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Abstract

The success of deep-learning-based algorithms significantly boosted the performance

of computer vision methods based on color images in recent years. The development

of hyperspectral and multispectral camera systems allowed many new applications of

spectral imaging. Still, the combination of both, computer vision methods and spectral

imaging, are in its infancy, especially since deep-learning-based approaches are not well-

established for spectral imaging.

In this work, recent computer vision developments are applied to different spectral

imaging tasks. Four challenges for the algorithms (lack of data sets, task-specific fea-

tures, complicated data augmentation, and large channel dimension) are identified and

tackled.

In the first part of this work, a simple convolutional neural network is proposed and

evaluated on two hyperspectral imaging applications in food inspection. In this context,

a data set of ripening fruit is introduced, which is used throughout the rest of the work.

In the second part, self-supervised pretraining for hyperspectral imaging is introduced

based on the example of three state-of-the-art contrastive learning methods (SimCLR,

SimSiam, Barlow Twins). Some modifications, like data augmentations, are required for

this. Afterward, the main contribution of this paper, a wavelength-aware 2D convolution

for hyperspectral imaging, is proposed. The key idea of the method is the introduced bias

”Similiar wavelengths show similar features”. This bias leads to a significant trainable

parameter reduction and supports the training of camera-agnostic models. The last part

of this work discusses and evaluates the usefulness of multispectral cameras for mar-

itime search and rescue missions. Therefore, a data set with humans in open water was

recorded and published. In this context, a method is presented which can reduce the

background bias, a problem of these remote sensing recordings. In the end, the work is

concluded with a summary, a short discussion, and an outlook.

None of the defined challenges were fully overcome. Still, the presented approaches

show how a solution could look and prepare future research in these directions.
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Kurzfassung

Der Erfolg von Deep-Learning-basierten Algorithmen hat in den letzten Jahren die Leis-

tung von Bildverarbeitungsmethoden auf der Grundlage von Farbbildern erheblich ver-

bessert. Die Entwicklung von hyperspektralen und multispektralen Kameras ermöglichte

neue Anwendungsgebiete für die spektrale Bildverarbeitung. Dennoch steckt die Kom-

bination von Computer-Vision-Methoden und Spectral Imaging noch in den Kinderschu-

hen, zumal Deep-Learning-basierte Ansätze für Spectral Imaging noch nicht vollständig

etabliert sind.

Jüngste Entwicklungen im Bereich der Computer Vision werden in dieser Arbeit für

verschiedene Anwendungen der Spectral Imaging erprobt. Vier Herausforderungen für

die Algorithmen (fehlende Datensätze, aufgabenspezifische Merkmale, komplizierte Daten-

Erweiterung und große Channeldimension) werden identifiziert und angegangen.

Im ersten Teil dieser Arbeit wird ein einfaches Convolutional Neural Network vor-

gestellt und auf zwei Hyperspectral-Imaging-Anwendungen aus der Lebensmittelkon-

trolle evaluiert. In diesem Zusammenhang wird ein Datensatz von reifenden Früchten

vorgestellt, der auch im weiteren Verlauf der Arbeit verwendet wird. Im zweiten Teil

wird das self-supervised Pretraining für Hyperspectral Imaging am Beispiel von drei mo-

dernen Contrastive-Learning-Methoden (SimCLR, SimSiam, Barlow Twins) vorgestellt.

Einige Modifikationen, wie z.B. Data Augmentation, sind hierfür notwendig. Danach

wird der Hauptbeitrag dieser Arbeit, eine wellenlängenbasierte 2D-Convolution für die

hyperspektrale Bildgebung, vorgestellt. Die Kernidee der Methode ist der eingeführte

Bias ”Ähnliche Wellenlängen zeigen ähnliche Merkmale”. Dieser Bias führt zu einer

signifikanten Reduktion der trainierbaren Parameter und unterstützt das Training von

kamera-agnostischen Modellen. Im letzten Teil dieser Arbeit wird die Tauglichkeit von

Multispektralkameras für maritime Such- und Rettungseinsätze diskutiert und evaluiert.

Dazu wurde ein Datensatz mit Menschen im Wasser aufgenommen und veröffentlicht.

In diesem Zusammenhang wird eine Methode vorgestellt, mit der Background-Bias, ein

Problem bei diesen Fernerkundungsaufnahmen, reduziert werden kann. Am Ende wird

die Arbeit mit einer Zusammenfassung, einer kurzen Diskussion und einem Ausblick

abgerundet.

Keine der definierten Herausforderungen konnte vollständig bewältigt werden. Den-

noch zeigen die vorgestellten Ansätze, wie eine Lösung aussehen könnte und bereiten

zukünftige Forschung in diese Richtung vor.
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Chapter 1

Introduction

1.1 Motivation

The recent technological development of hyperspectral and multispectral cameras leads

to many new applications of spectral imaging. By providing information about wave-

lengths outside the human-visible spectrum (≈ 400 - 700 nm), these systems allow deci-

sions that are not possible with purely human-based perception (e.g., see Fig. 1.1). Re-

cent developments in computer vision algorithms utilizing neural networks allowed the

surpassing of human experts in restricted classification tasks (He et al., 2015). The trend

towards deep learning enlivened research in many computer vision areas. Algorithms,

which seemed impossible ten years ago, are now within reach. Still, the straightforward

combination of spectral imaging and deep learning receives little attention. Through this

combination, however, superhuman vision seems possible.

The emerging trend towards spectral imaging is visible in many industry sectors, es-

pecially those that can be expected to grow in the near future (e.g., recycling, food in-

spection, and non-invasive medical applications). In this work, we present applications

of spectral imaging and review current algorithmic computer vision developments. We

show how hyperspectral imaging can be used to optimize the food chain, supporting the

trend towards precise farming, and we present how multispectral cameras could support

maritime search and rescue missions.

Time →

(a) Human perception

Time →

(b) Near Infrared

Figure 1.1: Recordings of an avocado on different days. In the (a) color images no change

is visible. Only the (b) false-color images (≈ 700 - 1000 nm) show a growing dark area,

which correlates with the ripeness of the fruit.
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Chapter 1 Introduction

1.2 Contributions

This thesis contributes to the research community with the following peer-reviewed

works. The asterisk (*) indicates equal contributions:

1. Leon Amadeus Varga, Jan Makowski and Andreas Zell. ”Measuring the Ripeness

of Fruit with Hyperspectral Imaging and Deep Learning”, IEEE International

Joint Conference on Neural Networks (IJCNN), 2021.

We present a system to measure the ripeness of fruit with a hyperspectral cam-

era and a suitable deep neural network architecture. This architecture did outper-

form competitive baseline models on the prediction of the ripeness state of fruit.

For this, we recorded a data set of ripening avocados and kiwis. Furthermore, a

technique is introduced to visualize the ripening process.

2. Leon Amadeus Varga and Andreas Zell. ”Tackling the Background Bias in Sparse

Object Detection via Cropped Windows”, IEEE/CVF International Conference

on Computer Vision (ICCV) Workshops, 2021.

Object detection on unmanned aerial vehicles is still a challenging task. The

recordings are mostly sparse and contain only small objects. In this work, we pro-

pose a simple tiling method that improves the detection capability in the remote

sensing case. By reducing the background bias and enabling the usage of higher

image resolutions during training, our method can improve the performance of

models substantially. The procedure was validated on three different data sets and

outperformed similar approaches in performance and speed.

3. Leon Amadeus Varga*, Benjamin Kiefer*, Martin Messmer*, and Andreas Zell.

”SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Wa-

ter”, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),

2022.

Unmanned aerial vehicles are of crucial importance in search and rescue missions

in maritime environments. Modern computer vision algorithms are of great in-

terest in aiding such missions. However, they are dependent on large amounts of

real-case training data from UAVs, which is only available for traffic scenarios on

land. Therefore, this paper introduces a large-scaled visual object detection and

tracking benchmark (SeaDronesSee) aiming to bridge the gap from land-based vi-

sion systems to sea-based ones. In addition, we are providing meta information

for altitude, viewing angle and other meta data. Multiple state-of-theart computer

vision algorithms were evaluated on this newly established benchmark serving as

baselines. We provide an evaluation server where researchers can upload their

prediction and compare their results on a central leaderboard.

2



1.2 Contributions

4. Leon Amadeus Varga, Sebastian Koch and Andreas Zell. ”Comprehensive Anal-

ysis of the Object Detection Pipeline on UAVs”, MDPI Remote Sensing Journal

14, no. 21, 2022.

The quality of the images directly affects the performance of object detectors.

This paper aims to tune the detection throughput and accuracy of existing object

detectors in the remote sensing scenario by optimizing the input images tailored

to the object detector. We empirically analyze the influence of two selected cam-

era calibration parameters (camera distortion correction and gamma correction)

and five image parameters (quantization, compression, resolution, color model,

and additional channels) for these applications. We show that not all parameters

have an equal impact on detection accuracy and data throughput. Using a suitable

compromise between parameters, we can achieve higher detection accuracy for

lightweight object detection models while keeping the same data throughput.

5. Leon Amadeus Varga, Martin Messmer, Nuri Benbarka and Andreas Zell.

”Wavelength-Aware 2D Convolutions for Hyperspectral Imaging”, IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV), 2023.

Deep Learning could drastically boost the classification accuracy for hyperspec-

tral imaging. Still, the training on the mostly small hyperspectral data sets is not

trivial. Two key challenges are the large channel dimension of the recordings and

the incompatibility between cameras of different manufacturers. By introducing a

suitable model bias and continuously defining the channel dimension, we propose

a 2D convolution optimized for these challenges of hyperspectral imaging. Besides

the shown superiority of the model, the modification adds additional explanatory

power. In addition, the model learns the necessary camera filters in a data-driven

manner.

6. Leon Amadeus Varga*, Hannah Frank* and Andreas Zell. ”Self-supervised Pre-

training for Hyperspectral Classification of Fruit Ripeness”, Internationale

Konferenz zur Optischen Charakterisierung von Materialien (OCM), 2023.

The ripeness of fruit can be measured in a non-destructive way using hyperspec-

tral imaging and deep learning methods. However, the lack of labeled data sam-

ples limits hyperspectral image classification. This work explores self-supervised

learning (SSL) as pretraining for HSI classification of fruit ripeness. State-of-

the-art SSL methods are implemented, and augmentation techniques for HSI are

developed. A 3D-2D hybrid convolutional network is proposed to support the

pretraining procedure. The pretraining is evaluated on the fruit ripeness predic-

tion task. This work shows that it is possible to transfer the ideas of SSL to HSI.

Pretraining stabilizes classifier training and improves the classifier performance.

3



Chapter 1 Introduction

Further, it can partially compensate for the need for large labeled data sets in HSI

classification.

7. Stefan Thomas, Leon Amadeus Varga, Nico Harter, Andreas Zell and Ralf Voegele.

”Detection of Phakopsora pachyrhizi infestation in soybean via hyperspectral

imaging and data analysis” Nature Scientific Report Journal (under review).

Phakopsora pachyrhizi, the causative agent of the Asian Soybean Rust, is one of

the most prominent causes of yield loss in soybean production worldwide. In

this study, a combination of hyperspectral imaging with advanced data analysis

methodology is shown to accurately detect soybean rust symptoms in early stages

and differentiate them from other factors at leaf scale. Results show that even

with a comparably small subset of training data the analysis through neural net-

works can outperform classical machine learning methods and human experts in

the early stage detection of infection.

In addition, our latest work, which discusses a similiar topic and was prepared during

the research of this dissertation, could not be included here due to time constraints:

8. Hannah Frank*, Leon Amadeus Varga* and Andreas Zell. ”Hyperspectral Bench-

mark: Bridging the Gap between HSI Applications through Comprehensive

Dataset and Pretraining” International Journal of Computer Vision (under re-

view).

Hyperspectral Imaging serves as a non-destructive spatial spectroscopy technique

with a multitude of potential applications. However, a recurring challenge lies

in the limited size of the target datasets, impeding exhaustive architecture search.

Consequently, when venturing into novel applications, reliance on established method-

ologies becomes commonplace, in the hope that they exhibit favorable general-

ization characteristics. Regrettably, this optimism is often unfounded due to the

fine-tuned nature of models tailored to specific HSI contexts. To address this

predicament, this study introduces an innovative benchmark dataset encompass-

ing three markedly distinct HSI applications: food inspection, remote sensing, and

recycling. Furthermore, the enhanced diversity inherent in the benchmark dataset

underpins the establishment of a pretraining pipeline for HSI.

4



1.3 Outline

1.3 Outline

This thesis presents different applications of spectral imaging (SI) and computer vision.

We evaluate deep-learning-based algorithms for hyperspectral imaging (HSI) and multi-

spectral imaging (MSI) in different scenarios, e.g., under laboratory conditions or open

fielad applications.

In chapter 2, we prepare the foundations for the thesis and discuss spectral imaging

with the key challenges for computer vision. Hyperspectral imaging and multispectral

imaging are forms of spectral imaging. We will mostly focus on HSI as this is more

different from Color Imaging and, therefore, more challenging. At the end of this chapter,

we present the used hardware (e.g., cameras, hyperspectral measurement system, and

drone platforms) utilized throughout the rest of the work.

In chapter 3, supervised learning for hyperspectral image classification is discussed

with two examples in the area of food inspection. Besides acquiring the data sets for

these applications, a shallow Convolutional Neural Network (CNN), called DeepHSNet,

is presented, which could outperform comparable approaches for these two applications.

Further, this chapter presents how HSI and machine learning can be utilized to build

non-destructive measurement systems for the upcoming trend of Precision Farming. The

network architecture DeepHSNet is the basis for further developments in this thesis.

Also, the recorded data set of ripening fruit will be used for further evaluation.

This chapter is based on our publications:

• Varga, L. A., Makowski, J., and Zell, A. (2021). Measuring the ripeness of fruit

with hyperspectral imaging and deep learning. In International Joint Conference

on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, pages 1–8.

IEEE,

• Thomas, S., Varga, L. A., Harter, N., Zell, A., and Voegele, R. T. (submitted). De-

tection of phakopsora pachyrhizi infestation in soybean via hyperspectral imaging

and data analysis. Nature Scientific reports.

A challenge of spectral imaging discussed in chapter 2, is the small labeled data sets,

as labels are often costly. In chapter 4, the recent trend of Self-supervised Learning

(SSL) based on Constrative Learning is reviewed and adapted for HSI. Here, we show

that self-supervised Pretraining stabilizes the training of larger neural network models for

the small HSI data sets. Further, the impact of different data augmentation techniques on

the HSI classification was evaluated.

This is based on our publication:

• Varga, L. A., Frank, H., and Zell, A. (2023a). Self-supervised pretraining for hy-

perspectral classification of fruit ripeness. In J. Beyerer, T. Längle, and M. Heiz-

mann, editors, OCM 2023 - Optical Characterization of Materials : Conference

Proceedings, pages 97–108.

5



Chapter 1 Introduction

In chapter 5, we propose a wavelength-aware 2D-Convolution for HSI. The model bias

”similar wavelengths show similar features” allows a significant parameter reduction.

This proposed method is our key contribution as it combines our main assumption that

neural networks can handle the large channel dimension of a hyperspectral cube without

dimension reduction with a suitable bias. With reduced model complexity, the model

can still outperform comparable models and generalizes significantly better on unseen

hyperspectral cameras. The straightforward definition of the learned wavelength ranges

as Gaussian-based camera filters makes the interpretation of the channel dimension han-

dling more intuitive. The learned camera filters could be the basis for a multispectral

camera for the specific application. This chapter is based on our publication:

• Varga, L. A., Messmer, M., Benbarka, N., and Zell, A. (2023b). Wavelength-aware

2d convolutions for hyperspectral imaging. In Proceedings of the IEEE/CVF Win-

ter Conference on Applications of Computer Vision (WACV), pages 3788–3797.

Hyperspectral cameras often require a laboratory setup, reasoned by the line-scan ac-

quisition mode and the light source. Multispectral cameras, in contrast, usually are more

robust with light, are cheaper, and support imaging acquisition mode. Therefore, they

fit better for most applications. In chapter 6, we show multispectral and color cameras

mounted on drones could be used for maritime search and rescue (SAR) missions. We

describe the data set generation of SeaDronesSee and the extension SeaDronesSeev2.

Further, we evaluate the impact of selected camera parameters, focusing on the camera

type (e.g., grayscale, color, or multispectral) selection, on the performance of an object

detection pipeline in the remote sensing application. In this context, we also evaluate

the advantage of MSI for maritime SAR. Finally, we discuss a common problem of

object detection in remote sensing, namely the background bias, and propose an easy-to-

implement method that reduces its impact. This chapter is based on our publications:

• Varga, L. A., Kiefer, B., Messmer, M., and Zell, A. (2022b). SeaDronesSee: A

maritime benchmark for detecting humans in open water. In IEEE/CVF Winter

Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA,

January 3-8, 2022, pages 3686–3696. IEEE,

• Varga, L. A., Koch, S., and Zell, A. (2022a). Comprehensive analysis of the object

detection pipeline on UAVs. Remote Sensing, 14(21),

• Varga, L. A. and Zell, A. (2021). Tackling the background bias in sparse object

detection via cropped windows. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, pages 2768–2777.

In the end, chapter 7 summarizes and discusses the achieved results and provides an

outlook on ongoing and possible future research based on the presented work.
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Chapter 2

Foundations

In this chapter, we will discuss the foundations of this work, which are necessary for

further chapters. First, we describe spectral imaging (SI) via the examples hyperspec-

tral imaging (HSI) and multispectral imaging (MSI). This also includes the particular

challenges of these recordings. Afterward, we introduce the used data sets, which are

publicly available or were published by us. Finally, we present the utilized hardware,

which covers the hyperspectral measurement system, camera systems, and drone plat-

forms.

It is assumed that the reader is familiar with the foundations of neural networks. There-

fore these will not be explained here.

Figure 2.1: Spectrum ranges. Modified graphic based on the figure of Elite Optoelec-

tronics Co. (2020).
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2.1 Spectral Imaging

Color and grayscale recordings are the most common form of images. Nearly every

smartphone allows capturing color images within seconds. These recordings cover only

the (for human) visible light (between 380 to about 750 nm).

Spectral imaging tries to mimic the underlying spectrum for each pixel, as discussed

by Robles-Kelly and Huynh (2013). Therefore many more channels are required. Fur-

ther, these recordings typically include channels outside the visible light, which can be

informative in some applications.

The wavelength ranges are categorized, as shown in Fig. 2.1. Especially, the Near-

infrared (NIR) range from around 750 nm to 2500 nm, and the Near-ultraviolet (NUV)

range from 300 nm to 400 nm are interesting for spectral imaging. Besides, the X-Ray

range is essential for some applications but will not be considered in this work.

Spectral imaging is usually achieved with at least one band outside the visible range.

Hyperspectral imaging and multispectral imaging are forms of spectral imaging, which

differ in the number of channels. As multispectral imaging has typically between 5 and

10 channels, hyperspectral imaging incorporates around 200 channels. The different

channel numbers have advantages and disadvantages, which will be discussed in the

following.

(a) Hyperspectral cube (b) Spectra of ripening Avocados

Figure 2.2: A hyperspectral cube of a ripening avocado and spectra of different ripening

states. Each pixel of a hyperspectral cube is defined by a spectrum.

2.1.1 Hyperspectral Imaging

Hyperspectral cameras record around 200 channels. With this number of channels, they

can sufficiently approximate the spectrum in a restricted range. Therefore, hyperspectral
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2.1 Spectral Imaging

(a) Snapshot (b) Spectral (c) Spatial (d) Spatial-Spectral

Figure 2.3: Visualization of the different scanning approaches

imaging can be interpreted as spatial spectroscopy. The only difference is that spec-

troscopy often covers a more extensive wavelength range with a higher spectral resolu-

tion. The product of HSI is often called a hyperspectral cube, as shown in Fig. 2.2.

Like a color image, the cube has two spatial (x and y) and one channel dimension

(λ ). The difference is that the channel dimension is larger, which leads to the cubic form

instead of the color image plane. This kind of data raises a couple of handling challenges,

which we will discuss in Sec. 2.1.3.

Besides data handling challenges, data acquisition is more complicated than for color

images. As the channel dimension is larger, it is currently hard to capture the whole

hyperspectral cube at once, called Snapshot Imaging. There are different approaches to

achieving the hyperspectral cube in total, which are visualized in Fig. 2.3.

• Snapshot Imaging (a): Snapshot imaging would be the favored approach. This

captures the hyperspectral cube at once. Currently, no cameras in the consumer

market are available, allowing Snapshot Imaging for hyperspectral imaging in a

reliable way.

• Spectral Scanning (b): Spectral scanning captures the spatial dimension at once

but requires scanning the spectral dimension. This approach can be, for example,

implemented by switching camera filters.

• Spatial Scanning (c): This approach simultaneously captures the whole spectral

dimension but still requires Spatial scanning. These kinds of cameras are called

line-scan cameras because they capture a spatial line. For a recording of an entire

scene, moving the camera or the object orthogonal to this line is necessary. In

practice, a linear actuator or a conveyor belt is used.

• Spatial-Spectral Scanning (d): The last category combines Spatial scanning and

Spectral scanning. It captures a part of the spatial and a part of the spectral dimen-

sions at once. This approach is rare and currently more common for prototypes,
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as the acquisition is complicated, but it can achieve higher spatial and spectral

resolutions.

Most available hyperspectral cameras use spatial scanning as an acquisition technique.

In Sec. 3, we also used cameras using this technique for two applications. In the first ap-

plication, a linear actuator was used to record the whole sample. For the second applica-

tion, the camera was moved over the recorded object. The resulting output, meaning the

hyperspectral cube, is for all techniques the same if we neglect minor recording artifacts.

For HSI, the light source is essential. It has to emit a homogenous light in the whole

recorded wavelength range. Otherwise, relevant features could be underexposed or over-

exposed. For NIR, Halogen lamps produce a reliable light. For UV, LED lamps are the

better choice. A diffuse light source, which could be indirect illumination, is preferable

as this reduces shadows. Shadows are problematic as these produce mixtures of the un-

derlying spectra and can invalidate the recording. Hyperspectral recordings should be

referenced to allow the comparability of the spectra of different recordings. The refer-

encing is achieved with the help of a white reference Rwhite (maximal possible intensity)

and a dark reference Rdark (minimal possible intensity). Often an average of more than

one recording is used as a reference. The normalized hyperspectral cube for the hyper-

spectral cube C can be computed by:

Cnorm =
C−Rdark

Rwhite −Rdark

(2.1)

As HSI is a non-destructive measurement and the additional channels can support clas-

sification tasks, many applications for HSI were found. Initially, HSI was mainly used

for remote sensing with satellites (Baumgardner et al., 2015), as the first hyperspectral

cameras were quite expensive. In recent years, new technologies boosted the hyperspec-

tral camera market resulting in cheaper and more practicable cameras. This allowed the

usage of HSI in many new industry sectors.

One of these sectors is food inspection (Park and Lu, 2015; Yang, 2011), which we

used mainly for our experiments. It covers different areas from precision farming to

quality measurements in the food chain. Most of the systems here are inline or infield. It

is still a growing sector with a lot of potentials. We selected this for our experiments as

it is, in comparison to the other applications, relatively easy to collect samples.

A further promising sector is the medical usage. First studies showed that HSI could

support early cancer diagnosis, analysis of diabetic foot, or can guide surgery as dis-

cussed by Lu and Fei (2014). As the measurement is not invasive, it could support

medical decisions without additional risk.

Further, inline sorting is also an upcoming sector. In every application where the

additional spectral information is helpful, HSI is worth considering. Examples are plastic

sorting in the recycling industry (Tatzer et al., 2005) or inline quality management of

medicine production (Vakili et al., 2015).

In contrast to color images, the applied computer vision algorithms for HSI are mostly
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2.1 Spectral Imaging

restricted to classification or segmentation tasks, as these are required for these applica-

tions. More complicated tasks, like object detection or object tracking, are uncommon

as the acquisition procedure of the hyperspectral cameras is not practicable for this.

2.1.2 Multispectral Imaging

In contrast to hyperspectral cameras, multispectral cameras are restricted to five to twenty

channels. Therefore, they combine a couple of advantages of color and hyperspectral

cameras. Like hyperspectral cameras, they cover wavelength ranges outside the visible

spectrum. Since they often operate in Snapshot Imaging mode, no special handling dur-

ing the acquisition is necessary. For multispectral cameras, the light source is usually less

critical since the camera filters of the channels are broader and therefore collect more in-

cident light. In summary, multispectral cameras are more practicable in usage. They can

even be used in embedded applications, e.g., mounted on a drone, as shown in chapter

6. Further, the price of multispectral cameras is usually lower than that of hyperspectral

cameras.

The main drawback of multispectral cameras is the limited spectral resolution. The

necessary spectral resolution depends highly on the applications. For some applications

of spectral imaging, a lower spectral resolution is acceptable, and only the correct wave-

length ranges are essential. The questions for the necessary wavelength ranges and re-

quired spectral resolution should be asked in the conception phase of the acquisition

pipeline.

A promising practice is to use HSI in the first step to identify the necessary ranges

and spectral resolution. For the final deployment, a multispectral camera can be used

based on the findings of the first phase. In chapter 5, we propose a method to support this

workflow. With these two phases, it is possible to keep the flexibility of the hyperspec-

tral camera for the evaluation and to provide the practical usability of the multispectral

cameras if possible.

In contrast to hyperspectral cameras, multispectral cameras can support, besides clas-

sification and segmentation, more complex object detection tasks. Multispectral tracking

is still uncommon as many cameras capture with low Frames per Second (FPS).

2.1.3 Challenges of Spectral Imaging

In this section, we want to identify challenges that arise with HSI and in minor form with

MSI for computer vision methods. In the later chapters, we tackle some of these with

our works and provide solutions or an approach for further investigation.

Lack of Data Sets The number of publicly available data sets of hyperspectral record-

ings is small. Color image classification and detections showed, for example, with Im-

ageNet of Deng et al. (2009) and Microsoft COCO of Lin et al. (2014b), how large
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data sets can boost the research in a specific topic. These data sets propose evaluation

procedures, ensuring results’ comparability between different approaches. The HSI com-

munity lacks this kind of data set. One reason is the still high price of the cameras and

the complicated acquisition procedure. Further, the labeling procedure is often time-

consuming. As for most applications of HSI, super-human results are wanted, and the

labeling usually requires additional tools to support the labeling.

Task-Specific Features For most applications of HSI, the required features are highly

task-specific. Features that are important for one application could be meaningless for

another. Primarily the wavelength ranges differ widely between different tasks. For color

image tasks, at least the kernels of the first backbone layers are often interchangeable, as

these support the detection of simple geometry structures (e.g., lines or corners), which

are necessary for nearly every more complex object. The pretraining of the large back-

bones is therefore helpful, as shown by Hendrycks et al. (2019). For small data sets,

pretraining is crucial as it stabilizes the training. For HSI, this kind of pretraining is,

reasoned by the task-specific features, very uncommon.

Complicated Data Augmentations Many works showed how proper data augmenta-

tion techniques boost the performance of models for color images (e.g., bag-of-freebies

proposed by Bochkovskiy et al. (2020)). The meaning of color images is quite robust

against modifications. In contrast, the meaning of the spectrum of HSI is rather sensitive.

Minor changes can already destroy the meaning. It is, for example, not easy to alter the

object color as a modification of the channels in the visible range also affects other chan-

nels in a hard-to-predict way. Still, alterations in the spatial dimension (e.g., rotation or

flipping) are easy to apply.

Large Channel Dimension Finally, the most obvious difference to color images is the

larger number of channels. Handling the many channels requires special attention. So,

architectures of neural networks, which were optimized for color images, often perform

poorly for hyperspectral recordings as these expect only three input channels and are de-

signed for large data sets. This also applies to classicial machine learning approaches. As

a consequence, dimension reductions as preprocessing are widespread for hyperspectral

data.

We often compared HSI to color image classification. The trend of success for color im-

age classification in recent years has been astonishing, and the basic structure is similar

(with two spatial dimensions and one channel dimension). A similar performance boost

for hyperspectral applications would be favored. For MSI, most challenges also apply

(like lack of data sets, task-specific features, and complicated data augmentations). In

this work, we present different applications of hyperspectral and multispectral imaging.

Furthermore, we try to tackle some of the challenges in the further chapters:
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2.2 Data Sets

• In chapter 3, we propose a data set that can be used to test models in a hyperspectral

classification task based on ripening fruit.

• In chapter 4, we evaluate self-supervised methods for hyperspectral data. In this

context, the impact of different data augmentations for HSI is validated.

• In chapter 5, a 2D convolution is proposed, which utilizes a model bias designed

for hyperspectral recordings. This bias allows handling the large input channels as

the features are learned based on wavelengths.

• Chapter 6 shows the usage of embedded multispectral cameras onboard on un-

manned aerial vehicle (UAV) systems. This covers generating the data set and

evaluating object detection models on the multispectral data.

In this work, we focus on our algorithmic research done for HSI in the chapters 3, 4 and

5. In contrast, the MSI-based work, mentioned in chapter 6, is described in less detail.

2.2 Data Sets

Table 2.1: Hyperspectral data sets, which are publicly available.

Name Description Task Samples
Wavelength

range [nm]

HRSS (Graña, M and

Veganzons, MA and

Ayerdi, B (2014))

Satellite

recordings

Image

segmentation

6 scenses with ≈
130.000

annotated pixels

≈ 400 - 2500

HS-SOD (Imamoglu

et al. (2018))

Hyperspectral

Saliency

Detection

Saliency

detection
60 images ≈ 350 - 1100

FS-ALMI (Wang et al.

(2022a))

Microsopic

images of lung

tissue

Temporal

classification

32 frames with a

resolution of

256×256 pixels

≈ 599 - 780

WHU-Hi (Hu et al.

(2020b))

UAV-based crop

classification

Image

segmentation

3 scenes with ≈
1.035.000

annotated pixels

≈ 400 - 1000

DeepHS Fruit v2 (ours)
Recordings of

ripening fruit

Image

classification

1018 annotated

images and 3653

unannotated

images

≈ 400 - 1700

As mentioned in the previous section, there is a lack of publicly available hyperspec-

tral data sets. Many hyperspectral algorithms were evaluated on the HRSS data set, a

segmentation task based on satellite recordings. As we show in chapter 5.4.2, many

methods achieve > 99% on this data set, so the task is not challenging anymore. But, it

is still the most common benchmark for HSI methods.
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The data sets HS-SOD and FS-ALMI are examples of most public hyperspectral data

sets. They are tiny (100 samples), which reduces the reliability of the results. Further,

their application is very specific and restricted. HS-SOD uses HSI for saliency detection

with only 60 samples, and FS-ALMI focuses on the temporal classification of lung cancer.

So the methods performing well on these tasks are typically optimized for these specific

applications and perform poorly on other HSI applications.

A better candidate seems to be WHU-Hi, which covers an image segmentation task

recorded with UAVs. Still, the data set is not established, and the quality of the recordings

is mixed. But it could become more important in the future.

As a last candidate, we mention the data set DeepHS Fruit, which we published. It

covers a classification task of the ripeness level of fruit. Currently, the second version

of this data set is available. In chapter 3.3, we describe the data acquisition of the first

version of the data set. The extension to the second version can be found in chapter

4.3. This version covers five fruit types (avocados, kiwis, mangos, papayas, and persim-

mons) recorded with three hyperspectral cameras (Specim FX 10, Innospec Redeye, and

Corning microHSI 410 Vis-NIR). A full description of this data set can be found in the

mentioned chapters. At this point, the three key points of the data set are mentioned:

• It is a classification task, which is fundamental for more complicated tasks like

object detection or object tracking. Further, the evaluation on different fruit types

reduces the problem of task-specific features. As the ripeness classification of

different fruit types requires slightly other features, the models must show more

adaptations capabilities. This differs from other task-specific hyperspectral data

sets.

• Due to the destructive labeling procedure, this data set contains many unlabeled

samples. These recordings cannot be utilized for supervised learning (see chapter

3). In chapter 4, we use the unlabeled recordings with the help of self-supervised

learning.

• Finally, the images of this dataset were taken with several different hyperspectral

cameras. In chapter 5, we discuss how to train a model that accepts images from

different hyperspectral cameras. Since these images usually differ in their channel

dimensions, this is not straightforward.

This work will mainly use the DeepHS Fruit data set as the mentioned key points sup-

port the experiments. Especially in chapter 5, we claim generalizability for the proposed

method. Therefore we also provide experiments with the small but established HRSS

data set.

For multispectral imaging, there is a similar problem. Most multispectral data sets are

very specific and small. In contrast to the established HRSS data sets, there is no well-

accepted multispectral data set which is used widely. As we focus in this work primarily

on hyperspectral recordings, we only highlighted these at this point.
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2.3 Hyperspectral Measurement System

2.3 Hyperspectral Measurement System

Figure 2.4: The recording system. With the object holder and linear axis, the light source

and the camera.

As mentioned earlier, hyperspectral cameras rely on sufficient illumination and often

require continuous movement of the test object. A hyperspectral measurement system,

which was built for the data acquisition of this thesis, is described here. During the

various acquisitions, the system was continuously improved. We focus here on the final

version. Three main components are visible in Fig. 2.4. The first component is the object

holder, which is moved by a linear actuator. The linear actuator is necessary for the line

scan operation mode of the hyperspectral cameras. The linear axis would be unnecessary

for a snapshot hyperspectral camera instead of the line scan camera. The latter, however,

still seem to have better sensitivity.

The second component is the light source. For HSI, a sufficiently bright and homo-

geneous light source is indispensable. In the final version of the measurement system,

halogen lamps were used, producing sufficient illumination. In the first version of the

system, a combination of halogen lamps and LED lamps was tested, but the halogen

lamps are enough for our spectral range. In addition, we used a Polytetrafluoroethylene

curvature reflector to create diffuse light, which is preferable.

The last component is the camera. In total, we used three different hyperspectral

cameras. Two cameras covered the visible range (400 - 700 nm) and the lower part of
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(a) Specim FX 10 (b) Corning HSI-1d-Vis

Figure 2.5: Two of the used hyperspectral cameras.

the near-infrared range up to 1000 nm. The last camera was only used for the first data

acquisition but also recorded wavelengths up to 1700 nm.

Most recordings were done with a Specim FX 10. The Specim FX 10 records 224

spectral channels and covers a spectral range from 400 to 1000 nm. This range holds

the VIS range with the addition of the lower NIR range. The spatial dimension contains

1024 pixels.

The second camera is the Corning HSI-1d-Vis. The spectral channels are similar to the

Specim FX 10 with 249 channels and a range from 400 to 900 nm. The spatial resolution

is a bit higher, with 1400 pixels. Even though the acquired recordings look similar to the

specifications of the two cameras, the recordings differ, e.g., discussed in chapter 5.

The last camera is a INNO-SPEC Redeye 1.7 with 252 spectral channels. This camera

misses the visible range but covers the near-infrared range with a wavelength range of

950 to 1700 nm.

All used hyperspectral cameras require line-scan mode. For an optimal acquisition,

the exposure time of the camera must fit the illumination to avoid under- or over-exposed

areas. Further, the speed of the line actuator has to fit the exposure time. Otherwise, the

recordings are spatially distorted.

2.4 Multispectral Cameras

We employed multispectral cameras besides color cameras for an embedded application

onboard drones (see chapter 6). We used two multispectral camera types.

A MicaSense RedEdge-MX was used for most multispectral recordings. This camera

records five channels. Besides the three color channels (red with 668 nm, green with 560

nm, and blue with 475 nm), two channels cover the near-infrared (red edge with 717 nm

and near-infrared with 842 nm). Further, a few recordings were also performed with a

MicaSense Altum. In addition to the five channels of the MicaSense RedEdge-MX, this

camera records a thermal channel (with 11 µm).
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Figure 2.6: A MicaSense RedEdge-MX camera used for most of the multispectral record-

ings.

In contrast to the hyperspectral cameras, these cameras work in snapshot mode, which

is much easier for infield applications.

2.5 Drone Platforms

As carrier systems for the multispectral cameras in the embedded applications, two

Quantum System Trinity F90+ drones were used (Fig. 2.7). These fixed-wing drone

,which have a wingspan of 2.4 m and a maximal take-off weight of 5 kg, allow verti-

cal take-off and combine, therefore, the benefits of multi-copters and gliding flight. The

take-off and landing area can be small, and the flight time is much higher (≈ 90 minutes)

than for multi-copters. These are a perfect fit for the search and rescue task discussed in

chapter 6. Besides the multispectral cameras as payload for our experiments, the Quan-

tum System Trinity F90+ drones carried a high resolution camera (Sony UMC-R10C).

Figure 2.7: The Quantum System Trinity F90+ vertical-take-off drone, which carried the

MicaSense RedEdge-MX camera on the data acquisition for the SeadDronesSee data set.
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Figure 2.8: The ElevonX Sierra drone carring a Nvidia AGX Xavier and a Allied Vision

1800 U-1236 camera on a field mission.

We recorded data for offline processing with these carrier systems and other quadro-

copters (e.g., DJI Matrice 100, DJI Matrice 210, and a DJI Mavic 2 Pro). We created the

maritime search and rescue data set SeaDronesSee, discussing this in chapter 6 with a

focus on the multispectral recordings.

For online processing, we built two prototypes based on ElevonX Sierra VTOL drones

(see Fig. 2.8). This drone is a vertical-take-off fixed-wing drone, too. The wingspan

of the ElevonX Sierra VTOL is around 3 m. Further, it supports a payload weight of

3 kg, which allows it to carry a Nvidia Jetson AGX Xavier or Nvidia Jetson AGX Orin

computing unit with a high-resolution Allied Vision 1800 U-1236 camera. The prototype

is able of online object detection of the drone recordings with the presentation on a

ground station.

In this thesis, we focus on hyperspectral and multispectral imaging. Therefore, we

highlight only the parts of this project related to the multispectral recordings (in chap-

ter 6), which are good examples of how spectral imaging can be used in an embedded

application.
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Chapter 3

Supervised Learning for Hyperspectral

Classification

This chapter will discuss supervised methods for hyperspectral imaging (HSI). In con-

trast to the self-supervised learning in the next chapter, these methods require labeled

samples. Therefore, the ground truth is needed, which is often costly in acquisition for

HSI. Two applications of the area food inspection/precision farming will be presented.

In the first application, the ripeness prediction of exotic fruit is tackled as a classification

task. The second application validates the usefulness of HSI for detecting Phakopsora

Pachyrhizi infestations on soybean via a patch-level classification task.

For both applications, data sets were acquired. The ripening fruit data set DeepHS

fruit was recorded with our hyperspectral measurement system (see Sec. 2.3). The De-

partment of Phytopathology of the University of Hohenheim acquired the second data

set. Here, we supported with technical knowledge and provided the data evaluations.

In the ripening fruit task context, a shallow convolution neural network DeepHSNet

was designed for the supervised classification. The proposed network architecture is tiny

in comparison to other state-of-the-art computer vision architectures, but it could produce

reliable results for the first application. We validated the model in the second application

with a patch-based classification task. Therefore, it is a baseline for our developments

for the following chapters (see chapter 4 and chapter 5).

This chapter is based on the following publications:

• Varga, L. A., Makowski, J., and Zell, A. (2021). Measuring the ripeness of fruit

with hyperspectral imaging and deep learning. In International Joint Conference

on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, pages 1–8.

IEEE

• Thomas, S., Varga, L. A., Harter, N., Zell, A., and Voegele, R. T. (submitted). De-

tection of phakopsora pachyrhizi infestation in soybean via hyperspectral imaging

and data analysis. Nature Scientific reports
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3.1 Related Work

In this section, we discuss related work for supervised HSI classification. The more spe-

cific works, which are more connected to each application, will be addressed separately.

Classical machine learning approaches, like Support Vector Machine (SVM) proposed

by Cortes and Vapnik (1995) or k-Nearest-Neighbors (k-NN) described by Fix and Hodges

(1989), are still widespread for the classification of hyperspectral recordings. As we will

see later, they can produce reliable results and are easy to apply. Therefore, they are still

a very common baseline.

In recent years, deep-learning-based methods could outperform these in many hy-

perspectral applications. Most of these evaluations were done on hyperspectral remote

sensing data. Chen et al. (2014) were one of the earliest adopters of deep learning for

hyperspectral recordings. Their approach was based on a PCA followed by stacked au-

toencoders and a final logistic regression. Makantasis et al. (2015) showed how a simple

2D Convolutional Neural Network (CNN) can outperform SVM and k-NN approaches

for tunnel inspection. CNNs, which led to a breakthrough in color image classification,

significantly impacted the classification of HSI. Their main benefit is the incorporation

of spatial information. Noisy pixels can be stabilized with the help of their neighboring

pixels. This additional information and the higher complexity of the methods supported

their breakthrough. In this chapter, we focus on 2D CNNs. More complex approaches,

e.g., 3D convolutions or vision transformers, will be discussed later (in chapter 4 and

chapter 5).

Besides introducing convolution layers, many modifications of the simple 2D CNNs

were proposed. For example, Zhang et al. (2020) presented the HTD-Net framework,

which focuses on hyperspectral data and uses an autoencoder to enhance the training data

with additional samples. Or Li et al. (2017) proposed a 2D convolution-based approach

called CNN-PPF, which utilizes the correlation of neighboring pixels by introducing a

pixel-pair feature training. A further example is presented by Song et al. (2018) with

residual blocks for HSI classification, which allow the extraction of features on different

hierarchical layers. This is similar to the ResNet architecture of He et al. (2016).

We will discuss the most significant developments of HSI classification in further de-

tail in chapter 5. Still, these developments were mainly applied for the remote sensing

application and tested on the segmentation task of the Hyperspectral Remote Sensing

Scenes (HRSS) data set.

However, the use-case of remote sensing differs widely from the classification task of

food inspection. As a result, we focus in this chapter on generating two hyperspectral

data sets for food inspection. Further, we propose a simple 2D CNN called DeepHSNet,

which is optimized for these applications. It is evaluated against comparable approaches.

We kept the model as simple as possible to better understand the model’s internals. A

comparison with the more complicated state-of-the-art methods of the remote sensing

application can be found in a later chapter (see chapter 5). At this point, we concentrate

on a simple model for the food inspection task.
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3.2 Models

3.2 Models

For both applications we evaluated similar models, which we will discuss here shortly.

Afterward, the two applications’ data acquisition and experiments will be examined. Two

classical machine learning approaches are used, which are still very common for HSI

classification. Further, a common Convolutional Neural Network (CNN) architecture is

selected. Finally, a small CNN architecture designed for these applications is proposed.

3.2.1 k-Nearest-Neighbors

k-Nearest Neighbors (k-NN) of Fix and Hodges (1989) is evaluated as baseline model.

It defines the requested sample’s label by the k nearest neighbors of the sample in the

chosen embedding. The parameter k is thereby critical, and we selected it by a grid search

with cross-validation on the training set. As a distance measurement, the Euclidean

distance between the mean pixels of the samples was selected.

3.2.2 Support Vector Machine

A still very common representative of the classical machine learning algorithms is the

Support Vector Machine (SVM). This method defines the classification problem as find-

ing the most suitable support vectors to separate the labeled samples. With the help of

the kernel trick, it is possible to use more complex kernels than just a linear separation. A

radial basis kernel was used for our experiments as described by Cristianini and Shawe-

Taylor (2010). The parameter C, which defines the penalty for misclassification, was

evaluated by grid search with cross-validation on the training set.

3.2.3 ResNet-18

The next candidate is a 2D CNN and a representative of the ResNet family, which was

proposed by He et al. (2016). This family defines a convolutional neural network ar-

chitecture with identity shortcut connections. We selected the smallest member, called

ResNet-18, with just 18 layers. The smallest ResNet-18 was chosen, as it is least likely

to overfit. This problem is challenging for small hyperspectral data sets, even if data

augmentation and early stopping are used.

For the ResNet-18, the first layer of the network was adapted to the hyperspectral

images as input, meaning we increased the number of input channels to the size of the

hyperspectral cube, as the default ResNet architecture is designed for only three input

channels. The modified ResNet18 model has around 11 million trainable parameters.
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Chapter 3 Supervised Learning for Hyperspectral Classification

Figure 3.1: Architecture of DeepHSNet.

3.2.4 DeepHSNet

DeepHSNet is a small convolutional neural network, which we designed for the applica-

tion of ripening fruits and additionally evaluated with the soybean inspection.

Here some architecture decisions are explained and discussed why they are beneficial

for hyperspectral data.

An RGB color image is a cuboid with two spatial dimensions and one channel dimen-

sion with three channels (red, green, blue). A hyperspectral image has significantly more

channels than a color image, so the input data is much larger for the same spatial resolu-

tion. For computational reasons, extracting the necessary information at an early step is

essential. In many approaches, this is done by a preprocessing step (like PCA (Pearson,

1901), Factor Analysis, or IBRA), where the most significant bands are selected and used

for further inspection.

We assume allowing the network to select the essential channels on its own is benefi-

cial for a neural network-based approach. It was shown for many other applications that

deep-learning-based methods can handle high dimensional data well. At this early stage

of our research, we selected an approach that works directly on the hyperspectral cube

without any dimension reduction as preprocessing. We investigate this further in chapter

5 with a more sophisticated method.

Further, the data sets are often tiny compared to common color image data sets. This

makes overfitting likely and also leads to unreliable results. Unlike standard color im-

ages, no large data sets are available for training or pretraining the models. We avoid this

problem with a minimal and shallow architecture in this chapter and for the proposed

model. Only three convolution layers are used. Further, the convolutions are separated

into two smaller separable convolutions to reduce the number of parameters. This tech-

nique was proposed by Guo et al. (2018a). In addition, a global average pooling layer

is used instead of a large fully connected header as defined by Lin et al. (2014a). We

will tackle the problem of a missing pretraining in the next chapter with self-supervised

Training (see 4) and reduce the number of trainable parameters with a suitable bias fur-

ther in the chapter afterward (see 5).

The complete architecture is visible in Fig. 3.1. The input is a hyperspectral cube.

The recording consists of two spatial dimensions and the channel dimension. Three con-

22



3.3 Measuring the Ripeness of Fruit

volutional layers extract feature maps from the input. The convolutions are separated

into two smaller separable convolutions to reduce the number of parameters. Instead

of the frequently used max-pooling layer, we used average-pooling layers, because they

gave empirically better results in our experiments. An explanation might be that the

winner-takes-all strategy of max-pooling layers is counter-productive for this task. Fur-

thermore, batch normalization of Ioffe and Szegedy (2015) was used to speed up the

training process. The final classification happens in the head of the CNN, consisting of

a global average pooling layer and a fully connected layer. In the presented form, the

network classified three different categories (e.g. unripe, ripe, overripe) visible in the

output of the final layer, which suits the fruit classification task. This results in around

32,000 trainable parameters. We developed this architecture for hyperspectral recordings

with about 200 channels of wavelengths. If the number of channels differs significantly,

the hidden layers must be adapted. An implementation of the model can be found on

https://github.com/cogsys-tuebingen/deephs fruit.

3.3 Measuring the Ripeness of Fruit

In the fruit industry, one of the goals is to determine how ripe a fruit is. Furthermore, it

is helpful for supermarkets to know the ripeness level of fruit in order to avoid selling

far overripe fruit or giving significant discounts shortly before. The ripeness can easily

be inferred from the skin color for some fruit types, like bananas. This is not trivial for

others like avocados, mangos, and kiwis. The fruit industry primarily uses destructive

indicator measurements. So only random samples are possible here. To give a solution,

we verify whether HSI and deep neural networks could predict the ripeness level of

fruit. Here, we contribute a hyperspectral data set, which we will extend and use further

throughout this work. We also evaluate different models on the data set, thereby showing

the advantage of a small neuronal network called DeepHSNet, which will be used further

throughout this work.

3.3.1 Related Work for Fruit Inspection

This work covers the idea of determining the ripeness level of fruit by using hyperspectral

recordings. Other works already showed that it is possible to predict the ripeness of fruit

by this kind of data. Pinto et al. (2019) and Olarewaju et al. (2016) used HSI to determine

the ripeness level of avocados. Zhu et al. (2017) predicted the firmness and the soluble

solids content of kiwis with hyperspectral recordings. In these three works, the authors

used approaches without neural networks. So far, most fruit classification data analysis

has been done with classical machine learning algorithms, which were often supported by

small data sets. In contrast to these works, we concentrate on deep learning approaches.

Mollazade et al. (2012) showed the prediction capability of a simple neural network

for the moisture content of tomatoes. Gao et al. (2020) could predict the ripeness state
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Chapter 3 Supervised Learning for Hyperspectral Classification

Table 3.1: Typical wavelength ranges for hyperspectral cameras

Name
Near-

ultraviolet (NUV)
Visible (VIS)

Near-

infrared (NIR)

Wavelength 200-380 nm 380-740 nm 740-2500 nm

of strawberries with HSI and a pretrained AlexNet, which is a deep convolutional neural

network proposed by Krizhevsky et al. (2017). The ideas of both works are very similar

to ours. In contrast to them, we focus on two new fruits, avocados and kiwis. For both

it was already validated, that a prediction with hyperspectral data is possible, which was

shown by Pinto et al. (2019), Olarewaju et al. (2016) and Zhu et al. (2017). In contrast

to the mentioned works, we used a larger variety of models and recorded a large data set,

which we made public. We further analyzed if hyperspectral data is necessary for this

task or if pure color images are sufficient. The other works missed this validation.

3.3.2 Hyperspectral Imaging

Hyperspectral imaging (HSI) is a non-destructive measurement technique that has be-

come increasingly popular recently. We fully discussed it in Sec. 2.1.1. The ranges

of the wavelengths reveal different chemical properties of the inspected substance. For

example, Mitsui et al. (2008) showed that the Near-infrared (NIR) range indicates the

presence of hydroxyl groups. Hydroxyl groups are an essential part of organic chemistry

and can indicate the presence or absence of H2O. With this in mind, it is obvious why

the NIR range is vital for fruit inspection. This chapter uses HSI to predict the ripeness

level of avocados and kiwis in a non-destructive way.

3.3.3 Fruit Ripening

Here we give a short overview of the ripening process of fruit. There is a distinction

between non-climacteric and climacteric fruit. Non-climacteric fruit do not ripen after

harvesting, which was, e.g., shown by Alexander and Grierson (2002). Therefore, the

focus here is on climacteric fruit. The chemical ripening process highly depends on the

fruit type. The three main processes found within fruit are described by Toivonen and

Brummell (2008) as:

• Deconstruction of the cell walls so the fruit becomes softer.

• Hydrolyzitation of starch hydrolyzes to sugar, which leads to sweetness.

• Deconstruction of chlorophyll and synthesis of other pigments result in color change.

With the following indicators, the ripeness level of fruit is commonly measured:
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• Soluble solids content (SSC) is based on the creation of sugar during ripening.

Sugars are the majority of soluble solids in most fruit.

• Fruit flesh firmness shows the degeneration of the cell walls.

• Starch content indicates the degeneration of the starch.

Especially SSC and fruit flesh firmness are widely used because they are reliable indi-

cators for many fruit types. Nowadays, their measurement is destructive. So, it is only

possible to measure random samples. The works of Pinto et al. (2019), Olarewaju et al.

(2016) and Zhu et al. (2017) already showed that it is possible to predict the ripeness

level by using HSI for some fruit.

In this work, the focus lies on two types of fruit. Avocados and kiwis are both fruit

with a critical ripening process. The time window between unripe and overripe is small

for both. Accordingly, this work focuses on the end of the ripening process. Our goal is

to predict the perfect consumption date as a classification problem.

(a) Avocados (b) Kiwis

Figure 3.2: Two of the fruit crates at day 1 of the first measurement series.

Avocado

The avocado is the berry of an evergreen laurel plant. There are more than 400 different

types of avocado, Hass and Fuerte being the most common. Through this broad diversity

of species, the appearance of avocados may vary widely. Avocados only ripe after har-

vesting because the tree produces an inhibitor that prevents the fruit from ripening, which

was already shown by Lewis (1978). Besides the small consumption window, the avo-

cado was chosen because of its relatively high price. Pinto et al. (2019) and Olarewaju
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Chapter 3 Supervised Learning for Hyperspectral Classification

et al. (2016) showed that it is possible to conclude the ripeness level with HSI. Never-

theless, the most common ripeness measurement technique for avocados is the firmness

of the fruit flesh.

Kiwi

Like the avocado, the looping berry fruit plant kiwi has many subspecies. The best

known are probably Actinidia deliciosa and Actinidia chinensis. Their appearance is

very similar, only the color of the fruit flesh differs. HSI for the ripeness determination

of kiwis is uncommon. Useful indicators for the ripeness of kiwis are the SSC and the

firmness of the fruit flesh as shown by Martinsen and Schaare (1998).

3.3.4 Data Set

In this section, the data acquisition is described, so it is possible to reproduce the data

or adapt the procedure for other fruit. The measurement setup we described in chapter

2.3 was used. Our hyperspectral recordings are available on https://github.com/cogsys-

tuebingen/deephs fruit. This data set is used in the further analysis. The data set contains

1038 recordings of avocados and 1522 recordings of kiwis. It covers the ripening process

from unripe to overripe for both fruit types. Because of the destructive manner of the

labeling process, only 180 avocado recordings and 262 kiwis recordings are labeled by

indicator measurements. The data set was recorded in two separate measurement series.

We applied a division into a training set (3
4
), validation set (1

8
), and test set (1

8
), evenly

distributed among the different states of ripening.

Label Acquisition

Aside from the camera system, we used a refractometer to measure the SSC. A refrac-

tometer can indicate the concentration of a specific substance in the sample. For the fruit

flesh firmness, we used a penetrometer. A penetrometer can measure penetration resis-

tance. Both techniques are currently the usual way to measure fruit ripeness. But they

are also destructive.

Data Acquisition

The two measurement series covered a total of 28 days in the years 2019 and 2020. We

acquired fresh avocados and kiwis for the two series from a supermarket, supporting our

measurement plans. Each day the following procedure was followed:

1. Record the temperature

2. Start the measurement setup for the warm-up of the lamps

3. Calibrate the linear actuator
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4. For both cameras:

a) Adjust the focus of the camera on the surface of a reference object

b) Record a white reference (average of 10 measurements)

c) Record a dark reference (average of 10 measurements)

d) Record the front and the back of each fruit, in order to double the data without

much effort

5. Select fruit for destructive indicator measurement

a) Weigh the fruit

b) Determine the fruit flesh firmness with a penetrometer

c) (Only for kiwis:) Measure the sugar content via the refractometer

d) Record the overall ripeness level of the fruit by appearance and taste

The number of destructively measured fruit was adapted to each day’s ripening progress.

The output of the two series is a collection of hyperspectral recordings of kiwis and

avocados. Each recording contains only one fruit.

Data Preparation

To improve the quality of the recorded data, we used background extraction. We ex-

cluded the background with a simple pixel-based neural network that we trained to dif-

ferentiate between background and fruit. Further, the smallest rectangle around the fruit

was extracted from the recordings to remove most of the background. We observed

that the results are better if the intensity of the remaining background is forced to zero.

Therefore, the results are the smallest possible recordings of the fruit with an empty

background.

For the labels, we defined categories. We aimed to classify whether the fruit is unripe,

ripe, or overripe. Consequently, a regression problem is unnecessary, and we reduced

the complexity to three classes for the firmness, the sweetness, and the overall ripeness

level. For the category firmness, the classes were based on the penetrometer measure-

ments. The sweetness category, which is only helpful for kiwis, was based on the refrac-

tometer tests. The last category, ripeness, was based on appearance and taste. The class

assignments are visible in Tab. 3.2.

3.3.5 Experiments

In this section, the data set and experiment setup is described.
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Table 3.2: Class Assignments for avocados and kiwis. For avocados, the sweetness is not

a valid indicator. * marks all fruit with optimal ripeness.

Fruit type Class Firmness Sweetness
Overall

Ripeness

Avocado Unripe >1200 g/cm2 -
Green and unripe

taste

Perfect * - *

Overripe <900 g/cm2 -

Brown spots in

fruit flesh and

overripe taste

Kiwi Unripe >1500 g/cm2
<15.5 ◦Brix

Sweetness is

missing

Perfect * * *

Overripe >1000 g/cm2
<17 ◦Brix

Acerbity is

missing, plain

sweet taste

Training

For training, the size of the classes in the categories was balanced. Thus, there was no

bias towards one class. We used rotation, flipping, random noise, and random cut as

data augmentation techniques, which don’t change the label. The neural networks were

optimized with Adabound, presented by Luo et al. (2019), using 1×10−2 as the learning

rate. Focal loss of Lin et al. (2017) was used as a loss function. We used early stopping

based on the validation loss to prevent over-fitting as described by Prechelt (1998). For

training, we used a batch size of 32. The hyperspectral images were resized to 64×64

pixels.

Test

We tested five models on our data set. Besides the already described models (SVM,

k-NN, ResNet-18, and DeepHSNet), we further used an AlexNet, which was used by

Gao et al. (2020) for strawberry ripeness prediction. The smallest ResNet-18 was used

because a larger representative of the ResNet family would more likely tend to over-

fitting. For the ResNet-18 and the AlexNet, the first layer of the network was adapted to

the hyperspectral images as input.

The test set was 1
8

of the labeled hyperspectral recordings. Test time augmentation

was used for the evaluation, proposed by Howard (2014). The test results are given in

Table 3.3 and Table 3.4. For each neural network, three values are provided. The Raw

value gives the accuracy when the network accesses the raw hyperspectral recording.
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Table 3.3: Test accuracy over all categories for avocados. The highest accuracies for each

configuration are given in bold.

Category Firmness Ripeness

Camera

INNO-

SPEC

Redeye

Specim

FX 10

INNO-

SPEC

Redeye

Specim

FX 10

SVM 77.8% 73.3% 44.4% 66.7%

k-NN 73.3% 77.8% 88.9% 60.0%

ResNet-18

11M parameters

RGB 66.7% 66.7% 66.7% 53.3%

PCA 44.4% 53.3% 44.4% 60.0%

Raw 66.7% 80.0% 33.3% 80.0%

AlexNet

58M parameters

RGB 44.4% 33.3% 33.3% 33.3%

PCA 44.4% 33.3% 33.3% 33.3%

Raw 44.4% 33.3% 33.3% 60.0%

DeepHSNet (our)

32K parameters

RGB 77.8% 53.3% 55.6% 40.0%

PCA 44.4% 80.0% 44.4% 66.7%

Raw 88.9% 93.3% 88.9% 93.3%

In the RGB case, the hyperspectral recordings were reduced to color images in a prepro-

cessing step. And for the PCA case, a Principal Component Analysis (PCA), as proposed

by Pearson (1901), was used to reduce the channel size of the hyperspectral recordings

to 5. The PCA technique is often used for hyperspectral recordings to extract only the

necessary information in an early step. This will be discussed in detail in chapter 5.

Our model outperformed the reference models in most cases. Moreover, it produced

the most stable results. With our model, it was possible to predict the firmness of avoca-

dos with an accuracy of over 93.3 % and further predict the ripeness level in 3 categories

with over 90 %. Predicting the ripeness level of the kiwis is more complicated than for

the avocados. Thus, the prediction accuracy for them was significantly lower for all mod-

els. However, our model could still predict the firmness of unseen kiwis with an accuracy

of nearly 70% and the ripeness with nearly 80%.

Further, the Raw configuration was, in most cases, better than the reduced configura-

tions (RGB or PCA). The network could select the most influential bands in the Raw case.

RGB was in some cases better than the PCA approach. The RGB reduction doesn’t use

the largest variance in contrast to PCA. Instead, it uses the CIE color-matching functions

to calculate the impact of each wavelength. Most likely, PCA has troubles with the noisy

channels of the recordings and removes necessary information by the reduction, which

is still available in the RGB reduction.
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Table 3.4: Test accuracy over all categories for kiwis. The highest accuracies for each

configuration are given in bold.

Category Firmness Sweetness Ripeness

Camera

INNO-

SPEC

Redeye

Specim

FX 10

INNO-

SPEC

Redeye

Specim

FX 10

INNO-

SPEC

Redeye

Specim

FX 10

SVM 44.4% 60.9% 44.4% 82.6% 33.3% 45.8%

k-NN 55.6% 60.9% 22.2% 73.9% 55.6% 50.0%

ResNet-18

11M parameters

RGB 44.4% 56.5% 55.6% 47.8% 44.4% 54.2%

PCA 33.3% 60.9% 44.4% 47.8% 66.7% 33.3%

Raw 55.6% 60.9% 66.7% 47.8% 66.7% 58.3%

AlexNet

58M parameters

RGB 33.3% 52.2% 44.4% 47.8% 33.3% 33.3%

PCA 33.3% 52.2% 44.4% 47.8% 33.3% 33.3%

Raw 33.3% 52.2% 44.4% 47.8% 66.7% 33.3%

DeepHSNet (our)

32K parameters

RGB 44.4% 65.2% 55.6% 60.9% 44.4% 62.5%

PCA 44.4% 34.9% 44.4% 47.8% 33.3% 33.3%

Raw 44.4% 69.6% 66.7% 82.6% 77.8% 66.7%

3.3.6 Ablation Study

The architecture DeepHSNet was designed for this specific HSI application. Therefore,

a more in-depth analysis of the architecture should show the impact of the different parts.

In the following, elements of the architecture are altered to evaluate the effect of these.

Given is the test accuracy for the prediction of the avocado firmness. The architecture

decision used for DeepHSNet is marked with a grey background.

Depthwise Separable Convolution

The idea behind Depth-Wise Separable Convolution (DSCNV) of Guo et al. (2018a) is

to split up the regular convolution into the spatial and a depth-wise convolution, which

corresponds to the channel dimension. It is a common technique to reduce the number

of parameters, which can prevent overfitting. Still, the splitted convolutions should be as

powerful as the single convolution. A minor degeneration without DSCNV is noticeable.

So, it seems helpful for this application.

Convolution type Accuracy

DSCNV 93 %

Normal convolution 80 %

Model-Head

The head of the network uses the feature map of the convolutional backbone to determine

the classification result. We inspected three head architectures. A fully connected head, a
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Global Average Pooling of Lin et al. (2014a) head, and a head based on Global Average

Pooling with an additional linear layer. The Global Average Pooling reduces the number

of parameters, which prevents overfitting. Just Global Average Pooling leads to the worst

results. The extra linear layer seems necessary.

Head architecture Accuracy

Global Average Pooling

with additional layer
93 %

Global Average Pooling 80 %

Fully connected layers 87 %

Augmentation

The influence of the different augmentation techniques is visible here. Random cut and

test time augmentation are essential in this scenario. On the other hand, the effect of the

transformation augmentations is minor, so fruit alignment is less of an issue in this data

set. In chapter 4, we will evaluate the impact of different augmentation techniques on

HSI classification in more detail.

Augmentation variant Accuracy

Full augmentation 93 %

Without test time augmentation 71 %

Without random noise 73 %

Without random cut 69 %

No transformation

augmentation
80 %

Loss Function

The Focal loss is a cross entropy loss that weighs the impact of a sample corresponding to

their classification error. This improves the behavior with unbalanced classes, as shown

by Lin et al. (2017). Although we avoided class bias, the Focal loss still improved the

result.

Loss function Accuracy

Focal loss 93 %

Cross entropy loss 80 %
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Optimizer

We tested different optimizers for the training process. The Adabound optimizer with

a learning rate of 0.01 worked best in our case. During the later works, we found out

that Adabound is not very reliable. The step sizes are erratic, and finding an optimal

solution is not guaranteed. Therefore, we used the more established Adam optimizer for

most of the other works because it was much more reliable. Still, for these experiments,

Adabound produced better results, so we used Adabound for these experiments. But we

highly recommend starting with Adam or an SGD with a learning rate scheduler for an

unknown scenario.

Optimizer Accuracy

Adabound with learning rate 0.01 (Luo et al. (2019)) 93 %

Adabound with default parameters (Luo et al. (2019)) 80 %

Adam (Kingma and Ba (2015)) 80 %

Stochastic gradient descent (Kiefer and Wolfowitz (1952)) 80 %

Pooling Layers

We compared max pooling layers with average pooling layers. The results with average

pooling layers were minimally better. For this problem, it seems more important not to

consider only the extreme value.

Pooling Accuracy

Average pooling 93 %

Max pooling 87 %

3.3.7 Investigation of the Learned CNN Features

Besides the ablation study, we want to show that the trained DeepHSNet network learns

meaningful features for the classification, which validates the correctness of the predic-

tion. We used Integrated gradient, proposed by Sundararajan et al. (2017), to see what

parts of the hyperspectral cube are essential to determine the state of the fruit. This tech-

nique can show neurons’ influence on the network’s decision. It is possible to validate

the decision process of the neural network to a certain extent.

In Fig. 3.3a, the spatial distribution of the impact for the avocado ripeness prediction

is presented. The effect is evenly distributed over the whole fruit. The wavelength-

based impact is visualized in Fig. 3.3b. The main decision happens over 800 nm. This

discovery fits with the findings of Pinto et al. (2019). Additionally, to a small extent,

the range of the visible light between 520 nm and 650 nm was used by the network to

differentiate between unripe and perfect fruit. This range matches the visible change
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(a) (b)

Figure 3.3: The impact of the input on the predicted class for an avocado recorded with

the Specim FX 10. The impact of the spatial (a) and the spectral (b) features is visualized.

of avocados. Overall the features learned by the convolutional neural network seem

plausible. In chapter 5, we will propose a method that allows this investigation by design

by learning these ranges separately.

3.3.8 Visualization of the Ripening Process

Furthermore, we introduce a technique to generate false-color images of hyperspectral

recordings for specific tasks. We used a two-stage training process and a two-level

classifier, presented in Fig. 3.4. In the first step, we trained a pixel-based autoencoder

(Fig. 3.4a) to encode and decode hyperspectral images of fruit. The unlabeled data can

also be used here. We used the mean-squared error for training. The latent space size

was three, so the interpretation as a color image is possible. In the second step, we used

the encoder’s embedding as the input for a classifier network (Fig. 3.4b) and trained the

classifier to differ between ripeness levels. Here a Focal loss was used. For the second

step, the labeled data is necessary. The weights of the encoder were not fixed in the sec-

ond step. So, the embedding representation was adapted to fit better to the classification

task. As a result, the encoder is specialized to differentiate ripeness levels.

An encoder we have trained in this way can produce false-color images containing the

necessary information for the classification task in a color image.

For avocados, an example is visible in Fig. 3.5. The ripe parts grow from the bottom

to the top of the fruit. Another example is also visible in Fig. 3.5. Here the encoder was

specialized for firmness prediction. The output visualizes the firmness distribution of a

kiwi. A damaged part slowly grows over the fruit.

This technique can benefit from a large amount of unlabeled data and allows the cre-

ation of visual representations of the ripening process. A performance boost with this
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(a) Autoencoder

(b) Classifier

Figure 3.4: The architecture of the pretrained approach. The (a) autoencoder architecture

is trained unsupervised in the first stage. In the second stage, the (b) classifier is trained.

The pretrained encoder is used as backbone for the classfier network.

training was not observed, which could be connected to the small latent space of the au-

toencoder. Furthermore, in the presented form, it only uses pixel-based pretraining. So,

it is not further considered in the discussion of self-supervised methods (chapter 4).

(a) Day 3 (b) Day 6 (c) Day 7 (d) Day 8 (e) Day 9

(f) Day 3 (g) Day 4 (h) Day 5 (i) Day 6

Figure 3.5: Visualization of the ripeness development of an avocado ((a) - (e)) and the

firmness distribution of a damaged kiwi ((f) - (i))
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3.3.9 Conclusion

We showed that convolutional neural networks could be used on hyperspectral data to

classify exotic fruit into three classes (unripe, ripe, and overripe). We published a data

set of ripening avocados and kiwis. Our DeepHSNet classifier network shows superb

performance in the classification of ripeness states for avocados and good performance

for kiwis. We could validate the results with a more in-depth look into the trained fea-

tures. The following section will validate this architecture in a second HSI classification

task. Further, this architecture will be used throughout the following two chapters.

Besides the architecture, we presented a technique to produce false-color images for

specific use cases.

As the labeling procedure is destructive, the labeled data is sparse. Self-supervised

approaches utilizing the unlabeled boosting the models’ performance are particularly

promising for this application and will be discussed in chapter 4.

3.4 Food Inspection for Soybean (Glycine max)

Soybean (Glycine max) has worldwide importance as a source of high-quality plant oil,

with a production of over 100 million tons in south and north America, as shown by

United States Department of Agriculture (2022). Barro et al. (2021) showed Asian Soy-

bean Rust (ARS) is a disease with the potential to cause up to 90% yield loss in soybean

production, leading to massive economic damages when left untreated. Due to the short

lifecycle of the causative agent Phakopsora pachyrhizi and the high damage potential,

timely treatment with fungicides is complex, and the availability of resistant soybean

cultivars is limited (Childs et al., 2018; Goellner et al., 2010).

Phakopsora pachyrhizi is an obligate biotrophic pathogen. While little is known about

the sexual reproduction of the fungus, the asexual reproduction on soybean is well under-

stood (Goellner et al., 2010). Urediospores are dispersed by wind and germinate under

suitable conditions on soybean leaves. Unlike most other rust fungi, which infect their

respective host plants through stomates (Voegele, 2006), Phakopsora pachyrhizi forms

an appressorium, which directly penetrates an epidermal cell of the soybean leaf (Goell-

ner et al., 2010). The fungal mycelium grows in the intercellular space of the mesophyll

tissue with haustoria providing nutrients derived from the plant cells (Goellner et al.,

2010). Finally, the fungal mycelium forms uredosori, which break through the epidermis

and release new urediospores 5-8 days after the initial infection (Goellner et al., 2010;

Voegele, 2006; Koch et al., 1983).

Optical sensors have shown to be an effective tool for detecting plant diseases in pre-

vious studies (Mahlein, 2016; Roitsch et al., 2019). Among the different optical sensors,

hyperspectral sensors have the distinct advantage of producing a detailed profile of the

plant’s reflectance signature, allowing for precise measuring of metabolic and structural

changes within the plant, which can be linked to specific plant–pathogen interactions

35



Chapter 3 Supervised Learning for Hyperspectral Classification

(Alisaac et al., 2018; Thomas et al., 2018a). Nevertheless, the application of hyperspec-

tral imaging for plant disease detection in early stages is challenging due to large amount

of data generated by the sensor, which leads to the requirement of advanced data analy-

sis methods to efficiently extract the relevant data for disease detection (Mahlein et al.,

2019).

Classical machine learning approaches, like Support Vector Machine (SVM) (Cortes

and Vapnik, 1995) or k-Nearest-Neighbor (k-NN) (Fix and Hodges, 1989), are capable of

handling this amount of data and achieved reliable results in hyperspectral classification

applications (Guo et al., 2018b; Kuo et al., 2013). In recent years, deep learning-based

models outperformed other machine learning methods at the cost of increasing model

complexity (Li et al., 2019b). Convolution layers allow trainable filters for neural net-

works, simplifying the consideration of spatial information (Matsugu et al., 2003). The

spatial information boosted the performance of neural networks even further. However,

the training procedure of all presented methods is supervised. Therefore, annotated train-

ing samples are required.

This section focuses on the potential of hyperspectral imaging sensors to detect an

ASR infection in early stages, before symptoms become visible. To achieve this, the re-

sulting datasets of two experiments, in which time-series measurements on inoculated

soybean plants have been performed, were analyzed with classical machine learning

methods and deep learning. The applied support vector machine, k-NN, and neural net-

work analysis were individually tested for their capability of early detection of disease

symptoms and their detection accuracy and compared with each other. A limited set of

training data, focusing on the last three days of the time-series measurement, was gener-

ated via a human expert and split into three distinct classes with high variability in each

class due to multiple factors – such as different plant parts or symptom progression – be-

ing included in the respective classes. This allows an estimation of the capabilities of the

supervised classification methods to overcome in-class data variance and performance in

detecting early-stage disease symptoms based on a limited training data set.

3.4.1 Materials and Methods

In this section, the data preparation and data analysis methods are described.

Plant cultivation, pathogen material and inoculation procedure

The soybean (Glycine max) plants were grown under greenhouse conditions with two

seeds planted per pot. Greenhouse conditions consisted of long light (16 / 8 h) with an av-

erage temperature of 22°C and 40%–50% relative humidity. Once the plants reached Bi-

ologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemis-

che Industrie (BBCH) stage 11, meaning the start of development of leaves, plants were

separated to guarantee one soybean plant of similar growth per pot.
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Phakopsora pachyrhizi spores from the University of Hohenheim laboratory collec-

tion, stored at -80°C, were suspended in 0,01% tween solution with a concentration of

1 mg / 1 mL directly after thawing. Soybean plants were inoculated with the spore sus-

pension at BBCH stages 61 and 70 (development of flowers) for experiments 1 and 2,

respectively. The spore suspension was uniformly applied through a nebulizer. Tween

solution without spores was applied to the control plants in order to exclude possible

effects of the solution on early measurements. After inoculation, both inoculated and

control plants were placed for 24 h in a high humidity environment (> 90% humidity)

without light at 21 °C.

Hyperspectral imaging measurement

All measurements were performed via the Corning microHSI 410 Vis-NIR pushbroom

hyperspectral sensor, fixed to a BiSlide Positioning Stage linear actuator to permit precise

sensor movement. Additionally, 4 Illuminator 70W 3100K halogen lamps were fixed to

the linear actuator to guarantee constant and even illumination of the measurement area

while scanning the samples. The equipment was controlled remotely via the software

FluxTrainer of Luxflux GmbH. Both control and inoculated plants were framed over the

entire duration of the time-series measurements to ensure minimal leaf movement and

high compatibility of leaf placement throughout the time series.

During each measurement, the light sources were activated 30 minutes before the mea-

surement start to prevent changes in illumination values of the halogen lamp due to tem-

perature changes. The framed plants were placed in the measurement area and covered to

avoid heat stress. At the same time, white and dark references for reflectance calculation

were acquired at the same distance from the hyperspectral sensor as the measured plant

samples. A polytetrafluorethylene-based material was used as a white reference. The

dark reference was obtained by closing the shutter of the camera. Each reference value

was averaged over 100 frames.

Two experiments (1 and 2) were performed as time-series measurements via hyper-

spectral imaging. Each experiment consisted of eight soybean plants, of which two were

used as control while six were inoculated with Phakopsora pachyrhizi spores. An av-

erage of nine soybean leaves per plant were measured over the respective experiments

(minimum three leaves, maximum 15 leaves), each consisting of 80,000 to 130,000 pix-

els, respectively. The time-series measurement started 1 Day after Inoculation (DaI)

with a measurement every 24 h until 10 DaI for both experiments.

Data analysis

The FluxTrainer software was used for visual assessment and spectral information ex-

traction of the hyperspectral datasets through an expert. Furthermore, the training data

for the data analysis methods were selected via this software. The training data was di-

vided into three classes: healthy plant tissue, disease symptoms, and background. Each

37



Chapter 3 Supervised Learning for Hyperspectral Classification

of the respective classes consists of over 150.000 annotated pixels, including samples for

all features within the respective class (see Fig. A.1). The pixels were annotated from the

images at 10 DaI at experiment 1 and 8, 9 and 10 DaI from experiment 2, respectively,

when developed, and late-stage symptoms were clearly visible in order to ensure high

quality training data.

Figure 3.6: Pseudo RGB images of soybean plants with typical ASR symptoms for ex-

periment 1 and 2, respectively, at 6 and 10 Days after Inoculation (DaI).

Supervised machine learning methods

The classification was handled as a supervised pixel-based classification task. Each pixel

of the input recording should be classified into one of the three classes (healthy, diseased,

or background). Five models were selected to compare classical machine learning and

recent deep learning approaches.

SVM and k-NN represented the classical machine learning approaches. These were

tested in two configurations. The methods in their default configuration were used in

the first set of experiments. In the second set of experiments, the configurations of the

methods were optimized for this specific task. This step required additional knowledge

of the application and the data. As a result, a Principle Component Analysis (PCA)

(Pearson, 1901) with 20 output components and an additional normalization were added

as preprocessing steps. Both configurations were considered in the further analysis.

Three candidates represented deep learning approaches. The first neural network was

a fully connected neural network with four layers. The fully connected layers were sep-

arated by ReLU activation functions (Nair and Hinton, 2010) and Batch Normalization

layers (Ioffe and Szegedy, 2015).
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DeepHSNet, the second neural network, was already validated on the ripening fruit

data set. As well as the ResNet18 architecture. Both were described in further detail in

Sec. 3.2.

The neural networks were trained with the Adam optimizer (Kingma and Ba, 2015).

As for the previous experiments, a learning rate of 1×10−2 and a batch size of 64 were

used. The learning rate was divided by ten after every 30 epochs.

SVM, k-NN, and the fully connected neural network classified each pixel separately.

DeepHSNet and ResNet18 utilized 63x63 pixel patches to classify the center pixel. A

class bias was avoided by oversampling all classes to the same number of samples.

Figure 3.7: Characteristic spectral reflectance signatures of the three classes.

3.4.2 Results

Visual assessment of the hyperspectral datasets

The control plants showed no signs of disease symptoms throughout the experiments.

Despite the leaves framing to minimize leaf movement over the time-series measure-

ments, it was not entirely possible to prevent leaf movement in all cases. Nevertheless, it

was possible to clearly discern and track each leaf throughout the measurement series as

leaf positions stayed relatively stable and plant orientation was kept constant during the

measurements.

Plants inoculated with the Phakopsora pachyrhizi showed steadily progressing disease

symptoms over the measured period in both experiments. In experiment 1, disease symp-

toms could initially be visually assessed at 6 DaI and slowly progressed until the end of

the measurement period. In experiment 2, disease symptoms were detected visually at 5

39



Chapter 3 Supervised Learning for Hyperspectral Classification

DaI and progressed quickly throughout the experiment to the point where entire leaves

were symptomatic. While disease progression in both experiments was similar, disease

severity in experiment 2 was significantly higher than in experiment 1 (see Fig. 3.6). As

shown in Fig. 2, it was also impossible to completely prevent the leaf movement of the

inoculated plants. However, the change in leaf position in the images is insignificant for

a leaf comparison between different images in the time-series measurement.

After manual assessment of the visual and spectral data within the image, three main

classes – healthy plant tissue, disease symptoms, and background – were identified

within the image as training data for use with the supervised data analysis methods em-

ployed within the study (see Fig. 3.7). Each of the individual classes showed consider-

able variability within the images due to factors such as plant geometry, leaf placement,

leaf shadows, and symptom development, e.g., the different features included in the class

healthy plant tissue consist of leaf, stem, soybean pod and leaf vein (see Fig. A.1).

Analysis of the hyperspectral datasets through supervised machine learning and

neural networks

The datasets of both experiments were analyzed with multiple supervised data analysis

methods. SVM and k-NN were selected as classic machine learning methods, which

have been successfully used in many studies. These methods were tested in a default

configuration and a fine-tuned configuration. The classical machine learning methods

were compared with three neural networks, a fully-connected neural network, ResNet18,

and DeepHSNet.

Figure 3.8: Pseudo RGB and false color images of an inoculated soybean leaf in exper-

iment 1. The false color images represent the classification results of DeepHSNet and

SVM, with: green = healthy plant tissue, red = disease symptoms, blue = background.

Both machine learning methods performed adequately in their default configuration

with an accuracy of 86.8% and 87.21% for k-NN with 10% and 30% of the annotated
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Table 3.5: Accuracy of the data analysis methods for P. Pachyrhizi symptom detection

within the study.

Method
% of annotated data

used as training data
Accuracy (%) ↑

k-Nearest Neighbor 10 86.80

30 87.21

k-Nearest Neighbor 10 99.50

(finetuned) 30 99.58

Support Vector Machine 10 61.64

30 78.73

Support Vector Machine 10 99.58

(finetuned) 30 99.62

Fully connected network 10 99.94

ResNet-18 10 99.97

DeepHSNet 10 99.99

data used as training data, respectively, while SVM achieved an accuracy of 61.94% and

78.73% (see Tab. 3.5). By fine-tuning the configurations of the methods for the spe-

cific task, the performance of both methods was improved significantly. k-NN achieved

99.58% accuracy with 30% of the annotated data used as training data, and the accuracy

of SVM was improved to 99.62% (see Tab. 3.5). However, the neural networks outper-

formed the machine learning methods with an accuracy of 99.94% (fully connected),

99.97% (ResNet-18), and 99.99% (DeepHSNet) with only 10% of the annotated data as

training data (see Tab. 3.5).

DeepHSNet and SVM were chosen as candidates for machine learning and deep learn-

ing methodology to test for early disease symptom detection due to the excellent accu-

racy within the given data. In experiment 1 first disease symptoms were detected via

DeepHSNet at 5 DaI, one day before symptoms became visible with the human eye,

at locations of the leaf that showed visible symptoms on the following day (Fig. 4).

Throughout the time-series measurement, the DeepHSNet classification results corre-

lated with visible symptoms on the inoculated leaves of the experiment (Fig. 4). In

experiment 2 the classification showed first results at 4 DaI before visible symptoms

could be observed at 5 DaI and had overall comparable performance to the results in

experiment 1 (Fig. 5). However, through the higher disease severity the classification

results showed entire leaves as symptomatic in the later stages of the time-series mea-

surement (Fig. 5). After manual inspection of the symptomatic leaves it was concluded,

that the classification result is correct in these cases.

First disease symptoms were detected via SVM at 4 DaI and 3 DaI for experiments

1 and 2, respectively, one day prior to the detection via DeepHSNet (see Fig. 3.8 and

Fig. 3.9). However, as shown in Fig. 3.8, pixels classified as symptomatic at 4 DaI
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Figure 3.9: Pseudo RGB and false color images of an inoculated soybean leaf in exper-

iment 2. The false color images represent the classification results of DeepHSNet and

SVM, with: green = healthy plant tissue, red = disease symptoms, blue = background.

and 5 DaI via SVM did not correlate with observable symptomatic areas at later stages

within the time-series measurement. Only at 6 DaI and after that, when symptoms were

visible with the human eye, did the classification results start to match with the symp-

tomatic areas of the leaves (see Fig. 3.8). Additionally, the SVM-based prediction could

not reliably differentiate between symptomatic areas and leaf areas partially covered by

the frame, as shown in Fig. 3.9 at 4 DaI and 8 DaI. In experiment 2, most leaves were

classified as symptomatic from 3 DaI on. As the entire leaves eventually became symp-

tomatic due to the high disease severity within the second experiment, the classification

result matches the observed symptomatic areas (see Fig. 3.9). However, due to the na-

ture of disease development, manual symptom assessment cannot be used to properly

assess accuracy for experiment 2. Furthermore, the SVM based classification is prone to

misclassify the soybean stems as symptomatic areas (see Fig. 3.9).

3.4.3 Discussion

In this section, the potential of hyperspectral imaging in combination with data analysis

methods for early detection of ASR symptoms on soybean leaves has been investigated.

Furthermore, supervised machine learning and neural networks have been compared for

detection accuracy of Phakopsora pachyrhizi infection based on a limited set of anno-

tated training data.

The two experiments performed within the study showed a typical and similar pro-

gression of ASR symptoms on soybean leaves, with first symptoms being visible to the
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human eye at 6 DaI and 5 DaI for experiment 1 and experiment 2, respectively. A notable

difference is, however the disease severity in the two experiments. While plants in exper-

iment 1 had a relatively low disease severity at the end of the time-series measurement

(10 DaI), soybean leaves in experiment 2 were nearly completely covered with symptoms

(see Fig. 3.6). As both experiments used the same methodology and spore material for

inoculation, there is no obvious explanation for this divergence between the experiments.

One possible explanation could be that experiment 1 was performed in March while ex-

periment 2 was performed in June. This might have influenced the spore germination

rate despite the plants being kept under controlled conditions in the greenhouse.

The neural networks generally outperformed the machine learning methods among

the applied data analysis methods. The classical machine learning methods achieved

satisfying results after task-specific configuration fine-tuning. All methods were able

to reach an accuracy well over 99%. The neural networks still achieved slightly better

results without requiring task-specific fine-tuning and less training data.

SVM, which is widely used in multiple studies as a supervised data analysis method

for plant disease detection (Huang et al., 2019; Nagasubramanian et al., 2018; Rumpf

et al., 2010), is often the first choice for this kind of classification task and also performed

well in our experiments with fine-tuned configuration. As shown by the study of Thomas

et al. (2022), SVM is a suitable tool for detecting brown rust symptoms on wheat leaves

for Hyperspectral Images. This work has shown that SVM produces comparable results

for ASR symptoms on soybean. Still, DeepHSNet predicted symptoms more accurately.

After manual investigation of the classification results, the authors present the hypothesis

that in the case of soybean leaves, a differentiation of ASR symptoms and the plant’s leaf

veins is the probable cause for the performance difference, as the respective spectral

signatures of these features share high similarities (see Fig. A.1).

A further explanation for the difference, especially in the detection accuracy of early

disease symptoms, is the selection of training data. While Thomas et al. selected training

data specifically for optimized disease detection via machine learning methods, the cur-

rent study focused on a limited set of training data from images with late disease stages.

It did not split the resulting training data up as described in the previous study to optimize

disease detection for the specific algorithms (Thomas et al., 2022). The high variability

of spectral signatures within each selected class might be more challenging for machine

learning methods compared to neural networks (see Fig. A.1). Each of the three relevant

classes (see Fig. 3.7) for a classification approach with results that are applicable for

use in agricultural practice consists of a diverse set of plant features, disease symptom

progression states, and background (see Fig. A.1). While it would have been possible to

further separate these features into distinct classes, such an approach would not be well

suited for practical application in phenotyping experiments or field environments. One

of the biggest hurdles for applying hyperspectral imaging in agricultural practice at the

time this study is conducted is the increased data variance through environmental factors

in field and greenhouse applications compared to laboratory experiments (Lowe et al.,

2017; Thomas et al., 2018b).
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From the results of this study, it can be hypnotized that neural networks are better

suited for complex classes with high spectral data variance in plant disease detection

than classical machine learning approaches. Surprisingly the neural networks, especially

DeepHSNet, could accurately classify the image data over the entire time series of both

experiments, despite a limited amount of annotated training data. It is acknowledged in

the scientific community that the requirement of large amounts of annotated data is one

of the downsides of neural networks, which is based on the larger search space and model

complexity of the neural networks. Nevertheless, in the current study, neural networks

could classify the presented data over both experiments accurately and even detected

disease symptoms before they became visible to the human eye.

The quality of the prediction results for SVM and DeepHSNet (see Fig. 3.8 and

Fig. 3.9) differs significantly, especially for the early stages of infection. The symp-

tomatic areas predicted by DeepHSNet match better with those identified by a human.

The authors assume two components responsible for the better performance of DeepH-

SNet. The spatial information, which DeepHSNet utilizes, seems necessary for this task.

It adds the pixel context into consideration. The second component is the higher model

complexity. DeepHSNet can mimic more complex class boundaries in contrast to SVM.

The current thesis is that the second component is more important than spatial infor-

mation due to the quantitative results (see Tab. 3.5). The fully connected network has

a higher model complexity than SVM but cannot use spatial information in the pixel-

wise approach. Still, it outperforms SVM. Further, the performance boost between SVM

and the fully connected network is more significant than between the fully connected

network and DeepHSNet. DeepHSNet, with both components, outperformed the other

models within the qualitative (see Fig. 3.8 and Fig. 3.9) and the quantitate evaluation (see

Tab. 3.5).

The DeepHSNet-based classification results showed symptomatic areas in both exper-

iments one day before they became visible to the human eye (see Fig. 3.8 and Fig. 3.9).

While symptom detection prior to manual assessment is a key feature in hyperspectral

imaging disease detection, which has been observed in multiple studies (Bauriegel and

Herppich, 2014; Khan et al., 2021; Wang et al., 2019), it has been shown in previous

studies, that these results are difficult to achieve with supervised data analysis method-

ology (Thomas et al., 2018b). The main problem when applying supervised methods is

that it is challenging for experts to label symptomatic areas of the leaves, especially under

greenhouse and field conditions, which do not yet show visible symptoms. As symptoms

cannot be observed directly, it is necessary to precisely measure the leaf to convey the

leaf’s area to be labeled from images at later points in the time-series (Bohnenkamp

et al., 2019). Alternatively, it is possible to use unsupervised methods to detect such

areas under controlled conditions and use the resulting data as annotated training data to

apply supervised methods under more complex circumstances.

In light of these facts, the early detection of Phakopsora pachyrhizi symptoms through

the DeepHSNet classification with annotated data from visible symptoms in a training

dataset with high class variability is a promising step for the application under field
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conditions in agricultural practice, where a multitude of environmental factors increase

the complexity of the data set.

3.4.4 Conclusion

The results of this study show that symptoms of ASR on soybean leaves can be detected

accurately via analysis of HSI. Despite specifically limited training data selection in late-

stage disease development with high in-class data variability, both machine learning and

deep learning methods could detect and identify disease symptoms with over 99% ac-

curacy. However, the deep learning methods outperformed the machine learning meth-

ods for early disease detection applications while accurately detecting disease symptoms

about one day before they became visible to the human eye. This shows the potential of

HSI in combination with deep learning approaches for practical application in agricul-

ture on field level, where a high data variability is imposed on the measurements due to

environmental factors.

3.5 Summary

In this chapter, hyperspectral imaging was used for two applications of food inspection/-

precision farming. We showed that a non-destructive ripeness prediction of avocados and

kiwis is possible. Further, hyperspectral imaging allows reliable detection of Phakopsora

Pachyrhizi infestations on soybean.

Further, a convolution neural network DeepHSNet was proposed and validated on the

hyperspectral task. As this network showed reliable results, it will be used as a baseline

for our further investigations in the following chapters (see chapter 4 and chapter 5).

45





Chapter 4

Self-Supervised Learning for

Hyperspectral Classification

In this chapter, self-supervised learning for hyperspectral imaging is discussed based on

our published work:

• Varga, L. A., Frank, H., and Zell, A. (2023a). Self-supervised pretraining for hy-

perspectral classification of fruit ripeness. In J. Beyerer, T. Längle, and M. Heiz-

mann, editors, OCM 2023 - Optical Characterization of Materials : Conference

Proceedings, pages 97–108

4.1 Introduction

As discussed in the previous chapter, knowing the ripeness of fruit is of great interest

in the food industry. For this, chemical and physical indicators like the sugar content

and fruit flesh firmness are usually employed, all of which are obtained by destructive

measurement.

It is also possible to predict the ripeness of fruit using Hyperspectral Imaging (HSI)

and supervised methods (see chapter 3). However, the supervised manner requires labels.

Obtaining the actual ripeness state of a fruit still comes with destroying it, making the

labeling process tedious and labeled samples scarce. Training networks on small training

sets can be challenging, and overfitting becomes likely. Therefore, it is desirable to also

use unlabeled recordings that can be obtained without much effort.

Self-supervised Learning (SSL) methods have produced astonishing results in com-

puter vision (e.g. SimCLR by Chen et al. (2020), SimSiam by Chen and He (2021),

Barlow Twins by Zbontar et al. (2021)). As there is no pretraining step for hyperspectral

recordings, we evaluate in this chapter the effect of SSL-based pretraining in the case

of hyperspectral image classification, which can stabilize the training and improve the

network’s predictions. So, we apply three state-of-the-art approaches on the hyperspec-

tral data set of ripening fruit. As most current SSL approaches target color images, we

must adapt the hyperspectral recordings methods, especially the data augmentations need

modifications. Further, we test the effect on three network architectures.
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4.2 Related Work

For works related to the HSI classification or the ripeness prediction of fruit, we refer

to Sec. 3.1, as HSI classification is currently mostly done with supervised approaches.

Herefore, the relevant works are similar.

Self-supervised learning, on the other side, has been very popular in recent years.

SSL allows the network to learn useful representations of the data by solving a pretext

task that can help perform the actual downstream tasks. Various self-supervised learning

methods have been developed.

Most of them rely on Siamese network architectures, as proposed by Bromley et al.

(1993), that are trained to maximize the similarity between their outputs for two different

distortions of the same sample. The main challenge is preventing collapsing, which oc-

curs when the network branches ignore their two inputs and produce identical or constant

output vectors.

Recently, various approaches have occurred: Contrastive learning (Hadsell et al.,

2006) methods like, e.g. SimCLR by Chen et al. (2020), avoid collapse by repulsing

negative pairs (views of different images), in addition to attracting the positive pairs

(views of the same image). The works Wu et al. (2018), He et al. (2020) and Chen et al.

(2020) followed this approach. However, these methods either require a large memory

bank or large batch sizes.

Other, more recent methods do not rely on negative samples. Instead, they introduce

asymmetry to avoid collapse. For example, the SimSiam method by Chen and He (2021)

uses an additional network and a stop-gradient operation in one branch, respectively.

An alternative approach is provided by so-called information maximization methods,

which were, e.g., proposed by Zbontar et al. (2021) Ermolov et al. (2021) and Bardes

et al. (2022). They decorrelate the output vectors of the two branches, maximizing their

information content and therefore avoiding (informational) collapse. Barlow Twins by

Zbontar et al. (2021) is one prominent example.

All of those methods are initially designed for regular color images. Research on self-

supervised pretraining when using hyperspectral images is still in its infancy. Only a

few approaches have been proposed very recently (e.g., the works of Yue et al. (2022),

Zhao et al. (2022) and Hou et al. (2022)), all addressing hyperspectral remote sensing

scenes. Hence, their use-case differs widely from the classification of fruit. They focus

on a patch-based task in contrast to a sample-based task, so a direct comparison is not

possible.

4.3 Experiments

This section describes the extension of data set DeepHS Fruit. Further, the methods used

for the experiments are defined. Finally, the evaluation metric of the experiments are

discussed.
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Figure 4.1: The fruits were recorded by HSI. Some of them were selected and measured

destructively to obtain the corresponding ripeness label. The other fruit recordings re-

mained unlabeled. First, the initial model was pretrained using self-supervised learning

(SSL) on all recordings, not requiring any labels. Then, we set it up for the actual clas-

sification task and further fine-tuned the model by supervised training, using only the

labeled data.

4.3.1 Data Set

This work extended the already publicly available hyperspectral fruit data set, DeepHS

Fruit (see chapter 3.3.4, by additional recordings of avocados, kiwis, mangos, persim-

mon, and papayas. We used the same measurement setup and followed the procedure

described for the first version. Each fruit was recorded by the Specim FX 10 with 224

bands (398 nm - 1004 nm) and the Corning microHSI 410 Vis-NIR Hyperspectral Sensor

with 249 bands (408 nm - 901 nm). Labels (firmness, sugar level, and overall ripeness)

were obtained by destructive measurement. As in version 1, the labeled data was divided

into a fixed training set (3/4), validation set (1/8), and test set (1/8).

The resulting DeepHS v2 data set consists of 4671 recordings in total, 1018 labeled.

For supervised classification, only the labeled subset was used. For self-supervised pre-

training, the unlabeled samples were also used. Here, the samples were divided into a

training (4/5) and a validation set (1/5). Only the Specim and Corning camera recordings

were used for the experiments. Further, the size of the classes in the three categories was

balanced, so there was no bias towards one class.

4.3.2 Models

Three different classifier models were used: DeepHSNet, which we already evaluated on

the supervised task (see chapter 3), a proposed hybrid model and ResNet-18 of He et al.

(2016).

DeepHSNet In chapter 3, we proposed the DeepHSNet network, specialized for HSI

data and evaluated on two hyperspectral applications. It is a small Convolutional Neural
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Figure 4.2: Architecture of the 3D-2D hybrid model.

Network (CNN) with three 2D convolutional layers for feature extraction and a fully-

connected linear layer for actual classification.

3D-2D Hybrid Model For the self-supervised experiments, we propose a slightly mod-

ified variant, a hybrid model, using a 3D convolution instead of a 2D convolution in the

first layer, which was inspired by the HybridSN by Roy et al. (2020b). The first layer

has been extended to a three-dimensional 7×3×3 kernel. The architecture is shown in

Fig. 4.2.

Overall, the resulting 3D-2D hybrid model comprised of a 3D convolutional layer

for spectral-spatial feature learning, followed by two 2D convolutional layers for more

abstract spatial feature learning, and finally the fully-connected layer, again operating

on the spectral dimension, for actual classification. As a consequence of using the 3D

convolution, we obtained a much larger model concerning the baseline (≈ 20 times as

many parameters)

ResNet-18 Finally, we also evaluate our methods using a ResNet architecture of He

et al. (2016), since it has proven good performance on image classification tasks in gen-

eral, as shown in the work He et al. (2016) and is also commonly used as backbone for

SSL (e.g. Chen et al. (2020); Chen and He (2021); Zbontar et al. (2021)). Here, the

ResNet-18 was used. It is a deep convolutional neural network with skip connections

and 18 layers, making it the smallest member of the ResNet family. Nonetheless, com-

pared to the other two models, it is more complex and has significantly more parameters

(11,900,000), but has no 3D convolutions.

4.3.3 Self-supervised Pretraining

The pretraining (as shown in Fig. 4.1) was performed using one of the three SSL meth-

ods: SimCLR (Chen et al., 2020), SimSiam (Chen and He, 2021), Barlow Twins (Zbontar

et al., 2021).

All employ a siamese network architecture, like described by Bromley et al. (1993),

where each branch is built by the encoder, the convolutional part of the classifier model,

followed by a projection head. For the latter, we used an Multi Layer Perceptron (MLP)
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4.3 Experiments

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Augmentations visualized on a hyperspectral data cube: Modification of (a)

random pixels, (b) consecutive pixels, (c) random channels, (d) consecutive channels, (e)

a “subcube” (consecutive pixels and channels), (f) edge pixels, (g) edge channels, and

(h) color information channels. Modified pixels and channels are marked in grey.

with two layers. A ReLU non-linearity and batch normalization (Ioffe and Szegedy,

2015) was applied for each layer. The input dimension was 50 (for the baseline or hybrid

model, and 512 for the ResNet-18), the hidden dimension was 16, and the embedding

dimension was eight. For SimSiam, we used an additional prediction MLP, consisting of

a single linear layer with input and output dimension of eight. The temperature parameter

for SimSiam was τ = 0.1. For Barlow Twins, a weighting factor λ = 0.01 was used.

A critical component of SSL are the data augmentations. We evaluated 21 augmenta-

tion techniques (the full list is visible in Tab. A.1), including four basic image transforma-

tions (rotating, flipping, cropping, random noise), two more specific ones (wavelength-

dependent noise and pixel-wise intensity scaling), 13 augmentations that modify parts of

the hyperspectral cube (i.e., drop or blur specific pixels, channels, or an entire sub-cube

(Haut et al., 2019)), as well as two mixing augmentations (inspired by MixUp (Zhang

et al., 2018) and ScaleMix (Wang et al., 2022b)). Representatives of each category are

visualized in Fig. 4.3.

Based on the ablation studies (see Sec. 4.5.3), only a subset of the augmentations

(random rotations with probability 50%, random cropping with probability 30%, modi-

fication of the hyperspectral cube, and mixing with probability 20%) was actually used

for pretraining of the final experiments.

The networks were optimized with SGD, defined by Kiefer and Wolfowitz (1952),

with a weight decay of 10−4, a momentum of 0.9, and a learning rate of 10−2, decayed

with the cosine decay schedule without restart, as desribed by Loshchilov and Hutter

(2017). We trained for 80 epochs with an effective batch size of 32.
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Chapter 4 Self-Supervised Learning for Hyperspectral Classification

4.3.4 Evaluation

For the evaluation of self-supervised pretraining, the produced embeddings were consid-

ered. They were evaluated qualitatively (based on 3D visualizations) and quantitatively

(based on the k-Nearest-Neighbor accuracy). For the visualization, the feature values

of the embedding were plotted in three-dimensional space after applying PCA. k-NN

classification, as proposed by Fix and Hodges (1989), was employed for the embedded

labeled samples, using k = 5, the cosine distance and leave-one-out cross-validation. A

similar evaluation metric was already used by Wu et al. (2018) and Chen and He (2021).

Additionally, we measured the performance for classification without and with pre-

training.

For the pretrained model, fine-tuning instead of full downstream training was per-

formed. Fine-tuning refers to training the model on the downstream classification task

by using the pretrained parameters as an initialization. For this, the whole model was

built based on the pretrained encoder and a randomly initialized fully-connected part.

Then the entire model was trained on the classification task. However, early experi-

ments showed that training the classifier with regular settings (as without pretraining)

would simply overwrite the pretrained backbone weights and lead to similar classifica-

tion results for the initial and pretrained model. Therefore, the training procedure for the

pretrained classifier was adapted to:

1. Freeze the backbone and train only the weights of the fully connected part of the

network (with the same learning rate and the number of epochs as for the default

case or linear evaluation).

2. Fine-tune the weights of the whole network using a smaller learning rate and

shorter training, respectively.

The first step mainly served us to temporarily assign meaningful weights to the otherwise

randomly initialized fully-connected layer and therefore stabilize the gradients for further

fine-tuning of all weights. The second step of fine-tuning on the labeled data per se is

commonly used in the SSL literature, e.g., by Chen et al. (2020); Chen and He (2021);

Zbontar et al. (2021); Caron et al. (2020); Grill et al. (2020). However, in contrast to

most of the literature, since the data set used here is already relatively small, we decided

to use the whole instead of only a small fraction of the labeled training data. Again, all

other settings remain unaltered from the default case.

Without pretraining, the randomly initialized model was trained using the settings of

the supervised task (see Sec. 3.3.5).

After the supervised training, the model was evaluated on the test set. Test time aug-

mentations (Howard, 2014) were applied with probability 50%.

Using five different seeds each, we conducted experiments for all possible combina-

tions of fruit types, cameras, and categories.
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(a) Embedding, before (left) and after pretraining (right).
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(b) k-NN accuracy.

Figure 4.4: (a) 3D visualization of the embedding before and after pretraining via Bar-

low Twins – coloring by ripeness levels: unripe (green), ripe (yellow), overripe (red) and

unlabeled (black). (b) k-NN accuracy on the ripeness levels of the labeled samples (train

and validation set) during pretraining with SimCLR. For the hybrid model and the avoca-

dos, recorded by the Specim camera.

4.4 Results

To evaluate the pretraining per se, we visualized the embeddings in 3D and monitored

the k-NN accuracy during pretraining (see Fig. 4.4).

The spatial arrangement in the 3D space correlates with the ripeness level; samples

of the same ripeness level are brought closer together. This fits the development of the

k-NN accuracy, which increases as pretraining advances and finally converges towards

80%. This shows that pretraining can extract meaningful features and find useful repre-

sentations for the data without using label information.

Additionally, the pretrained model was evaluated on the downstream classification

task. Especially, classification performance with pretraining and additional fine-tuning

was compared to classification without pretraining. We present the classification accu-

racy per fruit in Tab. 4.1. The pretraining led, for all examples, to a performance improve-

ment. We achieved an overall classification accuracy of 58.3%. Comparing the baseline
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Chapter 4 Self-Supervised Learning for Hyperspectral Classification

model initially designed for pure classification to our newly proposed hybrid model with

pretraining, overall, we could observe an improvement of approx. 3% in classification

accuracy. For some fruit, it could be increased by more than 10%. Where this was not

the case, the Interquartile range (IQR) was reduced, indicating that pretraining increased

stability.

The experiments, visible in Fig. 4.5, show that pretraining even could compensate for

the need for large amounts of labeled samples.

Table 4.1: Classification accuracies (median, IQR) for regular classifier training versus

SimCLR pretraining plus fine-tuning, for the HS-CNN (baseline) and hybrid model. One

example for the five different fruit: Avocado (ripeness, Specim), kiwi (sugar, Specim),

mango (firmness, Specim), kaki (sugar, Specim), papaya (ripeness, Corning), and over

all fruit, categories and camera types. Highest accuracies in bold.

Avocado Kiwi Mango Kaki Papaya Overall

Baseline
Without pretraining

83.3%

(±4.2%)
65.2%

(±4.3%)
50.0%

(±33.3%)
50.0%

(±4.3%)
77.8%

(±11.1%)
55.6%

(±32.2%)

With pretraining
87.5%

(±0.0%)
73.9%

(±8.7%)
50.0%

(±8.3%)
66.7%

(±8.7%)
88.9%

(±0.0%)
58.3%

(±32.2%)

Hybrid
Without pretraining

75.0%

(±4.2%)
73.9%

(±13.0%)
50.0%

(±33.0%)
58.3%

(±13.0%)
88.9%

(±11.1%)
54.2%

(±33.3%)

With pretraining
91.7%

(±4.2%)
78.3%

(±4.3%)
50.0%

(±16.7%)
58.3%

(±4.3%)
88.9%

(±11.1%)
58.3%

(±36.1%)

Figure 4.5: Classification accuracy (mean and standard devation) versus fraction of la-

beled samples used for classifier training for the baseline model with default classifier

training (red) and hybrid model with pretraining (via SimCLR) plus fine-tuning (blue).

Example: Avocado, Specim camera, ripeness classification.
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4.5 Ablation Study

Figure 4.6: Classification accuracies for the DeepHSNet baseline, ResNet-18 model, and

a hybrid version of both models without pretraining (red) and with pretraining via Sim-

CLR (blue).

4.5 Ablation Study

In this section, the impact of the classifier model, the SSL method and the augmentation

techniques is analyzed.

4.5.1 Classifier Model

For each of the three models, the classification accuracy with and without pretraining is

visualized in Fig. 4.6. Further, a hybrid version of the ResNet-18 model was tested.

For classification without pretraining, the DeepHSNet performs best among all three

models (55.6% accuracy). With pretraining, the performance can be improved only by

a small amount, probably due to the affected backbone extracting only spatial and no

spectral features. The later FC layers, which process the spectral information, are most

important for classification, whereas the backbone with the 2D convolutions, extracting

spatial features, hardly matters. Since in our experiments, only the backbone was pre-

trained, but the FC layer for actual classification had to be trained from scratch on the

classification task anyway, it was hard or even impossible to obtain significant improve-

ments using the baseline model.

With a hybrid model of the DeepHSNet, we tried to overcome this issue by using a 3D

instead of 2D convolution to include the spectral information already in the backbone and

therefore give it more relevance. With 54.2% classification accuracy for regular classifi-

cation, the modified hybrid model performs slightly worse than the baseline, caused by

overfitting. For the case with pretraining, the hybrid model performs equal to the base-

line model (58.3%), but more importantly, the accuracy improved by a larger amount of
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Chapter 4 Self-Supervised Learning for Hyperspectral Classification

4.1%. So, as intended, pretraining is more effective for the hybrid variant.

Finally, we considered the even larger and more complex ResNet-18. With a classi-

fication accuracy of only 50%, the ResNet-18 performs much worse than the other two

models for standard classification. Again, we hold overfitting responsible for the bad per-

formance. However, the ResNet-18 does outperform both models concerning the most

significant improvement by more than 5% relative to without pretraining. Further, we

evaluated whether the hybrid modification, which was used for DeepHSNet, could also

be helpful for the ResNet-18 architecture. The influence seems neglectable. We assume,

as the ResNet-18 backbone is much larger, it can incorporate the spectral features learned

during pretraining.

Overall, it has been found that pretraining improved the classification accuracy rela-

tive to regular classification for all models. There was a correlation between the model

size and classification performance: The improvement is more significant for larger mod-

els, as these benefit more from the pretraining. Based on those observations, we claim

that pretraining stabilizes the subsequent classifier training, can prevent overfitting, and

enables the training of larger models for HSI.
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Figure 4.7: Training loss for pretraining via SimCLR (orange), SimSiam (violet), Bar-

low Twins (green) using the hybrid model. Example: Avocado, Specim camera, on the

ripeness classification task.

4.5.2 Self-supervised Pretraining Method

Secondly, we compare the three employed self-supervised methods (SimCLR, SimSiam,

and Barlow Twins). All use a Siamese Network structure, but they mainly differ in their
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4.5 Ablation Study

way of collapse prevention. While SimCLR relies on negative samples and, therefore,

must use large batches, as described by Chen et al. (2020). SimSiam was designed by

Chen and He (2021) with an asymmetry (Chen and He, 2021) to avoid trivial solutions.

Barlow Twins of Zbontar et al. (2021) does this by the construction of the loss. So the

latter do not require large batches of samples, nor do SimCLR or Barlow Twins have any

particular asymmetry in the Siamese Network structure.

Further, of course, the loss function is an essential aspect of the method. SimCLR

uses the InfoNCE or NT-Xent loss, as defined by Chen et al. (2020). SimSiam by de-

fault employs the (negative) cosine similarity, as proposed by Chen and He (2021). For

the Barlow Twins method, Zbontar et al. (2021) considered the similarity of the cross-

correlation matrix to the identity matrix. While SimCLR and SimSiam have a symmetric

loss, for Barlow Twins, no loss symmetrization is employed.

Fig. 4.7 shows the development of these losses over the pretraining process for the

example of avocado ripeness classification using the Specim camera recordings. The NT-

Xent loss of the SimCLR method shows the most variance relative to the other losses. It

starts at the highest value and, on average, converges at a value slightly below 0.5, taking

much more training epochs than the other two methods. Barlow Twins with its loss based

on the cross-correlation matrix, very early reaches a small training loss value around 0.2,

not being able to decrease further towards the minimum possible value of 0. In contrast

to the other two methods, SimSiam measures its loss as the negative cosine similarity

that can have values between −1 and +1. Considering this, the training loss looks quite

good, converging very quickly towards a value near the minimum.
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Figure 4.8: Classification accuracies for pretraining via SimCLR, SimSiam, Barlow Twins

using the hybrid model. Over all fruit, categories and both cameras.

Although their training loss curves look very different, in the end, the performance

of the three methods on the ripeness classification task is relatively similar. The classi-

fication accuracies over all fruit, categories, and cameras are visualized in Fig. 4.8, for

pretraining with either SimCLR, SimSiam or Barlow Twins, respectively. Over all fruit,
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categories, and both cameras together, SimCLR performs best, slightly better than Sim-

Siam which both have a median classification accuracy of 58.3%. Barlow Twins obtains

a lower median accuracy of 56%. It is also worth mentioning that the different meth-

ods perform differently for specific examples. There is not one single “best” method for

pretraining, at least for this application.

However, at least some interesting observations could be made concerning their the-

oretical background. First of all, the methods are often compared for asymmetry. It is

not possible to make a clear statement about this here since an asymmetric and sym-

metric method (SimSiam and SimCLR) demonstrated nearly the same performance while

another symmetric method (Barlow Twins) performed worse. Because of the good per-

formance of SimCLR, we assume that contrastive learning, using negative samples, was

indeed helpful and can not simply be replaced by asymmetry or other collapse prevention

approaches. However, this contradicts what Chen and He (2021) claims for SimSiam. For

SimCLR, Chen et al. (2020) state the requirement of large batches of contrastive samples

and, therefore theoretically, should perform poorly on small batch sizes. In contrast,

Barlow Twins(Zbontar et al., 2021) and SimSiam(Chen and He, 2021) claim to not re-

quire large batches. However, for an effective batch size of 32, we observed almost

the contrary: SimCLR outperformed the other two methods with respect to the result-

ing classification accuracies. Still, it could explain the high variance in the training loss

for SimCLR. According to their authors, the methods further have different requirements

regarding model size or dimensionality of embeddings. Zbontar et al. (2021) observed

improved performance for increased dimensionality of the embeddings. Therefore, the

small embedding dimension of eight chosen for this application is a possible explanation

for the relatively bad performance of the Barlow Twins method. Analogously, Chen et al.

(2020) of SimCLR claim their method greatly benefits from bigger models. Surprisingly,

SimCLR worked relatively well on our rather small baseline and hybrid model. However,

it may explain the observations that pretraining (via SimCLR) is more effective for larger

models. Apart from the batch size and model architecture, all other settings were chosen

to be the same over all SSL methods for our experiments, like the same learning rate, and

optimizer. Also, the very same set of augmentations was applied with the same proba-

bilities, whereas it is valid to assume that the individual methods would have benefited

from using their best-suited settings, respectively.

4.5.3 Augmentations

Further, we evaluated the influence of the 21 proposed data augmentation techniques by

grouping them and using only one group for pretraining, respectively. Fig. 4.9 shows the

resulting classification accuracies for the avocado fruit as a representative example.

The basic augmentations (rotating, flipping, cropping, and cutting) showed the highest

accuracy (> 80%) and therefore seemed to be most important. The pixel augmentations,

like the modification of edge pixels and dropping random or consecutive pixels, were also

helpful for pretraining. On the other hand, dropping multiple consecutive channels led
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Figure 4.9: Classification accuracies for self-supervised pretraining (via SimCLR) using

only the group of (a) basic augmentations, (b) noise augmentations, (c) augmentations

that blur or drop random pixels, (d) drop consecutive pixels, (e) blur or drop random

channels, (f) drop consecutive channels, (g) drop a sub-cube, (h) blur or drop edge pixels,

(i) blur or drop edge channels, (j) blur or drop visible color information channels and

(k) mixing augmentations. Over all three SSL methods. Example: Avocado, Specim,

ripeness classification.

to the worst classification accuracy (< 70%). Also, dropping or blurring color channels

decreased performance, since color information was indeed used by the network (e.g.

green vs. brown color for avocado, affecting the wavelengths between 400− 700 nm,

was also important in our other experiments for this task).

The general trend with respect to channel augmentations would be that they can be

helpful to make the model more robust to potentially noisy channels. Still, they can also

be harmful when taking away too much important information or distorting the spectrum.

Altering the spectrum curves and distorting the spectrum may also have been the case for

adding any random noise to the whole data cube. The noise augmentations also showed

a relatively low classification accuracy. We have shown that including knowledge about

the data set and the specific application is very effective. Augmentations can be used in

SSL to “tell” the model which parts of the data cube are specifically important (by leaving

them unaltered) and which are not interesting by altering them the most. We found that

for hyperspectral image data, it makes more sense to introduce distortions systematically

instead of completely random (e.g. BlurEdgePixels versus RandomNoise).

Of course, the composition of the individual augmentations may also be crucial for

pretraining and, therefore, the classification performance. However, there are combina-

torially many cases, and in additional experiments, it was observed that the augmenta-

tions performed rather inconsistent for individual methods, fruit, and between camera
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Figure 4.10: k-NN accuracy on the ripeness labels (of the labeled training and validation

samples) during pretraining on Specim recordings of all fruit using the SimCLR method,

for the self-supervised (blue) vs. semi-supervised (brown) variant.

types, so there was no single “best” combination of augmentations to be found. For

our evaluations, instead, we simply picked and combined the best-performing individual

augmentations, partially with a lower probability, and found that this did work well in

general.

4.6 Semi-supervised Pretraining

This section introduces a semi-supervised variant for pretraining that makes additional

usage of the available label information. The goal is to steer the pretraining in the desired

direction by emphasizing that only the features determining the respective level of the

current category (ripeness, firmness, or sugar) are relevant, but similarities based on

other aspects are not.

To find out whether using the label information made sense in practice, we applied it

to the example of pretraining on all fruit types. This shows a situation where additional

information can be helpful. Here, in contrast to the previous experiments, the models

were trained on the recordings of all fruit types instead of only one. Resulting in a model

that can classify the fruit’s ripeness level regardless of the fruit type (with respect to

the fruit types in the data set). In practice, models trained for a specific fruit type are

enough. But still, this is theoretically an interesting task as the model could generalize

the essential features between fruit types even if they are, in most cases, completely

different.

Fig. 4.10 shows the k-NN accuracy development and Fig. 4.11 visualizes the resulting

embeddings, using self-supervised and semi-supervised pretraining, respectively.
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Color by Fruit Type

(a) Self-supervised (b) Semi-supervised

Color by Ripeness

(c) Self-supervised (d) Semi-supervised

Figure 4.11: Embedding after (a, c) Self-supervised versus (b, d) Semi-supervised Pre-

training using the SimCLR method on Specim camera recordings of all fruit. Coloring

by (a, b) fruit type: avocado (green), kiwi (yellow), mango (red), kaki (blue) and papaya

(purple) or (c, d) ripeness: unripe (green), ripe (yellow), overripe (red).

During self-supervised pretraining, the k-NN accuracy improved, but only by a rela-

tively small amount of 5%, reaching a maximum very early. In contrast, when using the

label information in addition in the context of semi-supervised pretraining, it increased

more drastically and reached a high level of > 77%. This was expected, since bringing

samples of the same labels together as an immediate consequence makes them “nearest

neighbors” and therefore should increase the k-NN accuracy (compare to Sec. 4.3.4).

This is also in accordance with the resulting embeddings, visualized in Fig. 4.11. For

the self-supervised case (Fig. 4.11a and 4.11c), there is a clear separation between fruit

types. Due to the clustering by fruit types, the ripeness levels are mixed up, and sepa-

ration by ripeness level is impossible. Separation by the fruit type is more prominent,

which let the models focus on this criterion. Semi-supervised pretraining (Fig. 4.11b and

4.11d), by also considering the ripeness labels, was able to find an embedding where the

three ripeness levels are separated and in turn, of course, the fruit types got mixed up.
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Table 4.2: Classification accuracies (median, in percent) for the hybrid model and pre-

training using the self-supervised versus the semi-supervised approach. For the five ex-

amples (1. avocado, Specim, ripeness, 2. avocado, Specim, firmness, 3. avocado, Corn-

ing, ripeness, 4. kiwi, Specim, sugar, 5. papaya, Corning, ripeness) and over all fruit,

cameras and categories.

1. 2. 3. 4. 5. All

Self-supervised Pretraining 83.3 % 88.9 % 88.9 % 78.3 % 77.8 % 56.5 %

Semi-supervised Pretraining 83.3 % 88.9 % 88.9 % 78.3 % 88.9 % 58.3 %

The additional usage of the label information apparently helped the model to decide on

features determining the ripeness level to be important while ignoring similarities and

differences based on the fruit type. Motivated by those results, we implemented semi-

supervised pretraining also for our regular experiments.

To include the label information in an originally unsupervised setting, we needed to

load the data in pairs. For all samples, pairs of the same sample, and additionally for a

fraction (here: 20%) of the labeled samples, all pairs of two samples sharing the same

label were generated.

Consequently, the loss was computed on (views of) the two samples in the pair instead

of the two views of the same sample. In general, this semi-supervised loss could be

denoted as

L= Lu +Ls (4.1)

where Lu is the unsupervised loss as used for self-supervised pretraining, here calculated

based on the pairs of equal samples, and Ls is the supervised loss computed on the

pairs of different but equally labeled samples. The model was trained to maximize the

similarity for pairs of augmentations of the same sample and for different samples with

the same label.

For comparability, we loaded the data in pairs for both semi-supervised and self-

supervised pretraining.

Tab. 4.2 shows the resulting median classification accuracy for the five examples and

over all fruit, classification categories and both cameras for the hybrid model with self-

supervised vs. semi-supervised Pretraining via SimCLR, respectively.

The accuracy stayed the same for four out of the five examples. For the fifth example,

there is an improvement in classification performance for semi-supervised relative to

self-supervised pretraining. Also, over all fruit, categories, and cameras, the accuracy

could be increased by about 2%.

The addition of label information has a positive impact on the pretraining, especially

concerning the k-NN accuracy and the generated embeddings. However, the resulting

classification accuracies that we are actually interested in the end, could only be slightly

improved. Actually, semi-supervised pretraining brings another problem: The necessity

to load the data in pairs and load the pairs of labeled samples in addition which is com-
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putationally more expensive. Therefore and because the method would then not strictly

be “self-supervised” any more, we decided to not use it for the base case. However, the

semi-supervised approach could be interesting for further research.
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Figure 4.12: Classification accuracies for the baseline model without pretraining (red)

versus the hybrid model with SimCLR pretraining (blue). For the Specim camera and the

five different fruit (avocado, kiwi, mango, kaki, papaya), classified by all three categories

(ripeness, firmness and sugar content).

4.7 Conclusion

This chapter extended the hyperspectral data set of ripening fruit by two new measure-

ment series and three new fruit types.

Further, we showed that it is possible to transfer the ideas of SSL to hyperspectral data.

SSL pretraining extracts essential features in an unsupervised manner and allows using

larger models. It can stabilize classifier training and improves classification accuracy in

some situations. Therefore, pretraining can partially compensate for the need for large

labeled data sets in HSI classification.

Fig. 4.12 shows the improvements achieved using SSL pretraining for the ripeness

classification for the five different fruit. The classification accuracy could be boosted by

more than 10% for the avocados and the kiwis. The classification itself is not stable for

mangos, kakis, and papayas, but pretraining could reduce the variability for the papayas

and overall. Summarizing, the pretraining allows a more reliable ripeness classification

for specific exotic fruit.
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Chapter 5

Wavelength-aware 2D Convolutions for

Hyperspectral Imaging

This chapter will revisit the supervised classification task of hyperspectral recordings

(see chapter 3). A wavelength-aware 2D convolution will be proposed and discussed.

This convolution is optimized for hyperspectral imaging (HSI) and provides useful prop-

erties for this data structure. As this is one of the main contributions of our work, we will

discuss this method in full detail.

This chapter is based on our publications:

• Varga, L. A., Messmer, M., Benbarka, N., and Zell, A. (2023b). Wavelength-

aware 2d convolutions for hyperspectral imaging. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV), pages 3788–3797

5.1 Introduction

Hyperspectral recordings, as described in chapter 2 approximate the spectrum for each

pixel of an image. For a higher spectral resolution, the number of channels is increased

(to ≈ 200). Further, the range of recorded wavelengths is extended. The additional

wavelengths carry information that can be helpful for complex classification tasks. As a

result, these systems can perform tasks that aren’t possible with pure human perception,

allowing superhuman performance in specific applications.

A problem arises from the fact that the recordings created by different manufacturers’

hyperspectral cameras are a priori incompatible. There is no standardization regarding

the distribution of the channels in the wavelength space. Therefore, two near-infrared

cameras from different manufacturers covering the same spectral range have different

wavelength assignments for the channels. A model, which identifies the features based

on the channel index, will fail on the recordings of another camera. In general, a solution

for this problem is standardizing the recording to defined wavelengths. A basic and

reliable approach is linear interpolation as described by Steffensen (2013), which can be

tedious to fine-tune. Further, the incompatibility of the recordings acquired by different
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hyperspectral cameras complicates the generation of large data sets, as only one type of

camera can be used. This differs from color image data sets.

In addition, as already stated in chapter 2, a significant drawback of hyperspectral

cameras is their complicated acquisition mode. Applying hyperspectral cameras often

requires complex data acquisition (e.g., line-scan operation mode) and labeling proce-

dures. This leads to small data sets. The small data sets and the complicated features,

often necessary for the tasks, support overfitting. Besides these characteristics, the larger

channel dimension of hyperspectral recordings requires special attention.

In this work, we want to tackle the mentioned problems and propose a modified 2D

convolution layer optimized for hyperspectral recordings. Reducing the parameters sig-

nificantly by inferring a proximity bias for the channel dimension, the method can outper-

form comparable approaches. Further, the model incorporates the channels’ wavelength

information. This capability allows the training of camera-agnostic models, meaning the

models can perform their tasks on recordings of different cameras. As an additional out-

come, the models learn the camera filters necessary for the learned task. These camera

filters could be used to build a multispectral camera for a specific use-case.

Besides the theoretical background, we prove our claims with empirical experiments

on two hyperspectral applications.

Figure 5.1: Hyperspectral Visual Embedding Convolution (HyveConv) at a glance. Fur-

ther details in Sec. 5.3.2.
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5.2 Related Work

As we return to the supervised HSI classification, most related works mentioned in

Sec. 3.1 are also relevant to this chapter. In this chapter, the focus lies on the convolution

layer. Therefore, we extend the related work by discussing the most recent developments

for HSI in this direction.

Convolutional neural networks for HSI can be divided into methods based on 2D con-

volutions, 3D convolutions, a mixture of both, imitating 3D convolutions with 2D con-

volutions, and vision transformers. 2D convolutions perform only spatial convolutions.

So the exchange of information between channels is limited and often conducted by the

final fully connected layers. Makantasis et al. (2015) were the first who utilized 2D

convolutions for hyperspectral recordings. 2D convolutions are still very common for

hyperspectral recordings, because they have less trainable parameters and can still incor-

porate spatial information.

In contrast, 3D convolutions can perform convolutions in all three dimensions of the

hyperspectral cube. So they can incorporate additional information but are also parame-

ter hungry. Large models are hard to train on the small hyperspectral data sets. Therefore,

many approaches try to optimize the model power-size ratio. Smaller models with the

same performance are preferred because they tend to overfit less and often produce more

stable results over different training runs. Ben Hamida et al. (2018) used 3D convolu-

tions to classify hyperspectral remote sensing data. He et al. introduced a multiscale

3D convolutional neural network, which applies 3D convolutions with different kernel

sizes. This boosts the performance of the 3D convolutions. Roy et al. (2020a) proposed

FuSENet, which fuses the output of 3D convolutions by using residual fuse blocks and

introducing Squeeze-and-Excitation blocks for HSI, which will be discussed later in full

detail.

The third category combines 3D convolutions and 2D convolutions. Roy et al. (2020b)

proposed HybdriSN. This model has a 3D convolution backbone. The output of this

backbone is processed by a 2D convolution and a fully connected head. This was used

as the template for the hybrid version of DeepHSNet in chapter 4.

SpectralNET (Chakraborty and Trehan, 2021) belongs to the fourth category. It mim-

ics 3D convolutions with wavelet transformations. It utilizes 2D convolutions for the

spatial dimension and the transformed spectral dimension. Finally, the results of both

are combined.

Vision transformers, the most recent computer vision trend, also impacted the HSI

classification. There are already some adaptations for hyperspectral recordings. Qing

et al. (2021) proposed SAT Net, which is based on the self-attention mechanism of

transformers. Hong et al. (2022) introduced a special spectral embedding and a skip-

connection, which boosted the performance of the transformers. But for this application,

the transformer models often cannot outperform the convolution neural networks as the

data sets are tiny. Therefore, smaller convolutional neural networks are usually preferred.

Our method is based on 2D convolutions and, therefore, part of the first group. We
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utilize the wavelength metainformation of the input channels to learn a continuous rep-

resentation of the features in the input channel dimension. Our approach only affects the

first convolution layer, so it is compatible with other works mentioned.

Our method utilizes Gaussian distributions to represent the feature distribution in the

input channel dimension. Still, our approach is not related to Bayesian convolutional

neural networks, like discussed by Shridhar et al. (2019). These networks try to approxi-

mate the true posterior and incorporate the uncertainty into the inference process, which

is not part of our approach.

Hu et al. (2020a) proposed a similar approach. Their Squeeze-and-Excitation block

allows the network to learn a channel interdependency. Our approach differs in three key

points. First, their method uses the input to predict weightings for each feature channel.

Our method uses metainformation, the channels’ wavelength, to weigh the kernels. Fur-

ther, our convolution introduced the bias that channels with similar wavelengths should

use similar kernels. This proximity relation is helpful for hyperspectral records, shown

in section 5.3.1. Last, our method also allows the interpretation of the learned features.

The selected wavelengths can be visualized and analyzed, as shown in section 5.5. Both

methods share the idea of introducing an interdependency in the channel dimension. In

the experiments, we can show that our approach outperforms their approach in the hy-

perspectral application.

5.3 Proposed Method

Our approach is based on 2D convolutions. Regular 2D convolutions handle input based

on the input channel, which is not optimal for hyperspectral recordings. We emphasize

key problems and justify our modifications. Further, we propose the method itself. The

procedure is evaluated in the section afterward with experiments on real and synthetic

hyperspectral data sets with different applications.

5.3.1 Motivation

The reflected light, recorded by a camera, is a spectrum of many wavelengths. An RGB

image oversimplifies this spectrum with three sampling bands (red, green, and blue).

Hyperspectral recordings cover many more bands and mimic a much better spectrum

approximation. Fig. 5.2a shows the spectra of avocados with different ripening states

recorded with HSI. The continuity of the underlying spectrum is captured sufficiently.

As a result, we encounter two problems. First, the numerous input data channels

(around 200 bands) would demand a large first convolution layer. For the proposed

method, the network should have access to the entire hyperspectral cube without a di-

mension reduction as preprocessing. A dimension reduction could reduce the size of the

hyperspectral cube. But by using a dimension reduction, the original data can only be

approximated. We argue that if the network can use the full potential of the data, this
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(a) Conv2D (b) HyveConv (ours)

Figure 5.2: The channel dimension handling visualized for normal 2D convolutions and

our approach. Two example features are presented. Instead of learning each channel

separately, the ranges of the features are learned.

usually is beneficial for the selected features, as deep learning approaches can handle

high dimensional data well, e.g. shown by Hinton and Salakhutdinov (2006). We prove

this in the experiment empirically (in section 5.4.1).

The second problem is that the recorded wavelengths of hyperspectral cameras are

not standardized. Recordings of a manufacturer’s NIR camera are usually not compat-

ible with recordings of a NIR camera of another manufacturer, even though both cam-

eras share the same wavelength range. Their channel-wavelength assignments are often

shifted and have different gradients. An example can be found in Fig. 5.6b and will be

discussed in further detail later. As 2D convolutions are based on the index of channels,

standardizing the data by a preprocessing step, like linear interpolation (Davis, 1975), is

necessary. These preprocessing steps harm end-to-end training. We propose a method

capable of handling different hyperspectral cameras by design.

To solve the mentioned problems, our convolution learns a wavelength range of inter-

est (WROI) for each feature instead of the specific input channel. By having a continuous

representation of the channel dimension, it can sample the kernels based on the wave-

lengths of the input channels.

By adding the bias, that the network should apply similar kernels for similar wave-

lengths, it is possible to significantly reduce the number of parameters. This bias restricts

the freedom of the model, but in the context of a continuous spectrum in the channel

dimension, this is reasonable and seems to be a key point for handling hyperspectral

recordings.

In summary, we propose a method that adds a bias regarding adjacent channels. It

eliminates the need for dimensionality reduction for hyperspectral images. And it en-

ables the training of hyperspectral camera-independent models. We provide empirical

evidence for these claims in section 5.4. But first, the method itself is described.
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Figure 5.3: Flow of Hyperspectral Visual Embedding Convolution (HyveConv)

5.3.2 Method

The fundamental idea of this approach is to learn kernels and their target wavelength

range in combination (Fig. 5.2b) instead of learning each input channel kernel indepen-

dently (Fig. 5.2a). A learnable Gaussian distribution represents a wavelength range. The

weighting factor for the corresponding kernel for this input channel is given by sampling

the distribution at the input channel wavelength. The resulting kernel is then calculated

by multiplying the factor and the kernel. Finally, the kernel is used for a 2D convolution

on the specific input channel. Fig. 5.3 shows the procedure of the method.

In the following, the method is described in further detail. Afterward, an extension is

explained, which adds additional synergy effects for the kernels.

A 2D convolution calculates the cross-correlation between trainable kernels and the

input data. For Cin input channels, Cout output channels and kernel size of Kx ·Ky, this

results in a matrix W for the trainable weights:

W ∈ R
Cin×Cout×Kx×Ky (5.1)

The number of trainable parameters of a convolution depends on the number of input

channels. For the first layer, the input channels are defined by the channel dimension of

the input data. For hyperspectral recordings, this is around 200.

Depthwise-separable convolutions, proposed by Chollet (2017) reduce the number of

parameters by splitting up a convolution into a spatial- and a channel-based convolution.

The overall relation between input channels and necessary weights still exists. For a
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depthwise-separable convolution, the learnable parameters are defined as:

Wds = (Wspatial ∈ R
Cin×1×Kx×Ky ,

Wdepth ∈ R
Cin×Cout×1×1)

(5.2)

To tackle the issue of a too large first layer, we learn wavelength ranges of interest

(WROIs) for the kernels instead of channel-wise kernels. We assume that adjacent chan-

nels of the wavelength space typically share similar features. An example of this behavior

can be found in Fig. 5.2a, where adjacent channels have nearly identical reflectance val-

ues, originating from the high resolution in the wavelength dimension and the continuity

of the signal. Both points can be expected for HSI, so the bias to use similar kernels in

neighboring bands seems suitable and even crucial.

Our convolution decouples the number of kernels from the number of input channels.

Instead of kernels per input channel, wavelength ranges of interest (WROI) and their

kernels are learned. G defines the number of WROIs. Their learnable kernels are called

kernel prototypes (KP). This results in the matrix for the kernel prototype weights:

KP ∈ R
G×Cout×Kx×Ky (5.3)

For the learnable distributions, Gaussian distributions (GDs) are used. A Gaussian dis-

tribution (GD) can mimic the wanted behavior, that the impact decays to the borders of

a WROI. Further, it is defined by just two parameters, the mean µ and the variance σ2.

Both parameters are differentiable and interpretable. A Gaussian distribution combines

a learnable mean µ and a learnable variance σ2. The value of the Gaussian distribution

for a value x is defined as Eq. 5.4.

GD(x,µ,σ2) =
1√

2πσ2
exp

(

−x−µ

2σ2

)

(5.4)

To predict the kernels for specific channel wavelengths λ , the first step is to calculate

the Gaussian distributions at these wavelengths λ . The result is the range impact matrix

RI, which defines the impact of all kernel prototypes on all input channels:

RI ∈ R
Cin×G

with RIi j = GD(λi,µ j,σ
2
j )

(5.5)

Afterward, the learnable kernel prototypes can be weighted with this matrix to produce

the final kernels K. These kernels are then used for a 2D convolution on the input.

K = RI ·KP ∈ R
Cin×Cout×Kx×Ky (5.6)

The result of this convolution is input to further layers. Our convolution can reduce

the trainable parameters to Whyve with G << Cin. In Tab. 5.1 the number of trainable
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parameters of the different models is compared.

Whyve =
(

KP,M ∈ R
G,V ∈ R

G
>0

)

(5.7)

To support full end-to-end learning, a gradient for Gaussian distributions and kernel pro-

totypes is needed. Fig. 5.3 shows the gradient flow in our convolution model. The multi-

plication divides the gradient of the final kernel K on the learnable kernel prototypes KP

and the range impact matrix RI. The matrix RI holds entries, which were sampled, of

the Gaussian distributions regarding the wavelengths of the input. This allows us to infer

the impact of the input wavelengths on the gradient. Further, the gradient can be passed

to the means M and variances V of the Gaussian distributions. The channel wavelengths

λ are part of the input data and do not need a gradient. So, all learnable components of

the convolution are trainable based on the gradient of the final kernel K, and end-to-end

training of the model is possible.

This also affects the way the model learns the kernels. Fig. 5.2b shows how the train-

ing of our convolution varies from the training of a 2D convolution. This simplified

example shows just two WROIs (black and blue). A significant feature which is, e.g.,

visible around 750 nm, will also be visible in some channels around this wavelength.

In this example, the feature is visible in the range from 700 nm to 800 nm. So, the 2D

convolution (a) has to learn similar features for around 30 independent kernels (assuming

input data with 200 channels between 400 nm and 1000 nm). In contrast, our convolu-

tion (b) has to learn only one kernel and the distribution of the feature in the wavelength

dimension.

The hyperparameter G seems very crucial for this approach. But G is interpretable and

explainable. Further, the default configuration seems robust. More information regarding

G can be found alation study (see section 5.5).

As the default value for G we recommend 5. Meaning the model can select 5 WROIs

in the wavelength range. This leads to G <<Cin.

Initialization of the Gaussian

For our implementation, we initialized the Gaussian distributions of the WROIs in a

manner that the whole inspected wavelength range is covered. This is achieved by dis-

tributing the means µt=0 evenly between the minimal (wmin) and the maximal inspected

wavelengths (wmax). Further, the variance σ2
t=0 is initialized with overlap:

σ2
t=0 =

1

G

2

· (wmax −wmin) (5.8)

Further, negative variances are prevented by using softplus proposed by Shridhar et al.

(2019).
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Table 5.1: Parameters of a single convolution for the configuration: Cin = 200, Cout = 25,

Kx = 3, Ky = 3, G = 5

Conv2D

Depthwise

-separable

Conv2D

HyveConv

(ours)

HyveConv++

(ours)

200 ·25 ·3 ·3
= 45000

200 ·1 ·3 ·3
+200 ·25 ·1 ·1
= 6800

5 ·25 ·3 ·3
+2 ·5
= 1135

5 ·25 ·3 ·3
+2 ·5
+1 ·25 ·3 ·3
+1 ·1 ·3 ·3
+2

= 1371

Extension: Additional Kernel Sharing

The learned WROIs allow the model to share kernels through the channel dimension of

the input Cin. As an extension, we propose sharing parts of kernels through the channel

dimension of the output Cout and overall kernels of the convolution layer. For this, the

previous method is enhanced with additional kernel prototypes. These additional kernel

weights are weighted with the learnable factors α ∈ R and β ∈ R. The sum of all kernel

prototypes is then used further.

KP
i, j,m,n
++ = KPi, j,m,n +α ·KP

1, j,m,n
c out +β ·KP1,1,m,n

conv

KPc out ∈ R
1×Cout×Kx×Ky

KPconv ∈ R
1×1×Kx×Ky

(5.9)

The kernel prototypes KP++ replace the kernel prototypes KP in Eq. 5.6 resulting in

Eq. 5.10, which predicts the final kernels.

K++ = RI ·KP++ ∈ R
Cin×Cout×Kx×Ky (5.10)

With this extension, our approach has the following trainable parameters:

Whyve++ = (KP,M,V,α,KPc out ,β ,KPconv) (5.11)

This slightly increases the trainable parameters but provides the model with additional

synergy effects for kernels within a convolution layer.

Keeping the impact of the shared kernel prototypes at the beginning small is essential.

Otherwise, the training is very unstable. Therefore, we recommend an initial value for

α0 and β0 of 0.1. An evaluation of the impact of the proposed extension can be found in

Sec. 5.5.
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5.3.3 Mapping-Based Baselines

Our approach can be seen as a convolution, which learns a wavelength-based mapping

in addition to the spatial convolutions. One could argue that the proposed method is

complicated for its goal. Therefore, we introduce two simpler baselines with similar

effects. We extract the learnable mapping into a previous layer for these baselines. As a

result, the mapping is learned in a trainable preprocessing step.

The first baseline, called Input Mapping, consists of a 1x1 2D-convolution, which is

put in front of the first layer and reduces the input channels to a size that is easier to

handle.

The second baseline adds the introduced proximity bias to the mapping convolution

layer and learns wavelength-based weights. As described for HyveConv (see Eq. 5.6),

learnable Gaussian distributions are used to achieve the wavelength-based behavior for

this baseline.

For both baselines, a hidden layer size of G = 5 was chosen, so the hidden layer size

fits the number of WROIs used by our proposed method.

In the experiments discussed in Sec. 5.4, the performance of the models could not keep

up with our proposed method HyveConv. We assume HyveCone can easily incorporate

spatial information for wavelength mapping and is less prone to input noise.

5.4 Experiments

The proposed method is evaluated on two hyperspectral applications. The first applica-

tion covers a classification task of ripening fruit recorded under laboratory conditions.

The second covers a well-established segmentation task of satellite remote sensing data.

As the first data set contains recordings of the same scene with two different hyper-

spectral cameras, this data set is used to evaluate the proposed method’s general perfor-

mance and to prove the claim of camera-agnostic property. The second data set, which

is well established, is used to validate the method in additional use case and to compare

it with the results of other state-of-the-art approaches.

For the following experiments, the extended version of the proposed method (see Eq.

5.10) with the following parameters was used: G = 5, α0 = 0.1 and β0 = 0.1. Each

configuration was tested with three random seeds. The random seed affects the network

initialization, the training sample order, and the data augmentation order.

5.4.1 Application A: Fruit Ripeness Prediction

The first application’s task is to classify the fruit’s ripeness level based on the extended

DeepHS Fruit data set. In this set of experiments, the performance of the proposed

method is evaluated and compared with similar approaches.
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Data Set For the first set of experiments, called the application of fruit ripeness pre-

diction, our data set DeepHS Fruit v2 (see chapter 4) was used. Here, the ripeness is

classified into three categories (firmness, sweetness, and overall ripeness). All setups

cover three classes (unripe, perfect, and overripe). This data set has fixed training and

test sets.

Most of the recordings were done with a Specim FX 10. This hyperspectral camera

covers the wavelength range of 397.66 nm to 1003.81 nm with 224 bands. In addition,

there are many recordings of a Corning microHSI 410 Vis-NIR Hyperspectral Sensor.

It covers the wavelengths between 408.03 nm and 901.26 nm with 249 bands. The two

cameras’ ranges are significantly overlapping, which is perfect for the camera-agnostic

experiments. All recordings are already normalized with a white and a dark reference.

We use the training and test pipeline proposed in Sec. 3.3.5. The neural networks

were trained with the Adam optimizer (Kingma and Ba, 2015) as it provided more stable

results. A learning rate of 1x10-2 and a batch size of 64 were used. The learning rate

was divided by ten after every 30 epochs.

Models The model DeepHSNet, presented in section 3.3.5, was used as a basis for our

approach. It is a shallow convolutional neural network consisting of three depthwise-

separable convolutions, a global average pooling layer, and a fully connected head. The

complexity of the model is low, which helps in understanding the model’s internals. Fur-

ther, the model could already achieve satisfying results for the prediction of the ripeness

level of fruit. It is optimized for the small size of hyperspectral data sets.

For the proposed method, we replaced the first convolution layer with a HyveConv++

layer, keeping all dimensions of the convolution fixed. The rest of the model stays the

same. The training schedule was kept the same.

Further, we used a ResNet18 (He et al. (2016)), which is still a commonly used back-

bone, and SpectralNET with factor analysis (Chakraborty and Trehan (2021)), which

achieves state-of-the-art performance on the remote sensing data set. Additionally, we

used the Squeeze-and-Excitation (SE) method of Hu et al. (2020a) in two variants. First,

in combination with a ResNet18 network, like proposed by Hu et al., and second with

the DeepHSNet model. The SE block adds interdependency in the channel dimension of

the kernels. The feature map is used to scale each channel of the same feature map using

a small, fully-connected network. This allows the network to highlight or ignore specific

channels based on the input. Our approach does not connect the kernels directly to the

input. Instead, our model can learn the kernels linked to the input wavelengths. In our

opinion, this bias tends less to overfitting and is, therefore, more helpful for HSI. Never-

theless, both approaches introduce channel interdependence, and the SE block improved

HSI classification (see second application), so this approach should be considered as a

baseline.

Finally, we evaluated the performance of the baselines Input Mapping and Input Map-

ping with Bias, which were described in Sec. 5.3.3.
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Figure 5.4: Overall accuracy on the ripening fruit data set with the Specim FX 10 record-

ings.

One Camera In the first experiments, the recordings of the Specim FX 10 were used

only. These experiments indicate the performance of the tested models in the default

single-camera use case. The results are visible in Fig. 5.4. Our model could outper-

form the other models’ average accuracy, given by the median over all categories and

fruit types. A DeepHSNet with Squeeze-and-Excitation blocks (DeepHSNet + SE) per-

formed second best. Both approaches introduce an interdependency between the chan-

nels, which seems helpful. Our model bias that similar wavelengths should have similar

features further boosts performance. As a result, our model produced better results with

fewer parameters. The baselines Input Mapping and Input Mapping with Bias showed no

significant improvement compared to the origin DeepHSNet. As discussed in Sec. 5.3.3,

we assume HyveConv can handle noise channels better by adding the spatial information

more directly. Still, these baselines show that not only the reduction of the parameters

was the reason for the performance boost. Larger models, like ResNet18 or Spectral-

NET could not benefit from the larger number of parameters. We assume that the used

early-stopping and data augmentations could not prevent overfitting entirely.

Multiple Cameras In the second set of experiments, recordings of two different cam-

eras were used (Specim FX 10 and Corning microHSI 410 Vis-NIR). These cameras

differ in the recorded wavelengths. In these experiments, the synergy capability of the
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Figure 5.5: Overall accuracy on the ripening fruit data set with recordings of both cam-

eras.

models is evaluated, meaning how well the models can incorporate the recordings of

both cameras. The number of recordings of each camera is not balanced (≈ 2 : 1), which

adds another challenge. The training, validation, and test set contained recordings of

both cameras in these experiments.

We compared our method with the best models of the previous experiments. Most

models cannot handle the inhomogeneous data out of the box, as the number of channels

and the channel-wavelength-assignment differs. Therefore, a linear-interpolation step

was introduced for all models except the HyveConv++ approach, the Input Mapping +

Bias, and the Padding approach, which simply adds padding for the smaller recordings.

The three mentioned methods can handle the recordings of both cameras by design.

The results are visible in Fig. 5.5. Three plateaus are visible. The Input Mapping ap-

proach and our proposed HyveConv++ performed best. HyveConv++ performed slightly

better.

On the second plateau, four models can be found. The models are the baseline DeepH-

SNet, the ResNet18 with Squeeze-and-Excitation, and the Input Mapping with Bias ap-

proach.

The third plateau contains approaches that degraded the performance compared to

the baseline DeepHSNet. Here, we can find a 3D convolutions model, a Squeeze-and-

Excitation DeepHSNet model, and the padding approach.

To summarize, linear interpolation works for this application better than a padding-
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based approach. Further, our method could still improve performance slightly, especially

if we keep in mind that the configuration of linear interpolation is crucial. An inappro-

priate definition of the quantization steps can harm the expressiveness of the recordings.

HyveConv++ can boost the camera-agnostic behavior for HSI by using the wavelength

information for the convolution. An additional experiment, which supports this claim and

is based on synthetic data, will be discussed next.

(a) (b)

Figure 5.6: Assigment of wavelengths to the channel indices for (a) a real setup (Specim

FX 10 and Corning microHSI 410 Vis-NIR) and a (b) synthetic setup.

Synthetic Multiple Cameras There is a lack of hyperspectral data sets with multiple

camera recordings of the same scene. Thus, we generated a synthetic data set to support

the claim of camera-agnostic behavior. For this, a data set was created based on the

Specim FX 10 recordings of the ripening fruit.

Two cameras were simulated using two channels’ subsets (shown in Fig. 5.6b). We

selected the channels of the subsets based on different step sizes for the channel indices.

This mimics the real setup’s behavior, as shown in Fig. 5.6a. The wavelengths of the

latter channels differ more in contrast to the actual setup. Further, based on the sampling

method of the channels of the two subsets, camera B contains fewer channels than Cam-

era A. And the spatial resolution of both cameras is identical, which is uncommon for

two different cameras. In addition, the number of recordings per camera is perfectly bal-

anced, which is also very unusual. Therefore, this experiment setup has slightly different

requirements than a configuration with two real cameras, but still, it can at least indicate

whether the models can learn from both synthetic cameras.

Again, this data set provides inhomogeneous recordings as the channel dimension

size, and the wavelength assignment differs for the two synthetic cameras. Thus, linear

interpolation was introduced for most of the models as an additional step.
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Figure 5.7: Overall accuracy on the ripening fruit data set with synthetic recordings,

generated for two cameras.

Fig. 5.7 shows the outcome of the experiments on synthetic data. The result is dif-

ferent from the previous experiments. This time only our method could outperform the

baseline DeepHSNet. The Input Mapping approach, which performed very well in the

last experiment, was significantly worse than DeepHSNet. The Padding approach was

still one of the worst models. This confirms the camera-agnostic property of our model.

It performed most stable in these two setups. In the next step, the situation with an

unknown camera is inspected.

With unknown camera The camera-agnostic behavior for unknown cameras should

be evaluated in the fourth set of experiments. Therefore, the test set contained recordings

of both cameras, but the training set and validation set contained only recordings of the

Specim FX 10 at the beginning.

This experiment should check the model generalizability for another camera. There-

fore, we evaluated how the model’s performance depends on the number of recordings

of the second camera. The results are visible in Fig. 5.8. A ratio of 0.0 means none of

the recordings of the second camera were added to the training and validation set. In

contrast, a ratio of 1.0 means all of the available recordings were added. This number

does not indicate the ratio between the recordings of the two cameras.

For ratio of 0.0, the models saw only recordings of a single camera during training
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Figure 5.8: Overall accuracy on the ripening fruit data set evaluated on recordings of

both cameras. The training set was restricted to the recordings of the Specim FX 10 with

additional recordings of the Corning microHSI 410 Vis-NIR.

without the information that there is a second camera. This is an arduous setup. We rec-

ommend that the training set at least cover two cameras to enforce better generalization.

We evaluated the best models of the previous experiments on the task. For all models

except our HyveConv++ approach, linear interpolation was necessary.

For all models, we can see a general trend, that the performance improves with more

recordings of the second camera. For most of the models, we have a dip for 0.5 of the

available recordings of the second camera. We do not have a founded explanation for this

behavior. A this point, a quarter of the training and validation set belongs to the second

camera (as the data set contains half as many recordings of the second camera). At this

point, we would mark it as an outlier, even if it is consistent over many models.

Fig. 5.8 indicates that our proposed method could perform best independent of the

amount of samples of the second camera. Even without any recordings of the second

camera in the training and validation set, it could still perform significantly better than

the compared models.

5.4.2 Application B: Satellite Imagery Segmentation

The experiments on the second data set should validate the proposed method’s perfor-

mance compared to other HSI state-of-the-art approaches.
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Table 5.2: Classification accuracies (%) of different models in terms of Overall Accuracy

(OA), Cohen Kappa (Kappa), and Averaged Classwise Accuracy (AA) with 10% anno-

tated data as training data. Based on the evaluations of Chakraborty and Trehan (2021).

Two configurations of our model are presented. (*) not fine-tuned (**) larger hidden

layers. Bold numbers indicate the best accuracy for each configuration. The full results

can be found in Appendix A.3.

Methods # of params Indian Pines Pavia University Salinas

OA Kappa AA OA Kappa AA OA Kappa AA

SVM

Cortes and Vapnik (1995)
81.67 78.76 79.84 90.58 87.21 92.99 94.46 93.13 93.01

2D-CNN

Makantasis et al. (2015)
561,300 80.27 78.26 68.32 96.63 95.53 94.84 96.34 95.93 94.36

3D-CNN

Ben Hamida et al. (2018)
991,596 82.62 79.25 76.51 96.34 94.90 97.03 85.00 83.20 89.63

M3D-CNN

He et al. (2017)
372,544 81.39 81.20 75.22 95.95 93.40 97.52 94.20 93.61 96.66

FuSENet

Roy et al. (2020a)
100,880 97.11 97.25 97.32 97.65 97.69 97.68 99.23 99.97 99.16

HybridSN

Roy et al. (2020b)
5,122,176 98.39 98.16 98.01 99.72 99.64 99.20 99.98 99.98 99.98

SpectralNET

Chakraborty and Trehan (2021)
6,800,336 98.76 98.59 98.61 99.71 99.62 99.43 99.96 99.96 99.97

HyveConv++

ours (*)
16,700 98.18 98.41 98.28 99.30 99.30 99.49 99.24 99.64 99.94

HyveConv++

ours (**)
25,200 98.33 98.64 98.69 99.42 99.49 99.46 99.89 99.79 99.74

Data Set The Hyperspectral Remote Sensing Scenes (HRSS) data set is a collection of

hyperspectral satellite images collected by M. Graña, M.A. Veganzons, and B. Ayerdi.

The task is to classify the nature of the ground in different settings. Each scene consists

of an image with ground truth labels. The most common scenes are Indian Pines (IP),

Pavia University (UP), and Salinas (SA). Each scene is handled separately. We followed

the data handling procedure of Chakraborty and Trehan (2021). The segmentation task

is converted into a classification task of 64x64 patches.

Indian Pines was recorded with the AVIRIS sensor, which covers the range of 400 nm

to 2500 nm with 224 channels as written by Baumgardner et al. (2015). Twenty-four

noisy channels were already removed from these recordings. The classification happens

within 16 classes. Salinas was also recorded by this sensor and covers six classes. Pavia

University was recorded with the ROSIS sensor, covering the range from 430 nm to 830

nm with 103 bands and distinguishing nine classes.

Models We used two configurations of our model. Both used the whole hyperspectral

cube without dimension reduction. The first configuration (*) is the same model used for

the ripening classification task. Only the final output layer was adapted to the number

of classes. The second configuration (**) was slightly adapted for this application. The

main change here was to increase the number of channels in the hidden layers, reasoned

by the higher number of classes for this application.
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Table 5.3: Classification accuracies (%) with 30% annotated data as training data. Based

on the evaluations of Chakraborty and Trehan (2021). Two configuration of our model

are presented. (*) not fine-tuned (**) larger hidden layers. Bold indicates the best accu-

racy per configuration. The full results can be found in Appendix A.3.

Methods # of params Indian Pines Pavia University Salinas

OA Kappa AA OA Kappa AA OA Kappa AA

SVM

Cortes and Vapnik (1995)
87.24 85.27 85.15 95.65 94.63 94.60 94.95 94.48 97.93

2D-CNN

Makantasis et al. (2015)
561,300 88.90 87.01 85.70 96.50 96.55 96.00 96.75 96.71 98.57

3D-CNN

Ben Hamida et al. (2018)
991,596 90.23 89.70 89.87 97.90 97.22 97.30 95.54 94.81 97.09

M3D-CNN

He et al. (2017)
372,544 95.67 94.70 94.60 97.60 96.50 98.00 94.99 95.40 96.28

FuSENet

Roy et al. (2020a)
100,880 99.01 98.60 98.64 99.42 99.21 99.33 99.68 99.74 99.69

ImprovedTransformerNet

Qing et al. (2021)
150,000,000 99.22 99.19 99.08 99.64 99.49 99.67 99.91 99.78 99.63

HybridSN

Roy et al. (2020b)
5,122,176 99.75 99.71 99.63 99.98 99.98 99.97 100 100 100

SpectralNET

Chakraborty and Trehan (2021)
6,800,336 99.86 99.84 99.98 99.99 99.98 99.98 100 100 100

HyveConv++

ours (*)
16,700 99.85 99.75 99.7 99.97 99.96 99.97 99.98 99.99 99.99

HyveConv++

ours (**)
25,200 99.86 99.84 99.57 99.96 99.98 99.94 99.93 99.92 99.99

Further, we tested a variety of different models. The models cover classical machine

learning (Cortes and Vapnik (1995)), 2D convolutions (Makantasis et al. (2015)), 3D

convolutions (Ben Hamida et al. (2018)), mixture of 2D and 3D convolutions (He et al.

(2017); Roy et al. (2020a)), 2D convolutions with optimized preprocessing (Roy et al.

(2020b); Chakraborty and Trehan (2021)) and one vision transformer based approach

(Qing et al. (2021)). Especially, HybridSN, proposed by Roy et al. (2020b), and Spec-

tralNET, presented by Chakraborty and Trehan (2021), achieve state-of-the-art results

for this application. These significantly different approaches cover the development of

HSI classification.

Results Tab. 5.2 and Tab. 5.3 provide an overview of the performance of the models on

the remote sensing application. The two tables use 10% and 30% of the annotated data

as training and validation data. The rest is used as test set.

First of all, it is noticeable that larger models do not always outperform smaller models

here. FuSENet performs much better than 3D-CNN and M3-CNN even though these

approaches are significantly larger. FuSENet is based on the already discussed Squeeze-

and-Excitation (SE) approach, which was highlighted for the first application. FuSENet

used this approach with a PCA to preprocess the HSI remote sensing classification.

HybridSN combines 3D and 2D convolutions. SpectralNET utilizes wavelet transfor-

mations for the spectral features. Both perform reliably on all scenes of HRSS.
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A vision transformer model was included in the experiments to cover the most recent

trend of computer vision. In Tab. 5.3, ImprovedTransformerNet represents the vision

transformers. The size of this model is much larger than the other evaluated models.

For the small hyperspectral data sets, this is not optimal. Therefore, the model was only

evaluated on the larger training set of 30% annotated samples. The transformer achieved

good results but not perfect results. Further, the training procedure was unstable. This

fits our assumption that a well-chosen bias is important for small hyperspectral data sets.

Finally, our model was evaluated with two configurations. The model without modi-

fications (*) could already achieve second/third rank in the overall ranking (see Tab. 5.2

and Tab. 5.3). With minor modifications (**), it achieved state-of-art performance with

250 times fewer parameters. These experiments showed that our proposed method gener-

alizes well to different hyperspectral applications. Further, it seems necessary for HSI to

use convolutions optimized for the hyperspectral cube instead just using 3D convolutions

or vision transformers.

5.5 Ablation Study

In the previous section, our model outperformed comparable models in two applications.

In this section, the interpretability of the learned WROIs, also called camera filters, is

presented. In addition, an analysis of the influence of the hyperparameter G, defining

the number of WROIs and the impact of the proposed method extension (Eq. 5.11)

is analyzed. Finally, it is checked whether the training of the Gaussian distribution is

necessary.

5.5.1 Interpretation of the WROIs

Fig. 5.9 presents the training and the resulting WROIs for an example run for the ripeness

classification of avocados. 5.9a and 5.9b show the value over epochs for the mean and

the variance, respectively. The variance is a good indicator for the WROI search proce-

dure. A decreasing variance indicates that the model has found a feature and narrows

the corresponding wavelength range. The final WROIs are visible in Fig. 5.9c and the

visualizations of these are shown in Fig. 5.10. Gaussian distributions 2 and 3 have a sig-

nificant overlap of over 50% and a position swap in epoch 3. Therefore, they may cover

the same feature, and a reduction of the WROI number G seems possible.

The final camera filters cover the visible light in the ranges of blue and green. Further,

overtones of water were selected by the model. Wellburn (1994) showed these ranges

could indicate the degeneration of chlorophyll. These ranges also fit the findings of the

works of Pinto et al. (2019) and Melado-Herreros et al. (2021). The WROI selection of

the trained model could be used to build a multispectral camera optimized for this use

case. As we already discussed earlier, a multispectral camera with 5-10 custom-defined

wavelengths usually is easier to apply in an inline scenario.
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(a) (b)

(c)

Figure 5.9: Training of the Gaussian distributions. (a) and (b) show the development of

the mean and variance over training epochs. (c) shows the final Gaussian distributions.

We showed that the learned features are explainable and can be used further. Further

examples can be found in the appendix (see Sec. A.4).

5.5.2 Impact of Parameter G

Fig. 5.11 visualizes the impact of the parameter G, which defines the number of possible

WROIs, on the performance of our model. This was tested on the ripening fruit data set

and averaged over all setups (fruit type and classification type) with the recordings of the

Specim FX 10.

A clear trend is visible. Increasing the number of Gaussian distributions increases the

performance of the model. Two giant steps are visible: a Plateau between G = 2 and G =
4 and for G ≥ 5. The increase is continuous for G > 5, but only slightly. Each jump in

performance shows that the additional WROI provides helpful new information. Overall,

the hyperparameter G seems stable above the threshold of 5. So, for a ripeness prediction

for the evaluated fruit types, G = 5 is recommended. For avocados, the classification
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Figure 5.10: Training of the Gaussian distributions: Visualization of the learned camera

filters of the training of Fig. 5.9.

(a) (b)

Figure 5.11: Impact of number of WROIs on DeepHS Fruit v2 (a) and the HRSS (b).

seems more straightforward, and therefore already, G = 4 could be sufficient, as shown

in the previous paragraph.

There is a similar trend for the second application. G = 5 seems to work reliably. As

a result, G = 5 seems a good first choice, which the first training results can optimize.

This shows how easily a Parteo optimization can be performed for the optimal number

of camera filters.

5.5.3 Training of the Gaussian Distributions

We evaluated whether training of the Gaussian distributions is necessary. As a compari-

son, we used the initial distribution previously mentioned, which should cover the whole

inspected wavelength range evenly distributedly. The result is visible in Fig. 5.12. There

is a clear improvement in performance and stability. Thus, trainable Gaussian distribu-

tions seem helpful.
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Figure 5.12: Trainable and non-trainable Gaussian distributions. (DeepHS Fruit v2,

Specim FX 10)

5.5.4 Impact of the Method Extension

We checked whether the proposed extension of the basic method is necessary. We com-

pared the baseline model (DeepHSNet) with the basic method (HyveConv) and the ex-

tended method (HyveConv++). Further, we evaluated only the extension. The Specim

FX 10 recordings of fruit ripening data set were used.

Fig. 5.13 shows the results. The continuous definition of the input channel space and

the additional bias of HyveConv boosts the accuracy by around 2%. Allowing the con-

volution to share features through different output channels and the whole convolution

layers (HyveConv++) increases the model’s performance by 4%. Therefore, the exten-

sion seems reasonable. On the other side, the extension on its own without HyveConv

decreases the performance by 6%. Thus the extension is only in combination as Hyve-

Conv++ helpful.

5.6 Conclusion

In this chapter, we proposed a 2D convolution optimized for HSI. By using a contin-

uous representation of the input space and adding a suitable model bias, it is possible

to reduce the number of parameters significantly. Further, sampling the kernels by the

input wavelengths allows the training of a camera-agnostic model. The whole model is

end-to-end trainable with one interpretable hyperparameter G. This parameter defines

the number of wavelength ranges of interest, called camera filters. Experiments on two

different hyperspectral applications confirmed the advantage of this method.

The convolution is proposed for HSI. Still, it could also be helpful in other scenarios

of image data with many channels and some proximity relationship between them.
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Figure 5.13: HyveConv with and without extension. (DeepHS Fruit v2, Specim FX 10)

Multispectral and color cameras are typically based on wavelength filters. The WROIs,

learned by our method, are these kinds of filters. Therefore, the model learns the filters

for a specific task in a data-driven way. Based on the learned filters an optimized multi-

spectral camera for a particular task could be built.

The next chapter will discuss the embedded use case of multispectral cameras onboard

drones for search and rescue missions in maritime environments. In this application,

hyperspectral cameras would be hard to handle. Further, this application is very different

from the laboratory setting, which was primarily presented until now. This setting shows

how spectral imaging can be utilized in a real-world scenario.
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Chapter 6

UAV-Based Applications of

Multispectral Imaging

This chapter shows how to use multispectral cameras for embedded applications (like

onboard drones). The discussion is based on our published works:

• Varga, L. A., Kiefer, B., Messmer, M., and Zell, A. (2022b). SeaDronesSee: A

maritime benchmark for detecting humans in open water. In IEEE/CVF Winter

Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA,

January 3-8, 2022, pages 3686–3696. IEEE

• Varga, L. A., Koch, S., and Zell, A. (2022a). Comprehensive analysis of the object

detection pipeline on UAVs. Remote Sensing, 14(21)

• Varga, L. A. and Zell, A. (2021). Tackling the background bias in sparse object

detection via cropped windows. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, pages 2768–2777

6.1 Introduction

In this chapter, the embedded application of multispectral cameras is discussed. As men-

tioned earlier, multispectral cameras are easier to handle in real-world applications but

provide a smaller spectral resolution (see chapter 1). We explain how multispectral cam-

eras can be utilized via the example of maritime search and rescue (SAR) missions.

Besides the classification, the localization of the objects in the recording is essential for

SAR missions. Accordingly, object detection is the discussed computer vision task in

this chapter.

For this reason, our acquisition of the object detection data set SeaDronesSee is pre-

sented. During the data acquisition, the main goal was to capture color images, but

multispectral recordings were also acquired. In this thesis, we will focus on the multi-

spectral recordings. Thus, we refer an interested reader for more information about the

whole data set to the related publication (see (Varga et al., 2022b)).
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Further, we analyzed the impact of different camera parameters (quantization, com-

pression, resolution, image distortions, gamma error, color model, and multispectral

cameras) on the performance of object detectors. In this thesis, we will only focus on the

last two, the impact of the color model and the usefulness of multispectral recordings.

For a full evaluation, we also refer to the related publication (see (Varga et al., 2022a)).

The last part of this chapter shows that the background bias in remote sensing record-

ings is a severe problem for object detectors. Further, an easy-to-apply cropping-based

technique is presented. Hence the method is mainly evaluated on color images instead of

multispectral recordings. This part is kept short. The interested reader is again referred

to the related publication (see (Varga and Zell, 2021)).

6.2 Generation of a Maritime Benchmark for Detecting

Humans in Water

Unmanned aerial vehicles (UAV) equipped with cameras have grown into an essential

asset in a wide range of fields, such as agriculture (Adão et al., 2017), delivery (San

et al., 2018), surveillance, and search and rescue (SAR) missions (Geraldes et al., 2019).

Due to their speed and flexibility, UAVs can assist in SAR missions by providing an

overview of the scene (Mishra et al., 2020; Karaca et al., 2018; Albanese et al., 2020).

Especially in maritime scenarios, where wide areas need to be quickly overseen and

searched, the efficient use of autonomous UAVs is crucial, as shown by the review of

Yeong et al. (2015). Detection, localization, and tracking of people in open water are

thereby key components (Gallego et al., 2019; Nasr et al., 2019).

Currently, the vision systems used for this task are implemented via data-driven meth-

ods such as deep neural networks. These methods depend on large-scale data sets. How-

ever, there is a great lack of large-scale data sets in maritime environments. Most data

sets captured from UAVs are land-based, often focusing on traffic environments, such as

VisDrone (Zhu et al., 2018) and UAVDT (Du et al., 2018). Many of the few data sets

captured in maritime environments fall in the remote sensing category, often leveraging

satellite-based synthetic aperture radar (Crisp, 2004). These are only valuable for ship

detection (Corbane et al., 2010) as they don’t provide the resolution needed for SAR

missions. Furthermore, satellite-based imagery is susceptible to clouds and only pro-

vides top-down views. Finally, many current approaches in the maritime setting rely

on classical machine learning methods, incapable of dealing with the large number of

influencing variables and calling for more elaborate models (Prasad et al., 2019).

This work aims to close the gap between large-scale land-based data sets captured from

UAVs to maritime-based data sets. We introduce a large-scale data set of people in open

water called SeaDronesSee. Using multispectral cameras with near infrared channels to

detect humans in maritime settings can be advantageous (Gallego et al., 2019). For that

reason, we also captured, besides color images, multispectral images using a MicaSense
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(a) (b)

Figure 6.1: (a) Typical image examples with varying altitudes and angles of view.

(b) Examples of the red-edge (717 nm, top) and near-infrared (842 nm, bottom) light

spectra of an image captured by the MicaSense RedEdge-MX.

RedEdge-MX. This enables the development of detectors taking into account the non-

visible light spectra near-infrared (842 nm) and red-edge (717 nm).

We focused on object detection and task tracking with color images in the related

publication. We provided baselines with state-of-the-art approaches for the application

tracks and analyzed the statistical properties of the recorded data. But we neglected a

further analysis of the multispectral recording. In this thesis, we will only briefly discuss

the color image recordings and focus on analyzing the multispectral recordings.

6.2.1 Related Work

This section reviews major labeled data sets in computer vision from UAVs and maritime

scenarios usable for supervised learning models.

Over the last few years, several data sets captured from UAVs have been published.

The most prominent are those that depict traffic situations, such as VisDrone (Zhu et al.,

2018) and UAVDT (Du et al., 2018). Both data sets focus on object detection and ob-

ject tracking in unconstrained environments. Pei et al. (2019) collected videos showing

campus traffic participants for human trajectory prediction usable for object detection.

UAV123 (Mueller et al., 2016) is a single-object tracking data set consisting of 123 video

sequences with corresponding labels. The clips mainly show traffic scenarios and every-

day objects. Both Hsieh et al. (2017) and Mundhenk et al. (2016) captured a data set

showing parking lots for car counting tasks and constrained object detection. Li and Ye-

ung (2017) provided a single-object tracking data set showing traffic, wildlife and sports

scenarios.

Another active area of research focuses on drone-based wildlife detection. van Gemert

et al. (2014) release a data set for low-altitude detection and cattle counting tasks. Ofli
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Table 6.1: Overview of used cameras. The multispectral camera is highlighted.

Camera Resolution Frames per Second

Hasselblad L1D-20c 3,840×2,160 30

Sony UMC-R10C 5,456×3,632 1

Zenmuse X5 3,840×2,160 30

Zenmuse XT2 3,840×2,160 30

MicaSense RedEdge-MX 1,280× 960 1

et al. (2016) release the African Savanna data set as part of their crowd-sourced disaster

response project.

Li et al. (2018) provided a maritime-related data set of ships with images mainly taken

from Google Earth and a few UAV-based images. In (Xia et al., 2018), the authors pro-

vide satellite-based images from natural scenes, primarily land-based but also harbors.

The work of Lygouras et al. (2019) is the most similar to our work. They also consider

the problem of human detection in open water. However, their data mainly contains

images close to shores and swimming pools. Furthermore, it is not publicly available.

Besides the publications proposing UAV data sets, many works tackle subtasks of mar-

itime SAR with drones. Lvsouras and Gasteratos (2020) combine detection and tracking

to achieve better results. Gallego et al. (2019) focused on the detection part but did the

first experiments with a multispectral camera in maritime environments. Lygouras et al.

(2019) utilized a Global Navigation Satellite System (GNSS) to combine the detection

algorithms with real time coordinates. Queralta et al. (2020) built a multi-UAV system

for assisting SAR missions in maritime areas. Roberts et al. (2016) focused on mission

planning and proposed a framework for efficient coordination of multi-UAV systems in

maritime SAR missions. Ghazali et al. (2016) proposed an approach to find the exact po-

sition of a subject with different search patterns. These works show there is an upcoming

trend for UAV-based maritime SAR approaches.

6.2.2 Data Set Generation

The footage for the first data set version was gathered over several days on Lake Con-

stance. The acquisitions were performed on different days to increase the variance in

the data (like weather, wave structures, or light conditions). Over 20 test subjects were

transported by boats to the area of interest. At the target, the quadcopters were launched.

At the same time, the fixed-wing UAV Trinity F90+ was launched from the coast. Life

jackets with different colors were provided for the subjects.

Four drones (DJI Matrice 100, DJI Matrice 210, DJI Mavic 2 Pro, and a Quantum

Systems Trinity F90+) with different mounted cameras (see Tab. 6.1) were used. These

different cameras diminish the effect of a camera bias.
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Table 6.2: The classes, which were annotated for SeaDronesSee version 1.

Name Description With life jacket On boat

Swimmer A human swimming in the water without life jacket ✕ ✕

Floater A human swimming in the water with life jacket ✓ ✕

Swimmer† A human on a boat without life jacket ✕ ✓

Floater† A human on a boat with life jacket ✓ ✓

Life jacket A life jacket - -

Boat A boat swimming in water - -

The multispectral camera MicaSense RedEdge-MX was referenced with a white refer-

ence before each flight. As the RedEdge-MX captures every band individually, we merge

the bands using the development kit provided by MicaSense. Especially these recordings

are relevant for the multispectral evaluation in Sec. 6.3. Besides the camera recordings,

meta information, like GPS position and camera gimbal pitch, were captured. Meta in-

formation is not relevant to this work. Therefore we refer to our publication (Varga et al.

(2022b)) for more details about these.

Annotation Method

The frames were annotated with the help of human experts. The six classes (visible in

Tab. 6.2) were annotated in each frame. These classes were selected as they represent

all objects of interest in the scenery. Furthermore, we marked regions with confusing

objects (e.g., boats on land) as ignored regions.

Data Set Split

The color and the multispectral cameras are handled separately but with the same pro-

cedure. For the color recordings, we roughly balance the training, validation, and test

set such that the subsets have similar distributions concerning altitude and angle of view.

These two factors are significant for the appearance of the scene. For both recording

types, we randomly select 4/7 for the training set, 1/7 for the validation set and another 2/7

for the testing set. We also provide an object tracking task with a similar split for this data

set. As we focus in this chapter on the object detection task of the multispectral cameras,

we refer for more information on the tracking task and how the video recordings were

handled to our publication (Varga et al., 2022b).

6.2.3 Data Set Task

UAV-based maritime SAR missions have become popular recently, as shown in Sec. 6.2.1.

These missions can be divided into subtasks (e.g., detection, optimal search pattern, long-

distance communication). We focus here on the detection part.
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Recordings of maritime scenes captured by UAVs have a variety of special character-

istics, which make them especially hard for detection tasks:

• People may be hardly visible or occluded by waves or sea foam.

• The water surface is specular.

• Objects of interest are mostly small or tiny.

We note that these factors are on top of general UAV-related detection difficulties.

Color Object Detection

There are 5,630 images (training: 2,975; validation: 859; testing: 1,796). In the second

iteration of the data set (SeaDronesSeev2), we adapted the classes to the actual applica-

tion. This is further discussed in Sec. 6.2.5.

Multispectral Object Detection

The MicaSense RedEdge-MX records five channels, namely blue (475 nm), green (560

nm), red (668 nm), red-edge (717 nm and near-infrared (842 nm). The camera was

mounted to the drone without a gimbal. Therefore, only recordings facing downward

(90◦) were captured. For this subset of recordings, this is acceptable as this is also most

common for area searches.

The multispectral recordings are annotated in the same manner as the color recordings.

Also, the training, validation, and test set split were done similarly. This data set is much

smaller than the color data set. It contains 432 images with 1,901 instances. See Fig. 6.1

for an example of the individual bands. It was also extended in the second iteration.

6.2.4 Evaluation

In the related publication (Varga et al., 2022b), we provide experiments with state-of-

the-art object detectors and object trackers on the color recordings. Here, we focus

on multispectral recordings. The experiments of object detectors on the multispectral

recordings will be presented in Sec. 6.3.4.

6.2.5 Extension of the Data Set (SeaDronesSeev2)

A second acquisition series was performed to extend the variety in the data set. The

first series was conducted in the summer of 2020 at Lake Constance. For the second

series, the open sea was favored. Therefore, a measurement series in the North Sea was

planned and carried out in the summer of 2021. The annotated data set was published

as SeaDronesSeev2 with object detection and a multispectral object detection track via

the MaCVi 2023 workshop (1st Workshop on Maritime Computer Vision, 2023). The
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Table 6.3: The classes of SeaDronesSee version 2, which were annotated.

Name Description Superclass

Swimmer A human swimming in the water Person

Boat A boat swimming in water
Vessel

Jetski A Jetski swimming in water

Life-Saving Suppliance A life jacket or other life saver
Object

Buoy A buoy swimming in water

Swimmer Boat Jetski Life-S. App. Buoy

Figure 6.2: Examples of objects. Note that these examples are crops from high resolution

images.

second version contains the recordings of both locations. The subset split (for training,

validation, and test set) was performed as described in Sec. 6.2.2 with particular attention

that annotations of the test set weren’t public already. SeaDronesSeev2 contains 16,611

color images (training: 8,930; validation: 1,547; testing: 6,134) with 102,393 instances.

The multispectral detection task contains 807 images (training: 461; validation 115;

testing: 231) with 2,895 annotations.

The acquisition procedure and the used hardware, e.g., cameras and drones, did not

differ from the described hardware, see Sec. 6.2.2.

A further difference to version 1 can be found in the annotated classes. Based on dis-

cussions with lifeguards of the Deutsche Lebens-Rettungs-Gesellschaft e.V. (DLRG), we

decided to adapt the classes to actual SAR applications. The classes of SeaDronesSeev2

can be found in Tab. 6.3. As a result, the distinction between swimmers with and with-

out a life jacket is gone, as this is not so helpful for an actual rescue mission. Further,

persons on boats are also not relevant for the detection task. And the new class buoy

was introduced as there were no buoys on the Lake Constance recordings, and they are

essential for orientation. In summary, the most critical part is to detect swimmers in the

water. The objects nearby are informative to understand the situation better but are not

as crucial as the swimmers.

6.2.6 Conclusion

This serves as an introductory benchmark in UAV-based computer vision problems in

maritime scenarios. We built the first large scaled-data set for detecting and tracking hu-

mans in open water. Moreover, we provide multispectral imagery for detecting humans
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in open water. These images are very promising in maritime scenarios, having the ability

to capture wavelengths, which set apart objects from the water background. We hope

this data set will boost future research in this direction.

Furthermore, we improved the data set (SeaDronesSee) with a second iteration (SeaD-

ronesSeev2), containing more annotated samples and revised classes.

In the following sections, we will use this data set to analyze the object detection

pipeline comprehensively. Afterward, we propose a technique to reduce the impact of

background bias in remote sensing recordings.

6.3 Comprehensive Analysis of the Object Detection

Pipeline on UAVs

Micro-aerial vehicle (MAV) or unmanned aerial vehicle (UAV) systems can support surveil-

lance tasks in many applications. Examples are traffic surveillance in urban environments

(Zhu et al., 2020) or the described search and rescue missions in maritime environments.

For these tasks, object detection pipelines support the human operator and simplify the

task. The camera system and the object detector are key components of these detection

pipelines. The interaction of these components, generally based on image data, is crucial

for the performance of the whole pipeline.

In most projects, the configuration of these components has to be conducted at an early

stage. A recording of a necessary data set should be already done with the final camera

system. Moreover, the camera system should be optimized based on an existing data set.

This situation leads to a chicken-and-egg problem.

The emerging trend toward smart cameras, combining the camera and the computing

unit, confirms the need for classification and detection pipelines in embedded systems.

The lack of flexibility and the high price of these closed systems remain significant draw-

backs and prevent their usage in many research projects or prototyping.

In the publication (Varga et al., 2022a), we analyzed seven camera parameters (quan-

tization, compression, color model, resolution, multispectral recordings, and camera cal-

ibration) and measured their impact on the performance of the detection pipeline in the

remote sensing application. The selected parameters are easy to adjust for many systems

or worth considering. Their effect on the detection performance was analyzed by varying

these parameters separately. With optimized parameters, we showed that the pipeline is

used more efficiently. This allowed, e.g., a higher throughput of the detection pipeline.

By finding the sweet spots and analyzing the impact of the seven camera parameters, we

provided recommendations for further projects, which we will discuss in Sec. 6.3.5.

In this section, we focus on the experiments and the results performed with multispec-

tral recordings. Further, we present the experiments related to the color model, as these

are related to defining the number of used channels. For the other parameters, we refer

the interested reader to (Varga et al., 2022a).
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The experiments were performed in a desktop and an embedded environment, as both

are relevant for remote sensing. An embedded object detection pipeline mounted on a

UAV was used to prove the usability of the results.

6.3.1 Related Work

The image processing pipeline significantly impacts the performance of object detectors.

Many parameters have impact on the image quality and influence this pipeline. However,

there is still a lack of impact analysis for UAV-based systems. Yahyanejad et al. (2011)

have measured the impact of lens distortion correction for thermal images acquired by

UAVs. However, their results are only helpful for a thermal camera system.

Other existing camera parameter evaluations are mainly based on the autonomous

driving scenario, e.g., the works of Blasinski et al. (2018), Carlson et al. (2018) Liu et al.

(2019), Liu et al. (2020), Saad and Schneider (2019) or Secci and Ceccarelli (2020). The

findings of the autonomous driving experiments cannot be directly applied to the remote

sensing use case. The scene is often homogenous for autonomous driving, and the object

sizes differ only slightly. Further, the distance to the objects is often only a couple of

meters. For remote sensing recordings, the distance to the scene is often over 30 m, as

shown in Varga et al. (2022b), resulting in tiny objects. Depending on the camera angle,

the images can vary enormously. Because of these differences, the results of one scenario

are not entirely valid in the other but can give the first sign.

Blasinski et al. (2018) proposed a rendering framework to evaluate camera architec-

tures in simple autonomous driving scenarios. Secci and Ceccarelli (2020) evaluated

camera failures in the autonomous driving application. Besides these, the works of Liu

et al. (2019), Carlson et al. (2018) and Saad and Schneider (2019) showed the still exist-

ing gap between synthetic and real-world data. Thus, our experiments are based entirely

on real-world recordings.

Buckler et al. (2017) analyzed the image pipeline regarding performance and energy

consumption. In contrast to their work, we close the gap for a missing camera parameter

evaluation in the remote sensing application. Further, we consider parameters that are

configurable for most off-the-shelf camera systems.

In contrast to work that accelerates inference by, e.g., quantizing the neural network

like the works of Li et al. (2019a) or Cai et al. (2020), our work focuses on the parameters

of the object recognition pipeline that affect the overall throughput time of the system,

rather than on the inference time itself.

In summary, our work differs from those mentioned above in the following aspects.

We focus on the remote sensing use case for UAVs and use established real-world data

sets instead of synthetic data for the evaluation. Finally, the evaluated parameters are

configurable for most cameras.
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6.3.2 Materials and Methods

Three data sets and four object detectors were used. The experiments were done on a

desktop and an embedded environment. The selected camera parameters are described

in further detail.

6.3.3 Experiment Setup

The setup contains the data sets, the object detectors, and the hardware environment.

For each configuration, we trained with three different random seeds. The random seed

affects the weight initialization, the order of the training samples, and data augmentation

techniques. The three initializations show the stability of each configuration.

Data Sets We evaluated our experiments on three remote sensing data sets. Dota-2

is based on satellite recordings (Ding et al., 2022). VisDrone (Zhu et al., 2020), and

SeaDronesSee were remotely sensed by Micro aerial vehicles (MAVs). The first two

data sets are well-established and commonly used to benchmark object detection for

remote sensing. In contrast, SeaDronesSee focuses on a maritime environment, which

differs from the urban environment of VisDrone and Dota-2. Therefore, it introduces

new challenges and properly extends our experiments.

Models For our experiments, we selected four object detectors. The two-stage detector

Faster-RCNN, introduced by Ren et al. (2017), can still achieve state-of-the-art results

with minor modifications, as shown in the VisDrone challenge of Zhu et al. (2020). By

comparison, the one-stage detectors are often faster than the two-stage detectors. Yolov4

by He et al. (2016) and EfficientDet by Tan et al. (2020) are one-stage detectors and

focus on efficiency. Both perform well on embedded hardware. Modified versions of

CenterNet, proposed by Duan et al. (2019), also a one-stage detector, could achieve

satisfying results in the VisDrone challenge by Zhu et al. (2020). These four models

cover a variety of approaches and can give a reliable impression of the parameter impacts.

We used multiple backbones for Faster R-CNN, EfficientDet, and CenterNet to pro-

vide insight into different network sizes. A full description of the training procedures

and hyperparameters can be found in Varga et al. (2022a).

Hardware Setup We did most of the experiments in a desktop environment. To eval-

uate the performance in a more appropriate setting, we performed experiments on an

Nvidia Xavier AGX board. The small size and the low weight allow the usage for on-

board processing in MAVs or other robots.

The infield experiments were done with a system carried onboard a DJI Matrice 100

drone. An Nvidia Xavier AGX board mounted on the drone performed the calculations,

and an Allied Vision 1800 U-1236 camera was used for capturing.
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Inspected Camera Parameters

All parameters were selected based on their direct influence on the recording.

Here, we will focus on the parameters which define how the spectrum of the cap-

tured light is represented for each pixel. For color cameras, the color model defines

this representation. Altering the color model usually does not affect memory consump-

tion, as most models use three distinct values. If the color information can be neglected,

the representation can be reduced to a single brightness value, reducing memory. In con-

trast, Multispectral camera recordings contain channels outside the visible light and color

channels. These additional channels can increase detection performance at the price of

more values per pixel and increase memory consumption. For the usage of Multispectral

recordings, it is necessary to check the integration effort for existing architectures and

whether the performance improvement is worth the effort and the additional memory.

As mentioned in the introduction, we will consider only the parameters related to the

spectrum representation (color model and multispectral recordings) in this work. We

only give an overview for the following parameters and refer to the published work.

Three parameters, quantization, compression, and resolution, control the required

memory consumption. By reducing the memory consumption with one of these parame-

ters, the throughput can be increased, or another parameter can utilize the freed memory.

Further, the impact of camera setup and calibration was evaluated. These do not affect

the throughput of the pipeline. Nevertheless, it is worth checking how vital a perfect

calibration is. The radial image distortion, which originates from the camera lens, and

gamma correction, which simulate different exposure settings for a prerecorded data set,

show the effect of non-optimal camera calibration.

Color Model The color model defines the representation of the colors. The most com-

mon is RGB, described by Hunt (2005). It is an additive color model based on three

colors red, green, and blue. This representation is mainly used for object detection and

object classification, e.g., mentioned by Ren et al. (2017). Besides RGB, non-linear

transformations of RGB are also worth considering. HLS and HSV are based on a com-

bination of hue and saturation. Both differ in the brightness’s definition value. YCbCr

considers human perception and encodes information more suitably for humans.

In some applications, HSV outperforms RGB. Cucchiara et al. (2001) and Shuhua and

Gaizhi (2010) could confirm this performance improvement. Kim et al. demonstrated

RGB outperforms the other color models (HSV, YCbCr, and CIE Lab) in traffic signal

detection. It seems that which color model is best depends strongly on the application

and the model.

The color model is also a design decision, so we evaluate the performance of RGB,

HSV, HLS, and YCbCr color models for object detection in remote sensing. We also

review the performance of gray-scale images. To achieve comparable results, the back-

bones are not pre-trained for these experiments.
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(a) (b)

Figure 6.3: Example images for multispectral recordings in maritime environment. In

the NIR recordings, the swimmers are fully visible. (a) RGB; (b) Near-infrared.

Multispectral Recordings In recent years, the usage of multispectral cameras on drones

has gotten more popular, e.g. Candiago et al. (2015), Deng et al. (2018) or Zhang et al.

(2019). Multispectral recordings have additional channels, which increase the record-

ing size but can also provide important information. The additional channels typically

lie outside the visible light (e.g., near-infrared or thermal). In pedestrian and traffic

monitoring, multispectral imaging can increase the detector performance, as shown by

Karasawa et al. (2017), Vandersteegen et al. (2018), and Guan et al. (2019). And for

precise farming, they are one of the key components, as discussed by Candiago et al.

(2015), Deng et al. (2018) or Zhang et al. (2019). We want to create awareness that mul-

tispectral recordings can be helpful in some situations. But we also want to check how

complicated the integration into existing object detection pipelines is. So, the focus is not

on evaluating multimodal models, as described by Ophoff et al. (2019). Our experiments

are limited to the early fusion approach like Zhang et al. (2021) as we see multispectral

recordings as a special case of color images.

We used multispectral images from the SeaDronesSee data set for our experiments.

These were acquired with a MicaSense RedEdge-MX and thus provided wavelengths of

475 nm (blue), 560 nm (green), 668 nm (red), 717 nm (red edge), and 842 nm (near

infrared). We evaluate how the additional wavelengths affect the performance of the

object detectors in detecting swimmers. In theory, the near-infrared channel provides a

foreground mask for objects in water (see example in Fig. 6.3). These experiments should

provide a general trend, even if the exact results apply only to the maritime environment.

It is worth considering if additional channels could carry helpful information.
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6.3.4 Results

The experiments of the different backbones per network were grouped. Only the largest

backbones of CenterNet and Faster R-CNN are listed separately. We use the mean av-

erage precision (mAP) as a metric with an intersection over union (IoU) threshold of

0.5, as proposed by Lin et al. (2014b). The mean average precision metric averages

the precision values of the predictions over the recall values and all classes. The IoU

threshold defines the minimum overlap between a prediction and a ground-truth bound-

ing box to be counted as a positive sample. It is the most common metric to measure the

performance of object detectors.

For the Dota data set, the performance of the models differs from the performance in

the other data sets. The objects in the Dota data set are tiny. As a result, it challenges the

object detectors differently.

Color Model

We can conclude two essential outcomes of the experiment for color models. First, we

must distinguish between two situations visible in Fig. 6.4. In the first situation, the

object detectors cannot take advantage of the color information. Therefore, we assume

the color is, in this case, not beneficial. This applies to the VisDrone data set and the Dota

data set. Both data sets provide objects and backgrounds with a high color variance. For

example, a car in the VisDrone data set can have any color. Thus, the texture and shape

are more relevant. That means the object detector can achieve excellent results with the

gray-scale recordings. The color information for the Dota data set could only be utilized

by the largest models (Faster R-CNN/ResNext101 32x8d and CenterNet/Hourglass104).

The other models couldn’t incorporate color and relied only on texture or shape.

Figure 6.4: Color Model: the impact of the color models. The y-axis shows the mean

average precision (mAP).

In the SeaDronesSee experiments, we observed that the color experiments outper-

formed the gray-scale experiments. The explanation can be found in the application. It

covers a maritime environment. As a result, the background is always a mixture of blue
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and green. So, the color information is reliable in distinguishing between background

and foreground. For SeaDronesSee, all models use color, which is evident in the drop in

performance for the gray-scale experiments.

If the color is essential, RGB produces the best results, followed by YCrCb. However,

since most data augmentation pipelines have been optimized for RGB, we recommended

using RGB as the first choice.

In conclusion, knowing whether color information is relevant to the application is

crucial. Gray-scale images are usually sufficient, leading to a third of the image size, and

may even allow more straightforward cameras.

Figure 6.5: Performance of object detectors on multispectral data. (’BGRNE’—

multispectral recordings, ’RGB’—color images, ’GRAY’—gray-scale).

Multispectral Recordings

These experiments are based on multispectral data from the SeaDronesSee data set. The

usefulness of the additional channels depends strongly on the application. For the mar-

itime environment, additional information is beneficial, especially in the near-infrared

channel. Curcio and Petty (1951) showed that this wavelength range is absorbed by

water, resulting in a foreground mask (an example is shown in Fig. 6.3).

The results in Fig. 6.5 fit the findings for the color models (see Sec. 6.3.4). For the mar-

itime environment, color information is essential, as indicated by the gap for gray-scale

recordings. The multispectral recordings (labeled as ‘BGRNE’) can only improve the

performance of the larger models. For the smaller models, they even lead to a decrease

in performance. To support the multispectral recordings as input, we had to increase the

input channels of the first layer and lose the pretraining.

In summary, additional channels can be helpful depending on the use case. It is essen-

tial to remember that larger backbones make better use of the extra channels. Further-

more, it is a trade-off between a fully pre-trained backbone and additional information.
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(a) (b)

Figure 6.6: Prototype system using an optimized detection pipeline. (a) Original input

and optimized input; (b) Detection pipeline onboard a DJI Matrice 100.

6.3.5 Discussion

In the experiments of the publication, we showed that the inspected parameters have an

unequal impact on the performance of a model. Some have a minor effect on the perfor-

mance but significantly impact the required space (Quantization, Compression). Others

have a negligible influence on the performance (Color Model, Calibration Parameters),

and some are fundamental for the remote sensing application (Resolution). In section

6.3.4, we showed that more complex camera systems, e.g., multispectral cameras, can

boost performance; however, only if the additional channels carry helpful information.

As a result, we want to emphasize keeping the whole object detection pipeline in mind

when building an object detection system.

As the parameters have an unequal impact on the performance, we can reduce the

memory consumption of the parameters, which have a minor effect on the performance.

The freed space can be used to increase the throughput of the system or can be utilized

to boost the crucial parameters by assigning more memory space to these.

Based on previous investigations and assumptions, we determine the optimal param-

eter configuration for the remote sensing application. These parameters are proposed

as a recommendation for future work. The objective was to find a suitable compromise

between the detection performance and the required space for a recording, which limits

the pipeline’s throughput and defines the frames per second of the system. The combi-

nation of the optimal parameters utilizes the pipeline more efficiently. For a maximum

throughput with a negligible loss of performance, we recommend the following:

1. A quantization reduction from 8 bit to 4 bit is sufficient, as the models do not

utilize the entire color spectrum. This was shown by Varga et al. (2022a).

2. A JPEG compression with a compression quality of 90 reduces the performance

slightly but the memory footprint significantly. This was shown by Varga et al.

(2022a).

3. For the urban surveillance use-case, color is not essential. Thus, for the VisDrone
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data set, we recommend gray-scale images. For the other data sets, color is essen-

tial. This was shown by Varga et al. (2022a).

The mentioned recommendations lead to a reduction in memory consumption. This

could be used to increase the frames per second of the system. This thesis is proven

in Table 6.4. The first setup (marked *), which uses reduced quantization, JPEG com-

pression, and optional color reduction, significantly increases the throughput (including

the inference and the pre-and post-processing) of the smaller models. In contrast to the

baselines, we speed up the detection pipeline (≈+15%) with a small loss in performance

(≈−5%). For the larger models, inference accounts for most of the throughput, so there

is no significant speed-up.

If the best performance is the target of the project, we recommend utilizing the freed

space with the additional recommendation:

4. Utilize the highest possible resolution because this is a crucial parameter for small

objects of remote sensing applications. This was shown Varga et al. (2022a).

Combining the first three adjustments and increasing the resolution (marked **) in

Table 6.4, the detector’s performance can be improved (≈+25%) while maintaining the

base throughput.

Further, we can conclude the following statements based on the experiments. These

do not affect the trade-off between performance and throughput but are still important

for future projects.

5. As has been shown in Varga et al. (2022a), a minor error in the camera calibration

(distortion or gamma) is not critical.

6. In specific applications, multispectral cameras can be helpful. For example, we

have shown in section 6.3.4 that multispectral recordings boost the performance in

maritime environments.

6.3.6 Conclusion

We summarized the results of Varga et al. (2022a) and presented them with a focus on

the multispectral recordings and the color models.

It is always worth checking whether the color information or additional wavelength

channels are helpful for the targeted task. Further, it is crucial to remember that addi-

tional channels require special attention. Larger models can handle these better, and the

pretraining of at least the first layer is usually unusable.

Besides that, the experiments showed that not all parameters have an equal impact on

detection performance, and a trade-off can be made between detection accuracy and data

throughput. By using our recommendations, it is possible to maximize the efficiency of

the object detection pipeline in a remote sensing application.
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Table 6.4: Optimized parameter configuration in a desktop and an embedded environ-

ment: The mean average precision (mAP) are presented. For each model, at least two

configurations are given (baseline and optimized pipeline). Frames per second (FPS)

indicate the inference speed. The percentages in the parentheses indicate the change re-

garding the baseline. *) the first setup and **) the second setup are desribed in Sec. 6.3.5.

Bold numbers indicate the maximal value for each configuration.

Data Set Dota

mAP 50 ↑
VisDrone

mAP 50 ↑
SeaDronesSee

mAP 50 ↑

avg. FPS ↑
(Desktop)

avg. FPS ↑
(Embedded)

Parameters

EfficientDet 23.83 20.71 22.29 25 14
4.5M -

17.7 M
Reduced data * 22.07 (-7 %) 19.53 (-5 %) 22.20 (-1 %) 28 (+12 %) 16 (+14 %)

Reduced data

+ higher res. **
30.85 (+ 29%) 25.52 (+23 %) 27.35 (+23 %) 25 14

YoloV4 16.19 24.49 40.62 20 4
63.9M

Reduced data * 13.84 (-14 %) 23.61 (-3 %) 36.58 (-9 %) 21 (+5 %) 5 (+20 %)

CenterNet 21.35 29.94 31.08 40
-

14.4M -

49.7 MReduced data * 21.22 (-1 %) 27.87 (-6 %) 31.05 (-1 %) 46 (+15 %)

CenterNet/

Hourglass104
44.63 52.07 51.12 6

- 200M

Reduced data * 41.15 (-7 %) 48.59 (-6 %) 47.89 (-6 %) 6

Faster R-CNN 46.67 35.45 39.94 17
-

41.4M -

60.3MReduced data * 43.92 (-5 %) 33.05 (-6 %) 39.26 (-1 %) 18 (+6 %)

Faster R-CNN/

ResNext101 32x8d
47.78 37.70 40.76 9

- 104M

Reduced data * 44.06 (-7 %) 35.87 (-4 %) 40.59 (-1 %) 9

6.4 Tackling the Background Bias of Remote Sensing

Object Detection

In this section, we propose a technique to tackle the background bias for object detec-

tion based on color images recorded by aerial systems. This evaluation focuses on color

images, as many established color data sets are available. The same technique should

also be applicable for sparse multispectral recordings, but the lack of data sets prevent

a reliable statement. Still, we provide results on the multispectral recordings of SeaD-

ronesSee to support this claim. We will discuss this method only briefly and refer for

more information to the related publication (see Varga and Zell (2021)).

6.4.1 Introduction

Nowadays, state-of-the-art object detectors can accurately predict objects in generic ob-

ject data sets like MS COCO (Lin et al., 2014a) or Pascal VOC (Everingham et al.,

2010). For recordings of remote sensing applications, it is still challenging. Remote

sensing covers all applications recorded by aerial systems, e.g., UAVs, planes, or satel-

lites.

The recordings of remote sensing are often sparse, as they often show small objects of
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(a) MS COCO (b) VisDrone (c) SeaDronesSee (d) DOTA-2

Figure 6.7: Example images of different data sets with orange ground-truth bounding

boxes. The orange-green pie-charts show the foreground-background-ratio in the train-

ing data set. (orange: foreground; green: background)

interest with a lot of background. This leads to an unbalanced ratio between objects and

background, resulting in a background bias. This affects the prediction capability of the

object detectors.

Fig. 6.7 shows four example images of different data sets. The pie charts indicate the

ratio of foreground to background pixels in the training sets. For MS COCO, it is almost

balanced. This is not the case for remote-sensing data sets (like VisDrone by Zhu et al.

(2020), our SeaDronesSee, and DOTA-2 by Ding et al. (2022)). So, remote sensing data

sets have an additional challenge in contrast to common object data sets.

Further, the objects in remote sensing data sets are primarily small. This is problem-

atic, especially with the down-scaling often used by object detectors to speed up the

inference.

Here, we propose a deterministic cropping-based data augmentation, which reduces

the background bias of sparse recordings and allows the training on higher resolutions

within the crops.

6.4.2 Related Work

A good solution to reduce the bias, e.g., for a class, is using an adapted loss function.

Lin et al. (2017) introduced Focal loss, which focuses on the hard examples. Therefore,

it can perform well even with class imbalance and as a result, is part of many modern

models. We want to tackle the bias between foreground and background, so their loss is

also beneficial in this application. Two of our models (CenterNet and EfficientDet) use

the Focal loss by default. As shown later, this commonly used loss function can only

partially solve this problem.

Data augmentation techniques such as Random Cropping, Random Image Cropping

And Patching (RICAP) by Takahashi et al. (2020), or CutMix by Yun et al. (2019) use,

like our approach, crops. Random Cropping cuts random crops out of the input image.

Takahashi et al. introduced RICAP, which crops four images and combines them. Yun

et al. proposed CutMix as a combination of Mixup and CutOut. Therefore, CutMix
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replaces the cutouts with crops of different images. In contrast to our method, these

approaches focus on improving the object detector to recognize parts of an object, re-

ducing the contextual impact, and simulating occlusion. These techniques are perfect for

medium- or large-scale objects occurring in MS COCO or Pascal VOC. But, these are

counterproductive for the detection on remote sensing recordings with mainly small and

sparse objects. Our method is deterministic and defines only one representation of the

training data. No random augmentation takes place. Thus, combining these augmenta-

tion techniques and our approach is still possible and shown.

Besides these augmentation techniques, Hong et al. (2019) proposed a patch-level

augmentation approach. They address class imbalances as a problem of UAV data sets.

After the training procedure, their proposed method generates hard samples with mis-

classified object instances. These hard samples are used for further training. Similar

to their approach, we focus on a class imbalance but on the foreground-to-background

imbalance. Xiong et al. (2021) proposed a similar approach. Their method over-samples

small objects by augmenting the images with additional instances of small objects. For

their augmentation, the segmentation masks of the objects are required, which is a costly

requirement for the data set. Many data sets do not provide the ground truth segmenta-

tion mask. This also applies to the used data sets. Xia et al. (2018) recommend for their

data set DOTA a cropping technique similar to our approach. We could still boost the

performance on the DOTA data set as shown in the experiments.

Figure 6.8: The method Cropping Window (CroW) and a visualization of the overlapping

cropping pattern.
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6.4.3 Method: Cropping Window (CroW)

The diagram in Fig. 6.8 visualizes the method. As shown, we only adapt the training

process and not the inference process, which is also the main difference to the method of

Unel et al. (2019), which focus mainly on inference. To reduce the background bias, we

propose a deterministic way to change the representation of the training data.

Our method utilizes additional samples, which are generated via an overlapping crop-

ping pattern. Each image is cropped into sub-images. Only the sub-images containing at

least one object are kept, the rest are discarded. The extended training set consists of the

original images (with the whole overview) and sub-images (with focus on the objects).

As a result, the new training set has a reduced background bias.

In addition, it is possible to train with this technique on higher resolutions. As the

crops cover only a subpart of the image, higher resolutions can be utilized for these

during the training procedure, as long as the resolution of the training is just restricted

by the Graphical Processing Unit (GPU) memory.

At inference, the entire frame in the maximal possible resolution is used. So, no

merging of predictions is necessary.

Table 6.5: This table shows the mean average precision with a IoU threshold of 0.5

(mAP0.5) for different configurations. Value per cell: mean ± standard deviation. Bold

numbers indicate the maximal value for each configuration.

Data Set Dota

mAP 50 ↑
VisDrone

mAP 50 ↑
SeaDronesSee

mAP 50 ↑

avg. FPS ↑
(Desktop)

avg. FPS ↑
(Embedded)

Parameters

EfficientDet-d0 19.54 ± 0.64 18.85 ± 3.65 19.35 ± 0.79
46 8 4.5M

With CroW (our) 25.30 ± 1.93 31.21 ± 0.64 33.97 ± 4.04

EfficientDet-d4 19.66 ± 0.60 24.77 ± 1.24 24.82 ± 0.83
21 - 17.7M

With CroW (our) 27.61 ± 1.09 30.41 ± 0.44 44.01 ± 2.43

YoloV4 17.74 ± 2.00 30.75 ± 1.64 6.44 ± 0.53
20 - 63.9M

With CroW (our) 28.65 ± 5.40 36.41 ± 1.40 22.04 ± 0.83

CenterNet-ResNet18 24.20 ± 2.27 23.41 ± 1.52 15.18 ± 0.56
78 - 14.4M

With CroW (our) 26.88 ± 0.73 31.49 ± 1.54 19.67 ± 0.71

CenterNet-ResNet50 29.73 ± 0.50 23.24 ± 2.99 15.85 ± 2.31
33 - 30.7M

With CroW (our) 35.25 ± 0.57 33.07 ± 0.37 23.06 ± 7.53

CenterNet-ResNet101 26.14 ± 3.18 20.63 ± 1.21 14.19 ± 0.62
22 - 49.7M

With CroW (our) 33.63 ± 1.61 33.68 ± 2.59 27.05 ± 6.72

CenterNet-Hourglass104 45.77 ± 8.49 51.41 ± 1.06 43.26 ± 0.86

6 - 200MWith Random Cropping 52.47 46.65 50.69

With CroW (our) 55.51 ± 0.23 53.77 ± 0.22 52.40 ± 0.23

6.4.4 Experiment

We used three different data sets to evaluate our method. All three are based on aerial

recordings. VisDrone by Zhu et al. (2020) and our SeaDronesSee consist of Micro aerial

vehicle (MAV) recordings. DOTA-2 by Ding et al. (2022) contains images recorded with

satellites. For all experiments, we use the metric framework proposed by Lin et al.
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(2014a), which is also common for MS COCO. Further, we used three one-stage object

detectors for our experiments. The efficiency-optimized object detector EfficientDet by

Tan et al. (2020), the anchor-free object detector CenterNet by Duan et al. (2019), and the

well-established Yolov4 by Bochkovskiy et al. (2020) are used for the color experiments.

Besides the three mentioned models, we compared our results with approaches of Unel

et al. (2019), Pailla et al. (2019) and similar augmentation techniques such as Random

Cropping and Mosaic augmentation (He et al., 2016), which are discussed in total length

in the related publication.

Figure 6.9: TIDE analysis of the trained CenterNet-Hourglass104 on VisDrone-DET.

Larger values indicate a larger error. (BL: Baseline; CroW: With Cropping Window

(our); RC: With Random Cropping)

Figure 6.10: Ratio between the annotated pixels and the image pixels for different data

sets. In contrast, MS COCO is much more balanced.

6.4.5 Results

In Tab. 6.5 the mean average precision (mAP) are given. We stated the mean and standard

deviation for each configuration over three runs with different seeds. All models improve

for all data sets with 2 to 13 mAP points compared to the baseline model. No adaption
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of the network architecture is necessary. Therefore, the number of parameters and the

inference time do not change.

In Fig. 6.9, a TIDE analysis (Bolya et al., 2020) of a CenterNet-Hourglass104 trained

with and without our method is shown. Also, a model trained with Random Cropping is

presented. TIDE is based on the mAP evaluation and can break down the cause for the

missed accuracy. There are two essential differences visible between the baseline and

our approach. First, our method reduced the Missed error and the Classification error.

So the second detector was better at classifying classes and missed fewer objects. Fur-

ther, the Background error is increasing minimally. Nevertheless, there is still enough

background for learning, even if slightly worse. The focus is moved more to the object

of interest. In contrast, Random Cropping improves the localization only slightly and

worsens classification. As a remark for the VisDrone data set, the ratio of the classifica-

tion error is still enormous for all approaches. Fig. 6.10 shows the impact of our method

on the foreground-background-ratio for the three data sets.

In summary, we showed the method works reliably in different settings (data sets and

models). Further, we proved with TIDE that the impact of background bias was reduced

Figure 6.11: CroW for multispectral image object detection.

6.4.6 Evaluation for Multispectral Recordings

To support the claim that this technique is also usable for multispectral imaging, we

performed experiments on the multispectral recordings of the SeaDronesSeev2 data set.

We selected the largest models of Sec. 6.3.3, as these could utilize the multispectral

recordings best, and evaluated the performance with and without the proposed cropping

window method. The results are visible in Fig. 6.11. The performance boost is also

observable for the multispectral recordings. The technique reduces the background bias

and allows the object detectors to focus more on class differences. Although it is only

a tiny multispectral data set, it seems promising that this also holds for other remote

sensing settings with multispectral data. This experiment also showed that this method
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works for two-stage detectors as well. We expected the two-stage approach solves this

problem by design, but this seems to be not the case.

6.4.7 Conclusion

We introduced a simple technique to improve the capabilities of object detectors on

sparse recordings by tackling background bias. This method is easy to implement into

existing object pipelines and enhances performance. By showing this easy-to-achieve

improvement, we want to draw attention to the problem of background bias in remote

sensing recordings. Most of the experiments were performed on color-images. However,

it was still shown that the behavior is also expected for multispectral object detection on

sparse recordings.

6.5 Summary

In this chapter, we introduced a data set for maritime search and rescue missions. Part

of this data set are multispectral recordings of humans in open water. These images are

very promising in maritime scenarios, having the ability to capture wavelengths, which

set apart objects from the water background.

We used the data set for a comprehensive analysis of the object detection pipeline.

One result of this evaluation is that it is always worth checking, whether additional wave-

length channels could boost the model performance further. Further, we defined some

recommendations, which help to optimize the efficiency of an object detection pipeline

in a remote sensing application.

Afterwards, we proposed a technique to reduce the impact of the background bias in

remote sensing recordings. This was mainly evaluated on color images, but also holds

for multispectral recordings.
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Conclusions

In this chapter, we summarize and discuss the results of this thesis. Finally, we conclude

with an outlook for future work in this research area.

7.1 Summary

In this work, different applications of hyperspectral imaging (HSI) and multispectral

imaging (MSI) were presented. After presenting the foundations in chapter 2, food in-

spection applications are introduced in chapter 3. Based on two classification examples,

a simple convolution neural network, called DeepHSNet was developed and evaluated.

It can produce reliable results for the ripeness prediction of exotic fruits and the detec-

tion of Phakopsora Pachyrhizi infestation in soybean. For both applications, a data set

was recorded and annotated. The ripening fruit data set, called DeepHS Fruit, was made

publicly available and was used further throughout this work.

As annotating hyperspectral data sets is time-consuming, and there are no pretrained

models, incorporating unlabeled recordings is favored. One way to achieve this is us-

ing self-supervised pretraining, which is analyzed in chapter 4. Three state-of-the-art

contrastive learning approaches (SimCLR (Chen et al., 2020), SimSiam (Chen and He,

2021), Barlow Twins (Zbontar et al., 2021)) were selected and evaluated on the extended

fruit ripening data set DeepHS Fruit v2. It was shown that self-supervised pretraining

could stabilize the downstream classification training. All three methods produced com-

parable results. In this context, the impact of different augmentation techniques and the

modification with 3D convolutions was analyzed and proposed.

In chapter 5, a wavelength-aware 2D convolution is presented. Based on learnable

Gaussian distributions, the convolution can select the essential wavelength ranges in a

data-driven way. The critical component of this approach is introducing the bias ’Similar

wavelengths show similar features’. This reduces the trainable parameters and supports

the training of camera-agnostic models. The convolution, which is called HyveConv++,

was evaluated on the extended version of the fruit ripening data set DeepHs Fruit v2 and

a small established hyperspectral data collection of remote sensing scenes (HRSS). On

both data sets, it could outperform comparable methods. The learnable Gaussian dis-

tributions, called Wavelength Ranges of Interest (WROI), mimic the behavior of camera
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filters. So, it is possible to utilize the learned WROIs to build a multispectral camera

based on data-driven training.

In chapter 6, it is shown why the simplification of a hyperspectral camera to a mul-

tispectral camera is favored. Multispectral cameras are significantly easier to handle

and employable in embedded environments. The example of maritime search and rescue

(SAR) missions shows the benefit of multispectral cameras drones mounted on unmanned

aerial vehicles (UAV). The additional channels can add valuable information and boost

the model performance for specific tasks, like in the discussed example. Besides acquir-

ing the data set SeaDronesSee (v2), the impact of camera parameters was analyzed. In

addition, it was shown that most remote sensing data sets are affected by a background

bias. A cropping-based technique, named CroW, was presented.

In summary, two large data sets (DeepHS Fruit v2 and SeaDronesSee v2) were pub-

lished. Further, three algorithmic developments were presented: a technique to reduce

background bias in remote sensing recordings (CroW), a convolution neural network

for hyperspectral imaging (DeepHSNet), and a wavelength-aware 2D convolution for

hyperspectral imaging (HyveConv++). Besides these contributions, the impact of dif-

ferent camera parameters on the performance of the object detection pipeline for remote

sensing was evaluated and the usefulness of self-supervised pretraining for hyperspectral

imaging was analyzed.

7.2 Discussion

In the introduction of this thesis, we named four challenges of hyperspectral imaging,

which also apply in eased form for multispectral imaging.

The lack of publicly available data sets is an obvious challenge for both techniques.

As mentioned in chapter 2, small data sets are available for hyperspectral imaging. Still,

these are not comparable in size or quality with the large-scale data sets of color image

tasks. For example, the HRSS data set is well-established but tiny, and the evaluation

metric is inconsistent within the community (e.g., training-test-splits is not fixed). As

a result, many approaches are not comparable and many methods just fine-tune for a

specific task of one of the small data sets. We tackled this challenge by introducing a

new, relatively large, hyperspectral data set (DeepHS Fruit v2). The situation is similiar

for multispectral imaging, but there is not even an established data set like HRSS.

The task-specific features are the next challenge, which is also one reason for the

sparse data sets. The features necessary to solve one data set’s task can widely differ

from those required for another data set. As long as models are only validated on a sin-

gle hyperspectral task, it is unclear whether they are only fine-tuned for the specific fea-

tures of this data set or capable of handling hyperspectral recordings in general. That’s

also why classical machine learning approaches (e.g., SVM or k-NN), which are less

complex, are still favored for unknown hyperspectral applications. Even if incorporating

spatial information is much more straightforward for convolutional neural networks. In-
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stead of fine-tuning models on specific tasks, the research community’s goal should be

to design models capable of handling hyperspectral data in general. With the published

data set DeepHS Fruit v2, we propose a data set that complicates this fine-tuning for a

specific setting with the different configurations(fruit type, ripeness type, camera). The

model has to adapt to different settings as the important features for different fruit types

differ. But it is still far from a general benchmark.

As we mentioned, data augmentation techniques, which are very important for com-

plex models, are not as straightforward as for color images. We performed some experi-

ments regarding data augmentations in chapter 4. But these are far from a comprehensive

analysis of this topic. At this point, we can only highlight that it is vital to remember

that the hyperspectral cube represents an underlying spectrum for each pixel. Spatial

modifications are straightforward and beneficial. Spectral changes require a deeper un-

derstanding. But still, dropping not-consecutive channels can help the model to become

more robust to noisy channels.

The last named challenge points to the large channel dimension. In a nutshell, this

is not a problem for deep-learning models. As we hypothesized, convolutional neural

networks can handle high-dimensional hyperspectral cubes well. As a result, dimension

reductions (e.g., PCA, Factor Analysis, IBRA) as preprocessing are not necessary or even

obstructive, especially as these are often not part of the end-to-end training procedure.

Further, the common trend of larger models does not apply for the small HSI data sets.

And as we showed in chapter 5, an appropriate bias seems like a much more promising

way for HSI.

Even if we mainly focused on hyperspectral imaging in this discussion, it also largely

applies to multispectral imaging, which is more similar to color images. Thus, many de-

velopments proven for color images also work for multispectral imaging. But still, there

is a lack of established large-scale data sets for multispectral imaging. And again, there

are often task-specific features. Finally, multispectral models still have no pretrained

weights, which is a significant drawback compared to color models. We published a

small multispectral data set as a starting point. But it is far from the well-established

color data sets. Further, by the design of the multispectral cameras, these data sets are

always very task-specific, and general multispectral models are, therefore, unlikely.

We want to highlight the idea of a hyperspectral-to-multispectral pipeline for spectral

imaging applications. For a practical application use case, a straightforward multispectral

camera is favored. But a hyperspectral camera is valuable for the in-depth analysis of

the application. Thus, finding the required wavelengths with an upstream hyperspectral

analysis is self-evident. Custom camera filters for specific wavelength ranges, which are

nowadays obtainable, could be used to build a multispectral sensor for a particular task.

This combines the advantages of both techniques with the high spectral resolution for

the analysis and a straightforward camera for the application. A first approach, which

supports this, was presented in chapter 5.
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7.3 Future Work

A trend to more spectral imaging has become visible in recent years. More and more

companies are trying to utilize hyperspectral cameras for sorting tasks. And multispectral

cameras are more often part of new robotic systems. The emerging trend will make

optimized algorithms for this kind of recordings more relevant. Still, the development of

algorithms for spectral imaging (hyperspectral or multispectral imaging) lacks progress.

A considerable problem is the absence of more general benchmarks for hyperspectral

and multispectral imaging. The data set DeepHS Fruit v2 is just a first step. The next

step should be to merge a couple of sparse hyperspectral data sets into a uniform data set

allowing a more reliable comparison of approaches. Part of this has to be a well-defined

evaluation metric. In this context, an analysis of the current state-of-the-art approaches

could show the key components for an optimal hyperspectral model. This could connect

the hyperspectral research community and allow for more reliable future research.

Further, more research regarding the particular structure of hyperspectral recordings

could lead to better models. With HyveConv++ we presented an elementary idea. More

research could lead to more sophisticated approaches.

In some preliminary experiments, we could also see that the HyveConv++ approach

could be used to train the same models with hyperspectral and multispectral recordings

or multispectral and color recordings. This could result in larger data sets but needs

further investigation.

For multispectral imaging, it seems necessary to find a way to provide better pretrained

weights for multispectral models. Until now, color models have a considerable advantage

as these require only finetuning for a task in contrast to full training of the multispectral

models. Multispectral cameras could boost performance in many applications but are

still not fully present. It could be helpful to create more awareness for this technology.

Also, the research regarding the pretraining of hyperspectral models, performed with

contrastive learning, were just the first steps into this direction. Besides contrastive learn-

ing, one of the many other techniques (e.g., teacher-student network approaches) is worth

considering. Generating useful pretrained weights for a neural network is a separate re-

search topic, but it could be precious for spectral imaging methods.

Finally, it would be interesting to validate the idea of the hyperspectral-to-multispectral

pipeline on an example application, which would provide valuable insights and shows

how spectral imaging could be integrated into many more applications.

Regarding the initial motivation, there are still some further steps for the combination

of spectral imaging and computer vision. The current applications need to be more co-

hesive. The many isolated solutions must be merged to call it a real super-human vision.

However, for some specific problems, we can already use spectral imaging to support the

decision of human experts.

116



117



Appendix A Appendices

Appendix A

Appendices

A.1 Spectral Signatures of Noticeable Features for

Soybean

(a)

(b) (c)

Figure A.1: Spectral signatures of noticeable features within the distinct classes – (a)

healthy plant tissue, (b) disease symptoms and (c) background – within the training data.
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A.2 Full List of Augmentations Tested for SSL

Table A.1: The list of the evaluated data augmentation techniques indicating spatial

(Spa.), a spectral (Spec.) or a continuous impact on on the hyperspectral cube (Cont.

dist.).

Augmentation Description
Spa. Spec.

Cont.

dist.

Random Rotate Random rotation
yes

no yes

Random Flip Random flip
yes

no yes

Random Crop Use a random crop of the sample
yes

no -

Random Cut Drop a random crop of the sample
yes

no yes

Random Noise Gaussian noise for all pixels
yes

yes no

Random Noise

Wavelengthbased
Gaussian noise with channel-based stan-

dard deviation
yes

yes no

Random Intensity

Scale
Scale the intensities of all channels by a

random factor

no yes yes

Blur Pixels Rand Gaussian noise for random pixels no no no

Drop Pixels Rand Drops random pixels no no no

Drop Channels Cons Drops random continuous channels no yes yes

Drop Channels Rand Drops random channels no yes no

Blur Channels Rand Gaussian noise for random channels no yes no

Rand Occlusion

(Haut et al., 2019)
Random 10x10x10 subcube is dropped

yes
yes yes

Blur Edge Pixels Gaussian noise to the five edge pixels
yes

no yes

Drop Edge Pixels Drops the five edge pixels
yes

no no

Blur Edge Channels Gaussian noise for the noise edge chan-

nels

no yes yes

Drop Edge Channels Drops the noise edge pixels no yes no

Blur Color Channels Gaussian noise for the channels in the vis-

ible range (400 - 700 nm)

no yes yes

Drop Color Channels Drops the channels in the visible range

(400 - 700 nm)

no yes yes

Mix Up 2 (Zhang

et al., 2018)
Mixes two views of the same sample to

the dependency on labels.
yes

yes yes

Scale Mix (Wang

et al., 2022b)
Mixes two scaled views of the same sam-

ple.
yes

yes yes
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A.3 HRSS Results with Standard Deviation

Table A.2: Classification accuracies (%) of different models in terms of Overall Accu-

racy (OA), Cohen Kappa (Kappa), and Averaged Classwise Accuracy (AA) with 10%

annotated data as training data. Based on the evaluations of Chakraborty and Trehan

(2021). Two configurations of our model are presented. (*) not fine-tuned (**) larger

hidden layers. Bold numbers indicate the best accuracy for each configuration.

Methods # of params Indian Pines Pavia University Salinas

OA Kappa AA OA Kappa AA OA Kappa AA

SVM

Cortes and Vapnik (1995)
81.67±0.7 78.76±0.8 79.84±3.4 90.58±0.5 87.21±0.7 92.99±0.4 94.46±0.1 93.13±0.3 93.01±0.6

2D-CNN

Makantasis et al. (2015)
561,300 80.27±1.2 78.26±2.1 68.32±4.1 96.63±0.2 95.53±0.2 94.84±1.4 96.34±0.3 95.93±0.9 94.36±0.5

3D-CNN

Ben Hamida et al. (2018)
991,596 82.62±0.1 79.25±0.3 76.51±0.1 96.34±0.2 94.90±1.2 97.03±0.6 85.00±0.1 83.20±0.7 89.63±0.2

M3D-CNN

He et al. (2017)
372,544 81.39±2.6 81.20±2.0 75.22±0.7 95.95±0.6 93.40±0.4 97.52±1.0 94.20±0.8 93.61±0.3 96.66±0.5

FuSENet

Roy et al. (2020a)
100,880 97.11±0.2 97.25±0.2 97.32±0.2 97.65±0.3 97.69±0.3 97.68±0.4 99.23±0.1 99.97±0.2 99.16±0.1

HybridSN

Roy et al. (2020b)
5,122,176 98.39±0.1 98.16±0.1 98.01±0.2 99.72±0.1 99.64±0.1 99.20±0.1 99.98±0.2 99.98±0.2 99.98±0.1

SpectralNET

Chakraborty and Trehan (2021)
6,800,336 98.76±0.2 98.59±0.1 98.61±0.1 99.71±0.1 99.62±0.1 99.43±0.2 99.96±0.2 99.96±0.1 99.97±0.1

HyveConv++

ours (*)
16,700 98.18±0.6 98.41±0.1 98.28±0.1 99.30±0.3 99.30±0.3 99.49±0.2 99.24±0.2 99.64±0.0 99.94±0.0

HyveConv++

ours (**)
25,200 98.33±0.1 98.64±0.1 98.69±0.1 99.42±0.2 99.49±0.2 99.46±0.2 99.89±0.0 99.79±0.0 99.74±0.0

Table A.3: Classification accuracies (%) with 30% annotated data as training data. Based

on the evaluations of Chakraborty and Trehan (2021). Two configuration of our model

are presented. (*) not fine-tuned (**) larger hidden layers. Bold indicates the best accu-

racy per configuration.

Methods # of params Indian Pines Pavia University Salinas

OA Kappa AA OA Kappa AA OA Kappa AA

SVM

Cortes and Vapnik (1995)
87.24±0.4 85.27±0.5 85.15±1.1 95.65±0.1 94.63±0.2 94.60±0.1 94.95±0.1 94.48±0.1 97.93±0.1

2D-CNN

Makantasis et al. (2015)
561,300 88.90±1.3 87.01±1.6 85.70±1.0 96.50±0.4 96.55±0.3 96.00±0.1 96.75±0.6 96.71±0.7 98.57±0.2

3D-CNN

Ben Hamida et al. (2018)
991,596 90.23±0.2 89.70±0.3 89.87±0.1 97.90±0.3 97.22±0.1 97.30±0.1 95.54±0.5 94.81±0.3 97.09±0.6

M3D-CNN

He et al. (2017)
372,544 95.67±0.1 94.70±0.3 94.60±0.6 97.60±0.2 96.50±0.6 98.00±0.1 94.99±0.3 95.40±0.1 96.28±0.2

FuSENet

Roy et al. (2020a)
100,880 99.01±0.2 98.60±0.1 98.64±0.1 99.42±0.2 99.21±0.3 99.33±0.2 99.68±0.2 99.74±0.1 99.69±0.1

ImprovedTransformerNet

Qing et al. (2021)
150,000,000 99.22 % 99.19 % 99.08 % 99.64 % 99.49 % 99.67 % 99.91 % 99.78 % 99.63 %

HybridSN

Roy et al. (2020b)
5,122,176 99.75±0.1 99.71±0.1 99.63±0.2 99.98±0.1 99.98±0.2 99.97±0.2 100 100 100

SpectralNET

Chakraborty and Trehan (2021)
6,800,336 99.86±0.2 99.84±0.2 99.98±0.1 99.99±0.1 99.98±0.1 99.98±0.1 100 100 100

HyveConv++

ours (*)
16,700 99.85±0.0 99.75±0.0 99.7±0.2 99.97±0.0 99.96±0.0 99.97±0.0 99.98±0.0 99.99±0.0 99.99±0.0

HyveConv++

ours (**)
25,200 99.86±0.0 99.84±0.0 99.57±0.1 99.96±0.0 99.98±0.0 99.94±0.0 99.93±0.0 99.92±0.0 99.99±0.0
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A.4 Additional Examples of a learned Camera Filters

with HyveConv

(a) Prediction (b) Ground Truth

Figure A.2: Prediction of DeepHS net + HyveConv++ and ground truth for the segmen-

tations mask of the University of Pavia data set.

(a) (b) (c)

(d)

Figure A.3: Training of the Gaussian distributions for the Pavia University data set. (a)

and (b) show the development of the mean and variance over training epochs. (c) shows

the final Gaussian distributions, and these are applied as filters in (d).
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(a) Prediction (b) Ground Truth

Figure A.4: Prediction of DeepHS net + HyveConv++ and ground truth for the segmen-

tations mask of the Indian pines data set.

(a) (b) (c)

(d)

Figure A.5: Training of the Gaussian distributions for the Indian pines data set. (a) and

(b) show the development of the mean and variance over training epochs. (c) shows the

final Gaussian distributions, and these are applied as filters in (d).
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(a) Prediction (b) Ground Truth

Figure A.6: Prediction of DeepHS net + HyveConv++ and ground truth for the segmen-

tations mask of the Salinas data set.

(a) (b) (c)

(d)

Figure A.7: Training of the Gaussian distributions for the Salinas data set. (a) and (b)

show the development of the mean and variance over training epochs. (c) shows the final

Gaussian distributions, and these are applied as filters in (d).
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Abbreviations

AA Averaged Classwise Accuracy, Page 81

ARS Asian Soybean Rust, Page 35

BBCH Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessorte-

namt und CHemische Industrie, Page 36

CNN Convolutional Neural Network, Page 5

DaI Day after Inoculation, Page 37

DLRG Deutsche Lebens-Rettungs-Gesellschaft e.V., Page 95

DSCNV Depth-Wise Separable Convolution, Page 30

FPS Frames per Second, Page 11

GNSS Global Navigation Satellite System, Page 92

GPU Graphical Processing Unit, Page 108

HRSS Hyperspectral Remote Sensing Scenes, Page 20

HSI Hyperspectral Imaging, Page 5

IP Indian Pines, Page 81

IQR Interquartile range, Page 54

k-NN k-Nearest-Neighbor, Page 20

Kappa Cohen Kappa, Page 81

MAV Micro Aerial Vehicle, Page 96

MLP Multi Layer Perceptron, Page 50

MSI multispectral imaging, Page 5

NIR Near-Infrared, Page 8
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Abbreviations

NUV Near-Ultraviolet, Page 8

OA Overall Accuracy, Page 81

PCA Principal Component Analysis, Page 29

SA Salinas, Page 81

SAR Search and Rescue, Page 6

SE Squeeze-and-Excitation, Page 75

SI Spectral Imaging, Page 5

SSC Soluble Solids Content, Page 25

SSL Self-Supervised Learning, Page 5

SVM Support Vector Machine, Page 20, 21

UAV Unmanned Aerial Vehicle, Page 13

UP Pavia University, Page 81

WROI Wavelength Ranges of Interest, Page 113
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Canada, September 17-18, 2011, pages 231–236. IEEE.

141



Bibliography

Yang, H. Q. (2011). Nondestructive prediction of optimal harvest time of cherry tomatoes

using vis-nir spectroscopy and plsr calibration. In Emerging Engineering Approaches

and Applications, volume 1 of Advanced Engineering Forum, pages 92–96. Trans Tech

Publications Ltd.

Yeong, S., King, L., and Dol, S. (2015). A review on marine search and rescue operations

using unmanned aerial vehicles. International Journal of Marine and Environmental

Sciences, 9(2), 396–399.

Yue, J., Fang, L., Rahmani, H., and Ghamisi, P. (2022). Self-supervised learning with

adaptive distillation for hyperspectral image classification. IEEE Trans. Geosci. Re-

mote. Sens., 60, 1–13.

Yun, S., Han, D., Chun, S., Oh, S. J., Choe, J., and Yoo, Y. (2019). CutMix: Regular-

ization strategy to train strong classifiers with localizable features. In Proceedings of

the IEEE International Conference on Computer Vision, volume 2019-Octob, pages

6022–6031.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-

supervised learning via redundancy reduction. In M. Meila and T. Zhang, editors,

Proceedings of the 38th International Conference on Machine Learning, ICML 2021,

18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-

search, pages 12310–12320. PMLR.

Zhang, G., Zhao, S., Li, W., Du, Q., Ran, Q., and Tao, R. (2020). HTD-Net: A deep

convolutional neural network for target detection in hyperspectral imagery. Remote

Sensing, 12(9).
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