the neural model, which lead to improved reconstruc-
tions. However, these efforts showed that it is a challenging task itself to deduct
reasonable substitution costs from the probabilities provided by the neural model,
and the method that was applied for this thesis is certainly not the optimal conver-
sion function. Weighted Maximum Parsimony reconstructions could benefit even
further from improved substitution costs in the future.

The workflow presented in this thesis can be immediately refined for future appli-
cations. When generating the training data, sound transitions were counted in an
unweighted fashion, disregarding the distance between a daughter and a parent
node. Such a distance could either represent the temporal depth of a branch or
its degree of innovation. Weighted transition counts with respect to these fac-
tors could emphasize interesting sound changes in the training data, resulting in
a model that is better suited to predict these changes.

The Estimation-Maximization component was designed to provide better training
data with a stronger signal for frequent sound changes as well, however, it showed
no substantial effect. The reason for this again lays within the conversion from
transition probabilities to substitution costs, the input format that is needed to
generate Weighted Maximum Parsimony Reconstructions. In Section [é_ll, I described
why it is necessary to employ non-linear transformations to produce sensible costs.
Such a transformation was not employed for generating good costs within the EM
iterations. The costs therefore all were very close to 0 (in case of identity) or 1,
which does not constitute a workable signal for Sankoft’s algorithm. Nearly all of
the potential that lies within the EM module was therefore missed. Future work
on this approach should address this problem and apply a better cost conversion
in order to explore the actual potential of EM within the workflow.

Since the model presented in this thesis is able to process any pair of sounds, it
makes it technically possible to reconstruct proto-sounds that can not be attested
in the descendant languages. However, the workflow presented in this thesis still
relies on a defined alphabet of target sounds, limiting the potential of a model
that can generalize over the space of all possible IPA symbols. Techniques that
can dynamically infer proto-sound inventories and/or propose sound laws could
synergize well with this generalized model of sound change.

Generally, techniques in computational historical linguistics, and especially for
ancestral state reconstruction mostly disregard the quasi-regular nature of sound
change, since probabilistic models tend to perform better than rule-based, sym-
bolic approaches. While probabilistic approaches are able to learn tendencies from
the data quantitatively, they lack the ability to express rules and strictly regular
patterns. Reconnecting to the concept of regularity of sound change could enhance
methods in computational historical linguistics, since it was the idea that crucially
enabled linguists to reconstruct proto-languages in the first place.
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Reconstructions

Tables of all automatic Proto-Austronesian and Proto-Oceanic reconstructions,
generated by Weighted Maximum Parsimony (WMP), Naive Bottom-Up Re-
constructions (BU), Maximum Parsimony (MP), and the model described in
Bouchard-Coté et al| (2013) (BC). For Proto-Oceanic, both expert reconstruc-
tions by Blust (B) and Pawley (P) are given as gold standard.

A.1 Proto-Austronesian

Cognate ID Gold Standard WMP BU MP BC
hand-1 *lima, *lima, *lima *lima *lima
left-1 *ka-wiri *kiri *kairi *kiri *kawiri
legfoot-1 *qaqay *kai *kakay *kay *qaqay
roadpath-1 *zalan *daan *dalan *daan *zalan
back-1 *likud *likus *likus *rikus *likud
breast-1 *susu *susu *susu *susu *susu
shoulder-1 *qabara *abaa, *qabana *abafa *qabara
b *hajaq *avaa *mavaka *avaza *mafana?
tofear-1 *ma-takut *atakut *matakut *mtakut *matakut
blood-1 *daraq *tara *tara *cara *daraq
head-1 *qulu *ulu *ulu *ulu *qulu
neck-1 *liger *1il *lig *ril *liger
mouth-2 *yusu *Husu *mgonou *pusu *puju
tooth-1 *nipen *nipen *nipun *nipen *nipen
tovomit-1 *utaq *muta *mutah *muta *utaq
toeat-1 *kaen *kan *kaman *kan *kman
tochew-2 *qelqel *mo]qe *lomoawqar *omorqoer *qmelgel
tocook-1 *tanek *talak *munomanuk *talak *tanek
tobite-1 *karat *kat *kamat *kat *karat
tosuck-1 *sepsep *sopsep *supsep *sopsep *sepsep
tosee-1 *kita *kita, *mkmita *kita *kita,
tosleep-1 *tudur *maturu | *maturu *matur *tudur

Continued on next page
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Proto-Austronesian — continued from previous page

Cognate ID Gold Standard WMP BU MP BC
tostand-1 *diri *miri *mairi *miri *diri
womanfemale-1 | *bahi *babin *babaian *babin *vavaian
mother-1 *t-ina *ina *ina *ina *tina
father-1 *t-ama *tama *ama *tama *tama
house-1 *rRumaq *umaq *lumaq *umaq *rumaq
name-1 *pajan *naan *nanan *payan *pajan
needle-1 *zarum *daum *daum *daum *zarum
toshoot-1 *panaq *pana *panah *pana *panaq
tohit-1 *palu *palu *palu *palu *palu
tolivebealive-1 *ma-qudip *murip *maurip *murip *maqudip
toscratch-1 *karaw *kakao *akakao *kakao *karaw
tocuthack-1 *taraq *taca *taxa *taca *taraq
tocuthack-3 *tektek *tatak *tatak *tatak *tektek
towork-1 *qumah *muma *maumah *mumah *quma,
toplant-1 *mula *mama *mamamamoah | *mawa? *mula
tochoose-1 *piliq *pili *pili *pili *piliq
toswell-1 *bareq *baa *bnana *baga *bareq
toswell-26 *ribawa *mlibawa | *malibawa *mlibawa? | *abeh
tosqueeze-1 *pereq *peqa *pomah *peqa *pereq
tohold-1 *gemgem *gumkem | *komkom *gumkem | *gemgem
todig-1 *kalih *kali *kali *kali *kali
tobuy-1 *beli *beli *vani *bali *beli
tobuy-23 *baliw *baliv *mabaliw *baliu *taiw
topoundbeat-20 | *tutuh *tutu *nutu *tutu *tutu
dog-1 *wasu *asu *masu *asu *vatu
bird-2 *qayam *ayam *awam *ayam *qayam
tofly-2 *layap *mayap *mayap *mayap *layap
rat-1 *labaw *kulabaw | *kulabaw *kulabaw | *kulavaw
meatflesh-31 *isi *isi *isi *isi *isi
tail-1 *ikur *iku *iku *iku *ikur
rotten-1 *ma-buraq *buruk *buruk *baruk *maburuq
leaf-2 *biraq *bia *biafi *bia, *bela
fruit-1 *buaq *bua *bua *bua *buaq
stone-1 *batu *batu *batu *batu *batu
sand-1 *genay *onay *onay *onay *qenay
toflow-1 *qalur *malir *muyalir *mualir *qalur
salt-1 *qasira *sia, *sila, *sira, *qasira
salt-2 *timus *timu *timuh *timu *timus
lake-1 *danaw *danaw *djanaw *danaw *danaw
star-1 *bitugen *bituan *bitugan *bituan *bitugen
thunder-3 *derur *soruy) *zoruy *sorun) *derun
wind-2 *bali *bari *bali *bari *beliu
smoke-1 *qebel *Pabal *kobal *Pobar *qebel
ash-1 *gabu *abu *gabu *abu *qgabu
green-1 *mataq *mataa *maataha *matacha | *mataq
small-2 *kedi *kadi *kati *kati *kedi
big-1 *ma-raya *maya *mawa, *Raya *maRraya
long-1 *inaduq *naruq *inaruq *naruq *anaduq
wide-1 *ma-lawas *lawa, *malawa, *lawa *malaber
new-1 *ma-bageru *bau *bahu *baru *vaquan
night-1 *berni *beni *beni *beni *beryi
day-1 *qalejaw *adaw *kalaw *adaw *qalejaw
when-1 *jja-n *aida *kaiza *pijan
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Cognate ID Gold Standard WMP BU MP BC
at-1 *i *i *i *i *i
at-20 *di *di *di *di *id
ininside-1 *i-dalem *lalum *lalom *dalam *idalem
this-1 *i-ni *ini *mini *ini *ani
where-1 *i-nu *inu *hinu *inu *ainu
i-1 *i-aku *aku *kaku *aku *iaku
heshe-1 *si-ia, *sia *saia, *sia *siia
we-1 *i-kita *ita *ita *kita *kita
we-2 *kami *kami *kami *kami *kami
you-1 *i-kamu *kamu *mamu *kamu *kamu
what-2 *n-anu *nanu *nanuh *nanu *anu
who-2 *si-ima *tima *tima, *tima *tima,
other-1 *duma *ruma *zuma *ruma *duma
all-1 *amin *mamin *mamin *gamin *amin
and-1 *ka *ka *ka *ka *ka
and-2 *mah *ma *ma *ma *ma
if-1 *ka *ka *ka *ka *ka
if-2 *nu *nu *nu *nu *nu
how-1 *kuja *akua *makua *kakua *kua
nonot-3 *ini *ini *ini *ini *ini
one-1 *isa *sa *isa *sa *isa
three-1 *telu *turu *tolu *turu *telu
five-1 *lima, *lima, *lima, *lima, *lima

A.2 Proto-Oceanic

Cognate ID | Gold (B) | Gold (P) | WMP BU MP BC
hand-1 *lima *lima *lima *lima *lima *lima
left-1 *mawiri *mawiri *mail *mauoni *mail *mawii
legfoot-1 *waqe *waqe *kae *kae *kae *waqe
towalk-2 *pano *pano *van *ahanoa *van *vano
dust-1 *qapuk *qapuk *afu *kahu *afu *avu
skin-1 *kulit *kulit *kuli *kunina *kuli *kulit
liver-1 *qate *qate *ate *katena *ate *qate
breast-1 *susu *susu *susu *susu *susu *susu
shoulder-1 *paRra *qapara *avala *kabaha *avala *vara
tofear-1 *matakut *matakut *matau *mataku *matau *matakut
head-1 *qulu *qulu *ulu *ulun *ulu *qulu
neck-18 *rRuqga *ruqa *ua *wuna *ua *ua
nose-1 *isur *{juny *isu *phun *isu *isu
tobreathe-1 *manawa, *manawa *manawa | *manawa *manawa | *manawa
tovomit-1 *mumutaq *mumuta *muta *momumua | *muta *muta
tovomit-8 *luaq *luaq *lua, *lua, *lua *lua
tospit-14 *qanusi *qanusi *anusu *kamusu *anusu *anusu
toeat-1 *kani *kani *an *kaani *an *kani
tochew-1 *mamaq *mamaq *mama *mama *mama *mama
tocook-9 *tunu *tunu *tunu *tunu *tunu *tunu
todrink-1 *inum *inum *inu *munum *inu *inum
tobite-1 *karat *karati *kat *kaai *kat *karat
tohear-1 *ronor *ronor *royo *logo *roro *roro
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Cognate ID | Gold (B) | Gold (P) | WMP BU MP BC
eye-1 *mata *mata *mata *mata *mata *mata
tosee-1 *kita *kita *ite *kite *ite *kita
toyawn-1 *mawap *mawap *mama *mamama *mama *mawa
toliedown-1 *qinop *geno *eno *weno *eno *eno
tosit-16 *nopo *nopo *nofo *noho *nofo *nofo
tostand-2 *tuqur *taqur *tu *tuuu *tu *tuqu

2 *taumataq *tamwata, *tamata | *tamaa *tamata | *tamata
manmale-1 *mwaruqane | *taumwaqane | *mane *mamamane | *mane *mwane
father-1 *tama *tamana *tama *taman *tama *tama
thatchroof-1 *qatop *qatop *ato *noto *ato *qato
name-1 *pajan *qajan *asa *akan *ara *qasa
rope-1 *tali *tali *tal *tali *tal *tali
needle-1 *sarum *sarum *saum *saum *saum *sau
toshoot-1 *panaq *pana *pan *pana *fan *pana
tostabpierce-8 | *soka *soka *soka *soaka *soka *soka,
tolivebealive-1 | *maqurip *maqurip *mauri *mauli *mauri *maquri
toscratch-44 *karu *kadru *karu *karui *karu *kadru
stickwood-1 *kayu *kayu *kai *kai *kai *kai
toplant-2 *tanum *tanom *tan *tano *tan *tanom
tochoose-1 *piliq *piliq *pili *hilii *pile *vili
togrow-1 *tubuq *tubuq *tupu *tobu *tupu *tubu
todig-1 *keli *keli *keli *keli *keli *keli
tobuy-1 *poli *poli *voli *boli *voli *voli
topoundbeat-2 | *tutuk *tuki *tuki *tuki *tuki *tutuk
bird-1 *manuk *manuk *manu *manu *manu *manu
egg-1 *qatolur *katolur *tolu *nakolun *tolu *tolu
feather-1 *pulu *pulu *fulu *mulnun *fulu *vulu
meatflesh-1 *pisiko *pisako *pikikon *kiko
snake-12 *mwata *mwata *mata *mawa, *mata *mwata
louse-1 *kutu *kutu *kutu *kuu *kut *kutu
mosquito-1 *namuk *namuk *namu *namo *namu *namu
fish-1 *ikan *ikan *ika *nika *ika, *ikan
leaf-1 *raun *rau *rau *louena *rau *dau
root-2 *wakara *wakar *waka *wokana *waka *waka
flower-1 *puna *puna *puna *puna *puna *vuna
fruit-1 *puaq *puaq *vua *huanana *ua, *vua
stone-1 *patu *patu *vatu *batu *vat *patu
water-2 *wair *wair *wai *wal *wai *wai
toflow-1 *tape *tape *tafe *tahe *tate *tave
sky-1 *lagit *lapit *lar *laani *lag *lapi
moon-1 *pulan *pulan *pula *bula *pula *vula
star-1 *pituqun *pituqon *pitu *bihuuu *pitu *vetuqu
fog-1 *kaput *kaput *kapu *kabu *kapu *kabu
rain-1 *qusan *qusan *usa *uwa *uha *usa
wind-1 *apin *matani *ani *mannen *ani *matani
warm-1 *mapanas *mapanas *mapana | *mahana *mafana | *mavana
dry-11 *maca *masa, *mamaa | *mamama *mamasa | *mamasa
heavy-1 *mamat *mapat *mata *mamama *mata *mamava
fire-1 *api *api *api *waihi *afi *avi
smoke-2 *qasu *qasu *asu *kahu *asu *qasu
thick-3 *matolu *matolu *matolu | *matolu *matolu | *matolu
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Proto-Oceanic — continued from previous page

Cognate ID | Gold (B) | Gold (P) | WMP BU MP BC
narrow-1 *kopit *kopit *kopiti *kopiui *kopiti *kapi
old-1 *matuqa *matuqa *matua *matua *matua *matuqa
badevil-1 *saqat *saqat *sa *maha *sa *saqa
night-1 *boni *bonyi *bory *boni *bor *borgi
year-1 *taqun *taqun *tau *tau *tau *taqu
when-1 *paican *paijan *naisa *nanisa *naisa *pisa
tohide-1 *puni *puni *muni *mmuni *muni *vuni
toclimb-2 *sake *sake *sak *make *sae *cake
this-1 *ne *ani *ni *anee *ni *eni
near-9 *tata *tata *tata *athata *tata *tata
far-1 *sauq *sauq *sau *mao *sau *sau
where-3 *pai *pea *ve *ahea *ve *vea
i-1 *au *au *au *nau *au *yau
thou-1 *ko *iko *o *iko *ko *kou
heshe-1 *ia *ia, *ia, *nina *ia *ia
we-2 *kamami *kami *ami *mami *ami *kami
they-1 *ira *ira *ira *kila *ira, *sira
what-1 *sapa *saa, *aa *aha *aha *sava,
how-1 *kua *kuya *eyua *nekua *eyua *kua
one-1 *sakai *tasa *sa, *esaa, *sa, *sa
two-1 *rua *rua *rua *rua *rua *rua
three-1 *tolu *tolu *tolu *tolu *tolu *tolu
four-1 *pani *pat *vat *hasa *vat *vati
five-1 *lima *lima, *lima, *lima, *lima *lima

81




	Introduction
	Phonological Reconstruction
	The Comparative Method
	Procedure
	On regularity of sound change
	Limitations

	Sound change
	How sounds change
	Phonemic and phonetic change
	Guidelines for reconstructing proto-sounds

	The abstractionist-realist debate

	Computational Approaches
	Computer-Assisted Language Comparison
	Proof of relatedness
	Detection of cognates and sound correspondences
	Phonological reconstruction and sound law inference
	Open problems

	EtInEn
	Attempts at innovation

	Methodology
	Preparing training data
	Source datasets
	Estimating sound transitions

	Training the model
	Phonological feature representations
	From transition counts to training data
	Model architecture

	Post-Processing
	Integration to EtInEn
	Bias tuning for boundary cases


	Evaluation
	Evaluation dataset
	Evaluation metrics
	Baseline models

	Results and Discussion
	Proto-Austronesian
	Proto-Oceanic

	Summary and Outlook
	Bibliography
	Reconstructions
	Proto-Austronesian
	Proto-Oceanic


