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Abstract

Network models are powerful and flexible tools to represent the complex interactions between
individual elements in diverse domains. They offer scientists and practitioners willing to exploit
the growing abundance of networked datasets meaningful insights into the fundamental patterns
underlying such interactions. A popular approach to identify these hidden structures is that
of generative models, in particular latent variable models: probabilistic models that introduce
latent variables to incorporate domain knowledge, capture complex interactions, and uncover
statistically meaningful network structures. Existing methods are frequently insufficient to capture
the complexity of real-world data, and they often do not provide a general framework to fully
leverage the additional information carried within the data, such as edges and nodes metadata or
higher-order interactions.

In this thesis, we present principled and efficient approaches that aim to broaden the range of
techniques available for modelling complex networks. Specifically, we work in three principal
directions: i) developing flexible methods to perform inference on attributed multilayer networks,
ii) exploring innovative theoretical perspectives for incorporating reciprocity and loosening the
assumption of conditional independence in network models, iii) designing foundational models to
characterize the structural organization of higher-order data.

We first extend standard generative models for the analysis of multilayer networks to integrate
node metadata into the inference process with the network topology. In addition to applying these
methods to already explored real-world data, such as social and biological networks, we introduce
this methodology to another field for the first time, that is patent citation networks. We show
how incorporating additional information not only boosts performance, but also leads to more
interpretable structures.

Next, we propose approaches to handle the pairwise dependencies between two directed edges
connecting node pairs, which come with the relaxation of the assumption that edges are independent
of each other. We demonstrate the flexibility and relevancy of our mathematical frameworks in
various contexts, such as the analysis of dynamic networks, identification of anomalies, and
estimation of unobserved network structures using multiple reports. By explicitly accounting for
reciprocity, it improves edge prediction and network reconstruction, while also shedding light on
the underlying mechanisms driving edge formation.

Finally, we present principled methods to define and identify the mesoscale organization of higher-
order data. We evaluate their effectiveness on a variety of small- and large-scale real-world systems.
Notably, these models display good performance in effectively retrieving both robust and flexible
community structures, while reliably predicting higher-order interactions of arbitrary size. As an
additional contribution, we present a newly developed Python library specifically designed for
analyzing data with higher-order interactions.

This work thus introduces cutting-edge techniques that go beyond what has been previously
established in the field of network inference and contribute to the enhancement of the current
literature. These developed approaches account for the additional complexity present in real-world
systems, enabling a more profound understanding of data across a range of different disciplines.





Zusammenfassung

Netzwerkmodelle sind eine leistungsfähige und flexible Methode zur Darstellung der komplexen
Interaktionen in verschiedenen Anwendungsbereichen. Sie bieten Wissenschaftlern und Anwendern,
die bereit sind die wachsende Fülle vernetzter Datensätze zu nutzen, aussagekräftige Einblicke in
die zugrundeliegenden Muster solcher Interaktionen. Ein beliebter Ansatz zur Ermittlung dieser
verborgenen Strukturen sind generative, probabilistische Modelle in welchen latenten Variablen
eingeführt werden, um Domänenwissen einzubeziehen, komplexe Interaktionen zu erfassen und
statistisch aussagekräftige Netzwerkstrukturen aufzudecken. Bestehende Methoden sind häufig
unzureichend, um die Komplexität realer Daten zu erfassen, und sie bieten oft keinen umfassenden
Rahmen, um die zusätzlichen Informationen, welche in den Daten enthalten sind, wie z.B. Metadaten
oder Interaktionen höherer Ordnung, vollständig genutzt werden können.

In dieser Arbeit stellen wir fundierte und effiziente Ansätze vor, welche darauf abzielen, die
Palette der verfügbaren Methoden zur Modellierung komplexer Netzwerke zu erweitern. Konkret
arbeiten wir in drei Hauptrichtungen: i) die Entwicklung flexibler Methoden zur Durchführung
von Inferenzen auf attribuierten mehrschichtigen Netzwerken, ii) die Erforschung innovativer
theoretischer Perspektiven zur Miteinbeziehung von Reziprozität und zur Lockerung der Annahme
bedingter Unabhängigkeit in Netzwerkmodellen, und iii) der Entwurf grundlegender Modelle zur
Charakterisierung struktureller Organisation von Daten höherer Ordnung.

Wir erweitern zunächst bekannte generative Analysemodelle für mehrschichtige Netzwerke, um
Knoten-Metadaten in den Inferenzprozess mit der Topologie zu integrieren. Wir wenden diese
Methoden auf verschiedenen realen Daten an, sowohl auf bereits erforschten Netzwerken als auch
auf zum ersten Mal auf Patentzitierungsnetzwerken. Wir zeigen auf, wie zusätzliche Informationen
nicht nur Vorhersagen verbessern, sondern auch zu besser interpretierbaren Strukturen führen.

Anschließend schlagen wir Ansätze zur Handhabung der paarweisen Abhängigkeiten zwischen
zwei gerichteten, Knotenpaare verbindenden, Kanten vor, welche mit der Lockerung der Unabhän-
gigkeitsannahme zwischen Kanten einhergeht. Wir zeigen die Flexibilität und Relevanz unserer
Methodik in verschiedenen Kontexten auf, z.B. bei der Analyse dynamischer Netzwerke, bei der
Identifizierung von Anomalien und bei der Schätzung unbeobachteter Netzwerkstrukturen unter
Verwendung mehrerer Berichte. Durch die explizite Berücksichtigung der Reziprozität wird die
Vorhersage von Kanten und die Rekonstruktion von Netzwerken verbessert, während gleichzeitig
die zugrunde liegenden Mechanismen der Kantenbildung verdeutlicht werden.

Schließlich stellen wir fundierte Methoden zur Identifizierung der mesoskaligen Organisation
von Daten höherer Ordnung vor. Wir werten ihre Effektivität auf einer Vielzahl von kleinen und
großen realen Systemen aus. Diese Modelle zeigen eine gute Leistung bei der Suche nach robusten
und flexiblen Gemeinschaftsstrukturen sowie bei der zuverlässigen Vorhersage von Interaktionen
beliebiger Größe auf. Zusätzlich stellen wir eine neu entwickelte Python-Bibliothek vor, welche
speziell für die Analyse von Daten mit Interaktionen höherer Ordnung entwickelt wurde.

Diese Arbeit führt somit innovative Techniken ein, die über das hinausgehen, was bisher auf dem
Gebiet der Netzwerkinferenz entwickelt wurde, und trägt zur Weiterentwicklung der aktuellen
Forschungsliteratur bei. Alles in allem ermöglichen die entwickelten Ansätze ein tieferes Verständnis
von realen Daten in verschiedenen Anwendungsbereichen.
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1 Introduction

1.1 Overview & Motivation

Over the past few decades, the study of networks has gained prominence across various disciplines
as a valuable method for analyzing complex relational data. The origins of this approach can be
traced back to ���� when Euler utilized the mathematical representation of vertices and edges to
successfully solve the famous Seven Bridges of Königsberg problem [��]. Since then, this formalism
has found widespread use in describing real-world data from diverse domains. For instance, social
networks have proven to be a fruitful tool for representing and understanding social relationships
like friendships and collaborations, along with their implications [��, ���, ���]. Similarly, biological
networks offer valuable insights into complex systems such as protein-protein interactions [��, ���],
brain networks [��, ��], and ecological food webs [��, ��], providing a deeper understanding of
biological processes. Moreover, networks play a crucial role in analyzing the internet [��, ���, ���],
transportation systems [��, ��, ��], and power grids [�, ��, ���], enabling researchers to optimize their
efficiency and robustness. Networks have also proven invaluable in studying epidemic spread [��,
���, ���], facilitating prediction and control of disease outbreaks by analyzing epidemiological
networks and developing contagion spread models.

Despite the different characteristics and generation processes of the networks within each subfield,
a crucial finding of network science is the shared architecture among networks arising in diverse
domains [��]. This renders networks a versatile and general framework, allowing us to use a common
set of mathematical tools to explore systems from diverse domains. Another aspect to consider
during the analysis of such systems is that data collection methods are advancing due to the
technological progress, leading to the acquisition of more comprehensive data. For instance, many
relational datasets now come with additional information attached to nodes and edges [��, ��],
offering the opportunity to incorporate this metadata in the analysis of such systems. Additionally,
recent observations have revealed that many real-world interactions are not independent of each
other; instead, they encompass dependencies like reciprocity [��], or they occur in higher-order forms
rather than just pairwise connections [��]. Consequently, models and representations employed
for analyzing this data must evolve to accurately capture this complexity, enabling more profound
understanding of real-world systems. As such, the objective of this thesis is to introduce a range
of alternative statistical methodologies specifically designed to provide substantial insights into
comprehending complex networks as they exist in reality.

Among the numerous research directions in network analysis, this thesis focuses on network
inference, the process of learning the properties of complex networks from data [��]. To achieve
this, we employ probabilistic generative models [��], which are statistical tools that describe
how data may be generated through underlying variables and parameters. These methods utilize
probability distributions to model the interactions, allowing us to capture the inherent uncertainty
and complexity that often characterize real-world networks. In particular, we develop latent variable
models [��], which are flexible and powerful probabilistic models that incorporate hidden variables
that are not directly observed in the data. These latent variables allow the injection of domain
knowledge into the theoretical framework and the uncovering of statistically meaningful network
structures. For example, a common assumption in network inference is the belief that nodes’
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interactions are driven by hidden communities. In this framework, the latent variables represent the
nodes’ community memberships and the interplay among these communities, with the aim to infer
these quantities from the data [�]. This problem is known as community detection [��], and it is one
of the foundational elements underpinning the models introduced in this study.

Over the past few decades, there has been a rapid increase in the use of latent variable models
within network science for analyzing real-world data. Nevertheless, as networks become more
sophisticated, the current techniques fall short in fully capturing the wide range of complexities
present in such data. In fact, existing methods tend to oversimplify the dependencies between node
interactions, and they often lack the flexibility needed to effectively and simultaneously utilize the
extra information contained in the data, such as both node and edge metadata. These limitations
highlight the need for new approaches that can comprehensively handle the many complexities of
real-world data. In response to these shortcomings, this thesis introduces a set of statistical methods
specifically tailored to address the multifaceted challenges posed by real-world networks. More
precisely, we tackle three distinct facets of complexity: i) we develop flexible methods which include
node and edge metadata to perform inference on networks [��, ��], ii) we propose innovative
approaches for incorporating reciprocity in latent network models through the relaxation of the
conditional independence assumption [��, ��, ���–���], iii) we design foundational models to
characterize the structural organization of higher-order data, i.e., systems which involve interactions
between groups of nodes of any arbitrary size [��, ��, ���].

All in all, by employing alternative probabilistic approaches and integrating domain-specific
knowledge, the proposed methods strive to expand the existing toolbox of techniques available
for modeling complex networks. By pushing the limits of latent variable modeling, this thesis
seeks to equip professionals and researchers with advanced instruments capable of capturing
the multifaceted nature of modern network data. This effort ultimately contributes to a more
sophisticated understanding of complex relationships and hidden structures.

1.2 Outline

The rest of the thesis is structured into three chapters: an introduction to the setting and related
concepts, such as data, methodology, and community detection; the scientific contributions, and a
discussion of their impact and future directions. As a cumulative thesis, the published papers are
collected in Appendix A.

Chapter � provides background information useful to understand the context into which the
methods outlined in this thesis align, that is, statistical inference of network data. First, Section �.�
introduces network data and the diverse mathematical structures utilized for their analysis. This
includes an exploration of single-layer networks, multilayer networks, and higher-order networks
– each tailored to capture specific interaction patterns. Subsequently, Section �.� delves into the
statistical framework employed for the analysis of these networks, and the techniques applied to
infer the latent variables. Lastly, Section �.� provides an overview of the community detection
problem, along with an explanation of two state-of-the-art generative models addressing this
challenge.

Chapter � presents the published work, organized into the three main directions explored in this
thesis. Section �.� showcases the publications centered on performing inference on attributed
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multilayer networks – networks enriched with node and edge metadata. This section includes the
following work:

I M. Contisciani, E. A. Power, and C. De Bacco. “Community detection with node attributes in
multilayer networks”. Scientific Reports ��.� (����), page �����. [��]

I K. Higham, M. Contisciani, and C. De Bacco. “Multilayer patent citation networks: A compre-
hensive analytical framework for studying explicit technological relationships”. Technological
Forecasting and Social Change ��� (����), page ������. [��]

In contrast, Section �.� illustrates the contributions addressing pairwise dependencies between di-
rected edges that connect pairs of nodes, extending beyond the concept of conditional independence.
This section includes the following publications:

I H. Safdari⇤, M. Contisciani⇤, and C. De Bacco. “Generative model for reciprocity and commu-
nity detection in networks”. Physical Review Research �.� (����). ⇤Contributed equally. [���]

I M. Contisciani, H. Safdari, and C. De Bacco. “Community detection and reciprocity in
networks by jointly modelling pairs of edges”. Journal of Complex Networks ��.� (����). [��]

I H. Safdari, M. Contisciani, and C. De Bacco. “Reciprocity, community detection, and link
prediction in dynamic networks”. Journal of Physics: Complexity �.� (����). [���]

I H. Safdari, M. Contisciani, and C. De Bacco. “Anomaly, reciprocity, and community detection
in networks”. Physical Review Research �.� (����). [���]

I C. De Bacco, M. Contisciani, J. Cardoso-Silva, H. Safdari, G. Lima Borges, D. Baptista, T.
Sweet, J.-G. Young, J. Koster, C. T. Ross, R. McElreath, D. Redhead, and E. A. Power. “Latent
network models to account for noisy, multiply reported social network data”. Journal of the
Royal Statistical Society Series A: Statistics in Society ���.� (����). [��]

Finally, Section �.� expounds work focused on the analysis and structural characterization of
higher-order networks. This section includes the following papers:

I M. Contisciani, F. Battiston, and C. De Bacco. “Inference of hyperedges and overlapping
communities in hypergraphs”. Nature Communications ��.� (����). [��]

I N. Ruggeri, M. Contisciani, F. Battiston, and C. De Bacco. “Community detection in large
hypergraphs”. Science Advances �.�� (����). [���]

I Q. F. Lotito, M. Contisciani, C. De Bacco, L. Di Gaetano, L. Gallo, A. Montresor, F. Musciotto,
N. Ruggeri, and F. Battiston. “Hypergraphx: a library for higher-order network analysis”.
Journal of Complex Networks ��.� (����). [��]

Chapter � summarizes the findings of each scientific contribution and combines them together
to provide a broader discussion of the different research directions investigated. This last chapter
also highlights the impact and the implications of the achieved results in relation to the latest
developments in the field. Moreover, the conclusions delineate potential avenues for future research,
both within the specific areas under investigation and in the broader scope of developing latent
variable models for network analysis.





2 Background

In this chapter, we present an overview of the key elements and the structural framework that
underlie the models outlined in this thesis. To begin, Section �.� delves into the realm of network
data, elucidating various mathematical representations utilized to depict the different complexities
of real-world data. Following that, Section �.� introduces the statistical methodology employed for
the analysis of these networks, that is probabilistic generative models. In particular, we focus on
latent variable models, whose main assumption relies on the belief that real-world networks can
be explained through a compact set of latent variables, which must be inferred from the data. To
illustrate this concept, Section �.� expounds community detection models. In this context, the latent
variables represent the communities to which nodes belong, and their inference reveals the hidden
structures that influence node interactions.

2.1 Network data

Real-world data often exhibit the characteristics of complex systems [���] – systems that are
challenging to model due to the intricate interplay of dependencies, competitions, and relationships
existing among their various components or between the system itself and its surrounding environ-
ment. Notable examples encompass the human brain, infrastructure networks, and communication
systems, among others. In the field of network science, such systems are effectively represented
using networks, also known as graphs. In this representation, nodes within the network correspond
to individual components, while the links between nodes represent their interactions [���]. By
transforming real-world data into network data, researchers and practitioners can employ a powerful
methodology to understand the underlying structure and behavior of complex systems.

Within this section, we describe the mathematical framework, fix the notation, and present various
network representations. We first introduce single-layer networks, which help us understand the
key characteristics of networks and the concept of attributed networks. They also serve as the
starting point for more complex network models, such as multilayer networks and the emerging
notion of higher-order networks.

2.1.1 Single-layer networks

A single-layer network, often referred to as network or graph, is a collection of nodes (also called
vertices) that are connected by edges (also known as links). We denote a network as G = (V , E),
where V = {1, . . . ,#} constitutes the set of nodes, and E = {(8 , 9) : 8 , 9 2 V} represents the set of
edges. Mathematically, a graph is represented through its adjacency matrix � = {�89} 2 R#⇥# ,
wherein �89 denotes the edge from node 8 to node 9 (8 ! 9). If �89 < 0, then 8 and 9 are neighbors or
adjacent. The total number of neighbors of a node 8, essentially the number of its connections, is
referred to as its degree. In real-world networks, the overall count |E | of non-zero entries generally
scales linearly with the number of nodes # , making it significantly smaller than the potential
maximum connections # ⇥ # . This characteristic is known as sparsity and has implications for
efficiency, computational complexity, and the interpretation of network structures [��].
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Figure �.�: Illustration of a directed single-layer network. (left) The graphical representation of the network G = (V , E),
and (right) its corresponding adjacency matrix �. The node set is given by V = {1, 2, 3, 4, 5}, and the edge set is denoted
by E = {(1, 4), (2, 3), (3, 1), (4, 2), (4, 5), (5, 1), (5, 4)}. This is a binary (or unweighted) network, where the edges indicate
either the presence (�89 = 1) or the absence (�89 = 0) of interactions.

A network is undirected when its edges do not have a direction, indicating a reciprocal relation,
which translates to (8 , 9) 2 E $ (9 , 8) 2 E . Consequently, �89 = �98 , leading to a symmetric
adjacency matrix. Conversely, directed networks encode directionality to their links: 8 ! 9 implies
that (8 , 9) 2 E , which can be different from 9 ! 8. In our contributions, we mainly focus on the
broader context of directed networks, and we assume that a node cannot establish a link with
itself, thereby excluding self-loops. A simplified representation of this kind of network can be
observed in Figure �.�. In this example, we show a binary (or unweighted) network, where the
edges indicate either the presence (�89 = 1) or the absence (�89 = 0) of interactions. Nonetheless,
real-world interactions frequently incorporate varying weights, such as representing the number
of calls between individuals or the electric current flowing through a transmission line within a
power grid. Such networks are referred to as weighted networks. The majority of our work focuses
on developing models capable of handling nonnegative discrete weights, thus taking in input
� = {�89} 2 N#⇥#

0 .

Real-world datasets often encompass also other types of information. Within this thesis, we define
an attributed network as one in which nodes are associated with supplementary information or
attributes (also referred to as covariates). We represent this information using a design matrix
- 2 R#⇥% , in which each row corresponds to an individual node, and the columns denote attributes
alongside their specific values for that node. The incorporation of such metadata into networks
adds another layer of information, that can be crucial for understanding the network’s structure,
dynamics, and underlying properties.

2.1.2 Multilayer networks

In most real-world systems, a set of entities interact with each other in complicated patterns
that can encompass multiple types of relationships, change in time, and include other types of
complexities [��]. Single-layer networks fall short in grasping this multifaceted complexity as
they treat all interactions uniformly, neglecting supplementary details about the nature of these
interactions. In contrast, multilayer networks explicitly encompass diverse types of interactions and
provide a suitable framework for describing systems linked through various forms of connections.
In this context, each interaction is represented as a distinct layer and a given node can engage in
various types of interactions, resulting in different sets of neighbors within each layer [��]. For
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Figure �.�: Illustration of a directed multilayer network. (left) The graphical representation of the multilayer
network G = {G✓ (V , E✓ )}1✓2, and (right) its corresponding adjacency tensor �. The node set is given by
V = {1, 2, 3, 4, 5}, and the edge sets are denoted by E

1 = {(1, 4), (2, 3), (3, 1), (4, 2), (4, 5), (5, 1), (5, 4)} and E
2 =

{(1, 3), (1, 4), (2, 3), (3, 4), (4, 5), (5, 1), (5, 4)} for the two layers respectively. This is a binary (or unweighted) multi-
layer network, where the edges indicate either the presence (�✓89 = 1) or the absence (�✓89 = 0) of interactions.

instance, in social networks individuals may share diverse types of relationships, such as friendship,
family ties, and professional connections. In transportation networks, instead, different layers might
correspond to diverse modes of transport, such as roads, railways, and air routes.

From a mathematical perspective, a multilayer network can be expressed as a multilayer graph
G = {G✓ (V , E✓ )}1✓! defined on a set V of # vertices shared across ! � 1 layers. Specifically,
this representation corresponds to a particular case of multilayer network known as multiplex
network [��, ���], where nodes are common to all layers, and interactions take place only within
layers without spanning across them. In this context, each layer ✓ 2 {1, . . . , !} can be represented as
a graph G

✓ (V , E✓ ) with an associated adjacency matrix �✓ = {�✓89} 2 R#⇥# , wherein �✓89 indicates
the strength of the connection of type ✓ from node 8 to node 9. This multiplex system can be
entirely described using a �-dimensional adjacency tensor �, having dimensions ! ⇥ # ⇥ # . An
illustrative example of a �-layer network is depicted in Figure �.�. Similarly to single-layer networks,
multilayer networks can be directed or undirected, and their edges may be binary or weighted.
Furthermore, an attributed multilayer network denotes a multilayer structure where the nodes
carry additional metadata.

Real-world data can also encode interactions that change over time. For instance, in financial markets,
relationships between assets or trading entities change as market conditions fluctuate. These types of
interactions can be represented by temporal networks [��], where the links between nodes change
at different time points, reflecting the dynamic nature of relationships. Temporal networks, also
known as dynamic networks, can be conceptualized as multilayer networks: each layer ✓ corresponds
to a snapshot of the network at a specific time step C, and the edges in each layer capture the state of
the network at that moment. This representation allows us for a more comprehensive understanding
of how interactions evolve and how the network structure adapts to various temporal dynamics.

2.1.3 Higher-order networks

Networks, whether they are single-layer or multilayer, face a significant limitation as they exclusively
capture pairwise interactions [��, ��, ��]. Nevertheless, real-world systems from various domains,
including social systems [��], biology [���], ecology [��], and neuroscience [���], exhibit interactions
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Figure �.�: Illustration of a higher-order network. (left) The graphical representation of the hypergraph H = (V , E),
and (right) its corresponding incidence matrix ⌫. The node set is given by V = {1, 2, 3, 4, 5}, and the hyperedge set is
denoted by E = {(1, 4), (1, 5), (2, 3), (4, 5), (1, 2, 3), (2, 4, 5)}. The �-dimensional interactions (edges) are represented with
a black line, and the �-dimensional interactions are shown with a colored set. This is a weighted hypergraph where the
hyperedge weights are denoted only if different from �.

involving three or more system units at a time. For instance, in co-authorship networks, scientific
papers might involve more than two authors collaborating. Similarly, in protein interaction networks,
interactions among proteins manifest as protein complexes, wherein multiple proteins bind
together. Consequently, these higher-order systems are most appropriately described using different
mathematical frameworks, such as hypergraphs [��], capable of representing relationships among
any number of nodes through hyperedges of varying dimensions. Embracing the inherent higher-
order nature of these systems enhances our modeling capabilities, leading to a more profound
understanding of their complex structure.

Formally, a hypergraph extends the concept of a graph and is represented as H = (V , E), where V

and E denote the node set and the hyperedge set, respectively. Each hyperedge 4 2 E is a non-empty
subset of V , representing a higher-order interaction between an arbitrary number |4 | of nodes. The
set of all possible hyperedges among nodes in V is represented as ⌦. We denote by ⇡ the maximum
hyperedge size, which can be set up to a maximum value of ⇡ = # . In the context of networks,
⇡ = 2 and ⌦ = # ⇥# . A hypergraph is described using an adjacency tensor � = {�4} 2 R⌦, where
the entry �4 represents the weight of the 3-dimensional edge 4 2 ⌦, with 3 = |4 |. For example, in
the case of co-authorship interactions, �8 , 9 ,⌘ might denote the number of papers written together by
the authors 8 , 9 and ⌘. Another way to characterize a hypergraph is through the incidence matrix
⌫ = {⌫84} 2 R#⇥|E | . In this representation, each entry ⌫84 indicates the weight associated with
the hyperedge 4 that includes the node 8. Our study focuses on undirected hypergraphs with
nonnegative discrete weights, and we provide an illustrative example in Figure �.�.

2.2 Statistical models and inference

In the realm of network science theory, the key to gain a profound understanding of the intricate
structure and behavior of complex systems lies in the analysis of the networks that serve as
representations of these systems [��]. A powerful approach for examining and comprehending
these networks involves the application of probabilistic generative models. These models provide
a statistical framework that not only accommodates the underlying generative process but also
effectively handles the inherent uncertainty present in the observed data.
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In this section, we explore the framework of probabilistic generative models, with a specific emphasis
on latent variable models. These models offer a probabilistic representation of the data in terms
of both observable and hidden variables, where the latter capture concealed patterns within the
data [��]. Furthermore, we provide detailed explanations for two methods used in this thesis to infer
the latent variables: the Expectation-Maximization (EM) algorithm and the Variational Inference (VI)
approach. EM is an iterative algorithm used to provide point estimates of the latent variables, while
VI serves as a technique for approximating their posterior distribution.

2.2.1 Probabilistic generative models

Probabilistic generative models are a class of statistical models that aim at representing the data
in terms of an unknown and approximate probability distribution %(�). In other words, these
models seek to learn the mechanisms by which networks are generated, enabling them to produce
new data that closely resemble what has been observed. Generative models are powerful methods
because they are extensible and can be easily adapted to explicitly encode specific hypotheses and
assumptions about complex systems and how we observe them [���].

An example of a probabilistic generative model in network science is the Erdős–Rényi model [��,
��], employed to generate random graphs. This model assumes that graphs with a fixed vertex set
V and a predetermined number of edges |E | are equally probable, and a graph is chosen uniformly
at random from the collection of all graphs containing |V | nodes and |E | edges. A related model,
introduced by Gilbert [��], generates a random graph by independently selecting each edge with a
constant probability ? for its existence, regardless of the presence or absence of other edges.

Although these models serve as valuable tools for analysis, their underlying assumptions are
somewhat too simplistic to effectively capture the complexities present in real-world data. It is,
indeed, an oversimplification to assume that interactions within a real system occur randomly, as they
are often influenced by hidden mechanisms, such as group membership or dynamics. To properly
address such interdependencies, we turn to latent variable models, a category of probabilistic
generative models that attempt to explain a complex observed dataset in terms of simpler, but
unobserved, patterns [��]. These patterns are explicitly modeled through latent variables, denoted
as ⇥, and by estimating them, one can gain insights into the underlying network structures. For
example, if we suppose that these latent variables represent node memberships, inferring them
could unveil, for instance, that two individuals interact more frequently because they belong to the
same group of friends.

The development of latent variable models, and probabilistic generative models in general, follows
an iterative process, as outlined in Figure �.�. Initially, we make assumptions about the hidden
variables that might influence the data generation process, and we represent these relationships
in a joint probability distribution of both observed and hidden random variables [��], denoted as
%(�,⇥). Subsequently, when we have an observed dataset, such as a graph G (or equivalently its
adjacency matrix �), we perform inference on these variables. Once these variables are learned,
the model can be used to predict missing data or generate new synthetic data that align with the
underlying generative process. This serves as a model validation, as if the synthetic data exhibits
properties similar to those of the observed data, it signifies that our assumptions are correct.
Conversely, if they differ significantly, it prompts a reevaluation and potential redefinition of the
model assumptions.
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Probabilistic model

P (A , ⇥)

Observed data

G = (V , E)

Generation P (A | ⇥)

Inference P (⇥ | A)

Figure �.�: Graphical representation of the latent variable models framework. The aim is to posit a probabilistic model
that elucidates the generative process underlying the observed data �. This model incorporates latent variables ⇥, which
capture the assumptions about the hidden mechanisms responsible for shaping the interactions. These latent variables
are subsequently inferred using an observed dataset, such as a graph G or its adjacency matrix �, and then employed to
generate new data that align with the underlying generative process.

Based on the underlying generative process assumptions, the joint distribution can be factorized as
%(�,⇥) = %(� |⇥)%(⇥). In this formulation, %(� |⇥) represents the likelihood of the model, while
%(⇥) characterizes the prior distribution of the latent variables. To enhance the manageability of
these models, a commonly employed assumption is that of conditional independence: conditioned
on the latent variables, the observed variables become independent of each other. In the context of
network modeling, where the observed variables are the edges of the graph, this implies that all
interactions are independent and identically distributed given the latent variables, resulting in the
following expression:

%(�,⇥) =
Y
8 , 9
%(�89 |⇥)%(⇥) . (�.�)

This definition is quite broad, and the appropriate choice of %(�89 |⇥) and %(⇥) hinges on the
available data and the specific research questions being pursued. As an example, when our graph
consists of binary edges, %(�89 |⇥) might take the form of a Bernoulli distribution. Conversely, if the
edges are characterized by nonnegative discrete weights, then %(�89 |⇥) could be modeled using
a Poisson distribution. In this thesis, irrespective of the chosen distribution, we assume that the
likelihoods are fully parametrized through the latent variables ⇥.

Once a probabilistic model has been defined, the next step involves choosing the method for
inferring the latent variables ⇥. Depending on the specific objectives and the model’s computational
feasibility, one may be interested in either inferring single-point estimates or estimating the full
posterior distribution of ⇥. In the former scenario, a suitable approach is to employ a Maximum
Likelihood Estimate (MLE), where ⇥̂ represents the values that maximize the probability of the
observed data under the assumed statistical model:

⇥̂"!⇢ = arg max
⇥

%(� |⇥) . (�.�)

Conversely, an alternative approach is to opt for a Maximum A Posteriori (MAP) estimate, which
seeks the most probable values by considering both the likelihood of the data and the prior
probability distribution over the latent variables:

⇥̂"�% = arg max
⇥

%(⇥ | �)

/ arg max
⇥

%(� |⇥)%(⇥) . (�.�)
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A method used to solve these maximization problems is the Expectation-Maximization algorithm,
that will be introduced in the following subsection. Similarly, the last subsection will delve into
Variational Inference, a method employed to estimate full posterior distributions within the context
of a Bayesian framework.

2.2.2 Expectation-Maximization

The Expectation-Maximization (EM) algorithm is an iterative statistical method designed to
compute point estimates for the parameters ⇥ of probabilistic models that rely on unobserved or
missing variables / [��, ���, ���]. These variables are introduced into the model to simplify the
expression of the likelihood %(� |⇥), which is often complicated and challenging to manipulate. In
essence, the EM algorithm alternates between two main steps: first, it estimates the expected values
of the unknown variables / (E step), and then it updates the model parameters to maximize the
likelihood of the observed data (M step). In our specific context, the probabilistic models are entirely
characterized by the latent variables ⇥, which can be considered the only model parameters that
we aim to infer.

The likelihood in Equation (�.�) can be reformulated by using the logarithm and explicitly account
for the unknown variables / as follows:

L(⇥) B log%(� |⇥)
= log

X
/
%(�, / |⇥) . (�.�)

In this representation, we treat / as discrete random variables, but this concept can be extended to
continuous variables by simply substituting the summation with an integral. Explicitly maximizing
L(⇥) can be challenging due to the presence of the logarithm of a sum. In such a setting, the EM
algorithm offers an efficient method to solve this problem by approximating L(⇥) with a lower
bound that can be maximized to find the estimates for the model parameters. To construct this
lower bound, let’s introduce a distribution @ over the possible values of /, satisfying

P
/ @(/) = 1

and @(/) � 0. By using the Jensen’s inequality [��], which states that logE[G] � E[log G], we can
reformulate Equation (�.�) as follows:

log%(� |⇥) = log
X
/
%(�, / |⇥)

= log
X
/
@(/) %(�, / |⇥)

@(/)

�
X
/
@(/) log

%(�, / |⇥)
@(/) C L(@ ,⇥) . (�.�)

In this case, we define G = %(�,/ |⇥)
@(/) , and the expected value is computed with respect to the

distribution @ over the variables /. Therefore, Equation (�.�) serves as a lower bound for the
log-likelihood, and maximizing L(⇥) is equivalent to maximizing L(@ ,⇥).

During the E step of the algorithm, we use the current parameter values ⇥>;3 to maximize the lower
bound L(@ ,⇥>;3) with respect to the distribution @(/). The solution to this maximization problem is
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achieved when the lower bound matches the log-likelihood, and this equality is established when

@(/) = %(�, / |⇥>;3)P
/ %(�, / |⇥>;3)

=
%(�, / |⇥>;3)
%(� |⇥>;3)

= %(/ | �,⇥>;3) . (�.�)

Therefore, we can set @(/) as the posterior distribution of the unknown variables /. In the M
step, we keep @(/) fixed and maximize L(@ ,⇥) with respect to ⇥ to obtain a new value ⇥=4F . By
substituting @(/) = %(/ | �,⇥>;3) into Equation (�.�), we observe that after the E step, the lower
bound takes on the following form:

L(@ ,⇥) =
X
/
%(/ | �,⇥>;3) log%(�, / |⇥) �

X
/
%(/ | �,⇥>;3) log%(/ | �,⇥>;3)

= &(⇥,⇥>;3) + const , (�.�)

where the constant term corresponds to the negative entropy of the @ distribution and is therefore
independent of ⇥. Hence, the quantity being maximized in the M step is the expectation of the
log-likelihood %(�, / |⇥) with respect to the posterior distribution of the unknown variables
%(/ | �,⇥>;3) [��]. The EM algorithm can also be used to find MAP estimates for the parameters,
and in such case, the M step seeks to maximize &(⇥,⇥>;3) + log%(⇥). Following the M step, we set
⇥>;3 = ⇥=4F and continue iterating between the E and the M steps until the algorithm converges.

The EM algorithm typically benefits from closed-form updates in both the E and M steps, which
enhances the efficiency and scalability of this approach. However, it is important to note that this
algorithm converges to a local optimum and does not provide a guarantee of reaching the global
optimum. In practice, it is common to run the algorithm multiple times using different initializations,
which may result in the convergence of different local optima. Afterward, one can choose the best
realization, that is, for instance, the one with the highest likelihood upon convergence.

2.2.3 Variational Inference

Variational Inference (VI) is a statistical technique used in probabilistic modeling to approximate
posterior probability distributions [��, ���]. This method becomes particularly useful when calcu-
lating the exact posterior distribution of the latent variables in a probabilistic model is difficult or
computationally unfeasible. The main idea behind VI is to choose an approximation from a tractable
set of distributions, and then strives to minimize the discrepancy between this approximation and
the actual posterior distribution. Thus, VI transforms the inference process into an optimization
problem [��, ��, ���].

Following the Bayesian framework, we can define the posterior distribution of the latent variables ⇥
given the observed data � as follows:

%(⇥ | �) = %(� |⇥)%(⇥)
%(�) =

%(�,⇥)
%(�) . (�.�)

In this setting, %(�,⇥) represents the joint distribution that characterizes the generative process
underlying the observed data, while %(�) corresponds to the model evidence. The computation
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of this quantity involves the marginalization of the latent variables from the joint distribution,
which requires the evaluation of

Ø
%(�,⇥) 3⇥ for continuous variables or

P
⇥ %(�,⇥) for discrete

variables. Nonetheless, performing any of these operations is often analytically intractable, making
the derivation of %(⇥ | �) unfeasible.

The main idea behind VI is to provide an approximation of the true and intractable posterior
distribution %(⇥ | �), with the objective of making this approximation as close as possible to the
true posterior. To achieve this, we first define a family of approximate and manageable distributions,
denoted as Q, over the latent variables. Within this family, each @(⇥) 2 Q serves as a potential
approximation to the exact posterior. VI then seeks to find the member of this family that is
closest to the intractable posterior, where closeness is measured using the Kullback-Leibler (KL)
divergence [��]:

KL(@(⇥) | | %(⇥ | �)) =
π

@(⇥) log
n @(⇥)
%(⇥ | �)

o
3⇥

= E@[log @(⇥)] � E@[log%(⇥ | �)]
= E@[log @(⇥)] � E@[log%(⇥,�)] + log%(�) . (�.�)

Therefore, the optimal variational distribution @⇤(⇥) among the set of distributions within the
family Q is obtained by solving the following optimization problem:

@⇤(⇥) = arg min
@(⇥)2Q

KL(@(⇥) | | %(⇥ | �)) . (�.��)

Nevertheless, this minimization problem remains unfeasible due to the presence of the model
evidence log%(�) in the KL divergence, as demonstrated in Equation (�.�). To overcome this, VI
optimizes an alternative objective function that is equivalent to the KL up to an added constant [��].
This quantity is known as the evidence lower bound (ELBO) and is defined as follows:

ELBO B E@[log%(⇥,�)] � E@[log @(⇥)] . (�.��)

By definition, the ELBO corresponds to the negative KL divergence plus log%(�), which is a
constant with respect to @(⇥). Therefore, minimizing the KL divergence between the variational
distribution and the true posterior is equivalent to maximizing the ELBO [���].

To fully define the optimization problem, we need to specify a variational family Q. One of the
most commonly employed methods is based on the mean-field approximation [���]. This approach
assumes that the latent variables are independent of each other, so that the joint distribution @(⇥)
can be factorized into a product of individual distributions for each variable. Therefore, a mean-field
variational distribution is represented as:

@(⇥) =
Y
8
@8(⇥8) , (�.��)

where @8(⇥8) represents the individual approximating distributions for each latent variable ⇥8 .
Notably, this approach does not impose any specific parametric constraints on these distributions.

The factorization in Equation (�.��) significantly reduces the computational complexity of the
inference process. Indeed, under the mean-field approximation, it is possible to get closed-form
expressions for the updates of @⇤8 (⇥8) by applying the Coordinate Ascent Variational Inference
(CAVI) algorithm [��]. CAVI is an iterative approach that optimizes each factor of the mean-field
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variational distribution, while keeping the others fixed, until it reaches a local maximum of the
ELBO. Following this approach, the optimal variational distributions are defined as:

@⇤8 (⇥8) / exp
�
E�8

⇥
log%(⇥8 |⇥�8 ,�)

⇤ 
. (�.��)

In this equation, %(⇥8 |⇥�8 ,�) denotes the complete conditional of ⇥8 , which is the conditional
distribution of ⇥8 given all the other latent variables and the observed data. The expectation E�8[·]
is then taken with respect to the joint variational distribution over ⇥�8 , that is,

Q
9<8 @ 9(⇥9). An

alternative result equivalent to Equation (�.��) states that, fixed the other variational distributions
@9(⇥9), 9 < 8, the optimal @⇤8 (⇥8) is proportional to:

@⇤8 (⇥8) / exp
�
E�8

⇥
log%(⇥8 ,⇥�8 ,�)

⇤ 
. (�.��)

This approach is quite versatile and can be employed to infer both discrete and continuous latent
variables, using a variety of parametric forms for @8 . In particular, an important result is achieved
when the complete conditional belongs to an exponential family. In such cases, each of the variational
distributions also falls within the same exponential family as its corresponding complete conditional,
and this result simplifies the derivation of the corresponding CAVI algorithm [��, ��]. To elaborate
further, consider E8 as the variational parameter for the parametric distribution @8(⇥8). Then, in each
update step of the CAVI algorithm, instead of setting @⇤8 (⇥8) as in Equation (�.��) or Equation (�.��),
we simply set its parameter equal to the expected parameter of its complete conditional:

E8 = E
⇥
◆8(⇥�8 ,�)

⇤
. (�.��)

This formulation simplifies the development of CAVI algorithms for a wide range of complex
models, making it feasible to perform approximate inference for many real-world datasets.

2.3 Community detection models

Real-world data exhibit remarkable complexity, often arising from interactions that are not purely
random. In fact, many real-world networks display an inherent structural organization, which is
characterized by a built-in community structure [��]. For instance, in social networks, individuals
naturally cluster with their friends [��], while in citation networks, these communities might
represent groups of related papers focused on specific topics [���]. The process of uncovering these
hidden communities is commonly referred to as community detection, and it plays a crucial role in
enhancing our comprehensive understanding of real-world networks.

Within this section, we delve into the notion of community structure, along with its main character-
istics and representations. Furthermore, we expound two state-of-the-art latent variable models
designed to infer communities from network data. Specifically, we introduce the pioneering Stochas-
tic Block Model, which is a foundational framework for community detection, and the Multitensor
model, an extension that accommodates overlapping communities and multilayer networks. This
latter model also serves as the primary building block for the methods developed in this thesis.
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Figure �.�: Illustration of two different community partitions. (a) The graphical representation of a hard-membership
partition, where nodes are exclusively assigned to a single community, either pink or green. (b) The graphical representation
of a mixed-membership partition, where nodes can belong to more than one group with different probabilities.

2.3.1 Community structures

Communities, also called clusters or modules, are groups of vertices within a graph that share common
properties or perform similar roles [��]. The notion of communities is crucial in network analysis
as it unveils hidden structures and functional units within networks. Additionally, it provides a
more compact and lower-dimensional representation of complex systems, which is essential for
analyzing large-scale networks. In particular, we focus on overlapping communities, a scenario
where nodes can simultaneously belong to more than one group [���]. This approach provides a
more accurate representation of real-world data, where nodes are expected to be part of multiple
groups. For instance, in social media networks, users can engage in numerous communities based
on their diverse interests. Similarly, in protein-protein interaction networks, proteins may participate
in various biological pathways or functions, leading to their inclusion in multiple overlapping
communities within the network.

Figure �.� visually illustrates these different scenarios. In Figure �.�a, nodes are exclusively assigned
to a single community, either pink or green, denoting a hard-membership partition. Conversely,
in Figure �.�b, the two communities overlap, and nodes have the flexibility to belong to both,
representing a mixed-membership partition. This is the scenario underlying the models outlined
in this thesis. For each node 8, we measure the strength of its membership to the communities
using a probability vector D8 of length  , where  represents the number of communities. In the
case of hard-membership, these vectors contain only one non-zero entry. In contrast, in mixed-
membership scenarios, nodes may belong to different communities with distinct probabilities. As
an example, in Figure �.�b, nodes 2 and 5 have their memberships represented by D2 = [0.5, 0.5]
and D5 = [0.25, 0.75], respectively. Instead, the memberships of all other nodes are indicated as
either D8 = [1, 0] or D8 = [0, 1].

Whether we consider hard- or mixed-membership partitions, the communities bring together
nodes that exhibit similar connection patterns compared to nodes in other groups [���]. The
overall community structure is then determined by the nature of the connections between the
different communities. To capture and represent this information, community detection models
introduce an affinity matrix F of dimension  ⇥  , where each entry F:@ represents the density
of edges between each pair of groups. Real-world networks exhibit various types of community
structures, and the affinity matrices of some of them are illustrated in Figure �.�. Among these
structures, one of the most prevalent is the assortative structure, often referred to as homophily in the
context of social networks [���]. In this setting, communities represent groups of nodes that are
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(a) Assortative (b) Disassortative (c) Core-periphery

Figure �.�: Illustration of three community structures. The graphical representation of the affinity matrices F for three
different community structures. (a) In an assortative structure, nodes tend to connect more within their own communities
rather than with nodes from other communities. (b) In a disassortative structure, edges are more likely to exist between
groups than within them. (c) In a core-periphery structure, nodes in the core strongly connect among themselves, while
the peripheral nodes are weakly connected.

densely interconnected, resulting in significantly higher edge densities within the diagonal blocks
than between them, as depicted in Figure �.�a. Conversely, Figure �.�b illustrates a disassortative
structure, where edges are more likely to exist between groups than within them. Additionally,
some real-world data follow a different organizational pattern known as core-periphery structure [��],
shown in Figure �.�c. In such networks, nodes that strongly connect among themselves represent
the core, while a separate periphery comprises weakly connected vertices.

In real-world data, these community structures are typically unknown and the aim of community
detection algorithms is to unveil these hidden patterns, thereby offering a meaningful interpretation
of real-world interactions. In the literature, several approaches exist for the detection of communi-
ties [��]. Classical methods encompass modularity optimization [���], spectral clustering [���], and
hierarchical clustering [���]. Modularity optimization seeks to maximize the density of connections
within communities while minimizing links between them. Spectral clustering, instead, employs the
eigenvalues of the network’s laplacian matrix to partition nodes into distinct communities. On the
other hand, hierarchical clustering builds a multi-level hierarchy of communities. Although these
techniques are widely adopted and have significantly contributed to network analysis, they have
limitations. For instance, they often rely exclusively on hard-membership partitions and assortative
community structures. A broader and more flexible framework is that of probabilistic generative
models, such as those we develop in this thesis. This approach is more powerful because it does not
impose any structural constraint, enables various inference tasks, and accommodates the detection
of overlapping communities. In the next subsections, we will introduce two state-of-the-art latent
variable models that form the foundations for our methods.

2.3.2 Stochastic Block Model

The Stochastic Block Model (SBM) is arguably the simplest probabilistic generative model for
graphs that exhibit community structures [�]. It was originally introduced by sociologists in
���� [��], and it still serves as the foundational framework and benchmark for community detection
models. In essence, the SBM posits that each node 8 belongs exclusively to a single community
or block 18 , and the interactions among these nodes are entirely determined by their community
memberships 1 = (11 , . . . , 1# ). This fundamental assumption is based on the concept of stochastic
equivalence, according to which if two nodes 8 and 9 belong to the same community :, they share
the same probability of connecting with any other node ⌘. The likelihood of interactions among
these communities is regulated by the affinity matrix F, where each entry F:@ characterizes the
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probability of an edge existing between a node in community : and one in community @. Thus,
under the SBM assumptions, the probability of observing an interaction (8 , 9) can be expressed as:

%(�89 | 1 ,F) = F1819 , (�.��)

and the likelihood for binary and undirected networks without self-loops is given by:

%(� | 1 ,F) =
Y
8< 9

%(�89 | 1 ,F)

=
Y
8< 9

Ber(�89 ; ?89)

=
Y
8< 9

F
�89
1819

[1 � F1819 ]1��89 . (�.��)

It is worth noting that when all entries of the affinity matrix F are uniform and set to a constant
value ?, the SBM is equivalent to the Erdős–Rényi model. Conversely, when the matrix F features
diverse entries, for instance encoding one of the structures depicted in Figure �.�, the SBM has the
capability to generate networks with a planted partition 1.

The generative model outlined in Equation (�.��) represents the most basic form of the SBM,
and numerous extensions have been developed over the years. For example, there are variations
tailored to handle weighted networks [��], to accommodate mixed-membership partitions [�], and
to address dynamic networks [���], among others. Regardless of the specific method considered, a
common challenge is to infer the latent variables of these models from the available data. In the
literature, a diverse range of methodologies has been employed to address this inference task. For
instance, to get MLEs for the parameters, one can opt for either greedy algorithms with local optimal
moves, or employ EM techniques [��, ��, ���]. Alternatively, within a Bayesian formalism, one can
apply Markov chain Monte Carlo methods [���, ���, ���] or VI methods [�, ��, ��]. Additionally,
another viable approach involves utilizing variants of the belief propagation or message passing
algorithms [��, ��, ��]. This list is not exhaustive, and for a more comprehensive discussion,
interested readers can refer to review articles [��, ��].

Another relevant issue for this class of models is the selection of the number of communities, which
inherently represents a model selection problem. Also in this context, several strategies have emerged
in the literature. Traditional approaches to address this challenge encompass the computation
of statistical metrics such as the Akaike information criterion [�] or the Bayesian information
criterion [���]. Nevertheless, in the realm of network modeling, a more prevalent methodology
involves considering the minimum description length principle [���, ���, ���]. Additionally, other
criteria include the use of the integrated complete likelihood [��, ��, ���] and the application of
variational Bayesian approaches [��, ���, ���]. However, in the models presented in this thesis,
we use another procedure and we select  following a cross-validation routine [��, ��]. In this
approach, the dataset is divided into training and test sets: the training set is employed to fit the
model and infer the parameters, while the test set is used to evaluate the model’s performance
given the inferred parameters. For instance, one can predict the edges within the hidden test set
and compute the Area Under the Curve (AUC) [��] to assess the model’s ability to retrieve such
information. This procedure is then iterated for different training and test partitions, and it is also
repeated for various values of  . Afterward, the optimal  is chosen based on the best performance
observed across all iterations in the test sets. To find more information, interested readers can refer
to the publications in Appendix A.
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2.3.3 Multitensor

Multitensor [��] is a probabilistic generative model designed to perform inference and community
detection in multilayer networks. This model is versatile, as it can handle both directed and
undirected multilayer networks, as well as nonnegative discrete weights. The core assumption of
Multitensor is the existence of overlapping communities shared across all network layers. Although
the partition is common to all layers, this model provides the flexibility for each layer to exhibit
distinct connectivity patterns, including arbitrarily mixtures of assortative, disassortative and
core-periphery structures. Formally, Multitensor assigns two  -dimensional mixed-membership
vectors to each node 8, denoted as D8 and E8 , which respectively represent its outgoing and incoming
communities memberships. In the case of undirected networks, the model sets these vectors to
be equal, i.e., D = E. In addition, Multitensor characterizes the community structure of the entire
multilayer network with an affinity tensor F = {F✓:@} 2 R!⇥ ⇥ , wherein each affinity matrix F✓
describes the structure of a specific layer ✓ , which may differ from one layer to another. Under these
assumptions, the expected number of edges from node 8 to node 9 in layer ✓ is expressed with the
following bilinear form:

⌫✓89 =
 X

: ,@=1
D8:F✓:@E9@ . (�.��)

Multitensor assumes that the edges of a weighted multilayer network � = {�✓89} 2 N!⇥#⇥#
0 are

conditionally independent given the parameters, and it models the likelihood of the data as
follows:

%(� | D , E ,F) =
!Y
✓=1

#Y
8 , 9=1

%(�✓89 | D , E ,F)

=
!Y
✓=1

#Y
8 , 9=1

Pois(�89 ;⌫✓89)

=
!Y
✓=1

#Y
8 , 9=1

4�⌫
✓
89 (⌫✓89)

�✓89

�✓89 !
. (�.��)

Given an observed network, the goal is to simultaneously infer the nodes’ membership vectors D
and E, and the affinity matrices F✓ for each layer. To perform this task, the authors employed an
efficient and highly-scalable EM algorithm. Furthermore, they evaluated the model’s performance
on a variety of synthetic and real-world networks, focusing not only on tasks such as community
detection but also on link prediction. Additionally, they introduced a principled approach to
quantify the interdependence between the layers within a multilayer network, thereby facilitating
the identification of redundant or highly independent layers.

The flexibility of this method, together with its ability to capture the complexities of real-world
data, makes it a versatile and robust foundation. In the models presented in this thesis, we extend
and adapt the underlying assumptions of Multitensor to accommodate attributed multilayer
networks, dynamic networks, and hypergraphs. Additionally, we incorporate other mechanisms like
reciprocity, which represents the tendency of a pair of nodes to form mutual connections between
each other.
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This thesis is based on ten peer-reviewed publications, where I am either first or second author. We
group these work in three sections, that reflect the three principal directions investigated during the
doctoral studies. This chapter is thus divided as follows:

I In Section �.�, we present publications that delve into the analysis of attributed multilayer
networks. This section encompasses two peer-reviewed papers. Among these work, one
introduces a new generative model and its properties to perform inference on such data, while
the second one is focused on demonstrating the effectiveness of these methodologies in the
context of patent citation networks.

I In Section �.�, we discuss methods to handle the pairwise dependencies between two directed
edges connecting node pairs, that comes with the relaxation of the conditional independence
assumption in network models. Within this section, we have compiled a total of five peer-
reviewed papers. Two of these work offer a theoretical perspective on the subject, while the
remaining three extend this framework to other contexts, such as dynamic networks, anomaly
detection, and multiply-reported data.

I In Section �.�, we describe techniques to characterize the structural organization of higher-
order data. This section includes three peer-reviewed publications. Two of these present
mathematical approaches for performing inference on hypergraphs, while the third work
introduces a Python library that offers a broad range of tools and algorithms to handle data
with higher-order interactions.

Every section begins with an introduction that explains the relationship between the various
publications and their relevance to the primary research direction. Following this preamble, each
paper is accompanied by an abstract, an explanation of author contributions, and a summary of the
publication venue. All the publications referenced in the sections can be found in Appendix A for
easy access.

3.1 Inference on attributed multilayer networks

In this section, we introduce various techniques that push on the analysis of attributed multilayer
networks. These are complex network representations that describe multiple types of interactions
among the same set of units (nodes), while also incorporating node information such as attributes or
covariates. Consequently, the approaches discussed here combine conveniently and in a principled
way various sources of information, leveraging both the network topology and the node metadata.

The first publication introduces MTCOV, a probabilistic generative model designed to perform
community detection and broader inference in attributed multilayer networks. This approach relies
on a linear combination of the multilayer structure and the node information, and offers a tool to
quantitatively measure the influence of the node attributes given in input.

The second publication demonstrates the application of MTCOV in the analysis of patent citation
networks, with the aim to comprehensively comprehend the worldwide technological landscape
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that patent data can provide. For the first time, we analyze these networks employing a multilayer
framework that can incorporate contextual and jurisdictional details from various patent citations.

3.1.1 Community detection with node attributes in multilayer networks

Abstract Community detection in networks is commonly performed using information about
interactions between nodes. Recent advances have been made to incorporate multiple types of
interactions, thus generalizing standard methods to multilayer networks. Often, though, one can
access additional information regarding individual nodes, attributes, or covariates. A relevant
question is thus how to properly incorporate this extra information in such frameworks. Here
we develop a method that incorporates both the topology of interactions and node attributes to
extract communities in multilayer networks. We propose a principled probabilistic method that
does not assume any a priori correlation structure between attributes and communities but rather
infers this from data. This leads to an efficient algorithmic implementation that exploits the sparsity
of the dataset and can be used to perform several inference tasks; we provide an open-source
implementation of the code online. We demonstrate our method on both synthetic and real-world
data and compare performance with methods that do not use any attribute information. We find
that including node information helps in predicting missing links or attributes. It also leads to
more interpretable community structures and allows the quantification of the impact of the node
attributes given in input.

Author contribution In this project, I took on the role of the first author. Together with my
advisor, we conceived the research and designed the experiments. Additionally, I was responsible
for implementing the model, writing and refining the code. I also analyzed the data together with
the team to uncover significant insights from the results, and I played a crucial part in creating
a variety of different visualizations. Collaboratively with my co-authors, I actively participated
in co-writing the manuscript. Additionally, I made significant contributions during the rebuttal
phase by conducting supplementary experiments, addressing reviewers’ feedback, and editing the
manuscript.

Venue Scientific Reports is a peer-reviewed and open access journal published by Nature Portfolio
since ����. It covers original research from across all areas of the natural sciences, psychology,
medicine, and engineering. The primary aim of this journal is to assess the scientific rigor of
submitted papers, emphasizing their validity rather than subjective importance or impact. By
adopting an open access policy, this journal offers researchers high visibility for their work. Notably,
in September ����, Scientific Reports became the largest journal in the world in terms of the number
of published articles, and it holds the position of the �th most-cited journal worldwide.

3.1.2 Multilayer patent citation networks: A comprehensive analytical framework for
studying explicit technological relationships

Abstract The use of patent citation networks as research tools is becoming increasingly common-
place in the field of innovation studies. However, these networks rarely consider the contexts in
which these citations are generated and are generally restricted to a single jurisdiction. Here, we
propose and explore the use of a multilayer network framework that can naturally incorporate
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citation metadata and stretch across jurisdictions, allowing for a complete view of the global
technological landscape that is accessible through patent data. Taking a conservative approach that
links citation network layers through triadic patent families, we first observe that these layers contain
complementary, rather than redundant, information about technological relationships. To probe the
nature of this complementarity, we extract network communities from both the multilayer network
and analogous single-layer networks, then directly compare their technological composition with
established technological similarity networks. We find that while technologies are more splintered
across communities in the multilayer case, the extracted communities match much more closely the
established networks. We conclude that by capturing citation context, a multilayer representation
of patent citation networks is, conceptually and empirically, better able to capture the significant
nuance that exists in real technological relationships when compared to traditional, single-layer
approaches. We suggest future avenues of research that take advantage of novel computational
tools designed for use with multilayer networks.

Author contribution As the second author of this work, my contributions involved providing
support in conceptualizing the experiments and applying the methodology. Specifically, I played
an important role in pre-processing the dataset, optimizing the code to handle the large dataset
efficiently, and conducting the experiments. Alongside the co-authors, we collectively validated the
results, collaborated to create clear and informative visualizations, and participated in the writing of
the manuscript. Additionally, during the rebuttal phase, I contributed to refining both the response
to the reviewers and the revised manuscript.

Venue Technological Forecasting & Social Change (TFSC) is a peer-reviewed journal published by
Elsevier. Since ����, it focuses on research at the intersection of technology, innovation, and societal
change. The TFSC journal publishes articles that explore various aspects of technological forecasting,
including the analysis of emerging technologies, innovation diffusion, adoption patterns, and the
implications of technological changes for different sectors of society. It also examines the social,
economic, political, and environmental consequences of technological developments.

3.2 Reciprocity and the relaxation of the conditional independence
assumption

This section presents methods that contribute to the development of approaches to incorporate
reciprocity in the analysis of directed networks. Reciprocity is the tendency of a pair of nodes to
form mutual connections between each other. Therefore, the methods presented here differ from
standard generative models in that they can handle the interdependence between two directed
edges that connect pairs of nodes. Mathematically, this means that we jointly model the edges
involving the same node pairs (8 , 9), denoted as %(�89 ,�98 |⇥), instead of the usual practice of
considering %(�89 |⇥) and %(�98 |⇥) independently from each other.

The first two publications investigate theoretical perspectives on the subject, each taking a different
approach that serves as a foundational component of this research direction. The two methods,
CRep and JointCRep, differ in their generative process. CRep models conditional distributions with
Poisson distributions and relies on a pseudo-likelihood approximation, while JointCRep utilizes the
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properties of the Bivariate-Bernoulli distribution to model the joint distributions of edges involving
the same pairs of nodes in closed-form.

The third and the fourth work build upon the aforementioned mathematical frameworks and apply
them to different contexts. Specifically, the third publication extends CRep to analyze dynamic
networks, which are networks that change over time. In the fourth paper, instead, the formalism of
JointCRep is employed to develop a probabilistic generative approach that can be used to perform
anomaly detection on the edges of a network.

The fifth publication presents a method to estimate the unobserved network structure from multiply
reported data. In this model, the reciprocity parameter is incorporated by following the principles
of CRep, and reflects the intuition that reporters tend to nominate the same individuals for both
directions of a relationship.

3.2.1 Generative model for reciprocity and community detection in networks

Abstract We present a probabilistic generative model and efficient algorithm to model reciprocity
in directed networks. Unlike other methods that address this problem such as exponential random
graphs, it assigns latent variables as community memberships to nodes and a reciprocity parameter
to the whole network rather than fitting order statistics. It formalizes the assumption that a directed
interaction is more likely to occur if an individual has already observed an interaction towards her.
It provides a natural framework for relaxing the common assumption in network generative models
of conditional independence between edges, and it can be used to perform inference tasks such
as predicting the existence of an edge given the observation of an edge in the reverse direction.
Inference is performed using an efficient expectation-maximization algorithm that exploits the
sparsity of the network, leading to an efficient and scalable implementation. We illustrate these
findings by analyzing synthetic and real data, including social networks, academic citations and the
Erasmus student exchange program. Our method outperforms others in both predicting edges and
generating networks that reflect the reciprocity values observed in real data, while at the same time
inferring an underlying community structure. We provide an open-source implementation of the
code online.

Author contribution For this project, I shared the co-authorship with a colleague of mine. One
of my primary responsibilities was to analyze and verify the mathematical details to support
the model’s design and implementation. Moreover, I contributed to the code implementation,
experiment design and results visualization. During the experimentation phase, my specific task
was to conduct experiments using synthetic data. Furthermore, I worked closely with my colleague
in drafting and editing the manuscript to ensure that the research findings were presented precisely
and clearly. Lastly, I actively participated in the two rounds of the rebuttal process, working together
with my colleague to address all the points raised by the reviewers and revise the manuscript
accordingly.

Venue Physical Review Research (PRR) is a fully open access, peer-reviewed, and multidisciplinary
journal that was launched in ����. It is part of the Physical Review family and published by
the American Physical Society (APS). PRR welcomes papers covering a wide range of research
topics that are relevant to the field of physics. The journal’s scope includes both fundamental and
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applied research, as well as theoretical and experimental studies that incorporate technical and
methodological innovations. Additionally, PRR is interested in interdisciplinary and emerging areas
of research.

3.2.2 Community detection and reciprocity in networks by jointly modelling pairs of
edges

Abstract To unravel the driving patterns of networks, the most popular models rely on community
detection algorithms. However, these approaches are generally unable to reproduce the structural
features of the network. Therefore, attempts are always made to develop models that incorporate
these network properties beside the community structure. In this work, we present a probabilistic
generative model and an efficient algorithm to both perform community detection and capture
reciprocity in networks. Our approach jointly models pairs of edges with exact �-edge joint
distributions. In addition, it provides closed-form analytical expressions for both marginal and
conditional distributions. We validate our model on synthetic data in recovering communities,
edge prediction tasks, and generating synthetic networks that replicate the reciprocity values
observed in real networks. We also highlight these findings on two real datasets that are relevant
for social scientists and behavioral ecologists. Our method overcomes the limitations of both
standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood
approximation. The inference of the model parameters is implemented by the efficient and scalable
expectation-maximization algorithm, as it exploits the sparsity of the dataset. We provide an
open-source implementation of the code online.

Author contribution As the first author of this project, I was responsible for designing the
model and planning the experiments, ensuring that they were aligned with the research objectives.
Additionally, I was actively involved in the implementation of the model, writing and refining the
code to ensure its accuracy and efficiency. I also led the analysis of the data, working collaboratively
with the team to extract significant insights from the results and create meaningful visualizations.
Furthermore, I wrote the majority of the manuscript, and coordinated the two rounds of the project’s
rebuttal.

Venue Journal of Complex Networks is a peer-reviewed journal published by Oxford University
Press that was established in ����. The journal publishes articles and reviews that make a significant
contribution to the analysis and understanding of complex networks and their applications in
various fields. Its coverage ranges from the fundamental mathematical, physical, and computational
principles required for studying complex networks to their practical applications, resulting in
predictive models in diverse systems such as molecular, biological, ecological, informational,
engineering, social, technological, and others.

3.2.3 Reciprocity, community detection, and link prediction in dynamic networks

Abstract Many complex systems change their structure over time, in these cases dynamic networks
can provide a richer representation of such phenomena. As a consequence, many inference methods
have been generalized to the dynamic case with the aim to model dynamic interactions. Particular
interest has been devoted to extend the stochastic block model and its variant, to capture community
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structure as the network changes in time. While these models assume that edge formation depends
only on the community memberships, recent work for static networks show the importance to include
additional parameters capturing structural properties, as reciprocity for instance. Remarkably, these
models are capable of generating more realistic network representations than those that only
consider community membership. To this aim, we present a probabilistic generative model with
hidden variables that integrates reciprocity and communities as structural information of networks
that evolve in time. The model assumes a fundamental order in observing reciprocal data, that is an
edge is observed, conditional on its reciprocated edge in the past. We deploy a Markovian approach
to construct the network’s transition matrix between time steps and parameters’ inference is
performed with an expectation-maximization algorithm that leads to high computational efficiency
because it exploits the sparsity of the dataset. We test the performance of the model on synthetic
dynamical networks, as well as on real networks of citations and email datasets. We show that our
model captures the reciprocity of real networks better than standard models with only community
structure, while performing well at link prediction tasks.

Author contribution In my role as the second author of this work, I provided support in analyzing
the data, working closely with the first author to accurately interpret the findings. I was also
responsible to proofread the manuscript and ensure that it was free of errors and coherent in its
presentation. Additionally, I contributed to the three rounds of the rebuttal process, assisting in
addressing any concerns or questions raised by the reviewers.

Venue Journal of Physics: Complexity is a new fully open access, peer-reviewed, and interdisciplinary
journal published by IOP Publishing. Launched in ����, the journal’s objective is to publish high-
quality quantitative research in the field of complexity. It aims to present important scientific
advancements in theoretical, experimental, and applied physics-related research that enhance our
scientific knowledge of complex systems and networks.

3.2.4 Anomaly, reciprocity, and community detection in networks

Abstract Anomaly detection algorithms are a valuable tool in network science for identifying
unusual patterns in a network. These algorithms have numerous practical applications, including
detecting fraud, identifying network security threats, and uncovering significant interactions
within a data set. In this project, we propose a probabilistic generative approach that incorporates
community membership and reciprocity as key factors driving regular behavior in a network,
which can be used to identify potential anomalies that deviate from expected patterns. We model
pairs of edges in a network with exact two-edge joint distributions. As a result, our approach
captures the exact relationship between pairs of edges and provides a more comprehensive view of
social networks. Additionally, our study highlights the role of reciprocity in network analysis and
can inform the design of future models and algorithms. We also develop an efficient algorithmic
implementation that takes advantage of the sparsity of the network.

Author contribution In this project, I held the role of the second author and my main contribution
involved providing support during the model design phase. Specifically, I played a key role in
validating the model equations to ensure their accuracy and reliability. Additionally, I thoroughly
proofread the manuscript and offered assistance during the editing process. Furthermore, I
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contributed to the two rounds of the rebuttal phase by refining both the response to the reviewers
and the revised manuscript.

Venue Physical Review Research (PRR) is a fully open access, peer-reviewed, and multidisciplinary
journal that was launched in ����. It is part of the Physical Review family and published by
the American Physical Society (APS). PRR welcomes papers covering a wide range of research
topics that are relevant to the field of physics. The journal’s scope includes both fundamental and
applied research, as well as theoretical and experimental studies that incorporate technical and
methodological innovations. Additionally, PRR is interested in interdisciplinary and emerging areas
of research.

3.2.5 Latent network models to account for noisy, multiply reported social network data

Abstract Social network data are often constructed by incorporating reports from multiple
individuals. However, it is not obvious how to reconcile discordant responses from individuals.
There may be particular risks with multiply reported data if people’s responses reflect normative
expectations–such as an expectation of balanced, reciprocal relationships. Here, we propose
a probabilistic model that incorporates ties reported by multiple individuals to estimate the
unobserved network structure. In addition to estimating a parameter for each reporter that is related
to their tendency of over- or under-reporting relationships, the model explicitly incorporates a
term for "mutuality", the tendency to report ties in both directions involving the same alter. Our
model’s algorithmic implementation is based on variational inference, which makes it efficient and
scalable to large systems. We apply our model to data from a Nicaraguan community collected with
a roster-based design and �� Indian villages collected with a name-generator design. We observe
strong evidence of "mutuality" in both datasets, and find that this value varies by relationship type.
Consequently, our model estimates networks with reciprocity values that are substantially different
than those resulting from standard deterministic aggregation approaches, demonstrating the need
to consider such issues when gathering, constructing, and analysing survey-based network data.

Author contribution On this project, I was the second author among a large team of researchers.
I contributed to the model design and assisted with the validation of the mathematical derivations.
Moreover, I collaborated closely with a few team members to develop the code, plan the experiments,
and coordinate the data analysis. I primarily focused on analyzing synthetic data and assisting with
results visualizations. Furthermore, I was actively involved in the draft process of the manuscript.
Specifically, I took responsibility for writing the section on synthetic experiments and portions
of the appendix. Additionally, I proofread the entire manuscript to ensure coherence and flow.
During the rebuttal phase, I helped by running additional experiments and further correcting the
manuscript.

Venue Journal of the Royal Statistical Society Series A: Statistics in Society is a peer-reviewed journal
of statistics published by Oxford University Press for the Royal Statistical Society. Since ����, the
journal has been publishing high-quality papers that showcase the importance of statistical thinking,
design, and analysis in various fields, without any subject-matter restrictions. Its emphasis is on
well-written and clearly reasoned quantitative approaches to real-world problems, rather than
technical details. Of particular interest are papers on topical or controversial statistical issues,



26 Chapter 3 Published Work

reviews of current statistical concerns, and those that demonstrate how statistical thinking has
contributed to our understanding of important questions.

3.3 Community detection and the analysis of higher-order data

Within this section, we present methodologies that expand the set of statistical inference techniques
available for analyzing higher-order data. These represent systems which involve interactions
between groups of nodes of any arbitrary size. As a result, the models discussed here extend beyond
conventional dyadic interactions (represented as �89) and instead focus on hyperedges, referred to
as 3-dimensional interactions �4 , where 3 = |4 |.

The first two publications introduce distinct frameworks aimed at characterizing the structural
organization of hypergraphs. Both methods adopt a mixed-membership structure as generative
process, and utilize Poisson distributions to model the hyperedges. Nevertheless, they diverge in
their approach to defining the mean of the marginal distributions. Specifically, Hypergraph-MT
describes a hyperedge by considering the product of the node memberships belonging to it, whereas
Hy-MMSBM employs a bilinear form for capturing dependencies within the hyperedges.

The third work is computational and introduces the Python library hypergraphx, which is openly
available and serves as a valuable resource for analyzing networked systems with higher-order
interactions. This library offers a broad range of tools and algorithms for constructing, visualizing,
and analyzing data with higher-order interactions.

3.3.1 Inference of hyperedges and overlapping communities in hypergraphs

Abstract Hypergraphs, encoding structured interactions among any number of system units, have
recently proven a successful tool to describe many real-world biological and social networks. Here
we propose a framework based on statistical inference to characterize the structural organization of
hypergraphs. The method allows to infer missing hyperedges of any size in a principled way, and
to jointly detect overlapping communities in presence of higher-order interactions. Furthermore,
our model has an efficient numerical implementation, and it runs faster than dyadic algorithms on
pairwise records projected from higher-order data. We apply our method to a variety of real-world
systems, showing strong performance in hyperedge prediction tasks, detecting communities well
aligned with the information carried by interactions, and robustness against addition of noisy
hyperedges. Our approach illustrates the fundamental advantages of a hypergraph probabilistic
model when modeling relational systems with higher-order interactions.

Author contribution I had the privilege of being the first author of this project. Working closely
with my advisor, we conceptualized the model and planned the experiments, ensuring they
effectively showcased the strengths of our algorithm. We also collaborated to get a computationally
efficient implementation of our method. Moreover, I actively participated in the data analysis
process and played a key role in generating insightful visualizations. Together with my co-authors,
I co-wrote the manuscript, ensuring the effective delivery of our findings with a coherent structure
and smooth flow. In addiction, I took the lead in managing the two rounds of the rebuttal process.
This involved conducting supplementary experiments, addressing reviewers’ comments, and editing
the manuscript.
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Venue Nature Communications is a peer-reviewed and open access journal published by Nature
Portfolio since ����. This multidisciplinary journal covers a wide range of natural sciences, en-
compassing fields such as physics, chemistry, earth sciences, medicine, and biology. The journal
is committed to publishing impactful papers that represent significant advancements in their
respective domains. It has a global reach and is known for its high impact. Nature Communications
aims to provide a platform for interdisciplinary research and encourages collaboration among
scientists.

3.3.2 Community detection in large hypergraphs

Abstract Hypergraphs, describing networks where interactions take place among any number
of units, are a natural tool to model many real-world social and biological systems. In this work
we propose a principled framework to model the organization of higher-order data. Our approach
recovers community structure with accuracy exceeding that of currently available state-of-the-
art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth
partitions. Our model is flexible and allows capturing both assortative and disassortative community
structures. Moreover, our method scales orders of magnitude faster than competing algorithms,
making it suitable for the analysis of very large hypergraphs, containing millions of nodes and
interactions among thousands of nodes. Our work constitutes a practical and general tool for
hypergraph analysis, broadening our understanding of the organization of real-world higher-order
systems.

Author contribution In this project, my role was that of the second author. I provided valuable
support in the planning of innovative and meaningful experiments. Additionally, I played a key role
in creating impactful visualizations that effectively conveyed the results. Furthermore, I actively
contributed to the editing and proofreading of the manuscript. Throughout the two rounds of the
rebuttal phase, I assisted in rewriting specific sections of the manuscript, rerunning experiments,
refining visualizations, as well as drafting and revising the responses to the reviewers.

Venue Science Advances is a fully open access, peer-reviewed, and multidisciplinary journal that
was established in ����. It is published by the American Association for the Advancement of Science
(AAAS), the world’s oldest and largest general science organization. Science Advances focuses on
disseminating high-impact research papers and reviews spanning all areas of science, including
both specific disciplines and broader interdisciplinary subjects. The journal’s mission is to identify
and promote significant advancements in science and engineering across a wide range of areas,
while also offering readers a vetted selection of research.

3.3.3 Hypergraphx: a library for higher-order network analysis

Abstract From social to biological systems, many real-world systems are characterized by higher-
order, non-dyadic interactions. Such systems are conveniently described by hypergraphs, where
hyperedges encode interactions among an arbitrary number of units. Here, we present an open-
source python library, hypergraphx (HGX), providing a comprehensive collection of algorithms
and functions for the analysis of higher-order networks. These include different ways to convert data
across distinct higher-order representations, a large variety of measures of higher-order organization
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at the local and the mesoscale, statistical filters to sparsify higher-order data, a wide array of static and
dynamic generative models, and an implementation of different dynamical processes with higher-
order interactions. Our computational framework is general, and allows to analyse hypergraphs with
weighted, directed, signed, temporal and multiplex group interactions. We provide visual insights
on higher-order data through a variety of different visualization tools. We accompany our code with
an extended higher-order data repository and demonstrate the ability of HGX to analyse real-world
systems through a systematic analysis of a social network with higher-order interactions. The library
is conceived as an evolving, community-based effort, which will further extend its functionalities
over the years. Our software is available at https://github.com/HGX-Team/hypergraphx.

Author contribution In this project, I held the position of the second author within a large team of
researchers. My contribution primarily focused on the implementation of two community detection
algorithms and the development of a tutorial to demonstrate their usage. Additionally, I assisted in
reformatting the overall package. Furthermore, I took the lead in analyzing the dataset we used as a
case study, developing functions for visualizing the communities, and refining the final version
of the main figure. Lastly, I contributed to the writing process for the "mesoscale structures" and
"visualization" sections.

Venue Journal of Complex Networks is a peer-reviewed journal published by Oxford University
Press that was established in ����. The journal publishes articles and reviews that make a significant
contribution to the analysis and understanding of complex networks and their applications in
various fields. Its coverage ranges from the fundamental mathematical, physical, and computational
principles required for studying complex networks to their practical applications, resulting in
predictive models in diverse systems such as molecular, biological, ecological, informational,
engineering, social, technological, and others.

https://github.com/HGX-Team/hypergraphx
https://github.com/HGX-Team/hypergraphx


4 Discussion & Conclusion

In this chapter, we provide a comprehensive overview of the three main research directions
investigated within this thesis. For each of these topics, we highlight the key findings in relation
to the outlined publications, and discuss potential future directions. Finally, we summarize the
overarching contribution of this thesis, and delve into the broader implications of our research.

4.1 Inference on attributed multilayer networks

Advancements in data collection techniques have led to the acquisition of more comprehensive data,
particularly by gathering additional information that characterizes the nodes and their interactions
within real-world systems. These enriched data are effectively represented by attributed single-layer
and multilayer networks, as described in Section �.�, and analyzing these networks can result in a
more profound understanding of real-world data. Recent studies, primarily focusing on attributed
single-layer networks [��, ���, ���, ���], have demonstrated that considering node attributes in
network models can significantly enhance network inference, by for instance boosting prediction
performance. Furthermore, exploring the interplay between edge structure and node metadata
can yield valuable insights into the underlying organization and functional relationships within
the network. Building upon these results as motivation, in this thesis, we took a further step by
examining attributed multilayer networks, instead of single-layer networks, which arguably offer a
more nuanced representation of real-world data. In doing so, we provided principled methods for
combining node and edge metadata, along with strategies for their validation, moving beyond the
common practice of aggregating the layers and applying single-layer techniques [��, ��, ���].

In Section �.�.�, we introduced MTCOV, a probabilistic generative model designed to effectively
integrate node information and network topology to perform inference on attributed multilayer
networks [��]. At its core, MTCOV posits the existence of a hidden mixed-membership partitioning
of the nodes, and it assumes this as the underlying mechanism for determining both interactions
and node covariates. Furthermore, it combines the likelihoods of these two sources of information –
network topology and node metadata – through a linear combination, and employs an efficient
EM algorithm to infer the latent variables representing the community memberships and their
connectivity structures. Our model is flexible, as it can be applied to a variety of network datasets,
whether directed, weighted, or multilayer, making it a valuable tool for analyzing data across
diverse fields. As an example, in the paper introducing the model, we conducted an extensive study
of social support networks [��]. Additionally, in Section �.�.�, we applied this methodology for the
first time in the analysis of patent citation networks [��]. In this context, we not only illustrated the
importance of using a multilayer framework for patent citation data analysis but also emphasized
the role of a node covariate in driving the inference, alongside the structural information embedded
within the network.

In our work on MTCOV, we illustrated that effectively integrating node attributes with topological
information can lead to substantial enhancements in network inference, even in the context of
attributed multilayer networks. These improvements have been showcased in tasks like community
detection and prediction, where our model consistently outperformed approaches that exclusively
rely on network structure. Moreover, we demonstrated that taking node information into account can
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yield more robust results, especially when dealing with incomplete or imbalanced data. Specifically,
we observed better outcomes when the node metadata are more informative and exhibit some
degree of correlation with the information conveyed by the interactions. Subsequently, our findings
have been reinforced by other researchers who investigated the impact of node attributes in the
inference process. They found that attributes can enhance the inference only when all terms in the
likelihoods or posteriors are of comparable magnitude or when attributes are perfectly correlated
with the interactions [��].

Importantly, a property of MTCOV is that it does not make any prior assumptions regarding the
importance of a node attribute. Instead, it directly assesses the attributes’ impact in the inference
process using a cross-validation technique. In our experiments, we showcased the flexibility of
MTCOV in exploiting the attributes that exhibit higher informativeness while ignoring those with
weaker correlations to the network structure. For example, we observed that the attribute "caste"
is the most informative when analyzing social support networks [��], while the country of the
priority office where patents are filed plays a significant role in the analysis of the patent citation
networks, enabling a more accurate quantification of certain citation patterns [��]. When the node
metadata offer valuable insights, MTCOV identifies communities that align with this information.
This approach leads to more interpretable results, where attributes actively influence the inference
process, rather than only serving as a posterior tool for evaluating node partitions – a practice that
can potentially result in erroneous scientific conclusions [���].

MTCOV represents one of the first and few probabilistic models designed to perform inference on
attributed multilayer networks. Nevertheless, this area of research still remains largely unexplored,
offering numerous avenues for further development. As an example, an intriguing direction of
future research could involve integrating a mixture of heterogeneous attributes, rather than just
considering categorical covariates, as done in our model. In particular, it would be interesting to
investigate systematic methods for combining these covariates in a principled manner, going beyond
the approaches taken in other methodologies, like spectral embedding [���], deep learning [��], or
differential evolution [���]. Typically, these methods combine multiple attributes in a deterministic
way into a similarity matrix, which restricts our ability to comprehend the underlying data
generation process and quantify associated uncertainties. Furthermore, MTCOV could be extended
to accommodate layers with different data types. In fact, many existing models for analyzing
multilayer networks assume that all layers share the same underlying generative process. However,
this simplification does not fully capture the complexities of real-world systems, where diverse types
of interactions coexist. For instance, in social networks, nodes can be connected in various ways,
including binary relationships like friendships, nonnegative discrete interactions such as call counts,
and continuous real-valued measurements like distances between their residences. Additionally,
nodes may possess different attributes. These extensions would then create a general framework
capable of not only representing the complexities of real-world data in a principled manner, but
also assessing the relevance of node and edge metadata in the inference process, exploiting only the
most informative information. However, delving into this research direction poses some challenges:
such as the need to develop techniques to automatically rescale the data and to effectively leverage
the diverse sources of information, especially when they vary in size. Additionally, it requires efforts
to ensure efficient inference despite the increased volume of information. Lastly, an interesting
prospect for future research would be to take these ideas forward to analyze data with additional
types of information, such as time-varying networks, further expanding the toolbox of techniques
available for modeling complex networks.
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4.2 Reciprocity and the relaxation of the conditional independence
assumption

Directed networks serve as a mathematical representation of real-world data in which interactions
have a directionality, such as citations between scientific papers. To uncover the underlying patterns
governing these networks, many existing models rely on community detection algorithms, which
have the capability to reveal intriguing insights regarding the inherent structure of various real-
world datasets [��]. As elaborated in Section �.�, these models posit that the interactions are fully
determined by some hidden partition of the nodes. While this assumption has demonstrated
its reliability, alternative mechanisms can be considered when analyzing directed networks. For
example, many real networks exhibit reciprocity, the tendency of a pair of nodes to form mutual
connections between each other. This property can also provide new insights into the topology of
real-world data [��], and we are keen on incorporating it into the statistical models used for network
analysis. Some existing methods have already integrated reciprocity into their framework, such as
exponential random graphs models [��, ��, ���] and stochastic oriented actor models [��, ���, ���].
Nonetheless, despite differences in their modeling assumptions [��], both of these approaches treat
reciprocity as an observed network feature rather than a latent variable, as we do in our methods.
However, integrating reciprocity into standard generative models presents a significant challenge.
These models rely on the assumption of conditional independence between edges, implying that
all interactions are considered independent given certain latent variables. This assumption is
overly restrictive and limits the applicability of traditional methods in the analysis of real-world
networks where reciprocity plays a crucial role. In this thesis, we addressed this issue and proposed
alternative probabilistic methods that incorporate reciprocity into their mathematical framework,
going beyond the conditional independence assumption. Specifically, our methods account for the
pairwise dependencies between two directed edges connecting node pairs – a minimal relaxation
that effectively capture reciprocity.

In Section �.�.� and Section �.�.�, we introduced two different approaches to incorporate reciprocity
into the framework of latent variable models. In particular, we combined both reciprocity and
community structure within unique probabilistic methods for network analysis. While these patterns
represent two separate mechanisms of network formation, their integration allows for more accurate
and expressive generative models. Our first method, presented in Section �.�.� and referred to as
CRep, is designed for the analysis of directed networks with nonnegative discrete weights [���].
In details, it employs Poisson distributions to model the conditional distributions %(�89 | �98 ,⇥),
where ⇥ encompasses the latent variables associated with reciprocity and community structure.
Importantly, CRep expresses the network’s likelihood using a pseudo-likelihood approximation,
which involves a factorization over the specified conditionals rather than dealing with the unknown
joint distributions %(�89 ,�98 |⇥). In Section �.�.�, we presented a different approach and introduced
JointCRep, a latent variable model that explicitly describes the two-edge joint distributions, thus
providing a closed-form expression for the network’s likelihood [��]. It achieves this by employing
bivariate Bernoulli distributions, making it particularly suitable for the analysis of binary directed
networks. Despite the differences in their modeling assumptions, both of these models serve as
foundational and valuable tools for the analysis of real-world data. In their respective papers,
we showcased their properties, strengths, and limitations through extensive analyses of various
synthetic and real-world datasets. Furthermore, we expanded upon these frameworks to explore
other scenarios and applications, as presented in Section �.�.�, Section �.�.� and Section �.�.�.

Within Section �.�.�, we introduced DynCRep, an extension of CRep tailored to accommodate



32 Chapter 4 Discussion & Conclusion

directed networks that evolve over time [���]. Fundamentally, DynCRep assumes that the evolution
of interactions between two nodes in dynamic networks is influenced not only by the nodes’
community memberships but also by their reciprocated interactions, whether occurring in the
present or in the past. Notably, DynCRep was one of the first probabilistic models to take into
account the role of reciprocity as an additional driver of network dynamics, proving its relevance
in such contexts. In Section �.�.�, instead, we took on the formalism of JointCRep to develop a
generative model able to perform edge anomaly detection. This method, named CRAD, considers
community membership and reciprocity as main mechanisms driving tie formation, and detects
as anomalies those pairs of edges that deviate from this regular behavior. This model exclusively
takes in input the adjacency matrix, making it particularly valuable in scenarios where additional
information is unavailable. Conversely, in such cases, common anomaly detection models that rely
on metadata face significant limitations in their applicability. Lastly, in Section �.�.�, we outlined
VIMuRe. This is a probabilistic model designed to estimate the unobserved network structure
from multiply reported data. In this model, we integrated reciprocity by adopting the principles
of CRep, reflecting the tendency of reporters to nominate the same individuals in both directions
of a relationship [��]. Moreover, VIMuRe accommodates any number of reporters, allows the
inclusion of weighted edges, and explicitly models individual biases in over- or under-reporting
relationships through the incorporation of a reliability parameter. These characteristics make our
model a powerful tool for the analysis of social networks, surpassing previous methods that rely on
the union or intersection of reported data or exclusively focus on double-sampled data.

The methods discussed in this section benefit from efficient and scalable implementations, making
use of either EM algorithms or VI techniques. Furthermore, they serve not only as tools for network
inference, but also as benchmark models capable of generating synthetic data that align with
the underlying assumptions of each model. Such benchmarks, which account for community
structure and reciprocity to generate static, dynamic, anomalous, or multiply reported scenarios,
were previously lacking in the field. With our models, we have equipped practitioners with the
tools needed to test and compare their own methods, filling a significant gap in the field. In our
experiments, we demonstrated the ability of these models in producing network samples that closely
resemble the observed topological properties in the input data, including reciprocity, hierarchical
structure, and degree distribution. Importantly, our methods outperformed standard generative
models in this task, which are generally unable to reproduce the structural features of the network.

In our work, we loosened the common assumption of conditional independence by explicitly
modeling either conditional or joint distributions. These methods not only introduced innovative
perspectives for network modeling but also hold significant implications in inferential tasks. For
instance, in link prediction problems, our models can now use conditional expected values to
predict edge existence, alongside the conventional marginal expectations. Notably, our experiments
consistently showcased better predictions when we used conditional expected values. This trend
was also observed in network reconstruction tasks. In this context, our methods overcame the
limitations of standard generative models, which struggle to recover reciprocated interactions due to
the conditional independence assumption. This highlights the importance of effectively leveraging
the extra information contained within the adjacency matrix to boost overall performance. Moreover,
explicitly modeling pairwise dependencies increased results robustness, especially in scenarios
characterized by high reciprocity, varying anomalies densities, or different structures of the affinity
matrix over time. Furthermore, we illustrated how the formalism of JointCRep can be employed to
predict the joint existence of mutual connections between pairs of nodes, providing principled and
accurate outcomes in comparison to models that lack a specification for the joint distributions.
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In addition to assessing our models’ edge prediction abilities, we evaluated their performance
in recovering the model parameters. We first investigated the community detection task, and we
observed that JointCRep performed equally well as standard community detection algorithms, even
with an additional parameter into the model. Moreover, its framework consistently achieved robust
results, even in scenarios where anomalous edges were prevalent. On the other hand, CRep exhibited
suboptimal performance in identifying communities in datasets characterized by high reciprocity.
This limitation arises from the additive approach it uses to combine reciprocity and communities
within the model. However, although this assumption may penalize the community detection task,
it enables the estimation of the relative contributions of community and reciprocity in determining
individual edges, a feature that JointCRep lacks due to its multiplicative combination. Subsequently,
we showcased the ability of our models in capturing reciprocity, consistently outperforming other
methods across various real-world networks. Shifting our focus to the extensions of our foundational
models, we observed strong performance in anomaly detection with CRAD, highlighting how
the integration of reciprocity can enhance performance compared to a model lacking this effect.
Furthermore, VIMuRe demonstrated its proficiency in recovering the unobserved network from
multiply reported data, improving standard deterministic aggregation approaches. Notably, VIMuRe
also yielded more robust results in challenging scenarios where the number of unreliable reporters
and reciprocity increased.

In this section, we extended the formalism of mixed-membership models to incorporate reciprocity,
a relevant feature of real-world networks that influences their interactions. This was achieved
by relaxing the conditional independence assumption and explicitly modeling the dependencies
between pairs of nodes. Therefore, our models represent initial contributions to efficiently describe
more complex scenarios, thereby improving our understanding of real-world data. Our initial
focus was on single-layer networks, and potential future directions could involve extending these
frameworks to data with additional information. As an example, we demonstrated this with
DynCRep, where we incorporated time-varying interactions. Equally interesting would be the
inclusion of node metadata and the exploration of how this extra information aligns with the
reciprocity effect. Similarly, we could encompass multilayer networks, which raises the question of
how properly integrate reciprocated edges from different layers. So far, we used a unique parameter
to represent the reciprocity of the whole network. Nonetheless, in a multilayer context, it might be
more appropriate to have distinct reciprocity parameters for each layer. One approach could be to
model the interactions between the same pairs of nodes in all layers using a multivariate normal
distribution, where the covariances represents reciprocity effects in those layers, extending ideas
from single-layer networks [��]. Having a single parameter for reciprocity also limits our ability to
capture individual tendencies of reciprocating relationships, which can vary depending on the roles
of nodes in the network. Some social science models incorporate dyadic reciprocity parameters to
describe the reciprocity of each pairwise interaction [���, ���]. However, these models serve different
purposes than ours, primarily focusing on describing interactions – typically binary – and how
they are influenced by hidden structures, rather than inferring these hidden patterns. Additionally,
their applicability is limited to relatively small networks due to the computational cost associated
with their sampling inferential techniques. Finally, a recent work [���] suggests potential for further
improvements by extending SBMs to incorporate triadic closure, which accounts for dependencies
involving triples rather than pairs. This work aligns more with the formalism of mixture models
rather than combining mechanisms within a single model, making it slightly different from our
proposed methods. Exploring the similarities and limitations of these approaches represents a
promising avenue for future research, but it would require further steps to break conditional
dependencies between edges to integrate these additional features within our frameworks.
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4.3 Community detection and the analysis of higher-order data

Over the past few years, real-world data from diverse domains, including social and biological
systems, have revealed interactions that go beyond pairwise connections, involving groups of nodes
of various sizes. Hypergraphs provide a versatile and comprehensive framework for characterizing
systems where such higher-order interactions are relevant. As explained in Section �.�, the inherent
higher-order structure within these hypergraphs offers more realistic representations of real-world
data, and their analysis can yield a deeper comprehension of the complex structure underlying
these systems. This understanding can be achieved through the application of community detection
algorithms, which are capable of identifying the mesoscale organization of real-world data. Several
methods for detecting communities in hypergraphs have been proposed, including nonparametric
methods with hypergraphons [�], flow-based algorithms [��, ��], and spectral clustering [�, ���].
Nevertheless, there are only a few probabilistic generative models that have been developed to
rigorously define and identify the structural organization of hypergraphs [��, ���], making this area
largely unexplored. In this thesis, we contributed to the advancement of these statistical inference
techniques, expanding the toolkit available for the analysis of higher-order data.

In Section �.�.� and Section �.�.�, we expounded two distinct probabilistic models designed to
perform inference on hypergraphs while capturing their hidden organization. These models, named
Hypergraph-MT [��] and Hy-MMSBM [���], posit the existence of a mixed-membership community
structure as the main mechanism driving hyperedge formation. Such assumption was not explored
in the analysis of hypergraphs before. In particular, our models are well-suited for analyzing
nonnegative discrete weighted hyperedges, which are mathematically represented using Poisson
distributions. The main difference between the two approaches lies in how they integrate latent
variables into the model, leading to two different assumptions about data generation. Specifically,
Hypergraph-MT expands upon Multitensor– the model presented in Section �.�.� – and describes
a hyperedge through the product of the memberships of all nodes belonging to it. To make this
computation feasible, Hypergraph-MT assumes the existence of exclusively assortative community
structures, which is a reasonable assumption in a variety of contexts. On the other hand, Hy-MMSBM
relaxes the assortativity constraint and flexibly captures various community structures that were
not tackled in the literature, such as disassortative and core-periphery, among others. To achieve
this, it employs a bilinear form to link hyperedge probabilities and node community memberships.
In addition to introducing these foundational models, we have also developed a new Python
library, named hypergraphx [��], which provides a wide range of tools and algorithms for handling
higher-order data. This computational effort, combined with comprehensive and user-friendly
tutorials, enhances the usability of our methods. Furthermore, together with a few other recent and
existing packages [�, �, ��, ���], our contribution makes the analysis of real-world higher-order data
more accessible, thus advancing our understanding of these complex systems.

The methods outlined in this section offer several advantages for the analysis of hypergraphs, and
provide a good fit for their representations. We initially showcased their efficacy in community
detection tasks across a diverse range of synthetic and real-world networks. In particular, we found
that Hy-MMSBM consistently and accurately retrieved the planted communities in scenarios with
varying hyperedges sizes. It also effectively captured assortative and disassortative community
structures and correctly represented core-periphery configurations. Additionally, we observed that
Hypergraph-MT detected communities that reliable depicted the information carried by hyperedges
and exhibited robustness against the addition of noisy interactions. Subsequently, we investigated the
ability of our methodologies in predicting missing hyperedges. Overall, our models outperformed
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existing methods in predicting higher-order interactions of varying sizes. We also illustrated
how our methods can leverage knowledge about large hyperedges to predict smaller ones, thus
extracting valuable structural information from interactions of higher sizes. Lastly, it is important
to emphasize that our models are highly efficient and scalable. They employ the EM algorithm to
perform inference, and their numerical implementations make our methods computational and
memory-efficient. This is not a trivial achievement, considering the increased information load
associated with higher-order interactions. This property enhances the usability of our models,
allowing for the study of real-world systems that were previously computationally challenging.

In this section, we introduced foundational methods that contributed to the development of
statistical techniques for the analysis of hypergraphs. This field is relatively new and has received
significant attention in recent years. As a result, several other approaches have been developed in
the meantime [��, ��, ��, ���], however different from our framework. Focusing on our specific
formalism, there exist numerous unexplored avenues for its further development. For instance, an
interesting direction would be the incorporation of node attributes into our models, potentially
enhancing their inference capabilities, as demonstrated in both single and multilayer networks. It
may also be worthwhile to explore how our formalism could be adapted to accommodate edge
metadata or directed hyperedges, moving in the direction of increasingly complex and multifaceted
data representations. The exploration of temporal hypergraphs is another promising avenue, as they
encode crucial information for understanding the chronological dynamics of interaction formation
and evolution [��, ��, ��]. Other potential research directions involve the development of benchmark
methods capable of generating synthetic data, facilitating a more comprehensive exploration of
higher-order data. Recent examples include the use of Hy-MMSBM to create synthetic hypergraphs
with overlapping communities and flexible structures [���], and the generation of random graph
models with community structure and power-law distribution for both degrees and community
sizes [��]. Given the relative novelty of this field, there is also a scarcity of theoretical studies on topics
such as detectability thresholds and model identifiability, with only a few works dedicated to study
the theoretical aspects of existing models [��, ��]. Furthermore, it would be worthwhile to investigate
alternative formalism or probability distributions to gain a more comprehensive understanding of
the strengths and limitations of statistical techniques in this field. Similarly, extending the concepts
behind CRep and JointCRep to hypergraphs holds promise for developing more sophisticated
methods that go beyond the conditional independence assumption, and incorporate sensible and
general mechanisms that capture the complexity of real-world systems.

4.4 Conclusion

In this dissertation, we advanced the field of network inference by introducing statistical models
that effectively capture the multifaceted complexities of real-world data. Specifically, we developed
principled methods to account for the information embedded in attributed multilayer networks, to
incorporate reciprocity by relaxing the conditional independence assumption, and to unveil the
structural organization of higher-order data. These models, each tailored to tackle specific complexi-
ties and available through open-source implementations, confirmed the importance of analyzing
more intricate representations to faithfully depict real-world data. Nonetheless, these models must
continually evolve to effectively encompass the growing complexities of these systems. We hope
that the methods discussed in this thesis can serve as a valuable foundation for the development of
future probabilistic techniques, further enhancing our understanding of real-world systems.





Bibliography

[�] Abbe, E. “Community detection and stochastic block models: recent developments”. The
Journal of Machine Learning Research ��.� (����), pages ����–����.

[�] Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. “Mixed membership stochastic blockmodels”.
Advances in Neural Information Processing Systems �� (����).

[�] Akaike, H. “A new look at the statistical model identification”. IEEE Transactions on Automatic
Control ��.� (����), pages ���–���.

[�] Albert, R., Albert, I., and Nakarado, G. L. “Structural vulnerability of the North American
power grid”. Physical Review E ��.� (����), page ������.

[�] Angelini, M. C., Caltagirone, F., Krzakala, F., and Zdeborová, L. “Spectral detection on sparse
hypergraphs”. ���� ��rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). IEEE. ����, pages ��–��.

[�] Antelmi, A., Cordasco, G., Kamiński, B., Prałat, P., Scarano, V., Spagnuolo, C., and Szufel, P.
“Analyzing, exploring, and visualizing complex networks via hypergraphs using SimpleHy-
pergraphs. jl”. Internet Mathematics �.� (����).

[�] Badie-Modiri, A. and Kivelä, M. “Reticula: A temporal network and hypergraph analysis
software package”. SoftwareX �� (����), page ������.

[�] Balasubramanian, K. “Nonparametric modeling of higher-order interactions via hyper-
graphons”. The Journal of Machine Learning Research ��.� (����), pages ����–����.

[�] Ball, B., Karrer, B., and Newman, M. E. “Efficient and principled method for detecting
communities in networks”. Physical Review E ��.� (����), page ������.

[��] Banavar, J. R., Maritan, A., and Rinaldo, A. “Size and form in efficient transportation
networks”. Nature ���.���� (����), pages ���–���.

[��] Barabási, A.-L. “Network science”. Cambridge University Press, ����.

[��] Bascompte, J. “Disentangling the web of life”. Science ���.���� (����), pages ���–���.

[��] Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., and
Petri, G. “Networks beyond pairwise interactions: Structure and dynamics”. Physics Reports
��� (����), pages �–��.

[��] Battiston, F., Nicosia, V., and Latora, V. “Structural measures for multiplex networks”. Physical
Review E ��.� (����), page ������.

[��] Battiston, F. and Petri, G. “Higher-Order Systems”. Springer, ����.

[��] Benson, A. R., Gleich, D. F., and Leskovec, J. “Higher-order organization of complex networks”.
Science ���.���� (����), pages ���–���.

[��] Berge, C. “Graphs and hypergraphs”. North-Holland Pub. Co., ����.

[��] Bick, C., Gross, E., Harrington, H. A., and Schaub, M. T. “What are higher-order networks?”
SIAM Review ��.� (����), pages ���–���.

[��] Bishop, C. M. “Pattern recognition and machine learning”. Springer, ����.

[��] Blei, D. M. “Build, compute, critique, repeat: Data analysis with latent variable models”.
Annual Review of Statistics and Its Application � (����), pages ���–���.



38 Bibliography

[��] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. “Variational inference: A review for
statisticians”. Journal of the American Statistical Association ���.��� (����), pages ���–���.

[��] Block, P. “Reciprocity, transitivity, and the mysterious three-cycle”. Social Networks �� (����),
pages ���–���.

[��] Block, P., Stadtfeld, C., and Snĳders, T. A. “Forms of dependence: Comparing SAOMs and
ERGMs from basic principles”. Sociological Methods & Research ��.� (����), pages ���–���.

[��] Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M.,
Sendina-Nadal, I., Wang, Z., and Zanin, M. “The structure and dynamics of multilayer
networks”. Physics Reports ���.� (����), pages �–���.

[��] Borgatti, S. P. and Everett, M. G. “Models of core/periphery structures”. Social Networks ��.�
(����), pages ���–���.

[��] Borgatti, S. P., Mehra, A., Brass, D. J., and Labianca, G. “Network analysis in the social
sciences”. Science ���.���� (����), pages ���–���.

[��] Bullmore, E. and Sporns, O. “Complex brain networks: graph theoretical analysis of structural
and functional systems”. Nature Reviews Neuroscience ��.� (����), pages ���–���.

[��] Cao, J., Jin, D., Yang, L., and Dang, J. “Incorporating network structure with node contents
for community detection on large networks using deep learning”. Neurocomputing ��� (����),
pages ��–��.

[��] Carletti, T., Fanelli, D., and Lambiotte, R. “Random walks and community detection in
hypergraphs”. Journal of Physics: Complexity �.� (����), page ������.

[��] Cencetti, G., Battiston, F., Lepri, B., and Karsai, M. “Temporal properties of higher-order
interactions in social networks”. Scientific Reports ��.� (����), page ����.

[��] Ceria, A. and Wang, H. “Temporal-topological properties of higher-order evolving networks”.
Scientific Reports ��.� (����), page ����.

[��] Chen, K. and Lei, J. “Network cross-validation for determining the number of communities
in network data”. Journal of the American Statistical Association ���.��� (����), pages ���–���.

[��] Chen, P.-Y. and Hero, A. O. “Multilayer spectral graph clustering via convex layer aggregation:
Theory and algorithms”. IEEE Transactions on Signal and Information Processing over Networks
�.� (����), pages ���–���.

[��] Chodrow, P., Eikmeier, N., and Haddock, J. “Nonbacktracking spectral clustering of nonuni-
form hypergraphs”. SIAM Journal on Mathematics of Data Science �.� (����), pages ���–
���.

[��] Chodrow, P., Veldt, N., and Benson, A. R. “Generative hypergraph clustering: From block-
models to modularity”. Science Advances �.�� (����), eabh����.

[��] Côme, E. and Latouche, P. “Model selection and clustering in stochastic block models
based on the exact integrated complete data likelihood”. Statistical Modelling ��.� (����),
pages ���–���.

[��] Contisciani, M., Battiston, F., and De Bacco, C. “Inference of hyperedges and overlapping
communities in hypergraphs”. Nature Communications ��.� (����), page ����.

[��] Contisciani, M., Power, E. A., and De Bacco, C. “Community detection with node attributes
in multilayer networks”. Scientific Reports ��.� (����), page �����.



39

[��] Contisciani, M., Safdari, H., and De Bacco, C. “Community detection and reciprocity in
networks by jointly modelling pairs of edges”. Journal of Complex Networks ��.� (����),
cnac���.

[��] Coscia, M., Giannotti, F., and Pedreschi, D. “A classification for community discovery
methods in complex networks”. Statistical Analysis and Data Mining: The ASA Data Science
Journal �.� (����), pages ���–���.

[��] Crucitti, P., Latora, V., and Marchiori, M. “A topological analysis of the Italian electric power
grid”. Physica A: Statistical Mechanics and its Applications ���.�-� (����), pages ��–��.

[��] Dabbs, B., Adhikari, S., and Sweet, T. “Conditionally Independent Dyads (CID) network
models: A latent variable approach to statistical social network analysis”. Social Networks ��
(����), pages ���–���.

[��] Daudin, J.-J., Picard, F., and Robin, S. “A mixture model for random graphs”. Statistics and
Computing ��.� (����), pages ���–���.

[��] De Bacco, C., Contisciani, M., Cardoso-Silva, J., Safdari, H., Lima Borges, G., Baptista, D.,
Sweet, T., Young, J.-G., Koster, J., Ross, C. T., et al. “Latent network models to account for
noisy, multiply reported social network data”. Journal of the Royal Statistical Society Series A:
Statistics in Society ���.� (����), pages ���–���.

[��] De Bacco, C., Power, E. A., Larremore, D. B., and Moore, C. “Community detection, link
prediction, and layer interdependence in multilayer networks”. Physical Review E ��.� (����),
page ������.

[��] Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. “Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applications”. Physical Review E ��.�
(����), page ������.

[��] Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. “Inference and phase transitions in the
detection of modules in sparse networks”. Physical Review Letters ���.� (����), page ������.

[��] Dempster, A. P., Laird, N. M., and Rubin, D. B. “Maximum likelihood from incomplete data
via the EM algorithm”. Journal of the Royal Statistical Society Series B: Statistical Methodology
��.� (����), pages �–��.

[��] Dunne, J. A., Williams, R. J., and Martinez, N. D. “Food-web structure and network theory:
the role of connectance and size”. Proceedings of the National Academy of Sciences ��.�� (����),
pages �����–�����.

[��] Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., and Apkarian, A. V. “Scale-free brain
functional networks”. Physical Review Letters ��.� (����), page ������.

[��] El Gheche, M., Chierchia, G., and Frossard, P. “OrthoNet: multilayer network data clustering”.
IEEE Transactions on Signal and Information Processing over Networks � (����), pages ���–���.

[��] Erdős, P. and Rényi, A. “On random graphs I”. Publicationes Mathematicae Debrecen �.���-���
(����), page ��.

[��] Erdős, P. and Rényi, A. “On the evolution of random graphs”. Publication of the Mathematical
Institute of the Hungarian Academy of Sciences �.� (����), pages ��–��.

[��] Eriksson, A., Edler, D., Rojas, A., Domenico, M. de, and Rosvall, M. “How choosing random-
walk model and network representation matters for flow-based community detection in
hypergraphs”. Communications Physics �.� (����), page ���.



40 Bibliography

[��] Euler, L. “Solutio problematis ad geometriam situs pertinentis”. Commentarii academiae
scientiarum Petropolitanae (����), pages ���–���.

[��] Everett, B. “An introduction to latent variable models”. Springer, ����.

[��] Failla, A., Citraro, S., and Rossetti, G. “Attributed Stream Hypergraphs: temporal modeling
of node-attributed high-order interactions”. Applied Network Science �.� (����), pages �–��.

[��] Fajardo-Fontiveros, O., Guimerà, R., and Sales-Pardo, M. “Node metadata can produce
predictability crossovers in network inference problems”. Physical Review X ��.� (����),
page ������.

[��] Faloutsos, M., Faloutsos, P., and Faloutsos, C. “On power-law relationships of the internet
topology”. ACM SIGCOMM Computer Communication Review ��.� (����), pages ���–���.

[��] Fortunato, S. “Community detection in graphs”. Physics Reports ���.�-� (����), pages ��–���.

[��] Fortunato, S. and Hric, D. “Community detection in networks: A user guide”. Physics Reports
��� (����), pages �–��.

[��] Funke, T. and Becker, T. “Stochastic block models: A comparison of variants and inference
methods”. PLOS ONE ��.� (����), e�������.

[��] Garlaschelli, D. and Loffredo, M. I. “Patterns of link reciprocity in directed networks”.
Physical Review Letters ��.�� (����), page ������.

[��] Ghasemian, A., Zhang, P., Clauset, A., Moore, C., and Peel, L. “Detectability thresholds and
optimal algorithms for community structure in dynamic networks”. Physical Review X �.�
(����), page ������.

[��] Ghoshdastidar, D. and Dukkipati, A. “Consistency of spectral partitioning of uniform
hypergraphs under planted partition model”. Advances in Neural Information Processing
Systems �� (����).

[��] Ghoshdastidar, D. and Dukkipati, A. “Consistency of spectral hypergraph partitioning under
planted partition model”. The Annals of Statistics ��.� (����), pages ��� –���.

[��] Gilbert, E. N. “Random graphs”. The Annals of Mathematical Statistics ��.� (����), pages ����–
����.

[��] Girvan, M. and Newman, M. E. “Community structure in social and biological networks”.
Proceedings of the National Academy of Sciences ��.�� (����), pages ����–����.

[��] Goldenberg, A., Zheng, A. X., Fienberg, S. E., Airoldi, E. M., et al. “A survey of statistical
network models”. Foundations and Trends® in Machine Learning �.� (����), pages ���–���.

[��] Gopalan, P. K., Gerrish, S., Freedman, M., Blei, D., and Mimno, D. “Scalable inference of
overlapping communities”. Advances in Neural Information Processing Systems �� (����).

[��] Grilli, J., Barabás, G., Michalska-Smith, M. J., and Allesina, S. “Higher-order interactions
stabilize dynamics in competitive network models”. Nature ���.���� (����), pages ���–���.

[��] Guimera, R., Mossa, S., Turtschi, A., and Amaral, L. N. “The worldwide air transportation
network: Anomalous centrality, community structure, and cities’ global roles”. Proceedings of
the National Academy of Sciences ���.�� (����), pages ����–����.

[��] Hanley, J. A. and McNeil, B. J. “The meaning and use of the area under a receiver operating
characteristic (ROC) curve.” Radiology ���.� (����), pages ��–��.



41

[��] Higham, K., Contisciani, M., and De Bacco, C. “Multilayer patent citation networks: A
comprehensive analytical framework for studying explicit technological relationships”.
Technological Forecasting and Social Change ��� (����), page ������.

[��] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. “Stochastic variational inference”.
Journal of Machine Learning Research (����).

[��] Hofman, J. M. and Wiggins, C. H. “Bayesian approach to network modularity”. Physical
Review Letters ���.�� (����), page ������.

[��] Holland, P. W., Laskey, K. B., and Leinhardt, S. “Stochastic blockmodels: First steps”. Social
Networks �.� (����), pages ���–���.

[��] Holland, P. W. and Leinhardt, S. “An exponential family of probability distributions for
directed graphs”. Journal of the American Statistical Association ��.��� (����), pages ��–��.

[��] Holme, P. and Saramäki, J. “Temporal networks”. Physics Reports ���.� (����), pages ��–���.

[��] Hric, D., Peixoto, T. P., and Fortunato, S. “Network structure, metadata, and the prediction of
missing nodes and annotations”. Physical Review X �.� (����), page ������.

[��] Jensen, J. L. W. V. “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”.
Acta Mathematica ��.� (����), pages ���–���.

[��] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. “An introduction to variational
methods for graphical models”. Machine Learning �� (����), pages ���–���.

[��] Kamiński, B., Prałat, P., and Théberge, F. “Hypergraph Artificial Benchmark for Community
Detection (h–ABCD)”. Journal of Complex Networks ��.� (����), cnad���.

[��] Karrer, B. and Newman, M. E. “Stochastic blockmodels and community structure in net-
works”. Physical Review E ��.� (����), page ������.

[��] Keeling, M. J. and Eames, K. T. “Networks and epidemic models”. Journal of The Royal Society
Interface �.� (����), pages ���–���.

[��] Kim, D. I., Gopalan, P. K., Blei, D., and Sudderth, E. “Efficient online inference for bayesian
nonparametric relational models”. Advances in Neural Information Processing Systems �� (����).

[��] Kim, M. and Leskovec, J. “Modeling Social Networks with Node Attributes using the
Multiplicative Attribute Graph Model”. Conference on Uncertainty in Artificial Intelligence
(UAI). AUAI Press, ����, ���–���.

[��] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A. “Multilayer
networks”. Journal of Complex Networks �.� (����), pages ���–���.

[��] Knoblauch, J., Jewson, J., and Damoulas, T. “An optimization-centric view on Bayes’ rule:
Reviewing and generalizing variational inference”. The Journal of Machine Learning Research
��.� (����), pages ����–����.

[��] Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.-K.,
Kishore, N., Hao, T., et al. “Network-based prediction of protein interactions”. Nature
Communications ��.� (����), page ����.

[��] Kritschgau, J., Kaiser, D., Rodriguez, O. A., Amburg, I., Bolkema, J., Grubb, T., Lan, F.,
Maleki, S., Chodrow, P., and Kay, B. “Community Detection in Hypergraphs via Mutual
Information Maximization”. arXiv preprint arXiv:����.����� (����).

[��] Kullback, S. and Leibler, R. A. “On information and sufficiency”. The Annals of Mathematical
Statistics ��.� (����), pages ��–��.



42 Bibliography

[��] Landry, N. W., Lucas, M., Iacopini, I., Petri, G., Schwarze, A., Patania, A., and Torres, L. “XGI:
A Python package for higher-order interaction networks”. Journal of Open Source Software
�.�� (����), page ����.

[��] Latora, V. and Marchiori, M. “Is the Boston subway a small-world network?” Physica A:
Statistical Mechanics and its Applications ���.�-� (����), pages ���–���.

[��] Lee, C. and Wilkinson, D. J. “A review of stochastic block models and extensions for graph
clustering”. Applied Network Science �.� (����), pages �–��.

[��] Lotito, Q. F., Contisciani, M., De Bacco, C., Di Gaetano, L., Gallo, L., Montresor, A., Musciotto,
F., Ruggeri, N., and Battiston, F. “Hypergraphx: a library for higher-order network analysis”.
Journal of Complex Networks ��.� (����), cnad���.

[��] Lotito, Q. F., Musciotto, F., Montresor, A., and Battiston, F. “Hyperlink communities in
higher-order networks”. arXiv preprint arXiv:����.����� (����).

[��] Lusher, D., Koskinen, J., and Robins, G. “Exponential random graph models for social
networks: Theory, methods, and applications”. Cambridge University Press, ����.

[��] Malliaros, F. D. and Vazirgiannis, M. “Clustering and community detection in directed
networks: A survey”. Physics Reports ���.� (����), pages ��–���.

[���] Matias, C. and Miele, V. “Statistical clustering of temporal networks through a dynamic
stochastic block model”. Journal of the Royal Statistical Society Series B: Statistical Methodology
��.� (����), pages ����–����.

[���] McLachlan, G. J. and Krishnan, T. “The EM algorithm and extensions”. John Wiley & Sons,
����.

[���] McPherson, M., Smith-Lovin, L., and Cook, J. M. “Birds of a feather: Homophily in social
networks”. Annual Review of Sociology ��.� (����), pages ���–���.

[���] Meng, X.-L. and Van Dyk, D. “The EM algorithm—an old folk-song sung to a fast new tune”.
Journal of the Royal Statistical Society Series B: Statistical Methodology ��.� (����), pages ���–���.

[���] Murphy, K. P. “Machine learning: a probabilistic perspective”. MIT press, ����.

[���] Newman, M. “Networks”. Oxford University Press, ����.

[���] Newman, M. E. “Communities, modules and large-scale structure in networks”. Nature
physics �.� (����), pages ��–��.

[���] Newman, M. E. and Clauset, A. “Structure and inference in annotated networks”. Nature
Communications �.� (����), page �����.

[���] Newman, M. E. and Girvan, M. “Finding and evaluating community structure in networks”.
Physical Review E ��.� (����), page ������.

[���] Newman, M. E. and Reinert, G. “Estimating the number of communities in a network”.
Physical Review Letters ���.� (����), page ������.

[���] Ng, T. L. J. and Murphy, T. B. “Model-based clustering for random hypergraphs”. Advances
in Data Analysis and Classification (����), pages �–��.

[���] Nowicki, K. and Snĳders, T. A. B. “Estimation and prediction for stochastic blockstructures”.
Journal of the American Statistical Association ��.��� (����), pages ����–����.

[���] Opper, M. and Saad, D. “Advanced mean field methods: Theory and practice”. MIT press,
����.



43

[���] Ormerod, J. T. and Wand, M. P. “Explaining variational approximations”. The American
Statistician ��.� (����), pages ���–���.

[���] Otte, E. and Rousseau, R. “Social network analysis: a powerful strategy, also for the informa-
tion sciences”. Journal of Information Science ��.� (����), pages ���–���.

[���] Pagani, G. A. and Aiello, M. “The power grid as a complex network: a survey”. Physica A:
Statistical Mechanics and its Applications ���.�� (����), pages ����–����.

[���] Papadopoulos, A., Pallis, G., and Dikaiakos, M. D. “Weighted clustering of attributed
multi-graphs”. Computing �� (����), pages ���–���.

[���] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. “Epidemic processes
in complex networks”. Reviews of Modern Physics ��.� (����), page ���.

[���] Peel, L., Larremore, D. B., and Clauset, A. “The ground truth about metadata and community
detection in networks”. Science Advances �.� (����), e�������.

[���] Peel, L., Peixoto, T. P., and De Domenico, M. “Statistical inference links data and theory in
network science”. Nature Communications ��.� (����), page ����.

[���] Peixoto, T. P. “Entropy of stochastic blockmodel ensembles”. Physical Review E ��.� (����),
page ������.

[���] Peixoto, T. P. “Parsimonious module inference in large networks”. Physical Review Letters
���.�� (����), page ������.

[���] Peixoto, T. P. “Efficient Monte Carlo and greedy heuristic for the inference of stochastic block
models”. Physical Review E ��.� (����), page ������.

[���] Peixoto, T. P. “Hierarchical block structures and high-resolution model selection in large
networks”. Physical Review X �.� (����), page ������.

[���] Peixoto, T. P. “Bayesian stochastic blockmodeling”. Advances in Network Clustering and
Blockmodeling (����), pages ���–���.

[���] Peixoto, T. P. “Disentangling homophily, community structure, and triadic closure in
networks”. Physical Review X ��.� (����), page ������.

[���] Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J., and Vaccarino, F.
“Homological scaffolds of brain functional networks”. Journal of The Royal Society Interface
��.��� (����), page ��������.

[���] Pizzuti, C. and Socievole, A. “A differential evolution-based approach for community
detection in multilayer networks with attributes”. Database and Expert Systems Applications:
��st International Conference, DEXA ����, Bratislava, Slovakia, September ��–��, ����, Proceedings,
Part I ��. Springer. ����, pages ���–���.

[���] Praggastis, B., Arendt, D, Joslyn, C, Purvine, E, Aksoy, S, and Monson, K. “HyperNetX”.
Pacific Northwest National Laboratory. Available from: https://github. com/pnnl/HyperNetX (����).

[���] Redhead, D., Maliti, E., Andrews, J. B., and Borgerhoff Mulder, M. “The interdependence of
relational and material wealth inequality in Pemba, Zanzibar”. Philosophical Transactions of
the Royal Society B ���.���� (����), page ��������.

[���] Redhead, D., McElreath, R., and Ross, C. T. “Reliable network inference from unreliable data:
A tutorial on latent network modeling using STRAND.” Psychological Methods (����).

[���] Redner, S. “How popular is your paper? An empirical study of the citation distribution”. The
European Physical Journal B-Condensed Matter and Complex Systems �.� (����), pages ���–���.



44 Bibliography

[���] Robins, G., Pattison, P., Kalish, Y., and Lusher, D. “An introduction to exponential random
graph (p*) models for social networks”. Social Networks ��.� (����), pages ���–���.

[���] Ruggeri, N., Battiston, F., and De Bacco, C. “A principled, flexible and efficient framework
for hypergraph benchmarking”. arXiv preprint arXiv:����.����� (����).

[���] Ruggeri, N., Contisciani, M., Battiston, F., and De Bacco, C. “Community detection in large
hypergraphs”. Science Advances �.�� (����), eadg����.

[���] Safdari, H., Contisciani, M., and De Bacco, C. “Generative model for reciprocity and
community detection in networks”. Physical Review Research �.� (����), page ������.

[���] Safdari, H., Contisciani, M., and De Bacco, C. “Reciprocity, community detection, and link
prediction in dynamic networks”. Journal of Physics: Complexity �.� (����), page ������.

[���] Safdari, H., Contisciani, M., and De Bacco, C. “Anomaly, reciprocity, and community
detection in networks”. Physical Review Research �.� (����), page ������.

[���] Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F., and Sanchez, A. “High-order
interactions distort the functional landscape of microbial consortia”. PLOS Biology ��.��
(����), e�������.

[���] Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C., and Sanders, P. “High-quality
hypergraph partitioning”. ACM Journal of Experimental Algorithmics �� (����), pages �–��.

[���] Schwarz, G. “Estimating the dimension of a model”. The Annals of Statistics (����), pages ���–
���.

[���] Snĳders, T. A. “Stochastic actor-oriented models for network change”. Journal of Mathematical
Sociology ��.�-� (����), pages ���–���.

[���] Snĳders, T. A. “The statistical evaluation of social network dynamics”. Sociological Methodology
��.� (����), pages ���–���.

[���] Snĳders, T. A. and Nowicki, K. “Estimation and prediction for stochastic blockmodels for
graphs with latent block structure”. Journal of Classification ��.� (����), pages ��–���.

[���] Solá, L., Romance, M., Criado, R., Flores, J., Amo, A. García del, and Boccaletti, S. “Eigenvector
centrality of nodes in multiplex networks”. Chaos: An Interdisciplinary Journal of Nonlinear
Science ��.� (����).

[���] Stanley, N., Bonacci, T., Kwitt, R., Niethammer, M., and Mucha, P. J. “Stochastic block models
with multiple continuous attributes”. Applied Network Science �.� (����), pages �–��.

[���] Torres, L., Blevins, A. S., Bassett, D., and Eliassi-Rad, T. “The why, how, and when of
representations for complex systems”. SIAM Review ��.� (����), pages ���–���.

[���] Vázquez, A., Flammini, A., Maritan, A., and Vespignani, A. “Modeling of protein interaction
networks”. Complexus �.� (����), pages ��–��.

[���] Vespignani, A. “Modelling dynamical processes in complex socio-technical systems”. Nature
Physics �.� (����), pages ��–��.

[���] Von Luxburg, U. “A tutorial on spectral clustering”. Statistics and Computing �� (����),
pages ���–���.

[���] Wainwright, M. J., Jordan, M. I., et al. “Graphical models, exponential families, and variational
inference”. Foundations and Trends® in Machine Learning �.�–� (����), pages �–���.

[���] Wasserman, S. and Faust, K. “Social network analysis: Methods and applications”. Cambridge
University Press, ����.



45

[���] Xu, S., Zhen, Y., and Wang, J. “Covariate-assisted community detection in multi-layer
networks”. Journal of Business & Economic Statistics ��.� (����), pages ���–���.

[���] Yang, J., McAuley, J., and Leskovec, J. “Community detection in networks with node
attributes”. ���� IEEE ��th International Conference on Data Mining. IEEE. ����, pages ����–
����.

[���] Yang, T., Chi, Y., Zhu, S., Gong, Y., and Jin, R. “Detecting communities and their evolutions in
dynamic social networks—a Bayesian approach”. Machine Learning �� (����), pages ���–���.

[���] Yook, S.-H., Jeong, H., and Barabási, A.-L. “Modeling the Internet’s large-scale topology”.
Proceedings of the National Academy of Sciences ��.�� (����), pages �����–�����.

[���] Zegura, E. W., Calvert, K. L., and Bhattacharjee, S. “How to model an internetwork”.
Proceedings of IEEE INFOCOM’��. Conference on Computer Communications. Volume �. IEEE.
����, pages ���–���.

[���] Zhou, D., Huang, J., and Schölkopf, B. “Learning with hypergraphs: Clustering, classification,
and embedding”. Advances in Neural Information Processing Systems �� (����).





A Appendix

A.1 Published papers

In what follows, we present the ten peer-reviewed publications that are referenced within the
dissertation.



1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15736   | https://doi.org/10.1038/s41598-020-72626-y

www.nature.com/scientificreports

community detection with node 
attributes in multilayer networks
Martina contisciani1, eleanor A. power  2 & caterina De Bacco1*

community detection in networks is commonly performed using information about interactions 
between nodes. Recent advances have been made to incorporate multiple types of interactions, thus 
generalizing standard methods to multilayer networks. often, though, one can access additional 
information regarding individual nodes, attributes, or covariates. A relevant question is thus how 
to properly incorporate this extra information in such frameworks. Here we develop a method 
that incorporates both the topology of interactions and node attributes to extract communities in 
multilayer networks. We propose a principled probabilistic method that does not assume any a priori 
correlation structure between attributes and communities but rather infers this from data. this leads 
to an efficient algorithmic implementation that exploits the sparsity of the dataset and can be used 
to perform several inference tasks; we provide an open-source implementation of the code online. 
We demonstrate our method on both synthetic and real-world data and compare performance with 
methods that do not use any attribute information. We find that including node information helps in 
predicting missing links or attributes. it also leads to more interpretable community structures and 
allows the quantification of the impact of the node attributes given in input.

Community detection is a fundamental task when investigating network data. Its goal is to cluster nodes into 
communities and thus find large-scale patterns hidden behind interactions between many individual elements.

The range of application of this problem spans several disciplines. For instance, community detection has 
been used in sociology to analyze terrorist groups in online social  networks1; in finance to detect fraud events 
in telecommunication  networks2; in engineering to refactor software packages in complex software  networks3; 
and in biology to investigate lung  cancer4 and to explore epidemic spreading  processes5. In recent years, the 
variety of fields interested in this topic has broadened and the availability of rich datasets is increasing accord-
ingly. However, most research approaches use only the information about interactions among nodes, in other 
words the network topology structure. This information can be complex and rich, as is the case for multilayer 
networks where one observes different types of interactions. For instance, in social networks, interactions could 
entail exchanging goods, socializing, giving advice, or requesting assistance. Most network datasets, however, 
contain additional information about individuals, attributes which describe their features, for instance their 
religion, age, or ethnicity. Node attributes are often neglected a priori by state-of-the-art community detection 
methods, in particular for multilayer networks. They are instead commonly used a posteriori, acting as candi-
dates for “ground-truth” for real-world networks to measure the quality of the inferred  partition6,7, a practice 
that can also lead to incorrect scientific  conclusions8. It is thus a fundamental question how to incorporate node 
attributes into community detection in a principled way. This is a challenging task because one has to combine 
two types of  information9, while evaluating the extent to which topological and attribute information contribute 
to the network’s  partition10.

To tackle these questions, we develop MTCOV, a mathematically rigorous and flexible model to address 
this problem for the general case of multilayer networks, i.e., in the presence of different types of interactions. 
The novelty of this model relies on a principled combination of the multilayer structure together with node 
information to perform community detection. To the best of our knowledge, MTCOV is the first overlapping 
community detection method proposed for multilayer networks with node attributes. The model leverages two 
sources of information, the topological network structure and node covariates (or attributes), to partition nodes 
into communities. It is flexible as it can be applied to a variety of network datasets, whether directed, weighted, 
or multilayer, and it outputs overlapping communities, i.e., nodes can belong to multiple groups simultane-
ously. In addition, the model does not assume any a priori correlation structure between the attributes and the 
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communities. On the contrary, the contribution of the attribute information is quantitatively given as an output of 
the algorithm by fitting the observed data. The magnitude of this contribution can vary based on the dataset. Even 
if this is not very high (for instance if the attributes are noisy or sparse) the model is nevertheless able to use this 
extra information to improve performance. At the same time, if incorporating attribute information hurts infer-
ence tasks, the model will downweigh this contribution and instead use mostly the topological network structure.

Our method allows domain experts to investigate particular attributes and select relevant community parti-
tions based on what type of node information they are interested in studying. In fact, by choosing the input data, 
we can drive the algorithm to select for communities that are more relevant to the attribute under study. If the 
attribute hurts performance and is consequently downweighted by the algorithm, this can be used as a signal that 
the attribute might not correlate well with any partition, given the remaining topological information available, 
and thus inform the expert accordingly.

We study MTCOV on synthetic multilayer networks, a variety of single-layer node-attributed real networks 
and several real multilayer networks of social support interactions in two Indian villages. We measure perfor-
mance based on prediction tasks and overlap with ground-truth (when this is known). For single-layer networks, 
we compare the performance of MTCOV to state-of-the-art community detection algorithms with node attrib-
utes; for multilayer networks, we test against a state-of-the-art algorithm that does not use any node attribute 
information and measure the extent to which knowing both types of information helps inference. We find that 
MTCOV performs well in predicting missing links and attributes. It also leads to more interpretable community 
structures and allows the quantification of the impact of the node attributes given as input.

To summarize, we present MTCOV, a new method that incorporates both the topology of interactions and 
node attributes to extract communities in multilayer networks. It is flexible, efficient and it has the property of 
quantitatively estimating the contributions of the two sources of information. It helps domain experts to inves-
tigate particular attributes and to better interpret the resulting communities. Moreover, by including relevant 
node attributes, it boosts performance in terms of edge prediction.

Related work.  Several methods have been proposed to study community detection in  networks11. In par-
ticular, we are interested in those valid for multilayer  networks12. These generalize single-layer networks in that 
they can model different types of interactions and thus incorporate extra information that is increasingly avail-
able. Among these, we focus on generative models for multilayer  networks13–19, which are based on probabilistic 
modeling like Bayesian inference or maximum likelihood optimization. These are flexible and powerful in terms 
of allowing multiple inference tasks, injecting domain knowledge into the theoretical framework, and being 
computationally efficient. However, the majority of these methods do not consider node attributes as input 
along with the network information. In fact, the few methods developed for community detection in multilayer 
networks with node attributes are based on first aggregating the multilayer network into a single layer, either 
by combining directly the adjacency matrices of each  layer20 or by using similarity matrices derived from them 
along with the node  attributes21,22. In the context of data mining, a similar problem can be framed for learning 
low dimensional representations of heterogeneous data with both content and linkage structure (what we call 
attributes and edges). This is tackled by using embeddings extracted via deep  architectures23, which is rather 
different than our approach based on statistical inference. Our problem bears some common ground with the 
one studied by Sachan et al.24 for extracting communities in online social networks, where users gather based on 
common interests; they adopt a Bayesian approach, but with a rather different goal of associating different types 
of edges to topics of interest. A related but different problem is that of performing community detection with 
node attributes on multiple independent  networks25,26; this differs with modeling a single multilayer network in 
that it assumes that covariates influence in the same way all the nodes in a network but in a different way the 
various networks in the ensemble. For single-layer networks, there has been more extensive work recently on 
incorporating extra information on  nodes9,25,27–34. Among those adopting probabilistic modeling, some incor-
porate covariate information into the prior information of the latent membership  parameters25,35,36, while others 
include covariates in an additive way along with the latent  parameters37,38, so that covariates influences the prob-
ability of interactions independently of the latent membership.

These works show the impact of adding nodes attributes in community detection a priori into the models to 
uncover meaningful patterns. One might then be tempted to adopt such methods also in multilayer networks 
by collapsing the topological structure into a suitable single network that can then be given in input to these 
single-layer and node-attributed methods as done by Gheche et al.20. However, collapsing a multilayer network 
often leads to important loss of information, and one needs to be careful in determining when this collapse is 
appropriate and how it should be implemented, as shown for community detection methods without attribute 
 information39,40. Thus the need of a method that not only incorporates different types of edges but also node 
attributes.

Results
We test MTCOV’s ability to detect communities in multilayer networks with node attributes by considering 
both synthetic and real-world datasets. We compare against  MULTITENSOR13, an algorithm similar to ours 
but that does not include node attributes. We also test MTCOV’s performance on single-layer networks, as the 
mathematical framework behind MTCOV still applies. Given this potential use and the paucity of algorithms 
suitable for comparison for multilayer networks, such comparisons assess the general utility of MTCOV.

Multilayer synthetic networks with ground-truth.  To illustrate the flexibility and the robustness of 
our method, we generate multilayer synthetic networks with different kinds of structures in the various layers 
adapting the protocol described in De Bacco et al.13 to accommodate node attributes. We generate attributes as 
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done in Newman and  Clauset27: we match them with planted communities in increasing ratios varying from 0.3 
to 0.9; these values correspond also to the γ parameters that we fix for MTCOV. Specifically, we generate three 
types of directed networks using a stochastic block  model41, all with C = 2 communities of equal-size unmixed 
group membership and N = 1000 nodes, but with different numbers and kinds of layers, similar to De Bacco 
et al.13. The first network ( G1 ) has L = 2 layers, one assortative ( Wα has higher diagonal entries) and one disas-
sortative ( Wα has higher off-diagonal entries); the second ( G2 ) has L = 4 layers, two assortative and two disas-
sortative and the third ( G3 ) has L = 4 layers, one assortative, one disassortative, one core-periphery ( Wα has 
higher diagonal entries but one of the two is bigger than the other) and one with biased directed structure ( Wα 
has higher off-diagonal entries but one of the two is bigger than the other). We generate ten independent samples 
of each of these types of networks and use all the evaluation metrics described in the “Methods” section in the 
presence of ground-truth. We use the membership inferred by the algorithms using the best maximum likeli-
hood fixed point over 10 runs with different random initial conditions. As shown in Table 1, MTCOV performs 
significantly better than MULTITENSOR on the first and second network. This suggests that incorporating 
attribute information can significantly boost inference, with an increasing benefit for a smaller number of layers. 
Figure 1 shows an example of this result. Notice that G2 requires a smaller match ( γ = 0.5) between attributes 
and communities than G1 ( γ = 0.7) to achieve similar performance. G1 and G2 have similar structure, but the 
second has twice as many layers. Thus, increasing the number of layers may require less contribution from the 
extra information of the attributes, a possible advantage for multilayer networks. This intuition is reinforced by 
noticing not only that the best performance is achieved for γ < 0.9 , but also that both the algorithms perform 
very well in the third network, regardless of the value of the match between attributes and communities. Con-

Table 1.  Performance of algorithms MULTITENSOR and MTCOV on synthetic multilayer networks with 
attributes. We use different matches (one per row, e.g., MTCOV_0.3 denotes a match of 0.3, this is also 
the value we use to fix γ ) between attributes and planted communities on synthetic directed multilayer 
networks. Results are averages and standard deviations over 10 networks samples for each network type Gm , 
m = 1, 2, 3 ; we take the average performance over the incoming and outgoing memberships, i.e., the matrices 
U and V, and the best performances are in boldface. Networks are generated with stochastic block model 
with C = 2 , N = 1000 and average degree k = 4 . Denote Wa , Wd , Wcp and Wbd , the affinity matrices of the 
assortative, disassortative, core-periphery and the biased directed layers respectively. Then, their entries are 
wa
11 = wa

22 = wd
12 = wd

21 = w
cp
11 = wbd

12 =
kC
N  , wa

12 = wa
21 = wd

11 = wd
22 = w

cp
12 = w

cp
21 = wbd

11 = wbd
22 = 0.1×

kC
N  

and wcp
22 = wbd

12 = 0.03×
kC
N  . The F1-score, Jaccard, CS and L1 are performance metrics as defined in the 

“Methods” section.

Method

G1 G2 G3

F1-score Jaccard CS L1 F1-score Jaccard CS L1 F1-score Jaccard CS L1

MULTITENSOR 0.512± 0.006 0.344± 0.006 0.585± 0.005 0.492± 0.004 0.514± 0.006 0.346± 0.06 0.614± 0.005 0.490± 0.005 0.999± 0.001 0.998± 0.001 0.991± 0.001 0.063± 0.002

MTCOV_0.3 0.7± 0.2 0.5± 0.2 0.7± 0.1 0.4± 0.1 0.8± 0.2 0.7± 0.2 0.8± 0.1 0.3± 0.2 0.995± 0.002 0.990± 0.004 0.984± 0.002 0.080± 0.004

MTCOV_0.5 0.6± 0.1 0.5± 0.2 0.7± 0.1 0.4± 0.1 0.992± 0.005 0.985± 0.009 0.986± 0.004 0.064± 0.004 0.996± 0.002 0.992± 0.004 0.985± 0.002 0.079± 0.004

MTCOV_0.7 0.988± 0.002 0.976± 0.004 0.977 ± 0.002 0.079± 0.003 1.± 0. 1.000± 0.001 0.991± 0.001 0.062± 0.002 0.994± 0.002 0.988± 0.004 0.982± 0.001 0.087± 0.002

MTCOV_0.9 0.958± 0.003 0.920± 0.005 0.977 ± 0.001 0.050± 0.002 0.992± 0.002 0.984± 0.004 0.988± 0.001 0.050± 0.002 0.976± 0.003 0.952± 0.006 0.982± 0.002 0.051± 0.003

Figure 1.  Partition of a synthetic multilayer network with attributes. We generated synthetic directed multilayer 
networks using a stochastic block model, that aligns with G1 . To illustrate, here we do the equivalent task on 
a smaller network of size N = 299, C = 2 communities of equal-size unmixed group membership and L = 2 
layers, of which one is assortative (green) and one disassortative (pink); (a) the ground-truth partition; (b–d) 
the communities inferred by three different methods: (b) MULTITENSOR, an algorithm without attributes, 
(c) MTCOV using the network structure and the attributes with the same proportion, i. e. γ = 0.5 and (d) 
MTCOV using mostly the attribute structure, i.e. γ = 0.7 . Colors denote the inferred partition; the attributes 
in (c) and (d) are generated by matching them with true community assignments for the 50% and 70% of the 
nodes respectively, and chosen uniformly at random from the non-matching values; square and triangle denote 
the synthetic dummy attribute (squares are matched with the red group, triangles with the blue) and the size of 
the node shows the nodes matched with the true community (bigger means deterministic match, smaller means 
uniform at random match). We use the matrix U for the membership.
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trary to G2 , G3 has a different structure in each of the 4 layers. This diversity can be even more beneficial than 
having more but correlated layers (as in G1 vs. G2 ). These synthetic tests demonstrate the impact of leveraging 
both node attributes and topological information: when topological structure is not very informative (as in G1 
with only two layers), adding node attributes can significantly help in recovering the communities. In contrast, 
when topological information is more complex (as in G3 where all layers are different), properly combining the 
different layers’ structures can compensate for a limited access to extra information on nodes. Overall, this shows 
the need for methods suited for exploiting various sources of information and the complexity behind multilayer 
networks.

Multilayer social support network of rural indian villages.  We demonstrate our model beyond syn-
thetic data by applying it to social support networks of two villages in Tamil Nadu, India, which we call by the 
pseudonyms “Tenpaṭṭi” (Ten) and “Alakāpuram” (Ala)42–44. Data were collected in the form of surveys where 
adult residents were asked to nominate those individuals who provided them with various types of support, 
including running errands, giving advice, and lending cash or other household items. These were collected in 
two rounds, one in 2013 and the other in 2017. Each type of support corresponds to a layer in the network; we 
consider only those layers present in both rounds, for a total of L = 6 layers. After pre-processing the data, by 
considering only those individuals who had at least one outgoing edge and removing self-loops, the resulting 
networks have the size reported in Table 2. In addition, several attributes were collected, which include informa-
tion about age, religion, caste, and education level. Ethnographic observation in these  villages42 and previous 
 analyses43,44 suggest that social relations are strongly structured by religious and caste identity, with these divi-
sions shaping where people live, who they marry, and who they choose to associate with. In other words, they 
suggest a dependence between the attributes Religion and Caste and the mechanisms driving edge formation in 
these social support networks. Motivated by these insights, here we consider the attributes Caste and Religion 
and add them into the model. In addition, we test the importance of variables that we expect to be less informa-
tive, such as gender and age. The latter, being continuous, is also an example of a non-categorical variable. Pro-
vided it has a finite range, as it is the case for age, we can encode it into categorical by binning its values. Here we 
use equal bins of size 5 years.

Without assuming a priori any ground-truth, we measure performance using the AUC and accuracy as 
explained in the “Methods” section. We compare with MULTITENSOR to measure the extent to which adding 
the attributes helps predicting edges and attributes; in addition, in terms of accuracy values, we consider two 
baselines for further comparisons: (1) a uniform at random probability over the number of possible catego-
ries (RP); and (2) the maximum relative frequency of the attribute value appearing more often (MRF). We fix 
hyperparameters using 5-fold cross-validation along with grid-search procedure (see “Cross-validation tests and 
hyperparameter settings” section for more details). We obtain values of γ ∈ [0.2, 0.9] , signalling relevant cor-
relations between attributes and communities. For details, see Supplementary Table S2. Empirically, we observe 
that when γ > 0.5 the algorithm achieves better performance in terms of link and attribute prediction by well 
balancing the log-likelihood of the attribute dimension and the one of the network structure.

For validation, we split the dataset into training/test sets uniformly at random as explained in the “Methods” 
section. Table 3 reports the average results over ten runs for each network, and shows that MTCOV is capable of 
leveraging two sources of information to improve both performance metrics. In fact, our algorithm systemati-
cally achieves the highest accuracy for attribute prediction and the highest AUC for edge prediction (boldface). 
While a good performance in attribute prediction is expected by design as we add this data into the model, the 
fact that it also boosts performance in terms of edge prediction is not granted a priori. Instead, it is a quantita-
tive way to show that an attribute plays an important role in the system. It also demonstrates the potential of 
capturing correlations between two different sources of information, which can have relevant applications, in 
particular when missing information of one kind. Notice in particular the improvement in AUC when using 
caste compared to no attribute given (MULTITENSOR). The other attributes are less informative; in particular 
age has a performance similar to MULTITENSOR in edge prediction, signalling that it does not contribute to 
inform edge formation. Indeed, it has the smallest inferred γ (always < 0.5 ), which gives also worse accuracy 
performance than the baseline, signalling again that this attribute may not be correlated with the community 
structure. All these results show the flexibility of MTCOV in adapting based on the data given in input: if 
warranted, it is able to ignore those attributes that are not correlated with network division and instead find 
communities that are mainly based on the network structure. Next, we test how adding node attributes impacts 
robustness against unbalanced data, where the ratio of positive examples (existing edges) observed in the train-
ing is different than that in the test set. We denote the total probability of selecting an edge in the test as tpe 

Table 2.  Network summary statistics for the four social support networks of Indian villages. Each has 
the same set of 6 layers and Edges are the total over them; ⟨k⟩ is the average degree per node on the whole 
multilayer network. The columns Caste, Religion, Age and Gender are the number of different categories 
observed in each network for their respective attribute.

Village Year Nodes Edges ⟨k⟩ Caste Religion Age Gender

Alakāpuram
2013 419 4,161 20 14 3 11 2
2017 441 5,578 25 13 3 12 2

Tenpaṭṭi
2013 362 3,374 19 11 2 11 2
2017 346 3,806 22 9 2 12 2
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and consider values tpe ∈ {0.001, 0.004, 0.015, 0.03} denoting under-representation (0.001), equal (0.004), and 
over-representation (values 0.015 and 0.03) compared to the uniform at random selection (empirically we find 
tpe = 0.004 ). In these tests, we hold out 20% of the entries of A biasing their selection using the tpe values; in 
addition, we give as input the whole design matrix X (attributes) and measure link prediction performance. We 
observe that MTCOV is significantly more robust than the algorithm that does not use any attribute informa-
tion, regardless of the value of γ . In fact, even though performance deteriorates as we decrease the number of 
positive examples in the training set (i.e., higher tpe), MTCOV is less impacted by this, as shown in Fig. 2 (results 
reported in Supplementary Table S3). Notice in particular performance discrepancies when using the attribute 

Table 3.  Prediction performance on real multilayer networks with attributes. Results are averages and 
standard deviations over 10 independent trials of cross-validation with 80–20 splits selected uniformly at 
random (i.e., tpe = 0.004 ); the best performances are in boldface. Datasets are described in Table 2. RP is 
the performance of uniform random probability and MRF the one of the maximum relative frequency, see 
“Methods” section for details.

Attribute Method
ACC URA CY for attribute prediction AUC for link prediction
Ala 2013 Ala 2017 Ten 2013 Ten 2017 Ala 2013 Ala 2017 Ten 2013 Ten 2017

MULTITENSOR 0.771± 0.009 0.835± 0.006 0.758± 0.005 0.81± 0.01

Caste
RP 0.07 0.08 0.10 0.11
MRF 0.556± 0.009 0.57± 0.01 0.32± 0.01 0.33± 0.02

MTCOV 0.80± 0.05 0.77 ± 0.05 0.69± 0.09 0.74 ± 0.07 0.837 ± 0.009 0.858± 0.008 0.829± 0.006 0.82± 0.01

Religion
RP 0.33 0.33 0.50 0.50
MRF 0.837± 0.008 0.843± 0.006 0.696± 0.008 0.679± 0.008

MTCOV 0.96± 0.02 0.95± 0.03 0.76± 0.08 0.80± 0.05 0.813± 0.007 0.83± 0.01 0.81± 0.02 0.80± 0.01

Age
RP 0.09 0.08 0.09 0.08
MRF 0.135± 0.005 0.126± 0.007 0.126± 0.005 0.128± 0.008

MTCOV 0.11± 0.03 0.11± 0.02 0.13± 0.04 0.10± 0.03 0.80± 0.01 0.823± 0.008 0.783± 0.009 0.80± 0.01

Gender
RP 0.50 0.50 0.50 0.50
MRF 0.584± 0.009 0.58± 0.01 0.56± 0.01 0.55± 0.01

MTCOV 0.61± 0.05 0.65± 0.04 0.58± 0.08 0.71± 0.08 0.79± 0.02 0.831± 0.009 0.80± 0.01 0.81± 0.01

Figure 2.  Probabilistic link prediction with biased edge sampling. Results are AUC values of MTCOV and 
MULTITENSOR on four social support networks in different held-out settings. Here tpe indicates the total 
probability of selecting one edge (positive example) in the test set. We consider Caste, Religion, Age and Gender 
attributes; results are averages and standard deviations over 10 independent runs.
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Caste in the difficult regimes ( tpe ∈ {0.015, 0.03} ): MTCOV’s performance deteriorates only a little, while using 
the other attributes or no attribute makes performance significantly worse, with AUC down to 0.6 from a value 
higher than 0.8 for easier regimes. Moreover, notice that attributes with the same scaling parameter value can 
give different prediction results, underlying the necessity to consider both the value of the estimated γ and the 
quality of the attribute to quantify its importance. This could explain why Caste provides always better results, 
given by the fact that its categories are more heterogeneous (i.e., more information) than Religion and Gender. 
The robustness of MTCOV is also confirmed by analyzing the performances on a trial-by-trail basis, each trial 
being a random sample of the held-out entries. As we show in Fig. 3, MTCOV better predicts links in 89% of 
the trials and never goes below the threshold of 0.5, the baseline random choice. These results demonstrate how 
adding another source of information helps when observing a limited amount of network edges.

Qualitative analysis of a social support network. To demonstrate our MTCOV model beyond prediction tasks 
and highlight its potential for interpretability, we show as an example its qualitative behavior on the real network 
of Alakāpuram in 2017 (see Table 2). Specifically, we compare the communities extracted by our algorithm and 
those inferred by MULTITENSOR. To ease comparison, we fix the same number of groups to C = 4 for both 
algorithms and measure how caste membership distributes across communities, and fix γ = 0.8 as obtained 
with cross-validation. Figure 4 shows the magnitude of each individual’s inferred outgoing memberships ui in 
each group. While the communities identified by MTCOV and MULTITENSOR show substantial similarities, 
MTCOV generally classifies castes more consistently into distinct communities, as we show in Figs. 4 and 5. To 
make a quantitative estimate of the different behaviors, we measure the entropy of the attribute inside each com-
munity Hk = −

PZ
z=1 fz log fz/ log(Z) , where fz is the relative frequency of the z-th caste inside a group k, and 

the denominator is the entropy of a uniform distribution over the Z castes, our baseline for comparison. Values 
of Hk close to 1 denote a more uniform distribution of castes, whereas smaller values denote an unbalanced 
distribution with most of the people belonging to a few castes. We find that MTCOV has smaller entropies over 
the groups, with two groups having the smallest values, whereas MULTITENSOR has the highest, showing its 
tendency to cluster individuals of different castes into the same group. In addition, we observe that MTCOV 
has a more heterogenous group size distribution which seems to be correlated with caste. Notably, the algo-
rithms differ in how they place two caste groups that live in hamlets separated from the main village (the Hindu 
Yātavars and CSI Paraiyars). With MULTITENSOR, they are grouped together, while with MTCOV, the Hindu 
Yātavars are joined up into a community with Paḷḷars and Kulālars. While MULTITENSOR is clearly picking 
up the structural similarities of the two hamlets, this division makes little sense socially and culturally. In con-
trast, the way in which MTCOV defines a community which spans caste boundaries (MTCOV C1) aligns with 
ethnographic knowledge of the relations between these castes. Finally, we remark that there might be multiple 
meaningful community divisions in the network, and the fact that MTCOV’s partition seems to better capture 
the distributions in the attribute caste does not mean than one algorithm is better than the other. In fact, there 
might be other hidden topological properties that MULTITENSOR’s partition is picking up by being agnostic to 

Figure 3.  Trial-by-trial probabilistic link prediction with biased edge sampling. The values of AUC for MTCOV 
and MULTITENSOR are shown on the vertical axis and the horizontal axis respectively. The brightness 
represents the hardness of the settings in terms of biasing the edge sampling in the training. From bottom to top: 
tpe = 0.03 (hard, dark color), tpe = 0.015 , tpe = 0.004 (random), tpe = 0.001 (easy, light color). Points above 
the diagonal, shown in shades of red, are trials where MTCOV is better performing than MULTITENSOR. The 
fractions for which each method is superior are shown in the plot legend. We use the attribute Religion.
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Figure 4.  Attributes and inferred communities. Nodes of the social support network of Alakāpuram in 2017 are 
colored by: (a) the attribute Caste (with colors as shown in Fig. 5); inferred communities by (b) MTCOV and (c) 
MULTITENSOR. Darker values in the grey scales indicate higher values of the entry of the membership vector 
ui.

Figure 5.  Partition of the attribute Caste inside each community detected by MTCOV and MULTITENSOR 
in the social support network of Alakāpuram in 2017. The category Other contains small categories having less 
than five individuals. The label on top of each bar is the value of the entropy of the variable Caste inside the 
corresponding community. Note that nodes can have mixed membership, here we build a group k by adding 
to it all nodes i that have a non-zero k-th entry uik . The number of nodes is N = 441 , corresponding to the 
maximum value of the y-axis plotted.
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caste membership. The choice of which algorithm to use should be made based on the final goal of the applica-
tion at hand. 

Results on single-layer networks.  Our model can be used for single-layer networks as well. For these 
we can compare against two state-of-the-art algorithms, both probabilistic generative models but different in 
their assumptions:  CESNA9 which considers overlapping communities and posits two independent Bernoulli 
distributions for network edges and node attributes; and the model proposed by Newman and  Clauset27 (NC) for 
non-overlapping communities, a Bayesian approach where the priors on the community memberships depend 
on the node attributes. CESNA, similarly to our model, assumes conditional independence of the two likeli-
hoods and introduces a regularization parameter between them; it uses block-coordinate ascent for parameters’ 
estimation, while NC uses an EM algorithm for parameters’ estimation, similarly to what we do here. We test 
MTCOV against them on both synthetic and real single-layer networks with node attributes, with and without 
ground-truth. We transform directed networks to undirected because both CESNA and NC do not distinguish 
for edge directionality. Results on synthetic data show that MTCOV and NC have similar performance in cor-
rectly classifying nodes in their ground-truth communities and both are better than CESNA; the main differ-
ence is that MTCOV is more stable and has less variance for high attribute correlation, in particular in the hard 
regime where classification is more difficult. We leave details in the Supplementary Section S4. For single-layer 
real networks, we use datasets with ground-truth candidates and node attributes: the ego-Facebook network 
(facebook)45, a set of 21 networks built from connections between a person’s friends where potential ground-
truth are circles of friends hand-labeled by the ego herself; the American College football network (football)46, a 
network of football teams playing against each other, where a ground-truth candidate is the conference to which 
each team belongs; and a network of political blogs (polblogs)47 where potential ground-truth communities are 
divided by left/liberal and right/conservative political parties, see Supplementary Section S4 for details. For each 
network, we run a 5-fold cross-validation procedure combined with grid-search for fixing the hyperparameter 
γ (see “Cross-validation tests and hyperparameter settings” section for details; note that in this case we use the 
ground-truth value of C, hence γ is the only hyperparameter left to be tuned). For facebook we find that the 
average over the 21 networks is γ = 0.15 , which signals a low correlation between the covariates and the com-
munities, whereas for the football and polblogs networks we obtain much higher values of γ equal to 0.6 and 0.75 
respectively. MTCOV has better performance in terms of F1-score and Jaccard similarity across the majority of 
datasets, as shown in Table 4. This is also supported by a trial-by-trial comparison shown in Fig. 6 for F1-score 
(similar results are obtained for Jaccard), where we find that MTCOV is more accurate in 59% and 90% of the 
cases than NC and CESNA, respectively.

Discussion
We present MTCOV, a generative model that performs overlapping community detection in multilayer networks 
with node attributes. We show its robustness in adapting to different scenarios, and its flexibility in exploiting the 
attributes that are more informative while ignoring those that are less correlated with the network communities. 
Our method is capable of estimating quantitatively the contribution given by the attributes and incorporating 
them to improve prediction performance both in terms of recovering missing attributes and in terms of link 
prediction. This allows domain experts to investigate particular attributes and select relevant community parti-
tions based on what type of node information they are interested in investigating. There are valuable possible 
extensions of this work. One example is to incorporate modeling of more complex data types for the attributes, 
for instance combinations of discrete and continuous attributes, or other types of extra information, like time-
varying network elements, whether the attributes, node, edges or combinations of these. From a technical point 
of view, when the topological and attribute datasets are very unbalanced in size, this might impact their rela-
tive likelihood weight and thus inference. One should then consider automating the process of rescaling them 
accordingly, as a pre-processing step to be incorporated into the model. Similarly, hyperparameter selection 
would benefit from an automatized routine when more than one performance metric is considered. The rela-
tions between attributes and communities could be transferred across networks to predict missing information 
when having access to similar but incomplete datasets. We show examples of these here, where we studied two 
snapshots of the same village networks across time. While we leave these questions for future work, we provide 
an open source version of the code.

Table 4.  Performance of methods MTCOV, NC and CESNA on three datasets, according to two different 
measures used in the Eq. (16). The results are averages and standard deviations over ten independent runs and 
the best outcomes are bolded.

Method
F1-score Jaccard similarity
facebook football polblogs facebook football polblogs

MTCOV 0.5± 0.1 0.86± 0.03 0.8± 0.2 0.4 ± 0.1 0.82± 0.04 0.8± 0.2

NC 0.48± 0.08 0.82± 0.06 0.95± 0.09 0.36± 0.08 0.75± 0.08 0.9± 0.1

CESNA 0.46± 0.09 0.7± 0.0 0.6± 0.0 0.33± 0.08 0.6± 0.0 0.4± 0.0
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Methods
We adapt recent ideas from the generative model behind  MULTITENSOR13, a multilayer mixed-membership 
model based on a Poisson tensor  factorization48, to incorporate node attributes in a principled manner. It can 
take in input directed and undirected networks, allowing different topological structures in each layer, including 
arbitrarily mixtures of assortative, disassortative and core-periphery structures. We move beyond MULTITEN-
SOR by incorporating node covariates via introducing a proper likelihood term that accounts for this extra 
information. We use the formalism of maximum likelihood estimation: we combine the structural and the node 
information into a global likelihood function and provide a highly scalable Expectation-Maximization algorithm 
for the estimation of parameters.

Model description and notation.  Consider a multilayer network of N nodes and L layers. This is a set 
of graphs G = {G(α)

(

V ,E (α)
)

}1≤α≤L defined on a set V of N vertices shared across L ≥ 1 layers, and E (α) 
is the set of edges in the layer α . Each layer α ∈ {1, . . . , L} is a graph G(α)(V ,E (α)) with adjacency matrix 
A(α) = [a(α)ij ] ∈ RN×N , where a(α)ij  is the number of edges of type α from i to j; here we consider only positive 
discrete entries; for binary entries, E =

P
i,j,α a

(α)
ij  is the total the number of edges. Alternatively, we can consider 

a 3-way tensor A with dimensions N × N × L . In addition, for each node i ∈ V consider the vector of covari-
ates Xi ∈ R1×K (alternatively called also attributes or metadata), where K is the total number of attributes. Here, 
for simplicity we focus on the case of K = 1 and categorical covariates with Z different categories. However, we 
can easily generalize to more than one covariate by encoding each possible combination of them as a different 
value of one single covariate. For example, for two covariates being gender and nationality, we can encode Xi 
being one covariate with possible values female/American, male/Spanish and so forth. One could also consider 
real-valued covariates by cutting them into bins. Nevertheless, a future expansion should include the possibility 
to work with any type of metadata.

A community is a subset of vertices that share some properties. Formally, each node belongs to a com-
munity to an extent measured by a C-dimensional vector denoted membership. Since we are interested in 
directed networks, for each node i we assign two such vectors, ui and vi (for undirected networks we set u = v ); 
these determine how i forms outgoing and incoming links respectively. Each layer α has an affinity matrix 
W (α) = [w(α)

kl ] ∈ RC×C which describes the density of edges between each pair (k, l) of groups. Each community 
k ∈ {1, . . . ,C} is linked to a category z ∈ {1, . . . ,Z} by a parameter βkz , that explains how much information of 
the z-th category is used to create the k-th community. To summarize, we consider two types of observed data: 
the adjacency tensor A = {A(α)}1≤α≤L and the design matrix X = {Xi}i∈{1,...,N} ; the first contains information 
about the networks topology structure, the latter about the node covariates. In addition, we have the model 
parameters that we compactly denote as Θ = {U ,V ,W ,β}.

The goal is to find the latent parameters Θ using the data A and X. In other words, given an observed multilayer 
network with adjacency tensor A and design matrix X, our goal is to simultaneously infer the node’s membership 
vectors ui and vi ∀i ∈ {1, . . . ,N} ; the affinity matrices W (α) , ∀α ∈ {1, . . . , L} , and the matrix β = [βkz] ∈ RC×Z , 
which captures correlations between communities and attributes. A visual overview of the proposed model is 
shown in Fig. 7. We consider a probabilistic generative model where MTCOV generates the network and the 

Figure 6.  Trial-by-trial performance in F1-score. We compare MTCOV on the y-axis, with on the x-axis (left) 
NC and (right) CESNA. Markers denote the datasets: squares for facebook, triangles for football and circles for 
polblogs. Points above the diagonal, shown in red, are trials where MTCOV is more accurate than the other. The 
fractions for which each method is superior are shown in the plot legend.
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attributes probabilistically, assuming an underlying structure consisting of C overlapping communities. We 
adopt a maximum likelihood approach where, given the latent parameters Θ , we assume that the data A and X 
have independent likelihoods; in other words, we assume that A and X are conditionally independent given the 
latent parameters Θ . In addition, we assume that the memberships U and V couple the two datasets, as they are 
parameters shared between the two likelihoods; whereas the W and β are specific to the adjacency and design 
matrix respectively. We describe separately the procedures for modeling the topology of the network and the 
node attributes and then we show how to combine them in a unified log-likelihood framework.

Modeling  the network  topology.  In modeling the likelihood of the network topology, we adopt the 
ideas behind MULTITENSOR: we assume that the expected number of edges of type α from i to j is given by 
the parameter:

We then assume that each entry a(α)ij  of the adjacency tensor is extracted from a Poisson distribution with 
parameter M(α)

ij  . This is a common choice for network  data49–51 as it leads to tractable and efficient algorithmic 
implementations, compared for instance with other approaches that use Bernoulli random  variables9,27; it also 
allows the flexibility of treating both binary and integer-weighted networks. We further assume that, given the 
memberships and affinity matrices, the edges are distributed independently; this is again a conditional inde-
pendence assumption.

We can then write the likelihood of the network topology as:

which leads to the log-likelihood LG(U ,V ,W) for the structural dimension:

where we have neglected constants that do not depend on the parameters.

Modeling the node attributes.  In modeling the likelihood of the attributes, we assume that this extra 
information is generated from the membership vectors; this captures the intuition that knowing a node’s com-

(1)M(α)
ij =

C
∑

k,l=1

uikvjlw
(α)
kl .
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N
∏
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L
∏
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ij

(
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ij
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ij
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ij !

,
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[
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Figure 7.  Graphical model representation of the algorithm MTCOV. A is the adjacency tensor, X is the design 
matrix and W ,U ,V ,β are the latent parameters Θ . The membership matrices U and V couple the two datasets, 
and this is highlighted by the stronger thickness; whereas W and β are specific to the adjacency tensor and 
design matrix respectively. Here we present an example with binary adjacency matrix A, but the model is valid 
for more general weighted networks.
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munity membership helps in predicting the value of the node’s attribute. This assumption has also been made 
in other models for single-layer attributed  networks9 where one wants to enforce the tendency that nodes in the 
same community (for assortative structures) are likely to share common attributes. Different  approaches37,38 
assume instead independence between attributes and membership, which follows a different idea of observing 
an interaction between individuals if either they belong to the same community (for assortative structures) or 
they share an attribute or both.

Then, we model the probability of observing the z-th category for the attribute covariate of node i as the 
parameter:

where βkz is the probability of observing a particular category z together with a community k; thus 
πi = (πi1 . . . ,πiZ) is a Z-dimensional vector such that πiz ∈ [0, 1] and 

PZ
z=1 πiz = 1,∀i . For convenience, we 

consider one-hot encoding for xi = (xi1, . . . , xiZ) , the realization of the random variable Xi : xiz = 1 if node i has 
attribute corresponding to category z, 0 otherwise and 

PZ
z=1 xiz = 1 ; the original design matrix XN×1 is thus 

translated into a binary matrix XN×Z.
We then assume that each entry Xi of the design matrix is extracted from a multinomial distribution of 

parameter πi , which yields the likelihood of the covariates:

In order to satisfy the sum constraint 
PZ

z=1 πiz = 1 , we impose the normalizations 
PZ

z=1 βkz = 1 , valid ∀k and PC
k=1 uik =

PC
k=1 vik = 1 , valid ∀i . Such constraints are a particular case for which the general constraint for the 

multinomial parameter is satisfied. Although they are not the only choices, they allow us to give a probabilistic 
meaning to the components of β and the memberships U and V. As done for the network’s edges, we assume 
conditional independence for the attributes on the various nodes. This leads to the log-likelihood LX(U ,V ,β) 
for the attribute dimension:

Note, we assume that the attributes have values that can be binned in a finite number Z of unordered categories 
and the attributes do not need to be one-dimensional. Indeed, we can encode each combination of more attributes 
as a different value of one-dimensional “super-attribute”. The model will not be affected, but the computational 
complexity might increase.

inference with the eM algorithm.  Having described how the model works and its main assumptions and 
intuitions, we now turn our attention to describe how to fit the parameters to the data, in other words, how to per-
form inference. We assume conditional independence between the network and attribute variables, thus we can 
decompose the total log-likelihood into a sum of two terms L (U ,V ,W ,β) = LG(U ,V ,W)+LX(U ,V ,β) . 
However, in practice, we can improve parameters’ inference performance by better balancing the contributions 
of the two terms as their magnitude can be on different scales, thus the risk of biasing the total likelihood 
maximization towards one of the two terms. For this, we introduce a scaling parameter γ ∈ [0, 1] that explicitly 
controls the relative contribution of the two terms. The total log-likelihood is then:

Varying γ from 0 to 1 lets us interpolate between two extremes: analyzing the data purely in terms of the network 
topology or purely in terms of the attribute information. One can either fix this a priori based on the goal of 
the application, closer to 0 for link prediction or closer to 1 for attribute classification, or this can be treated as 
a hyperparameter that must be estimated, whose optimal value is obtained by fitting the data via tuning tech-
niques (for instance cross-validation). This approach provides a natural quantitative measure for the dependence 
between the communities and the two sources of information. Notice that one can rescale a priori each likeli-
hood term individually in order to control even more their magnitudes, and then add it to Eq. (7). This choice 
should be made based on the dataset at hand. Here we consider rescaling LG and LX only in studying the social 
support networks of Indian villages, as we have enough data for estimating the normalization coefficients; see 
Supplementary Section S3.1 for details.

We wish to find the Θ = (U ,V ,W ,β) that maximizes Eq. (7). In general, this is computationally difficult, but 
we make it tractable by adopting a variational approach using an Expectation-Maximization (EM)  algorithm52, 
similar to what done by De Bacco et al.13, but extended here to include attribute information. Namely, we intro-
duce two probability distributions: hikz and ρ(α)

ijkl  . For each i, z with Xiz = 1 , hizk represents our estimate of the 
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probability that the i-th node has the z-th category, given that it belongs to the community k. On the other hand, 
for each i, j,α with A(α)

ij = 1 , ρ(α)
ijkl  is the probability distribution over pairs of groups k, l.

Using Jensen’s inequality log x̄ ≥ log x for each log-likelihood term gives:

These lower bounds hold with equality when

thus maximizing LX(U ,V ,β) is equivalent to maximizing LX(U ,V ,β , h) ; similarly for LG(U ,V ,W) and 
LG(U ,V ,W , ρ) (this was also the same result derived by De Bacco et al.13). Overall, we aim at maximizing 
L (U ,V ,W ,β , h, ρ) = (1− γ )LG(U ,V ,W , ρ)+ γ LX(U ,V ,β , h) , in analogy with what was done before. 
These maximizations can be performed by alternatively updating a set of parameters while keeping the others 
fixed. The EM algorithm performs these steps by alternatively updating h, ρ (Expectation step) and Θ (Maximi-
zation step); this is done starting from a random configuration until L (Θ , h, ρ) reaches a fixed point. Calcu-
lating Eq. (10) represents the E-step of the algorithm. The M-step is obtained by computing partial derivatives 
of L (Θ , h, ρ) with respect to the various parameters in Θ and setting them equal to zero. We add Lagrange 
multipliers ! =

(

!(β), !(u), !(v)
)

 to enforce constraints:

For instance, focusing on the update for βzk , setting the derivative with respect to it in Eq. (11) to zero and enforc-
ing the constraint 

PZ
z=1 βkz = 1 gives !(β)k = γ

P
i,z xizhizk ; plugging this back finally gives:

which is valid for γ ̸= 0 . Doing the same for the other parameters yields (see Supplementary Section S1 for 
details):

where Eq. (15) is valid for γ ̸= 1 . The EM algorithm thus consists in randomly initializing the parameters Θ 
and then repeatedly alternating between updating h and ρ using Eq. (10) and updating Θ using Eqs. (12)–(15) 
until L (Θ , h, ρ) reaches a fixed point. A pseudo-code is given in Algorithm 1. In general, the fixed point is a 
local maximum but we have no guarantees that it is also the global one. In practice, we run the algorithm several 
times, starting from different random initializations and taking the run with the largest final L (Θ , h, ρ) . The 
computational complexity per iteration scales as O(M C2 + NCZ) , where M is the total number of edges summed 
across layers. In practice, C and Z have similar order of magnitude, usually much smaller than the system size 
M; for sparse networks, as is often the case for real datasets, M ∝ N , thus the algorithm is highly scalable with 
a total running time linear in the system size. An experimental analysis of the computational time is provided 
in the Supplementary Section S2.

Notice that, although we started from a network log-likelihood LG(U ,V ,W) similar to the one proposed in 
the MULTITENSOR  model13, the only update preserved from that is the one of wkl in Eq. (15). The updates for uik 
and vik are instead quite different; the main reason is that here we incorporated the node attributes, which appear 
both explicitly and implicitly (through h) inside the updates. In addition, here we enforce normalizations like P

k uik = 1 , not enforced in MULTITENSOR. This implies that our model restricted to γ = 0 , i.e., no attribute 
information, does not correspond exactly to MULTITENSOR. This also implies that, upon convergence, we can 
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directly interpret the memberships as soft community assignments (or overlapping) without the need of post-
processing their values; in words, uik represent the probability of node i to belong to the outgoing community k, 
similarly for vik and an incoming membership. This distinction is necessary when considering directed networks. 
If one is interested in recovering hard memberships, where a node is assigned to only one community, then one 
can choose the community corresponding to the maximum entry of u or v.

evaluation metrics.  We adopt two different criteria for performance evaluation, based on having or not 
having access to ground-truth values for the community assignments. The first case applies to synthetic-gener-
ated data, the second to both synthetic and real-world data. We explain performance metrics in detail below.

Ground-truth available. In the presence of a known partition, we measure the agreement between the set of 
ground-truth communities C ∗ and the set of detected communities C using metrics for recovering both hard 
and soft assignments. For hard partitions, the idea is to match every detected community with its most similar 
ground-truth community and measure similarity δ(C ∗

i ,Cj) (and vice versa for every ground-truth community 
matched against a detected community) as done by Yang et al.9. The final performance is the average of these 
two comparisons:

where here we consider as similarity metric δ(·) the F1-score and the Jaccard similarity.
In both cases, the final score is a value between 0 and 1, where 1 indicates the perfect matching between 

detected and ground-truth communities. For soft partitions, we consider two standard metrics for measuring 
distance between vectors as done by De Bacco et al.13, such as cosine similarity (CS) and L1 error, averaged over 
the nodes:
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where ui is the C-dimensional vector containing the i-th row of U, representing the detected membership and 
similarly for u0i  for the ground-truth U0 . The factor 1/2 ensures that the L1 distance ranges from 0 for identical 
distributions to 1 for distributions with disjoint support. Similarly to the what done for hard partitions, we match 
the ground-truth and detected communities by choosing the permutation of C groups that gives the highest 
cosine similarity or smallest L1 distance.

Ground-truth not available. In the absence of ground-truth, these metrics cannot be computed, and one must 
resort to other approaches for model evaluation. Here we consider performance in prediction tasks when hiding 
part of the input datasets while fitting the parameters, and in particular on the extent to which partial knowledge 
of network edges helps predict node attributes and vice versa. Thus we consider a measure for link-prediction 
and one for correct retrieval of the attributes. For link-prediction, we used the AUC statistic, equivalent to the 
area under the receiver-operating characteristic (ROC)  curve53. It represents the probability that a randomly 
chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected 
vertices (a true negative). Thus, an AUC statistic equal to 0.5 indicates random chance, while the closer it is to 
1, the more our model’s predictions are better than chance. We measure the probability of observing an edge as 
the predicted expected Poisson parameters of Eq. (1). For the attribute, instead, we use the accuracy as a qual-
ity measure. For each node, we compute the predicted expected multinomial parameter πi using Eq. (4). We 
then assign to each node the category with the highest probability, computing the accuracy as the ratio between 
the correctly classified examples over the total number of nodes. As baselines, we compare with the accuracy 
obtained with a random uniform probability and the highest relative frequency observed in the training set.

cross-validation tests and hyperparameter settings.  We perform prediction tasks using cross-val-
idation with 80–20 splits: we use 80% of the data for training the parameters and then measure AUC and accu-
racy on the remaining 20% test set. Specifically, for the network topology, we hold out 20% of the triples (i, j,α) ; 
for the attributes, we hold out 20% of the entries of the categorical vector.

Our model has two hyperparameters, the scaling parameter γ and the number of communities C. We estimate 
them by using 5-fold cross-validation along with grid search to range across their possible values. We then select 
the combination ( ̂C, γ̂ ) that returns the best average performance over the cross-validation runs. Standard cross-
validation considers performance in terms of a particular metric. However, here we have two possible ones which 
are qualitatively different, i.e., AUC and accuracy. Depending on the task at hand, one can define performance as 
a combination of the two, bearing in mind that the values of ( ̂C, γ̂ ) at the maximum of either of them might not 
coincide. Here we select ( ̂C, γ̂ ) as the values are jointly closer to both the maximum values. In the experiments 
where one of the two hyperparameters is fixed a priori, we run the same procedure but vary with grid search 
only the unknown hyperparameter.

Data availability
The code used for the analysis and to generate the synthetic data is publicly available and can be found at https 
://githu b.com/mcont isc/MTCOV .

code availabilty
An open-source algorithmic implementation available at https ://githu b.com/mcont isc/MTCOV .

Received: 28 April 2020; Accepted: 4 September 2020

References
 1. Waskiewicz, T. Friend of a friend influence in terrorist social networks. In Proceedings on the international conference on artificial 

intelligence (ICAI), 1 (The Steering Committee of The World Congress in Computer Science, Computer..., 2012).
 2. Pinheiro, C. A. R. Community detection to identify fraud events in telecommunications networks. In SAS SUGI proceedings: 

customer intelligence (2012).
 3. Pan, W.-F., Jiang, B. & Li, B. Refactoring software packages via community detection in complex software networks. Int. J. Autom. 

Comput. 10, 157–166 (2013).
 4. Bechtel, J. J. et al. Lung cancer detection in patients with airflow obstruction identified in a primary care outpatient practice. Chest 

127, 1140–1145 (2005).
 5. Chen, J., Zhang, H., Guan, Z.-H. & Li, T. Epidemic spreading on networks with overlapping community structure. Physica A Stat. 

Mech. Appl. 391, 1848–1854 (2012).
 6. Traud, A. L., Kelsic, E. D., Mucha, P. J. & Porter, M. A. Comparing community structure to characteristics in online collegiate social 

networks. SIAM Rev. 53, 526–543 (2011).
 7. Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).
 8. Peel, L., Larremore, D. B. & Clauset, A. The ground truth about metadata and community detection in networks. Sci. Adv. 3, 

e1602548 (2017).
 9. Yang, J., McAuley, J. & Leskovec, J. Community detection in networks with node attributes. In 2013 IEEE 13th international confer-

ence on data mining, 1151–1156 (IEEE, 2013).
 10. Falih, I., Grozavu, N., Kanawati, R. & Bennani, Y. Community detection in attributed network. Companion Proc. Web Conf. 2018, 

1299–1306 (2018).

(18)L1(U ,U0) =
1

2N

N
∑

i=1

||ui − u0i ||1 =
1

2N

N
∑

i=1

C
∑

k=1

|uik − u0ik|,



15

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15736  |  https://doi.org/10.1038/s41598-020-72626-y

www.nature.com/scientificreports/

 11. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
 12. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).
 13. De Bacco, C., Power, E. A., Larremore, D. B. & Moore, C. Community detection, link prediction, and layer interdependence in 

multilayer networks. Phys. Rev. E 95, 042317 (2017).
 14. Schein, A., Paisley, J., Blei, D. M. & Wallach, H. Bayesian Poisson tensor factorization for inferring multilateral relations from sparse 

dyadic event counts. In Proceedings of the 21st ACM SIGKDD international conference on knowledge discovery and data mining, 
1045–1054 (2015).

 15. Schein, A., Zhou, M., Blei, D. M. & Wallach, H. Bayesian Poisson tucker decomposition for learning the structure of international 
relations. In Proceedings of the 33rd international conference on machine learning, vol. 48 (2016).

 16. Valles-Catala, T., Massucci, F. A., Guimera, R. & Sales-Pardo, M. Multilayer stochastic block models reveal the multilayer structure 
of complex networks. Phys. Rev. X 6, 011036 (2016).

 17. Stanley, N., Shai, S., Taylor, D. & Mucha, P. Clustering network layers with the strata multilayer stochastic block model. IEEE Trans. 
Netw. Sci. Eng. 3, 95–105 (2016).

 18. Peixoto, T. P. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys. Rev. E 92, 042807 (2015).
 19. Paul, S. et al. Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. 

Electron. J. Stat. 10, 3807–3870 (2016).
 20. Gheche, M. E., Chierchia, G. & Frossard, P. Orthonet: multilayer network data clustering. IEEE Trans. Signal Inf. Process. Netw. 6, 

13–23 (2020).
 21. Papadopoulos, A., Rafailidis, D., Pallis, G. & Dikaiakos, M. D. Clustering attributed multi-graphs with information ranking. In 

Proceedings, Part I, of the 26th international conference on database and expert systems applications—volume 9261, DEXA 2015, 
432–446 (Springer, 2015).

 22. Papadopoulos, A., Pallis, G. & Dikaiakos, M. D. Weighted clustering of attributed multi-graphs. Computing 99, 813–840 (2017).
 23. Chang, S. et al. Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD international 

conference on knowledge discovery and data mining, KDD ’15, 119–128 (2015).
 24. Sachan, M., Contractor, D., Faruquie, T. A. & Subramaniam, L. V. Using content and interactions for discovering communities in 

social networks. In Proceedings of the 21st international conference on world wide web, WWW ’12, 331–340 (2012).
 25. Sweet, T. M. & Zheng, Q. Estimating the effects of network covariates on subgroup insularity with a hierarchical mixed member-

ship stochastic blockmodel. Soc. Netw. 52, 100–114 (2018).
 26. Signorelli, M. & Wit, E. C. Model-based clustering for populations of networks. Stat. Model. 20, 9–29 (2019).
 27. Newman, M. E. & Clauset, A. Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016).
 28. Bothorel, C., Cruz, J. D., Magnani, M. & Micenkova, B. Clustering attributed graphs: models, measures and methods. Netw. Sci. 

3, 408–444 (2015).
 29. Zhang, Y. et al. Community detection in networks with node features. Electron. J. Stat. 10, 3153–3178 (2016).
 30. Hric, D., Peixoto, T. P. & Fortunato, S. Network structure, metadata, and the prediction of missing nodes and annotations. Phys. 

Rev. X 6, 031038 (2016).
 31. Stanley, N., Bonacci, T., Kwitt, R., Niethammer, M. & Mucha, P. J. Stochastic block models with multiple continuous attributes. 

Appl. Netw. Sci. 4, 1–22 (2019).
 32. Emmons, S. & Mucha, P. J. Map equation with metadata: varying the role of attributes in community detection. Phys. Rev. E 100, 

022301 (2019).
 33. Xu, Z., Ke, Y., Wang, Y., Cheng, H. & Cheng, J. A model-based approach to attributed graph clustering. In Proceedings of the 2012 

ACM SIGMOD international conference on management of data, 505–516 (2012).
 34. Bu, Z., Li, H.-J., Cao, J., Wang, Z. & Gao, G. Dynamic cluster formation game for attributed graph clustering. IEEE Trans. Cybern. 

49, 328–341 (2017).
 35. Tallberg, C. A bayesian approach to modeling stochastic blockstructures with covariates. J. Math. Sociol. 29, 1–23 (2004).
 36. White, A. & Murphy, T. B. Mixed-membership of experts stochastic blockmodel. Netw. Sci. 4, 48–80 (2016).
 37. Airoldi, E. M., Choi, D. S. & Wolfe, P. J. Confidence sets for network structure. Stat. Anal. Data Min. ASA Data Sci. J. 4, 461–469 

(2011).
 38. Sweet, T. M. Incorporating covariates into stochastic blockmodels. J. Educ. Behav. Stat. 40, 635–664 (2015).
 39. Taylor, D., Shai, S., Stanley, N. & Mucha, P. J. Enhanced detectability of community structure in multilayer networks through layer 

aggregation. Phys. Rev. Lett. 116, 228301 (2016).
 40. Taylor, D., Caceres, R. S. & Mucha, P. J. Super-resolution community detection for layer-aggregated multilayer networks. Phys. 

Rev. X 7, 031056 (2017).
 41. Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: first steps. Soc. Netw. 5, 109–137 (1983).
 42. Power, E. A. Building Bigness: Religious Practice and Social Support in Rural South India. Doctoral Dissertation, Stanford University, 

Stanford, CA (2015).
 43. Power, E. A. Social support networks and religiosity in rural South India. Nat. Hum. Behav. 1, 0057 (2017).
 44. Power, E. A. & Ready, E. Cooperation beyond consanguinity: post-marital residence, delineations of kin and social support among 

South Indian Tamils. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180070 (2019).
 45. McAuley, J. & Leskovec, J. Learning to discover social circles in ego networks. In Proceedings of the 25th international conference 

on neural information processing systems—volume 1, NIPS’12, 539–547 (2012).
 46. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 

(2002).
 47. Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: divided they blog. In Proceedings of the 3rd 

international workshop on link discovery, LinkKDD ’05, 36–43 (2005).
 48. Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009).
 49. Ball, B., Karrer, B. & Newman, M. E. J. Efficient and principled method for detecting communities in networks. Phys. Rev. E 84, 

036103 (2011).
 50. Gopalan, P. K. & Blei, D. M. Efficient discovery of overlapping communities in massive networks. Proc. Natl. Acad. Sci. USA 110, 

14534–14539 (2013).
 51. Gopalan, P., Hofman, J. M. & Blei, D. M. Scalable recommendation with hierarchical poisson factorization. In Proceedings of the 

31-st conference on uncertainty in artificial intelligence, 122–129 (2015).
 52. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. 

B (Methodol.) 39, 1–22 (1977).
 53. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143, 

29–36 (1982).

Acknowledgements
This work was partially supported by the Cyber Valley Research Fund. The authors thank the International Max 
Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Martina Contisciani. The authors are 
grateful for the goodwill of the residents of Tenpaṭṭi and Alakāpuram, the support of faculty and students from 



16

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15736  |  https://doi.org/10.1038/s41598-020-72626-y

www.nature.com/scientificreports/

the Folklore Department at Madurai Kamaraj University, and the assistance of the Chella Meenakshi Centre for 
Educational Research and Services. Funding for fieldwork was provided by the US National Science Foundation 
Doctoral Dissertation Improvement Grant (No. BCS-1121326), a Fulbright-Nehru Student Researcher Award, the 
Stanford Center for South Asia, and a National Science Foundation Interdisciplinary Behavioral & Social Science 
Research Grant (No. IBSS-1743019). We thank Cristopher Moore and Daniel Larremore for useful discussions 
and the Santa Fe Institute for providing the environment fostering these interactions.

Author contributions
M.C., E.P. and C.D.B. conceived the research and designed the analyses; M.C. conducted the experiment; all 
authors reviewed the manuscript.

funding
Open Access funding provided by Projekt DEAL.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-72626 -y.
Correspondence and requests for materials should be addressed to C.D.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020



Technological Forecasting & Social Change 179 (2022) 121628

0040-1625/© 2022 Elsevier Inc. All rights reserved.

Multilayer patent citation networks: A comprehensive analytical 
framework for studying explicit technological relationships 

Kyle Higham *,1,a, Martina Contisciani 2,b, Caterina De Bacco 3,b 

a Institute of Innovation Research, Hitotsubashi University, Tokyo, Japan 
b Max Planck Institute for Intelligent Systems, Cyber Valley, Tübingen, Germany  

A B S T R A C T   

The use of patent citation networks as research tools is becoming increasingly commonplace in the field of innovation studies. However, these networks rarely 
consider the contexts in which these citations are generated and are generally restricted to a single jurisdiction. Here, we propose and explore the use of a multilayer 
network framework that can naturally incorporate citation metadata and stretch across jurisdictions, allowing for a complete view of the global technological 
landscape that is accessible through patent data. Taking a conservative approach that links citation network layers through triadic patent families, we first observe 
that these layers contain complementary, rather than redundant, information about technological relationships. To probe the nature of this complementarity, we 
extract network communities from both the multilayer network and analogous single-layer networks, then directly compare their technological composition with 
established technological similarity networks. We find that while technologies are more splintered across communities in the multilayer case, the extracted com-
munities match much more closely the established networks. We conclude that by capturing citation context, a multilayer representation of patent citation networks 
is, conceptually and empirically, better able to capture the significant nuance that exists in real technological relationships when compared to traditional, single-layer 
approaches. We suggest future avenues of research that take advantage of novel computational tools designed for use with multilayer networks.   

1. Introduction 

Patent citations have found successful application in a wide swathe 
of contexts, from understanding knowledge spillovers (Berkes and 
Gaetani, 2021; Jaffe and de Rassenfosse, 2017; Jaffe et al., 1993; Sor-
enson et al., 2006) to the characterization of technological change (Choi 
and Park, 2009; Fleming, 2001; Huenteler et al., 2016). The vast ma-
jority of this research is conducted using only patent data from a single 
jurisdiction and often ignores important citation context. However, as 
innovation and patent filings become increasingly global endeavours 
(Danguy, 2017; Fink et al., 2016), there are many situations where it is 
important to think of ‘the patent system’ as a set of quasi-coordinated 
processes operating across jurisdictional boundaries (Petit et al., 2021). 

This coordination is desirable because the same invention can be 
patented in multiple jurisdictions; there are clear efficiency gains to be 
made if information discovered or produced during the patent prose-
cution process can be shared between jurisdictions (Chun, 2011). Patent 
families arise because these related applications, which simultaneously 

progress through multiple patent offices, are legally linked through their 
first filing. The Paris Convention4 allows applicants to apply in multiple 
jurisdictions and claim the filing date of the first application, known as 
the priority date, as the effective filing date for subsequent applications 
(provided these occur within 12 months of the priority date). Informa-
tion sharing between offices creates, by design, some redundancy in the 
information generated for family members across offices, but not 
enough that a complete picture can be pieced together from a single 
jurisdiction’s data. The existence of patent families provides the op-
portunity to form the most complete set of information about a partic-
ular invention that can be obtained from patent data and allows us to 
link metadata across jurisdictional boundaries (Nakamura et al., 2015). 
In this work, we demonstrate the utility of these linkages in the context 
of patent citation networks. 

The family-level view would suggest that only using data from a 
single jurisdiction leaves a lot of potentially relevant information un-
examined (Bakker et al., 2016). In the more and more common scenario 
where multiple family members exist across multiple jurisdictions, 
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citations will often only be made to one family member.5 As such, the 
citation network that is obtained from any single jurisdiction necessarily 
represents a subset of the complete network for the set of inventions 
under examination. While information sharing between offices will in-
crease the amount of overlap between these networks, it does not make 
family-level analyses redundant, for two reasons. First, the amount of 
information sharing, and the modes for doing so, between patent offices 
has changed significantly in recent years.6 In particular, advances in 
information technology allow patent offices to coordinate much more 
effectively than they did 20 years ago. Yet, some patents filed 20 years 
ago are only expiring now, so these patents can still be important sources 
of information when studying contemporary innovation. Second, many 
patents are not filed in multiple offices, and some applicants only select a 
few strategically important jurisdictions where they would like to pro-
tect their intellectual property. That is, the nodes and links in the cita-
tion networks of each jurisdiction are unique, and so each network 
contains a huge amount of potentially pertinent information that is 
unique to that jurisdiction. In the empirical sections of this work, we 
take a very conservative approach and only consider nodes that are 
shared across jurisdictions, as described in detail in Section 2.3. 

Even for shared nodes (defined here as patents granted in multiple 
jurisdictions), however, the sets and types of citations made by each 
patent office can differ greatly, as shown in Fig. 1. The primary reason 
for this disagreement is that different jurisdictions abide by different 
legal guidelines that describe when and how citations should be made. 
These sets of guidelines are not without strong similarities, however, and 
a careful reading offers pathways towards sensible aggregation or 
comparison of these sets of citations (Higham and Yoshioka-Kobayashi, 
2022). This has become particularly feasible in recent times as more and 
more offices now provide metadata about citation context, such as 
whether the cited patent was so similar to the application as to render 
the latter unpatentable, or whether the cited patent was added to simply 
define the state of the art. A secondary reason for disagreement between 
jurisdictions is, in fact, a commonality: examiners in all jurisdictions are 
humans with limited time to examine any particular patent (see, e.g., 
Frakes and Wasserman, 2017). Often, it is simply not possible to find 
every relevant piece of prior art, particularly when language barriers are 
taken into consideration. Indeed, in combination with simple differences 
of opinion, this limitation means it is unlikely that two examiners in the 
same patent office would find exactly the same set of prior art (Wada, 
2016). Therefore, using family-level information gives us the search 
result of more examiner-hours as well as the multiple opinions of what 
should be considered relevant prior art. 

As citations made by different offices are made according to different 
sets of guidelines, treating these citations as equally informational may 
lead to misleading results. Indeed, some suggest that citations of the 
same type have become less informative over time (Kuhn et al., 2020). It 
is therefore important to aggregate family-level information sensibly. 
We propose that a multilayer network framework provides a natural 
representation of the patent citation network that readily incorporates 
differences in citation type. After all, multiple networks anchored by 
common nodes is the very definition of a multilayer network (De 
Domenico et al., 2013; Kivelä et al., 2014; Porter, 2018). 

Within the multilayer framework, described in more detail for our 
chosen context in Section 2.2, each layer of the network represents a 
single link type, each node represents a patent family (which may exist 
in multiple layers), and each link represents a citation between families 
(of the type defined by the layer). As such, the global patent citation 
network is an inherently multilayer system; no abstraction is required. 
Further, this framework is particularly flexible. For example, layers can 

represent jurisdictions, and links within each jurisdictional layer can 
represent the citations found on the front page(s) of the family member 
(s) granted by that jurisdiction. From this point, it is possible to layer as 
many jurisdictions as desired onto the network, provided there are 
family linkages existing between the layers. It is also possible to split 
these layers further, according to citation metadata that inform us of the 
reason for, or source of, a particular citation. This flexibility is particu-
larly valuable when certain types of citations are irrelevant, or may even 
be considered pure noise, with respect to a particular research question. 
For example, one studying knowledge flow within a multilayer frame-
work may not wish to consider citations discovered by the examiner, and 
may even want to add an additional layer for citations found in the 
patent specification (Verluise et al., 2020). 

However, it is not clear, a priori, whether a multilayer framework 
adds any information over and above that which can be found in ‘flat-
tened’ family citation networks wherein citation context is disregarded 
and only link existence is examined (Nakamura et al., 2015). Thus, in 
order for the multilayer framework to be feasible as a research tool, it is 
important to first demonstrate a significant gain in information content 
relative to the flattened, global family citation network, or even the 
more commonly-used jurisdictionally restricted citation networks. To 
this end, we explore the information content of the triadic patent family 
network, wherein all layers contain the same set of nodes. This set 
consists of families containing at least one member granted in each of 
the triadic patent offices: the United States Patent and Trademark Office 
(USPTO), the European Patent Office (EPO), and the Japan Patent Office 
(JPO). The triadic offices have historically granted the majority of pat-
ents globally and contain rich and accessible citation information. 
Specifics about the data used in this work can be found in Section 2.3. 

In this work, we first construct a multilayer family-family triadic 
citation network, wherein layers can be separated by jurisdiction and 
citation context (such as whether the citation was added by an applicant 
or examiner). In practice, the appropriate set of contexts can be selected 
based on the use-case; in this work, the additional context we consider is 
whether a citation was likely to have been found by the examiner or by 
the applicant (which is not always explicit), as we expect the differing 
motivations for citation between these groups affect the nature of the 
technological relationships reflected by these citations. We then conduct 
an interdependence analysis to check for redundancy of information 
content between the layers, finding that significant complementary in-
formation exists between jurisdictions. A community detection proced-
ure is then conducted on the multilayer network and two comparison 
networks: the flattened multilayer network containing the same set of 
links but without information about jurisdiction or citation context, and 
the US-only subset of the citation network, also flattened. The former 
comparison tests the role of citation context, while the latter is included 
as the most commonly used patent citation network in prior research. 
We observe, graphically, nuanced differences in inferred community 
structure between the multilayer network and the comparison networks. 

To add colour to these differences, we examine the relationships 
between inferred community partitions and the technology classes of the 
families that comprise them. For the multilayer network communities 
and those of the two flattened comparison networks, we project the 
bipartite community-class network onto the class nodes and directly 
compare these projections with established class-class networks (co- 
classification and inter-class citation linkage) with known-node- 
correspondence methods. We are also able to directly measure the di-
versity of communities, and the spread of classes between communities 
to inform our interpretation of the direct network comparisons. 

When compared to the other two networks, we find that the multi-
layer case produces communities that more closely reflect the known 
technological relationships implied by the established class-class net-
works, at both micro- and meso-scales. Further, while technological 
classes are more splintered across communities in the multilayer case, 
the internal diversity of communities is lower than the comparison 
networks once we account for the known technological similarity of 

5 Search reports will often list equivalents of the prior art that is cited, 
however, this additional information is not explicitly included in the associated 
data sets.  

6 See, e.g., https://www.wipo.int/case/en/. 
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classes. These results suggest that, even within our conservative 
empirical framework, citation context is an important source of infor-
mation about the nature and importance of the particular technological 
relationships codified by citation linkages, and that examination of 
multilayer citation networks using novel computational techniques is an 
exciting and relevant avenue for future research. 

The rest of the paper is structured as follows. Section 2 introduces 
both patent families and multilayer networks and discusses how the 
former naturally forms the latter in the context of citation networks. 
Section 2.3 describes the data we use in this work, how this forms the 
multilayer networks and why specific subsets of families and citations 
are selected for analysis. Section 3 describes the empirical procedures 
that we use to test and compare the information content of the multi-
layer citation network relative to single-layer networks and describes 
the results obtained. Lastly, Section 4 concludes and discusses the lim-
itations and extensions of this research. 

2. Multilayer patent networks 

2.1. Patent Families 

The rights bestowed by patents are only enforceable in the jurisdic-
tion in which the patent was granted. To obtain these rights in more than 
one jurisdiction, an applicant first files in a single jurisdiction (often 
their local patent office), starting the clock on the period during which 
they can file for the same invention in other jurisdictions. For the next 12 
months, all subsequent filings can ‘claim priority’ from this initial 
application and inherit the latter’s filing date as its own for the purposes 
of examination (provided the same content is covered in the 
application). 

There are two primary modes through which an invention can claim 
priority from an earlier application: the Paris Convention and the Patent 
Cooperation Treaty (PCT). The former lays down the guidelines for the 
treatment of foreign patent applications among the contracting parties, 
including the time limit on priority claims as described above. The latter, 
for our purposes here, is effectively an attempt to streamline and 
harmonise the process of patenting in multiple jurisdictions.7 This pro-
cess does not result in a patent, but rather a preliminary prior art search 
report, and allows the applicant to nominate the jurisdictions to which 
they would like to apply for a patent without having to apply at each 
office separately. Priority can be claimed from a PCT filing, and PCT 
filings can themselves claim priority from an earlier filing at a local 
office. 

After a patent application has reached a local office, the applicant 
may want to fine-tune their claims or even be asked to split the described 
invention into two separate patent applications.8 The inventor is not 
able to disclose new information during this process, and thus the claims 
made by the ‘new version’ of the application must be contained within 
the scope of the initial disclosure. These subsequent filings may claim 
the priority date of the initial filings and are referred to as ‘continuing 
applications’. 

Patent families, in general, link patents and applications through 
their priority filing. The resulting ‘family trees’ can be complex and, as 
such, several types of families exist (Martinez, 2010; Martínez, 2011). 
‘Simple’ patent families (as defined by the EPO for their DOCDB data-
base) each consist of a set of patents and applications that are all linked 
to the same priority filing. This type of family is the one on which we 
focus in this work, and we will henceforth drop ‘simple’. As such, fam-
ilies can be made up of sets of documents from several jurisdictions, each 
of which may contain multiple documents. Other families may only 
consist of a single application in a single jurisdiction. 

Families are the unit of analysis for the current work for two reasons. 
First, they generally align with what one usually thinks of as a single 
‘invention’ (Martínez, 2011) and it is the relationships between in-
ventions that we usually aim to capture with citation data. Second, they 
link inventions across jurisdictions, and therefore allow the alignment of 
jurisdiction-specific citation networks and, therefore, the introduction of 
the multilayer network as a potentially useful analytical, conceptual, 
and mathematical tool to study technological relationships. 

From the perspective of data availability, detail, and volume, the 
obvious choice of data set for testing the utility of the multilayer 
framework are those patents granted by the three (historically) largest 
patent offices, also known as the triadic offices: the USPTO, EPO, and 
JPO. Further, we wish to take a particularly conservative empirical 
approach to these initial explorations of the multilayer citation network. 
To do this, we only consider patent families that have granted members 
in all layers of interest (‘triadic families’) and only consider citations 
among these families.9 

Theoretically, each office examining these triadic applications has 
access to the same information regarding prior art, and they share much 
of what they find with the other two offices, directly or indirectly (Petit 
et al., 2021; Wada, 2020). For this reason, granted members have all had 
the same opportunities to link to other (older) families in each layer, 
maximising potential redundancies between layers in the citation 
network. The exclusion of families that are not triadic, therefore, is why 
we think of this analysis as likely to produce very conservative results 
when compared to those that may be obtained for a network without 
such exclusions. 

We also note triadic patent families are often used as a binary indi-
cation of a ‘high-quality’ invention (de Rassenfosse and van Pottels-
berghe, 2009; Tahmooresnejad and Beaudry, 2019); after all, the 
applicants thought it was worth the time and money to patent their 
invention in three of the largest markets in the world. By this logic, our 
multilayer network consists exclusively of ‘high-quality’ patent fam-
ilies10 and excludes much controversial subject matter that are not 
universally patentable (Biddinger, 2000). 

A simplified diagram of a multilayer network of citations between 
triadic families is shown in Fig. 1, with full details of the families 
included in this example described in Appendix C. Note that the multi-
layer network that we analyse in this paper treats sub-layers, such as 
whether a citation has been used in a rejection decision (shown in red in 
Fig. 1), as distinct layers. This results in seven layers in total, as the EPO 
also provides information about whether a citation originated from the 
international search report (conducted outside the EPO) or the local 
search report. 

2.2. Multilayer networks 

Multilayer networks have received particular attention in the past 
decade (Boccaletti et al., 2014; Cimini et al., 2019; De Domenico et al., 
2013; Kivelä et al., 2014), and the development of mathematical and 
computational tools for their analysis, as well as their timely application, 
remains a very active field of research across many domains (Gallotti 
et al., 2016; Harvey et al., 2021; van der Marel et al., 2021; Vaiana and 
Muldoon, 2020; Yuvaraj et al., 2021). In this work, we not only suggest 
that patent citation networks are naturally multilayered, but aim to 
introduce the multilayer framework to the innovation studies commu-
nity to promote the timely application of novel computational tools that 
are currently being developed. 

To date, the vast majority of the studies that explicitly place patent 
citation data into a network setting use a single-layer framework 

7 https://www.wipo.int/pct/en/.  
8 See, e.g., Paris Convention for the Protection of Industrial Property (1883), 

Article 4G. 

9 The applicants to these offices, however, may be based outside these 
jurisdictions.  
10 Note that this is a very narrow view of patent quality. For a comprehensive 

discussion, refer to Higham et al. (2021). 
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(Clough et al., 2015; Funk and Owen-Smith, 2017; Higham et al., 2019; 
Mariani et al., 2019; Nakamura et al., 2015; Valverde et al., 2007; Von 
Wartburg et al., 2005; Wu et al., 2019). That is, there is only one type of 
link (i.e., a citation) between nodes in the network. This approach often 
makes practical sense, such as when one lacks citation metadata that 
may be used to distinguish or ‘colour’ the links, or if only one link type is 
of interest. However, a multilayer network framework is able to natu-
rally incorporate citation metadata, if it exists, into the network struc-
ture.11 As an analogy, let us consider the public transport network of a 
large city containing several different forms of transport, each with its 
own network of routes and stations. There are usually many points of 
overlap between these network layers to allow passengers to transfer 
between modes of public transport, such as a bus stop at a train station. 
These transfer points link the different network layers together. From 
both mathematical and computational perspectives, this kind of network 
is fundamentally different from single-layered networks, particularly 
when the different layers are defined by links with very different 
properties (Aleta et al., 2017; Ibrahim et al., 2021). In the public 
transport context, these properties can be straightforward, such as 

speed, price, comfort, or environmental harm, or more computationally 
complex, such as sensitivity to link removal and amenability to rerout-
ing (De Domenico et al., 2014). 

In the domain of patent citation networks, each jurisdiction has a set 
of applications and patents that each contain a set of citations made to 
other documents. Each of those citations comes with context (Higham 
and Yoshioka-Kobayashi, 2022). This context can be whether the prior 
art was discovered by the examiner, the justification for its addition to 
the document, the relationship between the citing and citing firms, or 
any other citation metadata that may be obtained or constructed. For 
many research questions that rely on information derived from the 
citation network, this information is important to retain, just as it is 
important to know whether two nodes in a transport network are con-
nected by a bus, an airplane, or a ferry. 

At the same time, every patent is part of a family (even if there is only 
one member). When families contain members filed in multiple juris-
dictions, the citation networks associated with each jurisdiction can be 
linked, just as a bus may stop at a train station, or a train may stop at an 
airport. Of course, patent applicants are under no obligation to file for a 
patent on the same invention in multiple jurisdictions. That is, a node 
(patent family) may not exist in all layers of the network. Not every bus 
stop is a train station, nor vice versa. The full patent citation network is a 
true ‘multilayer’ network in this sense. In this work, however, we focus 
on the subset of nodes that exist across all three layers of interest (the 
triadic offices). The justifications for this choice are discussed in Section 
2.3. The network we define in this work, therefore, is a special case of a 
multilayer network wherein the layers are node-aligned (Kivelä et al., 
2014). Extensions of this work to a more general multilayer framework 
are discussed in Section 4. 

Multilayer networks share many characteristics of interest that are 
found in single-layer networks; indeed, much of the early research on 
multilayer networks involved adapting concepts from single-layer net-
works to this new framework (Battiston et al., 2014; Berlingerio et al., 
2011; Bródka et al., 2012; De Domenico et al., 2013). For our purposes, 
in order to demonstrate the utility of the multilayer framework, it is 
necessary to compare the network properties derived in this setting to 
those obtained from the equivalent, flattened single-layer network, 
wherein citation metadata is ignored (partially or wholly). 

The domain within which we choose to explore differences between 
the multilayer and single-layer frameworks, in the patent citation 
context, is community detection. The natural grouping of nodes is one of 
the characteristic features of real-world networks and plays a significant 
role in describing the structure of the network at scales between node- 
level and global-level network statistics (Fortunato, 2010; Newman 
and Girvan, 2004; Wasserman and Faust, 1994). Often, innovation re-
searchers are interested in the composition of, and interaction between, 
close-knit groups of meso-scale objects such as groupings of similar 
technologies (Alstott et al., 2017; Balland and Rigby, 2017; Lee et al., 
2015; Mejia and Kajikawa, 2020; Yan and Luo, 2017), and the appli-
cation of community detection to the multilayer citation network leaves 
room for direct comparison between our results and these objects that 
we usually work with. Lastly, community detection can be applied to 
both multilayer and single-layer networks, which will allow for com-
parisons between the resultant communities. 

2.3. Data 

The multilayer citation network we construct is generated by cita-
tions made by triadic patents and only includes those made to and by 
triadic families. For the purposes of the current work, triadic patents are 
patents granted by one of the triadic offices that have family members, 
or equivalents, granted by the other two triadic offices. Triadic families, 

Fig. 1. Exemplar subset of the multilayer patent citation network. A 
multilayer representation of a typical subset of the inter-family patent citation 
network we consider in this work. Nodes and links comprise the multilayer ego 
network of patent family A, the USPTO equivalent of which is “Power source 
apparatus” (US6819081B2), initially filed in January 2002 by Sanyo Electric 
Co., Ltd. at the JPO. Each layer represents the inter-family citations made by a 
different patent office, and red links are those used to justify a (non-final) 
rejection of the application that was examined in that layer. All data repre-
sented here is subject to the restrictions described in Section 2.3 and is, 
therefore, an extremely simplified version of the complete ego network. Details 
of the families represented can be found in Appendix C. 

11 In a related work, also using triadic patents, Morrison et al. (2014) use a 
multiplex PageRank to assess the centrality of technology classes where layers 
are defined by inventor location. However, citation source and context are not 
considered. 
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on the other hand, will refer to the full set of documents belonging to a 
family that contains triadic patents.12 These sets include both applica-
tions and patents and may be filed at or granted by offices outside the 
three triadic offices (provided that they are within a family containing 
triadic patents). 

There are several reasons for choosing this subset of nodes and links 
to define our network, beyond the aforementioned desire to be conser-
vative in our empirical design. The first is that we require well-defined 
layers. By restricting the citing patents to those granted by the triadic 
offices, the links (and, therefore, network layers) are defined by the 
citation context (e.g., the jurisdiction where it was made and the reason 
it was added), which isn’t available for many offices. Second, restricting 
the cited families to those that are also triadic means that there are no 
cross-layer citations, which significantly simplifies the network from a 
mathematical perspective. For example, a US triadic patent citing a pre- 
grant publication that was only filed at the Japan Patent Office would be 
a cross-layer citation, as the latter node does not exist in the US layer. If, 
however, this Japanese publication was part of a triadic patent family, 
we can ‘redirect’ this US-originating citation to the US-granted family 
member, as this patent covers the same technical content, and the 
citation can remain within the US citation network layer where it was 
generated. Third, all triadic offices provide detailed citation data. There 
is no theoretical reason why citation network layers associated with 
other countries cannot be added if the data exists, but we deemed the 
triadic offices to be the best starting point to demonstrate the use of the 
multilayer framework due to their existing popularity among both ap-
plicants and researchers. 

In this work, we also wish to demonstrate the importance of citation 
source and context. During the application and examination process, 
citations that reach the front page of the patent may be added by one of 

several parties for a variety of reasons. One problem inherent in this 
citation metadata is that different offices have different examination 
guidelines and legal frameworks that inform how prior art is cited 
(Higham and Yoshioka-Kobayashi, 2022). Further, the way that these 
differences manifest themselves in the metadata that researchers can 
access is not consistent across offices or, indeed, across time. For some of 
the analyses in this work, we broadly group citations at each office into 
two groups: those that were likely found by the examiner and those that 
were likely found by the applicant. While these groups are far from 
perfect,13 we do so to illustrate the flexibility of the multilayer network 
approach—the citations that comprise each layer can be filtered based 
on the research purpose. This flexibility is discussed in more detail in 
Section 4. One minor restriction that accompanies this approach is that 
we require citation metadata to exist for all citing patents. The USPTO 
only started to include this metadata for granted patents from the start of 
2001, so the triadic families we consider in this work are those for which 
the first US grant was in 2001 or later. All families considered in this 
work have all of their triadic members granted before April 2020. A 
histogram of the priority dates of the families that comprise the net-
works we consider in this work is displayed in Fig. 2. 

Most of the data used in this work were obtained from Google Patent 
Public Datasets.14 However, noting that, at the time of data collection, 
that data was not complete for citations between Japanese publications 
(notably, Japanese patents citing published Japanese applications), this 
data was supplemented by data supplied by the Intellectual Property 
Institute’s Patent Database.15 We also make use of Cooperative Patent 
Classifications (CPCs); for consistency, we assign each family the clas-
sifications associated with their first US member, as determined by the 
USPTO. This data was obtained from PatentsView.16 

To reduce the computational complexity associated with large net-
works, we prefer to work with a subset of the whole patent family 
network that nonetheless resembles the structure of the whole. Using a 
set of obviously technologically related families such as those in a spe-
cific technology class or filed by firms in a specific sector may not satisfy 

Fig. 2. Family priority dates. A histogram of the priority dates of the triadic families considered in this work, subject to the restrictions laid out in Section 2.3. All 
families have their US member granted in 2001 or later, but the earliest filing date can be considerably earlier. 

12 Note that this definition is slightly different to that used in previous work, 
notably Dernis and Khan (2004). Until the year 2000, applications to the 
USPTO were not published, so it was generally impossible to know whether 
equivalents were filed in all jurisdictions. This led to a slightly awkward defi-
nition (families with equivalents granted by USPTO and applied to EPO and 
JPO) that was in wide use until sufficient time had passed for USPTO appli-
cation data to accumulate. A common definition in use currently is those 
families with equivalents filed at the triadic offices; however, as US applications 
do not list citations, we restrict this definition further to require a grant at each 
office. 

13 This is particularly true for the JPO. However, there is suggestive evidence 
that applicant citations are more likely to be background art than art that could 
lead to a rejection of the application (Okada et al., 2018).  
14 https://tinyurl.com/googlepatentdata (accessed 25/10/2021).  
15 www.iip.or.jp/e/patentdb/index.html (accessed 25/10/2021).  
16 https://patentsview.org/ (accessed 25/10/2021). 
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this requirement, given the known differences in citation patterns across 
fields (Alcácer et al., 2009; Higham et al., 2017). To remedy this, we 
choose the subset of patents assigned to CPC class Y02: “technologies or 
applications for mitigation or adaptation against climate change.” The 
Y02 class is always a secondary classification and can be added to patent 
families from a broad set of technologies, from those aimed at reducing 
drag on airplanes to those aimed at treating diseases whose impact may 
be exacerbated by climate change (Haščič and Migotto, 2015; Veefkind 
et al., 2012). This class (and its subclasses) are commonly used as filters 
to study patented technological developments within specific domains 
related to both the mitigation of climate change, such as cleaner trans-
port (Aghion et al., 2016; Barbieri, 2016) and energy production (Per-
soon et al., 2020; Sun et al., 2021), and our adaptation to the inevitable 
and wide-ranging environmental challenges we will face in the near 
future (Dechezleprêtre et al., 2020; Hötte et al., 2021). As such, we 
believe this technology class comprises a suitable microcosm within 
which we can effectively demonstrate the application of multilayer 
network methods to patent citation networks. 

The resulting data set consists of a well-defined set of citing families, 
their CPC classifications, the citations they make,17 and the jurisdiction 
and context of each citation. A description of the layers considered in 
this work (which can be aggregated for specific empirical tests) can be 

found in Table 1. 

3. Methods and Results 

3.1. Interdependence 

Before a detailed examination into the kind of information that may 
be extracted from the multilayer network that is not accessible when 
using a single layer, it is first important to assess whether there is new 
information in the multilayer network at all. That is, if there is a high 
level of redundancy between the information contained in each network 
layer, then the case for using a multilayer framework is weakened. At the 
same time, if the layers contain very different structural patterns, then a 
multilayer framework may not be ideal, and more informative results 
may be obtained if they are treated as individual single-layer networks 
instead. 

One way of assessing these properties is by measuring the interde-
pendence of each layer, or set of layers, relative to the information that 
can be found elsewhere in the network. Several measures of interde-
pendence have been proposed in the past (Morris and Barthelemy, 2012; 
Nicosia et al., 2013; Parshani et al., 2011), many of which take a random 
walk approach to the level of layer interdependence or ‘coupling’ of 
layers in the network. In this work, at a high level, we are instead 
interested in the degree to which the information contained in one 
network layer can inform us about the information contained in another 
layer. 

Table 1 
Layer descriptions. Descriptions of the layers considered in this work, alongside their abbreviations and the number of links found within them. All layers contain 
22653 nodes, and there are a total of 63916 citations in the multilayer network (MULTI) that is comprised of the layers described in the first seven rows. The last two 
rows are single-layer networks obtained by flattening the two USPTO layers (US-AGG) and all seven layers (ALL-AGG), respectively.  

Layer Citing party Abbreviation Description Links 

USPTO Examiner US-EXM Cited by examiner during patent prosecution 15607 
USPTO Applicant US-APP Cited by applicant through an Information Disclosure Statement and unused by examiner 23145 

EPO Applicant EP-APP Cited by applicant, in the patent text or otherwise 4326 
EPO Examiner EP-ISR Cited by examiner in an international search report 5732 
EPO Examiner EP-SEA Cited by examiner in an EPO search report 5206 
JPO Examiner JP-REJ Cited by examiner as justification for application rejection 4612 
JPO Examiner JP-BCK Cited by examiner as background information 5288 

USPTO All US-AGG Cited by anyone (USPTO patents) 38752 
All All ALL-AGG Cited by anyone (all triadic patents) 63916  

Fig. 3. Layer interdependence. The x-axis presents different target layers α, and the y-axis shows the AUC obtained through 5-fold cross-validation for measuring 
layer interdependence. Orange results refer to the baseline AUC, where the algorithm is only given access to that target layer. Green and blue markers show the 
increase in the AUC for the α set when the algorithm is given access to the US-APP or the US-EXM, respectively. The red points refer to the AUC obtained by giving 
access to all other layers in the network. The results displayed are averages and standard deviations over the 5 folds. 

17 We exclude very rare citation types, such as those originating from third 
parties. 
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To this end, we employ the method introduced by De Bacco et al. 
(2017) and described in detail for our case in Appendix A.2. This method 
is a link prediction exercise, whereby a randomly-selected portion of the 
target layer or layers α have their link information removed and the 
remaining information in the network may be used to predict the exis-
tence of links. As a baseline, the remaining portion of the α is used as the 
training set, the receiver operating characteristic (ROC) curve is calcu-
lated, and the area under this curve (AUC) is computed. We can then 
introduce sets of other layers, β, into the training set, and compare re-
sults obtained by adding this information to those of the baseline. If the 
predictive power (as measured by the AUC) of this augmented set α +β is 
not significantly larger or smaller than the baseline predictive power, 
then β does not contain useful information over and above that con-
tained in α. If, however, we note a significant increase in predictive 
power relative to the baseline, then β contains complementary infor-
mation that cannot be extracted from what remains of α. 

Much information can be garnered from comparisons of the change 
in predictive power when α and β are interchanged. For example, when 
the links in one layer are a subset of links in another, then we expect the 
change in predictive power to be asymmetric when we swap α and β — 
adding the subset to try to predict links in the full set will likely produce 
worse results than if only the full set was used for training the model. The 
information in the subset is redundant and could even mislead the 
model. 

When two layers contain complementary information we would 
expect increases in predictive power regardless of the layer comprising 
the test set. This complementarity can arise in several ways, such as 
through similar community structure despite large differences in the 
specific links that produce these structures. A significance decrease, on 
the other hand, would indicate that β contains information that is 
irrelevant for the prediction task and actually added noise; this could 
occur, for example, if the link generation mechanisms were independent 
of the node properties, or were driven by different node properties in 
different layers. 

Fig. 3 shows the results of the interdependence analysis for various α 
and β sets in which we are interested. For graphical simplicity, we focus 
on the sublayers generated by the USPTO and the complete JPO and EPO 
layers (where the latter two always include all of their sublayers listed in 
Table 1). This is done to demonstrate, compactly, the complementarity 
of information across jurisdictions as well as that of their sublayers, with 
the most commonly utilised sublayers in the literature (US applicant and 
examiner citations) as exemplars for the latter calculations. 

The results displayed in Fig. 3 show that adding more layers in-
creases predictive power across all combinations of α and β we consid-
ered. This outcome suggests that, while they differ by the amount of 
unique complementary information they contain, each layer nonetheless 
contains information that is not available in the other layers. Specif-
ically, information about the missing values in α is more accurately 
predicted when layers that are not already in α are included in the 
training set, relative to the sole use of the information that remains in α. 
This is to be expected, as examiners at each office conduct much of their 
prior art search independently. 

A prime example of complementarity is displayed by the US sub-
layers (US-APP and US-EXM). These layers are almost mutually exclu-
sive,18 but predictive power for links in one layer is significantly boosted 
when the other layer is added, regardless of which is the test set. That is, 
there is very little overlap in these layers, and yet one can be successfully 
used to predict the links in the other, likely due to the similarity of 
mesoscale network communities within each of these layers. 

That some citation types add more information than others is also 
expected. After all, information sharing occurs regularly between of-
fices (Wada, 2020), and this process leads to the duplication of citations 

between specific layers. While this sharing happens increasingly 
through direct collaboration between offices examining equivalents,19 

most of the citations we consider here were made before these formal 
programs were launched. As such, for much of the time period we 
consider, the information ‘sharing’ likely takes place indirectly, through 
applicants. For example, the EPO produces a search report for the 
applicant to consider before a substantial examination takes place. 
Under their duty of disclosure obligations at the USPTO, it is considered 
good practice to pass this information on to the USPTO if an equivalent is 
being examined there simultaneously (which will usually be the case for 
triadic patent families). This information is submitted via an informa-
tion disclosure statement and the USPTO examiner then assesses the 
relevancy of the prior art that is listed on the search report. When it 
happens at all, only a small percentage of citations from the EPO search 
report will be used to justify rejection and be recorded as examiner ci-
tations, while the remainder will be recorded as applicant citations. As 
such, the EPO search report is a non-obvious mechanism through which 
citations are duplicated from EP-SEA citations to US-APP citations (and 
sometimes to US-EXM citations). 

Similarly, while there is a knowledge disclosure obligation at the 
JPO, the incentives for complying are very weak relative to the USPTO 
(Nakamura and Sasaki, 2016). However, applicants to the JPO often use 
in-text citations to make a case for patentability, and perhaps much 
more so than the typical applicant to the USPTO or EPO. As such, it is 
plausible that, for triadic patents, these citations are included in-text in 
other equivalent applications and are therefore easily accessible to ex-
aminers in all jurisdictions. If these citations are deemed relevant by 
multiple examiners, these citations might also appear to be duplicated 
across network layers. 

3.2. Community detection 

Having found that the different layers likely contain complementary 
information, we now investigate the patterns extracted from a multi-
layer network approach and compare them with those extracted from 
single-layer networks that exclude citation context. Specifically, we wish 
to detect communities of triadic families that are similar in their citation 
patterns. These communities represent mesoscopic structural patterns 
contained in the networks that are not objectively or directly observed, 
but can be inferred from the data. 

To this end, we apply a community detection algorithm to three 
networks: i) the (seven-layer) multilayer network containing the EPO, 
JPO, and USPTO layers (MULTI); ii) the network obtained by flattening 
all the layers in (i) into a weighted single-layer network and ignoring 
citation origin and context (ALL-AGG); iii) the weighted single-layer 
network obtained by flattening the USPTO examiner and applicant 
layers only (US-AGG). Each link is weighted by the sum of link weights 
across all layers we consider; that is, if the same family-family citation 
exists once in each of n layers, then the link is assigned weight n. While 
rare, link weights greater than one can occur within sublayers; for 
example, when a divisional makes the same type of family-family cita-
tion as its parent, the link weight corresponding to this link will be two. 

To perform the community detection task, we consider a probabi-
listic generative model that assigns a probability to a citation between 
two families that depends on the communities they belong to, as 
described in De Bacco et al. (2017). In our case we have access to 
relevant metadata about each triadic family, hence we consider the 
model of Contisciani et al. (2020), MTCOV, that is also able to incor-
porate the office at which priority was filed (which is often not a triadic 
office) as a node covariate to drive inference along with the network 
structural information. This covariate allows us to incorporate the 
home-bias of citations in early search reports (Bacchiocchi and Mon-
tobbio, 2010) and, to a lesser extent, industrial agglomeration patterns 

18 Copying occasionally happens due to the recycling of citations for 
continuing patent applications. 19 https://www.wipo.int/case/en/. 
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(Asheim and Gertler, 2005) (given the strong correlation between 
assignee location and priority office), to inform the inferred citation 
probability alongside explicit network structure. This model automati-
cally balances the weight of the covariates’ contribution in determining 
the communities. In all our experiments we find that node covariates are 
indeed significant, in that they allow us to better quantify the proba-
bility of certain citation patterns. The optimal number of communities in 
each case is extracted through a cross-validation procedure, see 
Appendix A for details. In addition to being able to incorporate a co-
variate that may inform network structure at scales beyond individual 
links, MTCOV is scalable to large networks, allows overlapping com-
munities, and is open-source,20 all of which are desirable features for the 
current work. 

We chose ALL-AGG as a comparison because it contains all the same 
links as the multilayer network, and even accounts for link overlap 
among layers, but without context. As such, any differences in the 
extracted communities arise solely due to the addition of citation 
context, and the incorporation of this context into our network model. 
US-AGG is included in these comparisons as the most common citation 
network used in previous work. The USPTO also tends to make many 
more citations per patent, and so this single-jurisdiction layer is likely to 
be the most ‘complete’, with respect to the links in the full triadic 
network. 

The communities extracted for MULTI are shown for a random subset 
of patent families in Fig. 4. Analogous figures for the ALL-AGG and US- 
AGG networks can be found in Appendix B. While the model allows for 
overlapping communities (nodes can belong to multiple communities), 
in Fig. 4 we colour nodes by their ‘hard’ communities, whereby each 
patent family is assigned to the community to which it displays the 
highest affinity. The optimal number of communities, calculated via the 
cross-validation exercise described in Appendix A.1, was found to be 15 
for the multilayer citation network and 7 for ALL-AGG and US-AGG. 
Finally, the location of the assignee of each patent family (rather than 

the priority office, which is used as a covariate in the community 
detection procedure) is indicated by the shape of the node. 

Between networks, several graphical observations can be made in the 
geographic composition of the extracted communities, despite the 
differing community sizes. First, country-based homophily is very clear. 
The most obvious example of this is that families filed by Japan-based 
assignees are primarily grouped with families that are also filed by 
Japan-based assignees, with the only observable difference between the 
networks being how many communities are found within this group of 
families (1 for ALL-AGG and US-AGG, and 5 for MULTI); however, this 
difference is expected as the optimal number of communities multilayer 
network is greater. The other consistently geographically-homogeneous 
communities include those families assigned to German firms and those 
assigned to South Korean firms. The existence of these groupings is 

Fig. 4. Community extraction. This diagram 
shows the hard community membership parti-
tions for MULTI. While inference was per-
formed on the whole network, here we use a 
random sample of 2000 nodes and include any 
incidental links among these, for graphical 
clarity. The colouring shows the 15 commu-
nities found within the MULTI network. Node 
size is proportional to the number of outgoing 
and incoming citations, while node shapes 
denote the location of the assignee of each 
patent family.   

Table 2 
Network comparison and diversity measures. Here we show the results of the 
network distance calculations as well as the diversity measures. DeltaCon (DC) 
and Frobenius (F) distances between the class-projected networks (leftmost 
block) and the externally defined co-classification (Co-class) and inter-class 
citation linkage (IC Cites) networks are displayed in the central block. The 
median Rao-Stirling class diversity (RSD) across communities and the median 
Herfindahl-Hirschman Index (HHI) of classes’ dispersion across the C commu-
nities are shown in the rightmost block. * indicates non-optimal partition. The 
lowest values within each comparison set are highlighted in bold.    

Comparison Network Diversity   

Co-class IC Cites RSD HHI  

C DC F DC F 

MULTI* 7 32.43 115.98 30.40 115.01 6.81 0.185 
ALL-AGG 7 34.00 149.40 31.96 148.31 7.02 0.263 
US-AGG 7 34.54 150.63 32.49 149.59 7.05 0.271 

MULTI 15 30.08 58.66 28.09 58.61 6.87 0.131 
ALL-AGG* 15 31.47 78.87 29.49 78.56 6.87 0.169 
US-AGG* 15 30.79 76.73 28.81 76.42 6.99 0.167  

20 https://github.com/mcontisc/MTCOV 
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somewhat expected — geographic citation biases are a well-known 
phenomenon and have a wide range of drivers, including local in-
dustry agglomeration, shared language, prior-art search strategies, 
knowledge spillovers, and coordinated technological development 
strategies at the national level (Almeida and Kogut, 1999; Bacchiocchi 
and Montobbio, 2010; Jaffe et al., 1993; MacGarvie, 2005; Wada, 2016). 
Because priority office information is included in the community 
detection algorithm, the existence of the kind of geographic grouping we 
observe reflects that while technological similarity plays a big role in 
citation linkage at the micro-level, simple geographical metadata can be 
highly predictive of network structure at larger scales. 

3.3. Network Communities and Technological Similarity 

One would expect that the citations we consider in this work should 
link families with technological similarities and, therefore, the com-
munities detected should group inventions with shared and legally 
relevant technological features. Indeed, the geographical biases in 
citation linkages that are observed above may be considered to be ar-
tifacts of the systems within which technological development occurs, 
and perhaps even hinder our understanding of the nature of innovation 
more generally. We assert that the multilayer framework is one way of 
mitigating some of these biases, as it integrates relevant technological 
relationships uncovered by several different, and geographically sepa-
rated, patent agents and examiners working mostly independently. In 
aggregate, this information should give a more balanced view of tech-
nological similarity and down-weight those links that are heavily 
influenced by unwanted geographical and office-specific biases and 
conventions. However, the link weights in the ALL-AGG network may 
play a similar role. As such, we will now turn to the differences in the 
technological information contained in the three networks and examine 
the importance of citation context (i.e., source and justification) in as-
sessments of technological similarity. 

To do this, we directly compare the network of meso-level techno-
logical relationships that can be gleaned from extracted communities 
with externally-defined technological categories. First, we construct a 
weighted bipartite (two-mode) network of relationships between the 
extracted communities and the 3-digit Cooperative Patent Classification 
(CPC) codes that the families within each community were assigned 
upon application to the USPTO.21 CPC codes, henceforth referred to 
simply as classes, were chosen due to their status as the primary classi-
fication system at two of the triadic offices and widespread use in 
research, particularly in studies of technological evolution and fore-
casting technical change. The weight of each link in the bipartite 
network between communities and classes is proportional to the fraction 
of families in each community that were assigned to a given class. We 
then project onto the technology class nodes to obtain a network of 
classes wherein links exist between classes that were both found in the 
same community or communities. A higher link weight between two 
nodes in this projected network reflects a more similar distribution of 
those classes across the extracted communities (Vasques Filho and 
O’Neale, 2018).22 

We then construct two basic comparison networks: co-classification 
(Breschi et al., 2003; Engelsman and van Raan, 1994) and inter-class 
citation linkage (Alstott et al., 2017; Leten et al., 2007). The former 

contains a link between (3-digit CPC) classes when a family is assigned 
to both, with weights proportional to the relative frequency of such 
occurrences. The latter network contains links between these classes 
with weights proportional to the number of citations made between 
families that were assigned to each class, normalised to the total made 
by each of the classes.23 We keep self-loops in this network, as they are 
required for sensible link-weight normalisation. For example, if class A 
makes 10 citations (and receives none), one of which goes to a class B 
family but 9 return to other class A families, this is a very different sit-
uation from one in which all 10 go to class B families. Because we 
normalise link weights by total citations made, ignoring self-citations 
would give the link from A to B the same weight in both scenarios, 
rather differing by a factor of 10. Further description of the construction 
of all networks used in this section can be found in Appendix B. 

Now that we have two externally defined, node-aligned class net-
works, we are able to directly compare their structure to those extracted 
from the community-class bipartite networks. Because the nodes in each 
network we wish to compare are labelled and the same for all networks, 
we are able to use known-node correspondence methods that allow for 
comparisons at the node-level in such a way that accounts for differences 
in relationships between specific node pairs and for higher-order re-
lationships (Tantardini et al., 2019). For this exercise, we use two 
different methods of comparison: the Frobenius norm and DeltaCon 
(Koutra et al., 2013). 

The Frobenius norm is applied to the raw differences in the adja-
cency matrices between two networks, and thus quantifies the entry- 
wise (link-level) differences in the matrices being compared. When the 
networks being compared are unweighted, this distance is simply the 
square root of the number of pair-wise differences between the net-
works. However, this method easily accommodates the weighted case, 
wherein each pair-wise difference can have a magnitude other than 
unity.24 The Frobenius norm is a crude comparison method that cannot 
account for higher-order relationships between nodes, such as the 
importance of a link in the overall structure of the network, but it is a 
good heuristic when making multiple comparisons as we do here. Del-
taCon, on the other hand, is more sophisticated, and indirectly considers 
every possible path between two nodes. In this way, differences in the 
weights of links that are particularly important for the network structure 
at the macro-level are incorporated into the comparison. While the 
DeltaCon algorithm can be very computationally expensive on large 
networks, and an approximation is possible, our class network is small 
enough (535 nodes) that the exact form can be used (Koutra et al., 
2013). Both the Frobenius norm and DeltaCon calculate a distance 
metric whereby smaller distances indicate more similar networks. These 
methods are implemented in Python using the numpy (Oliphant, 2006) 
and netrd packages (McCabe et al., 2021). 

In addition to the network comparison methods, we are also able to 
quantify the diversity of technology classes within each community 
extracted. For this purpose, we make use of the Rao-Stirling diversity 
(RSD) (Rao, 1982; Stirling, 2007), which considers both the homoge-
neity of each community (with respect to the classes within it) and the 
level of ‘surprise’ that specific pairs of classes are found together. For the 
latter consideration, we operationalise class distance using the 

21 This choice was made for the sake of consistency. Different offices may 
make slightly different judgements regarding the particular set of classes 
assigned to an application. By using data from a single office, we do not have to 
be concerned with these systematic differences.  
22 Note that these classes are not directly used in the community detection 

process. However, the community detection process relies on citation linkages, 
and these citations are often found through searches within the technology 
classes to which the application under examination has been assigned (see, e.g., 
Demey and Golzio, 2020). 

23 To compare this network to our (undirected) projected networks, we take 
the sum of the normalised weights of the directed links between classes to 
obtain an undirected link weight. This simplification is a necessary evil for the 
current purpose and may miss some nuance in certain technological 
relationships.  
24 Specifically, the Frobenius norm of a matrix Am×n is defined as the square 

root of the sum of the absolute squares of its elements, 
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inter-class citation network described above, as citations are what we 
use to extract the communities in the first place.25 Calculating this index 
for all communities extracted from a particular network, we take the 
median index across these communities as a measure of their average 
diversity. The RSD is high for a particular community when classes 
co-occur in high proportions with other classes with which not many 
citations are exchanged. RSD is low when classes generally only co-occur 
in high proportions with other classes with which they exchange many 
citations. Specifics of the RSD can be found in Appendix B.2. This kind of 
analysis, when compared to the network comparison methods above, 
may be considered relatively myopic. It can only capture the internal 
composition of individual communities without accounting for the re-
lationships between the pairs of technologies in other communities. 
However, this calculation may provide insight into the origin of differ-
ences we find for the network-level comparisons. 

Lastly, we calculate the spread of technologies across the extracted 
communities. A priori, we do not know what the relationships between 
the communities are, so we cannot integrate a distance metric to account 
for the level of surprise that a family assigned a particular class is found 
in a given pair of communities (as we did for the previous diversity 
measure). As such, we implement the Herfindahl-Hirschman Index26 

(HHI) (Herfindahl, 1950; Hirschman, 1945; 1964; Simpson, 1949) to 
measure the extent to which classes are splintered across communities. 
The details of this calculation can be also found in Appendix B.2. The 
HHI is maximised when all families assigned a particular class are in the 
same community and minimised when there are the same number of 
these families in each community. Again, the median HHI across all 
communities is compared across the networks. Like the Rao-Stirling 
index above, this calculation may add additional colour to the more 
comprehensive network comparisons. It is important to note that while 
we believe that it is desirable that communities are able to capture, to 
some extent, the large-scale structure of the technology-level networks, 
neither the spread of technologies across communities, nor the internal 
diversity of communities, is a test of the performance of the community 
extraction exercise. 

It is important to note that the optimal parameters for the community 
partitions for the three networks are different—the optimal number of 
communities found for the multilayer network is 15, while for the others 
it is 7. For this reason, we run the community-detection algorithm for 
each of the non-optimal partitions (7 for the multilayer network and 15 
for the others) to obtain a complete set of networks with which we can 
make fair comparisons. In sum, we construct six bipartite (community- 
class) networks which we project onto the class nodes to compare with 
the co-classification and inter-class citation networks. 

The results of this analysis can be found in Table 2. First, we find that 
the communities in the multilayer network generate class networks that 
are more similar to the co-classification and inter-class citation networks 
than those generated by the other two networks. This finding holds for 
both individual-link-level comparisons (Frobenius) and when higher- 
order relationships are taken into account (DeltaCon), for both 
optimal and non-optimal partitions of the multilayer network. Further, 
we find that the average RSD of the individual communities is lowest, 
while classes are the most evenly distributed across the communities 
(low HHI), in the multilayer case. 

These observations lend themselves to some interesting in-
terpretations. When looking at all communities, in combination, those 
extracted from the multilayer network imply technological relationships 
that are closer to the explicit technology networks than the flattened or 
single-jurisdiction approaches. However, the diversity calculations 
suggest that this observation is not simply driven by the extraction of 
homogeneous communities that group technologies in a straightforward 

manner. In fact, technology classes are more thinly spread across com-
munities in the multilayer case, while the average internal diversity of 
classes is generally lowest for this network once known technological 
similarities between classes are accounted for. This suggests that, on the 
micro-level, the multilayer (relative to the single-layer) network 
approach is more sensitive to citation linkages than co-classification, but 
is nonetheless better able to represent real technological relationships 
on the meso- and macro-levels. 

Indeed, our results are consistent with the conclusion that the 
multifaceted nature of the technological relationships that are 
embedded in citation data may be partially lost when a multilayer 
network is flattened into a single-layer one. This view rests on an 
assumption that different technology types can be related to each other 
in different ways. For example, let’s assume that applicants filing a 
patent assigned to class A prefer to cite families assigned to class B, while 
examiners examining the same patent prefer to cite those assigned to 
class C. When, such as in this example, these different relationships are 
driven by different citing parties, the erasure of citation context will lead 
to the loss of this nuance. This problem may be exacerbated in the 
presence of higher-order effects, such as if the above citation behaviour 
only occurs when a fourth class D is also assigned to the patent appli-
cation. In contrast, the multilayer network approach ensures these nu-
ances and higher-order relationships remain accessible. The retention of 
this kind of technologically relevant information, particularly with 
respect to rare or subtle inter-class relationships, would be consistent 
with the findings displayed in Table 2. 

4. Discussion and Conclusions 

Historically, research informed by patent citation data has often 
ignored citation source and context. There can be a perfectly reasonable 
reason for this practice, such as when one is only interested in citations 
made to and from patents in a single jurisdiction to study, for example, 
the effect of a local policy change. However, a truly comprehensive and 
global view of patented inventions and the relationships between them 
is only possible when data from multiple sources are integrated sensibly. 
It is in these contexts that the multilayer network is a natural framework 
for analysis. 

In this work, we introduce the concept of multilayer patent citation 
networks as a natural way to present and analyse global patent infor-
mation without loss of citation context. We conduct several empirical 
analyses to demonstrate the utility of the multilayer framework. All 
analyses are conducted on a subset of the full citation network, con-
taining all triadic patent families classified into CPC class Y02 with US 
members granted from the year 2001. By design, this subset will give the 
most conservative estimates of the additional information that may be 
extracted from the multilayer network relative to its single-layer coun-
terparts. Our results in this work suggest that not only is there, indeed, a 
considerable amount of additional information contained in the multi-
layer citation network relative to those single-layer counterparts, but 
this information is technologically relevant and captures nuanced as-
pects of the technological relationships between patented inventions. 

First, an interdependence analysis shows that additional network 
layers, defined by citing office, contain complementary (rather than 
redundant) information that may be used to predict the link-level 
structure of other layers. To test whether this complementary informa-
tion is important for characterising network structure more generally, 
we then conduct an exercise in community detection. This is carried out 
and compared across three different networks: the multilayer network, 
the flattened and weighted (single-layer) version of the multilayer 
network (containing all the links in the latter but without citation 
context), and the complete (flattened, single-layer) US citation network 
that is most commonly used in technological network analyses. While 
there is a notable similarity in the communities extracted from these 
networks, there is also significant disagreement, indicating that the in-
formation contained in the citation context may be important for 

25 That is, it would be a ‘surprise’ to find a pair of classes that don’t cite each 
other, but are nonetheless found in the same community.  
26 Sometimes referred to as the Simpson index. 
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characterising the mesoscopic structure of the global citation network. 
To test whether the differences in community structure are techno-

logically meaningful, we conduct direct comparisons between the 
technological relationships implied by the extracted communities and 
those of previously studied meso-scale networks of technological simi-
larity: the co-classification and inter-class citations networks, at the CPC 
3-digit level. These tests are conducted, in part, to show how the in-
formation content (i.e., citation context) contained in citation networks 
can be related to the meso-scale technological structures that are 
perhaps more established in the technology management community. 
To be able to draw a direct comparison, we construct the bipartite 
networks between communities and classes, then project onto the class 
nodes to obtain a class network wherein links reflect levels of co- 
occurrence in the communities. To add colour to these comparisons, 
we also compute the Rao-Stirling diversities of these communities 
(across classes) and the Herfindahl-Hirschman Indices of class (across 
communities). Relative to the flattened networks, we find that while the 
communities extracted from the multilayer network are less diverse and 
the implied class network more similar to the co-classification and inter- 
class citation networks, classes are more evenly spread across commu-
nities. These results suggest that citation context is technologically 
relevant and a more realistic mesoscopic network structure can be 
inferred when we depart from the view that technological relationships 
are mono-faceted or driven by simple class-level technological 
similarity. 

While we include the US citation network in our comparison exer-
cises, this is only done as an acknowledgement of its position as the 
dominant data source in the extant literature. The flattened version of 
the multilayer network, on the other hand, contains all the links that are 
present in the multilayer network, but without the context that allows us 
to define the layers. As such, we consider this network the most 
appropriate comparison network, as any differences found must be 
driven by the absence of citation context. That the communities 
extracted from the multilayer network more closely replicate the 
established and explicit co-classification and inter-class citation net-
works indicates that citation context adds technologically relevant in-
formation in the aggregate, despite displaying higher within-community 
diversity of classes. This suggests that ignoring citation context results in 
a bias towards within-class citations (that are easier for all parties to 
search for and find), at the expense of the rarer inter-class citations and 
class combinations that play a larger role in both the network structure 
as a whole and, arguably, technological progress in the long-term 
(Castaldi et al., 2015; Kelly et al., 2021; Mewes, 2019; Verhoeven et al., 
2016). Considering citation generation mechanisms, it is plausible that 
citation context provides important clues as to the relevance and nature 
of the technological relationship between citing and cited inventions 
(Alcácer et al., 2009; Azagra-Caro et al., 2011; Criscuolo and Verspagen, 
2008; Kuhn et al., 2020; Li et al., 2014). As such, treating all these links 
as equal, with respect to their information content, is clearly not ideal 
for many use-cases. 

4.1. Limitations 

The main limitations of the empirical analyses conducted in this 
work are those restrictions we placed on the families we chose to 
include. As we describe in Section 2.3, these restrictions were put in 
place for a variety of reasons, including data availability, computational 
limitations, and a desire to demonstrate our approach in a conservative 
manner. Little can be done about data availability; however, this only 
affects our ability to examine citation context in the US case, and only 
for times earlier than the year 2001. In any case, we suggest that families 
granted after this time provide a sufficiently large sample for the pur-
poses of this work. 

The conservativeness of our approach is introduced with the decision 
to consider only those families with granted patents at all three triadic 
offices. This means that all offices had access to the same set of prior art, 

and had the opportunity to share information among themselves. In 
turn, this would introduce maximum redundancy between layers, and 
minimise the additional information that can be added by the inclusion 
of citation context. It is for this reason that we think of our approach as 
conservative. Extensions of the restrictive, special-case multilayer 
framework that we examine here are discussed below in Section 4.2, and 
highlight the potential of this framework going forward. 

Lastly, to reduce the computational complexity of our analyses, we 
restrict the included families to those classified into CPC class Y02. 
While we maintain that this subset is an appropriate representation of 
the patent citation network as a whole, there may be arguments against 
its generalisability. However, in the case that this class contains a more 
homogeneous set of families than the set of all families (which is almost 
certainly true), then the inter-class structure that we are able to explore 
is likely to be less rich and less nuanced than that of the full network. 
Detecting higher-order nuances is precisely the domain in which we 
suggest the multilayer network excels, so following this logic would lead 
us to conclude that the current approach is, again, a very conservative 
one. 

4.2. Future Work 

This work aims to describe the construction of multilayer patent 
citation networks then conceptually and empirically justify their use. 
This framework may prove to be of particular interest to those who 
would prefer representations of technological relationships that are not 
as sensitive as extant frameworks to the idiosyncrasies of individual 
patent offices. However, both the layers that are selected to comprise the 
network and the appropriate empirical methods to extract information 
from this network will depend on the specific use-case. Here, we 
describe the myriad methodological doors that are opened with the 
introduction of patent-based multilayer networks into the broad field of 
science, technological, and innovation studies. 

The obvious extension to the current work is to take a less conser-
vative approach with respect to the subset of families and citations 
considered. This can take the form of additional layers, nodes, or links. 
The addition of layers corresponds to the addition of new citation con-
texts (such as in-text citations (Verluise et al., 2020)) or the addition of 
new jurisdictions. The addition of nodes and links, on the other hand, 
would relax the condition that a family be triadic. Citations between 
triadic families only make up a tiny portion of all citations made and 
received by these families. For example, in Fig. 1, we show the triadic 
ego network of the family with USPTO equivalent US-6819081-B2. In 
this restricted network, this family only receives 4 citations from other 
triadic families classified into class Y02. If we remove all restrictions on 
the patents we include in our network, however, this family receives 
almost 50 citations; about 90% of these are from families that have a 
triadic member, and about 95% are from families that are also classified 
into Y02. As such, removing the triadic family requirement but keeping 
the network restricted to the triadic offices and the Y02 classification 
would dramatically increase the sample size. 

Multilayer citation networks can also be flexibly aggregated. Just as 
one can analyse the inter-class citation network for a single jurisdiction 
or citation context (e.g., US applicant citations), it is also possible to 
include additional layers containing the equivalent information for 
other jurisdictions or contexts. In fact, in the same way that we use 
families to align layers in the current work, any metadata that connects 
groups of patents between network layers forms a natural multilayer 
configuration. Classes, firms, and inventors can all be linked across ju-
risdictions and citation contexts and their networks analysed in a 
multilayer framework. Even in the single-jurisdiction US case, for 
example, the relative positions of firms in the inter-firm citation network 
will depend on whether one uses examiner citations, applicant citations, 
third-party citations, or in-text citations. Because firms can be repre-
sented as nodes across all of these context-specific networks, multilayer 
network tools may be applied to obtain a comprehensive and integrative 
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view of the network structure without abandoning citation context. 
Citations to non-patent literature such as scientific articles is challenging 
to incorporate into patent citations networks generally, but it is certainly 
possible to treat this information as family-level metadata — perhaps to 
construct a bipartite network similarly to how technology classification 
was used in Section 3.3. More complicated uses of this information could 
match institution and inventor data from patents onto scientific articles 
to extend recent work on the multilayered interplay between authorship 
and the broader dynamics of science and collaboration into the tech-
nological domain (Nanumyan et al., 2020; Omodei et al., 2017; Zingg 
et al., 2020). 

In addition to these data extensions, the conceptual arguments 
against the omission of citation context lead to a strong case for the 
further application of novel tools designed for the study of multilayered 
systems. To return to the public transport analogy, it would be unwise to 
treat all modes of transport as equal if you are trying to find the fastest 
route between two places in the network. In the same way that the time 
and financial costs of using different modes affects the route choice 
between two points in a physical landscape (which will be moderated by 
the amount of time or money you had), citation networks are embedded 
in a technological landscape (Fleming and Sorenson, 2001; Kauffman 
et al., 2000) and different types of citation may traverse this landscape in 
different ways. This intuition has significant consequences for the 
analysis of citation networks. For example, any algorithm that ‘walks’ 
through the network, such as PageRank, should consider the ‘cost’ of 
each link in a similar way to one plotting a route through a multilayered 
transportation network. The application of multilayer network methods 
opens the door to a menagerie of new analytical tools to develop more 
sophisticated and tailored metrics for studies of technical change and the 
nature of innovation systems. For example, the identification of patent 
thickets (Bessen, 2003; Shapiro, 2000) is often conducted through, or 
supported by, citation network analysis (Von Graevenitz et al., 2011; 
Yuan and Li, 2020; Zingg and Fischer, 2018). The multilayer framework 
may assist in these studies — thicket identification depends crucially on 
the citation context (blocking vs. non-blocking citations) and the juris-
diction (a thicket is necessarily a single-jurisdiction phenomenon). 
Adding citation context and linking families across jurisdictions for 
direct comparison may allow for thickets to be more easily distinguished 
from fields with dense, but non-overlapping, intellectual property rights. 
For example, when calculating clustering coefficients in multilayer 
networks, one can specify weights for different kinds of citation or 
penalise cycles that move between layers (De Domenico et al., 2013). 
This kind of flexibility can be used to operationalise the definition of 
thickets in a way that doesn’t simply ignore applicant-provided citations 
or citations from other jurisdictions, which may not be entirely irrele-
vant, particularly at the firm level. 

Network centrality is another important concept that is generalised 
in the multilayer case (De Domenico et al., 2015; Solá et al., 2013; 
Solé-Ribalta et al., 2014; Taylor et al., 2021), and can also be readily 
applied to citation networks. For example, without citation context, it is 
hard to know whether firms are central because they block the patents of 

competitors or are a source of knowledge from which other firms build. 
Further, firm centrality will likely depend on the jurisdiction one ex-
amines, so multilayer centrality may give a more holistic view of their 
centrality in global markets. 

Both technology roadmaps (Lee et al., 2009) and technological tra-
jectories (Verspagen, 2007) may be significantly altered by the incor-
poration of citation context, as different kinds of citation appear to hold 
different information, which may, in turn, be useful for forecasting or 
tracing different kinds of technical change (Acemoglu et al., 2016; 
Mariani et al., 2019). So-called ‘main paths’ in technological trajectory 
analysis (Hummon and Dereian, 1989; Verspagen, 2007) could be 
particularly sensitive to the weights that are placed on, or empirically 
determined for, different layers or citation contexts. The multilayer 
framework may also conceptually aid traditional economic analyses 
(Cai and Li, 2019), for which it is possible, for example, to allow layers to 
differ in importance when constructing proxy network variables that 
attempt to capture an abstract concept. 

Lastly, pair-wise interactions may not be sufficient to describe the 
complex behaviour of interactions between the components of innova-
tion systems that are accessible through citation networks. In particular, 
the interactions between firms or technology types that are visible in 
citation networks may be better represented through higher-order in-
teractions (Battiston et al., 2021; 2020; Lambiotte et al., 2019). For 
example, the patenting and citing behaviour of firms may be described 
at several different scales. Higher-order representations allow us to 
differentiate changes in citation behaviour of a firm in response to 
sector-wide changes from the pairwise interactions between a firm and 
every other firm in its sector. Higher-order interactions can exist within 
layers of multilayer networks and it is possible that different 
higher-order behaviours are observable in different patent systems. In 
any case, it is clear that applications of network frameworks beyond 
single-layer networks with dyadic links are very much in their infancy in 
the field of innovation studies, and hold huge potential as more realistic 
abstractions of innovation systems. 
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Appendix A. Model description 

For the layer interdependence and community detection analysis we use MTCOV,27 the model developed by Contisciani et al. (2020). MTCOV is a 
probabilistic generative model that incorporates both the topology of interactions and node attributes to extract overlapping communities in directed 
and undirected multilayer networks. It works also with single-layer networks, since this is the special case for which there is only one layer in the 
‘multilayer’ network. The model assumes conditional independence between the network and attribute data, given a set of latent variables (including 
the node community memberships). The likelihood function is a linear combination of the network and attribute information, adjusted by a scaling 
hyperparameter γ ∈ [0,1], which controls the relative contribution of the two terms: for γ = 0 the model only considers the network topology, while for 
γ = 1 it only considers the attribute information. 

27 https://github.com/mcontisc/MTCOV 
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MTCOV has four parameters: two membership matrices accounting for outgoing and incoming links respectively, an affinity tensor that describes 
the density of links between each pair of groups among the different layers, and a parameter that matches communities and node attributes. The 
inference is performed with an Expectation-Maximization algorithm, and its implementation is efficient and scales to large datasets (such as the one 
studied here) because it exploits the sparsity of the dataset. 

A1. Cross-validation and hyperparameter settings 

MTCOV has two hyperparameters, the scaling parameter γ and the number of communities C. For each network under analysis, we estimate the 
hyperparameters by using 5-fold cross-validation along with a grid-search to range across their possible values. For the current work, we choose to 
vary C ∈ {2,3, 5,7, 10,12,15} and γ ∈ {0,0.3,0.5,0.7,1}. Specifically, we divide the dataset into five equal-size groups (folds), selected uniformly at 
random, and give the models access to four groups (training data) to learn the parameters; this contains 80% of the matrix entries and covariates. One 
then predicts both links and node attributes in the held-out group (test set). By varying which group we use as the test set, we get five trials per 
realization. For performance metrics, we measure the area under the receiver-operator characteristic curve (AUC) (for the link prediction) and the 
accuracy (for the node attribute prediction) on the test data, and the final results are averages over the five folds. The AUC is the probability that a 
random true positive is ranked above a random true negative; thus the AUC is 1 for perfect prediction, and 0.5 for random chance. The accuracy 
classification score is 1 for perfect recovery and 0 in the worst case of overfitting. In order to choose the best pair of hyperparameters (Ĉ, γ̂) we look for 
the pair that performs best across both AUC and accuracy in the test set. 

Since the networks are large, it is not always possible to compute the AUC on the whole training and test sets, hence we proceed with samples. In 
detail, we fix the number of comparisons we want to evaluate, here 105, and for both the train and the test sets we sample 105 values from zeros entries 
(where there is no existing link) and we compute the link prediction on that sample (we save these values in a vector R0); we do the same with the non- 
zeros entries (we save these values in a vector R1). We then make element-wise comparisons and compute the AUC as: 

AUC =
∑

(R1 > R0) + 0.5∑(R1 == R0)
|R1|

(2)  

where 
∑

(R1 > R0) stands for the number of times R1 has a higher value than R0 in the element-wise comparison; and |R1| = |R0| is the length of the 
vector which is equal to the number of comparisons we fix. Moreover, when the network has a number of nodes bigger than 5000, we run the al-
gorithm by computing the likelihood only on a batch of nodes (here a random subset with 5000 nodes) to speed up the computational time. 

Table 3 shows the optimal hyperparameters obtained for all single-layer and multilayer networks used in the manuscript. 

A2. Layer interdependence analysis 

The layer interdependence problem consists of identifying which sets of layers are structurally related, and quantifying the strengths of those 
relationships. To this end, we use the MTCOV model and we employ the method described in De Bacco et al. (2017). This method consists of per-
forming link prediction in one layer with and without the information in another layer to quantify the extent to which these two layers are related. 
Thus, for our purposes, interdependence is based on the idea that two layers are interdependent if the structure of one layer provides meaningful 
knowledge about the structure of the other. 

To test our ability to predict a set of target layers α, we perform experiments with 5-fold cross-validation following the same routine as above by 
using only the optimal pair of hyperparameters. The main difference from the community-detection procedure above is the way the training and test 
sets are built. In fact, for the layer interdependence task, we only split (5-fold) the links in the set of target layers α together with the attributes for the 
nodes in this set, while giving full access to the set of layers β when they are added. 

For this task, because we are mainly interested in link prediction, rather than in recovering covariates, we measure the AUC as in Equation  (2). The 
final AUC is the average obtained over the five folds, each of which holds out a different subset of 20% of α. The value of the AUC depends both on the 
set of target layers α we are trying to predict, and on what set of other layers β we give the algorithm access to. 

As described in Section 3.1, we restrict our analysis to the sublayers generated by the USPTO (separately) and the JPO and EPO layers (as sets of 
sublayers), without exploring all possible combinations of sublayers. In detail, we consider the following experiments:  

(a) α = [US-APP], β1 = [US-EXM], and β2 = [US-EXM, EPO, JPO].  
(b) α = [US-EXM], β1 = [US-APP], and β2 = [US-APP, EPO, JPO].  
(c) α = [EPO, JPO], β1 = [US-APP], β2 = [US-EXM], and β3 = [US-APP, US-EXM].  
(d) α = [US-APP, EPO, JPO], and β1 = [US-EXM].  
(e) α = [US-EXM, EPO, JPO], and β1 = [US-APP]. 

Table 3 
Hyperparameters setting. Values of the hyperparameters C and γ extracted by 5-fold cross-validation combined with grid-search.   

US-EXM US-APP EP-APP EP-ISR EP-SEA JP-REJ JP-BCK US-AGG ALL-AGG MULTI 

C 7 7 7 7 3 7 7 7 7 15 
γ 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7  
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Note that for the JPO and EPO, we are using all sublayers of these two jurisdictions. Furthermore, when the set α contains only a sublayer of USPTO 
[(a), (b)], the hyperparameters used by the algorithm are C = 7 and γ = 0.7, which is the optimal choice for the US-AGG network. For [(c), (d), (e)] the 
algorithm uses C = 15 and γ = 0.7, which is the optimal choice for the multilayer network, for computational simplicity.28 

Appendix B. Network comparison 

B1. Class network construction 

We use network comparison methods in order to quantify the differences in the technological information contained in the MULTI, ALL-AGG, and 
US-AGG networks. In particular, we directly compare a projection of the bipartite network of relationships between the extracted communities and the 
3-digit Cooperative Patent Classification (CPC) classes with co-classification and inter-class citation networks. Fig. 5 displays the communities 
extracted for a random subset of the nodes and edges in ALL-AGG and US-AGG. 

To build the bipartite network between communities and classes, we first populate a matrix P whose dimensions are given by the number of 
families (22653) times the number of classes (535). This is a binary matrix with non-zero entries when a family is assigned to a given class. We then 
normalize the matrix such that each column sums up to one. In this way, we can consider the matrix P to be the membership matrix of the classes 
among the patents. By multiplying the transpose of the membership matrix of the patents among the communities and the previous matrix P, we get 
the bipartite network D = UT P of relationships between the extracted communities and the classes. To ease the comparisons, we need to project this 

Table 4 
Results of link prediction and covariate prediction tasks. We measure AUC (link prediction) and accuracy (covariate prediction) over 5-fold cross-validation for C 
equal to 7 (the optimal value for ALL-AGG and US-AGG) and 15 (the optimal value for the MULTI network); γ = 0.7 (the optimal value for all the networks).   

C AUC Accuracy 

MULTI 7* 0.835 0.341 
15 0.852 0.422 

ALL-AGG 7 0.730 0.402 
15* 0.739 0.393 

US-AGG 7 0.736 0.426 
15* 0.749 0.406  

Fig. 5. Community extraction for comparison networks. This diagram shows the hard community membership partitions for the ALL-AGG and US-AGG networks. 
As for Fig. 4, we use a random sample of 2000 nodes and include any incidental links. The layout is determined by the results for MULTI, for purposes of direct 
comparison, while the colouring shows the communities found for each network (7 communities for each of ALL-AGG and US-AGG). Node size is proportional to the 
number of outgoing and incoming citations, while node shapes denote the location of the assignee of each patent family. 

28 A cross-validation procedure to detect the best pair for the different sets α was determined to be too computationally expensive. 
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bipartite network onto the technology classes to obtain a network of classes. The projection onto the class nodes is computed through the matrix 
multiplication DT D between the bipartite matrix D and its transpose. This projection has non-zero entries when pairs of classes are both found in the 
same communities, with weights proportional to their relative frequencies within those communities. As baseline comparisons, we use the co- 
classification and the inter-class citation networks. The former is obtained by the matrix multiplication PTP, while the latter is constructed as 
described in Section 3.3. 

After running the community-detection algorithm for both the optimal and non-optimal partition of each of the three networks MULTI, ALL-AGG, 
and US-AGG, and only then can we obtain six projected networks among which we are able to make fair comparisons. Table 4 shows the performance 
of MTCOV on the citation networks (with non-optimal parameters identified with the symbol ∗) for the link prediction (AUC) and covariate prediction 
(accuracy) tasks, using 5-fold cross-validation. 

After extracting communities, we construct the six bipartite (community-class) networks which we then project onto the class nodes to compare 
with the co-classification and inter-class citation networks. 

B2. Diversity measures 

Two diversity measures are used in the main body of this work: Rao-Stirling diversity (RSD) and the Herfindahl-Hirschman Index (HHI). For each 
network, RSD is calculated at the extracted-community level and then a median is taken across communities. The RSD for community c is calculated as 
(Stirling, 2007): 

RSDc =
∑

i,j,i∕=j
dij pi,c pj,c , (3)  

where dij is a known distance measure between 3-digit CPC technology classes i and j, while pi and pj are the proportion of families in the community 
that are assigned classes i and j, respectively. Two factors complicate this calculation. First, because each family can be assigned multiple categories, 
RSD can take on values greater than one. Because we are directly comparing the RSD for the same set of families (our networks have the same set of 
nodes), this is not a concern. In fact, we believe this is sensible for this data. That is, if a community consists of a set of families that are all assigned the 
same two classes i and j, our procedure here will treat these communities as consisting of 100% i and 100% j (minimal diversity) rather than 50% i and 
50% j (maximum diversity), for a given dij. Second, because we allow overlapping communities (i.e., a node can be assigned multiple communities 
with different weights), pi and pj are the weighted sums over patent families f in c: 

pi,c =
∑

f∈iwf ,c∑
∀f wf ,c

, (4)  

where wf ,c ∈ [0, 1] is the weight of family f that is assigned to c. 
For our purposes, dij is one minus the normalised link weight in the inter-class citation network constructed for our network comparison calcu-

lations. This metric is scaled such that distance zero corresponds to the strongest citation linkage for each class, and distance one corresponds to no 
citation linkage. These new weights act as proxies for the level of surprise, where a weight of zero indicates two classes that only ever cite each other, 
while a weight of unity indicates two classes that never cite each other. As such, the ‘level of surprise’ parameter dij down-weights combinations that 
we expect while exaggerating those that we don’t. This adjustment is important. For any given technology class, the number of classes with which it 
shares community membership depends crucially on both the classification system and the level of the hierarchy within this system that we choose to 
use. When a class starts to get too crowded, for example, it may be split to make technical search easier (Lafond and Kim, 2019) — after all, this is one 
of the primary goals of patent classification systems. For this reason, a distance measure like dij is crucial to incorporate into technological diversity 
measurements. 

HHI, also called the Simpson diversity index, is calculated at the technology level, i, to measure the extent to which technology classes are split across 
extracted communities. A median across technology classes is then calculated. The HHI for class i is calculated as: 

HHIi =
N
∑

cp2
i,c − 1

N − 1 , (5)  

where pi,c is defined as in Equation  (4) and N is the total number of communities into which families can be assigned (7 or 15, in our case). Equation 
(5) is the unbiased version of the HHI (Hall, 2005); this version corrects the 1/N offset that affects the standard version of the HHI (for which 1 /N is the 
minimum value), which is the sum in the numerator of Equation  (5). The HHI measures how much a technology class is splintered across com-
munities, ranging from HHI=0 for maximally spread to HHI=1 for maximally concentrated. We note that the goal of the community detection process 
was not to replicate the CPC system as closely as possible. There are many valid reasons why a technology class may be split across communities, such 
as when a technology is particularly generalisable and is applied to (and cited by) many seemingly unrelated fields. Instead, the HHI gives us an idea of 
what is, or is not, driving the results we obtain for the direct network comparison. 

Appendix C. Ego network details 

The diagram in Fig. 1 shows the multilayer ego network of a triadic patent family, labelled A. Table 5 lists the seven families in this diagram, 
alongside their granted equivalents. 
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Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A., 2014. Centrality rankings in 
multiplex networks. Proceedings of the 2014 ACM conference on Web science, 
pp. 149–155. 

Sorenson, O., Rivkin, J.W., Fleming, L., 2006. Complexity, networks and knowledge 
flow. Research Policy 35 (7), 994–1017. 

Stirling, A., 2007. A general framework for analysing diversity in science, technology and 
society. Journal of the Royal Society Interface 4 (15), 707–719. 

Sun, B., Kolesnikov, S., Goldstein, A., Chan, G., 2021. A dynamic approach for identifying 
technological breakthroughs with an application in solar photovoltaics. 
Technological Forecasting and Social Change 165, 120534. 

Tahmooresnejad, L., Beaudry, C., 2019. Capturing the economic value of triadic patents. 
Scientometrics 118 (1), 127–157. 

Tantardini, M., Ieva, F., Tajoli, L., Piccardi, C., 2019. Comparing methods for comparing 
networks. Scientific Reports 9 (1), 1–19. 

Taylor, D., Porter, M.A., Mucha, P.J., 2021. Tunable eigenvector-based centralities for 
multiplex and temporal networks. Multiscale Modeling & Simulation 19 (1), 
113–147. 

Vaiana, M., Muldoon, S.F., 2020. Multilayer brain networks. Journal of Nonlinear 
Science 30 (5), 2147–2169. 
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We present a probabilistic generative model and efficient algorithm to model reciprocity in directed networks.
Unlike other methods that address this problem such as exponential random graphs, it assigns latent variables
as community memberships to nodes and a reciprocity parameter to the whole network rather than fitting
order statistics. It formalizes the assumption that a directed interaction is more likely to occur if an individual
has already observed an interaction towards her. It provides a natural framework for relaxing the common
assumption in network generative models of conditional independence between edges, and it can be used to
perform inference tasks such as predicting the existence of an edge given the observation of an edge in the
reverse direction. Inference is performed using an efficient expectation-maximization algorithm that exploits
the sparsity of the network, leading to an efficient and scalable implementation. We illustrate these findings
by analyzing synthetic and real data, including social networks, academic citations, and the Erasmus student
exchange program. Our method outperforms others in both predicting edges and generating networks that reflect
the reciprocity values observed in real data, while at the same time inferring an underlying community structure.
We provide an open-source implementation of the code online.
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I. INTRODUCTION

Reciprocity in directed networks, i.e., the tendency of a
pair of nodes to form mutual connections between each other
[1], is an important feature of many social relationships. Its
impact ranges from affecting the development of exchange
and power to determining the emergence of trust and sol-
idarity [2,3]. Behavior of this kind has also been found in
many kinds of networks that reflect human and institutional
interaction, e.g., the world wide web, online dating, interfirm
contracts, journal citations and email communication [4–8].

Among the various network modeling approaches, that
of probabilistic generative models enable us for a rigorous
theoretical foundation within the framework of statistical
inference, as well as a flexible incorporation of domain knowl-
edge in the modeling assumptions. Here, we consider a latent
variable model, a probabilistic approach that contains latent
and observed variables. The latent variables encode hidden
patterns in the data, such as community memberships, and
determine the probability of ties between nodes. For instance,
knowing which communities two nodes belong to helps deter-
mine the likelihood of their interaction.
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While in some simple cases, community structure may
explain the tendency toward reciprocation [9], this mecha-
nism may not be enough to capture more complex scenarios.
Indeed, many generative models with community structure
fail to reproduce the values of reciprocity observed in real
networks, as we discuss in more details later. Conversely,
several models aimed at capturing reciprocity do not account
for community structure [10,11]. It is reasonable to expect that
the mechanism regulating the existence of interactions can be
influenced by both patterns of communities and reciprocity.
In addition, communities are often interpretable objects and
may correspond to functional unit, hence the value of includ-
ing them in the model formulation. Incorporating reciprocity
as well as community structure into a coherent latent vari-
able model comes with the main challenge of relaxing the
conditional independence assumption between edges, a com-
mon assumption in generative models to ease mathematical
derivations. In addition, this task requires properly capturing
conditional probabilities, as we describe later. Inspired by
these insights, we propose a novel probabilistic latent variable
approach to model networks that preserves the benefits of
generative models, while capturing both community structure
and reciprocity.

Models for reciprocity and latent community structure
have largely been developed independently of one another,
and only a handful of works have hinted at incorporating
them into a unique framework. For instance, Garlaschelli and
Loffredo [12] point towards a possible relationship between
their model for reciprocity and general hidden variable mod-
els. Most notably, the pair-dependent stochastic block model
of Holland et al. [9], well explained also by Wasserman and
Anderson [13], holds assumptions similar to ours, in that it
models jointly pairs of edges, which they call dyad vectors.
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While a seminal work, it is, nevertheless, limited to hard
membership and unweighted networks; hence the likelihood
function that they propose substantially differs from the like-
lihood represented by our model. One practical aspect of our
choice for the likelihood is that parameters’ inference in our
model is optimized to fully exploit the sparsity of the dataset
and is scalable to large network sizes.

Reciprocity is often modeled by means of exponential
random graphs [10,11,14,15], where it is treated as a mea-
sured network property that needs to be reproduced (often
together with other network properties like the degree) by
sampling networks using statistical mechanics principles, e.g.,
maximum entropy. The approach presented in this work
significantly differs from the previous studies in that we in-
clude latent variables, such as community membership, as
a mechanism to determine edge formation. However, in the
case of exponential random graphs, possible group struc-
tures are not given a priori as the latent parameters; instead,
they can only be estimated a posteriori on the sampled net-
works. More broadly, our approach is that of generative
models, which incorporate a priori community structure by
means of latent variables, and these are inferred from the
observed interactions [16,17]. However, in these generative
models, reciprocity is not explicitly included as a mech-
anism for tie formation, thus these models often fail to
reproduce the observed reciprocity values of real networks.
Consequently, a generative method whose latent variables
describe both reciprocity and community memberships is
needed.

II. RELAXING THE CONDITIONAL
INDEPENDENCE ASSUMPTION

A possible explanation for the practical deficiency of
generative models with communities to reproduce observed
reciprocity values is the common assumption of conditional
independence between edges, which makes the problem both
analytically and computationally more tractable. This as-
sumption states that the likelihood of a directed tie between
two nodes depends only on their community membership (and
other possible model parameters) but not on the existence of
the reciprocated edge. This might be too strict of an assump-
tion to capture the feature of reciprocity, where it is reasonable
to expect that the existence of an edge in one direction should
also be conditioned on the existence of an edge in the opposite
direction. For instance, if an author i has cited another author
j, this might predict the probability of j also citing i. At
the same time, knowing the communities that the authors
belong to, could also help estimating this probability. Math-
ematically, this can be translated to relaxing the assumption
of conditional independence, which is the approach we take
here.

Formally, we represent interactions between N individuals
as a weighted asymmetric matrix A, with entries Ai j being the
number (or weight) of interactions from i to j; for instance, the
number of favors or services that i does for j, or the number of
times that i has endorsed j, e.g., as paper citations. Our model
assigns a joint likelihood P(Ai j, Aji|!) to edges involving the
same pairs of nodes (i, j), given some set of latent parameters
!. Specifically, we assume the likelihood of a network to

factorize as

P(A|!) =
∏

i< j

P(Ai j, Aji|!) . (1)

This is fundamentally different from the prevalent approaches
in generative models, where, typically, one assumes that indi-
vidual edges are conditionally independent given the network
parameters, i.e., P(A|!) =

∏
i, j P(Ai j |!).

Notice that edges involving different pairs of nodes re-
main conditionally independent as in standard approaches.
Equivalently, in terms of the conditional distribution of an
individual edge P(Ai j |Aji,!), we assume that this can be
different than its marginal distribution P(Ai j |!). To the extent
of our knowledge, this assumption has never been deeply
questioned, except for a few works [18,19]. As firstly pointed
out by Hoff [20], there are theoretical groundings for this
assumption to hold in common scenarios, due to generaliza-
tions of de Finetti’s theorem by Aldous [21] and Hoover [22]
(see [19] for a detailed discussion). They show that, for ex-
changeable graphs, i.e., in networks without any natural order
between nodes (which is often the case), the joint probability
function of the adjacency entries can be properly represented
using latent variables on nodes and pairs. In other words, the
joint can be factorized as a product on edges, given the latent
variables.

However, in the case of directed networks, where the
adjacency matrix is asymmetric, as in our case, a precise rep-
resentation can only be obtained using Eq. (1). While standard
conditionally independent models can in principle arbitrar-
ily well approximate the whole network distribution [23], in
practice, it is not known how state-of-the-art models perform
on this regard. To effectively model reciprocity, we relax
the assumption of conditional independence and include the
pairwise dependencies of two directed edges between pairs
of nodes; such minimal relaxation is required to effectively
model reciprocity. We compare results against standard condi-
tionally independent models in terms of various performance
metrics on both synthetic and real data.

III. THE COMMUNITY-RECIPROCITY MODEL

To fully specify the joint likelihood in Eq. (1), we need to
characterize conditional distributions and one-point marginals
like the distribution P(Ai j |Aji,!) and P(Ai j |!). Here, we
aim at capturing reciprocity, hence we assume that observed
interactions exist because of two types of contributions: (i) the
communities that nodes belong to, as in general community
detection frameworks like the stochastic block model [9], and
(ii) the fact that an individual that receives a directed interac-
tion is more likely to reciprocate. In order to construct a model
flexible enough to capture weighted networks and overlapping
communities, we utilize a mixed-membership approach, simi-
lar to Refs. [16,17], to model how communities regulate edge
formation.

Given the adjacency matrix A, our goal is to find com-
munity memberships of nodes and the magnitude of the
reciprocity effect in the network, i.e., !. Bringing the contri-
butions of reciprocity and community structure together, we
model the conditional probability of Ai j given Aji as drawn
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from a Poisson distribution

P(Ai j |Aji,!) =
e−λi j λ

Ai j

i j

Ai j!
(2)

with mean

λi j = λ0
i j + ηAji =

⎛

⎝
K∑

k,q=1

uikv jqwkq

⎞

⎠ + η Aji. (3)

We denote with ! = (u, v,w, η) the latent parameters that
we want to infer. The parameters uik , vik are entries of K-
dimensional vectors ui and vi, the out-going and in-coming
communities, respectively; wkq are the entries of a K × K
affinity matrix, which regulates the structure of communities,
e.g., assortative when its diagonal entries are greater than off-
diagonal entries, in this case edges are more likely between
nodes in the same community; η is the reciprocity parameter,
and it regulates the impact of observing Aji to predict the
existence of Ai j . We omit from it the number of communities
K , as in this work we assume this as given. When unknown,
as in our experiments with real data, we estimate it by using
cross-validation.

Notice that λi j includes separate contributions from both
community parameters and reciprocity coefficient. It assumes
additive contributions: we can have zero contribution from
one term and still observe the existence of an edge because
of the other term. If both are nonzero, their total impact sums
up. This is conceptually different than a multiplicative con-
tribution, a possible modeling choice that we do not explore
here. Intuitively, an edge with weight Ai j exists if i and j
belong to compatible communities (compatibility is regulated
by the affinity matrix) or because of the reciprocity effect of
observing the opposite edge Aji. For instance, an author might
cite another one because they belong to the same community
(e.g., a research subfield) or because she was cited by the other
on a previous publication.

Finally, as we need positive λi j , we assume η > 0. This
restricts the model to have positive reciprocity contribution,
i.e., receiving an in-coming edge can only boost the likelihood
of the corresponding out-going edge, but not decrease it. Al-
though this assumption could be limiting in certain contexts, it
nevertheless applies to several relevant scenarios, in particular
to the cases we study here. Relaxing this assumption, and
suitably modifying the underlying theoretical model, is left
for future works.

Our model specifies conditional probabilities, however, we
do not assume the existence of a consistent joint distribution.
In fact, finding a closed-form for the joint in Eq. (1), con-
sistent with our proposed conditional, requires specifying a
marginal probability function and then enforce consistency
equations like

∑
Aji

P(Ai j |Aji,!) P(Aji|!) = P(Ai j |!). De-
pending on the choice of this marginal, enforcing consistency
might be nontrivial, as it may require performing intractable
marginalization. Early formalizations of the consistency be-
tween conditional and joint distribution has been provided, in

FIG. 1. Graphical model representation. Ai j and Aji are the edges
involving the same pairs of nodes (i, j); η, w, u, and v are the latent
parameters !; E denotes the set of network edges.

a seminal work, by Besag’s auto-Poisson models [24]. In the
context of graphical models, a few models specify conditional
Poisson distributions [25,26], but without considering latent
variables. In the absence of a closed-form joint distribution,
we adopt a tractable pseudolikelihood approach [24], where
instead of optimizing the exact likelihood of Eq. (1), we con-
sider the approximation

P(A|!) =
∏

i< j

P(Ai j, Aji|!) ≈
∏

i, j

P(Ai j |Aji,!), (4)

which is available in closed-form as it requires only the con-
ditional probabilities, which we specified above. The equality
holds only when Ai j and Aji are conditionally independent, the
common assumption in network generative models, as in that
case P(Ai j |Aji,!) = P(Ai j |!). This is not our case since we
relax this assumption, and Eq. (4) is only an approximation.
This approach has also been considered in dyadic-dependent
models [27], for community detection in networks [28], and
for local Poisson graphical models [25]. A visual overview of
our model is shown in Fig. 1.

IV. INFERENCE WITH EXPECTATION-MAXIMIZATION

The goal is to find the community and reciprocity pa-
rameters, i.e., !, given the adjacency matrix. Defining
Lps

i j (!, Aji ) = ln P(Ai j |Aji,!) and neglecting the factorial
term which is independent of these parameters, we have the
log pseudolikelihood:

Lps(!) =
∑

i, j

Lps
i j (!) =

∑

i, j

(Ai j ln λi j − λi j ). (5)

We aim at maximizing this quantity, but the presence of the
logarithmic term makes this maximization difficult. However,
using a variational approach by means of Jensen’s inequality,
it can be shown (see Appendix D 1) that maximizing Lps(!)
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is equivalent to maximizing

Lps(!, ρ,φ) =
∑

i, j

⎧
⎨

⎩Ai j ρ
(1)
i j

⎛

⎝
∑

k,q

φi jkq ln uikv jqwkq −
∑

k,q

φi jkq ln φi jkq

⎞

⎠ + Ai j ρ
(2)
i j ln ηAji

− Ai j
(
ρ (1)

i j ln ρ (1)
i j + ρ (2)

i j ln ρ (2)
i j

)
−

∑

k,q

uikv jqwkq − ηAji

⎫
⎬

⎭, (6)

with respect to !, ρ = (ρ (1), ρ (2) ), and φ, where

ρ (1)
i j =

λ0
i j

λ0
i j + η Aji

, ρ (2)
i j = η Aji

λ0
i j + η Aji

, (7)

φi jkq = uikv jqwkq

λ0
i j

, (8)

are the variational distributions over the parameters.
Constraints on the parameters can be arbitrarily added,

e.g.,
∑

k uik =
∑

k vik = 1, by incorporating Lagrange mul-
tipliers inside Eq. (5), and repeating similar calculations. In
our numerical experiments, we consider both constrained and
unconstrained cases.

We can perform this optimization by alternatively updat-
ing the various parameters, with an expectation-maximization
(EM) algorithm. At each step, one updates ρ and φ using
Eqs. (7) and (8) (E step) and then maximizes Lps(!, ρ,φ)
with respect to ! by setting partial derivatives to zero (M
step). This iteration is repeated until Lps convergences. The

Algorithm 1 CRep: EM algorithm

Input: network A = {Ai j}N
i, j=1,

number of communities K .
Output:membership vectors u = [uik], v = [vik]; network-affinity

matrix w = [wkq]; reciprocity parameter η.
Initialize u, v, w, η at random.
Repeat until Lps convergences:
1. Calculate ρ (1) and φ (E step):

ρ (1)
i j =

λ0
i j

λ0
i j + η Aji

, φi jkq = uikv jqwkq

λ0
i j

2. Update parameters ! (M step):
(i) for each node i and community k update memberships:

uik = 1
γ u

i

∑
j,q

Ai jρ
(1)
i j φi jkq

vik = 1
γ v

i

∑
j,q

A jiρ
(1)
ji φ jiqk

(ii) for each pair (k, q) update affinity matrix:

wkq =
∑

i, j Ai jρ
(1)
i j φi jkq∑

i, j uik v jq

(iii) update reciprocity parameter:

η = η

M

∑
i, j

Ai jA ji

λi j

Note: γ u
i , γ v

i are quantities that are defined differently for
constrained and unconstrained values of ui and vi. In the
constrained case, they correspond to Lagrange multipliers; see
Appendix D 2.

whole routine is described in Algorithm 1 and the detailed
derivations are in Appendix D. This algorithm is computation-
ally efficient and scalable to large system sizes as it exploits
the sparsity of the dataset. Indeed, all the updates involve in
the numerator sums over Ai j , hence only the nonzero entries
count, giving an algorithmic complexity of O(M K2).

V. A BENCHMARK GENERATIVE MODEL
WITH COMMUNITIES AND RECIPROCITY

So far we have focused on recovering the model parameters
given the data, i.e., the inference. In this section, instead,
we propose a benchmark probabilistic generative model to
generate synthetic data with intrinsic community structure,
and a given reciprocity value. It takes as input a set of mem-
bership vectors, ui and vi, affinity matrix w, and reciprocity
parameter η; the output is a directed network with adjacency
matrix A. In this formulation, edges between a given pair of
nodes are generated stochastically; one edge being generated
first and independent from the other, while the formation of
the opposite edge depends on how the first was drawn. The
pairs of edges are conditionally independent from each other.
Formally, we aim at sampling pairs of edges from Eq. (1),
which can be done by selecting a marginal P(Ai j |!) and a
conditional distribution P(Aji|Ai j,!). By assuming a Poisson
conditional as in Eq. (2) and a Poisson marginal, our model
would reduce to a standard (conditionally independent) gen-
erative model with communities in the case of zero reciprocity
parameter. Even though with this choice the joint is computa-
tionally intractable, this is not an issue, as we do not aim to use
the joint to compute quantities analytically, but rather focus on
sampling from it. Formally, given the input set of latent vari-
ables ! = (u, v,w, η), we draw a pair (Ai j, Aji ) consistently
with the joint P(Ai j, Aji|!), in a two-step sampling routine:

(1) Select with a coin-flip one direction, (i, j) or ( j, i). Say
we select (i, j).

(2) Sample Ai j from the marginal

P(Ai j |!) = Pois(mi j ), (9)

where

mi j =
λ0

i j + ηλ0
ji

(1 − η2)
(10)

is the mean of the marginal distribution such that
it is consistent with the joint and the conditional
distributions. Indeed, E[Ai j] = mi j =

∑
Ai j

Ai j P(Ai j |!) =∑
Ai j ,Aji

Ai j P(Ai j, Aji|!) (see Appendix D 3 for the complete
derivation).
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(3) Sample Aji from the conditional

P(Aji|Ai j,!) = Pois
(
λ0

ji + η Ai j
)
, (11)

using the previously extracted value of Ai j .
The Poisson distribution may generate multiple edges be-

tween a pair of nodes, so this model may create multigraphs.
This is consistent with the interpretation that Ai j is the number,
or total weight, of links from i to j. If we wish to generate
binary networks where Ai j ∈ {0, 1}, we use the fact that the
Poisson and Bernoulli distributions become close in the sparse
limit. To enforce sparsity, it is sufficient to multiply the λ0

i j by
a constant ζ , as the mi j in Eq. (10) will also be automatically
rescaled by the same quantity. The constant can be fixed
by choosing a value for the expected number of (weighted)
edges:

E[M] =
∑

i, j

ζ λ0
i j + ζ η λ0

ji

1 − η2
= ζ

1 − η

∑

i, j

λ0
i j (12)

→ ζ = (1 − η)
E[M]∑

i, j λ
0
i j

. (13)

Imagine now a practitioner willing to control for the rela-
tive contribution of community and reciprocity in generating
edges. Our model naturally allows this possibility, as this
tuning is encoded by η. To see this explicitly, we calculate the
fraction of edges generated by community effects only and
introduce the crratio variable as following:

crratio :=
∑

i, j λ
0
i j

E[M]
= 1 − η, (14)

where we used Eq. (10) to rewrite the denominator. Thus, by
varying η in the input, one automatically tunes the interplay
community vs reciprocity: η close to 0 gives a network whose
edges depend mostly on the community structure imposed
by the membership vectors; instead, η close to 1 results in
a network with lower impact of community structure, i.e.,
reciprocity has also significant impact on the edge formation.
Notice that it is not possible to have a contribution purely
due to reciprocity, as this phenomenon implicitly requires the
existence of another mechanism to produce one of the two
possible edges, here the community structure. This can also
be seen by observing that Eq. (10) can be rewritten as mi j =
λ0

i j + η
1−η2 (η λ0

i j + λ0
ji ); while the first term only depends on

communities, the second term depends on both communities
and reciprocity and they cannot be separated independently.

Having presented how our model can be used to generate
synthetic data, we now proceed in describing how our model
relates to observable network properties and how it can be
used to predict reciprocated edges.

VI. PREDICTING NETWORK RECIPROCITY

In directed networks, reciprocity r is usually defined as
the fraction of edges that are reciprocated [1], although other
definitions exist to capture this feature [15,29]. With our
probabilistic model, we can compute the expected value of
a related quantity

rw :=
∑

i, j [Ai j A ji]∑
i, j [Ai j]

, (15)

which corresponds to reciprocity in the case of binary adja-
cency matrices. A natural question is thus how this observable
quantity is related to the reciprocity parameter η. In fact, we
show that, provided some assumptions for the second moment
E[A2

i j] and considering an approximation with Taylor expan-
sion (see Appendix D 4), η is a lower bound for it:

E[rw] ≈ η +
∑

i, j

[
λ0

i j m ji + η m2
ji

]
∑

i, j mi j
> η. (16)

The tightness of this bound depends on the latent variables
through λ0

i j , (implicitly) mi j , and mji. Empirically, we find that
in the majority of the experiments the bound is very tight, i.e.,
E[rw] ≈ η and the other terms in Eq. (16) are much smaller
than η in models with the conditional independence assump-
tion, such as our proposed model with η = 0, where E[rw] =∑

i, j mi j m ji∑
i, j mi j

. In fact, in these models, the term
∑

i, j mi j m ji

is often very small – we show empirical evidence of this
later. Therefore, even in networks with high reciprocity, mod-
els with conditional independence assumption could poorly
reproduce the term. This empirical result also seems to in-
dicate that the pseudolikelihood approximation of Eq. (4) is
relatively good in our datasets. The practical indication for
practitioners is that networks generated by models with the
conditional independence assumption have reciprocity values
significantly different from those observed in real data.

VII. PREDICTING RECIPROCATED EDGES

The dependence structure between pairs of edges should
allow us to predict the existence of a reciprocated tie if an
edge in the opposite direction is observed, such as the citation
of a paper if an author has been cited before by someone
else. This is a kind of link prediction task, which lets us test
the dependence assumption. It is also a principled way of
comparing the accuracy of various generative models for any
real network where no ground truth for the latent variables is
known [30].

Conditional edge prediction can be formulated as follows:
what is the probability of an edge i→ j conditioned on ob-
serving the opposite existing edge (or nonexisting edge) j → i
? Our model naturally outputs this conditional probability. In
contrast, a generative model that assumes conditional inde-
pendence between edges is not capable of exploiting this extra
information. It could only estimate marginal probabilities that
do not depend on observing the opposite edge as it uses
only the parameters such as community memberships and the
affinity matrix. Our model is not capable of fully estimating
marginal distributions but nevertheless can estimate its ex-
pected value as in Eq. (10). This is often the main quantity
used in prediction tasks, as it plays the role of a score for
estimating the entries Ai j . Therefore, with our model, we can
also predict regular edge existence, where we simply aim
at predicting an edge without any extra information but the
inferred parameters.

In our experiments below, we test various generative mod-
els for both regular and conditional edge prediction by using
5-fold cross-validation. Specifically, we divide the dataset into
five equal-size groups (folds) and give the models access to
four groups (training data) for learning the parameters; this
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contains 80% of the possible pairs of nodes in the network.
One then predicts the existence of edges in the held-out group
(test set). As performance metrics, we measure the AUC on
the test data, i.e., the probability that a randomly selected
edge has higher expected value than a randomly selected
nonexisting edge. We compute both the regular AUC, by using
as score the expected value EP(Ai j |!)[Ai j], and the conditional
AUC (AUC–cond), which uses EP(Ai j |Aji,!)[Ai j] as the score,
i.e., the expected value over the conditional distribution. The
latter can only be computed for our algorithm, as for the others
the marginal distribution is the same as the conditional, and
thus the two AUC values coincide, see Appendix B for more
details.

VIII. RESULTS

A. Results on real and synthetic data

We now demonstrate our model by applying it to both
real and synthetic data. In the real-world datasets available
to us, we only have a directed network of observed interac-
tions, i.e., there is no available ground truth for the actual
membership and reciprocity parameters. Consequently, their
relative contributions in edge formation cannot be tuned. Thus
we first validate our model and competing algorithms on syn-
thetic data produced with different generative models. We test
the ability of these models to (i) generate sample networks
that replicate relevant network quantities such as reciprocity,
similar to the observed values on the input networks; and
(ii) perform edge prediction tasks. We then investigate our
model’s performance on real-world datasets.

In the tests below, we use our model in various ways: the
constrained version with constraints on the membership pa-
rameters u and v such that

∑
k uik =

∑
k vik = 1, ∀i (CRep),

the non constrained version (CRepnc), and our model with
η = 0 (CRep0), i.e., without considering the reciprocity effect.
For comparison, we use two generative models with latent
variables: a community detection-only generative model with
a maximum likelihood approach [16] (MT), which was the
inspiration for the building block of our model in the case
η = 0, and a Bayesian Poisson matrix factorization (BPMF)
commonly used in recommendation systems [31]. For the
edge prediction task on real data, we also consider a super-
vised learning link-prediction routine (OLP) with topological
predictors and the implementation of Ghasemian et al. [32]
(see Appendix G 3 for details).

B. Performance for synthetic networks

We study various types of synthetic networks, generated
by three different models to cover several network topolo-
gies. Two of them cover the extreme scenarios of networks
generated, accounting only for community structure or only
for reciprocity. For the former, we use the standard stochastic
block model (SBM) [9] and for the latter the reciprocity model
of Holland and Leinhardt (HL) [10]. Our model, instead, is
designed to tune the relative impact of community structure
and reciprocity in determining edges, by varying the parame-
ter η. Thus we use the benchmark generative model described
above to interpolate between these two extremes by tuning
η: for small values we reproduce the results equivalent to the

stochastic block model, whereas for higher values we replicate
a structure similar to Holland and Leinhardt’s model.

The generative process is described in detail in Ap-
pendix A. As a remark, the exact joint likelihood of CRep
is not determined in closed-form, however all the models
used here for comparison adopt either its Poisson conditional
distribution (our model with η > 0) or its Poisson marginal
distribution (all the other models). Thus experiments here
are aimed at highlighting differences in the various models’
assumptions. By varying the network sparsity and the impact
of communities and reciprocity, we illustrate types of structure
that may exist in real-world data, and test each algorithm’s
robustness against them on various tasks including edge pre-
diction and the ability to reproduce sample networks that
replicate relevant network quantities.

Reproducing the topological properties. An important
property of a model is the ability to generate network samples
that resemble what is observed in real data. We test this ability
by considering topological properties like degree distribution,
reciprocity, and hierarchical structure. We calculate their val-
ues on network samples, which are generated with the various
generative models, by applying the inferred parameters from
the given input data. Specifically, we consider networks gener-
ated synthetically as explained above, and for each individual
network we infer the parameters by each model, and use them
to generate five network samples. We compare topological
properties of these samples with those observed on the ground
truth networks used to infer the parameters.

In particular, we are interested in measuring reciprocity, as
the networks generated by algorithms only based on commu-
nity structure are not capable of reflecting the observed value
of the reciprocity in the ground truth network, a shortcoming
of these models which indeed limits their applications. The
empirical evidence of this observation was part of the moti-
vation to study this problem. In the experiments, we use the
standard definition of reciprocity r, i.e., the ratio of the number
of edges pointing in both directions to the total number of
edges in the graph (we use the PYTHON implementation in
NETWORKX). As anticipated, in networks generated with the
stochastic block model, r is often close to 0. Instead, a more
interesting scenario is that of networks generated with the
main purpose of replicating reciprocity, as in the HL model.
This is an example of an exponential random graph model
where reciprocity and sparsity are the two topological proper-
ties controlled in input. It is also one of the few cases where
this type of model is analytical, see Appendix E. In this model,
r is tuned by a parameter α so that the higher its value, the
higher the reciprocity. Notice that, as usual in exponential ran-
dom graphs models, latent variables such as communities are
not considered. This model generates unweighted networks,
hence r ≡ rw.

Figure 2 shows that CRep significantly outperforms all the
other generative models in reproducing rw, panel (a), and r,
panel (b), as measured on the sampled networks. The gap
between the values of r and rw on the sampled networks is
due to the mismatch between the binary adjacency matrices
of the networks generated with the HL model (input data) and
the weighted sampled ones generated with the various gener-
ative models, which use Poisson distributions. Similar results
are obtained for the networks generated with our benchmark
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FIG. 2. Reciprocity in HL networks. Synthetic networks with
N = 1000 nodes generated with the model proposed by Holland
and Leinhardt by varying the reciprocity parameter α. Results are
empirical averages and standard deviations over 15 samples of three
independent synthetic networks (five samples per input network).
The red markers indicate the average on the three input networks.
(a) The quantity rw as defined in Eq. (15); the empirical average over
the samples and the theoretical expectation as in Eq. (16) coincide,
hence we omit the markers for the empirical value; η̂ is the inferred
parameter in CRep and CRepnc. (b) Standard reciprocity r. Notice
that r ≡ rw for the input data, but this is not true for the samples,
as the generative models considered here generate weighted edges,
i.e. the matrix A is in general not binary. Error bars are smaller than
marker size. Unless otherwise stated, this will be the case in all of
the figures.

generative model. Also in this case, CRep captures reciprocity
significantly better than the other models, consistently over a
range of values of η as the input parameter. Moreover, in the
case of fixed η, varying the sparsity and degree of overlapping
communities lead to the same results. We leave details in
Appendix F 1.

At this point, we turn our attention to topological properties
other than reciprocity, to investigate how these generative
models perform in reproducing various relevant properties
that might be of interest for a practitioner. Indeed, other pos-

FIG. 3. Edge prediction in benchmark networks. Synthetic net-
works with N = 2100 nodes and K = 3 communities of equal-size
unmixed group membership generated with the benchmark genera-
tive model proposed above by varying the reciprocity parameter η.
The results are averages and standard deviations over three inde-
pendent synthetic networks and over 5-fold of cross-validation test
sets. The accuracy of edge prediction is measured with AUC and the
baseline is the random value 0.5.

sible mechanisms underlying network interactions are those
that involve more than two individuals (which is the case for
reciprocity), e.g., hierarchical structure, which requires the
whole network for its computation.

As in our experiments we find that all models are able to
retrieve the degree distribution with good accuracy, we mainly
focus on replicating ranking of nodes, an application relevant
when nodes have a score representing some intrinsic notion
of relative strength or prestige. For this, we use SPRINGRANK
[33], an algorithm for inferring hierarchies in directed net-
works that assigns real-valued scores to nodes. We calculate
the Gini index on these scores to provide a global measure
for the whole network. Comparing the average over the five
samples, we find that CRep and CRep0 are able to perfectly
retrieve the Gini index of the original network, while the other
models tend to overestimate it, see Appendix F 1. This is con-
sistent over the various synthetic network topologies. Notice
that this topological property is influenced neither by the value
of η, nor the fraction of nodes with mixed-membership used
to generate networks; however, it decreases as the average
degree, and α increase.

Edge prediction. We test the algorithms’ ability in edge
prediction tasks, in both cases of conditional and regular edge
prediction. As we can see from Fig. 3, our model outperforms
the others in conditional edge prediction, showing that it is
able to efficiently exploit the additional information about the
existence of the opposite edge. The performance gap between
different approaches increases with η, as for high values of η,
the reciprocity plays a bigger role in edge formation. In the
opposite scenario of low η, the impact of reciprocity becomes
negligible compared to community structure, and in this case
we reproduce the same results as for the other algorithms. This
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is expected as our model infers small values of η in this case,
thus in practice reducing to a conditional independent model
as the others. Performance in terms of regular edge prediction
is comparable to the other algorithms for small η, while it
drops for intermediate values and then increases again as η
grows.

These synthetic tests suggest that working with condi-
tional probabilities results in more robust estimates of the
probability that an edge exists if we have access to the edge
in the opposite direction. Performance improvement is more
significant when community structure is not the predomi-
nant mechanism in edge formation. We leave more details in
Appendix F 2.

To summarize results on synthetic networks, CRep is ca-
pable of suitably capturing the reciprocity values observed in
a given network, while also retrieving hierarchical structures.
Furthermore, CRep exploits the availability of extra informa-
tion in performing edge prediction, by increased performance
and robustness across various parameters’ ranges.

C. Performance for real networks

Above, we evaluated the ability of our model, CRep, to
generate network samples that have reciprocity values as ex-
pected in input and tested its performance in edge prediction.
In this section, we examine these abilities on real world
datasets. We apply our method to datasets from a diverse set of
fields, with sizes ranging up to N ∼ 104 nodes and up to E ∼
105 links (see Table I and Appendix G 1 for details). Together,
these examples cover various types of social relationships,
communication interactions, transportation systems, and pat-
terns of citations.

Reproducing the topological properties. We apply the same
procedure as before to infer the parameters ! = (u, v,w, η)
from data (this time, real networks) and then generate syn-
thetic network samples based on them. Also in this case,
CRep greatly outperforms the other models in reproducing r,
consistently across datasets. We show as an example in Fig. 4
the results on the Erasmus dataset (Erasmus Mobility Network
2014–2018) [34], and we leave the others in Appendix G 2.

Previously, we have discussed network-related quantities
controlled by η, such as the expected fraction of edges purely
due to communities (crratio) or the quantity rw. Here we il-
lustrate how the various real networks differ in the inferred
values of η, which we denote as η̂. In particular, we show in
Fig. 5 how η̂ varies according to the reciprocity of these net-
works, unveiling a nontrivial pattern. While we see a general
trend of η̂ increasing with r, there are interval ranges of r for
which η̂ varies widely across networks, and vice-versa. For
example, we see that for r ∈ [0.6, 0.8], η̂ ranges in [0.1,0.7].
This high variability suggests that r is the result of a complex
combination of communities and reciprocity. We notice, for
instance, that for high school friendship networks (HST and
DT), η̂ is low (i.e., in [0.1,0.3]), showing that many recipro-
cated edges are explained by community structure. Instead,
for online dating (POK) and communication networks (EU
and DNC), we observe high values of η̂, signaling a lower
impact of communities, as reciprocity plays a bigger role.
This reinforces the need to include in network models both
mechanisms for explaining edge formation. Notice that these

FIG. 4. Reciprocity in the Erasmus datasets. Results are averages
and standard deviations of r over five samples generated with the
various generative models. The algorithms use the inferred η and
community parameters of the dataset—Erasmus in this plot—to gen-
erate synthetic network samples. Red markers indicate the values of
r in the real datasets.

results are possible not only because our model accounts for
reciprocity through an explicit parameter η, but also because
it infers reciprocity values close to the observed ones, while
the other methods fail at this, see Fig. 12.

Edge prediction. In the absence of ground truth, as in most
real world networks, we test the ability in edge prediction
by cross-validation, as done for synthetic networks. Table II
shows the results in terms of AUC for the generative models
CRep, MT, BPMF, as well as for OLP; the latter is a type

FIG. 5. Reciprocity and η̂. Scatter plot with observed reciprocity
(y axis) and η̂ inferred in CRep (x axis); points are individual real
datasets. The dashed grey line indicates the perfect correspondence
between r and η̂. Marker shape denotes the type of network as defined
in Table I.
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FIG. 6. Erasmus 2018 community structure. For visualization clarity, we show the subnetwork made of the 10% biggest institutions and the
3000 edges with highest weights (inference was performed on the whole network). (a)–(f) show groups K = 1, 2, . . . , 6 (mixed membership)
by CRepnc, and (h)–(m) show the same groups by MT. (g) illustrates the groups by CRepnc in the case of hard membership, while the groups
by MT are represented in (n). Node color intensity increases with uik , so that darker nodes have stronger membership u in that group, each
color is a group (mixed membership) and nodes with light blue border are nodes that change the most the membership in the two algorithms;
for each group k, we only show nodes that have uik > 0.1. Node and edge size are proportional to the size of an institution measured by the
total number of outgoing and incoming students. Node shapes denote country.

of supervised learning technique which uses network topo-
logical information as features to predict the entries of A.
CRep and OLP show the best results, with CRep having high
performance for social networks. However, if we consider the
conditional AUC, then CRep outperforms all the others in the
majority of the datasets, as also observed in synthetic data.
Finally, by averaging the AUC across the dataset, we find
CRepnc is the best model. This confirms the ability of our
model to efficiently exploit the additional information from
the adjacency matrix to boost performance in terms of edge
prediction.

IX. CASE STUDY: APPLICATION OF CREP TO THE
ERASMUS STUDENT EXCHANGE NETWORK

We illustrate our model on a real dataset to show various
analysis that a practitioner can perform. We consider a net-
work representation of the Erasmus student exchange program
in 2018 [34], denoted as ERs18 in Table I. A node represents
a higher education institution and an edge between nodes i
and j denotes how many students were sent from i to spend a
portion of their academic year abroad at institution j, as part
of their study program towards a degree (Bachelor, Master, or
PhD). This program is supported by the European Commis-
sion and involves N = 4389 institutions (mainly European),
with a total of M = 90 972 participating students in 2018.

We recover community partitions from the network data
using both CRepnc and MT, they have similar and high perfor-
mance in edge prediction according to AUC (see Table II),
and we fix K = 6 communities from cross-validation. In
Fig. 6, we notice that while both models find several groups
that closely correlate with countries, CRepnc tends to put
German institutions (left triangles) more in the same group
(blue) and shifts few institutions in the red group, which seems
made of mainly universities with strengths in engineering and
technology (e.g., Universitat Politecnica de Catalunya, Po-
litecnico di Milano, and Institut Polytechnique de Grenoble).
For instance, Università di Bologna, Federico II di Napoli
and Padova have lower ui,red than what is predicted with-
out accounting for reciprocity, instead Slovenská technická
univerzita v Bratislave, Kauno Technologijos Universitetas,
and Universidad de Oviedo increase their membership in this
group.

In addition, CRepnc places more institutions with higher
membership in the green group, see Fig. 6(g) (hard member-
ship). While there is no apparent common attribute between
these (e.g., country), we find that many nodes with high
“green” entry of ui tend to reciprocate more edges. Specif-
ically, they have a high fraction of out-neighbors such that
λ0

i j is much smaller than λ0
ji. That is, the edges Ai j such

that Aji also exists, have a lower impact in determining the
value of ui in the algorithm. In fact uik ∝

∑
j,q Ai jρ

(1)
i j φi jkq =
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FIG. 7. Patterns of reciprocated edges. Plots show the subnetwork made of the reciprocated edges of (a) Universidad Pablo de Olavide,
(b) Technische Universität München, (c) Università degli Studi di Firenze, and (d) Universidad Carlos III de Madrid. Node size is proportional
to university size, the shape denotes country, the colors are the highest entry of ui (for the four reference nodes - white node border) and v j (for
all its neighbors). Edge size is proportional to its weight; edge colors vary continuously from red to blue, based on the value of di j = cri j − cr ji:
high intensity red, white, and high intensity blue mean close to −1, 0, and 1, respectively.

∑
j,q

Ai j uikv jqwkq

λ0
i j+η Aji

, see Eq. (7). Hence, if the denominator is high

because of Aji, the weight of the edge Ai j decreases. Nodes
with many such Ai j tend to have lower entries uik and thus
lower λ0

i j . This is a qualitative explanation for having different
membership, however the situation is more complicated than
this, as one needs to account for the effects on the whole
network. In fact, also v jq changes between the two algorithms,
for a similar reason, thus also contributing to a different uik .

The primary benefit of CRep, however, lies not in its abil-
ity to recover the communities but in what it reveals about
the reciprocity patterns in the network. Home and receiving
institutions must sign an inter-institutional agreement to al-
low for student exchanges between them. While institutions
may sign them because of clear affinities between their ed-
ucational training offerings (e.g., both universities are strong
in natural science), they might also do so because of some
mechanisms involving reciprocity, as hosting students costs
resources. Moreover, reciprocity could be further increased
by previous knowledge or collaborations between individual
faculties, thus institutional reciprocity may be also driven by
faculty reciprocity. In addition to the communities themselves,
our model also returns η, which can reveal features of the
data related to such reciprocity effects not seen with standard
generative models, such has crratio or E[Ai j |Aji,!]. We find a
maximum likelihood value of η = 0.4, signaling a significant
reciprocity effect. In fact, according to Eq. (14), on average
40% of the edges are influenced by reciprocity.

While η gives a global picture of the whole network, our
models still allows to distinguish the impact of reciprocity

on individual edges. For instance, if an institution i accepts
many students from j, then j might be more willing to accept
students from i, even though i’s features might not match j’s
preferences. If we distinguish the ui as the set of preferences
of i and v j as the set of attributes of j, then our model will
naturally convey this through high λ0

i j and low λ0
ji for such a

case. CRep is able to capture these situations quantitatively,
by means of the quantities cri j := λ0

i j/mi j (a crratio per edge)
with values in [0,1] which measures the relative contribution
of communities alone to determine edges between i and j.
Focusing on a single institution i, one can analyze the dif-
ference di j := cri j − cr ji ∈ [−1, 1] for all j such that both
Ai j, Aji > 0 and find different reciprocity patterns, as we show
in Fig. 7. Here we plot three extreme cases where i has most
of the di j being less, equal or greater than 0. The Universidad
Pablo de Olavide in Sevilla, panel (a), has mostly di j < 0
(plotted in red), meaning that reciprocity has a strong effect
in determining its out-going edges to universities that instead
send students to Sevilla mostly out of community preference.
The opposite case is that of Technische Universität München,
panel (b), which has most of the di j > 0 (plotted in blue),
signaling that it tends to select its out-going edges more out
of preference than their counterparts, who tend to reciprocate
instead. Università degli Studi di Firenze, panel (c), is an
example of an institution with several di j close to 0 (plotted
in white), meaning that most of its reciprocated edges are
due to community affinities. In other words, Firenze selects
out-going j based on preference and those who select Firenze
do the same, so the impact of reciprocity is low. Apart from
these three extremes, many universities display a range of

023209-10



GENERATIVE MODEL FOR RECIPROCITY AND … PHYSICAL REVIEW RESEARCH 3, 023209 (2021)

such behaviors; we give an example of Universidad Carlos
III de Madrid, panel (d), which has a balanced fraction of
reciprocated edges covering these three cases (there are about
1/3 of blue, red, and white edges in the corresponding fig-
ure). Notice that the value of di j yields an incomplete picture
of the situation, since it does not distinguish between cases
where the quantities cri j, cr ji have different magnitudes while
keeping their difference constant.

X. CONCLUSION

CRep is a mathematically principled generative model for
capturing both community and reciprocity patterns in directed
networks. It relies on relaxing strict conditional independence
assumptions on edges that limit the applicability of standard
methods on real problems where reciprocity plays an im-
portant role. Its algorithmic implementation is efficient and
scalable to large system sizes. The corresponding generative
model allows for the creation of synthetic networks with the
desired interplay between community and reciprocity in de-
termining the edges, while allowing the tuning of network
sparsity.

In addition to providing all the analysis tools typical of
standard generative models with communities, our model
makes it possible to answer questions about reciprocity in
networks that were not previously possible; for instance,
performing probabilistic conditional edge prediction and esti-
mating the relative contribution of community and reciprocity
in determining edges. We show how real networks display a
wide range of the reciprocity parameter, signaling the variety
of possible patterns for this property. In the context of the
Erasmus student exchange network, our model allowed us to
distinguish universities based on their pattern of reciprocated
edges.

More generally, our model shows how we can relax strict
conditional independence assumptions on edges and show-
cases possible consequences in doing this. This presents an
opportunity for researchers to rethink the fundamental as-
sumptions behind generative models, and present models that
may open doors to new theories and questions. We make
one step in this direction, as our model connects two popular
problems that are mainly treated independently: the inference
of communities in networks and generating directed networks
where reciprocity plays a relevant role. We used this connec-
tion to obtain networks with community structure and values
of reciprocity consistent with those observed in real data.

Both the assumption and the model we have presented are
only the first step in a broader line of work that investigates
how certain topological properties are reflected in networks
with latent community structure as dominant mechanism in
edge formation. There are a number of directions in which
this work could be extended. We have considered here a
simple way to account for reciprocity and break conditional
independence, by considering a unique parameter for the
whole network. Our model could be extended to account for
node-dependent parameters, where reciprocity varies between
individuals. In addition, possible extensions may incorporate
extra information such as degree, attribute or signals on nodes
[30,35–38], edges of different types as in multilayer networks
[16] and dynamics in time [39–44]. Reciprocity is one of

the many effects that could play a role in determining how
nodes interact in a network. One could go further than this by
considering incorporating quantities that account for triples of
individuals, for instance clustering coefficient, transitivity or
global centrality measures [45]. These properties cannot be
captured by standard SBM-like models [46]. In this respect,
a recent work of Peixoto [47] shares some similarities with
ours considering triadic closure instead of reciprocity, making
an effort towards extending the stochastic block model frame-
work to incorporate more elaborate topological structure that
is not captured otherwise. This is something that exponential
random graphs or stochastic actor oriented models are capable
of [14,48–51], without including latent community structure
but rather fitting network statistics. In probabilistic generative
models, this would require further breaking conditional de-
pendencies between edges, potentially increasing the model
complexity to encompass more complicated situations. With
our work, we made the first step in this direction.

While there is no unique generative model that captures all
the possible network properties well, our work illustrates how
to target reciprocity. As our original motivation to study this
problem came from the realization that standard generative
models fail to generate synthetic networks with meaningful
values for this property, our work illustrates a way in which
latent variable frameworks can be applied more realistically,
and provides an example of how network scientists can bet-
ter align fundamental theories with realistic applications. We
provide an open source implementation of the code online in
Ref. [52].
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APPENDIX A: SYNTHETIC NETWORK GENERATION:
NUMERICAL IMPLEMENTATION

The synthetic networks used in the analysis are of three
types and represent different scenarios: networks with com-
munity structure only, with reciprocity only and networks
with both communities and reciprocity. In order to obtain
networks with only a community structure we use a stochastic
block model with different values of average degree ⟨k⟩. We
generate networks with K = 3 communities of equal-size un-
mixed group membership, N = 2100 nodes and an assortative
structure (w has higher diagonal entries) with main prob-
abilities p1 = c K/N and entries outside the main diagonal
equal to p2 = 0.1 p1, so that the average degree is ⟨k⟩ =
c + (K − 1) c/10, where c is the average degree within the
same community. We generate three independent samples for
each value of c ∈ [2, 20], that corresponds to ⟨k⟩ ∈ [2.4, 24].
On the other hand, we generate networks influenced by reci-
procity only through an implementation of the reciprocity
model proposed by Holland and Leinhardt (see Appendix E
for details). The input parameter α can be tuned to obtain
different values of network reciprocity and we generate three
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independent samples for each value of α ∈ [0, 10]. We con-
sider N = 1000 nodes and a probability to generate one of the
directed edges equal to p = 0.002.

In order to work with synthetic networks having an intrin-
sic community structure and a given reciprocity value, we use
the benchmark generative model proposed in this paper. We
generate networks with N = 2100 nodes and K = 3 commu-
nities by varying three different input parameters: the average
degree ⟨k⟩ ∈ [2, 20], the reciprocity coefficient η ∈ [0, 1) and
the fraction of nodes with mixed membership over ∈ [0, 1].
While varying one of the parameter, the others are fixed to
⟨k⟩ = 20, η = 0.5, and the degree of overlapping communi-
ties over = 0. In detail, networks are generated in two steps.
First, membership vectors u and v are generated following
an equal-size unmixed group membership and a Dirichlet
distribution with parameter α = 0.1 for the entries with mixed
membership; and the affinity matrix w is generated using an
assortative block structures with main probabilities p1 = K/N
and secondary probabilities p2 = 0.1 p1. Thus the latent vari-
ables ! = (u, v,w, η) are fixed. Second, edges are drawn
according to the generative model described in the main text.
Specifically, for each pair of nodes (i, j), (i) extract Ai j from
a Poisson of mean as in Eq. (10) and (ii) extract Aji from
a Poisson of mean as in Eq. (3). This procedure results in
a directed network with the desired reciprocity and sparsity.
We generate three independent networks for each value of the
three different input parameters.

APPENDIX B: EDGE PREDICTION
AND CROSS-VALIDATION

We perform edge prediction using 5-fold cross-validation.
In each realization, we divide the dataset, i.e., the entries
Ai j of the adjacency matrix, into five equal groups selected
at random. We use four of these groups as a training set,
to infer the parameters !. We then use the fifth group as
a test set, evaluating the score for each Ai j in this set, and
calculate the AUC value. By varying which group we use
as the test set, we get five trials per realization. The final
AUC is the average over these. To compute the regular AUC
we use as score the expected value EP(Ai j |!)[Ai j] = mi j as in
Eq. (10); for the conditional AUC (AUC–cond), we use as
score EP(Ai j |Aji,!)[Ai j] = λ0

i j + η Aji, i.e., the expected value
over the conditional distribution. Notice that the latter can
only be computed for CRep, as for the others mi j ≡ λ0

i j , and
thus the two AUC values coincide. The AUC is specified for
binary entries, thus the edge weight is not accounted in the
evaluation. However, our goal here is to assess edge existence,
hence AUC is a suitable metric for this. If a practitioner aims
at assessing the quality of the inferred weights as well, then
one should specify different metrics for this.

APPENDIX C: INFERENCE: NUMERICAL
IMPLEMENTATION

All the generative models require inferring K , the number
of communities. We select this by cross-validation. Specifi-
cally, we run several held-out trials as explained above by
varying K and select the value of K that gives the highest
(regular) average AUC on the test sets. We then extract the

parameters of each method using their best K . For MT, BPMF,
and CRep0, we extract the parameters u, v,w; in addition, for
CRep and CRepnc, we extract η. All these algorithms converge
to a local optima, as the likelihood landscape is not convex.
Hence, we run the algorithm 10 times for different random
initializations of the parameters and select the realization that
has higher likelihood value.

APPENDIX D: DETAILED DERIVATIONS

We derive in detail the equations for inferring the parame-
ters. We first apply a variational approach to make the problem
tractable, and then use an expectation-maximization algorithm
to derive the equations of the updates.

1. Variational approach

We aim at maximizing the log pseudolikelihood in Eq. (5).
The first step is to facilitate the maximization process of the
logarithmic term. We consider a probability distribution ρi j
over the two competing terms: this is our estimate of the
probability that the edges exist due to the contribution of either
the community membership or the reciprocity term. Applying
Jensen’s inequality ln x̄ > ln x:

ln λi j = ln

(

ρ (1)
i j

λ0
i j

ρ (1)
i j

+ ρ (2)
i j

η Aji

ρ (2)
i j

)

> ρ (1)
i j ln

λ0
i j

ρ (1)
i j

+ ρ (2)
i j ln

η Aji

ρ (2)
i j

= ρ (1)
i j ln

∑

k,q

uikv jqwkq + ρ (2)
i j ln η Aji

− ρ (1)
i j ln ρ (1)

i j − ρ (2)
i j ln ρ (2)

i j . (D1)

Moreover, this holds with equality when

ρ (1)
i j =

λ0
i j

λ0
i j + η Aji

and ρ (2)
i j = η Aji

λ0
i j + η Aji

. (D2)

Thus maximizing Lps(!) is equivalent to maximizing:

Lps(!, ρ)

=
∑

i, j

⎧
⎨

⎩Ai j

⎛

⎝ρ (1)
i j ln

∑

k,q

uikv jqwkq + ρ (2)
i j ln η Aji

− ρ (1)
i j ln ρ (1)

i j − ρ (2)
i j ln ρ (2)

i j

⎞

⎠ −
∑

k,q

uikv jqwkq − η Aji

⎫
⎬

⎭.

We apply once more the variational approach to make the
sum inside the logarithm tractable. Similarly as before, we
introduce a probability distribution φi jkq such that

ln
∑

k,q

uikv jqwkq >
∑

k,q

φi jkq ln uikv jqwkq −
∑

k,q

φi jkq ln φi jkq.

(D3)
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The equality holds when

φi jkq = uikv jqwkq∑
k′,q′ uik′v jq′wk′q′

= uikv jqwkq

λ0
i j

. (D4)

Thus maximizing Lps(!, ρ) is equivalent to maximizing:

Lps(!, ρ,φ) =
∑

i, j

⎧
⎨

⎩Ai jρ
(1)
i j

⎛

⎝
∑

k,q

φi jkq ln uikv jqwkq −
∑

k,q

φi jkq ln φi jkq

⎞

⎠ + Ai j ρ
(2)
i j ln ηAji

− Ai j
(
ρ (1)

i j ln ρ (1)
i j + ρ (2)

i j ln ρ (2)
i j

)
−

∑

k,q

uikv jqwkq − ηAji

⎫
⎬

⎭ (D5)

with respect to !, ρ, φ.

2. Expectation-Maximization updates

Equations for the updates of each of the parameters can
be obtained by taking the derivative of Eq. (D5) with respect
to a given parameter and setting it to zero. For instance, the
update equation for η is obtained by considering the partial
derivative:

∂Lps

∂η
=

∑

i, j

[
Ai jρ

(2)
i j

η
− Aji

]

. (D6)

Setting this to zero and defining M =
∑

i, j Ai j , we obtain

η =
∑

i, j Ai jρ
(2)
i j∑

i, j Ai j
= η

M

∑

i, j

Ai jA ji

λi j
. (D7)

Similarly, for the community affinity matrix, we get

wkq =
∑

i, j Ai jρ
(1)
i j φi jkq∑

i, j uik v jq
. (D8)

Here we show how to enforce constraints like
∑

k uik = 1,
which is an arbitrary choice that can be easily incorporated
into our model. To this end, it is convenient to rewrite the log
pseudolikelihood as follow:

Lps(!, ρ,φ) = F (uik, v jq,wkq ) −
∑

i, j,k,q

uik v jq wkq, (D9)

Then, following the approach in Ref. [53], to simplify the
maximization of the log pseudolikelihood, we substitute wkq
from Eq. (D8) into Eq. (D9):

Lps(!, ρ,φ) = F (uik, v jq,wkq )

−
∑

i, j,k,q

uik v jq

∑
i, j Ai jρ

(1)
i j φi jkq∑

i, j uik v jq

= F (uik, v jq,wkq )

−
∑

k,q

∑

i, j

uik v jq

∑
i, j Ai jρ

(1)
i j φi jkq∑

i, j uik v jq

= F (uik, v jq,wkq ) −
∑

i, j,k,q

Ai jρ
(1)
i j φi jkq. (D10)

The second term in the above equation does not depend ex-
plicitly on uik and v jq. In order to apply the constraint on the
maximization, we add Lagrange multipliers γ u

i , γ v
i :

Lps(!, ρ,φ) = F (uik, v jq,wkq )

−
∑

k,q

∑

i, j

Ai jρ
(1)
i j φi jkq − γ u

i

(
∑

k

uik − 1

)

− γ v
j

(
∑

q

v jq − 1

)

. (D11)

The update equation for uik is obtained by considering the
partial derivative

∂Lps

∂uik
=

∑

j,q

(
Ai jρ

(1)
i j φi jkq

uik

)

− γ u
i , (D12)

and setting it to zero, which yields

uik = 1
γ u

i

∑

j,q

Ai jρ
(1)
i j φi jkq. (D13)

By applying the normalization constraint on the uik , i.e.,∑
k uik = 1, and noticing that ρ (1)

i j φi jkq = uikv jqwkq

λ0
i j+η Aji

, we can find

an expression for γ u
i :

γ u
i =

∑

j,k,q

Ai j uik v jq wkq

λ0
i j + η Aji

=
∑

j

Ai j λ
0
i j

λ0
i j + η Aji

. (D14)

Similarly, we have the following update equation for v:

vik = 1
γ v

i

∑

j,q

A jiρ
(1)
ji φ jiqk, (D15)

where

γ v
i =

∑

j,k,q

A ji u jq vik wqk

λ0
ji + η Ai j

=
∑

j

A ji λ
0
ji

λ0
ji + η Ai j

. (D16)

3. Deriving the expected value of the marginal distribution

E[Ai j] = mi j =
∑

Ai j ,Aji

Ai j P(Ai j, Aji|!)

=
∑

Aji

P(Aji|!)
∑

Ai j

Ai j P(Ai j |Aji,!)
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FIG. 8. Reciprocity in synthetic networks. Synthetic networks with N = 2100 nodes and K = 3 communities of equal-size unmixed group
membership generated with a stochastic block model [(a) and (b)] by varying the average degree within the same community c and our
benchmark generative model, by varying the reciprocity parameter η [(c) and (d)] and the average degree ⟨k⟩ [(e) and (f)]. Results are empirical
averages and standard deviations over 15 samples of three independent synthetic networks (five sample per input network). The red markers
indicate the average on the three input networks. [(a), (c), and (e)] The quantity rw as defined in Eq. (15); η̂ is the inferred parameter in CRep
and CRepnc. [(b), (d), and (f)] Standard reciprocity r.

=
∑

Aji

P(Aji|!)
[
λ0

i j + η Aji
]

= λ0
i j + η

∑

Aji

A ji P(Aji|!)

= λ0
i j + η mji

= λ0
i j + η

(
λ0

ji + η mi j
)
. (D17)

Solving for mi j yields

mi j (1 − η2) =
(
λ0

i j + η λ0
ji

)
, (D18)

which implies

mi j =
λ0

i j + η λ0
ji

(1 − η2)
. (D19)

4. Expected value of rw

With similar calculations as before we obtain

E[Ai j A ji] =
∑

Ai j ,Aji

Ai j A ji P(Ai j, Aji|!) (D20)

= λ0
i j m ji + ηE

[
A2

ji

]
. (D21)
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FIG. 9. Hierarchical structure in synthetic networks. Synthetic
networks generated with (a) the stochastic block model, (b) the HL
model, and (c) the benchmark generative model. Results are averages
and standard deviations of the Gini index on SPRINGRANK ranking
scores over 15 samples of three independent synthetic networks (five
sample per input network). The red markers indicate the average on
the three input networks.

FIG. 10. Edge prediction in synthetic networks. Synthetic net-
works with N = 2100 nodes and K = 3 communities of equal-size
unmixed group membership generated with the benchmark gener-
ative model proposed above by varying (a) the average degree ⟨k⟩
and (b) the fraction of nodes with mixed membership over. The
results are averages and standard deviations over three independent
synthetic networks and over 5-fold cross-validation test sets. The
accuracy of edge prediction is measured with AUC and the baseline
is the random value 0.5.

To fully determine this expression we need to specify the
second moment E[A2

ji]. For binary variables, we could as-
sume E[A2

ji] = E[Aji] = mji, as this is the case for Bernoulli
distributions. With this assumption, we obtain E[Ai j A ji] =
(λ0

i j + η)mji. Alternatively, we can assume E[A2
ji] = mji +

m2
ji as is the case for the Poisson distribution, and thus obtain

E[Ai j A ji] = (λ0
i j + η)mji + η m2

ji. Finally we have

E[rw] = E
[∑

i, j [Ai j A ji]∑
i, j [Ai j]

]
≈

∑
i, j E[Ai j A ji]∑

i, j E[Ai j]

=
∑

i, j

[(
λ0

i j + η
)
mji + η m2

ji

]
∑

i, j mi j

= η +
∑

i, j

[
λ0

i j m ji + η m2
ji

]
∑

i, j mi j
> η, (D22)
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FIG. 11. Community detection in synthetic networks. Synthetic
networks with N = 2100 nodes and K = 3 communities of equal-
size unmixed group membership generated with (a) the benchmark
generative model proposed above by varying the reciprocity param-
eter η, and (b) a stochastic block model. The results are averages and
standard deviations over three independent synthetic networks. The
accuracy of community detection is measured with (a) cosine simi-
larity and (b) with F1-score as similarity measure, and values close to
1 means higher similarity. The dashed lines represent random base-
lines, where membership ui are extracted randomly from a Dirichlet
of parameter α = 0.1 or a Gamma distribution of parameters α = 0.1
and β = 1, to enforce sparsity.

where in the first row we use the first-order Taylor expansion
as an approximation. With this assumption, we obtain that the
parameter η is a lower bound for the expected value of rw. An
equivalent expression can be derived for models that assume
conditional independence, e.g., our model with η = 0. In this
case, we get

E[Ai j A ji] =
∑

Ai j

Ai j P(Ai j |!)
∑

Aji

A ji P(Aji|!)

= mi j mji, (D23)

which yields

E[rw] =
∑

i, j E[Ai j A ji]∑
i, j E[Ai j]

=
∑

i, j mi j m ji∑
i, j mi j

. (D24)

APPENDIX E: HOLLAND AND LEINHARDT
RECIPROCITY MODEL

The model assumes an unweighted and directed network,
i.e., asymmetric adjacency matrix with binary values Ai j ∈
{0, 1}, and the following joint probability:

P(A|θ ,α) = e−H (A,θ ,α)

Z (θ ,α)
n(n−1)

2

, (E1)

H (A, θ ,α) = θ
∑

i< j

(Ai j + Aji ) − α
∑

i< j

Ai jA ji, (E2)

where Z (θ ,α) = 1 + 2e−θ + e−2θ+α is the normalization
term. The parameter α controls the level of reciprocity, it
couples the two entries Ai j and Aji thus making the model
not factorized; edges between different pairs (i, j) are condi-
tionally independent given the parameters. This is one of the
few analytically tractable exponential random graph models.
Due to this property, we can extract analytical marginal and
conditional distributions for a pair of nodes (i, j):

P(Ai j |θ ,α) = e−θAi j + e−θ−Ai j (θ−α)

Z (θ ,α)
, (E3)

P(Aji|Ai j, θ ,α) = e−Aji (θ−αAi j )

1 + e−(θ−αAi j )
. (E4)

These expressions can be used to sample networks with
the joint distribution given in Eq. (E2). Tuning the value of
the parameter α, one generates networks with different values
of reciprocity.

APPENDIX F: PERFORMANCE
IN SYNTHETIC NETWORKS

1. Reproducing the topological properties

Here we show in more details the ability of the models
to reproduce network samples that replicate relevant network
quantities. Figure 8 shows r and rw as defined in Eq. (15),
computed in the sampled networks of synthetic data generated
with a stochastic block model and our benchmark generative
model. As expected, the reciprocity in networks generated
with the stochastic block model is always close to zero. In-
stead, the networks generated with our benchmark generative
model present different values of reciprocity, and CRep cap-
tures these values significantly better than the other models,
consistently across various magnitudes of input η. Even in the
case of fixed η, by changing sparsity, we observe the same
pattern. By varying the degree of overlapping communities,
we obtain the same results as changing the average degree (we
do not report them here).

Figure 9 shows the Gini index computed on nodes scores
obtained with the SPRINGRANK algorithm. The Gini index
provides a global measure for the whole network, the higher
its value, the more hierarchical the network is. We compare
the average over the five samples, and we find that CRep
and CRep0 have reasonable accuracy in retrieving the Gini
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TABLE I. Datasets description.

Network Abbreviation Category N E Ref.

Dutch college DT2 Human Social Network 26 144 [54]
Dutch college DT6 Human Social Network 30 256 [54]
Highschool Friendships HST11 Human Social Network 31 100 [54]
Highschool Friendships HST12 Human Social Network 30 114 [54]
Highschool Friendships HST2 Human Social Network 62 245 [54]
Online dating POK0 Human Social Network 3562 18098 [55]
Online dating POK6 Human Social Network 3227 10696 [55]
Online dating POK12 Human Social Network 2530 7653 [55]
Physicians Phys Human Social Network 95 458 [54]
Seventh graders 7th Human Social Network 29 376 [54]
Adolescent health AdH Human Social Network 2213 11676 [54]
Advogato Adv Online Social network 3858 42188 [54]
Faculty hiring, business department BS Institutions Social Network 112 3321 [56]
Faculty hiring, computer department CS Institutions Social Network 198 2702 [56]
Faculty hiring, history department HS Institutions Social Network 140 2242 [56]
Erasmus Mobility Statistics 2014 ERs14 Institutions Social Network 2264 79532 [34]
Erasmus Mobility Statistics 2015 ERs15 Institutions Social Network 2890 79665 [34]
Erasmus Mobility Statistics 2016 ERs16 Institutions Social Network 3713 85468 [34]
Erasmus Mobility Statistics 2017 ERs17 Institutions Social Network 4200 89792 [34]
Erasmus Mobility Statistics 2018 ERs18 Institutions Social Network 4389 90972 [34]
Citation 2005 CIT05 Citation Network 2130 11153 [57]
Statistics Citation SCC2016 Citation Network 2654 21568 [58]
ACM v9 2012 ACMv9 Citation Network 8469 56801 [59]
Email Eu core network EU Email Network 834 24348 [57]
DNC Email DNC Email Network 548 3575 [54]
Wiki Talk ht Wiki Communication Network 80 164 [54]
UC Social UCS Communication Network 1302 19044 [54]
Blogs Blg Hyperlink Network 830 16107 [54]
Cattle Ctl Animal Network 24 191 [54]
FAA Preferred Routes FAA Infrastructure Network 1064 2275 [54]

index of the original network, while the other models tend to
overestimate it. This is consistent over the various synthetic
network topologies, i.e., network generated with the stochastic
block model, panel (a), the HL model, panel (b), and our
benchmark generative model, panel (c). Furthermore, we no-
tice that this topological property decreases as the average
degree within the same community, c, and α increase, while
it is not influenced by the value of η. We omit the results
for the networks generated with our benchmark generative
model by varying the sparsity and the fraction of nodes with

mixed-membership because we obtain similar results to the
stochastic block networks and the benchmark data by varying
η, respectively.

2. Edge prediction in synthetic networks

Here we show the results in terms of edge prediction
on synthetic data generated with our benchmark generative
model by varying the average degree ⟨k⟩ and the fraction
of nodes with mixed membership, which we denote over.

FIG. 12. Reciprocity in real networks. Empirical averages and standard deviations of reciprocity r over five samples of each real network
(see Table I for details). The red dashed lines indicate the r on the input networks.
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FIG. 13. Hierarchical structure in real networks. Empirical averages and standard deviations of the Gini index on SpringRank ranking
scores over five samples of each real network (see Table I for details). The red dashed lines indicate the values on the input networks.

We use both conditional and regular edge prediction and
Figure 10 highlights the robustness of CRep and CRepnc in
terms of conditional edge predictions, as their performance
are significantly higher than that of the other algorithms and

do not decrease with increasing overlapping communities and
sparsity. Indeed, the results are robust, as we vary the fraction
of nodes with overlapping community membership and the
average degree, while fixing η = 0.5. Notice also the stability

TABLE II. Edge prediction in real networks. Regular AUC and conditional AUC (AUC–cond) for all real networks (see Table I for details).
Results are averages and standard deviations over 5-fold cross-validation test sets. In grey box, we show the best performance over all methods,
while in boldface the best results in terms of regular AUC. The last row reports the average and standard deviation of each method over datasets.

AUC AUC–cond

Dataset CRep CRepnc CRep0 MT BMPF OLP CRep CRepnc

DT2 0.71 ± 0.01 0.73 ± 0.01 0.653 ± 0.009 0.71 ± 0.03 0.72 ± 0.01 0.712 0.77 ± 0.02 0.79 ± 0.03
DT6 0.72 ± 0.03 0.76 ± 0.01 0.72 ± 0.01 0.762 ± 0.006 0.774 ± 0.008 0.737 0.83 ± 0.03 0.85 ± 0.02
HST11 0.74 ± 0.01 0.73 ± 0.01 0.63 ± 0.03 0.62 ± 0.03 0.63 ± 0.04 0.714 0.78 ± 0.02 0.76 ± 0.02
HST12 0.82 ± 0.02 0.801 ± 0.008 0.743 ± 0.004 0.74 ± 0.01 0.76 ± 0.02 0.778 0.85 ± 0.01 0.86 ± 0.02
HST2 0.771 ± 0.009 0.76 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 0.71 ± 0.01 0.828 0.808 ± 0.009 0.79 ± 0.02
POK0 0.7747 ± 0.0001 0.845 ± 0.002 0.665 ± 0.002 0.7400 ± 0.0009 0.7652 ± 0.0002 0.804 0.908 ± 0.002 0.934 ± 0.002
POK6 0.758 ± 0.001 0.818 ± 0.002 0.587 ± 0.003 0.626 ± 0.002 0.6939 ± 0.0007 0.750 0.884 ± 0.005 0.909 ± 0.002
POK12 0.765 ± 0.002 0.833 ± 0.002 0.582 ± 0.002 0.606 ± 0.002 0.6723 ± 0.0006 0.739 0.905 ± 0.003 0.924 ± 0.002
Phys1 0.600 ± 0.008 0.627 ± 0.006 0.556 ± 0.009 0.57 ± 0.01 0.60 ± 0.02 0.577 0.676 ± 0.005 0.71 ± 0.01
7th 0.69 ± 0.02 0.79 ± 0.01 0.72 ± 0.02 0.800 ± 0.009 0.809 ± 0.005 0.494 0.77 ± 0.01 0.84 ± 0.01
AdH 0.678 ± 0.003 0.696 ± 0.002 0.656 ± 0.002 0.666 ± 0.003 0.627 ± 0.004 0.867 0.760 ± 0.003 0.787 ± 0.001
Adv 0.771 ± 0.002 0.8919 ± 0.0001 0.760 ± 0.003 0.887 ± 0.001 0.8907 ± 0.0005 0.940 0.830 ± 0.002 0.9333 ± 0.0005
BS 0.662 ± 0.004 0.8749 ± 0.0006 0.649 ± 0.004 0.8749 ± 0.0005 0.8746 ± 0.0009 0.711 0.66 ± 0.01 0.8750 ± 0.0006
CS 0.715 ± 0.008 0.829 ± 0.001 0.696 ± 0.005 0.830 ± 0.002 0.838 ± 0.001 0.844 0.709 ± 0.008 0.833 ± 0.001
HS 0.661 ± 0.005 0.866 ± 0.003 0.646 ± 0.003 0.866 ± 0.003 0.872 ± 0.001 0.865 0.654 ± 0.005 0.867 ± 0.003
ERs14 0.754 ± 0.001 0.9157 ± 0.0005 0.696 ± 0.009 0.9115 ± 0.0004 0.9123 ± 0.0003 0.893 0.810 ± 0.001 0.9278 ± 0.0002
ERs15 0.79 ± 0.01 0.9361 ± 0.0002 0.72 ± 0.02 0.9330 ± 0.0002 0.9312 ± 0.0002 0.929 0.82 ± 0.01 0.9454 ± 0.0002
ERs16 0.8057 ± 0.0006 0.9454 ± 0.0002 0.7064 ± 0.0004 0.9402 ± 0.0003 0.9419 ± 0.0001 0.944 0.8346 ± 0.0006 0.9552 ± 0.0002
ERs17 0.822 ± 0.005 0.9484 ± 0.0001 0.734 ± 0.002 0.9433 ± 0.0002 0.9468 ± 0.0002 0.950 0.838 ± 0.005 0.9568 ± 0.0002
ERs18 0.8334 ± 0.0006 0.9501 ± 0.0001 0.732 ± 0.002 0.9444 ± 0.0002 0.9490 ± 0.0002 0.952 0.8476 ± 0.0006 0.9579 ± 0.0001
CIT05 0.910 ± 0.002 0.9189 ± 0.0008 0.901 ± 0.001 0.918 ± 0.001 0.908 ± 0.001 0.954 0.928 ± 0.002 0.9389 ± 0.0008
SCC2016 0.893 ± 0.001 0.923 ± 0.001 0.8938 ± 0.0009 0.925 ± 0.001 0.9211 ± 0.0007 0.946 0.901 ± 0.001 0.925 ± 0.001
ACMv9 0.926 ± 0.001 0.9350 ± 0.0007 0.919 ± 0.001 0.9352 ± 0.0001 0.9254 ± 0.0006 0.968 0.941 ± 0.001 0.9525 ± 0.0007
EU 0.795 ± 0.007 0.9297 ± 0.0004 0.760 ± 0.007 0.9264 ± 0.0008 0.9169 ± 0.0006 0.944 0.926 ± 0.007 0.9619 ± 0.0006
DNC 0.766 ± 0.003 0.929 ± 0.002 0.730 ± 0.001 0.8566 ± 0.0003 0.913 ± 0.001 0.919 0.890 ± 0.006 0.939 ± 0.002
Wiki 0.68 ± 0.02 0.70 ± 0.02 0.63 ± 0.01 0.63 ± 0.02 0.83 ± 0.01 0.801 0.73 ± 0.01 0.76 ± 0.02
UCS 0.754 ± 0.005 0.8762 ± 0.0008 0.717 ± 0.003 0.8558 ± 0.0008 0.844 ± 0.002 0.850 0.904 ± 0.005 0.9530 ± 0.0008
Blg 0.784 ± 0.001 0.9312 ± 0.0001 0.767 ± 0.002 0.9321 ± 0.0003 0.9334 ± 0.0001 0.924 0.824 ± 0.001 0.9463 ± 0.0001
Ctl 0.56 ± 0.03 0.66 ± 0.02 0.57 ± 0.03 0.67 ± 0.02 0.70 ± 0.03 0.574 0.56 ± 0.03 0.66 ± 0.02
FAA 0.576 ± 0.003 0.589 ± 0.002 0.543 ± 0.007 0.535 ± 0.004 0.607 ± 0.003 0.779 0.592 ± 0.002 0.595 ± 0.002

Avg. 0.749 ± 0.007 0.831 ± 0.004 0.700 ± 0.007 0.796 ± 0.006 0.813 ± 0.006 0.823 0.804 ± 0.005 0.867 ± 0.006
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TABLE III. Extended features used in the link prediction process for a directed network.

Feature Description

Common neighbors out/in defined for a pair of nodes: x, y: |,(x)out/in ∩ ,(y)out/in|
Jaccard index defined for a pair of nodes: x, y: |,(x)out/in∩,(y)out/in |

|,(x)out/in∪,(y)out/in |

Adamic-Adar index defined for a pair of nodes: x, y:
∑

z∈{,(x)out/in∩,(y)out/in}
1

ln |,(z)|

Resource Allocation index defined for a pair of nodes: x, y:
∑

z∈{,(x)out/in∩,(y)out/in}
1

|,(z)|

Betweenness centrality a measure of node centrality based on the shortest paths
Closeness centrality defined for a pair of nodes: x, y: 1∑

y d (y,x)

Shortest Paths shortest path between nodes: x, y
Katz centralities a measure of centrality in a network
PageRank centralities a measure of the importance of a node as an adjustment of Katz centrality
Eigenvector centralities an adjustment of Katz centrality of a node in regards to the importance of its neighbors
Clustering coefficient for node x number of triangles connected to node x

number of triples centered around node x

Preferential attachment the tendency of nodes to connect to the nodes with higher degree
Common community 1 if the pair of nodes belong to the same community, otherwise zero

of CRep and CRepnc in terms of regular edge prediction and
how they outperform the other models in critical ranges, e.g.,
small ⟨k⟩ and high over.

Moreover, we find more stable results also in terms of reg-
ular edge prediction, where CRep and CRepnc have constant
values across the different input parameters, outperforming
other methods in critical ranges, e.g., small average degree
or high overlap between communities. The results of our ex-
periments suggest that working with conditional probabilities
results in more robust estimates of the probability that an
edge exists if we have access to the edge in the opposite
direction. Performance improvement is more significant when
community structure is not the predominant mechanism in
edge formation.

3. Community detection in synthetic data

For sake of completeness, here we show the performance
of the models on recovering communities. We consider as
performance measure the F1-score (F1) and cosine similarity
(CS), the former one is valid for hard membership while the
latter captures mixed-membership, we calculate for both the
average over the nodes. When measuring the F1-score we
consider the entries of maximum value of the membership
vectors. Both measures are between 0 and 1 and a value of
1 means perfect reconstruction. Figure 11 shows the accuracy
in networks generated with the benchmark generative model
by varying the reciprocity parameter η and for synthetic data
created with a stochastic block model by varying the average
degree within the same community c. For comparison in these
last networks, we consider also the Leiden algorithm [60], a
nongenerative method. Even if community detection is not the
main focus of our model, we notice the ability of CRep in
retrieving communities in networks without reciprocity, while
its performance decreases as reciprocity increases. This is
expected as the community impact in determining the like-
lihood of an edge decreases as η increases. Notice that the
benchmark data have been generated with fixed ⟨k⟩ = 20, thus
models without reciprocity are capable of fully recovering

the community even in the case where reciprocity is there,
provided that the average degree is large enough. These syn-
thetic tests suggest, on one side, the robustness of community
detection-only methods in recovering communities even in the
presence of reciprocity; on the other side the good perfor-
mance of CRep in recovering communities when reciprocity
has intermediate or low level. This is somehow expected, as
this model gives increasingly less weight to the communities
as reciprocity increases, thus it is not optimized to recover
the communities when these are not fully determining edge
formation.

APPENDIX G: PERFORMANCE IN REAL NETWORKS

1. Real data: dataset description

We apply our approach to different types of networks,
such as social, infrastructure, online communication, and ci-
tation networks. Table I provides a brief overview of the
datasets studied in this work, as well as their abbreviations.
All datasets, have been pre-processed as follows: (i) self-
loops are removed; (ii) only nodes that have at least one
out-going and one in-coming edge are kept; (iii) we used
only the giant connected components. Some datasets require
additional specific preprocessing. Specifically, the citation
networks (here CIT05, SCC2016, ACMv9) require extracting
a network author-author from a network of paper-citation, so
that an edge means that an author cites another author. Fur-
thermore, we split dynamic networks into separate individual
networks where we kept only interactions happening within
a certain time window. This applies to Dutch (DT2, DT6),
High school friendships (HST11, HST12, HST2), online dat-
ing (POK0, POK6, POK12), and Erasmus (ERs14, ERs15,
ERs16, ERs17, ERs18).

2. Reproducing the topological properties

Here we show the ability of the models to reproduce net-
work samples that replicate relevant network quantities. For
each real network, we infer the parameters by each model,
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and use them to generate five synthetic network samples.
Figure 12 shows the reciprocity r. For each model, it outputs
the averages and the standard deviations over the five samples
and the dashed red lines indicate the r value of the input
datasets. We notice the heterogeneity of the analysed networks
and how CRep adapts to all different situations, while the
other models underestimate the true value most of the times.

Figure 13 shows the Gini index computed on nodes scores
obtained with the SPRINGRANK algorithm. The results vary
widely depending on the datasets, and we cannot draw general
conclusions. In this scenario, we have also studied the repro-
ducibility of the clustering coefficient, i.e., the tendency of
nodes to form edges within the same neighborhood, however,
we obtain poor results in line with the SBM approach, as
predicted in Ref. [46]. Moreover, these are topological prop-
erties that involve more complex interactions than pairwise,
as in the case of reciprocity (clustering involves triangles and
SPRINGRANK score is a global measure). This suggests that,
in order to have better performance, one would need to de-
velop more complex models, for instance extending the ideas
behind CRep to capture triadic interactions, possibly guided
by domain-knowledge about how triadic interactions and reci-
procity are related [45]. We leave this for future work, noting
that while exponential random graph models can do this, they
do not include latent community structure (analogously as for
reciprocity).

3. Link prediction features

Here we present the supervised learning-link prediction
routine (OLP) used for comparison in the edge prediction task
on real data. In the link prediction task, scores are assigned
to all possible pairs of nodes in the graph based on a set of
criteria. Then, the pairs of nodes are sorted according to their
scores in an ascending order and the most-likely links are the
pairs with scores above a threshold value.

Two categories of features are used to determine the criteria
of link classification: (i) global features, defined based on the
features of the entire network, such as the number of nodes,
number of edges, average degree of nodes, and the average
clustering coefficient, and (ii) local features, which include
the descriptive features of a single node or a pair of nodes.

In this work, we apply the extended definition of features
for a directed network of Ghasemian et al. [32]. We also
examine the effect of belonging to the same community on
the local pairwise features, i.e., pairwise attributes contribute
in the link prediction only if the two nodes belong to the same
community. However, we did not find significant changes and
at the price of higher computational cost, hence, we exclude
this factor from the study and omit the results. Considering
,(x)out/in as the set of out/in-neighbors of node x, and d (x, y)
as the distance between nodes x and y, some of the well-
known features deployed for link prediction are presented in
Table III.
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To unravel the driving patterns of networks, the most popular models rely on community detection algo-
rithms. However, these approaches are generally unable to reproduce the structural features of the network.
Therefore, attempts are always made to develop models that incorporate these network properties beside the
community structure. In this article, we present a probabilistic generative model and an efficient algorithm
to both perform community detection and capture reciprocity in networks. Our approach jointly models
pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expres-
sions for both marginal and conditional distributions. We validate our model on synthetic data in recovering
communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values
observed in real networks. We also highlight these findings on two real datasets that are relevant for social
scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms
and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference
of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm,
as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.

Keywords: community detection; latent variables; network analysis; probabilistic generative models;
reciprocity.

1. Introduction

Network models are powerful and flexible tools for representing complex interactions between individual
elements in many different fields [1–4]. For instance, in social support networks, each individual is a
person or the representative of a household, and each link, tie or arc represents the presence or intensity
of a relationship between two individuals. Understanding what core patterns drive the observed set
of interactions is of high relevance for scientists and practitioners willing to fully exploit the increased
availability of networked datasets. A popular approach to modelling networks is that of generative models,
in particular latent variable models [5]. They are probabilistic models that introduce latent variables to
incorporate domain knowledge and capture complex interactions. Of particular interest, is the possibility
of recovering clusters of individuals that behave similarly, a problem named community detection [6]. In
this framework, the latent variables represent the nodes’ community memberships and the structure of
interactions between communities, and the aim is to infer these quantities from the data [7, 8]. Despite
their flexibility and computational efficiency, these models have a main flaw: they fail in reproducing
important structural network properties such as transitivity, reciprocity or triadic closure [9–11]. Synthetic
networks generated from these models tend to have significantly lower values of these properties than
those observed in real networks.

One possible reason of this problem is the common assumption of conditional independence: con-
ditioned on the latent variables, network edges are independent and the joint probability distribution is

© The Author(s) 2022. Published by Oxford University Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.
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2 CONTISCIANI ET AL.

factorized accordingly. This means that an interaction from node i to node j is not directly affected by the
interaction in the opposite direction, that is, the edge j → i. In latent variable models with community
structure, such as the stochastic block model [12] and its variants, these two edges are fully explained
by the membership of the two nodes and sometimes by additional parameters such as degree correc-
tions [13]. While this assumption has been used to obtain tractable problems, it can be too restrictive in
certain real scenarios where non-trivial interaction patterns are observed. For instance, in social support
networks, it is likely that the existence of interactions from individual i to individual j does not depend
only on the groups that i and j belong to, but also on the fact that j has already previously helped i. This
tendency of forming mutual connections is called reciprocity [14] and it is an important feature in social
networks [15, 16], journal citations [17] and email communications [18, 19], to name a few. While expo-
nential random graph models can represent such network properties in some form [20–23], they do not
incorporate a priori latent variables as community membership. In the previous example, incorporating
both community structure and the structural property of reciprocity would help us to understand how an
individual interacts with others. Hence, there is a need to incorporate both these phenomena within a
unique probabilistic framework.

Recently, Safdari et al. [10] tackled this problem by modelling the conditional distribution of pairs of
edges between the same nodes, an assumption also shared by seminal works [12, 24]. Safdari et al. [10]
include both communities and reciprocity effects inside the likelihood distribution of the network. This
resulted in networks samples with values of reciprocity more similar to those of real data, and better edge
predictions. However, this model relies on a pseudo-likelihood approximation for parameters’ inference,
as the model only specifies conditional distributions, but not the joint distribution of a pair of edges.
As a result of this approximation, the model is not robust in community detection in the regime where
reciprocity plays a role. Peixoto [9] has shown similar results in terms of triadic closure with a model
based on Bayesian inference that combines community structure and this network property. This model
also assumes conditional independence among edges and models conditional distributions of triadic
edges.

Here, we propose a model that takes into account community structure and reciprocity by specify-
ing a closed-form joint distribution of a pair of network edges, which does not involve approximations.
To estimate the likelihood of network ties, we use a bivariate Bernoulli distribution—a special case
of the multivariate Bernoulli distribution—where the log-odds are linked to community memberships,
and pair-interaction variables. Although these patterns are indicative of two distinct mechanisms of
network formation, namely, community structure and reciprocity, it is reasonable to expect that they
are related to each other. For instance, (i) the preferred connection between nodes of the same com-
munity can induce the presence of reciprocated edges involving similar nodes and (ii) the tendency
of forming mutual connections can induce the formation of groups of nodes. This conflation means
that we cannot reliably interpret the underlying mechanisms of network formation merely from the
abundance of reciprocated edges or observed community structure in network data. Our model takes
advantage of the useful properties of the bivariate Bernoulli distribution, that is, the independence
and the uncorrelatedness of the component random variables are equivalent and both the marginal
and conditional distributions still follow the Bernoulli distribution. Hence, our model has closed-
form analytical expressions and enables practitioners to address with more accuracy questions that
were not fully captured by standard models; for instance, predicting the joint existence of mutual
ties between pairs of nodes. In addition, its algorithmic implementation is efficient and scalable to
large system size, as it exploits the sparsity of network datasets, thus allowing its broad applications
across disciplines, for example, citation networks or neuronal networks that consist of several thousand
of nodes.
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 3

2. The model

The main goal of this work is to develop a probabilistic generative model with latent variables that better
captures real scenarios where non-trivial interaction patterns are observed in networks. This is achieved
by modelling jointly the edges between the same pair of nodes, differently from standard models that
assume their conditional independence given the latent variables. Formally, we model the interactions of
N individuals as a binary asymmetric matrix A, with entries Aij defining the presence or the absence of
connections from node i to node j. Our model considers jointly the pair A(ij) := (Aij, Aji) distributed with
a bivariate Bernoulli distribution of parameters !, which takes values from (0, 0), (0, 1), (1, 0), and (1, 1)

in the Cartesian product space {0, 1}2 = {0, 1} × {0, 1}. Its probability density function can be written as

P(A(ij)|!) = P(Aij, Aji|!) (2.1)

= p
AijAji
11 p

Aij(1−Aji)

10 p
(1−Aij)Aji
01 p

(1−Aij)(1−Aji)

00

= exp
{
Aijfij + Ajifji + AijAjiJ(ij)

}

Z(ij)
,

where Z(ij) is a normalization constant and p00 = 1/Z(ij). In addition, p00 + p10 + p01 + p11 = 1, and

fij = log
(

p10

p00

)
, fji = log

(
p01

p00

)
, J(ij) = log

(
p11p00

p10p01

)
. (2.2)

Thus, P(Aij, Aji|!) can be viewed as a member of the exponential family, and can be represented in a log-
linear formulation as in equation (2.1), where fij, fji, and J(ij) represent the natural parameters. J(ij) is called
cross-product ratio between Aij and Aji and represents the log-odds of the model. Similar to the Ising model
[25], if J(ij) = 0 then the components of the bivariate Bernoulli random vector (Aij, Aji) are independent,
thanks to the equivalence of independence and uncorrelatedness for multivariate Bernoulli distributions
[26]. In this case, the resulting model would be equivalent to consider the product of two independent
Bernoulli distributions. Another interesting property of the bivariate Bernoulli is that both marginal and
conditional distributions are univariate Bernoulli. Thus, our model has closed-form equations for joint,
conditional and marginal distributions.

We now assume that a set of latent variables capture hidden patterns of the data. There are many
possibilities to add these variables: one could act directly on the marginal or conditional first moments,
as well as modelling separately the different pαβ , with α, β ∈ {0, 1}. However, we model the log-ratios to
ease interpretability and the analytical computations. Specifically, we assume

fij = log λij (2.3)

fji = log λji (2.4)

J(ij) = log η, (2.5)

where

λij =
K∑

k,q=1

uikvjqwkq (2.6)
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4 CONTISCIANI ET AL.

captures mixed-membership community structure as in De Bacco et al. [8] and η is the pair-interaction
coefficient. The parameters uik , vjq are entries of K-dimensional vectors ui and vi, the out-going and in-
coming communities, respectively; and wkq are the entries of a K × K affinity matrix, which regulates
the structure of communities, for example, assortative when its diagonal entries are greater than off-
diagonal entries (homophily). Thus, ! = (u, v, w, η) are the latent parameters we want to infer. Through
equations (2.3)–(2.5), we encode the assumptions that community structure drives the process of edge
formation, and the edges of a pair of nodes depend on each other explicitly according to the parameter
η. When J(ij) = 0, the probability of A(ij) is given by the agreements of the communities of i and j only;
while a positive value for the log-odds will boost the chance to observe a tie between them. Conversely,
J(ij) < 0 decreases the value of p11, the probability that both edges exist. Considering equation (2.5),
0 < η < 1 and η > 1 codify a negative and positive interaction between i and j, respectively. The first
lowers the probability of observing both ties i → j and j → i, while the latter increases it. Finally, η = 1
implies no interaction between Aij and Aji. With this model at hand we can estimate observable quantities,
valuable for practitioners. For instance, one can ask about the expected value of a given tie in general or
conditioned on the existence of the opposite one, quantities defined as:

E
[
Aij

]
= λij + ηλijλji

Z(ij)
, (2.7)

E
[
Aij|Aji

]
= ηAjiλij

ηAjiλij + 1
, (2.8)

and similar for E
[
Aji

]
and E

[
Aji|Aij

]
, see Appendix A. With these quantities one can perform edge

prediction tasks, which is crucial when we are limited to a subset of the dataset.

3. Inference

We infer the parameters using a maximum likelihood approach. Specifically, we maximize the log-
likelihood

L (!) =
∑

i,j

fijAij + 1
2

∑

i,j

J(ij)AijAji − 1
2

∑

i,j

log Z(ij) (3.1)

with respect to ! = (u, v, w, η). Adopting a variational approach, this is equivalent to maximize

L (ρ, !) =
∑

i,j

[
Aij

∑

k,q

ρijkq log
(uikvjqwkq

ρijkq

)
+ 1

2
AijAji log η (3.2)

− 1
2

log
( ∑

k,q

uikvjqwkq +
∑

k,q

ujkviqwkq + η
∑

k,q

uikvjqwkq

∑

k,q

ujkviqwkq + 1
)]

,

where we introduced the variational distribution ρijkq over the parameters and used Jensen’s inequality.
The equivalence holds when

ρijkq = uikvjqwkq∑
k,q uikvjqwkq

. (3.3)
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 5

Algorithm 1 JointCRep: EM algorithm
Input: network A = {Aij}N

i,j=1, number of communities K .

Output: membership matrices u = [uik] , v = [vik]; network-affinity matrix w =
[
wkq

]
; pair-interaction

parameter η.
Initialize u, v, w, η at random.
Repeat until L convergences:

1. Calculate ρ (E-step):

ρijkq = uikvjqwkq∑
k,q uikvjqwkq

2. Update parameters ! (M-step):
(i) for each pair (i, k) update memberships:

uik =
∑

j,q Aijρijkq

∑
j

[∑
q vjqwkq(1+ηλji)

λij+λji+ηλijλji+1

]

vik =
∑

j,q Ajiρjiqk

∑
j

[∑
q ujqwqk (1+ηλij)

λij+λji+ηλijλji+1

]

(ii) for each pair (k, q) update affinity matrix:

wkq =
∑

i,j Aijρijkq

∑
i,j

[
uik vjq(1+ηλji)

λij+λji+ηλijλji+1

]

(iii) update pair-interaction parameter:

η =
∑

i,j AijAji

∑
i,j

[
λijλji

λij+λji+ηλijλji+1

]

We estimate the parameters by using an expectation–maximation (EM) algorithm where at each step one
updates ρ using equation (3.3) (E-step) and then maximizes L (ρ, !) with respect to ! = (u, v, w, η) by
setting partial derivatives to zero (M-step). This iteration is repeated until the log-likelihood converges.
The exact equations for the updates of the parameters are in Appendix A, and the whole routine is
described in Algorithm 1. This algorithm is computationally efficient and scalable to large system sizes
as it exploits the sparsity of the dataset. Indeed, all the updates involved in the numerator sum over Aij,
hence only the non-zero entries count, giving an algorithmic complexity of O(M K2), where M = ∑

i,j Aij

is the number of ties.
Our model (JointCRep) aims to generalize the method presented in Safdari et al. [10] (CRep), which

was of inspiration for the latent variables underlying the generative process. We refer to [10] for a detailed
explanation of this method and summarize its main properties in Table 1.
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6 CONTISCIANI ET AL.

Table 1 Properties of JointCRep, CRep and MT models. λ represents the community effect and η is the
parameter linked to the reciprocity r. MT is a community detection-only model, therefore it does not have
a reciprocity parameter. In addition, it uses the conditional independence assumption according to which
the conditional and the marginal distributions coincide. For this reason, the closed-form conditional and
joint do not apply for this method

JointCRep CRep MT

Networks Binary Weighted Weighted
Likelihood Bivariate Bernoulli Poisson Poisson
Marginal mean E

[
Aij

]
= λij+ηλijλji

Z(ij)
E

[
Aij

]
= λij+ηλji

1−η2 E
[
Aij

]
= λij

Conditional mean E
[
Aij|Aji

]
= η

Aji λij

η
Aji λij+1

E
[
Aij|Aji

]
= λij + ηAji E

[
Aij|Aji

]
= E

[
Aij

]

Relationship η vs. r Sublinear Linear –
Contribution λ vs. η Multiplicative Additive –
Contribution r Real Non-negative –
Closed-form marginal Yes No Yes
Closed-form conditional Yes Yes –
Closed-form joint Yes No –

4. Results

In this section, we present the results obtained in synthetic and real networks. For comparison we
use CRep, the model that combines communities and reciprocity with a pseudo-likelihood approxi-
mation [10], and MultiTensor (MT), a community detection-only generative model with a maximum
likelihood approach [8]. Even if both of them posit a Poisson likelihood, in this work, we use only
binary networks for fair comparisons with our model JointCRep. We summarize the main similarities and
differences among the models used in the analysis in Table 1.

4.1 Results on synthetic data

We first validate the performance of the different methods on synthetic data generated with the model
proposed in this work. Being a generative model, given as input an initial set of parameters, one can
draw a directed network with a community structure and a reciprocity value from the expression in
Equation (2.1). The generative process is described in detail in Appendix B. We analyse networks with
N = 1000 nodes, K = 2 overlapping communities, ⟨k⟩ = 20 average degree and different values of
the pair-interaction parameter η such that we obtain networks with reciprocity values (r) in the interval
[0, 0.8]. We generate 10 random samples for each value of r. In addition to these results, we provide
further details for synthetic networks generated with different values of average degree in Appendix C.3.
We test the ability of the models to (i) recover the communities, (ii) perform edge prediction tasks and
(iii) generate sample networks that replicate relevant network quantities.

4.1.1 Community detection To evaluate the performance of the methods on recovering the communities,
we use the cosine similarity (CS), a measure useful to capture mixed-membership communities, as in
this case. It ranges from 0 to 1, where 1 means perfect recovery. We calculate the average of the cosine

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/4/cnac034/6658441 by guest on 10 August 2022



COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 7

Fig. 1. Community detection in synthetic networks. Cosine similarity (CS) in synthetic networks with N = 1000 nodes, K = 2
overlapping communities, ⟨k⟩ = 20 average degree and different values of reciprocity r. Results are averages and standard deviations
over 10 synthetic networks.

similarities of both membership matrices u and v, and then averaging over the nodes. The results are shown
in Fig. 1. In the scenarios with low reciprocity values (r < 0.4), all models perform well. However, as r
increases, CRep worsens while JointCRep keeps having good results comparable to those of the community-
only algorithm, MT. The big drop of CRep is due to the fact that this model gives increasingly less weight
to communities as reciprocity increases, as pointed out in Safdari et al. [10]. Conversely, JointCRep is not
affected by the different reciprocity values of the data and still performs as good as MT, even by adding
another parameter to the model.

4.1.2 Edge prediction The edge prediction task consists in estimating the existence of an edge by
using the inferred parameters. The main quantity used as a score for the estimation of the entries of the
adjacency matrix A is the expected value of the marginal distribution. However, our model also provides
the conditional distribution; hence, its expected value can also be used as a score. The difference lies
in the nature of the question we try to answer. We use the marginal distribution to merely predict the
existence of an edge, without considering additional information. On the other hand, with the conditional
distribution, we ask what is the probability of an edge i → j, conditioned on observing the state of the
opposite edge j → i, that is, knowing if it exists or not. Here, we exploit the presence or the absence of
the edge in the opposite direction to better predict each given entry. Furthermore, our model specifies a
joint distribution over the edges of a pair of nodes, and this allows us to answer questions more accurately
compared to the standard models, which do not specify a joint distribution. For instance, what is the
probability of jointly observing both edges or even only an edge in one direction while not observing the
other in the opposite? Our model directly captures this by specifying P(Aij, Aji|!), while others positing
a conditional independence assumption can only compute an approximation as P(Aij|!) P(Aji|!).
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8 CONTISCIANI ET AL.

Fig. 2. Edge prediction in synthetic networks. Synthetic networks with N = 1000 nodes, K = 2 overlapping communities, ⟨k⟩ = 20
average degree and different values of reciprocity r. Results are averages and standard deviations over 10 synthetic networks and
over 5-folds of cross-validation test sets. Edge prediction performance is measured with AUC and the baseline is the random
value 0.5.

In our experiments below, we test edge prediction with various scores by using 5-fold cross-validation.
Specifically, we divide the dataset into five equal-size groups (folds) and train the models on four of them
(training data) for learning the parameters; this contains 80% of the possible pairs of nodes in the network,
so that we hide pairs of entries (Aij, Aji) from the training. One then predicts the existence of edges in
the held-out group (test set). As performance metric, we measure the AUC on the test data, that is, the
probability that a randomly selected edge has higher expected value than a randomly selected non-existing
edge. We compute both the regular, and conditional AUC values. To estimate the regular AUC, we take
the expected value EP(Aij |&)[Aij] as the score; while for the conditional AUC, the expected value over the
conditional distribution, that is, EP(Aij |Aij ,&)[Aij] acts as the score. The latter cannot be computed for the
community detection-only algorithm, as the marginal distribution is the same as the conditional, and thus
the two AUC values coincide. We provide more details in Appendix C.1, where we also show the ability
of our model on edge prediction tasks by using the joint distribution.

Figure 2 displays the results of the marginal and conditional edge prediction for the different models.
JointCRep significantly improves the performance of CRep when using the marginal expected value, and
it performs as good as MT. The latter, however, is not able to exploit the additional information given
by the existence (or non-existence) of the edge in the opposite direction. This dependence is crucial in
networks with reciprocity, that is, most of the real world datasets, and models with an explicit conditional
distribution can better adopt this information to obtain higher performance in edge prediction. Indeed,
JointCRep and CRep perform remarkably in this task, and our model presents more robust results both in
terms of standard deviation and growth.

4.1.3 Reproducing the topological properties A notable property of generative models is their ability
to produce synthetic networks based on real-world datasets, such that the synthetic networks imitate
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 9

Fig. 3. Reciprocity in sampled synthetic networks. Synthetic networks with N = 1000 nodes, K = 2 overlapping communities,
⟨k⟩ = 20 average degree and different values of reciprocity r. Results are empirical averages and standard deviations over 50
samples of 10 independent synthetic networks (five samples per input network). We measure the reciprocity and the cross (x)
markers indicate the average on 10 input networks.

the topological features of the real datasets. Following the approach in Safdari et al. [10], for each
individual network, we infer the network parameters by applying each model. Then, we use these inferred
parameters to generate five network samples. We compare topological properties of these samples with
those observed in the ground truth networks used to infer the parameters. In particular, we are interested
in measuring reciprocity. Figure 3 shows the performance of each model in reproducing this feature in
sampled networks. As it is expected, MT is not capable of reflecting the observed value of the reciprocity
in the ground truth network, a clear indication of the shortcoming of models based purely on community
structure, which indeed limits their applications. Conversely, JointCRep perfectly reproduces this quantity.
CRep generates sampled networks with reciprocity lower than the ground truth due to the fact that it uses
a Poisson likelihood resulting in weighted networks. Additional results are provided in Appendix C.2.

To summarize the results on synthetic networks, JointCRep is capable of recovering communities
on networks with varying reciprocity values, performing as good as models that are based purely on
community structure. This capability overcomes the limitations of the recent CRep model. Moreover,
JointCRep includes many performance enhancements in the edge prediction task, that is, showing improved
results in terms of marginal AUC and more robust conditional AUC values. Furthermore, JointCRep is
also capable of generating sampled networks with topological features that resemble that of the real
data, for example, reciprocity and average degree. Collectively, these findings show that JointCRep is
able to overcome the limitations of both the community detection-only algorithm MT and the model that
incorporates reciprocity through the pseudo-likelihood approximation CRep.

4.2 Analysis of a high-school social network

We now study the social network that describes friendships between boys in a small high-school in Illinois
that was collected in the fall of 1957 [27]. Here, a node represents a boy and an edge from an individual i
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10 CONTISCIANI ET AL.

Fig. 4. Community detection in the high-school social network. Mixed-membership partitions determined by the matrix u inferred
by JointCRep, CRep and MT. Node size is proportional to the degree (in- and out-degree).

to j shows that node i claimed to be friend of node j. We pre-processed the dataset by removing self-loops
and isolated nodes. The resulting directed network has 31 nodes, 100 edges and reciprocity equal to 0.52,
that is, only half of the edges (friendship relationships) are reciprocated. There is no additional metadata
to describe the nodes, nor is there an available ground truth for the latent parameters. Therefore, we
estimate the number of communities K by performing edge prediction tasks via 5-fold cross-validation
with different values of K . For each method the best performance in terms of AUC was achieved with
K = 4. Edge prediction also serves as model validation routine in the absence of ground truth information,
as it is the case here. We found that results vary depending on the metric considered for evaluation, but
in general they confirm that all models are fitting the data well, considering that the dataset is small
and highly sparse, thus making prediction tasks hard. Further details for the edge prediction task are in
Appendix D.2. Figure 4 visualizes the mixed-membership partitions resulting from the matrix u, inferred
by the different methods (similar results are obtained for v). Here we use the inferred value of u, which is
obtained from the run with the highest log-likelihood over 100 random initializations of the parameters.
All the algorithms assign most of the students to the same groups, except from a central block. Here, MT
infers mostly hard memberships and balances the number of nodes in each cluster. Instead, CRep allocates
only three nodes with small degree to the green community while places the nodes with higher degree
in other clusters. JointCRep, shows a partition that lies in between, by inferring mixed-memberships for
those nodes known as bridges. To measure quantitatively the diversity of communities inferred by the
various methods, we compute a modularity for directed networks and overlapping communities using
different aggregation functions, as proposed by Nicosia et al. [28]. Modularity assumes all communities
to have statistically similar properties, in particular to have similar sizes, and it is suited for assortative
community structure [29, 30]. The communities shown in Fig. 4 reflect these properties to a certain
extent, and we report the results in terms of overlapping modularity in Table D2. We find modularity
values between 0.48 and 0.75, depending on the aggregation function, with JointCRep and MT achieving
the highest values.

Given the inferred parameters, we can test the ability of the models to reconstruct the input network,
by using either the marginal expected value EP(Aij |&)[Aij], or the conditional expected value EP(Aij |Aij ,&)[Aij]
as the score. Note that the latter is not available for MT because the conditional and marginal distributions
coincide. Figure 5 presents the results, where edge width and darkness of the reconstructed networks are
proportional to the weight given by the expected score (for visualization clarity, we show only edges with
weight greater than 0.2). The network estimated by CRep, which uses the expected value of the marginals,
does not capture the structure of the data magnificently, as it overestimates the presence of edges. This
model specifies conditional distributions and relies on a pseudo-likelihood approximation; since this
approach is not necessarily accurate enough to approximate marginals, such results are expected. Instead,
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 11

Fig. 5. High-school network reconstruction. (Left) High-school data and (right) network reconstructions by using as a score either
the marginal expected value EP(Aij |&)[Aij] or the conditional expected value EP(Aij |Aij ,&)[Aij] with the inferred parameters. Note
that the last is not available for MT because the conditional and marginal distributions coincide. Edge width and darkness are
proportional to the weight (given by the expected score); for visualization clarity, we show only edges with weight greater than 0.2.
Node size is proportional to the degree (in- and out-degree) and node labels represent node IDs.

MT and JointCRep estimate a sparser representation that is closer to the observed network. However,
MT is not able to notably detect reciprocated edges, for example, (10, 18) or (64, 67), while JointCRep
remarkably recovers this type of interactions more precisely. For both JointCRep and CRep, including the
conditional expected values improves their accuracy in reconstruction, resulting in identifying reciprocal
edges correctly. The difference between the two models lies on the intensity: for instance JointCRep
predicts the pair of edges between nodes 10 and 18 with a high probability, while CRep assigns a much
lower probability to them. Hence, JointCRep is not only able to predict edges more precisely, but it also does
so with higher probability. These qualitative observations are also confirmed by quantitative comparisons
in terms of the Log Loss and the L1 Loss, two penalty metrics computed between the reconstructed
and the true networks. They measure the difference between two input networks by taking into account
the probability of the existence of an edge and computing a penalty for each mistake in predicting the
observed value. A penalty of 0 denotes perfect reconstruction, as when assigning probability 1 to the
observed edge values. In general, lower values indicate higher similarity. Further details can be found in
Appendix D.1. We find that JointCRep achieves the lowest values (i.e. better performance) in both metrics,
with best overall performance achieved using the conditional expectation. See Table D3 for details.

To further compare the strength of these methods, we examine their performance in generating
samples that resemble the observed network. For each model, we use the inferred parameters to generate
five synthetic networks, as shown in Fig. 6. Again, we notice how the samples generated by JointCRep
better resemble the observed network, as it is easier to distinguish the four blocks generated by JointCRep,
compared to the samples from the other algorithms. In particular, JointCRep finds denser groups given by
reciprocated edges. In addition to these qualitative results, Table D4 reports the topological properties
of the observed data and the sampled networks, showing that JointCRep generates networks samples that
on average are most similar to the observed data in terms of average degree, reciprocity and clustering
coefficient.
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12 CONTISCIANI ET AL.

Fig. 6. High-school network samples. (Left) High-school data and (right) five random samples generated by different methods with
the inferred parameters. For each method, we first infer the parameters choosing the run with the highest log-likelihood over 100
random initializations of the parameters. Then, we generate the samples by using as input in the generative models the inferred
parameters and the average degree of the original data. The generative process of JointCRep is described in Appendix B; for CRep
we use the formulation described in [10]; MT follows the formulation of a standard mixed-membership variant of a stochastic
block model, as described in [8].

4.3 Analysis of a vampire bat network

As a second example, we study the network of food sharing interactions in captive vampire bats, collected
by Carter and Wilkinson [31]. These animals often regurgitate food to roost-mates that fail to feed. The
decision of who to feed may depend on both kin relatedness and reciprocal sharing. Hence, in this dataset,
we expect reciprocity to be an important factor for tie formation. In the study, they fasted 20 vampire
bats and induced food sharing on 48 days, over a 2-year period. They showed that reciprocal sharing
predicts future food regurgitation more than relatedness or other non-kin food sharing behaviours, such
as harassment. From the collected data, we construct a directed network by building an edge from a bat
i to another j if node i fed j at least once. We removed isolated nodes and obtained a network with 19
nodes, 103 edges and reciprocity equal to 0.64. We fix the number of communities K = 2 and analyse
the data with the different methods. As for the high-school data, results of edge prediction tasks for
model validation confirm that all the models represent the data well, see Table D5 for details. We are
now interested in measuring the ability of the models to recover the observed network with the inferred
parameters, in particular their ability to recover topological properties such as reciprocity. To this aim,
we consider the marginal and the conditional expected values, as in Section 4.2. Figure 7 shows the
adjacency matrix of the data and its different estimates, obtained by each method. The network embodies
a core–periphery structure, where the main core (labels 0–9) is made of female bats. JointCRep recovers
this structure more accurately than other methods, the off-diagonal entries show this fascinating result
clearly, while the other methods overestimate the amount of edges. Similarly as observed in the high-
school network, our model is not only more accurate, but also assigns higher probabilities to these entries
and best performs both in terms of Log and L1 Loss, see Table D6.
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 13

Fig. 7. Vampire bat network reconstruction. (Left) The adjacency matrix of the vampire bat data and (right) its estimates by using
as a score either the marginal expected value EP(Aij |&)[Aij] or the conditional expected value EP(Aij |Aij ,&)[Aij] with the inferred
parameters. Note that the last is not available for MT because the conditional and marginal distributions coincide. The intensity of
the entries is proportional to the score probability, as shown in the colourbar. The labels near the ticks represent node IDs.

In addition to the marginal and conditional expected value, we can consider the joint distribution to
estimate the entries of the adjacency matrix. This is equivalent to assign a value to each pair (Aij, Aji)

from the set {(0, 0), (0, 1), (1, 0), (1, 1)}, that transforms the edge prediction task into a classification
problem. We predict the label associated to the highest probability among [p00, p01, p10, p11], where these
are computed by using equations (A.1)–(A.4) with the inferred parameters. We assess the goodness of
our performance by computing the precision and recall of the predicted labels versus the true labels,
as shown in Fig. 8. The precision identifies the proportion of correctly classified observed entries. The
figure illustrates high precision values consistently across edge labels, as the highest entries are along the
diagonal. In particular, JointCRep is able to correctly classify the pairs (0, 0) and (1, 1). Observing where
our model misclassifies, this mainly happens by predicting no edges, that is, assign label (0, 0), when
the true ones are either (0, 1) or (1, 0), implying a tendency to estimate sparser networks. On the other
hand, the recall indicates the proportion of predicted edges being correctly classified. Also in this case,
the highest entries are in the main diagonal and in predicting the pairs (0, 0) and (1, 1). Overall, in this
case, we obtain higher intensities as for the precision, indicating the tendency of labelling the predicted
edges with the right type.

To conclude our analysis, we compare five random samples generated with the inferred parameters of
each model and check whether they reproduce topological properties as those observed in the real data.
Table 2 shows that JointCRep outperforms other models in terms of all topological properties. In particular,
it generates sampled networks with reciprocity values closest to the real data but also reproduces realistic
values of the clustering coefficient.

5. Discussion and conclusion

In this article, we have presented a generative model called JointCRep that takes into account community
structure and reciprocity by specifying a closed-form joint distribution of a pair of network edges, without
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14 CONTISCIANI ET AL.

Fig. 8. Precision and recall of the vampire bat network. Statistics based on the confusion matrix that compares the entries of the
adjacency matrix and the estimates obtained with the joint distribution of JointCRep. The precision is given by a normalization
by row, while the recall accounts for the normalization by column. The label (0, 0) denotes no interactions between nodes i and j;
labels (0, 1) and (1, 0) considers the pair of edges where only one edge in one direction is present, and the label (1, 1) indicates
reciprocated edges.

Table 2 Topological properties in vampire bat and its sampled networks. Results are averages and
standard deviations over five samples. We measure the number of nodes N, the number of edges M, the
average degree ⟨k⟩, the reciprocity r and the clustering coefficient cc

N M ⟨k⟩ r cc

Data 19 103 10.84 0.64 0.54
JointCRep 18.4 ± 0.89 100.4 ± 5.41 10.92 ± 0.38 0.61 ± 0.03 0.55 ± 0.05
CRep 18.2 ± 0.84 74.2 ± 5.40 8.16 ± 0.54 0.51 ± 0.04 0.27 ± 0.05
MT 17.4 ± 1.14 70.0 ± 7.38 8.06 ± 0.83 0.36 ± 0.06 0.37 ± 0.01

relying upon approximations. Our model also provides closed-form analytical expressions for both the
marginal and conditional distributions, and enables practitioners to address with more accuracy questions
that were not fully captured by standard models; for instance, predicting the joint existence of mutual
ties between pairs of nodes.

We first validated our model by applying it to synthetic network datasets, where we achieved remark-
able performance in recovering communities, edge prediction tasks and generating synthetic networks
that replicate topological features observed in real networks. We then analysed two real datasets that are
relevant for social scientists and behavioural ecologists, where we found that JointCRep obtains more
robust and interpretable results. The results shown in this work highlight main benefits of using a model
that considers closed-form joint distributions of pairs of edges in networks, while also showing possible
shortcomings of other approaches. While it is difficult to pinpoint theoretical reasons for these shortcom-
ings, the variety of experiments that we discussed throughout this manuscript show possible practical
consequences of them. In particular, standard generative models make strong conditional independence
assumptions that reflect in poor recovery of topological properties as reciprocity. On the other hand,
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 15

models that specify only conditional distributions rely on pseudo-likelihood approximations that may
reflect in weak recovery of latent parameters as communities in certain regimes. Collectively, our model
is able to overcome the limitations of both these approaches thanks to the modelling of closed-form joint
distributions while also keeping computational complexity under control.

The framework we described could be extended in a number of ways. JointCRep analyses binary and
single-layer networks; therefore, possible extensions could account for weighted and possibly multilayer
networks, where we have edges of different types. Another approach could consider dynamic networks,
which have evolving structure over time, and adapt the parameters accordingly [32]. Moreover, our
model captures the reciprocity through a unique pair-interaction parameter for the whole network. This
model could be improved in the future by including node-dependent parameters in scenarios where
reciprocity varies between individuals. Furthermore, many real-world datasets contain attributes that
provide additional information about their features. Incorporating these extra informations on nodes
could result in a more realistic analysis [33].

JointCRep, to the best of our knowledge, is the first such method for fully capturing reciprocity by
jointly modelling pairs of edges with exact two-edge joint distributions. We believe it will serve as a
baseline for future models that tackle more complicated interactions that go beyond pairwise interaction,
for example, triadic closure [9].
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An open-source algorithmic implementation of the model together with the code to generate synthetic
data is publicly available and can be found at https://github.com/mcontisc/JointCRep.

Appendix

A. Detailed derivations

Combining equations (2.2)–(2.5), we get the explicit mapping between the latent variables and the
instances of the joint probability in equation (2.1):

p01 = λji

Z(ij)
(A.1)

p10 = λij

Z(ij)
(A.2)

p11 = ηλijλji

Z(ij)
(A.3)
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16 CONTISCIANI ET AL.

p00 = 1
Z(ij)

, (A.4)

where the normalization constant is:

Z(ij) = λij + λji + ηλijλji + 1. (A.5)

One property of the bivariate Bernoulli is that both marginal and conditional distributions are univariate
Bernoulli. Thus, the marginal distributions of Aij and Aji have densities:

P(Aij) = (p10 + p11)
Aij (p00 + p01)

(1−Aij) (A.6)

P(Aji) = (p01 + p11)
Aji(p00 + p10)

(1−Aji), (A.7)

while the conditional distributions are the following:

P(Aij|Aji) =
(

p(1, Aji)

p(1, Aji) + p(0, Aji)

)Aij
(

p(0, Aji)

p(1, Aji) + p(0, Aji)

)(1−Aij)

(A.8)

P(Aji|Aij) =
(

p(Aij, 1)

p(Aij, 1) + p(Aij, 0)

)Aji
(

p(Aij, 0)

p(Aij, 1) + p(Aij, 0)

)(1−Aji)

. (A.9)

In addition to the expected values reported in the article, we can also compute the variances and the
covariance between the random variables:

Var
[
Aij

]
=

(
λij(1 + ηλji)

Z(ij)

) (
1 + λji

Z(ij)

)
(A.10)

Var
[
Aji

]
=

(
λji(1 + ηλij)

Z(ij)

) (
1 + λij

Z(ij)

)
(A.11)

Cov
[
Aij, Aji

]
= ηλijλij − λijλij

Z2
(ij)

. (A.12)

At each step of the EM algorithm, one updates ρ using equation (3.3) (E-step) and then maximizes
L (ρ, !) with respect to ! = (u, v, w, η) by setting partial derivatives to zero (M-step). The derivative
w.r.t. η is given by:

∂L (ρ, !)

∂η
= 1

2η

∑

i,j

AijAji − 1
2

∑

i,j

λijλji

λij + λji + ηλijλji + 1
!= 0, (A.13)

that leads to:

η =
∑

i,j AijAji

∑
i,j

[
λijλji

λij+λji+ηλijλji+1

] . (A.14)
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 17

Similarly, we get the updates for u, v and w:

uik =
∑

j,q Aijρijkq

∑
j

[∑
q vjqwkq(1+ηλji)

λij+λji+ηλijλji+1

] (A.15)

vik =
∑

j,q Ajiρjiqk

∑
j

[∑
q ujqwqk (1+ηλij)

λij+λji+ηλijλji+1

] (A.16)

wkq =
∑

i,j Aijρijkq

∑
i,j

[
uik vjq(1+ηλji)

λij+λji+ηλijλji+1

] . (A.17)

B. Benchmark generative model

The model we propose in the manuscript is able to generate synthetic data with intrinsic community
structure and a reciprocity value. It takes as input a set of membership vectors, ui and vi, affinity matrix
w and a pair-interaction parameter η; the output is a directed and binary network with adjacency matrix
A whose pairs of edges are conditionally independent from each other. We use the same formulation as
in Safdari et al. [10], but our approach differs in that edges between a given pair of nodes are generated
stochastically according to the joint probability in equation (2.1), and not according to a two-step sampling
procedure. In detail, we assign a value to each pair (Aij, Aji) by considering the vector of cumulative
probabilities built using equations (A.1)–(A.4). To enforce sparsity, we multiply λ by a constant ζ , and
in order to automatically rescale the expected value in equation (2.7) we have to impose

E [M] =
∑

i,j

ζ λij + η ζ λij ζ λji

ζ λij + ζ λji + η ζ λij ζ λji + 1
(B.1)

and solve with respect to ζ , where E [M] is the expected number of edges, a quantity given in input.
The benchmark we propose here differs from the one presented in Safdari et al. [10] for multiple rea-
sons, as we summarize in Table 1. In addition to those, it is worth mentioning that the competing
benchmark in Safdari et al. [10] depends on a variable, crratio = 1 − η, that controls the proportion
of edges generated purely by either community or reciprocity effect. This implies that in order to have
high reciprocity we may weaken the impact of community effect. This does not happen with the model
we propose here, as tie formation can be highly influenced by both reciprocity and community struc-
ture at the same time, thus providing a more reliable and truthful representation in certain real world
examples.

In the manuscript, we use networks generated with the benchmark proposed above where we fix
N = 1000 nodes, K = 2 overlapping communities, ⟨k⟩ = 20 average degree and different values of
the pair-interaction parameter η such that we obtain networks with reciprocity values r in the interval
[0, 0.8]. In detail, we use η ∈ {0.1, 10, 20, 40, 80, 140, 280, 500, 1500} to get r ∈ {0, 0.1, 0.2, . . . , 0.8},
and we generate 10 different samples for each value of η. Additionally to the data presented in the
manuscript, we also report in Appendix C.3 further results on synthetic data generated by varying the
average degree ⟨k⟩ in the interval [2, 18] while fixing η = 1000 and the other parameters as above. To
generate the membership matrices u and v, we first assign an equal-size unmixed group membership
and then we apply the overlapping to 20% of the nodes by drawing those entries from a Dirichlet
distribution with parameter α = 0.1. The affinity matrix w is generated using an assortative block
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18 CONTISCIANI ET AL.

structure with main probabilities p1 = ⟨k⟩ K / N and secondary probabilities p2 = 0.1 p1. Thus, the latent
variables ! = (u, v, w, η) are fixed. Then, edges are drawn according to the generative model described
above.

For sake of completeness, we also analysed synthetic networks generated with the model proposed
in Safdari et al. [10] obtaining similar results and same conclusions. Furthermore, we investigated the
behaviour of the models on networks with more than two communities and noticed that results are not
highly impacted by this parameter. We do not report them here for sake of brevity.

C. Results on synthetic data

C.1 Edge prediction

We test edge prediction by using a 5-fold cross-validation routine: we divide the dataset into five equal-
size groups and train the model on four of them (training set) to infer the parameters; the fifth group
is then used as test set to evaluate the existence of edges Aij (in this set). By varying which group we
use as test set, we get five trials per realization and the final score is the average over these. To divide
the dataset into five folds, we use a symmetric mask, that is, in each trial the training set contains the
80% of the possible entries (Aij, Aji). In the article, we show the performance of the models in edge
prediction when using the marginal and conditional expected values, E

[
Aij

]
and E

[
Aij|Aji

]
, respectively.

Here, we measure the AUC that is equivalent to the area under the receiver-operating characteristic (ROC)
curve [34]. In addition to these results, we can exploit the full joint distribution of our model to answer
questions like what is the probability of jointly observing both edges i → j and j → i? This is equivalent
to assign a value to the pair (Aij, Aji) from the set {(0, 0), (0, 1), (1, 0), (1, 1)}, that translates the edge
prediction task into a classification problem. However, this problem becomes trivial if the model predicts
all entries equal to (0, 0): in this case, we will get high performance just because of the high sparsity of
the data. For this reason, we compute the accuracy only for entries in the test set that have at least one
edge. For those, we predict the label associated to the highest probability among [p01, p10, p11], where
these are computed by using equations (A.1)–(A.3) with the inferred parameters. We then compute
the accuracy between true and predicted labels, where a value equal to 1 means perfect recovery. As
baselines, we use a uniform random probability (RP) over the number of possible labels in the training
set, and the accuracy obtained by using as prediction the label with the highest relative frequency in
the training set (MRF). The results are shown in Fig. C1, where we can observe a V-shape. Reciprocity
equal to zero (r = 0) means the networks have no reciprocated edges, and higher its value higher the
frequency of the label (1, 1). Thus, in the regime 0 ≤ r ≤ 0.5 the performance decreases because the
problem becomes more difficult by reaching the point where labels have similar relative frequencies
(MRF ≈ RP when r = 0.5). In this scenario, JointCRep outperforms the baselines with a bigger gap as
the reciprocity increases. When r > 0.5 the problem becomes easier due to the increasing proportion
of the label (1, 1). Here, predicting all entries equal to (1, 1) results in higher performance (MRF).
However, this is another trivial situation that should be ignored when analysing the performance in edge
prediction tasks.

C.2 Reproducing network topological properties

Figure C2 shows the performance of each model in reproducing the average degree in sampled networks.
While JointCRep and MT recover this feature despite the different values of reciprocity, CRep produces
samples with a lower average degree than the one given in input as r increases. This happens because, in
high reciprocity settings, CRep produces sampled networks with fewer edges but higher weights. Hence,
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COMMUNITY DETECTION AND RECIPROCITY IN NETWORKS 19

Fig. C1. Edge prediction with joint distributions in synthetic networks. Synthetic networks with N = 1000 nodes, K = 2 overlapping
communities, ⟨k⟩ = 20 average degree and different values of reciprocity r. Results are averages and standard deviations over 10
synthetic networks and over 5-folds of cross-validation test sets. Edge prediction performance is measured with accuracy, and as
baselines, we consider the uniform random probability (RP) and the maximum relative frequency (MRF).

Fig. C2. Average degree in sampled synthetic networks. Synthetic networks with N = 1000 nodes, K = 2 overlapping communities,
⟨k⟩ = 20 average degree and different values of reciprocity r. Results are empirical averages and standard deviations over 50 samples
of 10 independent synthetic networks (five samples per input network). We measure the average degree and the cross (x) markers
indicate the average on 10 input networks.
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20 CONTISCIANI ET AL.

A B

DC

Fig. C3. Results on synthetic networks with different average degrees. Synthetic networks with N = 1000 nodes, K = 2 overlapping
communities, pair-interaction parameter η = 1000, and different values of average degree ⟨k⟩. (A,B) Results are averages and
standard deviations over 10 synthetic networks of (A) cosine similarity and (B) AUC. The latter measures the edge prediction
performance over 5-folds of cross-validation test sets, and the baseline is the random value 0.5. (C,D) Results are empirical
averages and standard deviations over 50 samples of 10 independent synthetic networks (five samples per input network). We
measure (C) the reciprocity and (D) the average degree, and the cross (x) markers indicate the average on 10 input networks.

while the average degree decreases, the weighted average degree better reflects the input feature (not
shown here).

C.3 Analysis on synthetic data with different average degrees

In addition to the results provided in the manuscript, we also analyse synthetic networks with different
values of average degree. Figure C3 shows the performance of the models in community detection and
edge prediction tasks, as well as in reproducing topological properties in sampled networks. Similar to the
results in the manuscript, JointCRep follows the behaviour of MT both in terms of CS and marginal AUC,
for which performance improves as the average degree increases, as expected for community detection-
only methods. On the other hand, CRep is only partially affected by the different values of average degree,
as also shown in [10]. The plots highlight that the strength of CRep is not retrieving communities, rather
its ability to predict missing edges by using the conditional distribution, regardless the average degree. In
Fig. C3, we can also notice that even though JointCRep is affected by the average degree, its conditional
AUC improves the marginal AUCs already when ⟨k⟩ = 4, and it reaches good values from ⟨k⟩ = 10.
Moreover, JointCRep outperforms the other methods in recovering reciprocity in sampled networks across
different values of average degree. Overall, these results suggest that JointCRep is a valuable tool also in
networks with low-medium average degree providing good communities, reasonable edge predictions,
and sampled networks with topological features that resemble that of the real data.
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D. Results on real-world datasets

D.1 Loss functions

In addition to the AUC, we use the Log Loss (or Binary Cross-Entropy) and the L1 Loss (or Mean Absolute
Error) to measure the performance of the methods in edge prediction and network reconstruction. The
Log Loss for binary classification is defined as

− 1
M

∑

i,j

[
Aij log P(Aij) + (1 − Aij) log

(
1 − P(Aij)

)]
, (D.1)

where Aij indicates the entry of the adjacency matrix, P(Aij) denotes the probability of the existence of
the edge, and M is the total number of edges.

Instead, the L1 Loss is given by

1
M

∑

i,j

|Aij − P(Aij)|. (D.2)

For both metrics, lower values indicate better performance and a loss of 0 denotes perfect predictions.
While the Log Loss does not have an upper bound, the L1 Loss is equal to 1 in the worst-case scenario
of predicting every existing edge with probability P(Aij = 1) = 0 and every non-existing edge with
probability P(Aij = 1) = 1. Moreover, they differ in the extent to which they penalize mistakes: the Log
Loss is more sensitive to large disagreements between true and predicted values than the L1 Loss. This
means that the Log Loss prefers predictions with more mistakes of low magnitude than predictions with
fewer mistakes but of larger magnitude.

D.2 Analysis of a high-school social network

Table D1 displays the results for the edge prediction task in the high-school social network. CRep performs
the best both in terms of AUC and Log Loss when using the conditional probabilities. On the other hand,
JointCRep is the best when considering the L1 Loss. This is explained by the behaviour of our model that
tends to predict fewer edges with more intensity, differently to the other models which predict more edges
with low-medium probabilities. As a remark, the dataset presents an average degree ⟨k⟩ = 6.45 and it
is highly sparse. This feature makes this task hard because there is only little information in input when
considering 5-fold cross-validation splits, and some folds may result in unreliable results. Nevertheless,
results show that all models are performing reasonably well at this task given this sparse regime.

Comparing the communities inferred by the various methods, Table D2 shows the overlapping modu-
larity obtained for the partitions of Fig. 4 for various aggregation functions. Table D3 reports the penalties
for the network reconstruction task, showing that JointCRep has best performance in terms of both Log
Loss and L1 Loss. Finally, Table D4 shows the topological properties in the high-school social network
and its sampled networks, showing how JointCRep achieves on average values that are more similar to
those observed on the input data.

D.3 Analysis of a vampire bat network

Table D5 shows results for edge prediction tasks using a 5-fold cross-validation routine. Similar to the
high-school dataset, all the models obtain good performance given the sparse regime, although values
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Table D1 Edge prediction in the high-school social network. Results are averages and standard devi-
ations over 5-folds of cross-validation test sets. Edge performance is measured with three different
metrics F : AUC, Log Loss and L1 Loss. The AUC measures the probability that a randomly selected
edge has higher expected value than a randomly selected non-existing edge, and the baseline is the
random value 0.5. The Log Loss and the L1 Loss are penalty measures defined in Appendix D.1, that
quantify the difference between two input networks by taking into account the probability of the existence
of an edge and computing a penalty for each mistake in predicting the observed value. The metrics are
computed by using either the marginal probability P(Aij|&) or the conditional probability P(Aij|Aji, &).
Note that the last is not available for MT because the conditional and marginal distributions coincide.
The best performance for each metric is in bold

P(Aij|&) P(Aij|Aji, &)

F JointCRep CRep MT JointCRep CRep

AUC 0.610 ± 0.061 0.650 ± 0.109 0.668 ± 0.111 0.626 ± 0.073 0.786 ± 0.055
Log Loss 0.825 ± 0.191 0.678 ± 0.190 0.726 ± 0.284 0.820 ± 0.213 0.492 ± 0.124
L1 Loss 0.133 ± 0.014 0.139 ± 0.015 0.132 ± 0.026 0.122 ± 0.019 0.125 ± 0.014

Table D2 Modularity for the high-school social network. Values are computed using the overlapping
formulation as in Nicosia et al. [28], and F denotes the aggregation function considered in each row.
We use the mixed-membership partitions determined by the matrix u inferred by JointCRep, CRep and MT.
Results are similar for the matrix v

F JointCRep CRep MT

Mean 0.74 0.72 0.75
Max 0.65 0.62 0.48
Product 0.55 0.53 0.73

Table D3 High-school network reconstruction: comparison between true and reconstructed networks.
F denotes the function considered in each row, defined in Appendix D.1. The metrics are computed
by using either the marginal probability P(Aij|&) or the conditional probability P(Aij|Aji, &) of each
method with the inferred parameters. Note that the last is not available for MT because the conditional
and marginal distributions coincide. The best performance for each metric is in bold

P(Aij|&) P(Aij|Aji, &)

F JointCRep CRep MT JointCRep CRep

Log Loss 0.144 0.307 0.165 0.128 0.185
L1 Loss 0.093 0.137 0.106 0.077 0.120
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Table D4 Topological properties in the high-school social network and its sampled networks. Results
are averages and standard deviations over five samples. We measure the number of nodes N, the number
of edges M, the average degree ⟨k⟩, the reciprocity rand the clustering coefficient cc

N M ⟨k⟩ r cc

Data 31 100 6.45 0.52 0.38
JointCRep 30.8 ± 0.45 90.8 ± 6.76 5.89 ± 0.38 0.47 ± 0.06 0.20 ± 0.02
CRep 30.6 ± 0.55 77.8 ± 12.79 5.08 ± 0.81 0.49 ± 0.08 0.11 ± 0.05
MT 31 ± 0 79.8 ± 2.05 5.15 ± 0.13 0.21 ± 0.04 0.24 ± 0.04

Table D5 Edge prediction in the vampire bat network. Results are averages and standard deviations
over 5-folds of cross-validation test sets. Edge performance is measured with three different metrics
F : AUC, Log Loss and L1 Loss. The AUC measures the probability that a randomly selected edge has
higher expected value than a randomly selected non-existing edge, and the baseline is the random value
0.5. The Log Loss and the L1 Loss are penalty measures defined in Appendix D.1, that quantify the
difference between two input networks by taking into account the probability of the existence of an edge
and computing a penalty for each mistake in predicting the observed value. The metrics are computed
by using either the marginal probability P(Aij|&) or the conditional probability P(Aij|Aji, &). Note that
the last is not available for MT because the conditional and marginal distributions coincide. The best
performance for each metric is in bold

P(Aij|&) P(Aij|Aji, &)

F JointCRep CRep MT JointCRep CRep

AUC 0.687 ± 0.078 0.627 ± 0.079 0.629 ± 0.073 0.715 ± 0.098 0.772 ± 0.063
Log Loss 1.514 ± 0.282 0.961 ± 0.196 1.804 ± 0.147 1.391 ± 0.269 0.812 ± 0.261
L1 Loss 0.277 ± 0.031 0.340 ± 0.014 0.291 ± 0.020 0.229 ± 0.021 0.296 ± 0.008

Table D6 Vampire bat network reconstruction: comparison between true and reconstructed networks.
F denotes the function considered in each row, defined in Appendix D.1. The metrics are computed
by using either the marginal probability P(Aij|&) or the conditional probability P(Aij|Aji, &) of each
method with the inferred parameters. Note that the last is not available for MT because the conditional
and marginal distributions coincide. The best performance for each metric is in bold

P(Aij|&) P(Aij|Aji, &)

F JointCRep CRep MT JointCRep CRep

Log Loss 0.173 0.466 0.302 0.159 0.414
L1 Loss 0.110 0.308 0.207 0.103 0.275

were slightly better in the high-school case. Also in this case, JointCRep achieves best results in terms
of L1 Loss, and CRep is more robust in terms of Log Loss. Table D6 reports the quantitative results for
the network reconstruction of the vampire bat dataset, in terms of Log and L1 Loss. Here, JointCRep
outperforms the other methods as also shown in Fig. 7.
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Abstract
Many complex systems change their structure over time, in these cases dynamic networks can
provide a richer representation of such phenomena. As a consequence, many inference methods
have been generalized to the dynamic case with the aim to model dynamic interactions. Particular
interest has been devoted to extend the stochastic block model and its variant, to capture
community structure as the network changes in time. While these models assume that edge
formation depends only on the community memberships, recent work for static networks show the
importance to include additional parameters capturing structural properties, as reciprocity for
instance. Remarkably, these models are capable of generating more realistic network
representations than those that only consider community membership. To this aim, we present a
probabilistic generative model with hidden variables that integrates reciprocity and communities as
structural information of networks that evolve in time. The model assumes a fundamental order in
observing reciprocal data, that is an edge is observed, conditional on its reciprocated edge in the
past. We deploy a Markovian approach to construct the network’s transition matrix between time
steps and parameters’ inference is performed with an expectation-maximization algorithm that
leads to high computational efficiency because it exploits the sparsity of the dataset. We test the
performance of the model on synthetic dynamical networks, as well as on real networks of citations
and email datasets. We show that our model captures the reciprocity of real networks better than
standard models with only community structure, while performing well at link prediction tasks.

1. Introduction

Many real networks are dynamical, i.e., the pattern of interactions between their nodes vary over time, e.g.,
network of exchanged emails in a company. The abundance of such datasets and the development of opti-
mal numerical methods have led to a growing number of studies in this field [1–4]. In addition, interactions
between nodes can be reciprocated, e.g., the people whom one retweets and the number of times she retweets
them vary over time; so do the papers that researchers cite in their manuscripts and papers that cite one’s
scientific output. This latter issue has received little attention in previous studies.

Among the main approaches to study these systems, latent variable models assume that the existence of
an edge between any pair of nodes is independent of other nodes, and is conditional on some latent variables
which incorporate the hidden structure of the network. These techniques mainly focus on community mem-
bership as the main relevant latent variable, e.g., in the case of citations, the people who cite each other’s works,
inadvertently form a community. The stochastic block model (SBM) [5–7] and its variants provide flexible net-
work generative models [8, 9]. In this framework, nodes are initially partitioned into communities, then edges
are created between nodes, based on their community membership. There are several variants of dynamical
equivalents of stochastic block model (DSBM) [10–14] which capture transition of community membership
over time, reflecting the evolution of edge formation. Peixoto and Rosvall [15], and Matias et al [16] develop a

© 2022 The Author(s). Published by IOP Publishing Ltd
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non-parametric temporal SBM. Gauvin et al [17] consider non-negative tensor factorization, where communi-
ties are static but the affinity matrix changes over time. Bovet et al [18] use flow of random walkers co-evolving
in the dynamic network to define communities. Various methods have been used to address whether the com-
munity membership or connectivity parameters could change over time, see [19] for a review. For instance,
one could assume that communities are fixed in time but the connectivity parameters across groups changes,
as in [11, 17], or that communities change in time [10, 20–22].

In Zhang et al [12], the authors extend some of the popular methods of modeling network structure, e.g.,
SBM, to represent dynamic networks. The main idea behind their Markovian approach is to find transition
rates of appearance and disappearance of edges over time. Based on these rates, they were able to calculate
the average probability of edges over all time steps, hence, they estimate a steady state probability distribution
for each network model, depending on its structural parameters. Although the approach followed in [12] is
efficient and analytically grounded, it was developed for models that incorporate communities as the only
latent variable.

Nevertheless, in directed real-world networks, community membership may not be the only factor influ-
encing network structure. Reciprocity, i.e., the tendency of a pair of nodes to form edges on both directions, has
been subject of many studies [23–25] as a crucial factor to determine the structure of networks, in particular in
social networks. Bartolucci et al [26] assume local conditional independence between pairs of edges, i.e., dyads,
and extend the SBM to account for the reciprocal patterns in directed dynamical networks. Furthermore, they
established various specifications of the proposed model corresponding to different reciprocal assumptions.

Recently, a generative model (CRep) has been introduced that, in addition to community membership,
includes reciprocity as latent variable that dictates formation of edges between the nodes [25]. In other words,
the appearance of a directed edge from node i to j not only depends on the community that the nodes belong
to, but also is affected by the existence of the edge from j to i. In the case of citation network, it is more likely
for an author to cite those other who already cited her, implying overlapping research areas.

In this work, following the approach in [12], we extend CRep and propose a continuous-time Markov
process model for dynamic networks (DynCRep). Observing the system at discrete points in time, at each
time step the transition rates of appearance and disappearance of a directed edge between two nodes depends
on the current community membership of the nodes, as well as on the existence of a reciprocated edge between
them.

We validate the applicability of the proposed model and its inference approach by performing experiments
on real and synthetic networks for community detection and link prediction. We apply the model to synthetic
datasets and observe that DynCRep shows a reasonable performance in terms of link prediction. Moreover,
we test the model performance on real-world datasets in the domain of social and online communication to
reproduce reciprocity, with promising results.

2. Model

In our model, the temporally evolving network is captured in snapshots taken at fixed intervals, from t = 0 to
T + 1. A(t) represents the dynamic adjacency matrix of the network, where a non-zero value of Aij(t) represents
a weighted edge from i to node j at time t, and Aij(t) = 0 denotes no interaction. We assume that the total
number of nodes is fixed over time, i.e., new nodes do not enter into the network, and nodes do not leave it;
instead, existing edges can appear and disappear. We focus on directed, and weighted networks.

A matrix w(t) of dimensions K ⇥ K determines the evolving structure of the K communities over time
and we refer to w(t) as the affinity matrix. Different assumptions about w(t) result in communities with
different structures. For instance, in the case of diagonal entries being greater than off-diagonal ones, com-
munities are assortative—that is, individuals are more inclined towards intra-community interactions than
inter-community interactions. The K-dimensional vectors ui(t) and vi(t) denote the out-going and in-coming
communities at time step t, respectively.

Here, we keep the community membership constant over time; hence, we drop the notion of time depen-
dency. We develop the model in two different varieties: (1) the affinity matrix varies over time (w-DYN),
i.e., the connectivity pattern between communities changes over time, for instance, a group of nodes which
form a community at time step t could be peripheral nodes at another time step [11], and (2) the affinity
matrix also remains static (w-STATIC).

Following the continuous-time Markov process approach in [12], we assume that networks evolve on
the real-valued times; hence, the appearance and disappearance of the edges are continuous parameters.
However, we observe the network at discrete time steps. At each time step, a Poisson distribution governs
the existence of edges between nodes such that an edge between two nodes is formed at a rate �̂ij(t). This rate
depends on both the community that nodes belong to, and the existence of the reciprocated tie at the previous
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time step:

�̂ij(t) = �ij(t) + ⌘ Aji(t � 1)

⌘

X

k,q

uikvjq wkq(t) + ⌘ Aji(t � 1), (1)

where ⌘ as a hyperparameter regulates the reciprocity effects, similarly as in [25]. The difference between
equation (1) and the edge probability in [25] is that the dependency on the reciprocated tie is on the previous
time step, while standard CRep considers only the same time t, being an approach valid for static networks.
Furthermore, an edge could disappear with rate µ.

2.1. Dynamic CRep
The aim of this study is to infer the latent parameters of the model, namely, ⇥ ⌘ {u, v, w, ⌘, µ}, given the
adjacency matrix observed at each time step. To this end, we perform this inference task by maximizing the
log-likelihood. Given ⇥, all the pairs of nodes are conditionally independent; as a result, the joint-probability
of the node-pairs could be approximated by a factorized form. Here, we develop a Markov process, according
to which, at every time step, the probability of edges depends only on the previous time step:

P({A(t)}|⇥) = P
�
{A(t)}|{A(t � 1)}, ⇥

�

=

Y

i,j

(
P

�
Aij(0)|Aji(0), ⇥

� TY

t=1

{P(Aij(t)|Aij(t � 1), Aji(t � 1), ⇥)}

)
. (2)

We further assume that at the initial time step the probability Aij(0) of an edge between two nodes follows
a Poisson distribution with mean �̂ij = �ij(0), i.e., there is no reciprocated edge in the past:

P(Aij(0)|Aji(0), ⇥) =
e�ij(0)�ij(0)Aij(0)

Aij(0)!
. (3)

At each time-step, edges appear with rate �̂ij(t), and disappear with rate µ. We follow an approach similar
to that of Zhang et al [12] and calculate the probability of the existence of edges by solving a master equation.
Defining pk

ij(t) as the probability of having k edges, i.e., an edge with the weight equal to k, between nodes i, j
at time t, this quantity satisfies the following master equation:

dpk
ij(t)

dt
= �̂ij(t) pk�1

ij (t) + (k + 1)µpk+1
ij (t) �

⇣
�̂ij(t) + kµ

⌘
pk

ij(t). (4)

To solve this equation, we use a generating function approach [27], by defining g(z, t) =
P

1

k=0pk(t)zk. The
solution for the generating function,

g(z, t) = f
⇥
(z � 1)e�µt

⇤
e

(z�1)�̂ij(t)
µ , (5)

could be expanded in terms of z to give us pt
ij (more details in section S1

(https://stacks.iop.org/JPCOMPLEX/03/015010/mmedia)). There are four possible transitions from time
t � 1 to t: (1) there is no edge neither at time t � 1, nor at t; (2) the appearance of an edge from non-edge,
(3) disappearance of an existing edge, and (4) an existing edge remains; with the following probabilities,
respectively,

p0!0 = e��(�ij(t)+⌘ Aji(t))

p0!1 = �(�ij(t) + ⌘ Aji(t))e��(�ij(t)+⌘ Aji(t))

p1!0 = � e��(�ij(t)+⌘ Aji(t))

p1!1 = (1 � �)e��(�ij(t)+⌘ Aji(t)), (6)

where � = 1 � e�µ. This leads to the following time-dependent, log-likelihood:
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L(T, ⇥) = log[P({A(t)}|{A(t � 1)}, ⇥)]

=

X

i,j

(
log

⇥
e��ij(t)�ij(t)Aij(0)

⇤
+

TX

t=1

log
h

e��(�ij(t)+⌘ Aji(t))

⇥
⇥
�

�
�ij(t) + ⌘ Aji(t)

�⇤(1�Aij(t�1))Aij(t)
�Aij(t�1)(1�Aij(t)) ⇥ (1 � �)Aij(t�1)Aij(t)

i)
. (7)

We add parameters’ regularization by assuming gamma-distributed priors for the membership vectors:

P(uik; a, b) / ua�1
ik e�buik , (8)

where a > 1, to ensure the maximization of the log-likelihood (the second derivative must be negative),
similarly for the vik. This adds new terms to the log-likelihood:

L(T, ⇥) = L(T, ⇥) + (a � 1)
X

i,k

log uik � b
X

ik

uik + (a � 1)
X

i,k

log vik � b
X

ik

vik. (9)

In the experiments below we set the values of the hyper-priors to enforce sparsity, i.e., a = 1.5, b = 10.
Maximizing L(T, ⇥) requires taking the derivative of equation (9) w.r.t. each parameter individually and

setting them to zero. Because the summations in the logarithm render the calculations difficult, we employ
a variational approximation using Jensen’s inequality. Inference is then performed using the expectation-
maximization algorithm (EM); details are provided in section S1A.

Hitherto, we have included all the dependencies on the reciprocated edge Aji(t � 1) by considering the
previous time step t � 1. However, the model still applies if we incorporate the reciprocated edge at the same
time step, i.e., considering Aji(t). This choice may depend on the application itself based on the expectations
and insight of the practitioner from the reciprocity effects. Alternatively, one can choose between these two
options with model-selection criteria. In our experiments on real data we deployed them both, and presented
the version that performs best in cross-validation tasks (section S5A).

We continue with two specifications of the model with different assumptions on the temporal evolution
of the affinity matrix. In the first approach, w-DYN, the affinity matrix is treated as a time-dependent vari-
able; while the community membership vectors, ui, vi, are kept static over time. Notice that a similar scenario
could be obtained by fixing w and changing ui, vi in time [11], our model can be easily adapted to accom-
modate this alternative interpretation. Our model assumes fixed number of communities K. As we consider
a mixed-membership model, we have the flexibility of allowing nodes to belong to various communities and
with various intensities, thus allowing to capture the likelihood of the data well by effectively changing how an
entry uik or vik impacts the magnitude of �ij(t) via w(t) in the w-DYN scenario, while keeping K constant.

In the second scenario, w-STATIC, the affinity matrix is kept static as well. The purpose of considering
these scenarios is to make the model flexible in dealing with various community structures (see sections S2 to
S4 for more details on each scenarios). Notice that in the case of w-STATIC, although all the latent variables
are fixed in time, the network can still evolve, as edges appear and disappear based on the parameters � and µ.
This is also the case for the Markov model (without reciprocity) in [12].

For instance, the EM algorithm for w-STATIC yields:

uik =

a � 1 +
P
j,q,t

⇢(1)
ij (t) �ijkq Âij(t)

b +
P
j,q

vjq wkq (1 + � T)
(10)

vjq =

a � 1 +
P
i,k,t

⇢(1)
ij (t) �ijkq Âij(t)

b +
P
i,k

uik wkq (1 + � T)
(11)

wkq =

P
i,j,t

⇢(1)
ij (t)�ijkqÂij(t)

P
i,j

uik vjq (1 + � T)
(12)

⌘ =

P
i,j,t

⇢(2)
ij (t)Âij(t)

P
i,j

PT
t=1 � Aji(t � 1)

, (13)
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Algorithm 1. DynCRep (w-DYN): EM algorithm.

Input: network A(t) = {Aij(t)}N
i,j=1,

number of communities K.
Output: membership u = [uik] , v = [vik]; network

affinity matrix w(t) =
⇥
wkq(t)

⇤
; reciprocity

parameter ⌘; edge disappearance rate �(t).
Initialize u, v, w(t), ⌘, �(t) at random.
Repeat until L converges:
1. Calculate ⇢1(t) and �(t) (E-step):

⇢(1)
ij (t) =

�ij(t)
�ij(t) + ⌘ Aji(t)

, ⇢(2)
ij (t) =

⌘ Aji(t)
�ij(t) + ⌘ Aji(t)

,

�ijkq(t) =
uikvjqwkq(t)P

k,q
uikvjqwkq(t)

.

2. Update parameters ⇥ (M-step):
(i) For each node i and community k update memberships:

uik =

a � 1 +
P
j,q,t

⇢(1)
ij (t) �ijkq(t) Âij(t)

b +
P
j,q

vjq
PT

t=0�̂(t) wkq(t)

vik =

a � 1 +
P
j,q,t

⇢(1)
ij (t) �jiqk(t) Âij(t)

b +
P
j,q

ujq
PT

t=0�̂(t) wkq(t)

(ii) For each pair (k, q) update affinity matrix:

wkq(t) =

P

i,j
⇢(1)

ij (t)�ijkq (t)Âij(t)

P

i,j
uik vjq�̂(t)

(iii) Update reciprocity parameter:

⌘ =

P

i,j,t
⇢(2)

ij (t)Âij(t)

P

i,j,t=1
�̂(t) Aji(t�1)

where we defined Âij(t) = Aij(t)(1 � Aij(t � 1)) if t > 0, in which Âij(0) = Aij(0) and we have the variational
distributions

⇢(1)
ij (t) =

�ij

�ij + ⌘ Aji(t � 1)
(14)

⇢(2)
ij (t) =

⌘ Aji(t � 1)
�ij + ⌘ Aji(t � 1)

(15)

�ijkq =
uikvjqwkqP

k,q
uikvjqwkq

. (16)

The parameter � has no closed-form update:

� �

2

4T
X

i,j

�ij +

t=TX

i,j,t=1

�
⌘Aji(t � 1)

�
+

1
1 � �

Aij(t � 1)Aij(t)

3

5

+

t=TX

i,j,t=1

h
Â(t) + Aij(t � 1)(1 � Aij(t))

i
= 0, (17)

but this equation can be solved numerically using root-finding methods. The algorithm proceeds by ran-
domly initializing the parameters u, v, w, ⌘, �; then we estimate the variational distributions ⇢(1), ⇢(2), and �,
using equations (14)–(16) (E-step), while keeping the parameters fixed. In the next step (M-step), we update
the parameters, while keeping ⇢(1), ⇢(2) and � fixed. This procedure is repeated until the convergence of the
likelihood in equation (9). An overview of the algorithm is described in algorithm 1.

2.2. Applications
2.2.1. Synthetic networks: AUC
Having explained the nuts and bolts of our model, we now turn to its application on dynamic network data.
We start by considering synthetic networks generated by section 2.1 with known community structure and
reciprocity. We assess the ability of the model in predicting the network at future time steps using past obser-
vations. We look in particular at the impact of reciprocity in determining edges, by generating networks with
varying ⌘ 2 {0.05, 0.2, 0.5}, while keeping the other parameters fixed.
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Figure 1. Predicting future evolution. We report the AUC values on held-out experiments where we train the model on
A(0), . . . , A(T � 1) and predict the network A(T). Higher values means better prediction. Networks are generated as explained in
section 2.2, with N = 500, average degree hki = 5, � = 0.2, K = 3. The three plots are results for ⌘ 2 {0.05, 0.2, 0.5}. The
markers and the error bars are the means and standard deviations over 20 network samples, respectively. (a) w-DYN and (b)
w-STATIC.

For the tests reported here we use N = 500, initial average degree hki = 5, and � = 0.2. We generate K = 3
hard communities of equal size with assortative structure. Having fixed the parameters, we generate 20 samples
of networks for each of the three values of ⌘. For each network we generate an initial state followed by up to
T = 6 further snapshots. The initial state is generated using only the community structure (no reciprocity)
using equation (3). The successive snapshots are generated according to the instructions of section 2.1. In this
study, to test the ability of our model in capturing the dynamical features, we generate the first three time
snapshots (T = 1, 2, 3) with an assortative community structure and the rest of the snapshots (T = 4, 5, 6)
with a disassortative community structure.

For each time step t 2 [1, T], we hide the individual snapshot A(t) and fit the data using the previous
snapshots A(0), . . . , A(t � 1). We test whether a model that accounts for reciprocity is able to successfully
predict the network’s evolution. Success is measured using the area under the curve (AUC), i.e., the probability
that a randomly selected edge has higher expected value than a randomly selected non-existing edge. A value of
1 means perfect reconstruction, while 0.5 is pure random chance. The expected value of an edge is computed
using:

E
⇥
Aij(t)

⇤
=

8
><

>:

p0!1

p0!1 + p0!0
if Aij(t � 1) = 0

p1!1

p1!1 + p1!0
if Aij(t � 1) = 1

=

(
�(t)(�ij(t) + ⌘Aji(t � 1)) if Aij(t � 1) = 0

1 � �(t) if Aij(t � 1) = 1.
(18)

Notice that while the expected value at time t uses explicitly only the network at the previous time step, all the
parameters are inferred using the whole network history, i.e., the model is trained with {A(0), . . . , A(t � 1)}.
We compare with a model that does not account for reciprocity, i.e., our model with ⌘ = 0 (DynCRep0) [25].

Figure 1 shows the results of these tests. As we can see, the ability to predict future edges is greater for a model
that accounts for reciprocity, and the performance gap increases for higher values of ⌘. This gap is partially
offset by increasing the number of snapshots, as both the models have access to more information to make
their estimates. Remarkably, DynCRep has stronger performance also in the low-reciprocity regime, ⌘ = 0.05.
This cannot be clearly seen by looking at figure 1, as the mean AUC of the two models are within the error
bars due to random fluctuations of the network structure across samples. Instead, the stronger performance
of DynCRep in the low-reciprocity regime is revealed by looking at the percentage of samples where DynCRep
has higher AUC than DynCRep0, on a trial-by-trial case (see table 1 for details). While w-STATIC, the static
version of the algorithm, performs slightly better than its non-reciprocated version, with larger performance
gap at later times, w-DYN, the algorithm with time-varying affinity matrix, outperforms its non-reciprocated
equivalent at all time steps.
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Table 1. Edge prediction in synthetic networks. The stronger performance of DynCRep in
the low-reciprocity regime, ⌘ = 0.05, is revealed by looking at the percentage of samples
where DynCRep has higher AUC than DynCRep0, on a trial-by-trial case, over 20 trials.

w-DYN w-STATIC

T DynCRep DynCRep0 DynCRep DynCRep0

1 0.0 0.0 57.0 43.0
2 71.0 29.0 43.0 57.0
3 86.0 14.0 38.0 62.0
4 67.0 33.0 43.0 57.0
5 71.0 29.0 52.0 48.0
6 81.0 19.0 57.0 43.0

Figure 2. Reproducing the reciprocity of EU-daily network. Sampled networks were generated based on the inferred parameters
fitted to the EU-daily network [28]. The networks are generated as explained in section 2.2, with N and average degree hki as of
the real datasets; K = 4. The markers and the error bars are the means and standard deviations over five samples of synthetic
networks, respectively.

Although both variants of the algorithm give better performance than their non-reciprocated version, it
could be seen from figure 1 that w-DYN is more robust in link prediction tasks as ⌘ increases, and as the planted
evolving structure of the affinity matrix changes from assortative to disassortative over time (T = 4, 5, 6).

2.2.2. Real world data: reciprocity/AUC
To evaluate the capability of our proposed model in retrieving network features, we apply the model to real
world datasets. In this case, we first apply the inference algorithm to each time snapshot of the dynamic real
dataset and learn the network’s latent variables, i.e., ⇥. Then, we use these latent variables as the input for the
generative model, section 2.2, to generate dynamic synthetic networks similar to the fitted real datasets. Thus,
we can compare dynamic synthetic networks, here 5 samples, and the original network. In this paper, we study
the performance of our model in reproducing reciprocity as a significant structural parameter of the network.
We implement our algorithm on two social and communication datasets, namely, email Eu core network [28]
and statistics citation networks [29] (see section S6C for details on data pre-processing).

EU email network
Email-Eu-core network (EU) is constructed from internal emails exchanged between members of a large

European research institution. At each time step, there is a directed edge from i to j, if i sent an email to j.
Reciprocity may play a role in that receiving incoming emails may, or not, trigger a response email, similarly
to other types of social communication [30]. The recorded dataset spans over a period of 803 days. However,
we studied the dynamics of the dataset by dividing it in both daily and monthly durations. In the first case, we
divide the edges in daily intervals (EU-daily); then select the snapshots from 5 consecutive days, randomly. In
the latter case, the intervals are monthly; we select the snapshots from the first recorded year (EU-monthly).

Figure 2 shows the performance of w-DYN and w-STATIC versions of DynCRep in reproducing the reci-
procity of the EU-daily network. As expected in email networks, the reciprocity is high in this case; hence,
w-DYN and w-STATIC perform similarly in reproducing reciprocity. It is noticeable that the ability of repro-
ducing reciprocity may change depending on how the network is built. For instance, if we consider the monthly
time steps, EU-monthly network, we observe a different performance, see appendix S6B.
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Figure 3. Predicting future evolution in the EU-daily dataset. AUC results for EU-daily dataset for five consecutive days, selected
randomly. The number of community is fixed to K = 4. The error bars are smaller than marker size.

Figure 4. Reproducing the reciprocity of the statistics citation dataset. Sampled networks were generated based on the inferred
parameters of the statistics citation dataset [29]. The networks are generated as explained in section 2.2, with N and average
degree hki as of the real datasets; K = 3. Markers and bars are the means and standard deviations over five generated synthetic
networks, respectively. The network is based on annual citations during four years, from 2010 to 2013.

Figure 3 indicates the captured AUCs, measuring performance in link prediction tasks. The AUC is cal-
culated as described in section 2.2.1. We can notice the improvement over the time snapshots, and DynCRep
tends to perform slightly better. Therefore by having access to the history of the dataset and accounting for
reciprocity we can achieve better results in predicting future connections.

It is worth mentioning that we performed the experiments for different values of the number of commu-
nities; however, the results do not show high sensitivity to this parameter. Therefore, we fixed K = 4 for the
EU network, equivalent to the number of departments in the corresponding institute.

Statistics citation dataset
The second example of an empirical dataset is the citation networks for statisticians, which is based on

the research papers published in four of the top journals in statistics from 2003 to the first half of 2012. We
construct a network by selecting a sample of the data from 2003 to 2007 and dividing it into annual intervals.
This way we will have a network of citations over 4 years, where nodes are authors and an edge from nodes i
to j at time step T represents that i cites j’s papers in that year. In this system, we may expect that reciprocity
plays a role in that receiving a citation may trigger a citation back.

Despite the fact that the reciprocity in this dataset is much lower than EU-daily dataset, figure 4 shows
that we are able to capture it competitively. In addition, although the two versions outperform each others
at different time steps, they still behave similarly in reproducing the reciprocity. Moreover, in both empirical
datasets, the best performance is obtained for the case that reciprocated edges presented at the same time step
were used in the model.

As it could be seen from figure 5, AUC values are always higher for DynCRep, showing that accounting for
reciprocity improves link prediction tasks also for this dataset. It should be noted that, at each time step T we
calculate AUC by having access to the edges up to time T � 1, then predicting edges at time T. Hence, the AUC
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Figure 5. Predicting future evolution in the statistics citation datasets. AUC results for the citation network with K = 3. The
error bars are too small to be seen.

cannot be calculated for the first time step. In this case we fix K = 3, the minimum number of communities
with the highest performance, i.e., we perform five-fold cross validation [25] to calculate the value of AUC,
then we choose K as the number of communities with the highest value for AUC.

3. Conclusion

In this work, we study reciprocity in dynamic networks. In reality, many datasets, e.g., networks of friendship, of
gene expression patterns or communication networks, describe interactions that evolve over time, thus making
them unsuitable objects of analysis for aggregate methods. In addition, the interactions in these networks might
not simply change over time, but their evolution could also be affected by their past reciprocated interactions;
generally, such reciprocal interactions have received little attention as additional drivers of this dynamics.

To remedy this problem, we combine insights from previous works to incorporate reciprocity into a gener-
ative model approach with latent community structure. Specifically, we extend the assumptions formulated in
[25] to situations where networks change in time. For this, we consider a Markovian transition matrix which
governs the evolution of the parameters over time snapshots. Being a generative model, our approach can be
used to build dynamic synthetic networks, with desired reciprocity and community structure. Its algorithmic
implementation is based on an efficient EM algorithm, which can be applied to large systems. As we assume a
chronological order in observing the reciprocated edges, we can estimate the joint probability distribution as
a factorized distribution of time steps.

We consider two varieties of our model. In one case, community membership vectors remain static over
time and only the affinity matrix contains temporal information. In the other case, the affinity matrix is treated
as a static parameter, similarly as the community memberships; in both cases, reciprocity parameter and the
rate of edge removal are kept static. These two scenarios enable us to thoroughly analyze the model and its
performance in networks with different interaction patterns. For instance, in the case of a non-homogeneous
community structure over time, the first version would be a more suitable approach, since it could capture the
evolving community structures.

There are a number of directions in which this model could be extended. To capture more realistic proper-
ties of the real world datasets, we can generalize the model to the case of multilayered networks, where nodes can
have more than one type of interaction. For instance, in a social network, an individual can have connections
based on friendship, as well as her business affiliations.

In addition, considering a node related reciprocity parameter instead of a global reciprocity parameter
could improve the applicability of the model. We have focused here on the case where edges change in time,
but one can envisage situations where nodes appear and disappear as well. This would also be a natural model
extension. Finally, we considered here reciprocity as main network structural property, but similar investi-
gations can be performed for other properties involving more that one pair of nodes, as triadic closure or
transitivity.
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Anomaly detection algorithms are a valuable tool in network science for identifying unusual patterns in a
network. These algorithms have numerous practical applications, including detecting fraud, identifying network
security threats, and uncovering significant interactions within a data set. In this project, we propose a probabilis-
tic generative approach that incorporates community membership and reciprocity as key factors driving regular
behavior in a network, which can be used to identify potential anomalies that deviate from expected patterns.
We model pairs of edges in a network with exact two-edge joint distributions. As a result, our approach captures
the exact relationship between pairs of edges and provides a more comprehensive view of social networks.
Additionally, our study highlights the role of reciprocity in network analysis and can inform the design of future
models and algorithms. We also develop an efficient algorithmic implementation that takes advantage of the
sparsity of the network.

DOI: 10.1103/PhysRevResearch.5.033084

I. INTRODUCTION

Anomaly detection algorithms are a crucial tool in the
study of networks. These algorithms are designed to identify
unusual or unexpected patterns in the data, which can provide
valuable insights into the structure and function of a network
[1,2]. For instance, anomalous edges in a network may indi-
cate the presence of a structural flaw or a potential problem,
such as a vulnerability to attack. By detecting and analyzing
these anomalies, we can gain a better understanding of the net-
work and potentially identify ways to improve its performance
or security [3]. In addition, anomaly detection algorithms can
be used to monitor networks in real time, allowing researchers
to quickly identify and respond to potential issues as they
arise.

Anomalies are often difficult to define precisely because
they can vary depending on the context and the system being
analyzed [4]. For example, in a network of online transac-
tions, an anomaly could be a sudden spike in the number of
transactions coming from a single user [5]. In this case, the
regular behavior in the system would be the typical number
of transactions coming from a single user, and any deviation
from this pattern would be considered an anomaly. Hence,
one of the main obstacles in detecting anomalies in networks
is determining what is considered “normal” (or “regular”)
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behavior. To overcome this challenge, we must create a null
model which is a realistic representation of the network data.
This null model provides a standard against which we can
compare the network data and identify anomalies.

Relevant approaches to address this problem include
statistics-based methods, which fit a statistical model to the
network data [6,7]. Among these, generative models [8–10]
make assumptions about the processes that drive network
formation and evolution to generate synthetic network data.
By using these approaches, we can define null models that are
tailored to the specific characteristics of the network under
study. This is the approach we take here.

In this work, we focus on plain networks, which only con-
tain information about the presence or absence of connections
between individuals, and do not include any additional infor-
mation. One approach to perform anomaly detection in these
binary and single-layer networks is to use the structure of the
graph to identify patterns and detect deviations from them [1].
These structural patterns can be divided into two categories:
Patterns based on the overall structure of the graph, and pat-
terns based on the community structure of the graph. Methods
in the first category rely on the global properties of the graph
[11], such as the distribution of node degrees or the overall
connectivity of the network. On the other hand, methods in
the second category perform anomaly detection by focusing
on the local properties of the graph, such as the membership
of nodes in communities [12,13]. Hence, with the second
approach, we assume that the null model reflects a commu-
nity structure that can be identified through latent variables,
a process known as community detection task [14]. Thus,
by considering the community structure, anomalous behavior
can be determined in this context. For example, a friendship
between two individuals from different groups, such as high
school classmates and college classmates, could be considered
anomalous. We recently developed a model anomaly com-
munity detection (ACD) that performs anomaly detection by

2643-1564/2023/5(3)/033084(15) 033084-1 Published by the American Physical Society
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using community structure [15], where anomalous edges are
those that deviate from regular patterns determined by com-
munity structure. As a result, this model outputs both node
memberships and edge labels, identifying them as legitimate
or anomalous.

Several notable studies have tackled the inherent chal-
lenges associated with reconstructing networks from unreli-
able and imperfect measurements [16–18], a problem related
to the subject of this study. These methods generate a poste-
rior distribution encompassing potential network structures in
the presence of errors and uncertainties. Consequently, these
approaches provide probabilities indicating the presence or
absence of edges, whereby lower probabilities can be inter-
preted as indicative of less reliable connections. For instance,
De Bacco et al. [16] specifically address the task of handling
noisy and multiply reported social network data by introduc-
ing latent network models capable of accommodating errors
and uncertainties in the observed data. By incorporating la-
tent variables, this model successfully captures the underlying
true network structure while accounting for reporting errors.
Similarly, Peixoto [17] presents a framework that enhances
reconstruction accuracy by employing generative network
methods assuming modular structures. Furthermore, Newman
[18] proposes a general probabilistic model to estimate net-
work structure from unreliable network data. Although these
studies may provide some indication of tie unreliability, their
primary focus lies in network reconstruction rather than in
anomaly detection, as we do here. Therefore, they do not
incorporate an explicit structure responsible for the presence
of anomalies which allows to thoroughly investigate their
nature.

In fact, accurately identifying anomalies is deeply con-
nected with the chosen null model determining what regular
patterns are. As a consequence, it is important to consider
other possible mechanisms for tie formation, beyond commu-
nity structure. For instance, reciprocity, another fundamental
structural feature in networks [16,19,20], refers to the mu-
tual exchange of resources or actions between individuals
or groups. This can include actions such as returning a fa-
vor, sharing information or resources, or collaborating on a
project. For example, in a social network, if two individuals
consistently like and comment on each other’s posts, this
could be considered reciprocity. In a business network, if
two companies frequently refer customers to each other, this
could also be considered reciprocity. In both cases, reciprocity
implies a two-way exchange rather than a one-sided action. A
reciprocated edge refers to a connection between two nodes
in the network where both nodes have engaged in mutual
interactions. Mathematically, reciprocity is calculated as the
ratio of the number of reciprocated edges to the total number
of edges in the graph. A reciprocated edge is formed when
there is a bidirectional relationship between the connected
nodes, signifying that both nodes have reciprocated actions
or engagements.

Recent works [21,22] have shown that including reci-
procity effects in the modeling of community patterns results
in more accurate and expressive generative models. This has
the potential to improve the performance of an anomaly de-
tection model for networks as well.

In this work, we develop a probabilistic generative model
that we refer to as the community reciprocity anomaly
detection (CRAD) algorithm, which performs anomaly de-
tection by proposing a null model based on both com-
munity structure and reciprocity. Intuitively, our model
regards as regular ties those who follow the group mem-
bership and reciprocity effects, and as anomalous ties
those whose formation process is not aligned with these
two mechanisms. Notice that node memberships, reci-
procity effect, and anomalous edges are all unknown pro-
cesses. Our model is able to infer them from data by
representing them as latent variables in a probabilistic
model.

More specifically, we model the existence of ties be-
tween pairs of nodes using a bivariate Bernoulli distribution.
This has the crucial statistical property that independence
and uncorrelatedness of the component random variables are
equivalent [23], which facilitates the derivation of a closed-
form joint distribution of a pair of edges. Furthermore, both
the marginal and conditional distributions are Bernoulli dis-
tributions, enabling closed-form analytical expressions. This
facilitates downstream analysis and also improves model per-
formance, as shown in Ref. [21].

II. THE MODEL

We are given an adjacency matrix, A, as our observed
data, with entries indicating the presence or absence of an
edge from node i to node j, represented by Ai j = 1 or
Ai j = 0, respectively. Pairs of directed edges between two
nodes (i, j) are defined as A(i j) = (Ai j, Aji ). We consider bi-
nary data, thus A(i j) ∈ {0, 1}2 = {0, 1} × {0, 1}, and directed
networks, i.e., in general Ai j ̸= Aji. We aim at classifying
any such pair as either regular or anomalous, accounting
for community structure and reciprocity effects. For this,
we introduce a Bernoulli random variable that represents
the binary label of being anomalous or not as a random
variable:

σ(i j) ∼ Bern(µ), (1)

where σ(i j) = 0, 1 if the pair A(i j) is regular or anomalous,
respectively. In this work we assume that edges between any
pair of nodes must be either anomalous or regular. Math-
ematically, this means that the matrix σ with entries σi j
is symmetric, i.e., σi j = σ ji. These latent variables must be
learned from data, as anomalies are not known in advance.
They also determine the mechanism from which the pair of
edges is drawn. The hyperparameter µ ∈ [0, 1] controls the
prior distribution of σ(i j).

With these main ingredients in mind, we can proceed to
characterize the joint probability distribution of pairs of edges.
Assuming to know the label σ(i j) for a given pair of edges,
we denote the pair joint probability p(ℓ)

nm = P(ℓ)(Ai j = n, Aji =
m), where n, m ∈ {0, 1} and ℓ ∈ {r, a} denotes the label be-
ing regular or anomalous, respectively. We then consider the
joint probability distribution of a pair of edges as a bivariate
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Bernoulli distribution:

P(A(i j), σ(i j) ) = P(Ai j, Aji, σ(i j) ) = P(Ai j, Aji|σ(i j) ) P(σ(i j) )

= P(a)(Ai j, Aji|θa)σ(i j) P(r)(Ai j, Aji|θr )1−σ(i j) P(σ(i j)|µ)

=
[[

p(a)
11

]Ai j A ji
[
p(a)

10

]Ai j (1−Aji )[p(a)
01

](1−Ai j )Aji
[
p(a)

00

](1−Ai j )(1−Aji )]σ(i j)

×
[[

p(r)
11

]Ai j A ji
[
p(r)

10

]Ai j (1−Aji )[p(r)
01

](1−Ai j )Aji
[
p(r)

00

](1−Ai j )(1−Aji )]1−σ(i j)
µσ(i j) (1 − µ)1−σ(i j) , (2)

where θr and θa denote parameters specific to the two distributions P(r) and P(a). The parameters p(ℓ)
nm must satisfy

∑
n,m=0,1 p(ℓ)

nm =
1 to have valid probability density functions.

Following the notation as in Refs. [21,23], we can rewrite the full joint probability density function in Eq. (2) as the product

P(A, σ ) =
∏

(i, j)

[
exp

{
Ai j f (a)

i j + Aji f (a)
ji + Ai jA ji J (a)

(i j)

}

Z (a)
(i j)

× µ

]σ(i j)
[

exp
{
Ai j f (r)

i j + Aji f (r)
ji + Ai jA ji J (r)

(i j)

}

Z (r)
(i j)

× (1 − µ)

]1−σ(i j)

, (3)

where p(ℓ)
00 = 1/Z (ℓ)

(i j), and Z (ℓ)
(i j) is the normalization constant

for the regular or anomalous edges, for ℓ ∈ {r, a}; f (ℓ)
i j ,

f (ℓ)
ji , and J (ℓ)

(i j) are the natural parameters of their density

functions. The interaction term J (ℓ)
(i j) appears in order to cap-

ture reciprocity. It allows to have a joint pair distribution
P(Ai j, Aji|σ(i j) ) that is not simply the product of two indepen-
dent distributions P(Ai j |σ(i j) ) × P(Aji|σ(i j) ), as it is usually
assumed in cases where reciprocity (or other properties in-
volving more than one variable) is not taken into account
explicitly.

These parameters can be expressed in terms of the proba-
bility of occurrence of edges as follows:

f (ℓ)
i j = log

(
p(ℓ)

10

p(ℓ)
00

)

, f (ℓ)
ji = log

(
p(ℓ)

01

p(ℓ)
00

)

,

J (ℓ)
(i j) = log

(
p(ℓ)

11 p(ℓ)
00

p(ℓ)
10 p(ℓ)

01

)

, ℓ = {r, a}. (4)

We aim at modeling reciprocity when two edges are reg-
ular, as this can be the result of a reasonable tie formation
mechanism involving two nodes, e.g., exchanging favors or
cooperative behaviors. For anomalous edges instead, it is
less clear what would reciprocity mean; hence we remain
agnostic to it and assume that the edges i → j and j → i are
independent when they are anomalous. In other words, the
existence of the anomalous edge Aji has no influence on its
reciprocated edge Ai j , which is also anomalous. To reflect this
mathematically, we set J (a)

(i j) = 0. This follows the properties
of multivariate Bernoulli distributions, where independence
and uncorrelatedness are equivalent phenomena [23]. As the
correlation between the pair of edges (Ai j, Aji ) is captured by
J (ℓ)

(i j), when J (ℓ)
(i j) = 0, the pair (Ai j, Aji ) is uncorrelated. In ad-

dition, we assume a symmetric structure of f (a) = f (a)
i j = f (a)

ji
for all anomalous edges.

To summarize the steps of our proposed generative model:
We first draw hidden labels for the edges, determining them
to be regular or anomalous; then, we draw pairs of edges
(Ai j, Aji ) from a specific form of distribution depending on
the edges’ labels. Formally, the generative model is

σ(i j) ∼ Bern(µ), (5)

A(i j) ∼

⎧
⎪⎪⎨

⎪⎪⎩

exp {(Ai j+Aji ) f (a)}
Z (a)

(i j)
if σ(i j) = 1

exp
{

Ai j f (r)
i j +Aji f (r)

ji +Ai j A jiJ
(r)
(i j)

}

Z (r)
(i j)

if σ(i j) = 0.

(6)

Up to this point, we focused on reciprocity and how to
incorporate it into our model via the interaction term J (r)

(i j).
Now, we turn our attention to community structure, another
important mechanism that we believe regulates tie formation
of regular edges. Conversely, we assume that communities
have no influence on anomalous edges. To formalize this, we
utilize similar model specifications as outlined in Ref. [21],
and we incorporate community structure through latent vari-
ables embedded in the natural parameters of the joint pair
distribution P(r)(Ai j, Aji|θr ). In detail, we assume the tie for-
mation depends on communities and reciprocity for regular
edges, and only on the anomaly parameter for anomalous ties:

f (r)
i j = log λi j, f (r)

ji = log λ ji, (7)

J (r)
(i j) = log η, (8)

f (a) = log π , (9)

where

λi j =
K∑

k,q=1

uikv jqwkq (10)

regulates how mixed-membership community structure de-
termines tie formation in directed networks, as in Ref. [24].
We provide a schematic visualization of these contributions in
Fig. 1. The normalization parameters are obtained by enforc-
ing the normalization constraint using the above definitions,
so that Z (a)

(i j) = (π + 1)2 and Z (r)
(i j) = λi j + λ ji + ηλi jλ ji + 1.

The parameters λ and η play important roles in our model
of community-reciprocity structure. λ captures the mixed-
membership aspect, while η is the pair-interaction coefficient
that regulates the formation of pairs of edges between nodes.
The K-dimensional vectors ui and vi represent the outgo-
ing and incoming communities of node i, respectively. The
entries in these vectors, uik > 0 and v jq > 0, represent the
weights assigned to each community, where K is the num-
ber of communities. The value of K can be either specified
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FIG. 1. Model visualization. (a) Graphical model: The entry of
the adjacency matrix Ai j is determined by the community-related
latent variables u, v, and w and the reciprocity parameter η (blue),
and by the anomaly-related parameters π (orange) and the hyperprior
µ (grey). (b) Example of a possible realization of the model: Blue
edges display interactions based on community and reciprocity and
the orange ones are anomalous.

as input or selected using model selection criteria, such as
cross-validation [24]. The affinity matrix wkq controls the
structure of the communities, with higher values on the
diagonal indicating more assortative communities. The for-
mation of anomalous edges is derived by the latent parameter
π > 0, as in the lim π → 0 the probability of the existence
of an anomalous edge converges to zero (see Appendix A
for more details on derivations). All of these parameters,
along with µ, are included in the latent parameter set " =
{{ui}, {vi}, {wkq}, η,π , µ} that will be inferred from data. In
addition to point estimates of these parameters, our model
returns a posterior estimate for the edge label variable σ(i j)
in the form of a Bernoulli posterior distribution of parameter
Q(i j). This is also the estimated expected value of the edge
label. We provide more details in Sec. III.

Our model assumes that community structure drives the
process of formation of a regular edge, and that the regular
edges between a pair of nodes depend on each other explicitly
according to the value of η. If J (r)

(i j) = 0 (when η = 1), the
probability of the edges between nodes i and j is determined
solely by their respective communities. On the other hand, a
positive value of J (r)

(i j) (when η > 1) increases the probability

of the existence of both i → j and j → i, while a negative
value (when 0 < η < 1) decreases it.

By utilizing properties of the bivariate Bernoulli distribu-
tion [21,23], we obtain a closed-form solution for the expected
value of an edge (see Appendix A for more details):

E[Ai j] = (1 − Q(i j) )
λi j + ηλi jλ ji

Z (r)
(i j)

+ Q(i j)
π

1 + π
. (11)

This result is useful in link prediction experiments, in that we
can score edges based on the values calculated from Eq. (11)
and use these to compute prediction metrics such as the area
under the receiver operating curve (AUC). We illustrate this in
Sec. IV A.

III. INFERENCE

Our ultimate goal is to determine ", the latent parameters
of the model. To do this, we maximize the posterior probabil-
ity P("|A) =

∑
σ P(σ,"|A). Instead of directly maximizing

this probability, it is more computationally efficient to maxi-
mize the log-posterior, as the maxima of the two functions are
equivalent:

L(") = log P("|A) = log
∑

σ

P(σ,"|A)

>
∑

σ

q(σ ) log
P(σ,"|A)

q(σ )
, (12)

where we defined q(σ ), a variational distribution that must
sum to 1. Our maximum likelihood approach involves the use
of an expectation-maximization (EM) algorithm in which we
alternately update different sets of parameters of our model.
More specifically, we first update the variational distribution
parameters (E step), ρ and Q, and then maximize L(")
with respect to " (M step). This process is repeated until
L(") converges, signifying the completion of the optimiza-
tion process. The full procedure is outlined in Algorithm 1
(see Appendix B for more details on the inference task). The
computational complexity of the algorithm is O(N2), primar-
ily due to the terms in the dense matrix Q(i j) that are not
multiplied by the sparse adjacency matrix Ai j . As Q is crucial
for identifying anomalous edges, its presence may make the
model infeasible for large systems. Investigating ways to re-
duce this complexity, for instance by making its representation
sparse, is an interesting avenue for future work.

IV. RESULTS

A. Synthetic data sets

We validate our model on synthetic data sets, generated
with the generative algorithm in Appendix C. The studied
data sets consist of N = 500 nodes, with an average degree
of ⟨k⟩ = 60. The number of communities is set to K = 3, and
the pair-interaction coefficient, η, has a range of values. The
anomaly density (ratio of anomalous edges to total number of
edges) is varied within the interval ρa ∈ [0, 1]. We compare
CRAD with JointCRep [21], which is what CRAD reduces
to if we had not considered anomalies, i.e., when µ = 0 and
lim π → 0. This allows to focus on observing the impact of
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Algorithm 1: CRAD: EM algorithm.

Input: network A = {Ai j}N
i, j=1, number of communities K .

Output: memberships u = [uik], v = [vik]; network affinity
matrix w = [wkq]; pair-interaction coefficient η; anomaly
parameter π ; prior on anomaly indicator µ.

Initialize " : (u, v, w, η, π , µ) at random.
Repeat until L(") convergence:

1. Calculate ρ and Q (E step):

ρi jkq ∼ as in Eq.˜(B13),

Qi j ∼ as in Eq.˜(B22).

2. Update parameters " (M step):
(i) For each node i and community k update memberships:

uik =
∑

jq(1 − Q(i j) ) Ai jρi jkq

∑
j

[∑
q (1−Q(i j) ) (1+η λ ji ) v jqwkq

λi j+λ ji+ηλi jλ ji+1

] ,

vik =
∑

jq(1 − Q(i j) ) Ajiρ jiqk

∑
j

[∑
q (1−Q(i j) ) (1+η λi j ) u jqwqk

λi j+λ ji+ηλi jλ ji+1

] .

(ii) For each pair (k, q) update affinity matrix:

wkq =
∑

i, j (1 − Q(i j) ) Ai jρi jkq
∑

i, j

[ (1−Q(i j) ) (1+η λi j ) uikv jq
λi j+λ ji+ηλi jλ ji+1

] .

(iii) Update pair-interaction coefficient:

η =
∑

(i, j)(1 − Q(i j) ) Ai jA ji
∑

(i, j)(1 − Q(i j) )
[ λi jλ ji

λi j+λ ji+ηλi jλ ji+1

] .

(iv) Update anomaly parameter:

π =
∑

(i, j) Q(i j) (Ai j + Aji )∑
(i, j) Q(i j) (2 − Ai j − Aji )

.

(v) Update prior on anomaly indicator:

µ = 1
N (N − 1)/2

∑

(i, j)

Q(i j).

considering the existence of anomalous edges in a given data
set.

In order to determine the effectiveness of our proposed
model, which is based on the concept of community structure,
we first evaluate its ability to accurately identify the member-
ships of individuals within a community. To accomplish this,
we measure the cosine similarity (CS) between the ground
truth and inferred community membership vectors. The CS
has values in [0,1], with CS = 1 indicating the best perfor-
mance. For this task, we also run a Bayesian Poisson matrix

factorization (BPMF) algorithm [25]. BPMF is a scalable
algorithm for factorizing sparse matrices and provides a useful
comparison for our proposed algorithm. We run all algorithms
on synthetic data sets generated by CRAD (see Appendix C
for more details). The results, as illustrated in Figs. 6(a) and
6(b), show that when the proportion of anomalous edges in
the data set is relatively low, BPMF outperforms our proposed
algorithm. However, when the number of anomalous edges
is above 50% of the total number of edges, our algorithm
is still able to detect community structure with a reasonable
level of accuracy. Additionally, it can be observed that CRAD
performs the same as JointCRep, with both models having
higher performance for smaller values of the anomaly density,
ρa. This behavior is expected, as for higher values of ρa, the
community structure plays a weaker role in the formation of
edges.

It is worth mentioning that the primary objective of the
current research is to develop the capabilities of JointCRep
through the incorporation of anomaly detection functional-
ity, rather than focusing on further improving its community
detection abilities or recovering reciprocity parameter. There-
fore, our focus is on assessing and optimizing the model’s
anomaly detection potential. For this, we measure the AUC
on edges, i.e., on a binary matrix that stores what edges are
true anomalies, and use as scores the inferred Q(i j). From our
results, illustrated in Figs. 6(e) and 6(f), we find that CRAD
demonstrates good performance in the detection of anomalous
edges across a range of anomaly densities. Furthermore, the
integration of reciprocity effects is enhancing performance,
compared to a model (ACD) where there is no such effect
[15].

In addition to evaluating anomaly detection, we are also
interested in assessing the ability of CRAD to identify missing
edges, also known as the link prediction task. In these experi-
ments we employ a fivefold cross-validation approach, where
the data set is split into five sets of data. In each realization,
four of these groups are utilized as a training set to infer
the parameters ". The remaining group is used as a test
set, where the score for each pair (Ai j, Aji ) in the matrix is
evaluated to compute the AUC. By iteratively varying which
group serves as the test set, we obtain a total of five trials per
realization. The final AUC value is determined by averaging
the results of these trials. The score of an edge is calculated
using the closed-form expression for its marginal probability,
as described in Eq. (11). As shown in Figs. 6(c) and 6(d), an
increase in the reciprocity parameter results in an increase in
the AUC for both CRAD and JointCRep; however, we observe
a bigger improvement in terms of AUC of CRAD over the
competitive algorithms. These results indicate that our model
becomes more effective in link prediction tasks for higher
values of reciprocity.

B. Real-world data sets

In order to assess the practical utility of our model, we
investigate its usage on a variety of real-world data covering
applications such as food-sharing between bats, social support
interactions in a rural community, email exchanges, and on-
line dating. Their sizes range from N = 19 to N = 3562 (see
Table I for a summary description). We select the number of
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TABLE I. Real-world data-set descriptions.

Network Abbreviation N E ⟨k⟩ Reciprocity Ref.

Vampire bat vampire bat 19 103 10.8 0.64 [26]
A Nicaraguan community Nicaraguan 108 1517 14.05 0.11 [27]
UC Irvine messages UC Irvine 1302 19044 29.3 0.68 [28]
Online dating POK 3562 18098 10.2 0.78 [41]

communities K with fivefold cross-validation, as in real data
this value is usually unknown. Specifically, we perform edge
prediction tasks using different values of K and evaluate the
performance of CRAD on each data set by calculating the area
under the curve (AUC) on a test set, after training the model
on a training set. The value of K that yields the highest AUC
is selected as the optimal number of communities.

Injecting anomalous edges. To evaluate the accuracy and
precision of the model in detecting anomalous edges, we
first need to know the true label of edges, being anomalous
or regular. However, one of the challenges in this regard is
the lack of data containing explicit anomalies. To address
this challenge, we conduct an experiment where we inject n
random edges between nodes in a real data set and label them
as anomalous. We vary n to evaluate the impact of anomaly
density ρa = n/E on model performance. We then run our
model on this manipulated data set and infer the expected
value E[σ(i j)] = Q̂(i j) ∈ [0, 1] for the edge labels, which also
indicates the likelihood that the edges between two nodes are
anomalous. Based on this, we assign labels to the edges. In
this specific experiment, we label the first n pairs (i, j) with
the highest values of Q̂(i j) as anomalous edges. We measure
the precision as a performance metric; this is the fraction of in-
ferred anomalous edges which are correctly classified (in our
case—since we fix the number of inferred anomalous edges
to be equal to the number of injected anomalous edges—this
also corresponds to recall, i.e., the fraction of true anomalous
edges that are inferred as such).

To establish a benchmark comparison for evaluating the
efficacy of our proposed algorithm, we conducted a compara-
tive analysis of its performance against two naive classifiers,
namely, uniformly random guess and majority class prior. The
first makes a random prediction with a probability propor-
tional to the percentage of anomalous edges; the latter always
predicts the most common class in the data set. We com-
puted various validation metrics, including AUC, accuracy, F1
score, and brief score, on results obtained using our model and
these two naive classifiers. We find that the performance of
these naive classifiers is suboptimal when applied to all data
sets, and our proposed algorithm significantly outperforms
both of them. A more detailed description of the results is
presented in Appendix F.

1. Smaller data sets

a. Vampire bat network. The vampire bat network is a
complex and dynamic social structure in which individual
vampire bats form connections and share food with one an-
other [26]. The bats have a remarkable ability to detect the
body heat of other bats, even in complete darkness, allowing
them to locate potential food sources and potential recipients

for food sharing. When a bat finds food, it will often regurgi-
tate some of it and share it with other members of its network.
This behavior, known as reciprocal altruism, is essential for
the survival of the group, as it ensures that all members have
access to food even when they are unable to find it themselves.
The decision of who to feed is likely to be influenced by
both the genetic relatedness of the individuals involved and
their history of reciprocal sharing. Given this, we expect that
reciprocity will play a significant role in determining which
individuals form close social ties within this network. As
such, when examining this data set, it will be important to
carefully consider this effect. In our analysis, we use the data
obtained from Ref. [26] and remove isolated nodes. The net-
work consists of N = 19 nodes, E = 103 edges, and has high
reciprocity of 0.64. In addition, we fix K = 2 as in Ref. [21].

As shown in Fig. 2, our model’s ability to detect anomalies
improves when there is a higher concentration of anomalies
in the data set. The plot depicts the precision in detecting the
anomalous edges, for a range of anomaly density, ρa. In a
more specific case, Fig. 3 provides an example of how CRAD
can be used for anomaly detection in the vampire bat data set.
In this example, a set of edges with ρa = 0.09 was embedded
in the system. In this figure, the entries of the estimated Q̂
matrix, which represent the probability of edges being anoma-
lous, are categorized based on their true labels and assigned

FIG. 2. Precision in detecting the injected edges in the vampire
bat network. The precision increases by the increase in the number of
anomalous edges injected in the network, i.e., anomaly density in the
data set, ρa. The result is the average over ten randomly injected sets
of edges; bars are standard deviations. Here we use the initialization
π = 0.1.
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FIG. 3. Anomaly detection in the vampire bat network. We show
the distribution of Q̂(i j), i.e., the probability of a pair of edges
(i, j) being anomalous, as estimated by CRAD. We distinguish the
true regular and anomalous edges with different colors, blue and
orange, respectively, to highlight their different inferred distributions.
Here, ρa = 0.09 and π = 0.1. We measure a precision of 0.5. For
this, we label as anomalous the fraction of ρa edges with highest
Q̂(i j). The vertical dashed line denotes the minimum Q̂(i j) observed
in this set of anomalous edges.

different colors to highlight their different inferred distribu-
tions of Q̂. The plot clearly shows two different distributions,
one with a high peak at Q̂(i j) = 0 and the other peaked around
Q̂(i j) = 1. The inset reveals the presence of the second peak.
Notably, the peak around Q̂(i j) = 0 extends up to 40 on the
y axis in the inset, but the plot is truncated to highlight the
more significant peak around Q̂(i j) = 1. The first corresponds
to regular edges, which are thus correctly identified as such,
while the latter are the injected anomalies, which are indeed
assigned a higher probability of being anomalous. While there
are few regular edges that have a high Q̂, we observe that
a significant density of anomalous edges is concentrated at
Q̂(i j) > 0.8, indicating that the model is correctly assigning
them as anomalous. Quantitatively, we measure precision and
recall values of 0.5, obtained by labeling as anomalous the
fraction of ρa = 0.09 edges with highest Q̂(i j). Even though
a small fraction of regular edges are classified as anomalous
and vice versa, these numbers show that overall the algorithm
is doing well at detecting the injected anomalies.

b. A Nicaraguan community. The next data set represents
the social support network of indigenous Nicaraguan horti-
culturalists [27]. The original data set contains self-reported
network data. Ties are reported by several individuals and
these may be in disagreement with each other. Hence, we
process it using the VIMuRe algorithm [16], which esti-
mates probabilistically an underlying network structure from
self-reported network data, provided by multiple reporters,
accounting for reciprocity. The summary description of the
estimated network by VIMuRe can be seen in Table I. In
addition, it estimates the reliability θ > 0 of each individual

FIG. 4. Anomaly detection in a Nicaraguan social support net-
work. We show a scatterplot of Q̂i (the maximum probability that
one of the connecting ties of node i is anomalous), as estimated
by CRAD, against θi, reporters’ reliabilities, as estimated by the
VIMuRe algorithm. The correlation is calculated as the Pearson co-
efficient; the dashed line is a linear fit to the data. Positive correlation
signals that nodes that are more unreliable (high θi) tend to have
an edge that is more likely to be labeled as anomalous among its
connections.

reporter, with higher values denoting over-reporting. Relia-
bilities can be correlated to anomalies in that we expect that
unreliable reporters may report nonexistence ties which we
interpret as anomaly.

To assess this, we run VIMuRe twice. The first time, we
run its default version and use it to collect estimates of re-
porters’ reliabilities. The second time, we run it in a modified
version where we fix the reliability parameters to a neutral
value, assuming that all reporters are reliable. We use this
output, the estimated network in this modified version, as
input for CRAD. In this way, we aim at observing proxies for
anomalous edges: These are some of the edges that involve un-
reliable reporters, as estimated in the first run of VIMuRe. Our
model labels anomalies on edges; instead in this data set we
have information on nodes (their reliabilities). We can build a
correspondence between these two types of information by as-
suming that edges connected to the most unreliable reporters
would have the highest value in the estimated Q̂ matrix. To
quantify this match, we assign a value Q̂i = max j∈∂i Q̂(i j) to
each reporter i, where ∂ j is its neighborhood, being the maxi-
mum probability that one of its connecting ties is anomalous.

We expect Q̂i to be high for nodes that have a high unrelia-
bility θ . We find indeed a positive correlation of 0.33 between
θi and Q̂i, as shown in Fig. 4. In particular, we observe that
the edge (76,3) between the two most unreliable nodes has
the maximum observed value of Q̂(i j) = 1, which is consistent
with the findings reported in Ref. [16]. Notice that we expect
this correlation to further increase if we were able to account
explicitly for anomalies on nodes (instead of on edges). In this
case, one could envision adapting our formalism to assign ran-
dom variables σi to nodes, which may result in less tractable
distributions and thus higher complexity, but may be more
appropriate for applications in which nodes act consistently
as anomalous. We leave this as an open question for future
work.

2. Larger data sets

In this section, we test our algorithm on University of
California (UC) Irvine and POK messages (from POK com-
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FIG. 5. Anomaly detection in the UC Irvine and POK networks. We show the distribution of Q̂(i j), i.e., the probability of a pair of edges
(i, j) being anomalous [(a), (c)] and the confusion matrix [(b), (d)] as estimated by CRAD, for the UC Irvine (left) and POK (right) data sets.
We distinguish the true regular and anomalous edges with different colors, blue and orange, respectively, to highlight their different inferred
distributions. Here, ρa = 0.1 and π = 0.3. We measure a precision of 0.68 for the UC Irvine and of 0.78 for the POK network. The vertical
dashed line denotes the minimum Q̂(i j) observed in this set of anomalous edges.

munity), as examples of larger data sets. In each case, we
randomly select and add 10% additional edges, labeled as
anomalous. The CRAD algorithm consistently produces re-
liable results in detecting anomalies in both data sets.

a. UC Irvine messages. The network of UC Irvine mes-
sages is composed of messages sent between users of an
online community of students from the University of Califor-
nia, Irvine [28]. Each node in this communication network
represents a user and each directed edge represents a message
that was sent from one user to another. Our model consis-
tently identified anomalies in this data set with a high level of
accuracy, as evidenced by a particularly high peak in the distri-
bution of Q̂(i j) corresponding to anomalous edges in Fig. 5(a).
The inset plot of Fig. 5(a) provides a more detailed view of
the distribution of values around Q̂(i j) = 1. Specifically, the
plot reveals a clear peak in this region. Notably, the peak
around Q̂(i j) = 0 extends up to 12 500 on the y axis, but the
plot is truncated to highlight the more significant peak around
Q̂(i j) = 1. This result is also quantified with a precision value
of 0.68 in the confusion matrix shown in Fig. 5(b).

b. Network of online dating. The POK data set is a large
data set containing the messages exchanged by users within
the online dating POK community. The results depicted in
Figs. 5(c) and 5(d) demonstrate the strong performance in
identifying and reconstructing anomalous edges. Figure 5(c)
illustrates how, also in this case, the distribution of Q̂ val-
ues for the anomalous edges is peaked around Q̂ = 1. The
distribution of values around Q̂(i j) = 1 is further analyzed
in the inset plot of Fig. 5(c). In particular, the plot reveals a
distinct peak in the vicinity of Q̂(i j) = 1. Also in this case, we
bounded the values shown in the y axis to emphasize the more
prominent peak around Q̂(i j) = 1, but values at Q̂(i j) = 0
would otherwise extend up to 15 000. The precision value for
the POK network is 0.78, as indicated by the corresponding
entry in the confusion matrix in Fig. 5(d).

We can observe main common patterns in both UC Irvine
and POK data sets: The distribution corresponding to reg-
ular edges is sharply peaked around Q̂ = 0 while the one
for anomalous edges has a high peak around Q̂ = 1. This
distinctive shape of the distribution of Q̂(i j) demonstrates
the model’s strong ability to distinguish regular edges from

anomalous ones. Taken together, these results support the
efficacy of our classification methodology.

V. CONCLUSION

We introduce an expressive generative model to detect edge
anomalies in networks that takes into account community
membership and reciprocity as main mechanisms driving tie
formation. By leveraging these two effects, it is able to detect
what edges deviate from a regular behavior and estimate their
probability of being anomalous. This inference is performed
in a joint learning of edge anomalies and mixed member-
ships of nodes in communities, thus allowing practitioners to
flag potential irregular edges while providing an interpretable
community structure.

In contrast to common models for anomaly detection that
rely on metadata on edges or nodes, our model takes as input
only the adjacency matrix and estimates anomaly labels on
the edges. It is an unsupervised model, meaning it does not
require any input label to train it. These features make it
particularly relevant in cases where extra information is not
available—which is the case for many networked data sets—
where the applicability of many machine learning methods
for anomaly detection is significantly limited. As an example,
traditional models for anomaly detection in financial trans-
actions often rely on metadata such as transaction amount,
location, and merchant information [5,29,30]. Instead, our
model only requires the adjacency matrix of the transactions,
which represents the connections between different account
holders.

One key feature of our model is that it provides a joint
probability for the existing pairs of edges between any pairs of
nodes, allowing for the inclusion of reciprocity in the model,
a relevant property in many directed networks. Furthermore,
our model allows for mixed community membership, meaning
that nodes can belong to more than one community. This is a
more realistic representation of data structures compared to
models that assume a single community membership for each
node.

There are numbers of ways that our model could be fur-
ther improved. As mentioned above, our model takes little
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information in input, only the network’s adjacency matrix and,
optionally, the number of communities (which can otherwise
be estimated from the input network with model selection
criteria). A natural next step would be to extend the current
model to account for extra information as node attributes,
using ideas from generative models with both communities
and attributes [31,32], or to consider techniques from semisu-
pervised learning [33], in the case of availability of labels on
a subset of the edges.

Furthermore, we can envision that, for rich and large
data sets, deep learning architectures for anomaly detection
[34–36] may be competitive methods. However, one could
imagine extending standard architectures by combining them
with the main ingredients of our model, in data sets where
communities and reciprocity matter. The robust performance
in detecting anomalies in real data with no extra information
suggests that combining these insights with complex deep
architectures may make the latter more expressive and thus
boost predictive power.

Another type of extra information that is present in many
real data sets is time [37]. Edges can be time-stamped and
this could be used to improve estimates of anomalies. Hence,
future work could be directed at generalizing our model to
dynamical networks, for instance by combining insights from
generative models for dynamic networks with communities
[38–40].

It is important to note that the inferred labels for edges in
our model should be treated as estimates rather than definitive
conclusions. These labels should be used with caution in the
study of a network, as further investigation may be necessary
to fully understand the nature of anomalous edges. However,
our model can provide valuable insights for practitioners to
better understand and interpret the networks they are studying,
especially when combined with their specialized knowledge
and understanding of the data at hand.

ACKNOWLEDGMENTS

All the authors were supported by the Cyber Valley Re-
search Fund. The authors thank the International Max Planck
Research School for Intelligent Systems (IMPRS-IS) for sup-
porting M.C.

APPENDIX A: DETAILED DERIVATIONS

Anomalous edges. As in the formation of anomalous
edges, the reciprocated edges are independent. We apply the

condition J (a)
(i j) = 0; therefore, from Eq. (4), we find

p(a)
11 p(a)

00

p(a)
10 p(a)

01

= 1 ⇒ p(a)
11 =

p(a)
10 p(a)

01

p(a)
00

. (A1)

Moreover, f (a)
(i j) = f (a)

( ji) = f (a) ⇒ p(a)
10 = p(a)

01 = p(a) and

f (a) = log π = log
p(a)

p(a)
00

⇒ p(a) = π p(a)
00 . (A2)

Using the normalization condition, p(a)
00 + p(a)

10 + p(a)
01 + p(a)

11 =
1, and the results of Equation (A1) to (A2), we find the explicit
mapping between the latent variables and the instances of
P(a)(Ai j, Aji|θa) in Equation 2,

p(a)
00 = 1

Z (a)
i j

, p(a)
10 = p(a)

01 = π

Z (a)
i j

, p(a)
11 = π2

Z (a)
i j

, (A3)

where the normalization constant is

Z (a)
i j = (1 + π )2 . (A4)

Regular edges. In order to find the explicit mapping be-
tween the latent variables and the instances of P(r)(Ai j, Aji|θr )
in Equation 2, we follow the same procedure as in Ref. [21],

p(r)
01 = λ ji

Z (r)
(i j)

, (A5)

p(r)
10 = λi j

Z (r)
(i j)

, (A6)

p(r)
11 = ηλi jλ ji

Z (r)
(i j)

, (A7)

p(r)
00 = 1

Z (r)
(i j)

, (A8)

where the normalization constant is

Z (r)
(i j) = λi j + λ ji + ηλi jλ ji + 1. (A9)

Having these mappings, we can construct the marginal and
conditional distributions of the ties. Thus, the marginal and
conditional distributions of Ai j have the following densities,
respectively:

P(Ai j ) =
[[

p(r)
10

]Ai j
[
p(r)

00

](1−Ai j ) +
[
p(r)

11

]Ai j
[
p(r)

01

](1−Ai j )] × (1 − µ) +
[[

p(a)
10

]Ai j
[
p(a)

00

](1−Ai j ) +
[
p(a)

11

]Ai j
[
p(a)

01

](1−Ai j )] × µ, (A10)

P(Ai j |Aji ) =
[
p(r)

11

]Ai j A ji
[
p(r)

10

]Ai j (1−Aji )[p(r)
01

](1−Ai j ) Aji
[
p(r)

00

](1−Ai j ) (1−Aji )

P(Aji )
× (1 − µ)

+
[
p(a)

11

]Ai j A ji
[
p(a)

10

]Ai j (1−Aji )[p(a)
01

](1−Ai j ) Aji
[
p(a)

00

](1−Ai j ) (1−Aji )

P(Aji )
× µ.

(A11)
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APPENDIX B: INFERENCE

Our goal is, given two mechanisms responsible for edge formation, first to determine the values of the parameters " =
{{uik}, {vik}, {wkq}, η,π , µ}, which determine the relationship between the anomaly indicator σ(i j) and the data, and then, given
those values, to estimate the indicator σ(i j) itself.

We have the posterior:

P(σ,"|A) = P(A|σ,")P(σ|µ)P(")P(µ)
P(A)

. (B1)

Summing over all the possible indicators, we have

P("|A) =
∑

σ

P(σ,"|A), (B2)

which is the quantity that we need to maximize to extract the optimal ". It is more convenient to maximize its logarithm,
log-posterior, as the two maxima coincide. We use Jensen’s inequality:

L(") = log P("|A) = log
∑

σ

P(σ,"|A) >
∑

σ

q(σ ) log
P(σ,"|A)

q(σ )
, (B3)

where q(σ ) is a variational distribution that must sum to 1. In fact, the exact equality happens when

q(σ ) = P(σ,"|A)∑
σ P(σ,"|A)

. (B4)

This definition is also equivalent to maximizing the right-hand side of Eq. (B3) with respect to q.
Finally, we need to maximize the log-posterior with respect to " to get the latent variables. This can be done in an iterative

way using the EM algorithm, alternating between maximizing with respect to q using Eq. (B4) and then maximizing Eq. (B23)
with respect to ". In this work, we only fix priors for the σi j (Bernoulli distributions with parameter µ). For this variable we
can thus estimate full posterior distributions; instead for the other parameters our model outputs point estimates. This could be
modified by suitably specifying priors also for the reciprocity or community-related parameters. In this case, one could easily
obtain maximum a posteriori (MAP) estimates with calculations similar to those reported here.

Defining Q(i j) =
∑

σ(i j)
q(σ(i j) ) σ(i j), the expected value of σ(i j) over the variational distribution, we obtain

L(") = −
∑

σ

[q(σ ) log q(σ )] +
∑

(i, j)

{
(1 − Q(i j) )

(
Ai j f (r)

i j + Aji f (r)
ji + Ai jA ji J (r)

(i j) − log Z (r)
(i j)

)

+ Q(i j)
(
(Ai j + Aji ) f (a) − log Z (a)

(i j)

)
+ Q(i j) log µ + (1 − Q(i j) ) log(1 − µ)

}
, (B5)

and having Eqs. (7)–(10),

L(") = −
∑

σ

[q(σ ) log q(σ )] (B6)

+
∑

(i, j)

{

(1 − Q(i j) )

(

Ai j log
∑

k

uikv jqwkq + Aji log
∑

k

u jkviqwkq + Ai jA ji log η

− log

[
∑

k,q

uikv jqwkq +
∑

k,q

u jkviqwkq + η
∑

k,q

uikv jqwkq

∑

k,q

u jkviqwkq + 1

])

+ Q(i j)((Ai j + Aji ) log π − 2 log(π + 1)) + Q(i j) log µ + (1 − Q(i j) ) log(1 − µ)

}

. (B7)

The derivative of the log-posterior with respect to η,

∂L(")
∂η

= 1
η

∑

(i, j)

(1 − Q(i j) ) Ai jA ji −
∑

(i, j)

(1 − Q(i j) )
λi jλ ji

λi j + λ ji + ηλi jλ ji + 1
!= 0, (B8)

leads to a fixed-point equation,

η = f (η) =
∑

(i, j)(1 − Q(i j) ) Ai jA ji
∑

(i, j)(1 − Q(i j) )
[

λi jλ ji

λi j+λ ji+ηλi jλ ji+1

] , (B9)

which can be solved numerically with fixed-point methods. Alternatively, one can use root-finding methods to solve directly
Eq. (B8) in η.
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The equations for the remaining parameters need to be solved using Jensen’s inequality, and using log x < x to obtain
− log x > −x,

L(") > −
∑

σ

[q(σ ) log q(σ )] (B10)

+
∑

(i, j)

⎧
⎨

⎩(1 − Q(i j) )

(

Ai j

∑

k,q

ρi jkq log
(

uikv jqwkq

ρi jkq

)
+ Aji

∑

k,q

ρ jikq log
(

u jkviqwkq

ρ jikq

)
(B11)

+ Ai jA ji log η −
[

∑

k,q

uikv jqwkq +
∑

k,q

u jkviqwkq + η
∑

k,q

uikv jqwkq

∑

k,q

u jkviqwkq + 1

])

+ Q(i j)((Ai j + Aji ) log π − 2 log(π + 1)) + Q(i j) log µ + (1 − Q(i j) ) log(1 − µ)

}

, (B12)

and the equality holds when

ρi jkq = uikv jqwkq∑
k,q uikv jqwkq

. (B13)

We derive community parameters; for example, we start by considering uik ,

∂L(")
∂uik

=
∑

j

⎡

⎣(1 − Q(i j) )

[

Ai j

∑

q

ρi jkq
1

uik
−

∑

q

v jqwkq −
∑

q

η v jqwkqλ ji

]⎤

⎦ != 0, (B14)

and we finally obtain

uik =
∑

jq(1 − Q(i j) ) Ai jρi jkq
∑

j

[∑
q (1−Q(i j) ) (1+η λ ji ) v jqwkq

λi j+λ ji+ηλi jλ ji+1

] . (B15)

We find similar expressions for vik and wkq:

vik =
∑

jq(1 − Q(i j) ) Ajiρ jiqk
∑

j

[∑
q (1−Q(i j) ) (1+η λi j ) u jqwqk

λi j+λ ji+ηλi jλ ji+1

] , (B16)

wkq =
∑

i, j (1 − Q(i j) ) Ai jρi jkq
∑

i, j

[
(1−Q(i j) ) (1+η λi j ) uikv jq

λi j+λ ji+ηλi jλ ji+1

] . (B17)

For π it yields the following:

π =
∑

(i, j) Q(i j) (Ai j + Aji )∑
(i, j) Q(i j) (2 − Ai j − Aji )

. (B18)

Similarly for µ,

∂L(")
∂µ

=
∑

(i, j)

1
µ

Q(i j) − 1
1 − µ

∑

(i, j)

(1 − Q(i j) )
!= 0, (B19)

yielding

µ = 1
N (N − 1)/2

∑

(i, j)

Q(i j). (B20)

To evaluate q(σ ), we substitute the estimated parameters inside Eq. (B4):

q(σ ) =

∏
(i, j)

[
exp{(Ai j+Aji ) f (a)}

Z (a)
(i j)

× µ

]σ(i j)
[

exp {Ai j f (r)
i j +Aji f (r)

ji +Ai j A ji J (r)
(i j)}

Z (r)
(i j)

× (1 − µ)
]1−σ(i j)

∑
σ(i j)

∏
(i, j)

[
exp{(Ai j+Aji ) f (a)}

Z (a)
(i j)

× µ

]σ(i j)
[

exp {Ai j f (r)
i j +Aji f (r)

ji +Ai j A ji J (r)
(i j)}

Z (r)
(i j)

× (1 − µ)
]1−σ(i j)
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=
∏

(i, j)

[
exp{(Ai j+Aji ) f (a)}

Z (a)
(i j)

× µ

]σ(i j)
[

exp {Ai j f (r)
i j +Aji f (r)

ji +Ai j A ji J (r)
(i j)}

Z(i j)
× (1 − µ)

]1−σ(i j)

∑
σ(i j)=0,1

[
exp{(Ai j+Aji ) f (a)}

Z (a)
(i j)

× µ

]σ(i j)
[

exp {Ai j f (r)
i j +Aji f (r)

ji +Ai j A ji J (r)
(i j)}

Z (r)
(i j)

× (1 − µ)
]1−σ(i j)

=
∏

(i, j)

Qσ(i j)

(i j) (1 − Q(i j) )(1−σ(i j) ), (B21)

where

Q(i j) =
exp

[
(Ai j + Aji ) f (a) − log Z (a)

(i j)

]
µ

exp
[
(Ai j + Aji ) f (a) − log Z (a)

(i j) )
]
µ + exp

[
f (r)
i j Ai j + f (r)

ji A ji + J (r)
(i j) Ai jA ji − log Z (r)

(i j)

]
(1 − µ)

= exp[(Ai j + Aji ) log π − 2 log(π + 1)] µ

exp[(Ai j + Aji ) log π − 2 log(π + 1)] µ + exp
[
Ai j log λi j + Aji log λ ji + log η Ai jA ji − log Z (r)

(i j)

]
(1 − µ)

=
π (Ai j +A ji ) µ

Z (a)
(i j)

π (Ai j +A ji ) µ

Z (a)
(i j)

+ λ
Ai j
i j λ

A ji
ji ηAi j A ji (1−µ)

Z (r)
(i j)

. (B22)

Notice that this is exactly the expected value with respect to the variational distribution as previously defined.

Convergence criteria

The EM algorithm consists of randomly initializing u, v, w, η, π , and µ, then iterating Eqs. (B13), (B22), (B15)–(B17), (B9),
(B18), and (B20), until the convergence of the following log-posterior:

L(") = log P("|A) >
∑

σ

q(σ ) log
P(σ,"|A)

q(σ )

= −
∑

σ

q(σ ) log q(σ ) +
∑

σ

q(σ ){log P(A|σ; ") + log P(σ|µ)}

= −
∑

σ

q(σ ) log q(σ ) +
∑

σ(i j)

q(σ(i j) )

{
∑

(i j)

[
(1 − σ(i j) )

(
Ai j f (r)

i j + Aji f (r)
ji + Ai jA ji J (r)

(i j) − log Z (r)
(i j)

)

+ σ(i j)
(
(Ai j + Aji ) f (a) − log Z (a)

(i j)

)
+ σ(i j) log µ + (1 − σ(i j) ) log(1 − µ)

]
}

= −
∑

(i, j)

[Q(i j) log Q(i j) + (1 − Q(i j) ) log(1 − Q(i j) )]

+
∑

(i, j)

{
(1 − Q(i j) )

(
f (r)
i j Ai j + Aji f (r)

ji + Ai j A ji J (r)
(i j) − log Z (r)

(i j)

)

+ Q(i j)
(
(Ai j + Aji ) f (a) − log Z (a)

(i j)

)
+ Q(i j) log µ + (1 − Q(i j) ) log(1 − µ)

}
+ const, (B23)

where we neglect const, constant terms due to the uniform priors. To calculate q(σ ), we used Eq. (B21), i.e., a Bernoulli
distribution.

APPENDIX C: GENERATIVE MODEL

Being generative, the model can be used to generate
synthetic networks with anomalies. For this, one should
sample the latent parameters " = (u, v,w, η,π , µ), then
sample σ given the parameters. Finally, given the σ and
the latent parameters, the adjacency matrix A could be
constructed. For a given set of community parameters
as the input parameters [15,24], the expected number of

anomalous and nonanomalous edges are N2 µ π
(1+π ) , and

E[M] = (1 − µ)
∑

i, j
λi j+ηλi jλ ji

Z (r)
(i j)

, respectively. Assuming a de-

sired total number of edges E , we can thus multiply π ,
µ, and M by suitable sparsity constants that tune (i) the
ratio of anomalous edges to the total number of edges,
ρa = N2 µ π

(1+π )/(N2 µ π
(1+π ) + (1 − µ)E[M]) ∈ [0, 1], and

(ii) the success rate of anomalous edges π . Once these two
are fixed, the remaining sparsity parameter for the matrix M
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FIG. 6. Community detection, link prediction, and anomaly detection on synthetic network data sets. [(a), (b)] We compare the performance
of CRAD against JointCRep and BPMF algorithms in community detection, as measured by cosine similarity (CS), and [(c), (d)] in link
prediction tasks, as measured by AUC on held-out data. In addition, [(e), (f)] we test the ability to detect anomalies against a model that
does not include a reciprocity effect (ACD), as measured by the AUC on a binary data set that contains what edges are regular and what are
anomalous. The data sets have N = 500, average degree ⟨k⟩ = 60, K = 3. The first column is for networks generated without reciprocity,
log η = 0, while the second column is for networks with positive reciprocity, log η = 3. In the x axis we vary ρa, the ratio of anomalous edges
over the total number of edges. Lines and shades around them are averages and standard deviations over ten network samples, respectively.

is estimated as

E (1 − ρa) = (1 − µ)
∑

i, j

ζ λi j + η ζ λi j ζ λ ji

ζ λi j + ζ λ ji + η ζ λi j ζ λ ji + 1
,

(C1)

which can be solved with root-finding methods.

APPENDIX D: RESULTS ON SYNTHETIC NETWORKS

Figure 6 presents results of community detection, link
prediction, and anomaly detection on data sets of synthetic
networks.

APPENDIX E: REAL DATA: DATA-SET DESCRIPTION

Table I provides a summary of the key characteristics of
the studied data sets. The data set of UC Irvine messages
and online dating (POK) have undergone preprocessing that
involved the removal of self-loops, retaining only nodes with
both incoming and outgoing edges, and using only the giant
connected components.

APPENDIX F: BENCHMARKING RESULTS AGAINST
NAIVE CLASSIFIERS

To evaluate the classifiers, we used four commonly used
performance metrics: AUC, accuracy, F1 score, and Brier
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TABLE II. Performance metrics comparison. Results are averages and standard deviations in edge anomaly detection over ten different
samples of sets of injected edges (10% of the total edges).

Data set Metric CRAD Uniformly random guess Majority class prior

vampire bat AUC 0.789 ± 0.043 0.475 ± 0.086 0.500 ± 0.000
F1 score 0.591 ± 0.084 0.052 ± 0.019 0.000 ± 0.000
Accuracy 0.97507 ± 0.00511 0.49363 ± 0.02163 0.96952 ± 0.00000

Brier score 0.02493 ± 0.00511 0.50637 ± 0.02162 0.03047 ± 0.00000
UC Irvine AUC 0.873 ± 0.005 0.501 ± 0.005 0.500 ± 0.000

F1 score 0.747 ± 0.007 0.002 ± 0.000 0.000 ± 0.000
Accuracy 0.99943 ± 0.00000 0.50023 ± 0.00036 0.99888 ± 0.00000

Brier score 0.00057 ± 0.00000 0.49977 ± 0.00036 0.00112 ± 0.00000
POK AUC 0.895 ± 0.003 0.499 ± 0.006 0.500 ± 0.000

F1 score 0.790 ± 0.006 0.000 ± 0.000 0.000 ± 0.000
Accuracy 0.99994 ± 0.00000 0.50002 ± 0.00016 0.99986 ± 0.00000

Brier score 0.000060 ± 0.000001 0.49998 ± 0.00000 0.00014 ± 0.00000

score. AUC is a measure of the classifier’s ability to dis-
tinguish between positive and negative samples. Accuracy
measures the proportion of correctly classified samples. F1
score is the harmonic mean of precision and recall. For these
three metrics, higher values indicate better performance. The
Brier score measures the accuracy of probabilistic predictions,
with lower values indicating better performance.

We compared the average performance of the proposed
CRAD algorithm with two naive classifiers—“uniformly ran-
dom guess” and “majority class prior”—on three real-world
data sets: Vampire bat, UC Irvine, and POK. The “uniformly
random guess” naive classifier makes random predictions with
equal probabilities, but in the case of imbalanced data sets,
the probability of each class is adjusted to match the per-

centage of the anomaly category. In this study, we imposed
this bias to ensure that the number of anomalous and regular
edges is correctly balanced. On the other hand, the “majority
class prior” naive classifier always predicts the most common
class in the data set. The averages are taken over ten samples
with randomly injecting edges. In all these experiments, the
number of injected edges is 10% of the total edges. The results
in Table II show that the CRAD algorithm outperforms both
naive classifiers across all data sets and in all performance
metrics. Specifically, CRAD achieves higher AUC, accuracy,
and F1 score values and lower Brier score values. These find-
ings demonstrate the effectiveness of the proposed algorithm
in accurately classifying the data, highlighting its potential for
various real-world applications.
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Abstract
Social network data are often constructed by incorporating reports frommultiple individuals. However, it is not
obvious how to reconcile discordant responses from individuals. There may be particular risks with multiply
reported data if people’s responses reflect normative expectations—such as an expectation of balanced,
reciprocal relationships. Here, we propose a probabilistic model that incorporates ties reported by multiple
individuals to estimate the unobserved network structure. In addition to estimating a parameter for each
reporter that is related to their tendency of over- or under-reporting relationships, the model explicitly
incorporates a term for ‘mutuality’, the tendency to report ties in both directions involving the same alter.
Our model’s algorithmic implementation is based on variational inference, which makes it efficient and
scalable to large systems. We apply our model to data from a Nicaraguan community collected with a
roster-based design and 75 Indian villages collected with a name-generator design. We observe strong
evidence of ‘mutuality’ in both datasets, and find that this value varies by relationship type. Consequently,
our model estimates networks with reciprocity values that are substantially different than those resulting
from standard deterministic aggregation approaches, demonstrating the need to consider such issues
when gathering, constructing, and analysing survey-based network data.
Keywords: Social network data, mutuality, reliability, variational inference, latent network, network measurement

1 Introduction
Social network analysis has emerged as a fruitful framework for social scientists to represent and
understand social relationships and their consequences (Borgatti et al., 2009). For example, pat-
terns of interaction among people, as well as peoples’ perceptions of their relationships, have
been found to be important for their material wealth (Jackson, 2021), social position and
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welfare (Lin, 2002; Redhead & Power, 2022), and health and well-being (Holt-Lunstad et al.,
2015; Perkins et al., 2015).
While new data sources now allow for the study of digitallymediated interactions (such as social

media, mobile phone records, and other trace data; Eagle et al., 2009; Lazer et al., 2021;
Park et al., 2018), social scientists’ interest in day-to-day interactions and interpersonal relations
are not always amenable to direct observation. Researchers, therefore, continue to rely on surveys
where respondents identify the people with whom they have interactions or social relationships
(Burt, 1984). A variety of approaches exist for eliciting self-reported network ties from respond-
ents.Most common is the ‘name generator’method, where respondents are asked to list the names
of those with whom they have different types of relationships or interactions. Other approaches
require a full roster, where respondents are asked about their relationship(s) with a set of possible
partners (Marsden, 2005; Ross & Redhead, 2022; Warner et al., 1979).
Importantly, survey-based elicitations can be used not only for accounts of concrete interactions or

exchanges, but can also facilitate a representation of respondents’ subjective perceptions of their con-
nections (Freeman, 1992; Krackhardt, 1987). Questions may be framed aroundmore qualitative sen-
timents towards others—such as in friendships—and so do notmerely document concrete interactions
or observed events of exchange. For many substantive research questions, an individual’s imperfect
perception of their social relationshipsmay be as (if notmore) important as observable events of inter-
action or exchange. This has been highlighted by empirical research suggesting that individuals place
considerable weight on their subjective relationships when making important decisions about who to
cooperate with or support (Power, 2017; Redhead & von Rueden, 2021; von Rueden et al., 2019),
and bywork demonstrating that such relationships have strong associationswithmany important so-
cial and health-related outcomes (Kristiansen, 2004; Smith & Christakis, 2008).
The applicability of self-reported network data, however, has been subject to enduring debate

within the social networks literature. Particularly when prompts query concrete exchanges or in-
teractions, the quality of such data rests on the reliability of the self-reports that respondents pro-
vide, and numerous empirical studies have highlighted a plethora of potential biases in responses
(Bernard et al., 1984; Killworth & Bernard, 1976). There is evidence that respondents’ recall of
their ties can be low, even over short periods of time (Brewer, 2000). For example, women within
twoWest African communities were only able to accurately recall between 53% and 59% of their
interactions across a 24-hr period prior to surveying (Adams et al., 2006). Alongside this, individ-
ual differences in the ability to recall tiesmay be predicted by relationship type, the number of part-
ners a person has, and the duration of a given relationship (An, 2022; Bell et al., 2007). Both
theoretical studies and empirically observed patterns of nominations suggest that individuals ex-
pressing particular attributes (e.g., high social status or power; Simpson et al., 2011) are more
readily named, regardless of whether a relationship actually exists (Ball & Newman, 2013;
Marin, 2004; Marineau et al., 2018; Redhead et al., Accepted; Shakya et al., 2017). The order
in which questions appear within a survey, and the mode of elicitation, may further influence re-
sponses (Eagle & Proeschold-Bell, 2015; Pustejovsky and Spillane, 2009). That is, respondents
have been shown to become fatigued, and report fewer relationships, when asked several name
generator questions (Yousefi-Nooraie et al., 2019). Responses can also vary between interviewers,
based in part on their attributes and their dynamic with the interviewee (Lungeanu et al., 2021;
Marsden, 2003).
Noting all of these potential biases, one common practice is to obtain multiple reports on any

single tie within a network. For relationships that are understood to be undirected, this is inher-
ently captured with a single name generator question (i.e., both members of a friendship have
the opportunity to report it). Previous research has found mixed results as to the concordance be-
tween respondents about the existence of their social relationships, with agreement in nominations
ranging between 40% and 90% (Adams&Moody, 2007; Marsden, 1990). For relationships that
are understood to be directed, multiple queries are necessary. One common approach is to ‘double
sample’ a relationship, by asking respondents both who they go to for some type of assistance, and
also who comes to them (Nolin, 2008). When combined with complete censusing of individuals,
double sampling provides two perspectives on all relationships within a network, as both the giver
and receiver have an opportunity to name their partner in each prompt. A recent survey of double-
sampled network data has suggested that concordance between reporters is low, with an overall
average of 10% agreement (Ready & Power, 2021).
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Respondents need not be limited to reporting on the relationships in which they are directly in-
volved, butmay also be asked about the relationships between other individuals within the network.
This type of data has been collected through ‘cognitive social structures’ roster designs—where
respondents report on the relationships between all individuals within the network (Krackhardt,
1987; Newcomb, 1961)—though respondent fatigue means that this elicitation technique is some-
what uncommon. When it has been used, it has also shown relatively low levels of concordance be-
tween responses, highlighting that individual differencesmay guide respondents’ perceptions of their
own relationships and the relationships of others (see Brands, 2013, for a review).
Low levels of inter-respondent concordance suggest that while having multiple reports on any re-

lationship certainly provides new information, it does not necessarily resolve the issue of bias in re-
porting. Indeed, new issues may be introduced, if there are, for example, different reporting
propensities for different queries. One key issue for double-sampled data, in particular, may be peo-
ple’s expectation of, or desire for, mutually supportive, balanced relationships (Heider, 1958). The
use of multiple prompts entailed in double sampling may lead to an inflation of apparent reciprocity,
driven primarily by people’s propensity to name the same individuals across both prompts (Ready&
Power, 2021). We use the term ‘mutuality’ here to refer to this apparent inflation of reciprocity.
Overall, the low level of concordance found in multiply reported data raises the question of how
to statistically account for the ambiguity introduced by conflicting reports of the same potential tie.
To examine the individual biases that shape self-reports of ties, and to estimate the effect of mu-

tuality on the core properties of a network, we introduce a new latent network model for directed
ties that is able to combine multiply reported network data, while accounting for the variable ‘re-
liability’ of respondents. Thus, we estimate a latent network, where the probability of an unob-
served tie between two nodes is jointly dependent on the reports of multiple individuals and the
reliability of those individuals. We validate our model by simulating noisy reports from a true net-
work of ties, and then verify that we are able to recover the true generative network and the
individual-level reporter reliability and mutuality parameters. Finally, we evaluate our model us-
ing two empirical datasets that feature double-sampled questions, one based on a ‘name generator’
design and the other based on a roster method design. We conclude by discussing our findings and
outlining possible extensions of the model.

1.1 Related work
In the social sciences, simple deterministic rules are often used to aggregate multiple reports on
what should nominally be the same relationship (Krackhardt, 1987; Lee & Butts, 2018). When
data are collected via double sampling, for example, it is sometimes assumed that if one party for-
gets to report a relationship when asked (e.g., when they are asked who they give advice to), the
other party may report that tie (e.g., when they are asked who they receive advice from).With such
an expectation, the union of the two name generators is typically used (e.g., Nolin, 2010; Ready&
Power, 2018). Alternatively, it could be assumed that relationships are only salient when they are
mutually recognized; under such an expectation, the intersection of the two name generators
would be preferred (e.g., Krackhardt & Kilduff, 1990). These aggregation rules rely on simple
but strong expectations and presume consistency in how reporters respond to these questions.
This, paired with the fact that the statistical tools used most frequently in the social sciences
(e.g., exponential random graph models; Robins et al., 2007) assume that reported ties are a
‘true’ representation of a given network, can potentially lead to serious misrepresentations in
the social relations of interest in a given study.
Several statistical methods have been proposed to resolve discordant reports for social network

analysis (Butts, 2003; Holland et al., 1983; Kenny & La Voie, 1984; Killworth & Bernard, 1976;
Redhead et al., Accepted; Sewell, 2019; Sosa & Rodríguez, 2021). Similar methods have also been
introduced in other fields, like systems engineering (Amini et al., 2004), the biological sciences
(D’haeseleer & Church, 2004; Hobson et al., 2021; Sprinzak et al., 2003), and physics (Newman,
2018b). Recently, for example, social scientists have attempted to tackle the problem of concordance
by computing a ‘credibility score’ for every individual within a network, and determining whether a
given tie exists based on each reporter’s assigned credibility (An & Schramski, 2015).
Considering this broad literature, we focus on methods most similar to our own, namely ap-

proaches that rely on an explicit generative model for reports that provide only imperfect
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information about a true network of ties. For cognitive social structure data, in which each person
reports on ties between every pair of people in the network, both Sewell (2019) and Sosa and
Rodríguez (2021) have introduced models that aggregate network tie information across all re-
porters and simultaneously estimate error parameters for each reporter. The model proposed by
Butts (2003) is more similar to our work in that it accommodates fewer reports on each tie and
assumes the existence of a true underlying network. More recently, Redhead et al. (Accepted)
introduce a latent network model for double-sampled data, which simultaneously estimates a
true underlying network of directed ties and error parameters for each reporter, and directly incor-
porates mutuality. Our contribution involves an improvedmodel for a latent network that accom-
modates any number of reporters, allows directed ties, and incorporates mutuality explicitly into
the generative model of reports.
Our proposed model also requires a new estimation algorithm, which is an additional contribu-

tion of our work. This is because previous generative models for multiply reported data can be writ-
ten as a finite mixture (Titterington et al., 1985) of probability distributions. For example, the
probability distribution for a present tie could be different than the probability distribution for an
absent tie. Finite mixture models can often be estimated with efficient algorithms, such as
expectation-maximization, and have been used in network research where data come from unreli-
able reporters (Butts, 2003) or feature a significant amount of missingness (Peixoto, 2018). The
unique formulation of ourmodel requires an infinitemixturemodel approach and standardmethods
cannot be easily applied. Therefore, we propose a generative model for latent networks that simul-
taneously handles multiply reported ties and weighted reports, while allowing individuals to vary in
reliability. To estimate our model, we introduce an efficient variational inference algorithm.

2 The model
Consider the problem of collecting a network of ties between individuals. These ties could, for in-
stance, represent relationships commonly studied in the social sciences—such as loaningmoney, giving
advice, or sharing food. This can be done by querying a set ofM reporters about the existence of ties.
The real network is not observed; responses of the reporters are the only observed data at our disposal.
We assume that the unobserved network is correlatedwith these responses.Mathematically, we define
this as anN ×N-dimensional adjacency matrix, Y , where entries Yij ∈ {0, 1, . . . } indicate the weight
of the tie i ! j. For each tie type, the observed data is anN ×N ×M-dimensional tensor,X, with en-
tries Xijm containing reports by respondent m about the tie i ! j.
We assume that each respondent can, in principle, report on any tie within the network. The

exact rule of how reporters respond may change with the application, but may be flexibly repre-
sented by a binary mask, R, of entries Rijm. We set Rijm = 1 whenever a reporter, m, is surveyed
about the possible existence of a tie from node i to node j, and set the entry to 0 otherwise. In scen-
arios where a network has been double-sampled—e.g., where the same reporter responds about
giving and receiving social support—every tie type is sampled twice (for each reporter), once for
each direction of the interaction. These binary masks are convenient in the inference procedure
as they remove the contributions of nonreporters.
As an example, m can nominate who she gives advice to (giving) and who she receives advice

from (receiving). In this case,m ∈ i, j
{ }

, andwe distinguish the direction of the reported data using
the notationXijm to indicate i to j flows andXjim to indicate j to i flows. While we gave an example
for ties of type advice, the model applies for any type of directed tie. To keep the model flexible, we
model weighted ties with positive and discrete weights, so that Xijm ∈ 0, 1, . . .{ }. This also in-
cludes the binary case, when Xijm captures only whether a tie exists or not.
One of the main objectives of our model is to estimate the structure of a latent network, Y, from

the reported data,X. Note that the term ‘latent network model’ is also used for models predicting
network ties that incorporate latent variables to account for tie dependence implicitly (e.g., latent
spacemodels; Hoff et al., 2002). In contrast, we aremodelling networks whose ties are unobserved
or latent.We adopt a probabilistic approachwherewe assume thatX depends onY in a potentially
noisy way. This means that we infer a probability distribution over possible generative structures
compatible with the reported ties. We assume conditional independence between the entries ofX,
given Y, and the model’s parameters. This is a common assumption made in network models (e.g.,
Newman, 2018b; Peixoto, 2018; Young et al., 2021), and makes estimation of the model more
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tractable. Typical exceptions where this assumption may not hold are scenarios where an upper
limit is set on the maximum number of nominations a reporter can make—e.g., when respondents
are asked:Who are your five closest friends?. In these scenarios, there is a (weak) negative correl-
ation between nominations, because the likelihood of future nominations is reduced each time a
nomination is made by a respondent, simply because the respondent is strictly limited to an arbi-
trary, finite set of nominations (Hoff et al., 2013). While this is important to note, solving this
problem is beyond the scope of the current manuscript.
A further core objective for our model is to estimate the reliability of reporters. Reporters may

under-report (i.e., neglect to report a tie, when it does exist) or over-report (i.e., report a tie, when
it does not exist), and we account for these biased reports by assigning a ‘reliability’ parameter, θm,
to each reporterm. For ease of interpretability, we think of this parameter as a positive number taking
higher values when the reporter exaggerates their reports and lower values when they under-report.
Finally, we incorporate the intuition that reporters tend to nominate the same people for both

directions of a relationship, Xijm and Xjim. We term this pattern ‘mutuality’, to keep the concept
distinct from the standard concept of dyadic reciprocity (henceforth termed reciprocity) in the true
unobserved network Y. Bringing all of these modelling consideration together, we posit that the
expected value of the data can be given as

E
[
Xijm|Yij = k

]
= θmλk + ηXjim, (1)

where η ≥ 0 is the mutuality parameter. Mutuality enters the model as an additive and positive
contribution to the expected number of reported ties. This measures the possible increasing weight
of a directed tie, given that we observe the same tie in the opposite direction, as reported by the
same reporter. The parameter λk is a positive real value that needs to be inferred, which regulates
the contribution of Y in determining X. Note that the index k here refers to the positive and dis-
crete value posited for Yij. In case of binary entries, k ∈ 0, 1{ }, but in this work, we assume more
generally k ∈ 0, 1, . . .{ }.
From this, we note how, for a given value of λk > 0, reporters with high θm tend to nominate

more individuals, while reporters with smaller values tend to nominate fewer individuals. In con-
trast, a θm = 1 indicates a neutral contribution (neither over-reporting nor under-reporting), hence
we can interpret it as representing an unbiased reporter. Regardless of the reporter’s ‘reliability’,
the existence of a tieXjim in one direction increases the expected value ofXijm in the opposite dir-
ection, when η > 0. This also implies that it may not be possible to identify the reliability of report-
ers that report a high percentage of ties in both directions, and in networks with high values of η. In
these cases, in fact, the presence of a reported tie can be determinedwith a high likelihood based on
the tie reported in the opposite direction.
To form a likelihood for the observed data that can accommodate various network and

report structures—in particular, directed andweighted networks—wewrite the conditional distri-
bution:

P(Xijm |Xjim, Yij = k, λk, θm, η) =
(θmλk + ηXjim)

Xijm

Xijm!
e−(θmλk+ηXjim). (2)

Note that this choice of a Poisson distribution leads to an expected value forXijm as in equation
(1). Furthermore, the positivity of the parameters makes this expression valid without the need
of a link function. From this conditional, one can specify a two-point joint likelihood of
(Xijm, Xjim) by suitably defining the marginal distribution P(Xjim |Yji = k, λk, θm, η). While
there exist choices resulting in a consistent joint likelihood (see Section S1.3 for details), these
may not result in simple, efficient closed-form updates of the parameters. Hence, we assume a
pseudo-likelihood approximation (Besag, 1974) for the two-point likelihood, as done in
Safdari et al. (2021)

P(Xijm, Xjim |Yij = k, Yji = q, λk, λq, θm, η)
≈ P(Xijm |Xjim, Yij = k, λk, θm, η) × P(Xjim |Xijm, Yji = q, λq, θm, η). (3)
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The model can be applied to any tie type encoded in the input data X, and it will output the
reliability of a reporter for that tie type. One can potentially generalize this to a multi-layer
framework by considering a unique θm for each reporter, regardless of tie type. This would
then introduce a coupling between the reported X for various tie types, potentially increasing
the complexity of the model. Alternatively, one could consider a different θm for each tie type.
If these different types of reliability are considered independent from each other, then our
model could be readily generalized to include these distinctions, without need for further extra
coupling, but only additional distinct priors. This is essentially equivalent to running our mod-
el on each layer (i.e., tie type) individually, as we do in our numerical experiments on real data
below.
Potentially, one could also include a different θm depending on the directionality of the ties—i.e.,

a θ!m for ties sent and a θ"m for ties received—capturing situations where reporters could over-
report in one direction and under-report in another one. This would modify equation (3) to con-
tain one of these two parameters inside the corresponding conditional distribution. If θ!m and θ"m
are thought to be independent, so that their priors factorize, then this would lead to a straightfor-
ward generalization of the algorithm.
We assume that there are no contributions to the likelihood ofXwhen a reporter is censored—

i.e., whenm is not given the chance to report on the tie i ! j. In empirical applications, this could
arise, for example, when a survey design only asks about ties directly involving the reporter.
In addition to specifying the likelihood as in equation (2), we adopt a Bayesian approach and

assume priors for the parameters and the unobserved Y. To maximize the flexibility of our model,
we allow for positive and discrete values of Y by using a categorical prior

P(Yij = k; pij) = pij,k, (4)

where pij is the parameter of the categorical prior distribution, and
∑

k pij,k = 1. The sum runs over
the possible positive and discrete values of Yij. The resulting model can thus accommodate, for ex-
ample, a binary networkY andweighted reportsX, as the likelihood in equation (3) is valid for any
number of values that Y can take. We then consider Gamma priors for the remaining parameters,
as they are defined for positive real numbers, and are conjugate with the Poisson distribution,
which makes calculations convenient.

3 Inference
Because of the possibility of mutuality in nominations, we do not have a closed-form joint distri-
bution for (Xijm, Xjim), hence we consider the conditional distribution

P
({
Xijm

}
m|
{
Xjim

}
m, Yij, λ,

{
θm

}
m, η

)
=
∏

m
P(Xijm |Xjim, Yij, λ, θm, η)

=
∏

k

P(Yij = k)
∏

m
P(Xijm |Xjim, Yij = k, λk, θm, η)

[ ]Yij,k

. (5)

By using a pseudo-likelihood approximation as in Safdari et al. (2021), the full posterior can be
written as

P(Y, λ, θ, η |X) ∝ P(X |Y, λ, θ, η)P(Y)P(λ)P(θ)P(η)

=
∏

i,j

P
({
Xijm

}
m|
{
Xjim

}
m, Yij, λ,

{
θm

}
m, η

)
P(Yij; pij)

∏

k

P(λk; ak, bk)
∏

m
P(θm; αm, βm)P(η; c, d)

(6)

= : L(λ, θ, η, Y) (7)

where the proportionality results from the omission of an intractable normalization that does not
depend on the parameters. To estimate the model, we use variational inference with a mean-field

6 De Bacco et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/advance-article/doi/10.1093/jrsssa/qnac004/7030939 by guest on 28 February 2023



variational family (Blei et al., 2017), which yields an approximate posterior distribution for the
network and parameters. The algorithmic updates needed to find the best approximation to the
posterior distribution follow a coordinate ascent routine, iteratively finding the best marginal pos-
terior distribution of each parameter while holding the others fixed. We call the resulting algo-
rithm VIMuRe, for Variational Inference for Multiply Reported data. The model is efficient, as
it exploits the sparsity of the dataset. Specifically, the numerical implementation has a computa-
tional complexity that scales linearly with the number of nonzero entries of R, the reporters’
mask, typically a sparse quantity. As a comparison, techniques based on sampling (e.g., HMC)
can take an order of magnitude longer to run (see Blei et al., 2017), depending on the underlying
complexity of the model. As the output results depend on the random initial configuration of the
parameters, we run the algorithm several times and then consider the realization that resulted in
the best ELBO value, as usually done in variational inference. This makes the output robust
against initial values, as we expect a decreasing sensitivity to them for increasing Nrealisations. In
our experiments, we found that alreadyNrealisations = 5 was a reasonable value to guarantee robust
results. Pseudo-code for the algorithm is shown in Algorithm 1; see Section S1.1 for further details.

4 Simulation experiments
To validate our model, and study its performance in different regimes, we simulate synthetic data
that reproduce our analysis scenarios—multiply reported network data that depend on a latent
adjacency matrix—using the model itself. In detail, we first generate the network Y either with
a flexible version of a mixed-membership stochastic block model (MULTITENSOR, De Bacco
et al., 2017), a degree-corrected stochastic block model (DC-SBM, Karrer & Newman, 2011),
or a probabilistic model with reciprocity (CRep, Safdari et al., 2021). We then generate the ob-
served X given fixed reliability, mutuality, the generated network and the contribution of λ, col-
lectively denoted by Θ = (Y, θ, λ, η). We follow the approach described in Safdari et al. (2021),
and for each reporter m we draw a pair (Xijm, Xjim) consistently with the joint P(Xijm, Xjim|Θ)
in a two-step sampling routine, where we first generate one of the two reported ties and
then the second one given the first, see Sections S1.2 and S1.3 for details.
In the simulations, we examine our ability to recover: (i) the underlying network, Y, and (ii) the

individual reliabilities, θm. First, we generate synthetic networks reproducing three different scen-
arios. Two of these scenarios are extreme cases, where a fraction of reporters (θratio) are tagged to
be either over-reporters, or under-reporters, while all the others are reliable—i.e., they have
θm = 1, and theirX entries are deterministically generated. In doing this, we document model per-
formance in difficult cases, where the proportion of unreliable reporters is high. The third scenario,
is more realistic. In this setting, we have both over- and under-reporters, as we draw θm from a
Gamma distribution, providing a broad range of values. We vary the difference between λ1 and
λ0, such that the smaller this difference becomes, the noisier the problem gets, and thus the harder
the inference tasks. Secondly, we investigate the ability of our model in recovering structural prop-
erties of the latent network Y—e.g., reciprocity, density, and communities—in other sets of syn-
thetic networks.
In all experiments, we fit two versions of the model: a version with mutuality (VIMuReT) and a

version without (VIMuReF). To provide a point of comparison, we also compute two baselines
estimates of Y: (i) the union, in which a tie exists if at least one reporter reports that tie, and (ii)
the intersection, in which all the reporters of a tie have to agree for the tie to exist. These two com-
monly used baselines represent the most and least inclusive approaches to integrating multiply re-
ported data, and so provide reasonable comparisons for VIMuRe.

4.1 Results
We use the F1-score—i.e., the harmonic mean of precision (fraction of inferred ties that actually ex-
ist) and recall (fraction of existing ties found by the method) measures—to assess the ability of our
model to recover Y, which is binary in our experiments. This choice is chiefly motivated by the fact
that we have unbalanced data (since many fewer ties than possible tend to exist in empirical net-
works), that the F1 score is widely understood, and that our inferences based on F1 scores are quali-
tatively identical to those based on the Matthews correlation coefficient (Chicco & Jurman, 2020).
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For readers more familiar with the latter, we include Matthews correlation coefficient results in
Supplementary Materials.
In the two extreme scenarios, where there are only over- or under-reporters, our model recovers

the unobserved network, Y, better than approaches that take the union or intersection of the re-
ported ties in X. The performance of our model is also more robust as the number of unreliable
reporters and/or mutuality increases, see Figure 1. In particular, our model with mutuality
(VIMuReT) has a higher performance for high values of η, which is also a harder regime, as the
performance of all methods decreases in this range. In general, the performance of the baselines
decrease as the number of over- or under-reporters grows. For example, the union baseline esti-
mates relationships that do not exist in the true network, when there are several over-reporters.
Conversely, the intersection baseline underestimates the amount of ties, when a high fraction of
individuals under-report. Our model overcomes these biases by accounting for reporters’

Algorithm 1: VIMuRe.

Input: Data X, Model L, Variational family q.

Initialize the variational parameters γ, ϕ, ρ, ν to the priors with a small random offset.

while change in ELBO is above a threshold do

For end each pair of nodes such that Xijm > 0, update the multinomials:

ẑ1mk ∝ exp Ψ(γshapem ) − log γratem + Ψ(ϕshapek ) − log ϕratek

{ }

ẑ2ijm ∝ exp Ψ(νshape) − log νrate + logXjim

{ }
=Xjim exp Ψ(νshape) − log νrate

{ }

where the proportionality is such that ẑ1mk + ẑ2ijm = 1.

For each reporter, update the reliability parameters:

γshapem = αm +
∑

i,j,k

Rijm ρij,k Xijm ẑ1mk

γratem = βm +
∑

i,j,k

Rijm ρij,k
ϕshapek

ϕratek
.

For each possible value k of Yij, update the parameters:

ϕshapek = ak +
∑

i,j,m
Rijm ρij,k Xijm ẑ1mk

ϕratek = bk +
∑

i,j,m
Rijm ρij,k

γshapem

γratem

and:

ρij,k ∝ exp logpij,k +
∑

m
Rijm Xijm ẑ1mkEq(λk) log λk

[ ]( )
−
ϕshapek

ϕratek

∑

m
Rijm

γshapem

γratem

{ }

.

Update the mutuality parameters:

νshape = c +
∑

i,j,k,

ρij,k
∑

m
Rijm Xijmẑ

2
ijm

νrate = d +
∑

i,j,m
Rijm X jim.

end

Output: Variational parameters (γ, ϕ, ρ, ν).
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reliability, and this results in higher and more robust performance. However, when θratio becomes
too large, VIMuRe also fails since, as Figure S2 shows, recovering the reporters’ reliability be-
comes harder. That said, the model with mutuality performs better at this task, and fails much
more slowly than the model without mutuality, especially when η is large. To assess robustness
in recovering Y as the number of reporters varies, we run further experiments keeping the same
settings as above for N = 300 and varying M ∈ [25, 300]. For this simulation, we fixed
θratio = 0.50, thus capturing the most challenging case explored in the original simulations in
Figure 1. We find that while performance decreases as the number of reporters decreases, as ex-
pected, VIMuReT captures the ground truth of Y better than baseline implementations across dif-
ferent M, as shown in Figure S4.
Performance differences are more nuanced when we consider the more realistic experiment,

which features a broad range of reporter reliabilities. F1-scores are lower than in the previous ex-
periments, in general, and recovering the ground truth is particularly challenging when the differ-
ence between the mean number of reports of a tie being present and not, λ1 − λ0, is lower, see
Figure 2. Intuitively, as the difference λ1 − λ0 decreases, both the zero and nonzero inputs of Y
tend tomake the same contribution in determiningX; thus, it becomesmore difficult to distinguish
true ties on the basis of reports. These experiments also further confirm what we observed in the
previous experiments, that the hardest regime features the highest mutuality. A higher η means
that a reporter will tend to nominate the same set of people for both giving and receiving questions,
which results inX having less informative information. In these experiments, both versions of our
model and the union baseline perform similarly while the intersection baseline performs much

Figure 1. Estimating underlying network, Y , in synthetic networks with over- or under-reporters. Synthetic
networkswithN = 100 nodes andM = 100 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4, by varying the fraction θratio of over-reporters (top) or under-reporters (bottom). The two
columns represent networks generated without (left) and with (right) the mutuality effect η. The results are
averages, and standard deviations calculated over ten independent synthetic networks. The accuracy of the
estimate of the underlying network, Y , is measured with the F1-score. This measure ranges from 0 to 1, where 1
indicates perfect matching. See Figure S1 for similar plots based on the Matthews correlation coefficient
and Figures S4 and S5 for additional experiments where M varies.
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more poorly. However, the performance gap decreases as mutuality increases and more ties are
reported. Further studies on the recoverability of the latent network mutuality in synthetic experi-
ments are provided in Section S1.4 and Figure S6.
Once we have an estimate, Ŷ, of the unobserved network, Y, a practitioner would be able to

investigate structural properties in the latent network. To give an example, we will assess the abil-
ity of our model to capture reciprocity on the estimated Ŷ, a foundational feature of many social
relations (Fehr & Gächter, 1998; Molm, 2010). To this end, we convert the posterior probability
distribution ρij,k to a binary unweighted adjacency matrix. Since we considered binary data in our
experiments, and thus k ∈ 0, 1{ }, we can obtain this by applying a threshold to the sub-tensor ρij,k=1,
as it represents the probability distribution of finding a Ŷij = 1 entry. After each run ofVIMuReT , we
apply a range of thresholds tρ ∈ [0.050, 0.075, . . . , 0.725, 0.750] such that we assign Ŷij = 1 when
ρij,k=1 ≥ tp, and keep track of the best t∗ρ , for which reciprocity in the inferred network most closely
matches the reciprocity of the ground truth. In Figure 3, we show that the relationship between this
optimal threshold and the mutuality, ηest, as inferred by VIMuReT, can be approximated by the lin-
ear equation

t∗ρ = 0.33ηest + 0.10. (8)

In fact, in Figure 4, we show that VIMuReT outperforms all other models at this task when the
threshold on ρ was set according to the heuristic proposed above. Reciprocity estimated by the
model was a closer match to the reciprocity of the true unobserved network even in simulations
with high values of mutuality, a scenario where other methods tend to overestimate reciprocity.
Density of the inferred network is also closer to ground truth, when compared with baseline meth-
ods in most scenarios, as can be seen in Figure S7. These results mean that despite the small gap on
the value of F1-score, VIMuReT may be able to provide a good estimate of structural properties of
Y. The values of t∗ρ in equation (8) are valid for the settings considered in the experiments analysed
here and reported in Table S1, which control how synthetic networks are generated. Being a heur-
istic, one can in principle obtain a different formula when simulating data under different assump-
tions (e.g., varying N, M or reciprocity).
As a final test, we also show that VIMuRe allows the underlying community structure of a net-

work to be recovered, even when it is measured noisily. To this end, we use a latent network that
has planted overlapping communities, and generate reports as before. We then estimate the net-
work, and finally recover communities using a probabilistic generative model with latent variables
(De Bacco et al., 2017). Figure 5 shows the result of this experiment, and illustrates that VIMuRe is

Figure 2. Estimating underlying network, Y , in synthetic networks with over- and under-reporters. Synthetic
networkswithN = 100 nodes andM = 100 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4, by varying the difference between λ0 and λ1. The three columns represent networks generated
with no (left), medium (centre), and high (right) mutuality, η. The results are averages and the standard deviations
over ten independent synthetic networks. The accuracy of the estimate of the underlying network, Y , is measured
with the F1-score. This measure ranges from 0 to 1, where 1 indicates perfect matching. See Figure S3 for similar
plots based on the Matthews correlation coefficient.
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more robust than other approaches across different mutuality values, providing slightly better re-
sults than all other models; the intersection performs the worst. The qualitative example on the
right panel of Figure 5 highlights how VIMuReT infers a partition closer to the ground truth
than those inferred by the other methods, especially when mutuality is higher.
To summarize, our simulation experiments suggest that the use of a generativemodel with latent

variables results in more robust estimates of the true underlying network, Y, in comparison to

Figure 3. Synthetic networks with N = 100 nodes and M = 100 reporters, generated with the benchmark
generativemodel described in Sections S1.3 and 4with λ1 − λ0 = 1.0, and planted reciprocity values around≈ 0.2 on
the ground truth network, Y . The plot shows that the threshold that best captures reciprocity is linearly correlated
with ηest.

Figure 4. Reciprocity recovery from synthetic networkswithN = 100 nodes andM = 100 reporters, generatedwith
the benchmark generative model described in Sections S1.3 and 4 with λ1 − λ0 = 1.0, and planted reciprocity values
around ≈ 0.2 (horizontal dashed line) on the ground truth network, Y . The four sub-plots represent networks
generated with low (top left), medium (top right), to increasingly high (bottom left and right) mutuality effects, η.
The box plots are distributions of the reciprocity in Y , over a sample of one hundred synthetic networks.
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deterministic approaches (such as taking the union or intersection of sub-tensors). Furthermore,
our model yields an estimate of reporter reliabilities, which can provide additional insights about
the data-generating process. In addition, we note that our model performs better than other mod-
els when we include the mutuality parameter, η. In particular, VIMuReT shows better results in
estimating reciprocity than VIMuRe, specifically in cases where people’s propensity to report mu-
tuality in their relationships is high.

5 Analysis of Nicaragua data
We apply our modelling approach to data collected from a horticulturalist community in Nicaragua
(seeKoster, 2018, formore detail on the population andmeasurement instruments). These datawere
collected using a roster-based design, where all adult residents within the community were presented
with a list of all other adult residents, and were asked two questions about relationships related to
social support (i.e.,Who provides tangible support to you at least once per month? andWho do you
provide tangible support at least once per month?). Previous studies have performed separate ana-
lyses on the two questions (Koster, 2018; Simpson, 2022). We examine both questions in a single
model, examining the potential biases that shape the reports of social support.
In this dataset, the reports vary significantly across reporters, with some reporters nominatingmany

ties andothersnominating fewer. It is, therefore, reasonable tohave thepriorsonθm reflect this.Wecan
incorporate this insight by running the inference in two steps, where we first run VIMuRewith aweak
prior that is the same for all reporters,while in a second stepwe runVIMuRewith a prior proportional
to the posterior mean of θm inferred in the first step. This is in line with Empirical Bayes approaches
(Casella, 1985;Morris, 1983; Robbins, 1955) that estimate prior distributions from the data. This ap-
proach allows us to obtain a wider range of reliabilities so that we can better distinguish possible ex-
aggerators than when using the same prior for all reporters.
Applying VIMuRe produces estimates of a network—which is binary and obtained by applying

the optimal threshold in equation (8)—that has properties (e.g., mean degree, reciprocity) that fall
somewhere between the results of taking the union (which returns an incredibly dense network)
and taking the intersection of the double-sampled ties (which returns an extremely sparse net-
work). See Table S2, for a summary. Overall, mutuality was estimated to be ηest = 0.540 and reci-
procity was 0.11.
In contrast to other survey data such as name generators, where survey designmay contribute to

under-reporting, the roster-based designmakes it much easier for respondents tomakemany nom-
inations. In the roster design in Nicaragua, informants reported approximately 25 alters for each
prompt, substantially more than the average of 4 from the constrained name generators used in the

Figure 5. Community structure recovery from synthetic networks with both over- and under-reporters. Synthetic
networkswithN = 300 nodes andM = 300 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4with λ1 − λ0 = 1.0. The results shown in the left frame are averages and standard deviations over
ten samples of synthetic networks, generated by varying themutuality parameter, η. The accuracy in recovering the
overlapping community structure is measured with the cosine similarity (CS) using the inferred membership
vectors. In the right frame, we plot examples of the partitioning of a synthetic network, generated with η = 0.2. The
‘ground truth’ is the partition used to generate Y , and YGT stands for the partition found by using the true Y . Nodes
colored in white represent isolated nodes.
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study described below in Section 6 (see Table S2 for full network statistics). As can be seen in
Figure 6, however, we nevertheless observe reporters with low θm, who were nominated by several
others, but nominated relatively few themselves (e.g., Nodes 4 and 13). On the opposite extreme,
we see reporters with high θm, who nominated many others, but whose ties are not confirmed by
those alters (e.g., Nodes 3 and 76). In between, we show an example of a reporter (Node 5) with
intermediate value of θm, who nominates several others in a way consistent with the reports of
others. The distribution of reliability for reporters in this dataset can be seen in Figure S8.
Since these data are not explicitly generated with the generative model assumed by VIMuRe, we

run a goodness-of-fit test to ensure that the model is appropriate for the above analysis. To do this,
we use a series of posterior-predictive checks (Gelman et al., 1996, 2013), which compare the
Nicaragua data with synthetic data X̃ generated using the fitted model. The posterior-predictive
distribution is defined as

P(X̃ |X) =
∑

Y

∫∫∫ P(X̃ |Y, λ, θ, η)P(λ, θ, η, Y |X)dλ dθ dη (9)

and one can generate samples from this distribution by first obtaining samples (Y, λ, θ, η) from the
variational approximation to the posterior distribution, and then using these parameters as input
to create new synthetic data, X̃, from the likelihood described in Section 2. A good fitted model
should lead to new synthetic data X̃ that resembles the input X. We run two numerical posterior-
predictive tests to assess the appropriateness of the VIMuRe model: (i) a direct comparison be-
tween the elements of the Nicaragua data X and the distribution of X̃, and (ii) a test checking
whether two samples from the posterior-predictive distribution are typically more, equally, or
less distant from one another than a sample from the posterior-predictive distribution and the
Nicaragua data (Young et al., 2021). The results shown in Figure 7 confirm that the VIMuRemod-
el is appropriate for our analysis.

6 Analysis of social support networks in Karnataka
To further highlight the broad applicability of our modelling approach across elicitation methods,
we apply VIMuRe to a dataset of social support networks collected from 75 villages in the Indian
state of Karnataka (Banerjee et al., 2013). As part of a larger project, a series of name generators
were asked of most of the adult members of a subset of households in each village (overall, about
46% of all households were surveyed). The name generators included questions about four
double-sampled relationships: who people give advice to or receive advice from (Advice), who
people would borrow from or lend a small amount of money to (Money), who people go to or re-
ceive as visitors (Visit), and who people would borrow kerosene and rice from or lend kerosene
and rice to (Household Items – ‘HH Items’ in the plots). In the past, these data have been studied
by aggregating responses from multiple household respondents and taking the union of the
double-sampled questions (Banerjee et al., 2013; Jackson et al., 2012).
Our results suggest that the reciprocity values in these networks are in fact lower than what

would be obtained by simpler approaches, as shown in Figure 8, generally, and illustrated for
one specific village and tie type in Figure 9. While we do not have ground truth values in this

Figure 6. Example of individual reliabilities. Pie plots show six different configurations for the reported ties (two per
each direction of a tie): ties confirmed by both reporters (conf ‘give to’, conf ‘get from’); ties reported by m but not
confirmed by others (not conf ‘give to’ (alter), not conf ‘get from’ (alter)); ties reported by others but not by m (not
conf ‘give to’ (ego), not conf ‘get from’ (ego)). Each plot is a different reporter; their estimated reliability θ̂ is printed
on top. Each slice of the pie is one tie reported in one the six possible ways, represented by the colours. In this
example, we consider reporters from the Nicaragua dataset.
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case, we note that these numbers are similar to those obtained on the synthetic networks in our
experiments shown in Figure 4. In particular, they mimic the situation with high mutuality, where
the union and intersection significantly overestimate the reciprocity on Y, whereas VIMuRe iden-
tifies the correct range of values. These results suggest that reciprocity will likely be overestimated
in double-sampled network data, when the reports have highmutuality. Of the four tie types in the
data from Karnataka, the estimations made by VIMuRe suggest that the ‘Advice’ layer has the
lowest reciprocity values on average (0.39 ± 0.07), with ‘Money’ (0.43 ± 0.08), ‘Visit’
(0.47 ± 0.07), and ‘Household items’ (0.48 ± 0.08) layers exhibiting higher reciprocity.
Note, too, that our estimates for mutuality (ηest) follow a similar pattern, with the lowest esti-

mates for ‘Advice’, and the highest for ‘Visit’ and ‘Household Items’. These estimates broadly align
with theory: reciprocity—and the expectation for reciprocity, as represented by themutuality term
—is higher in those relationships that are understood to be more balanced and mutually support-
ive (i.e., visiting one another’s homes, and borrowing/lending basic household items, like rice and
kerosene), and lower in those relationships that are potentially seen as hierarchical and imbal-
anced (receiving/giving advice, and borrowing/lending money).
We next investigate how reporter ‘reliabilities’ are distributed in these networks. Since the mu-

tuality in these graphs is high (nest ≥ 0.4), it is very common that reporters repeat the same names
across the different name generators. Therefore, it is expected that individual ‘reliability’ terms
will play a smaller role in determining the reported social network. Recalling equation (1), this
means that the value of θm will be small for reporters with a high rate of repeat nominations—
that is, the proportion of alters reported by an ego on the ‘give to’ question that gets repeated
on the ‘gets from’ question. In the Karnataka dataset, 26% (Advice) to 52% (Household Items)
of reporters have an individual rate of repeated nominations of 100%. In such cases, small values
of θm should not be interpreted as indicating under-reporting, as a small θm in this case is just a
signal of a high mutuality. The vast majority of reporters (99.49%) with a small θm (θm < 0.1)
in the Karnataka networks have an individual rate of repeat nominations of 100%, regardless
of the tie type.
For all four tie types, we observe that reporters tend to under-report relationships, even after

having accounted for those individuals who have low θm for the reasons discussed above (see
Figure S9). This is consistent with prior literature (e.g., Butts, 2003) that suggests that reporters

(a) (b)

Figure 7. Example goodness-of-fit analysis for the Nicaragua dataset. (a) Number of ties declared by each reporter
(squares) across the double-sampled social support question, compared with the average predicted number of
reported ties (circles). Error bars correspond to standard deviations computed with n = 500 samples from the
posterior distribution. (b) Scatter plot showing a model-model (D(X̃ , X̃ )) versus model-data (D(X , X̃ )) comparison.
Each dot corresponds to one posterior-predictive sample and illustrates the distance between this sample and the
Nicaragua data on the horizontal axis (model-data), and another random posterior-predictive sample on the vertical
axis (model-model). Themodel can be deemed appropriate when these two distances are similar—i.e., if the scatter
plot is a point-cloud centred on or close to the diagonal (Young et al., 2021).We selected the Hamming distanceD as
the test statistics, defined as the number of pairs of entries (Xijm, X̃ ijm) in disagreement between two datasets.
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are reasonably accurate when reporting ties, but quite inaccurate when reporting nonties. This ef-
fect may be partially induced by the way the questionnaire was formulated, as there were only four
entries available for nominating alters. This causes under-reporting to be much more likely, and
substantially limits the number of reported tie configurations that can be observed in this system.
Indeed, we note a negative correlation between θm and the in-degree of ties reported by others in-
volvingm (see Figure S11). In particular, reporters nominated bymany others (some bymore than
20 people) could only nominate up to four among these; such reporters will necessarily have low
values for θm.
We do not observe any strong differences in the distribution of reliability across the four tie

types (see Figure S9). We assess whether reporters are consistent in their reliabilities across the
tie types by examining the pairwise distances using theWassertein distance (ametric formeasuring
distances between two distributions; Givens & Shortt, 1984) between each set of tie types (see
Figure S10). We see some telling patterns by looking at the consistency of ‘Advice’ with the other
tie types: while reporters are most consistent between the ‘Advice’ and ‘Money’ networks, they are
least consistent between the ‘Advice’ and ‘Household Items’ or ‘Visit’ networks.

7 Discussion and conclusions
Self-report network data are an important resource for social scientists, but they are also suscep-
tible to several types of reporter bias. Identifying the possible biases that structure self-reports of
social relationships remains an essential and open area of research for social network analysis.
Failure to identify and account for such reporting biases may lead researchers to draw incorrect
inferences (Redhead et al., Accepted). But how should social scientists go about investigating
and treating reporting bias in measurements of social networks? We provide a novel statistical so-
lution to—and theoretical and empirical evidence of—this problem, with particular focus on two

Figure 8. Reciprocity on Karnataka networks. The box plots show the distribution over the 75 networks of the
reciprocity measured on the inferred Ŷ . Each column is a different tie type, as written on the figure title.

(a) (b) (c)

Figure 9. Example of networks estimated by baseline methods and VIMuRe for one Karnataka village (tie type
‘Visit’). (a) Union (recip. = 0.93), (b) intersection (recip. = 0.88), and (c) VIMuRe (recip. = 0.49).
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forms of bias. First, we investigate and adjust for the general propensity of reporting balanced, re-
ciprocal relationships (i.e., mutuality). Second, we provide amethod of accounting for individuals’
unique potential to misrepresent or misreport their relationships during reports. Both of these
forms of bias have the potential to add substantial ‘noise’ to empirical representations of social
networks, but the extent to which this is present and problematic has not yet been well established.
While previous work has explored individual propensities to misreport their ties (e.g., Butts, 2003;
Newman, 2018a; Young et al., 2021), there has been limited formal analysis of the impact that
‘mutuality’ has on network inference (but see, Redhead et al., Accepted).
We have focused our attention on cases where multiple reporters are able to provide informa-

tion on any given relationship. In particular, we have considered ‘double-sampled’ relationships,
where respondents are asked about their role both as giver and as receiver—a common technique
that is used in social support network surveys. We have introduced a probabilistic modelling
framework, VIMuRe, that provides a principled solution to these issues and aims to more appro-
priately capture the data generating process associated with name generator designs. VIMuRe
takes as input potentially biased, imperfect survey responses and uses these to estimate a ‘true’ la-
tent network, as well as parameters governing individual biases and relationship-specific tenden-
cies towards mutuality. The model estimates both a ground-truth,Y, and θwhich, in certain cases,
can be interpreted as a reporter’s reliability (conditional on some level of mutuality).
The model that we have introduced here strongly departs from common approaches for dealing

with double-sampled network data in the social sciences, in which researchers simply take the
union or the intersection of nominations. Our approach also departs from existing network recon-
struction methods and advances a framework that is maximally flexible. To our knowledge, exist-
ing network reconstruction methods (e.g., Butts, 2003; Newman, 2018a; Young et al., 2021) that
are applicable to social networks focus on the single-sampled case—with the exception of Redhead
et al. (Accepted), which is applicable only to double-sampled networks.While we have highlighted
double-sampled network data here, our framework can be readily used for many reporting sam-
pling schemes. A tie within a network could be reported on by any number of reporters, up to and
including a full ‘cognitive social structure’ design (Krackhardt, 1987), where each respondent re-
ports on all other ties in the network. Alongside this, the model remains computationally efficient
given the use of variational inference, as opposed to aMonte Carlo approach. Our model can flex-
ibly handle social network datasets of any realistic size, and can scale to large systems of tens of
thousands of nodes by exploiting the sparsity of typical network datasets.
Results from our simulation experiments highlight that mutuality dramatically impacts inferred

levels of reciprocity. Our results complement previous empirical and theoretical studies (e.g.,
Ready & Power, 2021; Redhead et al., Accepted), and show that the simple deterministic ap-
proach of taking the union or intersection of nominations leads to biased estimates of reciprocity.
Given this, we propose a simple heuristic that is based solely on the mutuality value inferred by the
model, that can be used to select the most appropriate point-estimates from an estimated posterior
distribution of Y. Findings from our simulation experiments suggest that our approach results in
networks that are somewhere between those produced by the union and the intersection.
Generally, our approach results in lower levels of reciprocity than deterministic aggregation, be-
cause we are appropriately accounting for mutuality.
The importance of considering the core questions of (bias in) network representation—and the

utility of VIMuRe—are most clearly demonstrated with our analyses of the empirical data from
Karnataka (Banerjee et al., 2013) and Nicaragua (Koster, 2018). These datasets result from two
very different elicitation approaches, which carry with them different potential risks for bias.
The data from Karnataka provide a case where a standard name generator approach was used
on a partial sample of the network, and where an upper bound of four was placed on the number
of ties that could be reported. This design likely increases the chances that ties are under-reported.
In contrast, the data from Nicaragua were collected using a full roster-based design on the entire
sample. This approachmay inflate the chances that ties are over-reported. In both empirical exam-
ples, the prospect of mutuality is salient, as reporters were asked about their roles as givers and
receivers in direct succession, and there was no randomization of question order. The results of
our empirical applications indicate the importance of mutuality in patterning reports within
double-sampled designs. In Karnataka, mutuality values range from ∼0.4 to ∼0.7, and in
Nicaragua they are ∼0.6. These mutuality values complement the findings from our simulation
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experiments, which show that when mutuality is high, taking either the union or the intersection
will result in inflated reciprocity values (despite treating discordant responses in very different
ways).
Our findings highlight that mutuality is indeed high across a range of different relationship

types, and thus the consequences of using these standard deterministic aggregation methods are
obvious: a clear disparity between the resulting aggregated networks and the ‘true’ underlying net-
work. The acuteness of this issue depends on the particular tie type, as we can see in the varying
levels of mutuality in the Karnataka data (where mutuality is lowest for relationships that may be
seen as less balanced). VIMuRe provides a promising way forward here, as it is able to measure
and account for mutuality across different sampling regimes.
The empirical examples that we present further elucidate the varying ‘reliabilities’ of reporters—

over and above the general propensity to report mutually supportive, reciprocal ties. Importantly,
the contrasting results found between the two sets of empirical data reveal general issues with sam-
pling and elicitation, about which practitioners need to be cognisant. The roster-based design used
to collect the network data in Nicaragua, resulted in an average of 25 nominations for each
prompt. In contrast, given the upper limit of four ties that could be reported in the Karnataka de-
sign, the average number of nominations was much lower (around two to three nominations for
each prompt) for the various relationship types (see Table S2). Compounding this issue is the par-
tial sampling procedure implemented in Karnataka. The partial sample included ∼46% of the
households and ∼25% of residents (including children) within the sampled villages. Our findings
suggest that when many nominations are of people who were not themselves reporters, there are
considerable constraints on the ability to assess reliability. Moreover, our findings suggest that in-
dividuals who were named by many others are likely to be seen as ‘unreliable’ (see Figure S10), in
part because these individuals were constrained in their ability to namemore than four individuals.
Generally speaking, greater coverage of the network and prompts that facilitate collection of
more-complete nomination sets will permit more precise estimation of individual ‘reliabilities’
and, thus, more accurate network reconstruction.
Several directions are possible for future improvements to VIMuRe. Our model specifies condi-

tional probabilities, and thus relies on pseudo-likelihood estimation for inferring the parameters.
A fruitful avenue for future research is to improve this approximation by characterizing a full joint
distribution of a pair of ties (Contisciani et al., 2022). Doing thismay potentially solve the problem
of identifying a θm for samples with highmutuality and, most importantly, increase the accuracy of
estimating posterior distributions for Y. However, any improvement may come at the price of los-
ing analytical tractability, or requiring less flexible approaches.We have focused here on capturing
reciprocity, but this does not provide any guarantees of recovering automatically other network
properties involving higher-order motifs, such as transitivity or triadic closure (see Table S2).
How to adapt our model to include them is open for future research.
Alongside this, there are several other possibilities for future extensions of the VIMuRe frame-

work that we have introduced here. First, VIMuRe takes as input a set of reported ties and we as-
sumed that this is the only information known. However, if practitioners have access to additional
information—such as covariates on nodes—this information could be incorporated into the mod-
el. Covariates could also be incorporated into models predicting reliabilities θ, and those reliabil-
ities could vary for senders and receivers as well. For instance, one can consider a suitable prior for
the reliabilities θm that is based upon a given covariate. It would also be straightforward to extend
our model by incorporating more informative priors about the ground-truth network, Y (e.g., if
the network had a known block structure). Second, many social networks are fundamentally
multi-level, with nodes being nested within higher-order units (e.g., households, businesses, or
schools; Lazega & Snijders, 2015). Formulating an approach to flexibly incorporate multi-level
networks further remains an open and important area for extending the VIMuRe framework.
Finally, our focus has been on cases where social networks are static. Investigating how to effect-
ively adapt our model for networks evolving over time is an open avenue for future work.
In sum, there are potentially strong biases in self-reported social network data. However, the

nature of multiply reported data as containing multiple sources of information about a single
underlying relationship permits the application of statistical procedures that can account for
such biases. VIMuRe attempts to do this by explicitly modelling mutuality—the tendency of re-
porters to nominate the same individuals for both directions of a tie—and estimating a reporting
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accuracy parameter, θm, for each reporter. Model estimation is performed using variational infer-
ence, leading to a fast algorithmic implementation that is scalable to large system sizes. Our study
of the datasets from Karnataka and Nicaragua establishes that there is indeed important variation
in reporters’ ‘reliability’, and that people’s reports seem to be driven in part by their normative ex-
pectation of relationships as balanced and reciprocal.We observe this high ‘mutuality’ despite very
different data elicitation approaches, and see that it varies based on the type of relationship being
elicited. These findings demonstrate the value of employing a tool such as VIMuRe, as it can not
only give crucial insights into how social relationships are understood by individuals, but can also
provide a way to account for these individual and collective biases and arrive at a more appropri-
ate representation of the network of interest. To facilitate its usage by practitioners, we provide an
open source implementation of the code online.
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Inference of hyperedges and overlapping
communities in hypergraphs

Martina Contisciani 1 , Federico Battiston2 & Caterina De Bacco 1

Hypergraphs, encoding structured interactions among any number of system
units, have recently proven a successful tool to describe many real-world
biological and social networks. Here we propose a framework based on sta-
tistical inference to characterize the structural organization of hypergraphs.
Themethod allows to infermissing hyperedges of any size in a principled way,
and to jointly detect overlapping communities in presence of higher-order
interactions. Furthermore, our model has an efficient numerical implementa-
tion, and it runs faster than dyadic algorithms on pairwise records projected
from higher-order data. We apply our method to a variety of real-world sys-
tems, showing strong performance in hyperedge prediction tasks, detecting
communities well aligned with the information carried by interactions, and
robustness against addition of noisy hyperedges. Our approach illustrates the
fundamental advantages of a hypergraph probabilistic model when modeling
relational systems with higher-order interactions.

Over the past twenty years, networks have allowed to map and char-
acterize the architecture of a wide variety of relational data, from
social and technological systems to the human brain1. Despite their
success, traditional graph representation are unable to provide a
faithful representation of the patterns of interactions occurring in the
real-world2. Collections of nodes and links—networks—can only prop-
erly encode dyadic relations. Yet, in the last few years systems as
diverse as cellular networks3, structural and functional brain
networks4,5, social systems6, ecosystems7, social image search
engines8, human face-to-face interactions9 and collaboration
networks10, have shown that a large fraction of interactions occurs
among three ormore nodes at a time. These higher-order systems are
hence best described by different mathematical frameworks such as
hypergraphs11, where hyperedges of arbitrary dimensionsmay encode
structured relations among any number of system units12–14. Interest-
ingly, providing a higher-order description of the system interactions
has been shown to lead to the emergence of new collective
phenomena15 in diffusive16,17, synchronization18–22, spreading23–25, and
evolutionary26 processes.

To properly describe the higher-order organization of real-world
networks, a variety of growing27,28 and equilibrium models, such as
generalized configurationmodels29–31 have been proposed. Tools from

topological data analysis have allowed to obtain insights into the
higher-order organization of real-world networks32,33, and methods to
infer higher-order interactions from pairwise records have been
suggested34. Finally, several powerful network metrics and ideas have
been extended beyond the pair, from higher-order clustering35, spec-
tralmethods36 and centrality37,38 tomotifs39 and networkbackboning40.

Despite a few recent contributions41–47, how to define and identify
the mesoscale organization of real-world hypergraphs is still a largely
unexplored topic. Here, we propose a new principled method to
extract higher-order communities based on statistical inference. More
broadly, our approach is that of generative models, which incorporate
a priori community structure by means of latent variables, inferred
directly from the observed interactions48–50. Beyond its efficient
numerical implementation, ourmodel has several desirable features. It
detects overlapping communities, an aspect that is missing in current
approaches of community detection in hypergraphs and that is argu-
ably better representative of scenarios where nodes are expected to
belong to multiple groups. It also provides a natural measure to per-
form link prediction tasks, as it outputs the probability that a given
hyperedge exists between any subset of nodes. Similarly, it allows to
generate synthetic hypergraphs with given community structure, an
ingredient that can be given in input or learned from data. Moreover,
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our explicit higher-order approach is not only more grounded theo-
retically, but also more efficient than applying graph algorithms to
higher-order data projected into pairwise records.

We apply our method to a variety of real-world systems, showing
that it recovers communities more robustly against noisy addition of
large hyperedges thanmethods onprojected pairwise data, it achieves
high performance in predicting missing hyperedges, and it allows to
determine the influence of hyperedge size in suchprediction tasks.We
also illustrate how our higher-order approach detects communities
that aremore alignedwith the information carried by hyperedges than
what is recorded by node attributes. Through these examples, we
illustrate how a principled higher-order probabilistic approach can
shed light on the role that higher-order interactions play in real-world
complex systems.

Results
The Hypergraph-MT model
Here, we introduce Hypergraph-MT, a probabilistic generative model
for hypergraphs withmixed-membership community structure. Based
on a statistical inference framework, our model provides a principled,
efficient and scalable approach to extract overlapping communities in
networked systems characterized by the presence of interactions
beyond the pair.

At its core, our approach assumes that nodes belong to different
groups in different amounts, as specified by a set of membership
vectors. These memberships then determine the probability that any
subset of nodes is connected with a hyperedge. We denote a hyper-
graphwithN nodes V = i1, . . . , iN

! "
and E hyperedges E = e1, . . . , eE

! "
as

HðV, EÞ. Mathematically, this can be represented as an adjacency ten-
sor A with entries Ai1 ,..., id equal to the weight of a d-dimensional
interaction between the nodes i1,…, id. For instance, for contact
interactions, Ai1 ,..., id could be the number of times that nodes i1,…, id
were in close contact together.

Given these definitions, we can specify the likelihood of observing
the hypergraph given a set of latent variables θ, which include the
membership vectors. This relies on modeling PðAi1 ,..., id ∣θÞ, the prob-
ability of observing a hyperedge given θ. Wemodel this probability as:

PðAi1 ,..., id ∣θÞ=PoisðAi1 ,..., id ; λi1 ,..., id Þ, ð1Þ

where λi1 ,..., id =
P

k1 ,..., kd
ui1k1

. . .uidkd
wk1 ,..., kd

. The set of latent variables is
defined by θ = (u,w), where u is a N ×K-dimensional community
membershipmatrix andw is an affinity tensor, which captures the idea
that an interaction ismore likely to exist between nodes of compatible
communities. If only pairwise interactions exist, the affinity matrix has
dimension K ×K. Therefore, the problem reduces to the traditional
network case and can be efficiently solved49. When higher-order
interactions are present, the dimension of the affinity tensor w can
becomearbitrarily large depending on the size de of a hyperedge e, i.e.,
the number of nodes present in it. In fact,w has as many entries as all
thepossiblede-way interactions between allKgroups. For instance, in a
hypergraph with only 2-way and 3-way interactions, we have
w = [w(2),w(3)] with w(2) of dimension K ×K and w(3) of dimen-
sion K ×K ×K.

The question is thus how to reduce the dimension ofw. A relevant
choice that overcomes these problems is that of assortativity51,
implying that a hyperedge is more likely to exist when all nodes in it
belong to the same group. This captures well situations where
homophily, the tendency of nodes with similar features to be con-
nected to each other, plays a role, as observed in social or biological
networks49,52. Mathematically, the only non-zero elements ofw are the
“diagonal” ones, that is:

wk1 ,...,kd
= δk1 ,...,kd

wk1 ,...,kd
: ð2Þ

With this, we obtain a matrix w of dimension D ×K, where
D= maxe2E de is the maximum hyperedge size in the dataset. In prin-
ciple, one could envisage other ways to restrict w to control its
dimension. However, we found that the choice in Eq. (2) provides a
natural interpretation, results in goodprediction performance on both
real and synthetic datasets, and is computationally scalable. A similar
problem of dimensionality reduction has been tackled in ref. 45, which
investigated the more constrained case of hard-membership models.

Putting all together, wemodel the likelihoodof thehypergraph as:

PðA∣θÞ=
Y

e2Ω

e#λe
λAe
e

Ae!
, ð3Þ

with λe =
X

k

wdek

Y

i2e

uik , ð4Þ

where Ω= e∣e $ V,de ≥ 2
! "

is the set of all potential hyperedges. In
practice, we can reduce this space by considering only the possible
hyperedges of a certain size lower or equal than the maximum
observed size D. In Eq. (3) we assumed conditional independence
between hyperedges given the latent variables, a standard assumption
in these types ofmodels. Such a condition could in principle be relaxed
following the approaches of refs. 53–55, we do not explore this here.

Having defined Eq. (3), the goal is to infer the latent variables u
and w given the observed hypergraph A. To infer the values of
θ = (u,w), weconsider bothmaximum likelihoodestimation (assuming
uniform priors on the parameters) and maximum a posteriori esti-
mation (assuming non-uniformpriors). The derivations are similar and
rely on an efficient expectation-maximization (EM) algorithm56 that
exploits the sparsity of the dataset, as detailed in the Methods section
and in the Supplementary Note 1.

We obtain the following algorithmic updates for the membership
vectors:

uik =
P

e2E Bie ρekP
e2Ω∣i2e wdek

Q
j2e∣j≠i ujk

, ð5Þ

where Bie is equal to the weight of the hyperedge e to which the node i
belongs (it is an entry of the hypergraph incidence matrix) and ρ is a
variational distribution determined in the expectation step of the EM
procedure. The numerator of Eq. (5) canbe computed efficiently, aswe
only need the non-zero entries of the incidence matrix, which is
typically sparse. Instead, computing the denominator can be prohibi-
tive depending on the value ofD, themaximumhyperedge size. This is
due to the summation over all possible hyperedges in Ω, which

requires extracting all possible combinations N
d

# $
, for d = 2,…,D.

This problem is not present in the case of graphs, as this summation
would be over N2 terms at most. This issue clearly highlights the
importance of algorithmic efficiency in handling hypergraph data, an
aspect that cannot be overlooked to make a model work in practice.

We propose a solution to this problem that reduces the compu-
tational complexity to O(NDK) and makes our algorithm efficient,
scalable and applicable inpractice. The key is to rewrite the summation
over Ω such that we have an initial value that can be updated at cost
O(1) after each update uðtÞ

ik ! uðt + 1Þ
ik , which can be done in parallel over

k = 1,…,K. This formulation is explained in details in the Supplemen-
tary Note 1, where we also show how to edit the updates in Eq. (5) by
imposing sparsity (with a proper prior distribution) or by constraining
themembership vectors to be probability vectors such that∑kuik= 1. In
both cases, we get a constant term added in the denominators of the
updates.
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Finally, the updates of the affinity matrix are given by:

wdk =

P
e2E∣de = d

Ae ρekP
e2Ω∣de =d

Q
j2eujk

: ð6Þ

These are also computationally efficient to implement and can be
updated in parallel. Further details are in the Methods section and in
theSupplementaryNote 1,wherewealsoprovide apseudocode for the
whole inference routine. Additionally, in the Supplementary Note 2 we
show the validation of our model on synthetic data with ground-truth
community structure and the comparison against the generative
method of ref. 45 and the spectral method of ref. 47. Hypergraph-MT
shows a strong and increasing performance in recovering commu-
nities as the ground-truth community structure becomes stronger,
similarly to themethod of ref. 47. However, thismethod is designed to
capture hard-membership communities and benefits from having an
inference routine similar to the generative process of the synthetic
data. In particular, Hypergraph-MT significantly outperforms the
competing methods Graph-MT, Pairs-MT, and that of ref. 45 as soon
as the ground-truth community structure becomes less noisy.
Remarkably, this is observed in synthetic datasets that are generated
with a different generating process than that of Hypergraph-MT. As a
consequence, the positive performance of our method confirms the
robustness and the reliability of the methodology here introduced.

Results on empirical data
We analyze hypergraphs derived from empirical data from various
domains. For each one, we report a diverse range of structural prop-
erties such as number of nodes, hyperedges and their sizes, as detailed
in Table 1. Moreover, the datasets provide node metadata, which we
use to fix the number of communities K, aiming to compare the
resulting communities with this additional information. For further
details on the datasets, see theMethods section. For each hypergraph,
we run Hypergraph-MT ten times with different random initialization
and select the result with the highest likelihood. For comparison, we
run the model on two baselines structures obtained from the same
empirical data: a graph obtained from clique expansions of each
hyperedge (Graph-MT), where a hyperedge of size d is decomposed in
dðd#1Þ

2 unordered pairwise interactions; a graph obtained using only
hyperedges with de = 2 (Pairs-MT). Notice that running our model on
graphs reduces to MULTITENSOR–the model presented in ref. 49—
with an assortative affinitymatrix. As a remark,weuse interchangeably
the terms graph or network to refer to the data with only pairwise
interactions, and the term hypergraph for the higher-order data.

The advantage of using hypergraphs. The goal of using the two
baselines is to assess the advantage (if any) in treating a dataset with
higher-order interactions as a hypergraph. Indeed, in practice higher-
order data are often reduced to their projected graph, an operation,
which not only generates a potentially misleading loss of information,
but which is also computationally expensive41. Hence, before evaluat-
ing the performanceofHypergraph-MTon various datasets, we turn to
the following fundamental question: given a dataset of high-order
interactions, does a hypergraph representation bring any advantage
compared to a simpler graph representation? If the answer is positive,
then we should analyze the data with an algorithm that handles
hypergraphs. If not, a simpler network algorithm should be enough.

To this end, we analyze four datasets describing human close-
proximity contact interactions obtained fromwearable sensor data at a
high school (High school), a primary school (Primary school), a work-
place (Workplace) and a hospital (Hospital). For the analysis, we run the
model on the three different structures (hypergraph, clique expan-
sions, and pairwise edges) described above. For each dataset, we
compare the inferred partitions with the node metadata that describe
either the classes, the departments, or the roles the nodes belong to.
Wemeasure closeness to themetadata with the F1-score, a measure for
hard-membership classification. It ranges between 0 and 1, where 1
indicates perfect matching between inferred and given partitions.
Table 2 shows the performance with the different structures, and both
hypergraphs and graphs perform similarly. Notice that the average size
of hyperedges in these datasets is around 2.2; thus interactions are
mainly pairwise to start with. Moreover, interactions with de > 2 include
people who already interact pairwise (see column % d > 2∈G in
Table 1). Hence, a clique expansion of these is not expected to provide
much distinct information from that already present in the pairwise
subset of the dataset. Overall, these results suggest that hypergraphs
do not bring any additional advantage for these types of datasets, and
running a network algorithm would be enough.

To understand how this assessment may change, we present a
toy example built from the High school dataset. We select the
subset of nodes belonging to two classes (2BIO1 and MP*2 in our
example), and we manipulate it by artificially adding a large
hyperedge. It simulates an event where ten external people (guests)
and a random subset of ten existing nodes are participating. This is
represented by the gray hyperedge of dimension 20 in Fig. 1 (left).
Here, the green nodes are the external guests, while the blue and
orange nodes are the randomly-selected students from the two
classes, respectively. While we only add one hyperedge, its size
significantly differs from that of all the other existing hyperedges. In

Table 1 | Summary of higher-order datasets

N E EG M MG k
% &

s(k) d
% &

s(d) D % d = 2 % d > 2∈G K

High school 327 7818 5818 172,035 189,928 55.6 27.1 2.3 0.5 5 70.3% 88.5% 9

Primary school 242 12,704 8317 106,879 127,886 127.0 55.2 2.4 0.6 5 61.0% 87.5% 11

Workplace 92 788 755 9645 9831 17.7 8.6 2.1 0.3 4 94.2% 88.2% 5

Hospital 75 1825 1139 27,835 32,788 59.1 49.0 2.4 0.6 5 60.7% 95.1% 4

Gene-Disease 4642 2738 55,795 4131 114,444 1.7 3.6 5.8 5.2 25 32.4% 0.6% 25

Justice 38 2826 264 15,040 190,790 366.7 203.6 4.9 1.7 9 7.6% 81.8% 2

House bills 1494 41,362 360,086 47,212 2,451,751 245.8 251.6 8.9 6.6 24 18.5% 2.1% 2

Senate bills 293 19,872 22,157 27,300 732,561 482.0 396.9 7.1 5.4 24 16.5% 14.8% 2

House committees 289 106 2535 111 4312 0.7 2.0 8.6 3.6 18 0.9% 0.0% 2

Senate committees 282 275 12,761 289 41,008 16.2 12.6 16.6 6.0 25 0.0% 0.0% 2

Walmart 1025 3553 8029 5112 13,769 9.8 16.7 2.8 1.2 11 51.0% 7.0% 10

Trivago 6687 33,963 69,875 40,280 115,533 13.9 13.8 2.7 1.3 26 59.6% 16.1% 36

Shown are the number of nodes (N), number of hyperedges in the hypergraph (E) and in the graph (EG), number of weighted hyperedges in the hypergraph (M) and in the graph (MG), mean node
degree ( k

% &
), SD of node degree (s(k)), mean hyperedge size ( d

% &
), SD of hyperedge size (s(d)), maximum hyperedge size (D), percentage of pairwise interactions (% d = 2), percentage of pairwise

interactions in the 2-combination set of hyperedges of size bigger than 2 that are already in the graph (% d > 2∈G), and number of communities (K).
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particular, a clique expansion resulting from this additional hyper-

edge brings in 20
2

# $
new edges of size 2 (red in the figure). Hence,

we expect this additional information to impact the structure of
Graph-MT much more than the hypergraph. Figure 1 shows that
Hypergraph-MT is not biased by the presence of this individual
large hyperedge, and it well recovers the external guests by
assigning zero memberships to them for both classes. Conversely,
Graph-MT assigns the guests to the blue class. With this toy exam-
ple, we show a possible scenario where hypergraphs have an
advantage, as this representation is more resilient to the addition of
a noisy hyperedge and is more robust in detecting communities.

Hyperedge prediction: analysis of a Gene-Disease dataset. We now
turn our attention to the analysis of a higher-order Gene-Disease
dataset, where nodes are genes, and a hyperedge connects genes that
are associated with a disease. Here, we focus on the ability of our
model to predict missing hyperedges. We measure prediction per-
formance using a cross-validation protocol where hyperedges are
divided into train and test sets. The train set is used for parameter
estimation, while performance is evaluated on the test set. We com-
pute the area under the receiver-operator curve (AUC), and use the
probability assigned by our model of a hyperedge to exist as input
scores for thismetric. For Graph-MT, the probability of a hyperedge to
exist is computed as the product of the probabilities that each single
edge exists. For details, see the Methods section. When evaluating
Pairs-MT,wemeasure the AUCon the subset of test hyperedges of size
2. To perform a balanced comparison in this case, we alsomeasure the
AUC for both Hypergraph-MT and Graph-MT on this set (pairs), while
still training on the whole train set. This provides information on the
utility of large hyperedges to predict pairwise interactions.

We vary the maximum hyperedge size D to show how each
method responds to the incorporation of progressively larger edges in
terms of prediction tasks. Interestingly, we observe a strong shift in
performance around D = 15, 16, where Hypergraph-MT significantly
outperforms Graph-MT and Pairs-MT (see Fig. 2). This highlights that
hyperedges with larger size carry useful information that cannot be
fully captured via clique expansions. This is true regardless of the type
of missing edges being predicted (hyperedges or pairs-only). In addi-
tion, predictive performance is improved homogeneously across
hyperedge sizes in the held-out set. Namely, we are not improving just
in predicting the pairs-only, as shown by Hypergraph-MT (pairs), but
also those of bigger sizes, see Supplementary Fig. 3. This is where
Graph-MT fails because the additional information introduced by the
clique expansions produces a much denser graph than the input data
that may not be correlated with the true existing hyperedges, thus
blurring the observations given in the input. These results not only
highlight the ability of ourmodel to predict missing data, but also how
the knowledge of large hyperedges helps the predictionof hyperedges
of smaller sizes.

Overlapping communities and interpretability: analysis of a Justice
dataset. Together with hyperedge prediction, Hypergraph-MT allows
to extract relevant information also on the mesoscale organization of
real-world hypergraphs. As a case study, we analyze a dataset record-
ing all the votes expressed by the Justices of the Supreme Court in the
U.S. from 1946 to 2019 case by case. Justices are nodes, and hyper-
edges connect Justices that expressed the same vote in a given case.
The structure of this hypergraph is different from the others analyzed
above: it has fewer nodes (N = 38) but it is denser (E = 2826), on average
a Justice votes 367 times. Similarly, the graph obtained with clique
expansion has substantially fewer edges (EG = 264) but with higher
weights than the hypergraph. See Table 1 for details. Examining the
communities inferred in these two markedly distinct structures can
provide direct insights into the particular aspects captured by a
hypergraph formulation. To this end, we compare the inferred parti-
tions with the political parties of the Justices, i.e., Democrat or
Republican, information provided as node metadata. We use the
cosine similarity (CS), a metric that measures the distance between
vectors, and thus it is better suited to capture mixed-membership
communities. The CS varies between 0 and 1, where 1 means that the
inferred partition matches perfectly the one shown by political
affiliation. For each node, we compute the CS between its political
party and the partitions inferred by Hypergraph-MT and Graph-MT.
Figure 3a shows the point-by-point comparison between the resulted
cosine similarities of the two methods. Here, each marker is a Justice

Fig. 1 | The advantage of hypergraph representation: an illustrative example.
The left plot shows a subset of theHigh school dataset,with nodes belonging to the
classes 2BIO1 (light blue) andMP*2 (orange), and ten external guests (green). Node
size is proportional to the degree. The gray hyperedge simulates an event, and we
omit the other hyperedges for visualization clarity. The central plot displays the
partition extracted by Hypergraph-MT and on the right we find the partition

extracted by Graph-MT. In the latter, the gray edges denote the interactions in the
graph (obtained by clique expansions) before the event, and the red edges are the
interactions added because of the simulated event. This example shows the
advantage of using hypergraphs as this representation is more resilient to the
addition of a noisy hyperedge and is more robust in detecting communities.

Table 2 | Comparison of community detection algorithms in
human close-proximity contact interactions datasets

Hypergraph-MT Graph-MT Pairs-MT

High school 0.757 0.776 0.755

Primary school 0.907 0.916 0.928

Workplace 0.829 0.820 0.830

Hospital 0.580 0.491 0.554

For each dataset, we show the F1-score obtained by comparing a node metadata against the
inferred partitions from the hypergraphs (Hypergraph-MT), the graphs obtained by clique
expansions (Graph-MT), and the graphs given only by the registered pairwise interactions
(Pairs-MT).
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and colors represent their political parties. Points above (below) the
diagonal represent Justices for which the communities inferred by
Hypergraph-MT (Graph-MT) align better with the political party. In
several cases the two models infer memberships that align similarly
with political affiliation: upper-right corner, where both models are

aligned well, and lower-left corner, where they are both not aligned
well. The interesting behavior is shown in the bottom-right area
highlighted in gray, containing three Justices whose political affilia-
tions are more closely associated with the communities inferred by
Graph-MT than those of Hypergraph-MT. To investigate these cases,

Fig. 2 | Critical size for hyperedge prediction in a Gene-Disease dataset.We
measure the AUC by varying the maximum hyperedge size D. The results are
averages and standard deviations over 5-fold cross-validation test sets, and the
baseline for AUC is the random value 0.5. We run the model on the hypergraphs
(Hypergraph-MT), the graphs obtained by clique expansions (Graph-MT), and the
graphs given only by the registered pairwise interactions (Pairs-MT). To perform a

balanced comparison against Pairs-MT, for Hypergraph-MT and Graph-MT we
additionally measure the AUC on the subset of test hyperedges of size 2 (pairs),
while still training on the whole train set. The plot shows the existence of a critical
hyperedge size beyondwhich the higher-order algorithm significantly outperforms
alternative methods.
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Fig. 3 | Inference of overlapping communities in a co-voting higher-order
dataset of the U.S. Justices. a Point-by-point comparison between the cosine
similarities (CS) obtained by Hypergraph-MT and Graph-MT. For each Justice
(marker in the plot), we compute the CS between the partitions inferred by the
methods and the political party of the Justices, i.e., Democrat (blue) andRepublican
(red). b Vote majority proportion of the hyperedges of each Justice. Every hyper-
edge is colored based on the majority political party of the Justices involved in it,

i.e., either Democratic, Republican, or equally distributed (gray). Then, for every
Justice, we extract the percentage of times that they participate in hyperedges of a
given majority. c Data partition according to the political party (left), and the
mixed-membership communities inferred by Hypergraph-MT (center) and Graph-
MT (right). Node size is proportional to the degree, node labels are Justice IDs, and
the interactions are the edges of the projected graph.
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we inspect the information carried by the hyperedges. Specifically, for
each hyperedge we measure the majority political party based on
the affiliation of the Justices involved in it. For instance, a hyperedge of
size 5 made of 4 democrats and 1 republican has a Democratic
majority. We also account for ties, when equal numbers of Justices are
in both parties. Then, for each Justice, we extract the percentage of
times that they participate in hyperedges of a given majority. This
measure indicates the tendency of Justices to vote more often aligned
with democrats or republicans, an information summarized in Fig. 3b.
We observe Justices that consistently vote with their own party
majority (e.g., Justice 3 votes mainly with other democrats, Justice 28
mainly with other republicans), but also cases in which the political
party of the Justice is not aligned with the voting behavior expressed
by their hyperedges. For example, node 30 (Justice Ruth Bader Gins-
burg) is associated with the Democratic Party, but most of her votes
align with those of republican Justices. This behavior is captured by
Hypergraph-MT, which assigns her a membership more peaked in the
community made of republicans and only partially to the one of
democrats, as shown in Fig. 3c. Instead, Graph-MT assigns her mostly
to the community of democrats. This mismatch between hypergraph
information and political affiliation explains the lower value of cosine
similarity in Fig. 3a. Similar conclusions can be drawn for node 31 and
15. More generally, the overlapping memberships inferred by
Hypergraph-MT match more closely the voting behavior of Justices
than those inferred by Graph-MT, as shown in the pie markers
in Fig. 3c.

In addition to community structure, Hypergraph-MT out-
performs Graph-MT also in the hyperedge prediction task.
Figure 4a shows how Hypergraph-MT achieves higher AUC than
Graph-MT, in both predicting pairwise and higher-order interac-
tions. This further corroborates the hypothesis that information
is lost when decoupling higher-order interactions via clique
expansion. This example illustrates why it is critical to consider
hypergraphs when hyperedges contain information that can be
lost by clique expansion. It also shows the advantage of con-
sidering overlapping communities when nodes’ behaviors are
nuanced and no clear affiliation to one group is expected. As
Supreme Court cases span a wide range of topics, we may expect
Justices to exhibit a diversity of preferences (and thus voting

behaviors) that cannot be fully captured by a binary political
affiliation. Hence, models that consider overlapping communities
can provide a variety of patterns that better represents this
diversity. Finally, this example also confirms that metadata should
be carefully used as “ground-truth” communities, thus encoura-
ging a careful exploration of the relationship between node
metadata, information contained in the hyperedges and com-
munity structure57.

The computational efficiency of Hypergraph-MT. Beyond accuracy,
algorithmic efficiency is necessary for a widespread applicability of
statistical inference models to large-scale datasets. Hence, we now
assess the performance of our model on a variety of systems from
different domains, focusing on the analysis of the computational
efficiency of Hypergraph-MT as compared to alternative approa-
ches. The higher-order datasets include co-sponsorship and com-
mittee memberships data of the U.S. Congress, co-purchasing
behavior of customers on Walmart, and clicking activity of users on
Trivago (Table 1). Hypergraph-MT and Graph-MT perform similarly
in terms of predictingmissing hyperedges onmost of these datasets,
as shown in Fig. 4a. This suggests that in such cases, the information
learned from the clique expansion is similar to that contained in a
hypergraph representation. While one may be tempted to conclude
that using a dyadic method should be favored in these cases, we
argue that predictive performancemay not be the onlymetric to use
tomake this decision. Indeed, time complexity also plays a role here,
as many of these datasets have large hyperedges. While we have
extensively discussed the efficiency of Hypergraph-MT, one should
also consider the cost of running dyadic methods on clique expan-
sion of large data. In fact, this depends on the number of pairs
generated in the expansion, a quantity related to both the amount
and size of hyperedges. As a result, the size of a graph obtained by
clique expansion can become arbitrarily large. For instance, the
House bills data results in almost 4 × 105 edges, as opposed to the
4 × 104 hyperedges given by the hypergraph representation. This
difference of an order of magnitude has a significant impact in terms
of computational complexity. In fact, we observe a difference of an
order of magnitude also in the running time of the algorithms, as
shown in Fig. 4b, where we plot the time to run the threemethods on
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Fig. 4 | Hyperedge prediction performance and computational complexity in
higher-order datasets. a The performance of hyperedge prediction is measured
with the AUC, whose baseline is the random value 0.5. The results are averages and
standard deviations over 5-fold cross-validation test sets. For each dataset, we run
the model on the hypergraphs (Hypergraph-MT), the graphs obtained by clique
expansions (Graph-MT), and the graphs given only by the registered pairwise

interactions (Pairs-MT). To perform a balanced comparison against Pairs-MT, for
Hypergraph-MT and Graph-MT we additionally measure the AUC on the subset of
test hyperedges of degree 2 (pairs), while still training on the whole train set.
b Computational complexity of Hypergraph-MT, Graph-MT, and Pairs-MT for the
different higher-order datasets. We show the running time for one realization.
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each dataset. While for datasets with small hyperedges (e.g., the
close-proximity data discussed above) running time is similar for
Hypergraph-MT and Graph-MT, we observe significant differences
for datasets with larger maximum size D, with Hypergraph-MT being
much faster to run. Hypergraph-MT may therefore be the algorithm
of choice for large system sizes. See Supplementary Note 2 for fur-
ther results about the computational complexity of the methods on
synthetic data with variable size.

Discussion
Here, we have introduced Hypergraph-MT, a mixed-membership
probabilistic generative model for hypergraphs, which proposes a
first way to extract the overlapping community organization of nodes
in networked systems with higher-order interactions. In addition to
detecting communities, our model provides a principled tool to pre-
dict missing hyperedges, thus serving as a quantitative evaluation
framework for assessing goodness of fit. This feature is particularly
useful in the absence of metadata when evaluating community
detection schemes. In practice, our model considers an assortative
affinity matrix, which makes its algorithmic implementation highly
scalable. The computational complexity is also significantly reduced
by an efficient routine to compute expensive quantities at low cost in
each update, a problem not present in the case of graphs. We have
applied our model to a wide variety of social and biological hyper-
graphs, discussing accuracy in the hyperedge and community struc-
ture inference tasks. Moreover, we have showed that Hypergraph-MT
outperforms clique expansion methods with respect to running time,
making it a suitable solution also for higher-order datasets with large
hyperedges.

Our method has a substantial advantage in systems where
hyperedges contain important information that can be lost by con-
sidering non-higher-order methods on projected dyadic graphs. For
instance, it allows quantifying how maximum hyperedge size impacts
performance and unveils the presence of critical sizes beyond which
higher-order algorithms may significantly outperform dyadic meth-
ods, as shown in a Gene-Disease dataset. Hypergraph-MT also has the
benefits of being more resilient to the addition of large noisy hyper-
edges and of being more robust in detecting communities that are
more closely aligned with the information carried by hyperedges, as
shown in the analysis of the U.S. Justices.

There are natural methodological extensions to further expand
the range of applications covered by our model. Here, we have
considered an assortative affinity matrix, but alternative formula-
tions could be considered to target different types of structures. The
challenge would be to increase flexibility while keeping the dimen-
sionality of the problem under control. Moreover, ourmodel takes in
input hyperedges of one type, but there could be multiple types of
ways to connect a subset of nodes. Expanding our approach to these
cases would be analogous to extend single-layer networks to multi-
layer ones. This may be done by suitably defining different types of
affinity matrices for each type of high-order interaction, as in ref. 49.
Similarly, our model might be extended to extract temporal higher-
order communities in the presence of time-varying interactions with
memory58,59. Finally, hypergraphs may carry additional information
beyond the one contained in hyperedges. This calls for further
developments to rigorously incorporate information such as node
attributes into the model formulation60,61. While here we have
focused on analyzing real-world data, our generative model can also
be used to sample synthetic data with hypergraph structure. In par-
ticular, our model could prove useful for practitioners interested in
utilizing synthetic benchmarks of hypergraphs, allowing a better
characterization of higher-order topological properties, including
simplicial closure35 and higher-order motifs39. Taken together,
Hypergraph-MT provides a fast and scalable tool for inferring the
structure of large-scale hypergraphs, contributing to a better

understanding of the networked organization of real-world higher-
order systems.

Methods
Inference of Hypergraph-MT
Hypergraph-MT models the likelihood of the hypergraph A= fAege2E
as:

PðA∣θÞ=
Y

e2Ω

e#λe
λAe
e

Ae!
, ð7Þ

where λe =
P

kwdek
Q

i2euik . The set of latent variables is defined by
θ = (u,w), where u is a N ×K-dimensional community membership
matrix and w is a D ×K-dimensional affinity matrix, where
D= maxe2E de is the maximum hyperedge size in the dataset. Each
entry wdk represents the density of hyperedges of size d in the com-
munity k. Notice, we only consider the assortative regime, to reduce
the dimensionality of the affinity tensor w. The product runs over
Ω= e∣e $ V,de ≥ 2

! "
, that is, the set of all potential hyperedges. In

practice, we can reduce this space by considering only the possible
hyperedges of a certain size lower or equal than the maximum
observed size D. For instance, if the maximum size of interactions in a
hypergraph is D = 4, then we should not expect to see hyperedges of
size 5, and we can define Ω= e∣e $ V, 2≤de ≤D

! "
.

With this formulation, Hypergraph-MT is a mixed-membership
probabilistic generative model for hypergraphs. The main intuition
behind it is that a hyperedge ismore likely to exist between nodeswith
the same communitymembership. In fact, hyperedges in which even a
single value uik =0 appears, are assigned a null probability. The goal is
thus to infer the latent variables u and w given the observed hyper-
graph A.

We infer the parameters using a maximum likelihood approach.
Specifically, we maximize the log-likelihood

L= #
X

e2Ω

X

k

wdek

Y

i2e

uik +
X

e2E
Ae log

X

k

wdek

Y

i2e

uik ð8Þ

with respect to θ = (u,w), where we neglect the factorial term, which is
independent of the parameters. As the summation in the logarithm
renders the calculations difficult, we employ a variational approxima-
tion using Jensen’s inequality, that gives

Lðρ,θÞ= #
X

e2Ω

X

k

wdek

Y

i2e

uik

+
X

e2E
Ae

X

k

ρek log
wdek

Q
i2euik

ρek

# $
:

ð9Þ

For each e 2 E, we consider a variational distribution ρek over the
communities k: this is our estimate of the probability that the hyper-
edge e exists due to the contribution of the community k. The equality
holds when

ρek =
wdek

Q
i2e uikP

kwdek
Q

i2e uik
: ð10Þ

Maximize Eq. (8), is then equivalent to maximize Eq. (9) with
respect to both θ and ρ. We estimate the parameters by using an
expectation-maximization (EM) algorithm, where at each step one
updates ρ using Eq. (10) (E-step) and thenmaximizes Lðρ, θÞ regarding
θ = (u,w) by settingpartial derivatives to zero (M-step). This procedure
is repeated until the log-likelihood converges. The fixed point is a local
maximum, but it is not guaranteed to be the global maximum.
Therefore, weperform ten runs of the algorithmwith different random
initialization for θ, taking the fixed point with the largest value of the
log-likelihood. For further details, see Supplementary Note 1.
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Hyperedge prediction and cross-validation
We assess the performance of our model by measuring the goodness
in predictingmissinghyperedges. In these experiments,weusea 5-fold
cross-validation routine: we divide the dataset into five equal-size
groups (folds), selected uniformly at random, and give the models
access to four groups (training data) to learn the parameters; this
contains 80% of the hyperedges. One then predicts the hyperedges in
the held-out group (test set). By varyingwhich groupwe use as the test
set, we get five trials per realization. When we use the baseline Pairs-
MT, the training and the test sets are the subsets extracted from the
initial ones, containing only the hyperedges with de = 2. Instead, when
we use the baseline Graph-MT, we train the model on the
graph obtained from clique expansions of the hyperedges in the
training set.

As a performancemetric, wemeasure the area under the receiver-
operator characteristic curve (AUC) on the test data, and the final
results are averages over the five folds. The AUC is the probability that
a random true positive is ranked above a random true negative; thus
the AUC is 1 for perfect prediction, and 0.5 for chance. Since the set of
all possible hyperedges is large, it is not possible to compute the AUC
on the whole training and test sets; hence we proceed with samples. In
detail, we fix the number of comparisonswewant to evaluate, here 103.
We then sample 103 values from the non-zero entries (where exist a
hyperedge) of the sets, and we save the inferred hyperedge prob-
abilities in a vector R1. We sample the same number of values from the
zero entries (where do not exist a hyperedge), keeping this
set balanced with R1 in terms of hyperedge size distribution. We
save the inferred hyperedge probabilities of this set of entries in a
vector R0. We then make element-wise comparisons and compute the
AUC as

AUC=
P

ðR1 >R0Þ+0:5
P

ðR1 = =R0Þ
jR1j

, ð11Þ

where ∑(R1 >R0) stands for the number of times R1 has a higher value
than R0 in the element-wise comparisons; and ∣R1∣ = ∣R0∣ is the length of
the vector, which is equal to the number of comparisons we fix.

To predict the existence of a hyperedge, we use different
approaches according to the structure under analysis. For Hyper-
graph-MT, the probability of a hyperedge is given by Eq. (1). For Graph-
MT, instead,we compute theprobability of a hyperedge as theproduct
of theprobabilities of eachedgeof its clique expansion to exist. That is,
PðAeÞ=

Q
ðijÞ2e2

PðAij >0Þ, where e2 is the 2-combination set of the
hyperedge e. Notice, all the single pairwise interactions have to exist,
to have a probability of the hyperedge greater than zero. When eval-
uating Pairs-MT, wemeasure the AUC only on the subset of the test set
containing edges, i.e., hyperedges with de = 2. To perform a balanced
comparison in this case, we also measure the AUC for both
Hypergraph-MT andGraph-MTon this set (pairs),while still training on
the whole train set. This provides information on the utility of large
hyperedges to predict pairwise interactions.

Description of the datasets
In the main text, we analyze hypergraphs derived from empirical data
from various domains, and we provide a summary of study datasets in
Table 1. To perform the inference in these datasets, we need to choose
the number of communities K. In general, K can be selected using
model selection criteria. For instance, one could evaluate the model’s
predictive performance–for example in the link prediction task–for
varying numbers of communities, and then choose the best perform-
ingK. Here, for simplicity, wefix the number of communitiesK equal to
the number of classes of a node metadata, aiming to compare the
resulting communities with this additional information.

We first analyze four datasets collected by the SocioPatterns
collaboration (http://www.sociopatterns.org), which describe human

close-proximity contact interactions obtained from wearable sensor
data. The High-school dataset describes the interactions between
students of nine different classrooms62. In the Primary school, nodes
are students and teachers and a hyperedge connects groups of people
that were all jointly in proximity to one another63,64. Also here, the
number of communities reflects the classrooms to which each student
belongs, and it includes an additional class for the teachers. The
Workplace dataset contains the contacts of individuals of five different
departments, measured in an office building in France65. Lastly, the
Hospital hypergraph collects the interactions between patients,
patients and health-care workers (HCWs) and among HCWs in a hos-
pital ward in France66. The number of communities corresponds then
to the number of roles in the ward.

We then analyze the Gene-Disease dataset, that describes the
gene–disease associations provided by expert curated resources (e.g.,
UNIPROT, CTI)67. Nodes correspond to genes, and each hyperedge is
the set of genes associatedwith a disease.We keep only the genes with
a non-nan value of the Disease Pleiotropy Index (DPI), a quantity that
considers if the diseases associated with the gene are similar among
them and belong to the same disease class or belong to different dis-
ease classes. We use this attribute to fix the number of communities
because it may indicate the different behaviors of the genes in the
datasets. Moreover, we keep hyperedges with size 2 ≤ de ≤ 25.

The second case study in themain text presents the analysis of the
Justice hypergraph constructed from thedata inhttp://scdb.wustl.edu/
about.php. This dataset records all the votes expressed by the justices
of the SupremeCourt in theU.S. from1946 to 2019 case by case. Nodes
correspond to justices, and each hyperedge is the set of justices that
expressed the same vote in a case. The number of communities cor-
responds to the number of political parties, i.e., Democrat and
Republican.

The following datasets have been downloaded from https://www.
cs.cornell.edu/~arb/data/. We analyze hypergraphs created from U.S.
congressional bill co-sponsorship data, where nodes correspond to
congresspersons and hyperedges correspond to the sponsor and all
cosponsorsof a bill in either theHouse ofRepresentatives (Housebills)
or the Senate (Senate bills)45,68,69. We also use two datasets from the
U.S. Congress in the form of committee memberships45,70. Each
hyperedge is a committee in a meeting of Congress, and each node
again corresponds to amember of the House (House committees) or a
senator (Senate committees). A node is contained in a hyperedge if the
corresponding legislator was a member of the committee during the
specified meeting of Congress. In all these congressional datasets, the
node labels give the political parties of the members, thus all of them
have K = 2. For these datasets, we run the model with different values
of D = 2,…, 25 and choose the best value among them.

In addition to the congressional datasets, we analyze the
Walmart hypergraph71. Here, each node is a product, and a
hyperedge connects a set of products that were co-purchased by
a customer in a single shopping trip. We fix the number of com-
munities equal to the product category labels. Lastly, we analyze
the Trivago dataset45. Nodes correspond to hotels listed at tri-
vago.com, and each hyperedge corresponds to a set of hotels
whose website was clicked on by a user of Trivago within a
browsing session. For each hotel, the node label gives the country
in which it is located, and we fix K based on this information. For
Walmart and Trivago, we consider a subset of the hypergraph to
reduce the sparsity, as done in ref. 45. The c-core of a hypergraph
H is defined as the largest subhypergraphHc such that all nodes in
Hc have size at least c. For Walmart, we use the 3-core hypergraph,
and for Trivago, we work with the 5-core hypergraph.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Thedatasets used in the paper are publicly available from their sources
listed in the Methods section.

Code availability
An open-source algorithmic implementation of the model is publicly
available and can be found at https://github.com/mcontisc/
Hypergraph-MT.
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NETWORK SC I ENCE

Community detection in large hypergraphs
Nicolò Ruggeri1,2*, Martina Contisciani1, Federico Battiston3, Caterina De Bacco1*

Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool
to model many real-world social and biological systems. Here, we propose a principled framework to model the
organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of
currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlap-
ping ground-truth partitions. Our model is flexible and allows capturing both assortative and disassortative
community structures. Moreover, our method scales orders of magnitude faster than competing algorithms,
making it suitable for the analysis of very large hypergraphs, containing millions of nodes and interactions
among thousands of nodes. Our work constitutes a practical and general tool for hypergraph analysis, broad-
ening our understanding of the organization of real-world higher-order systems.

Copyright © 2023 The
Authors, some
rights reserved;
exclusive licensee
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for the Advancement
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original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).

INTRODUCTION
Over the last decades, most relational data, from biological to social
systems, have found a successful representation in terms of net-
works, where nodes describe the basic units of the system, and
link their pairwise interactions (1). Nevertheless, such a modeling
approach cannot properly encode the presence of group interac-
tions, describing associations among three or more system units
at a time (2–5). Such higher-order interactions have been observed
in a wide variety of systems, including collaboration networks (6),
cellular networks (7), drug recombination (8), human (9) and
animal (10) face-to-face interactions, and structural and functional
mapping of the human brain (11–13). In addition, the higher-order
organization of many interacting systems is associated with the gen-
eration of new phenomena and collective behavior across many dif-
ferent dynamical processes, such as diffusion (14), synchronization
(15–20), spreading (21–23), and evolutionary games (24–26).

Networked systems with higher-order interactions are better de-
scribed by different mathematical frameworks from networks, such
as hypergraphs, where hyperedges encode interactions among an
arbitrary number of system units (2, 27). In the last few years,
several tools have been developed for higher-order network analy-
sis. These include higher-order centrality scores (28, 29), clustering
(30), and motif analysis (31, 32), as well as higher-order approaches
to network backboning (33, 34), link prediction (35), and methods
to reconstruct nondyadic relationships from pairwise interaction
records (36). A variety of approaches have been suggested to
detect communities in hypergraphs, including nonparametric
methods with hypergraphons (37), tensor decompositions (38),
latent space distance models (39), latent class models (40), flow-
based algorithms (41, 42), spectral clustering (43–45), and spectral
embeddings (46). A different line of works focuses on deriving the-
oretical detectability limits (47–49).

Recently, statistical inference frameworks have been proposed to
capture in a principled way the mesoscale organization of hyper-
graphs (35, 50, 51). Despite their success, current approaches

suffer from a number of notable drawbacks. For instance, the
method in (51) is restricted to using very small hypergraphs and hy-
peredges, due to its high computational complexity. Also, the ap-
proach in (50) suffers from a high computational complexity in
the general case and needs to make strong assumptions to scale to
real-life datasets. Finally, the model in (35) is constrained to work
only with assortative community structures.

Here, we propose a framework to model the organization of
higher-order systems. Our method allows detecting communities
in hypergraphs with accuracy exceeding that of state-of-the-art ap-
proaches, in the cases of both hard and mixed community assign-
ments, as we show on synthetic benchmarks with known ground-
truth partitions. Furthermore, its flexibility allows capturing general
configurations that could not be previously studied, such as disas-
sortative community interactions.

Finally, overcoming the computational thresholds of previous
methods, our model is extremely efficient, making it suitable to
study hypergraphs containing millions of nodes and interactions
among thousands of system units not accessible to alternative
tools. We illustrate the advantages of our approach through a
variety of experiments on synthetic and real data. Our results show-
case the wide applicability of the proposed method, contributing to
broaden our understanding of the organization of higher-order
real-world systems.

GENERATIVE MODEL
A hypergraph consists of a set of nodes V = {1, …, N} and a set of
hyperedges E. Each hyperedge e is a subset of V, representing a
higher-order interaction between a number �e� of nodes. We
denote by D the maximum possible hyperedge size, which can be
arbitrarily imposed up to a maximum value of D = N, and Ω the
set of all possible hyperedges among nodes in V. We represent the
hypergraph via an adjacency vectorA � �Ω, with entry Ae being the
weight of e � Ω. We assume the weights Ae to be nonnegative and
discrete. For real-world systems, A is typically sparse. The number
�E� of nonzero entries is typically linear inN, and thus much smaller
than the dimension �Ω�.

We model hypergraphs probabilistically, assuming an underly-
ing arbitrary community structure with K overlapping groups, sim-
ilarly to a mixed-membership stochastic block model. Each node i

1Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen,
Germany. 2Department of Computer Science, ETH, 8004 Zürich, Switzerland.
3Department of Network and Data Science, Central European University, 1100
Vienna, Austria.
*Corresponding author. Email: nicolo.ruggeri@tuebingen.mpg.de (N.R.); caterina.
debacco@tuebingen.mpg.de (C.D.B.)
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can potentially belong to multiple groups, as specified by a K-di-
mensional membership vector ui with nonnegative entries. We
collect all the membership assignments in a N × K matrix u. The
density of interactions within and between communities is regulat-
ed by a symmetric nonnegative K × K affinity matrix w. These two
main parameters, u and w, control the Poisson distributions of the
hyperedge weights

pÖAe; u;wÜ à Pois Ae;
λe
κe

✓ ◆
Ö1Ü

where

λe à
P

i,j:i;j[e uiTw uj

à
P

i,j:i;j[e
XK

k;qà1
uik ujq wkq

Ö2Ü

Here, κe = κ�e� is a normalization factor that solely depends on the
hyperedge size �e�. We develop our theory for a general form of κn.
While in principle any choice κn > 0 is possible, in our experiments

we use the form κn à nÖn�1Ü
2

N � 2
n� 2

✓ ◆
, for every hyperedge of size n

(52). Because of the fact that κ2 = 1, if the hypergraph contains only
pairwise interactions our model is similar to existing mixed-member-
ship block models for dyadic networks (53, 54). Intuitively, given two

nodes i, j, the term N � 2
n� 2

✓ ◆
normalizes for the number of possible

choices of the remaining n � 2 nodes in the hyperedge. The term n(n
� 1)/2 averages among the number of possible pairwise interactions
among the n nodes in the hyperedge. Note that previous generative
models for hypergraphs were limited to detect only assortative com-
munity interactions (35, 50). By contrast, in ourmodel, each entrywkq
distinctly specifies the strength of the interactions between each k, q
community pair. Hence, for the first time, our method allows encod-
ingmore general community structures, without the need to impose a
priori assumptions to ensure computational and theoretical feasibili-
ty. In particular, the bilinear form in Eq. 2 allows for a tractable and
scalable inference, regardless of the structure of w. Another relevant
feature of the model is that the size of the affinity matrix w does not
vary with maximum hyperedge sizeD nor with the number of hyper-
edges, making it memory efficient also for hypergraphs with large in-
teractions.We name ourmodel Hy-MMSBM, for hypergraphmixed-
membership stochastic block model, and provide an open-source im-
plementation at http://github.com/nickruggeri/Hy-MMSBMgithub.
com/nickruggeri/Hy-MMSBM. We have also incorporated our algo-
rithm inside the open-source library Hypergraphx (55).

INFERENCE
Optimization procedure
In real-life scenarios, practitioners observe a list of hyperedges,
encoded in the vector A, and aim to learn the node memberships
u and affinity matrix w that best fit the data. To this end, we start by
considering the likelihood of A given the parameters θ = (u, w).
Using Eqs. 1 and 2, this is given by

pÖA jθÜ à
Y

e[Ω
Pois Ae;

λe
κe

✓ ◆
Ö3Ü

where the hyperedge weights are assumed to be conditionally inde-
pendent given (u, w). Its logarithm is given by

log pÖA jθÜ à
P

e[Ω � 1
κe
P

i,j[e uiT w uj
á
P

e[E Aelog
P

i,j[e uiT w uj
Ö4Ü

where we discarded constant terms not depending on the parame-
ters. The first summation over �Ω� terms appears intractable due to
the exploding size of the configuration space. However, one impor-
tant feature of our model is that this high dimensionality can be
treated analytically, as the likelihood conveniently simplifies. The
summand

P
e[Ω � 1

κe
P

i,j[euiT w uj is simply taking the interac-
tion term uiTwuj as many times as it appears in all the possible hy-
peredges, each weighted by the factor 1/κe. This reasoning yields the

count C à
PD

nà2
1
κn

N � 2
n� 2

✓ ◆
and the following simplified log-

likelihood

log pÖA jθÜ à �C
P

i,j[V uiT w uj
á
P

e[E Aelog
P

i,j[e uiT w uj
Ö5Ü

obtaining a tractable sum of terms. To maximize Eq. 5 with respect
to u and w, we use a standard variational approach via Jensen’s in-
equality logEâxä � Eâlogxä to lower bound the second summand as

P
e[E Aelog

P
i,j[e uiT w uj �

P
e[E Ae

P
i,j[e

XK

k;qà1
ρÖeÜijkq log uik ujq wkq

ρÖeÜijkq

✓ ◆
Ö6Ü

Here, the variational distribution is specified by the ρÖeÜijkq values,
which can be any configuration of strictly positive probabilities such
that

P
i,j[e

PK
k;qà1ρ

ÖeÜ
ijkq à 1. The equality in Eq. 6 is achieved when

ρÖeÜijkq à
uikujqwkq

P
i,j[e

XK

k;qà1
uikujqwkq

à
uikujqwkq

λe
Ö7Ü

Hence, maximizing logp(A�θ) is equivalent to maximizing

LÖu;w; ρÜ à �C
P

i,j[V uiT w uj

á
P

e[E Ae
P

i,j[e
XK

k;qà1
ρÖeÜijkq log

uik ujq wkq

ρÖeÜijkq

✓ ◆

with respect to both (u, w) and ρ. This can be done by alternating
between updating ρ and (u, w), as in the expectation-maximization
(EM) algorithm.

The update for θ � {u, w} is obtained by setting the partial de-
rivative ��(θ, ρ)/�θ to 0, which yields the following expressions

uik à
P

e[E:i[e AeρÖeÜik
C
P

q wkq
P

j=i[V ujq
Ö8Ü

wkq à
P

e[E AeρÖeÜkq
C
P

i,j[V uikujq
Ö9Ü
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The terms ρÖeÜik ; ρ
ÖeÜ
kq are defined as

ρÖeÜik à
X

j[e:j=i

X

q
ρÖeÜijkq

ρÖeÜkq à
X

i,j[e
ρÖeÜijkq

and obtained after updating ρÖeÜijkq according to Eq. 7. These updates
presented in this section are based on maximum likelihood estima-
tion, where we do not set any prior for (u, w). However, we can get
maximum a posteriori estimates (MAP) with similar derivations
and complexity by arbitrarily setting prior distributions for the pa-
rameters, as we show in the Supplementary Materials [Appendix
Maximum-a-Posteriori (MAP) estimation]. We comment on how
to obtain efficient matrix operations that implement the updates
in Eqs. 8 and 9 in the “Practical implementation and efficien-
cy” section.
Identifiability, interpretation, and theoretical implications
In the following, we make some observations on relevant aspects
regarding the identifiability, interpretation, and theoretical implica-
tions of the proposed generative model. First, the log-likelihood in
Eq. 5 is invariant under permutations of the groups and under the
rescaling u � c u and w � w/c2, for any constant c > 0. This obser-
vation may raise questions about identifiability of the parameters.
However, both permutation and rescaling do not change the com-
position of the communities or the relative magnitude of the entries
of w; thus, the mesoscale structure is not affected by them. Never-
theless, one can easily make the model identifiable by setting a prior
probability on w and considering MAP estimates (see Appendix
Identifiability in the Supplementary Materials for details).

Second, for similar invariance reasons, the constant C can be ne-
glected and absorbed after convergence, by either rescaling u0 àÅÅÅÅ
C
p

u or w0 = C w. While the forms of the rescaling constants κe
play no role during inference, as they only enter the updates
through the C term, they do instead affect the generative process
when sampling hypergraphs from it (52). For instance, calculations
similar to those in the Supplementary Materials (Appendix Average
degree) allow getting a closed-form expression for the average
weighted degree when only considering interactions of size k. The

resulting formula Eâdwk ä à
N � 2
k� 2

✓ ◆
k

κk N
P

i,j[VuiT w uj shows

that rescaling the constant κk translates into a rescaling of the
average degree. Similar considerations apply to the expected
number of hyperedges of a given size and show that the normaliza-
tion constants κe play an important role in determining the expected
statistics of the model and hence of the samples they produce. Gen-
erally, the sampling procedure from the generative model in Eq. 3,
allows determining the degree sequence (i.e., the degree array of the
single nodes) as well as the size sequence (i.e., the count of hyper-
edges for every specified size), which depend on the Poisson param-
eters and hence on the κe normalizers. Alternatively, the sampling
procedure from our generative model can be conditioned to respect
such sequences (52).

Third, it is possible to obtain the analytical expressions of the
expected degree of a node i, which evaluates to

Eâdwi ä à
P

e[Ω:i[e EâAeä
à Cui

Tw
P

j[V:j=i uj á C0
P

j,m[V:j;m=i uTj wum

where C0 à
PD

dà3

N � 3
d � 3

✓ ◆

κd is a constant similar to C (see Appen-
dix Average degree in the Supplementary Materials). This expres-
sion has a relevant interpretation, as it reveals a fundamental
difference between simple networks and higher-order systems.
Since in dyadic systems C0 = 0, we can think of the rightmost
summand as a term contributing only to higher-order interactions,
while the leftmost one is a shift of the expected degree coming from
binary interactions only. One can also observe an analogy with net-
works of interactions in physical systems. In this context, the left-
most summand can be seen as a mean-field acting on node i in a
cavity system where the node is hypothetically removed, while the
rightmost term acts as a background field generated by all interac-
tions involving any pair of nodes that does not include node i. This
background term is peculiar to higher-order systems, as remarked
above. Its presence has a relevant effect of building higher-order in-
teractions between nodes in different groups. This can be illustrated
with a simple example of a system with assortative w and node i be-
longing to a different community than all the other nodes. While
the leftmost summand yields expected degree zero in dyadic
systems, the background field allows i to form on average nonzero
edges. Intuitively, this difference is due to the bilinear form in Eq. 2,
which allows observing hyperedges that are not completely homo-
geneous, where there could be a minor fraction of nodes that are in
different communities than the majority. Notice that such a gener-
ation, allowing for mixed hyperedges, is a desirable feature. On the
one hand, it is appropriate to model contexts where individuals have
multiple preferences and thus are expected to belong to multiple
groups. On the other hand, recent work (56) proves the combina-
torial unfeasibility of hypergraphs where all nodes exhibit majority
homophily—implying rather uniform hyperedges contained in
single communities—and encourages the development of more
flexible generative models.

Practical implementation and efficiency
From an optimization perspective, the EM algorithm starts by ini-
tializing u andw at random and then repeatedly alternating between
the Eq. 8 and Eq. 9 updates until convergence of �(u, w, ρ). This
does not guarantee to reach the global optimum, but only a local
one. In practice, one runs the algorithm several times, each time
from a different random initialization, and outputs the parameters
corresponding to the realization with highest log-likelihood �(u,w,
ρ). We provide a pseudocode description of the whole inference
procedure in Algorithm 1. For all our experiments, we perform
MAP inference on the affinity w, setting a factorized exponential
prior with rate 1, and maximum likelihood inference on the assign-
ment u. This choice corresponds to the half-Bayesian model pre-
sented in the Supplementary Materials [Appendices Maximum-1-
Posteriori (MAP) estimation and Identifiability]. The updates have
linear computational cost, obtained by exploiting the sparsity of
most real-world datasets with efficient matrix operations, as we
show in Appendix Computational considerations in the
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Supplementary Materials. Overall, the complexity scales asO(N K +
�E�), allowing to tackle inference on hypergraphs whose number of
nodes and hyperedges was previously prohibitive (see the “Model-
ing of real data” section). Another advantage of our inference pro-
cedure is that it is stable and reliable for extremely large hyperedges.
Because of computational and numerical constraints, previous
models were also limited to considering hyperedges with maximal
size D = 25 (35, 50). As we illustrate in the “Modeling of real data”
section with an Amazon and a Gene-Disease dataset, large interac-
tions (respectively D = 9350 and D = 1074) should not be neglected
as they provide useful information and substantially boost the
quality of inference.

RECOVERY OF GROUND-TRUTH COMMUNITIES
A standard way to assess the effectiveness of a community detection
algorithm is to check if the inferred node memberships match those
of a given ground truth. Such ground truth is generally not available
for real-world systems (57), while it can be imposed as a planted
configuration for synthetic data. For this reason, we consider a re-
cently developed sampling method to produce structured synthetic
hypergraphs with flexible structures specified in input (52). For
further details, see Appendix Recovery of community assignments
in the Supplementary Materials.

In Fig. 1, we generate hypergraphs with an underlying diagonal
affinity matrix w (assortative structure) and show the recovery per-
formance for the cases of hard (left) and mixed-membership (right)
community assignments. The detailed description of the data gen-
eration process is provided in Appendix Recovery of community as-
signments in the Supplementary Materials. We compare our
approach with Hypergraph-MT (35), an inference algorithm de-
signed to detect overlapping community assignments and assorta-
tive interactions; Spectral Clustering (43), which recovers hard

communities via hypergraph cut optimization; and Hypergraph
AON-MLL (50), which performs a modularity-like optimization
based on a Poisson generative model with hard memberships. For
our comparisons, we compute the cosine similarity between the
ground truth and the inferred communities, which is appropriate
to measure the similarity for both hard and mixed-membership
vectors. A value of zero represents no similarity, while a value of
one is attained by completely overlapping vectors. In both cases,
we find that our model successfully recovers the ground-truth com-
munities as more information is made available in terms of hyper-
edges of increasing sizes. This is somehow expected because the
generating process of these data reflects the one of our method,
and is a sanity check of our maximum likelihood approach. Spectral
Clustering andHypergraph-MTattain comparable cosine similarity
scores on hard-membership data (left), while their performances
differ when detecting mixed memberships (right), with Hyper-
graph-MT performing better. This is because Spectral Clustering
performs an approximate combinatorial search and can only
recover hard communities, while Hypergraph-MT allows for over-
lapping communities via maximum likelihood inference. The low
performance of Hypergraph AON-MLL is explained by its genera-
tive assumptions. AON-MLL assigns the same probability to all the
hyperedges containing nodes from more than one community. As
most of the hyperedges in this synthetic data are made of nodes
from more than one community, the recovery of hypergraph mod-
ularity on such systems is close to random. Altogether, such results
highlight the effectiveness of the inference procedure, making our
model suitable for networked systems with higher-order interac-
tions. Although relevant, the results in Fig. 1 are just one possible
comparison among algorithms with different generative assump-
tions. Such assumptions are expected to yield better or worse
results depending on the data, and in general, the no-free-lunch
theorem implies that no algorithm will consistently outperform
all others on all types of data. As a case for this argument, in Ap-
pendix Additional experiments on ground truth recovery in the
Supplementary Materials, we present additional results on different
synthetic data.

DETECTABILITY OF COMMUNITY CONFIGURATION
Previous inference algorithms rely on the strong assumption of as-
sortative community interactions, hampering their ability to model
more complex mesoscale patterns observed in the real world. By
contrast, our model allows detecting a variety of different regimes,
as it assumes a more flexible w.

Here, we investigate the detection—and detectability—of differ-
ent assortative and disassortative community structures in hyper-
graphs, generalizing previous work on pairwise systems (58). In
particular, we generate hypergraphs with hard community assign-
ments and different community interactions. We take affinity ma-
trices w with diagonal values cin and out-diagonal values cout, and
vary both cin and the ratio cout/cin. By fixing the value of cout/cin, we
expect higher detectability with increasing cin, as this term regulates
the expected degree and consequently the information contained in
the data. On the contrary, for a fixed value of cin, we expect the dis-
assortative model to attain better recovery as the ratio cout/cin in-
creases, due to the stronger intercommunity interactions. Details
on data generation are provided in Appendix Detection of commu-
nity structure in the Supplementary Materials.
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We compare the log-likelihoods obtained by the model when the
affinity matrix w is initialized as diagonal or full, which we refer to
as assortative and disassortative, respectively. Notice that the mul-
tiplicative updates in Eq. 9 guarantee that, if w is initialized as diag-
onal, it will remain as such during training. It is also possible that a
full matrix will converge to diagonal during inference. Nonetheless,
the strong bias of a diagonal initialization restricts the parameter
space of the assortative model, facilitating the convergence to
better optima for the detection of assortative structures.

Given the log-likelihood of the assortative (�a) and disassorta-
tive (�d) models, wemeasure the difference�a � �dwhile varying
the values of cin and cout/cin. Positive values denote stronger perfor-
mance of the assortative model, as its likelihood is higher, while
negative values favor the disassortative one. We observe that the as-
sortative model attains higher likelihood for low values of cout/cin,
when within-community interactions are stronger, as shown in
Fig. 2A. Its performance deteriorates as we increase cout/cin, with
the disassortative one taking over with higher likelihood values.
Furthermore, we can notice an inflexion point at cout/cin = 1,
where the difference in likelihood between the models is null.

While one would expect the disassortative model to perform
better in such a scenario, we highlight that this regime is a challeng-
ing and noisy one, as the affinity matrix is the uniform matrix of
ones. Hence, recovery is difficult and not guaranteed, regardless
of the model. We finally notice an increase of �a � �d with cin,
which regulates the strength of the signal and makes it easier to sep-
arate the two regimes.

While we expect recovery to improve at more detectable regimes,
this may not be observed by only looking at the �a � �d difference.
For this reason, in Fig. 2B, we complement our analysis by plotting
only the log-likelihood �d attained via the disassortative initializa-
tion. In this case, we notice that the performance of the disassorta-
tive model increases with both cout/cin and cin, as the
intercommunity interactions get stronger and the expected degree
gets higher. Altogether, our algorithm provides a principled way to
extract arbitrary community interactions from higher-order data
with varying structural organizations.

Fig. 1. Recovery of ground-truth community assignments. We measure the cosine similarity between the ground truth and the inferred assignments. We vary the
maximum hyperedge size D in synthetic data and study the cases of hard (left) and mixed (right) ground-truth memberships. When information is scarce, represented by
few hyperedges of small maximum size D, our method is comparable to the most efficient approaches currently available. However, as larger hyperedges are considered,
our method outperforms competing algorithms, on both hard and mixed-membership planted partitions.

Fig. 2. Detection of assortative and disassortative community interactions.We generate data where the affinity matrices contain diagonal values cin and out-diag-
onal cout and measure the ability of our model to detect different assortative and disassortative regimes. (A) Positive (negative) differences in log-likelihood values in-
dicate that the assortative (disassortative) model attains a better fit. An intermediate regime, highlighted in yellow, also emerges. Here, the detectability is compromised
due to not having enough structure (cout � cin) or enough information (low cin). (B) Log-likelihood of the disassortative model. In this case, the model attains better fit for
data with marked disassortative structure (darker red).
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CORE-PERIPHERY STRUCTURE
Many real-world systems are characterized by a different mesoscale
organization known as core-periphery (CP) structure (59, 60). Net-
works characterized by such structure present a group of core of
nodes connected among themselves, and often with high degree
(61, 62), and a separate periphery of weakly connected nodes. Re-
cently, methods to study and detect the existence of such patterns in
hypergraphs have been proposed (63, 64). Conceptually, Hy-
MMSBM has not been developed with the purpose of CP detection.
Nevertheless, we can show its ability in capturing CP structures in
hypergraphs through the generation of synthetic data that resemble
the core structures of the input dataset.

To measure the recovery of CP structures, we use the method
developed by Tudisco and Higham (64), HyperNSM, that assigns
to each node of a hypergraph a core-score quantifying how close
the node is to the core, where higher values denote stronger partic-
ipation. HyperNSM achieved good performance on synthetic and
real-world data, and its implementation is extremely efficient.

We analyze the Enron email dataset (65). Notably, the dataset
comes with metadata information identifying a group of core
nodes, employees of the organization who send batch emails to
the periphery, which in turn only receive emails. This allows us to
evaluate the ability of a model to recover a CP structure. In our
study, we use the dataset used by Tudisco and Higham (64) with
a planted core set that arises directly from the data collection
process, as discussed by Amburg et al. (63) (it is preprocessed by
keeping only hyperedges of size D � 25). The dataset has N =
4423 nodes and a core composed by 132 nodes. We apply Hy-
perNSM to quantify the CP structure of the input Enron email
dataset, as well as of the samples generated with Hy-MMSBM. To
generate the samples, we first run our inference procedure on the
Enron email dataset and then sample hypergraphs distributed ac-
cording to the obtained u, w parameters. Further details on how
to generate the samples are provided in Appendix Core-periphery
experiments in the Supplementary Materials. For comparison, we
also generate samples with a configuration model for hypergraphs
(66) and obtain their core-score vectors with HyperNSM as well.

To evaluate the quality of the CP assignments in the different
samples, we use the CP profile, the metric defined in (64) as

γÖSÜ à # hyperedges with all nodes in S
# hyperedges with at least one node in S ; S # V Ö10Ü

For any k � {1,…,N}, we calculate the value γ[Sk(x)], where Sk(x)
is the set of k nodes with smallest core-score in x. Given its defini-
tion, γ(S) is small if S is largely contained in the periphery of the
hypergraph and it should increase drastically as k crosses some
threshold value k0, which indicates that the nodes in V\Sk0(x)
form the core.

In Fig. 3A we show the CP profiles corresponding to the core-
scores computed with HyperNSM on the different datasets, i.e.,
the input Enron email, the samples generated with Hy-MMSBM,
and the samples generated with the configuration model for hyper-
graphs. We plot 600 nodes with the highest core-score in decreasing
order, and for all datasets, we notice a sharp drop, which highlights
the existence of a CP structure. The main difference is given by the
threshold k0 at which this drop happens. This determines the di-
mension of the core. Remember that the data have a core composed

by 132 nodes, and when applying HyperNSM on the input data, we
obtain a core dimension equal to 117, validating the good core-de-
tection performance of this algorithm. The samples generated with
the configuration model present a core with an average of 530.6
nodes, quite far from what observed in the input dataset. On the
other hand, Hy-MMSBM generates samples that better resemble
the property of the Enron email dataset, with an average core di-
mension of 195.7 nodes.

To understand the impact of nonpairwise interactions on
higher-order CP structure, we also study the connection between
hyperedge size and CP score. In Fig. 3B, we plot the CP score of a
given node against the mean size of the hyperedges it belongs to.
While we can observe a strong relationship between these two quan-
tities at low CP scores, such regularity disappears in the center of the
plot, which contains core nodes and presents a high scattering of
hyperedge size values. This unexplained variance is justified by
the rich information encoded in the CP score, which jointly
depends on different factors related to the topology of the hyper-
graph. Yet, the scatter plots obtained on the Enron email dataset
and the samples generated with Hy-MMSBM have higher similarity
than the samples generated with the configuration model. Quanti-
tatively, we measure the similarity between the core-scores of the
different datasets for the 132 core nodes with the Pearson correla-
tion, a measure ρ � [ � 1,1] of linear correlation between two sets of
data. The CP scores of the data have a Pearson correlation equal to
0.81 ± 0.01 with the samples generated with Hy-MMSBM, and of
0.76 ± 0.03 with the samples generated with the configuration
model. Similar results are found on the relation between CP score
and another structural property, namely, the degree of a node (see
fig. S2 in Appendix Additional results on the Enron email dataset in
the Supplementary Materials).

MODELING OF REAL DATA
In this section, we perform an extensive investigation of higher-
order real-world systems. As explained in the “Inference” section
and in the Supplementary Materials (Appendix Computational
considerations), the linear-cost EM updates, together with a
careful implementation that exploits the sparsity of most datasets,
make our method suitable for the analysis of a variety of hyper-
graphs that were previously inaccessible due to computational con-
straints. Our method proves to be scalable with respect to both the
number of system units and the size of the interactions, improving
substantially on competing algorithms currently available in the lit-
erature. Moreover, our model is based on a probabilistic formula-
tion, allowing it to perform additional operations and extract
information that is not viable via other approaches, such as spectral
clustering. First, we evaluate the quality of fit of various community
detection methods based on their hyperedge prediction capabilities
on a Gene Disease dataset, where nodes are genes, and interactions
contain genes that are associated with a disease. To this end, we use
the area under the curve (AUC) measure, a link prediction metric
defined as follows: Given a randomly selected observed edge, and a
randomly selected nonobserved one, the AUC �[0,1] computes the
number of times that the generative model assigns a higher proba-
bility to the observed edge. Here, we split the datasets into train and
test subsets, where the train sets are used to estimate the parameters,
and we evaluate the prediction performance in terms of AUCon the
test sets (see Appendix Experiments on real data in the
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Supplementary Materials for details). Scalability with respect to hy-
peredge size is a crucial aspect of models for higher-order data.
However, due to computational and numerical constraints, previ-
ous methods are limited to considering interactions of moderate
size only, possibly causing a loss of information and a biased repre-
sentation of the full system. In contrast, our model is able to effi-
ciently process all the information provided in the dataset,
reliably scaling to hyperedges of size of the order of the thousands.
In Fig. 4A, we compare our method with other probabilistic ap-
proaches with hyperedge prediction capabilities. When only small
interactions are considered, our model outperforms the competitive
algorithms. At the computational limit of other approaches D = 25,
Hypergraph-MT and our model attain a similar score, signaling the
importance of considering large interactions. Beyond this compu-
tational threshold, our method continues to exploit the information
provided by interactions among a growing number of units up to
the maximum size observed of D = 1074, which results in an
AUC score of 0.79.

We then extend our analysis to a variety of datasets from differ-
ent domains, as described in Fig. 4B. For each dataset, we show the

inference running time as a function of the number of nodes N and
the size of the largest hyperedge D. The AUC scores, reported in
Table 1 and ranging from 0.74 to 0.98, show that the model gener-
ally yields a good fit and predicts the existence of hyperedges reli-
ably. While these scores are on average aligned with those of other
existing algorithms (35), the running time of our model is orders of
magnitude lower. This allows studying very large hypergraphs such
as the Arxiv, Trivago 2core, and Amazon datasets, containing up to
millions of nodes and hyperedges. Overcoming the resulting com-
putational challenges, our method allows the efficient modeling of a
variety of previously unexplored datasets, which, to the best of our
knowledge, could not be tackled by competing higher-order com-
munity detection algorithms.

Taken all together, these results show the effectiveness of our
model in tackling datasets of small and large dimensions, in
terms of both quantitative performance and computational scalabil-
ity, and make Hy-MMSBM a valid tool for the study of complex
higher-order systems.

Fig. 3. Recovery of structural CP information. (A) CP profile (Eq. 10) corresponding to the core-scores computed with HyperNSM on the input Enron email (yellow), 10
synthetic samples generatedwith Hy-MMSBM (blue), and 10 synthetic samples generatedwith a configurationmodel for hypergraphs (magenta). We plot 600 nodes with
the highest core-score in decreasing order and report the averages and standard deviations of the core dimension for the different datasets. Our method generates
samples that closely resemble the property of the input dataset, with an average core dimension close to 132 nodes. (B) Mean size of the hyperedges a node belongs to
against its CP score. We observe higher agreement between the data and the inference-based sample generated with Hy-MMSBM. This is also highlighted by the Pearson
correlation of the 132 core nodes that is equal to 0.81 ± 0.01 for Hy-MMSBM versus the value of 0.76 ± 0.03 for the samples generated with the configuration model.

Fig. 4. Modeling of real data: hyperedge prediction and running time. (A) Quality of hyperedge prediction measured by the AUC score on a Gene Disease dataset,
where nodes are genes and hyperedges contain genes that are associated with a disease. For Hypergraph-MT and Graph-MT, the plot shows a computational threshold at
the maximum hyperedge size D = 25. Hy-MMSBM attains the highest scores and is able to model the entire hypergraph, up to D = 1074. (B) Running time of Hy-MMSBM
for a variety of real-world datasets. The node represents the data domain. Both N and D are in log scale. The corresponding AUC scores are reported in Table 1.
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DISCUSSION
Here, we have developed a probabilistic framework to model hyper-
graphs. Our method allows performing inference on very large hy-
pergraphs, detecting their community structure, and reliably
predicting the existence of higher-order interactions of arbitrary
size. When compared to other available methods on synthetic hy-
pergraphs with known ground truth, for both hard and mixed as-
signments, our model attains the most efficient recovery of the
planted partitions. Moreover, compared to previous proposals,
Hy-MMSBM relies on less restrictive assumptions on the latent

community structure in the data and is thus able to detect configu-
rations, such as disassortative community interactions, which could
not be previously identified. Furthermore, our method is extremely
fast. Its efficient numerical implementation exploits optimized
closed-form updates and dataset sparsity and has linear cost in
the number of nodes and hyperedges. The resulting formulas are
also numerically stable, not resulting in under- or overflows
during the computations. Such numerical stability carries over to
extremely large interactions, a substantial improvement over the
computational threshold of previous methods, allowing to explore
higher-order datasets with millions of nodes and interactions
among thousands of units, that could not be previously tackled.

There are several directions for future work. From a theoretical
perspective, our proposed likelihood function is based on a bilinear
form for capturing dependencies within the hyperedges, a key in-
gredient for ensuring bothmixed-membership nodes and fast infer-
ence. A possible extension would be to consider alternative
likelihood definitions where the probability of the hyperedges is de-
termined by multilinear forms, which would in principle allow cap-
turing more complex interactions within the hyperedges. Similarly,
here, we have assumed the hyperedges to be independent condi-
tioned on the latent variables. Relaxing this assumption may ame-
liorate the expressiveness of the model, allowing to capture
topological properties that involve more than two hyperedges, as
already observed in the case of networks (67–69). From an algorith-
mic perspective, there are different questions that may allow further
stabilizing and improving the inference procedure. Among these,
the propensity of different initial conditions to be trapped in local
optima during EM or MAP inference has not yet been investigated.
Devising suitable initialization procedures or parameter priors to
favor different membership types, as done in other works (70),
offers a promising path in this direction. Finally, we have considered
here a standard scenario where the input data are a list of hyper-
edges, and these are provided all at once. Other approaches may
be needed in case of availability of extra information such as node
attributes (71, 72) or for dynamic data (73).

Altogether, our work provides an accurate, flexible, and scalable
tool for the modeling of very large hypergraphs, advancing our
ability to tackle and study the organization of real-world higher-
order systems.
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From social to biological systems, many real-world systems are characterized by higher-order, non-dyadic
interactions. Such systems are conveniently described by hypergraphs, where hyperedges encode interac-
tions among an arbitrary number of units. Here, we present an open-source python library, hypergraphx
(HGX), providing a comprehensive collection of algorithms and functions for the analysis of higher-order
networks. These include different ways to convert data across distinct higher-order representations, a large
variety of measures of higher-order organization at the local and the mesoscale, statistical filters to spar-
sify higher-order data, a wide array of static and dynamic generative models, and an implementation of
different dynamical processes with higher-order interactions. Our computational framework is general,
and allows to analyse hypergraphs with weighted, directed, signed, temporal and multiplex group interac-
tions. We provide visual insights on higher-order data through a variety of different visualization tools. We
accompany our code with an extended higher-order data repository and demonstrate the ability of HGX
to analyse real-world systems through a systematic analysis of a social network with higher-order inter-
actions. The library is conceived as an evolving, community-based effort, which will further extend its
functionalities over the years. Our software is available at https://github.com/HGX-Team/hypergraphx.
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2 Q. F. LOTITO ET AL.

1. Introduction

In the last few decades, networks have emerged as the natural tool to model a wide variety of natural,
social and man-made systems. Networks, collections of nodes and links connecting pairs of them, are able
to capture dyadic interactions only. However, in many real-world systems units interact in groups of three
or more [1–4]. Systems with non-dyadic interactions are ubiquitous, with examples ranging from cellular
networks [5], drug recombination [6], structural and functional brain networks [7–9], human [10] and
animal [11] face-to-face interactions, and collaboration networks [12]. These higher-order interactions
can be naturally described by alternative mathematical structures such as hypergraphs [2, 13], where
hyperedges connect groups of nodes of arbitrary size.

In the last 25 years, advances in technology have generated an unprecedented amount of relational
data across a variety of domains. Broadening the scopes of the first pioneering contributions to the field
of network science [14–16], these allowed to develop new data-informed frameworks to investigate bio-
logical, technological and social systems. In parallel with theoretical and methodological progresses, a
crucial role in advancing network science has been played by the development of efficient algorithms
and computational tools to analyse networked data. Nowadays, widely used, community-based software
such as NetworkX [17] and igraph [18], and individual efforts such as graph-tool [19]—just to mention
a few—have enabled thousands of researchers to perform multi-faceted, large-scale network analysis of
relational data. Only recently, some early contributions [20–24], in particular XGI [25], have started to
develop computational tools to match the explosion of interest in higher-order systems.

Here, we provide our contribution by presenting hypergraphx (HGX), a multi-purpose, open-source
Python library for the analysis of networked systems with higher-order interactions. The library is con-
ceived by researchers with several years of experience and direct contributions to the field of higher-order
interactions. Developed by a diverse multidisciplinary team with complementary skills and expertise,
HGX aims to provide, as a single source, a comprehensive suite of tools and algorithms for construct-
ing, storing, analysing and visualizing systems with higher-order interactions. These include different
ways to convert data across distinct higher-order representations, a large variety of measures of higher-
order organization at the local and the mesoscale, statistical filters to sparsify higher-order data, a wide
array of static and dynamic generative models, an implementation of different dynamical processes with
higher-order interactions, from epidemics to diffusion and synchronization and more. Our computational
framework is general, and allows to analyse hypergraphs with weighted, directed, signed, temporal and
multiplex group interactions. Beyond experts in the field, we hope that our library will make higher-
order network analysis accessible to everyone interested in exploring the higher-order dimension of
relational data.

2. Tools

Here, we discuss the main functionalities provided by HGX. The different tools of our library are
illustrated online through detailed, user-friendly tutorials. The library is conceived as an evolving,
community-based effort, which will further extend its functionalities over the years.

2.1 Representations

Hypergraphs represent the most general and flexible framework to encode systems with higher-order
interactions [2, 13]. However, specific research questions or data features might benefit from alternative
higher-order frameworks. We provide functions to easily and efficiently convert higher-order data usually
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HYPERGRAPHX: A LIBRARY FOR HIGHER-ORDER NETWORK ANALYSIS 3

represented as hypergraphs into different representations [2, 26] such as bipartite networks, maximal
simplicial complexes, higher-order line graphs, dual hypergraphs and clique-expansion graphs.

2.2 Basic node and hyperedge statistics

Our library provides simple tools characterizing basic node and hyperedge statistics. These include mea-
sures of hyperdegree distributions, both aggregated or separated by order of interactions, as well as
measures of correlations among them. We include functions to compute hyperdegree–hyperdegree assor-
tativity, both within and across orders. We provide simple tools to compute hyperedge size distribution
in the whole system, as well as at the level of individual nodes.

2.3 Centrality measures

Centrality scores are a key tool in network analysis, and allow to quantify the importance or influence
of different nodes within a system [15]. Nodes with high centrality usually have a high number of links,
are strategically connected to other influential nodes, or are characterized by both such features. Our
library provides a variety of higher-order centrality measures, where interactions in different group sizes
are taken into account. These include centrality measures based on node participation in different sub-
hypergraphs [27] and different centrality scores based on spectral approaches [28]. We also implement
measures of hyperedge centrality based on shortest paths and betweenness flows [29].

2.4 Motifs

Motifs are small recurring patterns of subgraphs that are over-represented in a network [30]. Motif
analysis has established itself as a fundamental tool in network science to describe networked sys-
tems at their microscale, identifying their structural and functional building blocks [31]. We provide
an implementation for higher-order motif analysis, extracting overabundant subgraphs of nodes con-
nected by higher-order interactions, as originally defined in Ref. [32]. Given their widespread applications
and expected use on large-scale real-world datasets, we also provide an approximated algorithm for
higher-order motif analysis based on hyperedge sampling, able to speed up computations by orders of
magnitudes with only a minimal compromise in accuracy [33].

2.5 Mesoscale structures

One of the most relevant features of graphs representing real-world systems is community structure [34].
A variety of approaches for community detection on graphs show how these partitions provide meaning-
ful insights into the fundamental patterns underlying node interactions. Recently, methods for defining
the mesoscale structure of higher-order networks have been explored. Here, we provide an implementa-
tion of a spectral method which recovers hard communities via hypergraph cut optimization [35]. We also
implement different generative models able to extract overlapping communities and jointly infer hyper-
edges [36], allowing to capture a variety of mesoscale organizations, including both disassortative and
assortative community structure [37]. We provide a method able to extract hyperlink communities, where
interactions, and not system units, are clustered across different hypergraph modules [38]. Finally, we
provide a method to extract the core–periphery organization of higher-order systems, capturing a group
of central and tightly connected nodes in hypergraphs governing the overall system behaviour, inspired
by Ref. [39].

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/c
o

m
n

e
t/a

rtic
le

/1
1

/3
/c

n
a

d
0

1
9

/7
1

8
0

9
5

9
 b

y
 A

d
m

in
is

tra
tiv

e
 H

e
a

d
q

u
a

rte
rs

 - M
P

S
 u

s
e

r o
n

 0
1

 J
u

n
e

 2
0

2
3



4 Q. F. LOTITO ET AL.

2.6 Filters

Many real-world systems are characterized by an abundance of noisy and redundant interactions, result-
ing in overly densely connected networks. Different filtering techniques have been developed to identify
the most informative links by adopting an approach based on statistical validation, where the statistical
significance of interactions of the real system is evaluated by comparing them with an ensemble of ran-
dom replicas that preserve some individual features (like degree or strength) [40]. Our library provides a
variety of different tools to filter systems with higher-order interactions. These include extracting statis-
tically validated hypergraphs, which are a collection of hyperlinks that are over-expressed representing
nodes that are significantly interacting in the same exact group of fixed size [41] and identifying signif-
icant maximally interacting sets, which represent the largest groups of nodes that interact significantly,
captured by combining interactions of different orders [42].

2.7 Generative models

The ability to produce synthetic data with different topological characteristics has proven crucial for
a variety of tasks, from algorithms benchmarking to the study and testing of non-trivial network sta-
tistics [43, 44]. In our library, we offer ready-to-use implementations for various synthetic hypergraph
samplers. We provide functions to build generalized Erdös–Rényi models, both for uniform (all interac-
tions have the same order) and non-uniform (different orders of interactions) hypergraphs. We implement
scale-free random hypergraph models with the possibility of tuning the correlation between the degree
sequence among different orders. We also include a variety of randomization tools and a configuration
model for hypergraphs, where samples are produced respecting given node degree and hyperedge size
sequences [45]. Based on a similar mechanism, we implement also a more complex sampler which allows
to specify hard and soft community assignments for nodes, and arbitrary community structure, such as
assortative and disassortative [46]. Finally, we provide a higher-order activity-driven model with group
interactions that change in time [47] and compute the associated percolation threshold.

2.8 Dynamical processes

The structural properties of complex networks shape the dynamical process occurring on top of them [48].
Recent works have revealed that higher-order interactions significantly impact various dynamical pro-
cesses, including percolation [49], diffusion [50, 51], pattern formation [52, 53], synchronization [54–58],
contagion [59–61] and evolutionary games [62–64] We provide functions to investigate several of these
processes. These include tools to study synchronization with higher-order interactions, from the analysis
of the multiorder Laplacian matrix for kuramoto dynamics [55], to the implementation of the Master
Stability Function approach for synchronization stability [54, 65]. We also provide an algorithm to sim-
ulate simplicial social contagion [60], and analytical and numerical tools to investigate random walks on
hypergraphs [50].

2.9 Weighted, directed, signed, temporal and multiplex hypergraphs

Our library is highly flexible. It allows to store and analyse hypergraphs with a rich set of features asso-
ciated with hyperedges, including interactions of different intensity, directions, sign, that vary in time or
belong to different layers of a multiplex system.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/c
o

m
n

e
t/a

rtic
le

/1
1

/3
/c

n
a

d
0

1
9

/7
1

8
0

9
5

9
 b

y
 A

d
m

in
is

tra
tiv

e
 H

e
a

d
q

u
a

rte
rs

 - M
P

S
 u

s
e

r o
n

 0
1

 J
u

n
e

 2
0

2
3



HYPERGRAPHX: A LIBRARY FOR HIGHER-ORDER NETWORK ANALYSIS 5

2.10 Visualization

The adoption of higher-order networks is rapidly increasing, and the development of standard tools to
visualize them is still in progress. Our library provides different visualization tools to gain visual insights
into the higher-order organization of real-world systems. We provide tools to plot systems with higher-
order interactions, where hyperedges of arbitrary size encode relationships among an arbitrary number
of nodes. Due to the rapid combinatorial increase in the number of possible higher-order interactions and
their overlaps, such a direct approach is particularly suited for systems with a moderate number of nodes,
while such a visualization might not be effective in other cases. Therefore, we provide alternative solu-
tions that may assist the practitioner in a variety of cases, such as relational data with a large number of
nodes or large hyperedges. For instance, we give the option to plot the bipartite projection of a hypergraph
where the two sets of nodes represent respectively the original system units and the hyperedges in which
they take part. We can also plot the hypergraph clique projection, which results in a simple graph where
each hyperedge of size s is decomposed into a clique of s(s−1)

2 unordered pairwise interactions. Addition-
ally, we implement a multilayer representation of the hypergraph where each layer encodes interactions
of a given size, and two nodes are connected in layer s only if they interact in the hypergraph through a
hyperedge of size s. Finally, we offer a novel way of visualizing hypergraphs, where the hypergraph is
represented as a graph whose nodes are pie charts. These pie charts indicate the proportion of interaction
sizes for each node, and two nodes are connected when they have significant interactions across multiple
orders.

3. Data

Here, we present the dataset repository accompanying our library. Such a repository is intended to provide
an initial core of higher-order relational data, that we aim to expand over the next few years. We illustrate
the functionalities of HGX by performing different higher-order analyses for one of these datasets.

3.1 Higher-order data repository

The availability of data plays a fundamental role in developing theoretical frameworks and computational
tools across different scientific domains and applications. The recent explosion of higher-order rela-
tional data has led to novel methodologies to study higher-order systems, which in turn require extensive
datasets to be tested and validated. A few of these data are inherently higher order. Several others, instead,
have originally been investigated with pairwise approaches, but have recently been re-explored under the
new lens of higher-order network analysis. This motivates us to accompany our library with an easily
accessible and well-curated data repository, functioning as a unifying source of datasets for the analysis
of higher-order systems. We provide a collection of datasets for higher-order systems across different
domains, including ecological (animal proximity [66]), social (human face-to-face interactions [67–71],
co-authorships [72–74], votes [75]), technological (e-mails [73, 76, 77]) and biological (gene-disease [78]
and drug [73] associations) systems. Some of these datasets record metadata characterizing the system
units (e.g. whether an individual in a hospital is a patient or a doctor) and the interactions among them
(e.g. the scientific domain of a research paper involving a group of authors). Also, they store informa-
tion about the structural features of group interactions, which can be non-reciprocal, multi-relational and
time-varying. Datasets can be loaded to explicitly highlight some of these characteristics. Indeed, our
library allows to apply filters in the data loading process, for example, by selecting specific sets of nodes
with regard to some metadata restriction, or by extracting group interactions limited to a given size, type
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CA B

D E

F G H

Fig. 1. Higher-order analysis of social interactions. We illustrate different functionalities of HGX on a dataset of face-to-face group
interactions in a school from the SocioPattern collaboration [69]. (A) Higher-order degree distributions for different interaction
sizes. (B) Higher-order motif analysis. (C) Higher-order overlapping community detection, and comparison with node metadata
(we plot a subset of three classes). (D) Statistics of original and filtered higher-order social interactions. (E) Higher-order centrality
measure in the dataset, and in sample obtained from a higher-order generative model. (F) Temporal autocorrelation for different
sizes. (G) Fraction of infected nodes over time for a spreading process with or without higher-order infections. (H) Direct hypergraph
visualization of social interactions (we plot a subset of one class, considering only statistically significant interactions).

or time interval. In the next years, we plan to continuously expand the data repository, and to add further
filtering options to the data loading functions.

3.2 Analysing real-world higher-order systems: a guided tour

To illustrate the power of HGX in loading, manipulating, analysing and visualizing real-world systems
with group interactions, in Fig. 1, we present an illustrative analysis of a dataset from the SocioPattern
collaboration encoding face-to-face social interactions in a high school [69]. This dataset has been widely
investigated in the literature on higher-order interactions [32, 36, 46, 60, 73], and records the activity
of 327 students, divided into nine different high school classes. Our analysis focuses in particular on
interactions among 2, 3 and 4 individuals, as statistics is limited for larger groups.
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In Fig. 1(A), we show the different higher-order degree distributions. The largest degrees are obtained
for pairwise interactions, and, in general, the curves show different profiles. Higher-order degree dis-
tributions display different correlations across different orders (Pearson’s correlation coefficient ρ,
ρ2,3 = 0.74, ρ2,4 = 0.46, ρ3,4 = 0.72). To characterize such a higher-order system at the microscale, in
Fig. 1(B), we perform higher-order motif analysis as introduced in Ref. [32]. We consider subhypergraphs
of three nodes and capture over- (positive abundance score greater) and under- (negative) represented
motifs in the data, as compared to a randomized higher-order configuration model [45]. Local structures
with group interactions supported by pairwise links are found to be particularly relevant. In Fig. 1(C), we
describe the mesoscale structure of the system, by extracting overlapping communities with the method of
Ref. [36]. For simplicity, we consider a subset of three classes and plot pairwise interactions only. Nodes
are represented as pie-charts, colored proportionally to the higher-order communities they belong to. In
general, the inferred modules are well aligned with node metadata, with most students largely interacting
within the community associated with their class. In Fig. 1(D), we show statistics for the interactions in
the dataset. We see an inverse trend between the number of interactions and group size. We also plot sta-
tistics for a filtered system, where we have considered statistically validated hypergraphs [41], removing
redundant hyperedges and identifying the most informative group interactions. We continue by show-
casing the ability of the model introduced in Ref. [46] to generate hypergraphs which are similar to the
original dataset. To validate such a statement, in Fig. 1(E), we plot the distribution of (a rescaled ver-
sion of) higher-order centrality measure [27] both in the real and sampled hypergraphs, showing good
agreement between the two. To further illustrate the flexibility of our computational framework, we then
consider the temporal dimension of higher-order interactions. In particular, in Fig. 1(F), we the temporal
autocorrelation for different interaction sizes, one of the measures introduced to characterize the tempo-
ral evolution of higher-order systems in Ref. [79]. Results show the existence of long-range correlations
at all orders of interactions, with a temporal cut-off which is dependent on the group size. Beyond struc-
tural analysis, our library also allows to investigate a variety of dynamical processes with higher-order
interactions. Here, we simulate higher-order spreading among students in high school, following a model
where groups of infected individuals are associated with higher-order contagion terms, in addition to tra-
ditional pairwise mechanisms [60]. In Fig. 1(G), we show the fraction of infected nodes over time for
two configurations, one with and one without higher-order infections. As shown, the presence of such a
higher-order term might significantly change the collective dynamics, pushing the system from a healthy
to an endemic state. Finally, in Fig. 1(H), we present a direct hypergraph visualization of the higher-
order system. For simplicity, we plot individuals belonging to a single class and display all statistically
significant interactions [41] among two, three and four of them.

4. Conclusions

Hand in hand with new theory and methodologies, the development of efficient algorithms and software to
analyse networked data has played a pivotal role in the advancement of modern network science. Here, we
have presented HGX, a versatile and robust python library that offers a flexible and efficient framework
to analyse networked systems with higher-order interactions. Its user-friendly environment and its vast
range of functionalities make it accessible and useful to practitioners and researchers to answer a wide
variety of needs and questions. In the future, we aim to keep expanding the toolkit of HGX across multiple
new dimensions. For instance, we can already foresee the implementation of tools to investigate the
robustness of higher-order systems under different attack strategies. We will also provide methods to
efficiently summarize higher-order information and reduce the dimensionality of higher-order data. We
aim to include tools to build and analyse higher-order dependencies from multivariate time series [9],
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and measures of information theory to capture redundant and synergistic higher-order interactions [80].
Moreover, we aim to expand our coverage of higher-order processes, by including different evolutionary
games [62, 64], ecological dynamics [81] and more.

We hope that HGX will make higher-order network analysis open to all researchers dealing with
networked data, and we invite the community to explore the library and contribute.
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