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Preface

Humans show distinguished capabilities in decision-making. Whether planning
for daily commuting routes, deciding on the next move in a chess game, or shooting
a rocket in space, we face the same conundrum of having to make hundreds of
present decisions in the face of uncertain events in the future. By incorporating
such uncertainties in the decision-making process, one can act with a sense of ra-
tionality given the information available about the world. Despite the long history
of academic effort formulating this problem in the fields of operational research,
numerical optimization, and control theory, planning under uncertainty persists to
be a challenging problem in robotics and remains an active area of research.

One of the main challenges of planning under uncertainty stems from the com-
putational intractability of the underlying mathematical programs given the limited
computational resources against the realm of infinite uncertain future outcomes.
Moreover, most of the interesting planning problems need to be solved in real-time,
which adds to the complexity of the problem. For instance, If I am (an amateur
chess player) to play a chess game against Garry Kasparov 1 where he has to wait
for me 30 mins at a time during my turns to simulate as many scenarios as possible
in the future to maximize my winning chances, not only it would be the most boring
chess match ever played, but my limited computed scenarios might as well not be
sufficient enough to win Kasparov. Imagine if we could optimize New York City’s
subway network for hours at a time to compute the optimal cycle of train routes
and their frequencies, given the uncertainty of the number of daily commuters
over all the network stations. This would be great except for the fact that New
Yorkers will stop using the subway as they won’t accept such optimization delay
time before announcing the next cycle of routes for their commutes. Even if they
would, it would be an outdated forecast already.

Another important aspect in planning under uncertainty constitutes satisfying
a set of constraints along with a desired objective. For example, a robot navigating
around a museum needs to approach randomly walking visitors to assist them, while
ensuring a collision-free trajectory based on a robustness measure in the presence of
randomly walking visitors around the museum. The choice of a robustness measure

1Garry Kasparov
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for satisfying constraints is directly intertwined with the optimality of achieving a
task. This is not an easy task, since an overestimation of future uncertainties can
lead to a conservative behavior that deteriorates the task objective of a robot, while
a very relaxed one can hinder safety by violating the planning constraints. Consider
the case of a self-driving car on a highway that keeps skipping all exits on its
way to the airport to guarantee a worst-case separation distance measure to avoid
colliding with other cars. Although this measure achieves perfect robustness, it
fails to achieve main the objective of getting to the airport in time by deteriorating
the objective performance. On the other hand imagine the complement of this
scenario, where a self-driving car arrives at the airport on time after making a
couple of collisions with other cars to achieve its objective.

Designing robust trajectory optimizers for legged robots is a very challenging
task. This is because of the task complexity of locomotion, and the unstable
nature of the non-smooth under-actuated dynamics, which needs to be stabilized
by making contact with the environment that respects the physics constraints.
Due to this complexity, it became a common practice in the legged locomotion
community to design sub-optimal robustness measures for constraint satisfaction
either heuristically or using worst-case estimation of uncertainties to bypass the
curse of computation using fast re-planning. Not only does this deteriorate the
performance of the control policy as mentioned above, but we also argue that
high-frequency re-planning is not helpful in the case of legged robots. This is due
to the hybrid nature of the fast-switching dynamics of walking robots. Consider a
legged robot climbing stairs while losing a step due to an external push or wrong
estimates from its sensors. In this scenario, initiating a contact force in the air
when it’s supposed to be swinging its feet forward, can only make things worse
due to the non-causality of the control policy. This is similar to a scenario of a
dog wagging its tail, which does not get better even when the dog does it faster.
We claim that anticipating such uncertainties during real-time planning can help
achieve more robust locomotion behaviors for legged robots.

This thesis attempts to overcome the aforementioned challenges by designing
a tractable real-time robust feedback control policy for legged robots subject to
additive and parametric stochastic uncertainties on the model dynamics. We use
tools inspired by stochastic model predictive control and chance-constraint pro-
gramming to design uncertainty-aware constraints in a systematic non-conservative
fashion for trajectory optimization of legged robots as a robustness measure. The
final policy is designed as a trade-off between robustness and performance.
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Chapter 1

Introduction

1.1 Challenges in Locomotion of Legged Robots
Trajectory optimization has become a dominant paradigm for planning and

control of legged robots [75, 86, 117, 17, 112]. Classically, a walking robot needs to
satisfy a set of competing control objectives like moving towards some goal state
with a desired velocity by exploiting its contacts with the environment subject to
a set of constraints that respect the physics of the environment and the robot’s
physical capabilities. This problem is challenging for robots in contact with the
environment due to the hybrid nature of their under-actuated dynamics that need
to be stabilized through constrained contact forces at desired contact locations
with the environment [90]. Model Predictive Control (MPC) has been a favorable
tool of choice for trajectory optimization as it exploits the causal structure of the
rolled-out dynamics while guaranteeing constraint satisfaction [89, 88].

Despite the inherent robustness of MPC for disturbance rejection through high-
frequency re-planning [36, 51, 25, 66, 72], dealing with persistent disturbances
remains critical for successful execution of agile motions for legged robots [33, 32].
Such disturbances are inevitable due to estimation errors, model mismatches be-
tween models used in planning and real-robot models, or imperfect controls. The
accumulation of such uncertainties along with the impact disturbances during
contact initiation can cause the risk of saturating or violating some of the physical
constraints of the robot, which in turn causes failed robot motions [26, 109].

Another challenge facing MPC for legged robots is the limit of computation
that can be performed in real-time. Depending on the task and model complexities,
the optimization problem can be hard to converge in time before the next planning
cycle [111, 58, 18]. This induces sub-optimal control policies that can misplace
end-effectors at unintended contact locations, leading to failed motions [32]. We also
argue that high-frequency re-planning is sometimes not helpful in robot locomotion.
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This is due to the hybrid nature of the fast-switching dynamics of walking robots.
For example, a robot climbs stairs, while losing a step due to an external push or
wrong estimates from its sensors. In this scenario, initiating a contact force in the
air when it’s supposed to be swinging its feet forward, can only make things worse
due to the non-causality of the control policy. This is similar to a scenario of a dog
wagging its tail, which does not get better even when the dog does it faster. Thus,
anticipating such uncertainties is a necessity in real-time planning, and can help
achieve more robust locomotion behaviors for safe trajectory optimization [39, 28].

Although planning under uncertainty has been studied in portfolio optimiza-
tion [64], numerical optimization [78, 97], and control theory [96, 53, 12], much
of this theory did not transfer fully to trajectory optimization of robotic systems.
This is because the task objectives for robotic systems are rather complicated, and
are not easily reducible to classic control objectives such as simple regulation or
tracking tasks. Moreover, till the moment of writing this, there is no unifying
theory for robots to assess risks [61]. For instance, it’s not clear what uncertainty
measure a robot should take when it opens a door. what about when it’s cooking
or climbing stairs? Moreover, a successful robot plan does not depend solely on a
performance metric, but should also provide some closed-loop robustness guaran-
tees for constraint satisfaction that consider such uncertainty measures [3]. This
requires the robot to be able to predict its uncertainties in the future and design
a feedback control policy that counteracts such uncertainties to avoid constraint
violations. This problem is computationally intractable in general as the controller
needs to react to infinite possibilities of uncertainties, which is computationally
intractable. Striking the right balance between optimally achieving a task while
robustly satisfying constraints in uncertain environments is a challenging task in
robotics. This is because both tasks can be conflicting. An overestimation of
future uncertainties can lead to a conservative behavior that deteriorates the task
objective of a robot, while a very relaxed one can hinder safety by violating the
planning constraints [34].

1.2 Robust and Stochastic Optimal Control
A common way to deal with uncertainties is through Robust Optimal Con-

trol (ROC)/H∞ control that attempts to solve minimax type of problems [93].
Minimax controllers are pessimistic as they deal with worst-case disturbance real-
izations, which is quite conservative and can lead to infeasibilities of the OCP [96].
A tractable approach to minimax is tube-based Robust Model Predictive Control
(RMPC) [71], where an online nominal auxiliary controller along with a Robust
Invariant Set (RPI) designed offline to contain all disturbed trajectories that guar-
antee robust constraint satisfaction of all trajectories inside the tube subject to
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a bounded disturbance set. Similar ideas were explored for nonlinear polynomial
systems by designing offline pre-planned "funnels of trajectories" using Sum-of-
Squares(SoS), and tracking controllers based on sensor feedback [62]. Similarly,
Manchester and Kuindersma [63] developed a robust controller with ellipsoidal
disturbance sets and a local LQR feedback control law around a reference trajectory.

ROC tends to sacrifice optimality for attaining robust behavior against worst-
case scenarios at all times. Another alternative to circumvent this conservativeness
is Stochastic Optimal Control (SOC), which falls under the category of H2 Con-
trollers. Different from ROC, SOC deals with random uncertainties in the process
model with known probability distributions. The goal is then to design an expected
cost based on the statistical information of the probability distribution of such
uncertainties [54]. The most well-studied case in this category of problems is the
Linear Quadratic Gaussian (LQG) control problem, which assumes additive Gaus-
sian noise on the dynamics along with a Kalman filter estimator that observes the
evolution of the state [55]. In this special case, the control problem reduces to the
classic Linear Quadratic Regulator (LQR) case based on the separation principle,
where the estimation and control problems are decoupled [99, 118]. Due to the
unboundedness of the uncertainty description based on the stochastic distribution
assumption, constraint satisfaction can not be guaranteed. One way to deal with
recursive constraint satisfaction (recursive feasibility) in Stochastic MPC (SMPC) is
to design stochastic tubes known as Probabilistic Invariant Sets (PISs) with specific
cross-section shapes (e.g. ellipsoidal or polytopic) subject to stochastic disturbances
with bounded distribution support [13, 59]. Tube-based SMPC approaches can
share a similar degree of conservatism as tube-based RMPC since they assume
bounded support of the uncertainty distribution. It has been shown that there is
a correspondence between probabilistic Invariant sets (PIS) with ellipsoidal and
polytopic confidence bounds and RIS [43].

One way to reduce the conservatism of tube-based RMPC and SMPC ap-
proaches, is to consider explicit unbounded probability distributions in the design
of constraints by relaxing the constraint satisfaction to not exceed a permitted
probability level, which is known as Chance-Constraints [78]. Chance-constrained
SMPC offers a trade-off between the control performance (described by the cost
function) and the robustness of constraint violations. This means that the per-
formance can be achieved by operating the system closer to its state constraints,
which comes at the cost of increased risk of constraint violation in a stochastic
setting. As the state variance increases, the state must be moved farther away
from the constraints to avoid the risk of violation. Hence, a central component
of chance-constrained SMPC is predicting the state variances, such that the state
can accordingly back-off from its constraints by an appropriate safety margin [40].
Depending on how critical the task is, the user can tune the desired probability
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level between the two extremes of almost hard constraint satisfaction (as in RMPC)
and complete negligence of disturbances (as in nominal MPC). This flexibility
becomes very practical since a legged robot needs to move in dynamic environments
where some of the constraints can be more critical than others. For example, when
moving through a narrow doorway or walking in a crowd [20], the robot needs to
reduce the sway motion of its Center of Mass (CoM) to reduce the probability of
collision. However, for walking on challenging terrains with partial footholds [115],
the robot has to bring the foot Center of Pressure (CoP) as close as possible to the
center of the contact area. Many other tasks can be considered somewhere between
those situations [34]. To this end, SMPC can be a powerful and systematic tool for
dealing with constraint satisfaction in different environments and tasks. Moreover,
small errors are typically more likely to occur in practice. It might therefore be
more appropriate to explicitly consider the distribution of disturbances instead of
treating all of them equally as in RMPC, which leads to a conservative behavior.

The work presented in the thesis aligns with the same philosophy and proposes
to use tools from SMPC and chance-constraint programming for safe trajectory
optimization of legged robots subject to stochastic additive and parametric un-
certainties, and state and control chance-constraints [34, 33, 32]. We rely on the
common assumption of Gaussian uncertainties for the analytic propagation of
uncertainties in a receding horizon fashion inside the optimization problem.

1.3 Planning Under Uncertainty in Legged Robotics
Linear MPC has been used extensively as a prime candidate for generating a wide

range of feasible reference walking motions for walking robots [41, 98, 113, 49, 24].
However, the theoretical guarantees associated with linear MPC like constraint
satisfaction can be easily lost, due to external disturbances or the discrepancy
between the nonlinear dynamics of the robot and the linearized model used in
control. Approaches in [10, 22] studied how to account for the bounded error in
constraint satisfaction due to the approximation of the nonlinear center of mass
(CoM) dynamics, and Bohórquez et al.[7] investigated the nonlinear constraints
due to step-timing adaptation. However, they do not account for the closed-loop
tracking errors due to disturbances, and they provide no robustness guarantees for
constraint satisfaction in the presence of different disturbances, which is critical for
generating safe walking motions.

Linear Robust MPC (RMPC) schemes have been extensively studied in the con-
trol literature [67, 19, 71] to deal with persistent deterministic disturbances on the
model dynamics. Villa et al. [109] used the well-known tube-based RMPC approach
originally developed in [71] for generating robust walking motions for humanoid
robots, taking into account the effects of additive compact polytopic uncertainties
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on the dynamics. Using a state feedback control policy and a pre-stabilizing choice
of static dead-beat gains, they showed that constraints are guaranteed to be satis-
fied for all disturbance realizations inside the disturbance set. Pandala et al.[83]
developed a linear RMPC framework along with a deep reinforcement learning
module to learn the vertices of a polytopic disturbance to bridge the gap between
the reduced-order Single Rigid Body (SRBD) model for quadrupedal robots, and
the full-body model. Recently, Xu et al. [119] solved linear minimax robust MPC
for the SRGD model subject to process model and friction constraints uncertainties.
By exploiting the structure of the uncertainties, they were able to reformulate
the minimax problem as a convex Quadratically Constrained Quadratic Program
(QCQP) that can be solved in real-time on a quadruped robot. A drawback of
RMPC is that the constraints are designed to accommodate for the worst-case
disturbance, which is quite conservative and sacrifices the task performance (opti-
mality) to guarantee hard constraint satisfaction.

In order to relax the conservativeness of RMPC, SMPC [12, 40, 29, 59] exploits
the underlying probability distribution of the disturbance realizations. Furthermore,
SMPC offers a flexible framework by accounting for chance constraints, where
constraints are expected to be satisfied within a desired probability level [78, 80].
Although linear models like the Linear Inverted Pendulum Model (LIPM) allow
the application of linear SMPC approaches [34], it limits the range of agile motions
and relevant uncertainties to be considered for legged robots, and their effect on
contact location constraint satisfaction.

For optimizing whole-body motions, indirect methods like iLQR/Differential
Dynamic Programming (DDP) [68] have become a popular choice in the robotics
community [104, 65]. To incorporate uncertainties in DDP formulations, Morimoto
et al. considered a minimax DDP for simple bipedal walking dynamics subject to
additive disturbances on the viscous friction of the robot joints [76]. Like RMPC,
minimax approaches tend to be overly conservative as they deal with worst-case
disturbances, which sacrifice the task performance and can lead to infeasibilities.
Recently [39, 38, 46] used risk-sensitive DDP that accounts for process and measure-
ment uncertainties. Del Prete et al. [26] considered joint-torque chance-constraints
robustness inside Task-Space Inverse Dynamics (TSID) for whole-body control of
humanoid robots subject to joint torque uncertainties. Different from receding
horizon approaches, TSID is an instantaneous controller that is myopic to long-
horizon tasks like locomotion. Other lines of work resorted to sampling-based
methods to approximate the stochastic optimal control problem (OCP). For in-
stance, Mordatch et al. used an ensemble of perturbed models that allowed them
to transfer the control policy to a humanoid robot [74]. Yeganegi et al. [120] used
Bayesian optimization to learn cost function weights to achieve robust walking
motions under different uncertainties. Suh et al . [101] used randomized smoothing
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for obtaining derivative-free gradients for solving the OCP as an alternative to
domain randomization. However, sampling-based approaches are computationally
expensive for real-time MPC applications of high-dimensional robotic systems.
Despite the different risk measures adopted in the above trajectory optimization
approaches, they do not include constraints in their formulations, which is essential
for safe trajectory optimization.

Other approaches incorporated uncertainties through contact by solving a
Stochastic Linear Complementarity Problem (SLCP). For example, Tassa et al.
[103] solved an SLCP to avoid the discontinuities of the complementarity prob-
lem. This allowed them to optimize smoothly through contacts by offering a
trade-off between contact complementarity accuracy, and the feasibility of the
problem. Despite the success of DDP approaches, they do not consider the effect
of uncertainties on constraint satisfaction, which is crucial for robotic systems.
Finally, Drnach et al. used a direct contact-implicit approach to solve an SLCP
with chance-constraints [28]. Due to the nature of the non-smooth mixed-integer
problem of contact-implicit approaches, they are hard to solve and are best suited
for offline trajectory optimization.

1.4 Contributions
Some of the limitations of the previous approaches are: 1) they do not consider

explicitly the effect of uncertainty on constraint satisfaction, which is the case in
most aforementioned DDP approaches. 2) Contact-implicit approaches are usually
hard to tune and get easily stuck in local minima, which limits their applicabil-
ity for MPC. 3) Unlike stochastic trajectory optimization, robust approaches are
conservative as they sacrifice performance for safety. 4) Sampling-based methods
are computationally expensive to be considered for real-time planning of highly
dimensional robotic systems, and they require a big engineering effort during
parallelization. This thesis attempts to overcome the above limitations by design-
ing chance-constrained SMPCs for legged robots under additive and parametric
stochastic uncertainties in chapter 3-chapter 5.

Our contributions in chapter 3 are [34]:

• We introduce linear SMPC using a linear inverted pendulum model (LIPM)
to generate stable walking, taking into account stochastic model uncertainty
subject to individual chance constraints.

• We analyze the robustness of SMPC to worst-case disturbances, drawing an
interesting connection between robust and stochastic MPC, and highlight
their fundamental difference.
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• We compare SMPC, RMPC, and nominal MPC in terms of robustness
(constraints satisfaction) and performance. Our tests focus on stochastic
bounded disturbances (generated with a truncated Gaussian distribution),
which are a good approximation of real disturbances as joint torque tracking
errors [26]. We empirically show that SMPC can achieve hard constraint
satisfaction while being significantly less conservative than RMPC 1.

Our contributions in chapter 4 are [33]:

• We propose to use stochastic trajectory optimization using Sequential Convex
Programming (SCP) for generating robust centroidal momentum trajectories
subject to additive uncertainties in the dynamics, as well as parametric
contact position uncertainties.

• By considering chance constraints on the friction cones, this is the first work
(to the best of our knowledge) that designs controllers for legged robots that
generate robust force trajectories subject to contact-location uncertainty.
In the same spirit as [42], we propose a whole-body trajectory planning
framework that alternates between whole-body and centroidal momentum
planning. Contrary to [42]—but similarly to [11]—we use whole-body DDP
instead of a kinematics optimization, and use the solution to warm-start
the stochastic SCP centroidal momentum solver. The resulting (robust)
momentum trajectories are later used by the whole-body DDP again to track
the resulting robust centroidal trajectories and contact force trajectories.
This way, we make sure that the generated momentum trajectories are robust
while being consistent with the robot whole-body dynamics.

• Finally, we run 400 Monte-Carlo simulations on the open-source quadruped
robot, Solo, [37] in a Pybullet simulation environment [21] for dynamic trotting
and bounding gaits while applying different disturbances. We show that
Stochastic trajectory optimization can complete all the motions safely while
reducing feet slippage, and achieving better centroidal tracking performance
over the deterministic planning 2.

We highlight the main result in chapter 5 as the first work on receding horizon
whole-body Stochastic Nonlinear MPC (SNMPC) that deals with contact-location
uncertainty for agile motions of legged robots. Our contributions are [32]:

• We solve a stochastic kino-dynamic whole-body trajectory optimization sub-
ject to additive uncertainties in the dynamics. Contrary to our previous work

1submission video.
2submission video.
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on stochastic centroidal momentum trajectory optimization [33], we optimize
both the centroidal dynamics and the full robot kinematics, which allows
us to model uncertainties on the optimized contact locations in a receding
horizon fashion rather than on fixed contact locations with fixed parametric
contact location uncertainties.

• We design contact location chance constraints inside an approximate real-time
SQP-type iteration. This is less conservative than considering worst-case
disturbance in robust optimization, where constraints are to be satisfied for all
possible realizations. Instead, we satisfy constraints in a probabilistic sense,
while maintaining the same computational complexity as NMPC without
degrading the performance.

• We compared SNMPC against NMPC by running extensive Monte-Carlo
simulations of the quadruped robot Solo for dynamic trotting and bounding
gaits on a challenging non-coplanar terrain. Furthermore, We compared the
robustness induced by SNMPC against a heuristic-based NMPC (HNMPC),
where the contact location constraints were shrunk by hand using a heuristic
safety margin. Our results show that SNMPC was able to perform all motions
safely with 100% success rate, while NMPC and HNMPC failed 48.3% and
47.6% of the time respectively 3.

1.5 Publications
The following papers were published/pending review during the course of my

PhD, which chapter 3, chapter 4, and chapter 5 of the thesis builds upon:

published Ahmad Gazar, Majid Khadiv, Andrea Del Prete, and Ludovic Righetti.
Stochastic and robust mpc for bipedal locomotion: A comparative study
on robustness and performance. In 2020 IEEE-RAS 20th International
Conference on Humanoid Robots (Humanoids), pages 61–68, 2021

published Ahmad Gazar, Majid Khadiv, Sébastien Kleff, Andrea Del Prete, and Lu-
dovic Righetti. Nonlinear stochastic trajectory optimization for centroidal
momentum motion generation of legged robots. In Robotics Research, pages
420–435, 2023

under review Ahmad Gazar, Majid Khadiv, Andrea Del Prete, and Ludovic Righetti. Multi-
contact stochastic predictive control for legged robots with contact locations
uncertainty. arXiv preprint arXiv:2309.04469, 2023

3submission video.
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A related publication is

published Shahram Khorshidi, Ahmad Gazar, Nicholas Rotella, Maximilien Naveau,
Ludovic Righetti, Maren Bennewitz, and Majid Khadiv. On the use of torque
measurement in centroidal state estimation. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9931–9937, 2023
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1.6 Outline
This thesis is organized as follows: chapter 1 starts by introducing some of the

challenges in legged robotics, classic control-theoretic methods for planning under
uncertainty, and finally the state-of-the-art methods in deterministic and robust
trajectory optimization for legged robots under different uncertainties descriptions
and their limitations. We summarize the differences between those methods in
terms of the underlying model complexity used in planning—linear vs nonlinear.
Furthermore, we differentiate between offline vs online (receding horizon MPC)
methods, the underlying robustness measures adopted in planning (robust vs
stochastic approaches), as well as constrained vs unconstrained approaches. Then,
we present the contributions of the thesis as a step towards overcoming some of
the shortcomings of the presented state-of-the-art methods, along with the list of
publications published/submitted during this PhD.

In chapter 2, we present the robot models used in this thesis along with their
deterministic OCP formulations for trajectory optimization of legged robots.

The first contribution is presented in chapter 3. First, we introduce a classic tube-
based RMPC approach applied to bipedal locomotion under additive disturbances
on the LIPM dynamics. Then, we introduce SMPC under stochastic uncertainty
with individual state and control chance constraints and compare its objectives
against RMPC and deterministic linear MPC for CoM trajectory generation of a
humanoid robot passing throw a narrow hall-way in a safety-critical scenario. We
compare SMPC, RMPC, and nominal MPC in terms of robustness (constraints
satisfaction) and performance, and highlight the fundamental difference of between
SMPC and RMPC. We make the argument that SMPC provides a more optimal
and flexible robustness measure for the trajectory optimization of legged robots.

In chapter 4, we extend the approach to stochastic trajectory optimization for
centroidal momentum motion generation of legged robots subject to additive and
parametric contact-location uncertainties on the centroidal momentum dynamics,
and friction pyramid joint chance constraints. Moreover, we introduce a trajectory
optimization framework that alternates between stochastic centroidal trajectory
optimization, and whole-body DDP for generating robust whole-body motions
under different uncertainties. We also highlight the benefits of this approach over



deterministic planning while maintaining the same computational complexity on a
quadrupedal robot performing agile motions on challenging uncertain terrains.

chapter 5 presents our latest submission, and the main result of the thesis. We
present a nonlinear SMPC algorithm applied in real-time for whole-body trajectory
optimization of legged robots subject to additive stochastic uncertainties and
contact-location joint chance constraints. We showed that whole-body chance-
constrained SNMPC with a real-time iteration scheme generates robust motions for
agile motions over the classic NMPC, with almost the same performance. We also
compared empirically chance-constraints tightening against the commonly adopted
heuristic-based NMPC in legged robotics, where constraints are tightened with
a fixed safety margin using trial and error. We showed that SNMPC provides a
formal, generic, and flexible way of achieving robustness without sacrificing the
computational tractability of the OCP.

Finally, we summarize the limitations of the presented work in the thesis and
propose some future directions to overcome such limitations in chapter 6.
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Chapter 2

Deterministic Optimal Control for
Legged Robots

The full-body dynamics of a floating-base robot in contact with the environment
can be derived using Euler-Lagrange equations of motion as follows [113]:

M(q)q̈ + h(q, q̇) =
nc∑
i=1

J⊤
e,i(q)λe,i + S

⊤τ q. (2.1)

The generalized robot position q =
[
x⊤
b ,θ

⊤
j

]⊤
∈ SE(3)× Rnj represents the robot’s

floating base pose, and joint positions respectively. represents the generalized robot
position characterizing the robot’s floating base pose (position and orientation) w.r.t.
an inertial frame I, and the joint positions respectively. M(q) ∈ R(6+nj)×(6+nj)

denotes the inertia matrix, and h(q, q̇) ∈ R6+nj is the vector capturing the Coriolis,
centrifugal, gravity and joint friction forces. J e,i is the associated jacobian of the
i-th end-effector wrench λe,i acting on the environment. Finally, S =

[
0(nj×6), Inj

]
is the selector matrix of the actuated joint torques τ q.

2.1 Nominal Linear MPC for LIPM
The dynamics of the CoM of a walking robot, under the assumption of rigid

contacts with a flat ground, can be modeled as follows [114]:

px,y = cx,y − mtot c
z c̈x,y − SL̇x,y

mtot(c̈z + gz)
, (2.2)

where c ∈ R denotes the CoM position in the lateral directions of motion x,y. The
total mass of the robot is denoted by mtot, the matrix S =

[
0 −1
1 0

]
is a rotation
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matrix, with CoP p ∈ R being constrained inside the convex hull of the contact
points U

px,y ∈ U . (2.3)

Under the assumption of constant CoM height cz and constant angular momentum
L, the dynamics (2.2) can be simplified to the LIPM, resulting in the following
linear relationship between the CoM and the CoP

c̈x,y = ω2
n(c

x,y − px,y), (2.4)

where ωn =
√

gz

cz
represents the system’s natural frequency, and gz being the norm

of the gravity vector along z. From now on, we will drop x,y superscripts for
convenience. Consider the discrete-LTI dynamics (2.4) subject to state and control
constraints:

xt+i+1 = Axt+i +But+i, (2.5a)
xt+i+1 ∈ X , (2.5b)
ut+i ∈ U , (2.5c)

where the state x =
[
c ċ

]⊤
∈ Rn, with n = 2, and the control input u = p ∈ Rm,

with m = 1. X represents the set of linear kinematic constraints of the robot, like
self-collision, maximum stride length, etc. MPC deals with solving the following
optimal control problem (OCP) at every sampling time t:

minimize
u

JN(xt,u) (2.6a)

subject to

xt+i+1|t = Axt+i|t +But+i|t, (2.6b)
xt+i+1|t ∈ X , (2.6c)
ut+i|t ∈ U , (2.6d)
xt|t = xt, (2.6e)
i = 0, ..., N − 1. (2.6f)

u = {ut|t, ut+1|t, ..., ut+N−1|t} denotes the control sequence along the prediction
horizon N and u∗(xt) is the minimizer of (2.6) given the current initial condition
xt. The above MPC scheme applies only the first control action u∗

t|t(xt) of the
optimal open-loop control sequence. We avoided using terminal constraints (e.g
capturability [52]) in our comparison, since to the best of our knowledge there is
no systematic way for handling terminal constraints in SMPC as in nominal MPC
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and RMPC. One of the options for generating viable reference walking trajectories
using the above MPC scheme without terminal constraints is to minimize one of
the CoM derivatives, adding it to the cost function JN [113, 41, 114]. With a
sufficiently long N a valid choice of the cost function in (2.6a) can be

JN(xt,u) =
N−1∑
i=0

α(ċdt − ċt+i|t)
2 + β(cdt − ct+i|t)

2 + γ(pdt − pt+i|t)
2. (2.7)

cdt , and ċdt represent the desired walking direction and velocity of the robot respec-
tively. pdt denotes the desired CoP tracking position, which is usually chosen to be
at the center of U for robustness. α, β and γ are user-defined weights.

2.2 Centroidal Nonlinear Trajectory Optimization
The full robot dynamics can be split (2.1) into its under-actuated and actuated

parts;

Mu(q)q̈ + hu(q, q̇) =
nc∑
i=1

Ju⊤

e,i (q)λe,i, (2.8a)

M a(q)q̈ + ha(q, q̇) =
nc∑
i=1

Ja⊤

e,i (q)λe,i + τ q. (2.8b)

By writing down the floating-base dynamics for the CoM instead of the floating-base
position, we obtain the following relationship between the centroidal momentum
dynamics ḣG and the generalized velocities q̇

ḣG =

[
κ̇

l̇

]
= ȦG(q)q̈ + ȦG(q)q̇, (2.9)

via the Centroidal Momentum Matrix (CMM) AG ∈ R6×(n+6) [82]. The angular
and linear momenta are denoted as κ and l ∈ R3 respectively. Given (2.9), we are
interested in planning desired centroidal momentum trajectories that satisfy the
following Newton-Euler dynamics:

ḣ =

[∑nc

i=1(pe,i +R
x,y
e,i ζe,i − c)× λe,i +R

z
e,iτe,i

mg +
∑nc

i=1 λe,i

]
(2.10)

where c ∈ R3 represents the robot’s CoM, at which the total mass m of the robot
is concentrated. pe,i ∈ R3 is now the i-th end-effector’s contact position, with
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ζe,i ∈ R2 being the local Center of Pressure (CoP). λe,i ∈ R3 and τe,i ∈ R represent
end-effector’s contact forces and torque for flat-footed robots, respectively. The
rotation matrixRe,i ∈ SO(3) captures the contact normals mapping quantities from
the i-th end-effector’s frame to the inertial frame. Note that for point-footed robots,
which we consider from now on, ζe,i and τe,i are always null, but the same analysis
still holds for flat-footed robots. First, we present the deterministic nonlinear
discrete-time optimal control problem (OCP) for centroidal momentum trajectory
optimization with fixed contact position and timing.

Problem 1. Nominal Optimal Control Problem (NOCP)

minimize
x,u

lf (xN) +
N−1∑
i=0

l(xk,uk) (2.11a)

subject tock+1

lk+1

κk+1

 =

 ck +
1
m
lk∆k

lk +mg∆k +
∑nc

i=1 f e,ik
∆k

κk +
∑nc

i=1(pe,ik − ck)× f e,ik
∆k

 , (2.11b)

− µfze,ik ≤ fxe,ik ≤ µfze,ik , fze,ik ≥ 0, (2.11c)

− µfze,ik ≤ fye,ik ≤ µfze,ik , fze,ik ≥ 0, (2.11d)

|pe,ik − ck| ≤ L
max
e,i , (2.11e)

x0 = x(0), (2.11f)
xf = x(N), (2.11g)
∀k ∈ {0, 1, .., N − 1}, (2.11h)

where x = {x0, . . . ,xN} with xk ∈ R9 = [ck, lk,κk]
⊤, and u = {u0, . . . ,uN−1}

with uk ∈ R3nc = [λe,1, . . . ,λe,nc ]
⊤ are the states and control optimizers along

the control horizon N. The centroidal momentum dynamics are discretized with
a time-step ∆k using an explicit Euler integration scheme (2.11b), where (2.11f)-
(2.11g) represents the initial and final conditions respectively. To avoid contact
slippage, the local contact forces in the end-effector frame (f = RT

e,ik
λe,ik) are

constrained inside the linearized friction cone constraints (2.11c)-(2.11d), where
the static coefficient of friction is denoted as µ with the vertical component of the
force being positive. Finally, the CoM is constrained to be within the leg length
reachability limits (2.11e).

2.3 Kino-dynamic Nonlinear MPC (NMPC)
With the same spirit as [23], we are interested in planning kino-dynamic whole-

body motions using centroidal momentum dynamics and full robot kinematics (2nd
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order kinematics) as follows:

d

dt

cl
κ

 =

 1
m
l

mg +
∑nc

i=1 λi∑nc

i=1

(
FKi(q̃

)
− c)× λi

 ,

︸ ︷︷ ︸
Centroidal momentum dynamics

(2.12a)

d

dt



pb
∆qb
θj
vb
ωb

vj


=



vb
ωb

vj
ab

ψb

aj


, q̃ ≜

 pb
1
2
qrefb ⊗∆qb

θj


︸ ︷︷ ︸

Full robot kinematics

. (2.12b)

c ∈ R3 represents the CoM of the robot, with m being the total mass of the robot
subject to the gravity vector g. The forward kinematics function FKi(.) : Q 7→ R3

computes the i-th end-effector’s contact position for a given robot configuration.
For the simplicity of dynamics integration and constraints linearization later,
we choose to optimize for the relative base orientation ∆qb w.r.t. an absolute
base reference qrefb instead of qb directly. pb and ωb ∈ R3 are the base linear
position and velocity, while ωb and ψb ∈ R3 are the base angular velocity and
acceleration respectively. Finally, we transcribe the above continuous dynam-
ics using direct collocation into the following MPC problem with pre-specified
contact mode and timing ∆k. The state and control optimizers at the k-th
discretization step are xk =

[
c⊤k , l

⊤
k , κ

⊤
k , p

⊤
bk
, ∆q⊤bk , θ

⊤
jk
,v⊤bk , ω

⊤
bk
, v⊤jk

]⊤
∈ Rn, and

uk =
[
λ⊤
i,k, . . . , λ

⊤
nc,k, a

⊤
bk
, ψ⊤

bk
, a⊤jk

]⊤
∈ Rm with n = 21 + 6nc, and m = 6 + 6nc for

point feet robots.

Problem 2. Kino-Dynamic NMPC Problem

minimize
X,U ,S

Ltotal(X,U ,S) (2.13a)

subject to (2.13b)
f impl(xk,xk+1,uk) = 0, (2.13c)
h(xk,uk) + J shsk ≤ 0, (2.13d)
− sk ≤ 0, (2.13e)
x0 − x(t) = 0, ∀k ∈ {0, 1, . . . , N − 1}. (2.13f)
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where X ≜ {x0, . . . ,xN} and U ≜ {u0, . . . ,uN−1} are the states and control
variables along the control horizon N. The implicit discrete dynamics f impl(.) : Rn×
Rn×Rm 7→ Rn (2.13c) captures the kino-dynamic equality path constraints in (2.12)
discretized using first-order implicit-Euler integration scheme, and transcribed using
Gauss-Legendre collocation method. The remaining nonlinear path constraints h(.)
are implemented softly to avoid infeasibilities of the OCP by introducing extra slack
variables S ≜ {s0, . . . , sN}, where J sh selects the slack variable attached to the
respective constraint. The constraints h(.) are described in detail in (2.14)-(2.17).
At every receding horizon, the initial condition of the OCP is reset with the current
measured state x(t) using constraint (2.13f). We enforce Kino-dynamic consistency
between the (2.12a), and (2.12b) with the following constraints:

hkindyn(ck,hGk
, q̃k) + skindynk = 0, (2.14a)

hkindyn ≜

 ck −COM(q̃k),[
κ⊤

k , l
⊤
k

]⊤
−AG(q̃k)q̇

 , (2.14b)

where COM(.) : Q 7→ R3 function computes the center of mass of the robot for a
given configuration, and skindynk

∈ R9 are the slack variables associated with those
kino-dynamic constraints. To avoid contact slippage, the tangential contact forces
in the end-effector frame (fi,k = R

⊤
i,kλi,k) are constrained inside the friction cone

γi,k .
[
hconei,k(λi,k) + sconei,k ≤ 0

]
γi,k ∈ C, (2.15a)

hconei,k ≜
√
f2x,ik + f2y,ik − µfz,ik , (2.15b)

where C = {0, 1}. The contact mode (fixed apriori) γi,k = 1 when the i-th foot
is in contact with the ground, and γi,k = 0 otherwise. The coefficient of friction
is denoted by µ, and sconei,k ∈ R is the slack variable associated with the friction
cone constraint. During contact, the i-th end-effector position in the z-direction
must be at the height of the contact surface Sz

i,k, and be within the contact surface
boundaries Sx,y

i .

γi,k .
[
hz
posi,k

(q̃k) + szposi,k = Sz
i,k

]
γi,k ∈ C, (2.16a)

γi,k .
[
hx,y

posi,k
(q̃k) + s

x,y
posi,k

∈ Sx,y
i,k

]
γi,k ∈ C, (2.16b)

where hposi,k ≜ FKi,k(q̃k), and sposi,k ∈ R3 are the slack variables associated with
the contact position constraints. For simplicity, we assume that Si,k ∈ R3 is
a rectangular polytope. Finally, the end-effector velocities during contact are
constrained to be zero by enforcing the holonomic constraint:

γi,k .
[
hveli,k(q̃k, q̇k) + sveli,k = 0

]
γi,k ∈ C, (2.17)
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where hveli,k ≜ J i,k(q̃k)q̇k, and sveli,k ∈ R3 are the associated slack variables. In
the above optimal control problem, we track a whole-body reference trajectory xr

optimized apriori offline. The total cost in (2.13a) is split between the least-squares
tracking cost LLS, and the penalty cost Lpenalty penalizing the violations of the
nonlinear constraints (2.13d) as Ltotal = LLS + Lpenalty

LLS ≜
N−1∑
k=0

1

2

(∥∥xk − xrk

∥∥2
Q
+∥uk∥2R

)
+

1

2

∥∥xN − xrN

∥∥2
QN

(2.18a)

Lpenalty ≜
N∑
k=0

1

2

slksuk

1


⊤ Qsl

0 pl
0 Qsu pu

p⊤l p⊤u 0


slksuk

1

 . (2.18b)

Q ∈ Rn×n, and Rm×m are the state and control running cost weight matrices
respectively, while QN ∈ Rn×n is the terminal state cost weight. We assign both l1
and l2 penalties on the violations of the lower and upper bound nonlinear constraints
(2.13d) associated with the slack variables slk and suk

respectively, where pl, pu
are the l1 penalty weights, and Qsl

, Qsu are the l2 penalty weights. Notice that
the slack variables are constrained to be positive in (2.13e) to attain the effect of
an l1 penalty as explained in [79].
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Part II

Linear Stochastic Predictive Control
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Chapter 3

Linear Stochastic MPC for
Simplified Walking Model

This chapter builds upon this publication [34]. Linear Model Predictive Control
(MPC) has been successfully used for generating feasible walking motions for
humanoid robots. However, the effect of uncertainties on constraint satisfaction
has only been studied using Robust MPC (RMPC) approaches, which account
for the worst-case realization of bounded disturbances at each time instant. In
this work, we propose for the first time to use linear stochastic MPC (SMPC) to
account for uncertainties in bipedal walking. We show that SMPC offers more
flexibility to the user (or a high-level decision-maker) by tolerating small (user-
defined) probabilities of constraint violation. Therefore, SMPC can be tuned
to achieve a constraint satisfaction probability that is arbitrarily close to 100%,
without sacrificing performance as much as tube-based RMPC.

3.1 Tube-based Robust MPC (RMPC)
Two Tube-based linear RMPC versions were first introduced in [67] and [19].

We follow the approach of [67] as it has been more commonly used in the control
community, and recently in [109] for bipedal locomotion. Note however that our
qualitative results and comparison with SMPC would still hold for [19].
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3.1.1 Robust OCP formulation and control objective

Consider the following discrete-LTI prediction model subject to additive stochas-
tic disturbance wt:

xt+i+1|t = Axt+i|t +But+i|t + wt+i, (3.1a)
xt+i+1|t ∈ X , (3.1b)
ut+i|t ∈ U . (3.1c)

Assumption 1. (Bounded disturbance) wt+i ∈ W for i = 0, 1, 2, ... is a disturbance
realization, with W denoting a polytopic compact (closed and bounded) disturbance
set containing the origin in its interior.

Consider the nominal state st evolving as

st+i+1|t = Ast+i|t +Bvt+i|t, (3.2)

under the control action vt+i|t. The main control objective of Tube-based RMPC is
to bound the evolution of the closed-loop state error et = xt − st using an auxiliary
state feedback control law

ut+i|t = vt+i|t(xt) +K(xt+i|t − st+i|t), (3.3)

where K ∈ Rm×n is a fixed pre-stabilizing feedback gain for (3.1a), and vt+i|t(st) is
the decision variable of the MPC program. By subtracting (3.2) from (3.1a), and
applying the control law in (3.3), the error dynamics is

et+i+1 = AKet+i + wt+i, (3.4)

with AK
∆
= A+BK being Schur (eigenvalues inside unit circle). The propagation

of the closed-loop error dynamics (3.4) converges to the bounded set

Ω =
∞⊕
t=0

At
KW . (3.5)

Hence the limit set of all disturbed state trajectories xt lies within a neighborhood
of the nominal trajectory st known as a tube of trajectories. It is clear that if
W = {0} → Ω = {0}, and the tube of trajectories collapses to a single trajectory,
which is the solution of (3.2). In set theory, Ω is called the minimal Robust Positive
Invariant (mRPI) set, or Infinite Reachable Set. We recall some standard properties
of disturbance invariant sets that will be used to design tightened constraint sets
in the next subsection.
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Property 1. Positive Invariance
A set Z is said to be a robust positively invariant (RPI) set [6] for the system
(3.1a) iff

AKZ ⊕W ⊆ Z, (3.6)

i.e. if e0 ∈ Z ⇒ et ∈ Z ∀t ≥ 0. In simple words, once the error is driven to Z it
will remain inside Z for all future time steps if subject to the bounded disturbance
wt+i ∈ W .

Property 2. Minimal Robust Positive Invariance (mRPI)
The mRPI set Ω (3.5) of (3.1a) is the RPI set in Rn that is contained in every
closed RPI set of (3.1a).

An outer approximation of the mRPI set Ω can be computed using the approach
of [87]. The size of Ω depends on the system’s eigenvalues, the choice of K, and W .

3.1.2 State and control back-off design

Using the mRPI set Ω, and the stabilizing feedback gains K, the state and
control constraint sets are tightened as

st+i+1|t ∈ X ⊖ Ω, (3.7)
vt+i|t ∈ U ⊖KΩ. (3.8)

The new tightened state and control constraint sets are often called backed-off
constraints. Satisfying the backed-off constraints (3.7)-(3.8) using the control law
(3.3), ensures the satisfaction of (3.1b)-(3.1c).

Remark 1. Following the choice of dead-beat pre-stabilizing feedback gains K
proposed in [109], we get KΩ = KW, which allows us to compute KΩ exactly
(whereas usually this needs to be approximated using numerical techniques). The
dead-beat gains are also a practical choice since they lead to the smallest control
back-off KΩ [109].

3.1.3 Tube-based RMPC algorithm

The tube-based RMPC scheme solves the OCP in (3.1) by splitting it into two
layers;

1. MPC layer: computes feasible feedfoward reference control actions v∗(st)
every MPC sampling time t subject to the backed-off state and control
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constraints as follows

minimize
v

JN(st,v) = (2.7) (3.9a)

subject to

st+i+1|t = Ast+i|t +Bvt+i|t, (3.9b)
st+i+1|t ∈ X ⊖ Ω, (3.9c)
vt+i|t ∈ U ⊖KΩ, (3.9d)
st|t = xt, (3.9e)
i = 0, 1, ..., N − 1. (3.9f)

2. State feedback control layer: employs the auxiliary state feedback control law
(3.3) that regulates the feedforward term v∗t|t(st) such that the closed-loop
error et is bounded inside Ω, which guarantees hard constraint satisfaction of
(3.1b) - (3.1c).

Remark 2. The above tube-based RMPC algorithm is often called closed-loop
(CL) MPC since the initial state st|t = xt is the measured state xt of the system
[70][71][109]. However, due to disturbances, CL-MPC is not guaranteed to be
recursively feasible (i.e. if the OCP is feasible at t = 0, it will remain feasible
for all future time steps). One way to deal with recursive feasibility is to use
st|t = xt|t whenever the OCP (3.9) is feasible, which is known as Mode 1. In
case of infeasibility, we switch to a backup control strategy (Mode 2), where we
use st|t = st+1|t−1, namely the current state from the previously optimized feasible
trajectory [45]. In this case, recursive feasibility is guaranteed, and the resulting
RMPC is not purely state-feedback, but a feedback controller comprising an extended
state based on feasibility i.e. ut+i|t = vt+i|t(xt, st+1|t−1) +K(xt+i|t − st+i|t).

3.2 Stochastic MPC With State And Control Chance
Constraints (SMPC)

The main objectives of SMPC are to deal with computationally tractable
stochastic uncertainty propagation for cost function evaluation, and to account for
chance constraints, where constraints are expected to be satisfied within a desired
probability level. With an abuse of notation, we will use some of the notations
defined in Section 3.1 in a stochastic setting.
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3.2.1 Stochastic (OCP) formulation and control objectives

Consider the following discrete-LTI prediction model subject to additive stochas-
tic disturbance wt:

xt+i+1|t = Axt+i|t +But+i|t + wt+i, (3.10a)
Pr[Hjxt+i+1|t ≤ hj] ≥ 1− βxj

, j = 1, 2, ..., nx (3.10b)
Pr[Gjut+i|t ≤ gj] ≥ 1− βuj

, j = 1, 2, ..., nu (3.10c)

Assumption 2. (Stochastic disturbance) wt+i ∼ N (0,Σw) for i = 0, 1, 2, ... is a
disturbance realization of identically independent distributed (i.i.d.), zero mean
random variables with normal distribution N . The disturbance covariance Σw ∈
Rn×n = diag(σ2

w)
1 is a diagonal matrix, with σw ∈ Rn.

Eq. (3.10b)/(3.10c) denote individual point-wise (i.e. independent at each
point in time) linear state/control chance constraints with a maximum probability
of constraint violation βxj

/βuj
. Since the disturbed state xt in (3.10a) is now a

stochastic variable, it is common to split its dynamics xt+i|t = st+i|t + et+i|t into
two terms: a deterministic term st+i|t = E[xt+i|t]; and a zero-mean stochastic error
term et+i|t ∼ N (0,Σxt+i|t), which evolve as

st+i+1|t = Ast+i|t +Bvt+i|t, st|t = xt (3.11a)
et+i+1|t = AKet+i|t + wt+i, et|t = 0. (3.11b)

Notice that in contrast to the closed-loop error evolution in RMPC (3.4), the
propagation of the predicted error et+i|t in SMPC is independent of xt+i|t due to
the assumption of zero initial error, which enables a closed-loop approach. The
evolution of the state covariance

Σxt+i+1|t = AKΣxt+i|tA
⊤
K + Σw, Σxt|t = 0 (3.12)

is independent of the control. In the same spirit as [59][40], the control objective is
to bound the stochastic predicted error by employing the following control law:

ut+i|t = vt+i|t(xt) +K(xt+i|t − st+i|t). (3.13)

K ∈ Rm×n is a fixed stabilizing dead-beat feedback gains (see remark 1) for (3.10a),
and vt+i|t is the decision variable of the MPC program. In what follows, we present
a deterministic reformulation of the individual chance constraints (3.10b) - (3.10c)
that will be used in the SMPC algorithm.

1σ2
w ∈ Rn =

[
σ2
1 , σ

2
2 , ..., σ

2
n

]⊤ denotes the element-wise square operator of the standard
deviation vector σw.
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3.2.2 Chance constraints back-off design

Using the knowledge of the statistics of xt+i|t in (3.11a) - (3.11b), individual
state chance constraints can be rewritten as:

Pr[Hjst+i+1|t ≤ hj −Hjet+i+1|t] ≥ 1− βjx . (3.14)

We seek the least conservative deterministic upper bound ηxj,t+i+1|t such that by
imposing

Hjst+i+1|t ≤ hj − ηxj,t+i+1|t ,

we can guarantee that (3.14) be satisfied. The smallest bound ηxj,t+i+1|t can then
be obtained by solving nxN linear independent chance-constrained optimization
problems offline:

ηxj,t+i+1|t =argmin . ηx (3.15)

subject to Pr[Hjet+i+1|t ≤ ηx] ≥ 1− βxj
.

Using the disturbance assumption (2), one can solve such programs easily since
there exist a numerical approximation of the cumulative density function (CDF)
ϕ(ηxj,t+i+1|t) ≥ 1− βxj

for normal distribution. Hence, ηxj,t+i+1|t can be computed
using the inverse of the CDF ϕ−1(1−βxj

) of the random variable Hjet+i+1|t. Contrary
to RMPC, the state back-offs grow contractively along the horizon, taking into
account the predicted evolution of the error covariance. Similarly, we reformulate
the individual control chance constraints in (3.10c) using (3.11a)-(3.11b), and the
control law (3.13):

Pr[Gjvt+i|t ≤ gj −GjKet+i|t] ≥ 1− βuj
. (3.16)

The individual control constraints back-off magnitudes ηuj,t+i|t can be computed
along the horizon using the inverse CDF ϕ−1(1 − βuj

) of the random variable
GjKet+i|t.

3.2.3 SMPC with chance constraints algorithm

The SMPC scheme with individual chance constraints computes feasible refer-
ence control actions v∗(xt) at every MPC sampling time t subject to individual
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state and control backed-off constraints as follows

minimize
v

E[JN(xt,v)] = (2.7) (3.17a)

subject to

st+i+1|t = Ast+i|t +Bvt+i|t, (3.17b)
Hjst+i+1|t ≤ hj − ηxt+i+1|t , j = 0, 1, ..., nx (3.17c)

Gjvt+i|t ≤ gj − ηut+i|t , j = 0, 1, ..., nu (3.17d)

st|t = xt, (3.17e)
i = 0, 1, ..., N − 1. (3.17f)

Note that since the above SMPC algorithm works purely with state-feedback
(st|t = xt), The linear feedback term in (3.13) is only used to predict the variance
of the future error et.

Remark 3. The above CL-SMPC algorithm is not guaranteed to be recursively
feasible due to the fact that the disturbance realization wt+i ∼ N (0,Σw) is unbounded.
To tackle this practically, disturbance realizations wt+i are assumed to have a bounded
support W [69]. There have been recent efforts on recursive feasibility for SMPC
using different ingredients of cost functions, constraint tightening and terminal
constraints as in [59] [84]. However, recursive feasibility guarantees for SMPC is
out of this paper’s scope.

3.2.4 Worst-case Robustness of SMPC

SMPC ensures constraint satisfaction with a certain probability, while RMPC
ensures it under bounded disturbances. When comparing the two approaches,
one could think that SMPC is equivalent to bounding stochastic disturbances
inside a confidence set and then applying RMPC. This section clarifies that this
is not the case. In particular, we answer the following question: when using
SMPC, what are the bounded disturbance sets under which we can still guarantee
constraint satisfaction? Considering a single inequality constraint and hyper-
rectangle disturbance sets, we show how to compute the size of such sets, and that
they shrink along the control horizon. Since the disturbance set is instead fixed in
RMPC, we conclude that the two approaches are fundamentally different.

Consider an individual chance constraint Pr[q⊤xt+i+1|t ≤ g] ≥ 1− β, where
q ∈ Rn, g ∈ R. Given the corresponding back-off magnitude ηt+i+1|t (3.15), we
seek the maximum hyper-rectangle disturbance set Wt+i ⊂ Rn = {w : |w| ≤ wmax

t+i }
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such that the constraint q⊤xt+i+1|t ≤ g is satisfied for any w ∈Wt+i:

ηt+i+1|t =max
e

q⊤e (3.18a)

s. t. e ∈
i⊕

j=0

Aj
KWt+i.

This problem has a simple solution

ηt+i+1|t =

 i∑
j=0

∣∣bj∣∣⊤
wmax

t+i , (3.19)

where b⊤j ≜ q⊤Aj
K and |.| is the element-wise absolute norm. From the SMPC

derivation we know that ηt+i+1|t is computed via the inverse CDF of q⊤et+i+1|t,
which returns a value proportional to its standard deviation σt+i+1|t. Therefore we
can write

ηt+i+1|t = κ(β)

√√√√ i∑
j=0

b⊤j Σwbj︸ ︷︷ ︸
σt+i+1|t

, (3.20)

where κ(β) is a coefficient that depends nonlinearly on β. By substituting (3.19)
in (3.20) and exploiting the fact that Σw = diag(σ2

w)
2 ∈ Rn×n, we infer

κ2(β)
i∑

j=0

b⊤j diag(bj)σ2
w = (

i∑
j=0

|bj|⊤wmax
t+i )

2. (3.21)

Solving for wmax
t+i has infinitely many solutions. However, we can get a unique

solution by imposing a ratio ζt+i ∈ R between wmax
t+i and σw as follows:

wmax
t+i = ζt+i σw. (3.22)

Substituting back in (3.21) and solving for ζt+i we get:

ζt+i = κ(β)
√
αi, αi ≜

∑i
j=0 b

⊤
j diag(bj)σ2

w

(
∑i

j=0 |bj|⊤σw)2
. (3.23)

2σ2
w ∈ Rn =

[
σ2
1 , σ

2
2 , ..., σ

2
n

]⊤ denotes the element-wise square operator of the standard
deviation vector σw.
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Figure 3.1: TALOS robot walking through a narrow hallway using nominal MPC
subject to additive disturbances on the lateral CoM dynamics. The Red color
corresponds to the robot colliding with the wall.

The series αi is bounded 0 < αi ≤ 1, ∀i ≥ 0, since the sum of squares (numerator)
is less than or equal to the square of the sum of positive numbers (denominator).
In Appendix 3.4, we prove that αi is monotonically decreasing (i.e. αi+1 ≤ αi)
for the case of 1D systems (n = 1). We confirmed this result numerically for
the multi-variate case by randomly generating schur stable closed-loop matrices
A+BK subject to the same covariance of the disturbance Σw for fairness. Since αi

is bounded and monotonically decreasing, then it is convergent. This implies that,
as i grows, ζt+i decreases, and so does the disturbance set Wt+i until it converges
in the limit. We conclude that, when using SMPC, the disturbance sets for which
we have guaranteed constraint satisfaction shrink along the control horizon.

3.3 Simulation Results
In this section, we present simulation results of the generated walking motions

of a Talos robot [100] subject to additive persistent disturbances on the lateral CoM
dynamics. We compare the motions generated using SMPC subject to state and
control chance constraints against nominal MPC and tube-based RMPC. The lateral
CoM position is constrained inside a box −0.04 ≤ cy ≤ 0.04 to avoid collision
of the external parts of the robot with walls as it navigates through a narrow
hallway with fixed contact locations as shown in Fig. 3.1. The CoM trajectories
generated using MPC are tracked with a Task-Space Inverse Dynamics (TSID)
controller using a hard contact model for generating the control commands [26].
We use the Pinocchio library [16] for the computation of rigid-body dynamics.
We show an empirical study comparing robustness w.r.t. performance of SMPC
against tube-based RMPC and nominal MPC when subject to the same disturbance
realizations. The robot model and simulation parameters are defined in Table 3.1.

3.3.1 Hard constraints satisfaction in tube-based RMPC

First, we compute offline the state and control back-off magnitudes to tighten
the constraint sets for RMPC. The state constraints back-off magnitude is computed
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Table 3.1: Modelling and simulation parameters.

CoM height (h) 0.88 (m)

gravity acceleration (gz) 9.81 (m/s2)

foot support polygon along x direction (Ux) [ −0.05, 0.10 ] (m)

foot support polygon along y direction (Uy) [ −0.05, 0.05 ] (m)

bounded disturbance on CoM position (Wc) [ −0.0016, 0.0016 ] (m)

bounded disturbance on CoM velocity (Wċ) [ −0.016, 0.016 ] (m/s)

disturbance std-dev of CoM position (σc) 0.0008 (m)

disturbance std-dev of CoM velocity (σċ) 0.008 (m/s)

MPC sampling time (∆t) 0.1 (s)

whole-body tracking controller sampling time 0.002 (s)

MPC receding horizon (N) 16

Figure 3.2: Simulation of 6 initial conditions (red crosses) at the vertices of the
outer-ϵ approximation of the mRPI set Ω for 50 time steps subject to wt+i ∈ W .

30



using an outer ϵ approximation of the mRPI set Ω using the procedure in [87], with
an accuracy of ϵ = 10−6. In Fig. 3.2, we test the positive invariance property (1) of
Ω, by simulating 6 initial conditions starting at the set vertices for 50 time steps,
and applying randomly sampled disturbance realizations from the disturbance set
W . As shown, the evolution of each initial condition (red dots), is kept inside Ω (the

tube section) when subject to disturbance realizations wt+i ∈ W =
[
Wc Wċ

]⊤
.

Using the same choice of pre-stabilizing dead-beat gains K =
[
3.386 0.968

]
as

in [109], the robust control back-off magnitude KΩ is computed exactly without
resorting to numerical approximation KΩ = KW =

[
−0.0225, 0.0225

]
.

In Fig. 3.3, we plot the CoM position and CoP of 200 trajectories obtained
using tube-based RMPC. The robot takes the first two steps in place before entering
the hallway. In the third and fourth steps, no disturbances were applied showing
that the CoM position c trajectories back off conservatively from the constraint
bounds with the magnitude of the mRPI set on the CoM position Ωc. Finally, we
randomly apply sampled Gaussian disturbance realizations wt+i ∼ N (0,Σw) with
finite support W, where Σw =

[
σ2
c 0

0 σ2
ċ

]
, for the rest of the motion, showing that

both state and control constraints are satisfied as expected. Note that when the
worst-case disturbance is persistently applied on one direction, the state constraint
is saturated in that direction as expected. This shows that tube-based RMPC
anticipates for a persistent worst-case disturbance to guarantee a hard constraint
satisfaction, which is quite conservative and sub-optimal when the nature of the
disturbances is stochastic as in this scenario.

3.3.2 Chance-constraints satisfaction in SMPC

This subsection presents the results of SMPC. Contrary to RMPC, the state
and control back-off magnitudes (ηxt+i+1|t , ηut+i

) vary along the horizon, and are
computed based on the propagation of the predicted state covariance (3.12), pre-
stabilizing feedback gain K, disturbance covariance Σw, and the desired probability
level of individual state and control constraint violation βxj

and βuj
respectively.

We set βxj
= 5% , and βuj

= 50%, which corresponds to satisfying the nominal
CoP constraints.

Using the same choice of stabilizing feedback gains K as in RMPC, we simulate
200 trajectories using SMPC in Fig. 3.4b. In the first two steps, the robot steps
in place and the CoM constraints are not active. For the rest of the motion, we
randomly apply sampled Gaussian disturbance realizations wt+i ∼ N (0,Σw) with
finite support W. In Fig. 3.4a, we show the empirical number of CoM position
constraint violations out of the 200 simulated trajectories. The maximum number
of constraint violations is obtained at time instance 4.3s is 5(≤ 10), which respects
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Figure 3.3: 200 simulations of tube-based RMPC with wt+i ∈ W .
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(a) CoM position constraint violations.

(b) CoP and CoM lateral motion with βxj = 5%, βuj = 50%.

Figure 3.4: 200 SMPC simulations with wt+i ∼ N (0,Σw) ∈ W .
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Figure 3.5: SMPC with varying βxj
vs RMPC of 200 simulations with wt+i ∼

N (0,Σw) ∈ W . The dotted line denotes the optimal ratio of one (nominal MPC)

the designed probability level of CoM constraint violations βxj
= 5% as expected.

To test robustness of constraint satisfaction and optimality of SMPC, we ran an
empirical study of the same eight step walking motion (200 trajectories) comparing
SMPC with varying βxj

∈
[
0.00001%, 50%

]
and fixed βuj

= 50% against tube-
based RMPC and nominal MPC in Fig. 3.5. We plot the empirical number of CoM
position constraint violations at t = 2.7s, against the averaged cost performance
(of 200 trajectories) ratio between different MPC schemes and nominal MPC. As
before, disturbance realizations are sampled from N (0,Σw) with finite support W .
As expected, the higher the probability level of constraint satisfaction in SMPC,
the lower the amount of constraint violations (higher robustness). The highest
number of constraint violations is obtained at βxj

= 50%, which is equivalent
to nominal MPC. Zero constraint violations were obtained when βxj

≤ 1%, as
for RMPC. An advantage of SMPC with βxj

≤ 1% over RMPC, is the lower
average cost. This gives the user the flexibility to design the controller for different
task constraints, by tuning the probability level of constraint satisfaction without
sacrificing performance as in tube-based RMPC or sacrificing robustness as in
nominal MPC.
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3.4 Conclusions
This work compared the use of SMPC with RMPC to account for uncertainties

in bipedal locomotion. Many SMPC and RMPC algorithms exist. We decided
to focus on two particular instances of tube-based approaches, which have the
same online computational complexity as nominal MPC. Indeed, all the extra
computation takes place offline, and consists in the design of tightened constraints
(back-offs) based on a fixed pre-stabilizing feedback gain K. Our comparison focused
on the trade off between robustness and optimality. Our tests show that, while
SMPC does not provide hard guarantees on constraint satisfaction, in practice we
did not observe any constraint violation with sufficiently low βx(≤ 1%). This comes
with the advantage of less conservative control, i.e. it results in better performance
as measured by the cost function. This is reasonable because RMPC behaves
conservatively, expecting a persistent worst-case disturbance, which in practice
is extremely unlikely to happen. SMPC instead reasons about the probability of
disturbances. In Section (3.2.4) we showed that we can compute the maximum
disturbance sets to which SMPC ensures robustness. We showed that these sets
shrink contractively as time grows. Loosely speaking, SMPC can be thought as a
special kind of RMPC that considers shrinking disturbance sets along the horizon.

Our empirical results are specific to the choice of dead-beat feedback gains used
in both algorithms. These gains were computed in [109] by minimizing the back-off
magnitude on the CoP constraints. This is sensible because the CoP is usually
more constrained than the CoM in bipedal locomotion. Other feedback gains could
be used, such as LQR gains, resulting in back-off magnitudes that are a trade-off
between state and control constraints. While changing the gains would affect our
quantitative results, it would not affect the qualitative differences between SMPC
and RMPC that we highlighted in the paper. In conclusion, SMPC offers an
opportunity for the control of walking robots that affords trading-off robustness to
uncertainty and performance. For Future work, we intend to investigate nonlinear
versions of RMPC and SMPC [56],[91] to enable the use of more complex models
of locomotion.

3.5 Appendix
Proof that αi is monotonically decreasing (1D case):

We would like to show that αi+1 ≤ αi , ∀i ≥ 0. Given

αi =

∑i
j=0 b

2
j σ

2
w

(
∑i

j=0 |bj|σw)2
αi+1 =

∑i+1
j=0 b

2
j σ

2
w

(
∑i+1

j=0 |bj|σw)2
, (3.24)
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where bj = q⊤Aj
K can be written as qaj, with a ≜ AK , |a| < 1. After simplifying

σw, then αi+1 ≤ αi reads as:∑i
j=0 b

2
j + b2i+1

(
∑i

j=0 |bj|)2 + b2i+1 + 2|bi+1|
∑i

j=0 |bj|
≤

∑i
j=0 b

2
j

(
∑i

j=0 |bj|)2
. (3.25)

By substituting the analytical expressions of the following series in (3.25)

i∑
j=0

|bj| = |q|
i∑

j=0

|a|j = |q|

(
1− |a|i+1

1− |a|

)
, (3.26a)

i∑
j=0

b2j = q2
i∑

j=0

a2j = q2

(
1− a2(i+1)

1− a2

)
. (3.26b)

and cross multiplication, we get

|q|3
(
1− |a|i+1

1− |a|

)2

|a|i+1 ≤ q2

(
1− a2(i+1)

1− a2

)|qai+1|+ 2|q|

(
1− |a|i+1

1− |a|

) .

(3.27)

By multiplying both sides of (3.27) by (1−|a|)2
|q|3 , we have

|a|i+1(1− |a|i+1)2 ≤ 1− a2(i+1)

1 + a

(
|a|i+1(1− |a|) + 2(1− |a|i+1)

)
⇒ (1 + |a|)(|a|i+1 − a2i+2) ≤ (1 + |a|i+1)(−|a|i+1 − |a|i+2 + 2)

⇒ |a|i+1 + |a|i+2 − |a|2i+3 ≤ 2 + |a|i+1 − |a|i+2 − |a|2i+3

⇒ 2− 2|a|i+2 ≥ 0, (3.28)

which always holds because |a| < 1. This concludes the proof. ■
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Part III

Nonlinear Stochastic Predictive
Control
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Chapter 4

Nonlinear Stochastic Trajectory
Optimization for Centroidal
Momentum Motion Generation

This chapter builds upon this publication [33]. Generation of robust trajectories
for legged robots remains a challenging task due to the underlying nonlinear,
hybrid, and intrinsically unstable dynamics which need to be stabilized through
limited contact forces. Furthermore, disturbances arising from unmodelled contact
interactions with the environment and model mismatches can hinder the quality of
the planned trajectories leading to unsafe motions. In this work, we propose to
use stochastic trajectory optimization for generating robust centroidal momentum
trajectories to account for additive uncertainties in the model dynamics and
parametric uncertainties on contact locations. Through an alternation between
the robust centroidal and whole-body trajectory optimizations, we generate robust
momentum trajectories while being consistent with the whole-body dynamics. We
perform an extensive set of simulations subject to different uncertainties on a
quadruped robot showing that our stochastic trajectory optimization problem
reduces the amount of foot slippage for different gaits while achieving better
performance over deterministic planning.

4.1 Stochastic Optimal Control for Centroidal Mo-
mentum Trajectory Optimization

In this section, we present a stochastic version of the problem (1) that takes into
account additive stochastic uncertainties on the centroidal momentum dynamics as
well as contact position uncertainties subject to friction pyramid chance constraints.
We consider the following discrete-time stochastic nonlinear OCP:

38



Figure 4.1: Robust trajectory optimization framework alternating between cen-
troidal states of whole-body DDP motions and stochastic centroidal SCP motions.

Problem 3. Stochastic Optimal Control Problem (SOCP)

minimize
x,u

lf (xN) +
N−1∑
i=0

l(xk,uk) (4.1a)

subject to

xk+1 = f(xk,uk,θk,wk), (4.1b)
Pr(Hxk ≤ h) ≥ αx, (4.1c)
Pr(Guk ≤ g) ≥ αu, (4.1d)
x0 = x(0), (4.1e)
xf = x(N), (4.1f)
∀k ∈ {0, 1, .., N − 1}. (4.1g)

With abuse of notation from Problem (1), xk and uk will be considered the
stochastic state and control policies evolving according to the parametric and
additive stochastic disturbance realizations θk, and wk. (4.1c)-(4.1d) are the state
and control polytopic joint chance constraints with αx and αu being the probability
levels of state and control constraint satisfaction respectively.

Assumption 3. (i.i.d. Gaussian disturbances)
θk ∼ N (E[θk],Σθk

), and wk ∼ N (E[wk],Σwk
) are assumed to be independent
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and identically distributed (i.i.d.) disturbance realisations following Gaussian dis-
tributions. E[θk] = pe,ik , and Σθk

∈ R(3nc×3nc) represent the mean and covariance
of the contact positions respectively. E[wk] = 0 and Σwk

∈ R9×9 are the mean and
covariance of the additive noise on the centroidal dynamics.

4.1.1 Individual Chance Constraints Reformulation

Solving the above joint chance constraints (4.1c)-(4.1d) involves the integration
of multi-dimensional Gaussian Probability Density Functions (PDFs), which be-
comes computationally intractable for high dimensions. One effective solution is to
use Boole’s inequality:

Pr(
n∨

i=1

Ci) ≤
n∑
i

Pr(Ci) (4.2)

as a conservative union bound on the joint chance constraints [80]. We can rewrite
the complement of the state chance constraints as a conjunction of individual
chance constraints as follows:

(4.1c) = Pr(
lx∧
i=1

H ix ≤ hi) ≥ αx,

which can be written conservatively as

Pr(
lx∨
i=1

H ix > hi) ≤ 1− αx. (4.3)

By applying Boole’s inequality on the above equation, and allocating constraint
violation risk equally ϵxi

= (1− αx)/lx, with lx being the number of intersecting
hyper-planes forming the state joint polytopic constraint, we reach

(4.3)
(4.2)⇐===

lx∑
i=1

Pr(H ix > hi) ≤ ϵxi

≡
lx∑
i=1

Pr(H ix ≤ hi) ≥ 1− ϵxi
. (4.4)

Similarly, control joint chance constraint (4.1d) can be reformulated as a set of
individual chance constraints following the same arguments as before

lu∑
i=1

Pr(Giu ≤ gi) ≥ 1− ϵui
, (4.5)

where ϵui
= (1− αu)/lu is the equally distributed control constraint risk.
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Remark 4. Allocating the risk of constraint violations equally can be quite con-
servative since one would preferably allocate more risk to active constraints over
inactive ones. Another approach can be optimized for allowable violation for each
constraint as in [60], which involves higher computational complexity.

4.1.2 Deterministic Reformulation of Individual Chance Con-
straints

Solving the chance constraints (4.4)-(4.5), requires propagating the uncertainty
through the nonlinear dynamics. We adopt a linearization-based covariance propa-
gation as in [121][57]. Using a state-feedback control policy uk = vk+Kk(xk−sk),
where Kk are pre-stabilizing feedback gains, then the mean and covariance of the
dynamics evolve as

sk+1 ≈ f̄(sk,vk,pe,k,0) +Ak(sk − sjk) +Bk(vk − vjk), (4.6a)

Σxk+1
= AclΣxk

A⊤
cl +CkΣθC

⊤
k +Σw, (4.6b)

where f̄ is the nominal nonlinear dynamics estimated at the current mean of the
state sjk and controls vjk of the jth trajectory. Σx0 = 0, and Acl ≜ Ak +BkKk is
the closed-loop dynamics. Ak ≜ ∂

∂s
f(sk,vk,pe,k,0)|(sjk,vj

k)
is the Jacobian of the

dynamics w.r.t. the state. Bk ≜ ∂
∂v
f(sk,vk,pe,k,0)|(sjk,vj

k)
is the Jacobian of the

dynamics w.r.t. controls. Finally, Ck ≜ ∂
∂pe,k

f(sk,vk,pe,k,0)|(sjk,vj
k)

represents the
Jacobian of the dynamics w.r.t. the contact positions.

Remark 5. Other approaches can be used for uncertainty propagation through
nonlinear dynamics like unscented-based transforms [85], or Generalized Polynomial
Chaos (gPC) [77]. These methods can lead to a more accurate estimate of the
propagated uncertainty at the cost of a significant increase in complexity. Since
computational efficiency is more important in our case (especially for online re-
planning of the trajectories), we prefer to not use these methods.

Based on Assumption (3) and the covariance propagation in (4.6b), we seek
the least conservative upper bounds on the state and control individual chance-
constraints (4.1c)-(4.1d). Using the inverse of the Cumulative Density Function
(CDF) ϕ−1 of a Gaussian distribution, we arrive at a deterministic reformulation of
the chance constraints:

H isk ≤ hi − ηxi,k
, (4.7a)

Givk ≤ gi − ηui,k
, (4.7b)

where ηxi,k
= ϕ−1(1− ϵxi

)∥H i∥Σk
and ηui,k

= ϕ−1(1− ϵui
)∥GiKk∥Σk

are known as
the state and control back-off bounds ensuring the satisfaction of the individual
chance constraints (4.1c)-(4.1d), respectively.
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4.1.3 Deterministic Reformulation of SOCP

Given the previous reformulation of the individual chance constraints, we can
write down the following NOCP.

Problem 4. NOCP with reformulated individual chance-constraints:

minimize
s,v

lf (sN) +
N−1∑
i=0

l(sk,vk) (4.8a)

subject to

sk+1 = f(sk,vk,pe,k,0), (4.8b)
H i,ksk ≤ hi,k − ηxi,k

∀i ∈ {1, 2, .., lx}, (4.8c)
Gi,kvk ≤ gi,k − ηui,k

∀i ∈ {1, 2, .., lu}, (4.8d)
s0 = s(0), (4.8e)
sf = s(N), (4.8f)
∀k ∈ {0, 1, .., N − 1}. (4.8g)

where (4.8b) is now the mean of the nonlinear dynamics. To solve the above
nonlinear OCP, we resort to Sequential Convex Programming (SCP), which we
explain in the next subsection.

4.1.4 SCP with L1 Trust Region Penalty Cost

SCP attempts to solve nonlinear OCPs by successively linearizing the dynamics,
costs, and constraints to solve a convex sub-problem at every iteration. The
dynamics are linearized with a first-order Taylor expansion around the previous state
and control trajectories computed at the j-th succession. Successive linearization
introduces two well-known problems [60].

1) Artificial infeasibility: the problem becomes infeasible even if the original
nonlinear problem is feasible. The most evident example of this arises when the
problem is linearized about an unrealistically short time horizon so that there is
no feasible control input that can satisfy the prescribed dynamics and constraints.
2) Artificial unboundedness: the solution takes steps far away from the validity of
the linear model. To mitigate artificial unboundedness, a trust-region constraint is
employed. Different approaches are adapted to tackle artificial infeasibility. In [60],
the authors employ hard constraints and virtual controls as slack variables on the
constraints. However, [8] enforced hard constraints on the dynamics and convex
soft penalties on the rest of the constraints along with trust region constraints. In
this work we follow the same rationale as [8, 95], where the trust region constraints
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ci(x) ≤ 0 are enforced as l1 penalty cost in the form of

argmin .{argmax .γ(ci(x), 0)}, (4.9a)

ci(x) = |xk − xj
k| − Ω. (4.9b)

where Ω is the trust region radius. Notice that the above l1 penalty cost is exact—
meaning that as the penalty weight γ gets infinitely large, the constraint violations
are driven to zero. Even though (4.9) is non-differentiable, it can be solved efficiently
by introducing a slack variable t as follows:

minimize
t

γt (4.10a)

subject to

|x− xj| − Ω ≤ t, (4.10b)
− t ≤ 0. (4.10c)

To solve problem (4), we solve a sequence of Quadratic Programs (QPs) in problem
(5), accompanied by a trust region update mechanism based on the accuracy ratio
of the linearized model w.r.t. the nonlinear model as in [8][57].

Problem 5. Convexified QP at the j-th SCP iteration:

minimize
s,v,t

lf (sN) +
N−1∑
i=0

l(sk,vk) + γj

N∑
i=0

tk (4.11a)

subkect to

sk+1 = f̄(sk,vk,pe,k,0) +Ak(sk − sjk) +Bk(vk − vjk), (4.11b)

Σk+1 = AclΣxk
A⊤

cl +CkΣθC
⊤
k +Σw, (4.11c)

Σ0 = 09×9, (4.11d)

H i,ksk ≤ hi,k − ϕ−1(1− ϵxi
)
(∥∥H i,k

∥∥
Σk

+
∂

∂z

∥∥H i,k

∥∥
Σk

(zk − zjk)
)
,

∀i ∈ {1, 2, .., lx}, (4.11e)

Gi,kvk ≤ gi,k − ϕ−1(1− ϵui
)
(∥∥Gi,kKk

∥∥
Σk

+
∂

∂z

∥∥Gi,kKk

∥∥
Σk

(zk − zjk)
)
,

∀i ∈ {1, 2, .., lu}, (4.11f)

|κk − κj
k| − Ωj ≤ tk, −tk ≤ 0, (4.11g)

s0 = s(0), (4.11h)
sf = s(N), (4.11i)
∀k ∈ {0, 1, .., N − 1}. (4.11j)
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zk ∈ R9+3nc = (sk,vk) is the concatenated vector of states and controls at
time k. Constraints (4.11e)-(4.11f) are the linearized state and control chance
constraints, where

∂

∂z

∥∥H i,k

∥∥
Σk

=
1

2
∥∥H i,k

∥∥
Σk

(
2H⊤

i Σk
∂

∂z
H i,k +

n∑
i=0

n∑
j=0

hihj
∂

∂z
Σij

)
. (4.12)

∂
∂z
Σ ∈ R9×9×(9+3nc) represents the covariance derivative w.r.t. z. Notice that this

term is more involved since it includes the propagation of the tensor derivatives of
the covariance matrix given the current states and controls as well as the previous
states and controls as follows:

∂

∂z
Σk+1 =

k−1∑
i=0

Ak
∂

∂z
Σk+1|iA

⊤
k +

∂

∂z
Σk+1|k. (4.13)

We resort to the autodiff library JAX [9] for such computation. Finally, the trust
region constraints (4.11g) are enforced only on the angular momentum κk since
it’s the only nonlinear part in the centroidal dynamics.

4.2 Simulations Results
In this section, we report simulation results for the quadruped robot Solo in the

Pybullet simulation environment [21]. We compare trajectories generated using cen-
troidal stochastic trajectory optimization against nominal trajectory optimization
for trotting and bounding gaits on challenging unknown cluttered terrains. Offline,
we warm-start the centroidal SCP solver using centroidal trajectories coming from
the whole-body DDP solver Croccodyl [65]. Then, we optimize whole-body trajec-
tories to track back the optimized centroidal and force trajectories from the SCP
solver as illustrated pictorially in Fig. 4.1. The cost weights for both whole-body
DDP and centroidal SCP are summarized in Table 4.1 and Table 4.2, respectively.
Both DDP and SCP solvers were discretized with a sampling time of ∆k = 10 ms
for a planning horizon length of N = 165, and motion plans were designed on a flat
ground with a floor static coefficient of friction µ = 0.5 for both solvers. During
simulation (i.e. online), whole-body DDP joint-space trajectories were tracked at a
higher sampling rate of ∆k = 1 ms using a PD control law:

τ k = τ̄ k +Kp(qk − q̃k) +Kd(q̇k − ˙̃qk), (4.14)

where τ̄ k are the DDP optimal feedforward joint torque controls, qk and q̇k repre-
sent the DDP optimal joint positions and velocities respectively. Although in theory
the optimal DDP gains could be used, it was not transferable in our case for highly
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Figure 4.2: Trot motion in an unplanned cluttered environment using stochastic
centroidal SCP and whole-body DDP.

Table 4.1: Whole-body DDP cost weights.

DDP solver task weights

Task Trot Bound

Swing foot 1e6 1e6
SCP CoM tracking 1e3 1e1

SCP centroidal tracking 1e3 1e3
SCP force tracking 1e2 8e1

Friction cone 2e2 2e0
State regulation 1e-1 1e-1

Control regulation 1e0 1e0
Contact impact velocity regulation 2e1 2e1

dynamic motions, especially with long horizons as the motion diverged quickly.
For that reason, we used hand-tuned PD gains for the scenarios described in the
following subsection. The chance-constraints hyper-parameters of the stochastic
SCP were tuned as follows for the trotting and bounding motions: the probabil-
ity level of friction pyramid constraint violations for every leg is αu = 0.1. The
covariance of the contact position parametric uncertainties for each foot is set
to Σθ = diag

[
0.42, 0.42, 0.42

]
. The covariance of additive centroidal uncertain-

ties is set to Σw = diag
[
0.852, 0.42, 0.012, 0.752, 0.42, 0.012, 0.852, 0.42, 0.012

]
, and

Σw = diag
[
0.752, 0.42, 0.012, 0.852, 0.42, 0.012, 0.752, 0.42, 0.012

]
for the trotting

and bounding motions, respectively.

4.2.1 Simulations setup

We ran a set of Monte-Carlo simulations for two scenarios per motion: Scenario
1) without debris: 100 simulations on flat ground with a reduced floor friction
µ = 0.4, while applying random lateral force disturbances for 200 ms at the center
of the robot’s base link. For trotting motion, we set Kp = 4.0 ∗ I, Kd = 0.2 ∗ I. For
the bounding motion, we set Kp = 3.0 ∗ I, Kd = 0.2 ∗ I. Scenario 2) with debris:
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Figure 4.3: Bound motion in an unplanned cluttered environment using stochastic
centroidal SCP and whole-body DDP.

Table 4.2: Centroidal SCP cost weights.

SCP solver task weights

Task Trot Bound

DDP CoM tracking 1e4 1e4
DDP linear momentum tracking 1e3 1e3

DDP angular momentum tracking 1e5 1e5
Lateral force regulation per foot (x-direction) 1e2 1e2
Lateral force regulation per foot (y-direction) 1e0 1e2

Vertical force regulation per foot 1e1 1e1
Initial trust region weight 1e2 1e2

100 simulations with reduced floor friction µ = 0.4, while adding unplanned debris
of 2− 3 cm height (6.6− 10% of the robot’s leg length) with varying orientations
of 0 − 17 degrees along x and y directions as shown in Fig. 4.2 and Fig. 4.3 for
trotting and bounding motions, respectively (please refer to the video for more
details).The joint impedances were set to Kp = 5.0∗ I, Kd = 0.2∗ I for the trotting
motion, and Kp = 4.7 ∗ I, Kd = 0.2 ∗ I for the bounding motion. Further, we
apply again random lateral force impulses for 200 ms at the center of the robot’s
base. The same force disturbances were applied to the nominal and stochastic
trajectories and were sampled from a Gaussian distribution with zero mean and
σ = 15 N (60% of the robot weight). The force impulse is applied at the same
randomly sampled time instance after the first second of the motion. We analyze
the robustness of the motions generated using stochastic SCP against their nominal
counterpart by evaluating the Normalized cumulative sum of the contact position
deviations of the robot feet when a foot is in contact with the ground (i.e. foot
slippage), which reflects the saturation of the friction pyramid constraints. The
normalized cumulative sum was computed by subtracting the average cumulative
sum of the previous samples from the current integral quantity at each point in time.
Moreover, we report the centroidal tracking performance between the generated
SCP references and the simulated trajectories.

First, we discuss the optimized contact forces generated using nominal and
stochastic SCPs, which are later tracked using whole-body DDP. In Fig. 4.4, we
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Figure 4.4: Ratio of norm of tangential forces w.r.t. vertical force for a trotting
motion (left) and a bounding motion (right).

plot the ratio between the norm of the tangential forces and the vertical forces for
dynamic trotting and bounding motions. As expected, the forces optimized using
stochastic SCP saturate less the friction cones compared to the ones optimized with
nominal SCP, especially during single support phases where the solution of the
QP is unique. This highlights the contribution of the control back-off magnitudes,
which increase along the horizon due to the covariance propagation along the
linearized dynamics (4.11f).

For the trotting motion (Fig. 4.5), trajectories designed using stochastic SCP
(our method) achieved less feet slippage mean (26.3% and 28.9% for scenario 1 and
2, respectively) than nominal SCP and an improved centroidal tracking performance
mean (8.41% and 13.0%). The same analysis was carried out for the bounding
motion in a more challenging terrain (Fig. 4.3). As shown in Fig. 4.6, stochastic
SCP trajectories contributed to fewer feet slippage mean (22.8% and 14.8% for
scenarios 1 and 2, respectively) than nominal SCP, and an improved centroidal
tracking performance mean (25.6% and 13.6%).

4.3 Conclusions
In this work, we used nonlinear stochastic trajectory optimization for generating

robust centroidal momentum trajectories for legged robots that take into account
additive uncertainties on the centroidal dynamics as well as parametric uncertainties
on the contact positions. We used a linearization-based covariance propagation for
resolving the stochastic nonlinear dynamics. Furthermore, we resolved the friction
pyramid joint chance constraints by designing proper upper bounds (back-offs) at
each point in time on the individual hyper-planes forming the friction pyramid
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Figure 4.5: Normalized cumulative sum of feet slippage norm (left) and centroidal
tracking cost (right) for a trotting motion.

Figure 4.6: Normalized cumulative sum of feet slippage norm (left) and centroidal
tracking cost (right) for a bounding motion.

polytopes. Finally, we presented a whole-body trajectory optimization framework
that alternates between stochastic centroidal trajectory optimization and whole-
body trajectory optimization for generating feasible robust whole-body motions.
We used our framework to generate trotting and bounding dynamic gaits for the
quadruped robot Solo. We then tracked these trajectories in a Pybullet physics
simulator, introducing different disturbance realizations and contact uncertainties.
The results show that our approach generated safer motions by contributing to
less average contact slippage, as well as improved centroidal tracking performance
over deterministic trajectory optimization. Although the current stochastic SCP
approach does not require additional optimization variables over a deterministic
approach SCP, the computational complexity is relatively higher due to uncertainty
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propagation and the additional tensor derivatives required for solving the linearized
chance constraints.

Another limitation of the current stochastic SCP approach lies in the accuracy
of uncertainties propagation through the linearized dynamics, which might be
hindered for long horizons. However, we believe that this might not be an issue
in practice when applied in a receding horizon fashion. To this end, we plan to
extend the current framework to nonlinear stochastic MPC in the future.
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Chapter 5

Whole-Body Nonlinear Stochastic
MPC

This chapter builds upon this publication [32]. Trajectory optimization under
uncertainties is a challenging problem for robots in contact with the environment.
Such uncertainties are inevitable due to estimation errors, control imperfections,
and model mismatches between planning models used for control and the real robot
dynamics. This induces control policies that could violate the contact location
constraints by making contact at unintended locations and as a consequence leading
to unsafe motion plans. This work addresses the problem of robust kino-dynamic
whole-body trajectory optimization using stochastic nonlinear model predictive
control (SNMPC) by considering additive uncertainties on the model dynamics
subject to contact location chance constraints as a function of the robot’s full
kinematics. We demonstrate the benefit of using SNMPC over classic nonlinear
MPC (NMPC) for whole-body trajectory optimization in terms of contact location
constraint satisfaction (safety). We run extensive Monte-Carlo simulations for
a quadruped robot performing agile trotting and bounding motions over small
stepping stones, where contact location satisfaction becomes critical. Our results
show that SNMPC can perform all motions safely with 100% success rate, while
NMPC failed 48.3% of all motions.

5.1 Stochastic Optimal Control for Kinodynamic
Trajectory Optimization

We present the stochastic OCP version of problem (2). Consider the following
controlled stochastic diffusion:

∂x = ∂f(xt,ut)∂t+C∂wt, (5.1)
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where the state xt ∈ Rn evolves stochastically based on the additive random
variable wt ∈ Rn. The selector matrix C ∈ Rn×n maps the additive disturbance
on the dynamics.

Assumption 4. (Additive disturbance process)
∂wt ∼ N (0, ∂t) is an additive Gaussian random process with zero mean.

Assumption 5. (State feedback control policy)
ut ∈ Rm is a causal state feedback control policy in the form of ut = u

∗
t+K(x∗

t−xt),
where u∗

t is the optimized feedforward open-loop control actions, K ∈ Rm×n are
stabilizing feedback gains, and xt is the deterministic state evolving as xt+1 =
f(xt,ut).

Given the above, we aim to solve the following SNMPC problem with contact
location chance constraints.

Problem 6. Kino-dynamic SNMPC problem with contact location joint chance-
constraints

minimize
X,U ,S

E
[
Ltotal(X,U ,S)

]
(5.2a)

subject to (5.2b)
f ′

impl (xk+1,xk,uk,wk) = 0, (5.2c)
(2.14), (2.15), (2.16a), (5.2d)
Pr(2.16b) ≥ αi,k, ∀i ∈ {1, . . . , nc}, (5.2e)
− sk ≤ 0, ∀k ∈ {0, 1, . . . , N − 1}, (5.2f)
x0 − x(t) = 0, (5.2g)

where (5.2c) are the discrete-time implicit stochastic dynamics equality path
constraints in (5.1). The constraints (5.2d) are to be satisfied deterministically by
enforcing them on the mean of the state. In this work, we aim to account for the
additive uncertainties by enforcing the contact location constraints in the x − y
directions probabilistically within at least a probability level αi,k (5.2e), which
are known as chance-constraints. The above SNMPC problem is not tractable in
general because the dynamics are stochastic, and resolving the chance-constraints
(5.2e) requires the integration of multi-dimensional Probability Density Functions
(PDFs), which becomes computationally intractable for high dimensions. To tackle
those issues, we solve an approximate deterministic reformulation of the above
OCP.
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5.1.1 Tractable formulation of Friction Pyramid Joint Chance-
constraints

The goal of the following subsections is to design safety margins/upper bounds
known as back-offs on the contact location chance-constraints (5.2e) to accommo-
date for the additive stochastic disturbances on the dynamics that are difficult
for only feedback to deal with. This is particularly crucial for legged robots since
making contact at unintended contact locations can lead to unsafe motions. We
design such back-offs formally based on the evolution of statistical information along
the horizon inside the optimization problem, such that we can provide probabilistic
statements about constraint satisfaction without degrading the performance. Notice
that those margins are not fixed compared to designing them heuristically by hand
(check the results section). In other words, if the variance of the uncertainty is
large, or we want to satisfy the constraints with a larger probability, then it reflects
automatically on the back-off magnitude by increasing the safety margin accord-
ingly to ensure the expected probability of constraint satisfaction. To reduce the
computational complexity for solving the contact-location joint chance-constraints
(5.2e), we first linearize the nonlinear constraints around the j-th SQP iteration
at ∆xk ≜ xk − xj

k, then solve for each half-space chance-constraints forming the
linearized feasible set as follows:

∇xk
(2.16b) = γi,k.

(
hx,y

posi,k
(q̃jk) + J

x,y
i,k (q̃

j
k)∆xk ∈ Sx,y

i,k

)
. (5.3)

Given the above-linearized constraints, we can write down the contact location
chance constraints as a conjunction of half-space constraints of the 2D polygon
forming Sx,y

i,k ∈ R4 as

Pr

 4∧
l=1

Gl
i,k(q̃

j
k)xk + gli,k ∈ S

x,y
i,k

 ≥ αi,k

≡ Pr

 4∨
l=1

Gl
i,k(q̃

j
k)xk + gli,k /∈ Sx,y

 ≤ 1− αi,k, (5.4)

where Gl
i,k is the l-th row of ±Jx,y

i,k (q̃
j
k) ∈ R4×n, and gli,k is the l-th element of

the vector gi,k ±
(
Jx,y

i,k x
j
k − h

x,y
posi,k

)
. To avoid multi-dimensional integrals of joint

chance constraints, we use Boole’s inequality

Pr(
n∨

i=1

Ci) ≤
n∑
i

Pr(Ci), (5.5)
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as a conservative union bound on the joint chance constraints [80]. By applying
Boole’s inequality we get

(5.4)
(5.5)⇐===

4∑
l=1

Pr
(
Gl

i,k(q̃
j
k)xk > gli,k

)
≤ 1− αi,k. (5.6)

By allocating equal risk for constraint violation for each half-space constraint
ϵi,k ≜ (1− αi,k)/4, we finally arrive to:

(5.6)⇐= Pr
(
Gl

i,k(q̃
j
k)xk + gli,k /∈ Sx,y

)
≤ ϵi,k,

≡ Pr
(
Gl

i,k(q̃
j
k)xk + gli,k ∈ Sx,y

)
≥ 1− ϵi,k,

∀i = 1, . . . , nc, ∀k = 0, . . . , N − 1, ∀l = 1, . . . , 4. (5.7)

Given the above-linearized chance constraints, we proceed to solve for each unimodal
PDF representing the half-space chance constraints forming the contact surface
polygon.

5.1.2 Deterministic Reformulation of Individual Contact lo-
cation Chance-Constraints

In this subsection, we present a tractable deterministic formulation for solving
the above individual chance constraints (5.7). This requires statistical knowledge
of the uncertainty propagation through nonlinear dynamics. One way to do
this is by exploiting sampling methods like unscented-based transforms [85], or
Generalized Polynomial Chaos (gPC) [77]. These methods can lead to a more
accurate estimate of the propagated uncertainty at the cost of a significant increase
in computational complexity, which is often too time-demanding for real-time
MPC. Since computational efficiency is critical in our case, we defer from using
these methods. Instead, we adopt an approximate linearization-based covariance
propagation as in [121][57]. Based on assumptions (4)-(5), the approximate mean
and covariance of the dynamics evolve as

x̄k+1 ≈ f(x̄k, ūk) +Ak∆x̄k +Bk∆ūk, (5.8a)

Σxk+1
= AclΣxk

A⊤
cl +CΣw, Σx0 = 0, (5.8b)

Acl ≜ Ak +BkKk. (5.8c)

The initial condition is assumed to be deterministic (i.e. x0 = x̄0), where the¯
superscript denotes the mean of the quantity. The j-th controls perturbation is
defined as ∆ūk ≜ ūk− ūj

k, and (5.8c) is the linearized closed-loop dynamics, where
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Ak ≜ ∇x̄f(x̄k, ūk)|x̄j
k,ū

j
k
, and Bk ≜ ∇ūf(x̄k, ūk)|x̄j

k,ū
j
k

are the Jacobians of the
dynamics w.r.t. the nominal state and control respectively. The feedback gains
Kk are computed using the Discrete Algebraic Riccati Equation (DARE) based on
the time-varying linearized dynamics. Using the covariance information in (5.8b)
and the probability level of constraint violation ϵi,k, we seek the least conservative
upper bound ηli,k at each point in time for each half-space contact location chance-
constraint (5.7). By exploiting the inverse of the Cumulative Density Function
(CDF) Φ−1 of a Gaussian distribution, we get a deterministic reformulation of the
individual contact location chance-constraints:

Gl
i,k(q̃

j
k)x̄k + glk ∈ Sx,y − ηlk, ∀l = 1, . . . , 4, (5.9a)

ηlk ≜ Φ−1(1− ϵlk)
∥∥∥Gl

i

∥∥∥
Σxk

. (5.9b)

ηlk is the back-off bound that ensures the satisfaction of the individual chance
constraints (5.7) illustrated pictorially in Fig. 5.1. Contrary to designing a heuristic-
based back-off bound by hand, this upper bound is not fixed (i.e. it varies at every
point in time along the horizon). This is because the magnitude of this back-
off bound is scaled by the covariance propagation along the horizon (5.8b), the
magnitude of the time-varying feedback gain Kk (5.8c), as well as the design
parameter ϵi,k capturing the desired probability of constraint satisfaction. Although
in theory, one can optimize for bothKk and ϵi,k for better performance, this usually
leads to a bi-level optimization, which is computationally expensive to solve in
real-time for MPC applications.

5.1.3 Deterministic Reformulation of SNMPC

Given the previous reformulation of the individual chance constraints, we can
write down a deterministic reformulation of the original SNMPC problem (6) on
the mean of the nonlinear dynamics. Despite the reformulated chance-constraints
constraints, this problem has the same number of optimization variables as the
NMPC problem (2), which means that with the gained robustness, we don’t increase
the computational complexity of the problem over NMPC.
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Figure 5.1: Effect of equally distributed back-offs design of the linearized contact
location chance-constraints.

Problem 7. Kino-dynamic SNMPC problem with individual chance constraints

minimize
X̄,Ū ,S

Ltotal(X̄, Ū ,S) (5.10a)

s.t. (5.10b)

F (x̄k+1, x̄k, ūk) ≜ f impl(x̄k, x̄k+1, ūk) = 0, (5.10c)

E(x̄k, ūk) ≜

{
heq(x̄k, ūk, sk) = 0,
x̄0 − x(t) = 0,

(5.10d)

I(x̄k, ūk) ≜

{
hineq(x̄k, ūk, sk) ≤ 0,

G(x̄j
k)x̄k + gk + J sgsk ∈ Sx,y − ηk,

(5.10e)

− sk ≤ 0, ∀k ∈ {0, 1, . . . , N − 1}. (5.10f)

This SMPC problem optimizes for the open-loop mean states X̄ = {x̄0, . . . , x̄N},
and feedforward controls Ū = {ū0, . . . , ūN}. All nonlinear equality constraints

are captured inside heq(.) =
[
(2.14)⊤, (2.16a)⊤, (2.17)⊤

]⊤
, while hineq(.) = (2.15)

captures the friction cone inequality constraints. Finally, the second row of the
inequality constraints (5.10e) are the backed-off contact location constraints in the
x− y directions, where ηk = ηk.12nc . These linearized constraints are implemented
softly with J sg being the slack selector matrix. The above OCP is solved using
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Algorithm 1: Approximate SNMPC Algorithm.
1 Z0

traj ← Offline whole-body iLQR initial guess
2 for j = 0, 1, . . . , Ntraj − 1(trajectory horizon) do

/* QP PREPARATION PHASE */

3 Zj ← initial guess

{
Z0

traj if j = 0

Zj−1
mpc otherwise

4 for k = 0, 1, . . . , Nmpc − 1(MPChorizon) do
5 Aj

k,B
j
k ← computeFWDSensitivities(5.8a)

6 Kj
k ← computeDARE(Aj

k,B
j
k,Q,R)

7 Σj
k ← propagateCovariance(5.8b)− (5.8c)

8 ηj
k ← computeBackOffs(5.9a)

/* FEEDBACK PHASE */
9 ∆Z∗,S∗ ← solveQPSubProblem 8

10 uj
0 ← FeebackPolicyAssumption 5

11 Zj+1 ← Zj +∆Z∗, ζj+1 = ζ∗

12 βj+1 ← β∗, γj+1 ← γ∗

Output: X∗
traj,U

∗
traj,S

∗
traj

Sequential Quadratic Programming (SQP) [79] by constructing a quadratic model
of the cost objective subject to linearized constraints that solves the Karush-Kuhn-
Tucker (KKT) system associated with the following Lagrangian:

Ψ(z) = Ltotal + ζ
⊤F + β⊤E + γ⊤I, (5.11)

where z ≜ [x̄⊤, ū⊤]⊤ is the concatenated vector of states and controls. ζ, β are
the associated Lagrange multipliers to the equality constraints, and γ are the ones
corresponding to the inequality constraints. Given a perturbation ∆zk ≜ zk − zjk,
where zj is the current initial guess along the control horizon, the following QP
subproblem is solved:
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Problem 8. QP subproblem

minimize
∆Z,S

1

2
∆zj

⊤
H∆zj + p⊤∆zj (5.12a)

s.t. (5.12b)
F (zj) +∇zF (zj)∆zj = 0, (5.12c)
E(zj) +∇zE(zj)∆zj = 0, (5.12d)
I(zj) +∇zI(z

j)∆zj ≤ 0, (5.12e)
sj ≤ 0. (5.12f)

The Hessian of the Lagrangian H ≜ ∇2
zΨ(zj) is approximated using the

Generalized Gauss-Newton (GGN) variant of SQP as H ≈ ∇⊤
zΨ(zj)∇zΨ(zj), and

the gradient of the residual is defined as p ≜ ∇⊤
zΨ(zj)Ψ(zj). For an exact SQP

iteration, the linearization of the backed-off contact location constraints included
in the above inequality constraints includes the extra derivative ∇zη(z

j
k):

Gl
i,k(x̄

j
k)x̄k ≤ gli,k − ηlk︸ ︷︷ ︸

IG(zj
k)

−Φ−1(1− ϵli,k)
(
∇z

∥∥∥Gl
i,k(x̄

j
k)
∥∥∥
Σxk︸ ︷︷ ︸

∇zη(z
j
k)

(zk − zjk)
)
,

∇z

∥∥∥Gl
i,k(x̄

j
k)
∥∥∥
Σxk

≜
(
2
∥∥∥Gl

i,k

∥∥∥
Σxk

)−1
(
2Gl⊤

i,kΣxk
∇zG

l
i,k +

n∑
i=0

n∑
j=0

glig
l
j∇zΣij

)
,

∀l ∈ {1, . . . , 4},∀i ∈ {1, . . . , nc},∀k ∈ {0, . . . , N}.
(5.13a)

The above derivative involves the tensor derivative of the covariance matrix ∇zΣxk
,

which is expensive to compute.

Remark 6. For real-time computational tractability, we adopt a SQP-type iteration
by approximating ∇zη(z

j
k) = 0 as in [44]. This SQP approach is sub-optimal

because we don’t compute the exact Jacobian of the contact location inequality
constraint as in [33], [57]. Despite this sub-optimality, this scheme yields good
results in practice without sacrificing computational complexity over NMPC.

The OCP is implemented with real-time iteration [27], where one QP sub-
problem is solved at a time using a full Newton-type step without a line search
(see Algorithm 1).

5.2 Simulations Results
We report simulation results comparing SNMPC against NMPC for the quadruped

robot Solo [37] performing dynamic trotting and bounding gaits on non-coplanar
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small stepping stones. The robustness of both controllers is tested in terms of con-
tact location constraint satisfaction (safety), and performance computed using the
least-squares tracking cost (2.18a). Moreover, we test the safety margins induced
by SNMPC against heuristic-based NMPC (HNMPC) and NMPC. For HNMPC,
we shrank the contact-location constraints heuristically by hand by performing a
grid search on an interval between 1 cm and 3 cm. A safety margin of 3 cm was
selected as it was the first value where the contact-location constraints became
active and differed from NMPC.

We conducted two sets of simulations: A) Kino-dynamic Monte-Carlo
Simulations, where we test the robustness of the kino-dynamic model against
persistent disturbance realizations. B) Whole-body simulations, to test the
effect of model mismatch between the kino-dynamic model and the whole-body
model of the robot in the Pybullet simulator. All three MPC approaches follow a
trajectory generated offline using whole-body DDP from the Croccodyl solver [65]
with pre-planned contact locations at the center of the contact surfaces. Also, the
first MPC iteration is warm-started using this trajectory, while subsequent MPC
iterations are warm-started from the previous MPC solution. The cost weights for
the kino-dynamic MPC are summarized in Table 5.1. All problems were discretized
with a sampling time of ∆k = 10 ms for an MPC horizon length of N = 40, and
N = 55 for the trot and bound motions respectively. The motion plans were
designed with a coefficient of friction µ = 0.5. Finally, the real-time iteration
scheme was performed using the optimal control solver ACADOS [108], exploiting
Casadi’s automatic differentiation [1], and Pinocchio’s analytical derivatives for
rigid body kinematic functions for computing the underlying derivatives [15].

5.2.1 Kino-dynamic Monte-Carlo Simulations

We run 500 closed-loop kino-dynamic Monte-Carlo simulations for each mo-
tion (trotting and bounding). We sample additive kinematic disturbance realiza-
tions from a multi-variate Gaussian distribution with zero mean and a covariance
Σw = DIAG [06, 0.3

2, 0.32, 0.32, 0.22, 0.22, 0.22, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72,
0.72, 0.72, 0.82, 0.82, 0.82, 0.12, 0.12, 0.12, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72]⊤.
We tune the risk of violating the contact location constraints for SNMPC to be
ϵ = 0.01 for all feet and contact surfaces. The disturbances are applied on the
base velocity at the time contacts are made to mimic the effect of impacts on the
kino-dynamic model, as well as on the swing leg joint velocities during take-off and
landing to simulate persistent disturbances and control imperfections on the swing
legs. Finally, no disturbances are applied at the feet after impact based on the
assumption that the feet do not slip. The disturbance realizations are discretized
and integrated on the dynamics (5.1) using the Implicit-Euler integration scheme.

We report the percentage of successful motions in Table 5.2a. As shown, SN-
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Table 5.1: MPC cost weights.

Kin-dyn weights

Task Trot Bound

CoM tracking 2e3 2e3
linear momentum tracking 2e2 2e2

angular momentum tracking 2e4 2e4
base position tracking 2e1 2e1

base relative orientation regulation 2e2 2e2
joint positions tracking 1e3 1e3

base linear velocity tracking 2e2 2e2
base angular velocity tracking 6e2 2e2

joint velocities tracking 8e1 6e1
force regulation (x-direction) 1e1 1e2
force regulation (y-direction) 1e1 2e1
force regulation (z-direction) 2e0 2e0
joints acceleration regulation 6e-3 1e-2

Slack L1/L2 weights

Constraint Trot Bound
friction cones constraint 5e0/5e-1 1e3/0e0

foot velocity equality constraint 5e2/0e0 1e4/0e0
CoM kin-dyn equality constraint 0e0/5e1 0e0/5e1

lin. mom. kin-dyn equality constraint 0e0/1e1 0e0/1e1
ang. mom. kin-dyn equality constraint 0e0/1e1 0e0/1e1

contact location chance-constraints (x-y) 1e4/0e0 1e4/0e0
contact location chance-constraint (z) 5e4/0e0 3e4/0e0

MPC manages to perform all motions successfully without violating any of the
contact location constraints despite the disturbances, which satisfies the expected
probability of constraint satisfaction (99%) thanks to the design of contact lo-
cation constraints back-off design in (4.7a). On the contrary, NMPC violated
the contact location constraints 48.3% of all motions. Finally, HNMPC violated
fewer constraints than NMPC, but still worse than SNMPC despite the robustness
induced by shrinking the constraint set by hand. We highlight that although this
heuristic works fairly for the trot case (success rate of 85.4%), using the same metric
performed worse for a more agile bounding motion with a success rate of 67%,
which dictates that the user needs to keep tuning the controller blindly every time
the OCP parameters changes to attain the desired empirical results. To quantify
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Table 5.2: Robustness and performance.

(a) Rate of successful motions

Task NMPC HNMPC SNMPC

Trot 51.0% 85.4% 100%
Bound 52.4% 67% 100%

(b) Open-loop MPC cost.

Task NMPC HNMPC SNMPC

Trot×107 3.27 3.28 3.31
Bound×108 4.72 4.72 4.77

(a) Trot motion. (b) Bound motion.

Figure 5.2: Norm of the contact location deviations from the contact surface center
using NMPC, HNMPC, and SNMPC.

the safety margin induced by all controllers, we plot the mean and the 2σ distance
between the end-effector positions and the center of the contact surface in Fig.
5.2 showing that SNMPC induced the best safety margin being the closest to the
center of the contact surfaces.

Finally, we plot the performance of the three controllers in Table 5.2b based
on open-loop MPC, where we plug the predicted open-loop state instead of the
measured state during re-planning. We highlight that we didn’t use Monte Carlo
simulations in computing the performance due to presence of large number failed
trajectories in both NMPC and HNMPC cases. Although SNMPC sacrifices a bit
the performance for safety, the performance of the three controllers is comparable.
This is because the swing foot tracking of the controllers is affected by real-time
iteration schemes (non-full-convergence of the OCPs), and slack penalties on the
constraints.
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5.2.2 Whole-body Simulation

In this subsection, we test the effect of model mismatch between the kino-
dynamic model and the whole-body model (i.e. the dynamic effects of the legs).
Although in practice the legs are assumed to be massless for quadruped robots,
their effect cannot be neglected for agile motions. Moreover, impulsive dynamics
during impacts are also ignored since they are usually hard to model. Finally, since
we are running real-time iterations, neither solver achieves full convergence in one
Newton/Newton-type step. As a consequence, the previous effects can hinder the
satisfaction of the contact location constraints. To test those effects, we report
whole-body simulations of the quadruped robot Solo [37] in the Pybullet simulation
environment [21] for dynamic trot and bound motions shown in Fig. 5.3 and Fig.
5.4 respectively. The whole-body simulation runs with a discretization time of
∆simk

= 1 ms, where the feedforward MPC trajectories are linearly interpolated.
We apply the following state feedback control law to both controllers:

τ k = τ
∗
k +Kp(q

∗
jk
− qjk) +Kd(q̇jk − q̇jk), (5.14a)

τ ∗
k ≜ RNEA(q̃∗k, q̇

∗
k, q̈

∗
k)−

nc∑
i=0

J⊤
i (q̃

∗
k)λ

∗
i . (5.14b)

The feedforward torques are computed using the Recursive Newton-Euler Algorithm
(RNEA) [30]. The joint position and velocity feedback gains are set to Kp =
2.Inj×nj

and Kd = 0.15.Inj×nj
respectively. The superscript ∗ represents the

optimized quantities coming from MPC. For the trot motion, NMPC and HNMPC
failed to complete the motion by breaking contact in the second step as shown in
Fig. 5.3a. On the contrary, SNMPC manages to complete the motion successfully
until the end (see Fig. 5.3b). We tested the effect of leg inertia for an agile bounding
motion, where NMPC and HNMPC failed again during the second bounding step
(see Fig. 5.4a), while SNMPC completed the motion as shown in Fig. 5.4b (check
the submission video).

5.3 Conclusions
In this work, we tackled the problem of kino-dynamic stochastic trajectory

optimization subject to additive uncertainties on the dynamics and contact location
chance constraints. We designed contact location safety constraints by comput-
ing upper bounds (back-offs) that take into account the linearized propagated
uncertainties along the planning horizon assuming a Gaussian distribution of those
uncertainties. The final solution is an approximate solution of the original SNMPC
problem with a real-time iteration scheme. We compared the robustness of SNMPC
against NMPC by running 1000 Monte-Carlo kino-dynamic simulations for agile
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(a) Failed trot motion using NMPC.

(b) Successful trot motion using SNMPC.

Figure 5.3: Comparison of whole-body trotting motion on non-coplanar stepping
stones using NMPC and SNMPC.

trotting and bounding motions for the quadruped robot Solo on a challenging non-
coplanar environment with small stepping stones as well as whole-body simulations.
SNMPC completed all the motions successfully without violating the contact loca-
tions constraints, while NMPC violated them 48.3% of the time. Moreover, we ran
whole-body simulations in Pybullet to study the effects of mismatch between the
kino-dynamic and whole-body model; SNMPC was able to complete both motions
successfully, while NMPC failed in both cases showing the benefit of SNMPC over
deterministic planning in safety-critical scenarios.

Finally, we also compared the robustness of SNMPC gainst HNMPC. Since the
robustness of SNMPC is induced by designing proper back-offs, then one might
think why not design such safety margins heuristically by shrinking the constraint
set by hand? We argue that although this approach might work in practice for
some cases, it does not provide an automatic procedure of designing such safety
margins leaving this to a process of trial and error. For instance, what should
be the proper safety margin for different agile motion plans without degrading
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(a) Failed bounding motion using NMPC.

(b) Successful bounding motion using SNMPC.

Figure 5.4: Comparison of whole-body bounding motion on non-coplanar stepping
stones using NMPC and SNMPC.

performance? As shown in our empirical results, using the same heuristic safety
margin for both trotting and bounding motions, yielded different safety rates of
successful motions. Moreover, this heuristic-based approach does not relate the
magnitude of the back-off design with the uncertainty statistics that might be
available from previously collected data about the system in simulation or on the
real robot. On the contrary, SNMPC methodologically addresses those issues by
computing such bounds automatically, which vary at each point in time-based on
expected uncertainty propagation along the horizon, the time-varying closed-loop
feedback gain, and the desired probability of satisfying such constraints (4.7a).

One limitation of the current work is that it does not take into account contact
mode uncertainties, which are of a combinatorial nature. We would like to explore
tractable SNMPC formulations that take into account contact time uncertainties
induced by uncertainties in the discrete contact modes, which is beneficial for
sequential manipulation and locomotion tasks. Moreover, we intend to test the
current SNMPC scheme on real robot experiments in future work.
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Chapter 6

Summary and Conclusions

In the previous chapters, we introduced stochastic predictive control approaches
for trajectory optimization of legged robots subject to state and control chance
constraints under additive and parametric uncertainties.

In chapter 3, we dealt with the convex case of the simplified LIPM subject
to individual (hyper-plane) collision avoidance chance constraints. By exploiting,
the Gaussian assumption of uncertainties description and the model linearity, we
were able to propagate exactly the expected error dynamics along the control
horizon, and design time-varying constraint back-offs for constraint-tightening
offline. The resulting reformulated SOC is a QP and has the same complexity as
a convex nominal MPC online. Furthermore, we compared this SMPC algorithm
against tube-based RMPC and nominal MPC applied to a simulated humanoid
robot walking in a safety-critical situation while applying persistent stochastic
disturbances as the robot passes through a narrow hallway. Our comparison
focused on the trade-off between robustness (constraint satisfaction) and optimality
(performance). Our tests show that, while SMPC does not provide hard guarantees
on constraint satisfaction, in practice we did not observe any constraint violation
with a sufficiently low expected probability of constraint violation of (≤ 1%).
This comes with the advantage of less conservative control, i.e. it results in better
performance as measured by the cost function. We also highlighted the fundamental
difference between RMPC and SMPC in terms of worst-case robustness, showing
that SMPC sets attenuate maximum disturbance sets that shrink contractively as
time grows. Loosely speaking, SMPC can be thought as a special kind of RMPC
that considers shrinking disturbance sets along the horizon.

In chapter 4, we extended the stochastic OCP policy to the non-convex case of
the centroidal momentum dynamics subject to additive and parametric fixed contact-
location stochastic uncertainties and friction pyramid joint chance constraints.
Using the same assumption of Gaussian uncertainties, we computed a linearization-
based covariance propagation around the mean of the current SQP iteration to
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compute a deterministic reformulation of the stochastic OCP. Furthermore, we
presented a robust whole-body trajectory optimization framework that alternates
between stochastic centroidal trajectory optimization and whole-body trajectory
optimization for generating feasible robust whole-body motions. Although this
stochastic OCP approach does not require additional optimization variables w.r.t.
its deterministic counterpart, the computational complexity is relatively higher due
to uncertainty propagation and additional tensor derivatives required for solving
the linearized joint chance constraints. This framework was tested on a simulated
quadruped on challenging unexpected terrains and different disturbance force
disturbances on the robot. We showed that stochastic trajectory optimization was
able to perform all motions more safely than nominal trajectory optimization with
better performance.

The final result was presented in chapter 5. We presented an approximate
real-time SNMPC algorithm for robust whole-body trajectory optimization of
legged robots subject to additive uncertainties. Contrary to the previous work in
chapter 4 on stochastic centroidal momentum trajectory optimization, we performed
one whole-body trajectory optimization by optimizing for both the centroidal
dynamics and the full robot kinematics (kino-dynamics), which allows us to model
uncertainties on the optimized contact locations in a receding horizon fashion rather
than on fixed contact locations with fixed parametric contact location uncertainties.
For computational tractability, we performed a real-time SQP-type iteration by
approximating the jacobian of the reformulated deterministic contact-location
joint chance constraints. We ran extensive simulation robustness tests for agile
quadrupedal motions subject to persistent force disturbances on the kino-dynamic
model as well as whole-body simulations to account for the model mismatch between
the kino-dynamic and whole-body model. Our results showed that SNMPC was
able to perform all motions successfully till the end, while NMPC failed most of the
time by violating the contact-location constraints. Finally, we discussed the safety
margins introduced by the backed-off chance constraints against HNMPC where
the safety margins are tuned by hand as a process of trial and error. Although
this approach is simpler to implement and can work for some cases in practice, we
argue that it can be tedious to tune for every optimized motion, and it does not
relate the magnitude of back-off design with the uncertainty statistics that might
be available from previously collected data about the system in simulation or on the
real robot. On the contrary, SNMPC methodologically addresses those issues by
computing such bounds automatically, which vary at each point in time based on
expected uncertainty propagation along the horizon, the time-varying closed-loop
feedback gain, and the desired probability of satisfying the chance constraints. We
highlight that the final SNMPC algorithm has almost the same computational
complexity as NMPC and HNMPC with negligible extra computation for the
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analytical uncertainty propagation of the constraint back-off design at every MPC
cycle.

6.1 Limitations
This thesis tackled some of the drawbacks of the state-of-the-art methods in

robust trajectory optimization of legged robots by proposing for the first time to
solve the problem using chance-constrained stochastic predictive control algorithms.
However, we highlight that the presented algorithms are far from perfect, and
there is room for improving the presented algorithms. We present some of those
improvements in the next subsections.

6.1.1 Automatic Chance-Constraint Risk Allocation

In all of the presented algorithms, we assumed a fixed probability level for
violating the chance-constraint for both the individual chance-constraints case in
chapter 3, and an equally distributed risk allocation for the joint-chance constraints
case between overall hyper-planes forming the constraint set in chapter 4, and
chapter 5. Although this approach is rather simple and allows the same compu-
tational complexity as the deterministic case, it can be a bit conservative since
classically one would like to allocate a larger back-off bound/safety margin on
active constraints over non-active ones. Furthermore, we assumed fixed stabilizing
dead-beat/LQR gains for the state feedback control policy. A better approach is
to optimize as well for those parameters inside the stochastic OCP for better per-
formance. This comes at a cost of increasing the number of optimization variables
and increased computational complexity when solved using bi-level mathematical
programs [81, 5, 110] for the linear SMPC or using an interior-point method as
in [60]. Extending those approaches to SNMPC can be a good step to enhance the
performance of the current algorithms.

6.1.2 Uncertainty Quantification

Throughout this work, we assumed that the additive and parametric uncer-
tainties descriptions on the model dynamics are modeled as known Gaussian
distributions. Although this allows the propagation of uncertainties in an exact
analytical fashion in the linear SMPC case, the accuracy of the approximated
linearization-based covariance propagation might not be accurate for long horizons
in the nonlinear case, especially for offline trajectory optimization. One way to
tackle this is by designing an ad-hoc uncertainty quantification module that learns
the statistics of the underlying uncertainty distributions online for SNMPC. This
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was explored in [44] applied to autonomous car racing using Gaussian Processes
(GPs) for learning residual uncertainties in the process model. Other approaches
like Pandala et al. learned the vertices of an additive polytopic set for linear
RMPC offline in simulation for a quadruped walking on a variety of terrains [83].
Although this approach can learn such distributions offline, it can fall short on
out-of-distribution uncertainties in the real world (a.k.a sim-to-real problem), which
can hinder the safety and performance of the robot.

6.1.3 Contact Mode Uncertainties

Throughout the presented work, we explored dealing with additive and paramet-
ric uncertainties on the continuous part of the model dynamics for both linear and
nonlinear cases. Another crucial uncertainty for robots in contact-rich scenarios
is dealing with structural uncertainties in the discrete contact modes, which was
not considered in the presented algorithms. This is crucial for long-horizon hybrid
tasks such as locomotion and manipulation. This problem is very challenging
due to the multi-modal nature of making/breaking contact with the environment
along the horizon, which is computationally expensive. Coming up with tractable
formulations for contact mode uncertainties inside SNMPC is essential for safe tra-
jectory optimization. Combining ideas from scenario optimization and multi-stage
stochastic programming is worth exploring [94].

6.2 Future Work

6.2.1 Inference for Control

Another direction to overcome the intractability of the stochastic OCP is by
reformulating it as an inference problem by approximating a posterior distribution
for sampling control sequences [106, 107]. This gives rise to a category of controllers
known as Path Integral Controllers (PICs) [47, 116]. One of the challenges of
such controllers is coming up with an efficient importance sampling procedure for
selecting elite samples to approximate the control distribution. It was shown by
Thijssen et al. [105] that the optimal feedback controller is indeed the optimal
sampler by providing a zero-variance estimate. Another challenge is to incorporate
constraints in the formulation of PIC. Recently, Carius et. al [14] applied PIC on
real quadrupedal robot experiments under equality constraints. Although a big
engineering effort was involved in the parallelization of a nominal MPC controller
pipeline along with a learning module for selecting elite samples, it can be a
promising direction given the recent advancement in computational power.
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6.2.2 Dual Control/ Reinforcement Learning (RL)

In this thesis, we assumed perfect state knowledge. However, the two tasks
of state estimation and control are closely intertwined; meaning that the control
actions influence not only the system states but also the uncertainty associated
with the states. Consider the case of a walking robot navigating with the camera
through the world; what the robot’s camera sees, affects the actions taken by the
robot like where to make contact with the environment, and vice versa, the robot’s
actions affect how the camera is oriented. This duality in the perception-action loop
was first studied by Feldbaum [31] gave rise to dual control theory, and has roots
in operational research known as the Multi-Armed Bandit Problem [48]. The goal
of dual controllers is to maintain an optimal balance (in the sense of the principle
of optimality [2]) between the probing effect of reducing the uncertainty of the
unknown parameters while improving the system’s performance [73]. This trade-off
is known as exploration-exploitation in the reinforcement learning literature [102].
From an optimal control perspective, those types of problems are intractable when
attempted to be solved with Dynamic Programming (DP) [2] due to the curse of
dimensionality. To this end, tractable sub-optimal solutions using approximate
dynamic programming might come to rescue [4, 73].

6.2.3 Beyond H-2 and H-infinity controllers

The work in this thesis, as well as the majority of works on stochastic optimal
control attempts in legged robotics, are categorized H2 control, where the expected
value of the cost is minimized under an assumption of stochastic noise. On the other
hand, works on robust optimal control like minimax approaches are categorized
under H∞ control which deals with worst-cost under adversarial disturbance.
Committing to a specific control strategy can fall short when the disturbance does
not follow the specific measure the policy is designed for in practice, leading to
sub-optimal trajectories. To this end, designing adaptive controllers that can adjust
their control strategy as they sequentially observe the disturbances irrespective
of how the disturbance realizations are generated can be a better design goal for
more rational controllers. A new promising step towards achieving this objective
is minimizing regret. Regret minimization penalizes the loss suffered by a learner
relative to the optimal policy in hindsight, and has its roots in statistical learning [92].
The goal of regret-based optimal control is to minimize the gap between a casual
controller, which has access only to the current and previous history of the state
against an offline non-casual controller assuming perfect knowledge of the future
disturbances [35]. Extending linear regret-based controllers [35] to the nonlinear
cases in legged locomotion can be a more robust metric for out-of-distribution
scenario cases like impacts during walking.
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