
Deep Sensor Data Fusion for

Environmental Perception of

Automated Systems

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Fabian Duffhauß

aus Kempen

Tübingen

2023



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 19.02.2024
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Gerhard Neumann
2. Berichterstatter: Prof. Dr. Martin Butz



Abstract

Automated systems require a comprehensive understanding of their surroundings to safely
interact with the environment. By effectively fusing sensory information from multiple
sensors or from different points in time, the accuracy and reliability of environmental
perception tasks can be enhanced significantly. Besides, learning multiple environmental
perception tasks simultaneously can further improve the performance of these tasks due
to synergy effects while reducing memory requirements. However, developing deep
data fusion networks targeting multiple tasks concurrently is very challenging, leaving
substantial room for research and further advancements.

The primary objective of this dissertation is to advance the development of novel data
fusion techniques for enhancing the environmental perception of automated systems. It
contains a comprehensive investigation of deep learning-based data fusion techniques
including extensive experimentation with a focus on the domains of automated driving
and industrial robotics. Furthermore, this thesis explores multi-task learning approaches
for exploiting synergy effects, reducing computational effort, and lowering memory
requirements.

Firstly, this dissertation investigates the encoding and fusion of 3D point clouds for
LiDAR-based environmental perception of automated vehicles. In particular, we study
novel approaches for simultaneous 3D object detection and scene flow estimation in
dynamic scenarios. Our research efforts have yielded a novel deep multi-task learning
approach that outperforms previous methods in terms of accuracy and runtime, establishing
it as the first real-time solution for this task combination.

Secondly, this dissertation involves research about novel fusion strategies specifically
designed to handle multi-modal input data within the field of industrial robotics. In
the course of this research, we have developed two novel RGB-D data fusion networks
for multi-view 6D object pose estimation. Furthermore, we examine the ambiguity
issues associated with object symmetries and propose a novel symmetry-aware training
procedure to effectively handle these issues. To comprehensively assess the performance
of our proposed methods, we conduct rigorous experiments on challenging real-world and
self-generated photorealistic synthetic datasets, revealing significant improvements over
previous methods. Moreover, we demonstrate the robustness of our approaches towards
imprecise camera calibration and variable camera setups.

Finally, this dissertation explores novel fusion methodologies to integrate multiple
imperfect visual data streams, taking into account uncertainty and prior knowledge
associated with the data. In the context of this exploration, we have devised a novel deep

iii



Abstract

hierarchical variational autoencoder that can be utilized as a fundamental framework for
various fusion tasks. In addition to leveraging prior knowledge acquired during training,
our method can generate diverse high-quality image samples, which are conditioned on
multiple input images, even in the presence of strong occlusions, noise, or partial visibility.
Furthermore, we have conducted extensive experiments demonstrating a substantial
superiority of our method in comparison to conventional approaches.

iv



Kurzfassung

Automatisierte Systeme benötigen ein umfangreiches Verständnis ihrer Umgebung, um
sicher mit ihr interagieren zu können. Durch die effektive Fusion von sensorischen Informa-
tionen von mehreren Sensoren oder von verschiedenen Zeitpunkten kann die Genauigkeit
und Zuverlässigkeit von Aufgaben zur Umgebungserfassung erheblich verbessert werden.
Außerdem kann das gleichzeitige Erlernen mehrerer Umgebungserfassungsaufgaben die
Leistung dieser Aufgaben aufgrund von Synergieeffekten weiter verbessern und gleichzei-
tig den Speicherbedarf verringern. Die Entwicklung von tiefen Datenfusionsnetzwerken,
welche mehrere Aufgaben gleichzeitig erfüllen, ist jedoch eine große Herausforderung,
die noch viel Raum für Forschung und weitere Fortschritte lässt.

Das Hauptziel dieser Dissertation ist es, die Entwicklung neuartiger Datenfusions-
techniken zur Verbesserung der Umgebungserfassung von automatisierten Systemen
voranzutreiben. Sie enthält eine umfassende Untersuchung von Deep-Learning-basierten
Datenfusionstechniken einschließlich umfangreicher Experimente mit einem Fokus auf
die Bereiche automatisiertes Fahren und Industrierobotik. Darüber hinaus werden in dieser
Arbeit Multi-Task-Learning-Ansätze zur Nutzung von Synergieeffekten, zur Reduzierung
des Rechenaufwands und zur Verringerung des Speicherbedarfs untersucht.

In dieser Dissertation wird zunächst die Kodierung und Fusion von 3D-Punktwolken
für die LiDAR-basierte Umgebungserfassung von automatisierten Fahrzeugen erforscht.
Insbesondere werden neuartige Ansätze für die gleichzeitige 3D-Objekterkennung und
die Schätzung des Szenenflusses in dynamischen Szenarien untersucht. Daraus resul-
tiert ein neuartiger Deep-Multitask-Learning-Ansatz, der bisherige Methoden in Bezug
auf Genauigkeit und Laufzeit übertrifft und damit die erste Echtzeitlösung für diese
Aufgabenkombination darstellt.

Der zweite Teil dieser Dissertation thematisiert die Erforschung neuartiger Fusionsstra-
tegien für die Verarbeitung multimodaler Eingabedaten im Bereich der Industrierobotik.
Im Zuge dieser Forschung wurden zwei neuartige RGB-D-Datenfusionsnetzwerke für
die 6D-Objektposenschätzung auf Basis von mehreren Kameraperspektiven entwickelt.
Darüber hinaus wurden Mehrdeutigkeitsprobleme im Zusammenhang mit Objektsymme-
trien untersucht und ein neuartiges Symmetrie-berücksichtigendes Trainingsverfahren
konzipiert, welches diese Mehrdeutigkeitsprobleme effektiv reduziert. Zur Evaluierung der
präsentierten Methoden wurden umfangreiche Experimente mit herausfordernden realen
und selbst generierten fotorealistischen synthetischen Datensätzen durchgeführt, welche
eine signifikante Verbesserung gegenüber früheren Methoden zeigen. Darüber hinaus wird

v



Kurzfassung

die Robustheit der entwickelten Ansätze gegenüber ungenauer Kamerakalibrierung und
variablen Anordnungen der Kameras demonstriert.

Im dritten Teil dieser Dissertation werden neuartige Methoden zur Fusion mehrerer
fehlerbehafteter visueller Datenströme unter Berücksichtigung von Unsicherheiten und
Vorwissen über die Daten erforscht. Im Rahmen dieser Untersuchung wurde ein neuartiger
tiefer hierarchischer Variational Autoencoder konzipiert, der als Grundlage für verschiedene
Fusionsaufgaben genutzt werden kann. Die entwickelte Methode nutzt das beim Training
erworbene Vorwissen und kann verschiedene qualitativ hochwertige Bilder generieren,
welche auf mehreren Eingabebildern beruhen, selbst wenn diese starke Verdeckungen
aufweisen, verrauscht sind oder nur teilweise sichtbar sind. Darüber hinaus wurden
umfangreiche Experimente durchgeführt, die eine deutliche Überlegenheit der entwickelten
Methode im Vergleich zu herkömmlichen Ansätzen belegen.

vi



Acknowledgments

This dissertation has emerged from my doctoral study at the University of Tübingen, my
research at the Bosch Center for Artificial Intelligence (BCAI) in Tübingen and Renningen,
as well as the collaboration with the Chair for Autonomous Learning Robots (ALR) at
the Karlsruhe Institute of Technology (KIT). Many wonderful people from all three
institutions supported me during this time.

First and foremost, I would like to express my deepest gratitude towards my doctoral
advisor, Prof. Dr. Gerhard Neumann, head of the ALR and formerly honorary professor
at the University of Tübingen. I thank him for the countless meetings we have had to
discuss my research, to develop novel ideas, and for giving me valuable advice.

I would also like to thank Prof. Dr. Martin Butz, head of the Neuro-Cognitive Modeling
Group at the University of Tübingen, for his interest in my research and for serving as the
second examiner of my thesis.

Furthermore, I would like to thank Dr. Ngo Ahn Vien and Dr. Hanna Ziesche, who are
Research Scientists at the BCAI and my supervisors from the company side. I sincerely
appreciate their dedication to my research, their guidance, and the fruitful discussions we
have had over the last few years.

I am also grateful to Stefan Baur, doctoral student at the environment perception research
division of the Mercedes-Benz AG, for the great collaboration in the context of my first
publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) 2020.

In addition, I would like to thank all the students I supervised during my doctoral study.
This includes the former master students Lennard Bodden, Lukas Krauch, and Sebastian
Koch from the University of Tübingen, Tobias Demmler from the University of Freiburg,
and the former bachelor student Jens Beißwenger from the KIT. I am very thankful for
the productive conversations and the synergistic collaboration.

Moreover, I would like to thank all the doctoral students and colleagues from my
research group at the BCAI and from the ALR for many enriching discussions and the
valuable exchange of ideas.

vii





Contents

Abstract iii

Kurzfassung v

Acknowledgments vii

1 Introduction 1

1.1 Deep Point Cloud Fusion and Multi-task Learning for Automated Driving
Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Multi-View RGB-D Fusion for 6D Pose Estimation . . . . . . . . . . . 6
1.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Environmental Perception and Sensors . . . . . . . . . . . . . . . . . . 11
2.2 Image Processing for Perception . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 16
2.2.2 Residual Neural Networks . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Attention-Based Networks . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Transformer-based Networks . . . . . . . . . . . . . . . . . . . 19

2.3 Point Cloud Processing for Perception . . . . . . . . . . . . . . . . . . 22
2.3.1 Projection-based Methods . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Volumetric-based Methods . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Point-based Methods . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Fusion Architectures . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Fusion Operations . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . 34
2.5.3 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Computer Vision Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



Contents

2.6.3 2D Object Detection . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.4 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.5 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 41
2.6.6 Instance/Panoptic Segmentation . . . . . . . . . . . . . . . . . 41
2.6.7 6D Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.8 Optical Flow Estimation . . . . . . . . . . . . . . . . . . . . . 46
2.6.9 Scene Flow Estimation . . . . . . . . . . . . . . . . . . . . . . 47
2.6.10 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.11 Image Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Deep Temporal Point Cloud Fusion and Multi-task Learning for Auto-

mated Driving Perception 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 LiDAR-based Scene Flow Estimation . . . . . . . . . . . . . . 54
3.2.2 LiDAR-based 3D Object Detection . . . . . . . . . . . . . . . 55
3.2.3 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 PillarFlowNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Feature Encoding Network . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Backbone Network . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Output Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Network Details . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Data Augmentation and Preprocessing . . . . . . . . . . . . . . 62
3.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.4 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.1 Multi-Task Performance . . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Single-task Performance . . . . . . . . . . . . . . . . . . . . . 66
3.6.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Multi-View RGB-D Fusion for 6D Pose Estimation 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Single-View 6D Pose Estimation . . . . . . . . . . . . . . . . . 72
4.2.2 Multi-View 6D Pose Estimation . . . . . . . . . . . . . . . . . 74
4.2.3 Symmetry-aware 6D Pose Estimation . . . . . . . . . . . . . . 74

4.3 6D Pose Estimation Problem Definition . . . . . . . . . . . . . . . . . 75

x



Contents

4.4 Dense Multi-View Fusion Method . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Multi-view Fusion Architecture . . . . . . . . . . . . . . . . . 76
4.4.2 Modules for Segmentation and Keypoint Detection . . . . . . . 77
4.4.3 Multi-Task Objective Function . . . . . . . . . . . . . . . . . . 78

4.5 Symmetry-aware Multi-View Fusion Method . . . . . . . . . . . . . . 78
4.5.1 Network Overview . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Multi-View Feature Extraction . . . . . . . . . . . . . . . . . . 79
4.5.3 Multi-View Feature Fusion . . . . . . . . . . . . . . . . . . . . 81
4.5.4 3D Keypoint Detection and Segmentation . . . . . . . . . . . . 81
4.5.5 6D Pose Computation via Least-Squares Fitting . . . . . . . . . 83
4.5.6 Symmetry-aware Keypoint Detection . . . . . . . . . . . . . . 83
4.5.7 Multi-Task Objective Function . . . . . . . . . . . . . . . . . . 84

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6.3 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8.1 Results on the YCB-Video Dataset . . . . . . . . . . . . . . . . 91
4.8.2 Results on the MV-YCB FixCam Dataset . . . . . . . . . . . . 94
4.8.3 Results on the MV-YCB WiggleCam Dataset . . . . . . . . . . 94
4.8.4 Results on the MV-YCB SymMovCam Dataset . . . . . . . . . 95
4.8.5 Keypoint Visualization . . . . . . . . . . . . . . . . . . . . . . 98

4.9 Runtime for MV6D and SyMFM6D . . . . . . . . . . . . . . . . . . . 99
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 VAE-based Image Generation . . . . . . . . . . . . . . . . . . 103
5.2.2 Fusion of Multiple Images . . . . . . . . . . . . . . . . . . . . 103
5.2.3 Image Completion . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Conditional Generative Models for Image Fusion . . . . . . . . . . . . 104
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Training Objective Derivation . . . . . . . . . . . . . . . . . . 105
5.3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.3 Architectures for Comparison . . . . . . . . . . . . . . . . . . 108

xi



Contents

5.4.4 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.5 Implementation Details of FusionVAE . . . . . . . . . . . . . . 109
5.4.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Conclusion and Future Work 119

6.1 Deep Temporal Point Cloud Fusion and Multi-task Learning for Automated
Driving Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Multi-View RGB-D Fusion for 6D Pose Estimation . . . . . . . . . . . 121
6.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion . . 124

A Supplementary for Chapter 3 127

A.1 Analysis of the KITTI Object Tracking Dataset . . . . . . . . . . . . . 127

B Supplementary for Chapter 4 129

B.1 Network Parameters of MV6D . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Network Parameters of SyMFM6D . . . . . . . . . . . . . . . . . . . . 129
B.3 Qualitative Results on the FixCam and WiggleCam Datasets . . . . . . 131
B.4 Quantitative Results on the MV-YCB MovingCam Dataset . . . . . . . 134
B.5 Qualitative Results on the MV-YCB MovingCam Dataset . . . . . . . . 135

C Supplementary for Chapter 5 137

C.1 Statistic Significance of the Results . . . . . . . . . . . . . . . . . . . . 137
C.2 Image Reconstruction Capability . . . . . . . . . . . . . . . . . . . . . 139

Abbreviations 141

List of Tables 143

List of Figures 145

Publications 147

Bibliography 149

xii



Chapter 1

Introduction

Automated systems, such as robots, drones, and autonomous vehicles, are rapidly advancing
and transforming various sectors, including manufacturing [Rib+21; AG22], transportation
[Yur+20; Gup+21], agriculture [OMS21], and healthcare [AMS20; Kyr+21]. Recent
technological progress enabled these systems to perform a variety of complex tasks,
thus enhancing efficiency, safety, productivity, and reliability [AG22; Mor+20; AMS20;
OMS21]. For example, in manufacturing, automated assembly lines and robotic arms
are used to streamline production processes, increasing efficiency and precision while
reducing costs. Another example is the road traffic where advanced driving assistance
systems such as automatic emergency brake systems, lane-keeping assistants, and blind
spot detection systems protect from human mistakes and increase safety [Zie+17].

However, further progress towards more advanced automated systems is limited by
the ability to accurately perceive the environment in complex or dynamic scenarios. For
example, to enable fully autonomous driving on public roads, automated vehicles are
required to detect road users, lane markings, traffic signs, and potential obstacles robustly
in real-time, even under adverse weather and lighting conditions, such as rain, snow,
fog, darkness, and glare. Also in industry, the environmental perception becomes more
challenging as the demand for flexible robotic solutions rises. For instance, there are
applications in which robots need to reliably detect and grasp a variety of different objects
with texture-less or highly reflective surfaces, even in very complex environments with
heavy occlusions [Yan+21; AG22].

To enable the environmental perception according to all demands, modern automated
systems make use of sensor data fusion techniques which can significantly improve the
accuracy and reliability of the environmental perception [Sah+20; OB23]. Automated
vehicles, for instance, leverage a multitude of different sensors, such as cameras, LiDAR
sensors, radar sensors, and ultrasonic sensors, to combine the individual advantages
of each sensor [Fay+20a]. Robotic manipulation systems, in contrast, rely more on
cameras and depth sensors as well as interactive perception methods [KNK21; Cor+22].
Furthermore, data can be fused over time to enable the understanding of dynamics in
a scene or fused over space by collecting data with a single sensor at multiple poses.
Independently of what kind of sensory data is fused, there is a trend to use deep learning
approaches for perception tasks like object detection, segmentation, and pose estimation

1



Chapter 1 Introduction

[Zou+23; Zha+21a]. However, despite considerable research efforts, there are still many
open research questions to make fusion more data-efficient, more generalizable, and more
reliable [Cui+21; OB23]. This motivates the research within this dissertation.

Another trend in deep learning and environmental perception is the utilization of multi-
task learning, which aims to learn multiple related tasks jointly in order to improve the
generalization performance, to reduce the required computational resources, and to increase
the inference speed in comparison to executing multiple independent models [ZY21;
Van+21]. For instance, Xu et al. [Xu+18] showed that training semantic segmentation
together with depth estimation leads to higher accuracy of both tasks in comparison to
individual training processes. Another example is the combination of classification and
bounding box regression for object detection [Gir15]. However, designing an accurate and
efficient multi-task learning system for environmental perception is still challenging as it
requires a careful design and optimization of the system’s architecture [Van+21]. The
research for this dissertation addresses these challenges in order to explore and exploit the
potential benefits of multi-task learning among other techniques.

One main aim of this dissertation is to develop novel deep sensor data fusion techniques
for enhancing the environmental perception of automated systems. It includes an extensive
investigation of sensor data fusion techniques based on deep learning in two major
application domains, namely automated driving and industrial robotics. Figure 1.1
provides two example scenes illustrating typical scenarios in both domains. In addition to

(a) Example scene in automated driving with
many different road users moving at various
velocities. This open-world domain is character-
ized by huge diversity of objects, environmental
variability due to changes in lighting and weather,
and strong occlusions between objects.

(b) Example scene in industrial robotics. Scenes
in industrial robotics can contain many different
objects of various shapes and textures, whereas
objects can severely occlude each other. Image
adapted from [Son22].

Figure 1.1: Application domains related to environmental perception of automated systems.
Both, the automotive domain (a) and the industrial robotics domain (b) can pose massive
challenges to perception systems including heavy object occlusion and diversity.

2



1.1 Deep Point Cloud Fusion and Multi-task Learning for Automated Driving Perception

many domain-specific challenges, both automated driving and robotics can involve very
difficult scenes with many objects required to be detected. Noisy sensor data, occlusions,
and various lighting conditions among other challenges need to be overcome.

Furthermore, this dissertation presents multiple fusion approaches, which are evaluated
on different computer vision tasks, such as 3D object detection, scene flow estimation, 6D
object pose estimation, and image generation with noise and occlusion removal. Table 1.1
provides an overview of the three main chapters of this dissertation including the addressed
data modalities, fusion types, and application domains. Table 1.2 extends the previous
overview with details about the fusion type, application tasks, and challenges which are
addressed in the respective chapters. The following three sections introduce the topics of
each of these chapters and elaborate on the challenges.

Chapter RGB data Range data Fusion type Domain

3 X Temporal fusion Automotive
4 X X Spatial fusion Robotics
5 X Generative fusion Miscellaneous

Table 1.1: Overview of data modalities, fusion types, and domains addressed in the three
main chapters of this dissertation. In chapter 3, range data in form of LiDAR point clouds
is used, whereas depth data from an RGB-D camera is considered in chapter 4. Chapter 3
addresses RGB data fusion on multiple datasets related to miscellaneous domains.

1.1 Deep Point Cloud Fusion and Multi-task Learning

for Automated Driving Perception

Chapter 3 of this dissertation deals with the environmental understanding of automated
vehicles in the dynamic world. Figure 1.1a shows an example scene in this domain, where
many different road users, including cars, pedestrians, cyclists, trucks and trams, can move
in different directions with a broad range of velocities. Road users in the back can be fully
or partly occluded by road users in the front. Further challenges are changing lighting and
weather conditions that can significantly alter the visual appearance of all objects.

In order to operate safely on public roads, automated vehicles require precise knowledge
about other road users in their surroundings as well as their respective motions. The
fulfillment of this requirement can be achieved by combining 3D object detection with
scene flow estimation. 3D object detection involves the prediction and classification of
oriented 3D bounding boxes for all objects in a given scene. Scene flow can be defined as
a three-dimensional vector field that characterizes the motion at every point within a given
scene [Ved+99].

3



Chapter 1 Introduction

Chapter Fusion type Application tasks Challenges

3 Multiple LiDAR
point clouds over

time

Scene flow
estimation and 3D
object detection
(including 3D
bounding box

classification and
regression)

• Learning scene flow from sparse point cloud data
without point-to-point correspondences
• Efficient processing and fusion of large LiDAR point
clouds
• Learning multiple tasks simultaneously in an end-
to-end fashion
• Consideration of task-specific uncertainties
• Achieving real-time capability
• Coping with limited real-world datasets containing
a small number of different sequences
• Performing 3D object detection based on sparse
annotations
• Mastering imbalance between static and dynamic
scene flow vectors

4 RGB and depth
data from
multiple

perspectives

6D pose estimation
(including
semantic

segmentation and
3D keypoint
detection)

• Effective fusion of visual and geometric information
obtained from RGB and depth data
• Processing an arbitrary number of RGB-D images
efficiently
• Achieving robustness towards inaccurate camera
calibration and diverse camera setups
• Estimating 6D object poses in very cluttered scenes
with many occlusions
• Considering ambiguities due to object symmetries
• Learning multiple tasks simultaneously in an end-
to-end fashion
• Coping with limited real-world datasets containing
a small number of different scenes
• Generation of photorealistic RGB-D data with do-
main randomization to overcome domain gaps

5 Multiple RGB
images with
uncertainty

Image generation
(including

inpainting, noise
suppression, and

occlusion removal)

• Effective fusion of an arbitrary number of images
• Learning comprehensive prior distributions of
datasets
• Consider uncertainty in the input data
• Deriving an evidence lower bound for the condi-
tional log-likelihood of a fusion-enabling hierarchical
variational autoencoder
• Overcome convergence issues in large hierarchical
variational autoencoders
• Creating generative fusion tasks for evaluating the
proposed approaches

Table 1.2: Overview of fusion types, application tasks, and challenges addressed in the
three main chapters of this dissertation.

4



1.1 Deep Point Cloud Fusion and Multi-task Learning for Automated Driving Perception

Both tasks are associated with individual and shared challenges. 3D object detection
requires precise measurements of the positions, extends, and orientations of road users
while scene flow estimation requires comprehensive knowledge about changes of geometry
in 3D space. This becomes increasingly difficult the further away a road user is and the
more it is occluded by other objects. We have decided to conduct research on these tasks
using LiDAR sensor data because LiDAR sensors possess a precise distance measurement
capability. Fusing consecutive LiDAR point clouds enables also the prediction of motions
and velocities in the scene.

Previous LiDAR-based 3D object detectors and scene flow estimators, however, do
not achieve the desired accuracy and robustness required for safe automated driving
[Wan+18a; LQG19; Lan+19; Beh+19b]. Furthermore, estimating scene flow vectors
on consecutively acquired LiDAR point clouds is a challenging task in general as the
point clouds do not have point-to-point correspondences. Thus, we focus on end-to-end
deep learning solutions for this task that aim to learn motion from changes in geometry.
Besides, we try to combine 3D object detection and scene flow estimation into a single
deep learning model in order to exploit synergy effects while reducing the computational
effort in comparison to two single-task networks.

Depending on the employed LiDAR sensor and the scene, the acquired LiDAR point
clouds can encompass huge data volumes. For example, the popular automated driving
dataset KITTI [GLU12; Gei+13] contains point clouds with an average size of 1.9 MB
including around 120,000 measurement points. Processing such a large amount of data
efficiently is challenging. Previous methods often reduce the data quantity, e.g. by
projecting points to 2D [Che+17c; Ku+18; Bel+18; YLU18], voxelization [MS15; ZT18],
or discarding points by sampling [Qi+17a; Qi+17b; Hu+20]. However, it remains a
challenge to find a good trade-off between efficiency and data loss. Furthermore, we have
to cope with an increasing sparsity of the point density with increasing distance.

Deep learning methods require a substantial amount of labeled data in order to generalize
well to diverse scenarios. However, acquiring and labeling data is time-consuming and
expensive. Thus, we have to find solutions based on the limited amount of annotated data
in public datasets. Furthermore, automotive datasets often contain long driving sequences
whereas major parts of the frames show static backgrounds, and only small parts contain
dynamic objects. The resulting data sparsity and class imbalances pose major issues in
3D object detection and scene flow estimation.

Chapter 3 presents our research endeavors addressing the previously stated challenges.
We have explored ways to efficiently encode and fuse multiple LiDAR point clouds in order
to perform 3D object detection and scene flow estimation simultaneously. In this context,
we have developed a novel deep multi-task learning approach, called PillarFlowNet, which
solves these tasks precisely. We have optimized the point cloud processing and feature
encoding so that our network is the first one for this set of tasks that is real-time capable
with an inference time of 87.6 ms. Furthermore, we have conducted extensive experiments

5



Chapter 1 Introduction

to examine synergy effects and demonstrated the outperformance of our approach in terms
of accuracy in both tasks compared to the state-of-the-art.

1.2 Multi-View RGB-D Fusion for 6D Pose Estimation

Chapter 4 explores fusion approaches for multi-modal input data with the goal of robustly
estimating the 6D poses of objects within a cluttered scene. 6D pose estimation describes
the task of jointly predicting the 3D position and the 3D orientation of objects relative to a
reference coordinate system. It is an essential tool for environmental perception and widely
used in robotics [CMS11; Cor+22; Xia+22], automated driving [Qi+18; Ku+18; Gu+21],
augmented reality [MUS15; Su+19], human machine interaction [Pav+17; ML20], and
several other fields.

We focus on 6D object pose estimation on very cluttered scenes in the robotics domain
as illustrated in figure 1.1b. This is challenging as objects occlude each other so that a
specific object to be grasped by a robot might not be visible from a single perspective. For
this reason, we consider combining information from multiple perspectives.

There are just a few previous approaches [Zen+17; LBH18; Lab+20] that target the
problem of multi-view 6D pose estimation. However, all of these works built their final
prediction based on multiple single-view predictions which suffer from high computational
cost due to redundancy and hypothesis matching errors. To the best of our knowledge, we
are the first to present a deep multi-view fusion approach for this task.

Objects can be manifold in terms of visual appearance and geometric shape. On the one
hand, there are objects with identical shapes that can be distinguished only by their texture.
This inevitably requires visual information, for example, acquired by RGB cameras. On
the other hand, there are texture-less objects whereas the geometry provides the most
relevant information. Therefore, we consider fusing both RGB and depth data to combine
the individual benefits of each modality. Related literature [Wan+21b; Fen+21; Zhu+22]
provides a variety of concepts to fuse different modalities whereas the performance of
each concept is highly dependent on the task, the input modalities, and the data. Thus, it
is an open research question to conceive a suitable architecture for the fusion of RGB and
depth data from multiple perspectives.

Most previous 6D pose estimation methods including [Wan+19; He+20; He+21] do not
explicitly consider object symmetries. As symmetric objects have multiple orientations
resulting in the same visual appearance and the same geometry, there are multiple correct
6D poses. These ambiguities often result in bad predictions for symmetric objects.
Therefore, we conduct research on approaches for overcoming this issue.

Similar to the automotive domain, available data with annotations is limited in robotics.
Furthermore, there are no large-scale real-world datasets for multi-view 6D object pose
estimation. Thus, we aim to get along with annotated video datasets that provide multiple

6



1.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

perspectives of static scenes over time. This is challenging as only a few different sequences
are available showcasing just as few scenes.

Our research has resulted in two novel deep learning approaches for multi-view RGB-D
image fusion for 6D object pose estimation. To overcome ambiguity issues due to object
symmetries, we propose a novel symmetry-aware training procedure including a novel
objective function. For exhaustively evaluating the performance of our proposed methods,
we consider challenging real-world datasets and generate several photorealistic synthetic
datasets. Our comprehensive experiments indicate vast improvements compared to the
state-of-the-art in single-view and multi-view 6D object pose estimation. Moreover, we
demonstrate the robustness of our approaches towards dynamic camera arrangements and
inaccurate camera calibration.

1.3 Deep Hierarchical Variational Autoencoding for

RGB Image Fusion

A major motivation for fusing input data from multiple sources is to gather more
information in total compared to single-modal approaches. However, for most applications,
the reliability of each data source can vary. For example, if one camera has dirt on its lens,
parts of the image might be occluded or blurry. Thus, it would be helpful to integrate
an approach measuring the uncertainty of the input data and weight its influence on the
outcome dependent on that measurement. However, most sensor fusion approaches in
automated driving and robotics do not specifically consider uncertainty in the input data
[Che+17c; Ku+18; Wan+19; PMR20; He+20; Zha+21b; He+21]. Therefore, in chapter 5,
we investigate and discuss ways to aggregate data from multiple imperfect sources while
considering uncertainty.

Furthermore, conventional approaches to fusion for environmental perception tasks tend
to prioritize developing methods that merge multiple modalities as optimally as possible.
In this context, the endeavor of teaching the model to gather profound prior knowledge
about the used dataset often receives less attention. However, having a comprehensive
prior knowledge about the relevant objects in a specific application can be very useful
in perception, for instance, if parts of an object are not visible due to occlusion, or if
the sensor data describing the object is noisy. In these cases, a generative approach can
provide supplementing data whenever the relevant input data is missing or inaccurate. This
can also be beneficial for subsequent tasks such as robot grasping as the prior knowledge
might enable the robot to select grasp poses which are not directly visible.

Over the last few years, many different types of generative models have been conceived
such as Variational Auto-Encoders (VAEs), Generative Adversarial Networks (GANs),
and diffusion models. GANs are well-known for their high sample quality enabling the
generation of realistic images with high resolutions. However, they do not explicitly
model the data likelihood and suffer from mode collapse resulting in an incomplete

7



Chapter 1 Introduction

representation of the data distribution [Zho+19]. VAEs, in contrast, explicitly learn a
probabilistic mapping from the data space to a latent space resulting in a well-defined
lower-dimensional representation of the data. Furthermore, their reconstruction loss term
incentivizes the model to precisely reconstruct the input data, which can be useful for
image fusion, denoising, or inpainting. However, working with VAEs is challenging as
they tend to generate blurry images, are often limited to low resolutions, and suffer from
posterior collapse [Cin+21]. Please note that we do not consider diffusion models in our
experiments as their outstanding image generation abilities reached widespread popularity
[DN21; Rom+22; Cro+23] after having performed the majority of experiments related to
this topic.

In Chapter 5, we present a solution combining the two previously described abilities
to consider uncertainty while providing a strong prior knowledge about the used data.
Specifically, we have developed a novel deep hierarchical variational autoencoder, called
FusionVAE, that can serve as a basis for many fusion tasks. It can generate diverse image
samples that are conditioned on multiple noisy, occluded, or only partially visible input
images while supplementing it with prior knowledge about the data gained while training.

To the best of our knowledge, we are the first to describe this task combination composed
of image fusion with image inpainting, noise suppression, and occlusion removal. For this
reason, there are no suitable benchmarks for this task combination prompting us to create
some to exhaustively assess the fusion capabilities of our model. Out of this motivation,
we have created three novel datasets for image fusion based on popular computer vision
datasets.

We have conducted extensive experiments demonstrating a significant superiority of
FusionVAE in comparison to traditional approaches on our benchmarks. Additionally,
we showcase FusionVAE’s ability to generate high-quality image samples even when the
input is constrained to a few partially observable images. Moreover, we have performed
ablation studies showing the benefits of our design choices regarding both the posterior
distribution and commonly used aggregation methods.

8



1.4 Contributions

1.4 Contributions

This dissertation contributes to the field of environmental perception for automated systems
by introducing novel deep learning methods for data fusion among other contributions
which are summarized in the following.

Firstly, we address the environmental perception of automated vehicles with a point
cloud fusion approach:

• We propose a novel end-to-end trainable network for simultaneous LiDAR object
detection and scene flow estimation, called PillarFlowNet.

• We extend the KITTI Object Tracking dataset [GLU12] with static and dynamic
scene flow annotations and devised effective data augmentation techniques.

• We demonstrate a significant accuracy increase in multi-task LiDAR scene flow
estimation and object detection compared to the state-of-the-art.

• PillarFlowNet is the first multi-task LiDAR scene flow and object detection network
to achieve real-time performance.

Secondly, we target the problem of fusing multiple imperfect visual data streams while
considering uncertainty and prior knowledge about the used data:

• We present a deep hierarchical variational autoencoder called FusionVAE that is
able to perform image-based data fusion while employing prior knowledge of the
used dataset.

• We create three challenging image fusion tasks for generative models.

• We show that FusionVAE produces high-quality fused output images and outperforms
traditional methods by a large margin.

• We perform ablation studies demonstrating the benefits of our design choices
regarding both the posterior distribution and commonly used aggregation methods.

Finally, we address the challenge of fusing multi-modal input data with the goal of
reliably predicting the 6D poses of objects within cluttered scenes with strong occlusions:

• We present two novel multi-view fusion frameworks for efficient representation
learning of multiple RGB-D frames.

• Based on the frameworks, we propose two novel deep-learning approaches for
multi-view 6D object pose estimation.

• We introduce a novel symmetry-aware training procedure for 3D keypoint detection
based on a symmetry-aware objective function.

• We present four novel synthetic datasets with photorealistic multi-view RGB-D
data and ground truth for both instance semantic segmentation and 6D object pose
estimation.

• We demonstrate the superiority of our approaches on challenging real-world and
synthetic datasets.

9



Chapter 1 Introduction

• We prove the robustness of our approaches towards inaccurate camera calibration
and dynamic camera setups.

• We reveal significant improvements and synergy effects resulting from the imple-
mentation of our symmetry-aware training procedure.

1.5 Thesis Outline

Chapter 2 introduces the fundamental concepts of this dissertation including an introduction
to environmental perception, typical sensors, and related data processing approaches.

Chapter 3 deals with multi-task learning for simultaneous 3D object detection and
scene flow estimation based on LiDAR data in automated driving. It presents a novel
deep-learning approach in this field that achieves very accurate results in real-time.

Chapter 4 covers the field of multi-view RGB-D fusion. It presents two deep multi-task
learning approaches for multi-view 6D object pose estimation in very cluttered scenes
including a novel training procedure for symmetry-aware keypoint detection.

Chapter 5 addresses the problem of fusing information from multiple sources while
supplementing it with prior knowledge about the data gained while training. In particular,
it introduces a deep hierarchical variational autoencoder that can generate diverse image
samples which are conditioned on multiple noisy, occluded, or partially visible input
images.

Chapter 6 concludes this dissertation, thematizes open research questions, and discusses
potential future work.

10



Chapter 2

Background

The following sections provide essential fundamentals which are the basis for this
dissertation. Section 2.1 defines environmental perception and describes the most
common sensors accompanied by their characteristics. As this dissertation deals mostly
with input data in the form of images and point clouds, sections 2.2 and 2.3 present typical
methods for processing these two modalities and extracting expressive features. Section 2.4
provides an introduction to data fusion techniques including architecture concepts and
fusion operations. In section 2.5, we delve into the fundamentals of generative models
focusing on VAEs, GANs, and diffusion models. Finally, section 2.6 is dedicated to
presenting the foundations of computer vision and perception tasks which are most relevant
to this dissertation, including pertinent related work.

2.1 Environmental Perception and Sensors

Environmental perception describes the process of gathering and interpreting information
about the surroundings of an automated system. It involves the acquisition of data about
the physical environment, including objects, obstacles, dangerous zones, and further
relevant instances. Subsequently, the acquired data is analyzed to obtain a comprehensive
understanding of the environment. This procedure can encompass several sub-tasks, such
as segmentation, classification, object detection, tracking, and pose estimation [Che+21;
Guo+21c]. It is important that these perception algorithms are precise and robust as they
are the foundation of subsequent decision-making processes and the execution of actions.
[Bi21; Wan+21a].

For gathering sufficient information about the environment, automated systems are
typically equipped with a variety of sensors which can be classified into thermal, mechanical
(including acoustic), electromagnetic (including optical), nuclear, gravitational, and
chemical sensors [Kal13]. However, in order to obtain a high-level understanding of a
scene from a distance, automated systems such as autonomous vehicles and industrial
robots mostly rely on electromagnetic sensors, such as cameras, depth sensors, laser
scanners, radar sensors, and ultrasonic sensors [Fay+20a; Bon+21a; LL19].

11



Chapter 2 Background

Each sensor has individual advantages, limitations, and drawbacks making its suitability
for a particular use case dependent on the specific requirements of the application.
Figure 2.1 illustrates the sensing capabilities and further properties of the most relevant
sensors for environmental perception.

Range

Proximity Detection

Resolution

Bright Scenarios

Dark Scenarios

Color Detection

Sensor Size

Sensor Cost

Camera

Laser Scanner

Radar

Ultrasonic

Figure 2.1: Comparison of sensor properties. The farther a line is from the center, the
better is the corresponding property.

Cameras

Cameras, and digital RGB (Red Green Blue) cameras in particular, are the most common
sensors for automated vehicles and robotic applications [LS22]. They record color images
by measuring the light entering through the lens with a digital image sensor. As they
work without active illumination, cameras are very sensitive to light intensity and require
good lighting conditions in order to detect objects. The continual progress in camera
hardware and software has enabled high image resolution and quality, enabling a very
high range [Che+21]. As cameras are very cheap, small, and lightweight, while having
a low power consumption, they offer the versatility to be mounted at multiple locations,
enabling the capture of visual data from different perspectives [LS22]. For instance, in
the case of a vehicle, cameras can be strategically placed at the front, sides, and rear
to enable comprehensive scene monitoring. In robotic applications, cameras can be
deployed at various positions surrounding a scene to be manipulated by a robot, facilitating
comprehensive visual coverage. Furthermore, cameras can be mounted on robot arms,
providing flexibility in capturing scenes from diverse viewpoints.

12



2.1 Environmental Perception and Sensors

In addition to RGB cameras, there is a huge variety of other camera types, including
infrared cameras, thermal cameras, grayscale cameras, depth cameras, and RGB-D (Red
Green Blue Depth) cameras. In recent years, rapid technological advancements, particu-
larly in the field of depth cameras and RGB-D cameras, have significantly contributed to
their increasing popularity and affordability. Depth cameras provide pixel-wise distances
to points in the scene. RGB-D cameras enable the joint acquisition of scene appearance
and scene geometry in real-time by combining an RGB image with a depth image. The
distance measurement can be performed either passively or actively [Ros+19].

Passive depth cameras compute distances without modifying the scene. Predominantly,
the computation is based on two monochrome cameras or two RGB cameras, in which case
the process is called stereo reconstruction or binocular reconstruction. The reconstruction
process requires corresponding pixels in the two camera views that describe the same
location in the scene. Based on each pair of corresponding pixels, the location in the scene
can be computed via triangulation, i.e., by forming triangles between the camera positions
and the observed point in the scene [Ros+19]. However, finding correspondences between
two camera views can be challenging.

Active depth cameras modify the scene by emitting light and can be divided into
Structured Light (SL) cameras and Time of Flight (ToF) cameras. SL cameras project
an infrared pattern into the scene to simplify the process of finding correspondences.
This requires just a single camera, whereas the second camera is replaced by an infrared
projector. ToF cameras emit light pulses and can be divided into Pulsed ToF cameras

and Modulated ToF cameras. Pulsed ToF cameras are based on the LiDAR technology
and compute distances based on the round-trip times of the light pulses (see section 2.1).
Modulated ToF cameras emit time-modulated light pulses and measure the phase shift
between emitted and returned pulses [Zan+16; Ros+19].

Laser scanners

Laser scanners are based on the LiDAR (Light Detection And Ranging) technology. These
devices generate laser beams at near-infrared wavelength (850 – 950 nm) or short-wave
infrared wavelength (1550 nm) and emit them within a certain field of view. Objects
within this field of view reflect the laser beams and a photodetector measures the intensity
of the incoming impulses. The distance d to an object is computed based on the time
difference ∆t between transmitted and received signals, i.e.

d =
c∆t

2n
(2.1)

where c is the speed of light in vacuum and n is the refraction index of the propagation
medium (approx. 1 for air) [LI20].

By repeating this measurement in multiple directions, a point cloud can be generated
where each point represents a specific location in 3D space. Modern laser scanners can

13



Chapter 2 Background

produce very dense point cloud data resulting in a high-resolution geometric representation
of the environment. Even though the high resolution of precise distance measurements is
a key advantage of laser scanners, processing a large amount of 3D or 4D (when including
intensity) data in real-time can be challenging [LS22].

As laser scanners rely on active illumination, they are less affected by external lighting
conditions enabling them to work well in dark and bright scenarios. Depending on the
laser power, the scanners can have a high operating range. Due to the ability to measure
the received intensity, they can detect material properties up to a certain extent. However,
laser scanners are expensive and large in comparison to other sensors [Che+21; LS22].

Radar

Radar (Radio detection and ranging) sensors have a similar functional principle as laser
scanners, involving the emission and measurement of electromagnetic waves. However,
they differ in the type of electromagnetic waves they emit as radar sensors utilize radio
waves within the millimeter or microwave spectrum. For many applications with dynamic
objects, such as advanced driver assistance systems and automated driving, radar sensors
leverage the Doppler effect to measure the frequency shift of emitted waves, enabling the
velocity detection of dynamic objects. The velocity v of a target object relative to the
sensor’s intrinsic motion can be computed by

v =

c∆ f

2 fr
(2.2)

where c is the speed of light in vacuum, ∆ f is the frequency shift due to the Doppler
effect, and fr is the frequency of the emitted radio wave [Yeo+21].

Due to the active emission of radio waves and their propagation properties, radar
sensors are not sensitive to lighting conditions and meteorological effects, making them
effective in bright and dark scenarios, as well as in adverse weather conditions [Yeo+21].
Furthermore, radar sensors are small and cost-effective enabling versatile mounting
similar to cameras. Radar sensors can be deployed for short-range and long-range object
recognition, depending on their radiation angle, their emitting frequency, and their delay
between emitted pulses [LS22]. However, in comparison to cameras, radar sensors
generally provide lower resolution outputs, which limits their effectiveness in accurately
detecting objects [Yeo+21; Che+21].

14



2.2 Image Processing for Perception

Ultrasonic

Ultrasonic sensors emit mechanical waves with a constant frequency within the inaudible
range of humans, i.e. higher than 20 kHz. They measure distances based on the time-
of-flight measurement principle as ToF depth cameras, laser scanners, and radar sensors.
Since the propagation speed of ultrasonic waves is with around 340 m/s in air much
slower than the speed of electromagnetic waves, the sensing rate is much lower. Typical
frequencies for automotive applications are in the range of 40 to 70 kHz. Increasing the
ultrasonic frequency results in greater absorption, which in turn decreases the maximum
range but enables a higher sensing rate [SK16; Bi21; Var+21].

Due to the active emission of waves, ultrasonic sensors perform well in bright and dark
environments. They possess the advantages of being affordable, compact, and lightweight,
enabling the convenient mounting of multiple sensors in various configurations to achieve
comprehensive sensing coverage. However, ultrasonic sensors have a very limited
range, cannot provide color information, and have a low resolution. Furthermore, their
performance is affected by atmospheric conditions, such as humidity and barometric
pressure [Che+21; Var+21].

2.2 Image Processing for Perception

In order to extract information from images that is relevant for environmental perception,
a huge variety of methods has been proposed over the last decades. Most traditional
approaches without deep learning rely on hand-crafted features, such as edge detection,
Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT), and
Local Binary Patterns (LBP) [Jia+19; Ros+19]. However, the performance of these
traditional approaches is very limited. This is particularly evident when attempting to
detect objects in challenging scenarios, such as highly cluttered scenes and scenes with
substantial occlusions [Ros+19].

In recent years, deep learning has experienced rapid progress, largely driven by
the availability of huge datasets, powerful computational resources, and algorithmic
advancements [Jia+19]. Unlike traditional methods, deep learning approaches extract
features in an automated way with low effort and minimal domain expertise [Pou+18].

15



Chapter 2 Background

2.2.1 Convolutional Neural Networks

Especially the occurrence of Convolutional Neural Networks (CNN) has led to a rapid
improvement of environmental perception methods. As CNNs share weights over entire
images, the number of trainable parameters is vastly reduced in comparison to fully
connected networks [Jia+19].

Convolutional Layer Pooling Layer Fully-connected Layer

Flatten

..
.

Cat

Dog

..
.

Bird

Softmax

..
.

Figure 2.2: Overview of a typical architecture of a CNN for an image classification task.

Figure 2.2 illustrates a typical CNN architecture for an image classification task. The
main building blocks are convolutional layers which convolve the input data x at layer
l with a set of K learnable kernels W = W 1, ...,WK . These kernels are filter matrices
whose size represents the receptive field. After the convolution, a bias value b = b1, ..., bK

is added to every element in the resulting feature map. Given the feature map of layer l,
the k-th feature map of layer l + 1 is computed by

x
l+1
k = σ(W l

k ∗ x
l
+ bl

k) (2.3)

where σ is an activation function that introduces a non-linearity. Cybenko [Cyb89]
demonstrated that a non-linear activation function such as a sigmoid function

σ =
1

1 + exp(−x)
(2.4)

enables a neural network to approximate any continuous function [Jia+19].

Another common activation function is the Rectified Linear Unit (ReLU) which is
defined as

ReLU(x) = max(0, x) =

{

x if x ≥ 0

0 if x < 0
. (2.5)

A CNN typically contains a down-sampling mechanism to reduce the size of intermediate
network layers. A common choice is a max pooling layer which subdivides the given
feature map into non-overlapping rectangles and creates a new feature map based on the
maximum values within each rectangle [Jia+19]. As an alternative to pooling layers,
convolutional layers with stride can be used. Stride S is a hyperparameter that determines

16



2.2 Image Processing for Perception

the step size when moving the convolutional kernels over a feature map. By skipping rows
or columns with S >= 2, the output feature is reduced in size similar to pooling.

For performing downstream tasks, CNN can be combined with conventional neural
network modules such as fully connected layers. For that purpose, a rectangular feature
map is flattened to obtain a vector. As illustrated in figure 2.2, a softmax function can be
used to compute probabilities for a classification task. Given K classes with input vector
z = [z1, ..., zK]

T the softmax function is defined as

si(z) =
exp(zi)

∑K
j=1 exp(z j)

for i = 1, ...,K . (2.6)

2.2.2 Residual Neural Networks

One type of CNNs, which is rigorously used in this dissertation, is the Residual Network
(ResNet), proposed by He et al. [He+16] in 2015. ResNets employ multiple residual
blocks as illustrated in figure 2.3. Each building block contains a set of neural network
layers resembling the function F(x). A parameter-free shortcut connection, also known as
a skip connection, is employed which bypasses the neural network layers. After each set
of layers, the resulting feature map xres is computed by the sum of input x and the layer
output F(x), i.e. [He+16; SG22]

xres = x + F(x). (2.7)

The shortcut connections urge the network to learn residual mappings, which capture
the differences between the input and the desired output of the corresponding building
block. In most cases, residual mappings are easier to optimize than the original mappings
and the shortcut connections reduce the issue of vanishing gradients. Thus, the training
of very deep neural network architectures is facilitated significantly, resulting in higher
accuracy for many environmental perception tasks [He+16; SG22].

Layer

Layer

Identity

x

F(x)

xres = x + F(x)

Figure 2.3: Illustration of a residual block. Image adapted from [He+16].

17



Chapter 2 Background

2.2.3 Attention-Based Networks

In recent years, the emergence and advancements of attention mechanisms have con-
siderably contributed to performance improvements in image processing. Attention
mechanisms are inspired by the human’s perceptual system. Similar to humans who
perceive certain parts of the incoming visual information as stronger than others, attention
networks have the goal to weight incoming data dependent on their importance [Yan20;
Guo+22].

In 2014, Mnih et al. [Mni+14] published pioneering work in visual attention with the
introduction of a Recurrent Attention Model (RAM). RAM can recurrently select relevant
regions and only processes them at high resolution while processing less important regions
with lower resolution. It is trained in an end-to-end manner using a policy gradient
method. Jaderberg et al. [Jad+15] proposed a novel Spatial Transformer module which
can be employed within neural networks without requiring changes to the loss function.
The Spatial Transformer modules contain a localization network that predicts an affine
transformation used to select relevant regions in the input [Jad+15; Yan20; Guo+22].

Another important variant of visual attention is the channel attention. A milestone in
this field is the Squeeze-and-Excitation Network (SENet) by Hu et al. [HSS18]. The
authors propose a novel module for CNNs which explicitly models interdependencies
between the channels of its convolutional features. This enables a feature recalibration
process that fosters the usage of informative features while suppressing less informative
ones [HSS18].

Figure 2.4 shows an overview of the previously mentioned module called the Squeeze-
and-Excitation (SE) module. Given a feature map X ∈ RH ′×W ′×C ′

the SE module can
be applied to any transformation Ftr : X → U (e.g. a set of convolutional layers) with
U ∈ RH×W×C . It employs a squeeze operation on the features U that aggregates the features
along the spatial dimensions H and W by average pooling. The resulting channel descriptor
vector with dimensions 1 × 1 × C is processed by the excitation transformation Fex which
applies two fully connected layers with bottleneck, ReLU, and sigmoid activation function.
The outcome is a vector of weights that is used in the scaling transformation Fscale to

Figure 2.4: Overview of a Squeeze-and-Excitation module [HSS18]. For each channel C

of a feature map, it learns and applies a weighting factor corresponding to the importance
of the channel. Image from [HSS18].

18



2.2 Image Processing for Perception

multiply each of the C feature maps of U with a scalar according to the relevance of the
given channel [HSS18].

In 2017, Vaswani et al. [Vas+17] proposed a self-attention mechanism that yielded
large success in the domain of natural language processing. Self-attention relates different
elements of an input sequence in order to compute a representation of the sequence. It
weights these elements according to their relevance and thus adjusts their impact on the
output. Wang et al. [Wan+18b] transferred the concept of self-attention to the domain of
computer vision and presented the concept of Non-local Neural Networks. They employ
non-local filtering operations which compute the response at a position as a weighted
sum of the features at all positions in the input. The input can be an image, a video,
or their features. Thus, non-local operations are a mechanism for capturing long-range
dependencies using deep neural networks [Vas+17; Wan+18b; Guo+22].

2.2.4 Transformer-based Networks

Together with the introduction of the self-attention mechanism, Vaswani et al. [Vas+17]
proposed a novel network architecture called Transformer which opened up a new and
successful avenue in deep learning. Transformers constitute an alternative to recurrent
neural networks and CNNs while demonstrating an exceptional performance on a broad
variety of natural language processing tasks including text summarization [Cai+19],
machine translation [Ott+18], and question answering [Sha+19; Zha+20c]. In this
field, also the popular Bidirectional Encoder Representations from Transformers (BERT)
[Dev+19], and the Generative Pre-trained Transformer (GPT) [RN18; Rad+19; Bro+20]
originated from [Kha+22].

Transformers are sequence-to-sequence models with an encoder-decoder architecture
as illustrated in figure 2.5. The input is a sequence consisting of a set of tokens with
are converted into an embedding. Positional encodings are added to store information
about the position of the tokens within the input sequence. The encoder consists of
N identical layers performing multi-head attention which relates the feature vectors
corresponding to all sequence elements. It further employs residual connections [He+16],
layer normalization [BKH16], and a fully-connected feed-forward network [Vas+17].

The Transformer decoder also consists of a stack of N identical layers, but they differ
slightly from the encoder. It obtains the Transformer outputs as input shifted right by
one position. A masked multi-head attention module relates the different feature vectors
whereas a masking ensures that relations can only be created between known outputs. The
second multi-head attention module receives the output vectors of the encoder enabling
cross-attention between encoder and decoder features [Vas+17].

Motivated by the remarkable achievements of Transformer architectures in natural
language processing, the work principle has been successfully transferred to the field of
computer vision. Chen et al. [Che+20b] proposed a sequence Transformer called image
GPT (iGPT) which does not encode the 2D spatial structure of images. Instead, it resizes

19



Chapter 2 Background

Figure 2.5: Overview of the Transformer architecture consisting of an encoder network
stack (left) and a decoder network stack (right). Image taken from [Vas+17].

and flattens the image to a low-resolution 1D sequence that is input to a GPT-2 model
[Rad+19] for autoregressive pixel prediction. iGPT achieves competitive results on image
classification as CNNs. However, it has a high computational cost enabling the application
for low-resolution images only [Che+20b; Liu+23].

In 2020, Dosovitskiy et al. [Dos+21] introduced the Vision Transformer (ViT) which
is a pure Transformer [Vas+17] directly applied to a sequence of image patches. Its
architecture is illustrated in figure 2.6. First, an input image is reshaped into a sequence
of 2D patches. The patches are flattened and processed by a trainable linear projection
that maps each flattened patch to the fixed latent vector size D which is used through all
Transformer layers. This results in the so-called patch embeddings. [Dos+21; Han+22]
Subsequently, a learnable classification token is prepend to the patch embeddings, and
position embeddings are added to store positional information. The resulting sequence of
embedding vectors is input to a standard Transformer encoder [Vas+17] which consists of

20



2.2 Image Processing for Perception

multi-head attention layers, MLPs, layer normalization [BKH16], and residual connections
[He+16]. An MLP-based output head is employed for classification [Dos+21].

When pre-trained on large-scale datasets, Vision Transformers achieve outstanding
results on multiple image classification tasks including ImageNet [Rus+15] and CIFAR-100
[Kri09]. However, due to the missing inductive bias in comparison to CNNs, they do not
generalize well when trained on smaller datasets [Liu+23].

Since its inception, the Transformer was further improved and modified leading to
state-of-the-art results in many computer vision tasks including semantic segmentation
[Str+21; Gu+22], object detection [Car+20; Li+22d], 6D pose estimation [Zha+22b;
Jan+23], and image generation [Cha+22; Zha+22a]. Please refer to section 2.6 for more
details about these tasks.

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)
*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 9

0Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+
L x

+

Transformer  Encoder

Figure 2.6: Overview of the Vision Transformer architecture [Dos+21]. It divides an input
image into patches which are augmented with positional and class information. Based on
a Transformer Encoder and an MLP-based output head, it predicts image classification
scores. Image from [Dos+21].

21



Chapter 2 Background

2.3 Point Cloud Processing for Perception

Point clouds are sets of three-dimensional points describing the location of objects in 3D
space. Thus, they represent the surface of objects and can provide useful information
about the geometry, the shape, and the scale of structures. Depending on the type of sensor
employed to capture the point cloud, each point can be augmented with supplementary data,
such as LiDAR intensity, RGB color values, or surface normals. As typical point clouds
in robotics or automated driving are unordered sets of tens to hundreds of thousands of
points, it is challenging to infer useful information from point clouds efficiently [Guo+20;
Liu+21].

Before the widespread adoption of deep learning, traditional approaches for extracting
information from point clouds have mostly relied on hand-crafted features, requiring
substantial manual effort and domain knowledge [Jia+19]. Over the last few years, a
huge variety of deep learning methods for point cloud processing have been proposed.
These methods have the capability to automatically learn feature representations from
point cloud data, leading to significant improvements across almost all environmental
perception tasks, including point cloud classification, segmentation, object detection, and
odometry [Guo+20; Liu+21].

Most deep learning feature extraction methods for point clouds can be classified into
projection-based, volumetric-based, and point-based approaches which will be explained
in the following [Guo+20].

2.3.1 Projection-based Methods

Projection-based methods project a 3D point cloud onto 2D images, e.g. a panoramic
view (cylinder projection) [Shi+15], a front view [LZX16; Che+17c] or a bird’s eye view
[Che+17c; Ku+18; Bel+18; YLU18]. Thus, the data can be processed as image data, for
instance, by using 2D CNNs.

A seminal work in this field is MV3D by Chen et al. [Che+17c] which is illustrated
in figure 2.7. It converts a LiDAR point cloud into a bird’s eye view and a front view in
order to obtain two different compact 2D representations of the point cloud. Using 2D
convolutional layers, the bird’s eye view, the front view, and an RGB image are processed
independently to extract features which are fused subsequently for performing a 3D object
detection.

As the projection reduces the amount of data significantly, projection-based methods
can scale very well to large point clouds with millions of points. However, the accuracy
and robustness of these methods are susceptible to occlusions and viewpoint selection.
Furthermore, projection-based methods cannot fully exploit the available geometric
information, as the projection inevitably causes a loss of information [Guo+20; Fer+21].

22



2.3 Point Cloud Processing for Perception

Region-based Fusion Network3D Proposal Network

LIDAR Bird view

(BV) 3D 

Proposals

LIDAR Front view

(FV)

Image (RGB)

Front view 

Proposals

Bird view

Proposals

Image

Proposals

M M M M

ROI 

pooling

ROI 

pooling

ROI 

pooling

Multiclass

Classifier

3D Box 

Regressor

2x deconv

4x deconv

4x deconv

2x deconv

conv layers

conv layers

conv layers

Objectness

Classifier

3D Box 

Regressor

Figure 2.7: Overview of the MV3D [Che+17c] network architecture. MV3D performs 3D
object detection based on different 2D projections of a LiDAR point cloud. It converts the
given point cloud into a bird’s eye view and a front view before extracting features with
2D CNNs. Combining these features with RGB image-based features, MV3D predicts
oriented 3D bounding boxes with classification scores. Image from [Che+17c].

2.3.2 Volumetric-based Methods

Volumetric-based methods convert a point cloud into a three-dimensional volumetric
representation, such as a voxel grid [MS15; ZT18], frustums [Qi+18; WJ19], or a grid
of vertical pillars [Lan+19]. The volumetric representation inherently maintains the
neighborhood structure of point clouds, ensuring the preservation of spatial relationships.
Voxel-based methods in particular enable point cloud feature extraction with 3D convo-
lutions, learning spatially invariant features across different regions of the point cloud
[Guo+20; Fer+21].

Figure 2.8 shows the architecture of VoxNet by Maturana et al. [MS15] as an example
for a voxel-based object recognition method. VoxNet constructs a volumetric occupancy
grid representation of the input point cloud and feeds it into a 3D CNN exploiting the
spatial structure of the data representation.

Volumetric-based methods have the disadvantage that the voxelization causes discretiza-
tion artifacts and information loss. Besides, it is difficult to select an appropriate grid
resolution, as a low resolution increases the information loss while a high resolution
requires high memory and computational resources [Guo+20; Fer+21].

23



Chapter 2 Background

Figure 2.8: Overview of VoxNet [MS15] processing the point cloud of a car. It generates
an occupancy grid which is processed by 3D convolutional layers, max pooling, and fully
connected layers before predicting classification scores. Image from [MS15].

2.3.3 Point-based Methods

Point-based methods can be applied directly on raw point clouds without projection or
voxelization. A seminal work in this area is PointNet by Qi et al. [Qi+17a] which is
illustrated in figure 2.9.

in
pu

t p
oi

nt
s

point features

ou
tp

ut
 sc

or
es

max
pool

shared shared 

shared 

nx
3

nx
3

nx
64

nx
64 nx1024

1024

n  x 1088

nx
12

8

mlp (64,64) mlp (64,128,1024)input
transform

feature
transform

mlp
(512,256,k)

global feature

mlp (512,256,128)

T-Net

matrix
multiply

3x3
transform

T-Net

matrix
multiply

64x64
transform

shared 

mlp (128,m)

output scores

nx
m

k

Classification Network

Segmentation Network

Figure 2.9: Overview of PointNet [Qi+17a]. The classification network operates on a raw
point cloud with n points and predicts classification scores for k classes. The segmentation
network concatenates the local and global features of the classification networks and
predicts point-wise classification scores. Image from [Qi+17a].

PointNet takes the unsorted point cloud with n points and applies an input transformation
based on a mini-network, called T-Net, which predicts an affine transformation matrix.

24



2.3 Point Cloud Processing for Perception

Multiple stages of shared Multi-Layer Perceptrons (MLPs) are utilized to extract point-wise
features. PointNet applies a feature transformation based on another T-Net to align features
from different input point clouds. Since point clouds are unordered sets of points, the
authors propose to use a symmetry function for making the network invariant to input
permutation. To achieve that, they employ max pooling for aggregating the point features
and obtaining global features [Qi+17a].

As PointNet learns features independently for each point, it does not extract the local
structural information between points. This limits the model’s ability to recognize
fine-grained patterns and to generalize to complex scenes. To address this issue, Qi et
al. proposed a hierarchical neural network approach called PointNet++ [Qi+17b] which
incrementally aggregates increasingly larger local regions along the hierarchy. Each
hierarchical level consists of a sampling layer, a grouping layer, and a PointNet layer.
The sampling layer uses the Farthest Point Sampling (FPS) algorithm [Eld+97] to find
points in the point cloud that are centroids of local regions. The grouping layer employs
a ball query strategy to find adjacent points within each local region. The PointNet
layer applies a small PointNet to learn features based on the local regions. In order to
better cope with non-uniformly sampled point clouds that vary in point density, Qi et al.
introduce Multi-scale grouping (MSG) and Multi-resolution grouping (MRG). These are
density-adaptive PointNet layers which enable an intelligent aggregation of multi-scale
information according to local point densities.

The utilization of FPS sampling in PointNet++ is the main reason making the method
computationally expensive and memory-costly for very large point clouds. Hu et al.
[Hu+20] address this issue with a random point sampling strategy and a lightweight
neural network architecture called RandLA-Net. As random sampling can discard relevant
information, RandLA-Net uses local feature aggregation modules to preserve information
captured from adjacent points. Furthermore, it employs attentive pooling to automatically
keep the most relevant local features based on a computed attention score.

Following the success of Transformer networks in natural language processing and
computer vision, the technology has been also transferred to point cloud processing tasks.
Guo et al. [Guo+21a] introduced the Point Cloud Transformer (PCT) which achieves
state-of-the-art performance in shape classification and part segmentation. First, they
propose a naive approach using the standard Transformer [Vas+17] by treating the entire
point cloud as a sentence of points. Second, the authors propose an offset-attention
mechanism which calculates the difference between the self-attention features and the
input features by element-wise subtraction. Third, they introduce a neighbor embedding
inspired by PointNet++ [Qi+17a], which aggregates local neighborhood information of
points [Guo+21a; ZWC22].

In recent years, further Transformer-based networks have been proposed, demonstrating
state-of-the-art results in point cloud based perception tasks including point cloud
classification [EBD21; Lu+22] 3D object detection [Mao+21; Zho+22], 3D semantic

25



Chapter 2 Background

segmentation [Zha+21c; Lai+22], and scene flow estimation [Li+22a]. Please refer to
section 2.6 for more details about these tasks.

2.4 Data Fusion

Data fusion describes the combination of data from multiple sources with the aim of
improving the quality or amount of information. The data can originate from multiple
sensors of the same type, from multiple sensors of different types, or from the same sensor
at different points in time. Depending on the application setup, data fusion can increase
spatial coverage, temporal coverage, robustness towards sensor failures or algorithmic
flaws, noise suppression, and estimation accuracy [Mit12].

The following two subsections present possible network architectures for fusion and
different fusion operations.

2.4.1 Fusion Architectures

Fusion techniques can be categorized into early fusion, intermediate fusion, and late
fusion techniques according to the stage of the network in which data is merged [Fay+20b;
Fen+21]. Figure 2.10 gives an overview of possible fusion network architectures.

Deep Fusion

Shortcut Fusion

Early Fusion

Intermediate Fusion

Late Fusion
Input Modality

Network Output

Intermediate Layers

Fusion Operation

Figure 2.10: Overview of typical architectures for sensor data fusion.

26



2.4 Data Fusion

Early fusion. Early fusion, also called data-level fusion, combines raw or pre-processed
sensor data. Thus, the entire information from the data can be exploited with low memory
usage and low computational expenses. However, early fusion models suffer from limited
flexibility since the entire network needs to be retrained when the input modality changes,
and varying relevance of different modalities cannot be fully exploited. Another drawback
originates from the sensitivity towards spatial-temporal data misalignment between the
used sensors e.g. caused by calibration errors, unequal sampling rates, or sensor defects
[RT17; Fen+21].

Late fusion. Late fusion, also called decision-level fusion, deploys separate networks
for each input modality and combines the network outputs. It enables higher flexibility and
modularity compared to early fusion as in case of a new input modality being introduced,
only its domain-specific network needs to be trained, without any necessity to modify the
other networks. However, late fusion requires high computational and memory resources.
Furthermore, it does not exploit the full potential benefits of incorporating intermediate
features into the fusion process [RT17; Fen+21].

Intermediate fusion. Intermediate fusion, also called feature-level fusion, is a frequently
used compromise between early fusion and late fusion. It utilizes separate feature
encoding networks for each input modality to learn independent feature representations.
Subsequently, the feature representations are combined into a joint representation for
all modalities which can be further processed by a single network. Intermediate fusion
offers the greatest flexibility in terms of how and when the fusion takes place. However, it
can be very challenging to find an optimal fusion architecture for a specific application.
Therefore, there are many variants of intermediate fusion, such as deep fusion and shortcut
fusion (see figure 2.10) [RT17; Fen+21].

It should be noted that there is no single fusion technique that is optimal for all
applications. The performance of a fusion technique is highly dependent on the type and
characteristics of the employed input modalities as well as the task at hand [Fay+20b;
Fen+21].

2.4.2 Fusion Operations

The previously presented fusion architectures can be used with a variety of different fusion
operations, also called aggregation methods, which will be exhibited in the following.
The aim of a fusion operation is to aggregate data, i.e. given a fusion operation G, it
combines information from a set of K input tensors f 1, f 2, ..., f K resulting in a tensor
f res = G( f 1, f 2..., f K).

27



Chapter 2 Background

Concatenation. A very common and simple method to combine multiple tensors is to
concatenate them along an existing axis, i.e.

f res = f 1 ⊕ f 2 ⊕ ... ⊕ f K (2.8)

where the operation ⊕ denotes concatenation. Please note that the input tensors need to
have the same dimensions except for one dimension. The dimension corresponding to the
axis along which the concatenation is performed may vary.

Addition. Another very simple fusion operation is the element-wise or pixel-wise
addition of the input features, i.e.

f res =

K∑

i=1

f i (2.9)

Average Pooling. Average pooling corresponds to addition with the exception of an
additional scaling factor, i.e.

f res =
1

K

K∑

i=1

f i (2.10)

Maximum Pooling. Maximum pooling, or max pooling for short, selects from all input
tensors the element-wise or pixel-wise maxima, i.e.

f res = max( f 1, f 2, ... f K). (2.11)

Mixture of Experts. The previously presented fusion operations do not explicitly
consider the amount of information and uncertainty in the input tensors. However,
individual input tensors might contain more relevant information than others, for example,
in dark environments an RGB camera provides less useful information than a LiDAR
sensor. A mixture of experts tries to overcome that limitation by learning weighting
factors wi for each input tensor so that the resulting tensor is a linear combination of the
individually weighted input tensors, i.e.

f res =

K∑

i=1

wi · f i with
K∑

i=1

wi = 1. (2.12)

For learning the weighting factors, domain-specific networks called “experts” are employed.
This technique was proposed by Jacobs et al. [Jac+91] and further extended in [ERS14;
MEB16; Val+17] [Fen+21].

28



2.5 Generative Models

Bayesian Aggregation. Bayesian aggregation [Vol+20] describes a permutation invari-
ant fusion method that considers the uncertainty and the informativeness of the input
tensors. It employs two related encoders encµ and encσ to learn a latent observation
µi = encµ( f i) with its corresponding variance values σi = encσ( f i). This represents a
factorized Gaussian distribution N over the latent feature vectors

f i = N (µi, diag(σi)). (2.13)

The predicted Gaussian distributions over the latent feature vectors for multiple input
tensors are fused iteratively using the Bayes rule [Bec+19]

qi = σ
2
i−1 � (σ2

i−1 + σ
2
i ) (2.14)

where µi = µi−1 + qi � (µi − µi−1) (2.15)

and σ
2
i = σ

2
i−1 � (1 − qi). (2.16)

� and � denote element-wise division and multiplication respectively.

2.5 Generative Models

Generative models are a class of unsupervised machine learning models which can learn
the underlying probability distribution of a given dataset. They allow for generating
unseen samples that resemble the original data distribution. Sufficiently trained generative
models can be used for many applications, such as image synthesis, text generation,
style transfer, data augmentation, audio synthesis, denoising, and inpainting. For most
practical applications, however, it is not possible to learn the exact distribution of the
given dataset. Therefore, it is common practice to employ deep neural networks to
learn an approximation of the target distribution. These particular models are commonly
denoted as Deep Generative Models (DGMs) and have the ability to approximate very
complicated, high-dimensional probability distributions given enough unlabeled training
samples [Tom22; FGH22].

According to Tomczak [Tom22] generative modeling methods can be categorized into
four main groups:

• Autoregressive models (e.g., PixelCNN [VKK16])

• Flow-based models (e.g., RealNVP [DSB17])

• Latent variable models (e.g., GANs [Goo+14], VAEs [KW14], and diffusion models
[Soh+15])

• Energy-based models (e.g., IGEBM [DM19])

This thesis focuses on the most relevant DGMs for image synthesis, namely GANs, VAEs,
and diffusion models. Please refer to [Tom22] for further details about other types of
generative models.

29



Chapter 2 Background

2.5.1 Variational Autoencoders

A Variational Auto-Encoder (VAE) is a type of generative latent variable model that was
introduced by Kingma et al. [KW14] in 2013. Figure 2.11 illustrates the architecture
of a typical VAE. It is built upon an encoder network, a latent space, and a decoder
network. The encoder network represents a probabilistic model qφ(z |x) with trainable
parameters φ. It compresses the input data x and maps it into the latent space. Thus,
the latent variable vector z represents the input data using fewer dimensions. Since the
latent space is stochastic, the encoder network has the task of predicting the parameters
of the approximate posterior distribution qφ(z |x). An arbitrary target distribution with
an arbitrary number of parameters can be chosen for that task. A common choice is a
multivariate Gaussian distribution

qφ(z |x) = N (z |µ z |x, Σz |x) (2.17)

with a diagonal covariance matrix Σz |x and mean µ z |x [Gho+23].

In order to teach the model learning a meaningful approximate posterior distribution,
the Kullback-Leibler (KL) divergence [KL51] is utilized. It is a measure for the similarity
of two probability distributions p(x) and q(x) and defined as

KL(p(x)| |q(x)) =

∫ ∞

−∞

p(x) log

(

p(x)

q(x)

)

dx. (2.18)

The decoder network, also called the generator network, draws samples from the
prior distribution pθ(z) within the latent space and decodes them. Thus, it models the
conditional probability distribution pθ(x |z) where θ are the trainable parameters of the
decoder network. Encoder and decoder are trained simultaneously by maximizing the
Evidence Lower Bound (ELBO) of the marginal log-likelihood

log pθ(x) = Eqφ(z |x)

[

log pθ(x, z) − log qφ(z |x)
]

+ KL
(

qφ(z |x)| |pθ(z |x)
)

(2.19)

≥ Eqφ(z |x) [log pθ(x |z)]
︸                    ︷︷                    ︸

Lrec

−KL
(

qφ(z |x)| |pθ(z)
)

︸                    ︷︷                    ︸

LKL

= ELBO(x), (2.20)

Encoder

qϕ (z|x)

Decoder

pθ (x|z)

Latent Space

z
x x̂

Figure 2.11: Overview of a VAE. Given an input image x, a probabilistic encoder qφ learns
a distribution in the latent space which is regularised during the training. A probabilistic
decoder pθ can generate new data x̂ based on the latent distribution.

30



2.5 Generative Models

where the term Lrec represents the likelihood of the reconstructed samples which is
maximized. Thus, creating output images deviating from the input image is penalized.
The term LKL ensures that the approximate posterior distribution qφ(z |x) is close to the
true prior distribution pθ(z). It works as a regularization mechanism promoting structure
and disentanglement for the latent space [KW14; Cin+21].

Conditional VAE

In standard VAEs, there is no control of the data generation process as unconditioned
samples are drawn from the latent distribution. Sohn et al. [SLY15] proposed a remedy
for this limitation by presenting the Conditional Variational Auto-Encoder (CVAE). It
extends the standard VAE by adding a conditioning vector y (e.g. a class label) as input to
both the encoder and decoder. Thus, the encoder aims to learn the approximate posterior
distribution qφ(z |x, y) and the decoder tries to learn the conditional distribution pθ(y |x, z).
The prior of the latent variable vector z is pθ(z |x) and the variational lower bound of the
conditional log-likelihood can be written as follows

log pθ(y |x) = Eqφ(z |x,y)

[

log pθ(y, z |x) − log qφ(z |x, y)
]

+ KL
(

qφ(z |x, y)| |pθ(z |x, y)
)

(2.21)

≥ Eqφ(z |x,y) [log pθ(y |x, z)] − KL
(

qφ(z |x, y)| |pθ(z |x)
)

= ELBO(x, y).

(2.22)

Hierarchical VAE

Sønderby et al. [Søn+16] introduced the first hierarchical VAE, called Ladder Variational
Autoencoder (LVAE), by splitting the latent variables z into L layers z1, ..., zL . This
enables a recursive correction of the generative distribution pθ(x, z) = pθ(x |z) · pθ(z) and
increases the expressiveness of both prior and approximate posterior which become

pθ(z) =

L∏

l=1

pθ(zl |z<l) and qφ(z |x) =

L∏

l=1

qφ(zl |z<l, x), (2.23)

where z<l denotes the latent variables in all previous hierarchies. All the conditionals in
the prior pθ(zl |z<l) and in the approximate posterior qφ(zl |z<l, x) are modeled by factorial
Gaussian distributions. Under this modeling choice, the variational lower bound of the
marginal log-likelihood from equation (2.19) turns into

log pθ(x) ≥ Eqφ(z |x)

[

log pθ(x, z) − log qφ(z |x)
]

(2.24)

= Eqφ(z |x) [log pθ(x |z)] −

L
∑

l=1

Eqφ(z<l |x)

[

KL
(

qφ(zl |z<l, x)| |pθ(zl |z<l)
) ]

(2.25)

= ELBO(x). (2.26)

31



Chapter 2 Background

An alternative approach resulting in a hierarchical VAE is the usage of Inverse
Autoregressive Flows (IAF) proposed by Kingma et al. [Kin+16a]. They employed
Normalizing Flows [RM15a] which iteratively improve the latent variables by

zl = µl + σl � zl−1 (2.27)

where µl and σl are predicted mean and standard deviation vectors of the l-th layer and �

denotes element-wise multiplication.

Further Improvements for VAEs

A common issue when maximizing the standard ELBO in equation (2.20) is the variable
collapse phenomenon, also called over-pruning [Yeu+17]. This term describes a model’s
tendency to converge to a sub-optimal solution in which only a small subset of the latent
variables is exploited [AT20]. One approach for reducing over-pruning is to vary the
balance between the reconstruction loss Lrec and the KL loss LKL in equation (2.20) as
proposed by Bowman et al. [Bow+16]. They introduced a balancing parameter γ resulting
in the training objective

Ltotal = Lrec − γLKL (2.28)

where γ is gradually increased from zero to one. Thus, the training starts as a vanilla
autoencoder by learning only the reconstruction. The increment of γ leads to an increasing
relevance of the KL loss improving the approximate posterior. As γ reaches one, the
training objective Ltotal is equivalent to the ELBO in equation (2.20).

As there is often a mismatch between the aggregated posterior distribution qφ(z) and the
standard Gaussian prior distribution p(z), Dai et al. [DW19] have proposed the 2-Stage
VAE, which effectively mitigates this issue. The first stage contains a larger VAE for
learning a comprehensive data representation qφ(z |x) within the latent space, though it
does not ensure an exact alignment between qφ(z) and p(z). In the second stage, a smaller
VAE with independent parameters is employed with the objective of learning to sample
from the true distribution q(z) without using the prior distribution p(z) [DW19; AEL21].

While previous research in the field of VAEs, has predominantly concentrated on
statistical challenges, Vahdat et al. [VK20] have shifted their focus on architectural
enhancements for hierarchical VAEs. In this context, they have presented the Nouveau
VAE (NVAE) which is illustrated in figure 2.12. The bidirectional encoder in figure 2.12a
consists of a deterministic bottom-up network which given input x learns L latent variables
z1, ..., zL representing the approximate posterior distribution qφ(z |x). A top-down network
with trainable parameter vector h is employed to infer the latent variables group by group.
It performs sampling from each latent variable group, combines the samples with
deterministic feature maps, and passes the result to the next group. The generative model
in figure 2.12b, utilizes the same top-down network with shared parameters to generate
data x given the learned latent variables z.

32



2.5 Generative Models
∑

+

h

r

+

r

sample

sample

r

r

r

+

+

sh
a
red

 to
p
-d

o
w

n
 m

o
d
el

b
o
tt

o
m

-u
p
 m

o
d
el

approxi-

condi-
or

After

xt

order

(a) Bidirectional Encoder

+

+

+

sample

sample

sample

sh
a
red

 to
p
-d

o
w

n
 m

o
d
el

h

r

r

r

(b) Generative Model

Figure 2.12: Network architecture of the NVAE [VK20] illustrated for three latent variable
vectors z1, z2, and z3. It consists of a bidirectional encoder (a), which learns the latent
variable vectors from data x, and a generative model (b), which decodes samples from
the latent probability distributions. rr denotes a residual network, h denotes a trainable
parameter vector, and ⊕ denotes feature aggregation (e.g. concatenation or pixel-wise
addition). Images taken from [VK20].

Both encoder and generative model consist of multiple residual cells r including batch
normalization [IS15], standard convolutional layers, depth-wise separable convolutional
layers [Cho17], swish activation functions [RZL18], and Squeeze-and-Excitation modules
[HSS18]. The authors of NVAE propose a novel residual parameterization of the
approximate posteriors qφ(z |x) relative to the prior distribution pθ(z). Furthermore, they
stabilize the training by spectral norm regularization [YM17].

Please refer to section 5.2.1 for further related work about VAEs for image generation
tasks.

33



Chapter 2 Background

2.5.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were introduced by Goodfellow et al. [Goo+14]
in 2014. They consist of two neural networks, a generator network and a discriminator
network, which are involved in an adversarial process, i.e. in competition with each other.
Figure 2.13 illustrates the architecture of a typical GAN. The generator network G tries to
capture the probability distribution of a given dataset and creates new samples G(z) from
the learned probability distribution. The discriminator network D receives samples from
the generator network and samples x from the actual dataset. The goal of the discriminator
is to correctly classify the two received samples into the generated one and the real one
from the actual dataset [Wan+17].

Discriminator

D
Generator

G

Real 

Samples

x

Random

Noise

G(z)

Binary 

Classification

Figure 2.13: Overview of a GAN. The generator network G creates samples while the
discriminator network D tries to distinguish between real samples and generated ones.

The optimization of a GAN can be formulated as a minimax problem

min
G

max
D

(

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z)))]
)

(2.29)

where x represents a sample from the real data distribution pdata(x), and z represents a
sample from a random noise distribution pz(z). Consequently, D(x) denotes the predicted
probability of x being sampled from the real data distribution rather than being created by
the generator [Wan+17; Bon+21b].

Over the last years, many different variants of GANs have been presented that tackle
issues and limitations of the original GAN implementation. For example, Mirza et al.
proposed a conditional version of GANs (CGAN) [MO14] which enables conditioning
both generator and discriminator to auxiliary input data such as a class label. Radford et
al. introduced a Deep Convolutional GAN (DCGAN) [RMC16] by employing CNNs in
the generator and discriminator. Arjovsky et al. proposed the Wasserstein GAN (WGAN)
[ACB17] which reduces the problems of mode collapse by reformulating the minimax
problem using the Earth-Mover distance [RTG00]. Mao et al. introduced the Least Squares
GAN (LSGAN) [Mao+17] which reduces the vanishing gradient problem by establishing
a least squares loss function for the discriminator network. Mejjati et al. [Ala+18] and
Zhang et al. [Zha+19] proposed attention-based GANs which further improved the quality

34



2.5 Generative Models

of the generated images. Recently, also Transformer-based GANs [JCW21; Lee+22] have
been proposed which achieve competitive results on low-resolution image generation tasks
in comparison to CNN-based GANs. However, they do not reach the performance of
CNN-based GANs on high-resolution benchmarks.

2.5.3 Diffusion Models

Diffusion models are inspired by diffusion processes in non-equilibrium thermodynamics
[Soh+15]. They belong to a class of deep generative models which are based on two
processes, a forward diffusion process and a reverse diffusion process. The forward
diffusion process impairs the input data incrementally through the iterative addition of
noise. In the subsequent reverse process, a neural network tries to reconstruct the original
input data progressively by learning to undo the diffusion process [Cro+23].

According to Yang et al. [Yan+22] and Croitoru et al. [Cro+23], diffusion models
can be categorized into three main categories: denoising diffusion probabilistic models
(DDPM), score-based generative models, and stochastic differential equations. DDPMs
are the most relevant category of diffusion models which are explained in the following
subsection. Please refer to [Yan+22; Cro+23] for further details about all types of diffusion
models.

Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [HJA20; ND21] are based on a
forward process and a reverse process as all three forms of diffusion models. Figure 2.14
illustrates the typical architecture of a DDPM. The forward diffusion process gradually
perturbs the input data x0 with Gaussian noise. This process can be formulated as a
Markov chain, where x1, x2, ..., xT are the noised versions of the input data after t steps.

pθ (xt-1|xt )

q (xt |xt-1)

x0 

...

...

xt-1 xt  xT  

Forward Process 

Reverse Process 

...

...

Figure 2.14: Overview of a diffusion model. The forward process gradually adds noise to
an input image x0. The reverse process aims to incrementally remove noise.

35



Chapter 2 Background

q(xt) represents the probability distribution of the data after t steps. The Markov chain is
defined as

q(xt |xt−1) = N

(

xt |
√

1 − βtxt−1, βt I
)

(2.30)

where N (x |µ,Σ) represents a multivariate Gaussian distribution with mean vector µ

and covariance matrix Σ which creates x. I is the identity matrix which has the same
dimensions as the input data x0. βt ∈ [0, 1) is a scalar variance parameter that can attain
different values for different t [Cro+23].

In the reverse stage, the DDPM can generate new samples from the data distribution
q(x0) by starting with a sample xT ∼ N (0, I ) and reversing the process of adding noise.
For removing the noise, a neural network pθ(xt−1 |xt) = N (xt−1 |µθ(xt, t),Σθ(xt, t)) with
learnable parameters θ is trained that receives the noisy input xt and predicts mean µθ(xt, t)

and variance Σθ(xt, t)). The training objective is to minimize an evidence lower-bound of
the negative log-likelihood

E LBO = Eq

[

KL(q(xT |x0)| |p(xT ))
︸                     ︷︷                     ︸

LT

+

T∑

t=2

KL(q(xt−1 |xt, x0 | |pθ(xt−1 |x)))
︸                                  ︷︷                                  ︸

Lt−1

− log pθ(x0 |x1)
︸             ︷︷             ︸

L0

]

(2.31)

where each term is a KL divergence between two Gaussian distributions that can be
evaluated in closed form. Please note that the first term LT of equation (2.31) can be
ignored during optimization as it does not depend on the neural network parameters θ.
The last term L0 represents a reconstruction loss similar to the ELBO of the variational
autoencoder in equation (2.20).

2.6 Computer Vision Tasks

This dissertation deals with a large variety of different computer vision tasks including
perception tasks, such as classification, 2D object detection, 3D object detection, semantic
segmentation, instance segmentation, 6D pose estimation, optical flow estimation, and
scene flow estimation. Furthermore, this work concerns generative tasks, such as image
generation and image inpainting. The following subsections thematize each of these
tasks, giving a definition, presenting solution approaches, and pointing out challenges.
Figures 2.15, 2.17 and 2.21 to 2.24 illustrate these tasks with different example images.

36



2.6 Computer Vision Tasks

(a) Classification with label “cat” (b) Localization with label “cat”

Sheep 1

Sheep 2

(c) 2D object detection

Sheep 1

Sheep 2

(d) 3D object detection

Sheep

Sky

Meadow

(e) Semantic segmentation

Sheep 2

Sheep 1

Meadow

Sky

(f) Instance/panoptic segmentation

Figure 2.15: Overview of different computer vision perception tasks.

37



Chapter 2 Background

2.6.1 Classification

Classification describes the task of categorizing the given input data into a limited set of
classes. In computer vision, the input data can be for example an RGB image, a point
cloud, or a video. The output of a classification model is typically a classification score
vector

s = (s1, ..., sK) ∈ R
K (2.32)

where each element si is the predicted probability, that the input data contains an object of
class i. The maximum value in s determines the most likely class. Assuming the existence
of K classes, an additional class score s0 can be added, indicating the probability that
none of the K classes is in the data. Figure 2.15a shows an example RGB image of a cat
whereas the classification categorizes the entire image as “cat” without localizing the cat
in the image.

Image classification performance has faced tremendous improvements due to the
emergence of CNNs. Starting LeNet-5 [LeC+98], CNNs became incrementally more
powerful with the development of AlexNet [KSH12], VGGNet [SZ15], GoogLeNet
[Sze+15], and ResNet [He+16] (see sections 2.2.1 and 2.2.2). Concurrently, many
computer vision datasets have been published accelerating the advancements in image
classification and other perception tasks. These include MNIST [LeC98], CIFAR-10 and
CIFAR-100 [Kri09], the PASCAL Visual Object Classes (VOC) Challenge [Eve+10], the
Scene Understanding (SUN) database [Xia+10] and the ImageNet dataset [Den+09] with
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus+15]. Recently,
image classification has been further improved by attention mechanisms [Jad+15; HSS18]
and Transformer architectures [Che+20b; Dos+21] (see sections 2.2.3 and 2.2.4).

Point cloud classification in recent years has been mainly driven by 3D CNNs [MS15;
Wu+15], projection-based methods [Shi+15; Su+15a], point-based methods [Qi+17a;
Qi+17b], and Transformer-based methods [Zha+21c; EBD21; Lu+22]. A large number
of point cloud based classification benchmarks has been proposed including the Sydney
Urban Objects Dataset [De +13], the ModelNet shape classification benchmark [Wu+15],
the Semantic3D Large-Scale Point Cloud Classification Benchmark [Hac+17], the ScanNet
dataset [Dai+17], and the ScanObjectNN dataset [Uy+19].

2.6.2 Localization

Localization is a regression task with the goal of finding instances of a given object class
in the data and predicting a 2D bounding box around the object. Figure 2.15b shows a
localization example where a cat is localized in an RGB image and framed with a 2D
bounding box. The regression output is typically a 4D vector

(xc, yc,w, h) ∈ R
4 (2.33)

38



2.6 Computer Vision Tasks

with center coordinate (xc, yc), width w, and height h or the corner coordinates

(x0, y0, x1, y1) ∈ R
4 (2.34)

of the bounding box. Most related work directly combines the localization task with a
classification task, which is known as 2D object detection (see section 2.6.3).

2.6.3 2D Object Detection

2D object detection describes the task of finding desired objects in the given input data,
framing them with a 2D bounding box, and classifying each object. The output is a
set of bounding boxes with individual class labels or score vectors, using encodings
from equations (2.32) to (2.34). Unlike, a pure classification or localization task, object
detection enables the recognition of multiple objects of different classes in the same input
data. Figure 2.15c shows an example of a 2D object detection in an RGB image, where
two sheep are detected using individual bounding boxes with class labels.

Traditional object detection methods [PP00; VJ01; SK04; Fel+09] rely mostly on
hand-crafted features which were subsequently processed by bounding box regressors and
classifiers. With the occurrence of deep learning, the development of object detectors
is split into two-stage and one-stage approaches. Two-stage object detectors [Gir+14;
Gir15; Ren+17; Lin+17a] have a region proposal network in the first stage which predicts
areas in the image that potentially contain objects. The second stage classifies the region
proposals, removes duplicate detections, and adjusts the bounding boxes [WSH20].

One-stage object detectors [Ser+14; Red+16; Liu+16; Lin+17b; LD18; Dua+19], in
contrast, are end-to-end trainable networks that directly predict bounding box coordinates
and classification scores without separate stages. During the first years of the coexistence
of both object detector types, the two-stage detectors were considered as more precise but
slower than the one-stage detectors. However, Lin et al. [Lin+17b] were the first who
overcome the limited precision of one-stage detectors by introducing the focal loss. This is a
dynamically scaled variant of the cross-entropy loss that considers class imbalances. Using
the focal loss, their proposed RetinaNet outperformed all previous two-stage detectors
while matching the high speed of previous one-stage detectors [Lin+17b; WSH20].

After a long period in which most object detectors were based on CNNs [Gir+14;
Ser+14; Gir15; Red+16; Liu+16; Ren+17; Lin+17a; Lin+17b; LD18; Dua+19], the
introduction of the Transformer [Vas+17] has brought a turnaround. Many recent 2D
object detectors [Car+20; Sun+21; Li+22d; Fan+23] have been developed using the
Transformer as a building block and outperforming previous CNN-based approaches.

39



Chapter 2 Background

2.6.4 3D Object Detection

3D object detection is the task of regressing and classifying 3D bounding boxes for specific
objects in the input data. A 3D bounding box is defined by the vector

b = (xc, yc, zc, l,w, h, θ, φ, ψ) ∈ R
9. (2.35)

with center point (xc, yc, zc), length l, width w, height h and the 3D orientation of the
bounding box (θ, φ, ψ). 3D object detectors for automotive applications [ZT18; YML18;
Qi+18; Lan+19] often assume the rotation around the x-axis ψ and the rotation around the
y-axis φ to be zero so that the regression problem reduces to b ∈ R7.

3D object detection can be based on single RGB images [Che+16; Mou+17; BL19;
Ma+19b; LWT20], stereo RGB images [Che+17b; QWL19; Pon+20; Guo+21b], single
RGB-D images [SX16; LG17; Qi+18], LiDAR point clouds [ZT18; YLU18; YML18;
Lan+19] or a fusion of RGB data with LiDAR point clouds [Che+17c; Ku+18; Pai+21].
Unlike 2D object detection which does not require estimating object sizes or distances, 3D
object detection can benefit from depth information in the form of stereo input or point cloud
data [Wan+23]. Due to the very accurate distance measurement of LiDAR sensors and
the high-quality texture acquisition ability of modern RGB cameras, methods combining
these two modalities [Cai+23; Wu+23; Hu+23] achieve currently the highest accuracies in
the 3D object detection challenges of KITTI [GLU12] and nuScenes [Cae+20].

The KITTI dataset [GLU12; Gei+13], named after the Karlsruhe Institute of Technology
(KIT) and the Toyota Technological Institute (TTI), is one of the most influential datasets
in the field of autonomous driving. It contains six hours of driving data in and around
Karlsruhe including RGB front camera images and LiDAR point clouds. Annotations are
provided for a variety of tasks, such as 3D object detection, object tracking, and optical
flow estimation. Figure 2.16 illustrates an example scene of the KITTI dataset consisting
of a front camera image and the corresponding LiDAR point cloud with 3D bounding box
annotations. Please note that only the objects within the field of view of the front camera
are annotated.

Further relevant datasets and challenges for 3D object detection are the ScanNet dataset
[Dai+17], the SUNRGB-D 3D Object Detection Challenge [SLX15], the Argoverse
datasets [Cha+19; Wil+21], and the Waymo Open Dataset [Sun+20]. All of them provide
LiDAR point clouds with annotations for oriented 3D bounding boxes including class
labels. The recently published Cityscapes 3D dataset and benchmark [Gäh+20], however,
provides only RGB data as input for performing 3D object detection in the automotive
domain.

Please refer to section 3.2.2 for more details about LiDAR-based 3D object detection
methods.

40



2.6 Computer Vision Tasks

Figure 2.16: Front camera image (top) and LiDAR point cloud (bottom) of the KITTI
dataset with annotated 3D bounding boxes. Image adapted from [GLU12].

2.6.5 Semantic Segmentation

The goal of semantic segmentation is to classify each pixel of a given image. Figure 2.15e
shows an example of an image containing three different classes, namely Sky, Sheep,
and Meadow. Please note, that semantic segmentation does not differentiate between
different instances belonging to the same class. The principle of semantic segmentation
can also be extended to the three-dimensional space, specifically referred to as 3D semantic
segmentation. In this case, given a point cloud, each point is assigned a semantic label.

2.6.6 Instance/Panoptic Segmentation

Instance segmentation assigns each pixel in a given image an instance identifier. That
allows for differentiating between multiple objects of the same class as illustrated in
figure 2.15f. The process of assigning each pixel a class label together with an instance
label is denoted as panoptic segmentation. Analog to 3D semantic segmentation, also
instance segmentation and panoptic segmentation can be extended to the three-dimensional
space.

41



Chapter 2 Background

2.6.7 6D Pose Estimation

6D pose estimation aims to obtain an accurate prediction of the pose of an object, i.e. its
position and orientation in the three-dimensional space. Unlike 3D object detection, no
bounding box or extent parameters are estimated. Instead, all objects are known and their
3D models or meshes are given.

A 6D pose is defined by the vector

b = (xc, yc, zc, θ, φ, ψ) ∈ R
6 (2.36)

with the center point (xc, yc, zc) and the 3D orientation of the object (θ, φ, ψ). Most pose
estimators, however, predict the pose in the form of a rigid transformation

p = [R | t] ∈ SE(3) (2.37)

where R ∈ SO(3) is a 3D rotation matrix and t ∈ R3 is a 3D translation vector. The 6D
pose transformation p converts an object’s coordinates, defined in its own coordinate
system, into a global reference coordinate system. Figure 2.17 shows an example of an
RGB input image (2.17a) and its corresponding 6D pose estimation (2.17b).

(a) RGB input (b) 6D pose estimation

Figure 2.17: Visualization of the prediction of all 6D object poses (b) in a given RGB
image (a). For each object, an oriented 3D coordinate system is drawn along with the
rendered object transformed by the estimated 6D poses. Images adapted from [HFS22].

Before the emergence of deep learning methods, 6D pose estimators [Low99; Low04;
RD06; BTV06; Rot+06] have mostly used a single RGB image as input, extracted
hand-crafted features, and matched them to corresponding features in the given 3D
models. By leveraging the established 2D-3D correspondences belonging to one object, a
Perspective-n-Point (PnP) algorithm [FB81] can be employed to estimate the 6d pose of
that object.

42



2.6 Computer Vision Tasks

With the occurrence of deep learning, CNN-based methods [Xia+18; Keh+17; TSF18]
have been proposed which directly regress the 6D object poses. A very popular method
among them is PoseCNN by Xiang et al. [Xia+18] which is illustrated in figure 2.18. Given
an RGB image, the first stage extracts features by convolutional layers and down-samples
them by max pooling. The second stage uses further convolutions to create task-specific
embeddings. In the third stage, PoseCNN predicts pixel-wise semantic labels, estimates
the 2D pixel coordinates of the object centers, and regresses their distances to the camera.
Using the semantic labels, PoseCNN generates 2D bounding boxes for all objects. The
3D translation of an object is computed based on its center and distance, assuming known
camera intrinsics. Finally, the 3D rotation in the form of a quaternion is estimated for
each object by applying fully connected layers on the 2D bounding box regions.

There are also 6D pose estimation methods, using a single depth image or a single point
cloud as input [Hin+16; Vid+18; HB20; Gao+20; Gao+21]. Since the input modality
offers useful geometric information, it enables precise pose estimation on datasets where
texture information is not required, such as the T-LESS dataset [Hod+17]. However, as
methods relying only on depth or point cloud data cannot exploit texture information, they
are not suitable for pose estimation tasks where the texture is required to differentiate
between otherwise ambiguous object poses, e.g. in the YCB-Video dataset [Xia+18] or in
the HOPE dataset [Tyr+22].

A RGB Image

Labels

64
128

256 512 512

64

64
64 #classes

64

Feature Extraction Embedding Classification / Regression

128

128
128 3 ×

#classes

128

512

512

512

4096 4096

4 ×

#classes

For each RoI

Center 

direction X

Center 

direction Y

Center 

distance

RoIs

6D Poses

Convolution

+ ReLU

Max Pooling

Deconvolution

Addition

Hough Voting

RoI Pooling

Fully Connected

Figure 2.18: Overview of PoseCNN. Image from [Xia+18].

43



Chapter 2 Background

Methods combining RGB and depth data [Bra+14; BI15; Wan+19; He+20; He+21] are
currently the most precise methods as they allow the combination of visual and geometric
information. A seminal work in this field was the PVN3D network by He et al. [He+20]
which performs 6D pose estimation based on predicted 3D keypoints and a semantic
segmentation. Their architecture is illustrated in figure 2.19. Given an RGB-D image,
PVN3D extracts features from the RGB channels with a CNN pre-trained on ImageNet
[Den+09]. The depth image is used to extract features with a PointNet++ [Qi+17b]. A
DenseFusion network [Wan+19] is employed to combine the visual with the geometric
features resulting in a single feature tensor. This representation is used as input for
three MLPs regressing point-wise 3D keypoint offsets, semantic labels, and center point
offsets. He et al. utilize eight target keypoints for each object selected by the Farthest
Point Sampling (FPS) algorithm [Eld+97] using the known object meshes. They apply a
clustering algorithm to differentiate between different object instances and let all points
belonging to one instance vote for their target keypoints. Finally, the 6D pose estimates
are computed using a least-square fitting algorithm [AHB87].

FFB6D [He+21] is the successor of PVN3D [He+20] with a significant improvement of
the feature extraction network. Instead of independently processing RGB and depth input
data, the authors propose a deep fusion architecture with multiple bidirectional fusion
modules. Figure 2.20 illustrates the network architecture. Similar to PVN3D, FFB6D uses
an encoder-decoder CNN for visual feature extraction and a PointNet-based [Qi+17a] point
cloud network for geometric feature extraction. However, in each latent hierarchy, they
apply a point-to-pixel fusion module and a pixel-to-point fusion module. These modules
fuse visual and geometric features by exploiting the pixel-to-point correspondences in the
original RGB-D input images. He et al. justify the better performance of this approach by
the hypothesis that RGB information can help in the geometric feature extraction process
and point cloud information can improve the visual feature extraction. Furthermore,
FFB6D uses the Scale Invariant Feature Transform Farthest Point Sampling (SIFT-FPS)
algorithm [Low99] to select eight keypoints per object, which are more salient than
keypoints selected by FPS.

Over the last few years, many datasets and challenges related to 6D pose estimation
have been proposed. Among the most important challenges in this field are the BOP
challenges for 6D object pose estimation [Hod+18; Hod+20; Sun+23] aiming to compare
6D pose estimators on a variety of different datasets and metrics. The datasets include
YCB-Video [Xia+18], T-LESS [Hod+17], LineMOD [Hin+11b], Occlusion LineMOD
[Bra+14], and HomebrewedDB [Kas+19], and HOPE [Tyr+22]. Please refer to chapter 4
for more details about 6D pose estimation methods and datasets.

44



2.6 Computer Vision Tasks

Figure 2.19: Overview of PVN3D. Image from [He+20].

3D Keypoints 
Detection

3D-keypoint-based 6D Pose Estimation

Instance Semantic 
Segmentation

Least-Squares 
Fitting

Full Flow Bidirectional Fusion Network

Convolution 
Layer

Point Cloud
Network Layer

Fusion from 
Point to RGB

Fusion from 
RGB to Point

RGB
Features

Point Cloud
Features

The pipeline of FFB6D. A CNN and a point cloud network is utilized for representation learning of RGB image and point cloud respectively. In

XYZ Map

(b1) Pixel-to-point Fusion From RGB Feature to Point Cloud Feature

Point Cloud

RGB Feature Map

Point Cloud Feature

Kr2p nearest neighbours

Max pooling & Shared MLP

Shared MLP

Fused feature

XYZ Map

Point Cloud

RGB Feature Map

Point Cloud Feature

(b2) Point-to-pixel Fusion from Point Cloud Feature to RGB Feature

Kp2r nearest neighbours

Shared MLP & Max pooling

Shared MLP

Fused feature

Figure 2.20: Overview of FFB6D. Image from [He+21].

45



Chapter 2 Background

2.6.8 Optical Flow Estimation

Optical flow estimation describes the task of predicting the motions of objects within
an image. It provides valuable insights about dynamics within a scene, useful for many
computer vision applications including object tracking, visual surveillance, and navigation
[Tu+19]. As motions in our world encompass three dimensions, they have to be projected
onto the two-dimensional image plane in order to obtain optical flow.

Formally, optical flow is defined as a two-dimensional vector field

f (x, y, t) = [ fx, fy]
T ∈ R2 (2.38)

representing the velocity and direction of each pixel (x, y) at time t. Figure 2.21c provides
an example of estimated optical flow given two RGB input images at time t0 (figure 2.21a)
and time t1 < t0 (figure 2.21b).

(a) RGB image at time t0 (b) RGB image at time t1 > t0

(c) Optical flow (d) Scene flow

Figure 2.21: Optical flow and scene flow ground truth based on two consecutively recorded
RGB images at time t0 and t1. optical flow (bottom left) displays motion parallel to the
image plane only. The optical flow (HSV color-coded by direction) describes only the
motion projected on the image plane. The scene flow (visualized with 3D vectors in a
point cloud) describes the unmitigated 3D motion. Images from [Sch+18].

46



2.6 Computer Vision Tasks

2.6.9 Scene Flow Estimation

Scene flow is the extension of optical flow from two to three dimensions. It describes the
motion of objects in the three-dimensional space. Scene flow is defined as a time-dependent
vector field of three-dimensional vectors

f (x, y, z, t) = [ fx, fy, fz]
T ∈ R3 (2.39)

pointing in the direction of movement. The absolute value of the scene flow vectors

| f (x, y, z, t)| =

√

f 2
x + f 2

y + f 2
z corresponds to the velocity of the movement. Figure 2.21d

depicts the 3D scene flow vectors representing the motion from the given RGB images
(figures 2.21a and 2.21b).

As scene flow estimation requires point-wise vector annotations, labeling scene flow
datasets is very time-consuming and expensive. Thus, previous work [Dew+16; Ush+17;
UE18; VSM18; Bau+19] relies on parts of the KITTI dataset [GLU12] extending it for
scene flow estimation based on computations. Another common approach is, to train
with the large-scale synthetic scene flow dataset FlyingThings3D [May+16] and fine-tune
the model with the KITTI Scene Flow (KITTI-SF) dataset [MHG15; MHG18] as done
by [Gu+19; LQG19; LYB19]. However, both FlyingThings3D and KITTI-SF contain
one-to-one correspondences between consecutive point clouds which is not the case in raw
LiDAR point clouds. The recently published large-scale real-world automotive datasets
nuScenes [Cae+20], Argoverse [Cha+19], Argoverse 2 [Wil+21] and the Waymo Open
Dataset [Sun+20] do not contain scene flow annotations. However, based on annotated 3D
object tracks and ego-motion, a rough estimate for scene flow ground truth annotations
can be computed.

Please refer to chapter 3 for related work and more details about scene flow estimation.

2.6.10 Image Generation

Image generation refers to the task of creating new images based on an existing image
dataset. The goal is to create images which are not in the dataset but indistinguishable
from existing images. Image generation can be either unconditional or conditional.
Unconditional image generation describes the task of generating images without any
specific constraint. In this case, the model generates image samples which are solely based
on its knowledge about the data extracted during training. In contrast, conditional image

generation refers to generating samples constrained to an additional input, for example,
a class label, a textual description, or another image. This additional input serves as a
condition for the model guiding the generation process and enabling greater control.

Figure 2.22 shows four example images, generated with an unconditional generative
model trained on the FFHQ 1024 × 1024 dataset [KLA19]. Figure 2.23 depicts example
images, created by a generative model conditioned on different classes of the ImageNet
dataset [Den+09].

47



Chapter 2 Background

The most common models for image generation are VAEs, GANs, and diffusion models.
Please refer to section 2.5 for more details about these generative models.

Figure 2.22: Results from an unconditional image generation task on the FFHQ 1024 ×

1024 dataset. Images taken from [Zha+22a].

(a) Class “maltese dog” (b) Class “volcano” (c) Class “cup”

Figure 2.23: Results from a conditional image generation task on the ImageNet dataset.
The generated images are conditioned on the class labels “maltese dog” (a), “volcano” (b),
and “cup” (c). Images taken from [SST23].

2.6.11 Image Inpainting

Image inpainting, also called image completion, is a generative computer vision task where
missing parts of an input image are filled with plausible content. It can be considered as
a form of conditional image generation where the creation of missing image regions is
conditioned on the data from the existing regions. The goal is to achieve visual coherence
between the existing and the generated regions resulting in an image indistinguishable
from unimpaired images of the reference dataset.

Figure 2.24 shows an image inpainting example with a partly masked input image
(a), the resulting inpainted image (b), and the corresponding ground truth image (c). It

48



2.6 Computer Vision Tasks

becomes evident that the unmasked area of the input image corresponds to the ground
truth image while the masked area is filled with new data. Even though the filled region
deviates notably from the ground truth image, it looks realistic to a certain extent.

(a) RGB input with mask (b) Inpainting result (c) Ground truth

Figure 2.24: Visualization of an example for image inpainting. Given an RGB input image
with a masked area (a) an inpainting model generates a new image (b) where the masked
area is filled with new content maintaining consistency between the filled region and the
surrounding region. The image in (c) shows the corresponding ground truth image which
differs slightly in the masked area from the inpainting result. Images taken from [LJ21].

Traditional image inpainting methods can be mainly divided into diffusion-based
methods and patch-based methods spreading pixel information gradually in the missing
area or copying useful image patches to fill the missing area [Elh+20; Qin+21]. Significant
progress has been achieved with CNN-based inpainting methods being able to learn
high-level features of the given dataset and thus enabling the generation of more realistic
image reconstructions [Zha+23].

The introduction of generative models, such as VAEs [KW14] and GANs [Goo+14], has
led to a substantial enhancement in the quality of image inpainting techniques [Qin+21].
As these models can generate multiple reasonable solutions for an inpainting problem,
a task variation, called Pluralistic Image Completion, has been defined by Zheng et
al. [ZCC19]. Pluralistic image completion aims to meet the possible uncertainty and
variability in real-world data by generating multiple and diverse plausible solutions.

Furthermore, various attention mechanisms and Transformer architectures have been
beneficially leveraged for image inpainting enhancing the quality and the diversity
of reconstructions [Xie+19; Zen+20a; QBZ21; Li+22c; SZG23]. With the recent
advancements of diffusion models [HJA20] for many different computer vision tasks, also
image inpainting has been targeted successfully based on this technology outperforming
most VAE-based and GAN-based methods [Lug+22; Xie+23; YCL23].

Please refer to section 5.2.3 for more specific related work about image inpainting
relevant to this dissertation.

49





Chapter 3

Deep Temporal Point Cloud Fusion and

Multi-task Learning for Automated

Driving Perception

This chapter targets the problem of deep LiDAR point cloud fusion and multi-task learning
for 3D object detection and scene flow estimation in autonomous driving scenarios as
depicted in figure 3.1. Parts of this chapter are based on my publication “PillarFlowNet:
A Real-time Deep Multitask Network for LiDAR-based 3D Object Detection and Scene
Flow Estimation” [DB20], written by Fabian Duffhauss and Stefan A. Baur, which has
been published in the Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 2020. Please refer to the first main row of tables 1.1 and 1.2
to see the fusion modalities and most important challenges addressed in this chapter in
comparison to the other main chapters.

3.1 Introduction

Automated vehicles require a robust and precise understanding of their environment in
order to drive safely on public roads. In order to fulfill this requirement, it is crucial to
obtain accurate knowledge about other road users within the surrounding area including
their position, expanse, and motion.

The position and the expanse of road users can be attained by performing a 3D object
detection, which predicts oriented 3D bounding boxes for each object in a scene. For
inferring information about the motion of road users in dynamic scenes, a 3D scene flow
estimation can be conducted. 3D scene flow associates a displacement vector to each point
in a point cloud, propagating it forward to its corresponding location in the consecutive
point cloud [Ved+99]. Estimating 3D scene flow using LiDAR data is no trivial task:
The inherent sparsity of measured points in 3D space renders the problem of scene flow
estimation ill-posed, as there are practically no point-wise one-to-one correspondences
present in two consecutive point clouds. Instead, scene flow must be inferred from the
underlying motion of objects in a scene, irrespective of whether a displacement between

51



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

Figure 3.1: Work principle of our multi-task learning network PillarFlowNet. Based on
two consecutively recorded LiDAR point clouds, PillarFlowNet detects objects as 3D
bounding boxes and predicts scene flow at the same time. This scene shows the ego vehicle
performing a sharp right turn. For color coding, the predicted flow vectors are projected
onto the ground plane and colored according to the standard HSV (Hue Saturation Value)
wheel next to the ego vehicle.

two point clouds is caused by the sensor’s ego-motion or whether it is caused by a moving
agent.

Recently, the research community’s interest in LiDAR object detection and LiDAR
scene flow estimation has grown but little work has been conducted towards unifying
those tasks, i.e. solving them with a single network. To the best of our knowledge, there
exists only one previous method for multi-task learning for these tasks using LiDAR
data, which is the PointFlowNet method by Behl et al. [Beh+19b]. Their network relies
on computationally expensive 3D convolutions in order to find correspondences over
the space and time domain, rendering their network architecture too slow for real-time
applications. We propose a novel network utilizing a different representation, which is not
only significantly faster but also much more accurate in both tasks, outperforming their
network in predicting LiDAR scene flow and objects at the same time. It relies on a pillar
feature representation in combination with efficient 2D convolutions. This gain in speed
makes our network the first LiDAR object detection and scene flow multi-task network
suitable for systems with real-time constraints.

52



3.1 Introduction

Point-wise scene flow in combination with object detection is more generic than object
tracking approaches, as the motion of objects that were not explicitly detected can still
be reasoned about. Traditional approaches using object detection in combination with
tracking have advantages when it comes to the stability of detections and vehicle tracks.
However, tracking cannot capture motion in cases where no vehicle has been detected.
Additionally, tracking frameworks need time to initialize and update their motion model
in order to predict the meaningful state of a tracked object. In contrast to that, our network
computes meaningful motion estimates even for objects it has not been specifically trained
for as shown in figure 3.2.

Figure 3.2: PillarFlowNet captures motion at a very detailed level. Color-coding the
predicted flow vectors by length makes pedestrians and cyclists easily distinguishable
from vehicles and static objects.

Our main contributions concerning the environmental perception of automated vehicles
are:

• We propose PillarFlowNet, a novel end-to-end trainable network for simultaneous
LiDAR object detection and scene flow estimation.

• Our method significantly improves multi-task LiDAR scene flow estimation and
object detection accuracy compared to the state-of-the-art.

• PillarFlowNet is the first multi-task LiDAR scene flow and object detection network
to achieve real-time performance.

53



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

3.2 Related Work

Our method lies at the intersection of LiDAR scene flow estimation, LiDAR object
detection, and multi-task learning. The following paragraphs present relevant literature
for all three categories.

3.2.1 LiDAR-based Scene Flow Estimation

Over the years, multiple data representations for LiDAR point clouds have been established
for estimating scene flow. The most prominent methods are based on graphs, point sets,
and grids.

Graph-based Methods

Dewan et al. [Dew+16] were among the first to research estimating LiDAR scene
flow using energy minimization on a factor graph representation of consecutive point
clouds. Their approach assumes geometric constancy and parameterizes local geometry
with Signature of Histograms of OrienTations (SHOT) descriptors [TSD10] to find
correspondences. Recently, Gu et al. have proposed HPLFlowNet [Gu+19], capable
of estimating LiDAR scene flow on two consecutive point cloud frames with up to 86k
points per frame. They transform the unordered point cloud onto a permutohedral lattice
[ABD10] and employ Bilateral Convolutional Layers (BCL) [KJG15; JKG16] to predict
scene flow in an end-to-end fashion.

Point Set Based Methods

FlowNet3D by Liu et al. [LQG19] operates on pre-filtered sets of points. It simultaneously
learns hierarchical features based on a PointNet++ [Qi+17b] architecture and flow
embeddings representing point motions before predicting point-wise 3D scene flow
vectors.

The follow-up work by Liu et al. [LYB19], called MeteorNet, introduces a Meteor

module to compute point-wise features for points and their neighbors. Features and
spatiotemporal differences of neighboring points are passed into a feature encoder inspired
by PointNet++ [Qi+17b], aggregated recursively, and shared using max pooling and
feature concatenation.

Graph-based and point set based methods have in common that they tend to work
well on small point sets. The method reporting the largest point cloud to be processed
is HPLFlowNet [Gu+19] with 86k points, while FlowNet3D [LQG19] and MeteorNet
[LYB19] report experiments with around 8k points.

Even in the case of reducing the point cloud size to 8k points, FlowNet3D has a runtime
of 325.9 ms which is more than three times larger than acceptable for real-time applications.

54



3.2 Related Work

For the sake of comparison, a Velodyne HDL64 LiDAR sensor records around 128k
points per revolution at 10 Hz. All of these methods circumvent this problem by removing
ground points in a preprocessing step, which has several disadvantages: Besides costing
precious runtime, information is lost which can be fatal, especially in cases where the
ground segmentation gives false results.

Grid-based Methods

Ushani et al. [Ush+17; UE18] were the first to apply machine learning to LiDAR scene
flow estimation, inserting point clouds with removed static background into 3D occupancy
grids. Scene flow is estimated using binary classifiers in order to find matches of feature
columns between consecutive occupancy grids. More recent work tackles LiDAR scene
flow estimation using Deep Learning. Vaquero et al. [VSM18] and Baur et al. [Bau+19]
use range images as data representation, projecting point clouds into 2D grids and applying
2D convolutions to estimate flow. Wang et al. [Wan+18a] use a ResNet-50 architecture
[He+16] applying 3D convolutions on an occupancy grid predicting a voxel flow map.
They introduced Deep Parametric Continuous Convolutional (DPCC) layers which are then
used as refinement on the 3D occupancy flow map. DPCC layers employ the Euclidean
space directly as a support domain with MLPs as kernel functions. Compared to other
publications such as [Beh+19a; LYB19; LQG19; Gu+19; VSM18; Bau+19; Wu+20] they
report exceptionally good scene flow precision, which is why we chose to implement their
approach as a baseline in section 3.6.

3.2.2 LiDAR-based 3D Object Detection

Recent methods for LiDAR-based 3D object detection are mostly projection-based,
volumetric-based, or point-based [AB22]. Please refer to sections 2.3.1 to 2.3.3 for more
background about these point cloud processing principles.

Most relevant for our work are volumetric-based methods. A seminal work in this
field has been the single-stage, end-to-end trainable 3D object detector VoxelNet proposed
by Zhou et al. [ZT18]. It first subdivides the LiDAR point cloud into a voxel grid and
then applies Voxel Feature Encoding (VFE) layers to each voxel. The VFE layers perform
hierarchical feature encoding based on PointNet [Qi+17a]. A fully connected network
with maximum pooling creates voxel-wise features which are collected in a sparse 4D
tensor. After some 3D convolutional middle layers, the resulting tensors are ultimately
fed into a Region Proposal Network (RPN) [Ren+17] which outputs a map of objectness
probability scores and a regression map for bounding box parameters.

As VoxelNet has a huge computational cost due to the large 3D convolutional backbone
network, Yan et al. have improved VoxelNet by introducing more efficient sparse
convolutions in their network SECOND [YML18]. Additionally, they adopted the focal
loss [Lin+17b] for bounding box classification to tackle the problem of imbalances between

55



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

the foreground and background classes. Lang et al. [Lan+19] have further improved
SECOND by splitting the input point cloud into vertical 3D columns (pillars) instead of
voxels and by introducing a pillar feature network. The pillar feature network utilizes
PointNet [Qi+17a] to learn feature vectors from all or a subset of points within that pillar.
The features are encoded in a pseudo image enabling the use of an efficient 2D object
detection backbone network without requiring 3D convolutions. This allows PointPillars
to predict 3D bounding boxes at very high speed.

3.2.3 Multi-Task Learning

Multi-task learning attempts to learn multiple tasks simultaneously with the goal of
obtaining more general models. While there is a multitude of works that deal with
multi-task learning in general [Tei+18; SK18; Zam+18; WFU15; KGC18] or multi-task
learning specifically for LiDAR applications [Ren+18; Qi+17a; LYU18; Lia+19] there
exists only one paper that deals with simultaneous scene flow estimation and object
detection using LiDAR point clouds: PointFlowNet by Behl et al. [Beh+19a] subdivides
two point clouds into separate voxel grids and uses Siamese VFE layers [ZT18] as feature
encoder to compute independent feature maps for each one of the consecutive point clouds.
These two feature maps are then stacked and fed into a context encoder, which applies
vertical downsampling using three strided 3D convolution layers, enforcing a common
data representation for all tasks. After this, the network is split into different branches,
predicting 3D scene flow for each voxel, ego-motion, and object classification scores
along with residuals for the box proposals. They evaluate the scene flow accuracy of
their network on a subset of the KITTI object detection dataset [GLU12], comparing it to
multiple baseline methods.

The advantages of our method over the method by Behl et al. [Beh+19a] are mainly
twofold: First, our network is significantly more accurate in both object detection and scene
flow estimation. Second, our network is more than twice as fast as theirs, making it the first
LiDAR scene flow and object detection multi-task network capable of running in real-time.
This is mainly due to using a different, more efficient data representation, enabling us to
rely on 2D convolutions instead of computationally expensive 3D convolutions.

3.3 PillarFlowNet Architecture

PillarFlowNet takes two consecutively recorded LiDAR point clouds as input, each
accumulated over 360°. Using a deep neural network, it predicts oriented 3D bounding
boxes for cars and vans as well as a 3D scene flow vector for each point in the first point
cloud. Figure 3.3 shows the overall structure of the network. The network architecture
is subdivided into three parts: Firstly, two feature encoding networks create individual
feature representations of the two input point clouds. Secondly, a convolutional backbone

56



3.3 PillarFlowNet Architecture

Detection Head

LiDAR Point Cloud 𝑡0 3D Object Detection

Scene Flow

Backbone 

Network

Feature Encoding 

Network

LiDAR Point Cloud 𝑡1
Scene Flow 

Head

Feature Encoding 

Network

Figure 3.3: Structure of our proposed multi-task architecture PillarFlowNet. The network
works directly on two consecutive raw point clouds and predicts 3D bounding boxes as
well as scene flow for all points in the scene.

network fuses the point cloud representations and learns a shared feature representation.
Finally, two output heads are employed. The first one is dedicated to 3D bounding box
classification and regression, while the second one performs the estimation of 3D scene
flow vectors.

3.3.1 Feature Encoding Network

In order to encode both input point clouds to be processed efficiently, we use two identical
learning-based feature encoding networks whose structure is illustrated in figure 3.4. It is
based on the pillar feature network introduced in PointPillars by Lang et al. [Lan+19].

P

C
T

C

P
X

Y
Z

P

TD

X

C

Conv1D Max Scatter

Point Cloud 

subdivided into Pillars

Augmented 

Tensor

Learned 

Representation

Compressed

Representation

Pseudo Image of 

the Point Cloud

Y

Figure 3.4: Pillar-based feature encoding network of our method PillarFlowNet. It divides
a raw point cloud into a grid of vertical pillars and learns a feature representation that
can be further processed efficiently without 3D convolutions. The figure shows how
two example pillars containing T < 100 points (green) and T ≥ 100 points (orange) are
processed by the network. Zero padding is applied to fill the tensors with T < 100 points.

The feature encoder subdivides the input point cloud into equally spaced vertical pillars.
Empty pillars are discarded, so that a variable number of pillars P is further processed.
If a pillar comprises more than T = 100 points, a random subset is kept. All remaining
points in each pillar are augmented using Cartesian coordinates relative to the pillar’s
centroid and relative to the pillar’s center, creating a tensor with D = 9 dimensions as

57



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

described in [Lan+19]. Using a linear layer, a batch normalization layer, and a rectified
linear activation function (ReLU), a feature representation of the augmented point cloud
tensor is learned. C denotes the number of channels. A maximum operation is applied
over the T point features in each pillar in order to extract only the most dominant features.

The elements of the resulting tensor with shape (C, P) are scattered into a 3D tensor at
their original pillar locations. This yields a tensor with dimensions (X,Y,C) that serves
as a compact feature representation of the input point cloud which can be efficiently
processed by 2D convolutions exploiting spatial relations between the feature vectors.

3.3.2 Backbone Network

The two pseudo images of the feature encoders are further processed by a convolutional
backbone network which is illustrated in figure 3.5. The backbone network concatenates
the pseudo images and applies strided 2D convolutions to create a compact shared
representation. Features from differently sized tensors are upsampled using transposed
2D convolutional layers, combining high resolution local features with coarser, more
globally aggregated features in a subsequent concatenation. This combines semantic
with positional information. While the full pillar resolution is maintained for scene flow
estimation, for object detection only half of the resolution proved to be sufficient. For
more details regarding number of layers and tensor sizes refer to figure 3.5.

3.3.3 Output Heads

The concatenated feature tensors are further processed by 2D convolutions for object
classification, bounding box regression, and 3D scene flow estimation as shown on the
right side of figure 3.5. For scene flow estimation, a 3D velocity vector is regressed for each
pillar directly. For 3D object detection, a region proposal network with fixed-size anchor
boxes of two orientations as in [ZT18] is applied. For each anchor box, the regression head
predicts the probability that an object is located within it. The regression head predicts
the deviations for each anchor box to the actual object using the same encoding as [ZT18;
YML18]:

b = (∆xp,∆yp,∆zp,∆lp,∆wp,∆hp,∆θp) ∈ R7. (3.1)

58



3.3 PillarFlowNet Architecture

2C

X/2

X/4

X/8

Conv2DX

2C

2C

Concatenation

Concatenation

X

X

X

X

X/2

X/2

X/2

Y

Y/2

Y/8

Y/2

Y/2

Y/2

Y

Y

Y

Y

TrConv2D

2C

2C

2C

4C

4C

4C

Y/4

TrConv2D

Y2C

Pseudo Image of the 

Point Clouds

X

4C4C
4C

3D Object Detection

Scene Flow Estimation

Shared Representation

Conv2D

X

X/2

X/2

2

3

14

3D Scene Flow Detection 

Probabilities

Bounding Box

Regression Y/2

Y

Y/2

Conv2D

Conv2D

Conv2D

Conv2D

Conv2D

TrConv2D

TrConv2D

TrConv2D

TrConv2D

TrConv2D

Conv2D

Conv2D

Conv2D

Conv2D

Conv2D

Figure 3.5: Convolutional backbone network with output heads. Given the learned 3D
representations of both input point clouds, the backbone network initially creates shared
feature tensors applying 2D convolutions. Using transposed convolutions, features from
different aggregation stages are taken into account to finally predict 3D bounding boxes
with detection probabilities and 3D scene flow vectors.

59



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

3.4 Implementation Details

In this section, we present details about our implementation, such as hyperparameters and
the loss function.

3.4.1 Network Details

For object detection, we use anchor boxes with 3.9 m in length, 1.6 m in width, and 1.56 m
in height centered at z = −1 m. We use pillars with a square base of 0.2 m in width
and a maximum number of points within a pillar of T = 100. The linear layer of our
feature encoding network has C = 64 units. We train our network on a single GPU with
a mini-batch size of one. We use an Adam optimizer [KB15] with initial learning rate
1 × 10−3 and an exponential decay factor of 0.85 applied every ten epochs.

3.4.2 Loss

Our proposed network is end-to-end trainable using a multi-task loss function that considers
the homoscedastic (task-dependent) uncertainties, inspired by Kendall et al. [KGC18].
However, instead of combining multiple pixel-based computer vision tasks, we apply the
principle to scene flow estimation and object detection with the total loss

Ltotal =
1

2σ2
OD

LOD +
1

2σ2
SF

LSF + logσ2
ODσ

2
SF, (3.2)

where σOD and σSF are learnable parameters for object detection (OD) and scene flow (SF)
respectively. We initialize these values with one and let them optimize during training.

Object Detection Loss

The object detection loss LOD is comprised of a classification loss Lcls and a bounding
box regression loss Lreg:

LOD = λclsLcls + λregLreg. (3.3)

λcls and λreg are manually chosen weighting factors, which we set to λcls = 1 and λreg = 2.

For classification, the focal loss [Lin+17b] is used, whereby all anchor boxes are
declared as positive or negative like in Faster R-CNN [Ren+17] with positive and negative
IoU thresholds of 0.6 and 0.45 respectively:

Lcls = −
λ

pos
cls

Npos

∑

i

(1 − p
pos
i

)γ log(p
pos
i

) −
1 − λ

pos
cls

Nneg

∑

i

(p
neg
i

)γ log(1 − p
neg
i

). (3.4)

60



3.5 Experimental Setup

λ
pos
cls is the balancing factor and γ the focusing parameter. We set them to λpos

cls = 0.25 and
γ = 2. p

pos
i

and p
neg
i

are the classification probabilities of the i-th positive and negative
anchor box respectively. Npos and Nneg are the numbers of positive and negative anchor
boxes respectively.

For bounding box regression, the smooth L1 loss of Girshick et al. [Gir15] and the
angle loss of Yan et al. [YML18] are combined:

Lreg =
1

Npos

(

L1, smooth(sin(∆θ
g − ∆θp)) +

∑

i∈{x,y,z,l,w,h}

L1, smooth(∆ig − ∆ip)

)

(3.5)

Scene Flow Loss

As most points are static in the world, there usually is an imbalance between static and
dynamic points in real-world datasets. This imbalance impairs the network to generalize
well for both types of points. Therefore, we use a weighted L1 loss for scene flow
estimation

LSF =
1

K

K
∑

k=1

δk



 f
g
k
− f

p
k





1
, (3.6)

where f
g
k

and f
p
k

are the k-th ground truth and the corresponding predicted flow vector
respectively. δk is a weighting factor for dynamic points.

3.5 Experimental Setup

For evaluating our approach and comparing it with the state-of-the-art, we have conducted
extensive experiments which are explained and presented in the following.

3.5.1 Dataset

For our experiments, we have employed the KITTI Object Tracking dataset [GLU12],
which was recorded using a Velodyne HDL64 LiDAR sensor at a frame rate of 10 Hz. We
have used the ego vehicle’s odometry to annotate the static LiDAR points with ground
truth scene flow labels by applying its inverse transformation to every point.

For dynamic objects, point-wise scene flow ground truth is computed using the annotated
bounding boxes and their corresponding transformation between consecutive frames. To
cope with the high imbalance between static and dynamic points in the KITTI dataset, we
have chosen the scene flow loss weighting factor δk in equation (3.6) as δk = 1 for static
points and δk = 10 for dynamic ones.

For training and testing of the proposed network and all benchmarks, we have split
the KITTI Object Tracking dataset into two sets according to table 3.1. The sequences

61



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

are selected in such a way that both sets have on average a similar number of static and
dynamic points. Please refer to appendix A.1 for a more detailed analysis of the KITTI
Object Tracking dataset.

Training data Test data

Selected sequences 0 – 2, 4, 5, 7, 8, 10, 11, 13 – 18, 20 3, 6, 9, 12, 19
Number of frames 5 633 2 349
Total ratio 70.6 % 29.4 %

Table 3.1: Sequence allocation for training and test data of the extended KITTI Object
Tracking dataset.

3.5.2 Data Augmentation and Preprocessing

We apply a set of data augmentation methods to the LiDAR point clouds of our extended
KITTI Object Tracking dataset, in order to improve the generalization performance on
unseen driving sequences. For each of these augmentations, we transform the ground
truth annotations of scene flow vectors and 3D bounding boxes accordingly to ensure
correctness.

Firstly, we mirror the given training data sample with a 50 % chance across the xz-plane.
Secondly, we rotate the data around the z-axis by an angle drawn from the uniform
distribution [−45°, 45°]. Thirdly, we insert additional moving objects sampled from the
training set into each pair of training frames to improve the detection and scene flow
estimation for dynamic objects. When doing so, we paste the objects to their original
position rotated randomly around the z-axis with the restriction to the area in from of the
ego vehicle. Thus, the objects keep their original distance to the LiDAR sensor ensuring a
realistic point density.

Even though the LiDAR point clouds of the KITTI dataset [GLU12] contain points
accumulated over 360◦, we follow the common practice [ZT18; YML18; Lan+19] to
crop the point cloud to [0, 70.4]m × [−40, 40]m × [−3, 1]m for x, y, and z respectively,
as objects are only annotated in the field of view of the front cameras. Figure 3.6 shows
an example scene from the KITTI Object Tracking dataset after data augmentation and
cropping.

3.5.3 Evaluation Metrics

We evaluate our network and the benchmarks on the KITTI Object Tracking test set
presented in table 3.1. For object detection, we use the Average Precision (AP) score at
70 % intersection over union. For scene flow estimation, we use the Average End-point

62



3.5 Experimental Setup

Figure 3.6: Augmented LiDAR point cloud from the KITTI Object Tracking dataset with
annotated 3D bounding boxes. Ten additional objects are inserted in this scene.

Error (AEE), a modified version of the Average Cosine Distance (ACD), the percentage
of inliers (endpoint error EE < 10 cm), and the percentage of outliers (EE > 30 cm).

Since static objects dominate the scene in most autonomous driving scenarios, the
accuracy of scene flow vectors belonging to moving objects has only a small impact on
metrics that consider all points equally. This diminishing effect on metrics is in stark
contrast to the actual relevance of correctly estimating dynamic objects’ motions on the
safety of operation for an autonomous vehicle. Therefore, we additionally report each
metric for dynamic and static points separately in the scene. We define dynamic points as
all points in the first point cloud which are inside ground truth bounding boxes.

Regarding the average cosine distance, we propose an adaption which does not penalize
the prediction of small scene flow vectors where the direction of the ground truth can be
noisy. This is achieved by averaging the cosine distance of Kε ground truth flow vectors,
where



 f
g
k





2
> ε , i.e.

ACD =
1

Kε

Kε
∑

k=1

1 − Sc

(

f
g
k
, f

p
k

)

. (3.7)

Sc is the cosine similarity

Sc

(

f
g
k
, f

p
k

)

=

f
g
k
f

p
k



 f
g
k





2



 f
p
k





2

(3.8)

We set ε = 0.05 as threshold.

63



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

3.5.4 Baseline Methods

We compare the performance of our proposed method to multiple baseline methods:

For simultaneous scene flow & object detection we use PointFlowNet by Behl et al.
[Beh+19a] as a baseline which is to the best of our knowledge the only previous method
for this task combination based on LiDAR data.

For scene flow, we choose the Deep Parametric Continuous Convolutional Network
(DPCCN) as proposed by Wang et al. [Wan+18a] as a baseline. In their study conducted
on their non-public dataset, they report an exceptionally small average endpoint error of
just 7.8 cm. However, for adapting their network to our experimental setup, we exchange
the ResNet-50 with a ResNet-34 which improves the generalization on the KITTI Object
Tracking dataset significantly. Due to its excessive memory requirements, it was not
possible to use FlowNet3D [LQG19] for the full KITTI point clouds. In addition, we
employ PointFlowNet [Beh+19a] focused on scene flow, i.e. with the object detection loss
set to zero.

For object detection, we use PointPillars [Lan+19] as a baseline, as it represents the
previous state of the art in single shot LiDAR 3D object detection. In order to get the best
possible object detection performance, we do not limit the maximum number of pillars.
Additionally, we consider PointFlowNet [Beh+19a] focused on object detection, i.e. with
the scene flow loss set to zero.

Since the baseline methods as reported in their corresponding papers are not adapted
to the KITTI Object Tracking dataset, we have performed an extensive parameter search
in order to find the best-suited hyperparameters and report only the best results achieved
by each method. For all object detection approaches, the data augmentation methods as
described in section 3.5.2 are used. For pure scene flow estimation, augmentation is not
necessary to achieve improved results.

3.6 Results

The results of the experiments described in section 3.5 are presented and discussed in the
following. The quantitative results for the scene flow estimation are shown in tables 3.2
and 3.3. The quantitative object detection results are shown in table 3.4. Results obtained
in a multi-task setting (i.e. simultaneous object detection and scene flow prediction) are
labeled as MT in the tables. Results obtained in a single-task setup (i.e. either object
detection or scene flow estimation) are labeled as ST.

Qualitative results, in form of a visualization of simultaneous predictions of objects and
scene flow of PillarFlowNet are shown in figure 3.7.

64



3.6 Results

Average endpoint error Average cosine distance
Mode Aug All Static Dynamic All Static Dynamic

PointFlowNet MT X 11.7 cm 11.2 cm 39.2 cm 0.267 0.079 0.571
PillarFlowNet MT X 9.2 cm 8.7 cm 29.9 cm 0.216 0.054 0.451

PointFlowNet ST × 10.4 cm 10.1 cm 21.4 cm 0.145 0.090 0.245
DPCCN ST × 9.2 cm 8.6 cm 48.0 cm 0.275 0.049 0.641
PillarFlowNet ST × 6.9 cm 6.7 cm 17.9 cm 0.091 0.046 0.186

Table 3.2: Quantitative results for the scene flow estimation on the average endpoint error
and the average cosine distance metrics. Data augmentation (Aug) is only applied during
training of the multi-task (MT) methods. The best results are printed in bold.

Inlier rates Outlier rates
Mode Aug All Static Dynamic All Static Dynamic

PointFlowNet MT X 58.3 % 59.2 % 34.2 % 5.4 % 4.8 % 19.2 %
PillarFlowNet MT X 79.4 % 80.4 % 52.5 % 4.9 % 4.4 % 18.4 %

PointFlowNet ST × 73.0 % 73.5 % 60.2 % 5.6 % 5.3 % 14.0 %
DPCCN ST × 70.4 % 71.4 % 42.6 % 2.6 % 2.0 % 18.2 %
PillarFlowNet ST × 81.2 % 81.7 % 68.7 % 1.5 % 1.1 % 12.1 %

Table 3.3: Inlier and outlier rates for the scene flow estimation. The best results are printed
in bold.

3.6.1 Multi-Task Performance

While the object detection performance of PillarFlowNet does not reach the object
detection performance of the single-task network PointPillars [Lan+19], it outperforms
the multi-task baseline PointFlowNet [Beh+19a] for object detection significantly. In
terms of scene flow, PillarFlowNet’s average endpoint errors are significantly lower
than PointFlowNet’s. Inlier rates for both static and dynamic points are on average 20
percentage points higher than PointFlowNet’s. Also regarding outlier rates, PillarFlowNet
is slightly better than PointFlowNet. Remarkably, PillarFlowNet trained in a multi-task
setup matches the state-of-the-art DPCCN [Wan+18a] for scene flow estimation in terms
of average endpoint error for static points while being over 37.7 % more accurate on
dynamic points.

It is well known that certain tasks in certain scenarios can have synergetic relationships
[Zam+18]. In order to investigate synergy effects when performing multi-task learning,
we have additionally trained PointFlowNet [Beh+19a] and our PillarFlowNet for both

65



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

Method Mode AP@0.7

PointFlowNet MT 38.4 %
PillarFlowNet MT 54.7 %

PointFlowNet ST 45.3 %
PointPillars ST 66.3 %

PillarFlowNet ST 65.4 %

Table 3.4: Results of the 3D object detection. The best result is printed in bold.

tasks individually by setting either the scene flow loss or the object detection loss to zero.
The results of these single-task experiments are discussed in the following section.

3.6.2 Single-task Performance

Our experiments suggest that for both PillarFlowNet and PointFlowNet [Beh+19a] the
synergetic effects from training two seemingly supportive tasks are smaller than the effects
from training on a single task individually. Both networks perform better in either object
detection or scene flow estimation when being trained to perform a single task exclusively.
This demonstrates that for this combination of architectures and tasks, the beneficial effect
of focusing on a single task outweighs the synergetic effects that may exist for scene flow
and object detection.

Scene Flow

As can be seen in table 3.2, in a single-task setting, PillarFlowNet surpasses state-of-the-art
scene flow estimation baselines. PillarFlowNet is also much more robust than previous
approaches, achieving significantly higher inlier rates and significantly lower outlier rates
than the baseline methods. As it is to be expected, all methods perform much better on
static points than on points belonging to dynamic objects. This underlines the importance
of evaluating the performance for static and dynamic objects separately.

3D Object Detection

LiDAR-based 3D object detection is a more thoroughly researched field compared to
LiDAR-based scene flow estimation. The dedicated object detection network outperforms
our architecture which is designed to perform well on multiple tasks. Noticeably, the
performance gap of our multi-task network PillarFlowNet towards the state-of-the-art
network PointPillars [Lan+19] is much smaller than the gap of PointFlowNet [Beh+19a]
towards PointPillars.

66



3.6 Results

Figure 3.7: Visualization of the prediction results of PillarFlowNet. The first column of
images shows PillarFlowNet’s object detection prediction (blue) overlayed with ground
truth objects (green). Please note that PillarFlowNet detects objects outside of the space
that objects were labeled in. The KITTI Object Tracking dataset only contains annotations
for objects in the field of view of the front camera. In the middle column, scene flow
and object ground truth are shown. In the right image column, PillarFlowNet’s predicted
scene flow and objects are shown. Flow vectors are HSV color-coded according to their
direction.

3.6.3 Runtime

The runtimes were evaluated on a desktop computer with an AMD Ryzen 9 3900X CPU
with 3.8 GHz and an NVIDIA GeForce RTX 2080 Ti GPU using a TensorFlow [Aba+16]
implementation. The inference of our multi-task network takes 87.6 ms. Object detection
without scene flow estimation takes 71.7 ms and scene flow estimation with deactivated
object detection takes 86.6 ms. In comparison, PointFlowNet [Beh+19a] requires with
197.8 ms 2.3 times more for the same inference.

67



Chapter 3 Deep Temporal Point Cloud Fusion for Automated Driving

3.7 Conclusion

This chapter has introduced PillarFlowNet, a novel end-to-end trainable network for
simultaneous LiDAR object detection and scene flow estimation capable of real-time
performance. We have employed a pillar-based feature encoding network for efficient
LiDAR point cloud compression enabling our subsequent backbone network to learn a
shared feature representation of two consecutive point clouds. Based on that representation,
3D scene flow vectors and oriented 3D bounding boxes including detection probabilities
are inferred. In comprehensive experiments on the KITTI object tracking dataset extended
for scene flow estimation, we have compared PillarFlowNet to multiple strong baselines
and demonstrated that for simultaneous LiDAR object detection and scene flow estimation,
it significantly outperforms the state-of-the-art, increasing the average precision score by
16.3 percentage points and reducing the average endpoint error by 21.4 %. Furthermore,
we showed that in a single-task scene flow training setup PillarFlowNet outperforms the
current state-of-the-art by a large margin in terms of endpoint error, while achieving both
significantly higher inlier rates as well as significantly lower outlier rates.

68



Chapter 4

Multi-View RGB-D Fusion for 6D Pose

Estimation

This chapter explores fusion methodologies tailored for the combination of RGB-D input
data acquired from multiple different perspectives, with the primary objective of accurately
and robustly estimating the 6D poses of objects within very cluttered scenes. Parts of
this chapter are taken from two of my publications. The first publication is “MV6D:
Multi-view 6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting
Network” [DDN22], written by Fabian Duffhauss, Tobias Demmler, and Gerhard Neumann,
which has been presented at the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2022. The second publication is “SyMFM6D: Symmetry-aware
Multi-directional Fusion for Multi-View 6D Object Pose Estimation” [Duf+23], written by
Fabian Duffhauss, Sebastian Koch, Hanna Ziesche, Ngo Anh Vien, and Gerhard Neumann,
which has been published in the IEEE Robotics and Automation Letters (RA-L) 2023.
Please refer to the second main row of tables 1.1 and 1.2 to see the fusion modalities
and most important challenges addressed in this chapter in comparison to the other main
chapters.

4.1 Introduction

Estimating the 6D poses of objects is an essential computer vision task which is widely
used in robotics [CMS11; Xia+18; He+20; He+21], automated driving [Ku+18; XAJ18;
Gu+21], augmented reality [MUS15; Su+19], human-machine interaction [Pav+17;
ML20], and several other fields. 6D object pose estimation describes the prediction of the
position and the orientation of objects in 3D space. This task can be very challenging,
depending on manifold factors such as the objects’ appearances, their geometry, the
presence of neighboring objects in close proximity, or inaccurate sensor data.

In recent years, 6D pose estimators have made significant progress based on deep
neural network architectures which rely on a single RGB image [Xia+18; Di+21; Su+22],
on a single point cloud [HB20; HSS22] or fuse both [Wan+19; He+20; He+21]. Es-
pecially methods based on single RGB-D cameras became increasingly popular due to

69



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

technological advancements and decreasing costs of these sensors [Wad+20; Xu+20a;
Wu+22]. Single-view methods, however, have problems detecting objects which are
occluded by other objects. These problems can be overcome by considering data from
multiple perspectives. Fusing multi-view data can significantly improve the accuracy
and robustness of environmental understanding in complex scenarios, which can enable
more flexible production and assembly processes, among other applications. Especially
in robotic applications, a multi-view camera setup can be installed very easily, or even a
setup with just a single moving camera.

There are already a few methods that consider multi-view data [Zen+17; LBH18;
Lab+20] which are, however, computationally expensive and not designed for scenes
with strong occlusions. Moreover, most methods suffer from symmetric objects as they
have multiple 6D poses with the same visual and geometric appearance, causing most
learning-based estimators to average over these multiple solutions. In the following, we
present two novel multi-view RGB-D fusion approaches for 6D object pose estimation
that tackle the previously stated challenges. An overview illustration of both approaches
is depicted in figure 4.1.

6D Pose 

Estimation

Multi-View 

RGB-D Fusion

Semantic 

Segmentation

3D Keypoint 

Detection

3D Center Point 

Detection

Figure 4.1: Overview of our proposed multi-view 6D object pose estimation approaches.
We present two novel deep multi-view fusion networks which merge RGB-D data from
multiple cameras. Both methods first predict 3D keypoints, 3D center points, and semantic
labels, before estimating the 6D poses of all objects in the scene.

Our first approach, called MV6D (Multi-View 6D object pose estimation), takes
multiple RGB-D images depicting a cluttered scene from different viewpoints which are
ideally very distinct. Whereas the RGB images are processed individually, we fuse all
depth images to a joint point cloud. Similar to PVN3D [He+20], our approach predicts
pre-defined 3D keypoints for each object using independent feature encoding networks
for both modalities. In a final least-squares fitting [AHB87] step, MV6D predicts the
6D poses of all objects in the scene. To the best of our knowledge, MV6D is the first
approach that combines multiple RGB-D frames in a single network for the task of 6D
pose estimation.

Our second approach is called SyMFM6D (Symmetry-aware Multi-directional Fusion
approach for Multi-view 6D object pose estimation). It further improves the fusion of
multi-view RGB-D data using a novel deep multi-directional fusion network. This network

70



4.1 Introduction

exploits the visual information from the RGB data and geometric information from the
depth data in multiple hierarchies and learns a compact representation of the entire scene.
Like MV6D, SyMFM6D predicts the 6D poses of all objects in the scene simultaneously
based on keypoint detection, semantic segmentation, and least-squares fitting. However,
we further improve the keypoint detection by presenting a novel symmetry-aware training
procedure including a novel objective function.

Since established 6D pose estimation datasets, such as YCB-Video [Xia+18], LineMOD
[Hin+11b], and T-LESS [Hod+17] do not provide many frames from very distinct
perspectives, we create four challenging photorealistic datasets with cluttered scenes using
YCB objects [Cal+15]. These datasets provide multi-view RGB-D data and ground truth
for instance semantic segmentation and 6D object pose estimation.

We conduct extensive experiments with our two novel approaches and related work
on our photorealistic datasets and the YCB-Video dataset [Xia+18]. They show that
our multi-view approaches outperform all single-view methods significantly. We further
demonstrate that our approaches work accurately in both fixed and dynamic camera settings.
Besides, our methods are robust towards inaccurate camera calibration by compensating for
imprecise camera pose information when using multiple views. Moreover, our experiments
demonstrate a large benefit of the proposed symmetry-aware training procedure, improving
the accuracy of both symmetric and non-symmetric objects due to synergy effects. Thus,
SyMFM6D outperforms the state-of-the-art in single-view and multi-view 6D pose
estimation while being computationally more efficient.

Our main contributions in this chapter are:

• We propose two novel multi-view fusion networks for efficient representation
learning of multiple RGB-D frames and present two novel multi-view 6D pose
estimation methods based on it.

• We present a novel symmetry-aware training procedure for 3D keypoint detection
based on a symmetry-aware objective function.

• We create four challenging synthetic datasets, each comprising photorealistic multi-
view RGB-D data and ground truth annotations for instance semantic segmentation
and 6D pose estimation.

• We perform comprehensive experiments demonstrating the superiority and limita-
tions of our approaches on challenging real-world and synthetic datasets.

• We show significant improvements and synergy effects due to our symmetry-aware
training procedure.

• We demonstrate the robustness of our approaches towards inaccurate camera
calibration and variable camera arrangements.

71



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

4.2 Related Work

Over the last few years, there has been significant progress in the area of 6D pose
estimation and related tasks like 3D object detection. This section presents the most
important milestones subdivided into single-view methods, multi-view methods, and
symmetry-aware methods. Please refer to section 2.6.7 for further details about 6D pose
estimation fundamentals including related work.

4.2.1 Single-View 6D Pose Estimation

Single-view 6D Pose estimation methods require only a single input modality, which can
be a single RGB image, a single RGB-D image, or a single point cloud.

Pose Estimation on Single RGB Images

Traditional pose estimation methods using a single RGB image [Low99; Low04; RD06;
BTV06; Rot+06; CMS11; Col+09; Pen+19] extract local features from the given RGB
image and match them to the corresponding features in its 3D model. Based on the
2D-3D-correspondences, a Perspective-n-Point (PnP) algorithm [FB81] can be applied to
estimate the object’s pose. Even though feature-based methods can handle occlusions up
to a certain degree, the detection of 2D keypoints does not work well on objects without a
distinctive texture [Hod+17].

In contrast, methods based on template-matching [GR10; Hin+11a; CSB16] can
cope with textureless objects. Templates of an object can be generated by rendering its
corresponding 3D model from diverse views. Finding a match between a rendered template
and a part of the input image provides the 6D pose of the corresponding object. However,
template-based methods suffer from occlusions as the matching becomes inaccurate.

There are also end-to-end trainable neural networks [TSF18; GPH19; Wan+21d; Di+21;
Su+22] which directly predict the objects’ poses based on a single RGB image without
requiring multiple stages. These methods share similar ideas to exploit differentiable
PnP or differentiable rendering techniques. However, often the generalization of direct
methods is an issue due to the non-linearity of the rotation space [Pen+19]. [TM15;
Su+15b; Sun+18] overcome this issue by discretizing the rotation space. Another common
procedure is to refine the predicted poses, for example by applying the iterative closest
point (ICP) algorithm [BM92] using additional depth data as in PoseCNN [Xia+18]
or SSD-6D [Keh+17]. Alternatively, deep learning-based pose refining networks like
DeepIM [Li+18] or DPOD [ZSI19] are proposed for faster and more accurate refinement
without the requirement for depth data.

72



4.2 Related Work

Pose Estimation on Single Point Clouds

Recently, due to the rapid technological progress of depth and LiDAR sensors, many
pose estimation methods were developed based on a single depth image or a single point
cloud [Che+20a; Fer+21]. In this area, there are methods [SX14; Li17] that directly
predict oriented 3D bounding boxes using 3D convolutions. However, 3D convolutions
are computationally expensive which leads to high inference times. To reduce the
computational complexity, it is common even in modern approaches [ZT18; YML18;
Lan+19] to apply feature encoding networks based on PointNet [Qi+17a] or PointNet++
[Qi+17b] which are able to extract geometric features. To do that, the point cloud is either
divided into voxels [ZT18; YML18] or into vertical pillars [Lan+19].

Recently, Qi et al. [Qi+19] introduced deep Hough voting for end-to-end 3D object
detection. Their network VoteNet generates votes to object centers which are fused to
obtain object proposals. Building upon that, Xie et al. [Xie+21] further improved the
feature encoding of seed points by an attentive multi-layer perceptron, a vote attraction
loss, and vote weighting.

However, as methods based on depth images or point clouds cannot exploit texture,
their performance is limited to applications where textures are not relevant.

Pose Estimation on Single RGB-D Images

RGB-D-based approaches try to combine the advantage of both color and depth modalities.
AVOD [Ku+18] and MV3D [Che+17c] use convolutional feature extractor networks
followed by a 3D object proposal network for fusing RGB images and LiDAR point clouds.
The latter is compressed into a bird’s eye view and in the case of MV3D, an additional
front view projection is used. However, these approaches are based on the assumption
that all objects of interest are located on a plane.

PointFusion [XAJ18] proposes the usage of PointNet [Qi+17a] for point cloud feature
extraction and introduces a dense fusion module for combining point cloud features and
RGB features which were created by a CNN. DenseFusion [Wan+19] transfers that concept
from 3D object detection in autonomous driving to 6D pose estimation for robotics and
introduces a neural network for iterative pose refinement.

PVN3D [He+20] further improves DenseFusion [Wan+19] by applying PointNet++
[Qi+17b] and by introducing a deep Hough voting network for 3D keypoint detection. The
6D poses are estimated by a least-squares fitting algorithm [AHB87]. FFB6D [He+21]
enhances PVN3D [He+20] with a bidirectional fusion module that combines the features
representing texture and geometric information in each encoding and decoding layer.
Furthermore, they replaced PointNet++ [Qi+17b] with a RandLA-Net [Hu+20] for point
cloud feature encoding. However, most previous methods including [Wan+19; He+20;
He+21] do not explicitly consider object symmetries and suffer from strong occlusions.

73



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

4.2.2 Multi-View 6D Pose Estimation

Multi-view pose estimators consider multiple RGB(-D) frames showing the same scene
from different perspectives in order to reduce the effect of occlusions and to improve the
6D pose estimation accuracy.

Zeng et al. [Zen+17] present a 6D pose estimation approach based on 15 to 18 RGB-D
images that are recorded by a robot arm from very similar perspectives. They use a fully
convolutional neural network to perform 2D object segmentation on each RGB image
individually. Afterwards, the segmentation results are fused with the depth images into
a single segmented point cloud. The 6D poses are estimated using an ICP algorithm
[BM92].

Sock et al. [Soc+17] propose an active multi-view framework with next-best-view
prediction and hypothesis accumulation. Based on previous single-shot pose hypotheses
they predict the next best camera perspectives and select the most likely object poses.

Li et al. [LBH18] introduce an end-to-end trainable CNN-based architecture integrating
known class labels into the learning process of convolutional filters for single-view 6D
pose estimation. Based on an arbitrary object detector providing regions of interest in
RGB or RGB-D data, they perform the single-view pose estimation multiple times with
images from different viewpoints before selecting the best hypothesis using a voting score
that suppresses outliers.

Recently, Labbé et al. [Lab+20] have presented a three-stage approach for 6D pose
estimation based on multiple RGB images. Their method CosyPose employs DeepIM
[Li+18] to generate object candidate proposals for each view independently. Secondly,
they conduct a candidate matching considering the predictions of all views which belong
to the same object instance. Finally, CosyPose performs a refinement procedure based
on object-level bundle adjustment [Tri+00]. However, the approach fails if an object is
detected in just a single view.

All previously named multi-view pose estimation methods apply deep neural networks
independently on each view which leads to high computational effort due to redundancy
and sub-optimal use of information as there is no prediction that can use all information. To
the best of our knowledge, our approaches MV6D and SyMFM6D are the first approaches
that directly fuse the features from multiple RGB-D views before performing the pose
estimation based on that.

4.2.3 Symmetry-aware 6D Pose Estimation

Symmetric objects are known to be a challenge for 6D pose estimation approaches due
to ambiguities [Pit+19]. Different techniques have been proposed to address this issue.
The authors of [Pit+19] and [RL17] propose to utilize an additional output channel to
classify the type of symmetry and its domain range. In [PPV19], a loss is introduced that
is the smallest error among symmetric pose proposals in a finite pool of symmetric poses.

74



4.3 6D Pose Estimation Problem Definition

In [HBM20] the authors propose to use compact surface fragments as a compositional
way to represent objects. As a result, this representation can easily allow the handling
of symmetries. The authors of [Zha+20b] employ an additional symmetry prediction as
output, and an extra refining step of predicted symmetry via an optimization function. A
novel output space representation for CNNs is presented in [RF21] where symmetrical
equivalent poses are mapped to the same values. In [Mo+22] the authors introduce a
compact shape representation based on grouped primitives to handle symmetries. However,
none of these methods outperforms the keypoint-based methods PVN3D [He+20] and
FFB6D [He+21], even though they do not explicitly consider object symmetries. In
contrast, our SyMFM6D method extends current keypoint-based methods to consider
object symmetries and consequently outperforms all previous methods on both single-view
and multi-view 6D object pose estimation.

4.3 6D Pose Estimation Problem Definition

6D object pose estimation describes the task of predicting a rigid transformation p =

[R | t] ∈ SE(3) which transforms the coordinates of an observed object from the object
coordinate system into the camera coordinate system. This transformation is called a
6D object pose because it is composed of a 3D rotation R ∈ SO(3) and a 3D translation
t ∈ R3. The designated aim of our approach is to jointly estimate the 6D poses of all
objects in a given cluttered scene using multiple RGB-D images which depict the scene
from multiple perspectives. We assume that the 3D models of the objects and the camera
poses are known and not more than a single instance per object class occurs in each scene.

4.4 Dense Multi-View Fusion Method

This section presents MV6D, the first of the two proposed deep learning approaches
for multi-view 6D pose estimation based on RGB-D data. Figure 4.2 illustrates the
network architecture of MV6D which is composed of three stages that are inspired by
the single-view network PVN3D [He+20]. The first stage accepts a variable number of
RGB-D frames, extracts relevant features, and fuses them to a joint feature representation
of the entire input scene. The second stage contains network heads for 3D keypoint
detection, 3D center point detection, and instance semantic segmentation. The third stage
estimates the 6D poses of all objects in the scene in a least-squares fitting manner. While
PVN3D [He+20] uses only single-view input data, we propose a new mechanism to fuse
the depth data as well as the RGB data of several RGB-D views into a single consistent
feature representation. To accomplish that, we employ a modified DenseFusion module
[Wan+19] which is illustrated in figure 4.3 and elucidated in the following section.

75



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

.
.
.

PSPNet

PointNet++

Instance Semantic 

Segmentation

3D Keypoint 

Detection

Least-squares 

Fitting

6D Pose EstimationFeature Extraction & Fusion Keypoint Detection

& Segmentation

DenseFusion

PSPNet

.
.
.

.
.
.

Point Cloud 

Fusion

...

3D Center Point 

Detection

Figure 4.2: Architecture of the proposed MV6D network. Given multiple RGB-D images,
MV6D extracts visual features from the RGB images and geometric features from a point
cloud which is created by fusing all depth images. A modified DenseFusion network
[Wan+19] fuses visual and geometric features. Based on a 3D keypoint detection, a 3D
center point detection, and an instance semantic segmentation module, we predict 6D
poses using least-squares fitting [AHB87].

4.4.1 Multi-view Fusion Architecture

This section describes the first stage of our proposed MV6D network, depicted in figure 4.2,
which is responsible for feature extraction and multi-view RGB-D data fusion.

Geometric Feature Extraction and Fusion

To extract geometric features from the depth images, we first convert all depth images into
point clouds and combine them into a single point cloud using the known camera poses.
We use the camera coordinate system of the first camera as a reference coordinate system
for the resulting point cloud and all further keypoint predictions. As previous methods
[He+21; He+20], we further process only a subset of points selected by random sampling
and attach the corresponding RGB value as well as the surface normal to each remaining
point. For feature extraction, we apply a PointNet++ [Qi+17b] with multi-scale grouping.

Visual Feature Extraction and Fusion

For each RGB image, we independently extract pixel-wise visual features using modi-
fied PSPNets [Zha+17b] which contain a ResNet-34 [He+16] pre-trained on ImageNet
[Den+09] as the backbone. All PSPNets share the same parameters. Each point in the
processed point cloud is associated with a corresponding pixel of the RGB image from
the view that generated the point. Similar to a DenseFusion network [Wan+19], we

76



4.4 Dense Multi-View Fusion Method

concatenate to each point in the point cloud the PSPNet feature vector of the associated
pixel from the associated view as shown in figure 4.3. Hence, even if points are spatially
close to each other, they can obtain the visual features from different RGB images if they
have been generated from different views. Subsequently, we compute a global feature
vector by an MLP followed by an average pooling layer that aggregates the information
from the whole point cloud. This feature vector is then again appended to the geometric
and RGB features of each point in the point cloud. Through extensive training of the entire
network, the resulting point-wise feature vectors can contain the most relevant information
of the input data and thus represent the entire scene in a compact tensor.

MLP

PSPNet

PointNet++

PSPNet
x1

..
...
.

xN

..
.

x1

..
.

..
.

..
.

xN

Global Feature Vector

Point-wise Features

Average

Pooling

Figure 4.3: DenseFusion module of our MV6D network architecture. While keeping a
mapping between the visual features of the PSPNets [Zha+17b] and the corresponding
geometric features of the PointNet++ [Qi+17b], we compute a global feature vector and
concatenate the results to obtain point-wise feature vectors.

4.4.2 Modules for Segmentation and Keypoint Detection

The output tensor of the feature extraction and fusion network is used as input for the
instance semantic segmentation module, the 3D center point detection module, and the
3D keypoint detection module, which are presented in the following.

Instance Semantic Segmentation Module and 3D Center Point Detection Module

The instance semantic segmentation module in figure 4.2 consists of a semantic segmenta-
tion module and a center offset module as in PVN3D [He+20]. Both submodules take
the point-wise feature vectors (consisting of visual, geometric, and global features) and
process them with shared MLPs. The semantic segmentation module predicts an object
class for each point. The center offset module estimates the translation offset from the
given point to the center of the object that it belongs to. Following PVN3D [He+20], we
apply mean shift clustering [Che95] to obtain the final object center predictions. These
are then used to further refine the segmentation map by rejecting points which are too far
away from the object center.

77



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

3D Keypoint Detection Module

In advance of the training, we select eight target keypoints from the mesh of each object
using the farthest point sampling (FPS) algorithm [Eld+97] as in [He+20]. Using a shared
MLP, we predict the translation offset from each point to each target keypoint of the class
that the object belongs to. Adding the predicted offsets to the corresponding points from
the point cloud results in a set of keypoint predictions. All keypoint predictions belonging
to an instance are clustered by mean shift clustering [Che95] in order to obtain the final
3D keypoint predictions as in [He+20].

4.4.3 Multi-Task Objective Function

We train our MV6D network as in PVN3D [He+20] by minimizing the multi-task loss
function

Lmulti-task = λ1Lkeypoints + λ2Lsemantic + λ3Lcenter, (4.1)

where the 3D keypoints detection loss Lkeypoints and the center voting loss Lcenter are L1
losses. The loss function for the instance semantic segmentation Lsemantic is a Focal loss
[Lin+17b]. λ1 = 2, λ2 = 1, and λ3 = 1 are the weights for the individual loss functions as
in PVN3D [He+20].

6D Pose Computation via Least-squares Fitting

Based on the target keypoints and the corresponding keypoint predictions, we use a
least-squares fitting algorithm [AHB87] to compute the rotation R and the translation t

of each object following PVN3D [He+20]. The employed least-squares fitting algorithm
minimizes the squared loss

LLeast-squares =

M∑

i=1

k̂i − (Rki + t)


2

, (4.2)

where M = 8 is the number of keypoints per object, ki are the target keypoints in the
object coordinate system, and k̂i are the predicted keypoints in the camera coordinate
system.

4.5 Symmetry-aware Multi-View Fusion Method

The previously presented MV6D network contains a computationally expensive feature
extraction and fusion network which does not explicitly consider object symmetries. To
overcome these two drawbacks, we propose a second multi-view 6D pose estimation
method called SyMFM6D. SyMFM6D incorporates a novel deep multi-directional fusion

78



4.5 Symmetry-aware Multi-View Fusion Method

approach for combining multi-view RGB-D data more effectively and more efficiently.
We further introduce a novel training procedure which explicitly considers ambiguities
due to object symmetries.

4.5.1 Network Overview

Our symmetry-aware multi-view network consists of three stages which are visualized
in figure 4.4. The first stage receives one or multiple RGB-D images and extracts visual
features as well as geometric features which are fused to a joint representation of the scene.
The second stage performs an instance semantic segmentation and detects predefined 3D
keypoints as well as 3D center points. Based on the keypoints and the information to
which object the keypoints belong, we compute the 6D object poses with a least-squares
fitting algorithm [AHB87] in the third stage.

4.5.2 Multi-View Feature Extraction

To efficiently predict 3D keypoints, 3D center points, and semantic labels, the first stage
of our approach learns a compact representation of the given scene by extracting and
merging features from all available RGB-D images in a deep multi-directional fusion
manner. For that, we first separate the set of RGB images RGB1, ...,RGBN from their
corresponding depth images Dpt1, ..., DptN . The N depth images are converted into
point clouds, transformed into the coordinate system of the first camera, and merged
to a single point cloud using the known camera poses as in MV6D [DDN22]. Unlike
[DDN22], we employ a point cloud network based on RandLA-Net [Hu+20] with an
encoder-decoder architecture using skip connections. The point cloud network learns
geometric features from the fused point cloud and considers visual features from the
multi-directional point-to-pixel fusion modules as described in section 4.5.3.

The N RGB images are independently processed by a CNN with encoder-decoder
architecture using the same weights for all N views. The CNN learns visual features while
considering geometric features from the multi-directional pixel-to-point fusion modules.
We build the encoder upon a ResNet-34 [He+16] pretrained on ImageNet [Den+09] and
the decoder upon a PSPNet [Zha+17b] similar to FFB6D [He+21].

After the encoding and decoding procedures including several multi-view feature
fusions, we collect the visual features from each view corresponding to the final geometric
feature map and concatenate them. The output is a compact feature tensor containing the
relevant information about the entire scene which is used for 3D keypoint detection, 3D
center point detection, and instance semantic segmentation as in MV6D (see section 4.4.2).

79



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

...

RGB1 Dpt1RGBN DptN

Pixel-wise Features

Point-wise Features

Point-to-Pixel Fusion

Pixel-to-Point Fusion

CNN

Point Cloud Network

...

Skip Connection

Point Cloud 

Fusion

Semantic Labels Center Point Offsets Keypoint Offsets

MLP

6D Poses

Symmetry-aware 

Loss Function

Object 

Symmetries

...

..
.

..
.

..
.

Np/4, 64

Np/16, 128

Np  , 8H/4, W/4, 64

Np , 64

Np/4, 64H/2, W/2, 64

Gathering & Concatenation

H/4, W/4, 64

H/2, W/2, 64

Np , 64

Np , 64

Clustering & Least-Squares Fitting

H/8, W/8, 128

H/4, W/4, 64

H/2, W/2, 64

H/4, W/4, 64

H/8, W/8, 128

H/2, W/2, 64

MLP MLP

Figure 4.4: Network architecture of our SyMFM6D method. An encoder-decoder CNN
processes the N RGB images with height H and width W . The N depth images are
converted into a single point cloud with Np points which is processed by an encoder-decoder
point cloud network. Every hierarchy contains two multi-directional fusion modules.
We utilize three shared MLPs to regress 3D keypoint offsets, 3D center point offsets,
and semantic labels. The 6D poses are computed based on mean shift clustering and
least-squares fitting. We train our network by minimizing our proposed symmetry-aware
multi-task loss function using pre-computed object symmetries.

80



4.5 Symmetry-aware Multi-View Fusion Method

4.5.3 Multi-View Feature Fusion

In order to efficiently fuse the visual and geometric features from multiple views, we extend
the fusion modules of FFB6D [He+21] from bi-directional fusion to multi-directional

fusion. We present two types of multi-directional fusion modules which are illustrated
in figure 4.5. Both types of fusion modules take the pixel-wise visual feature maps and
the point-wise geometric feature maps from each view, combine them, and compute
a new feature map. This process requires a correspondence between pixel-wise and
point-wise features which we obtain by computing an XYZ map for each RGB feature
map based on the depth data of each pixel using the camera intrinsic matrix as in FFB6D
[He+21]. To deal with the changing dimensions at different layers, we use the centers of
the convolutional kernels as new coordinates of the feature maps and resize the XYZ map
to the same size using nearest interpolation as proposed in [He+21].

The point-to-pixel fusion module in figure 4.5a computes a fused feature map Ff based
on the image features F i(v) of all views v ∈ {1, . . . , N}. We collect the Kp nearest point
features Fpk (v) with k ∈ {1, . . . ,Kp} from the point cloud for each pixel-wise feature and
each view independently by computing the nearest neighbors according to the Euclidean
distance in the XYZ map. Subsequently, we process them by a shared MLP before
aggregating them by max pooling, i.e.,

F̃p(v) = max
k∈{1,...,Kp}

(
MLPp(Fpk (v))

)
. (4.3)

Finally, we apply a second shared MLP to fuse all features F i and F̃p as Ff = MLPfp(F̃p ⊕

F i) where ⊕ denotes the concatenate operation.

The pixel-to-point fusion module in figure 4.5b collects the Ki nearest image features
F ik (i2v(ik)) with k ∈ {1, ...,Ki}. i2v(ik) is a mapping that maps the index of an image
feature to its corresponding view. This procedure is performed for each point feature
vector Fp(n). We aggregate the collected image features by max pooling and apply a
shared MLP, i.e.,

F̃ i = MLPi

(
max

k∈{1,...,Ki}

(
F ik (i2v(ik))

))
. (4.4)

One more shared MLP fuses the resulting image features F̃ i with the point features Fp as

Ff = MLPfi(F̃ i ⊕ Fp).

4.5.4 3D Keypoint Detection and Segmentation

The second stage of our SyMFM6D network contains modules for 3D keypoint detection,
3D center point detection, and instance semantic segmentation as in MV6D. However,
unlike MV6D, we use the Scale Invariant Feature Transform Farthest Point Sampling

81



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

MLP  + max

MLP

Fp

..
.

..
.

...

...

p

fp

k = 1

k = Kp

Ff (x,y)

Fp (v=N )
k 

Fp (v=1)
k 

Fi (v=N ) 

Fp (v=N )

Fi (v=N )

~
Fp (v=1)

Fi (v=1)

~

Fi (v=1) 

Image Features

Point Features

XYZ Map

Point Cloud

Fused Features

Correspondences

Nearest Neighbors

(a) Point-to-pixel fusion module.

Fp

..
.

..
.

i
Ff (n)

Fi (i2v(ik))

Fp (n)

Fi (n) 
~

Fi (v=N ) 

Fi (v=1) 

max + MLP

k

k = 1

k = Ki

MLP
fi

(b) Pixel-to-point fusion module.

Figure 4.5: Overview of our proposed multi-directional multi-view fusion modules. They
combine pixel-wise visual features and point-wise geometric features by exploiting the
correspondence between pixels and points using the nearest neighbor algorithm. We
compute the resulting features using multiple shared MLPs and max pooling. For
simplification, we depict an example with N = 2 views and Ki = Kp = 3 nearest neighbors.
The points of ellipsis (...) illustrate the generalization for an arbitrary number of views N .

82



4.5 Symmetry-aware Multi-View Fusion Method

(SIFT-FPS) algorithm [Low99] as introduced in FFB6D [He+21] to define eight target
keypoints for each object class. SIFT-FPS yields keypoints with salient features which are
easier to detect.

4.5.5 6D Pose Computation via Least-Squares Fitting

As in MV6D, we follow PVN3D [He+20] and compute the 6D poses of all objects in
the scene based on the estimated 3D keypoints using the least-squares fitting algorithm
[AHB87] in equation (4.2).

4.5.6 Symmetry-aware Keypoint Detection

Most related approaches, including PVN3D [He+20], FFB6D [He+21], and our MV6D
network, do not specifically consider object symmetries. However, symmetries lead to
ambiguities in the predicted keypoints as multiple 6D poses can have the same visual
and geometric appearance. Therefore, we introduce a novel symmetry-aware training
procedure for the 3D keypoint detection including a novel symmetry-aware objective
function to make the network predicting either the original set of target keypoints for
an object or a rotated version of the set corresponding to one object symmetry. Either
way, we can still apply the least-squares fitting algorithm which efficiently computes an
estimate of the target 6D pose or a rotated version corresponding to an object symmetry.

To enable this symmetry-aware training procedure, knowledge about the rotational sym-
metry axes of all objects is required. Reflectional symmetries which can be represented as
rotational symmetries are handled as rotational symmetries. Other reflectional symmetries
are ignored since the reflection cannot be expressed as an Euclidean transformation and
thus does not result in an existing object. Objects with a continuous rotational symmetry
have an infinite number of rotational symmetry transformations. To nevertheless enable
efficient training, we discretize the continuous rotational symmetries into 16 discrete
rotational symmetry transformations which we found to be a good compromise between
computational effort and accuracy.

We propose to compute the set S I of all rotational symmetric transformations for the
given object instance I with a stochastic gradient descent algorithm [LH17]. Given the
known mesh of an object and an initial estimate for the symmetry axis, we transform the
object mesh along the symmetry axis estimate and optimize the symmetry axis iteratively
by minimizing the ADD-S metric [Hin+12] (see section 4.7.1) as an objective function
which penalizes the difference between the original object mesh and the transformed one.
For objects with multiple symmetry axes, we find all symmetry axes by applying this
optimization procedure multiple times with different initial values. Please note that this
process of computing all symmetry transformations needs to be done only once for all
required objects. This can be accomplished in advance of the training so that it does not
increase training or inference time.

83



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

We extend the keypoints loss function of PVN3D [He+20] to become symmetry-aware
such that it predicts the keypoints of the closest symmetric transformation, i.e.

Lkeypoints(I) =
1

NI

min
S∈SI

∑

i∈I

M∑

j=1

xi j − Sx̂i j

 , (4.5)

where NI is the number of points in the point cloud for object instance I, M is the number
of target keypoints per object, and I is the set of all point indices that belong to the object
instance I. The vector x̂i j is the predicted keypoint offset for the i-th point and the j-th
keypoint while xi j is the corresponding ground truth.

4.5.7 Multi-Task Objective Function

We train our network by minimizing a multi-task loss function with the same basic structure
as in MV6D (see equation (4.1) in section 4.4.3). However, for predicting the 3D keypoints,
we instead employ the proposed symmetry-aware loss function in equation (4.5).

4.6 Experimental Setup

To evaluate the performance of our two proposed methods MV6D and SyMFM6D
in comparison to related approaches, we conduct extensive experiments on five very
challenging datasets.

4.6.1 Datasets

The first part of this section provides an overview of commonly used datasets for 6D
object pose estimation. Afterwards, we present novel photorealistic synthetic datasets
specifically designed for multi-view 6D pose estimation in very cluttered scenes.

YCB-Video

The YCB-Video dataset [Xia+18] contains a total of 133,827 RGB-D images with a
resolution of 640 × 480 pixels showing static cluttered object scenes. The scenes are
composed of three to nine objects from the 21 Yale-CMU-Berkeley (YCB) object set
[Cal+15]. The RGB-D frames originate from 92 videos that were recorded by hand, each
showing another scene from different perspectives. For training, Xiang et al. [Xia+18]
have additionally created 80,000 synthetic non-sequential RGB-D frames showing a
random subset of the YCB objects placed at random positions.

However, most frames from the YCB-Video dataset are very similar because they
originate from videos with 30 frames per second recorded by a handheld camera that was

84



4.6 Experimental Setup

moved slowly. The videos also do not show the scene from all sides but just from similar
perspectives. Furthermore, the scenes do not include strong occlusions, and hence, most
object poses are simple to estimate from a single perspective.

T-LESS

The T-LESS dataset [Hod+17] is composed of 30 different industry-relevant objects that
have no significant texture. There are 39k RGB-D images for training showing a single
object from different perspectives. For evaluation, there are 10k test images depicting
20 different cluttered scenes with different complexity and multiple instances of certain
object classes in some cases. The test images show each scene from all sides. However,
since the training images show only single objects on a black background they are not
sufficient to train a multi-view network on them.

LineMOD and Occlusion LineMOD

LineMOD [Hin+11b] is composed of 15,783 RGB-D images, showing a subset of 15
objects in cluttered scenes. There are 13 sequences and in each sequence, a single
object class is annotated. Occlusion LineMOD [Bra+14] corresponds to one sequence of
LineMOD showing significant occlusions among eight objects. The sequence contains
1,214 RGB-D images and annotations for all objects. It is common practice to use
Occlusion LineMOD as a test set for approaches that are trained on LineMOD [Bra+14;
He+20; He+21]. However, like YCB-Video [Xia+18], LineMOD [Hin+11b] does not
show the scenes from all sides but only from similar perspectives.

Novel Photorealistic Datasets

Due to the drawbacks of the previously mentioned datasets, we create four novel photore-
alistic datasets of diverse cluttered scenes with heavy occlusions. All of these datasets
contain RGB-D images from multiple very distinct perspectives which are annotated
with 6D poses of all cameras and objects as well as ground truth for instance semantic
segmentation.

Our datasets are composed of different numbers of objects from the YCB object set
[Cal+15]. Many of these objects have a symmetric shape but are non-symmetric due to
their texture. This requires the pose estimation approaches to exploit RGB information
in order to correctly predict the objects’ poses. Using Blender [Com18] with physics,
we created cluttered scenes by spawning the YCB objects above the ground in the center
with a 3D normally distributed offset. Due to the similar spawning point of all objects, it
is likely that objects rest on top of each other. Instead of a flat ground plane, we use a
shallow bowl for the objects to fall onto. The bowl prevents the objects from scattering in

85



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

all directions. Consequently, the objects stay close together resulting in heavily occluded
scenes.

In addition to the random composition of the scenes, we apply further domain random-
ization techniques in order to improve the generalization of our models. For each scene,
we selected a random 360 × 180 degree panorama photo from a set of 379 photos and a
different bowl texture. Furthermore, we slightly vary the intensity and the color of the
lighting to create different shadows and reflections.

For our four datasets, we have photorealistically rendered different sets of RGB-D
images with the ray-trace based rendering engine Cycles [SH14] in Blender. Since we
have used YCB objects and generated data from multiple views with different camera
settings, we call our dataset framework Multi-View YCB (MV-YCB). Furthermore, we
have extracted the exact camera poses, and generated ground truth annotations for instance
semantic segmentation and 6D pose estimation in Blender. All datasets are split into 90 %
training data and 10 % test data.

For the first dataset, called MV-YCB FixCam, we have generated 8,333 random scenes
composed of eleven non-symmetric YCB objects. We have placed three identical cameras
at fixed positions equally distributed around the scene, i.e. in a circle in 120-degree
intervals. This resulted in a total of 24,999 RGB-D frames with corresponding ground
truth data.

For the second dataset, called MV-YCB WiggleCam, we have reused the same scenes
and cameras as in MV-YCB FixCam but added a normally distributed 3D offset to each
camera independently. This reflects a typical robotic setting where the cameras are
mounted slightly inaccurately around the scene. Thus, experiments with this dataset can
provide insights into how models deal with inaccurate camera calibration.

For the third dataset, called MV-YCB MovingCam, we have generated another 8,333
random scenes based on the same eleven non-symmetric YCB objects. Unlike in FixCam
and WiggleCam, we placed four cameras at changing positions around the scene, where
each camera spawns in another quadrant in a sphere. This represents a scenario, where a
single camera is moved around the scene recording four frames from four very distinct
perspectives. This results in a total of 33,332 RGB-D frames with corresponding ground
truth data.

Since FixCam, WiggleCam, and MovingCam contain only non-symmetric objects,
we have created an additional photorealistic dataset with symmetric and non-symmetric
objects called MV-YCB SymMovCam in order to examine the effect of the proposed
symmetry-aware training procedure. The SymMovCam dataset also depicts 8,333 cluttered
scenes, but they are composed of 8 – 16 objects randomly chosen from the set of 21 objects
which occur in the YCB-Video dataset. The increased number of objects in SymMovCam
results in larger occlusions. As in MovingCam, we utilize four cameras per scene at
changing positions around the scene with the restriction that in each quadrant there is only
one camera so that the perspectives are very distinct.

86



4.6 Experimental Setup

120°

Cluttered 

Scene

(a) FixCam

120°

Cluttered 

Scene

(b) WiggleCam

Cluttered 

Scene

(c) MovingCam and SymMovCam

Figure 4.6: Illustration of the camera setups employed in our MV-YCB dataset series. The
FixCam dataset (a) has fixed camera positions equally distributed around the scene. The
WiggleCam dataset (b) uses the same camera poses with a normally distributed offset
regarding its 3D position. The datasets MovingCam and SymMovCam (c) share the same
camera setup with four cameras, one in each quadrant.

Figure 4.6 provides an overview of the different setups of our generated MV-YCB
datasets. Figure 4.7 present example views for each of these datasets.

4.6.2 Data Augmentation

We employ a variety of data augmentation methods to improve the generalization of our
methods. During training, we follow He et al. [He+20; He+21] and apply a random
combination of color jitter, sharpening filters, motion blur, Gaussian blur, and Gaussian
noise on the RGB images. The depth maps and the corresponding point clouds are not
augmented.

4.6.3 Training Procedure

For training our models in single-view mode on YCB-Video, we randomly use the synthetic
and real images of YCB-Video with a ratio of 4:1. Since consecutive real frames are very
similar, we consider only every seventh real frame. For training a multi-view model, we
start from the corresponding single-view checkpoint and continue training with batches of
real YCB-Video frames.

For the datasets MV-YCB FixCam and MV-YCB WiggleCam, we train with all three
camera views and increase the number of training samples by using all relevant camera
combinations i.e. {[cam1, cam2, cam3], [cam2, cam3, cam1], [cam3, cam1, cam2]}. We
do not need every possible permutation of this list since the exact order is irrelevant. Only

87



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

FixCam WiggleCam MovingCam SymMovCam

View 1

View 2

View 3

View 4

Figure 4.7: Example scenes of our four datasets MV-YCB FixCam, WiggleCam, Moving-
Cam, and SymMovCam which have three or four views. FixCam and WiggleCam show
the same scene, but the views are slightly different due to the random camera position
offset. MovingCam and SymMovCam use the same camera setup, but SymMovCam has
more complex scenes with more objects including symmetric and non-symmetric objects.

the first camera in the list determines the camera coordinate system in which the 6D poses
are predicted.

For the datasets MV-YCB MovingCam and MV-YCB SymMovCam, we use a variable
number of camera views. This allows for more flexibility when deploying the trained
network as the network learns how to deal with a different number of views. We employ a
set with all relevant camera combinations for each view count, e.g. {[cam1, cam2], [cam1,
cam3], [cam2, cam3]} for a view count of two if we use a maximum of three cameras.
The previous rotation step is then applied to each item.

Each sample in a batch must have the same view count. When training with a variable
view count this is ensured by using a custom batch sampler. An equal amount of batches
is sampled for each view count. A sample with a lower view count requires less memory
and offers less information for network optimization. Therefore, we sample more samples

88



4.7 Implementation Details

per batch for lower view counts in order to further balance the optimization. Consequently,
each batch has roughly the same memory size and information amount.

4.7 Implementation Details

For processing multiple RGB images efficiently and independently with the same ResNet-
34, we reshape the input tensor [B, N,C,W,H] to [B · N,C,W,H] with batch size B,
number of views N , number of color channels C, image width W , and image height H.
This makes the number of CNN weights independent of N . We just have to adapt B

depending on N , so that the GPU memory is exploited efficiently.

All RGB-D images that we process have a resolution of 640× 480 pixels. Consequently,
the corresponding point cloud has 307,200 points which is too large to process it efficiently
with a deep neural network. Therefore, we follow He et al. [He+20; He+21] and randomly
select 12,800 samples from the point cloud. When fusing the point clouds from N views,
we will keep the 12,800 · N points.

Within our proposed multi-directional point-to-pixel fusion module in SyMFM6D, we
consider just the nearest geometric feature vector for each visual feature, i.e. Kp2R = 1.
For our multi-directional pixel-to-point fusion module, we collect the KR2p = 16 nearest
visual features. Both values were proposed by He et al. [He+21] and also worked well for
our approach.

For the 3D keypoint detection in MV6D and SyMFM6D, we use M = 8 target keypoints
for each object which we computed in advance of the training. For computing these
target keypoints, MV6D makes use of the FPS algorithm [Eld+97] as proposed in PVN3D
[He+20] while SyMFM6D utilizes the SIFT-FPS algorithm [Low99] as introduced in
FFB6D [He+21].

4.7.1 Evaluation Metrics

For evaluating our methods and comparing them with other approaches, we follow previous
works [Xia+18; Wan+19; He+20; He+21] and use the Area Under the Curve (AUC)
metrics for ADD-S and ADD(-S) as well as the percentage of predictions ADD-S < 2 cm
and ADD(-S) < 2 cm. Both ADD-S and ADD(-S) are based on the idea of measuring
the average distances of all model points in their original status and the same points
transformed by the 6D pose.

The average distance metric ADD was introduced by Hinterstoisser et al. in 2012
[Hin+12] and is computed by

ADD =
1

|M|

∑

x∈M

(R̂x + t̂) − (Rx + t)

 , (4.6)

89



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

where M is the set of vertices of a given object mesh. p = [R | t] and p̂ = [R̂ |̂ t] are the
ground truth pose and the predicted pose respectively. The average distance is calculated
between all corresponding vertices of the ground truth pose and the predicted pose.

The average closest point distance metric ADD-S [Hin+12] is a slightly relaxed
adaptation of the ADD metric which is more suitable for symmetric objects. It is computed
by

ADD-S =
1

|M|

∑

x1∈M

min
x2∈M


(
R̂x1 + t̂

)
− (Rx2 + t)

 . (4.7)

Here, the average distance is computed between each vertex of the predicted pose and the
closest vertex of the ground truth pose.

The average (closest point) metric ADD(-S) [He+20] is a combination of the previous
two metrics. If it is applied on a symmetric object, the relaxed ADD-S metric is used. If
the object is non-symmetric, the stricter ADD metric is applied.

Based on the values of ADD-S and ADD(-S), we compute the area under the accuracy-
threshold curve (AUC) and the percentage that is smaller than 2 cm which is a typical
threshold for successful robot manipulation.

4.7.2 Baseline Methods

We compare our methods MV6D and SyMFM6D with many established and some very
recent methods namely DenseFusion [Wan+19], CosyPose [Lab+20], PVN3D [He+20],
FFB6D [He+21], and ES6D [Mo+22].

DenseFusion, PVN3D, FFB6D, and ES6D are single-view 6D pose estimation methods
using RGB-D input data. CosyPose is a multi-view method using RGB data. To the best
of our knowledge, PVN3D was the best published 6D pose estimator when we started the
development of MV6D. The same relation holds for FFB6D and SyMFM6D. CosyPose
has been the best published multi-view 6D pose estimator during the development of
MV6D and SyMFM6D.

Originally, CosyPose is based on the single-view approach DeepIM [Li+18], uses only
RGB data, and can cope with unknown camera poses. However, CosyPose is already
outperformed by PVN3D on LineMOD [Hin+11b] and YCB-Video [Xia+18] as both
papers suggest [Lab+20; He+20]. In order to create an additional very challenging
multi-view 6D pose estimation benchmark based on RGB-D data, we have exchanged the
DeepIM network in CosyPose with the PVN3D network for a few selected experiments.
Since our approach assumes the camera poses to be known, we evaluate CosyPose not only
with unknown camera poses as proposed in the paper [Lab+20] but also using the ground
truth camera poses to improve the hypothesis matching and to make the comparison with
our approaches fairer.

90



4.8 Results

4.8 Results

This section presents quantitative and qualitative results of our experiments with MV6D
and SyMFM6D in comparison to the baseline methods presented in section 4.7.2.

4.8.1 Results on the YCB-Video Dataset

Table 4.1 compares the single-view performance of our SyMFM6D network with all
baseline methods using the AUC of ADD-S and ADD(-S) on YCB-Video [Cal+15].
Please note that MV6D corresponds to PVN3D [He+20] in the single-view scenario. The
results show that our SyMFM6D method copes very well with the dynamic camera setup
of YCB-Video while outperforming all methods significantly. On the symmetry-aware
ADD(-S) AUC metric, SyMFM6D outperforms the previous state-of-the-art method
FFB6D [He+21] by even 1.5 %. Please note that unlike DenseFusion (iterative) [Wan+19]
and CosyPose [Lab+20], our SyMFM6D method does not perform computationally
expensive post-processing or iterative refinement procedures.

ADD-S ADD(-S)

DenseFusion (per-pixel) 91.2 82.9
DenseFusion (iterative) 93.2 86.1
CosyPose 89.8 84.5
PVN3D 95.5 91.8
FFB6D 96.6 92.7
ES6D 93.6 89.0
SyMFM6D 96.8 94.1

Table 4.1: Single-view results on the YCB-Video dataset using the AUC metrics for
ADD-S and ADD(-S). The best results are printed in bold.

To examine the effect of our symmetry-aware training procedure in SyMFM6D, we
provide an object-wise evaluation of the three best single-view methods on YCB-Video in
table 4.2. Please note that in single-view mode, the model architecture of our SyMFM6D
network is the same as in FFB6D except for our novel symmetry-aware loss function. The
results show that not only most symmetric objects (highlighted in bold) are estimated
more accurately but also most non-symmetric objects. This indicates that there is a
synergy effect which improves the keypoint detection for non-symmetric objects due to an
improvement of the keypoint detection for symmetric objects.

91



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

Object class PVN3D FFB6D SyMFM6D

Master chef can 80.5 80.6 80.7

Cracker box 94.8 94.6 94.9

Sugar box 96.3 96.6 96.6

Tomato soup can 88.5 89.6 87.9
Mustard bottle 96.2 97.0 97.8

Tuna fish can 89.3 88.9 92.3

Pudding box 95.7 94.6 93.3
Gelatin box 96.1 96.9 96.1
Potted meat can 88.6 88.1 90.0

Banana 93.7 94.9 95.2

Pitcher base 96.5 96.9 97.5

Bleach cleanser 93.2 94.8 93.9
Bowl 90.2 96.3 96.4

Mug 95.4 94.2 95.7

Power drill 95.1 95.9 96.4

Wood block 90.4 92.6 95.2

Scissors 92.7 95.7 95.8

Large marker 91.8 89.1 90.0
Large clamp 93.6 96.8 96.9

Extra large clamp 88.4 96.0 95.3
Foam brick 96.8 97.3 97.6

ALL 91.8 92.7 94.1

Table 4.2: Single-view results on the YCB-Video dataset evaluated for each object class
individually using the ADD(-S) AUC metric. Symmetric objects and the best results are
printed in bold.

Figure 4.8 shows a visualization of three scenes of YCB-Video with 6D pose ground
truth, predictions of FFB6D, and predictions of our SyMFM6D network using only the
depicted view. It can be seen that both FFB6D and SyMFM6D estimate very accurate
poses as the scenes of YCB-Video contain only a few objects and not many occlusions.
However, SyMFM6D predicts even more accurate poses than FFB6D due to our proposed
symmetry-aware training procedure.

Table 4.3 compares the multi-view results of our MV6D method with our SyMFM6D
method and CosyPose on the YCB-Video dataset using three and five input views. We
see that our SyMFM6D method with disabled symmetry training procedure already
outperforms all previous multi-view methods significantly. Enabling symmetry awareness
further improves the results slightly. However, using more views does not improve the
accuracy as most views of YCB-Video are very similar in which case additional views do

92



4.8 Results

Original View Ground Truth FFB6D SyMFM6D

Figure 4.8: Visual comparison of 6D pose predictions on single frames of the YCB-Video
dataset. The three rows show three different example scenes that represent the typical
performance of the networks.

not provide beneficial information while the learning problem of fusing different views
becomes slightly harder.

ADD-S ADD(-S)
3 views 5 views 3 views 5 views

CosyPose 92.3 93.4 87.7 88.8
MV6D 91.2 91.1 85.6 84.0
SyMFM6D (no sym) 95.2 95.2 91.5 91.4
SyMFM6D 95.4 95.4 91.7 91.6

Table 4.3: Quantitative multi-view results on the YCB-Video dataset. The best results are
printed in bold.

93



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

4.8.2 Results on the MV-YCB FixCam Dataset

Table 4.4 shows the 6D pose estimation accuracy of our MV6D network and our SyMFM6D
network using the metrics presented in section 4.7.1. It is compared with the single-
view performance of PVN3D [He+20] and FFB6D [He+21] as well as the multi-view
performance of CosyPose [Lab+20]. As CosyPose originally does not use depth data
and does not provide results on our novel photorealistic datasets, we employ PVN3D
as backbone network as described in section 4.7.2. Thus, all methods can use the same
RGB-D input data.

PVN3D FFB6D CosyPose CosyPose MV6D SyMFM6D
Number of views 1 1 3 3 3 3

Known cam poses X X × X X X

ADD-S AUC 81.3 82.3 90.8 91.9 96.9 97.3

ADD(-S) AUC 74.9 76.3 82.4 84.6 94.8 95.6

ADD-S < 2 cm 82.1 83.6 92.9 93.0 98.8 98.9

ADD(-S) < 2 cm 73.0 74.8 80.6 82.4 96.5 96.8

Table 4.4: Quantitative results on the MV-YCB FixCam dataset. The best results for each
metric are printed in bold. The presented experiments on CosyPose employ PVN3D as
the backbone network so that all methods can use the same RGB-D input data.

We can see that MV6D outperforms PVN3D and CosyPose on all metrics significantly.
Using the known camera poses instead of estimating them leads to a small improvement on
CosyPose but its accuracy stays significantly lower than ours. Even though the MV-YCB
FixCam dataset has heavy occlusions, MV6D can predict more than 96 % of all objects
within the 2 cm robot manipulation threshold. SyMFM6D further enhances the accuracy
on all metrics in comparison to MV6D. This shows that MV6D and SyMFM6D cope very
well with the strong occlusions in the datasets. However, the improvement of SyMFM6D
compared to MV6D is small as the MV-YCB FixCam dataset contains only non-symmetric
objects so that the symmetry-aware training procedure cannot further enhance the accuracy
on this dataset.

Please refer to appendix B.3 for visualizations of some example predictions.

4.8.3 Results on the MV-YCB WiggleCam Dataset

Table 4.5 presents the results on the MV-YCB WiggleCam dataset where the known
camera poses deviate slightly from the actual camera poses. It is evident from the table
that the inaccurate camera positioning leads to a small accuracy decrease of all approaches.
This was to be expected since imprecise camera poses cause inaccuracies in the process
of merging the point clouds from the multiple input views. Nevertheless, MV6D and

94



4.8 Results

SyMFM6D are still significantly better than all other baseline methods. This indicates
that our methods are robust to inaccurate camera calibration.

PVN3D FFB6D CosyPose CosyPose MV6D SyMFM6D
Number of views 1 1 3 3 3 3

Known cam poses X X × X X X

ADD-S AUC 80.8 81.9 90.0 91.3 96.2 96.7

ADD(-S) AUC 74.0 75.5 81.0 83.4 93.0 94.2

ADD-S < 2 cm 82.0 83.4 92.3 92.6 98.7 98.8

ADD(-S) < 2 cm 72.4 74.0 78.9 81.6 96.0 96.0

Table 4.5: Quantitative results on the MV-YCB WiggleCam dataset. The best results for
each metric are printed in bold. The presented experiments on CosyPose employ PVN3D
as the backbone network so that all methods can use the same RGB-D input data.

However, SyMFM6D outperforms MV6D only slightly on the WiggleCam dataset.
Since the WiggleCam dataset contains the same scenes with only non-symmetric objects
as the FixCam dataset, the symmetry-aware training procedure has no effect on the
performance on these datasets.

Please refer to appendix B.3 for visualizations of some example predictions.

4.8.4 Results on the MV-YCB SymMovCam Dataset

Table 4.6 shows the quantitative results of our methods MV6D and SyMFM6D in
comparison to the baseline methods PVN3D [He+20] and FFB6D [He+21] on our MV-
YCB SymMovCam dataset. Please note that MV6D corresponds to PVN3D when using
just a single input view. It becomes evident from the single-view results in the table
that the symmetry-aware training procedure in SyMFM6D leads to a small improvement
compared to FFB6D. When using multiple views, MV6D and SyMFM6D outperform the

PVN3D FFB6D SyMFM6D MV6D SyMFM6D
Number of views 1 1 1 3 3

Known cam poses X X X X X

ADD-S AUC 75.0 79.9 80.6 92.8 94.2

ADD(-S) AUC 68.5 75.6 76.7 88.7 91.6

ADD-S < 2 cm 77.2 81.1 81.9 96.3 96.6

ADD(-S) < 2 cm 64.5 74.5 76.3 91.6 93.6

Table 4.6: Quantitative results on the MV-YCB SymMovCam dataset. The best results for
each metric are printed in bold.

95



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

single-view methods significantly. This also proves that our approaches are robust to the
very dynamic camera setup in the MV-YCB SymMovCam dataset where the cameras are
mounted at varying positions. Moreover, SyMFM6D surpasses MV6D due to the better
fusion mechanism and the symmetry-aware training procedure.

Figure 4.9 illustrates some 6D pose estimation results of SyMFM6D, MV6D, and
FFB6D on the SymMovCam dataset. The four columns show four different example
scenes. The first three rows provide the three input views for MV6D and SyMFM6D. The
single-view network FFB6D obtains only the first view as input. It becomes evident, that
FFB6D has disadvantages predicting poses of objects which are fully or partly occluded
in the input view. In accordance with the quantitative results in table 4.6, MV6D provides
very accurate results, even though SyMFM6D yields even better predictions, especially on
symmetric objects.

96



4.8 Results

Example Scene 1 Example Scene 2 Example Scene 3 Example Scene 4

View 1

View 2

View 3

Ground Truth

FFB6D
(single-view)

MV6D
(3 views)

SyMFM6D
(3 views)

Figure 4.9: Visual comparison of predicted poses on different scenes of the MV-YCB
SymMovCam dataset. The seven rows show the first three views which are used for the
multi-view methods and four different pose visualizations using the first view as reference.
Due to the strong occlusions, only the poses of eight of the most challenging objects are
depicted, including the symmetric objects bowl (blue), wood block (yellow), large clamp
(red), extra large clamp (green), foam brick (orange), and the non-symmetric objects tuna
fish can (gray), banana (cyan), and gelatin box (magenta).

97



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

4.8.5 Keypoint Visualization

Figure 4.10 shows the predicted keypoints of FFB6D and our SyMFM6D network for
all objects in a YCB-Video scene. We additionally visualize the keypoint proposals of
each object in individual colors. The resulting predicted keypoints are white, the target
keypoints are black. The figure provides visual evidence that both FFB6D and SyMFM6D
predict very accurate keypoints on all non-symmetric objects. However, FFB6D fails to
predict accurate keypoints on the large clamp which has one discrete rotational symmetry.
This shortcoming of FFB6D is also apparent for other symmetric objects. We believe
that this is caused by the ambiguities of the object poses resulting in ambiguous target
keypoints which results in averaging over the multiple solutions given by the symmetry.
Therefore, the training loss is minimized when predicting keypoints on the symmetric
axis rather than predicting them on the desired target locations. SyMFM6D, in contrast,
overcomes this problem due to our novel symmetry-aware training procedure as it can be
seen in figure 4.10b.

(a) FFB6D (b) SyMFM6D

Figure 4.10: Visualization of the predicted keypoints on single frames of the YCB-Video
dataset. The estimated keypoint proposals are depicted as small colored points with
an individual color for each object class: bleach cleanser (gray), cracker box (green),
power drill (magenta), sugar box (brown), and large clamp (cyan). The resulting keypoint
predictions are highlighted as white circles with red center points. The target keypoints
are black circles with yellow center points.

98



4.9 Runtime for MV6D and SyMFM6D

4.9 Runtime for MV6D and SyMFM6D

We provide the runtimes of our methods MV6D and SyMFM6D for different numbers of
views from the YCB-Video dataset in table 4.7 and table 4.8 respectively. The network
forward time includes the 3D keypoint offset prediction, the center point offset prediction,
and the prediction of semantic labels. The pose estimation time represents the time for
applying the mean shift clustering algorithm and the least-squares fitting algorithm for
computing the 6D pose of a single object. Please note that the usage of the symmetry-aware
loss does increase the training time slightly, but it does not affect the runtime. The runtimes
are measured using a single GPU of type NVIDIA Tesla V100 with 32 GB of memory.

The results in the tables reveal a significant speedup of SyMFM6D compared to MV6D
with total times being reduced by approximately 60 %. This is due to the faster network
inference of SyMFM6D. Its network forward times are almost one-third compared to
MV6D. The pose estimation time of both methods are identical as the same algorithms
are used in the associated modules.

Number of Views Network Forward Time Pose Estimation Time Total Time

1 135 ms 14 ms 149 ms
2 270 ms 19 ms 289 ms
3 400 ms 25 ms 425 ms
4 530 ms 30 ms 560 ms
5 660 ms 36 ms 696 ms

Table 4.7: Runtimes of MV6D for a different number of input views from the YCB-Video
dataset.

Number of Views Network Forward Time Pose Estimation Time Total Time

1 46 ms 14 ms 60 ms
2 92 ms 19 ms 111 ms
3 138 ms 25 ms 163 ms
4 184 ms 30 ms 214 ms
5 230 ms 36 ms 266 ms

Table 4.8: Runtimes of SyMFM6D for a different number of input views from the
YCB-Video dataset.

99



Chapter 4 Multi-View RGB-D Fusion for 6D Pose Estimation

4.10 Conclusion

In this chapter, we have presented two novel deep learning methods for multi-view 6D
pose estimation based on RGB-D data, namely MV6D and SyMFM6D. Both methods
incorporate different strategies for fusing RGB and depth data from multiple RGB-D
recordings showing very cluttered object scenes. Based on the fused features, MV6D and
SyMFM6D predict 3D keypoints, 3D center points, and semantic labels, which are used
to compute the 6D poses of all objects in the scene using a least-squares fitting algorithm.
We have additionally proposed a novel method for predicting predefined 3D keypoints of
symmetric objects relying on a symmetry-aware objective function.

To examine the strengths and limitations of our methods, we have utilized challenging
real-world data and created four novel photorealistic datasets showcasing cluttered scenes
with multiple RGB-D cameras from very different perspectives. Our experiments
demonstrate that our first method MV6D outperforms the previous state-of-the-art in
multi-view 6D pose estimation significantly on these datasets. FFB6D yields an even
higher accuracy while being computationally more efficient. Besides, we show that our
symmetry-aware training procedure improves the 6D pose estimation accuracy of both
symmetric and non-symmetric objects due to synergy effects resulting in exceeding the
previous state-of-the-art in single-view 6D pose estimation. Moreover, we demonstrate
the robustness of our methods towards inaccurately known camera poses and variable
camera arrangements.

100



Chapter 5

Deep Hierarchical Variational

Autoencoding for RGB Image Fusion

This chapter investigates novel data fusion approaches to combine multiple imperfect
visual data inputs while considering uncertainty and prior knowledge about the data.
Parts of this chapter are taken from my publication “FusionVAE: A Deep Hierarchical
Variational Autoencoder for RGB Image Fusion” [Duf+22], written by Fabian Duffhauss,
Ngo Anh Vien, Hanna Ziesche, and Gerhard Neumann, which has been presented at
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2022.
Please refer to the third main row of tables 1.1 and 1.2 to see the fusion modalities and
most important challenges addressed in this chapter in comparison to the other main
chapters.

5.1 Introduction

Sensor fusion is a popular technique in computer vision as it allows to combine the
individual advantages of multiple information sources. It is especially gainful in scenarios
where a single sensor is not able to capture all necessary data to perform a task satisfactorily.
Over the last years, we have seen many examples, where the accuracy of computer vision
tasks was significantly improved by sensor fusion, e.g. in environmental perception for
autonomous driving [Che+17c; Ku+18; Yoo+20], for 6D pose estimation [Wan+19;
He+20; He+21], and for robotic grasping [Zha+17a; Wan+20]. However, traditional
fusion methods usually focus more on the beneficial merging of multiple modalities and
less on teaching the model to obtain profound prior knowledge about the used dataset.

Our work tries to fill in this research gap by proposing a deep hierarchical variational
autoencoder called FusionVAE that is able to perform both tasks: fusing information from
multiple sources and supplementing it with prior knowledge about the data gained while
training. As shown in figure 5.1, FusionVAE merges a varying number of input images
for reconstructing the original target image using prior knowledge about the dataset. To
the best of our knowledge, FusionVAE is the first approach that combines these two tasks.
Therefore, we developed three challenging benchmarks based on well-known computer

101



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

FusionVAE

Inputs Target Predictions

Figure 5.1: Overview of our FusionVAE approach. The network receives up to three partly
occluded input images, fuses them together with prior knowledge, and predicts different
hypotheses of how the target images could look like.

vision datasets to evaluate the performance of our approach. In addition, we perform
comparisons to baselines by extending traditional approaches to perform the same tasks.
FusionVAE outperforms all these traditional methods on all proposed benchmark tasks
significantly. We show that FusionVAE can generate high-quality images given few input
images with partial observability. We provide ablation studies to illustrate the impact
of commonly used information aggregation operations and to prove the benefits of the
employed posterior distribution.

We can summarize the four main contributions of our work in this field as follows:

• We create three challenging image fusion tasks for generative models.

• We develop a deep hierarchical VAE called FusionVAE that is able to perform
image-based data fusion while employing prior knowledge of the used dataset.

• We show that FusionVAE produces high-quality fused output images and outperforms
traditional methods by a large margin.

• We perform ablation studies showing the benefits of our design choices regarding
both the posterior distribution and commonly used aggregation methods.

5.2 Related Work

In this section, we present related work about image generation, image fusion, and image
completion. Please refer to section 2.5.1 for further details about the fundamentals of
VAEs including related work.

102



5.2 Related Work

5.2.1 VAE-based Image Generation

VAEs are powerful networks that are able to compress the essence of datasets in a small
latent space while being able to exploit it for generative tasks [KW14]. However, the
standard VAE is limited in capacity and expressiveness and thus, when applied to image
generation leads to over-smoothed results lacking fine-grained details. Over the last years,
much work has been invested into the effort of improving the generative performance of
VAEs. One stream of work is based on introducing a hierarchy into the latent space of the
VAE and scaling this hierarchy to greater and greater depth. First introduced in [Søn+16]
many hierarchical VAEs are based on coupling the inference and generative processes
by introducing a deterministic bottom-up path combined with a stochastic top-down
process in the inference network and sharing the latter with the generative model. This
setting has been extended by an additional deterministic top-down path and bidirectional
inference in [Maa+19]. Recently, very deep hierarchical VAEs were realized in [Chi21]
by introducing residual bottlenecks with dedicated scaling, update skipping, and nearest
neighbor up-sampling. Closest to our work is the recently proposed NVAE architecture
[VK20], which relies on depth-wise convolution, residual posterior parametrization, and
spectral regularization to enhance stability.

Other approaches propose increasing the expressiveness of VAEs by combining them
with auto-regressive models like RNNs or PixelCNNs [Che+17a; Gul+17; Sad+19;
Gre+15], conditioning contexts (CVAE) [SLY15; Wal+16], normalizing flows [Kin+16b],
GANs [Lar+16; Par+21], or variational generative adversarial networks (CVAE-GANs)
[Bao+17].

5.2.2 Fusion of Multiple Images

Image fusion has been dominated by classical computer vision for a long time. Only
lately deep learning methods have entered the domain starting with the CNN-based
approach proposed by Liu et al. [Liu+17b]. In a subsequent publication, the authors have
extended their work to a multi-scale setting [Liu+17a]. Shortly afterwards, Prabhakar
et al. have developed a fusion method based on a siamese network architecture, called
DeepFuse [PSB17] which was improved in subsequent work [LW18] by employing the
DenseNet architecture [Hua+17]. Concurrently, Li et al. [LWK18] have proposed a
fusion architecture based on VGG [SZ15] and another one [LWD19] based on ResNet-50
[He+16] in order to scale to even greater depth. The aforementioned methods use CNNs
as feature extractors and as decoders, while the fusion operations themselves are restricted
to classical methods like averaging or addition of feature maps or weighted source images.
A fully CNN-based feature-map fusion mechanism has been proposed in [Jun+20].

While all previous publications target only a specific fusion task (e.g. multi-focus fusion,
multi-resolution fusion, etc.) or were limited to specific domains (e.g. medical images),
two very recent works propose novel multi-purpose fusion networks, which are applicable

103



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

to many fusion tasks and image types [Xu+20b; Zha+20a]. Very recently also GAN-based
methods entered the domain of image fusion, starting with the work by Ma et al. on
infrared-visible fusion [Ma+20a; Ma+19a] and with [Ma+20b; Xu+19] on multi-resolution
image fusion. Most recent are two publications on GAN-based multi-focus image fusion
[Guo+19; Hua+20]. While GAN-based approaches can generate high-fidelity images, it is
known that they suffer from the mode collapse problem. VAE-based methods in contrast
are known to generate more faithful data distribution [VK20]. Different from previous
work, this paper proposes a VAE-based multi-purpose fusion framework.

5.2.3 Image Completion

Similar to image fusion, image completion (also called image inpainting) has faced
significant advancements since the emergence of deep learning methods. First approaches
based on simple MLPs [Köh+14] or CNNs [Gu+18] were targeted only to fill small holes
in an image. However, with the introduction of GANs [Goo+14], the area quickly became
dominated by GAN-based approaches, starting with the context encoders presented by
Pathak et al. [Pat+16]. Many subsequent papers proposed extensions to this model in
order to obtain fine-grained completions while preserving global coherence by introducing
additional discriminators [ISI17], searching for closest samples to the corrupted image
in a latent embedding space conditioning on semantic labels [Son+18b], or designing
additional specialized loss functions [Li+17]. High-resolution results were obtained
recently by multi-scale approaches [Yan+17], iterative upsampling [Zen+20b], and the
application of contextual attention [Yu+18; Son+18a; Yan+18]. Another stream of current
work focuses on multi-hypothesis image completion, leveraging probabilistic problem
formulations [ZCC19; MMG21].

5.3 Conditional Generative Models for Image Fusion

We propose a deep hierarchical conditional variational autoencoder, called FusionVAE
(Fusion Variational Auto-Encoder), that is able to fuse information from multiple sources
and to infer the missing information in the images from a prior learned from the dataset.
To the best of our knowledge, it is the first model that combines the generative ability of a
hierarchical VAE to learn the underlying distribution of complex datasets with the ability
to fuse multiple input images.

5.3.1 Problem Formulation

We consider image fusion problems that are concerned with generating the fused target
image from multiple source images. Each source image contains partial information of
the target image and the goal of the task is to recover the original target image given a

104



5.3 Conditional Generative Models for Image Fusion

finite set of source images. In particular, we denote the target image as y and the set of K

source images as context x = {x1, . . . , xK}, where each xi is one source image. Given
training sample (x, y), we aim to maximize the conditional likelihood p(y |x).

Please refer to sections 2.5.1 to 2.5.1 for fundamentals about standard VAEs, CVAEs,
and hierarchical VAEs upon which we build our work.

5.3.2 Training Objective Derivation

As previously mentioned, our approach is designed to maximize the conditional likelihood
pθ(y |x). However, optimizing this objective directly is intractable. Therefore, we derive a
variational lower bound as follows.

We start with the KL divergence between the approximate posterior distribution qφ(z |y)

and the true posterior distribution pθ(z |x, y),

KL(qφ(z |y)| |pθ(z |x, y)) ≥ 0. (5.1)

Next, we apply the Bayes’s theorem to obtain

−

∫
qφ(z |y) log

pθ(y |x, z)pθ(z |x)

pθ(y |x)qφ(z |y)
dz ≥ 0. (5.2)

This is equivalent to

−Eqφ(z |y)[log pθ(y |x, z)] − KL(qφ(z |y)| |pθ(z |x))

+

∫
qφ(z |y) log pθ(y |x)dz ≥ 0.

(5.3)

The conditional log-likelihood log pθ(y |x) can be moved out from the third integral
component and leaves the integral becoming 1. Thus, we obtain the variational lower
bound of the conditional log-likelihood

log pθ(y |x) ≥ Eqφ(z |y)[log pθ(y |x, z)] + KL(qφ(z |y)| |pθ(z |x)). (5.4)

As we propose a hierarchical VAE, we split the latent variables z into L disjoint groups
z1, . . . , zL . Furthermore, we introduce annealing parameters β and αl that control the
warming-up of the KL terms as in [VK20]. This leads to the improved variational lower
bound of our FusionVAE

log pθ(y |x) ≥ Eqφ(z |y)[log pθ(y |x, z)]

− β

L∑
l=1

αlEqφ(z<l |y)[KL(qφ(zl |y, z<l)| |pθ(zl |x, z<l))]

= ELBOFusionV AE (x, y).

(5.5)

105



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

Inspired by [Søn+16], we increase β linearly from 0 to 1 during the first few training epochs
to start training the reconstruction before introducing the KL term, which is increased
gradually. αl is a KL balancing coefficient as in [Vah+18] that is used during the warm-up
period to encourage the equal use of all latent groups and to avoid posterior collapse.

5.3.3 Network Architecture

Figure 5.2 illustrates the network architecture of our FusionVAE for training. It is built in
a hierarchical way inspired by [VK20]. In each latent hierarchy l ∈ 1, . . . , L we have a
set of feature maps f l x , f ly and latent distributions pl , ql .

^

...

x r

r fLy

fLx r

r f1y

f1x

pL

qL

hrr

r

ry

y

Context 

Encoder

Target

Encoder

Generator 

Network

Latent 

Spacep1

q1

Figure 5.2: Overview of the proposed FusionVAE network architecture. h is a trainable
parameter vector, ⊕ denotes concatenation, ⊕ max aggregation, and ⊕ pixel-wise addition.
rr is a residual network like in [VK20]. The dotted lines between the residual networks

indicate shared parameters.

FusionVAE consists of four parts including three main networks and a latent space,
each highlighted by a gray box. The first gray box contains the context encoder network
that obtains a stack of source images x and employs residual cells [He+16] as in [VK20]
to extract features f l x . Thus, it models the conditional prior distribution pφ(zl |x, z<l).

The second gray box shows the target encoder network that encodes the target image y

into the feature map f ly using the same residual cells as the context encoder. Thus, it
models the approximate posterior distribution qφ(z |y)

The third gray box illustrates the latent space comprising the L latent groups which
contain the prior distributions pφ(zl |x, z<l) (denoted p1, ..., pL in figure 5.2) and the
approximate posterior distributions qφ(zl |y, z<l) (denoted q1, ..., qL in figure 5.2).

The fourth gray box contains the generator network pθ(y |x, z) that aims to reconstruct
the target image y by creating different output samples ŷ. It employs a trainable parameter

106



5.4 Experimental Setup

vector h, concatenates the information from all hierarchies, and decodes them using
residual cells.

In each latent hierarchy, we aggregate the context features f l x using pixel-wise max
aggregation. In all but the first hierarchy, we pixel-wisely add the corresponding feature
map from the generator network to the aggregated context features and to the target
image features fly. Using 2D convolutional layers, we learn the prior distributions pl

and the approximate posterior distributions ql . We propose to use the approximate
posterior distributions ql as target distributions in order to learn good prior distributions pl .
Therefore, qφ(zl |y, z<l) is created from the target image features fly as well as information
from the generator network.

During training the generator network aims to create a prediction ŷ based on samples
of the posterior distributions ql and a trainable parameter vector h.

For evaluation, we can omit the target image input y and sample from the prior
distributions pl . In case no input image is given, we set p1 to a standard normal
distribution. Based on the samples and the trainable parameter vector h, our FusionVAE
can generate new output images.

5.4 Experimental Setup

To evaluate our approach, we have conducted a series of experiments on three different
datasets using data augmentation. Furthermore, we have adapted traditional architectures
for solving the same tasks in order to compare our results. Finally, we perform an ablation
study to show the effects of specific design choices.

5.4.1 Datasets

For training and evaluating our approach, we have created three novel fusion datasets based
on the datasets MNIST [LeC98], CelebA [Liu+15], and T-LESS [Hod+17] as described
in the following.

FusionMNIST. Based on the MNIST dataset [LeC98], we have created an image
fusion dataset called FusionMNIST. For each target image, it contains different noisy
representations where only random parts of the target image are visible. The first three
columns of figure 5.3 show different examples of FusionMNIST corresponding to the
target images in the fourth column. To generate FusionMNIST, we have applied zero
padding to all MNIST images to obtain a resolution of 32 × 32. For creating a noisy
representation, we generated a mask composed of the union of a varying number of
ellipses with random sizes, shapes, and positions. All parts of the given images outside
the mask are blackened. Finally, we added Gaussian noise with a fixed variance and clip
the pixel values afterwards to stay within the interval [0, 1].

107



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

FusionCelebA. We have generated a similar fusion dataset based on the aligned and
cropped version of CelebA [Liu+15] which we call FusionCelebA. Figure 5.4 depicts
different example images in the first three columns which belong to the target image in
the fourth column. To generate FusionCelebA, we center-cropped the CelebA images
to 148 × 148 before scaling them down to 64 × 64 as proposed by [Lar+16]. As in
FusionMNIST, we created different representations by using masks based on random
ellipses.

FusionT-LESS. A promising application area for our FusionVAE is robot vision. Scenes
in robotics settings can be very difficult to understand due to texture-less or reflective
objects and occlusions. To examine the performance of our FusionVAE in this area, we
have created an object dataset with challenging occlusions based on T-LESS [Hod+17]
which we call FusionT-LESS. To generate FusionT-LESS, we used the real training images
of T-LESS and take all images of classes 19 – 24 as the basis for the target images.
This selection contains all objects with power sockets and therefore images with many
similarities. Every tenth image is removed from the training set and used for evaluation.
In order to create challenging occlusions, we cut all objects from images of other classes
using a Canny edge detector [Can86] and overlay each target image with a random number
between five and eight cropped objects. We selected all images from classes 1, 2, 5 – 7,
11 – 14, and 25 – 27 as occluding objects for training and classes 3, 4, 8 – 10, 15 – 18, and
28 – 30 for evaluation.

5.4.2 Data Augmentation

During training, we apply different augmentation methods on the datasets to avoid
overfitting. For FusionMNIST, we apply the elliptical mask generation and the addition of
Gaussian noise live during training so that we obtain an infinite number of different fusion
tasks. For FusionT-LESS, almost the entire creation of occluded images is performed
during training. We apply horizontal flips, rotations, scaling, and movement of target
and occluding images with random parameters before composing the different occluded
representations. Solely the object cutting with the Canny edge detector is performed
offline as a pre-processing step to keep the training time low. For FusionCelebA, we apply
a horizontal flip of all images randomly in 50 % of all occasions, and also the elliptical
mask generation is done live during training.

5.4.3 Architectures for Comparison

To the best of our knowledge, FusionVAE is the first fusion network for multiple images
with a generative ability to fill areas without input information based on prior knowledge
about the dataset under consideration. Due to the absence of another suitable model from

108



5.4 Experimental Setup

the literature which would allow a fair comparison on our multi-image fusion benchmarks,
we compare our approach with standard architectures that we adapted to support our tasks.

The first architecture for comparison is a CVAE with residual layers as employed in
[VK20]. We use a shared encoder for processing the input images and applied max
aggregation before the latent space as we did in our FusionVAE. The second architecture
for comparison is a Fully Convolutional Network (FCN) with a shared encoder and max
aggregation before the decoder.

For both baseline architectures, we created a version with skip connections (denoted as
+S) and a version without. When using skip connections, we applied max aggregation
at each shortcut for merging the features from the encoder with the decoder’s features.
To allow for a fair comparison, we designed all architectures so that they have a similar
number of trainable parameters.

5.4.4 Training Procedure

We have trained all networks in a supervised manner using the augmented target images y

as described in section 5.4.2. In order to teach the networks both to fuse information from
a different number of input images and to learn prior knowledge about the dataset, we
varied the number of input images x during the entire training. Specifically, we selected a
uniformly distributed random number between zero and three for each batch.

5.4.5 Implementation Details of FusionVAE

For FusionMNIST and FusionT-LESS, we model the decoder’s output by pixel-wise
independent Bernoulli distributions. For FusionCelebA, we use pixel-wise independent
discretized logistic mixture distributions as proposed by Salimans et al. [Sal+17].

The residual cells of the encoder are composed of batch normalization layers [IS15],
Swish activation functions [RZL18], convolutional layers, and Squeeze-and-Excitation
(SE) blocks [HSS18] as proposed in [VK20]. In the decoder, we also follow [VK20]
and build the residual cells out of batch normalization layers, 1x1 convolutions, Swish
activations, depthwise separable convolutions [Cho17], and SE blocks. However, we
omitted normalizing flow because in our experiments it showed to increase the training
time without improving the prediction accuracy significantly.

For each dataset, we have chosen the size of our FusionVAE architecture individually
to achieve acceptable accuracy while keeping the training time reasonable. Table 5.1
provides details about the used hyperparameters and further properties of our experiments.

In general, the number of latent groups L should be chosen depending on the complexity
of the task at hand. We made our decision based on the L of the NVAE [VK20] but
reduced it for computational reasons. For FusionCelebA and FusionT-LESS, we use 17

109



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

Hyperparameter FusionMNIST FusionCelebA FusionT-LESS

# latent groups per scale 5, 2 10, 5, 2 10, 5, 2
Spatial dimensions of zl per scale 42, 82 82, 162, 322 82, 162, 322

# channels in zl 10 20 20
# GPUs 2 4 2
# training epochs 400 90 500
Batch size 800 32 32
Training time 4 h 48 h 28 h

Table 5.1: Main hyperparameters and characteristics of our experiments with FusionVAE.

latent groups, and for FusionMNIST only seven. Using more latent groups improves the
results but increases the computational effort significantly.

For all experiments, we used GPUs of type NVIDIA Tesla V100 with 32 GB of memory
and trained with an AdaMax optimizer [KB15]. We applied a cosine annealing schedule
for the learning rate [LH17] starting at 0.01 and ending at 0.0001.

5.4.6 Evaluation Metrics

For evaluation, we estimate the Negative Log-Likelihood (NLL) in Bits Per Dimension
(BPD) using weighted importance sampling [BGS16]. We use 100 samples for all
experiments with FusionCelebA as well as FusionT-LESS and 1000 samples for Fusion-
MNIST. Since we cannot estimate the NLL of the FCN, we used the minimum over all
samples of the mean squared error (MSEmin) as a second metric.

5.5 Results

This section presents and discusses the quantitative and qualitative results of our research
in comparison to the baseline methods mentioned in section 5.4.3.

5.5.1 Quantitative Results

Tables 5.2 to 5.4 show the NLL and the MSEmin of all architectures on FusionMNIST,
FusionCelebA, and FusionT-LESS respectively. The results are divided into the results
based on zero to three input images and the average (avg) of it. We see that our FusionVAE
outperforms all baseline methods on average. Regarding the NLL, our model surpasses
the others additionally for 0 and 1 input images. For 2 and 3 images, CVAE+S reaches
sometimes slightly better NLL values. However, our approach reaches the best MSEmin

values for each number of input images.

110



5.5 Results

NLL in 10−2 BPD MSEmin in 10−2

0 1 2 3 avg 0 1 2 3 avg

FCN 10.99 5.81 5.78 5.79 7.25
FCN+S 5.80 3.74 2.54 1.78 3.56
CVAE 17.81 15.01 14.07 13.61 15.23 3.83 1.72 1.05 0.80 1.93
CVAE+S 18.43 14.57 13.18 12.30 14.77 3.62 1.75 1.19 0.97 1.95
FusionVAE 15.93 14.17 13.70 13.48 14.39 3.14 0.99 0.74 0.65 1.45

Table 5.2: Results on the FusionMNIST dataset. The columns show the metric outcomes
for zero to three input images (denoted as 0, 1, 2, 3) together with an average (avg). The
best results are printed in bold.

NLL in 10−2 BPD MSEmin in 10−2

0 1 2 3 avg 0 1 2 3 avg

FCN 13.77 14.82 13.10 11.24 13.23
FCN+S 12.56 8.96 6.06 4.09 7.92
CVAE 446.0 280.1 273.5 266.5 316.7 9.23 3.46 2.27 1.55 4.14
CVAE+S 525.0 270.1 233.5 203.5 308.3 11.08 5.49 3.66 2.57 5.71
FusionVAE 248.1 227.6 231.2 228.7 233.9 5.11 0.88 0.86 0.84 1.93

Table 5.3: Results on the FusionCelebA dataset. The best results are printed in bold.

NLL in 10−2 BPD MSEmin in 10−2

0 1 2 3 avg 0 1 2 3 avg

FCN 5.83 3.34 2.37 1.82 3.35
FCN+S 8.06 1.84 1.13 0.74 2.97
CVAE 25.24 23.73 22.70 23.13 23.71 5.57 1.54 0.77 0.37 2.08
CVAE+S 26.08 24.94 23.98 23.95 24.75 4.95 2.50 1.77 1.19 2.62
FusionVAE 24.18 23.07 22.23 22.88 23.10 4.11 0.59 0.32 0.19 1.32

Table 5.4: Results on the FusionT-LESS dataset. The best results are printed in bold.

111



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

5.5.2 Qualitative Results

The outstanding performance of our architecture in comparison to the others is also
obvious when looking at the qualitative results in figures 5.3 to 5.5. For every row, these
figures show the input, target, and up to three output predictions for all architectures. For
the FCN, we depict just a single output prediction per row as all of them look almost
identical.

In the first three rows when the network does not receive any input image, we see that
our network provides very realistic images. This indicates that it is able to capture the
underlying distribution of the used datasets very well and much better than the other
architectures. Due to the difficulty of the FusionT-LESS dataset, none of the models is
able to produce realistic images without any input. Still our model shows much better
performance in generating object-like shapes. In case the models receive at least one
input image (cf. rows 4 – 12), all architectures are able to extract the available information
from the given input images. In addition, all VAE approaches, ours included, are able to
complete the given input data based on prior knowledge. It is clearly visible, however, that
the predictions of our model are much more realistic than the ones of the standard CVAE
approaches especially for the more difficult datasets like FusionCelebA and FusionT-LESS.

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure 5.3: Prediction results of the different architectures on the FusionMNIST dataset
for zero to three input images.

112



5.5 Results

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure 5.4: Prediction results of the different architectures on the FusionCelebA dataset
for zero to three input images.

113



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure 5.5: Prediction results of the different architectures on the FusionT-LESS dataset
for zero to three input images.

114



5.5 Results

5.5.3 Ablation Studies

We conducted ablation studies to show the effect of certain design choices, such as the
selection of the approximate posterior distribution and the selection of the aggregation
method used within the architecture of FusionVAE. All experiments are run on the
FusionCelebA dataset.

Table 5.5 compares the performance of our FusionVAE for two different approximate
posterior distributions qφ. The approximate posterior we selected for our FusionVAE
qφ(y), depends only on the given target image y. It performs slightly better on average
compared to the same method using a posterior qφ(x, y) that is computed based on the
input images x as well as the target image y. However, the latter approach is superior
when fusing two or three input images.

NLL in 10−2 BPD MSEmin in 10−2

0 1 2 3 avg 0 1 2 3 avg

qφ(x, y) 309.2 246.8 211.1 180.5 237.0 5.04 1.50 0.95 0.66 2.04
qφ(y) 248.1 227.6 231.2 228.7 233.9 5.11 0.88 0.86 0.84 1.93

Table 5.5: Ablation study for the approximate posterior distribution of FusionVAE,
evaluated on the FusionCelebA dataset. The best results are printed in bold.

Table 5.6 shows the performance of different aggregation methods which are applied
to create the prior distributions pl of every latent group. In our FusionVAE, the prior is
created by fusing the input image features fl x using max aggregation (MaxAgg) and adding
them to the decoded features of the same latent group before applying a 2D convolution.
We abbreviate that method with MaxAggAdd.

NLL in 10−2 BPD MSEmin in 10−2

0 1 2 3 avg 0 1 2 3 avg

MaxAggAdd 248.1 227.6 231.2 228.7 233.9 5.11 0.88 0.86 0.84 1.93

MeanAggAdd 270.9 223.3 216.4 214.4 231.3 5.41 1.00 0.79 0.70 1.98
BayAggAdd 970.7 294.0 291.4 291.5 462.6 6.03 5.17 5.10 5.12 5.36
MaxAggAll 249.6 236.0 223.9 212.7 230.6 6.15 2.82 1.84 1.30 3.03
MeanAggAll 252.7 235.2 222.2 213.5 230.9 6.19 2.39 1.52 1.13 2.81
BayAggAll 255.6 568.3 414.7 1376.9 653.3 5.10 4.24 1.96 1.39 3.18

Table 5.6: Ablation study for different aggregation methods within the FusionVAE
architecture, evaluated on the FusionCelebA dataset. The best results are printed in bold.

In addition to MaxAgg, we examined mean aggregation (MeanAgg) and Bayesian
aggregation (BayAgg) [Vol+20] for comparison. Please refer to section 2.4.2 for more
details about these aggregation methods.

115



Chapter 5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

For each aggregation principle, we have tried two different versions:

1. Aggregation of the input image features f l x adding the corresponding information
from the decoder in a pixel-wise manner (denoted by suffix Add).

2. Directly aggregating all features, i.e. both input image features f l x and decoder
features (denoted by suffix All).

For creating the prior pi when using BayAgg, we moved the 2D convolutions before
the aggregation in order to create the parameter vectors µ and σ of a latent Gaussian
distribution. Unlike MaxAgg and MeanAgg, BayAgg directly outputs a new Gaussian
distribution that does not need to be processed any further by a convolution.

We can see that all variations of mean aggregation and max aggregation are significantly
better than Bayesian aggregation. Also, their training procedures are less often impaired
due to numeric instabilities. Interestingly, the NLL values of mean aggregation and max
aggregation are very similar independent of whether the aggregation is performed on all
features or not. However, the MSEmin is much better for the aggregation with addition.

Input Target MaxAggAdd MeanAggAdd MaxAggAll MeanAggAll

Figure 5.6: Prediction results of the different mean and max aggregation methods on the
FusionCelebA dataset for zero to three input images.

Since the expressiveness of the metrics is limited, we provide additional visualizations
of this ablation study for both aggregation methods with pixel-wise addition (ADD) and
when aggregating all features (ALL) in figure 5.6. Even though the NLL is very similar,

116



5.6 Conclusion

the results of the aggregation of all features (MaxAggAll and MeanAggAll) are much more
blurry than the results of the aggregation with addition (MaxAggAdd and MeanAggAdd).
This is in conformity with the MSEmin results. It indicates that the NLL alone is not always
the best metric to assess the visual closeness to real faces. When carefully examining
the images of the addition aggregations, you could argue that the predictions with zero
input images look slightly more realistic for max aggregation while for three input images,
mean aggregation seems to be marginally better. This again confirms the validity of the
MSEmin results even though the NLL results are also in accordance with this comparison.

5.6 Conclusion

In this chapter, we have presented a novel deep hierarchical variational autoencoder
for generative image fusion, called FusionVAE. Our approach fuses multiple corrupted
input images together with prior knowledge obtained during training. We have created
three challenging image fusion benchmarks based on common computer vision datasets.
Moreover, we have implemented four standard methods that we have modified to support
our tasks. We show that our FusionVAE outperforms all other methods significantly while
having a similar number of trainable parameters. The predicted images of our approach
look very realistic and incorporate the given input information almost perfectly. During
ablation studies, we have revealed the benefits of our design choices regarding the applied
aggregation method and the used posterior distribution. In future work, our research could
be extended by enabling the fusion of different modalities e.g. by using multiple encoders.
Additionally, an explicit uncertainty estimation could be implemented that helps to weight
the impact of input information according to its uncertainty. Please refer to section 6.3 for
more conclusions and ideas for future work.

117





Chapter 6

Conclusion and Future Work

Over the last couple of years, deep learning approaches have predominantly overtaken
traditional methods for environmental perception tasks of automated systems, including
robots and automated vehicles. For further improving perception algorithms, sensor data
fusion is an increasingly popular technique which has experienced significant advancements
recently. Another trend is multi-task learning which can exploit synergy effects between
multiple related tasks, reduce computational complexity, and increase inference speed.
However, combining these three trends into a deep data fusion approach for multi-task
learning is very challenging. Previous methods have severe limitations e.g. regarding their
accuracy in complex environments with many occlusions, regarding their generalization
on real-world data, or regarding their runtime. This opens up many promising research
directions which are targeted in this dissertation. The following three sections conclude
the main findings of this work and present promising avenues for further investigation.

6.1 Deep Temporal Point Cloud Fusion and Multi-task

Learning for Automated Driving Perception

Chapter 3 addresses the problems of temporal point cloud fusion and multi-task learning
using deep learning techniques for LiDAR point clouds in the automotive domain. As
LiDAR point clouds are very large while involving an increased sparsity of points with
increased distance, we have studied approaches compressing information from dense areas
while retaining information from sparse areas.

In this context, we have presented a novel end-to-end trainable network for simultaneous
LiDAR-based 3D object detection and scene flow estimation, called PillarFlowNet. We
have proposed to employ two pillar-based feature encoding networks based on PointNets
[Qi+17a] to efficiently learn compact feature representations of two consecutively acquired
point clouds, coping with the challenging properties of large and sparse LiDAR point clouds.
A subsequent fully 2D convolutional backbone network fuses the learned representations,
avoiding computationally expensive 3D convolutions.

119



Chapter 6 Conclusion and Future Work

In comprehensive experiments on the KITTI Object Tracking dataset, extended for
scene flow estimation, we have demonstrated the superiority of PillarFlowNet compared
to previous work in terms of runtime and accuracy. Through the efficiency of the deployed
pillar-based feature encoder network and the 2D convolutional backbone networks, Pillar-
FlowNet is the first real-time capable method for simultaneous 3D object detection and
scene flow estimation.

As a potential direction for future work, it would be auspicious to integrate the recent
advancements in point cloud encoding, e.g. presented in PointTransformer [Zha+21c],
PointMLP [Ma+22], PointNeXt [Qia+22], or PointVector [Den+23]. All these methods
have led to significant improvements in diverse scene understanding tasks by introducing
self-attention layers, improved training strategies, enhanced local feature aggregation, or
effective model scaling strategies.

After completing the main research experiments on the KITTI Object Tracking dataset,
a few novel datasets for autonomous driving have become popular, such as nuScenes
[Cae+20], Argoverse [Cha+19], Argoverse 2 [Wil+21] and the Waymo Open Dataset
[Sun+20]. As all of them provide LiDAR point clouds annotated for 3D object detection
and ego-motion, they could be extended for scene flow estimation in the same way we
computed scene flow ground truth for the KITTI Object Tracking dataset. Each of these
datasets incorporates slightly different challenges in comparison to the KITTI dataset that
could be addressed in future research. For example, nuScenes contains data recorded not
only in clear weather scenarios with good illumination, but also at nighttime, and in rainy,
cloudy, and sunny scenarios [Cae+20]. In contrast, Argoverse provides LiDAR point
clouds with a range up to 200 m which is roughly twice as much as in KITTI or nuScenes,
enabling to address the limited accuracy of most methods for 3D object detection beyond
50 m [Cha+19]. Also the domain transfer between different LiDAR sensors could be
examined.

Our proposed approach relies on a large-scale annotated dataset with labeled scenes for
3D object detection and scene flow estimation. To reduce this dependability on expensive
data, future work could employ self-supervised pre-training. Related work has recently
shown the benefit of self-supervised pre-training for many applications including scene
flow estimation [MOH20; Li+22b] and 3D object detection [Lia+21; Erç+22]. A common
pre-training objective for point cloud sequences is a cycle consistency loss that given two
consecutive point clouds incorporates two scene flow estimation steps forward and reverse
in time to create a cycle ensuring the estimated scene flow is consistent in time. After
thoroughly pre-training the network, a much lower amount of annotated data is required
for fine-tuning the network. Furthermore, this can significantly improve the accuracy and
generalization ability.

Another direction for future work would be the extension of our method to additional
modalities, such as radar data or camera data. As each sensor modality has its individual
advantages as presented in section 2.1, a combination has the potential to further improve
the accuracy for 3D object detection and scene flow estimation. This becomes increasingly

120



6.2 Multi-View RGB-D Fusion for 6D Pose Estimation

relevant for achieving robustness in scenarios with extreme lighting or adverse weather
conditions where a LiDAR sensor alone cannot provide sufficiently reliable information.

As scene flow estimation is a point-wise regression task, an extension of our method to
additional point-wise regression tasks might be beneficial in terms of synergy effects. For
instance, Baur et al. [Bau+21] recently showed that combining scene flow estimation with
motion segmentation, i.e. classifying all points in a scene into static and dynamic points,
can improve the scene flow accuracy. Another point-wise regression task interesting to
combine with scene flow estimation would be 3D semantic segmentation. Recently, Unal
et al. [UVD21] have demonstrated the benefits of 3D object detection for improving 3D
semantic segmentation. However, the performance of their 3D object detection deteriorates
slightly in this case, opening up the research question of how 3D object detection can
benefit from 3D semantic segmentation.

Furthermore, the combination of scene flow estimation with ego-motion prediction
could be examined in greater detail. As ego-motion corresponds to the inverse of the
static scene flow, there might be synergy effects when combining these two tasks in a
sophisticated way. Also, the time horizon could be increased from two LiDAR frames
to more in order to fully exploit the available information in previous frames. This has
great potential to improve the detection accuracy in difficult scenarios, for instance when
objects are highly occluded or when the sensor data is unreliable due to noise, adverse
weather, challenging lighting, or data point sparsity.

6.2 Multi-View RGB-D Fusion for 6D Pose Estimation

Chapter 4 investigates fusion strategies for combining RGB-D data from multiple perspec-
tives showcasing the same cluttered scene. Within the scope of this research, we have
devised two novel deep learning methods called MV6D and SyMFM6D for multi-view 6D
object pose estimation. Both methods combine the depth data from all given perspectives
into a single point cloud. We have developed and evaluated different feature extraction
and fusion methodologies for combining the RGB data and the point cloud data effectively.
Based on a compact feature representation of the scene, both methods employ an instance
semantic segmentation and a 3D keypoint detection before computing the 6D poses of
all objects in the scene with a least-squares fitting algorithm. Besides, we have explored
the challenges posed by object symmetries and introduced a symmetry-aware training
procedure based on a novel objective function to effectively tackle these challenges.

To comprehensively evaluate the capabilities and limitations of our methods, we have
leveraged challenging real-world data and generated four photorealistic datasets with
multi-view RGB-D data featuring complex scenes with large occlusions. Our experimental
results demonstrate that MV6D and SyMFM6D surpass the previous state-of-the-art in
multi-view 6D pose estimation by a substantial margin on these datasets. In addition,
we showcase how our symmetry-aware training procedure enhances the pose estimation

121



Chapter 6 Conclusion and Future Work

accuracy for both symmetric and non-symmetric objects due to synergy effects. This leads
to an outperformance of the previous state-of-the-art in single-view 6D pose estimation
and further improves our multi-view pose estimation accuracy. Besides, our experiments
clearly indicate that our methods cope with variable camera positioning and imprecisely
measured camera poses.

Despite the success in the field of 6D pose estimation, several challenges remain,
including the requirement of large amounts of labeled data. To the best of our knowledge,
there is no large real-world dataset with RGB-D data and 6D pose estimation annotations
depicting strongly cluttered scenes from very distinct perspectives. One way to address this
shortcoming would be to record such a dataset. Using a camera mounted on a robot arm
allows the acquisition of RGB-D data depicting static scenes from arbitrary perspectives.
The camera poses would be easy to obtain due to the known robot arm movement. Each
scene needs to be annotated only once with 6D object pose ground truth independent of
the number of different views as the 6D poses in static scenes are identical for all camera
views if a fixed reference coordinate system is used.

While many different software tools have been proposed to facilitate the labeling process
[Xia+18; Kas+19; Jia+23], one alternative approach would be the creating of pre-defined
scenes where the object poses are determined in advance. In this case, a human could
place objects to pre-defined poses, which are, for example, displayed on augmented reality
glasses. Alternatively, a robot manipulator could construct scenes automatically according
to pre-defined scene construction plans.

Unfortunately, the creation of object scenes, the annotation, and the development of
advanced automated labeling tools involve large amounts of human effort, making the
generation of real-world data time-consuming and expensive. Thus, the usage of synthetic
data is a common approach to reduce the required amount of real-world data. As presented
in section 4.6.1, we have already exploited synthetic data in the field of multi-view
6D pose estimation. However, the domain gap between simulated and real-world data
hinders the seamless transfer of models trained on exclusively synthetic data to real-world
environments. Especially synthetic depth data differs significantly from data obtained by
a real depth camera even when generated by photorealistic rendering engines like Cycles
[SH14]. To address this issue, neural network models could be employed either to render
synthetic data more realistic or to improve real-world data so that it becomes more similar
to synthetic data. This could be achieved, for example, with GANs or diffusion models
[HJA20] which are trained on unlabeled data with the objective of eliminating differences
between real and synthetic data.

Another promising avenue for potential improvement is to reduce the dependency
on annotated data by exploiting unlabeled data. Similar to the automotive domain
thematized in section 6.1, self-supervised approaches could be integrated which improve
the generalization without expensively annotated datasets. Recent advancements in
self-supervised methodologies for 6D object pose estimation are often associated with
employing a render-and-compare framework where a synthetic image, rendered from an

122



6.2 Multi-View RGB-D Fusion for 6D Pose Estimation

initial pose estimate, is compared with the original real image [YYY21; Wan+21c; Lab+22;
Hai+23]. For example, Hai et al. [Hai+23] start with pre-training their network with
supervised synthetic data before introducing a refinement strategy exploiting consistency
of pixel-level optical flow between multiple views of the same scene. Self-supervised
strategies like the previously mentioned ones could be employed in addition to other
strategies including photorealistic rendering, domain randomization, and architectural
improvements in order to further enhance accuracy, robustness, and generalization
capability in multi-view 6D pose estimation given a limited amount of annotated data.

Apart from improvements related to data, our work could be advanced by enhancing
the way of computing the 6D poses in the last stage of our approaches. So far, both
MV6D and SyMFM6D employ a least-squares fitting algorithm which computes the
rotation and the translation of an object given the 3D keypoint predictions. However,
the keypoint predictions can be erroneous, especially for fully occluded keypoints, and
least-squares fitting treats all keypoints equally. Thus, a computed 6D pose can be
significantly deteriorated by just a few inaccurately predicted keypoints. To address this
issue, a mechanism could be implemented which assigns weights to keypoints based on
their certainty in the detection process. This can be achieved, for instance, by utilizing a
neural network that predicts keypoints together with their associated uncertainties, which
are determined by the amount and quality of the input data relevant to each individual
keypoint.

Furthermore, concerning the feature extraction and fusion stage of SyMFM6D, there
is room for potential improvements. For example, the point cloud encoding could be
enhanced by considering the latest advancements in this field as discussed in section 6.1.
However, regardless of the selected approach for point cloud encoding, it is essential to
customize this approach to enable the multi-directional fusion of image features at multiple
intermediate stages. Furthermore, there are significant differences between LiDAR point
clouds employed in chapter 3 and point clouds generated from RGB-D cameras as in
chapter 4 that need to be considered. For example, LiDAR data is much more accurate
whereas the depth values of RGB-D cameras are very noisy, especially for far distance
measurements. Unlike RGB-D camera-based point clouds, LiDAR point clouds are more
sparse and they have a very low vertical resolution. Besides, LiDAR measurement points
contain reflectivity values whereas each point in a RGB-D point cloud has an RGB value
attached to it. Therefore, it is imperative to take into account these different properties of
point clouds when designing feature extraction and fusion methods.

Despite the evident speed advancement of SyMFM6D over its predecessor MV6D,
as indicated in section 4.9, opportunities for further optimization in terms of efficiency
remain. Currently, the memory requirements and the network forward time of SyMFM6D
exhibit an almost linear increase with the number of input views. While being acceptable
for a low number of views, this relation leads to a waste of resources for a high number of
views. In order to address this limitation, the feature extraction and fusion could become
more efficient by earlier aggregating and down-sampling the image and point cloud data.

123



Chapter 6 Conclusion and Future Work

For optimal data compression, while preserving pertinent information, attention-based
modules could be employed which prioritize essential features and facilitate the discarding
of less relevant data.

6.3 Deep Hierarchical Variational Autoencoding for

RGB Image Fusion

Chapter 5 explores novel data fusion techniques which effectively merge multiple imperfect
visual data sources, taking into account uncertainties, and leveraging prior knowledge
pertaining to the data. This research has resulted in a novel deep hierarchical variational
autoencoder called FusionVAE that can serve as a fundamental framework for diverse
fusion tasks. FusionVAE is the first generative approach able to generate a wide range
of new high-quality image samples conditioned on an arbitrary number of input images,
effectively handling uncertainty due to large occlusions, noise, or partial visibility. Our
experiments on three challenging datasets specially developed for this purpose demonstrate
a significant outperformance of our approach compared to conventional fusion methods.
Moreover, we substantiate the benefits of the employed posterior distribution and present
the impact of commonly used data aggregation operations.

To further advance this research field, future work could target current drawbacks of
our FusionVAE network, such as the requirement for high computational resources which
limits the possible resolution of input and output images. So far, there is a trade-off
with unfavorable characteristics between computational efficiency and expressiveness
of our method: To further improve the quality of the generated images and to enable
higher resolutions, a significantly higher number of latent groups is required which
vastly increases the number of trainable parameters, the memory requirements, and the
computational complexity. Thus, future work has to conceive approaches achieving the
previously mentioned advantages without significantly increasing the network size. In this
context, Child et al. [Chi21] have recently achieved greater performance of hierarchical
VAEs by increasing the depth of their architecture while keeping the number of trainable
parameters comparably small. Besides, they introduced gradient skipping and nearest-
neighbor upsampling to better exploit convolutional layers while mitigating the problem
of posterior collapse. Luhman et al. [LL22; LL23] have further improved hierarchical
VAEs with a KL-reweighting strategy, a Gaussian output layer, a classifier-free guidance
strategy, and a two-stage setup based on a hierarchical VAE trained on the latent space of a
deterministic autoencoder. However, further investigation is required to determine which
of the recently proposed strategies are suitable for our hierarchical image fusion approach.

Another promising research direction would be the deeper exploration of mechanisms
explicitly considering uncertainty in the input data. So far, we have implemented Bayesian
aggregation [Vol+20] as one very general mechanism to incorporate a latent uncertainty
estimation process. However, a majority of our experiments have indicated conventional

124



6.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

aggregation methods without uncertainty estimation, such as maximum aggregation, to
be superior for our addressed applications. For this reason, future work could focus on
incorporating explicit uncertainty estimation procedures which are better customized to
our application. In this context, we could consider the various factors contributing to
uncertainty in sensor data, including challenging lighting conditions, reflections, fog, dirt
on the lens, and noise. One approach to further advance might be the introduction of a
detection mechanism particularly designed to identify these types of interferences, for
instance, by utilizing neural network modules which are pre-trained in a self-supervised
manner for this auxiliary task. Based on such a framework, a weighting of input data
according to their uncertainty could be established. Thus, input data components with
low uncertainty could obtain a higher impact on the final outcome in comparison to
components with high uncertainty.

Moreover, the concept of generative fusion incorporating prior knowledge could be
extended to other generative models apart from VAEs. For example, GANs [Goo+14]
could be utilized, which have experienced remarkable advancements over the last few
years, enabling the generation of high-resolution images with astonishingly authentic and
realistic appearance [Gui+23]. Very recently, also diffusion models [Soh+15] achieved
this ability and even outperformed GANs in selected tasks [DN21]. However, there are
even more types of generative model technologies that might be worth to consider, such as
normalizing flows [RM15b], autoregressive models [BDV00], and energy-based models
[LeC+06].

In chapter 5, we have focused on visual input data from RGB cameras only. However,
it would be interesting to extend this research field to enable the fusion of multiple data
modalities, for example, RGB data, depth data, LiDAR data, and radar data. This could
be achieved by leveraging individual feature encoding networks, specifically adapted
to each data modality. Furthermore, uncertainty estimation modules for each modality
could be added along with a selection of other previously mentioned strategies for
improving the performance of our method. All in all, enabling the fusion of multiple data
modalities would extend the range of possible applications significantly, for example to
depth estimation with perturbated input data, or to multi-modal object detection in very
challenging scenarios.

125





Appendix A

Supplementary for Chapter 3

A.1 Analysis of the KITTI Object Tracking Dataset

We have examined the KITTI Object Tracking dataset [GLU12] in terms of various key
indicators in order to find an appropriate split between training and test data. Figure A.1
shows the number of LiDAR points for each of the 21 sequences of the KITTI Object
Tracking dataset including the number of dynamic points, which are defined as points
within ground truth bounding boxes. It becomes evident that only a very small fraction of
the total number of LiDAR points belongs to dynamic objects and there is a significant
variance in the quantity of total and dynamic points across sequences. For example,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sequence number in the KITTI Object Tracking dataset

104

105

106

107

108

N
u
m
b
er

o
f
L
iD

A
R

p
o
in
ts

Total

Dynamic

Figure A.1: Number of LiDAR points per sequence of the KITTI Object Tracking dataset.
Please note the logarithmic scale required to depict static and dynamic points in the same
diagram as on average only 1.9 % of the points are dynamic.

127



Appendix A Supplementary for Chapter 3

sequence number 19 is the largest sequence with around 127M points in total including
around 132k dynamic points. It is characterized by the ego vehicle driving slowly through
a commercial street with many pedestrians, cycles, and parking vehicles. In contrast,
sequence number 12 is the shortest sequence with around 5M points including around 4k
dynamic points. Here, the ego vehicle stands at a red traffic light on an urban road for the
entire sequence with just two road users passing by.

As mentioned in section 3.5.1, we have selected the sequences for training and testing
in a way to ensure a similar ratio of dynamic points and objects within each set. For the
finally chosen split, presented in table 3.1, we provide relevant properties in table A.1.

Training data Test data

Total number of sequences 16 5
Total number of frame pairs 5,633 2,349
Average number of points 115,620 ± 6,516 115,848 ± 7,199

Average number of dynamic points 2,226 ± 3, 135 2,147 ± 2,381

Average number of objects per frame 8.2 ± 4.5 8.1 ± 4.8

Average number of cars and vans per frame 4.4 ± 3.5 2.4 ± 3.1

Table A.1: Key numbers for the training and test split of the KITTI Object Tracking
dataset. We provide the average numbers µ together with their standard deviation σ with
the notation µ ± σ.

128



Appendix B

Supplementary for Chapter 4

B.1 Network Parameters of MV6D

The network architecture of our MV6D method presented in figure 4.2 consists of
39.2 million trainable parameters. The resulting features of the PSPNets and the
PointNet++ have 128 channels each. The DenseFusion module in figure 4.3 concatenates
the image features with the point features resulting in a 256-channel feature vector. The
shared MLP with average pooling creates a global feature vector with 1024 channels. The
image and point features are also processed by shared MLPs which create 256 channel
vectors each. For creating the final point-wise features, all vectors are concatenated
resulting in 1792 channels (2 · 128 + 2 · 256 + 1024) as in PVN3D [He+20].

Table B.1 shows the channel sizes of the MLPs responsible for predicting keypoint
offsets, center point offsets, and semantic labels in the second stage of our network
architecture in figure 4.4.

MLP Channel Sizes

Keypoint Detection 1792, 1024, 512, 128, ncls

Center Point Detection 1792, 1024, 512, 128, 3nkps

Semantic Segmentation 1792, 1024, 512, 128, 3

Table B.1: MLP channel sizes for the output heads of MV6D. ncls is the number of classes
in the used dataset, i.e. ncls = 22 for YCB-Video and SymMovCam and ncls = 12 for
FixCam, WiggleCam, and MovingCam. nkps is the number of keypoints per object, which
we set to eight as in PVN3D [He+20].

B.2 Network Parameters of SyMFM6D

The network architecture of our SyMFM6D method presented in figure 4.4 consists of
33.9 million trainable parameters. Table B.2 provides an overview of the tensor shapes in

129



Appendix B Supplementary for Chapter 4

this network architecture. Table B.3 shows the channel sizes of the MLPs responsible for
predicting keypoint offsets, center point offsets, and semantic labels in the second stage of
our network architecture in figure 4.4. Table B.4 shows the channel sizes of the MLPs
employed in our multi-directional fusion modules presented in figure 4.5.

Layer CNN Tensor Shape PCN Tensor Shape

1 H/4, W /4, 64 Np, 8
2 H/4, W /4, 64 Np/4, 64
3 H/8, W /8, 128 Np/16, 128
4 H/8, W /8, 512 Np/64, 256
5 H/8, W /8, 1024 Np/256, 512
6 H/4, W /4, 256 Np/64, 256
7 H/2, W /2, 64 Np/16, 128
8 H/2, W /2, 64 Np/4, 64

Table B.2: Parameters of the network architecture of SyMFM6D. H and W are height and
width of the input images, i.e. H = 480 and W = 640 for all pose estimation datasets we
use. Np is the number of points in the point cloud, i.e. Np = 12,800.

MLP Channel Sizes

Keypoint Detection ci + cp, 128, 128, 128, ncls

Center Point Detection ci + cp, 128, 128, 128, 3nkps

Semantic Segmentation ci + cp, 128, 128, 128, 3

Table B.3: MLP channel sizes for the output heads of SyMFM6D. ci and cp denote the
channel sizes of the image and point features of the feature encoding network output.
We set ci = cp = 64. ncls is the number of classes in the used dataset, i.e. ncls = 22 for
YCB-Video and SymMovCam and ncls = 12 for FixCam, WiggleCam, and MovingCam.
nkps is the number of keypoints per object, which we set to eight as in FFB6D [He+21].

MLP Channel Sizes

MLPi ci, cp

MLPfi 2cp, cp

MLPp cp, ci

MLPfp 2ci, ci

Table B.4: MLP channel sizes for the multi-directional fusion modules of SyMFM6D. ci

and cp denote the channel sizes of the image and point features of the respective layer.

130



B.3 Qualitative Results on the FixCam and WiggleCam Datasets

B.3 Qualitative Results on the FixCam and WiggleCam

Datasets

Figure B.1 and figure B.2 visualize some 6D pose predictions of FFB6D [He+21], our
MV6D method, and our SyMFM6D method in comparison with the ground truth poses on
the MV-YCB FixCam dataset and the MV-YCB WiggleCam dataset respectively. While
FFB6D uses only the first depicted view, MV6D and SyMFM6D use all three views.

131



Appendix B Supplementary for Chapter 4

Example Scene 1 Example Scene 2 Example Scene 3 Example Scene 4

View 1

View 2

View 3

Ground Truth

FFB6D
(single-view)

MV6D
(3 views)

SyMFM6D
(3 views)

Figure B.1: Visual comparison of predicted poses on different scenes of the MV-YCB
FixCam dataset. The seven rows show the first three views which are used for the
multi-view methods and four different pose visualizations using the first view as reference.
Due to the strong occlusions, only the poses of the five most challenging objects are
depicted: banana (yellow), gelatin box (blue), tuna fish can (orange), tomato soup can
(green), and pudding box (red).

132



B.3 Qualitative Results on the FixCam and WiggleCam Datasets

Example Scene 1 Example Scene 2 Example Scene 3 Example Scene 4

View 1

View 2

View 3

Ground Truth

FFB6D
(single-view)

MV6D
(3 views)

SyMFM6D
(3 views)

Figure B.2: Visual comparison of predicted poses on different scenes of the MV-YCB
WiggleCam dataset. See caption of figure B.1 for details.

133



Appendix B Supplementary for Chapter 4

B.4 Quantitative Results on the MV-YCB MovingCam

Dataset

Tables B.5 and B.6 show the ADD-S and ADD(-S) AUC results of PVN3D [He+20] and
our MV6D network on the MV-YCB MovingCam dataset for each object class individually.
In this scenario, we trained MV6D with a varying number of views and evaluated the
same model on one to four views.

The high accuracy of MV6D indicates that our architecture copes very well with the
dynamic camera setup. MV6D outperforms PVN3D vastly even when using just two
views and the accuracy further increases with an increasing number of input images.
Furthermore, MV6D almost matches PVN3D when inputting just a single view which is
naturally not the designated use case of our method.

Object classes
PVN3D MV6D (variable number of views)
1 view 1 view 2 views 3 views 4 views

Banana 80.9 80.5 94.3 96.7 97.5

Cracker box 97.2 96.9 97.9 98.2 98.2

Gelatin box 78.1 76.3 93.4 96.5 97.7

Master chef can 94.5 94.6 98.1 98.2 98.2

Mustard bottle 91.2 90.2 97.2 97.7 97.9

Potted meat can 88.0 86.9 97.2 98.3 98.4

Power drill 94.4 93.6 97.1 97.2 97.8

Pudding box 86.4 85.4 95.8 97.7 98.3

Sugar box 93.1 91.9 97.5 98.0 98.1

Tomato soup can 87.7 87.3 97.3 98.2 98.4

Tuna fish can 78.6 77.3 93.1 97.5 97.6

ALL 88.2 87.4 96.3 97.7 98.0

Table B.5: ADD-S AUC results on the MV-YCB MovingCam dataset. MV6D is evaluated
for one to four input views on each object class individually. The last row provides the
AUC results averaged over all object classes. The best results are printed in bold.

134



B.5 Qualitative Results on the MV-YCB MovingCam Dataset

Object classes
PVN3D MV6D (variable number of views)
1 view 1 view 2 views 3 views 4 views

Banana 73.0 73.0 90.1 94.2 95.9

Cracker box 96.8 96.3 97.7 98.0 98.1

Gelatin box 73.4 72.2 90.4 94.6 96.4

Master chef can 91.5 91.4 97.1 97.7 97.7

Mustard bottle 87.2 86.8 95.5 96.9 97.2

Potted meat can 84.9 83.7 96.1 97.6 97.9

Power drill 92.6 91.5 96.3 96.8 97.4

Pudding box 82.6 82.0 94.3 96.8 97.6

Sugar box 90.5 89.5 96.7 97.6 97.8

Tomato soup can 83.6 83.3 95.4 97.2 97.7

Tuna fish can 71.6 70.8 88.5 94.5 95.3

ALL 84.4 83.7 94.4 96.5 97.2

Table B.6: ADD(-S) AUC results on the MV-YCB MovingCam dataset. See caption of
table B.5 for details.

B.5 Qualitative Results on the MV-YCB MovingCam

Dataset

Figure B.3 shows a visualization of predicted 6D poses from PVN3D [He+20] and our
MV6D network in comparison to the ground truth on the MV-YCB MovingCam dataset.
Figures B.3a to B.3d depict the four possible input views of two example scenes of the
dataset. Figure B.3e visualizes the ground truth poses of the five most challenging objects.
Figures B.3f and B.3g show the prediction results of PVN3D and MV6D using just the
first input view. Figures B.3h to B.3j illustrate the pose predictions using two to four input
views. It becomes evident, that the single-view accuracy of MV6D and PVN3D is almost
identical. With an increasing number of input images, the accuracy of MV6D increases
gradually.

135



Appendix B Supplementary for Chapter 4

(a) View 1 (b) View 2

(c) View 3 (d) View 4

(e) Ground truth (f) PVN3D (single-view)

(g) MV6D (single-view) (h) MV6D (2 views)

(i) MV6D (3 views) (j) MV6D (4 views)

Figure B.3: Qualitative results of PVN3D and our MV6D method in comparison to the
ground truth on the MV-YCB MovingCam dataset. The first two rows depict four input
views of two scenes. The single-view method PVN3D is evaluated on the first view, while
MV6D is evaluated on one to four views.

136



Appendix C

Supplementary for Chapter 5

C.1 Statistic Significance of the Results

All experiments in chapter 5 and this supplementary are carefully designed and optimized
so that the training procedures are stable and lead to reproducible results. However, the
data processing pipelines introduce randomness which lead to non-deterministic training
outcomes due to multi-GPU training. Therefore, we have run every experiment three
times and reported the results of the best training in section 5.5. In tables C.1 to C.6 we
provide the means and variances of the three training runs.

0 1 2 3 avg

CVAE 17.67 ± 0.10 15.11 ± 0.07 14.19 ± 0.08 13.71 ± 0.07 15.27 ± 0.02

CVAE+S 18.45 ± 0.02 14.64 ± 0.06 13.22 ± 0.03 12.32 ± 0.02 14.81 ± 0.03

FusionVAE 15.91 ± 0.03 14.13 ± 0.07 13.64 ± 0.09 13.41 ± 0.10 14.34 ± 0.07

Table C.1: Mean and standard deviation of the FusionMNIST NLL results in 10
−2 BPD.

The best results are printed in bold.

0 1 2 3 avg

FCN 10.84 ± 0.37 5.96 ± 0.11 6.02 ± 0.18 6.13 ± 0.25 7.38 ± 0.11

FCN+S 6.21 ± 0.65 3.79 ± 0.04 2.64 ± 0.07 1.88 ± 0.08 3.73 ± 0.22

CVAE 3.87 ± 0.03 1.76 ± 0.03 1.09 ± 0.03 0.83 ± 0.02 1.97 ± 0.03

CVAE+S 3.53 ± 0.06 1.77 ± 0.01 1.23 ± 0.04 1.02 ± 0.04 1.96 ± 0.01

FusionVAE 3.14 ± 0.01 1.04 ± 0.06 0.77 ± 0.04 0.67 ± 0.03 1.47 ± 0.03

Table C.2: Mean and standard deviation of the FusionMNIST MSEmin results in 10
−2.

The best results are printed in bold.

137



Appendix C Supplementary for Chapter 5

0 1 2 3 avg

CVAE 456.9 ± 9.42 289.1 ± 6.53 278.9 ± 4.51 270.3 ± 3.66 324.0 ± 5.17

CVAE+S 487.4 ± 27.45 355.4 ± 60.39 280.7 ± 35.12 230.9 ± 22.59 338.8 ± 22.99

FusionVAE 251.0 ± 2.06 222.3 ± 3.71 226.8 ± 3.16 224.0 ± 3.36 231.0 ± 2.05

Table C.3: Mean and standard deviation of the FusionCelebA NLL results in 10
−2 BPD.

The best results are printed in bold.

0 1 2 3 avg

FCN 13.07 ± 0.87 20.00 ± 3.77 17.87 ± 3.42 15.56 ± 3.08 16.62 ± 2.48

FCN+S 11.94 ± 0.52 18.58 ± 7.02 14.90 ± 6.59 11.19 ± 5.39 14.15 ± 4.65

CVAE 8.70 ± 0.42 6.25 ± 2.16 4.33 ± 1.77 3.02 ± 1.37 5.58 ± 1.21

CVAE+S 9.87 ± 1.10 9.60 ± 3.34 7.30 ± 3.07 5.57 ± 2.64 8.09 ± 2.19

FusionVAE 5.82 ± 0.52 1.10 ± 0.16 0.93 ± 0.06 0.84 ± 0.03 2.18 ± 0.17

Table C.4: Mean and standard deviation of the FusionCelebA MSEmin results in 10
−2.

The best results are printed in bold.

0 1 2 3 avg

CVAE 25.27 ± 0.04 24.00 ± 0.25 22.98 ± 0.24 23.34 ± 0.19 23.90 ± 0.17

CVAE+S 26.12 ± 0.23 25.29 ± 0.27 24.27 ± 0.25 24.15 ± 0.20 24.97 ± 0.16

FusionVAE 24.32 ± 0.10 23.09 ± 0.02 22.25 ± 0.02 22.90 ± 0.02 23.15 ± 0.04

Table C.5: Mean and standard deviation of the FusionT-LESS NLL results in 10
−2 BPD.

The best results are printed in bold.

0 1 2 3 avg

FCN 5.88 ± 0.04 3.32 ± 0.10 2.50 ± 0.09 1.96 ± 0.10 3.43 ± 0.06

FCN+S 8.83 ± 1.05 1.95 ± 0.14 1.28 ± 0.15 0.86 ± 0.14 3.26 ± 0.37

CVAE 5.49 ± 0.11 1.73 ± 0.22 0.95 ± 0.18 0.44 ± 0.07 2.18 ± 0.13

CVAE+S 4.87 ± 0.06 2.98 ± 0.29 2.06 ± 0.19 1.27 ± 0.09 2.81 ± 0.12

FusionVAE 4.15 ± 0.03 0.62 ± 0.03 0.33 ± 0.03 0.20 ± 0.02 1.34 ± 0.02

Table C.6: Mean and standard deviation of the FusionT-LESS MSEmin results in 10
−2.

The best results are printed in bold.

138



C.2 Image Reconstruction Capability

C.2 Image Reconstruction Capability

Figures C.1 to C.3 visualize the reconstruction outputs for all our datasets and architectures.
For these results, the target image is always given as input. The first three rows of each
figure show the reconstruction, when additionally three noisy or partly occluded input
images are fed into the network.

The images show that our FusionVAE reconstructs the target images almost perfectly
for all three datasets. On FusionMNIST, only the FCN does not manage to reconstruct
the target images but shows blurry versions of them. We also see the same behavior for
FusionCelebA and FusionT-LESS which underlines the importance of skip connections
for this type of network. On FusionCelebA, we see that CVAE+S suffers from numeric
instabilities causing colorful artifacts in some images. Omitting the skip connections
here avoids that issue. On FusionT-LESS, all baseline methods create more or less blurry
versions of the target image when just the target image is given. When inputting the
occluded images in addition to the target image, the reconstruction is much better which
shows that these networks have over-fitted to the task of removing occluded objects so that
they cannot deal well with non-occluded images. In contrast, FusionVAE has the ability
to reconstruct non-occluded input images very well.

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure C.1: Reconstruction results of the different architectures on the FusionMNIST
dataset. The first three rows show experimental results when inputting the target image
together with the three depicted input images. In last three rows, only the corresponding
target image is given as input.

139



Appendix C Supplementary for Chapter 5

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure C.2: Reconstruction results on the FusionCelebA dataset.

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Figure C.3: Reconstruction results on the FusionT-LESS dataset.

140



Abbreviations

ACD Average Cosine Distance

AEE Average End-point Error

ALR Chair for Autonomous Learning Robots

AP Average Precision

AUC Area Under the Curve

BCAI Bosch Center for Artificial Intelligence

BPD Bits Per Dimension

CNN Convolutional Neural Network

CPU Central Processing Unit

CVAE Conditional Variational Auto-Encoder

DGM Deep Generative Model

DDPM Denoising Diffusion Probabilistic Model

ELBO Evidence Lower Bound

FCN Fully Convolutional Network

FPS Farthest Point Sampling

GAN Generative Adversarial Network

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

HSV Hue Saturation Value (color space)

KIT Karlsruhe Institute of Technology

KL Kullback-Leibler divergence

LBP Local Binary Patterns

LiDAR Light Detection And Ranging

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NLL Negative Log-Likelihood

PCN Point Cloud Network

PnP Perspective-n-Point (algorithm)

141



Abbreviations

ReLU Rectified Linear Unit

ResNet Residual Network

RGB Red Green Blue (i.e. color image)

RGB-D Red Green Blue Depth (i.e. combined color and depth image)

RNN Recurrent Neural Network

SIFT Scale-Invariant Feature Transform

SL Structured Light

ToF Time of Flight

VAE Variational Auto-Encoder

YCB Yale-CMU-Berkeley (dataset)

142



List of Tables

1.1 Overview of data modalities, fusion types, and domains addressed in the
three main chapters of this dissertation . . . . . . . . . . . . . . . . . . 3

1.2 Overview of fusion types, application tasks, and challenges addressed in
the three main chapters of this dissertation . . . . . . . . . . . . . . . . 4

3.1 Sequence allocation for training and test data of the extended KITTI
Object Tracking dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Quantitative results for the scene flow estimation . . . . . . . . . . . . 65
3.3 Inlier and outlier rates for the scene flow estimation . . . . . . . . . . . 65
3.4 Results of the 3D object detection . . . . . . . . . . . . . . . . . . . . 66

4.1 Single-view results on the YCB-Video dataset . . . . . . . . . . . . . . 91
4.2 Single-view results on the YCB-Video dataset evaluated for each object

class individually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Quantitative multi-view results on the YCB-Video dataset . . . . . . . . 93
4.4 Quantitative results on the MV-YCB FixCam dataset . . . . . . . . . . 94
4.5 Quantitative results on the MV-YCB WiggleCam dataset . . . . . . . . 95
4.6 Quantitative results on the MV-YCB SymMovCam dataset . . . . . . . 95
4.7 Runtimes of MV6D for a different number of input views from the

YCB-Video dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8 Runtimes of SyMFM6D for a different number of input views from the

YCB-Video dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Main hyperparameters and characteristics of our experiments with Fusion-
VAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Results on the FusionMNIST dataset . . . . . . . . . . . . . . . . . . . 111
5.3 Results on the FusionCelebA dataset . . . . . . . . . . . . . . . . . . . 111
5.4 Results on the FusionT-LESS dataset . . . . . . . . . . . . . . . . . . . 111
5.5 Ablation study for the approximate posterior distribution of FusionVAE 115
5.6 Ablation study for different aggregation methods within the FusionVAE

architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Key numbers for the training and test split of the KITTI Object Tracking
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1 MLP channel sizes for the output heads of MV6D . . . . . . . . . . . . 129

143



List of Tables

B.2 Parameters of the network architecture of SyMFM6D . . . . . . . . . . 130
B.3 MLP channel sizes for the output heads of SyMFM6D . . . . . . . . . 130
B.4 MLP channel sizes for the multi-directional fusion modules of SyMFM6D 130
B.5 ADD-S AUC results on the MV-YCB MovingCam dataset . . . . . . . 134
B.6 ADD(-S) AUC results on the MV-YCB MovingCam dataset . . . . . . . 135

C.1 Mean and standard deviation of the FusionMNIST NLL results . . . . . 137
C.2 Mean and standard deviation of the FusionMNIST MSEmin results . . . 137
C.3 Mean and standard deviation of the FusionCelebA NLL results . . . . . 138
C.4 Mean and standard deviation of the FusionCelebA MSEmin results . . . 138
C.5 Mean and standard deviation of the FusionT-LESS NLL results . . . . . 138
C.6 Mean and standard deviation of the FusionT-LESS MSEmin results . . . 138

144



List of Figures

1.1 Application domains related to environmental perception of automated
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Comparison of sensor properties . . . . . . . . . . . . . . . . . . . . . 12
2.2 Overview of a typical architecture of a CNN for an image classification task 16
2.3 Illustration of a residual block. Image adapted from [He+16]. . . . . . . 17
2.4 Overview of a Squeeze-and-Excitation module [HSS18] . . . . . . . . . 18
2.5 Overview of the Transformer architecture . . . . . . . . . . . . . . . . 20
2.6 Overview of the Vision Transformer architecture [Dos+21] . . . . . . . 21
2.7 Overview of the MV3D [Che+17c] network architecture . . . . . . . . 23
2.8 Overview of VoxNet [MS15] processing the point cloud of a car . . . . 24
2.9 Overview of PointNet [Qi+17a] . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Overview of typical architectures for sensor data fusion. . . . . . . . . . 26
2.11 Overview of a VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.12 Network architecture of the NVAE . . . . . . . . . . . . . . . . . . . . 33
2.13 Overview of a GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.14 Overview of a diffusion model . . . . . . . . . . . . . . . . . . . . . . 35
2.15 Overview of different computer vision perception tasks. . . . . . . . . . 37
2.16 Front camera image and LiDAR point cloud of the KITTI dataset . . . . 41
2.17 Visualization of the prediction of all 6D object poses in a given RGB image 42
2.18 Overview of PoseCNN [Xia+18] . . . . . . . . . . . . . . . . . . . . . 43
2.19 Overview of PVN3D [He+20] . . . . . . . . . . . . . . . . . . . . . . 45
2.20 Overview of FFB6D [He+21] . . . . . . . . . . . . . . . . . . . . . . . 45
2.21 Optical flow and scene flow ground truth . . . . . . . . . . . . . . . . . 46
2.22 Results from an unconditional image generation task on the FFHQ 1024

× 1024 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.23 Results from a conditional image generation task on the ImageNet dataset 48
2.24 Visualization of an example for image inpainting . . . . . . . . . . . . 49

3.1 Work principle of our multi-task learning network PillarFlowNet . . . . 52
3.2 PillarFlowNet prediction visualization . . . . . . . . . . . . . . . . . . 53
3.3 Structure of our proposed multi-task architecture PillarFlowNet . . . . . 57
3.4 Pillar-based feature encoding network of our method PillarFlowNet . . . 57
3.5 Convolutional backbone network with output heads . . . . . . . . . . . 59

145



List of Figures

3.6 Augmented LiDAR point cloud from the KITTI Object Tracking dataset
with annotated 3D bounding boxes . . . . . . . . . . . . . . . . . . . . 63

3.7 Visualization of the prediction results of PillarFlowNet . . . . . . . . . 67

4.1 Overview of our proposed multi-view 6D object pose estimation approaches 70
4.2 Architecture of the proposed MV6D network . . . . . . . . . . . . . . 76
4.3 DenseFusion module of our MV6D network architecture . . . . . . . . 77
4.4 Network architecture of our SyMFM6D method . . . . . . . . . . . . . 80
4.5 Overview of our proposed multi-directional multi-view fusion modules 82
4.6 Illustration of the camera setups employed in our MV-YCB dataset serie 87
4.7 Example scenes with three to four views from our four datasets . . . . . 88
4.8 Visual comparison of 6D pose predictions on single frames of the YCB-

Video dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.9 Visual comparison of predicted poses on different scenes of the MV-YCB

SymMovCam dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 Visualization of the predicted keypoints on single frames of the YCB-Video

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Overview of our FusionVAE approach . . . . . . . . . . . . . . . . . . 102
5.2 Overview of the proposed FusionVAE network architecture . . . . . . . 106
5.3 Prediction results of the different architectures on the FusionMNIST dataset112
5.4 Prediction results of the different architectures on the FusionCelebA dataset113
5.5 Prediction results of the different architectures on the FusionT-LESS dataset114
5.6 Prediction results of the different mean and max aggregation methods on

FusionCelebA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 Number of LiDAR points per sequence of the KITTI Object Tracking dataset127

B.1 Visual comparison of predicted poses on different scenes of the MV-YCB
FixCam dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 Visual comparison of predicted poses on different scenes of the MV-YCB
WiggleCam dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 Qualitative results of PVN3D and our MV6D method on the MV-YCB
MovingCam dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.1 Reconstruction results of the different architectures on FusionMNIST . 139
C.2 Reconstruction results on the FusionCelebA dataset . . . . . . . . . . . 140
C.3 Reconstruction results on the FusionT-LESS dataset . . . . . . . . . . . 140

146



Publications

This dissertation contains text, tables, and figures from the following peer-reviewed
publications:

• Fabian Duffhauss and Stefan A. Baur. “PillarFlowNet: A Real-time Deep Multitask
Network for LiDAR-based 3D Object Detection and Scene Flow Estimation”. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2020, pp. 10734–10741.

• Fabian Duffhauss, Ngo Anh Vien, Hanna Ziesche, and Gerhard Neumann. “Fu-
sionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion”.
In: Proceedings of the 17th European Conference on Computer Vision (ECCV).
Springer Nature Switzerland. 2022, pp. 674–691.

• Fabian Duffhauss, Tobias Demmler, and Gerhard Neumann. “MV6D: Multi-view
6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting Network”.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2022, pp. 3568–3575.

• Fabian Duffhauss, Sebastian Koch, Hanna Ziesche, Ngo Anh Vien, and Gerhard
Neumann. “SyMFM6D: Symmetry-aware Multi-directional Fusion for Multi-View
6D Object Pose Estimation”. In: IEEE Robotics and Automation Letters (RA-L) 8.9
(2023), pp. 5315–5322.

I declare that I wrote this dissertation by myself based on my research and the
aforementioned publications. My advisor Prof. Dr. Gerhard Neuann contributed to all
projects with ideas and proofreading of the publications. The work [DB20] is built upon
my master thesis [Duf19]. During my doctoral study, I continued the research and further
optimized the network architecture, implemented novel baseline methods, and conducted
all experiments for the paper [DB20]. Stefan Baur contributed with ideas, code snippets,
writing, and illustrations. Dr. Ngo Ahn Vien and Dr. Hanna Ziesche contributed to the
mathematical derivations, writing, and ideas of [Duf+22]. They also contributed to ideas
and writing of [Duf+23]. Tobias Demmler contributed to the data generation, experiments,
and ideas published in [DDN22]. Sebastian Koch contributed to the experiments, ideas,
and proofreading of [Duf+23]. [DDN22] and [Duf+23] are also built upon results and
insights obtained in the context of the master theses [Bod20; Dem21; Koc22; Kra22] and
the bachelor thesis [Bei21] which I supervised during my doctoral study.

147





Bibliography

[AB22] Simegnew Yihunie Alaba and John E. Ball. “A Survey on Deep-Learning-
Based LiDAR 3D Object Detection for Autonomous Driving”. In: Sensors

22.24 (2022), p. 9577.

[Aba+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI). Nov. 2016, pp. 265–283.

[ABD10] Andrew Adams, Jongmin Baek, and Myers Abraham Davis. “Fast High-
Dimensional Filtering Using the Permutohedral Lattice”. In: Computer

Graphics Forum. Vol. 29. 2. Wiley Online Library. 2010, pp. 753–762.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Gen-
erative Adversarial Networks”. In: Proceedings of the 34rd International

Conference on Machine Learning (ICML). Vol. 70. PMLR, 2017, pp. 214–
223.

[AEL21] Andrea Asperti, Davide Evangelista, and Elena Loli Piccolomini. “A Survey
on Variational Autoencoders from a Green AI Perspective”. In: SN Computer

Science 2.4 (2021), p. 301.

[AG22] Janis Arents and Modris Greitans. “Smart Industrial Robot Control Trends,
Challenges and Opportunities within Manufacturing”. In: Applied Sciences

12.2 (2022), p. 937.

[AHB87] K. Somani Arun, Thomas S. Huang, and Steven D. Blostein. “Least-Squares
Fitting of Two 3-D Point Sets”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI) 5 (1987), pp. 698–700.

[Ala+18] Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker,
and Kwang In Kim. “Unsupervised Attention-guided Image-to-Image Trans-
lation”. In: Advances in Neural Information Processing Systems (NeurIPS)

31 (2018).

[AMS20] Alaa Eldin Abdelaal, Prateek Mathur, and Septimiu E. Salcudean. “Robotics
in Vivo: A Perspective on Human-Robot Interaction in Surgical Robotics”.
In: Annual Review of Control, Robotics, and Autonomous Systems 3 (2020),
pp. 221–242.

149



Bibliography

[AT20] Andrea Asperti and Matteo Trentin. “Balancing Reconstruction Error and
Kullback-Leibler Divergence in Variational Autoencoders”. In: IEEE Access

8 (2020), pp. 199440–199448.

[Bao+17] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. “CVAE-
GAN: Fine-Grained Image Generation Through Asymmetric Training”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV). 2017, pp. 2745–2754.

[Bau+19] Stefan A. Baur, Frank Moosmann, Sascha Wirges, and Christoph B. Rist.
“Real-time 3D LiDAR Flow for Autonomous Vehicles”. In: Proceedings of

the IEEE Intelligent Vehicles Symposium (IV). June 2019, pp. 1288–1295.

[Bau+21] Stefan Andreas Baur, David Josef Emmerichs, Frank Moosmann, Peter
Pinggera, Björn Ommer, and Andreas Geiger. “SLIM: Self-Supervised
LiDAR Scene Flow and Motion Segmentation”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2021, pp. 13126–
13136.

[BDV00] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A Neural Proba-
bilistic Language Model”. In: Advances in Neural Information Processing

Systems (NeurIPS) 13 (2000).

[Bec+19] Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James
Taylor, and Gerhard Neumann. “Recurrent Kalman Networks: Factorized
Inference in High-Dimensional Deep Feature Spaces”. In: Proceedings of

the 36th International Conference on Machine Learning (ICML). PMLR.
2019, pp. 544–552.

[Beh+19a] Aseem Behl, Despoina Paschalidou, Simon Donne, and Andreas Geiger.
“PointFlowNet: Learning Representations for Rigid Motion Estimation From
Point Clouds”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). June 2019, pp. 7954–7963.

[Beh+19b] Aseem Behl, Despoina Paschalidou, Simon Donné, and Andreas Geiger.
“PointFlowNet: Learning Representations for Rigid Motion Estimation from
Point Clouds”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2019, pp. 7962–7971.

[Bei21] Jens Beißwenger. “Improving the Sim2Real Performance for 6D Pose
Estimation Using Photorealistic RGB-D Images”. Bachelor thesis. Karlsruhe
Institute of Technology (KIT), 2021.

[Bel+18] Jorge Beltrán, Carlos Guindel, Francisco Miguel Moreno, Daniel Cruzado,
Fernando Garcia, and Arturo De La Escalera. “BirdNet: a 3D Object
Detection Framework from LiDAR Information”. In: Proceedings of the

21st International Conference on Intelligent Transportation Systems (ITSC).
IEEE. 2018, pp. 3517–3523.

150



Bibliography

[BGS16] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance Weighted
Autoencoders”. In: Proceedings of the 4th International Conference on

Learning Representations (ICLR). 2016.

[BI15] Tolga Birdal and Slobodan Ilic. “Point Pair Features Based Object Detec-
tion and Pose Estimation Revisited”. In: Proceedings of the International

Conference on 3D Vision (3DV). IEEE. 2015, pp. 527–535.

[Bi21] Xin Bi. Environmental Perception Technology for Unmanned Systems.
Springer Nature Singapore, 2021.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normal-
ization”. In: arXiv:1607.06450 [stat.ML] (2016).

[BL19] Garrick Brazil and Xiaoming Liu. “M3D-RPN: Monocular 3D Region
Proposal Network for Object Detection”. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV). 2019, pp. 9287–9296.

[BM92] Paul J. Besl and Neil D. McKay. “A Method for Registration of 3-D Shapes”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

14.2 (1992), pp. 239–256.

[Bod20] Lennard Bodden. “Point Cloud Based Object Recognition in RGB-D Video
Streams for Robot Manipulation”. Master thesis. University of Tübingen,
2020.

[Bon+21a] Andrea Bonci, Pangcheng David Cen Cheng, Marina Indri, Giacomo Nabissi,
and Fiorella Sibona. “Human-Robot Perception in Industrial Environments:
A Survey”. In: Sensors 21.5 (2021), p. 1571.

[Bon+21b] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. “Deep
Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing
Flows, Energy-Based and Autoregressive Models”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI) (2021).

[Bow+16] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal
Józefowicz, and Samy Bengio. “Generating Sentences from a Continuous
Space”. In: Proceedings of the 20th SIGNLL Conference on Computational

Natural Language Learning (CoNLL). ACL, 2016, pp. 10–21.

[Bra+14] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie
Shotton, and Carsten Rother. “Learning 6D Object Pose Estimation Using
3D Object Coordinates”. In: Proceedings of the 13th European Conference

on Computer Vision (ECCV). Springer Nature Switzerland. 2014, pp. 536–
551.

151



Bibliography

[Bro+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D.
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. “Language Models are Few-Shot Learners”. In:
Advances in Neural Information Processing Systems (NeurIPS) 33 (2020),
pp. 1877–1901.

[BTV06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up
Robust Features”. In: Proceedings of the 9th European Conference on

Computer Vision (ECCV). Springer Berlin Heidelberg. 2006, pp. 404–417.

[Cae+20] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. “nuScenes: A Multimodal Dataset for Autonomous Driving”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2020, pp. 11621–11631.

[Cai+19] Tian Cai, Mengjun Shen, Huailiang Peng, Lei Jiang, and Qiong Dai. “Improv-
ing Transformer with Sequential Context Representations for Abstractive
Text Summarization”. In: Proceedings of the 8th CCF International Confer-

ence on Natural Language Processing and Chinese Computing (NLPCC).
Springer. 2019, pp. 512–524.

[Cai+23] Hongxiang Cai, Zeyuan Zhang, Zhenyu Zhou, Ziyin Li, Wenbo Ding, and
Jiuhua Zhao. “BEVFusion4D: Learning LiDAR-Camera Fusion Under
Bird’s-Eye-View via Cross-Modality Guidance and Temporal Aggregation”.
In: arXiv:2303.17099 [cs.CV] (2023).

[Cal+15] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M. Dollar. “The YCB Object and Model Set: Towards
Common Benchmarks for Manipulation Research”. In: Proceedings of the

17th International Conference on Advanced Robotics (ICAR). IEEE. 2015,
pp. 510–517.

[Can86] John Canny. “A Computational Approach to Edge Detection”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 8.6
(1986), pp. 679–698.

[Car+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. “End-to-End Object Detection
with Transformers”. In: Proceedings of the 16th European Conference on

Computer Vision (ECCV). Springer Nature Switzerland. 2020, pp. 213–229.

[Cha+19] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir
Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan,
et al. “Argoverse: 3D Tracking and Forecasting with Rich Maps”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2019, pp. 8748–8757.

152



Bibliography

[Cha+22] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman.
“MaskGIT: Masked Generative Image Transformer”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2022, pp. 11315–11325.

[Che+16] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. “Monocular 3D Object Detection for Autonomous Driving”.
In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 2147–2156.

[Che+17a] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal,
John Schulman, Ilya Sutskever, and Pieter Abbeel. “Variational Lossy
Autoencoder”. In: Proceedings of the 5th International Conference on

Learning Representations (ICLR). 2017.

[Che+17b] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. “3D Object Proposals Using Stereo Imagery for Accurate
Object Class Detection”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI) 40.5 (2017), pp. 1259–1272.

[Che+17c] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-View 3D
Object Detection Network for Autonomous Driving”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 1907–1915.

[Che+20a] Jiale Chen, Lijun Zhang, Yi Liu, and Chi Xu. “Survey on 6D Pose Estimation
of Rigid Object”. In: Proceedings of the 39th Chinese Control Conference

(CCC). IEEE. 2020, pp. 7440–7445.

[Che+20b] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David
Luan, and Ilya Sutskever. “Generative Pretraining from Pixels”. In: Proceed-

ings of the 37th International Conference on Machine Learning (ICML).
PMLR. 2020, pp. 1691–1703.

[Che+21] Qiping Chen, Yinfei Xie, Shifeng Guo, Jie Bai, and Qiang Shu. “Sensing
System of Environmental Perception Technologies for Driverless Vehicle: A
Review of State of the Art and Challenges”. In: Sensors and Actuators A:

Physical 319 (2021), p. 112566.

[Che95] Yizong Cheng. “Mean Shift, Mode Seeking, and Clustering”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 17.8
(1995), pp. 790–799.

[Chi21] Rewon Child. “Very Deep VAEs Generalize Autoregressive Models and
Can Outperform Them on Images”. In: Proceedings of the 9th International

Conference on Learning Representations (ICLR). 2021.

153



Bibliography

[Cho17] François Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2017, pp. 1251–1258.

[Cin+21] Lucas Pinheiro Cinelli, Matheus Araújo Marins, Eduardo Antônio Barros
da Silva, and Sérgio Lima Netto. Variational Methods for Machine Learning

with Applications to Deep Networks. Springer, 2021.

[CMS11] Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. “The MOPED
framework: Object recognition and pose estimation for manipulation”.
In: The International Journal of Robotics Research (IJRR) 30.10 (2011),
pp. 1284–1306.

[Col+09] Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave Fergu-
son. “Object Recognition and Full Pose Registration from a Single Image
for Robotic Manipulation”. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2009, pp. 48–55.

[Com18] Blender Online Community. Blender - A 3D modelling and rendering

package. Blender Foundation. Stichting Blender Foundation, Amsterdam,
2018. url: http://www.blender.org.

[Cor+22] Artur Cordeiro, Luís F. Rocha, Carlos Costa, Pedro Costa, and Manuel
F. Silva. “Bin Picking Approaches Based on Deep Learning Techniques:
A State-of-the-Art Survey”. In: Proceedings of the IEEE International

Conference on Autonomous Robot Systems and Competitions (ICARSC).
IEEE. 2022, pp. 110–117.

[Cro+23] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak
Shah. “Diffusion Models in Vision: A Survey”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI) (2023).

[CSB16] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. “Real-time Scalable
6DOF Pose Estimation for Textureless Objects”. In: Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2016, pp. 2441–2448.

[Cui+21] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li,
and Dongpu Cao. “Deep Learning for Image and Point Cloud Fusion in
Autonomous Driving: A Review”. In: IEEE Transactions on Intelligent

Transportation Systems 23.2 (2021), pp. 722–739.

[Cyb89] George Cybenko. “Approximation by Superpositions of a Sigmoidal Func-
tion”. In: Mathematics of Control, Signals and Systems 2.4 (1989), pp. 303–
314.

154

http://www.blender.org


Bibliography

[Dai+17] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. “ScanNet: Richly-Annotated 3D Recon-
structions of Indoor Scenes”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp. 5828–5839.

[DB20] Fabian Duffhauss and Stefan A. Baur. “PillarFlowNet: A Real-time Deep
Multitask Network for LiDAR-based 3D Object Detection and Scene Flow
Estimation”. In: Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 10734–10741.

[DDN22] Fabian Duffhauss, Tobias Demmler, and Gerhard Neumann. “MV6D: Multi-
view 6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting
Network”. In: Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 3568–3575.

[De +13] Mark De Deuge, Alastair Quadros, Calvin Hung, and Bertrand Douillard.
“Unsupervised Feature Learning for Classification of Outdoor 3D Scans”.
In: Proceedings of Australasian Conference on Robotics and Automation

(ACRA). Vol. 2. 1. University of New South Wales Kensington, Australia.
2013.

[Dem21] Tobias Demmler. “Multi-view 6D Pose Estimation on RGB-D Frames Using
a Deep Point-wise Voting Network”. Master thesis. University of Freiburg,
2021.

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
“ImageNet: A Large-Scale Hierarchical Image Database”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2009, pp. 248–255.

[Den+23] Xin Deng, WenYu Zhang, Qing Ding, and XinMing Zhang. “PointVector:
A Vector Representation In Point Cloud Analysis”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2023, pp. 9455–9465.

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT). Association for Computational
Linguistics, 2019, pp. 4171–4186.

[Dew+16] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Burgard.
“Rigid Scene Flow for 3D LiDAR Scans”. In: Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). Oct.
2016, pp. 1765–1770.

155



Bibliography

[Di+21] Yan Di, Fabian Manhardt, Gu Wang, Xiangyang Ji, Nassir Navab, and
Federico Tombari. “SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose
Estimation”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2021, pp. 12396–12405.

[DM19] Yilun Du and Igor Mordatch. “Implicit Generation and Modeling with
Energy-Based Models”. In: Advances in Neural Information Processing

Systems (NeurIPS) 32 (2019).

[DN21] Prafulla Dhariwal and Alexander Nichol. “Diffusion Models Beat GANs on
Image Synthesis”. In: vol. 34. 2021, pp. 8780–8794.

[Dos+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An
Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. In: Proceedings of the 9th International Conference on Learning

Representations (ICLR). 2021.

[DSB17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density Estimation
Using Real NVP”. In: Proceedings of the 5th International Conference on

Learning Representations (ICLR). 2017.

[Dua+19] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. “CenterNet: Keypoint Triplets for Object Detection”. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 6569–6578.

[Duf+22] Fabian Duffhauss, Ngo Anh Vien, Hanna Ziesche, and Gerhard Neumann.
“FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image
Fusion”. In: Proceedings of the 17th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2022, pp. 674–691.

[Duf+23] Fabian Duffhauss, Sebastian Koch, Hanna Ziesche, Ngo Anh Vien, and Ger-
hard Neumann. “SyMFM6D: Symmetry-aware Multi-directional Fusion for
Multi-View 6D Object Pose Estimation”. In: IEEE Robotics and Automation

Letters (RA-L) 8.9 (2023), pp. 5315–5322.

[Duf19] Fabian Duffhauss. “Deep Multitask Learning for LiDAR-based 3D Object
Detection and Scene Flow Estimation”. Master thesis. RWTH Aachen
University, 2019.

[DW19] Bin Dai and David P. Wipf. “Diagnosing and Enhancing VAE Models”. In:
Proceedings of the 7th International Conference on Learning Representa-

tions (ICLR). 2019.

[EBD21] Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. “Point Trans-
former”. In: IEEE Access 9 (2021), pp. 134826–134840.

156



Bibliography

[Eld+97] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y. Zeevi.
“The Farthest Point Strategy For Progressive Image Sampling”. In: IEEE

Transactions on Image Processing (TIP) 6.9 (1997), pp. 1305–1315.

[Elh+20] Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, and Younes
Akbari. “Image Inpainting: A Review”. In: Neural Processing Letters 51
(2020), pp. 2007–2028.

[Erç+22] Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie Yang, Hanzhen Zhang,
Pınar Topçam, Maximilian Listl, Yılmaz Kaan Caylı, and Alois Knoll. “3D
Object Detection with a Self-supervised Lidar Scene Flow Backbone”. In:
Proceedings of the 17th European Conference on Computer Vision (ECCV).
Springer Nature Switzerland. 2022, pp. 247–265.

[ERS14] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. “Learning Factored
Representations in a Deep Mixture of Experts”. In: Proceedings of the 2nd

International Conference on Learning Representations (ICLR). 2014.

[Eve+10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. “The PASCAL Visual Object Classes (VOC)
Challenge”. In: International Journal of Computer Vision (IJCV) 88.2 (June
2010), pp. 303–338.

[Fan+23] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang,
Tiejun Huang, Xinlong Wang, and Yue Cao. “EVA: Exploring the Limits of
Masked Visual Representation Learning at Scale”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023,
pp. 19358–19369.

[Fay+20a] Jamil Fayyad, Mohammad A. Jaradat, Dominique Gruyer, and Homayoun
Najjaran. “Deep Learning Sensor Fusion for Autonomous Vehicle Perception
and Localization: A Review”. In: Sensors 20.15 (2020), p. 4220.

[Fay+20b] Jamil Fayyad, Mohammad A. Jaradat, Dominique Gruyer, and Homayoun
Najjaran. “Deep Learning Sensor Fusion for Autonomous Vehicle Perception
and Localization: A Review”. In: Sensors 20.15 (2020), p. 4220.

[FB81] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Apphcatlons to Image Analysis and
Automated Cartography”. In: Communications of the ACM 24.6 (1981),
pp. 381–395.

[Fel+09] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva
Ramanan. “Object Detection with Discriminatively Trained Part-Based
Models”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI) 32.9 (2009), pp. 1627–1645.

157



Bibliography

[Fen+21] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius
Gläser, Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. “Deep Multi-
Modal Object Detection and Semantic Segmentation for Autonomous
Driving: Datasets, Methods, and Challenges”. In: IEEE Transactions on

Intelligent Transportation Systems 22.3 (2021), pp. 1341–1360.

[Fer+21] Duarte Fernandes, António Silva, Rafael Névoa, Cláudia Simões, Dibet
Gonzalez, Miguel Guevara, Paulo Novais, João Monteiro, and Pedro Melo-
Pinto. “Point-Cloud based 3D Object Detection and Classification Methods
for Self-Driving Applications: A Survey and Taxonomy”. In: Information

Fusion 68 (2021), pp. 161–191.

[FGH22] Tim Fingscheidt, Hanno Gottschalk, and Sebastian Houben. Deep Neu-

ral Networks and Data for Automated Driving. Robustness, Uncertainty

Quantification, and Insights Towards Safety. Springer Nature Switzerland,
2022.

[Gäh+20] Nils Gählert, Nicolas Jourdan, Marius Cordts, Uwe Franke, and Joachim
Denzler. “Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle
Detection”. In: arXiv:2006.07864 [cs.CV] (2020).

[Gao+20] Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, and
Simone Frintrop. “6D Object Pose Regression via Supervised Learning on
Point Clouds”. In: 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2020, pp. 3643–3649.

[Gao+21] Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, and Simone Frintrop.
“CloudAAE: Learning 6D Object Pose Regression with On-line Data
Synthesis on Point Clouds”. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 11081–
11087.

[Gei+13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision
Meets Robotics: The KITTI Dataset”. In: The International Journal of

Robotics Research (IJRR) 32.11 (2013), pp. 1231–1237.

[Gho+23] Benyamin Ghojogh, Mark Crowley, Fakhri Karray, and Ali Ghodsi. Elements

of Dimensionality Reduction and Manifold Learning. Springer, 2023.

[Gir+14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Fea-
ture Hierarchies for Accurate Object Detection and Semantic Segmentation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2014, pp. 580–587.

[Gir15] Ross Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). Dec. 2015, pp. 1440–1448.

158



Bibliography

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2012, pp. 3354–3361.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative
Adversarial Nets”. In: Advances in Neural Information Processing Systems

(NeurIPS). Vol. 27. 2014, pp. 2672–2680.

[GPH19] Kartik Gupta, Lars Petersson, and Richard Hartley. “CullNet: Calibrated and
Pose Aware Confidence Scores for Object Pose Estimation”. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops

(ICCVW). 2019, pp. 2758–2766.

[GR10] Chunhui Gu and Xiaofeng Ren. “Discriminative Mixture-of-Templates for
Viewpoint Classification”. In: Proceedings of the 11th European Conference

on Computer Vision (ECCV). Springer Berlin Heidelberg. 2010, pp. 408–
421.

[Gre+15] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan
Wierstra. “DRAW: A Recurrent Neural Network For Image Generation”. In:
Proceedings of the 32nd International Conference on Machine Learning

(ICML). Vol. 37. PMLR, July 2015, pp. 1462–1471.

[Gu+18] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan
Chen. “Recent Advances in Convolutional Neural Networks”. In: Pattern

Recognition 77 (2018), pp. 354–377.

[Gu+19] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang.
“HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow
Estimation on Large-Scale Point Clouds”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). June
2019, pp. 3249–3258.

[Gu+21] Bo Gu, Jianxun Liu, Huiyuan Xiong, Tongtong Li, and Yuelong Pan. “ECPC-
ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar
Point Cloud and Road Feature”. In: Sensors 21.10 (2021), p. 3489.

[Gu+22] Jiaqi Gu, Hyoukjun Kwon, Dilin Wang, Wei Ye, Meng Li, Yu-Hsin Chen,
Liangzhen Lai, Vikas Chandra, and David Z. Pan. “Multi-Scale High-
Resolution Vision Transformer for Semantic Segmentation”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2022, pp. 12094–12103.

159



Bibliography

[Gui+23] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. “A
Review on Generative Adversarial Networks: Algorithms, Theory, and
Applications”. In: IEEE Transactions on Knowledge and Data Engineering

(TKDE) 35.4 (2023), pp. 3313–3332.

[Gul+17] Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Fran-
cesco Visin, David Vazquez, and Aaron Courville. “PixelVAE: A Latent
Variable Model for Natural Images”. In: Proceedings of the 5th International

Conference on Learning Representations (ICLR). 2017.

[Guo+19] Xiaopeng Guo, Rencan Nie, Jinde Cao, Dongming Zhou, Liye Mei, and
Kangjian He. “FuseGAN: Learning to Fuse Multi-Focus Image via Condi-
tional Generative Adversarial Network”. In: IEEE Transactions on Multime-

dia (TMM) 21.8 (2019), pp. 1982–1996.

[Guo+20] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. “Deep Learning for 3D Point Clouds: A Survey”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 43.12
(2020), pp. 4338–4364.

[Guo+21a] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R
Martin, and Shi-Min Hu. “PCT: Point Cloud Transformer”. In: Computa-

tional Visual Media 7 (2021), pp. 187–199.

[Guo+21b] Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. “LIGA-
Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based
3D Detector”. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2021, pp. 3153–3163.

[Guo+21c] Zhiyang Guo, Yingping Huang, Xing Hu, Hongjian Wei, and Baigan Zhao.
“A Survey on Deep Learning Based Approaches for Scene Understanding in
Autonomous Driving”. In: Electronics 10.4 (2021), p. 471.

[Guo+22] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao
Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng,
and Shi-Min Hu. “Attention mechanisms in computer vision: A survey”. In:
Computational Visual Media 8.3 (2022), pp. 331–368.

[Gup+21] Anunay Gupta, Tanzina Afrin, Evan Scully, and Nita Yodo. “Advances of
UAVs toward Future Transportation: The State-of-the-Art, Challenges, and
Opportunities”. In: Future Transportation 1.2 (2021), pp. 326–350.

[Hac+17] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan Dirk Wegner, Konrad
Schindler, and Marc Pollefeys. “Semantic3D.net: A new Large-scale Point
Cloud Classification Benchmark”. In: ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Science IV-1/W1 (2017).

160



Bibliography

[Hai+23] Yang Hai, Rui Song, Jiaojiao Li, David Ferstl, and Yinlin Hu. “Pseudo
Flow Consistency for Self-Supervised 6D Object Pose Estimation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2023, pp. 14075–14085.

[Han+22] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo,
Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. “A
Survey on Vision Transformer”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI) 45.1 (2022), pp. 87–110.

[HB20] Frederik Hagelskjær and Anders Glent Buch. “PointVoteNet: Accurate Ob-
ject Detection and 6 DoF Pose Estimation in Point Clouds”. In: Proceedings

of the IEEE International Conference on Image Processing (ICIP). 2020,
pp. 2641–2645.

[HBM20] Tomas Hodan, Daniel Barath, and Jiri Matas. “EPOS: Estimating 6D Pose of
Objects with Symmetries”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11703–11712.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[He+20] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang Fan, and
Jian Sun. “PVN3D: A Deep Point-wise 3D Keypoints Voting Network for
6DoF Pose Estimation”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11632–11641.

[He+21] Yisheng He, Haibin Huang, Haoqiang Fan, Qifeng Chen, and Jian Sun.
“FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2021, pp. 3003–3013.

[HFS22] Yinlin Hu, Pascal Fua, and Mathieu Salzmann. “Perspective Flow Aggrega-
tion for Data-Limited 6D Object Pose Estimation”. In: Proceedings of the

17th European Conference on Computer Vision (ECCV). Springer Nature
Switzerland. 2022, pp. 89–106.

[Hin+11a] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir
Navab, Pascal Fua, and Vincent Lepetit. “Gradient Response Maps for
Real-Time Detection of Textureless Objects”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI) 34.5 (2011), pp. 876–888.

[Hin+11b] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt
Konolige, Nassir Navab, and Vincent Lepetit. “Multimodal Templates for
Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes”.
In: Proceedings of the IEEE International Conference on Computer Vision

(ICCV). 2011, pp. 858–865.

161



Bibliography

[Hin+12] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. “Model Based Training, Detection
and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes”. In: Proceedings of the 11th Asian Conference on Computer Vision

(ACCV). Springer Berlin. 2012, pp. 548–562.

[Hin+16] Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and Kurt Konolige.
“Going Further with Point Pair Features”. In: Proceedings of the 14th Euro-

pean Conference on Computer Vision (ECCV). Springer Nature Switzerland.
2016, pp. 834–848.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Proba-
bilistic Models”. In: Advances in Neural Information Processing Systems

(NeurIPS) 33 (2020), pp. 6840–6851.

[Hod+17] Tomáš Hodaň, Pavel Haluza, Štěpán Obdržálek, Jiří Matas, Manolis Lourakis,
and Xenophon Zabulis. “T-LESS: An RGB-D Dataset for 6D Pose Estimation
of Texture-less Objects”. In: Proceedings of the IEEE Winter Conference on

Applications of Computer Vision (WACV) (2017).

[Hod+18] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders Glent-
Buch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon
Zabulis, et al. “BOP: Benchmark for 6D Object Pose Estimation”. In: Pro-

ceedings of the 15th European Conference on Computer Vision (ECCV).
Springer Nature Switzerland. 2018, pp. 19–34.

[Hod+20] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann Labbé, Eric
Brachmann, Frank Michel, Carsten Rother, and Jiří Matas. “BOP Challenge
2020 on 6D Object Localization”. In: Proceedings of the 16th European

Conference on Computer Vision Workshops (ECCVW). Springer Nature
Switzerland. 2020, pp. 577–594.

[HSS18] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2018, pp. 7132–7141.

[HSS22] Dinh-Cuong Hoang, Johannes A. Stork, and Todor Stoyanov. “Voting and
Attention-Based Pose Relation Learning for Object Pose Estimation From
3D Point Clouds”. In: IEEE Robotics and Automation Letters (RA-L) 7.4
(2022), pp. 8980–8987.

[Hu+20] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,
Niki Trigoni, and Andrew Markham. “RandLA-Net: Efficient Semantic Seg-
mentation of Large-Scale Point Clouds”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 11108–11117.

162



Bibliography

[Hu+23] Haotian Hu, Fanyi Wang, Jingwen Su, Laifeng Hu, Tianpeng Feng, Zhaokai
Zhang, and Wangzhi Zhang. “EA-BEV: Edge-aware Bird’s-Eye-View Pro-
jector for 3D Object Detection”. In: arXiv:2303.17895 [cs.CV] (2023).

[Hua+17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
“Densely Connected Convolutional Networks”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 4700–4708.

[Hua+20] Jun Huang, Zhuliang Le, Yong Ma, Xiaoguang Mei, and Fan Fan. “A
Generative Adversarial Network With Adaptive Constraints for Multi-Focus
Image Fusion”. In: Neural Computing and Applications 32.18 (2020),
pp. 15119–15129.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: Proceed-

ings of the 32nd International Conference on Machine Learning (ICML).
PMLR. 2015, pp. 448–456.

[ISI17] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. “Globally and
Locally Consistent Image Completion”. In: ACM Transactions on Graphics

(ToG) 36.4 (2017), pp. 1–14.

[Jac+91] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. “Adaptive Mixtures of Local Experts”. In: Neural Computation 3.1
(1991), pp. 79–87.

[Jad+15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
“Spatial Transformer Networks”. In: Advances in Neural Information Pro-

cessing Systems (NeurIPS) 28 (2015).

[Jan+23] Thomas Georg Jantos, Mohamed Amin Hamdad, Wolfgang Granig, Stephan
Weiss, and Jan Steinbrener. “PoET: Pose Estimation Transformer for Single-
View, Multi-Object 6D Pose Estimation”. In: Proceedings of the 7th Confer-

ence on Robot Learning (CoRL). PMLR. 2023, pp. 1060–1070.

[JCW21] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. “TransGAN: Two Pure
Transformers Can Make One Strong GAN, and That Can Scale Up”. In:
Advances in Neural Information Processing Systems (NeurIPS) 34 (2021),
pp. 14745–14758.

[Jia+19] Xiaoyue Jiang, Abdenour Hadid, Yanwei Pang, Eric Granger, and Xiaoyi
Feng. Deep Learning in Object Detection and Recognition. Springer Nature
Singapore, 2019.

[Jia+23] ZhiHong Jiang, JinHong Chen, YaMan Jing, Xiao Huang, and Hui Li. “6D
Pose Annotation and Pose Estimation Method for Weak-Corner Objects
Under Low-Light Conditions”. In: SCIENCE China Technological Sciences

66.3 (2023), pp. 630–640.

163



Bibliography

[JKG16] Varun Jampani, Martin Kiefel, and Peter V. Gehler. “Learning Sparse High
Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural
Networks”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016, pp. 4452–4461.

[Jun+20] Hyungjoo Jung, Youngjung Kim, Hyunsung Jang, Namkoo Ha, and Kwang-
hoon Sohn. “Unsupervised Deep Image Fusion With Structure Tensor
Representations”. In: IEEE Transactions on Image Processing (TIP) 29
(2020), pp. 3845–3858.

[Kal13] Kourosh Kalantar-zadeh. Sensors – An Introductory Course. Berlin Heidel-
berg: Springer Science & Business Media, 2013.

[Kas+19] Roman Kaskman, Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic.
“HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects”.
In: Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops (ICCVW). 2019.

[KB15] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A Method for Stochastic
Optimization”. In: Proceedings of the 3rd International Conference on

Learning Representations (ICLR). May 2015.

[Keh+17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir
Navab. “SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation
Great Again”. In: Proceedings of the IEEE International Conference on

Computer Vision (ICCV). 2017, pp. 1521–1529.

[KGC18] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). June 2018, pp. 7482–7491.

[Kha+22] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir,
Fahad Shahbaz Khan, and Mubarak Shah. “Transformers in Vision: A
Survey”. In: ACM computing surveys (CSUR) 54.10s (2022), pp. 1–41.

[Kin+16a] Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. “Improved Variational Inference with Inverse Autore-
gressive Flow”. In: Advances in Neural Information Processing Systems

(NeurIPS) 29 (2016).

[Kin+16b] Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. “Improving Variational Inference with Inverse Autore-
gressive Flow”. In: Advances in Neural Information Processing Systems

(NeurIPS). Vol. 29. 2016, pp. 4743–4751.

[KJG15] Martin Kiefel, Varun Jampani, and Peter V. Gehler. “Permutohedral Lattice
CNNs”. In: Workshop Track Proceedings of the 3rd International Conference

on Learning Representations (ICLR). 2015.

164



Bibliography

[KL51] Solomon Kullback and Richard A. Leibler. “On Information and Sufficiency”.
In: The Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

[KLA19] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator
Architecture for Generative Adversarial Networks”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2019, pp. 4401–4410.

[KNK21] Oliver Kroemer, Scott Niekum, and George Konidaris. “A Review of Robot
Learning for Manipulation: Challenges, Representations, and Algorithms”.
In: The Journal of Machine Learning Research 22.1 (2021), pp. 1395–1476.

[Koc22] Sebastian Koch. “Multi-View RGB-D Fusion for 6D Pose Estimation”.
Master thesis. University of Tübingen, 2022.

[Köh+14] Rolf Köhler, Christian Schuler, Bernhard Schölkopf, and Stefan Harmeling.
“Mask-Specific Inpainting with Deep Neural Networks”. In: Proceedings

of the 36th German Conference on Pattern Recognition (GCPR). Springer
International Publishing Switzerland. 2014, pp. 523–534.

[Kra22] Lukas Krauch. “Photorealistic Rendering and Dynamics Randomization for
Sim2real Transfer for Pushing and Grasping”. Master thesis. University of
Tübingen, 2022.

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical Report. University of Toronto. 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural

Information Processing Systems (NeurIPS) 25 (2012).

[Ku+18] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L.
Waslander. “Joint 3D Proposal Generation and Object Detection from View
Aggregation”. In: Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1–8.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”.
In: Proceedings of the 2nd International Conference on Learning Represen-

tations (ICLR). 2014.

[Kyr+21] Maria Kyrarini, Fotios Lygerakis, Akilesh Rajavenkatanarayanan, Christos
Sevastopoulos, Harish Ram Nambiappan, Kodur Krishna Chaitanya, Ashwin
Ramesh Babu, Joanne Mathew, and Fillia Makedon. “A Survey of Robots
in Healthcare”. In: Technologies 9.1 (2021), p. 8.

[Lab+20] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef Sivic. “CosyPose:
Consistent Multi-view Multi-object 6D Pose Estimation”. In: Proceedings

of the 16th European Conference on Computer Vision (ECCV). Springer
Nature Switzerland. 2020, pp. 574–591.

165



Bibliography

[Lab+22] Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan
Birchfield, Jonathan Tremblay, Justin Carpentier, Mathieu Aubry, Dieter
Fox, and Josef Sivic. “MegaPose: 6D Pose Estimation of Novel Objects
via Render & Compare”. In: Proceedings of the 6th Conference on Robot

Learning (CoRL). Vol. 205. PMLR, 2022, pp. 715–725.

[Lai+22] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu,
Xiaojuan Qi, and Jiaya Jia. “Stratified Transformer for 3D Point Cloud
Segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2022, pp. 8500–8509.

[Lan+19] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and
Oscar Beijbom. “PointPillars: Fast Encoders for Object Detection from Point
Clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2019, pp. 12697–12705.

[Lar+16] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther. “Autoencoding Beyond Pixels Using a Learned Similarity
Metric”. In: Proceedings of the 33rd International Conference on Machine

Learning (ICML). PMLR. 2016, pp. 1558–1566.

[LBH18] Chi Li, Jin Bai, and Gregory D. Hager. “A Unified Framework for Multi-view
Multi-class Object Pose Estimation”. In: Proceedings of the 15th European

Conference on Computer Vision (ECCV). Springer Nature Switzerland. 2018,
pp. 254–269.

[LD18] Hei Law and Jia Deng. “CornerNet: Detecting Objects as Paired Keypoints”.
In: Proceedings of the 15th European Conference on Computer Vision

(ECCV). Springer Nature Switzerland. 2018, pp. 734–750.

[LeC+06] Yann LeCun, Sumit Chopra, Raia Hadsell, M. Ranzato, and Fujie Huang.
“A Tutorial on Energy-Based Learning”. In: Predicting Structured Data 1.0
(2006).

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
Based Learning Applied to Document Recognition”. In: Proceedings of the

IEEE 86.11 (1998), pp. 2278–2324.

[LeC98] Yann LeCun. The MNIST database of handwritten digits. 1998. url: http:
//yann.lecun.com/exdb/mnist.

[Lee+22] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce
Liu. “ViTGAN: Training GANs with Vision Transformers”. In: Proceedings

of the 10th International Conference on Learning Representations (ICLR).
2022.

[LG17] Jean Lahoud and Bernard Ghanem. “2D-Driven 3D Object Detection in
RGB-D Images”. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV). 2017, pp. 4622–4630.

166

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


Bibliography

[LH17] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent
with Warm Restarts”. In: Proceedings of the 5th International Conference

on Learning Representations (ICLR). 2017.

[Li+17] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. “Generative Face
Completion”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2017, pp. 3911–3919.

[Li+18] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. “DeepIM:
Deep Iterative Matching for 6D Pose Estimation”. In: Proceedings of the

15th European Conference on Computer Vision (ECCV). Springer Nature
Switzerland. 2018, pp. 683–698.

[Li+22a] Bing Li, Cheng Zheng, Silvio Giancola, and Bernard Ghanem. “SCTN:
Sparse Convolution-Transformer Network for Scene Flow Estimation”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 2.
2022, pp. 1254–1262.

[Li+22b] Ruibo Li, Chi Zhang, Guosheng Lin, Zhe Wang, and Chunhua Shen.
“RigidFlow: Self-Supervised Scene Flow Learning on Point Clouds by Local
Rigidity Prior”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2022, pp. 16959–16968.

[Li+22c] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. “MAT:
Mask-Aware Transformer for Large Hole Image Inpainting”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2022, pp. 10758–10768.

[Li+22d] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. “Exploring Plain
Vision Transformer Backbones for Object Detection”. In: Proceedings of the

17th European Conference on Computer Vision (ECCV). Springer Nature
Switzerland. 2022, pp. 280–296.

[Li17] Bo Li. “3D Fully Convolutional Network for Vehicle Detection in Point
Cloud”. In: Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 1513–1518.

[LI20] You Li and Javier Ibanez-Guzman. “LiDAR for Autonomous Driving: The
Principles, Challenges, and Trends for Automotive LiDAR and Perception
Systems”. In: IEEE Signal Processing Magazine 37.4 (2020), pp. 50–61.

[Lia+19] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. “Multi-
Task Multi-Sensor Fusion for 3D Object Detection”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). June 2019, pp. 7345–7353.

167



Bibliography

[Lia+21] Hanxue Liang, Chenhan Jiang, Dapeng Feng, Xin Chen, Hang Xu, Xiaodan
Liang, Wei Zhang, Zhenguo Li, and Luc Van Gool. “Exploring Geometry-
aware Contrast and Clustering Harmonization for Self-supervised 3D Object
Detection”. In: Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV). 2021, pp. 3293–3302.

[Lin+17a] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. “Feature Pyramid Networks for Object Detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 2117–2125.

[Lin+17b] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
“Focal Loss for Dense Object Detection”. In: Proceedings of the IEEE

International Conference on Computer Vision (ICCV). Oct. 2017, pp. 2999–
3007.

[Liu+15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning
Face Attributes in the Wild”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). Dec. 2015.

[Liu+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. “SSD: Single Shot MultiBox
Detector”. In: Proceedings of the 14th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2016, pp. 21–37.

[Liu+17a] Yu Liu, Xun Chen, Juan Cheng, and Hu Peng. “A Medical Image Fusion
Method Based on Convolutional Neural Networks”. In: Proceedings of the

20th International Conference on Information Fusion. IEEE. 2017, pp. 1–7.

[Liu+17b] Yu Liu, Xun Chen, Hu Peng, and Zengfu Wang. “Multi-Focus Image Fusion
With a Deep Convolutional Neural Network”. In: Information Fusion 36
(2017), pp. 191–207.

[Liu+21] Shan Liu, Min Zhang, Pranav Kadam, and C.-C. Jay Kuo. 3D Point Cloud

Analysis: Traditional, Deep Learning, and Explainable Machine Learning

Methods. Springer Nature Switzerland, 2021.

[Liu+23] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang
Zhang, Zhongchao Shi, Jianping Fan, and Zhiqiang He. “A survey of visual
transformers”. In: IEEE Transactions on Neural Networks and Learning

Systems (2023).

[LJ21] Jie Liu and Cheolkon Jung. “Facial Image Inpainting Using Attention-based
Multi-Level Generative Network”. In: Neurocomputing 437 (2021), pp. 95–
106.

[LL19] Peng Li and Xiangpeng Liu. “Common Sensors in Industrial Robots: A
Review”. In: Journal of Physics: Conference Series 1267.1 (July 2019),
p. 012036.

168



Bibliography

[LL22] Eric Luhman and Troy Luhman. “Optimizing Hierarchical Image VAEs for
Sample Quality”. In: arXiv:2210.10205 [cs.LG] (2022).

[LL23] Troy Luhman and Eric Luhman. “High Fidelity Image Synthesis With Deep
VAEs In Latent Space”. In: arXiv:2303.13714 [cs.CV] (2023).

[Low04] David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: International Journal of Computer Vision (IJCV) 60.2 (2004), pp. 91–
110.

[Low99] David G. Lowe. “Object Recognition from Local Scale-Invariant Features”.
In: Proceedings of the Seventh IEEE International Conference on Computer

Vision (ICCV). Vol. 2. 1999, pp. 1150–1157.

[LQG19] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas. “FlowNet3D: Learning
Scene Flow in 3D Point Clouds”. In: Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR). June 2019,
pp. 529–537.

[LS22] Yan Li and Hualiang Shi. Advanced Driver Assistance Systems and Au-

tonomous Vehicles: From Fundamentals to Applications. Springer Nature
Singapore, 2022.

[Lu+22] Dening Lu, Qian Xie, Kyle Gao, Linlin Xu, and Jonathan Li. “3DCTN:
3D Convolution-Transformer Network for Point Cloud Classification”. In:
IEEE Transactions on Intelligent Transportation Systems 23.12 (2022),
pp. 24854–24865.

[Lug+22] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu
Timofte, and Luc Van Gool. “RePaint: Inpainting Using Denoising Diffusion
Probabilistic Models”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2022, pp. 11461–11471.

[LW18] Hui Li and Xiao-Jun Wu. “DenseFuse: A Fusion Approach to Infrared and
Visible Images”. In: IEEE Transactions on Image Processing (TIP) 28.5
(2018), pp. 2614–2623.

[LWD19] Hui Li, Xiao-Jun Wu, and Tariq S. Durrani. “Infrared and Visible Image
Fusion with ResNet and Zero-Phase Component Analysis”. In: Infrared

Physics & Technology 102 (2019), p. 103039.

[LWK18] Hui Li, Xiao-Jun Wu, and Josef Kittler. “Infrared and Visible Image
Fusion using a Deep Learning Framework”. In: Proceedings of the 23rd

International Conference on Pattern Recognition (ICPR). IEEE. 2018,
pp. 2705–2710.

169



Bibliography

[LWT20] Zechen Liu, Zizhang Wu, and Roland Tóth. “SMOKE: Single-Stage Monoc-
ular 3D Object Detection via Keypoint Estimation”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). 2020, pp. 996–997.

[LYB19] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. “MeteorNet: Deep Learn-
ing on Dynamic 3D Point Cloud Sequences”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV). Oct.
2019, pp. 9246–9255.

[LYU18] Wenjie Luo, Bin Yang, and Raquel Urtasun. “Fast and Furious: Real Time
End-to-End 3D Detection, Tracking and Motion Forecasting with a Single
Convolutional Net”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). June 2018, pp. 3569–
3577.

[LZX16] Bo Li, Tianlei Zhang, and Tian Xia. “Vehicle Detection from 3D Lidar
Using Fully Convolutional Network”. In: Robotics: Science and Systems

(RSS). 2016.

[Ma+19a] Jiayi Ma, Wei Yu, Pengwei Liang, Chang Li, and Junjun Jiang. “FusionGAN:
A Generative Adversarial Network for Infrared and Visible Image Fusion”.
In: Information Fusion 48 (2019), pp. 11–26.

[Ma+19b] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli Ouyang, and Xin
Fan. “Accurate Monocular 3D Object Detection via Color-Embedded 3D
Reconstruction for Autonomous Driving”. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV). 2019, pp. 6851–6860.

[Ma+20a] Jiayi Ma, Pengwei Liang, Wei Yu, Chen Chen, Xiaojie Guo, Jia Wu, and
Junjun Jiang. “Infrared and Visible Image Fusion via Detail Preserving
Adversarial Learning”. In: Information Fusion 54 (2020), pp. 85–98.

[Ma+20b] Jiayi Ma, Han Xu, Junjun Jiang, Xiaoguang Mei, and Xiao-Ping Zhang.
“DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Net-
work for Multi-Resolution Image Fusion”. In: IEEE Transactions on Image

Processing (TIP) 29 (2020), pp. 4980–4995.

[Ma+22] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. “Rethinking
Network Design and Local Geometry in Point Cloud: A Simple Residual
MLP Framework”. In: Proceedings of the 10th International Conference on

Learning Representations (ICLR). 2022.

[Maa+19] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. “BIVA:
A Very Deep Hierarchy of Latent Variables for Generative Modeling”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 32.
2019, pp. 6551–6562.

170



Bibliography

[Mao+17] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. “Least Squares Generative Adversarial Networks”.
In: Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV). 2017, pp. 2794–2802.

[Mao+21] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiaodan
Liang, Hang Xu, and Chunjing Xu. “Voxel Transformer for 3D Object
Detection”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2021, pp. 3164–3173.

[May+16] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. “A Large Dataset to Train Convolu-
tional Networks for Disparity, Optical Flow, and Scene Flow Estimation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 4040–4048.

[MEB16] Oier Mees, Andreas Eitel, and Wolfram Burgard. “Choosing Smartly: Adap-
tive Multimodal Fusion for Object Detection in Changing Environments”.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2016, pp. 151–156.

[MHG15] Moritz Menze, Christian Heipke, and Andreas Geiger. “Joint 3D Estimation
of Vehicles and Scene Flow”. In: ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences 2 (2015), pp. 427–434.

[MHG18] Moritz Menze, Christian Heipke, and Andreas Geiger. “Object Scene Flow”.
In: ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) 140
(2018), pp. 60–76.

[Mit12] Harvey B. Mitchell. Data Fusion: Concepts and Ideas. Springer Science &
Business Media, 2012.

[ML20] Francisco Madrigal and Frédéric Lerasle. “Robust Head Pose Estimation
Based on Key Frames for Human-Machine Interaction”. In: EURASIP

Journal on Image and Video Processing 2020.1 (2020), pp. 1–19.

[MMG21] Razvan V. Marinescu, Daniel Moyer, and Polina Golland. “Bayesian Image
Reconstruction using Deep Generative Models”. In: Proceedings of the

NeurIPS 2021 Workshop on Deep Generative Models and Downstream

Applications. 2021.

[Mni+14] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu.
“Recurrent Models of Visual Attention”. In: Advances in Neural Information

Processing Systems (NeurIPS) 27 (2014).

[Mo+22] Ningkai Mo, Wanshui Gan, Naoto Yokoya, and Shifeng Chen. “ES6D: A
Computation Efficient and Symmetry-Aware 6D Pose Regression Frame-
work”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2022, pp. 6718–6727.

171



Bibliography

[MO14] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial
Nets”. In: arXiv:1411.1784 [cs.LG] (2014).

[MOH20] Himangi Mittal, Brian Okorn, and David Held. “Just Go With the Flow:
Self-Supervised Scene Flow Estimation”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 11177–11185.

[Mor+20] Walter Morales-Alvarez, Oscar Sipele, Régis Léberon, Hadj Hamma Tadjine,
and Cristina Olaverri-Monreal. “Automated Driving: A Literature Review
of the Take over Request in Conditional Automation”. In: Electronics 9.12
(2020), p. 2087.

[Mou+17] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
“3D Bounding Box Estimation Using Deep Learning and Geometry”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 7074–7082.

[MS15] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional
Neural Network for Real-Time Object Recognition”. In: Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2015, pp. 922–928.

[MUS15] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. “Pose Estimation
for Augmented Reality: A Hands-On Survey”. In: IEEE Transactions on

Visualization and Computer Graphics (TVCG) 22.12 (2015), pp. 2633–2651.

[ND21] Alexander Quinn Nichol and Prafulla Dhariwal. “Improved Denoising
Diffusion Probabilistic Models”. In: Proceedings of the 38th International

Conference on Machine Learning (ICML). PMLR. 2021, pp. 8162–8171.

[OB23] Chahinez Ounoughi and Sadok Ben Yahia. “Data Fusion for ITS: A Sys-
tematic Literature Review”. In: Information Fusion 89 (2023), pp. 267–
291.

[OMS21] Luiz F. P. Oliveira, António P. Moreira, and Manuel F. Silva. “Advances in
Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead”.
In: Robotics 10.2 (2021), p. 52.

[Ott+18] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. “Scaling
Neural Machine Translation”. In: Proceedings of the Third Conference

on Machine Translation: Research Papers. Association for Computational
Linguistics, 2018, pp. 1–9.

[Pai+21] Anshul Paigwar, David Sierra-Gonzalez, Ozgur Erkent, and Christian
Laugier. “Frustum-PointPillars: A Multi-Stage Approach for 3D Object
Detection using RGB Camera and LiDAR”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2021,
pp. 2926–2933.

172



Bibliography

[Par+21] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu. “Dual Con-
tradistinctive Generative Autoencoder”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2021,
pp. 823–832.

[Pat+16] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and
Alexei A. Efros. “Context Encoders: Feature Learning by Inpainting”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 2536–2544.

[Pav+17] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstantinos G. Derpanis,
and Kostas Daniilidis. “6-DoF Object Pose from Semantic Keypoints”.
In: Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2017, pp. 2011–2018.

[Pen+19] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao. “PVNet:
Pixel-wise Voting Network for 6DoF Pose Estimation”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2019, pp. 4561–4570.

[Pit+19] Giorgia Pitteri, Michaël Ramamonjisoa, Slobodan Ilic, and Vincent Lepetit.
“On Object Symmetries and 6D Pose Estimation from Images”. In: Pro-

ceedings of the International Conference on 3D Vision (3DV). IEEE. 2019,
pp. 614–622.

[PMR20] Su Pang, Daniel Morris, and Hayder Radha. “CLOCs: Camera-LiDAR
Object Candidates Fusion for 3D Object Detection”. In: Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2020, pp. 10386–10393.

[Pon+20] Alex D. Pon, Jason Ku, Chengyao Li, and Steven L. Waslander. “Object-
Centric Stereo Matching for 3D Object Detection”. In: Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 8383–8389.

[Pou+18] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria
Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S. Iyengar.
“A Survey on Deep Learning: Algorithms, Techniques, and Applications”.
In: ACM Computing Surveys (CSUR) 51.5 (2018), pp. 1–36.

[PP00] Constantine Papageorgiou and Tomaso Poggio. “A Trainable System for
Object Detection”. In: International Journal of Computer Vision (IJCV) 38
(2000), pp. 15–33.

[PPV19] Kiru Park, Timothy Patten, and Markus Vincze. “Pix2Pose: Pixel-Wise
Coordinate Regression of Objects for 6D Pose Estimation”. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 7668–7677.

173



Bibliography

[PSB17] K. Ram Prabhakar, V. Sai Srikar, and R. Venkatesh Babu. “DeepFuse: A
Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure
Image Pairs”. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV). 2017, pp. 4714–4722.

[QBZ21] Jia Qin, Huihui Bai, and Yao Zhao. “Multi-Scale Attention Network for
Image Inpainting”. In: Computer Vision and Image Understanding 204
(2021), p. 103155.

[Qi+17a] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. “PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). July 2017, pp. 652–660.

[Qi+17b] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. “PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 30.
2017, pp. 5099–5108.

[Qi+18] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas.
“Frustum PointNets for 3D Object Detection from RGB-D Data”. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2018, pp. 918–927.

[Qi+19] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J. Guibas. “Deep
Hough Voting for 3D Object Detection in Point Clouds”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2019, pp. 9277–9286.

[Qia+22] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud,
Mohamed Elhoseiny, and Bernard Ghanem. “PointNeXt: Revisiting Point-
Net++ with Improved Training and Scaling Strategies”. In: Advances in

Neural Information Processing Systems (NeurIPS). Vol. 35. 2022, pp. 23192–
23204.

[Qin+21] Zhen Qin, Qingliang Zeng, Yixin Zong, and Fan Xu. “Image Inpainting
Based on Deep Learning: A Review”. In: Displays 69 (2021), p. 102028.

[QWL19] Zengyi Qin, Jinglu Wang, and Yan Lu. “Triangulation Learning Network:
From Monocular to Stereo 3D Object Detection”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 7615–7623.

[Rad+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language Models are Unsupervised Multitask Learners.
Technical Report. OpenAI. 2019.

174



Bibliography

[RD06] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed
Corner Detection”. In: Proceedings of the 9th European Conference on

Computer Vision (ECCV). Springer Berlin Heidelberg. 2006, pp. 430–443.

[Red+16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You
Only Look Once: Unified, Real-Time Object Detection”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 779–788.

[Ren+17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

39.6 (June 2017), pp. 1137–1149.

[Ren+18] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. “SBNet:
Sparse Blocks Network for Fast Inference”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). June
2018, pp. 8711–8720.

[RF21] Jesse Richter-Klug and Udo Frese. “Handling Object Symmetries in CNN-
based Pose Estimation”. In: Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE. 2021, pp. 13850–13856.

[Rib+21] Jorge Ribeiro, Rui Lima, Tiago Eckhardt, and Sara Paiva. “Robotic Process
Automation and Artificial Intelligence in Industry 4.0 – A Literature Review”.
In: Procedia Computer Science 181 (2021), pp. 51–58.

[RL17] Mahdi Rad and Vincent Lepetit. “BB8: A Scalable, Accurate, Robust to
Partial Occlusion Method for Predicting the 3D Poses of Challenging
Objects Without Using Depth”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). 2017, pp. 3828–3836.

[RM15a] Danilo Rezende and Shakir Mohamed. “Variational Inference with Nor-
malizing Flows”. In: Proceedings of the 32nd International Conference on

Machine Learning (ICML). PMLR. 2015, pp. 1530–1538.

[RM15b] Danilo Rezende and Shakir Mohamed. “Variational Inference with Nor-
malizing Flows”. In: Proceedings of the 32nd International Conference on

Machine Learning (ICML). PMLR. 2015, pp. 1530–1538.

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks”.
In: Proceedings of the 4th International Conference on Learning Represen-

tations (ICLR). 2016.

[RN18] Alec Radford and Karthik Narasimhan. Improving Language Understanding

by Generative Pre-Training. Technical Report. OpenAI. 2018.

175



Bibliography

[Rom+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. “High-Resolution Image Synthesis With Latent Diffusion
Models”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2022, pp. 10684–10695.

[Ros+19] Paul L. Rosin, Yu-Kun Lai, Ling Shao, and Yonghuai Liu. RGB-D Image

Analysis and Processing. Springer Nature Switzerland, 2019.

[Rot+06] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce.
“3D Object Modeling and Recognition Using Local Affine-Invariant Image
Descriptors and Multi-View Spatial Constraints”. In: International Journal

of Computer Vision (IJCV) 66.3 (2006), pp. 231–259.

[RT17] Dhanesh Ramachandram and Graham W. Taylor. “Deep Multimodal Learn-
ing: A Survey on Recent Advances and Trends”. In: IEEE Signal Processing

Magazine 34.6 (2017), pp. 96–108.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s
Distance as a Metric for Image Retrieval”. In: International Journal of

Computer Vision (IJCV) 40 (2000), pp. 99–121.

[Rus+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual
Recognition Challenge”. In: International Journal of Computer Vision

(IJCV) 115.3 (2015), pp. 211–252.

[RZL18] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activation
Functions”. In: Proceedings of the 6th International Conference on Learning

Representations (ICLR). 2018.

[Sad+19] Hossein Sadeghi, Evgeny Andriyash, Walter Vinci, Lorenzo Buffoni, and
Mohammad H. Amin. “PixelVAE++: Improved PixelVAE With Discrete
Prior”. In: arXiv:1908.09948 [cs.CV] (2019).

[Sah+20] Caner Sahin, Guillermo Garcia-Hernando, Juil Sock, and Tae-Kyun Kim.
“A Review on Object Pose Recovery: from 3D Bounding Box Detectors
to Full 6D Pose Estimators”. In: Image and Vision Computing 96 (2020),
p. 103898.

[Sal+17] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. “Pix-
elCNN++: Improving the PixelCNN With Discretized Logistic Mixture
Likelihood and Other Modifications”. In: Proceedings of the 5th Interna-

tional Conference on Learning Representations (ICLR). 2017.

[Sch+18] René Schuster, Christian Bailer, Oliver Wasenmüller, and Didier Stricker.
“Combining Stereo Disparity and Optical Flow for Basic Scene Flow”. In:
Proceedings of the 5th Commercial Vehicle Technology Symposium (CVT).
Springer. 2018, pp. 90–101.

176



Bibliography

[Ser+14] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”. In: Proceedings of the 2nd

International Conference on Learning Representations (ICLR). 2014.

[SG22] Muhammad Shafiq and Zhaoquan Gu. “Deep Residual Learning for Image
Recognition: A Survey”. In: Applied Sciences 12.18 (2022), p. 8972.

[SH14] Frederik Steinmetz and Gottfried Hofmann. The Cycles Encyclopedia. 2014.
url: http://www.blender.org.

[Sha+19] Taihua Shao, Yupu Guo, Honghui Chen, and Zepeng Hao. “Transformer-
Based Neural Net work for Answer Selection in Question Answering”. In:
IEEE Access 7 (2019), pp. 26146–26156.

[Shi+15] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. “DeepPano: Deep
Panoramic Representation for 3-D Shape Recognition”. In: IEEE Signal

Processing Letters 22.12 (2015), pp. 2339–2343.

[SK04] Henry Schneiderman and Takeo Kanade. “Object Detection Using the
Statistics of Parts”. In: International Journal of Computer Vision (IJCV)

56.3 (2004), pp. 151–177.

[SK16] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics.
2nd ed. Springer International Publishing Switzerland, 2016.

[SK18] Ozan Sener and Vladlen Koltun. “Multi-Task Learning as Multi-Objective
Optimization”. In: Advances in Neural Information Processing Systems

(NeurIPS). Dec. 2018, pp. 527–538.

[SLX15] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. “SUN RGB-D:
A RGB-D Scene Understanding Benchmark Suite”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015, pp. 567–576.

[SLY15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output
Representation using Deep Conditional Generative Models”. In: Advances in

Neural Information Processing Systems (NeurIPS). Vol. 28. 2015, pp. 3483–
3491.

[Soc+17] Juil Sock, S. Hamidreza Kasaei, Luis Seabra Lopes, and Tae-Kyun Kim.
“Multi-view 6D Object Pose Estimation and Camera Motion Planning Using
RGBD Images”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (ICCVW). 2017, pp. 2228–2235.

[Soh+15] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya
Ganguli. “Deep Unsupervised Learning using Nonequilibrium Thermody-
namics”. In: Proceedings of the 32nd International Conference on Machine

Learning (ICML). PMLR. 2015, pp. 2256–2265.

177

http://www.blender.org


Bibliography

[Søn+16] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby,
and Ole Winther. “Ladder Variational Autoencoders”. In: Advances in Neural

Information Processing Systems (NeurIPS). Vol. 29. 2016, pp. 3738–3746.

[Son+18a] Yuhang Song, Chao Yang, Zhe Lin, Xiaofeng Liu, Qin Huang, Hao Li,
and C.-C. Jay Kuo. “Contextual-based Image Inpainting: Infer, Match, and
Translate”. In: Proceedings of the 15th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2018, pp. 3–19.

[Son+18b] Yuhang Song, Chao Yang, Yeji Shen, Peng Wang, Qin Huang, and C.-C. Jay
Kuo. “SPG-Net: Segmentation Prediction and Guidance Network for Image
Inpainting”. In: Proceedings of the 29th British Machine Vision Conference

(BMVC). 2018.

[Son22] Dongwon Son. “Grasping as Inference: Reactive Grasping in Heavily
Cluttered Environment”. In: IEEE Robotics and Automation Letters (RA-L)

7.3 (2022), pp. 7193–7200.

[SST23] Rajhans Singh, Ankita Shukla, and Pavan Turaga. “Polynomial Implicit
Neural Representations For Large Diverse Datasets”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2023, pp. 2041–2051.

[Str+21] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. “Seg-
menter: Transformer for Semantic Segmentation”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV). 2021,
pp. 7262–7272.

[Su+15a] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
“Multi-view Convolutional Neural Networks for 3D Shape Recognition”.
In: Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV). 2015, pp. 945–953.

[Su+15b] Hao Su, Charles R. Qi, Yangyan Li, and Leonidas J. Guibas. “Render for
CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered
3D Model Views”. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). 2015, pp. 2686–2694.

[Su+19] Yongzhi Su, Jason Rambach, Nareg Minaskan, Paul Lesur, Alain Pagani, and
Didier Stricker. “Deep Multi-state Object Pose Estimation for Augmented
Reality Assembly”. In: Proceedings of the IEEE International Symposium

on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE. 2019,
pp. 222–227.

178



Bibliography

[Su+22] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach, Nassir Navab,
Benjamin Busam, Didier Stricker, and Federico Tombari. “ZebraPose:
Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2022, pp. 6738–6748.

[Sun+18] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel
Brucker, and Rudolph Triebel. “Implicit 3D Orientation Learning for 6D
Object Detection from RGB Images”. In: Proceedings of the 15th European

Conference on Computer Vision (ECCV). Springer Nature Switzerland. 2018,
pp. 699–715.

[Sun+20] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai
Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine,
et al. “Scalability in Perception for Autonomous Driving: Waymo Open
Dataset”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2020, pp. 2446–2454.

[Sun+21] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M. Kitani. “Rethinking
Transformer-based Set Prediction for Object Detection”. In: Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,
pp. 3611–3620.

[Sun+23] Martin Sundermeyer, Tomáš Hodaň, Yann Labbe, Gu Wang, Eric Brachmann,
Bertram Drost, Carsten Rother, and Jiří Matas. “BOP Challenge 2022 on
Detection, Segmentation and Pose Estimation of Specific Rigid Objects”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2023, pp. 2784–2793.

[SX14] Shuran Song and Jianxiong Xiao. “Sliding Shapes for 3D Object Detection
in Depth Images”. In: Proceedings of the 13th European Conference on

Computer Vision (ECCV). Springer Nature Switzerland. 2014, pp. 634–651.

[SX16] Shuran Song and Jianxiong Xiao. “Deep Sliding Shapes for Amodal 3D
Object Detection in RGB-D Images”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 808–816.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: Proceedings of the 3rd

International Conference on Learning Representations (ICLR). 2015.

[Sze+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going Deeper with Convolutions”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015, pp. 1–9.

179



Bibliography

[SZG23] Pourya Shamsolmoali, Masoumeh Zareapoor, and Eric Granger. “TransIn-
paint: Transformer-based Image Inpainting with Context Adaptation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2023, pp. 849–858.

[Tei+18] Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla,
and Raquel Urtasun. “MultiNet: Real-time Joint Semantic Reasoning for
Autonomous Driving”. In: Proceedings of the IEEE Intelligent Vehicles

Symposium (IV). June 2018, pp. 1013–1020.

[TM15] Shubham Tulsiani and Jitendra Malik. “Viewpoints and Keypoints”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015, pp. 1510–1519.

[Tom22] Jakub M. Tomczak. Deep Generative Modeling. Springer Nature Switzerland,
2022.

[Tri+00] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgib-
bon. “Bundle Adjustment – A Modern Synthesis”. In: Vision Algorithms:

Theory and Practice. Springer. 2000, pp. 298–372.

[TSD10] Federico Tombari, Samuele Salti, and Luigi Di Stefano. “Unique Signatures
of Histograms for Local Surface Description”. In: Proceedings of the

11th European Conference on Computer Vision (ECCV). Springer Berlin
Heidelberg. 2010, pp. 356–369.

[TSF18] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. “Real-Time Seamless
Single Shot 6D Object Pose Prediction”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 292–301.

[Tu+19] Zhigang Tu, Wei Xie, Dejun Zhang, Ronald Poppe, Remco C. Veltkamp,
Baoxin Li, and Junsong Yuan. “A Survey of Variational and CNN-based
Optical Flow Techniques”. In: Signal Processing: Image Communication

72 (2019), pp. 9–24.

[Tyr+22] Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier,
Jeffrey Smith, and Stan Birchfield. “6-DoF Pose Estimation of Household
Objects for Robotic Manipulation: An Accessible Dataset and Benchmark”.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). 2022.

[UE18] Arash K. Ushani and Ryan M. Eustice. “Feature Learning for Scene Flow
Estimation from LIDAR”. In: Proceedings of the 2nd Annual Conference

on Robot Learning (CoRL). Oct. 2018, pp. 283–292.

180



Bibliography

[Ush+17] Arash K. Ushani, Ryan W. Wolcott, Jeffrey M. Walls, and Ryan M. Eustice.
“A learning approach for real-time temporal scene flow estimation from
LIDAR data”. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). June 2017, pp. 5666–5673.

[UVD21] Ozan Unal, Luc Van Gool, and Dengxin Dai. “Improving Point Cloud
Semantic Segmentation by Learning 3D Object Detection”. In: Proceedings

of the IEEE Winter Conference on Applications of Computer Vision (WACV).
2021, pp. 2950–2959.

[Uy+19] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen,
and Sai-Kit Yeung. “Revisiting Point Cloud Classification: A New Bench-
mark Dataset and Classification Model on Real-World Data”. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 1588–1597.

[Vah+18] Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and
Evgeny Andriyash. “DVAE++: Discrete Variational Autoencoders with
Overlapping Transformations”. In: Proceedings of the 35th International

Conference on Machine Learning (ICML). PMLR. 2018, pp. 5035–5044.

[Val+17] Abhinav Valada, Johan Vertens, Ankit Dhall, and Wolfram Burgard. “Adap-
Net: Adaptive Semantic Segmentation in Adverse Environmental Condi-
tions”. In: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2017, pp. 4644–4651.

[Van+21] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc
Proesmans, Dengxin Dai, and Luc Van Gool. “Multi-Task Learning for
Dense Prediction Tasks: A Survey”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI) 44.7 (2021), pp. 3614–3633.

[Var+21] Jorge Vargas, Suleiman Alsweiss, Onur Toker, Rahul Razdan, and Joshua
Santos. “An Overview of Autonomous Vehicles Sensors and Their Vulnera-
bility to Weather Conditions”. In: Sensors 21.16 (2021), p. 5397.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: Advances in Neural Information Processing Systems (NeurIPS)

30 (2017).

[Ved+99] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo
Kanade. “Three-Dimensional Scene Flow”. In: Proceedings of the Seventh

IEEE International Conference on Computer Vision (ICCV). Vol. 2. IEEE.
1999, pp. 722–729.

[Vid+18] Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, and Robert Martí. “A Method for
6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features
on Range Data”. In: Sensors 18.8 (2018), p. 2678.

181



Bibliography

[VJ01] Paul Viola and Michael Jones. “Rapid Object Detection using a Boosted
Cascade of Simple Features”. In: Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR).
Vol. 1. IEEE. 2001, pp. 511–518.

[VK20] Arash Vahdat and Jan Kautz. “NVAE: A Deep Hierarchical Variational
Autoencoder”. In: Advances in Neural Information Processing Systems

(NeurIPS). Vol. 33. 2020, pp. 19667–19679.

[VKK16] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel
Recurrent Neural Networks”. In: Proceedings of the 33rd International

Conference on Machine Learning (ICML). PMLR. 2016, pp. 1747–1756.

[Vol+20] Michael Volpp, Fabian Flürenbrock, Lukas Grossberger, Christian Daniel,
and Gerhard Neumann. “Bayesian Context Aggregation for Neural Pro-
cesses”. In: Proceedings of the 8th International Conference on Learning

Representations (ICLR). 2020.

[VSM18] Victor Vaquero, Alberto Sanfeliu, and Francesc Moreno-Noguer. “Deep
Lidar CNN to Understand the Dynamics of Moving Vehicles”. In: Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA). May 2018, pp. 1–6.

[Wad+20] Kentaro Wada, Edgar Sucar, Stephen James, Daniel Lenton, and Andrew J.
Davison. “MoreFusion: Multi-object Reasoning for 6D Pose Estimation
from Volumetric Fusion”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2020, pp. 14540–14549.

[Wal+16] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. “An
Uncertain Future: Forecasting from Static Images using Variational Autoen-
coders”. In: Proceedings of the 14th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2016, pp. 835–851.

[Wan+17] Kunfeng Wang, Chao Gou, Yanjie Duan, Yilun Lin, Xinhu Zheng, and Fei-
Yue Wang. “Generative Adversarial Networks: Introduction and Outlook”.
In: IEEE/CAA Journal of Automatica Sinica 4.4 (2017), pp. 588–598.

[Wan+18a] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel
Urtasun. “Deep Parametric Continuous Convolutional Neural Networks”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). June 2018, pp. 2589–2597.

[Wan+18b] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. “Non-
local Neural Networks”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2018, pp. 7794–7803.

182



Bibliography

[Wan+19] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li
Fei-Fei, and Silvio Savarese. “DenseFusion: 6D Object Pose Estimation by
Iterative Dense Fusion”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2019, pp. 3343–3352.

[Wan+20] Weiming Wang, Wenhai Liu, Jie Hu, Yi Fang, Quanquan Shao, and Jin Qi.
“GraspFusionNet: A Two-Stage Multi-Parameter Grasp Detection Network
Based on RGB–XYZ Fusion in Dense Clutter”. In: Machine Vision and

Applications 31.7 (2020), pp. 1–19.

[Wan+21a] Biyao Wang, Yi Han, Di Tian, and Tian Guan. “Sensor-Based Environmental
Perception Technology for Intelligent Vehicles”. In: Journal of Sensors 2021
(2021), pp. 1–14.

[Wan+21b] Changshuo Wang, Chen Wang, Weijun Li, and Haining Wang. “A Brief
Survey on RGB-D Semantic Segmentation Using Deep Learning”. In:
Displays 70 (2021), p. 102080.

[Wan+21c] Gu Wang, Fabian Manhardt, Xingyu Liu, Xiangyang Ji, and Federico
Tombari. “Occlusion-Aware Self-Supervised Monocular 6D Object Pose
Estimation”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI) (2021).

[Wan+21d] Gu Wang, Fabian Manhardt, Federico Tombari, and Xiangyang Ji. “GDR-
Net: Geometry-Guided Direct Regression Network for Monocular 6D Object
Pose Estimation”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2021, pp. 16611–16621.

[Wan+23] Yingjie Wang, Qiuyu Mao, Hanqi Zhu, Jiajun Deng, Yu Zhang, Jianmin Ji,
Houqiang Li, and Yanyong Zhang. “Multi-Modal 3D Object Detection in
Autonomous Driving: A Survey”. In: International Journal of Computer

Vision (IJCV) (2023), pp. 1–31.

[WFU15] Shenlong Wang, Sanja Fidler, and Raquel Urtasun. “Holistic 3D Scene
Understanding from a Single Geo-tagged Image”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2015, pp. 3964–3972.

[Wil+21] Benjamin Wilson et al. “Argoverse 2: Next Generation Datasets for Self-
Driving Perception and Forecasting”. In: Proceedings of the Neural Infor-

mation Processing Systems Track on Datasets and Benchmarks (NeurIPS

Datasets and Benchmarks). 2021.

[WJ19] Zhixin Wang and Kui Jia. “Frustum ConvNet: Sliding Frustums to Ag-
gregate Local Point-Wise Features for Amodal 3D Object Detection”. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2019, pp. 1742–1749.

183



Bibliography

[WSH20] Xiongwei Wu, Doyen Sahoo, and Steven C. H. Hoi. “Recent Advances
in Deep Learning for Object Detection”. In: Neurocomputing 396 (2020),
pp. 39–64.

[Wu+15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and Jianxiong Xiao. “3D ShapeNets: A Deep Representation for
Volumetric Shapes”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2015, pp. 1912–1920.

[Wu+20] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. “Point-
PWC-Net: Cost Volume on Point Clouds for (Self-)Supervised Scene Flow
Estimation”. In: Proceedings of the 16th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2020, pp. 88–107.

[Wu+22] Yangzheng Wu, Mohsen Zand, Ali Etemad, and Michael Greenspan. “Vote
from the Center: 6 DoF Pose Estimation in RGB-D Images by Radial
Keypoint Voting”. In: Proceedings of the 17th European Conference on

Computer Vision (ECCV). Springer Nature Switzerland. 2022, pp. 335–352.

[Wu+23] Hai Wu, Chenglu Wen, Shaoshuai Shi, Xin Li, and Cheng Wang. “Virtual
Sparse Convolution for Multimodal 3D Object Detection”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2023, pp. 21653–21662.

[XAJ18] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. “PointFusion: Deep Sensor
Fusion for 3D Bounding Box Estimation”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 244–253.

[Xia+10] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio
Torralba. “SUN Database: Large-scale Scene Recognition from Abbey to
Zoo”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE. 2010, pp. 3485–3492.

[Xia+18] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. “Pose-
CNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes”. In: Robotics: Science and Systems (RSS) (2018).

[Xia+22] Ziwei Xia, Zhen Deng, Bin Fang, Yiyong Yang, and Fuchun Sun. “A
Review on Sensory Perception for Dexterous Robotic Manipulation”. In:
International Journal of Advanced Robotic Systems (IJARS) 19.2 (2022),
p. 17298806221095974.

[Xie+19] Chaohao Xie, Shaohui Liu, Chao Li, Ming-Ming Cheng, Wangmeng Zuo,
Xiao Liu, Shilei Wen, and Errui Ding. “Image Inpainting with Learnable Bidi-
rectional Attention Maps”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 2019, pp. 8858–8867.

184



Bibliography

[Xie+21] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Dening Lu, Mingqiang
Wei, and Jun Wang. “VENet: Voting Enhancement Network for 3D Object
Detection”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2021, pp. 3712–3721.

[Xie+23] Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. “Smart-
Brush: Text and Shape Guided Object Inpainting with Diffusion Model”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2023, pp. 22428–22437.

[Xu+18] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. “PAD-Net: Multi-
tasks Guided Prediction-and-Distillation Network for Simultaneous Depth
Estimation and Scene Parsing”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 675–684.

[Xu+19] Han Xu, Pengwei Liang, Wei Yu, Junjun Jiang, and Jiayi Ma. “Learning a
Generative Model for Fusing Infrared and Visible Images via Conditional
Generative Adversarial Network with Dual Discriminators”. In: Proceedings

of the 28th International Joint Conference on Artificial Intelligence (IJCAI).
2019.

[Xu+20a] Chi Xu, Jiale Chen, Mengyang Yao, Jun Zhou, Lijun Zhang, and Yi Liu.
“6DoF Pose Estimation of Transparent Object from a Single RGB-D Image”.
In: Sensors 20.23 (2020), p. 6790.

[Xu+20b] Han Xu, Jiayi Ma, Zhuliang Le, Junjun Jiang, and Xiaojie Guo. “FusionDN:
A Unified Densely Connected Network for Image Fusion”. In: Proceedings

of the 34th AAAI Conference on Artificial Intelligence. Vol. 34. Apr. 2020,
pp. 12484–12491.

[Yan+17] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao
Li. “High-Resolution Image Inpainting Using Multi-Scale Neural Patch
Synthesis”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2017, pp. 6721–6729.

[Yan+18] Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and Shiguang Shan.
“Shift-Net: Image Inpainting via Deep Feature Rearrangement”. In: Pro-

ceedings of the 15th European Conference on Computer Vision (ECCV).
Springer Nature Switzerland. 2018, pp. 1–17.

[Yan+21] Jun Yang, Yizhou Gao, Dong Li, and Steven L. Waslander. “ROBI: A
Multi-View Dataset for Reflective Objects in Robotic Bin-Picking”. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2021, pp. 9788–9795.

185



Bibliography

[Yan+22] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue
Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang.
“Diffusion Models: A Comprehensive Survey of Methods and Applications”.
In: arXiv:2209.00796 [cs.LG] (2022).

[Yan20] Xiao Yang. “An Overview of the Attention Mechanisms in Computer Vision”.
In: Journal of Physics: Conference Series. Vol. 1693. 1. IOP Publishing.
2020, p. 012173.

[YCL23] Shiyuan Yang, Xiaodong Chen, and Jing Liao. “Uni-paint: A Unified
Framework for Multimodal Image Inpainting with Pretrained Diffusion
Model”. In: Proceedings of the 31th ACM International Conference on

Multimedia (ACMMM). New York, NY, USA: Association for Computing
Machinery, 2023.

[Yeo+21] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh.
“Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review”.
In: Sensors 21.6 (2021), p. 2140.

[Yeu+17] Serena Yeung, Anitha Kannan, Yann Dauphin, and Li Fei-Fei. “Tackling
Over-pruning in Variational Autoencoders”. In: ICML 2017 Workshop on

Principled Approaches to Deep Learning (2017).

[YLU18] Bin Yang, Wenjie Luo, and Raquel Urtasun. “PIXOR: Real-time 3D Object
Detection from Point Clouds”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). June 2018, pp. 7652–
7660.

[YM17] Yuichi Yoshida and Takeru Miyato. “Spectral Norm Regularization for
Improving the Generalizability of Deep Learning”. In: arXiv:1705.10941

[stat.ML] (2017).

[YML18] Yan Yan, Yuxing Mao, and Bo Li. “SECOND: Sparsely Embedded Convo-
lutional Detection”. In: Sensors 18.10 (Oct. 2018), p. 3337.

[Yoo+20] Jin Hyeok Yoo, Yecheol Kim, Jisong Kim, and Jun Won Choi. “3D-CVF:
Generating Joint Camera and LiDAR Features Using Cross-View Spatial
Feature Fusion for 3D Object Detection”. In: Proceedings of the 16th Euro-

pean Conference on Computer Vision (ECCV). Springer Nature Switzerland.
2020, pp. 720–736.

[Yu+18] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang.
“Generative Image Inpainting With Contextual Attention”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2018, pp. 5505–5514.

[Yur+20] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda.
“A Survey of Autonomous Driving: Common Practices and Emerging
Technologies”. In: IEEE Access 8 (2020), pp. 58443–58469.

186



Bibliography

[YYY21] Zongxin Yang, Xin Yu, and Yi Yang. “DSC-PoseNet: Learning 6DoF
Object Pose Estimation via Dual-scale Consistency”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 3907–3916.

[Zam+18] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra
Malik, and Silvio Savarese. “Taskonomy: Disentangling Task Transfer
Learning”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). June 2018, pp. 3712–3722.

[Zan+16] Pietro Zanuttigh, Giulio Marin, Carlo Dal Mutto, Fabio Dominio, Lu-
dovico Minto, and Guido Maria Cortelazzo. Time-of-Flight and Structured

Light Depth Cameras: Technology and Applications. Springer International
Publishing Switzerland, 2016.

[ZCC19] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. “Pluralistic Image Com-
pletion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2019, pp. 1438–1447.

[Zen+17] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker, Alberto
Rodriguez, and Jianxiong Xiao. “Multi-view Self-supervised Deep Learning
for 6D Pose Estimation in the Amazon Picking Challenge”. In: Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2017, pp. 1386–1383.

[Zen+20a] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and Huchuan
Lu. “High-Resolution Image Inpainting with Iterative Confidence Feedback
and Guided Upsampling”. In: Proceedings of the 16th European Conference

on Computer Vision (ECCV). Springer Nature Switzerland. 2020, pp. 1–17.

[Zen+20b] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and Huchuan
Lu. “High-Resolution Image Inpainting with Iterative Confidence Feedback
and Guided Upsampling”. In: Proceedings of the 16th European Conference

on Computer Vision (ECCV). Springer Nature Switzerland. 2020, pp. 1–17.

[Zha+17a] Qiang Zhang, Daokui Qu, Fang Xu, and Fengshan Zou. “Robust Robot
Grasp Detection in Multimodal Fusion”. In: Proceedings of the MATEC

Web of Conferences. Vol. 139. EDP Sciences. 2017, p. 00060.

[Zha+17b] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
“Pyramid Scene Parsing Network”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2881–2890.

[Zha+19] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-
Attention Generative Adversarial Networks”. In: Proceedings of the 36th

International Conference on Machine Learning (ICML). PMLR. 2019,
pp. 7354–7363.

187



Bibliography

[Zha+20a] Hao Zhang, Han Xu, Yang Xiao, Xiaojie Guo, and Jiayi Ma. “Rethinking the
Image Fusion: A Fast Unified Image Fusion Network based on Proportional
Maintenance of Gradient and Intensity”. In: Proceedings of the 34th AAAI

Conference on Artificial Intelligence. Vol. 34. Apr. 2020, pp. 12797–12804.

[Zha+20b] Hongjia Zhang, Junwen Huang, Xin Xu, Qiang Fang, and Yifei Shi.
“Symmetry-Aware 6D Object Pose Estimation via Multitask Learning”.
In: Complexity 2020 (Oct. 2020).

[Zha+20c] Xinyan Zhao, Feng Xiao, Haoming Zhong, Jun Yao, and Huanhuan Chen.
“Condition Aware and Revise Transformer for Question Answering”. In:
Proceedings of the World Wide Web Conference (WWW). 2020, pp. 2377–
2387.

[Zha+21a] Yifei Zhang, Désiré Sidibé, Olivier Morel, and Fabrice Mériaudeau. “Deep
Multimodal Fusion for Semantic Image Segmentation: A Survey”. In: Image

and Vision Computing 105 (2021), p. 104042.

[Zha+21b] Zehan Zhang, Zhidong Liang, Ming Zhang, Xian Zhao, Hao Li, Ming
Yang, Wenming Tan, and Shiliang Pu. “RangeLVDet: Boosting 3D Object
Detection in LIDAR With Range Image and RGB Image”. In: IEEE Sensors

Journal 22.2 (2021), pp. 1391–1403.

[Zha+21c] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and Vladlen
Koltun. “Point Transformer”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 2021, pp. 16259–16268.

[Zha+22a] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang
Wen, Yong Wang, and Baining Guo. “StyleSwin: Transformer-based GAN
for High-resolution Image Generation”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2022,
pp. 11304–11314.

[Zha+22b] Zhongqun Zhang, Wei Chen, Linfang Zheng, Aleš Leonardis, and Hyung
Jin Chang. “Trans6D: Transformer-Based 6D Object Pose Estimation and
Refinement”. In: Proceedings of the 17th European Conference on Computer

Vision (ECCV). Springer Nature Switzerland. 2022, pp. 112–128.

[Zha+23] Xiaobo Zhang, Donghai Zhai, Tianrui Li, Yuxin Zhou, and Yang Lin. “Image
Inpainting Based on Deep Learning: A Review”. In: Information Fusion 90
(2023), pp. 74–94.

[Zho+19] Peilin Zhong, Yuchen Mo, Chang Xiao, Pengyu Chen, and Changxi Zheng.
“Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach”.
In: Advances in Neural Information Processing Systems (NeurIPS) 32 (2019).

188



Bibliography

[Zho+22] Zixiang Zhou, Xiangchen Zhao, Yu Wang, Panqu Wang, and Hassan Foroosh.
“CenterFormer: Center-based Transformer for 3D Object Detection”. In:
Proceedings of the 17th European Conference on Computer Vision (ECCV).
Springer Nature Switzerland. 2022, pp. 496–513.

[Zhu+22] Yingzhao Zhu, Man Li, Wensheng Yao, and Chunhua Chen. “A Review of
6D Object Pose Estimation”. In: Proceedings of the 10th Joint International

Information Technology and Artificial Intelligence Conference (ITAIC).
Vol. 10. IEEE. 2022, pp. 1647–1655.

[Zie+17] Adam Ziebinski, Rafal Cupek, Damian Grzechca, and Lukas Chruszczyk.
“Review of Advanced Driver Assistance Systems (ADAS)”. In: AIP Confer-

ence Proceedings. Vol. 1906. 1. AIP Publishing. 2017.

[Zou+23] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye.
“Object Detection in 20 Years: A Survey”. In: Proceedings of the IEEE

(2023).

[ZSI19] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. “DPOD: 6D Pose Object
Detector and Refiner”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 2019, pp. 1941–1950.

[ZT18] Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 4490–4499.

[ZWC22] Jiahao Zeng, Decheng Wang, and Peng Chen. “A Survey on Transformers
for Point Cloud Processing: An Updated Overview”. In: IEEE Access 10
(2022), pp. 86510–86527.

[ZY21] Yu Zhang and Qiang Yang. “A Survey on Multi-Task Learning”. In: IEEE

Transactions on Knowledge and Data Engineering (TKDE) 34.12 (2021),
pp. 5586–5609.

189


	Abstract
	Kurzfassung
	Acknowledgments
	1 Introduction
	1.1 Deep Point Cloud Fusion and Multi-task Learning for Automated Driving Perception
	1.2 Multi-View RGB-D Fusion for 6D Pose Estimation
	1.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion
	1.4 Contributions
	1.5 Thesis Outline

	2 Background
	2.1 Environmental Perception and Sensors
	2.2 Image Processing for Perception
	2.2.1 Convolutional Neural Networks
	2.2.2 Residual Neural Networks
	2.2.3 Attention-Based Networks
	2.2.4 Transformer-based Networks

	2.3 Point Cloud Processing for Perception
	2.3.1 Projection-based Methods
	2.3.2 Volumetric-based Methods
	2.3.3 Point-based Methods

	2.4 Data Fusion
	2.4.1 Fusion Architectures
	2.4.2 Fusion Operations

	2.5 Generative Models
	2.5.1 Variational Autoencoders
	2.5.2 Generative Adversarial Networks
	2.5.3 Diffusion Models

	2.6 Computer Vision Tasks
	2.6.1 Classification
	2.6.2 Localization
	2.6.3 2D Object Detection
	2.6.4 3D Object Detection
	2.6.5 Semantic Segmentation
	2.6.6 Instance/Panoptic Segmentation
	2.6.7 6D Pose Estimation
	2.6.8 Optical Flow Estimation
	2.6.9 Scene Flow Estimation
	2.6.10 Image Generation
	2.6.11 Image Inpainting


	3 Deep Temporal Point Cloud Fusion and Multi-task Learning for Automated Driving Perception
	3.1 Introduction
	3.2 Related Work
	3.2.1 LiDAR-based Scene Flow Estimation
	3.2.2 LiDAR-based 3D Object Detection
	3.2.3 Multi-Task Learning

	3.3 PillarFlowNet Architecture
	3.3.1 Feature Encoding Network
	3.3.2 Backbone Network
	3.3.3 Output Heads

	3.4 Implementation Details
	3.4.1 Network Details
	3.4.2 Loss

	3.5 Experimental Setup
	3.5.1 Dataset
	3.5.2 Data Augmentation and Preprocessing
	3.5.3 Evaluation Metrics
	3.5.4 Baseline Methods

	3.6 Results
	3.6.1 Multi-Task Performance
	3.6.2 Single-task Performance
	3.6.3 Runtime

	3.7 Conclusion

	4 Multi-View RGB-D Fusion for 6D Pose Estimation
	4.1 Introduction
	4.2 Related Work
	4.2.1 Single-View 6D Pose Estimation
	4.2.2 Multi-View 6D Pose Estimation
	4.2.3 Symmetry-aware 6D Pose Estimation

	4.3 6D Pose Estimation Problem Definition
	4.4 Dense Multi-View Fusion Method
	4.4.1 Multi-view Fusion Architecture
	4.4.2 Modules for Segmentation and Keypoint Detection
	4.4.3 Multi-Task Objective Function

	4.5 Symmetry-aware Multi-View Fusion Method
	4.5.1 Network Overview
	4.5.2 Multi-View Feature Extraction
	4.5.3 Multi-View Feature Fusion
	4.5.4 3D Keypoint Detection and Segmentation
	4.5.5 6D Pose Computation via Least-Squares Fitting
	4.5.6 Symmetry-aware Keypoint Detection
	4.5.7 Multi-Task Objective Function

	4.6 Experimental Setup
	4.6.1 Datasets
	4.6.2 Data Augmentation
	4.6.3 Training Procedure

	4.7 Implementation Details
	4.7.1 Evaluation Metrics
	4.7.2 Baseline Methods

	4.8 Results
	4.8.1 Results on the YCB-Video Dataset
	4.8.2 Results on the MV-YCB FixCam Dataset
	4.8.3 Results on the MV-YCB WiggleCam Dataset
	4.8.4 Results on the MV-YCB SymMovCam Dataset
	4.8.5 Keypoint Visualization

	4.9 Runtime for MV6D and SyMFM6D
	4.10 Conclusion

	5 Deep Hierarchical Variational Autoencoding for RGB Image Fusion
	5.1 Introduction
	5.2 Related Work
	5.2.1 VAE-based Image Generation
	5.2.2 Fusion of Multiple Images
	5.2.3 Image Completion

	5.3 Conditional Generative Models for Image Fusion
	5.3.1 Problem Formulation
	5.3.2 Training Objective Derivation
	5.3.3 Network Architecture

	5.4 Experimental Setup
	5.4.1 Datasets
	5.4.2 Data Augmentation
	5.4.3 Architectures for Comparison
	5.4.4 Training Procedure
	5.4.5 Implementation Details of FusionVAE
	5.4.6 Evaluation Metrics

	5.5 Results
	5.5.1 Quantitative Results
	5.5.2 Qualitative Results
	5.5.3 Ablation Studies

	5.6 Conclusion

	6 Conclusion and Future Work
	6.1 Deep Temporal Point Cloud Fusion and Multi-task Learning for Automated Driving Perception
	6.2 Multi-View RGB-D Fusion for 6D Pose Estimation
	6.3 Deep Hierarchical Variational Autoencoding for RGB Image Fusion

	A Supplementary for Chapter 3
	A.1 Analysis of the KITTI Object Tracking Dataset

	B Supplementary for Chapter 4
	B.1 Network Parameters of MV6D
	B.2 Network Parameters of SyMFM6D
	B.3 Qualitative Results on the FixCam and WiggleCam Datasets
	B.4 Quantitative Results on the MV-YCB MovingCam Dataset
	B.5 Qualitative Results on the MV-YCB MovingCam Dataset

	C Supplementary for Chapter 5
	C.1 Statistic Significance of the Results
	C.2 Image Reconstruction Capability

	Abbreviations
	List of Tables
	List of Figures
	Publications
	Bibliography

