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geweckt hat. Einen so engagierten Doktorvater findet man selten. Vielen Dank!

Auch bei meiner Zweitgutachterin Prof. Dr.-Ing. Setareh Maghsudi und meinem Dritt-
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Summary

Abstract

Traditional network devices, e.g., routers and switches, provide support for a fixed set of
protocols and mechanisms. Network softwarization, and in particular software-defined
networking (SDN) and programmable data planes, has emerged in recent years and
breaks the previously existing vendor lock-in by decoupling the data and control plane
of network devices. Thereby, the packet processing logic of network devices may be di-
rectly programmable, which enables the design of novel networking mechanisms with-
out the manufacturer‘s direct support. As of today, Programming Protocol-Independent
Packet Processors (P4) is one of the most common data plane programming technolo-
gies.

The research of this thesis focuses on two main objectives that aim to improve the state
of the art for resilient real-time networks using network softwarization. The first ob-
jective is to develop and evaluate existing and novel resilient forwarding mechanisms
using data plane programming. The second objective of this thesis is the support of
real-time communication, i.e., the efficient support of BIER in P4, and concepts and al-
gorithms for data transmission with Quality of Service (QoS) requirements. The main
results of this thesis are published in five peer-reviewed publications. Seven additional
peer-reviewed publications cover additional research results related to the main publi-
cations of this thesis, including a comprehensive P4 literature study.

The research presented in this thesis has been funded by different research projects by
the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2, ME2727/2-1,
and ME2727/3-1, the German Federal Ministry of Education and Research (BMBF)
under support code 16KIS1161 (Collaborative Project KITOS), and the bwNET2020+
project, which is funded by the Ministry of Science, Research and the Arts Baden-
Württemberg (MWK).
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Summary

Kurzfassung

Herkömmliche Netzwerkgeräte, wie beispielsweise Router und Switche, unterstützen
einen während der Produktion festgelegten Umfang an Protokollen und Mechanismen.
Network Softwarization, und insbesondere Software-Defined Networking (SDN) und
Data Plane Programming, hat sich in den letzten Jahren immer stärker durchgesetzt
und überwindet durch die Trennung von Data und Control Plane die zuvor bestehende
Herstellerabhängigkeit. Dadurch kann die Paketverarbeitungslogik von kompatiblen
Netzwerkgeräten direkt programmiert werden, was die Entwicklung neuartiger Netz-
werkmechanismen ohne direkte Unterstützung durch den Hersteller ermöglicht. Heut-
zutage ist Programming Protocol-Independent Packet Processors (P4) eine der gängigs-
ten Technologien zur Programmierung der Data Plane.

Die Forschung in dieser Arbeit konzentriert sich auf zwei Hauptziele, die darauf ab-
zielen, den Stand der Technik für robuste Echtzeitnetzwerke mit Hilfe von Network
Softwarization zu verbessern. Das erste Ziel ist die Entwicklung und Auswertung
bestehender und neuartiger ausfallsicherer Weiterleitungsmechanismen unter Verwen-
dung von Data Plane Programming. Das zweite Ziel dieser Arbeit ist die Unterstützung
von Echtzeitkommunikation, d.h. die effiziente Unterstützung von BIER in P4, sowie
Konzepte und Algorithmen zur Datenübertragung mit QoS Anforderungen. Die wich-
tigsten Ergebnisse dieser Arbeit sind in fünf peer-review Publikationen veröffentlicht.
Sieben weitere peer-review Publikationen decken zusätzliche Forschungsergebnisse ab,
die mit den Hauptpublikationen dieser Arbeit zusammenhängen, einschließlich einer
umfassenden P4-Literaturstudie.

Die in dieser Arbeit vorgestellten Forschungsergebnisse wurden im Rahmen verschie-
dener Forschungsprojekte von der Deutschen Forschungsgemeinschaft (DFG) unter
den Förderkennzeichen ME2727/1-2, ME2727/2-1 und ME2727/3-1, dem Bundesmi-
nisterium für Bildung und Forschung (BMBF) unter dem Förderkennzeichen 16KIS1161
(Verbundprojekt KITOS) und dem Projekt bwNET2020+, das vom Ministerium für
Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK) gefördert wird, fi-
nanziert.
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1 Introduction & Overview

Network softwarization, and in particular software-defined networking (SDN) and data
plane programming, are highly relevant research topics in the field of communication
networks. Traditional networking devices, e.g., routers and switches, provide support
for a fixed set of protocols and mechanisms designated by the manufacturer. Although
they may be highly configurable, they are most often only capable of providing new
functionality with the manufacturer’s direct support.

With SDN, network operators are able to extend the functionality of network devices to
provide new services and features independently of the manufacturer. This may either
be done through a well-defined interface between the forwarding and control plane or
by making the devices themselves programmable.

In the following, two essential concepts, i.e., software-defined networking (SDN) and
data plane programming with P4, are explained. Afterwards, the objectives of this
thesis are described, and the main results are briefly summarized.

1.1 Software-Defined Networking

Software-defined networking (SDN) is widely considered to be the separation of data
(also called forwarding) and control plane. The data plane is responsible for processing
packets, whereas the control plane is responsible for its configuration. Figure 1.1 il-
lustrates the difference between traditional networking, SDN with a fixed-function data
plane, and SDN with a programmable data plane.

In traditional networking, both data and control plane are provided by the manufacturer
and are tightly coupled. The control plane may offer configuration capabilities, e.g.,
through a web interface, command line interfaces (CLIs), or other means. However,
both the functionality of the data plane as well as the control plane algorithms cannot

1
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Traditional 
networking

Control plane

SDN with fixed-
function data

plane

Data plane

Control plane

APIAPI

Agent

Control plane

Data plane

SDN with
programmable

data plane

Data plane

API
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Figure 1.1: Differences between traditional networking, SDN with fixed-function data
plane, and SDN with programmable data plane. Illustration from Hauser et
al. [HHM+23].

be changed or replaced. Consequently, protocols and functions not envisioned by the
manufacturer cannot be supported.

With SDN, the data and control plane are decoupled. There are two types of SDN,
SDN with a fixed-function data plane and SDN with a programmable data plane. SDN
with a fixed-function data plane provides a well-defined interface between the data and
control plane that allows the configuration of the provided data plane, e.g., through the
population of so-called match action entries for forwarding tables. This separation also
allows complex decentralized algorithms, such as routing algorithms, to be replaced by
a centralized control plane configuring multiple network devices. A prominent example
of an interface between the data and control plane is OpenFlow (OF) [MAB+08]. OF-
capable switches and routers provide a fixed-function data plane that can be configured
through a user-provided control plane1 with the help of the OF protocol.

In addition, SDN with programmable data planes does not only allow for a user-
provided control plane but also a user-provided data plane. Thereby, the packet process-
ing pipeline of network devices is described by software which allows the definition
of new protocols and forwarding mechanisms. As of today, Programming Protocol-
Independent Packet Processors (P4) [BDG+14] is one of the most common data plane
programming technologies.

This fundamental property, i.e., that end users can program both the data and control

1Such a control plane may be written in any high-level programming language, e.g., Python or C++.

2



1.2 Programming Protocol-Independent Packet Processors (P4)

plane of network devices, breaks the previously existing manufacturer lock-in. As a
result, development cycles for new products or concepts can be significantly reduced,
as it is not necessary to first develop specialized hardware. Instead, existing hardware
can be programmed according to the users’ requirements.

1.2 Programming Protocol-Independent Packet
Processors (P4)

Programming Protocol-Independent Packet Processors (P4) is a domain-specific pro-
gramming language that is used to describe the data plane of P4-capable network de-
vices. With [HHM+23], we published a comprehensive literature survey which is also
part of this thesis that covers 519 research papers about P4 or leveraging P4. Further, it
provides an introduction to the P4 ecosystem, a P4 tutorial, and summarizes hundreds
of research papers. P416

2 is the most recent version of P4.

A P4 program follows a so-called P4 architecture that defines the available language
constructs and the used processing pipeline. Examples of P4 architectures are the
Portable Switch Architecture (PSA), Portable NIC Architecture (PNA), or Tofino Na-
tive Architecture (TNA). Devices executing P4 programs are called targets. P4 pro-
grams are translated through target-specific compilers into binaries for the correspond-
ing P4 target. Figure 1.2 illustrates a simplified P4 processing pipeline that resembles
the processing pipeline of most P4 architectures.

Packets are received on so-called ingress ports and afterwards parsed by a user-programmable
packet parser. Thereby, packet headers are extracted, e.g., Ethernet and IPv4. The ex-
tracted headers are subsequently used in (possibly multiple) match-action tables (MATs)
together with packet-specific metadata to decide which actions should be executed. Ex-
amples of user-defined actions are replacing certain header fields, forwarding packets
through specific egress ports, or updating the contents of register3 fields. More complex
operations may be available as so-called externs4 depending on the used P4 architec-
ture. The mapping between header and metadata fields and the corresponding action is
typically provided by the control plane. Finally, packets are serialized to the wire by a
deparser and sent through a previously specified egress port.

2https://p4.org/specs/
3Registers are not part of the core P4 language and not available in all P4 architectures.
4An extern is an operation that is not defined in the core P4 language but in the architecture. Targets

may provide almost arbitrary functions as externs, e.g., complex math operations.

3
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Figure 1.2: Simplified P4 processing pipeline. Illustration from Hauser et al.
[HHM+23].

The combination of a well-defined processing pipeline and programmable building
blocks allows the design of novel, high-performance network solutions that range from
legacy protocols such as Multiprotocol Label Switching (MPLS) to in-network accel-
eration of machine learning algorithms [HHM+23].

1.3 Research Objectives

Communication networks are prone to service disruption, e.g., through network equip-
ment failure. One possible solution to this problem is to leverage resilient forwarding
mechanisms that may automatically reroute affected traffic through working backup
paths to restore connectivity. This is especially relevant for real-time communication
that cannot rely on the automatic retransmission of transport protocols. This thesis
focuses on two main objectives that aim to improve the state of the art for resilience
real-time networks using network softwarization, particularly with the help of SDN and
programmable data planes.

The first objective is to develop and evaluate both existing and novel resilient forward-
ing mechanisms using data plane programming. This means that traffic affected by
forwarding failures, e.g., caused by the failure of a communication link, should be for-
warded by other means to restore connectivity as fast as possible, thereby minimizing
the experienced packet loss.

4



1.4 Research Context

The second objective of this thesis is the support of real-time communication. This
objective is separated into two categories. First, the efficient support of BIER in P4.
Bit Index Explicit Replication (BIER) is a novel transport mechanism for multicast
traffic standardized by the Internet Engineering Task Force (IETF) [WRD+17]. Multi-
cast is often used for real-time applications such as financial stock exchange or IPTV
[NAC+20]. The second category comprises concepts and algorithms for data transmis-
sion with QoS requirements. Examples for QoS requirements are an upper bound for
the end-to-end delay, a guaranteed bandwidth, or zero packet loss.

1.4 Research Context

The research presented in this thesis has been funded by different research projects by
the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2, ME2727/2-1,
and ME2727/3-1. Further, some work has been funded by the German Federal Min-
istry of Education and Research (BMBF) under support code 16KIS1161 (Collabora-
tive Project KITOS) and the bwNET2020+ project, which is funded by the Ministry of
Science, Research and the Arts Baden-Württemberg (MWK). The published versions
of the publications in the appendix indicate which work has been funded by which
research project.

All research was carried out in collaboration with colleagues. A description of the
contributions that my coworkers and I made to the individual works can be found in the
appendix.

1.5 Research Results

This thesis comprises 12 publications. All publications can be found in the appendix.
Chapter 2 summarizes and presents the research results of these publications. For each
publication, the research objective and research results are presented. In the following,
an overview of the research and its results is given.

One contribution of this thesis is a broad P4 literature study [HHM+23] that reviews
519 research papers about P4. Several of the presented works in this thesis are directly
influenced by the results of this extensive literature study that identified open research
potential. One key insight of [HHM+23] was that most work in the field of data plane

5



1 Introduction & Overview

programming is conducted with software-based switches such as the BMv2 [p4l19].
Software-based switches do not impose restrictions on the complexity of the algo-
rithms as all processing is done entirely in software. Hardware-based switches on
the other hand have only limited capabilities to ensure line rate processing. Conse-
quently, it is unclear whether a large portion of the existing research in the field of data
plane programming is applicable to hardware-based switches and thus applicable in re-
ality. Therefore, great care has been taken to ensure that all presented algorithms and
mechanisms that leverage data plane programming in P4 can also be implemented on
hardware-based switches.

The first main objective of this thesis, i.e., resilient forwarding mechanisms using
data plane programming, is covered in Section 2.1. One significant contribution is the
development of a reliable 1+1 protection mechanism for IP networks in P4 [LHH+20]
which is presented in Section 2.1.2. Thereby, traffic is forwarded over two disjoint
paths such that any failure of a single path can be compensated. Further, the proposed
mechanism may be used across the Internet. Evaluations show its feasibility in a 100
Gb/s environment. The second contribution is the development of a fast 1:1 protection
scheme [MLM21b] based on Loop-Free Alternates (LFAs) [AZ08] in Section 2.1.3.
Evaluations show that it protects against any single component failure and most double
failures and runs at line rate in a 100 Gb/s environment. Finally, a P4-based mechanism
for in-network detection of sensor failures [LHH+20] is presented in Section 2.1.4.

The second main objective of this thesis, i.e., support of real-time communication,
is covered in Section 2.2 and split into two parts. The first part is the efficient sup-
port of BIER in P4 and comprises four publications. One contribution is the develop-
ment of novel BIER fast reroute (FRR) mechanisms [MLM20a] in Section 2.2.1.2 and
the implementation of BIER for the software-switch BMv2 in P4 [MLM20b] in Sec-
tion 2.2.1.3. The second contribution is the implementation of BIER and BIER-FRR
[MLM21a] for the Intel Tofino™, a high-performance P4 switching ASIC, in Section
2.2.1.4. Extensive evaluations show that the BIER implementation runs at 100 Gb/s line
rate, but also reveal processing limits caused by excessive recirculation overhead. The
processing overhead caused by excessive recirculation is addressed in Section 2.2.1.5,
where a novel BIER processing scheme for the Intel Tofino™ is introduced [LMM23].
Simulations and hardware evaluations show that the new processing scheme signifi-
cantly decreases the processing overhead for BIER packets. The proposed mechanism
is further optimized through the help of clustering, an unsupervised machine-learning
technique.
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One significant contribution for the second part of the second main objective, i.e.,
data transmission with QoS requirements, is the design and implementation of a novel
packet scheduler, called DSCD [LPM23], in Section 2.2.2.2. DSCD is implemented in
the Linux network stack and enables low-delay forwarding for real-time traffic without
degrading the performance of common best-effort (BE) traffic. Extensive evaluations
show its feasibility and analyze its properties. Other contributions are the analysis
and extension of the RAP protocol for Time-Sensitive Networking (TSN) networks in
Section 2.2.2.3 and a survey reviewing the existing scheduling literature for the Time-
Aware Shaper (TAS) in TSN networks. The last contribution of this thesis is the design
and implementation of a low-cost traffic generator (TG), called P4TG [LHM23], based
on the Intel Tofino™ in Section 2.2.2.5. It is capable of generating up to 1 Tb/s traffic
split across 10× 100 Gb/s ports.
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2 Results & Discussion

This chapter summarizes and discusses the results of this thesis. Section 2.1 contains re-
search on the first objective, i.e., resilient forwarding mechanisms using programmable
data planes. Section 2.2 presents the second objective, i.e., support of real-time com-
munication. To that end, Section 2.2.1 covers efficient support of BIER in P4, and
Section 2.2.2 discusses data transmission with QoS requirements.

For each presented work, it is indicated whether they are part of the core content of this
thesis or part of the additional content.

2.1 Resilient Forwarding Mechanisms using Data Plane
Programming

This section summarizes the research results of this thesis on resilient forwarding mech-
anisms using data plane programming. It comprises three publications. One publica-
tion is part of the core content of this thesis, and two are part of the additional content.
First, foundations for resilient forwarding mechanisms are introduced. Then, the three
publications are summarized.

2.1.1 Foundations

Routing algorithms, such as the Border Gateway Protocol (BGP) [RHL06] or the Open
Shortest Path First (OSPF) protocol [Moy98], determine the default forwarding behav-
ior for data packets. Data packets may be lost when a communication link fails or when
an intermediate forwarding node (next-hop) is not reachable anymore. Affected traffic
can only reach its destination until the default forwarding paths have been recalculated
and updated on the forwarding devices, which is called reconvergence. However, this
procedure may take up to several hundreds of milliseconds [LPS+13].
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Legacy networks circumvent this problem by introducing fast-recovery mechanisms,
such as FRR or 1+1 protection. With FRR, packets are rerouted leveraging precom-
puted backup paths without the need for reconvergence or any other control plane in-
teraction. With 1+1 protection, traffic is simultaneously sent through two disjoint paths
towards the destination. If one path is affected by a failure, the second path ensures
that the data packets are still received. Chiesa et al. [CKR+21] give a broad overview
of fast-recovery mechanism in packet-switched networks. Further details on different
FRR mechanisms and related surveys can be found in [MLM21b].

2.1.2 P4-Protect: 1+1 Path Protection for P4

This section summarizes and presents the research results from Lindner et al. [LMHM20].
This publication is part of the core content of this thesis. Further details can be found
in the associated publication. First, the research objective is introduced. Then, the
solution and evaluation results are explained.

2.1.2.1 Research Objective

FRR methods such as LFAs [AZ08] send traffic to an alternative next-hop when the
primary next-hops is not reachable anymore. However, failure detection and rerouting
are not instantaneous. Therefore, packet loss cannot be avoided. With 1+1 protection
mechanisms, traffic is duplicated and sent over two disjoint paths and deduplicated by
the receiver. When one of the disjoint paths is affected by a failure, the second path still
ensures that the traffic is correctly forwarded.

The goal of this work was to develop a 1+1 protection mechanism for IP networks that
may even be useable across foreign networks.

2.1.2.2 1+1 Protection Mechanism

P4-Protect is a 1+1 protection scheme based on P4 [LMHM20]. To that end, traffic is
duplicated at a duplication node, forwarded through two disjoint paths across a network,
and deduplicated by a deduplication node. The deduplication node only forwards the
first version of each packet. Figure 2.1 illustrates the concept of P4-Protect.
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Figure 2.1: Concept of P4-Protect. Illustration from [LMHM20].

A so-called protection tunnel ingress (PTI) receives packets and applies the protection
procedure. It adds a new header, the so-called protection header, to the packet which
includes a sequence number and a connection identifier. The packet is then tunneled
via two preferably disjoint paths to the so-called protection tunnel egress (PTE) which
terminates the protected connection and deduplicates the traffic. A unique feature of
P4-Protect is that it can be used over the Internet where not all intermediate nodes are
under the control of the same network operator. With 1+1 protection over the Internet,
one problem is that it is not possible to ensure that the used paths are disjoint. To that
end, P4-Protect allows tunneling the traffic on one path to an additional intermediate
node. There, the packet will be decapsulated and forwarded to the PTE. Thus, the
intermediate node can enforce some path disjointness.

2.1.2.3 Implementation in P4

We implemented P4-Protect for the software switch BMv2 [p4l19] and the Intel Tofino™
ASIC, a high-performance switching ASIC. In this work, we leveraged an Edgecore
Wedge 100BF-32X [Edg21] switch based on Intel Tofino™ 1 with 32 100 Gb/s ports.
One particular challenge was implementing the deduplication procedure on the Intel
Tofino™, as hardware targets have certain limitations on the number of operations that
can be applied per packet to ensure line rate processing.

2.1.2.3.1 Deduplication Procedure When the PTE receives a packet, it has to decide
whether it is forwarded or dropped because it has already been received. To that end,
the PTE stores the last accepted sequence number SNPTE

last . Further, it leverages a so-
called acceptance window W to accept sequence numbers in a given range. This is
required if the same packet is lost on both paths. As the sequence number space is not

11



2 Results & Discussion

unlimited, i.e., it is cyclic, a sequence number SN larger than SNPTE
last may indicate

a new packet, but it may also result from a very old packet. The equations to ensure
that an incoming packet falls within the acceptance window can be easily derived. Let
SNmax be the maximum sequence number. If SNPTE

last +W < SNmax holds, a packet
with sequence number SN is accepted if

SNPTE
last < SN ≤ SNPTE

last +W (2.1)

If SNPTE
last + W ≥ SNmax holds1, a packet with sequence number SN is accepted if

one of the following inequalities holds:

SNPTE
last < SN (2.2)

SN < SNPTE
last +W − SNmax (2.3)

A packet copy can arrive SNmax − W sequence numbers after the first copy without
being recognized as a new packet. SNPTE

last is set to SN if the packet is accepted.

Due to hardware limitations, the presented check cannot be implemented. Therefore,
we set W = SNmax

2
to simplify the required inequalities. If W ≤ SN holds, both

inequalities must be true:

SNPTE
last < SN (2.4)

SN − SNPTE
last ≤ W (2.5)

If SN < W , only one of the inequalities has to hold:

SNPTE
last < SN (2.6)

W ≤ SNPTE
last − SN (2.7)

2.1.2.4 Evaluations

In this section, we evaluate P4-Protect. First, we consider the achieved TCP goodput.
Then, we assess its impact on packet jitter.

1This means that an overflow of the sequence number range has to be considered.
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2.1.2.4.1 TCP Goodput We evaluate the achievable TCP goodput with P4-Protect on
the Edgecore Wedge 100BF-32X [Edg21]. To that end, we set up iperf3 [ipe] con-
nections between multiple client/server pairs connected through two disjoint paths and
measure their goodput. Each connection consists of 15 parallel TCP flows. Figure 2.2
shows the TCP goodput with P4-Protect with a varying number of client/server pairs
exchanging traffic with iperf3.
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Figure 2.2: TCP goodput with P4-Protect with a varying number of client/server pairs
exchanging traffic with iperf3. Figure from [LMHM20].

The experiment was performed 20 times, and the 95% confidence intervals are pro-
vided. Three forwarding modes are considered, i.e., plain, unprotected, and protected.
Plain forwarding is a simplified IP forwarding plane without any protection that lever-
ages only a single path. Unprotected is the P4-Protect program without activated pro-
tection, i.e., traffic is not duplicated. Protected is P4-Protect with activated protec-
tion, i.e., traffic is duplicated, sent via disjoint paths, and deduplicated. Less than four
client/server pairs cannot saturate a 100 Gb/s connection which is expected with default
TCP traffic. With four client/server pairs, a goodput of around 90 Gb/s is achieved.
This is less than 100% because the overhead of Ethernet, IP, and TCP is not part of the
goodput. All three forwarding modes lead to almost identical goodput. The goodput
for protected forwarding is slightly less than unprotected forwarding due to the header
overhead of P4-Protect.

2.1.2.4.2 Impact on Jitter The PTE forwards the first copy of each packet. To that
end, jitter on the individual paths may be smoothed. We verify this assumption through
the following experiment. Two hosts are connected through two disjoint paths with an
artificial, adjustable, uniformly distributed jitter. We send pings between the hosts and
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measure the average round trip time (RTT). Figure 2.3 shows the impact of P4-Protect
on packet jitter.
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Figure 2.3: Impact of P4-Protect on packet jitter. Figure from [LMHM20].

With unprotected traffic, the average RTT¸ deviation corresponds to the configured av-
erage jitter on the path. With P4-Protect, protected traffic suffers only about half the
configured jitter. Therefore, the PTE smoothes the experienced end-to-end jitter as it
forwards the first version of each packet.

2.1.2.5 Conclusion & Discussion

With P4-Protect, we designed a 1+1 protection scheme that runs at high data rates,
smoothes experienced end-to-end jitter, and effectively protects against the failure of
individual paths. Further, it may be suited to be used across the Internet.

We published and presented P4-Protect [LMHM20] on the P4 Workshop in Europe
(EuroP4) in 2020 (see Appendix 1.1). Further, P4-Protect has been published as an
open-source implementation on Github2.

2.1.3 Robust LFA Protection for Software-Defined Networks (RoLPS)

This section summarizes the research results from Merling et al. [MLM21b]. This
publication is part of the additional content of this thesis. Therefore, it is only briefly
summarized. Further details can be found in the associated publication. First, the
research objective is introduced. Then, the work is summarized.

2https://github.com/uni-tue-kn/p4-protect-tofino
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2.1.3.1 Research Objective

1+1 protection mechanisms like P4-Protect have the advantage that almost any packet
loss can be prevented. However, they also require at least twice the bandwidth as traffic
is replicated to two paths. Alternatively, there are 1:1 mechanisms. With 1:1 mecha-
nisms, traffic is forwarded through a primary path. Once an error is detected, the traffic
is transmitted along an alternative path.

In earlier work, Merling et al. [MBM18] augment the concept of LFAs [AZ08]. They
introduced so-called explicit LFA (eLFA) that leverage explicit tunnels to protect des-
tinations against failures that cannot be protected by other LFAs. Further, an advanced
loop detection (ALD) mechanism has been proposed to detect and stop routing loops
that may occur in the case of multiple network failures.

The goal of this work was to augment the existing eLFAs and improve the ALD mech-
anism so that it is implementable on P4 devices.

2.1.3.2 Summary

RoLPS augments the previously proposed eLFAs through multipoint-to-point rerouting
tunnels. Thereby, multiple eLFAs may share state in forwarding devices, such that
the overall required forwarding state is significantly decreased. Previously conducted
simulations regarding the coverage of different LFAs variants are updated and extended
with topology-independent LFAs (TI-LFAs). The results show that existing LFAs and
so-called remote LFAs (rLFAs) cannot protect all destinations against failures and that
forwarding loops may occur in the case of multiple network failures. Only eLFAs and
TI-LFAs are able to protect all destinations. Subsequently, an implementation of an
improved ALD mechanism as well as an implementation of LFAs, rLFAs, eLFAs, and
TI-LFAs for the Intel Tofino™ are presented. Hardware evaluations reveal that affected
traffic is successfully rerouted after a short restoration time of 0.6 ms, that routing loops
are detected and stopped, and that the implementation runs at 100 Gb/s per port.

We published RoLPS as a journal paper in the Special Section on Design and Manage-
ment of Reliable Communication Networks of IEEE Transactions on Network and Ser-
vice Management (TNSM) [MLM21b] (see Appendix 2.5) in 2021. The source code
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of the Tofino-based prototype has been published as an open-source implementation on
Github3.

2.1.4 P4 In-Network Source Protection for Sensor Failover

This section summarizes and presents the research results from Lindner et al. [LHH+20].
This publication is part of the additional content of this thesis. Further details can be
found in the associated publication. First, the research objective is introduced. Then,
the solution and evaluation results are explained.

2.1.4.1 Research Objective

Systems in industrial settings, e.g., factory automation or autonomous driving, primar-
ily depend on information obtained from sensors. Therefore, several sensors may pro-
vide the same data to an application to prevent service disruption in the case of a sensor
failure. The receiving application may either use both data streams or rely on a single
data source until the primary stream fails, which increases the complexity of the appli-
cation and is prone to errors. The goal of this work was to develop an in-network sensor
failover mechanism that detects the failure of a primary sensor and delivers in turn the
data of a redundant sensor to the application.

2.1.4.2 Summary

In this work, we proposed two mechanisms to detect the failure of a periodic primary
sensor directly in the network. Upon failure detection, the data of a redundant sensor is
forwarded. The first mechanism is based on a counter-based approach. For each arriv-
ing data portion from the redundant sensor, a counter is increased. In contrast, for each
arriving data portion of the primary sensor, the counter is set to zero. If the counter
exceeds a threshold t, the data of the redundant sensor is forwarded. The second mech-
anism leverages a timer-based approach and improves reliability in the case of unstable
sensor periods. With the timer-based approach, the timestamp of the last received pri-
mary sensor data portion is stored. Data from the redundant sensor is forwarded if

3https://github.com/uni-tue-kn/p4-lfa
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the elapsed time since the last data from the primary sensor exceeds a given thresh-
old. The counter-based approach was implemented for the Intel Tofino™ whereas the
timer-based approach was implemented for the software switch BMv2.

This work [LHH+20] has been published and presented at the International Work-
shop on Time-Sensitive and Deterministic Networking (TENSOR) in 2020 (see Ap-
pendix 2.1).

2.2 Support of Real-Time Communication

This section summarizes the research results of this thesis regarding the support of real-
time communication. This objective is separated into two categories. First, the efficient
support of BIER in P4. The second category comprises concepts and algorithms for
data transmission with QoS requirements.

2.2.1 Efficient Support of BIER in P4

This section summarizes the research results of this thesis on the efficient support of
BIER in P4. It comprises four publications. Two publications are part of the core
content of this thesis, and two are part of the additional content. First, an overview
of BIER is given. Then, the four publications are summarized. The first publication
investigates and compares FRR methods for BIER. The second publication presents an
implementation of BIER and BIER-FRR in P4 for the software switch BMv2. In the
third publication, we implemented BIER and BIER-FRR on the hardware target Intel
Tofino™ and performed extensive evaluations. Finally, the fourth publication dramati-
cally increased the efficiency of the BIER forwarding through the help of switch-intern
static multicast groups and an optimization based on machine learning.

2.2.1.1 BIER Overview

Traditional IP multicast (IPMC) is used when a sender wants to transmit the same
packet to multiple receivers. Examples of use cases are live-streaming, IPTV or finan-
cial stock exchange [NAC+20]. Receivers can join so-called multicast groups, and the
sender addresses this multicast group as the packet recipient. The information which
network nodes require a packet copy for a given multicast group is propagated through
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the network with the help of multicast routing protocols. Thus, each node in the net-
work must store which neighbor needs a packet copy for which multicast group. On
the one hand, this requires a lot of memory. On the other hand, as soon as a multicast
group changes, e.g., because a new receiver has joined or another receiver has left the
group, this information has to be propagated again through the entire network.

Bit Index Explicit Replication (BIER) [WRD+17] has been proposed by the Internet
Engineering Task Force (IETF) to solve the problems of traditional IPMC. BIER in-
troduces a domain concept where only ingress border routers, called Bit-Forwarding
Ingress Routers (BFIRs), need to know which receivers require a packet copy for a
given multicast group. Figure 2.4 illustrates the concept of BIER.

Figure 2.4: A BIER domain consists of a Bit-Forwarding Router (BFR), Bit-
Forwarding Ingress Router (BFIR), and Bit-Forwarding Egress Router
(BFER). Illustration from [Lin19] adapted from [MMWE18].

The original IPMC packet is encapsulated with a BIER header containing a so-called
BIER bitstring 1 . Each bit in the BIER bitstring corresponds to an egress border router,
called BFER, of the BIER domain. If the bit is activated, i.e., set to 1, it indicates
that the corresponding BFER requires a packet copy. This information is leveraged
by forwarding nodes of the BIER domain, called BFR. When a BFR receives a BIER
packet, it replicates and forwards it towards all destinations indicated by the BIER
bitstring 2 3 . Thereby, bits of BFERs that are reached via other neighboring BFRs
are cleared in the bitstring to prevent duplicates at the receiver. Forwarding takes place
along the paths of the routing underlay, e.g., paths computed by OSPF. Consequently,
a BFR only needs to know which BFER is reachable through which neighbor, which
is independent of the actual multicast group. Therefore, even when multicast groups
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change, there is no need to update the forwarding state on BFRs. Only the BFIRs
must be updated when multicast groups change. Finally, when a BIER packet reaches
a BFER, the BIER header is removed and the underlying IPMC packet is forwarded as
usual 4 .

2.2.1.2 Comparison of Fast-Reroute Mechanisms for BIER-Based IP Multicast

This section summarizes the research results from Merling et al. [MLM20a]. This
publication is part of the additional content of this thesis. Therefore, it is only briefly
summarized. Further details can be found in the associated publication.

With [MLM20a] we developed and compared two approaches to protect BIER traffic
with FRR mechanisms. The first mechanism is based on LFAs, similar to one of the
presented mechanisms of RoLPS (see Section 2.1.3). When a neighboring BFR is
not reachable, the BIER packet is forwarded to an alternative next-hop and the BIER
bitstring is adapted accordingly. The second mechanism is based on the protection
properties of the unicast routing underlay, e.g., IP-FRR. When a BFR is not reachable,
BIER packets are encapsulated with unicast tunnels towards the next-hop or next-next-
hop. Then, the routing underlay may use its own protection mechanisms to reroute the
packet to its destination, e.g., with LFAs. When the neighboring BFR is reached, the
unicast tunnel is removed and the original BIER packet is forwarded.

This work [MLM20a] has been published and presented at the International Conference
on Software Defined Systems (SDS) in 2020 (see Appendix 2.2). In addition, the results
of this work have been brought to standardization in the form of Internet drafts [MM19]
[CML+22].

2.2.1.3 P4-Based Implementation of BIER and BIER-FRR for Scalable and

Resilient Multicast

This section summarizes the research results from Merling et al. [MLM20b]. This
publication is part of the additional content of this thesis. Therefore, it is only briefly
summarized. Further details can be found in the associated publication and in the fol-
lowing section where the hardware implementation of BIER is described.
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2.2.1.3.1 Research Objective The objective of this work was the implementation of
BIER and BIER-FRR in P4 for the software switch BMv2 [p4l19]. At the time of this
work, it was unclear whether BIER’s iterative processing method could be implemented
in P4. The first prototype was the result of my Master thesis [Lin19]. After its final-
ization, I continued with concept enhancement and the development of an improved
prototype which was the basis for this publication.

2.2.1.3.2 Summary When a BFR receives a BIER packet, it iteratively serves all re-
quired next-hops indicated by the BIER bitstring. Conceptually, this could be done by
iteratively serving the least significant activate bit. However, P4 does not support loops.
Therefore, we leveraged the concept of recirculation. With recirculation, a packet
is placed at the beginning of the P4 processing pipeline instead of being transmitted
through an egress port. Therefore, a packet can be processed multiple times to imple-
ment a loop-based processing logic. When a BFR receives a BIER packet, it selects
the next-hop for its least significant activated bit through a MAT. Then, the packet is
cloned. The original packet is forwarded to the selected next-hop and the packet copy
is recirculated so that it can be processed a second time. Further, BIER-FRR via unicast
tunnels was implemented as explained in Section 2.2.1.2.

This work has been published as a journal paper in Journal of Network and Computer
Applications (JNCA) [MLM20b] (see Appendix 2.3) in 2020. The source code of the
BIER prototype has been published as open-source implementation on Github4.

2.2.1.4 Hardware-Based Evaluation of Scalable and Resilient Multicast With

BIER in P4

This section summarizes and presents the research results from Merling et al. [MLM21a].
This publication is part of the core content of this thesis. Further details can be found
in the associated publication. First, the research objective is introduced. Then, the
solution and evaluation results are explained.

2.2.1.4.1 Research Objective Although the prototype of [MLM20b] demonstrated that
BIER can be implemented in P4, it was still unclear whether BIER can be efficiently
supported in high-performance hardware. Software switches such as the BMv2 [p4l19]

4https://github.com/uni-tue-kn/p4-bier
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have almost unlimited flexibility regarding the complexity of packet processing as ev-
erything is done entirely in software. Consequently, they only provide throughput in
the order of a few Gb/s, which is unsuitable for network operators. In contrast, hard-
ware targets like the Intel Tofino™ ASIC provide high throughput but have restrictions
on the number of operations that can be applied per packet. Further, Intel Tofino™
implements the Tofino Native Architecture (TNA) whereas the software switch BMv2
implements a different architecture. This work aimed to implement and evaluate BIER
and BIER-FRR for the Intel Tofino™ ASIC.

2.2.1.4.2 Implementation Concept Figure 2.5 illustrates the iterative BIER forwarding
of a packet that has to be forwarded to three neighboring BFRs.
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Figure 2.5: Iterative BIER processing. Figure from [MLM21a].

In each pipeline iteration, the next-hop for the least significant activate bit in the BIER
bitstring is determined through a MAT. Afterwards, the packet is cloned to a so-called
recirculation port5 which allows processing in a second pipeline iteration. The already
processed bits in this iteration are cleared from the BIER bitstring in the packet copy.
The original packet is sent to the determined next-hop, and the packet copy is processed
similarly until no activated bits are left in the BIER bitstring.

With this approach, a BIER packet with n next-hops requires n − 1 packet copies and
recirculations. However, each port of the Intel Tofino™ 1 can only process 100 Gb/s.

5A recirculation port is a port in loopback mode. When a packet reaches the end of the egress processing
pipeline of a recirculation port, it is immediately placed in its ingress again for further processing.
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Hence, when 100 Gb/s incoming BIER traffic should be replicated to three neighboring
BFRs, 200 Gb/s additional traffic has to be processed on the recirculation port, which
exceeds its processing capacity. To solve this problem, we turn physical ports into
recirculation ports. This provides an additional 100 Gb/s processing capacity per port.
However, these ports cannot be used for any other traffic. When performing the clone
operation, we use a round-robin-based method to utilize all available recirculation ports
evenly.

2.2.1.4.3 Evaluations We evaluate the throughput of the BIER P4 implementation on
the Edgecore Wedge 100 BF-32X [Edg21] which is based on the Intel Tofino™ 1.
Details on the hardware setup can be found in [MLM21a].

We send 100 Gb/s BIER traffic with a different number of next-hops and available
recirculation ports to the Intel Tofino™ and measure the achieved throughput at the last
receiver. The last receiver has the highest drop probability when insufficient processing
capacity is available. Figure 2.6 illustrates the results.
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Figure 2.6: End-to-end BIER throughput on the last receiver with 100 Gb/s incoming
BIER traffic. Figure from [MLM21a].

We compare the end-to-end throughput with native IPMC. With native multicast, line
rate, i.e., 100 Gb/s, can be achieved independent of the number of recirculation ports
and next-hops. With a single recirculation port up to n = 2 next-hops can be served
with line rate, as a packet with n next-hops requires n − 1 recirculations. A single
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2.2 Support of Real-Time Communication

recirculation port does not provide sufficient processing capacity for n > 2 next-hops.
Packets are dropped if the processing capacity is exceeded which leads to reduced end-
to-end throughput with an increasing number of next-hops. With three recirculation
ports, up to n = 4 next-hops can be served with line rate.

In reality, BIER traffic may take only a small fraction of the overall traffic. To that end,
we perform simulations to determine the required number of additional6 recirculation
ports with a varying fraction a = {1, 2.5, 5, 10}% of BIER traffic and a varying number
of next-hops for 100 Gb/s incoming traffic. Figure 2.7 illustrates the results.
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Figure 2.7: Number of required additional physical ports in loopback mode with a vary-
ing fraction of BIER traffic and a varying number of next-hops. Figure from
[MLM21a].

For a small fraction of BIER traffic (1%), the internal recirculation port is sufficient to
serve up to 13 next-hops. With an increasing number of next-hops and BIER traffic,
more recirculation capacity and additional recirculation ports are required. Therefore,
depending on the overall fraction of BIER traffic, only a few additional recirculation
ports may be required to prevent packet loss for BIER-based multicast. Additional
evaluations can be found in [MLM21a].

6Internal recirculation ports are not counted as additional ports.
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2.2.1.4.4 Conclusion & Discussion We implemented BIER and BIER-FRR on the In-
tel Tofino™ and evaluated its end-to-end throughput. Hardware experiments showed
that the implementation is able to support line rate processing. Further, we presented
simulations to determine the required number of additional recirculation ports depend-
ing on the fraction of BIER traffic. If the fraction of BIER traffic is high, several
physical ports have to be used as recirculation ports to guarantee line rate processing.
These ports cannot be used for regular unicast traffic.

The results have been presented at IETF 108 in the BIER working group and have been
published as a journal paper in IEEE Access [MLM21a] (see Appendix 1.2) in 2021.

2.2.1.5 Learning Multicast Patterns for Efficient BIER Forwarding with P4

This section summarizes and presents the research results from Lindner et al. [LMM23].
This publication is part of the core content of this thesis. Further details can be found
in the associated publication. First, the research objective is introduced. Then, the
solution and evaluation results are explained.

2.2.1.5.1 Research Objective With [MLM21a], we presented a P4-based BIER proto-
type that is able to forward BIER traffic at line rate. To do so, the implementation turned
physical ports into recirculation ports to provide enough processing capacity to itera-
tively serve one next-hop after another. If not enough processing capacity is provided,
BIER packets may be lost. The goal of this work was to reduce the required number of
recirculations to save processing capacity and, therefore, to increase the efficiency of
the P4-based BIER implementation on the Intel Tofino™ ASIC.

2.2.1.5.2 Concept Most P4 architectures, such as the TNA [Int21], define the concept
of switch-intern static multicast groups. A switch-intern static multicast group contains
a set of egress ports to which a packet is replicated without recirculation. Such a static
multicast group is configured through the control plane. We leverage this concept to
replicate a BIER packet to multiple next-hops without recirculation, which saves pro-
cessing capacity. However, a BIER packet may need to be replicated to any subset of
available next-hops / egress ports. To serve each subset of ports with a static multicast
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group, 232 different static multicast groups are required on a 32 port switch, which ex-
ceeds the available number of static multicast groups7. Therefore, we propose to divide
the ports of a switch in so-called configured port clusters C = {C1, ..., Cn} such that
all configured port clusters together cover all ports of the switch. All combinations of
ports within a configured port cluster are installed as static multicast groups. On a 32
port switch with three configured port clusters of size {11, 11, 10}, this requires at most
211 + 211 + 210 = 5.120 static multicast groups, which is well feasible on the Intel
Tofino™.

When a BIER packet is received, the set of configured port clusters that need to be
served is determined based on the BIER bitstring. Then, for each selected configured
port cluster, an appropriate static multicast group is used to replicate the packet to all re-
quired next-hops within this configured port cluster without recirculation. The selected
configured port clusters are iteratively served through recirculation. Consequently, with
k configured port clusters, a BIER packet with n next-hops is recirculated at most k−1

times instead of n−1 times, which significantly reduces the number of recirculations.

2.2.1.5.3 Optimization With k randomly selected configured port clusters8, at most
k − 1 recirculations are required per BIER packet. However, multicast traffic (and
therefore BIER traffic) that utilizes random ports is unrealistic as end-users in certain
regions may have common interests and share the same multicast groups, e.g., in case
of IPTV. Consequently, some ports of a switch are more likely to be used together for a
BIER packet than others, which we call port correlation. If a BIER packet requires only
a few different configured port clusters, i.e., it is likely that all ports of a BIER packet
are within a single or at most two configured port clusters, then the average number of
recirculations is smaller than k− 1. Hence, the average number of recirculations is low
when ports within a configured port cluster have a high port correlation and ports in
different configured port clusters have a low port correlation.

We optimize the selection of configured port clusters through clustering, an unsuper-
vised machine-learning method. To that end, we sample BIER packets at a switch and
inspect their BIER bitstring. Based on the BIER bitstring, we derive the set of egress
ports that need to be served for this BIER packet. We embed this information in a graph
structure where each node represents a port of a switch. The graph is fully connected,

7Intel Tofino ™ 1 support at most 216 static multicast groups [Int21].
8Such that all of them together cover all ports of a switch.
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and the edges have weights. All weights are initially zero. Figure 2.8a and Figure 2.8b
illustrate how two sampled BIER packets with ports {1, 2, 3} and {4, 5} are embedded
on a 5-port switch.

(a) The edge weights between {1, 2}, {1, 3},
and {2, 3} are increased by one.

(b) The edge weight between {4, 5} is increased
by one.

Figure 2.8: A full-mesh graph is augmented by port information from sampled packets:
high edge weights indicate port pairs that frequently occur together in a
BIER packet. Figures from [LMM23]. ©2022 IEEE.

For each port pair in a BIER packet, the corresponding edge in the graph embedding
is increased by one. As a consequence, ports with high correlation, i.e., they are fre-
quently used together to serve all next-hops of a BIER packet, have high edge weights.
Ports with lower correlation have lower edge weights. We apply clustering methods
based on Spectral Clustering [vL07] to build clusters, such that ports within clusters
have high edge weights, and ports in different clusters have small edge weights. Clus-
ter selection is further constrained by an upper bound on the available number of static
multicast groups. Details on the clustering algorithms can be found in [LMM23].

2.2.1.5.4 Evaluations We evaluate the efficiency of three different proposed port clus-
tering algorithms. The first algorithm is based on randomly selected configured port
clusters (R). The second algorithm is a clustering method based on Spectral Cluster-
ing (PCSC). The last algorithm is an enhanced clustering algorithm based on Spectral
Clustering (RPCO) that also allows to build overlapping clusters, i.e., some ports are
part of multiple clusters. We generate artificial BIER traffic9 with 4.5 next-hops on
average and different port correlations p ∈ {0.7, 0.9, 0.99}. Large values of p indicate
strong port correlation, and lower values of p indicate less port correlation. Further, we
restrict the number of configurable static multicast groups mmax. The original BIER

9For details on the traffic model, see [LMM23].
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forwarding algorithm of [MLM20b] and [MLM21a] corresponds to mmax = 0. The
experiment is conducted 100 times, and average values are reported. Figure 2.9 illus-
trates the results.
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Figure 2.9: Average number of recirculations per packet for BIER traffic with 4.5 next-
hops on average. Figure from [MLM21a]. ©2022 IEEE.

BIER traffic with 4.5 next-hops on average requires 3.5 recirculations per packet with-
out static multicast groups (mmax = 0). The average number of recirculations per
packet decreases with an increasing number of usable static multicast groups for all
algorithms and port correlations p. The advanced algorithms (PCSC & RPCO) outper-
form the random clustering algorithm and are able to eliminate almost all recirculations
with high port correlation and mmax ≥ 1024. Advanced evaluations can be found in
[LMM23].

2.2.1.5.5 Conclusion & Discussion We proposed an advanced BIER forwarding mech-
anism that leverages static multicast groups to reduce the required number of recircu-
lations to save processing capacity. Further, unsupervised machine learning techniques
have been used to optimize the selection of so-called configured port clusters. Simula-
tions and hardware experiments show that the proposed mechanisms greatly reduce the
required number of recirculations. The mechanism has been implemented on the Intel
Tofino™ ASIC and runs at line rate.

The results have been presented at IETF 115 in the BIER working group and have been
published as a journal paper in IEEE Transactions on Network and Service Manage-
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ment (TNSM) [LMM23] (see Appendix 1.4) in 2023. The source code of the Tofino-
based prototype has been published as an open-source implementation on Github10.

2.2.2 Data Transmission with QoS Requirements

This section summarizes the research results of this thesis on data transmission with
QoS requirements. It comprises four works. Two works are part of the core content of
this thesis, and two are part of the additional content. First, foundations of data trans-
mission with QoS requirements are given. Then, the four works are summarized.

2.2.2.1 Foundations

Communication networks usually offer BE service, i.e., all data packets are treated the
same. Therefore, data backups may experience the same end-to-end delay as Voice over
IP (VoIP) telephony. If traffic is temporarily delayed due to network congestion, the
backup is not affected, but VoIP telephony may no longer be possible in a meaningful
way. These different demands are called Quality of Service (QoS) requirements. Traffic
scheduling in combination with active queue management (AQM) tackles this problem
by replacing the default first-in-first-out (FIFO) queue behavior with more advanced
queuing and scheduling decisions, e.g., real-time traffic may be placed in another queue
than common network traffic.

A recent approach to support data transmission with QoS requirements is TSN. TSN is
an enhancement of Ethernet and provides various mechanisms to guarantee QoS re-
quirements, e.g., traffic shaping and policing. The sender in a TSN domain is called
talker whereas the receiver is called listener. Before a talker transmits its data, it signals
its QoS requirements to the network. The network then configures itself in a distributed
manner or through a central component such that the QoS requirements can be ful-
filled.

2.2.2.2 Alternative Best Effort (ABE) for Service Differentiation: Trading Loss

versus Delay

This section summarizes and presents the research results from Lindner et al. [LPM23].
This publication is part of the core content of this thesis. Further details can be found
10https://github.com/uni-tue-kn/rpco
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in the associated publication. First, the research objective is introduced. Then, the
solution and evaluation results are explained.

2.2.2.2.1 Research Objective Increasing buffer sizes in network devices lead to tem-
porary long end-to-end delays [GN11], which may break the QoS requirements of
some applications. The differentiated services framework (DiffServ) [BBC+98] was
introduced to allow for service differentiation in IP networks. With DiffServ, some
traffic may be forwarded with higher priority to achieve its QoS requirements whereas
lower priority traffic may receive worse service than without DiffServ. In this work,
we revisited the idea of Alternative Best Effort (ABE) [HLTK01], which introduces a
bounded-delay service class next to BE. A unique property of this service class is that
low-delay forwarding of ABE traffic must not impede BE traffic. The goal of this work
was to design and implement a novel packet scheduler in the Linux network stack that
allows low-delay forwarding for ABE traffic without degrading the performance of BE
traffic.

2.2.2.2.2 Concept We propose Deadlines, Saved Credits, and Decay (DSCD) as a
novel packet scheduler for ABE and BE traffic. With DSCD, ABE traffic is forwarded
with a significantly lower delay than BE but may experience higher packet loss. In
contrast, BE traffic is forwarded as usual and receives the same service as in a pure BE
system. A DSCD-based network device utilizes two FIFO queues, one to enqueue BE
traffic and one to enqueue ABE traffic. Further, it leverages a so-called credit queue
and two class-specific credit counters. Figure 2.10 illustrates the concept of DSCD.

Packets are assigned to a specific service class, i.e., ABE or BE, by the sender with the
DiffServ code point (DSCP)11. When a packet is received by a DSCD-based network
device, it is enqueued in an ABE or BE queue, depending on the DSCP value. Further,
ABE packets are equipped with a configurable deadline Td which gives an upper bound
on the experienced queuing delay. When a packet is enqueued, a so-called credit ele-
ment is created and placed in the credit queue 1 . A credit element preserves the right
to send a number of bytes. To that end, it consists of a size and a service class, i.e., a
1500 byte ABE packet creates a 1500 byte credit element with service class ABE. A
packet with size s is dequeued when its class-specific credit counter has at least value
s 2 . When both credit counters are too low to dequeue a packet, a credit element is
removed from the credit queue, and its associated credit counter is increased by its size

11DSCP is set through the ToS field in the IP header.
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Figure 2.10: Concept of DSCD. An incoming packet is enqueued in its class-specific
queue. If enough service credit is available, the packet is dequeued.
ABE packets that exceed their maximal delay are dropped. Figure from
[LPM23]. ©2022 IEEE.

3 . ABE packets that exceed their deadline are dropped, but their credit remains in the
system for some time. Therefore, subsequent ABE packets can be served earlier than
their BE counterparts. The FIFO order of the credit queue ensures that BE packets are
no longer delayed than in a pure BE system. Hence, low-delay forwarding of ABE
traffic does not impede BE traffic, as ABE packets utilize the transmission rights of
previously dropped ABE packets.

2.2.2.2.3 Credit Devaluation Stored credit from dropped ABE packets may remain in
the system for an infinite time. This may incentivize users to send unnecessary data to
provoke packet loss and accumulate credit for later use. Further, credit should only be
used during congestion periods and vanish afterwards. To that end, stored credit c is
devaluated exponentially over time according to Equation 2.8, where ∆t is the elapsed
time since the last devaluation and λ is the devaluation rate.

c = c · e−λ·∆t (2.8)

The devaluation rate λ is configured through its half-life time th = ln(2)
λ

, i.e., after one
half-life time th only half the credit is still available.
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2.2.2.2.4 Implementation in the Linux Network Stack We implemented DSCD in the
Linux network stack as queuing discipline (QDisc)12. To that end, we developed an
efficient approximation of the exponential function for the credit devaluation as the
Linux kernel only supports13 integer arithmetic. Further, a bandwidth estimation algo-
rithm has been developed that works well even at moderate link utilization. Details on
these implementations can be found in [LPM23].

We evaluate the efficiency of the DSCD implementation through the following exper-
iment. We send TCP traffic in a 100 Gb/s environment and measure its achieved TCP
goodput and the CPU load on the DSCD device. We compare the results of DSCD with
various other existing QDiscs in the Linux kernel. Table 2.1 shows the results.

Table 2.1: TCP goodput and CPU load of various Linux QDiscs. Table from [LPM23].
©2022 IEEE.

QDisc TCP goodput (Gb/s) CPU load (%)

DSCD 89.08 36.27
FQ-CoDel 89.02 38.99

FQ-PIE 89.00 44.21
SFQ 89.03 38.72
pfifo 89.06 35.41

All considered QDiscs achieve around 89 Gb/s TCP goodput which is less than 100
Gb/s due to header overhead. DSCD and pfifo have the lowest CPU load with 36.27%
and 35.41%. The results show that the DSCD implementation is efficient and compa-
rable to other Linux QDiscs.

2.2.2.2.5 Evaluations We study DSCD’s impact on packet loss and queuing delay for
ABE and BE traffic. To that end, we send non-adaptive traffic, i.e., traffic that does
not react to congestion signals, to investigate DSCD’s properties without the influence
of adaptive protocols such as TCP. We model the network traffic such that it includes
traffic bursts. A traffic burst is a period of time where data is sent at higher rates than
usual, which may lead to congestion in the network. We generate traffic with an offered
load of ρ ∈ {0.95, 1.2}, where 90% of the traffic is labeled as BE and 10% as ABE.

12QDiscs are implemented in the C programming language and perform tasks such as traffic shaping,
packet classification, or packet dropping. They are located in the Linux kernel space and can perform
almost arbitrary operations on packets.

13Floating point operations either require context switches to the user space or manually saving and
restoring floating point registers.
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With ρ = 0.95, traffic is sent on average with 95% of the bottleneck bandwidth but may
exceed the bottleneck bandwidth during a burst period. With ρ = 1.2, the network is
overloaded most of the time. Further, we vary the half-life time th ∈ {0.01, 0.1, 1, 10}
s and the maximal queuing delay Td ∈ {5, 10} ms. Details on the testbed setup can be
found in [LPM23]. Figures 2.11a and Figure 2.11b illustrate the experienced queuing
delay and packet loss for ABE and BE traffic.
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Td = 5 ms Td = 10 ms Td = 5 ms Td = 10 ms

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
0

5

10

15

20

Half−life time th (s)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

ABE BE

(a) Queuing delay.
ρ = 0.95 ρ = 1.2

Td = 5 ms Td = 10 ms Td = 5 ms Td = 10 ms

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
0

4

8

12

16

20

Half−life time th (s)

P
ac

ke
t l

os
s 

(%
)

ABE BE

(b) Packet loss.

Figure 2.11: Queuing delay and packet loss for non-adaptive traffic with bursts. Figures
from [LPM23]. ©2022 IEEE.

For ρ = 0.95, both ABE and BE experience only a small queuing delay (see Figure
2.11a). ABE experiences significantly less queuing delay than BE but faces higher
packet loss as shown in Figure 2.11b. With ρ = 1.2, both ABE and BE face high
packet loss as the network is constantly overloaded. BE traffic is queued for around 20
ms whereas ABE experiences at most 5 ms queuing delay. Higher values of Td lead to
higher queuing delay as packets remain longer in the queue. A higher half-life time th

leads to less queuing delay and packet loss as stored credit is devaluated at a lower rate.
The experiment validates DSCD‘s core property, i.e., that ABE is forwarded with low
delay at the expense of higher packet loss whereas BE traffic receives the same service
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as in a pure BE system. Advanced evaluations that take adaptive transport protocols
and different fractions of ABE and BE traffic into account can be found in [LPM23].

2.2.2.2.6 Conclusion & Discussion We proposed a novel packet scheduler called Dead-
lines, Saved Credits, and Decay (DSCD) that allows low-delay forwarding for ABE
traffic without impeding BE traffic. It is based on the concept of credit elements to pre-
serve the right to send a certain amount of bytes. DSCD was implemented in the Linux
network stack and side products of the implementation were an efficient approximation
of the exponential function and a bandwidth estimation algorithm that even works at
moderate link utilization. Extensive hardware-based evaluations with up-to-date proto-
col stacks confirm DSCD‘s core properties.

This work has been published as a journal paper in IEEE Transactions on Networking
(ToN) [LPM23] (see Appendix 1.3) in 2023. The source code of the DSCD implemen-
tation has been published as an open-source implementation on Github14.

2.2.2.3 RAP Extensions for the Hybrid Configuration Model

This section summarizes the research results from Osswald et al. [OLWM21]. This
publication is part of the additional content of this thesis. Therefore, it is only briefly
summarized. Further details can be found in the associated publication.

2.2.2.3.1 Research Objective The Resource Allocation Protocol (RAP) is used in fully
distributed TSN domains to signal stream reservation requests. In addition to the
fully distributed configuration model, TSN supports the fully centralized configura-
tion model, and the centralized network/distributed user, also called hybrid, configura-
tion model. The fully centralized configuration model leverages other means to signal
stream reservation requests. The goal of this work was to analyze and extend RAP such
that it can be used in the hybrid configuration model.

2.2.2.3.2 Summary A talker in a TSN domain sends a so-called Talker Announce At-
tribute (TAA) to announce its stream requirements to the network. Similarly, the lis-
tener sends a so-called Listener Attach Attribute (LAA). Analysis of the included infor-
mation in the TAA and LAA showed that RAP lacks some important properties which

14https://github.com/uni-tue-kn/dscd-linux-qdisc
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are required to support all available TSN mechanisms in a TSN domain which uses
the hybrid configuration model. For example, the earliest/latest transmit time cannot be
signaled which is required for the Time-Aware Shaper (TAS) [80216] mechanism. Sub-
sequently, it is proposed to extend RAP such that the missing information is included.
Further, Osswald et al. [OLWM21] propose a software architecture for a Centralized
User Configuration (CUC) component.

This work [OLWM21] has been published and presented at the International Confer-
ence on Emerging Technologies and Factory Automation (ETFA) in 2021 (see Ap-
pendix 2.4).

2.2.2.4 A Survey of Scheduling Algorithms for the Time-Aware Shaper in

Time-Sensitive Networking (TSN)

This section summarizes the research results from Stüber et al. [SOLM23]. This work
is part of the additional content of this thesis. Therefore, it is only briefly summarized.
Further details can be found in the associated work.

2.2.2.4.1 Summary The Time-Aware Shaper (TAS) [80216] enables the transmission
of real-time traffic with strict QoS requirements, e.g., zero queuing delay and jitter. In
TSN, packets are enqueued in one of up to eight transmission queues depending on
their priority. With TAS, so-called gates control which transmission queue is eligible
for transmission at a given time, which is called schedule. The calculation of such a
schedule is NP-complete [Ste10]. This work surveys the currently15 available litera-
ture for TSN schedule computation. Research works are categorized and compared
according to their modeling assumptions and open problems in the research field are
identified. This work has been published as a journal paper in IEEE Access [SOLM23]
(see Appendix Appendix 2.7) in 2023.

2.2.2.5 P4TG: 1 Tb/s Traffic Generation for Ethernet/IP Networks

This section summarizes the research results from Lindner et al. [LHM23]. This work
is part of the core content of this thesis. Further details can be found in the associ-
ated publication. First, the research objective is introduced. Then, the solution and
evaluation results are explained.
15Until March 2023.
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2.2.2.5.1 Research Objective Traffic generators (TGs) are widely used to evaluate the
performance of novel network equipment and protocols. To that end, they generate
layer-2 (L2)/layer-3 (L3), i.e., Ethernet and IP, packets and measure the achievable
transmission rates and other metrics. TGs are either software-based or hardware-based.
Software-based TGs are highly flexible and customizable to individual needs but pro-
vide only support for low data rates. Hardware-based TGs support high data rates and
generate traffic precisely, but are very expensive, up to several tens of thousands of dol-
lars for 100 Gb/s support. Some offer additional functionality, e.g., means to debug and
verify optical connectivity. In contrast, an Intel Tofino™ 1 with 3.2 Tb/s processing
capacity costs less than eight thousand dollars16.

This work aimed to design and implement a low-cost traffic generator based on the Intel
Tofino™ that can generate up to 1 Tb/s traffic, including a wide range of measuring
capabilities.

2.2.2.5.2 P4TG Overview P4TG is a 1 Tb/s hardware-based TG based on the Intel
Tofino™ ASIC. P4TG provides two different modes: generation and analysis. In gen-
eration mode, P4TG can generate up to 10x 100 Gb/s network traffic. Traffic is sent
through specified output ports and may be fed back to its input ports, possibly through
other equipment. P4TG measures the transmission and reception rates and records
packet loss, out-of-order packets, round trip time (RTT)17, inter-arrival times (IATs),
frame sizes, and frame types. Further, random traffic can be generated. In analysis
mode, P4TG forwards traffic received on an input port to an output port and similarly
analyses the received traffic. P4TG can be configured through a web-based interface.

2.2.2.5.3 Implementation Concept Intel Tofino™ comes with integrated traffic gener-
ation capabilities. Thereby, an interval can be specified in which a given byte sequence
should be generated. We leverage this functionality and augment it with extensive mea-
suring capabilities in the data plane. To that end, a generated packet is equipped with a
special P4TG header, as shown in Figure 2.12.

The P4TG header consists of a sequence number used to identify out-of-order and lost
packets, a transmission timestamp used to determine the RTT, and a stream identifica-
tion field used to identify the corresponding stream.

16As of January 2023.
17The RTT is the time between the transmission of a packet on an output port and its reception on an

input port.
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Figure 2.12: Generated packets are equipped with an Ethernet, IPv4, UDP, and P4TG
header. Figure from [LHM23].

The transmitted and received bytes on layer-1 (L1)18 and L2 are accumulated in a 64-bit
register per port. They are used together with precise hardware timestamps to calculate
transmission rates. Likewise, counters for detected out-of-order and lost packets are
incremented in the data plane. Further, RTTs and IATs are sampled by the control
plane to create statistics. Implementation details can be found in [LHM23].

2.2.2.5.4 Evaluation We evaluate P4TG’s rate generation accuracy on a single port19

and compare it with the software-based TG TRex [TRe22] and the hardware-based
TG EXFO FTB-1 Pro [EXF19]. The prototype is implemented on the Edgecore Wedge
100 BF-32X [Edg21] which is based on the Intel Tofino™ 1. We configure a target
rate RL1

target on the TGs and measure the achieved relative L1 rate. Table 2.2 shows the
results.

Table 2.2: Measured L1 rate relative to target rate RL1
target. Table from [LHM23].

Gen. method fL2
size (byte) RL1

target (Gb/s)
0.001 10 50 75 100

P4TG
64 100.00 100.00 99.38 99.37 99.98
256 100.00 99.80 99.92 99.77 99.92

TRex
64 99.99 100.00 100.00 91.30 68.48
256 100.00 99.96 99.94 83.66 61.92

EXFO
64 100.00 100.00 100.00 100.00 100.00
256 100.00 100.00 100.00 100.00 100.00

P4TG is capable of generating up to 100 Gb/s with a minimal frame size of fL2
size = 64

byte with high accuracy. In contrast, the software-based TG TRex saturates20 at around
18Frame sizes on L1 include a preamble and inter-frame gap (additional 20 bytes).
19P4TG can generate traffic on up to 10 ports.
20The experiment was conducted on a VM with 10 Intel(R) Xeon(R) Gold 6134 CPU cores.
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2.2 Support of Real-Time Communication

68 Gb/s for 64-byte frames. The hardware-based commercial TG EXFO precisely gen-
erates the configured target rates.

P4TG further supports the generation of random traffic, i.e., traffic with exponential dis-
tributed IATs. To that end, traffic is generated at line rate and dropped with a configured
probability p, which resembles a geometric distribution21. We send traffic with target
rates RL1

target ∈ {50, 75} Gb/s, sample the IATs, and compare the distribution of the
samples with the theoretical geometric distribution and the corresponding exponential
distribution. Figure 2.13a and 2.13b show the complementary cumulative distribution
function (CCDF) of the sampled IATs.
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Figure 2.13: CCDF of IATs with random traffic with 64 byte frames. Figures from
[LHM23].

Both CCDFs match with the theoretically expected distributions. The deviation to the
exponential distribution can be explained by the fact that IATs are bounded by the
smallest possible frame size whereas they are unbounded in the case of the exponential
distribution. Further evaluations can be found in [LHM23].

2.2.2.5.5 Conclusion & Discussion We presented P4TG, a 1 Tb/s traffic generator
based on the Intel Tofino™. P4TG measures data rates, out-of-order packets, packet
loss, RTTs, IATs, frame sizes, and frame types directly in the data plane for the highest
possible accuracy. Further, it supports the generation of random traffic and allows ex-
ternal traffic analysis. P4TG comes with clearly lower costs than other hardware-based
TGs. It may also be suited for traffic generation at even higher rates (up to 400 Gb/s
per port) with Intel Tofino™ 2 and Intel Tofino™ 3.

21The geometric distribution is the discrete approximation of the exponential distribution.
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2 Results & Discussion

This work has been published as a journal paper in IEEE Access [LHM23] (see Ap-
pendix 1.5) in 2023. The source code of the P4TG implementation has been published
as open-source implementation on Github22.

22https://github.com/uni-tue-kn/P4TG
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3 Additional Scientific Work

This chapter summarizes additional scientific contributions, which have been made dur-
ing my doctoral studies besides the publications presented in Chapter 2.

3.1 Workshop Organization

In 2020, I co-organized the 2nd KuVS Fachgespräch Network Softwarization and the
1st ITG Workshop on IT Security (ITSec) at the Eberhard Karls University Tübingen.
Both workshops aimed to bring researchers and industry experts together to discuss
the latest advances in network softwarization and IT security. The workshops com-
prised several keynote speeches, technical sessions, and panel discussions. Due to the
COVID-19 pandemic, the workshops were held virtually. Based on the success of
the 2nd KuVS Fachgespräch Network Softwarization in 2020, we also hosted the 3rd
KuVS Fachgespräch Network Softwarization where I was again part of the organization
team.

3.2 Research Proposals

I was involved in the creation of the DFG research proposal ”Resilient Communication
with Programmable Hardware (ReCoPro)” for the priority program ”Resilience in Con-
nected Worlds – Mastering Failures, Overload, Attacks, and the Unexpected (Resilient
Worlds)” (SPP 2378) which has been granted at the end of 2022. Further, I was part of
the management team for the Collaborative Project KITOS (support code 16KIS1161)
at our chair and was responsible for technical reports and project deliverables.
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3 Additional Scientific Work

3.3 Thesis Supervision

I supervised five Master theses and four Bachelor theses during my doctoral studies.
Topics included the design and implementation of P4 programs and algorithms, litera-
ture overviews for topics currently outside the scope of the chair, and concepts and time
plans for future teaching courses. The titles of the supervised theses are listed below.

B.Sc. Comparison and Analysis of Data Center Routing with RIFT and OSPF

M.Sc. Implementation and Evaluation of an Alternative Best Effort Traffic Scheduler in
the Linux Network Stack

M.Sc. Design and Implementation of a RAP Prototype for the Centralized Network/Distributed
User Model in TSN

B.Sc. Entwurf und Analyse eines Software-Projektes für das Tübinger Teamprojekt:
Implementierung eines DNS Servers

B.Sc. Design and Implementation of a Web-Based Visualization Tool for Network Plan-
ning in Time-Sensitive Networking

M.Sc. Autonomous Integration of TSN-Unaware Applications with QoS Requirements
in TSN Networks

M.Sc. Implementierung von Per-Stream Filtering and Policing für Time-Sensitive Net-
working auf einem 100G-fähigen Switch mithilfe von P4

B.Sc. Design und Implementierung einer generischen Control Plane GUI für P4-programmierbare
Switche

Four of the supervised Master theses have laid the foundation for the start of indepen-
dent Ph.D. topics of new co-workers.

3.4 Miscellaneous

During my doctoral studies, I supervised the lectures ”Grundlagen des Internets” (4
times) and ”Programmierprojekt” (4 times). I gave lectures on selected topics in our
course ”Network Softwarization” (2 times). Further, I co-organized a weekly research
seminar where younger co-workers presented their research progress and new research
ideas were discussed.
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3.4 Miscellaneous

In 2021, I co-authored the IETF Internet draft ”BIER Fast ReRoute” [CML+22] of the
BIER working group that may be adopted as an active working group document.

From 2021-2023, I was a reviewer for the following international journals, magazines,
conferences, and workshops:

• Journal of Optical Communications and Networking (2021)

• International Conference on High-Performance Switching and Routing (HPSR
2021)

• International Conference on the Design of Reliable Communication Networks
(DRCN 2021)

• IEEE Transactions on Network and Service Management (2020, 2022, 2023)

• IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

Finally, I gave several talks about current research topics at national workshops, aca-
demic salons, and the IETF. The titles of the talks are listed below.

• S. Lindner, M. Haeberle, D. Merling, and M. Menth: P4-Protect: 1+1 Path
Protection for P4, 2nd KuVS Fachgespräch Network Softwarization, Tübingen,
Deutschland, April 2020.

• H. Chen, M. McBride, S. Lindner, M. Menth, A. Wang, G. Mishra, Y. Liu, Y.
Fan, L. Liu, X. Liu: BIER Fast Reroute, IETF 111, Juli 2021.

• D. Merling, S. Lindner, M. Menth: Robust LFA Protection for Software-Defined
Networks (RoLPS), 3rd KuVS Fachgespräch ”Network Softwarization”, April
2022.

• S. Lindner, D. Merling, M. Menth: P4-Based Implementation of BIER and BIER-
FRR for Efficient Multicast, Academic Salon on Low-Latency Communication,
Programmable Network Components and In-Network Computation, September
2022.

• S. Lindner, D. Merling, and M. Menth: Efficient P4-based BIER Implementation
on Tofino, IETF 115, November 2022.

• S. Lindner, G. Paradzik, M. Menth: Alternative Best Effort (ABE) for Service
Differentiation: Trading Loss versus Delay, IETF 116, March 2023.
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ABSTRACT
1+1 protection is a method to secure traffic between two nodes
against failures in between. The sending node duplicates the traffic
and forwards it over two disjoint paths. The receiving node assures
that only a single copy of the traffic is further forwarded to its
destination. In contrast to other protection schemes, this method
prevents almost any packet loss in case of failures. 1+1 protection
is usually applied on the optical layer, on Ethernet, or on MPLS.

In this work we propose the application of 1+1 for P4-based IP
networks. We define an 1+1 protection header for that purpose. We
describe the behavior of sending and receiving nodes and provide
a P4-based implementation for the Behavioral Model version 2
(bmv2) software switch and the hardware switch Tofino Edgecore
Wedge 100BF-32X.We illustrate how to secure traffic, e.g. individual
TCP flows, on the Internet with this approach. Finally, we present
performance results showing that the P4-based implementation
efficiently works on the Tofino Edgecore Wedge 100BF-32X.
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1 INTRODUCTION
There are various concepts to secure traffic transmission against
failure of path components such as links or nodes. The fastest is 1+1
protection. A sender duplicates traffic and forwards it over disjoint
paths while the receiver forwards only the first copy received for
every packet. In case of a failure, any packet loss can be avoided,
which makes 1+1 protection attractive for highly reliable applica-
tions. 1+1 protection is implemented in optical networks to protect
an entire trunk. It is also available for MPLS [10] and Ethernet [9],
which are carrier technologies for IP and introduce signaling com-
plexity. In this paper, we leverage the P4 programming language [3]
to provide 1+1 protection for IP networks. We program P4 switches
such that they feature IP forwarding, the sending and receiving
node behaviour of 1+1 protection which includes IP encapsulation
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and decapsulation. We call this approach P4-Protect. Targets of our
implementation are the software switch BMv2 and the hardware
switch Tofino Edgecore Wedge 100BF-32X. A particular challenge
is the selection of the fist copy of every duplicated packet at the
receiver. We provide a controller that allows to set up 1+1 pro-
tection between P4 nodes implementing P4-Protect. Furthermore,
protected flows can be added using a fine-granular description
based on various header fields. We evaluate the performance of
P4-Protect on the hardware switch. We show that P4-Protect can be
used with only marginal throughput degradation and we illustrate
that P4-Protect can significantly reduce jitter when both paths have
similar delays.

The paper is structured as follows. Section 2 gives an overview
of related work. Section 3 describes the 1+1 protection mechanism
used for our implementation and extensions for its use on the
general Internet. Section 5 presents a P4-based implementation
including specifics for the Tofino Edgecore Wedge 100BF-32X. We
evaluate the performance of P4-Protect on the hardware switch in
Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
We review various resilience concepts for communication networks.
Afterwards, we give examples for 1+1 protection.

2.1 Overview
Rerouting reorganizes the traffic forwarding to avoid failed compo-
nents. This happens on a time scale of a second. Fast reroute (FRR)
locally detects that a next hop is unreachable and deviates traffic
to an alternative next hop [1]. The detection may take a few 10s of
milliseconds so that traffic loss cannot be avoided. Both rerouting
and FRR do not utilize backup resources under failure-free condi-
tions, but their reaction time suffers from failure detection delay.
1:1 protection leverages a primary/backup path concept. To switch
over, the head-end node of the paths needs to be informed about
a failure, which imposes additional delay. With restoration, recov-
ery paths may be dynamically allocated so that even more time is
needed to establish the restoration paths [19, p. 31]. 1+1 protection
duplicates traffic and sends it over two disjoint paths whereby the
receiving node needs to eliminate duplicates. That method is fastest,
but it requires extra capacities also under failure-free conditions.
Some services can afford short network downtimes, other services
greatly benefit from 1+1 protection’s high reliability.

The surveys [15], [20], and [7] provide an overview of various
protection and restoration schemes. The authors of [7] discuss
survivability techniques for non-WDM networks like automatic
protection switching (APS) and self healing rings (SHR) as well
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as dynamic restoration schemes in SONET. They further describe
protection methods for optical WDM networks. A comprehensive
overview of protection and restoration mechanisms for optical,
SONET/SDH, IP, and MPLS networks can be found in [19].

SDN with inband signalling increases the need for fast and local
protection against failures because the controller may no longer be
reachable in case of a failure or highly loaded. In addition, with SDN
new protection mechanisms can be implemented, e.g., to reduce
state in the network. Examples are given in [14].

2.2 1+1 Protection
At first we will look at standards with respect to 1+1 protection,
followed by other work related to 1+1 protection.

2.2.1 Standards. The ITU-T specification Y.1703 [10] defines a 1+1
path protection scheme for MPLS. It adds sequence numbers to
packets and replicates them on disjoint paths. At the end of the
paths, duplicate packets are identified by the sequence number and
eliminated. P4-Protect works similarly. However, it does not require
MPLS. It is compatible with IP and works over the Internet.

802.1CB [8] defines a redundant transmission mode for Time-
Sensitive Networking (TSN), called Frame Replication and Elimi-
nation for Reliability (FRER). Each packet of a stream is equipped
with a sequence number, replicated, and then sent through two
disjoint paths to a destination. Both destination and/or traversing
nodes eliminate duplicate packets. FRER supports two algorithms:
VectorRecoveryAlgorithm and MatchRecoveryAlgorithm. With the
VectorRecoveryAlgorithm, an acceptance window is used to accept
packets with higher sequence numbers than expected. With the
MatchRecoveryAlgorithm all sequence numbers except the last seen
are accepted, which is used to prevent misbehaviour. In-order de-
livery is currently out of scope in 802.1CB.

DetNet [5] provides capabilities to carry data flows for real-
time applications with extremely low data loss rates and bounded
latency within a network. Packet Replication and Elimination (PRE)
is a service protection method for DetNet, which leverages the 1+1
protection concept. PRE adds sequence numbers or time stamps
to packets in order to identify duplicates. Packets are replicated
and sent along multiple different paths, e.g., over explicit routes.
Duplicates are eliminated, mostly at the edge of the DetNet domain.
The Packet Ordering Function can be used at the elimination point
to provide in-order delivery. However, this requires extra buffering.

2.2.2 Other Work on 1+1 Protection. The authors of [21] compare
several implementation strategies of 1+1 protection, i.e, traditional
1+1 path protection, network redundancy 1+1 path protection (di-
versity coding) [2], and network-coded 1+1 path protection. Their
analytical results show that diversity coding and network coding
can be more cost-efficient, i.e., they require about 5-20% less re-
served bandwidth. The delay impact of 1+1 path protection in MPLS
networks has been investigated in [17]. McGettrick et. al [13] con-
sider 10 Gb/s symmetric LR-PON. They reveal switch-over times
to a backup OLT of less than 4 ms. Multicast traffic has often real-
time requirements. Mohandespour et. al extend the idea of unicast
1+1 protection to protect multicast connections [16]. They formu-
late the problem of minimum cost multicast 1+1 protection as a
2-connectivity problem and propose heuristics. Braun et. al [4]

propose maximally redundant trees for 1+1 protection in BIER, a
stateless multicast transport mechanism. It leverages the concept
of multicast-only FRR [11].

3 P4-PROTECT: CONCEPT
We first give an overview of P4-Protect. We present its protection
header, the protection connection context, and the operation of the
Protection Tunnel Ingress (PTI) and Protection Tunnel Egress (PTE).

3.1 Overview
With P4-Protect, a protection connection is established between
two P4 switches. Protected traffic is duplicated by a PTI node and
simultaneously carried through two protection tunnels to a PTE
node. The PTE receives the duplicated traffic and forwards the first
copy received for every packet.

PD

PIP-PTE PD

PD

PD

PIP-PTE PD
P PD

P PD

P4-Switch Legacy router

IP-IH IP-PTE

PTI PTE

P

PD Packet data Protection headerP IP tunnel to PTEIP-PTE IP-IH IP tunnel to legacy router

Figure 1: With P4-Protect, a PTI encapsulates and duplicates
packets, and sends them over disjoint paths; the PTE decap-
sulates the packets and forwards only the first packet copy.

Figure 1 illustrates the protocol stack used with P4-Protect. The
PTI adds to each packet received for a protected flow a protection
header (P) that contains a sequence number which is incremented
for each protected packet. The packet is equipped with an additional
IP header (IP-PTE) with the PTE’s IP address as destination. The PTI
duplicates that packet and forwards the two copies over different
paths. The paths may be different due to traffic engineering (TE) ca-
pabilities of the network or path diversity may be achieved through
an additional intermediate hop. When the PTE receives a packet, it
removes its outer IP header (IP-PTE). If the sequence number in the
protection header is larger than the last sequence number received
for this connection, it removes the protection header and forwards
the packet; otherwise, the packet is dropped. The latter is needed
as duplicate packets are also considered harmful.

3.2 Protection Header
The protection header contains a 24 bit Connection Identifier (CID),
a 32 bit Sequence Number (SN) field, and an 8 bit next protocol field.
The CID is used to uniquely identify a protection connection at the
PTE. The sequence number is used at the PTE to identify duplicates.
The next protocol field facilitates the parsing of the next header. We
reuse the IP protocol numbers for this purpose.

3.3 Protection Connection Context
A protection connection is set up between a PTI and PTE. Their
IP addresses are associated with this connection, including two
interfaces over which duplicate packets are forwarded. For each
connection, the PTI has a sequence number counter 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
which
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is incremented for each packet forwarded over the respective pro-
tection connection. Likewise, the PTE has a variable 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
which

records the highest sequence number received for the respective
protection connection. A CID is used to identify a connection at the
PTE. A PTI may have several protection connections with the same
CID but different PTEs (see Section 5.5.1).

3.4 PTI Operation
The PTI has a set of flow descriptors that are mapped to protection
connections. If the PTI receives a packet which is matched by a
specific flow descriptor, the PTI processes the packet using the
corresponding protection connection. That is, it increments the
𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
, adds a protection header with CID, next protocol set to IPv4,

and the SN set to 𝑆𝑁𝑃𝑇 𝐼
𝑙𝑎𝑠𝑡

. Then, an IP header is added using the PTI’s
IP address as source and the IP address of the PTE associated with
the protection connection as destination. The packet is duplicated
and forwarded over the two paths associated with the protection
connection.

3.5 PTE Operation
During failure-free operation, the PTE receives duplicate packets
via two protection tunnels. When the PTE receives a packet, it
decapsulates the outer IP header. It uses the CID in the protection
header to identify the protection connection and the corresponding
𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
. If the SN in the protection header is larger than 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
,

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

is updated by SN, the protection header is decapsulated, and
the original packet is forwarded; otherwise, the packet is dropped.

The presented behavior works for unlimited sequence numbers.
The limited size of the sequence number spacemakes the acceptance
decision for a packet more complex. Then, a SN larger than 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
may indicate a copy of a new packet, but it may also result from
a very old packet. To solve this problem, we adopt the use of an
acceptance window as proposed in [10]. The window is𝑊 sequence
numbers large. Let 𝑆𝑁𝑚𝑎𝑥 be the maximum sequence number. If
𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
+𝑊 < 𝑆𝑁𝑚𝑎𝑥 holds, a new sequence number 𝑆𝑁 is accepted

if the following inequality holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 ≤ 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡 +𝑊 (1)

If 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

+𝑊 ≥ 𝑆𝑁𝑚𝑎𝑥 holds, a new sequence number 𝑆𝑁 is
accepted if one of the two following inequalities holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (2)

𝑆𝑁 < 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 +𝑊 − 𝑆𝑁𝑚𝑎𝑥 (3)

This allows a packet copy to arrive 𝑆𝑁𝑚𝑎𝑥 −𝑊 sequence num-
bers later than the corresponding first packet copy without being
recognized as new packets.

AXE [12] tries to solve a similar problem, namely the de-duplication
of packets. The hash of incoming packets is used to access special
registers and associated header fields are stored. When another
packet with the same hash arrives and the stored header fields
match the incoming packet, the packet is a duplicate. No hash colli-
sion is considered. This technique detects duplicates quite reliably.
However, AXE considers L2 flooding for learning bridges and there-
fore operates on relatively low bandwidths. P4-Protect must be able
to de-duplicate several 100G connections, for the Tofino Edgecore

Wedge 100BF-32X 3.2 Tb/s. Hence the AXE approach is not feasible
due to the required register memory space and, depending on the
hash algorithm, the high probability for hash collisions.

4 DISCUSSION
In this section the protection properties of P4-Protect are examined
in more detail. Both, advantages and limitations of P4-Protect are
discussed. The impact on jitter, packet loss and packet reordering
are considered. To that end, we provide examples of traffic streams
received by the PTE and their results after duplicate elimination.

4.1 Impact on Jitter
P4-Protect replicates packets to two preferable disjoint paths. If
both paths suffer from jitter, P4-Protect can compensate the overall
end-to-end jitter. Figure 2 illustrates the impact of P4-Protect on
the overall end-to-end jitter. Packet 3 on path 1 has a very high
delay due to jitter. As P4-Protect always forwards the first version
of in-order packets, packet 3 is forwarded from the second path
and thereby compensates the jitter delay.

Time t

12

12

3

3

Path 1

Path 2
123

Figure 2: P4-Protect can reduce jitter.

4.2 Impact of Packet Loss
P4-Protect forwards the first version of a packet. If a path fails,
all packet replicas of the other path are forwarded correctly. If
individual packets are lost on one path, their replicas from the
other path are not necessarily forwarded. This phenomenon ist
illustrated in Figure 3. Four packets are replicated by the PTI and
sent over two disjoint paths. The second path has a higher latency.
As a result, packet 4 of the first path arrives before packet 3 on the
second path. Now, 𝑆𝑁𝐸𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
is set to 4, and as a consequence, packet

3 on the second path is discarded.

Time t
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34

34

Path 1

Path 2
124

X

Figure 3: Packet lossmay not be compensated by P4-Protect.

This behavior is due to the scalable design of P4-Protect. Only
the last accepted sequence number is stored and checked at a new
packet arrival. Missing packets are not memorized nor are packets
buffered. This example clarifies that the objective of P4-Protect is
to protect quickly against path failures, it is not to compensate for
individual packet losses.
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4.3 Packet Reordering
Packet reordering on a path has different sources, e.g., parallelism
in network devices, link bundling, and special QoS configurations
[18]. In case of packet reordering, P4-Protect may cause packet loss.

Time t
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2

3

Path 1

Path 2
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4

4
4

Figure 4: As it is not possible to check for lost packets, re-
ordering leads to packet loss.

Figure 4 illustrates the impact of packet reordering. Path 1 has
a slightly lower end-to-end latency than path 2. Due to packet
reordering, the PTE receives the packets of path 1 in the order 1 3
2 4 instead of 1 2 3 4 . Moreover, packet 3 of the first path arrives
slightly before packet 2 of the second path. As a result, the PTE
accepts packets 1, 3 and 4 from path 1 and discards packet 2 from
path 2. The main reason for this behavior is that P4-Protect does
not memorize missing packets. Therefore, they cannot be accepted
if they arrive in the wrong order. Limited arithmetic operations
and storage access on our specific hardware target inhibit more
sophisticated checks.

5 IMPLEMENTATION
In this section we present the implementation of P4-Protect. We
describe the supported header stacks, explain the control blocks,
their organization in ingress and egress control flow, and we re-
veal implementation details about some control blocks. Finally, we
sketch most relevant aspects of the P4-Protect controller.

5.1 Supported Header Stacks
Incoming packets are parsed so that their header values can be
accessed within the P4 pipeline. To that end, we define the following
supported header stacks. Unprotected IP traffic has the structure
IP/TP, i.e., IP header and some transport header (TCP/UDP), and
protected IP traffic has the structure IP/P/IP/TP, i.e., the IP header
with the PTE’s address, the protection header, the original IP header,
and a transport header. IP traffic without transport header is parsed
only up to the IP header.

5.2 Control Blocks
Wepresent three control blocks of our implementation of P4-Protect.
They consider the packet processing by PTI and PTE.

5.2.1 Control Block: Protect&Forward. When the PTI receives an IP
packet, it is parsed and matched against the Match+action (MAT)
table ProtectedFlows. In case of a match, the packet is equippedwith
an appropriate header stack, duplicated, and sent to appropriate
egress ports. In case of a miss, the packet is processed by a standard
IPv4 forwarding procedure.

5.2.2 Control Block: Decaps-IP. When the PTE receives an IP packet
with the PTE’s own IP address, the IP header is decapsulated. If the

next protocol indicates a protection header, the packet is handed
over to the Decaps-P control block; otherwise, the packet is pro-
cessed by the Protect&Forward control block since the resulting
packet may need to be protected and forwarded.

5.2.3 Control Block: Decaps-P. In the Decaps-P control block, the
PTE examines the protection header and decides whether to keep
or drop the packet as it is a copy of an earlier received packet. To
keep the packet, the protection header is decapsulated.

5.3 Ingress and Egress Control Flow
The inter-dependencies between the control blocks suggest the fol-
lowing ingress control flow: Decaps-IP, Decaps-P, Protect&Forward.
At a mere PTI, no action is performed by the Decaps-IP and Decap-P
control block. The Protect&Forward takes care that protected traffic
is duplicated and sent over two different paths and that unprotected
traffic is forwarded by normal IPv4 operation. At a mere PTE, pro-
tected traffic is decapsulated and selected before being forwarded
by normal IPv4 operation. Unprotected traffic is just forwarded by
normal IPv4 operation.

5.4 Control Block Implementations
In the following, we explain implementation details of the Pro-
tect&Forward control block and the Decaps-P control block. We
omit the Decaps-IP control block as it is rather simple.

5.4.1 Protect&Forward Control Block. The operation of the Pro-
tect&Forward control block is illustrated in Figure 5. It utilizes the
MAT ProtectedFlows to process all packets. It effects that protected
traffic is encapsulated at the PTI with a protection header and an IP
header for tunneling.

ProtectedFlows
Match keys

Ternary

p.srcIP & p.dstIP
p.protocol & p.srcPort & p.dstPort

Action Parameters

protect

- i
- CID
- srcIP
- dstIP
- m_grp

- increment sequence number for next pkt
- add protection header with CID
- add outer ip header with srcIP and dstIP

Standard IPv4 forwarding

miss

Send to mulicat group m_grp

Figure 5: The MAT ProtectedFows inside the Pro-
tect&Forward control block is applied to IPv4 traffic.

The MAT ProtectedFlows uses a ternary match on the classic
5-tuple description of a flow: the source and destination IP ad-
dress and port as well as the protocol field. In case of a match, the
MAT maps a packet to a specifc protection connection and calls
the protect action with the connection-specific parameters 𝑖 , 𝐶𝐼𝐷 ,
𝑠𝑟𝑐𝐼𝑃 , 𝑑𝑠𝑡𝐼𝑃 , and𝑚_𝑔𝑟𝑝 . The protect action increments the register
𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
[𝑖] where 𝑖 is a connection-specific index to access a register

containing the last sequence number. On the Tofino target, this is
performed by a separate register action. The protect action further
pushes a protection header on the packet including 𝐶𝐼𝐷 , i.e., the
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CID, 𝑆𝑁𝑃𝑇 𝐼
𝑙𝑎𝑠𝑡

[𝑖], and the next protocol set to IPv4. Then, it pushes
an IPv4 header with the IP address 𝑠𝑟𝑐𝐼𝑃 of the PTI as source IP and
the IP address 𝑑𝑠𝑡𝐼𝑃 of the PTE as destination IP. The protocol field
of this outer IP header is set to P4-Protect. Finally, the multicast
group of the packet is set to𝑚_𝑔𝑟𝑝 . It is a connection-specific mul-
ticast group. It effects that the packet is duplicated and sent to two
egress ports in order to deliver it via two protection tunnels to the
PTE. In case of a miss, the packet is unprotected and handled by a
standard IPv4 forwarding procedure, which is not further explained
in this paper.

5.4.2 Decaps-P Control Block. The Decaps-P control block decides
whether a packet is new and should be forwarded or dropped. It com-
pares the sequence number 𝑆𝑁 of the packet’s protection header
with the last sequence number of the corresponding protection
connection. The latter can be accessed by the register 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
[𝐶𝐼𝐷]

where CID is given in the protection header. The acceptance is de-
cided based on Equation (1) or Equation (3) depending on the value
of 𝑆𝑁 and𝑊 where𝑊 is given as a constant.

As the check is rather complex, it requires careful implemen-
tation for the Tofino target 1. It leverages the fact that we set
𝑊 = 𝑆𝑁𝑚𝑎𝑥

2 . Furthermore, it requires a reformulation of Equa-
tion (1) and Equation (3).

If𝑊 ≤ 𝑆𝑁 holds, the following two inequalities must be met:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (4)

𝑆𝑁 − 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 ≤ 𝑊 (5)

Otherwise, if 𝑆𝑁 <𝑊 , it is sufficient that only one of the following
two inequalities holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (6)

𝑊 ≤ 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 − 𝑆𝑁 (7)

Both cases are implemented as separate register actions on the
Tofino target. With 32 bit sequence numbers, a minimum packet
size of 40 bytes and a transmission speed of 𝐶 = 1 Tb/s, a delay
difference up to 1.6s can be compensated.

The bmv2 version of the implementation can be found at Github2.
The Tofino version of the implementation can be found at Github3
as well.

5.5 Controller for P4-Protect
P4-Protect’s controller offers an interface for the management of
protection connections and protected flows. It configures in par-
ticular the MAT ProtectedFlows but also other MATs needed for
standard IPv4 forwarding or IP decapsulation. In the following, we
explain the configuration of protection connections and protected
flows.

5.5.1 Configuration of Protection Connections. A protection con-
nection is established by choosing registers on PTI and PTE to
record the last sequence numbers 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
and 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
of a protec-

tion connection. The connection identifier is the PTE’s index to
1Tofino is a high-performance chip which operates at 100 Gb/s so that only a limited
set of operations can be performed for each packet, in particular in connection with
register access.
2Repository: https://github.com/uni-tue-kn/p4-protect
3Repository: https://github.com/uni-tue-kn/p4-protect-tofino

access 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

. On the PTI, a different index 𝑖 may be chosen to
access 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
. Furthermore, the registers are initialized with zero.

Moreover, the controller sets up a multicast group𝑚_𝑔𝑟𝑝 for each
connection so that its traffic will be replicated in an efficient way
to the two desired interfaces.

5.5.2 Configuration of Protected Flows. A protected flow is estab-
lished by adding a new flow rule in the MAT ProtectedFlows of the
PTI. It contains an appropriate flow descriptor and the parameters
to call the action protect. Those are the index 𝑖 associated with the
corresponding protection connection, the CID needed at the PTE to
identify the protection connection, the IP address of the PTI, the IP
of the PTE, and the multicast group𝑚_𝑔𝑟𝑝 .

6 EVALUATION
In this section we evaluate the performance of the implemented
mechanism on the Tofino Edgecore Wedge 100BF-32X. First, we
compare packet processing times with and without P4-Protect.
Then, we demonstrate that very high data rates can be achievedwith
and without P4-Protect on a 100 Gb/s interface. Finally, we show
that P4-Protect can provide a transmission service with reduced
jitter compared to the jitter of both protection tunnels.

6.1 Packet Processing Time
P4-Protect induces forwarding complexity. To evaluate its impact,
we leverage P4 metadata to calculate the time a packet takes from
the beginning of the ingress pipeline to the beginning of the egress
pipeline. This is sufficient for a comparison as all work for P4-
Protect is done in the ingress pipeline and all considered forward-
ing schemes utilizes the same egress pipeline. We compare three
forwarding modes: a plain IP forwarding implementation (plain),
P4-Protect for unprotected traffic (unprotected), and P4-Protect for
protected traffic (protected).
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Figure 6: Ingress-to-egress packet processing time at PTI and
PTE for three forwardingmodes: plain, unprotected, and pro-
tected.

Figure 6 shows the ingress-to-egress packet processing time on
both PTI and PTE for the three mentioned forwarding modes. The
duration is given relative to the processing time for plain forwarding
mode. We observe the lowest processing time at PTI and PTE for
plain forwarding as it has the least complex pipeline. With P4-
Protect, the processing time at both PTI and PTE is larger than with
plain forwarding as the operations are more complex. At PTI, the
processing time is even larger with protected forwarding (166%)
than with unprotected forwarding (127%). At PTE, the processing
times for protected and unprotected traffic are equal and 27% longer
than with plain forwarding.
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In our implementations, we have used only a minimal IPv4
stack for all three forwarding modes. With a more comprehen-
sive IPv4 stack, the relative overhead through P4-Protect is likely
to be smaller.

6.2 TCP Goodput
We set up iperf3 connections between client/server pairs and mea-
sure their goodput. Each iperf3 connection consists of 15 parallel
TCP flows. Two switches are bidirectionally connected via two
100 Gb/s interfaces. Four client/server pairs are connected to the
switches via 100 Gb/s interfaces. Up to 4 clients download traffic
from their servers via the trunk between the switches.
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Figure 7: Impact of varying number of client/server pairs ex-
changing traffic with iperf3.

Figure 7 shows the overall goodput for a various number of
client/server pairs, each transmitting traffic over a single TCP con-
nection. The goodput is given for the forwarding modes plain,
unprotected, and protected. We performed 20 runs per experiment
and provide the 95% confidence interval.

A single, two, and, three TCP connections cannot generate suffi-
cient traffic to fill the 100 Gb/s bottleneck link. However, with four
TCP connections a goodput of around 90 Gb/s is achieved. This is
less than 100% because of overhead due to Ethernet, IP, and TCP
headers and due to the inability of TCP to efficiently utilize available
capacity at high data rates. Most important is the observation that
all three forwarding modes lead to almost identical goodput. The
goodput for protected and unprotected forwarding is slightly lower
than plain forwarding, which is apparently due to the operational
overhead of P4-Protect.

6.3 Impact on Jitter
We examine the effect of 1+1 path protection on jitter. Two hosts are
connected to two Tofino EdgecoreWedges 100BF-32X. The switches
are connected with each other via two paths with intermediate
Linux servers. Their interfaces are bridged and cause an artificial,
adjustable, uniformly distributed jitter. We leverage the tc tool for
this purpose [6]. All lines have a capacity of 100 Gb/s.

In our experiment, we send pings between the two hosts with
and without P4-Protect. Figure 8 reports the average round trip
time (RTT) deviation for the pings. Unprotected traffic suffers from
all the jitter induced on a single path. Protected traffic suffers only
from about half the jitter. This is because P4-Protect forwards the
earliest received packet copy and minimizes packet delay occurred
on both links.

0

2

4

6

0 1 3 10

Jitter (ms)

D
e
v
ia

ti
o
n
 (

m
s
)

Unprotected
Protected

Figure 8: Impact of 1+1 protection on jitter.

7 CONCLUSION
In this paper we proposed P4-Protect for 1+1 path protection with
P4. It may be utilized to protect traffic via two largely disjoint paths.
We presented an implementation for the software switch bmv2 and
the hardware switch Tofino Edgecore Wedge 100Bf-32X. The evalu-
ation of P4-Protect on the hardware switch revealed that P4-Protect
increases packet processing times only little, that high throughput
can be achieved with P4-Protect, and that jitter is reduced by P4-
Protect when traffic is carried over two path with similar delay but
large jitter.
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ABSTRACT Traditional IP multicast (IPMC) maintains state per IPMC group in core devices to distribute
one-to-many traffic along tree-like structures through the network. This limits its scalability because
whenever subscribers of IPMC groups change, forwarding state in the core network needs to be updated.
Bit Index Explicit Replication (BIER) has been proposed by the IETF for efficient transport of IPMC traffic
without the need of IPMC-group-dependent state in core devices. However, legacy devices do not offer the
required features to implement BIER. P4 is a programming language which follows the software-defined
networking (SDN) paradigm. It provides a programmable data plane by programming the packet processing
pipeline of P4 devices. The contribution of this article is threefold. First, we provide a hardware-based
prototype of BIER and BIER fast reroute (BIER-FRR) which leverages packet recirculation. Our target
is the P4-programmable high-performance switching ASIC Tofino; the source code is publicly available.
Second, we perform an experimental evaluation, with regard to failover time and throughput, which shows
that up to 100 Gb/s throughput can be obtained and that failures affect BIER forwarding for less than 1 ms.
However, throughput can decrease if switch-internal packet loss occurs due to missing recirculation capacity.
As a remedy, we add more recirculation capacity by turning physical ports into loopback mode. To quantify
the problem, we derive a prediction model for reduced throughput whose results are in good accordance with
measured values. Third, we provide a provisioning rule for recirculation ports, that is applicable to general
P4 programs, to avoid switch-internal packet loss due to packet recirculation. In a case study we show that
BIER requires only a few such ports under realistic mixes of unicast and multicast traffic.

INDEX TERMS Software-defined networking, P4, bit index explicit replication, multicast, resilience,
scalability.

I. INTRODUCTION
IP multicast (IPMC) has been proposed to efficiently
distribute one-to-many traffic, e.g. for IPTV, multicast
VPN, commercial stock exchange, video services, public
surveillance data distribution, emergency services, teleme-
try, or content-delivery networks, by forwarding only one
packet per link. IPMC traffic is organized in IPMC groups
which are subscribed by hosts. Figure 1 shows the concept
of IPMC. IPMC traffic is forwarded on IPMC-group-specific
distribution trees from the source to all subscribed hosts.
To that end, core routers maintain forwarding state for each
IPMC group to determine the next-hops (NHs) of an IPMC
packet. Scalability issues are threefold. First, a significant

The associate editor coordinating the review of this manuscript and

approving it for publication was Martin Reisslein .

Figure 1. Two multicast distribution trees.

amount of storage is required to keep extensive forwarding
state. Second, when subscribers of an IPMC group change,
the distribution tree needs to be updated by signaling the
changes to core devices. Third, the distribution trees have to
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be updated when the topology changes or a failure is detected.
Therefore, traditional IPMC comes with significant manage-
ment and state overhead. As a result, traditional IPMC is
often avoided andmulticast is implemented on the application
layer. Thereby, one-to-many traffic is carried via network
layer unicast, which is not efficient.

The IETF proposed Bit Index Explicit Replication
(BIER) [1] for efficient transport of IPMC traffic. BIER intro-
duces a BIER domain where core routers do not need tomain-
tain IPMC-group-dependent state. Upon entering the BIER
domain, IPMC packets are equipped with a BIER header
which specifies all destinations of the packet within the
BIER domain. The BIER packets are forwarded through
the BIER domain towards their destinations on paths from
the Interior Gateway Protocol (IGP), which we call ’rout-
ing underlay’ in the following. Thereby, only one packet is
forwarded per link. When the BIER packets leave the BIER
domain, the BIER header is removed.

Unicast and BIER traffic may be affected by failures.
IP-Unicast traffic is often protected by fast reroute (FRR)
mechanisms for IP (IP-FRR). IP-FRR leverages precomputed
backup entries to quickly reroute a packet on a backup
path when the primary NH is unreachable. Tunnel-based
BIER-FRR [2] is used to protect BIER traffic by tunneling
BIER packets through the routing underlay. The tunnel may
be also affected by a failure, but FRR or timely updates of
the forwarding information base (FIB) in the routing underlay
quickly restore connectivity. However, BIER is not supported
by legacy devices and there is no dedicated BIER hardware
available. P4 [3] is a programming language that follows the
software-defined networking (SDN) paradigm for program-
ming protocol-independent packet processors. P4 allows
developers to write high-level programs to define the packet
processing pipeline of programmable network devices.
A target-specific compiler translates the P4 program for exe-
cution on a particular device.With the P4-programmable data
plane new protocols can be implemented and deployed in
short time.

In previous work [2], [4] we implemented BIER
and tunnel-based BIER-FRR for the P4 software switch
bmv2 [5]. However, the developers of the bmv2 clarify that
the ‘BMv2 is not meant to be a production-grade software
switch’ [5] and is, therefore, only a ‘tool for developing,
testing and debugging P4 data planes’ [5]. Thus, it remains
unclear whether BIER and BIER-FRR forwarding is simple
enough to be implemented also on P4-capable hardware
platforms which entail functional and runtime constraints to
achieve high-speed forwarding.

The contribution of this article is threefold. First, we pro-
vide a new prototype for BIER and BIER-FRR on the
P4-programmable switching ASIC Tofino [6] which is used
in the Edgecore Wedge 100BF-32X [7], a 32 100 Gb/s port
high-performance P4 switch, and make our code publicly
available.

Second, we conduct an experimental performance study
with regard to failover time and throughput. The evaluations

show that connectivity can be restored within less than 1 ms
and that a throughput of up to 100 Gb/s can be obtained.
However, we observe reduced throughput under certain con-
ditions and conjecture that this results from switch-internal
packet loss due to missing recirculation capacity. We add
more recirculation capacity by turning physical ports into
loopback mode to avoid switch-internal packet loss in case
of recirculation. To quantify the problem, we derive a predic-
tion model for BIER throughput whose results are in good
accordance with measured values.

Third, we propose a provisioning rule for recirculation
ports to avoid switch-internal packet loss due to packet recir-
culation. It is applicable to general P4 programs and helps
to avoid throughput reduction on outgoing links. Finally,
we utilize the provisioning model to show in a case study that
only a few ports in loopback mode suffice to avoid internal
packet loss with BIER under realistic mixes of unicast and
multicast traffic.

The paper is structured as follows. In Section II we describe
related work. Section III contains a primer on BIER and
tunnel-based BIER-FRR. Afterwards, we give an overview
on P4 in Section IV and explain important properties.
In Section V, we briefly describe the P4 implementation of
BIER and tunnel-based BIER-FRR for the Tofino. Section VI
contains our evaluation and the model for throughput predic-
tion of BIER. In Section VII we present a model to provision
recirculation ports. We conclude the paper in Section VIII.

II. RELATED WORK
First, we describe related work for SDN-based multicast in
general. Then, we review work for BIER-based multicast.
Finally, we present P4 projects that are based on packet
recirculation.

A. SDN-BASED MULTICAST
Elmo [8] increases scalability of traditional IPMC in data
center environments by leveraging characteristics of data
center networks, in particular symmetric topologies and short
paths. By encoding multicast group information in the packet
header, this information is no longer stored in forwarding
devices. This significantly reduces the dynamic state that
needs to be maintained by core nodes.

Two surveys [9], [10] provide a comprehensive overview
of SDN-based multicast. They review the development of
traditional multicast and different aspects of SDN-based mul-
ticast, e.g., building of distribution trees, group management,
and approaches to improve the efficiency of multicast. Most
of the papers in the surveys discuss multicast mechanisms
that are based on explicit IPMC-group-dependent state in core
devices. The downsides of those traditional IPMC approaches
have been discussed in Section I. We still discuss some
papers on IPMC due to their efforts to make traditional
IPMC more efficient. The papers often focus on intelligent
tree building mechanisms that reduce the state, or efficient
signaling techniques when IPMC groups or the topology
changes. The surveys also consider works that utilize SDN to
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improvemulticast. They are related as our approach also takes
an SDN approach. Therefore, we present some representative
examples from that area.

1) OPTIMIZATION OF MULTICAST TREES
Rückert et al. propose Software-Defined Multicast (SDM)
[11]. SDM is an OpenFlow-based platform that provides
well-managed multicast for over-the-top and overlay-based
live streaming services tailored for P2P-based video stream
delivery. The authors extend SDM in [12] with traffic engi-
neering capabilities. In [13] the authors propose address
translation from the multicast address to the unicast address
of receivers at the last multicast hop in OpenFlow switches.
This reduces the number of IPMC-group-dependent forward-
ing entries in some nodes.

Steiner trees are often used to build multicast distribution
trees [14]. Several papers modify the original Steiner-tree
problem to build distribution trees with minimal cost [15],
number of edges [16], number of branch nodes [17],
delay [18], or for optimal position of the multicast
source [19].

The authors of [20] implement a multicast platform in
OpenFlow with a reduced number of forwarding entries.
It is based on multiple shared trees between different IPMC
groups. The Avalanche Routing Algorithm (AvRA) [21] con-
siders properties of the topology of data center networks to
build trees with optimal utilization of network links. Dual-
StructureMulticast (DuSM) [22] leverages different forward-
ing structures for high-bandwidth and low-bandwidth flows.
This improves scalability and link utilization of SDN-based
data centers. Jia et al. [23] present a way to efficiently
organize forwarding entries based on prime numbers and the
Chinese remainder theorem. This reduces the required state
in forwarding devices and allows more efficient implemen-
tation. In [24] the authors propose a SDN-based multicast
switching system that leverages bloom filters to reduce the
number of TCAM-entries.

2) RESILIENCE FOR TRADITIONAL MULTICAST
Shen et al. [25] modify Steiner trees to include recovery
nodes in the multicast distribution tree. The recovery nodes
cache IPMC traffic temporarily and resend it after recon-
vergence when the destination notified the recovery point
because it did not get all packets due to a failure. The
authors of [26] evaluate several algorithms that generate
node-redundant multicast distribution trees. They analyse the
number of forwarding entries and the effect of node failures.
In [27] the authors propose to deploy primary and backup
multicast trees in SDN networks. The header of multicast
packets contains an ID that identifies the distribution tree on
which the packet is forwarded. When a failure is detected,
the controller reconfigures affected sources to send packets
along a working backup tree. Pfeiffenberger et al. [28] pro-
pose a similar method. Each node that is part of a distribu-
tion tree is the root of a backup tree that does not contain
the unreachable NH but all downstream destinations of the

primary distribution tree. When a node cannot forward a
packet, it reroutes the packet on a backup tree by switching
an VLAN tag in the packet header.

B. BIER-BASED MULTICAST
In this subsection we discuss work directly related to BIER.
First, we define our work in contrast to other implementa-
tions. Then, we describe evaluations and extensions for BIER.

1) IMPLEMENTATIONS
We started with an implementation of BIER for the software
switch bmv2 using P414. The protoype was documented
at high level in a 2-page demo paper [4]. We then devel-
oped BIER-FRR and implemented a prototype for BIER
and BIER-FRR on the software switch bmv2 using the
newer variant P416 in [2]. That work demonstrated that the
P4 language is expressive enough to implement also complex
forwarding mechanisms and introduced a hierarchical con-
troller hierarchy to quickly trigger FRR actions. The study
compared restoration times for various failure cases and pro-
tection schemes at light load conditions of a few packets
per second. Throughput measurements were not conducted
as the bmv2 software switch is only a ‘tool for developing,
testing and debugging P4 data planes’ [5] with low through-
put (900 Mb/s) [29] and not for application in real networks.
In contrast, this paper shows that BIER and BIER FRR can
be implemented also on high-performance P4-programmable
hardware, i.e., the switching ASIC Tofino, which entails
additional functional and runtime constraints for implementa-
tions to achieve high throughput. Experimental measurement
studies in a 100 Gb/s hardware testbed reveal performance
challenges due to recirculations. As this is a general problem
for some P4 programs, we derive recommendations to cope
with them and validate them in our hardware testbed.

We know only a single BIER implementation by other
authors which is based on OpenFlow and presented
in [30], [31]. Their approach suffers from two major short-
comings. First, the BIER bit string is encoded in a MPLS
header which is the only way to encode arbitrary bit strings
in OpenFlow. This limits the bit string length, and thus
the number of receivers, to 20 which is the length of an
MPLS label. Second, the implementation performs an exact
match on the bitstring. If a subscriber changes, thematch does
not work anymore and a local BIER agent that is not part of
the OpenFlow protocol needs to process the packet. There-
fore, we consider this project only as an early BIER-based
prototype for OpenFlow and not as a production-ready
BIER implementation.

2) EVALUATIONS AND EXTENSIONS OF BIER-BASED
MULTICAST
The authors of [32] perform a simulation-based evaluation
of BIER. They find that on metrics like delivery ratios and
retransmissions BIER performs as well as traditional IPMC
but has better link usage and no per-flow or per-group state
in core devices.
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Eckert et al. [33] propose an extension for BIER that
allows for traffic engineering (BIER-TE). In addition to the
egress nodes, the BIER header encodes the distribution tree
of a packet. In [34] the authors propose 1 + 1 protection
for BIER-TE. The traffic is transported on two disjoint dis-
tribution trees, which delivers the traffic even if one tree is
interrupted by a failure.

C. PACKET RECIRCULATION IN P4
Hauser et al. [35] show in their P4 survey that packet recircu-
lation is not used only in this BIER implementation but also in
other P4 projects. In [36] the authors implement a congestion
control mechanism in P4 and leverage packet recirculation
to create notification packets, update their header fields, and
send them to appropriate monitoring nodes. The authors
of [37] present a content-based publish/subscribe mechanism
in P4 where they introduce a new header stack that requires
packet recirculation for processing. Uddin et al. [38] imple-
ment multi-protocol edge switching for IoT based on P4.
Packet recirculation is used to process packets a second time
after they have been decrypted.

III. BIT INDEX EXPLICIT REPLICATION (BIER)
In this Section we explain BIER. First, we give an overview.
Then we describe the BIER forwarding table and how BIER
packets are processed. Afterwards, we show a forwarding
example. Finally, we review tunnel-based BIER-FRR.

A. BIER OVERVIEW
First, we introduce the BIER domain. Then, we present the
layered BIER architecture followed by the BIER header.
Finally, we describe BIER forwarding.

1) BIER DOMAIN
Figure 2 shows the concept of the BIER domain. When
bit-forwarding ingress routers (BFIRs) receive an IPMC
packet they push a BIER header onto it and forward the
packet into the BIER domain. The BIER header identifies
all destinations of the BIER packet within the BIER domain,
i.e., bit-forwarding egress routers (BFERs). Bit-forwarding
routers (BFRs) forward the BIER packets to all BFERs indi-
cated in its BIER header. Thereby, packets are replicated and

Figure 2. The concept of the BIER domain [39].

forwarded to multiple next-hops (NHs) but only one packet
is sent over any involved link. The paths towards the desti-
nations are provided by the Interior Gateway Protocol (IGP),
i.e., the routing underlay. Therefore, from a specific BFIR to
a specific BFER, the BIER packet follows the same path as
unicast traffic. Finally, BFERs remove the BIER header.

2) THE LAYERED BIER ARCHITECTURE
The BIER architecture consists of three components. The
IPMC layer, the BIER layer and the routing underlay.
Figure 3 shows the three layers, their composition, and inter-
action. The IPMC layer contains the sources and subscribers
of IPMC traffic. The BIER layer acts as a transport layer
for IPMC traffic. It consists of the BIER domain which is
connected to the IPMC layer at the BFIRs, and BFERs.
Therefore, the BIER layer acts as a point-to-multipoint tunnel
from an IPMC source to multiple subscribers. The routing
underlay refers to the IGP which provides the paths to all
destinations within the network.

Figure 3. IPMC packets are transmitted over a layered BIER architecture;
the paths are defined by the information from the routing underlay [39].

3) BIER HEADER
The BIER header contains a bit string to indicate the destina-
tions of a BIER packet. To that end, each BFER is assigned
an unique number that corresponds to a bit position in that
bit string, starting by 1 for the least-significant bit. If a BFER
should receive a copy of the IPMC packet, its bit is activated
in the bit string in the BIER header of the packet. To facilitate
readability we refer to the bit string in the BIER header of a
BIER packet with the term ’BitString’.

4) BIER FORWARDING
A BFR forwards a packet copy to any neighbor over which at
least one destination of the packet indicated by its BitString
is reached according to the paths from the routing underlay.
Before a packet is forwarded to a specific NH, the BFR
clears all bits that correspond to BFERs that are reached via
other NHs from the BitString of that packet. This prevents
duplicates at the BFERs.
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B. BIFT STRUCTURE
BFRs use the Bit Index Forwarding Table (BIFT) to deter-
mine the NHs of a BIER packet. Table 1 shows the BIFT
of BFR 1 from Figure 4. For each BFER there is one entry
in the BIFT. Entries of the BIFT consist of a NH, and a
so-called F-BM. The F-BM is a bit string similar to the
BitString. It records which BFERs have the same NH. In the
F-BM of an BIFT entry the bits of BFERs are activated which
are reached over the NH of that entry. Therefore, BFERs with
the same NH have the same F-BM. BFRs use the F-BM to
clear bits from the BitString of a packet before it is forwarded
to a NH.

Table 1. BIFT of BFR 1 in the example of Figure 4 [39].

Figure 4. Example of a BIER topology and BitStrings of forwarded BIER
packets [39].

C. BIER PACKET PROCESSING
When a BFR receives a BIER packet, it first stores the Bit-
String of the packet in a separate bit string to account to which
BFERs a packet has to be sent. In the following, we refer to
that bit string with the term ’remaining bits’. The following
procedure is repeated, until the remaining bits contain no
activated bits anymore [1].

The BFR determines the least-significant activated bit in
the remaining bits. The BFER that corresponds to that bit is
used for a lookup in the BIFT. If a matching entry is found,
it results in a NH nh and the F-BM fbm and the BFR creates
a copy of the BIER packet. The BFR uses fbm to clear bits
from the BitString of the packet copy. To that end, the BFR
performs a bitwise AND operation of fbm and the BitString
of the packet copy and writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
It leaves only bits of BFERs in the BitString active that are
reached over nh. The packet copy is then forwarded to nh.
Afterwards, the bits of BFERs to which a packets has just
been sent are cleared from the remaining bits. To that end,
the BFR performs a bitwise AND operation of the bitwise
complement of fbmwith the remaining bits. The result is then
stored in the remaining bits.

D. BIER FORWARDING EXAMPLE
Figure 4 shows a topology with four BIER devices where
each is BFIR, BFR, and BFER. Table 1 shows the BIFT
of BFR 1.

BFR 1 receives an IPMC packet from IPMC host 1 which
should be distributed to all other IPMC hosts. Therefore,
BFIR 1 pushes a BIER header with the BitString 1110 to
the IPMC packet.

Then, BFR 1 determines the least-significant activated bit
in the BIER header which corresponds to BFER2. This BFER
is used for lookup in the BIFT, which results in the F-BM
1010 and the NH BFR 2. BFR 1 creates a packet copy and
applies the F-BM to its BitString. Then, the packet copy
with the BitString 1010 is forwarded to BFR 2. Finally,
the activated bits of the F-BM are cleared from the remaining
bits which leaves the bit string 0100.

This leaves only one bit active which identifies BFER 3.
After the F-BM 0100 is applied to the BitString of a packet
copy, it is forwarded to BFR 3 with the BitString 0100.
After clearing the bits of the F-BM from the remaining bits,
processing stops because no active bits remain.

E. TUNNEL-BASED BIER-FRR
Tunnel-based BIER-FRR is used to deliver BIER traffic even
when NHs are unreachable due to link or node failures. When
a BFR detects that a NH is unreachable, e.g., by loss-of-
carrier, loss-of-light, or a bidirectional forwarding detection
(BFD1) [40] for BIER [41], it becomes the point of local
repair (PLR) by tunneling the BIER packet through the rout-
ing underlay to nodes downstream in the BIER distribution
tree. The tunnel may be affected by the failure, too. However,
FRR mechanisms or timely updates of the FIB in the routing
underlay restore connectivity for unicast traffic faster than for
BIER traffic because recomputation of BIER entries can start
only after the FIB of the routing underlay has been updated.
Tunnel-based BIER-FRR can be configured either for link
protection or node protection. BIER-FRRwith link protection
tunnels the BIER packet to the NH where the tunnel header is
removed and the BIER header is processed again. BIER-FRR
with node protection tunnels copies of the BIER packets to all
next-next-hops (NNHs) in the distribution tree.

IV. INTRODUCTION TO P4
In this section we briefly review fundamentals of P4 [3]. First,
we give an short overview of the P4 processing pipeline.
Afterwards, we explain packet cloning and packet recircula-
tion and point out important properties.

A. P4 PIPELINE
In this subsection we review the P4 processing pipeline.
We explain its composition, transient and persistent mem-
ory, match + action tables, control blocks, packet cloning

1When a BFR is established between two nodes, they periodically
exchange notifications about their status.
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and packet recirculation. Figure 5 shows the concept of the
P4 processing pipeline.

Figure 5. P4 processing pipeline.

1) COMPOSITION
The P4 pipeline consists of an ingress pipeline and an egress
pipeline. They process packets in a similar fashion, i.e., both
contain a parser, a match + action pipeline, and a deparser.
When a packet arrives at the switch, it is first processed
by the ingress pipeline. The header fields of the packet are
parsed and carried along with the packet through the ingress
pipeline. The parser is followed by a match+ action pipeline
which consists of a sequence of conditional statements, table
matches, and primitive operations. Afterwards, the packet is
deparsed and sent to the egress pipeline for further process-
ing. Finally, the packet is sent through the specified egress
port which has to be set in the ingress pipeline and cannot be
changed in the egress pipeline.

The P4 program defines the parser and the deparser,
which allows the use of custom packet headers. In addition,
the P4 program describes the control flow of the match +
action pipeline in the ingress pipeline and egress pipeline,
respectively.

2) CONTROL BLOCKS
Both the ingress and egress pipeline can be divided into
so-called control blocks for structuring. Control blocks are
used to clearly separate functionality for different protocols
like IP, BIER, and Ethernet, i.e., the IP control block con-
tains Match + Action Tables (MATs) and operations that are
applied only to IP packets, etc. In this paper we focus only on
the BIER control block.

3) Match+Action TABLES (MATs)
MATs execute packet-dependent actions by matching packet
header fields against MAT entries. To that end, an entry
contains one or more match fields, and an action set. When
a packet is matched against a MAT, the match fields of
the entries are compared with specified header fields of
the packet. An action set consists of one or more actions,
e.g., reading or writing a header field, mathematical oper-
ations, setting the egress port of the packet, etc. It is not
possible to match a packet on the same MAT multiple
times.

B. PACKET CLONING
The operation clone-ingress-to-egress (CI2E) allows packet
replication in P4. It can be called only in the ingress pipeline.
At the end of the ingress pipeline, a copy of the packet is
created. However, the packet copy resembles the packet that
has been parsed in the beginning of the ingress pipeline,
i.e., the header changes performed during processing in the
ingress pipeline are reverted. This is illustrated in Figure 6.

Figure 6. An example of the clone-ingress-to-egress (CI2E) operation [39].

If an egress port has been provided as a parameter,
the egress port of the clone is set to that port. Both the original
and cloned packet are processed independently in the egress
pipeline. The cloned packet carries a flag to identify it as a
clone.

C. PACKET RECIRCULATION
In this subsectin we explain the packet recirculation opera-
tion. First, we explain its working. Afterwards, we introduce
the term recirculation capacity.

1) FUNCTIONALITY
P4 allows to recirculate a packet for processing it by the
pipeline a second time. We use this feature to implement
the iterative packet processing of BIER as described in
Section III-C as P4 offers no other possibility to implement
processing loops.

P4 leverages a switch-intern recirculation port for packet
recirculation.When a packet should be recirculated, its egress
port has to be set to the recirculation port during processing in
the ingress pipeline. The flow of a packet through the pipeline
when it is recirculated is shown in Figure 7. The packet is still
processed by the entire processing pipeline, i.e., the ingress
pipeline and egress pipeline. However, after the packet has
been deparsed, it is not sent through a regular physical egress
port but pushed back into the switch-intern recirculation port.
The packet is then processed as if it has been received on a
physical port. The recirculation port has the same capacity

Figure 7. A packet is recirculated to a recirculation port and traverses the
ingress and egress pipeline for a second time.
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as the physical ports. For example, when two physical ports
receive traffic at line rate and each packet is recirculated once,
the recirculation port receives recirculated packets at double
line rate, which causes packet loss.

2) RECIRCULATION CAPACITY
To discuss the effect of packet loss due to many recircula-
tions we introduce the term ’recirculation capacity’. It is the
available capacity to process recirculation traffic. Additional
recirculation capacity is provided by using physical ports
in loopback mode. When the forwarding device switches a
packet to an egress port that is configured as a loopback
port, the packet is immediately placed in the ingress of that
port, instead. The packet is then processed as if it has been
received on that port as usual, i.e., by the parser, the ingress
and egress pipeline, and the deparser. Only traffic that has
to be recirculated is switched to recirculation ports. In the
following the term ’recirculation port’ refers to a physical
port in loopback mode, or the switch-intern recirculation
port. When recirculation ports are required, the switch-intern
recircution port should be used first, before any physical
ports are configured as loopback ports. Only packets that
are recirculated require recirculation capacity, i.e., common
unicast traffic, e.g., as in regular IP unicast forwarding, is not
recirculated, and therefore, does not occupy any recirculation
capacity.

When multiple recirculation ports are deployed to increase
the recirculation capacity, packets that should be recirculated
need to be distributed over these ports. There are different
distribution strategies. We developed a round-robin-based
distribution approach for recirculation traffic to distribute
the load equally over all recirculation ports. We store in
a register which recirculation port receives the next packet
which should be recirculated. When a packet has to be sent
to a recirculation port, that register is accessed and updated
in one atomic operation. This prevents any race conditions
when traffic is distributed. Thus, this distribution strategy
has two advantages. First, if n recirculation ports are used,
the available recirculation capacity is increased to n · linerate.
Second, the equal distribution of recirculation traffic over all
recirculation ports guarantees the full utilization of available
recirculation capacities before packet loss occurs.

V. P4 IMPLEMENTATION OF BIER AND BIER-FRR FOR
TOFINO
In this section we give an overview of the P4 implementation
of BIER and tunnel-based BIER-FRR. First, we discuss the
implementation basis. Afterwards, we give an overview of the
processing of BIER packets, in particular we discuss packet
recirculation.

A. CODEBASE
In [2] we presented a software-based prototype of a P416
implementation of BIER and tunnel-based BIER-FRR for
the P4 software switch bmv2. We provided a very detailed
description of the P4 programs including MATs with match

fields and action parameters, control blocks, and applied
operations. The prototype and the controller are publicly
available on GitHub.2

In this paper we refrain from including a detailed technical
description of the implementation for the Tofino. However,
the source code3 can be accessed by anyone on GitHub.
In the following, we only explain important aspects of the
hardware-based implementation to facilitate the understand-
ing of the evaluation in Section VI and the model derivations
in Section VII.

B. BIER PROCESSING
First, we describe the implementation of regular BIER for-
warding on the Tofino. Afterwards, we explain operation of
tunnel-based BIER-FRR.

1) BIER FORWARDING
Figure 8 shows how a BIER packet is processed once in the
packet processing pipeline.

Figure 8. Paket flow of a BIER packet in the processing pipeline.

When the switch receives a BIER packet it is processed by
the BIER control block. First, the BitString of the packet is
matched against the BIFT which determines the egress port
and the F-BM. The F-BM is applied to the BitString of the
packet and cleared from the remaining bits. If the remaining
bits still contain activated bits, CI2E is called and the egress
port is set to a recirculation port so that the packet will be
processed again. After the ingress pipeline, the copy is created
and both packet instances enter the egress pipeline indepen-
dently of each other. The original packet is sent through an
egress port towards its NH. The packet clone is processed
by a second BIER control block in the egress pipeline which
sets the BitString of the packet copy to the remaining bits.
Since the egress port of the packet clone is a recirculation
port, the packet is recirculated, i.e., it is processed by the
ingress pipeline again.

BIER forwarding removes BIER headers from packets that
leave the BIER domain, and adds IP headers for tunneling
through the routing underlay by tunnel-based BIER-FRR.
Whenever a header is added or removed, the packet is recir-
culated for further processing.

When a BIER packet has more than one NH, two chal-
lenges appear. First, the BitString of a BIER packet has to be

2https://github.com/uni-tue-kn/p4-bier
3https://github.com/uni-tue-kn/p4-bier-tofino
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matched several times against the BIFT to determine all NHs.
However, matching a packet multiple times against the same
MAT is not possible in P4. Second, multiple packet copies
have to be created for forwarding. However, P4 does not allow
to dynamically generate more than one copy of a packet.
Therefore, we implemented a packet processing behavior
where in each pipeline iteration one packet is forwarded to
a NH and a copy of the packet is recirculated for further
processing. This is repeated until all NHs receive a packet
over which at least one destination of the BIER packet is
reached. Figure 9 shows the processing of a BIER packet
which has to be forwarded to three neighbors. In the first
and second pipeline iteration the original BIER packet is sent
through a physical egress port towards a NH and the copied
BIER packet is recirculated by sending the packet copy to a
recirculation port. In the last iteration when the remaining bits
contain no activated bits anymore, no further packet copy is
required and only the original BIER packet is sent through the
egress port. In total, the packet needs to be recirculated two
times to forward it to all three NHs. Therefore, in general,
a BIER packet with n NHs, has to be recirculated n− 1 times
and the first NH can be served without packet recirculation.

Figure 9. BIER processing over multiple pipeline iterations.

2) FORWARDING WITH TUNNEL-BASED BIER-FRR
The concept of tunnel-based BIER-FRR has been proposed
in [2]. We implement it for the Tofino as follows.

The switch monitors the status of its ports as described in
Section. When the match on the BIFT results in a NH which
is reached by a port that is currently down, the processing
of the BIER packet differs in the following way from the
BIER processing described above. An IP header is added to
the original BIER packet to tunnel the packet through the
routing underlay towards an appropriate node in the BIER
distribution tree. The egress port of the original packet is set
to a recirculation port to process the IP header in another
pipeline iteration, i.e., forward the IP packet to the right NH.

VI. PERFORMANCE EVALUATION OF THE P4-BASED
HARDWARE PROTOTYPE
In this section we perform experiments to evaluate the perfor-
mance of the P4-based hardware prototype for BIER regard-
ing Layer-2 throughput and failover time, i.e., the time until
BIER traffic is successfully delivered after a network failure.

A. FAILOVER TIME FOR BIER TRAFFIC
Here we evaluate the restoration time after a failure in three
scenarios and vary the protection properties of IP and BIER.
First, only the IP FIB and BIER FIB are updated by the
controller, respectively, and no FRR mechanisms are acti-
vated. This process is triggered by a device that detects a
failure. It notifies the controller which computes new for-
warding rules and updates the IP and BIER FIB of affected
devices. This scenario measures the time until the BIER FIB
is updated after a failure, which is our baseline restoration
time. The control plane, i.e., the controller, is directly con-
nected to the P4 switch, which keeps the delay to a minimum
in comparison to networks where the controller is several
hops away.

Second, only BIER-FRR is deployed. In this scenario
BIER is able to utilize tunnel-based BIER-FRR in case of
a failure. However, FRR for IP traffic remains deactivated.
Thus, IP traffic can be forwarded only after the IP FIB is
updated.

Third, both IP-FRR and BIER-FRR are deployed. This
scenario evaluates how quickly the P4 switch can react
to network failures and restore connectivity of BIER and
IP forwarding.

In the following, we first explain the setup and the metric.
Then, we present our results. Finally, we discuss the influence
of the setup on the results.

1) EXPERIMENT SETUP
Figure 10 shows the testbed. The Tofino [6],
a P4-programmable switching ASIC, is at the core of the
hardware testbed. We utilize a Tofino based Edgecore Wedge
100BF-32X [7] switch with 32 100 Gb/s ports. An EXFO
FTB-1 Pro [42] 100 Gb/s traffic generator is connected to the
Tofino to generate a data stream that is as precise as possible.
Furthermore, we deploy two bmv2s that act as BFRs and
BFERs. The traffic generator, the controller and two bmv2s
are connected to the Tofino. The traffic generator sends IPMC
traffic to the Tofino. The IPMC traffic has been subscribed
only by bmv2-1. As long as the link between the Tofino
and bmv2-1 works, the BIER packets are forwarded on the
primary path. When the Tofino detects a failure, it notifies the

Figure 10. Experimental setup for evaluation of restoration time.
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controller which computes new rules and updates forwarding
entries of affected devices. In the meantime, the Tofino uses
BIER-FRR to protect BIER traffic, and IP-FRR to protect IP
traffic if enabled. This causes the Tofino to forward traffic on
the backup path via bmv2-2 towards bmv2-1.

2) METRIC
We disable the link between the Tofino and bmv2-1 and
measure the time until bmv2-1 receives BIER traffic again.
We evaluate different combinations with and without IP-FRR
and with and without BIER-FRR. To avoid congestion on
the bmv2 and the VMs, the traffic generator sends only
with 100 Mb/s, which has no impact on the results.

Figure 11 shows the average restoration time for the dif-
ferent deployed protection scenarios based on 10 runs which
we discuss in the following. Confidence intervals are given
on the base of a confidence level of 95%.

Figure 11. Restoration time for BIER with different FRR strategies.

3) FAILOVER TIME W/O BIER-FRR AND W/O IP-FRR
When no FRR mechanism is activated, multicast traffic
arrives at the host only after the IP and BIER forwarding rules
have been updated, which takes about 76 ms. The controller
is directly connected to the Tofino. In a real deployment the
controller may be multiple hops away, which would increase
the restoration time significantly.

The same failover time is achieved without BIER-FRR but
with IP-FRR, for which we do not present separate results.
As BIER forwarding entries are updated only after IP for-
warding entries have been updated, the use of IP-FRR in the
network does not shorten the failover time for BIER traffic.

4) FAILOVER TIME W/BIER-FRR BUT W/O IP-FRR
When tunnel-based BIER-FRR but not IP-FRR is activated,
bmv2-1 receives multicast traffic after 36 ms. In case of
a failure, BIER-FRR tunnels the BIER traffic through the
routing underlay. As soon as IP forwarding rules are updated,
multicast traffic arrives at the host again. Since IP rules
are updated faster than BIER rules, BIER-FRR decreases
the restoration time for multicast traffic even if no IP-FRR
mechanism is deployed.

5) FAILOVER TIME W/BIER-FRR AND W/IP-FRR
In the fastest and most resilient deployment both BIER-FRR
and IP-FRR are activated. Then, multicast packets arrive at
the host with virtually no delay after only 0.6 ms. In contrast
to the previous scenario, unicast traffic is rerouted by IP-FRR
which immediately restores connectivity for IP traffic.

6) INFLUENCE OF EXPERIMENTAL SETUP
The experimental setup (see Figure 10) features two
BFERs on the base of bmv2 software switches with rather
low performance compared to the Tofino-based hardware
switch. However, we designed the experiment such that the
low performance of these BFERs has no impact on results.
bmv2 software switches can forward traffic with a rate up
to 900 Mb/s [29]. By limiting the generated traffic rate
to 100 Mb/s, the bmv2 switches forwarding and receiving
BIER traffic are not overloaded so that bmv2-1 is able to
measure correct restoration times. Furthermore, failure detec-
tion and protection switching are only carried out by the
Tofino-based switch in the setup.

We now consider the impact of the hardware hosting the
controller. When the controller is notified about a failure,
it recomputes entries for IP and BIER forwarding tables. The
computation time depends on the performance of the host
and the size of the network in terms of number of nodes.
Thus, the recomputation time may be significantly larger
in larger networks, which increases the restoration time for
BIER without any fast-reroute and for BIER with BIER-FRR
but without IP-FRR. In contrast, the restoration time for BIER
with BIER-FRR and IP-FRR is not impacted by the controller
hardware or network size.

We discuss the impact of the signalling delay between
the failure-detecting node and the controller. This delay was
very low in our setup while it may be significantly larger
in networks with large geographic extension or slow links.
Such signalling delay adds to the restoration time for BIER
without any fast-reroute and for BIER with BIER-FRR but
without IP-FRR. The restoration time for BIER with
BIER-FRR and IP-FRR is not impacted by that delay.

Finally, controller overload may occur when the controller
needs to process too many messages, e.g., in case of a failure.
This again has no impact on the restoration time for BIER
with BIER-FRR and IP-FRR while it has significant impact
on the restoration time for the other two settings.

B. THROUGHPUT FOR BIER TRAFFIC
The P4-based implementation of BIER described in
Section V-B requires recirculation and is limited by the
amount of recirculation capacity. The PSA defines a virtual
port for this purpose. In this section we show the impact
of insufficient recirculation capacity on throughput and the
effect when additional physical recirculation ports, i.e., ports
in loopback mode, are used for recirculation. We validate our
experimental results in Section VI-C based on a theoretical
model.
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1) EXPERIMENTAL SETUP
The experimental setup is illustrated in Figure 12. A source
node sends IPMC traffic to a BFIR. The BFIR encapsulates
that traffic and sends it to a BFR. The BFR forwards the traffic
to n BFERs which decapsulate the BIER traffic and send it as
normal IPMC traffic to connected subscribers.

Figure 12. Theoretical setup for evaluation of BIER throughput.

The goal of the experiment is to evaluate the forwarding
performance of the BFR depending on the number of NHs.
With nNHs, BIER packets have to be recirculated n−1 times,
and internal packet loss occurs if recirculation capacity does
not suffice. The objective of the experiment is to measure the
BIER throughput depending on the number of recirculation
ports for which only physical loopback ports are utilized in
the experiment. However, the n subscribers may see different
throughput. The first BFER does not see any packet loss while
the last BFER sees most packet loss. Therefore, we measure
the rate of IPMC traffic received on Layer 2 at the last
subscriber.

2) HARDWARE SETUP AND CONFIGURATION
Due to hardware restrictions in our lab, we utilize one
traffic generator, one P4-capable hardware switch, and one
server running multiple P4 software switches to build the
logical setup sketched above. The hardware setup is shown
in Figure 13. The traffic generator is the source of IPMC
traffic and sends traffic to the BFIR. The traffic generator is
also the subscriber of BFER n and measures the throughput
of received IPMC traffic on Layer 2. The hardware switch
acts as BFIR, BFR, and BFER n while BFERs 1 to n− 1 are
deployed as P4 software switches on the server. In addition,
we collapse the BFIR and the BFR in the hardware switch
so that packet forwarding from the BFIR to the BFR is not
needed. Therefore, the traffic generator is the last NH of the
BIER packet when it is processed by the BFR.

Packet recirculation is required after (1) encapsulation to
enable further BIER processing, (2) decapsulation to enable
further IP forwarding, and (3) BIER packet replication to
enable BIER forwarding to additional NHs. We set up the
hardware switch so that all recirculation operations in con-
nection with encapsulation and decapsulation are supported
by two dedicated ports in loopback mode and spend another
k ports in loopback mode to support packet recirculation after
packet replication. This models the competition for recircu-
lation ports on a mere BFR as in the theoretical model.

Figure 13. Hardware setup for evaluation of BIER throughput.

The P4 software switches are bmv2s that run alongside
our controller on VMs on a server with an Intel Xeon Scal-
able Gold 6134 (8x 3.2 GHz) and 4 x 32 GB RAM. The
P4 hardware switch is a Tofino [6] inside an EdgecoreWedge
100BF-32X [7] which is a 100 Gb/s P4-programmable switch
with 32 ports. The traffic generator is an EXFO FTB-1
Pro [42] which generates up to 100 Gb/s. All devices are con-
nected with QSFP28 cables which transmit up to 100 Gb/s.

3) INFLUENCE OF EXPERIMENTAL SETUP
The presented setup contains only a single Tofino-based
switch which is partitioned and utilized as a single BFIR/BFR
and a single BFER. All other BFERs in this setting are soft-
ware switches that support only significantly lower bit rates
(900 Mb/s [29]) than the Tofino-based switch (100 Gb/s).
However, this has no impact on results because we mea-
sure the rate received by the single BFER implemented on
the Tofino-based hardware. Furthermore, packet loss by the
low-performance software switches does not reduce the gen-
erated traffic rate as this is configured as a constant rate on
the generator.

4) BIER THROUGHPUT MEASUREMENTS DEPENDING ON
RECIRCULATION PORTS
The traffic generator sends IPMC traffic at a rate of 100 Gb/s
to the hardware switch, the hardware switch encapsulates
the IPMC traffic, forwards BIER traffic iteratively n-1 times
to bmv2s, recirculates the BIER packet to process the last
activated header bit, decapsulates the traffic as BFER n, and
returns it back to the traffic generator, which measures the
received IPMC rate on Layer-2. We start measuring only
after a 30 seconds initialization phase to avoid any influ-
ences from the startup phase. After 30 seconds, the traf-
fic generator measures for 60 seconds the traffic arriving
from the Tofino and reports the average Layer-2 throughput.
We repeated experiments 10 times and computed confidence
intervals with a confidence level of 95%. Their width was less
than 0.5% of the measured average and, therefore, invisible.
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Table 2. Model predictions T (i ) for BIER throughput and measured values M(i ) (Gb/s); the latter are the same values as presented in Figure 14.

Therefore, we omit them in future figures and tables for better
readability.

In our experiments, we consider 1, 2, 3, and 4 NHs
and utilize 1, 2, and 3 ports in loopback mode to support
recirculation for BIER forwarding. The results are compiled
in Figure 14.

Figure 14. Measured throughput of BIER and traditional IPMC on
the 100 Gb/s Tofino-based switch for different numbers of NHs and
recirculation ports.

The left-most bar shows that with a single recirculation
port, the last NH receives the full IPMC rate of 100 Gb/s if
1 NH is connected. The second bar from the left shows that
the last NH still receives the full IPMC rate of 100 Gb/s if
2 NHs are connected. For 3 or 4 NHs, i.e., the third and fourth
bar from the left, the IPMC traffic rate received by the last NH
is reduced to 43 and 19 Gb/s, respectively.

With 2 recirculation ports, the last NH does not perceive a
throughput degradation if at most 3 NHs, i.e., fifth to seventh
bar from the left, are connected. For 4 NHs, i.e., eighth bar
from the left, the IPMC traffic rate received by the last NH is
reduced to 50 Gb/s.

And with 3 recirculation ports, even up to 4 NHs, i.e., ninth
to twelfth bar from the left, can be supported without through-
put degradation for the last NH.

Thus our experiments confirm that when multicast traffic
arrives with 100 Gb/s at the Tofino, n-1 recirculation ports are
needed to forward BIER traffic to n NHs without packet loss.
This is different for a realistic multicast portion in the traffic
mix, i.e., a minor fraction instead of 100%.

The hardware switch also supports traditional multicast
in P4. With traditional multicast forwarding, all NHs receive
100 Gb/s regardless of the number of NHs. However, this

comes with all the disadvantages of traditional IPMCwe have
discussed earlier.

C. THROUGHPUT MODEL FOR BIER FORWARDING WITH
INSUFFICIENT RECIRCULATION CAPACITY
We model the throughput of BIER forwarding with insuffi-
cient recirculation capacity and validate the results with the
experimentally measured values.

To forward a BIER packet to nNHs, it has to be recirculated
n − 1 times (see Section V-B). Any time a packet is sent to
a recirculation, the packet is dropped with a certain proba-
bility if insufficient recirculation capacity is available. Due
to the implemented round robin approach (see Section IV-C),
the drop probability p is equal for all recirculation ports.
The drop probability p in a system can be determined
by comparing the available recirculation capacity and
the sustainable recirculation load. The latter results from
recirculations after BIER packet replication and takes
packet loss into account. It is shown in the following
formula.

C ·
n−1∑
m=1

(1− p)m = k · C (1)

The available recirculation capacity is k · C where k is the
number of recirculation ports and C is line capacity. The
sustainable recirculation load is the sum of the successfully
recirculated traffic rates after any number of recirculations.
The traffic amount that has been successfully recirculated
once isC ·(1−p). The traffic amount that has been recirculated
twice is C · (1 − p)2, and so on. Therefore, the total amount
is C ·

∑n−1
m=1(1− p)

m.
We calculate the BIER throughput at any NH, i.e., after any

number of recirculations. At the first NH, the throughput of
the BIER traffic is C because the BIER packet is forwarded
to the first NH before the packet is recirculated the first time.
At the second NH, the BIER throughput is C · (1− p), at the
third NH its C · (1 − p)2, and so on. Therefore, the BIER
throughput T (i) at NH 1 ≤ i ≤ n is:

T (i) = C · (1− p)i−1 (2)

Table 2 shows the throughput predictions T (i). We make
predictions for the same scenarios as we evaluated in the
performance evaluation in Section VI-B4 and compare them
to the measured valuesM (i).

The comparison shows that the model provides reasonable
predictions for the BIER throughput.
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VII. PROVISIONING RULE FOR RECIRCULATION PORTS
In this section we propose a provisioning rule for recircula-
tion ports. It may be used for general P4-based applications
requiring packet recirculation, not just for BIER forwarding.
We first point out the importance for sufficient recirculation
capacity. Then, we derive a general provisioning rule for
recirculation ports and illustrate how their number depends
on other factors. Finally, we apply that rule to provision the
number of loopback ports for BFRs in the presence of traffic
mixes.

A. IMPACT OF PACKET LOSS DUE TO MISSING
RECIRCULATION CAPACITY
In Section IV-C we briefly discussed projects that leverage
packet recirculation in P4. However, if recirculation capacity
does not suffice and packets need to be recirculated sev-
eral times, packet loss observed at the last stage may be
quite high. We first illustrate this effect. If the packet loss
probability due to missing recirculation capacity is p, then
the overall packet loss probability after n recirculations is
p(n) = 1−(1−p)n. We illustrate this connection in Figure 15,
which utilizes logarithmic scales to better view several orders
of magnitude in packet loss. With only one recirculation,
we obtain a diagonal for the overall packet loss. A fixed
number of recirculations shifts the entire curve upwards, and
with several recirculations like n = 6 or n = 10, the overall
loss probability p(6) or p(10) is an order of magnitude larger
than the packet loss probability p of a single recirculation
step. Therefore, avoiding packet loss due to recirculations
is important. Thus, sufficient recirculation capacity must be
provisioned but overprovisioning is also costly since this
means that entire ports at high speed cannot be utilized for
operational traffic. Therefore, well-informed provisioning of
recirculation ports is an important issue.

Figure 15. Loss probability after multiple recirculations.

B. DERIVATION OF A PROVISIONING RULE FOR
RECIRCULATION PORTS
Wefirst introduce the recirculation factorR and the utilization
ratio U . Then, we use them to derive a provisioning rule for
recirculation ports.

The recirculation factor R is the average number of recir-
culations per packet. Not all packets may be recirculated or
the number how often a packet is recirculated depends on the
particular packet.

The utilization ratio U describes the multiple by which a
recirculation port can be higher utilized than a normal port.
For example, if the average utilization of each normal port
is 10%, then each recirculation port may be operated with
a utilization of 40%, in particular if multiple of them are
utilized. This corresponds to a utilization ratio of U = 4.
We give some rationales for that idea. Normal ports at high
speed are often underutilized in practice because bandwidths
exist only in fixed granularities and usually link speeds are
heavily overprovisioned to avoid upgrades in the near future.
Furthermore, some links operate at lower utilization, others
at higher utilization. Recirculation ports can be utilized to a
higher degree. First, there is no need to keep the utilization of
recirculation ports low for reasons like missing appropriate
lower link speeds as it can be the case for normal ports.
Second, recirculation ports are shared for all recirculation
traffic of a switch so that resulting traffic fluctuations are
lower and the utilization of the ports can be higher than the
one of other ports.

If m incoming ports carry traffic with a recirculation fac-
tor R and a utilization ratio U can be used on the switch, then

m′ =
⌈
m · R
U

⌉
(3)

describes the number of required recirculation ports.

C. ILLUSTRATION OF REQUIRED RECIRCULATION PORTS
For illustration purposes, we consider a P4 switch with
32 physical (external) ports and one virtual (internal) port
in loopback mode for recirculations. If the capacity of that
single virtual recirculation port does not suffice for recircu-
lations, physical ports need to be turned into loopback mode
as well and be used for recirculation. All recirculation ports
are utilized in round-robin manner to ensure equal utilization
among them.

Thus, the number of normal ports m plus the number of
recirculation ports m′ must be at most 33, i.e., 32 physical
ports and 1 virtual port. Therefore, we find the smallest m′

according to Equation 3, so thatm+m′ ≤ 33 while maximiz-
ingm. The number of physical recirculation ports ism′−1 as
the virtual port can also be used for recirculations. Figure 16
shows the number of physical recirculation ports depending
on the recirculation factor R and the utilization ratio U .
Since U depends on the specific use case and traffic mix,
we present results for different values of U . Thereby, R and
U are fractional numbers. While the number of recirculations
for each packet is an integral number, the average number
of recirculations per packet R is fractional. The number of
physical recirculation ports increases with the recirculation
factor R. Due to the fact that both m and m′ are integers,
the number of physical recirculation ports (m − 1) is not
monotonously increasing because for some R and U the sum
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Figure 16. Number of physical ports in loopback mode.

m+m′ amounts to the maximum 33, and to lower values for
other R and U .

The various curves show that the number of required phys-
ical recirculation ports decreases with increasing utilization
ratio U . With a large recirculation factor R ≥ 3 and a low
utilization Ratio U ≤ 3, half of the ports of the 32 port
switch or even more need to be used for recirculation, which
is expensive. However, with small R < 1 and large U > 3
the number of required physical recirculation ports is low
because most of the traffic does not require packet recircula-
tion, and due to the large utilization ratio U , the recirculation
ports can cover significantly more traffic than normal ports. It
is even possible that no physical recirculation port is needed
if the recirculation capacity of the internal recirculation port
can cover the recirculation load.

D. APPLICATION OF THE PROVISIONING METHOD TO
TRAFFIC MIXES WITH BIER
In this section we make predictions for m′, the number of
recirculation ports, for traffic mixes with typical multicast
portions. We assume different portions of multicast traffic
a ∈ {0.01, 0.025, 0.05, 0.1} and different average numbers
of BIER NHs n ∈ {0, 2, 4, . . . , 16}, i.e., each BIER packet
is recirculated n − 1 times on average. Since unicast traf-
fic is normally processed without recirculation, it does not
need any recirculation capacity, i.e., its amount has no influ-
ence on the number of required recirculation ports and is,
therefore, not considered in this analysis. Then, we calculate
R = a · (n− 1), and assume U = 4. Again, we calculate the
smallestm′, i.e., like in Equation 3, so thatm+m′ ≤ 33 while
maximizingm. Figure 17 shows the number of physical recir-
culation ports depending on the average number of multicast
NHs n and the fraction of multicast traffic a. If the fraction of
multicast traffic is low like 1%, the capacity of the internal
port suffices to serve up to 13 NHs on average. Moderate
fractions of 2.5% multicast traffic require no physical recir-
culation port for up to 5 NHs, 1 physical recirculation port for

Figure 17. Physical ports in loopback mode for traffic mixes with realistic
multicast portions.

up to 11 NHs, and 2 physical recirculation ports for 12 and
more NHs. With 5% multicast traffic, the number of required
physical recirculation ports increases almost linearly from
zero to 5 with an increasing number of NHs. Large fractions
of multicast traffic, like 10%, require up to 8 recirculation
ports if the number of NHs is also large like 16. Under such
conditions, 25% of the physical ports cannot be used for
normal traffic forwarding as they are turned into loopback
mode. However, the assumptions seem rather unlikely as
multicast traffic typically makes up only a small proportion
of the traffic.

VIII. CONCLUSION
The scalability of traditional IPMC is limited because core
devices need to maintain IPMC group-dependent forwarding
state and process lots of control traffic whenever topology or
subscriptions change. Therefore, BIER has been introduced
by the IETF as an efficient transport mechanism for IPMC
traffic. State in BIER core devices does not depend on IPMC
groups, and control traffic is only sent to border nodes, which
increases scalability in comparison to traditional IPMC sig-
nificantly. In addition, there are fast-reroute (FRR) mecha-
nisms for BIER to minimize the effect of network failures.
However, BIER cannot be configured on legacy devices as
it implements a new protocol with a complex forwarding
behavior.

In this paper we demonstrated a P4-based implementation
of BIER with tunnel-based BIER-FRR, IP unicast with FRR,
IP multicast, and Ethernet forwarding. The target platform
is the P4-programmable switching ASIC Tofino which is
used in the Edgecore Wedge 100BF-32X, a 32 100 Gb/s port
high-performance P4 switch.

In an experimental study, we showed that BIER-FRR sig-
nificantly reduces the restoration time after a failure, and in
combination with IP-FRR, the restoration time is reduced
to less than 1 ms. We confirmed that the prototype is able
to forward traffic at a speed up to 100 Gb/s. However,
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under some conditions, less throughput is achieved when
switch-internal recirculation ports are overloaded. As a rem-
edy, we addedmore recirculation capacity by turning physical
ports into loopback mode. We modelled BIER forwarding,
predicted limited throughput due to missing recirculation
capacity, and validated the results by measured values. Fur-
thermore, we proposed a simple method for provisioning of
physical recirculation ports. The approach was motivated by
BIER, but holds for general P4 programs requiring recircu-
lations. In a case study, we applied it to BIER with differ-
ent mixes of unicast and multicast traffic and showed that
only a few physical recirculation ports suffice under realistic
conditions.
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Abstract—The idea of an Alternative Best Effort (ABE) per-
hop behaviour (PHB) emerged about 20 years ago. It provides a
low-delay traffic class in the Internet at the expense of more
packet loss than Best Effort (BE). Therefore, ABE is better
suited than BE for loss-tolerant but delay-sensitive applications.
Furthermore, ABE traffic should not degrade the service for
BE traffic in terms of packet loss and delay. Therefore, Internet
service providers may leave the choice of using BE or ABE to
their customers as they achieve service differentiation without
compromising other traffic.

In this work, we revisit ABE and pursue the fundamental
question whether an ABE service is technically feasible, how
its service would look like and interact with existing transport
protocols? We present a novel scheduler called Deadlines, Saved
Credits, and Decay (DSCD) for combined scheduling of BE
and ABE traffic. It allows to control ABE’s delay advantage
over BE and copes with varying bandwidth. We provide an
implementation of DSCD in the Linux network stack and
demonstrate its efficiency. A side product of the implementation
is an efficient approximation of the exponential function in the
kernel and a bandwidth estimation method that even works at
moderate link utilization. We study DSCD in a semi-virtualized
testbed with real networking stacks to understand implications
for transport protocols in a BE/ABE Internet. The study analyzes
ABE’s impact on loss and delay under various conditions and
gives recommendations for configuration.

Index Terms—Internet Protocol, traffic classes, service differ-
entiation, packet scheduling, Alternative Best Effort (ABE), inter-
class fairness

I. INTRODUCTION

Over the last decades, increasing buffer sizes in network
devices have led to temporarily long end-to-end delays. This
phenomenon is known as bufferbloat [1]. Realtime applica-
tions, such as online gaming, video conference systems, or
voice over IP applications, rely on small end-to-end delays.
Table I gives examples.

TABLE I
REALTIME APPLICATIONS WITH REQUIREMENTS REGARDING

END-TO-END DELAY AND PACKET LOSS.

Application E2E delay Packet loss Source

Online gaming (FPS) 20 ms – 80 ms ≤ 5% [2] [3]
Cloud gaming ≤ 50 ms ≤ 5% [4] [5] [6]

Voice over IP (VoIP) ≤ 150 ms 1% – 3% [7]

A common solution to this problem is service differenti-
ation, where delay sensitive traffic is prioritized over other
traffic. The differentiated services framework (DiffServ) [8]

allows for service differentiation in IP networks, offering
various per-hop behaviours (PHBs) which can be considered
as traffic classes. An example is Expedited Forwarding (EF),
where EF traffic is strictly preferred over other traffic classes
[9]. However, Internet service providers (ISPs) generally do
not leave the choice of the PHBs to their customers because
EF traffic may impede BE traffic of other users. If EF traffic
accounts for only a small fraction of a link’s overall traffic, it
is likely to encounter only little loss and delay. In the absence
of financial incentives, users possibly send too much EF traffic
so that loss and delay objectives of EF traffic may not be met.

In this light, we revisit the idea of an Alternative Best Effort
(ABE) service class [10] which has been first proposed in
2000. It causes less packet delay at the expense of increased
packet loss but does not degrade treatment of BE traffic
with respect to loss and delay. ABE constitutes a PHB that
may be particularly attractive for service differentiation in the
Internet where end users may choose ABE for low-delay traffic
without negatively impacting BE traffic. Furthermore, it may
be attractive when strict prioritization, such as the EF PHB,
is discussed controversial in the context of network neutrality
[11] as ABE does not impact the service for BE traffic.

Various scheduling algorithms [12], [13] have been pre-
sented in the past that may be apt to support an ABE PHB,
but they suffer from various shortcomings. They are complex
so that they have been implemented only in simulations.
They require that the link bandwidth is stable and known.
While thoroughly investigated by simulations, they did not
address the inherent problem that very low ABE traffic rates
may lead to unacceptable high packet loss. Supporting a loss
versus delay trade-off has also been discussed in the IETF but
implementation details were not in scope [14].

The contribution of this work is manifold. We address
the fundamental question whether an ABE service class is
technically feasible, how it behaves with up to date transport
protocols, and whether it can be implemented on modern
hardware. To that end, we propose a novel scheduler, named
Deadlines, Saved Credits, and Decay (DSCD), for combined
scheduling of BE and ABE traffic and implement it in the
Linux network stack. It requires the knowledge of the link
bandwidth only for secondary tasks and copes with unknown
or variable transmission capacity through continuous band-
width estimation. DSCD is designed to avoid excessive packet
loss for low ABE traffic rates as this is most detrimental even
to realtime applications.

We investigate the performance of ABE in terms of loss



and delay. We show the impact of configuration parameters,
traffic types, and the ABE traffic rate on these metrics. We
perform experiments with TCP variants and study both inter-
protocol and inter-class fairness when traffic is carried over
BE and ABE. The proposed bandwidth estimation method is
fast, accurate, and efficient so that it also works at moderate
link utilization. For its implementation, we developed a fast
approximation of the exponential function in the kernel which
may be reused for other purposes.

This paper is structured as follows. In Section II, we review
related work. Section III presents the novel DSCD algorithm
for joint scheduling of BE and ABE traffic. Afterwards, we
point out relevant implementation details of DSCD in the
Linux network stack in Section IV. In Section V we investigate
the performance of BE and ABE traffic when scheduled with
the DSCD scheduler in various networking scenarios. Finally,
Section VI summarizes this work and Section VII draws
conclusions.

II. RELATED WORK

We review work in the context of traffic prioritization related
to DSCD. First, we discuss the ABE schedulers Duplicate
Scheduling with Deadlines (DSD) and Delay Segment FIFO
(DSF). Then, we present AQM implementations in the Linux
network stack and further traffic differentiation mechanisms.

A. Alternative Best Effort (ABE)

The authors of [12] present the concept of Alternative Best
Effort (ABE) as a traffic class similar to BE. ABE provides
a bounded-delay service class (green) and a Best Effort (BE)
class (blue). Blue traffic achieves the same throughput as in
a conventional FIFO system. Green traffic receives priority
service whenever possible without harming blue traffic. The
concept has also been presented in the IETF [10].

The authors subsequently present Duplicate Scheduling with
Deadlines (DSD) as a combined scheduler for BE and ABE
traffic. DSD utilizes separate, physical FIFO queues for blue
and green packets. In addition, it leverages a virtual queue
to simulate the queue behaviour of a single FIFO queue that
serves both blue and green packets. Based on the fill state of
the virtual queue the transmission time for blue packets in a
FIFO system is computed, for which the link capacity must be
known and stable. This FIFO system transmission time is taken
as a deadline for the blue packets in the physical queue. The
deadline for green packets in the physical queue is their arrival
time plus a maximum tolerable delay. The basic dequeue
procedure is as follows. If a blue packet needs to be sent
to keep its deadline, it is dequeued and sent. If a green packet
passed its deadline, it is dropped. With DSCD, green packets
are sent whenever blue packets do not need to be sent. This
allows green packets to overtake blue packets when previous
green packets were dropped, which effects a delay advantage.
DSD is similar to DSCD but utilizes an algorithm to share
capacity between both physical queues in a sophisticated way
whenever blue or green packets are eligible for transmission.
However, the objective for this capacity sharing is debatable
as it strives for per-class fairness. As a result, the associated

algorithm is complex. The delay, throughput, and packet loss
must be tracked so that the algorithm is hard to implement
on real forwarding nodes. The performance of DSD has been
evaluated by simulations.

B. Delay Segment FIFO (DSF)

Karsten et al. [13] consider multiple traffic classes i with
class-specific delay targets Di. They suggest Delay Segment
FIFO (DSF) as an algorithm for scheduling packets such that
the queuing delay of the packets is at most their class-specific
delay target and at most the delay experienced in a FIFO
queue. If these constraints cannot be met, packets are dropped.
They use a physical packet queue for each traffic class and a
joint slot queue for storing slots that contain the right to send
a certain amount of bytes. The slot queue is partitioned into
class-specific segments such that the overall capacity of the
segments corresponding to the c most stringent traffic classes
is Dc · C. Thereby C is the link bandwidth which must be
known a priori and stable. When a packet arrives, it is added
with a deadline to the corresponding packet queue. Moreover,
a slot is added to slot queue in a free segment belonging
to the packet class of the packet or better. The algorithm is
complex and uses a minimal throughput interference index to
guarantee some kind of TCP fairness. The authors implement
and evaluate DSF for the network simulator ns-3.

C. AQM Implementations in the Linux Network Stack

FQ-CoDel [15] is a packet scheduler and Active Queue
Management (AQM) algorithm developed to mitigate the
bufferbloat problem. It is based on deficit round robin (DRR)
and CoDel and distinguishes between sparse and non-sparse
flows. FQ-CoDel stochastically enqueues incoming packets
based on their 5-tuple hash into different queues. Each queue
is managed by the CoDel AQM. FQ-CoDel is the default
queueing discipline in many Linux distributions.

Ramakrishnan et al. [16] present an implementation of FQ-
PIE, a flow-based variation of Proportional Integral controller
Enhanced (PIE), for the Linux network stack. They compare
it to PIE and FQ-CoDel and evaluate the fairness among
responsive and unresponsive flows. Further, they evaluate the
fairness between different TCP versions, i.e., TCP Cubic and
TCP BBR.

CAKE [17] is a network queue managment system designed
for the home gateway. It includes bandwidth shaping, queue
management, DiffServ handling and TCP ACK filtering. Fur-
ther, it provides host and flow isolation. CAKE is part of the
mainline Linux kernel and was developed for the OpenWrt
router firmware.

D. Further Traffic Differentiation Mechanisms

RD [18] proposes two service classes: a high-transmission
class and a low queuing delay class. Both classes are imple-
mented by separate FIFO queues on a router. The next trans-
mitted packet is selected according to the intended throughput
ratio between both classes. To guarantee delay differentiation,
the corresponding queue sizes are dynamical calculated. Queue
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sizes and service rates have to be calculated, which requires
knowledge of the link capacity.

QJump [19] classifies different latency-sensitive levels.
Packets from higher classes are rate-limited but can “jump-
the-queue” over packets from lower classes. To provide rate-
limitations and some kind of throughput fairness, QJump
needs knowledge about the number of network nodes and link
speeds. QJump was designed for datacenter applications. The
authors evaluate QJump with simulations and a small real-
world deployment.

Briscoe et al. [20] give a broad overview of techniques
to reduce Internet latency. They categorize latency sources,
e.g., caused by too large network buffers, and present their
advantages and disadvantages.

Although FQ-CoDel, FQ-PIE, Cake, RD, and other mecha-
nisms provide means for service differentiation, i.e., they en-
able low-delay forwarding for real-time or low-bitrate traffic,
they do so at the expense of BE traffic or large flows. In
contrast, the objective of DSCD is that BE traffic is not treated
worse than in a pure FIFO system. Further, DSCD could be
used in conjunction with existing AQMs such as FQ-CoDel.

III. SCHEDULING WITH DEADLINES, SAVED CREDITS,
AND DECAY (DSCD)

We give an overview of DSCD’s design idea and present
its algorithm in detail.

A. Design Idea

Figure 1 illustrates the data structure of DSCD that we
introduce incrementally. The DSCD scheduler utilizes two
FIFO queues: one to enqueue BE traffic (Q[BE]) and one
to enqueue ABE traffic (Q[ABE]). When a packet arrives, it
is enqueued into the corresponding class-specific queue based
on its DiffServ code point (DSCP). In addition, ABE packets
are equipped with a deadline at enqueue, which is the enqueue
time plus the delay threshold Td. When a non-empty BE queue
is served, a packet is removed and dequeued for forwarding.
When a non-empty ABE queue is served, packets are removed.
They are dequeued if their deadline is met, otherwise they are
dropped. The unused transmission capacity may be used by
subsequent ABE packets, either immediately or later, so that
they can take over BE packets without delaying them.

DSCD achieves this behavior by dequeuing packets from
the BE and ABE packet queue using so-called credits. To that
end, DSCD maintains a FIFO queue Qc for credit elements.
Whenever a packet arrives, a credit element with the packet’s
size and traffic class is inserted into the credit queue 1 .
The credit is needed for dequeuing packets. For that purpose,
two class-specific credit counters are maintained (CC[ABE],
CC[BE]). The first packet of a non-empty queue can be
dequeued only if the corresponding credit counter is at least the
packet’s size. If so, the packet can be removed from its queue.
If the packet belongs to the ABE class and its deadline has
passed, the packet is dropped. Otherwise, the corresponding
credit counter is decremented by the packet’s size and the
packet can be forwarded 2 . If the credit counters of both
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Fig. 1. The DSCD scheduler stores BE and ABE packets in the class-specific
packet queues Q[BE] and Q[ABE]. For every enqueued packet, a credit
element is inserted into the credit queue Qc. The credit counters CC[BE]
and CC[ABE] store class-specific credits that are needed for packet dequeue.
If these credits do not suffice, new credits are taken from the credit queue.

queues are too low for dequeuing a packet, a credit element
is removed from the credit queue and the credit counter of
the element’s class is incremented by the element’s size 3 .
The credit of dropped ABE packets remains in the system for
some time. With that saved credit, subsequent ABE packets
can be served earlier than comparable BE packets, but without
delaying BE packets longer than in a pure FIFO system.

This sketch misses some details. First, packets may be lost
during enqueue due to limited queue size. Second, low rates
of ABE traffic should not experience high packet loss, which
requires some extra logic. Third, credit should not be stored for
infinite time, even in the presence of congestion. To that end,
the credit is devaluated over time according to an exponential
function (exp(−λ·∆)) where ∆ is the passed time and λ is the
decay rate. We configure it via the half-life time th = ln(2)

λ .
After one half-life time th only half the credit is still available.
Fourth, to simulate the behaviour of a FIFO queue, the credit
should vanish when both packet queues are empty. It is drained
from the system with link bandwidth C, which is continuously
estimated.

B. Algorithm

We formalize the above sketched algorithm using pseu-
docode and address the missing details. We introduce the
data structure of DSCD and describe its algorithms for packet
enqueue, packet dequeue, credit devaluation, and bandwidth
estimation.

1) Data structures: The data structures of DSCD are illus-
trated in Figure 1.

• DSCD maintains separate FIFO queues Q[BE] and
Q[ABE] to store BE and ABE packets

• and a FIFO queue Qc to store credit elements.
• There are global counters for dequeued credit elements

for each traffic class, CC[BE] and CC[ABE], which are
zero at system start.

• The credit counter CCcq counts the stored credit in the
credit queue Qc.

• Furthermore, the global variable C stores the available
bandwidth which is estimated in Algorithm 4 and utilized
in Algorithm 3.

3



• Algorithm 3 also uses the global variable
lastDevaluation to record the last devaluation
instant which is initialized with −∞.

• Algorithm 4 uses global variables as helpers for band-
width estimation. SB , ST , and lastPktSize are initial-
ized with zero, backlogged with false, and lastDequeue
and lastRateUpdate with −∞.

2) DSCD Enqueue: The enqueue operation is given by Al-
gorithm 1. First, saved credit is devaluated, which is described
in Section III-B4. Then, a new packet p is dropped if its size
together with the overall credit in the system exceeds the buffer
size Bmax (line 2-3). Otherwise, the packet is enqueued. Then,
the deadline p.d is set for ABE packets (line 5-6). In the
remainder, an element e with the packet’s length p.len and
class p.class is created. It is added to the credit queue Qc
whose credit counter CCcq is incremented. Finally, the packet
is added to its class-specific queue.

Algorithm 1: DSCD enqueue routine
Input : Packet p

1 DevaluateCredit()
2 if p.len+ CCcq + CC[BE] + CC[ABE] > Bmax

then
3 drop(p)
4 else
5 if p.class == ABE then
6 p.d = tnow + Td

7 e = new CreditElement(p.len, p.class)
8 Qc.add(e)
9 CCcq += p.len

10 Q[p.class].add(p)

3) DSCD Dequeue: We first explain the principle of the
dequeue operation before we go into details.

DSCD has class-specific credit counters CC[X], X ∈
{BE,ABE}. When a packet is dequeued, the corresponding
credit counter is decreased by the packet size, but it cannot
fall below zero. If both credit counters are too low to dequeue
a packet, credit elements are removed from the credit queue
and the elements’ credit it added to the corresponding credit
counters. A packet is dequeued as soon as one credit counter
is large enough. If both counters are large enough, ABE traffic
is preferentially served.

We now look at the pseudocode in Algorithm 2 which
dequeues a packet if possible and returns NULL otherwise.
First, the credit counter CC[ABE] is devaluated, which is
described in Algorithm 3. Afterwards, all ABE packets with
violated deadlines are dropped from the ABE queue if they
are followed by more than Tq other packets (line 2-4). The
second part of the condition avoids packet loss when too few
other packets in the packet queue could use the credit of
dropped packets. Then, the return packet is initialized with
NULL and a dequeue attempt is made only if the system
holds at least one packet (line 6). The packet for dequeue
is determined in the subsequent loop which ends with a
successfully dequeued packet (line 7-16). Within the loop, a

Algorithm 2: DSCD dequeue routine
Output: Next packet to be served

1 DevaluateCredit()
2 while Q[ABE].head.d > tnow and Q[ABE].len > Tq

do
3 drop(Q[ABE].removeHead())
4 end

5 p = NULL

6 if !Q[BE].empty() or !Q[ABE].empty() then
7 while p == NULL do
8 if CC[ABE] ≥ Q[ABE].head.len then
9 p = Q[ABE].removeHead()

10 else if CC[BE] ≥ Q[BE].head.len then
11 p = Q[BE].removeHead()
12 else
13 e = Qc.removeHead()
14 CCcq− = e.credit
15 CC[e.class]+ = e.credit
16 end

17 CC[p.class]− = p.len
18 EstimateBandwidth(p)

19 return p

queue with a sufficiently large credit counter is determined
and its first packet is removed (line 8-11). If neither queue
has a sufficiently large credit counter, a credit element is
removed from the credit queue and the credit counter of the
corresponding traffic class is incremented (line 13-15). After
successful packet dequeue, the credit counter of the respective
class is decremented (line 17). Then, the estimate of the link
bandwidth C is updated using Algorithm 4 (line 18). Finally,
either the dequeued packet or a NULL pointer is returned.

4) Credit Devaluation: Credit devaluation is needed for two
reasons.

First, the overall credit in the system, i.e., the credit in the
credit queue Qc and the counters CC[BE] and CC[ABE],
simulates an upper bound of the fill state of an alternative FIFO
queue. That is a necessary invariant to ensure that BE packets
are not served later than in a comparable FIFO queue. If both
packet queues are empty, remaining credit in the system must
vanish with the current link bandwidth C.

Second, credit from dropped ABE packets is stored by
CC[ABE] and used to send other ABE packets early. Without
additional devaluation, credit from dropped ABE packets re-
mains in the system until the end of a congestion period. This
may incentivize applications to send unnecessary ABE data
to provoke packet loss and leverage resulting credit in order
to gain a delay advantage for later ABE traffic. Therefore,
we believe that credit should vanish over time, even in the
presence of congestion. Further, transport protocols benefit-
ing from lower transmission delay may obtain a throughput
advantage via ABE compared to those transmitting over BE,
despite increased packet loss. Credit devaluation limits that
advantage (see Section V-E) and, thereby, leads to better inter-
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class fairness for transport protocols.
As pointed out, credit devaluation is needed in two ways:

(1) If the system is empty, ABE’s saved credit CC[ABE] is
reduced over time by the transmission rate C. (2) ABE’s saved
credit CC[ABE] decays over time exponentially with rate λ.
This pursues the previously discussed objectives.

Algorithm 3: DevaluateCredit

1 ∆ = tnow − lastDevaluation
2 lastDevaluation = tnow

3 if Q[BE].empty() and Q[ABE].empty() then
4 while !Qc.empty() do
5 e = Qc.removeHead()
6 CCcq− = e.credit
7 CC[e.class]+ = e.credit

8 CC[ABE] = max(0, CC[ABE]− C ·∆)
9 else

10 CC[ABE] = CC[ABE] · exp(−λ ·∆)

Algorithm 3 performs these operations. First, the passed
time ∆ since the last devaluation is computed and the global
variable lastDevaluation is updated by the current time tnow.
If both queues are empty, the credit queue is emptied and
the credit counters of the corresponding packet queues are
incremented (line 4-7). Then, ABE’s credit counter CC[ABE]
is reduced with the current bandwidth C over time ∆; thereby
the credit counter cannot fall below zero. If at least one queue
is not empty, ABE’s credit counter CC[ABE] is devaluated
exponentially over time ∆ with rate λ (line 10). We call this
mechanism exponential decay.

5) Bandwidth Estimation: Algorithm 3 requires an estimate
C of the link bandwidth to devaluate credit in the presence of
an empty queue. To measure C, an amount of sent bytes is
divided by their transmission time. We capture the transmis-
sion time of a packet from the time it is dequeued until the
next packet is dequeued, provided that there is no idle time
in between. We ensure this by considering only packets that
leave a non-empty queue, i.e., a backlogged queue.

To cope with varying bandwidth, we accumulate both sent
bytes and transmission times by weighted sums SB and ST

and derive an estimate by C = SB

ST
. We utilize the weighted

sum of the moving average UTEMA [21] for that purpose:

SX(t) = S(tlast) · e−µ·(t−tlast) +X (1)
tlast = t. (2)

X is a series of samples at time instants t. SX(t) is the
weighted sum of the sampels at time t. The sum is updated
whenever a new sample is available and tlast indicates the
last update time of the sum. The advantage of UTEMA is that
the contribution of the samples considered in the weighted
sum decreases exponentially over time with rate µ, i.e., newer
samples have a larger impact on the sum than older samples.
We apply this concept to the size of sent packets B and their
mere transmission times T , which yields SB and ST . For
configuration, a memory M is used to set the rate µ = 1

M .

Algorithm 4: EstimateBandwidth
Input : Packet p

1 if backlogged then
2 ∆ = tnow − lastRateUpdate
3 SB = SB · exp(−µ ·∆) + lastPktSize
4 ST = ST · exp(−µ ·∆) + (tnow − lastDequeue)
5 C = SB/ST

6 lastRateUpdate = tnow

7 if Q[ABE].len+Q[BE].len > 0 then
8 backlogged = true
9 else

10 backlogged = false

11 lastDequeue = tnow
12 lastPktSize = p.len

Algorithm 4 translates this concept into pseudocode for
a rate estimation procedure that is called at the end of
each successful packet dequeue. In the first step of the
algorithm (line 1-6), the estimated rate C is updated if the
last dequeued packet was backlogged. The elapsed time ∆
since the last rate update is computed and used to deval-
uate the weighted sums of bytes and transmission times
(SB , ST ) which are also increased by the size of the last
dequeued packet (lastPktSize) and its transmission time
(tnow − lastDequeue). Then, the estimated bandwidth C and
the last rate update time lastRateUpdate are updated. The
variable backlogged is set to true if there are more packets
waiting in some queue, otherwise it is set to false (line 7-10).
Finally, the current dequeue time and the size of the dequeued
packet are recorded by lastDequeue and lastPktSize.

IV. IMPLEMENTATION OF DSCD IN THE LINUX NETWORK
STACK

Traffic schedulers and AQMs are often evaluated using
simulation frameworks such as ns-3 or OMNeT++.

Although simulation frameworks offer a lot of freedom
regarding implementation, they are only an approximation of
reality. Therefore, the trustworthiness of simulation results
for complex protocols, such as TCP, heavily depend on the
validity of the simulation model. For this reason, we decided
to implement DSCD in the Linux network stack as proof-
of-concept implementation and perform experiments with ex-
isting protocol implementations, in particular up-to-date TCP
variants. Moreover, this implementation demonstrates the prac-
tical feasibility of DSCD.

We first introduce some background information on queuing
disciplines in the Linux kernel. Afterwards, we present an
efficient approximation of an exponential decay function for
the Linux kernel. Then we explain the implementation of
the exponential decay for the stored ABE credit and the
rate estimation as these implementation aspects are most
challenging. The overall code for DSCD on Linux is available
at Github1.

1https://github.com/uni-tue-kn/dscd-linux-qdisc
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A. Use of Queuing Disciplines in the Linux Kernel

Queuing disciplines, also called QDiscs, are part of the
Linux network stack and are located in the kernel space. They
perform tasks such as traffic shaping, packet classification,
or packet dropping. A self-implemented QDisc may perform
other, almost arbitrary operations on packets. QDiscs are
implemented in the C programming language.

User space

Local process

Kernel space

Transport layer Routing

Ingress QDisc Routing/Bridging Egress QDisc

Network device

Fig. 2. Packet handling in the Linux network stack.

Figure 2 illustrates the simplified packet handling in the
Linux network stack. Incoming packets from the network card
are passed to the Linux kernel. Initially, packets are handed
to an ingress QDisc. Within an ingress QDisc, packets can
be filtered or rate-limited. Afterwards, a routing or bridging
decision is taken. If the packet is destined for the host itself,
the packet is passed to the transport layer and further to the
application process in the user space. Otherwise, the packet is
passed to the egress QDisc of the outgoing interface. DSCD
is completely implemented as egress QDisc. Both ingress and
egress QDiscs provide a standardized interface to the Linux
kernel. It includes functions for packet enqueue and dequeue
which correspond to the algorithms presented in Section III.

QDiscs also provide the possibility for chaining. This means
that multiple QDiscs are executed one after another. Chaining
is used to separate functionality between different QDiscs, e.g.,
rate-limiting and classification. QDiscs leveraging chaining
are called classful and are organized in a tree structure. The
Kernel enqueues the packet in the so-called root QDisc. The
root QDisc then enqueues the packet into one of its child
QDiscs which may enqueue the packet in one of its own child
QDiscs. When a packet should be dequeued, the Kernel calls
the dequeue routine at the root QDisc which in turn calls the
dequeue routine of its child QDiscs.

We leverage the functionality of classful QDiscs within
our testbed to combine rate-limiting (with the classful QDisc
tbf) and our DSCD QDisc. The use of tbf facilitates the
configuration of a controlled and variable bottleneck capacity
as described in Section V-A1.

B. Efficient Approximation of the Exponential Function

The algorithms presented in Section III require the computa-
tion of an exponential function for credit devaluation and rate

estimation. However, the exponential function is not available
in the kernel and only integer arithmetic can be used2. There-
fore, we present an approximation for the multiplication of an
integer n with exp(x) that can be efficiently implemented in
the Linux kernel. The exponential function can be rewritten
as

exp(−x) = 2−x/ln(2). (3)

We first propose a piecewise linear function as floating point
approximation of 2−x and then we implement n · 2−x with
integer arithmetic. Finally, we consider the application of the
approximation to exponential decay and bandwidth estimation.

1) Floating Point Approximation of 2−x for Positive Argu-
ments: To approximate the power function p(x) = 2−x, we
use the following piecewise linear function for x ≥ 0 which
uses interpolation of integer-based sampling points only:

f(x) =
⌊x⌋ − x+ 2

2⌊x⌋+1
. (4)

We improve the error for small values of x by another
approximation

g(x) = 1− ln(2) · x (5)

which is based on the derivative of 2−x at x = 0. Both approx-
imations are illustrated in Figure 3(a) and the corresponding
error functions in Figure 3(b). We combine them to minimize
the error by

h(x) =

{
g(x) 0 ≤ x ≤ z

f(x) z < x
(6)

with z ≈ 0.4443 being the abscissa of the intersection point
of both error functions.
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(a) Approximation of the power function p(x) = 2−x by the piecewise
linear function f(x) and the derivative-based linear function g(x).
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(b) Error functions ef (x) = f(x) − 2−x for the piecewise linear approxi-
mation and eg = g(x)− 2−x for the derivative-based linear approximation.
Fig. 3. Approximation options for the power function p(x) = 2−x. We
combine them in h(x) to minimize the error.

2https://www.kernel.org/doc/html/v5.0/process/howto.html
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2) Implementation of n · 2−x with Integer Arithmetic: The
argument for the power function is a fractional number x. As
the Linux kernel supports only integer arithmetic, we represent
the argument by a scaled number y = x · 2s; we denote s the
scaling exponent.

We propose the function a(n, y, s) = n·2(−y/2s) to multiply
an integer n with a power function value where n, y, and s are
non-negative integers. We implement a(n, y, s) using function
h with argument y/2s and utilize the approximations

ln(2) ≈ 212

5909
(7)

z ≈ 212

9219
. (8)

This results in

a(n, y, s) =





n− y · n
5909 · 2s−12

y · 9219 ≤ 2s+12

n · ( y
2s + 2)− n·y

2s

2(
y
2s +1)

2s+12 < y · 9219
. (9)

Here, divisions imply integer divisions. Therefore, we can
substitute ⌊x⌋ in h(x) by y

2s in the formula. We first evaluate
numerator and denominator of any fraction prior to division
to prevent unnecessary loss of accuracy. For efficiency, every
division by 2k is performed as a bit shift by k bits to the right.
Moreover, intermediate results may be stored and reused.

The computation of n ·2−x is achieved by calling a(n, y, s)
with the arguments n, y = x · 2s, and s. For the computation
of n · exp(−x) Equations (3) and (7) need to be taken into
account so that a(n, y, s) is to be called with arguments n,
y = x · 5909 · 2s−12, and s.

If a floating point number m is to be multiplied with an
exponential value, one can scale m to n = m · 2(sm) with
a scaling exponent sm before applying it to a(n, y, s). The
returned number is the result scaled with 2(sm).

3) Application to Exponential Decay and Bandwidth Esti-
mation: We apply a(n, y, s) to implement line 10 in Algo-
rithm 3 (DevaluateCredit) and line 3-4 in Algorithm 4 (Esti-
mateBandwidth). For DevaluateCredit, the rate λ = ln(2)/th
is configured via the half-life time th. Both ∆ and th are
counted in ns. The parameter y = ∆/th is additionally scaled
with 220, i.e., s = 20, to gain precision for small values of
∆. Credits are scaled with 210 to limit loss of accuracy for
small integers, i.e., sm = 10. For EstimateBandwidth, the rate
µ = 1/M is configured via the memory M . Both ∆ and M
are counted in ns. The parameter y = µ · ∆/ ln(2) is again
scaled with 220, i.e., s = 20.

In the following, we derive an upper bound for the relative
error in practise. The transmission time for packets with 1490
bytes is 1.2 ms with 10 Mbit/s and 12 µs for 1 Gbit/s. The
algorithms are mostly called in these intervals. The half-life
time for exponential decay of th = 100 ms and a memory for
bandwidth estimation of M = 50 ms correspond to rates of
λ = ln(2)

th
= 6.9

s and µ = 1
M = 20

s . Therefore, the exponential
function is called under relevant conditions with values smaller
than 1.2 ms · 20s = 0.024 and the approximation h(x) is called
with values smaller than 0.024

ln(2) = 0.034. The relative error
by the approximation for such values is about 0.029% (see

Figure 3(b)), i.e., very low. For higher link speeds, e.g., 10
Gbit/s or 100 Gbit/s, the relative error further decreases.

C. Performance of Linux QDisc Forwarding
Modern NICs support multiple transmit (TX) and receive

(RX) queues to facilitate highspeed packet processing. Pack-
ets are distributed to different queues such that they can
be processed by separate CPU cores without interference,
e.g., caused by lock mechanisms. This mechanism is called
Receive-Side Scaling (RSS). Packets are assigned to a queue
using a hash function, e.g., 4-tuple hash over IP addresses
and TCP ports3. In the following, we investigate the general
performance for traffic forwarding with Linux QDiscs. We
deploy the pfifo QDisc in a similar testbed as presented in
Section V-A1. The bottleneck link has a capacity of 100
Gbit/s. We vary the number of available CPU cores and TX
queues4 and establish 32 TCP flows between the senders and
the receiver. Table II shows the L2 throughput, i.e., Ethernet
throughput, on the bottleneck.

TABLE II

#CPU cores #TX queues L2 throughput (Gbit/s)

1 1 25.86

2 1 34.49
2 48.45

4
1 38.05
2 62.73
4 92.84

8

1 40.29
2 68.42
4 96.72
8 97.07

With a single CPU core (and a single TX queue), only
25.86 Gbit/s can be achieved on L2. The throughput with a
single TX queue can be increased by increasing the number of
CPU cores. However, the throughput does not linearly increase
with the number of CPU cores and converges at 40.29 Gbit/s
for 8 CPU cores. This is caused by communication overhead
between the CPU cores as the TX queue can only be accessed
by a single CPU core at a time. The throughput increases
with an increasing number of TX queues and converges at
97.07 Gbit/s for 8 CPU cores with 8 TX queues. A saturation
below 100 Gbit/s is reasonable as the L2 throughput does not
include preamble and inter-frame gap. The experiment shows
that forwarding with 100 Gbit/s requires multiple CPU cores
and TX queues on Linux systems. Therefore, we use 8 CPU
cores and 8 TX queues when performing experiments at 100
Gbit/s.

As the assignment of packets to TX queues is based on
a hash function, packets of the same flow are placed in the
same TX queue. If only a subset of the TX queues are used
by chance, 100 Gb/s may not be achieved. However, this is
unlikely in a 100 Gb/s environment where the number of flows
is high.

3https://www.kernel.org/doc/Documentation/networking/scaling.txt
4The maximum number of TX queues is limited by the number of available

CPU cores.
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D. Efficiency of the DSCD Implementation

Now, we assess the efficiency of the DSCD implementation.
At first sight, the DSCD algorithm has some complexity, but
the implementation is efficient. We demonstrate that by the
following experiments.

We deploy DSCD in a similar testbed5 as presented in
Section V-A1. The bottleneck link has a capacity of 100 Gbit/s.
The delay threshold is set to Td = 10 ms and the half-life time
th is set to th = 100 ms. We establish 32 TCP flows between
them. Every 2nd TCP flow is labeled as ABE. We measure
the overall TCP goodput and average CPU load of DSCD and
compare it to existing Linux QDiscs6 such as FQ-CoDel, FQ-
PIE, Stochastic Fair Queuing (SFQ), and pfifo. Table III shows
the results.

TABLE III
TCP GOODPUT AND CPU LOAD OF VARIOUS LINUX QDISCS.

QDisc TCP goodput (Gbit/s) CPU load (%)

DSCD 89.08 36.27
FQ-CoDel 89.02 38.99

FQ-PIE 89.00 44.21
SFQ 89.03 38.72
pfifo 89.06 35.41

All considered QDiscs achieve approximately the same
goodput of ∼ 89 Gbit/s. pfifo and DSCD have the lowest CPU
load with 35.41% and 36.27% and FQ-PIE the highest with
44.21%. The results show that the DSCD implementation in
the Linux kernel is efficient and comparable to other QDiscs.

V. PERFORMANCE EVALUATION

We first explain our performance evaluation methodology.
Then we validate the bandwidth estimation algorithm which
is part of DSCD. Afterwards, we study DSCD scheduling for
non-adaptive traffic, periodic traffic, and TCP traffic, demon-
strating the impact of configuration parameters and ABE traffic
rates on packet loss and delay. Finally, we investigate inter-
protocol and inter-class fairness for different TCP variants in
connection with ABE.

A. Methodology

We introduce the methodology for the performance study.
We present the testbed, explain experiment organization and
performance metrics, and describe how traffic is generated.

1) Testbed: We leverage a semi-virtualized testbed on a
host system with 128 GB RAM. We work with KVM-based
virtual machines (VMs) that are assigned 4 GB RAM and two
cores with 3.2 GHz from an Intel(R) Xeon(R) Gold 6134.
The VMs run with Linux kernel 5.10 and have dedicated
10 Gbit/s network cards. Thus, if not mentioned differently,
links between VMs have a capacity of exactly 10 Gbit/s. No
overbooking is performed on the VM hosts, the NICs are
passed through to the VMs using SR-IOV and the CPUs
are pinned to physical cores to minimize the influence of
virtualization on the experimental results.

5The bottleneck VM has 8 cores in this experiment.
6We use multi-queuing (8 TX queues) to improve performance.

The logical structure of the testbed is illustrated in Figure 4.
Up to five VMs send traffic to a bottleneck VM via dedicated
10 Gbit/s links. The bottleneck VM is connected to a so-
called RTT VM via a throttled link which has a capacity of
C = 1 Gbit/s in most experiments. This is done to perform
experiments with software generated traffic (see Section V-A3)
and to study DSCDs behavior in a controlled environment.
However, as shown in Section IV-D, DSCD supports much
higher bandwidths. The rate limitation is achieved with the
Linux queuing discipline tbf [22] using a rate of 1 Gbit/s and
an tbf bucket size of 10 maximum transfer units (MTUs)7.
This represents the bottleneck of the path and possibly causes
congestion. DSCD is deployed at the bottleneck node with a
buffer size of Bmax = C ·25 ms = 3.125 MB. Thus, packets
are queued by DSCD and sent whenever tbf allows. Further
default DSCD parameters are a delay threshold of Td = 10
ms, a half-life time of th = 100 ms, and a queue threshold of
Tq = 1.

The RTT VM delays packets according to a configured RTT.
The Linux queuing discipline Netem [23] is utilized to delay
the traffic by RTT time for which the default value is RTT =
100 ms.

Table IV summarizes the default configuration for the
experiments. Rate limitation by tbf, DSCD scheduling, and
delay addition are applied only in one direction.

TABLE IV
DEFAULT CONFIGURATION OF TESTBED AND DSCD ALGORITHM.

Parameter C RTT Bmax Td th Tq

Value 1 Gbit/s 100 ms 25 ms 10 ms 100 ms 1

2) Performance Metrics and Experiment Organization: The
performance metrics in the experiments are packet queuing
delay and packet loss on the bottleneck node and end-to-end
goodput of TCP flows.

Every experiment, i.e., a set of studied parameters, is
executed 30 times and runs for 45 s. Data from the first 15 s
of each run are discarded to avoid the impact of a potential
transient phase. Data from the last 2 s are removed as not all
streams may be terminated simultaneously. For the remaining
28 s we calculate performance metrics. We average them over
the 30 runs and calculate 95% confidence intervals. However,
we omit them in the figures for the sake of readability as they
are very small.

3) Traffic Generation: In the experiments, three different
traffic types are utilized. We describe their generation in the
following.

a) Non-adaptive traffic with bursts: To investigate basic
effects of DSCD scheduling without interactions of transport
protocols such as TCP, we apply non-adaptive traffic with
bursts. Poisson traffic is a first candidate but does not cause
substantial queuing at link speeds of 1 Gbit/s. Therefore,
we generate packets with LogNormal-distributed packet inter-
arrival times and send them over UDP.

7We set the bucket size to a low value to avoid substantial impact on DSCD
queuing. We validated that a bandwidth of 1 Gb/s is still achieved with this
setting.
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Fig. 4. The performance evaluation is carried out in a semi-virtualiezd testbed. It consists of multiple virtual machines (VMs) on a single server. The VMs
are assigned dedicated 10 Gbit/s network cards. Up to five VMs send traffic to a receiver. The path has a bottleneck of 1 Gbit/s and a configurable RTT that
are imposed by a bottleneck node and an RTT node. DSCD is deployed at the bottleneck node.

We derive mean and standard deviation of the random
variable A, which denotes the inter-arrival time, from the fol-
lowing desired properties. Let C be the capacity of the link and
ρ its target utilization. Given a fixed packet size of B = 1490
bytes including all headers (20 bytes for IP, 8 bytes for UDP,
14 bytes for Ethernet), we can compute the number of packets
N within a 10 ms interval by N = ρ ·C · 10 ms/B. Thus, the
expected packet inter-arrival time is E[A] = 10 ms/N . We
set the standard deviation σ[A] such that the standard deviation
of N inter-arrival times is 5 ms. Thus, the standard deviation
of a single inter-arrival time is σ[A] = 5 ms/

√
N . This traffic

is sufficiently bursty. We generate it on a single machine using
40 threads that send packets in a round-robin manner.

To visualize the effect of the resulting arrival process, we
experimentally count the number of arrived packets within a 10
ms interval. Figure 5 shows the cumulative distribution func-
tion (CDF) of that number for a relative load ρ ∈ {0.95, 1.2}
on a link with a capacity of 1 Gb/s. We observe that the number
of packets arrived within a 10 ms interval vary substantially
around their means (dashed lines). Moreover, there are many
10 ms intervals with clearly less and more traffic arrived
than what could be sent within that time (solid line). As
a consequence, the generated traffic is bursty and leads to
substantial packet queuing. The offered load ρ = 0.95 models
moderate overload and ρ = 1.2 models severe overload. The
discussed arrival processes are utilized in the experiments of
Section V-C1 and Section V-C2.
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Fig. 5. Cumulative distribution function (CDF) of the number of packets
arrived within a 10 ms interval; the LogNormal-distributed inter-arrival times
A are set for a relative load of ρ ∈ {0.95, 1.2} on a link with a capacity
of C = 1 Gbit/s; the vertical lines correspond to mean rates and the link
bandwidth.

b) Constant bit-rate traffic UDP traffic: Realtime traffic
sent over UDP can be often modelled as periodic constant bit-
rate (CBR) traffic. It is a typical candidate to benefit from the
ABE traffic class. We leverage iperf3.9 [24] for the generation
of CBR traffic and send it over UDP. The packet size is

B = 1490 bytes including all headers, and constant inter-
arrival times are set to achieve a desired traffic rate.

c) Elastic TCP traffic: Most traffic on the Internet is
transmitted over TCP which adapts its transmission rate to
the congestion conditions in the network in order to avoid
excessive packet loss. It is also called elastic traffic as it utilizes
the available bandwidth. Various TCP versions exist and have
different properties. Some react primarily to packet loss, e.g.,
TCP Cubic, others react to increased RTT, e.g., TCP BBR.
We leverage iperf3.9 [24] for the generation of TCP traffic. We
utilize both TCP Cubic and TCP BBR by choosing appropriate
Linux implementations in the VMs.

B. Validation of the Bandwidth Estimation Algorithm

In Section III-B5 we presented a new bandwidth estimation
algorithm. For this study, we set its memory to M = 50
ms. We validate the method with the following experiment.
We send non-adaptive traffic with bursts as described in
Section V-A3 with an load of ρ = 0.5 on a link with 1 Gbit/s.
The link bandwidth is set by tbf using a burst size of 10 MTUs
like in all other experiments. After 5 seconds, the bottleneck
decreases to 250 Mbit/s and changes back to 1 Gbit/s after 7
seconds.

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9
Time (s)

B
an

dw
id

th
 (

M
bi

t/s
)

Configured bandwidth
Estimated bandwidth

Fig. 6. Bandwidth estimation on a link where tbf-controlled bandwidth starts
with 1 Gbit/s, it is 250 Mbit/s after 5 s, and changes back to 1 Gbit/s after 7
s. Non-adaptive traffic with bursts is sent at a rate of 500 Mbit/s.

Figure 6 shows that the estimated bottleneck matches the
configured bandwidth very closely. The challenge is the adap-
tation at 7 s to a larger rate as the utilization is then only
50%. Then, backlogged packets do not occur often, but they
are frequent enough as the algorithm leverages every single
backlogged packet to update its estimate. Thus, the estimation
method is very sensitive in the sense that it recognizes the
correct rate even under moderate load. The algorithm works
equally well with TCP traffic (32 flows) which is shown in
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Figure 7(a) and Figure 7(b) for a link with 10 Gbit/s and 100
Gbit/s capacity. Again, the bottleneck changes to 25% of its
original capacity after 2 seconds, and changes back after 4
seconds.
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(a) Link bandwidth 10 Gbit/s.
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(b) Link bandwidth 100 Gbit/s.
Fig. 7. Bandwidth estimation with 32 TCP flows; the link bandwidth is
throttled to 2.5 (25) Gbit/s between 2 s and 4 s.

The bandwidth estimation algorithm works equally well
with 8 and 16 TCP flows8 as shown in Figure 8(a) and
Figure 8(b). With a lower number than 8 TCP flows, there is
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(a) 8 TCP flows.
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(b) 16 TCP flows.
Fig. 8. Bandwidth estimation with 8 and 16 TCP flows; the link bandwidth
is throttled to 25 Gbit/s between 2 s and 4 s.

not sufficient congestion to trigger the bandwidth estimation
algorithm. However, this is not a problem for the follow-
ing reasons. First, less than 8 TCP flows in a 100 Gbit/s
environment is rather unlikely. Second, in the absence of
congestion, DSCD does not require the estimated bandwidth
C. The estimated bandwidth is only used for credit devaluation
after a congestion period.

The experiments show that the bandwidth estimation algo-
rithm precisely measures the available bandwidth with the
same parameterization (M = 50 ms) for a wide range of
bottleneck speeds.

C. Performance of DSCD with Non-Adaptive Traffic with
Bursts

We study packet delay and loss for non-adaptive traffic with
bursts when being carried over BE and ABE. We first study
the impact of DSCD parameters Td, th and then the impact
of ABE traffic rate at different link loads ρ.

1) Impact of DSCD’s Configuration Parameters Td and th:
DSCD is configured with two parameters: the delay threshold
Td for ABE traffic and the half-life time th for credit devalua-
tion. We examine their impact with the following experiment.
We generate non-adaptive traffic with bursts as explained in
Section V-A3 with an offered load of ρ ∈ {0.95, 1.2}. We
randomly label 90% of the traffic as BE and 10% as ABE.

8As long as all TX queues are used.

We experiment with different delay thresholds Td and half-
life times th. Other parameters are set to the default values in
Table IV. We study the experienced queuing delay and packet
loss at the bottleneck node separately for ABE and BE traffic.
Figure 9(a) and Figure 9(b) illustrate the results.
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(a) Queuing delay.
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(b) Packet loss.
Fig. 9. Queuing delay and packet loss of BE and ABE traffic for non-adaptive
traffic with bursts. The relative overall load ρ, the delay threshold Td, and
the half-life time th are varying parameters; other parameters are set as in
Table IV.

We first analyze the delay. Figure 9(a) shows that both BE
and ABE traffic is only little delayed with moderate overload
(ρ = 0.95), but ABE traffic experiences less delay than BE
traffic. A lower delay threshold Td reduces the delay for ABE
traffic. For severe overload (ρ = 1.2), BE traffic is strongly
delayed while ABE traffic sees similarly low delays as for
moderate overload. Larger half-life times slightly reduce the
delay for ABE traffic.

Now, we discuss the packet loss. Figure 9(b) shows that in
the presence of moderate overload hardly any BE packets are
lost while the packet loss probability for ABE traffic is 2%–
4%. The lower the delay threshold Td, the higher the packet
loss. The additional packet loss of ABE is caused by the traffic
model. With an offered load of ρ = 0.95 the traffic model
results in either no congestion (empty queue) or congestion
induced by bursts. In the case of no congestion, the stored
ABE credit is devaluated with the link rate R. As a result,
with ρ = 0.95 it is likely that ABE traffic is not able to "save"
credit between bursts, i.e., each burst arrives at an empty ABE
credit counter.

In case of severe overload, 1
6 of the traffic cannot be carried

due to missing capacity. Therefore, both BE and ABE traffic
experience around 17% packet loss at packet enqueue. ABE
traffic faces 1%–4% more packet loss than BE traffic, which
is mostly due to exceeded deadlines. Larger half-life times
slightly reduce the packet loss for ABE traffic. A half-life
time of th = 100 ms leads to clearly less packet loss than
th = 10 ms for severe overload. Longer half-life times lead
only to minor improvements. Therefore, we recommend to set
the half-life time to th = 100 ms. This will be confirmed in
Section V-E for other reasons.
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2) Impact of ABE Traffic Rate: DSCD turns dropped ABE
packets into a potential delay advantage for subsequent ABE
packets. If no such packets arrive in time, packet drops cannot
be leveraged by the ABE traffic class. This may happen in the
presence of too little ABE traffic. Therefore, we study the
impact of ABE traffic rate on loss and delay.

The experiments are designed similarly as those in Sec-
tion V-C1. Non-adaptive traffic with bursts is used with the
standard configuration of Table IV. We study again an offered
load of ρ ∈ {0.95, 1.2} and test different ABE traffic rates by
varying the fraction of ABE traffic.
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(a) Queuing delay
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(b) Packet loss
Fig. 10. Queuing delay and packet loss of BE and ABE traffic for non-
adaptive traffic with bursts. The relative overall load ρ and the fraction of
ABE traffic are varying parameters; other parameters are set as in Table IV.

We first discuss the packet loss in Figure 10(b). In the
absence of ABE traffic, there is no ABE packet loss and only
the little BE packet loss is visible. A very small fraction of
ABE traffic (0.1% ≈ 1 Mbit/s) results in high packet loss
of almost 7% and 27% for moderate and severe overload.
When the ABE traffic rate is low, packet inter-arrival times
are large. When an ABE packet exceeds the delay threshold
Td and the queue threshold Tq , it is dropped but its credit
is saved. However, the credit is devaluated over time, either
exponentially or linearly. Therefore, saved credit is likely to
be vanished by the arrival of the next packet due to the low
ABE traffic rate. Then, the next packet may also experience
normal queueing delay, exceed the delay threshold, and be lost
again.

For non-responsive bursty traffic, the packet loss is very
high at a rate of 1 Mbit/s (ABE fraction ≈ 0.1%) in spite of
the queue threshold Tq = 1. In Section V-D2 we will show
that this setting is able to prevent excessive packet loss for
periodic traffic of that rate. Luckily, realtime traffic is usually
periodic. Further, ABE packet loss decreases with a larger
fraction of ABE traffic as subsequent packets arrive earlier
and can leverage stored credit more efficiently. An ABE traffic
rate of 10 Mbit/s (ABE fraction ≈ 1%) suffices to achieve
significantly lower packet loss.

The packet loss for BE traffic slightly decreases with a larger
ABE fraction. With a larger ABE fraction, more ABE traffic
is dropped, which reduces load from the system. BE traffic

benefits from that with slightly reduced packet loss. In the
absence of BE traffic, there is no BE packet loss and only the
ABE packet loss is visible.

Figure 10(a) shows that queuing delay for ABE increases
with larger ABE fraction. ABE packets can only overtake
BE packets. Therefore, an increasing amount of ABE leads
to more non-skippable packets and hence to longer queuing
delay. Nevertheless, the delay is below the delay threshold Td.
At the same time, BE queuing delay decreases for increasing
ABE fraction. This is due to reduced traffic load in the system
as more traffic is dropped with larger ABE fraction.

The experiments show that even large fractions of ABE
traffic have no negative impact on the performane of BE traffic,
which was a design goal for ABE. This is unlike Expedited
Forwarding (EF) of the differentiated services framework
(DiffServ) [8] where BE traffic suffers if the fraction of EF
traffic is too large.

D. Performance of DSCD with Periodic Traffic and TCP
Traffic

Now we assume that ABE traffic is periodic UDP traffic and
BE traffic consists of TCP Cubic flows. This is a more realistic
assumption as many realtime applications send periodic traffic.
We first study packet delay and loss for different delay
thresholds Td, ABE traffic rates, and various numbers of TCP
flows. Then we focus on small ABE traffic rates and show
that the queue threshold Tq = 1 is the right means to prevent
excessive packet loss.

1) Coexistence of Realtime and Elastic Traffic: We evaluate
different sending rates RABE for ABE traffic and different
numbers of TCP flows. We vary the delay threshold Td and
use the default settings from Table IV for other parameters.
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(b) Packet loss
Fig. 11. Queuing delay and packet loss of periodic ABE traffic; ABE traffic
rate RABE , number of TCP flows carried over BE, and delay threshold Td

are varying parameters; other parameters are set as in Table IV.

We first consider the ABE packet loss illustrated in Fig-
ure 11(b). For RABE = 300 kbit/s ABE packet loss is
very low, for RABE = 1 Mbit/s it is large but almost
independent of the delay threshold Td, and for larger ABE
traffic rates the packet loss depends on the delay threshold
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Td. This can be explained as follows. For a very low ABE
traffic rate RABE = 300 kbit/s, the inter-arrival time of
periodic ABE packets is 1490bytes·8 bits

300 kbit/s = 39.7 ms. Thus, ABE
packets cannot meet previous ABE packets in the queue so
that the queue threshold Tq = 1 saves them from being
dropped due to a passed deadline. Hence, dropping is turned
off for ABE traffic and DSCD behaves like a FIFO queue.
This is different for LogNormal-distributed inter-arrival times
where Tq = 1 cannot prevent excessive packet loss that
effectively (see Section V-C2). For an ABE traffic rate of
RABE = 1 Mbit/s, the inter-arrival time of ABE packets is
1490bytes·8 bits

1 Mbit/s = 11.92 ms. Thus, if an ABE packet arrives
and meets another ABE packet, that packet will be dropped
as it is 11.92 ms old and has exceeded any of the considered
delay thresholds Td ∈ {2, 5, 10} ms. For ABE traffic rates
of RABE = 3 Mbit/s or larger, the inter-arrival time of the
packets is 1490bytes·8 bits

3 Mbit/s = 3.58 ms or smaller. This is short
enough so that delay thresholds Td have an impact on packet
loss and lead to different system behaviour. The number of
TCP flows influences the congestion level which has also an
impact on the packet loss. We observe packet loss values
between 0.5% and 1.4% depending on the specific setting.
While the number of TCP flows has a non-monotonic impact
on packet loss, smaller delay thresholds lead to more packet
loss.

The behaviour of the queuing delay in Figure 11(a) is
roughly inverse to the packet loss. For RABE = 300 kbit/s,
the queuing delay is about 16 ms which is about the same
as for BE traffic. It is lower for RABE = 1 Mbit/s, but it is
the same for the different delay thresholds Td. And for larger
ABE traffic rates, the queuing delay clearly decreases with the
delay threshold. The number of TCP flows has only a minor
impact on the queuing delay of ABE traffic.

2) Impact of the Queue Threshold Tq: Algorithm 2 utilizes
a queue threshold Tq to prevent excessive packet loss for low
ABE traffic rates. We show that Tq = 1 is the appropriate
parameter.

We consider various low rates RABE of periodic ABE traffic
and 64 TCP Cubic background flows. We study different half-
life times th, delay thresholds Td, and queue thresholds Tq .
To obtain reliable results for RABE ∈ {100, 300} kbit/s, we
extend the data collection time to 280 s. Figures 12(a) and
12(b) compile results for packet loss and delay.

In Figure 12(b), we observe for a queue threshold of Tq = 0
very high packet loss which is almost the same for any delay
threshold Td. Only for RABE = 1 Mbit/s and Tq = 0 the
packet loss decreases with increasing half-life time th. In
contrast, a queue threshold of Tq ∈ {1, 2} keeps the packet
loss very low for RABE ∈ {100, 300} kbit/s and to moderate
values for RABE = 1 Mbit/s. Thus, Tq ∈ {1, 2} turns off
traffic differentiation in the presence of small ABE traffic
aggregates, which saves them from excessive packet loss. For
ABE traffic rate RABE = 1 Mbit/s, the packet loss for Tq = 1
is larger than the one for Tq = 2.

We now discuss the queuing delay in Figure 12(a). For Tq =
0, queuing delay is low and scales with the delay threshold
Td. However, that is at the expense of excessive packet loss
in case of RABE ∈ {100, 300} kbit/s. For Tq ∈ {1, 2}, the

RABE = 100 kbit s RABE = 300 kbit s RABE = 1 Mbit s
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Fig. 12. Queuing delay and packet loss of periodic ABE traffic in the presence
of 64 TCP flows via BE; delay threshold Td, queue threshold Tq , and half-life
time th are varying parameters; other parameters are set as in Table IV.

queuing delay is as large as the one of BE traffic as service
differentiation is turned off. For RABE = 1 Mbit/s, Tq = 1
leads to clearly lower delay than Tq = 2 which still turns off
service differentiation. Thus, Tq = 1 is the appropriate value
to save small ABE traffic aggregates from excessive packet
loss and enable traffic differentiation for ABE traffic rates of
RABE = 1 Mbit/s or larger.

E. The Need for Exponential Decay

Exponential credit decay over time may increase packet
loss. Nevertheless, it is helpful for several reasons. First,
without exponential decay, a selfish user may send a large
burst of redundant ABE data to accumulate credit for later
use. When then relevant ABE data is transmitted, it can be
sent with low delay thanks to stored credit. Exponential decay
of stored credit largely removes the incentive for this selfish
behavior. Second, the sum of credits in the system is limited
(see Section III), which may lead to packet drop at enqueue.
Therefore, stored, unused credit essentially shortens the queue
and can cause packet loss although the physical queue is not
full. Credit decay frees the system from stored credit over time
and thereby extends the queue capacity towards normal. Third,
adaptive protocols such as TCP may benefit from shorter delay
of the ABE class under some conditions. Then, TCP flows over
ABE may achieve a larger goodput than TCP flows over BE
due to shorter perceived RTTs. As a consequence, ABE traffic
may suppress BE traffic. However, a design goal of ABE is to
avoid that. We show that exponential decay helps to achieve
that goal.

We perform the following experiment. A single TCP Cubic
flow via ABE competes against multiple TCP Cubic flows via
BE. We measure the ABE flow’s relative goodput compared
to the average goodput of the BE flows for different half-life
times th and for different RTTs. Table V shows the results. A
relative goodput above 100% indicates that ABE has an unfair
bandwidth share.
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TABLE V
GOODPUT OF A SINGLE TCP FLOW CARRIED OVER ABE RELATIVE TO

THE AVERAGE GOODPUT OF MULTIPLE TCP FLOWS CARRIED OVER BE.
CUBIC IS USED AS TCP VARIANT; THE HALF-LIFE TIME th , THE NUMBER

OF BE FLOWS, AND THE RTT ARE PARAMETERS.

RTT #BE flows th
10 ms 100 ms 1 s ∞

10 ms

16 2% 99% 167% 201%
32 2% 129% 198% 226%
64 4% 157% 244% 267%
128 6% 164% 281% 329%

30 ms

16 1% 8% 77% 114%
32 1% 4% 105% 148%
64 2% 5% 115% 187%
128 4% 10% 114% 189%

Without credit decay (th = ∞), the ABE flow takes a
clearly unfair traffic share between 114% and 329%. It is larger
for a RTT of 10 ms than for a RTT of 30 ms, and it increases
with an increasing number of BE flows. For comparison,
th = 1 s causes relative goodputs between 77% and 281%. For
th = 100 ms the relative goodputs are between 99% and 164%
in case of a very low RTT of 10 ms, and between 4% and 10%
for larger RTT. When the half-life time is too short (th = 10
ms), the ABE flow achieves only little goodput (< 6%) as
credit decays so fast that subsequent packets cannot profit from
it sufficiently. Thus, a half-life time of th = 100 ms limits the
unfairness caused by TCP to a moderate degree and leads only
to moderate packet loss for ABE traffic (see Section V-D).
Therefore, th = 100 ms is a preferred configuration value for
the half-life time.

F. Inter-Protocol and Inter-Class Unfairness of TCP Variants

There is a large number of TCP variants which do not nec-
essarily share bandwidth in a fair manner as they implement
different congestion control algorithms. We call this inter-
protocol unfairness. In Section V-E we have already shown
that flows with the same TCP variant can share bandwidth in
an unfair manner when carrying traffic over both ABE and
BE. We call this inter-class unfairness. In the following, we
first quantify the inter-protocol unfairness between TCP Cubic
and TCP BBR. Then we investigate the inter-class unfairness
of both TCP variants separately under various networking
conditions. We use the default parameters of Table IV in all
experiments.

1) Inter-Protocol Unfairness between TCP Cubic and TCP
BBR: Inter-protocol unfairness is a well-known phenomenon
[25], [26]. We illustrate it in the following experiment. An
equal number of TCP Cubic and TCP BBR flows is carried
over a single link and we vary the number of flows and the
RTT. All traffic is carried over BE. We take the relative good-
put of TCP BBR vs. TCP Cubic as a measure of unfairness.
Figure 13 shows the results. For low RTT (10 ms), the goodput
of BBR is about 3 times the goodput of Cubic. The number
of flows has only a secondary impact. For larger RTT (30 ms
and 100 ms), the goodput of BBR is 30–100 times larger than
the one of Cubic. Thus, inter-protocol unfairness of existing
TCP variants can be enormous.
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Fig. 13. Goodput of TCP BBR flows relative to the goodput of TCP Cubic
flows when being carried over BE; TCP BBR and TCP Cubic have the same
number of flows which is a varying parameter as well as the RTT; other
parameters are set as in Table IV.

2) Inter-Class Unfairness with TCP Cubic: To quantify
inter-class unfairness, we transmit the same number of TCP
Cubic flows via ABE and via BE in the system. Apart from
that, the experiment setup is the same as before 9. Figure 14(a)
shows the relative goodput for TCP Cubic via ABE vs. TCP
Cubic via BE.
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Fig. 14. Goodput of TCP flows via ABE relative to goodput of TCP flows
via BE. The experiment is carried out for TCP Cubic and TCP BBR; BE and
ABE carry the the same number of flows which is a varying parameter as
well as the RTT; other parameters are set as in Table IV.

For an RTT of 10 ms, the relative goodput of ABE vs. BE
is between 100% and 185%. The unfairness increases with
the number of flows in the system and with increasing half-
life time th. It is significantly lower than the inter-protocol
unfairness between TCP Cubic and TCP BBR for the same
RTT. For an RTT of 30 ms, the relative goodput decreases
and is clearly below 100% if the number of competing flows is
low. For large RTT of 100 ms, the relative goodput is generally
below 100%, i.e., TCP senders cannot obtain an unfair traffic
share when transmitting over ABE. This is an interesting result
as inter-class unfairness is a particular issue at short RTTs

9This experiment is slightly different than the similar experiment series in
Section V-D where a single ABE flow competes against multiple BE flows.

13



while inter-protocol unfairness is a particular issue at longer
RTTs (see Section V-F1).

We argue why the inter-class unfairness occurs and why
the behavior depends on the RTT. Cubic adapts its congestion
window based on a cubic function and is mainly influenced
by its experienced packet loss. While the congestion window
growth of Cubic is independent of the RTT, it still relies on
the RTT for timeout calculation. The timeout implicitly affects
a parameter for the congestion window growth function. ABE
flows experience a relatively lower end-to-end delay (RTT +
queuing delay) than BE flows resulting in a higher goodput.
This has also been shown in [27], where a smaller RTT leads to
higher throughput compared to other Cubic flows with higher
RTT. The relative delay advantage vanishes with higher RTTs.

3) Inter-Class Unfairness with TCP BBR: We now look at
the inter-class unfairness with TCP BBR. We conducted sim-
ilar experiments whose results are compiled in Figure 14(b).
For small RTT of 10 ms, the relative goodput for ABE flows is
between 200% and 1400% depending on the number of flows.
The impact of the half-life time th is low. Increasing the RTT
leads to lower relative goodputs for ABE flows between 100%
and 200%. This is a different behaviour than with TCP Cubic.
Thus, in case of a predominant deployment of TCP BBR, ABE
BBR flows could partly suppress BE BBR flows. However, the
problem of BBR suppressing other TCP variants in the current
BE Internet is larger and shows that too aggressive congestion
control algorithms can be problematic.

The reason why BBR benefits so much from ABE, even
at large RTTs, is that its congestion control algorithm does
not react to packet loss, which is unlike TCP Cubic. It rather
reduces its transmission rate when it notices an increase in the
RTT [28]. As, BBR flows via ABE see shorter and more stable
end-to-end RTTs due to less queueing delay, they benefit from
ABE at any RTT and do not suffer too much from experienced
packet loss. The behavior of BBR shows that concepts such
as RTT-fairness and influence of AQMs must be considered
in the design of congestion control algorithms. As ABE is
primarily designed for realtime traffic – and therefore UDP
– ABE may be limited to UDP traffic to prevent ABE BBR
from suppressing other BE BBR flows. However, this will not
work for QUIC-based transport protocols.

VI. SUMMARY AND DISCUSSION

We summarize this work and discuss the findings.

A. Novelties of DSCD

The objectives of DSCD are similar to those of DSD and
DSF but its properties differ in important aspects.

(1) DSCD has only moderate complexity. A Linux kernel
implementation demonstrates its feasibility of 100 Gbit/s links.

(2) DSCD copes with unknown and varying bandwidth
while DSD and DSF require a static link bandwidth C for
deadline computation. DSCD also measures the link band-
width C but needs it only to drain credits in the absence of
congestion, which is a rather uncritical process.

(3) The conception of ABE is problematic for low rates
of ABE traffic. If a packet is dropped due to exceeded delay,

there may be no subsequent packet that could leverage that loss
for an delay advantage when the queue has been flushed by
the next packet arrival. Therefore, ABE traffic aggregates may
experience large packet loss with other scheduling algorithms.
DSCD prevents this by dropping ABE packets only if there
are also other ABE packets in the queue, which essentially
turns off service differentiation at low ABE traffic rates.

(4) With DSCD, stored credit decays exponentially over
time with half-life time th. This avoids that credit can be stored
arbitrarily long during a congestion phase. It avoids incentives
for selfish users to send more traffic than needed.

(5) Existing algorithms spent lots of effort to pursue ap-
proximate fairness for flows sent over BE and ABE. We
intend ABE primarily for realtime traffic and not for bulk
traffic. Therefore, TCP over ABE may obtain a worse service
than TCP over BE. Our objective is even a worse service
for TCP over ABE because TCP over ABE should not be
able to suppress TCP over BE in the same network. DSCD’s
exponential decay for stored credit helps to achieve that goal.

B. Performance

We tested DSCD scheduling for BE and ABE traffic using
non-responsive traffic with bursts, periodic and TCP traffic, as
well as TCP traffic with different variants. We showed that
the delay threshold Td controls the queuing delay for ABE
traffic. We recommend to set it to Td = 10 ms as lower
values lead to larger packet loss. The queue threshold Tq

controls the packet loss and turns of service differentiation
in the presence of low ABE traffic rates that are smaller than
1 Mbit/s. The experimental results show that Tq = 1 is a good
value. The half-life time controls how long credit can be stored
so that packet loss and delay decrease with increasing half-
life time th. If it is too large, then TCP over ABE can obtain
significantly larger goodput than TCP over BE under some
conditions. Setting th = 100 ms leads to moderate packet loss
and only little inter-class unfairness.

Finally, we quantified inter-protocol and inter-class unfair-
ness (see Section V-F) for multiple scenarios. TCP BBR flows
can suppress TCP Cubic flows when being carried over BE,
in particular for long RTTs. TCP Cubic flows via ABE can
suppress TCP Cubic flows via BE, in particular for short RTTs
and the problem vanishes for long RTTs. TCP BBR flows via
ABE can suppress TCP BBR flows via BE, also in particular
for short RTTs. For long RTTs the advantage diminishes but
does not fully disappear. This is mainly the problem of BBR’s
congestion control as it also causes the observed inter-protocol
unfairness.

VII. CONCLUSION

Alternative Best Effort (ABE) is an alternative traffic class
for the Internet. ABE traffic experiences shorter delay than
Best Effort (BE) traffic at the expense of more packet loss. This
must be achieved without delaying and dropping BE traffic
compared to the transmission of the entire traffic with a single
FIFO queue.

In this work, we addressed the fundamental question
whether an ABE service class is technically feasible, how it
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behaves with up to date transport protocols, and whether it
can be implemented on modern hardware. To that end, we
proposed DSCD as an algorithm for combined scheduling
of BE and ABE traffic. We implemented it in the Linux
network stack and it is fast enough for 100 Gbit/s links. Side
products are an approximation of the exponential function in
the kernel, which is useful for moving average computations,
and a bandwidth estimation method that works well even
at moderate link utilization. We used a virtualized hardware
testbed to study the impact of DSCD on packet loss and delay
for both BE and ABE traffic under various conditions. ABE
traffic faces significantly shorter delay but more packet loss
than BE traffic provided that a critical mass of ABE traffic is
available (≈ 1 Mbit/s). Otherwise we see approximate FIFO
behaviour so that BE and ABE receive a similar service. Under
all conditions, the service for BE traffic is not degraded by
design. We recommended configuration parameters for DSCD
so that packet loss for ABE traffic remains small and that TCP
does not get an unfairly large traffic share when sending over
ABE.

ABE may be useful for Internet service providers to offer
their customers a low-delay traffic class that does not harm
other traffic. It may be attractive for net-neutral service dif-
ferentiation, and it may serve as a bridge towards a low-delay
Internet. In future work, DSCD could be implemented with
network acceleration techniques such as smart NICs or the
Metron platform [29] [30] for higher performance.
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Abstract—
Bit Index Explicit Replication (BIER) is an efficient domain-

based transport mechanism for IP multicast (IPMC) that in-
dicates receivers of a packet through a bitstring in the packet
header. Recently, BIER forwarding has been implemented on 100
Gbit/s per port hardware using the P4 programming language.
However, the implementation requires packet recirculation to
iteratively serve one next-hop after another. The objective of
this paper is to reduce this inefficiency.

Static multicast groups can be configured on P4 switches so
that traffic can be sent to all next-hops without recirculation.
We leverage that feature to make BIER forwarding more
efficient. However, only a limited number of static multicast
groups can be configured on a switch, which is not sufficient
to cover all potential port patterns. In a first step, we develop
efficient BIER forwarding that utilizes static multicast groups
derived from so-called configured port clusters. Then, we design
port clustering algorithms that observe multicast patterns and
compute configured port clusters which are more efficient than
randomly selected port clusters. These methods are based on
Spectral Clustering, an unsupervised machine learning technique.
We perform simulations that underline the effectiveness of this
approach to reduce inefficient packet recirculations. We further
implement the new forwarding behaviour on programmable
hardware and provide a controller that samples BIER packets on
the switch, runs the port clustering algorithms, and updates the
configured static multicast groups. We validate this open source
implementation in a testbed and show that the experimental
results are in line with the simulation results.

Index Terms—Software-Defined Networking, Bit Index Explicit
Replication, Multicast, Resilience, Scalability, Unsupervised Ma-
chine Learning

I. INTRODUCTION

IP multicast (IPMC) is an efficient way to distribute one-
to-many traffic. It is organized into multicast groups that are
identified by unique IP addresses. Traffic of a multicast group
is sent to all subscribers along a distribution tree, i.e., nodes
replicate and forward packets to specific neighbors towards
the subscribers. Therefore, only one packet is sent over each
involved link, which reduces the load in comparison to unicast.
To that end, core nodes store for each multicast group the
neighbours that should receive a packet copy. As a result,
traditional IPMC has two scalability issues. First, whenever
the composition of an IPMC group changes, signaling to core
nodes is necessary to update the neighbors that should receive
packet copies. Second, link or node failures, and topology

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/3-1. The authors alone are responsible for
the content of the paper.

changes may affect multiple multicast groups, which puts high
signaling and processing load on core devices.

The IETF proposed Bit Index Explicit Replication (BIER)
[1] as an efficient and stateless domain-specific transport
mechanism for IPMC traffic. Ingress routers equip an IPMC
packet with a bitstring in the BIER header which contains all
destinations of the packet within the domain. Core nodes repli-
cate and forward the BIER packet according to its bitstring
and the paths from the interior gateway protocol (IGP) which
is called routing underlay. Egress routers remove the BIER
header, and IPMC processing continues. With BIER, only
ingress and egress routers of a domain know IPMC groups
and are involved in signalling, but not the core routers.

Recently, we presented an open source BIER implementa-
tion for 100 Gbit/s per port in P4 for the Tofino ASIC hardware
[2]. This implementation is inefficient as it requires one
pipeline iteration per next-hop of a BIER packet as packets are
transmitted iteratively instead of simultaneously. Therefore, a
packet with n next-hops requires n− 1 recirculations. On the
one hand this is due to the fact that packet replication to a
dynamic set of outgoing ports is not supported on the specific
hardware device. On the other hand, it is difficult1 to derive
the set of outgoing ports from the bitstring within a single
pipeline iteration, which is a general challenge for all switch
architectures.

In this paper we present an efficient BIER implementation
in P4 for the Tofino ASIC. First, we propose a forwarding al-
gorithm that utilizes static multicast groups to simultaneously
forward BIER packets to many outgoing ports. However, the
number of configurable static multicast groups is limited and
does not suffice to cover all port combinations on a 32-port
switch. Therefore, the algorithm leverages subsets of ports, so-
called “configured” port clusters. All port combinations within
a configured port cluster are configured as static multicast
groups. This allows efficient BIER forwarding within a very
few pipeline iterations (at most 3 or 4 on the Tofino). To
further improve the efficiency, we suggest to choose configured
port clusters such that they contain ports over which BIER
packets are frequently forwarded together. To that end, we
propose port clustering algorithms that learn port patterns from
sampled BIER traffic and compute configured port clusters that
reduce the number of required forwarding cycles. The methods

1BIER bitstrings consist of at least 256 bits and each of them identifies
a receiver. This results in 2256 possible bit combinations which need to be
mapped to up to 232 outgoing port combinations on a switch with 32 ports.
This is a challenge for naive table matching.
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are based on Spectral Clustering which is an unsupervised
machine-learning technique. In practice, a controller applies
port clustering from time to time on recently sampled BIER
traffic and updates the configured port clusters on the switch.

The paper is structured as follows. In Section II and III
we describe related work and give an introduction to Bit
Index Explicit Replication (BIER). Sections IV and V give
a primer on the programming language P4 and cover impor-
tant aspects of the existing P4-based BIER implementation.
Section VI proposes the efficient BIER forwarding algorithm
and shows simulation results for arbitrarily selected configured
port clusters. Section VII suggests various port clustering
methods. Their performance is compared by simulation in
Section VIII and by hardware experiments in Section IX.
Finally, we conclude the paper in Section X.

II. RELATED WORK

In this section we first review related work on traditional
multicast and resilience. Then, we present work related to both
SDN- and BIER-based multicast. Finally, we review clustering
approaches.

A. Traditional Multicast

Islam et al. [3] and Al-Saeed et al. [4] investigate related
work for traditional multicast. The majority of cited papers aim
to improve the scalability of traditional IPMC. They present
intelligent tree-building mechanisms for multicast to make it
more efficient, e.g., by reducing required state, or signaling.

Elmo [5] encodes topology information of data centers in
packet headers to improve the scalability of IPMC. It leverages
characteristic properties of those topologies to reduce the size
of the forwaring information base (FIB) of core routers. The
Avalanche Routing Algorithm (AvRA) [6] follows a similar
approach where it optimizes link utilization for multicast by
leveraging topology characteristics of data center networks.
Dual-Structure Multicast (DuSM) [7] separates forwarding
structures for high-bandwidth and low-bandwidth traffic to
improve scalability and link utilization in data centers. Li et al.
[8] optimize the FIB to improve the scalability of traditional
multicast in data center networks. To that end, they propose
to partition the multicast address space and aggregate those at
bootleneck switches.

Application layer multicast (ALM) [9] monitors the traffic
on application-specific distribution trees to optimize their
structures for the corresponding group objective. Mokhtarian
et al. [10] construct minimum-delay trees to reduce latency
for delay sensitive data with different requirements like min-
average, min-maximum, real-time requirements, etc. Adaptive
SDN-based SVC multicast (ASCast) [11] follows a similar
approach. The authors describe an integer-linear program to
build optimal distribution trees and fast forwarding tables to
optimize multicast forwarding in terms of latency and delay
for live streaming.

Kaafar et al. [12] present a building scheme for efficient
overlay multicast trees based on location-information of sub-
scribers. Boivie et al. [13] propose small group multicast

(SGM) which aims at avoiding management and set up over-
head for multicast groups with a small number of receivers.
To that end, the multicast packets of such groups carry
the distribution information in their headers, which avoids
signaling in the core. Simple explicit multicast (SEM) [14]
stores multicast information only on branching nodes of the
distribution tree. Non-branching nodes forward packets to the
next-branching node via unicast. Jia et. al. [15] leverage prime
numbers and the Chinese remainder theorem to efficiently
organize the FIB. They reduce the size of the FIB in core
devices and facilitate implementation.

Steiner trees [16] are tree structures that are used to build
efficient multicast trees. Many research papers modify Steiner
trees to build multicast trees optimized with regard to a specific
metric, e.g., link costs [17], delay [18], number of hops [19],
number of branch nodes [20], retransmission efficiency [21],
or optimal placement of IPMC sources [22].

B. Resilience for Multicast

Shen et al. [21] extend Steiner trees so that distribution trees
contain recovery nodes. Such nodes cache multicast traffic for
retransmission to cut off receivers after recomputation of the
FIB. The authors of [23] investigate resilience of several multi-
cast algorithms against node failures. Kotani et al. [24] deploy
primary and backup multicast trees that are identified by a field
in the packet header. After failure detection, the source sends
its packet over a working backup tree by indicating the backup
path in the packet header. Pfeiffenberger et al. [25] propose
that each node in a distribution tree is also the root of a backup
tree that reaches all downstream destinations over paths that
do not include the failed link/node. Nodes switch packets on
a backup tree by setting a VLAN tag in the packet header.

C. SDN-Based Multicast

Rückert et al. [26], [27] propose and extend Software-
Defined Multicast (SDM) which is an OpenFlow-based multi-
cast platform to facilitate management. It focuses on overlay-
based live streaming services for P2P video live streaming.
The authors of [28] describe address translation in OpenFlow
switches to reduce the number of multicast-dependent for-
warding entries in near-to-leaf nodes. To that end, the forward-
ing action from the last hop towards the receivers is done with
a unicast address. Lin et al. [29] implement shared multicast
trees between different IPMC groups on OpenFlow switches.
Thereby, the number of forwarding entries is reduced. The
authors of [30] leverage bloom filters to reduce the number of
TCAM-entries that is required for SDN-based multicast.

D. BIER Multicast

In [31], [32] we presented an early prototype of a BIER
implementation in P4 for the software switch bmv2 [33].
However, bmv2 yields only low throughput (900 Mbit/s) [34].
Therefore, we developed a P4 implementation of BIER and
BIER-FRR for the P4-programmable switching ASIC Tofino
[2] with a switching capacity of 3.2 Tb/s, i.e., 100 Gbit/s
per port in a 32-port switch. We demonstrated its technical
feasibility and performance limits.
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Giorgetti et al. [35], [36] presented an OpenFlow imple-
mentation of BIER. However, it requires extensive state or
controller interaction for efficient BIER forwarding. Further-
more, it is capable of addressing only 20 receivers per packet
due do the limited size of MPLS labels which are used to
implement arbitrary header fields.

Desmouceaux et al. [37] investigate the retransmission
efficiency of BIER. That is, when subscribers signal missing
packets, BIER allows to retransmit packets to only specific
subscribers while still forwarding only one packet copy per
link. Traditional multicast retransmits either via unicast or to
the entire multicast group. The evaluations show that BIER
is significantly more efficient than traditional multicast, i.e.,
it causes fewer retransmitted packets and achieves better link
utilization.

BIER with tree engineering (BIER-TE) [38] encodes the en-
tire distribution tree in the packet header to have more control
of the paths. Carrier grade minimalist multicast (CGM2) [39]
is a novel derivate of BIER-TE. It encodes the distribution
tree in a recursive manner in the packet header. Thereby, it
can scale to larger networks than BIER-TE. However, CGM2
has not been implemented, yet, and is still under development.

Braun et al. [40] propose 1+1 protection for BIER where
traffic is transported on two disjoint trees. As a result, traffic
is delivered successfully to receivers even when a failure
interrupts one tree.

The state of the art for BIER multicast with P4 is limited
due to the following reasons. First, existing implementations
require additional forwarding capacity as shown in [2] which
may significantly reduce the usable physical ports of a switch.
Second, other BIER implementations require either exponen-
tial state or significant controller interaction (as in native IP
multicast), which is contrary to the stateless nature of BIER.
In this work, we present a novel approach for efficient BIER
forwarding that leverages static multicast groups to reduce the
required forwarding capacity by eliminating excessive recircu-
lation. Further, we optimize the selection of the static multicast
groups with unsupervised machine learning to further reduce
the required recirculation and therefore forwarding capacity.

E. Clustering

Clustering is an unsupervised machine learning technique
that solves the problem of identifying clusters of data points
in a multidimensional space. Given a set of D-dimensional
points {x1, ..., xN}, the goal of clustering is to partition the
data into groups/clusters such that points in the same cluster
are similar and points in different groups are dissimilar.

k-Means [41] is one of the most applied clustering algo-
rithms. Its incentive is to find an assignment of data points
to k cluster centers such that the sum of the squares of the
distances of each data point to its cluster center is minimized.

DBSCAN [42] is a density-based clustering algorithm that
can form arbitrary clusters and is especially suited for outlier
detection. It is not suited for high-dimensional data sets as it
uses the euclidean distance as similarity measure.

Spectral Clustering [43] is a clustering algorithm that is
based on graph properties. It uses the normalized Laplacian2

of the similarity matrix of the data points to build k clusters.
Data points are embedded in Rk through the so-called spectral
embedding. Thereby, the first k eigenvectors of the Laplacian
are computed and used to project the data points. Finally, the
embedded data points are clustered with a simple clustering
algorithm, e.g, k-Means.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this section we give a short primer on BIER. BIER is
a domain-based transport mechanism for multicast traffic. It
can be explained with three layers as shown in Figure 1. On
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Figure 1: Layered BIER architecture according to [32].

the IPMC layer sources and receivers send and receive IPMC
packets. The BIER layer is responsible for the transport of the
IPMC packets from the IPMC sources to the IPMC receivers
along paths from the unicast routing, i.e., the routing underlay,
through the so-called BIER domain.

The BIER domain consists of three types of BIER devices.
First, bit forwarding ingress routers (BFIRs) are the entry
points to the BIER domain. They encapsulate IPMC packets
with a BIER header for forwarding within the BIER domain.
The BIER header contains a bit string that indicates all
destinations of the BIER packet. That is, each bit position
corresponds to a specific destination. A bit is activated if the
corresponding destination should receive a copy of the packet.
Second, bit forwarding routers (BFRs) forward BIER packets
towards their destinations according to the activated bits in
the BIER header. That is, a BFR sends a packet copy to the
first next-hop over which at least one destination is reached. It
leaves only those bits activated in the bit string of the packet
copy which correspond to destinations that are reached via that
next-hop, and clears all other bits to prevent duplicates at the
receivers. The BFR repeats this procedure until all destinations
are served. As a result, the forwarding path of a BIER packet
is a tree whose links carry only a single packet copy. Third, bit
forwarding egress routers (BFERs) remove the BIER header
and pass the IPMC packet to the IPMC layer.

2The normalized Laplacian of a graph with weight matrix W and degree
matrix D is given as L = D−1/2(D −W )D−1/2 [43].
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Next-hops on the BIER distribution tree may not be reach-
able due to link or node failures. In this case, downstream
destination nodes do not receive any BIER traffic until BIER
forwarding tables are updated. Therefore, two BIER fast
reroute (BIER-FRR) concepts have been proposed [44] to
forward BIER traffic over backup paths from the detection of
the failure until BIER forwarding tables have been updated.
The methods have been compared in [45] and tunnel-based
BIER-FRR has been implemented in [2].

IV. INTRODUCTION TO P4

In this section we give an overview of P4, explain the P4
processing pipeline, packet cloning, packet recirculation, and
multicast groups in P4.

A. P4 Overview

P4 (programming protocol-independent packet processors)
[46] is a high-level programming language to describe the
data plane of P4-programmable devices. It is applied in a
wide range of applications and research [47]. Target-specific
compilers map the P4 programs to the programmable pro-
cessing pipeline of the target devices which are also called
targets. The P4 compiler also generates a data plane API that
can be used by a control plane to manage runtime behavior,
e.g., by writing forwarding entries. P4 targets follow a certain
architecture that may vary between different targets, e.g., Intel
Tofino implements the TNA architecture whereas some P4 ca-
pable SmartNICs may implement the PSA architecture. Packet
cloning, multicast, and recirculation are common features that
are supported by most P4 architectures. We implemented the
subsequently presented mechanism for the Intel Tofino, which
follows the TNA architecture. Therefore, most explained P4
related concepts are done with the TNA in mind. However,
the presented concepts and mechanisms can be implemented
similarly in other architectures.

B. P4 Pipeline

Figure 2 shows the abstract pipeline model of a P4 pro-
grammable device [46]. A programmable parser deserializes
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Figure 2: Abstract forwarding model according to [46].

the packet header and stores the information in so-called
header fields. The header fields are carried through the
pipeline together with packet-specific metadata fields which

are comparable to variables from other high-level program-
ming languages. Only header fields and metadata are processed
afterwards in the ingress pipeline, i.e., the payload of the
packet remains untouched. The ingress pipeline consists of one
or more match-action-tables (MATs) that map header fields
or metadata to actions. Examples for actions are changing
header fields or metadata, e.g., setting the egress port of the
packet. After processing in the ingress pipeline, the packet
is temporarily buffered so that it can be processed by the
egress pipeline which works similarly to the ingress pipeline.
Finally, the deparser serializes the possibly changed header
fields, forwards the packet through the designated egress port,
and discards the metadata.

C. Packet Cloning

P4 has an operation for packet cloning. Depending on the
architecture, different clone operations are defined. In the
following, we explain ingress to egress (I2E) cloning which
we used for the implementation. With I2E cloning, a set
metadata flag indicates that the packet should be cloned after
its processing in the ingress pipeline has concluded. However,
the header fields and metadata of the clone resemble the packet
that is initially parsed before the ingress pipeline. Figure 3
shows the concept. After the ingress pipeline has finished,

Dst. IP: 10.0.0.1 Change Dst.
IP to 10.0.0.2

Header field 
of parsed packet

clone Change Dst.
IP to 10.0.0.3

End of the 
ingress pipeline

Dst. IP: 10.0.0.3

Dst. IP: 10.0.0.1

Original packet

Cloned packet

 Start of the 
ingress pipeline

Figure 3: When a packet is cloned, the copy is created only
after the ingress pipeline and its header fields are reset to the
initial value after the packet has been parsed.

the packet is cloned and both the original packet, i.e., with
header changes, and the packet copy, i.e., without header
changes, enter the egress pipeline where they are processed
independently of each other. Some architectures allow to carry
additional information during cloning. In the case of the TNA,
this is done through a so-called mirror header.

D. Packet Recirculation

Packet recirculation in P4 allows a packet to be processed a
second time by the entire pipeline, i.e., by ingress and egress
pipeline. To recirculate a packet, its egress port, i.e., a special
metadata field, is set to a particular port ID that corresponds
to a switch-intern recirculation port. The recirculation port
functions as a regular port of the switch with the exception
that it has no physical connector, i.e., only the switch itself
can send to and receive traffic from the recirculation port.

After the packet has been processed by both the ingress and
egress pipeline, it is sent to the recirculation port. Afterwards,
the packet is processed again as if it has been received on a
physical port.
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E. Static Multicast Groups
P4 allows controllers to configure multicast groups on

forwarding devices. A multicast group consists of a tuple of
multicast group identifier and a set of egress ports. In addition,
there is a special metadata field that allows the ingress pipeline
to assign a multicast group identifier to a packet. After the
ingress pipeline has completed, the packet is replicated to the
pre-defined set of egress ports.

In the following we refer to those configured multicast
groups as “static multicast groups” to differentiate them from
multicast groups of IPMC. A static multicast group is a local
mechanism on a switch to simultaneously forward a packet to
multiple egress ports.

V. SIMPLE P4-BASED BIER IMPLEMENTATION

In this section we review the simple P4-based BIER im-
plementation of [2]. The target is the Intel Tofino high-
speed switching ASIC [48]. It is used for a prototype on the
Edgecore Wedge 100BF-32X [49] with 32 100 Gbit/s ports.
The implementation makes heavy use of packet recirculation,
which causes capacity issue, e.g., 100 Gb/s incoming multicast
traffic with 5 next-hops requires 400 Gb/s additional forward-
ing capacity for recirculation purpose, i.e., it requires #next-
hops - 1 recirculations. The efficient BIER implementation in
Section VI builds upon the simple implementation and greatly
reduces the need for recirculations.

A. BIER Processing
BFRs leverage the Bit Index Forwarding Table (BIFT) to

determine the next-hops of a BIER packet. We implement the
BIFT as common match-action table in P4. For each BFER
there is one entry in the BIFT. The match key is a bitstring
with only the single bit activated for the corresponding BFER.
The other entry fields, i.e., the corresponding action with its
parameters, are a next-hop and a forwarding bitmask (FBM).
The FBM is a bit string similar to the BIER bitstring and it
indicates the BFERs with the same next-hop. When a packet
arrives, the BFR first copies the bitstring of the packet to a
temporary metadata field which we call “remaining bits”. The
remaining bits indicate the BFERs that still have to be served.
Then, the least-significant activated bit in the remaining bits
is matched against the BIFT using a ternary match operation.
The match-action table entry returns the corresponding next-
hop and FBM for that BFER. The BFR clears all bits in the
bitstring of the packet that are not activated in the FBM. Thus,
only the bits of BFERs that are reached through this next-hop
remain in the BIER bitstring. The BFR further clears all bits
in the remaining bits that are activated in the FBM as they
have already been served. Afterwards, the clone operation is
applied. Figure 4 shows the processing flow of the original
and cloned BIER packet. The original packet is sent through
the appropriate egress port to reach the selected next-hop. The
packet copy is cloned to the egress pipeline and recirculated
to a recirculation port. Within the egress pipeline, the BIER
bitstring of the packet copy is set to the remaining bits so
that only the remaining BFERs are served in the next pipeline
iteration. Further details about the original BIER forwarding
implementation can be found in [2].

Ingress pipeline Egress pipeline 

Path of cloned BIER packet Path of original BIER packet 
Figure 4: The original BIER packet is sent through an egress
port while the packet copy is recirculated.

B. Recirculation Capacity and Problem Statement

The Tofino ASIC has a switch-intern recirculation port
which has the same packet processing capacity as regular
ports. If its capacity does not suffice, packet loss occurs.
To increase the recirculation capacity, physical ports may be
turned into loopback mode, and recirculation traffic may be
distributed over the internal ports and the loopback ports in a
round-robin manner [2]. As these ports cannot be utilized for
other traffic, recirculations are costly.

The simple BIER implementation requires n− 1 recircula-
tions for BIER packets with n next-hops. This approach obvi-
ously does not scale well with increasing number of next-hops
and traffic rate. The objective of this paper is a more efficient
P4-based implementation that requires fewer recirculations per
BIER packet (see Section VI) and an optimized configuration
thereof using clustering methods (see Section VII).

VI. EFFICIENT BIER FORWARDING WITH P4

We explain how static multicast groups can be leveraged
to make BIER forwarding using P4 more efficient, and how
BIER-FRR can be integrated. To demonstrate the efficiency
of the new forwarding algorithm, we present a simulative
performance study.

A. Efficient BIER Forwarding with Static Multicast Groups

We first explain how BIER forwarding can profit from
configured port clusters consisting of static multicast groups
such that multiple next-hops can be served within a single
pipeline iteration. Then we explain how the forwarding al-
gorithm determines a port cluster and the appropriate static
multicast group for a BIER packet, and forwards it.

The presented algorithm is specific to P4 and the archi-
tecture of the Tofino ASIC. However, efficient forwarding
algorithms for any switch architecture need to determine the
set of egress ports for a BIER packet. This is a difficult
task as bitstrings are at least 256 bits large. Therefore, the
presented approach may also be a useful base for efficient
BIER forwarding on other switch architectures.

1) Use of Static Multicast Groups: The idea to make BIER
forwarding more efficient is the use of static multicast groups
so that multiple egress ports can be simultaneously served
instead of using recirculation.

A naive solution is configuring static multicast for all
possible combinations of egress ports. When a packet arrives,
the set of egress ports is determined and the corresponding
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static multicast group forwards the packet to all needed egress
ports without packet recirculation. However, on a 32 port
switch this requires 232 = 4294967296 static multicast groups,
which exceeds the number of configurable static multicast
ports.

We propose now a more sophisticated approach which
requires fewer static multicast groups. We define a set C =
{C1, ..., Ck} of so-called “configured port clusters” (or port
sets) Ci such that all configured port clusters together cover
all ports of a switch. Configured port clusters may be disjoint
or overlapping. For each port set Ci, static multicast groups
Mj ∈ P(Ci) are configured for all sets of ports in the powerset
of Ci. Thus, a configured port cluster C implies

m(C) = 2|C| − |C| − 1 (1)
static multicast groups that need explicit configuration on
the switch; the empty group and groups with only a single
destination do not need to be configured. On a 32-port
switch three port clusters with 10, 11, and 11 ports may be
configured, which requires in total 5085 explicitly configured
static multicast groups. This is well feasible on a switch like
the Tofino which supports up to 216 = 65536 static multicast
groups3. With this approach, a BIER packet needs to be sent
to at most |C| static multicast groups, which requires |C| − 1
recirculations instead of nh − 1 with nh being the number of
next-hops of a BIER packet. Moreover, the administrator may
set a threshold mmax on the number of static multicast groups
usable for efficient BIER forwarding.

2) Forwarding Procedure: We first give a forwarding exam-
ple. Then, we describe how the forwarding procedure selects
a set of configured port clusters Si ⊆ C for BIER forwarding,
and then we present how the appropriate static multicast group
is chosen from a selected configured port cluster Cj ∈ Si.

a) Forwarding Example: Figure 5 illustrates an exam-
ple for a 8-port switch with three configured port clusters,
C = {C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {6, 7, 8}}.
For each configured port cluster, all port combinations are
configured as static multicast groups. The empty group and
groups with only a single port do not need to be configured.
We consider all subsets of configured port clusters Si ⊆ C.
A packet destined for ports 1, 3, and 4 requires the subset
S4 = {C1, C2} for forwarding, i.e., it will be served by
the multicast group {1, 3} from C1 and the multicast group
{4} from C2, which requires a single recirculation. Note that
groups with a single destination do not need to be configured
as static multicast group.

b) Selection of Set of Configured Port Clusters: Now
we explain how the appropriate subset Si for forwarding is
determined in the data plane. C-FBM(Si) is the combined
forwarding bitmask of a subset of configured port clusters
and indicates all BFERs that are reachable through Si. We
set up a match-action table with one entry per subset Si in
increasing order with regard to subset size |Si|, as shown
in Figure 5. The entry ¬C-FBM(Si) is the complement of
C-FBM(Si). The objective is to find the smallest subset of
configured port clusters that serves all BFERs of a BIER

3The actual usable number of available resources depends on the program
complexity.

packet. To that end, the bitstring of a packet is bitwise
ANDed with the complement of the C-FBM in the match-
action table. We define a match if the result of that operation
is zero. Then, all BFERs of the BIER packet are served by
the corresponding subset Si. This operation is done through a
ternary match. A ternary match in P4 is defined by a source
value sv , e.g., a header field, and a (mask, value) pair. The
corresponding table entry matches when sv & mask = value.
The source value is given by the BIER bitstring, the mask is
the complement of the C-FBM and the value is 0. Due to the
order within the match-action table, the first match Si is the
smallest subset with that property. The first configured port
cluster Cj in that subset Si is selected for the remainder of
the forwarding process.

We consider the example of Figure 5, where 8 BFERs are
reachable over ports 1-8. For simplicity, BFER i corresponds
to the i-th bit in the BIER bitstring and is reachable over port
i, i.e., BFER 1 corresponds to the least significant bit and is
reachable over port 1. The C-FBMs for all subsets Si ⊆ C are
given in Table 1.

Table 1: Subsets Si ⊆ C with corresponding C-FBMs.

Subset C-FBM ¬C-FBM

S1 : {C1} 00000111 11111000
S2 : {C2} 00111000 11000111
S3 : {C3} 11100000 00011111

S4 : {C1, C2} 00111111 11000000
S5 : {C1, C3} 11100111 00011000
S6 : {C2, C3} 11111000 00000111

S7 : {C1, C2, C3} 11111111 00000000

Again, we assume a BIER packet to be destined for ports
1, 3, and 4, i.e., towards BFERs 1, 3, and 4 with a bitstring
bs = 00001101; then only S4 or S7 can cover all BFERs of
the packet4. Due to the order within the match-action table,
the first match is S4 and C1 is selected for the remainder of
the forwarding process.

c) Selection of the Static Multicast Group: Only a single
static multicast group Mh of the configured port cluster
Cj will be used for forwarding. We now determine that
Mh ∈ P(Cj) and take a similar approach as in Section VI-A2b
for that purpose. We set up a match-action table for Cj which
has an entry for any static multicast group Mh ∈ P(Cj). The
entries are sorted by increasing group size |Mh| and contain
the complement of the C-FBM of the corresponding multicast
group. Single ports are also considered as static multicast
groups although they do not require explicit configuration on
the switch. The bitstring of a BIER packet is first ANDed with
the C-FBM of the selected configured port cluster Cj . This
excludes all BFERs from the bitstring that cannot be served
by Cj . The result is bitwise ANDed with the complement of
the C-FBM(Mh) of the multicast groups in the table entries.
We define a match if the result is zero. This is done with a
ternary match operation as with the selection of a configured
port cluster. Due to the increasing order of entries in the
match-action table, the first match refers to the smallest static

4This is ensured through the ternary match operation: bs & ¬C-FBM(Si)
== 0.
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Figure 5: Configured port clusters Ci together cover all ports of a switch. All port combinations within a configured port
cluster are configured as static multicast groups. A match-action table chooses a minimum subset of configured port clusters
and selects its first configured port cluster for forwarding.

multicast group Mh within the configured port cluster that
covers all relevant BFERs.

d) Forwarding and Bitstring Adaptation: At the end of
the ingress pipeline, the original BIER bitstring is stored in a
transient metadata header. The activated bits in C-FBM(Mh)
are deactivated in this transient metadata header which repre-
sents the remaining bits that need processing; if the bitstring
is not zero, the packet is recirculated and the BIER bitstring
is restored through the transient metadata header in the egress
pipeline of the recirculation port5. In addition, a copy of the
original packet is sent to all egress ports of the selected static
multicast group Mh. The egress pipelines of these ports clear
all bits in the packet’s bitstring that are not activated in the
FBM of the corresponding port and then they transmit the
packets.

B. Integration of BIER-FRR

The proposed efficient forwarding scheme is compatible
with BIER-FRR if BIER-FRR is integrated as follows. First,
the switch processes the egress ports that are affected by a
failure, i.e., a failed link or a failed node. To that end, the
BIER packets are forwarded by regular BIER forwarding but
over alternate ports. When all affected egress ports have been
served, the BIER packet is recirculated and the remaining
ports, i.e., working ports, are processed by the presented, effi-
cient forwarding algorithm. This approach prevents duplicates
at subscribers and unnecessary double transmissions of the
same packet over one link. Details are given in [2].

C. Simulative Performance Evaluation

We evaluate the concept of static multicast groups for
efficient BIER forwarding through the following experiment.
We examine different numbers of disjoint configured port
clusters k ∈ {1, 2, 4, 8, 16, 32}. With k configured port
clusters and a 32 port switch, each configured port cluster
contains 32

k ports. Further, we simulate BIER packets with
nh ∈ {1, 2, 4, 8, 16, 32} random next-hops. They are processed
by the different configured port clusters. Figure 6(a) and
Figure 6(b) show the average number of recirculations per

5This restores all bits from the original BIER bitstring that have not been
processed yet.

packet and the required static multicast groups. Although
multicast traffic with random next-hops is unrealistic (see Sec-
tion VIII-A1), it serves as a good baseline for a performance
evaluation of the efficient BIER forwarding mechanism. The
average number of recirculations increases with the number
of next-hops nh and the number of configured port clusters k.
In fact, the number of recirculations is bound by k − 1. For
k = 32, the results are equivalent to the simple (original) BIER
forwarding. Higher values of k lead to smaller configured port
clusters, and hence, to fewer next-hops that can be served
in one shot. The number of required static multicast groups
decreases with the number of configured port clusters k. To
keep the number of recirculations low, larger configured port
clusters should be preferred. However, the number of available
static multicast groups may be limited due to technical reasons
or based on administrative decisions.

In the given traffic model, we randomly selected next-hops
for BIER packets. This is not a realistic model for multicast
traffic. The next-hops of subsequent BIER packets are likely
to be correlated and so are the ports over which the packets
are sent. Therefore, some configured port clusters reduce
the average recirculation more than others. To effectively
minimize the number of recirculations, it is necessary to form
meaningful configured port clusters that take the current traffic
model into account.

VII. PORT CLUSTERING ALGORITHMS FOR EFFICIENT
BIER FORWARDING

In this section, we first illustrate the optimization poten-
tial of efficient BIER forwarding through configuration of
appropriate port clusters. Then, we present three clustering
algorithms to reduce the average recirculations per packet:
random port clustering (RPC) as a simple baseline, port
clustering based on Spectral Clustering (PCSC), and recursive
clustering with overlaps (RPCO) which also leverages Spectral
Clustering for subroutines. For the latter two algorithms we
present a graph embedding method that turns ports of sampled
packets into a graph structure from which the algorithms learn
correlated port clusters.

A. Optimization Potential and Approach
The bits in the BIER header require a packet to be sent

to a certain set of next-hops, and, thereby, to specific ports
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Figure 6: Average number of recirculations and number of static multicast groups for k ∈ {1, 2, 4, 8, 16} configured port
clusters.

of a switch. To be brief, we talk about “ports of a packet”.
In the previous section we showed how multiple ports of a
BIER packet can be served at once to speed up the forward-
ing process. For example, port clusters {1, .., 8}, {9, .., 16},
{17, .., 24}, and {25, .., 32} may be configured. Then, a BIER
packet needs to be processed at most four times, i.e., it must be
recirculated at most three times, no matter how many BFERs
are set in the BIER header. If a packet has only ports in the
range {1, .., 8}, the packet does not need to be recirculated
at all. However, if a packet has ports {1, 9, 17, 25}, it still
requires three recirculations. The worst-case performance of
the presented mechanism is therefore the number of configured
port clusters |C| - 1 instead of #next-hops - 1. This also holds
for the subsequently presented optimization algorithms RPC,
PCSC, and RPCO.

We now assume that ports of a packet are not random but
correlated. That is, certain ports sets tend to occur together. We
call them correlated port clusters. We propose to learn these
correlated port clusters from sampled traffic and to utilize them
as configured port clusters. Then it is likely that BIER packets
can be forwarded with fewer processing steps and, thereby,
the number of recirculations may be reduced. In practice,
a controller can continuously sample multicast traffic from
a switch, learn the correlated port clusters of the sampled
multicast traffic, and adjust the configured port clusters on
the switch.

Large configured port clusters require lots of static multicast
groups, but they have the potential to effectively reduce the
number of recirculations. A constraint is the maximum number
mmax of static multicast groups usable for configured port
clusters which may be a technical limit or defined by the
administrator.

B. Random Port Clustering (RPC)

With RPC, np ports are randomly partitioned into approx-
imately k equal-size clusters. The number of clusters k is
determined such that the resulting number of configured static
multicast groups is at most mmax. As the algorithm is trivial,
we do not provide any further details. The method will serve
as a baseline for a performance comparison.

C. Port Clustering based on Spectral Clustering (PCSC)

We first present a graph embedding method that turns ports
of sampled packets into a graph structure from which the
algorithms learn correlated port clusters. Then we present the
PCSC algorithm which is based on Spectral Clustering. It
partitions np ports into approximately equal-size port clusters.

1) Graph Embedding: We embed the port information
of sampled packets into a graph which is needed by the
algorithms for PCSC and RPCO. The nodes of the graph
represent the ports of a switch. The graph is fully connected
and the edges have weights. All weights are initially zero.
The embedding iteratively processes the sampled packets. For
every combination of two ports of a packet, the weight of
the link between these ports is increased by one. Figure 7(a)-
Figure 7(b) illustrate how two sampled packets with ports
{1, 2, 3} and {4, 5}, respectively, modify an embedded graph
with 5 nodes whose edges are initially all zero.

(a) The edge weights between
egress ports 1, 2, and 3 are in-
creased by one.

(b) The edge weights between
egress ports 4 and 5 are increased
by one.

Figure 7: Graph embedding: a full-mesh graph is augmented
by port information from sampled packets: high edge weights
indicate port pairs that frequently occur together in a BIER
packet.

2) PCSC Algorithm: We first develop a metric for port
clusters that correlates with the number of recirculations
needed for the sampled traffic. Then we propose pseudocode
for PCSC that minimizes that number while respecting the
number of usable static multicast groups.
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Figure 8: Most BIER packets are sent to ports {1, 2, 3, 4}, {3, 4}, and {4, 5} on a 7-port switch and the maximum number
of usable static multicast groups is mmax = 12. PCSC produces equal-size port clusters while the optimum port clusters
minimizing the overall number of recirculations has unequal size.

a) Metric: We consider two port clusters C1 and C2.
The clustering is good if only a few BIER packets need to
be sent through ports of C1 and C2. We identify a metric
for the graph embedding that correlates with that number of
packets although it is not an exact measure for it. The function
cut(C1, C2) is the sum of the weights on the edges between
any two nodes v1 ∈ C1 and v2 ∈ C2. It gives an upper bound
on the number of packets with ports in both C1 and C2. It
is an upper bound and not the exact number as a packet may
have multiple ports from C1 and/or C2. To assess whether the
clustering is good, we need to relate cut(C1, C2) to the overall
number of nodes in the considered clusters. This can be done
with the so-called normalized cut (Ncut) and is given below,
generalized for multiple clusters.

Ncut(C1, ..., Ck) =
k∑

i=1

cut(Ci, Ci)

vol(Ci)

Thereby, cut(Ci, Ci) measures the sum of the edge weights
between nodes in Ci and nodes that are not in Ci (Ci). The
function vol(Ci) sums up the edge weights of all nodes in Ci –
as a result, edge weights between nodes within the cluster are
counted twice, weights of outgoing edges are counted once.
The objective is to find clusters C1, ..., Ck that minimize the
normalized cut. Ncut is known to be NP hard and therefore
cannot be solved efficiently. However, Spectral Clustering is
a relaxation of Ncut. It yields a partition C with preferably
equal-size6 clusters Ci ∈ C and can be solved efficiently [43].

b) Pseudocode for PCSC: PCSC is described in Algo-
rithm 1. It first performs the graph embedding for the set of
sampled packets S and the given number of nodes np. Then,
Spectral Clustering is called to provide a partition C of the np

nodes into k clusters. This is performed in a loop, starting from
a single cluster up to np clusters. As soon as a partition C is
found that requires at most mmax static multicast groups, the
algorithm stops and C is returned. It is the clustering with the
lowest number of clusters that can be configured with mmax

static multicast groups.

6This property is desirable as the number of static multicast groups
increases exponentially with the number of nodes in a cluster.

Algorithm 1 PCSC
Input: samples: S

number of ports: np

number of multicast groups: mmax

graph = graphEmbedding(np,S)
for k from 1 to np do

C = SpectralClustering(graph, k)
if number of multicast groups for C ≤ mmax then

return C
end

end

D. Recursive Port Clustering with Overlap (RPCO)

We first explain two major shortcomings of PCSC. Then
we explain how RPCO solves these shortcomings. Finally, we
give a high-level pseudocode description of RPCO.

1) Shortcomings of PCSC: PCSC has two major shortcom-
ings. First, if the configured port clusters cannot be built,
the number of clusters is increased by one. As a result,
an important cluster that significantly reduces the number
of recirculations may not be built although a less important
cluster could be split to save static multicast groups.

We illustrate that with a 7-port switch and mmax = 12
usable static multicast groups. We assume that most multicast
packets are sent to port clusters {1, 2, 3, 4}, {3, 4}, and {4, 5}.
When PCSC is called with k = 2, the clusters in Figure 8(a)
may be returned which require 15 static multicast groups,
which exceeds mmax so that it is not a valid solution.
Therefore, PCSC increases k to 3, which may return the
clusters in Figure 8(b) which require only 6 static multicast
group. As this is feasible, this clustering is PCSC’s final result.
However, the optimal clustering that minimizes the overall
number of recirculations might be the one in Figure 8(c) with 4
unequal-size clusters. They require 11 static multicast groups,
which is also feasible.

Second, PCSC creates disjoint clusters. This, however,
may not be optimal. We illustrate that by a small example.
We consider packets with ports {1, 2, 3} and {2, 3, 4} and
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mmax = 8 usable static multicast ports. A single, large cluster
C = {1, 2, 3, 4} requires m(C) = 11 static multicast groups
so that it cannot be configured. When working with smaller,
non-overlapping clusters, it is not possible to cover the port
sets of both packets with only a single port cluster. However,
when working with overlapping port clusters C1 = {1, 2, 3}
and C2 = {2, 3, 4}, only 7 static multicast groups are needed7,
which is feasible. Moreover, the port sets of both packets can
be covered. Thus, overlapping clusters may help to further
reduce the number of recirculations with a limited number of
usable static multicast groups.

2) Design Ideas: We discuss major design ideas of RPCO.
If the number of usable static multicast groups mmax does not
suffice to configure k clusters proposed by Spectral Clustering,
RPCO selects the clusters that reduce recirculations in the most
efficient way and recursively re-clusters the remaining clusters.
To that end, we review and adapt the knapsack algorithm to
select the clusters that reduce recirculations most efficiently.
Given a clustering, we further suggest how to add nodes also to
other clusters they are not yet part of, which facilitates cluster
overlaps.

a) The Knapsack Algorithm: In the knapsack problem
[50], a set of items is given, and each item has a weight and
a value. The knapsack objective is to select items such that
their overall weight is less than a given limit while their overall
value is maximized.

We apply the knapsack algorithm as follows. The set of
items is given as set of port clusters C = {C1, ..., Ck}.
The value of a port cluster Ci is given by the number of
recirculation it saves for the set of packets S which is evaluated
by simulation. The weight of a port cluster Ci is given by
its number of required static multicast groups m(Ci). The
limit is the number of usable static multicast groups. The
algorithm selects those clusters that maximize the number of
saved recirculations with the available static multicast groups.

b) Adding Single Nodes to Multiple Clusters: We first
define the so-called port-cluster relevance r(x,C) of a port x
and a cluster C, x /∈ C. Then, we explain how the port-cluster
relevance is used to add single nodes to multiple clusters.

The port-cluster relevance measures the connectivity be-
tween port x and cluster C. It is the sum of the edge weights
w between x and C, i.e., r(x,C) =

∑
y∈C w(x, y).

Ports are initially assigned to a cluster with Spectral Cluster-
ing. However, ports may also be important for other clusters.
The list of all port-cluster pairs sorted by decreasing port-
cluster relevance suggests the order in which nodes should be
additionally added to another cluster provided the remaining
static multicast groups suffice. As a result, a partition of ports
becomes a port clustering with overlaps.

3) Pseudocode for RPCO: We give a high-level pseu-
docode for RPCO and refer to the Github repository8 for
details.

Algorithm 2 describes the outer control loop of RPCO.
First, the graph embedding of the samples S is computed and

7When working with overlapping port clusters, the static multicast groups
required by multiple port clusters need to be configured only once on the
switch.

8Github: https://github.com/uni-tue-kn/rpco

stored in graph. Then, the best clustering Cbest is initialized
with single node clusters. A graph with np nodes (number
of ports on the switch) can be partitioned into up to np

clusters. Therefore, the subsequent loop is called with k
between 1 and np. Within the loop, the current clustering C is
initialized empty and the number of remaining static multicast
groups mleft is initialized with mmax. Both C and mleft are
global variables so that they can be modified by subroutines.
RecursiveClustering computes a partition of all nodes and
stores it in C. Details of the procedure will be explained
later. Then, OverlapClusters utilizes remaining usable static
multicast groups mleft to add nodes to other clusters they are
not yet part of (see Section VII-D2b). This leads to overlapping
clusters. Afterwards, the best clustering Cbest is updated by
C if C requires fewer recirculations than the best clustering.
The function Recirculations(C,S) computes the number of
recirculations required for clustering C for the packets in S.
Finally, RPCO returns the best clustering of all switch ports
that minimizes the number of recirculations for the samples
S.

Algorithm 2 RPCO
Input: samples: S

number of ports: np

max. number of multicast groups: mmax

graph = GraphEmbedding(np,S)
Cbest = {{1}, ...{np}}
for k ∈ [1, np] do

C = {∅}
mleft = mmax

RecursiveClustering(graph, k)
OverlapClusters(graph)
if Recirculations(C,S) <Recirculations(Cbest,S) then

Cbest = C
end

end
return Best port clustering Cbest

RecursiveClustering is described in Algorithm 3. If the
graph contains only a single node v, the node is added as
a separate cluster to C and the recursion ends. Otherwise,
Spectral Clustering is executed to produce clustering C′ with
the desired number of clusters k. Then, the cluster set C∗

is identified which makes best use of the remaining static
multicast groups mleft to reduce recirculations. All clusters
in C∗ are added to the current clustering result C and mleft is
decreased by their number of required static multicast groups.
The clusters not selected by knapsack (C′ \C∗) are recursively
clustered. To that end, the corresponding embedded subgraph
is computed. The recursion ends if either the recursion was
called with a single node or if all clusters C′ can be selected.

VIII. SIMULATIVE PERFORMANCE COMPARISON

In this section we compare the performance of the three
port clustering methods Random Port Clustering (RPC), Port
Clustering based on Spectral Clustering (PCSC), and Re-
cursive Port Clustering with Overlaps (RPCO). We first de-
velop a model for correlated multicast traffic and explain the
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Algorithm 3 RecursiveClustering
Input: graph embedding: graph

number of clusters: k

if graph contains only the single node v then
C = C ∪ {{v}}
return

end
C′ = SpectralClustering(graph, k)
C∗ = knapsack(C′,S,mleft)
for C ∈ C∗ do

C = C ∪ {C}
mleft = mleft −m(C)

end
for C ∈ C′ \ C∗ do

subgraph = subgraph of graph limited to nodes in C
RecursiveClustering(subgraph, 2)

end

performance evaluation methodology. Then, we compare the
performance of the mentioned clustering methods for various
correlated multicast traffic models. Finally, we compare the
runtime of the algorithms and discuss their scalability proper-
ties.

A. Traffic Model and Evaluation Methodology

We define a simple model for correlated multicast traffic
and explain the methodology for the subsequent comparison
of the port clustering methods.

1) Model for Correlated Multicast Traffic: In Section VI-C
we utilized a model for multicast traffic that assumes random
ports for subsequent multicast packets. However, random ports
are not realistic for two reasons. First, subsequent multicast
packets belong to a set of active multicast groups and packets
of a multicast group have identical ports as long as the groups
do not change. Second, receivers of multicast groups are users
or connected upstream aggregation points in specific time
zones, geographical regions, or neighborhoods. Therefore, we
assume the users have common interests for certain multicast
content so that they belong to multicast groups with correlated
receivers. We have not found any literature studying this issue
and think this would be useful future work.

We propose a model for correlated multicast traffic for use
in the subsequent performance comparison. We define a set
of generating port clusters Cg = {C1, C2, ..., Ck} from which
ports of a packet are preferentially chosen. First, we randomly
choose one generating port cluster Ci; thereby all Ci have
equal probability. Then, we determine a random number of
ports which is equally distributed between 1 and the size |Ci|
of the chosen cluster. We draw these ports with a probability p
from Ci (without duplicates) and with probability 1− p from
ports outside Ci (without duplicates).

For p = 1, all ports of a sampled BIER packet are
from a single, generating port cluster Ci. In that case, if
the generating port clusters Cg are configured for efficient
BIER forwarding, BIER packets can be forwarded without
recirculation. As p decreases, a sampled BIER packet is likely
to have increasingly more ports outside the selected generating

port cluster Ci. That means, the resulting multicast traffic is
more random and more recirculations are needed. We take p
as a measure for port correlation in the generated multicast
traffic.

2) Evaluation Methodology: The objective of port cluster-
ing algorithms for efficient BIER forwarding is the reduction
of recirculations. Therefore, we take the average number
of recirculations per packet as performance metric for the
subsequent comparisons.

We generate 1000 BIER packets. Based on these packets
we compute sets of port clusters for optimized configuration
using the considered port clustering methods and various
numbers of usable static multicast ports mmax. Then, we
generate another 10000 packets and simulate efficient BIER
forwarding using the optimized configuration. We count the
number of recirculations and compute the average number
of recirculations per packet. We conduct the experiments 100
times and produce 95% confidence intervals for the average
number of recirculations. As they are very small, we omit them
in the figures for the sake of readability.

B. Performance Comparison of Port Clustering Methods

We compare the efficiency of the port clustering algorithms
for different traffic models. We consider disjoint and overlap-
ping generating port clusters of equal and unequal size. We
choose the models such that they all lead to 4.5 ports per BIER
packet, which makes their results comparable.

1) Multicast Traffic Generated from Disjoint Port Clusters:
We study correlated multicast traffic generated from disjoint
generating port clusters. We consider symmetric and asym-
metric generating port clusters.

a) Symmetric Generating Port Clusters: We consider
four symmetric, disjoint, generating port clusters of size 8:
C1 = {1, .., 8}, C2 = {9, .., 16}, C3 = {17, .., 24}, C4 =
{25, .., 32}. If they are used for configuration, 4·(28−8−1) =
988 static multicast groups are needed.

Figure 9(a) shows the average number of recirculations
per packet for traffic models with port correlation p ∈
{0.7, 0.9, 0.99}, for usable static multicast groups mmax ∈
{0, 32, 64, 128, 256, 10.24, 2048, 4096, 8192, 16384}, and for
the port clustering methods RPC, PCSC, and RPCO.

If no static multicast group is available for efficient BIER
forwarding (mmax = 0), the port clustering is disabled,
and the forwarding behaviour is the same as the one for
simple BIER forwarding. Therefore, packets with 4.5 ports
on average require 3.5 recirculations on average. Increasing
the number of usable multicast groups mmax allows efficient
BIER forwarding to decrease the average number of recir-
culations per packet. This holds for all traffic models and
for all port clustering methods. However, if sufficient static
multicast groups are available, the degree to which the average
number of recirculations can be reduced depends on the port
correlation p and the port clustering method.

If a packet with l ports is generated from a specific
generating port cluster, all the ports are taken from that cluster
with a probability of pl. Setting l = 4.5 yields 20.1% for
p = 0.7, 62.2% for p = 0.9, and 95.6% for p = 0.99.
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Thus, the chosen traffic models are quite divers. For port
correlation p = 0.7, the average number of recirculations
are similar for all considered port clustering algorithms. The
advanced port clustering algorithms hardly outperform the
random method due to the lack of sufficient port correlation in
the generated multicast traffic. For port correlation p = 0.99,
most packets are entirely drawn from a single generating port
cluster. As a result, the advanced packet clustering methods
lead to significantly fewer packet recirculations than random
clustering. With mmax = 1024 or more usable multicast
groups, PCSC and RPCO reduce the average number of
recirculations to almost zero. Apparently they are able to learn
the right port clusters. The generating port clusters are optimal
for configuration; as mentioned above, they require 988 static
multicast groups. This explains why mmax = 512 or fewer
static multicast groups require more recirculations, also with
advanced port clustering methods. The results in Figure 9(a)
show that PSCS and RPCO lead to about the same number
of recirculations per packet for symmetric, disjoint, generating
port clusters.
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(a) Traffic sampled from four generating port clusters of size 8 with different
port correlation p.
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(b) Traffic sampled from four clusters of size 12, 10, 6, 4 with port correlation
p = 0.9.

Figure 9: Impact of port clustering methods and number mmax

of usable, static multicast groups on the average number of
recirculations per packet; multicast traffic is sampled from
disjoint generating port clusters.

In the following, we choose port correlation p = 0.9
as this generates sufficiently correlated multicast traffic with
substantial port deviation from the generating port clusters.

b) Asymmetric Generating Port Clusters: We consider
four asymmetric, disjoint, generating port clusters of size 12,
10, 6, 4: C1 = {1, .., 12}, C2 = {13, .., 22}, C3 = {23, .., 28},
and C4 = {29, .., 32}. If used for configuration, they require
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(a) Traffic sampled from six clusters of size 8.
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(b) Traffic sampled from six clusters of size 12, 10, 8, 8, 6, 4.

Figure 10: Impact of port clustering methods and number
mmax of usable, static multicast groups on the average number
of recirculations per packet; multicast traffic is sampled from
overlapping, generating port clusters with port correlation
p = 0.9.

(212−12−1)+(210−10−1)+(26−6−1)+(24−4−1) = 5164
static multicast groups.

Figure 9(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. Again, more usable
static multicast groups cause fewer recirculations. We now ob-
serve that RPCO reduces the average number of recirculations
to lower numbers than PCSC, in particular for mmax ≤ 4096.
For larger mmax, PCSC and RPCO lead to almost equal
results. This is in line with the design goal of RPCO: it
makes better use of a limited number of static multicast
groups than PCSC by proposing unequal-size port clusters.
For mmax = 64, PCSC causes 3 recirculations per packet
while RPCO causes only 2. For port correlation p = 0.99,
which is not shown in the figure, both PCSC and RPCO
reduce the average number of recirculations to almost zero
for mmax ≥ 8192.

2) Multicast Traffic Generated from Overlapping Port Clus-
ters: We study the performance of the presented clustering
algorithms for overlapping, generating port clusters.

a) Symmetric Generating Port Clusters: We consider six
overlapping, generating port clusters of size 8: C1 = {1, .., 8},
C2 = {6, .., 13}, C3 = {11, .., 18}, C4 = {17, .., 24}, C5 =
{22, .., 29}, and C6 = {28, .., 32, 1, .., 3}. Configuring them
as port clusters requires 6 · (28 − 8− 1)− 4 · (23 − 3− 1)−
2 · (22 − 2− 1) = 1464 static multicast groups.

Figure 10(a) indicates the average number of recircula-
tions per packet for port correlation p = 0.9. Here, PCSC
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outperforms RPC, and RPCO outperforms PCSC for any
number mmax > 0 of usable static multicast groups. While
PCSC computes only disjoint port clusters, RPCO may yield
overlapping port clusters. This can lead to fewer recirculations
when frequently observed port groups of packets are partly
overlapping. For port correlation p = 0.99, which is not
shown in the figure, only RPCO reduces the average number
of recirculations to almost zero for mmax ≥ 2048.

b) Asymmetric Generating Port Clusters: We consider
six overlapping, generating port clusters of size 12, 10, 8, 8, 6,
4: C1 = {1, .., 12}, C2 = {27, .., 32, 1, .., 4}, C3 = {9, .., 16},
C4 = {22, .., 29}, C5 = {18, .., 23}, and C6 = {16, .., 19}.
Configuring them as port clusters requires 5630 static multicast
groups.

Figure 10(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. The results are very
similar to those in Figure 10(a), only a few recirculations
more are required. That means, PCSC clearly outpeforms
RPC, and RPCO outperforms PCSC. For p = 0.99 and
mmax ≥ 8192, which is not shown here, RPCO even reduces
the average number of recirculations to almost zero. That is,
it is able to find optimal clusters for configuration even under
challenging conditions (overlapping, unequal-size, generating
port clusters).

C. Runtime

The presented clustering algorithms, especially RPCO, seem
rather complex at first glance. We measure the runtime of the
presented algorithms for the evaluation in Section VIII-B2b.
The experiments are executed on a 2022 Mac Studio with M1
Max and 32 GB of RAM. Figure 11 compiles the results.
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Figure 11: Average runtime in seconds for the clustering algo-
rithms RPC, PCSC, and RPCO while performing experiments
for Section VIII-B2b.

Random Port Clustering (RPC) has the shortest runtime with
at most 9 ms. It partitions all ports into equal-size clusters
and its runtime is therefore independent of port correlation p.
PCSC reveals the second lowest runtime with up to 86 ms. It
calls the Spectral Clustering subroutine at most np times where
np is the number of ports. PCSC’s runtime decreases with
increasing mmax because larger values of mmax lead to fewer
subroutine calls (return leaves the loop in Algorithm 1). RPCO
has the longest runtime with up to 527 ms. It also performs

np iteration steps but may call Spectral Clustering multiple
times within a single iteration step. Its runtime primarily
depends of the number of recursive calls. With decreasing
p, RPCO’s runtime decreases. Lower values of p lead to
more uncorrelated packets, which leads to a blurred graph
structure in the sense of more homogeneous edge weights. The
Spectral Clustering subroutine tends to return larger clusters
on a blurred graph. When not all clusters can be built, RPCO
recursively re-clusters them. This is more likely with a blurred
graph structure than with a sharp graph structure, i.e., a higher
correlation between packets.

Although RPCO has the longest runtime, RPCO can be
carried out sufficiently fast so that it can be well applied in
practice as configured port clusters may be adapted rather on
the time scale of minutes than seconds.

D. Scalability

In the following, we discuss the scalability properties of
the presented mechanisms, i.e., how they behave in larger
networks. First, the presented clustering algorithms leverage
only local information for optimization, i.e., they only require
sampled packets from a switch. Therefore, the optimization
is preferably done by a controller running on the switch
itself, which eliminates the need for additional control plane
traffic in the network. Second, the used graph embedding
(Section VII-C1) has a constant size per switch, i.e., it scales
linearly with the number of switch ports. Therefore, the
runtime is bounded by a small constant for a realistic number
of maximal ports of a switch. As a consequence, the presented
mechanisms are highly scalable and also suited for large
networks.

IX. EXPERIMENTAL PERFORMANCE EVALUATION

In this section we perform experiments in a hardware
testbed to demonstrate the practical feasibility of the pro-
posed concepts and to validate the theoretical results from
Section VIII. First, we explain the concept and the testbed
setup. Then, we describe the performed experiments.

A. Concept

Figure 12 illustrates the concept for the hardware testbed.

Sampling

BIER traffic

1 4

2

3

Learn MC groups
1 4

2
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Cluster egress ports  
into sets

Tofino Controller

Figure 12: Concept for the hardware evaluation.
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The Tofino [48], a P4-programmable switching ASIC, is
the core of the hardware testbed. We utilize a Tofino-based
Edgecore Wedge 100BF-32X switch [49] with 32 100 Gbit/s
ports that runs the adapted BIER implementation as described
in Section VI. BIER traffic is sampled at the Tofino with a rate
of 0.1%, i.e., every 1000th BIER packet. Sampled packets are
sent to the controller and used for the graph embedding as
described in Section VII. For 100 Gbit/s incoming multicast
traffic, this amounts to 100 Mbit/s which can be efficiently
handled by the controller. Alternatively, the number of sampled
packets can also be limited through a Meter9 instance. After
210 samples, the controller applies the optimization heuristic
and installs the static multicast groups of the configured port
clusters. We measure the average recirculation traffic on the
Tofino to assess the effectiveness of the presented optimization
heuristics. To that end, packets on the recirculation port are
cloned to a separate end host that measures the incoming
bandwidth which equals the rate of the recirculation traffic.

B. Traffic Generation

Generating UDP traffic at high rate according to a given
distribtion is a difficult task. We leverage Iperf [52] to generate
homogeneous UDP traffic on an end host. It is sent to the
Tofino which adapts it according to a specified distribution
of BIER headers. When the Tofino receives a UDP packet
generated by Iperf, it generates a random number between 0
and 2w − 1, where w is a parameter of the random extern on
Tofino that generates a random number between 0 and 2w −
1. The generated random number is then used as index to a
match-action table that maps the random number to a BIER
header (see Figure 13). Then, the header of the UDP packet is
substituted by the BIER header indicated in the table. Thereby,
a UDP packet stream with any distribution of BIER headers
can be generated.

Traffic

Match key Action data

Match-action-table (MAT)

1 BIER header 1
BIER header 2

...
2
...

BIER pktRandom
number

Tofino

Install BIER header

Controller

Figure 13: A match-action table is used to turn homogeneous
UDP traffic into BIER traffic with headers following a desired
distribution.

The match-action tables is populated a priori by a controller
which has sampled 2w BIER headers according to the traffic
model in Section VIII-A1 for a given set of generating port
clusters and a port correlation p. As a result, the Tofino turns
homogeneous UDP traffic into BIER traffic whose headers
follow a desired distribution.

9Intel Tofino supports 3-color metering as described in [51].

C. Experiment

We validate our hardware implementation by conducting
the same experiments as in Section VIII-B2b. Thus, the traffic
model consists of six overlapping generating port clusters of
size 12, 10, 8, 8, 6, and 4. We choose port correlation p =
0.9, and use w = 14 to install 2w sampled BIER headers
of that distribution in the match-action table on the Tofino.
We generate 5 Gbit/s UDP traffic via Iperf and send it to
the Tofino which turns it into BIER traffic with the desired
header distribution. We perform 5 runs per experiment and
report average values.

The controller samples the BIER traffic and computes opti-
mized port clusters for configuration on the Tofino. Thereby,
different port clustering methods and different numbers mmax

of usable static multicast groups are considered. Figure 14
shows the average recirculation traffic in Gbit/s.
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Figure 14: Average recirculation traffic for RPC, PCSC and
RPCO and different numbers mmax of usable static multicast
groups; the traffic model has six overlapping generating port
clusters and port correlation p = 0.9; the results are to be
compared with those in Figure 10(b).

If no static multicast group is available (mmax = 0),
efficient BIER forwarding is essentially disabled, and the
observed behaviour is the same as the one for simple BIER
forwarding. Therefore, packets with 4.5 ports on average
require 3.5 recirculations on average, which results in 3.5 · 5
Gbit/s = 17.5 Gbit/s recirculation traffic. This closely matches
the results of Section VIII-B2b. An increasing number mmax

of usable static multicast groups decreases the average number
of recirculations per packet and therefore the recirculation
traffic. Again, PCSC and RPCO clearly outperform RPC and
RPCO performs better than PCSC (for mmax > 0). In fact,
for mmax = 8192, RPCO reduces the recirculation traffic
by 71% compared to RPC and 52% compared to PCSC.
The experimental results in Figure 14 are in line with the
simulation results in Figure 10(b) as they show the same
proportions.

We performed this experiment with only 5 Gbit/s incoming
traffic due to the lack of a fast generator for contant bit rate
traffic. However, efficient BIER forwarding runs at line rate
at the Tofino10, i.e., it is capable of handling 32 × 100 Gbit/s
incoming traffic.

10Every P4 program that compiles for the Tofino runs at line rate.
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X. CONCLUSION

Bit Index Explicit Replication (BIER) forwards multicast
traffic without signalling and states within BIER domains.
Thereby, it greatly improves scalability for multicast in core
networks. However, a simple implementation of that concept
implies iterative packet transmission which requires additional
processing capatity [2] on a single switch. In this paper we pre-
sented efficient BIER forwarding with static multicast groups
such that a BIER packet can be sent to multiple next-hops in a
single pipeline iteration. To that end, we configure port clusters
on the switch and install all combinations of ports within each
port cluster as static multicast group. Simple match-action
operations choose the appropriate port clusters and therein the
right static multicast group so that packets are transmitted to
multiple next-hops in a single iteration step. As a result, a
BIER packet can be processed in high-speed with a single or at
most a few iteration steps. We demonstrated by simulation that
randomly selected disjoint equal-size configured port clusters
can decrease the required recirculations by 90% with only
1024 static multicast groups on a 32 port switch with 32
next-hops (Section VI-C) compared to simple iterative BIER
forwarding. Further, we presented port clustering algorithms
based on Spectral Clustering which learn the current BIER
traffic pattern and compute port clusters for configuration.
Recursive Port Clustering with Overlap (RPCO) reduces the
required recirculations by up to 96% compared to randomly
selected port clusters (Section VIII). We implemented efficient
BIER forwarding on the Edgecore Wedge 100BF-32X, a 32
100 Gbit/s port high-performance P4 switch, and validated the
simulation results in a hardware testbed.

The work comes with a few byproducts. We developed
efficient BIER forwarding for data plane programming with
the Tofino ASIC. Other switch architectures will also face the
challenge to determine outgoing ports of a BIER packet with
little effort and can benefit from the presented algorithms. We
proposed a traffic model for the outgoing ports of multicast
traffic on a switch for evaluation purposes. Future work may
validate that traffic model based on measured data. Finally,
we developed a simple method for data plane programming
to modify traffic such that its headers correspond to a specific
distribution. This may also be useful in other experimental
work.
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ABSTRACT In this work, we present P4TG, a P4-based traffic generator (TG) which runs on the
programmable Intel Tofino™ ASIC. In generation mode, P4TG is capable of generating traffic up to 1
Tb/s split across 10x 100 Gb/s ports. Thereby it measures rates directly in the data plane. Generated traffic
may be fed back from the output to the input ports, possibly through other equipment, to record packet loss,
packet reordering, and sampled inter-arrival times (IATs) and round trip times (RTTs). In analysis mode,
P4TG measures rates on the input ports, samples IATs, and forwards traffic through its output ports. We
compare P4TG’s performance with the one of the software TG TRex and the hardware TG EXFO. P4TG’s
code will be provided on GitHub.

INDEX TERMS P4, software-defined networks, traffic generation

LIST OF ABBREVIATIONS

ASIC application-specific integrated circuit
CBR constant bit-rate
CCDF complementary cumulative distribution function
FPGA field programmable gate array
IAT inter-arrival time
ILP integer linear program
L1 layer-1
L2 layer-2
L3 layer-3
MAT match+action table
NIC network interface card
P4 protocol-independent packet processors
RTT round trip time
RX reception
TG traffic generator
TNA Tofino Native Architecture
TX transmission

I. INTRODUCTION

A traffic generator (TG) is a tool to generate or measure
traffic in order to test network devices or applications.

A TG may produce packets to approximate the behavior of
real network traffic for specific use cases, e.g., some TGs

mimic application layer conversations, or generate raw layer-
2 (L2)/layer-3 (L3), i.e., Ethernet and/or IP, packets for stress-
testing a network. TGs allow to configure the frame size and
desired output rate and some can randomize certain packet
headers, e.g., the IP destination field. Further, they support a
wide range of network protocols, e.g., IP, MPLS, Ethernet,
and some offer additional functionality such as means to
debug and verify optical connectivity, e.g., transceiver power
and bias. TGs also perform various measuring tasks. They
typically measure L1 and L2 transmission (TX) and reception
(RX) rates for generated traffic sent through the output port
and for traffic received on the input port. For the latter, also
round trip times (RTTs)1, packet loss, out-of-order packets,
as well as frame size and type are monitored.

TGs may be purely software-based or with hardware ac-
celeration. Software-based TGs are flexible, provide many
different features, and are customizable to individual needs.
However, as they mostly run on general purpose CPUs, they
only support low data rates and are prone to significant
fluctuations in traffic generation [1]. In contrast, TGs with
hardware acceleration support higher data rates and generate
traffic more precisely. Unfortunately, they are not customiz-
able and very expensive, up to tens of thousands of dollars

1In this context, the RTT is the time between the transmission of a packet
on the out-port and its reception on the in-port.
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for 100 Gb/s support. Therefore, they are not affordable for
many research groups or smaller companies.

With the increasing prevalence of programmable switches,
in particular, the Intel Tofino™ [2], it is possible to develop
tools with extensive hardware support at an affordable price.
In this paper, we present P4TG, a P4-based TG for Ether-
net/IP networks using Intel Tofino™. P4TG measures L1
and L2 TX and RX rates, packet loss, out-of-order pack-
ets, round trip time (RTT), inter-arrival times (IATs), frame
types, and frame sizes. Beside constant bit-rate (CBR) traffic
generation, it also supports generation of random traffic.
P4TG is capable of generating simultaneously up to 1 Tb/s
split across 10x 100 Gb/s ports. This paper is structured
as follows. Section II reviews related work and compares
the presented TGs with P4TG. Then, we introduce P4 in
Section III. Afterwards, we give an overview of P4TG in
Section IV and explain its implementation in Section V. We
evaluate P4TG in Section VI and discuss P4TG’s limitations
and possible future work in Section VII. Finally, we conclude
the paper in Section VIII.

II. RELATED WORK
In this section, we first review related work on software-
based traffic generation and hardware-based traffic genera-
tion. Then, we present work that compares software-based
and hardware-based traffic generation and compare P4TG
with the presented traffic generators.

A. SOFTWARE-BASED TRAFFIC GENERATION
MoonGen [3] is a highspeed packet generator based on
DPDK. It is able to saturate a 10 Gb/s link with a single CPU
core and can scale up to 120 Gb/s with multiple CPU cores.
It further provides latency measurements including hardware
timestamps with supported hardware NICs.

Pktgen-DPDK [4] and TRex [5] are software-based TGs
that are also based on DPDK. Pktgen-DPDK is able to
saturate a 10 Gb/s link with 64 byte frames per CPU core
while TRex states to scale up to 200 Gb/s with 100 Mpps
(mega-packets per second). In Section VI we compare P4TG
with TRex.

Hock et al. [6] investigate how end-systems with general
purpose CPUs need to be tuned to support TCP traffic
generation at 100 Gb/s. They find that the placement of
the generating application to a corresponding CPU socket
in a multi-socket system heavily influences the achievable
throughput. This may be the case when the network interface
card (NIC) is connected to a different socket than the applica-
tion. Their results may be applied to existing software-based
traffic generators to improve performance.

B. HARDWARE-BASED TRAFFIC GENERATION
Yuan et al. [7] present an FGPA-based implementation for
synthetic Ethernet traffic generation that can saturate a 10
Gb/s link. Their implementation is based on a COMBO-LXT
FGPA board with two 10 Gb/s interfaces.

Plakalovic et al. [8] propose an affordable and extensible
high-speed FGPA-based Ethernet TG that is able to fully
utilize a 40 Gb/s link with 64 byte Ethernet frames. They
developed and tested their solution on a DE10-Pro FGPA
board which costs around 10k USD2.

HyperTester [9] [10] combines software-based traffic gen-
eration and hardware-based traffic replication. Generated
traffic from a CPU is replicated by the Intel Tofino™ to
support higher data rates. Further, they propose a network
testing API (NTAPI) that allows to express triggers for packet
manipulation and statistic collection. Based on these expres-
sions, template packets and a corresponding P4 program are
generated. Although NTAPI may be used to express complex
replication and measurement tasks, it is unclear whether com-
plex descriptions can be supported on resource-constrained
hardware targets. In contrast to HyperTester, P4TG does
not rely on external traffic generation and further provides
precise built-in measurement capabilities that can also be
used to analyze external traffic. HyperTester’s source code
for the Intel Tofino™ is not publicly available.

Kundel et al. [11] [12] present P4STA, a framework for
high performance packet timestamping and load generation
for programmable network devices. They present an architec-
ture where multiple load generation sources are aggregated
and equipped with a precise hardware timestamp and sent
to the device under test. When the device under test sends
the packets back, they are equipped with a second timestamp
and duplicated to an external host. There, the hardware
timestamps are extracted and may be used to calculate RTTs
and other metrics. However, it is unlikely that high data
rates can be supported as the external host relies on software
processing. P4STA supports limited integrated measurement
capabilities, i.e., they only measure average delay and packet
loss. Like HyperTester [9], P4STA relies on external traffic
generation.

Commercial hardware-based traffic generators are sold by
companies such as Spirent, Keysight Technologies, Exfo,
Viavi, and others. While they offer high data rates with up
to 400 Gb/s per port, they are very expensive and therefore
not suited for academic research.

C. COMPARISON
Adeleke et al. [13] provide a survey of traffic generators used
over the last 13 years. They examine the provided features
and organize them into different categories. Their results
show that the ten most used traffic generators in the literature
are all software-based.

Botta et al. [14] and Emmerich et al. [1] evaluate a wide
range of software-based TGs. While the investigated soft-
ware TGs have many features, such as generation of arbitrary
traffic patterns, they have precision problems for packet rates
above 1 Mpps. Software-based TGs with hardware accelera-
tion, e.g., MoonGen [3] or Pktgen-DPDK [4], provide higher

2As of 2022-08.
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TABLE 1. Comparison of existing TGs with P4TG. ‡: With supported network cards.

Software-based TGs Hardware-based TGs

Feature MoonGen Pktgen-
DPDK

TRex P4STA HyperTester EXFO
FTB-1 Pro

P4TG

Internal traffic generation X X X X X
Hardware timestamps X‡ X‡ X‡ X X X X
Nanosecond accuracy X X X X
100 Gb/s on several ports X X X
Integrated measurement capabilities X X X X X
Arbitrary traffic patterns X X X

data rates but still may significantly deviate from configured
traffic patterns at high traffic loads.

In the following, we compare P4TG with several other TGs
based on the following properties.

• Internal traffic generation: The capability to generate
traffic without additional resources/servers.

• Hardware timestamps: Support for hardware times-
tamps with high accuracy.

• Nanosecond accuracy: Time-related events, e.g.,
timestamps, traffic generation, etc., are accurate up to
a few nanoseconds. For instance, this ensures that CBR
traffic has only little jitter.

• 100 Gb/s on several ports: The capability to gener-
ate/replicate/aggregate 100 Gb/s traffic on several ports.

• Integrated measurement capabilities: The capability
to perform measurement tasks, such as rate measure-
ment, packet loss detection, out-of-order detection etc.,
without additional resources/servers.

• Arbitrary traffic patterns: The capability to generate
arbitrary traffic patterns. It is assumed that not ev-
ery traffic pattern can be supported by HyperTester’s
NTAPI.

Table 1 shows the comparison. P4STA and HyperTester
rely on external traffic generation for testing purposes while
P4TG and EXFO as well as all software-based TGs gener-
ate traffic without external help. All presented TGs support
hardware timestamps although the software-based TGs re-
quire appropriate network interface cards (NICs). Only the
hardware-based TGs, such as P4TG, P4STA, HyperTester,
and EXFO FTB-1 Pro, provide nanosecond accuracy. Fur-
ther, P4TG, P4STA, and HyperTester support generation of
100 Gb/s on several ports although P4STA and HyperTester
rely on external traffic generation. EXFO FTB-1 Pro supports
only traffic generation on a single 100 Gb/s port. Traffic
generation capabilities of software-based TGs are limited
by the available number of CPU cores, i.e., most are able
to generate around 10 Gb/s per CPU core. Assuming a
reasonable number of CPU cores in the order of 10 suffices
to reach 100 Gb/s on a single port, but not on multiple ports.
All considered TGs except P4STA and HyperTester provide
integrated measurement capabilities. Finally, only software-
based TGs are able to generate arbitrary traffic patterns.

III. INTRODUCTION TO P4
In this section we review the programming language P4.
First, we give an overview of P4. Then, we explain P4 targets
and the P4 pipeline. Finally, we describe match+action tables
(MATs).

A. OVERVIEW
Protocol-independent packet processors (P4) [15] is a high-
level programming language that describes the data plane of
a P4-compatible device, so-called targets. A P4 program is
mapped through a target-specific compiler to the pipeline
of the device. Core components of P4 programs are pro-
grammable (de)parsers, match+action tables (MATs), and
target-specific externs which can be used to program com-
plex packet processing behavior. Available externs and P4
components are specified in a so-called P4 architecture that
isolates the programmer from the low-level functionality of
a device. Most P4 architectures include core P4 functionality
such as multicast groups, packet cloning, and recirculation.
Others may offer more specialized externs, e.g., complex
math functions. Processing behavior can be changed during
runtime by a control plane, e.g., by modifying rules of the
MATs. P4 is applied in a wide range of use cases [16].

B. P4 TARGETS
A P4 target is a software or hardware platform that follows
a certain P4 architecture, e.g., the software target BMv2
follows the v1model architecture whereas the Intel Tofino™
follows the Tofino Native Architecture (TNA) [17]. Soft-
ware targets are implemented in high-level programming
languages, e.g., C++. Therefore, their throughput is limited
as they run on non-specialized hardware and packet process-
ing is entirely done in software. Hardware targets perform
packet processing in hardware and achieve high throughput.
However, developing a P4 program for hardware targets
is more challenging, as they typically have restrictions on
the number of operations that can be applied per packet
to ensure line rate processing. There are multiple types of
P4 hardware targets, e.g., field programmable gate arrays
(FPGAs), network interface cards (NICs), and application-
specific integrated circuits (ASICs). Intel Tofino™ [2] is the
only available3 P4 programmable switching ASIC that can be
programmed by end users.

3As of: 2022-11.
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C. P4 PIPELINE
Each architecture defines its own so-called P4 pipeline. Fig-
ure 1 shows a simplified visualization of the P4 pipeline of
the TNA [17] that is implemented by the Intel Tofino™. Each
physical port can transmit and receive packets. Accordingly,
Intel Tofino™’s P4 pipeline is divided into two different
sections, ingress and egress. Incoming packets received by
an input port are first processed by a programmable ingress
parser. Thereby, packet headers are extracted and stored for
later use within the ingress control, e.g., for matching in
MATs. Afterwards, the packet is processed by the ingress
control. The packet may be matched multiple times against
user-defined MATs and header fields may be manipulated.
During the ingress processing, the destination of the packet
must be chosen, e.g., an egress port must be determined. At
the end of the ingress section of the pipeline, the packet is
serialized through the so-called ingress deparser that emits
the headers according to the user defined ingress deparser.
Afterwards, the packet is processed by the traffic manager.
Thereby, the packet may be replicated depending on the spec-
ified destination, e.g., in the case of multicast. The packet is
then enqueued for the selected egress port and later dequeued
according to the underlying scheduling strategy of the Intel
Tofino™ and sent to the egress parser. Egress parser, egress
control and egress deparser perform similar operations as
their ingress counterparts. Finally, the packet is transmitted
through the specified output port or may be placed again
in the ingress section of the P4 pipeline when the port is
configured as recirculation port4.

D. MATCH+ACTION TABLES (MATS)
A MAT performs packet-dependent actions by matching
header fields and/or metadata against the entries of the MAT.
Figure 2 illustrates the structure of a MAT.

When a packet is matched against a MAT, a so-called
lookup key is formed. The lookup key consists of one or more
header and/or metadata fields of the packet. Each component
of the lookup key is compared to the stored key in the MAT
according to a pre-defined match type. Three standard match
types are defined in the P4 core library: exact, ternary, and
longest prefix matching (lpm). Additional match types may
be defined within specific P4 architectures. When a table
entry matches the lookup key, the stored action is invoked.
MATs are typically filled by a control plane.

IV. P4TG OVERVIEW
P4TG is a 1 Tb/s hardware-based TG for Ethernet/IP traffic5

and is based on P4 and the Intel Tofino™ ASIC. P4TG
supports two different modes, generation and analysis mode.
In generation mode, P4TG generates either up to 7 different
CBR streams or a single random traffic stream. Each stream
can be configured with a traffic rate and frame size, and be

4A recirculation port is a port in loopback mode where packets transmitted
through this port are immediately placed in the ingress section of the same
port.

5Split across 10x 100 Gb/s ports.

assigned to up to 10 egress ports (output ports). Ethernet
source and destination, IP source and destination, and IP ToS
value can be set on a per port basis. Further, IP source and
destination addresses can be randomized through a bitmask.
P4TG supports 8 different L2 frame sizes by default, i.e., 64,
128, 256, 512, 1024, 1280 and 1518 bytes as recommended
in RFC 2544 [18]. Other frame sizes can be added. Further,
P4TG supports Jumbo frames with 9000 bytes.

In generation mode, P4TG measures for generated traffic
per stream the TX and RX rates and the overall L1 and L2
TX and RX rate on a per port basis. Further, TX and RX
packet rates are derived. The data are collected directly in the
data plane with hardware timestamps for precise accuracy.
Inter-arrival times (IATs) are sampled so that only a subset
is evaluated by the control plane. For traffic sent on an
output port and received on an input port, lost frames, out-of-
order packets, frame types (unicast, multicast, broadcast) and
frame sizes are also directly monitored on a per packet basis
in the data plane leading to the highest possible precision.
RTTs and IATs are sampled.

In analysis mode, P4TG acts as a transparent forwarder
and similarly analyses external traffic received by an input
port and forwards it to a specified output port. It measures
L1 and L2 overall traffic rates, frame sizes, frame types and
samples IATs. P4TG is configured with a web-based GUI that
communicates through a REST-API with the control plane.
Likewise statistics are inspected. Data plane, control plane,
and the GUI are published at Github6.

P4TG requires per output-input port pair two additional
ports in loopback mode (see Section V for details). In our
prototype, we utilize an Edgecore Wedge 100BF-32X [19]
switch based on Intel Tofino™ 1 with 32 100 Gb/s ports.
Therefore, our prototype is limited to 1 Tb/s traffic gener-
ation, i.e., 10 output-input port pairs7 for traffic generation
(10x 100 Gb/s = 1 Tb/s) and 20 additional ports in loopback
mode. On larger Intel Tofino™ platforms, e.g., with 64 100
Gb/s ports, higher cumulated traffic rates may be achievable.

V. IMPLEMENTATION OF P4TG
We first introduce P4TG’s monitoring concept to collect
statistics and its traffic generation approach. We then explain
the packet path along the ports in P4TG and its P4 processing
pipeline. Finally, we summarize the statistics collection.

A. MONITORING CONCEPT
P4TG uses three different concepts to collect statistical data,
DirectCounter-based, register-based, and sample-based mon-
itoring. The stored statistics are retrieved through monitoring
packets that are periodically generated (see Section V-B4).

1) DirectCounter-Based Monitoring
A MAT utilizes a DirectCounter extern to count how often a
certain rule has matched. When matching on a certain frame

6https://github.com/uni-tue-kn/P4TG
7Each of these 10 ports is used to transmit and receive traffic.
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property, a DirectCounter records the number of packets with
that property. P4TG utilizes this method to report frame types
or frame sizes. The control plane polls these counters every
500 ms.

2) Register-Based Monitoring
Other metrics have aggregate semantics (e.g., overall sent
and received bytes) or they are based on more context than
the packet header (e.g., out-of-order count, lost count) so that
DirectCounters are not applicable. P4TG collects such met-
rics by incrementing register fields. To report their content,
P4TG generates a monitoring packet every 500 ms. When
the data plane receives a monitoring packet, register fields
and timestamp are copied into that packet. As a single packet
cycle does not suffice to read all counters, monitoring packets
are processed iteratively using recirculation before being sent
to the control plane. Unlike DirectCounter-based monitoring,
register-based monitoring maps measured results to exact
intervals based on timestamps.

3) Sample-Based Monitoring
For some metrics like RTTs and IATs, average values do
not suffice. Sample values are needed to compute standard
deviation, minimum, maximum, and the distribution. How-
ever, reporting them per-packet to the control plane is too
expensive. To reduce monitoring load, P4TG reports them to
the control plane with a limited rate. This is done through a
Meter extern on the Tofino which applies a three-color me-
tering [20]. Thereby, the Meter extern ensures that samples
are only sent to the control plane with a configured rate to
prevent overloading.

B. TRAFFIC GENERATION
We first describe the built-in traffic generation capability of
the Intel Tofino™ASIC [2]. Then, we explain various traffic
generation methods of P4TG.

1) Tofino’s Built-In Traffic Generation Capability
Intel Tofino™ comes with several pipes and each of them
can be run with a separate P4 program. Every port is as-
signed to one of these pipes. Every pipe has an internal
traffic generation port PTG. Tofino allows to define up to 8
independent packet streams [17] for traffic generation and to
explicitly activate them for for each pipe individually. Packet
generation can be triggered through different events, i.e., a
one-time timer, periodic timer, port-down event, or based on
packet recirculation. P4TG leverages the periodic timer event
to create traffic streams. Each stream is configured with the
number of packets to be created in each period (burst), the
packets’ byte representation, a timeout in nanoseconds until
the next packet is generated, and other means. PTG generates
packets with an additional 6 byte packet generation header
that identifies the stream. Up to 100 Gb/s can be generated
per pipe.

Although Tofino provides a powerful platform for data
plane programming, care must be taken when implementing
a program to not exceed available resources per packet cycle.
Especially the use of registers and arithmetic operations are
limited to facilitate line rate processing. The program code
must fit into the available number of stages of the packet
processing pipeline. This makes the implementation of P4TG
challenging.

2) Traffic Generation with P4TG
The P4TG prototype is implemented on the Edgecore Wedge
100BF-32X switch [19] with 32 100 Gb/s ports based on Intel
Tofino™ 1 which supports two pipes. We leverage both pipes
for traffic generation. Packets are generated with an Ethernet,
IPv4 and UDP header, as well as with a special 11 byte P4TG
header as shown in Figure 3.

The P4TG header consists of a 32 bit sequence number
for packet identification, a 48 bit transmission timestamp for
RTT calculation, and an 8 bit ID for stream identification.
All fields of the P4TG header are initialized within the P4
pipeline and their use is explained later. The overall header
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FIGURE 3. Packets are generated with an Ethernet, IPv4, UDP, and P4TG
header.

size of a generated packet is 57 byte including 18 byte for
Ethernet, 20 byte for IPv4, 8 byte for UDP, and 11 byte for
P4TG. The remaining bytes (frame size - 57 byte) are padded
with random bits. The minimum frame size is 64 byte. The
L1 packet size includes a preamble and an inter-frame gap
(additional 20 byte).

Generated packets are replicated to the configured egress
ports using an internal multicast group. This allows the
generation of up to 1 Tb/s, i.e., 100 Gb/s can be generated
on up to 10 outgoing ports. Packet headers are rewritten on
a per port basis so that different flows may be sent through
each outgoing port.

In the following sections, we will describe P4TG’s func-
tionality for traffic generation on a single outgoing port.
When generated packets are replicated to multiple outgoing
ports, each outgoing port performs the described operations.

3) CBR Traffic Generation
P4TG provides two different modes for generation of CBR
traffic: precision mode and rate mode. By default, P4TG is
configured to use the rate mode.

a: Precision Mode
The target L1 traffic rate RL1

target is given in Gb/s and the L2
frame size fL2

size in byte. The periodic timer t is configured
with nanoseconds according to Equation 1.

t =

[
(fL2

size + 20) · 8 · 109
RL1

target

]
(1)

The resulting minimum IAT is rounded to entire nanosec-
onds as only integer values can be configured as timer values.
After that time, a single L2 frame with fL2

size byte is sent.
The advantage of the precision mode is smooth traffic at

small time scales. Its disadvantage is that only certain traffic
rates can be configured for given frame sizes due to the
integer-based timer. For instance, 50 Gb/s L2 Ethernet traffic
with 64 byte frames requires packet generation every 10.24
ns. As the periodic timer is configured as integer, packets are
generated every 10 ns, which results in 51.2 Gb/s. Moreover,
when very large data rates and very small frame sizes are
configured, the expected data rate is not fully achieved (see
Section VI-A).

b: Rate Mode
In rate mode, n packets are sent every t nanoseconds, e.g.,
n = 25 packets are sent every t = 256 nanoseconds to
better achieve 50 Gb/s on L1 with 64 byte L2 frames. The
minimum integer timeout t in nanoseconds and the burst size
n for this mode can be derived from the following integer
linear program (ILP) shown in Equation 2.

minimize
∣∣RL1

target · t− (n · (fL2
size + 20) · 8)

∣∣
subject to t ∈ N+ and n ∈ N+ (2)

The solution of this ILP yields the desired IAT t and burst
size n. An additional upper bound for n can limit the burst
size of the generated traffic but possibly reduces the rate
accuracy 8. As the traffic generation port may not be able to
fully achieve the configured rate, P4TG generates RL1

target/2
on both pipes when data rates larger than 75 Gb/s are desired.

4) Generation of Monitoring Packets
Monitoring packets are generated by a CBR stream with a
monitoring header as shown in Figure 4.

Transmission Timestamp Byte Counter L1 Byte Counter L2

Packet Loss App Counter L2 Out-of-Order Port Index

48 bit 64 bit 64 bit

64 bit 48 bit 40 bit 9 bit 15 bit

FIGURE 4. Monitoring packets are generated with a monitoring header that is
used for statistic collection.

The monitoring header consist of a 48 bit timestamp, a
64 bit byte counter for L1 traffic, a 64 bit byte counter for
L2 traffic, a 64 bit counter for lost packets, a 48 bit byte
counter for L2 traffic of a specific stream, a 40 bit counter
for out-of-order packets, a 9 bit port identification number,
and a 15 bit index field that is used to access the stored L2
counter for the requested stream. During statistic collection
(see Section V-E) the fields of the monitoring packet are
filled with the respective stored statistics for the given port.
The generation of monitoring packets requires one out of 8
configurable streams. Therefore, only 7 other streams can be
simultaneously configured for traffic generation.

5) Random Traffic Generation
P4TG also supports generation of random traffic. First, traffic
is generated at maximum rate, which results in a minimum
IAT tmin. tmin depends on the desired frame size. Then,
frames are forwarded only with probability p. It is computed
as shown in Equation 3.

p = RL1
target/

(fL2
size + 20)

tmin
(3)

8Let a be the desired relative rate accuracy and let i = fL2
size+20 byte
RL1

target
be

the desired IAT in ns (may be a fractional number). Then, d =
i−⌊i⌋

i
is the

relative deviation from the target rate. Using d
a

as upper bound on n yields
the desired accuracy a. In our study we utilize a = 0.001.
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This leads to a geometric distribution of the IATs which
is the discrete approximation of the exponential distribution.
Thus, random traffic approximates Poisson arrivals. As this
generation method requires 100 Gb/s, no additional CBR
stream can be produced except for monitoring packets.

C. PACKET PATH
When a packet is received, it is placed in the ingress section
of the corresponding port. The packet’s egress port is deter-
mined in this ingress section. Based on this port, the packet is
internally forwarded to the egress section of the sending port.

P4TG has up to 10 output ports P i
out to send generated

traffic and up to 10 input ports P j
in to receive traffic to be

measured. In the following we will refer to them as Pout

and Pin without superscript for the sake of readability. In
addition, per output-input port combination it utilizes two
additional ports in loopback mode for traffic recirculation:
PR
out and PR

in. They are needed for iterative processing of
monitoring packets and for statistic collection of generated or
measured traffic9. PTG is the internal traffic generation port.

TX Path 

N
et
w
or
k

Sw
itc
h

Recirculation

Pout

Recirculation  
port Regular port

Pin 
PR PR

RX Path 

Packet Path

PTG

Pout Pin

FIGURE 5. Packet path with P4TG.

Figure 5 illustrates the packet path for a single output-input
port pair through the mentioned ports. Generated packets
follow the TX path. A packet is generated by PTG and
internally forwarded from PTG’s ingress section to (possibly
multiple) PR

out’s egress section. The loopback forwards the
packet to the ingress section of the same port. From there,
it is internally forwarded to the egress section of P4TG’s
corresponding output port Pout. Generated packets with a
P4TG header may be forwarded via external equipment to
Pin to check RTTs, IATs, out-of-order packets and packet
loss. After reception by Pin they follow the RX path. When
a packet is received by the ingress of Pin, it is internally
forwarded to the egress section of PR

in and afterwards via
loopback to its ingress section.

In analysis mode, packets are received via PR
in and for-

warded to PR
out to meter rates and sample IATs. This may be

done on up to 10 different PR
in-PR

out pairs.
Monitoring packets are generated by PTG, forwarded to

(possibly multiple) PR
out, repeatedly filled with counter infor-

mation and recirculated to PR
out

10, then forwarded to PR
in,

9The public TNA [17] states that some packet characteristics, such as
the packet length, can only be accessed in the egress section. However, for
statistic collection purposes, P4TG needs to access the packet length without
actually sending the packet through an egress port.

10Recirculation is needed as a single pipepline iteration does not suffice
to collect all register values.

repeatedly filled with counter information and recirculated.
After each recirculation, collected statistics of the monitoring
packets are sent to the control plane11.

D. P4TG PIPELINE

P4TG is implemented in both the ingress and egress section
of Tofino’s pipeline. For ease of explanation, we first consider
the egress section and then the ingress section.

1) Egress Section

Figure 6 illustrates the egress section of P4TG.

Monitor frame
size

Monitor L1/L2
size

Collect
statistics

No

Yes

Set TX
time

Moni- 
toring pkt?

Add sequence
number

Rewrite
header

FIGURE 6. Behavior of P4TG’s egress section.

PR
out and PR

in process monitoring packets and take care
of statistics collection. If the packet is a monitoring packet,
counter information is collected and control information is
set in the metadata. After recirculation, a digest is created
to report the collected information to the control plane. For
other packets, the L2 frame sizes are monitored through a Di-
rectCounter, and the L1 and L2 frame sizes are accumulated
in registers. Finally, the TX timestamp and sequence number
are set in the P4TG header before the packet is transmitted.
Ethernet and IPv4 header are also rewritten according to the
applied configuration which may include randomization.

The egress section is the same for PTG, Pin, and Pout

although the functionality is not needed. However, it does not
interfere and leads to a simpler program. Moreover, resetting
the TX timestamp in Pout avoids recirculation delay for RTT
measurement.

2) Ingress Section

Figure 7 illustrates the ingress section of P4TG. It imple-
ments the behavior of PTG, Pin, PR

out and PR
in.

PR

PR

Calculate RTT Lost packets Out-of-order packets

Collect statistics

No

Yes

Monitor frame type

Create digest

ForwardMonitor IAT

Moni- 
toring pkt?

Forward
in

out

PTG Forward

Pin Forward

Forward

FIGURE 7. Port-specific behavior of P4TG’s ingress section.

11Monitoring packets require at most 25 Kb/s on L1.
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The ingress sections of PTG just sets the PR
out as outgoing

port12, and the ingress section of Pin just sets the PR
in as

outgoing port. The ingress section of PR
out calculates its IAT

and possibly reports it to the control plane, and it monitors
the frame type using a DirectCounter. Then the packet is
forwarded to the egress section using a table which is set by
the control plane depending on generation or analysis mode.
The ingress section of PR

in processes monitoring packets,
calculates statistics for received packets, and forwards these
packets accordingly. For other packets, the RTT is calculated,
out-of-order is checked, and the number of lost packets
are computed. Those metrics are accumulated in registers.
Finally, the packet is forwarded in analysis mode to PR

out.

E. STATISTICS COLLECTION
We explain how individual statistics are collected.

1) Frame Types and Frame Sizes
P4TG monitors frame types, i.e., unicast, multicast, broad-
cast, and frame sizes directly in the data plane using
DirectCounter-based monitoring. This is done for generated
and received packets by PR

out and PR
in, respectively. P4TG

maintans a match-action table frame_type in the ingress sec-
tion that matches on the IPv4 destination address using an
lpm match type and the ingress port using an exact match.
The frame_type table has entries that match on the multicast
address space (224/4), the broadcast address space (depend-
ing on the configuration), and a default match entry (for
general unicast packets). Additionally, P4TG maintains a P4
table frame_size in the egress section that matches on the
packet size using a range match and on the egress port using
an exact match. The frame_size table has entries for ranges
(0, 63), (64, 64), (65, 127), (128, 255), (256, 511), (512,
1023), (1024, 1518), (1518, 10000).

2) TX and RX Packet and Data Rates
Sent and received bytes on L1 and 2 are accumulated in
registers in the egress section of PR

out and PR
in. Two 64 bit

registers are leveraged to store a running sum of L1 and
L2 packet sizes. As the TNA [17] can only store 32 bit per
register entry, we build a 64 bit register by using three 32 bit
registers, one register to store the lower 32 bit, one register to
store the higher 32 bit, and a 32 bit register to calculate and
store the carry bit when an overflow occurs in the lower 32
bit. For a packet on egress port P with Ethernet frame size
fL2
size, the running sum is calculated as shown in Equation 4

and Equation 5.

RL1
meter[P ] = RL1

meter[P ] + fL2
size + 20 (4)

RL2
meter[P ] = RL2

meter[P ] + fL2
size (5)

Thus, RL∗
meter[P

R
out] accumulates transmitted data and

RL∗
meter[P

R
in] accumulates received data13.

12The packet may be replicated to multiple PR
out using an appropriate

multicast group.
13The port number PR

out and PR
in are used as index to the register.

The registers are regularly read by monitoring packets
together with a timestamp and delivered to the control plane.
The difference in bytes of consecutive monitoring packets
divided by the difference of their timestamps yields the data
transmission/reception rate in Gb/s. The number of packets
within an interval is the difference of L1 and L2 data volume
for that interval divided by the L1 header size (20 byte).
This allows the computation of the packet rate in Mpps for
that interval. To cope with unstable rates, the interval-based
rates are smoothed with a configurable memory (see TDRM-
DTWMA-UEMA [21]).

3) Lost and Out-of-Order Packets
When a packet enters the egress section of PR

out, a sequence
number is set in the P4TG header. The sequence number is
incremented by 1 and stored in a 32 bit register. Lost packets
and out-of-order packets are computed and stored by PR

in. To
that end, the ingress section of PR

in stores the next expected
sequence number in a 32 bit register14. When the ingress
section receives a packet with a higher sequence number
than expected, the difference in sequence number is taken
as number of lost packets. This number is accumulated in a
64 bit register15. When the ingress section receives a packet
with a lower sequence number than expected, it is assumed
that this packet is out-of-order and a corresponding 64 bit
register is increased by one.

With this approach, each out-of-order packet is also
counted as lost packet (however, not every lost packet is
counted as out-of-order). Therefore, the control plane reports
the difference16 between lost and out-of-order packets as lost
packets.

4) Round Trip Time
When a packet is transmitted through Pout, a 48 bit times-
tamp tTX is set in the P4TG header. When the packet is
received, its RTT is computed in the ingress section of PR

in

by the elapsed time since tTX
17.

That value is reported to the control plane according to its
configured meter instance which provides a sampled statistic
(see Section V-A3).

5) Inter-Arrival Times (IATs)
IATs are measured in the ingress section of PR

out for gen-
erated traffic and in the ingress section of PR

in for measured
traffic. A register stores the last packet arrival instant18. When
a packet is received, the time since the last packet arrival is
taken as IAT and the current time is stored as last packet

14Wrap-around of sequence numbers is appropriately handled.
15This 64 bit register is again composed of three 32 bit registers.
16The control plane reports max(0, lost − out-of-order) as lost packets.
17Wrap-around problems with timestamps are avoided by ignoring RTTs

larger than a day.
18The last packet arrival is stored in a 48 bit register. It is composed of

a 32 bit (lower bits) and 16 bit (higher bits) register. 48 bit are sufficient to
avoid wrap-around for 4 days. In case of wrap-around, IATs are larger than
one day. The control plane ignores such IATs.
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arrival. This IAT is sent according to its meter instance to
the control plane (see Section V-A3).

VI. EVALUATION OF P4TG
In this section, we evaluate the accuracy of P4TG and com-
pare it to the one of other TGs. We utilize P4TG on the
Intel Tofino™ 1 platform. We run the software TG TRex
[5] on a server with 16 GB RAM and 10 Intel(R) Xeon(R)
Gold 6134 CPU cores with CPU pinning and a 100 Gb/s
Mellanox Connectx-5 NIC. We further utilize the hardware
TG EXFO FTB-1 Pro [22]. In the following, we evaluate
traffic generation on a single port of P4TG. However, due to
the multicast replication, P4TG is capable of generating up
to 1 Tb/s, i.e., 100 Gb/s on up to 10 ports.

A. RATE ACCURACY OF GENERATED CBR TRAFFIC
We configure the TGs to generate CBR traffic at differ-
ent rates RL1

target and with different frame sizes fL2
size. We

measure the generated rates with P4TG. Table 2 indicates
for different parameter combinations to what percentage the
measured rate achieves the target rate.

TABLE 2. Measured L1 rate relative to target rate RL1
target.

Gen.
method

fL2
size

(byte)
RL1

target (Gb/s)

0.001 10 50 75 100

P4TG PM
(1 Pipe)

64 100.00 98.80 91.10 99.37 81.98
256 100.00 99.80 96.18 97.06 92.89

P4TG PM
(2 Pipe)

64 100.00 98.8 93.72 99.37 91.09
256 100.00 99.80 97.96 97.06 94.52

P4TG RM
(1 Pipe)

64 100.00 100.00 99.38 99.37 81.98
256 100.00 99.80 99.76 99.77 99.77

P4TG RM
(2 Pipe)

64 100.00 100.00 99.38 99.37 99.98
256 100.00 99.80 99.92 99.77 99.92

TRex 64 99.99 100.00 100.00 91.30 68.48
256 100.00 99.96 99.94 83.66 61.92

EXFO 64 100.00 100.00 100.00 100.00 100.00
256 100.00 100.00 100.00 100.00 100.00

When P4TG is configured with precision mode (PM) and
a single pipe for traffic generation, the achieved relative rate
decreases with increasing target rate. Only 81.98 Gb/s are
achieved instead of 100 Gb/s. There are 3 reasons. First,
frames are generated with a 6 byte internal header which
is removed before sending the packet. This limits the traffic
rate from a single pipe to 93.3% when a rate close to 100
Gb/s is desired. Second, as only an integral IAT can be
configured, PM utilizes an IAT of 7 ns instead of 6.72 ns.
This reduces the rate to 96% and effects that relative rates
are not strictly decreasing. Third, when P4TG is under high
load, some packets may be generated late. Due to constant
IATs P4TG cannot compensate for that delay, which leads to
a reduced traffic rate. Larger packets (256 byte) reduce the
first and third problem (92.89 Gb/s), two pipes instead of one
reduce the third problem (91.09 Gb/s).

P4TG with rate mode (RM) solves the second problem if
packets are at least 256 bytes large. P4TG with RM and two
pipes meets the target rate even more precisely, in particular
100 Gb/s can be generated with 64 byte frames. Thus, we
recommend to use P4TG in RM with 2 pipes unless very
constant IATs are needed.

TRex has major problems to achieve the target rates at
lower speeds and its output seems to be limited below 70
Gb/s. This problem gets worse with larger frames (256 byte).

The hardware TG EXFO generates the target rate very
accurately for all considered frame sizes and traffic rates.

B. ACCURACY OF MEASURED IATs
P4TG analyzes statistical properties of IATs based on a sam-
pled subset. We have no other tool to measure the distribution
of IATs. However, we have mean rates measured with EXFO
and P4TG from which we derive the exact mean of IATs.
We observe that the mean of sampled IATs is larger than
the exact one (6.89 ns vs. 6.76 ns) when the traffic load in
terms of packets is very high (64 byte frames and 100 Gb/s).
Under all other conditions (frames sizes 256 byte or rates up
to 75 Gb/s) the means are identical. Therefore, we trust in
the sampled set of IATs so that we use them to derive other
statistical measures like standard deviation and distribution.

C. IAT ANALYSIS OF GENERATED TRAFFIC
We first consider CBR traffic and then random traffic.

1) CBR Traffic
We compute the standard deviation of IATs sampled by
P4TG. They are compiled in Table 3 for various generation
methods and traffic rates. P4TG in PM with 1 pipe produces
the least standard deviations. However, this method has prob-
lems to achieve high rates with frame sizes. P4TG in RM with
2 pipes causes larger standard deviations as n− 1 small IATs
are followed by one large IAT. The standard deviations of
TRex traffic are several orders of magnitude larger than those
of P4TG. Also the standard deviations of EXFO’s traffic are
an order of magnitude larger than those of P4TG if the target
rate is small, i.e., the IATs are long. Thus, neither TRex nor
EXFO generate constant IATs, they apparently use large and
short IATs to adaptively meet the target rate.

2) Random Traffic
Figures 8(a) and 8(b) show the complementary cumulative
distribution function (CCDF) of IATs from P4TG’s random
traffic derived from 500.000 samples. They are compared to
geometric CCDFs which are step-functions and the underly-
ing model of the generation method for random traffic. The
two CCDFs are in good accordance and the match becomes
better for smaller traffic rates. Deviations are due to jitter
in the generation method at a time scale of a very few ns.
The IATs of both CCDFs are bounded by some minimum.
This is in contrast to the CCDF of exponentially distributed

VOLUME 10, 2022 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3246262

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Lindner et al.: P4TG: 1 Tb/s Traffic Generation for Ethernet/IP Networks

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
IAT (ns)

C
C

D
F

Measured Geometric Exponential

(a) RL1
target = 50 Gb/s

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
IAT (ns)

C
C

D
F

Measured Geometric Exponential

(b) RL1
target = 75 Gb/s

FIGURE 8. CCDF of IATs in random traffic with 64 byte frames: measured, theoretic, and approximated by exponential IATs.

TABLE 3. Standard deviation based on sampled IATs for 64 byte frames.

Gen.
method

RL1
target (Gb/s) σ(IAT ) RL1

target (Gb/s) σ(IAT )

P4TG PM
(1 Pipe)

0.1 2.47 ns 50 2.51 ns
1 2.66 ns 75 3.21 ns
10 2.21 ns (100 2.90 ns)

P4TG RM
(2 Pipe)

0.1 4.81 µs 50 4.23 ns
1 51.72 ns 75 3.24 ns
10 84.38 ns 100 1.36 ns

TRex
0.1 36.8 µs 50 31.62 ns
1 4.58 µs (75 13.89 ns)
10 463.62 ns (100 13.89 ns)

EXFO
0.1 21.65 ns 50 5.65 ns
1 24.85 ns 75 3.23 ns
10 31.47 ns 100 1.25 ns

IATs which make up Poisson traffic. However, due to min-
imum frame sizes smaller IATs are technically not feasible.
Therefore, P4TG’s random traffic is a good approximation of
Poisson traffic for experimental purposes.

VII. LIMITATIONS & FUTURE WORK
We first summarize P4TG‘s limitations. Then we discuss
future work.

A. LIMITATIONS
P4TG can be configured with up to 7 different traffic stream
definitions (frame size and target rate) as the TNA [17] allows
the definition of up to 8 independent packet streams. Con-
sequently, P4TG cannot be used to generate arbitrary traffic
patterns. However, more than 7 different packet streams can
be generated by randomizing or rewriting packet headers on a
per-port basis. Further, P4TG is limited to 1 Tb/s traffic gen-
eration on our prototype although the underlying hardware is
capable of processing 3.2 Tb/s. This is due to the fact that
additional recirculation ports are needed for measurement

purposes. However, other hardware-based TGs, such as the
EXFO FTB-1 Pro [22], have significantly higher acquisition
costs but generate only 100 Gb/s.

B. FUTURE WORK
Future work could extend P4TG to perform automated net-
work testing as proposed in RFC 2544 [18] or ITU-T Y.1564
[23]. These tests are typically applied by network operators
to verify service level agreements. In addition, P4TG can
be evaluated on Tofino™ 2 and 3 platforms to test traffic
generation at up to 400 Gb/s per port.

VIII. CONCLUSION
In this paper, we presented P4TG, a TG based on the P4-
programmable Intel Tofino™ ASIC. In generation mode,
P4TG generates up to 1 Tb/s, i.e., 100 Gb/s on 10 ports,
Ethernet traffic and supports packet customization. It mea-
sures rates, frame types and sizes, packet loss, and out-of-
order packets of generated and received traffic in the data
plane and samples RTTs and IATs in the control plane. We
described P4TG’s implementation in detail and compared its
performance with other TGs. P4TG is able to produce 64
byte frames CBR traffic at 100 Gb/s with stabler IATs than
other TGs. Moreover, P4TG is able to produce random traffic.
In analysis mode, P4TG analyses external traffic, measures
rates, frame types and sizes, and samples IATs. It further
acts as transparent forwarder such that it can analyze traffic
without disrupting connectivity.

P4TG comes with clearly lower costs than other hardware-
based commercial hardware solutions. Further, with the Intel
Tofino 2 and Intel Tofino 3, P4TG may be able to generate
traffic at even higher rates (up to 400 Gb/s per port).
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Abstract—Automated systems like industrial applications or
autonomous cars heavily rely on sensor information. To increase
reliability, several sensors may be used to provide identical data,
e.g., temperatures or velocity. Applications exploiting this data
may either use both data streams or rely on a single primary
data stream until the primary stream fails. This increases the
complexity of the application and is prone to errors. In this paper
we present a prototype and mechanisms for in-network sensor
failover. Our novel prototype detects the failure of a primary
sensor and delivers in turn the data of a redundant sensor to the
application.

I. INTRODUCTION

Reliability is an important property of system critical in-
frastructure. Traditional resilience mechanisms protect against
single link and single node failure, i.e. the connectivity can be
restored if a single link or a single node fails. The detection of
a link or node failure may require a few 10s of milliseconds
so that traffic loss cannot be avoided. Loop-Free Alternates
(LFAs) [1] are an example for such a mechanism. To respond
faster to an incident, traffic can be transmitted redundantly on
multiple paths. If there is an error on one path, the traffic
on another path is still transmitted correctly. As traffic is
transmitted redundantly, a substantially higher bandwidth is
required and the resources of the network are not used in
an optimal manner. 1+1 protection [2] is an example for a
redundant protection mechanism. These network protection
mechanisms protect only against network failures like link
or node failures. However, they cannot help when the source
node fails. The source can be protected by having several
sources providing the same information. Possible use cases
include sensors in industrial facilities, (autonomous) cars,
or other publish/subscribe scenarios. In a publish subscribe
environment, publishers offer data that can be accessed by
subscribers. To compensate for the failure of a publisher,
several publishers provide the same information. In case of
an error, the information is provided by another publisher.
To that end, the failure of a publisher must be detected and

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

the network re-configured. Alternatively, an application can
subscribe to several streams and independently perform error
handling. These methods either require additional signaling
effort, and thus time, or involve redundant implementations in
different applications. In industrial and time-critical networks
in general, the demands on data streams are usually stringent,
not only in terms of bandwidth, latency and jitter, but also
in terms of response time in the event of errors. While new
paradigms and standardization efforts like time-sensitive net-
working (TSN) and deterministic networking (DetNet) provide
a broad feature set to guarantee these requirements, they
come with the need of specialized and costly hardware. With
software defined networking, new mechanisms and protocols
can be developed without requiring specialized hardware.
Technologies such as P4 enable the data plane of a compatible
switch to be programmed, paving the way for new prototypes
and mechanisms. In this paper, we present two mechanisms
that can be used to implement a fast failover for redundant
sensor pairs in a network. In the error-free case, only data
from the primary sensor is forwarded. If the primary sensor
fails, the switch detects the missing data of the primary
sensor and forwards the data of the redundant sensor. The
presented mechanisms neither require additional signaling nor
the reconfiguration of the network. Furthermore, the failover
is transparent for the receiver. We present a P4-based imple-
mentation of the proposed mechanisms and evaluate them on
the high-performance P4 switching ASIC Tofino.

The remainder of the paper is structured as follows. We
discuss some related resilience mechanisms in Section II.
Section III gives an overview of the data plane programming
language P4. Afterwards, we introduce two mechanisms for in-
network sensor failover in Section IV. Section V gives some
insights regarding the P4-based implementation of the pro-
posed mechanisms. We evaluate and discuss the mechanisms
in Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section we present some related resilience mech-
anisms. Closely related to our case study is the area of
publish/subscribe networks. In a publish/subscribe system,

©1st International Workshop on Time-Sensitive and Deterministic Networking (TENSOR 2020), June 2020, Paris, Fance



users can subscribe to publishers to receive information. To
ensure reliability, several publishers can provide the same
information. In our deployment scenario the user corresponds
to the application and the sensors correspond to publishers.

In [3], the authors propose an extension to the PURSUIT
framework to introduce source recovery in information-centric
networks (ICN). They introduce a new component, called
resilience management (RM). To detect a component fail-
ure, each node exchanges link state updates (LSU) with its
neighbors. If a node does not receive a LSU within a time
limit, a link failures is assumed. The topology management
(TM), another component in the PURSUIT framework, re-
ceives this information and updates the topology accordingly.
Afterwards, affected distribution trees can be altered and the
connectivity can be restored. If the failure affects a publisher,
the distribution trees can be adjusted to use an alternative
publisher. Hoefling et. al [4] propose a distributed load balanc-
ing mechanism for SeDAX, a publish/subscribe information-
centric networking architecture. They ensure robustness by
replicating content on multiple nodes. If the primary node
fails, it is possible to switch directly to the second node in
order to continue offering the content.

The data distribution service (DDS) [5] is a platform-
independent standard for data-centric publish subscribe sys-
tems. It is designed for real-time systems with low latency
and high robustness requirements. DDS facilitates that several
publishers supply the same data while a subscriber always re-
ceives data from the so-called ”most-trusted” publisher. If the
”most-trusted” publisher fails, the application automatically
uses the data of the next publisher. This failure mechanism
requires an action from the application, provided by the DDS
framework. Campelo et. al [6] propose an architecture for a
fault-tolerant distributed industrial control system composed of
several micro-controllers. The system can switch to an alterna-
tive micro-controller in case of a failure. Another architecture
for safety-critical applications is described in [7].

III. P4 FOUNDATIONS

We first give an overview of P4. Then we summarize
basics of the P4 pipeline that are needed to understand the
implementation of the P4 implementation.

A. P4 Overview

P4 is a programming language for protocol-independent
packet processors [8]. It allows a flexible description of its
processing pipeline, in particular the definition of arbitrary
headers and packet parsers. P4 programs are compiled to so-
called targets, e.g., the software switch BMv2 or switching
ASICs. A compiled program offers the P4Runtime as an API
so that P4 nodes can be re-configured by controllers during
runtime.

B. P4 Pipeline

Figure 1 illustrates P4’s abstract forwarding model. A user-
programmable parser reads an incoming packet and stores

its header information in P4-internal header fields. They are
carried with the packet through the P4 pipeline, possibly with
additional metadata.

Fig. 1. P4 abstract forwarding model according to [8].

The P4 abstract forwarding model is divided into two stages,
the ingress and the egress pipeline, which are separated by
the packet buffer. For modularity, the ingress and egress
pipeline can be further subdivided by control blocks (CB).
Match+action tables (MATs) allow for packet-specific process-
ing. They have entries consisting of match fields and match
types that map packets to actions and parameters. One action
may be defined to be carried out if no table entry matches a
packet (table miss).

P4 offers in its core definition three match types: exact, lpm,
and ternary. Exact implies that a packet header must contain
the match field in the table entry, e.g. a given IPv4 address in
the destination address field of an IP header. Lpm stands for
longest prefix match which is well-known from standard IP
forwarding. Ternary facilitates wildcard matches. A packet is
processed at most once by the same MAT within the pipeline.

C. Registers

Information stored in metadata are only valid during a
packets lifetime. To store information beyond the lifetime of
a packet, P4 offers the ability to store information in so-
called registers. Information stored in registers can be accessed
during packet processing. We leverage registers to store data
required for the protection mechanisms.

IV. IN-NETWORK SENSOR FAILOVER

In this section we first give an overview of the general
context. Afterwards, we describe novel protection mechanisms
for in-network sensor failover.

A. Overview

Figure 2 shows the concept of the proposed protection
mechanisms. Two sensors periodically send data to an appli-
cation over a network. To ensure reliability, both sensors send
the same information, e.g., temperatures or velocity, but may
send them with different periods.

An application may decide which data to use. The appli-
cation might either use both data streams or only one data
stream and, in case of an error, switch to the second data
stream. However, this comes with an increase in program
logic and developers have to deal with sensor failures. We
propose to transfer the sensor failover to the network by
leveraging programmable network devices, e.g. P4 switches.
Two different modes of operation can be distinguished. By



Fig. 2. Conceptual overview. Two redundant sensors provide information for
a application.

default, the primary sensor data is forwarded to the application.
With the aid of periodic messages from the redundant sensor,
the P4 switch can detect if the primary sensor fails. If a failure
is detected, data from the redundant sensor can be forwarded
to the application.

(a) Counter-Based protection mechanism.

(b) Timer-Based protection mechanism.

Fig. 3. Overview ot the operations of the counter-based and timer-based
protection mechanism.

B. Mechanisms

To detect the failure of the primary sensor, we leverage
the time dependencies between the two data streams of
the sensors. We propose two mechanisms to detect sensor
failures, counter-based and timer-based failover, respectively.
Figure 3(a) and Figure 3(b) illustrate the operations of the two
protection mechanisms. We refer to actions involving register

access as Register Actions, and actions without this access
solely as Action.

1) Counter-Based Failover: The first protection mechanism
is based on a counter approach. A counter is increased for each
arriving data portion from the redundant sensor. In simplest
form, the counter is increased by one and stored in a register
field leveraging a Register Action. For each arriving data
portion of the primary sensor, the counter is set to zero.
If the counter exceeds a certain threshold Tc, the switch
forwards the data from the redundant sensor to the application.
The threshold has to be selected in such a way that the
dependencies of the two data streams are taken into account.
For example, if the redundant sensor transmits data twice as
fast as the primary sensor, a failure of the primary sensor can
be detected by a threshold of two and an increase by one. In
such a case, at most one packet of the primary sensor is lost. If
the periods of the two sensors are not multiples of each other,
the same effect can be achieved by scaling the threshold and
the respective increase of the counter.

If the primary sensor transmits faster than the secondary
sensor, it cannot be guaranteed that at most one packet from
the primary sensor will be lost. Furthermore, a change in the
sensor periods may result in undesired behaviour, which is
further described in Section VI. This protection mechanism
is implemented for the high-performance P4 switching ASIC
Tofino and demonstrated in Section VI.

2) Timer-Based Failover: The counter based approach is
reliable if the sensor periods are stable. If the sensor periods
change during operation, the relation between the intermediate
arrival times and the configured threshold is no longer correct.
In addition, the currently stored value in the counter is no
longer valid. As a consequence, the counter must be reset.
However, this may cause a delayed switch-over to the redun-
dant sensor. To overcome this problem, we propose to use the
actual intermediate arrival times for the protection mechanism
instead of the counter-based relation among the arrival times.
The timer-based approach utilizes packet timestamps which
can be accessed during packet processing. For each arriving
data portion of the primary sensor, the packet timestamp is
saved in a special register. Data from the redundant sensor
is only forwarded, if the elapsed time since the last data
portion of the primary sensor exceeds a certain threshold Tt.
This more advanced mechanism is implemented for the BMv2
software switch and can be accessed at Github1. The timer-
based mechanism can also be implemented for the Tofino.
For simplicity, we only implemented this mechanism for the
BMv2. We give some examples of its advantages over the
counter-based mechanism in Section VI.

V. IMPLEMENTATION

In this section we describe the P4 based implementation of
the protection mechanisms presented in Section IV. First, we
will give an overview of the P4 pipeline. Afterwards, we will

1Repository: https://github.com/uni-tue-kn/p4-source-protection



describe the important properties of the control block Protect,
which implements the protection mechanisms. Finally, we give
a rough overview of the control plane.

A. Overview

The implementation is based on a local Ethernet network
and comprises local layer-2 switching and the applied pro-
tection mechanism. Figure 4 illustrates our implemented P4
pipeline.

Fig. 4. Overview of the ingress pipeline.

The implementation solely requires the ingress part of the
P4 pipeline. The P4 pipeline was introduced in Section III.
The ingress pipeline is divided into three control blocks
(CBs), named CB Topology, CB Protect and CB L2. The
control blocks CB Topology and CB L2 are used for general
network connectivity such as topology recognition and layer-
2 forwarding. The protection mechanisms are implemented in
the control block CB Protect. Incoming packets traverse all
three control blocks.

B. Control Block CB Protect

The control block CB Protect implements the two previ-
ously presented mechanisms. In order for the mechanisms
to work, the switch must have access to several pieces of
information. First and foremost, the switch must know the
relation between the sensors and its physical interfaces, i.e.
which interface corresponds to which sensor. Furthermore,
the switch requires the configured threshold Tc or Tt. These
information is dynamically provided with match+action tables
(MATs). During packet processing, the information is made
available by matching on these MATs and storing the required
information in metadata fields. As soon as the period of the
sensors changes, the contents of the MATs can be updated by
the control plane. As a consequence, we can react dynamically
to the changes. In addition to the interface and threshold
information, the last timestamp of the primary sensor and the
counter must be stored. We leverage registers that are available
in the software switch BMv2 as well as in the Tofino.

C. Control Plane

The control plane is responsible for filling the different
MATs with entries. To that end, it provides an interface for
runtime changes and updates the MATs accordingly. It utilizes
information of a proprietary topology detection mechanism to

calculate the appropriate forwarding rules of the network to
enable local layer-2 forwarding.

VI. EVALUATION & DISCUSSION

In this section we illustrate the functionality and effec-
tiveness of the two introduced protection mechanisms. To
accomplish this, we perform experiments in our testbed using
our prototype. We first explain the general setup of our
experiments. Afterwards, we introduce our evaluation metrics.
Finally, we describe the experimental results and explain some
theoretical examples.

A. Methodology

1) General Setup: The hardware testbed consists of three
servers physically connected to a Tofino Edgecore Wedge
100BF-32X as shown in Figure 2. The servers are based
on an Intel Xeon Scalable Gold 6134 (8x 3.2 GHz) and 4x
32 GB RAM. The Tofino Edgecore Wedge 100BF-32X is a
high-performance P4 switch with 32 100G ports. Two servers
thereby act as sensors, the third server mimics an application.
Both sensors send data to the application with different periods
p0 and p1.

2) Metric: We evaluate the arrival of the packets of the
two sensors at the application. During operation we simulate
a sensor failure by disconnecting the link between the primary
sensor and the P4 switch. We demonstrate that the correct
configuration of the mechanism is essential and show by a
theoretical example that the timer-based approach is superior
to the counter-based approach.

B. Counter-Based Protection

To illustrate the influence of the threshold on the counter-
based mechanism, we consider the experiment as described in
Section VI-A. Figure 5(a) reflects the result of an incorrect
configuration of the counter-based mechanism. The primary
sensor sends with a period of p1 = 10 ms and the redundant
sensor with a period of p2 = 5 ms. Since the secondary sensor
transmits twice as fast as the primary sensor, a failure of the
primary sensor can be detected by a threshold of Tc = 2.
In this experiment the threshold was falsely set to Tc = 5.
Figure 5(a) shows the incoming data packets from the primary
sensor (sensor 1) and the redundant sensor (sensor 2) at the
application for this configuration.

At time t = 0, the first packet of the primary sensor is
lost. Subsequently, due to the wrong threshold, two additional
packets of the primary sensor are lost before the system
switches to the redundant sensor. In contrast, Figure 5(b)
shows that with a properly tuned threshold, only one packet
of the primary sensor is lost.

C. Timer-based Protection

With constant sensor periods, the timer-based mechanism
performs as well as the counter-based mechanism. However,
as soon as the periods change during operation, the timer-
based approach is superior. Two strategies can be pursued
for the counter-based approach. After a period change, the



(a) p1 = 10 ms, p2 = 5 ms, Tc = 5.

(b) p1 = 10 ms, p2 = 5 ms, Tc = 2.

Fig. 5. Influence of threshold on sensor failover for the counter-based
protection mechanism.

counter can either be reset or maintained. We now consider
the case that the counter is reset. Figure 6(a) illustrates an
example. Note that all transmitted signals are displayed. We
further assume that at t = 0 the primary sensor fails and
that the counter is reset. At the same time the period of the
redundant sensor changes from 1 ms to 2 ms. The counter-
based approach forwards the data of the redundant sensor at
time t = 10 ms, as all information before the period change is
lost. In contrast to the counter-based mechanism, the timer
based mechanism performs the switch-over as intended at
t = 4 ms. Figure 6(b) visualizes the differences.

If the counter is maintained at a period change, the counter-
based mechanism will still not behave correctly. Lets assume
similar settings as in the previous example. The primary sensor
transmits data with period p1 = 10 ms, the secondary sensor
with p2 = 1 ms. At time t = 0 the primary sensor fails, the
counter equals four and the period of the secondary sensor
switches again to p2 = 2 ms. Figure 7(a) illustrates this setup.
As the counter has not been reset, the switch erroneously
switches to the redundant sensor at time t = 2. Again,
Figure 7(b) shows that the timer-based mechanism is not
affected by this problem.

VII. CONCLUSION

Sensors in critical systems must provide applications with
redundant information. Applications have to decide how to
handle the different data streams and how to react to the
failure of one of the data streams. This is not only prone to
errors but also leads to duplication in application logic. In this
paper we proposed two mechanisms to move the detection
of sensor errors to the network to make the redundant data
transmission transparent for the application. We have shown
the disadvantages of a simple counter-based mechanism and

(a) Counter-based mechanism with reset.

(b) Timer-based mechanism.

Fig. 6. Different behaviour of the two mechanisms during a period change.
The counter-based mechanism requires more time for the switch-over than
the timer-based mechanism.

(a) Counter-based mechanism without reset.

(b) Timer-based mechanism.

Fig. 7. Different behaviour of the two mechanisms during a period change.
The counter-based mechanism erroneously forwards data from the secondary
sensor.



presented a more complex timer-based mechanism for the
BMv2.
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Abstract—IP multicast (IPMC) delivers one-to-many traffic
along distribution trees. To that end, conventional IPMC requires
state in forwarding devices for each IPMC group. This limits
scalability of IPMC because forwarding state in core devices
may be extensive and updates are necessary when IPMC groups
or the topology change. The IETF introduced Bit Index Explicit
Replication (BIER) for efficient transport of IPMC traffic. BIER
leverages a BIER header and IPMC-group-independent forward-
ing tables for forwarding of IPMC packets in a BIER domain.
However, legacy devices do not support BIER. In contrary, two
SDN-based implementations for OpenFlow an P4 have been
published recently. In this paper, we assess BIER forwarding
which may be affected by network failures. So far there is no
standardized procedure to handle such situations. Two concepts
have been proposed. The first approach is based on Loop-
Free Alternates. It reroutes traffic to suitable neighbors in the
BIER domain to steer traffic around the failure. The second
approach is a tunnel-based mechanism that tunnels BIER packets
to appropriate downstream nodes within the BIER distribution
tree. We explain and compare both approaches, and discuss their
advantages and disadvantages.

Index Terms—Software-Defined Networking, Bit Index Explicit
Replication, Multicast, Resilience, Scalability

I. INTRODUCTION

IP multicast (IPMC) is used for services like IPTV, com-
mercial stock exchange, multicast VPN, content-delivery net-
works, or distribution of broadcast data. Figure 1 shows the
concept of IPMC.

IPMC
group 2

IPMC
group 1

Figure 1: Two multicast distribution trees.

IPMC efficiently distributes one-to-many traffic by replicat-
ing packets and forwarding only one packet per link. Hosts
join an IPMC group to receive the traffic addressed to that
group. Forwarding devices maintain IPMC-group-dependent
state to forward packets to the right neighbors. This decreases
the scalability of IPMC for the following reasons. First, a
large number of IMPC groups require a significant amount

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

of forwarding state in core devices. Second, when subscribers
of an IPMC group change, i.e., devices join or leave the
group, the forwarding state needs to be updated. Third, when
the topology changes or in case of a failure, the forwarding
information base of possibly many devices has to be adapted.

The IETF presented BIER [1] as an efficient transport
mechanism for IPMC traffic. BIER introduces a BIER domain,
where only ingress routers maintain IPMC-group-dependent
state. Ingress routers of the BIER domain encapsulate IPMC
packets with a so-called BIER header which contains the
destinations of the packet. Within the BIER domain, BIER
packets are forwarded along distribution trees from the source
to the destinations. Thereby only a single packet is transmitted
per link. Finally, egress nodes remove the BIER header.
Forwarding in the BIER domain is based on two components.
First, the BIER header which contains a bit string that iden-
tifies receivers of a packet within the BIER domain. Second,
the so-called Bit Index Forwarding Table (BIFT) which is the
routing table of BIER devices. The entries of the BIFT are
derived from information from the routing underlay, e.g., the
Interior Gateway Protocol (IGP).

When a primary next-hop (NH) is unreachable due to a
failure, an entire set of downstream destination nodes does
not receive the traffic. When a failure is detected, IGP con-
verges, new distribution trees are calculated, and the BIFTs
are updated. This process requires a significant amount time.
Therefore, BIER would benefit greatly from a fast protection
mechanism that delivers traffic in the meantime. For unicast,
several fast reroute (FRR) mechanisms [2] have been proposed
which protect against the failure of single links or nodes until
the forwarding information base is updated. FRR mechanisms
use pre-computed backup entries to quickly reroute traffic
when the primary NH is unreachable. No signaling between
devices is necessary. Two FRR concepts for BIER have been
proposed. First, LFA-based BIER-FRR [3] leverages a FRR
mechanism called Loop-Free Alternates (LFAs) [4] that has
been initially proposed for IP unicast. Failures are bypassed
by forwarding traffic to alternative BIER NHs. Second, tunnel-
based BIER-FRR tunnels traffic through the routing underlay,
leveraging its FRR capabilities to steer traffic around the
failure. We proposed this mechanism at the IETF [5].

However, legacy devices do not support BIER. On the
contrary, the flexibility of SDN-based technologies have been
leveraged recently to successfully implement BIER with Open-
Flow [6] and in P41. This allows the deployment of BIER

1https://github.com/uni-tue-kn/p4-bier
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and facilitates the implementation of additional BIER-related
features, e.g. BIER-FRR.

In this paper we review LFA-based and tunnel-based BIER-
FRR. First, we propose changes to tunnel-based BIER-FRR to
reduce the number of forwarding entries. Then, we point out
major shortcomings of the LFA-based approach and present
extensions to resolve the issues. Further, we compare both
mechanisms by discussing their protection capabilities, and
overhead in terms of header size and forwarding state.

The paper is structured as follows. Section II describes
related work for conventional and SDN-based multicast, and
BIER. We review BIER in Section III. Section IV gives a
primer on LFAs. Then, in Section V we explain tunnel-based
BIER-FRR. Afterwards, we describe LFA-based BIER-FRR
in Section VI, and point out its shortcomings and propose
extensions in Section VII. Finally, we compare and discuss
both approaches in Section VIII. We conclude the paper in
Section IX. II. RELATED WORK

In this section we first discuss related work for conventional
and SDN-based multicast. Afterwards, we review related work
for BIER.
A. Multicast

In [7] the authors provide an overview of the early develop-
ment of multicast. The authors of [8] discuss the limited scal-
ability of conventional IP multicast in terms of the number of
forwarding entries. They propose an extension to the multicast
routing protocol MOSPF to reduce the number of required
forwarding entries. Li et al. [9] propose an architecture to
partition the multicast address space to increase scalability of
IP multicast in data center topologies.

B. SDN-Based Multicast
The surveys [10], [11] provide a detailed overview of

SDN-based multicast. We discuss only some of the men-
tioned papers. The authors of [12] introduce software-defined
multicast (SDM), an OpenFlow-based approach that aims at
providing a well-managed multicast platform for over-the-top
and overlay-based live streaming services. SDM is specifically
engineered for the needs of P2P-based video stream delivery.
They further develop their idea of SDM in [13] by adding
support for fine-granular traffic engineering capabilities. Lin et
al. [14] present a multicast model to construct so-called multi-
group shared trees. By deploying distribution trees that cover
multiple multicast groups simultaneously, the entire network
is covered with a small number of trees.

C. Protection of SDN-Based Multicast
Kotani et al. [15] propose to leverage multiple simulta-

neously deployed multicast trees for protection. An ID in
the packet header determines along which distribution tree
a packet is forwarded. When a tree is affected by a failure,
the controller reconfigures the senders to forward traffic on
a backup tree. The authors of [16] follow a similar approach
where they leverage primary and backup trees identified by
a VLAN tag. When a switch detects a failure, it reroutes the
packets on a working backup tree that contains all downstream
nodes. This is accomplished by switching the VLAN tag in
the packet header.

D. BIER Related Work
Giorgetti et al. [6], [17] provide an implementation for

both, conventional IPMC and BIER forwarding in OpenFlow.
They leverage MPLS headers to encode the BIER bit string,
which limits the bit string length, and thereby the number
of destinations, to a maximum of 20. However, a local
BIER agent is required to run on the switches to support
arbitrary destinations. BIER-TE [18] extends BIER with traffic
engineering capabilities. BIER-TE leverages the same header
format as BIER and supports explicit coding of a distribu-
tion tree in the BIER header. However, BIER and BIER-TE
are not compatible. The authors of [19] present a P4-based
implementation of BIER and BIER-TE and present different
demo scenarios to show the feasibility and the advantages
of BIER(-TE). The authors of [20] propose 1+1 protection
for BIER-TE. Traffic for each IPMC group is forwarded
on two disjoint distribution trees simultaneously. The trees
share as few network components as possible to still deliver
traffic when one tree is interrupted by a failure. However, the
approach requires two forwarding planes, and in the failure
free case twice the amount of network resources are occupied.

III. BIT INDEX EXPLICIT REPLICATION (BIER)
The following section reviews BIER [1]. First, we describe

its concept, the structure of the Bit Index Forwarding Table
(BIFT), the BIER forwarding procedure, and a forwarding
example. Afterwards we explain a compact representation of
the BIFT, and characteristics of the BIER topology.
A. BIER Concept

BIER is based on a layered architecture, consisting of
routing underlay, BIER layer, and IPMC layer. Figure 2
illustrates the relation between these components.
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Figure 2: Layered architecture of BIER; it shows the relation
between routing underlay, BIER layer, and IPMC layer.

The BIER layer serves as a point-to-multipoint tunnel for
IPMC traffic through a BIER domain. The BIER domain con-
sists of bit forwarding ingress routers (BFIRs), bit forwarding



routers (BFRs), and bit forwarding egress routers (BFERs). A
BIER-capable device can be BFIR, BFR and BFER at the
same time. When an IPMC packet enters the domain, the
BFIR pushes a BIER header onto the IPMC packet. The BIER
header identifies all receivers (BFERs) of the packet within the
BIER domain. To that end, it contains a bit string which has
to be at least as long as the number of BFERs in the BIER
domain. In the following, ’BitString’ refers to the bit string in
the BIER header of the packet. Each BFER is assigned to a bit
position in the BitString, starting with the least-significant bit.
An activated bit means that the corresponding BFER must
receive a copy of the BIER packet. BFRs forward BIER
packets according to theor BitString along distribution trees
to multiple BFERs.

Paths in the BIER domain are derived from the routing
underlay, e.g., the IGP. As a consequence, BIER traffic follows
the same paths as the corresponding unicast traffic from source
to destination. At the domain boundary, BFERs remove the
BIER header and pass the IPMC packet to the IPMC layer.

B. BIFT Structure
Table 1 shows the BIFT of BFR 1 from Figure 3. For each

BFER, the BIFT contains one forwarding entry that consists
of the primary NH and the so-called Forwarding Bit Mask
(F-BM). The F-BM is a NH-specific bit string similar to the
bit string in the BIER header. It indicates the BFERs with the
same NH. In one particular F-BM, only bits of BFERs that are
reached over the same NH are activated. During forwarding,
BFRs use the F-BM to clear bits from the BitString.

C. BIER Forwarding
When a BFR receives a BIER packet, it stores its BitString

to account to which BFERs the packet needs to be sent. We
refer to that stored bit string by the term ’remaining bits’. The
following procedure is repeated until the remaining bits do not
contain any activated bits anymore.

The BFR determines the least-significant activated bit in the
remaining bits. This bit indicates the BFER to be processed.
Then, the BFR performs a looks up in the BIFT to get the
NH and F-BM for that BFER. After a successful match, the
BFR creates a copy of the received BIER packet. The BFR
clears the BFERs from the BitString of the packet copy that
have a different NH. To that end, the BFR performs a bitwise
AND operation of the F-BM and the BitString of the packet
copy. Then the BFR writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
Thus, only bits that correspond to BFERs which share the
same primary NH remain active in the BitString of the packet
copy. Clearing other bits avoids duplicates at the receivers.
Afterwards, the packet copy is forwarded to the NH. Finally,
the BFERs, to which a packet has just been sent, are removed
from the remaining bits. To that end, a bitwise AND operation
of the bitwise complement of the F-BM and the remaining bits
is performed.

D. BIER Forwarding Example
Figure 3 shows an example topology with four BFRs. Each

BFR is in addition a BFIR and a BFER. Table 1 shows the
BIFT of BFR 1.

1110

0100 1000

1010

2

43

1
BFER NH F-BM

1 - -
2 2 1010
3 3 0100
4 2 1010

Figure 3: BIER topology and
BitStrings of forwarded BIER
packets.

Table 1: BIFT of BFR 1.

BFR 1 receives a BIER packet with the BitString 1110. The
least-significant activated bit in the remainings bits identifies
BFR 2. Therefore, BFR 1 creates a copy of the packet, applies
the corresponding F-BM 1010, and forwards the packet copy
with the BitString 1010 to BFR 2. This sends a packet to
BFER 2 and BFER 4. Afterwards, the bits of the F-BM are
cleared from the remaining bits 0100. The least-significant
activated bit in the remaining bits corresponds to BFER 3.
The F-BM is applied and a packet clone with the BitString
0100 is forwarded to the NH which is BFR 3. After clearing
the F-BM from the remaining bits, processing stops because
no active bits remain.

E. Compact BIFT

The number of entries of the BIFT scales with the number
of BFERs. For improved scalability in terms of forwarding
entries, the authors of [21] propose a compact representation of
the BIFT that requires only one forwarding entry per neighbor.
To that end, all entries with the same NH and F-BM are
aggregated. As a result, all BFERs indicated in the F-BM
share a single forwarding entry. During lookup, an entry is
considered a match when at least one of the associated BFERs
is a destination of the BIER packet. Table 2 shows the compact
BIFT of BFR 1 from Figure 3.

BFERs NH F-BM
2, 4 2 1010
3 3 0100

Table 2: Compact BIFT of BFR 1.

F. Characteristics of the BIER Topology

In this paragraph we first discuss the impact of differences
between the Layer 3 topology and BIER topology. Afterwards,
we review how BIER devices detect whether BIER neighbors
are still reachable.

1) Differences Between Layer 3 Topology and BIER Topol-
ogy: In a Layer 3 topology some Layer 3 devices may not
be BIER capable. Thus, the BIER topology may be different
from the Layer 3 topology. Neighbors in the BIER topology
are either connected directly to each other, or through at
least one intermediate Layer 3 device that is no BIER device.
BIER nodes receive information about their connection to their
neighbors from the routing underlay. If two BIER neighbors
are directly adjacent, they forward packets over Layer 2 to each
other. If they are not directly adjacent, the BIER neighbors



leverage a Layer 3 tunnel to exchange packets. In both cases
forwarding still follows the paths from the routing underlay.

2) Detection of Unreachable NHs: To quickly detect un-
reachable BIER neighbors, the authors of [22] propose bidi-
rectional forwarding detection (BFD) [23] for BIER. When a
BFD is established between two BIER nodes, they periodically
exchange notifications to observe the reachability.

IV. LOOP-FREE ALTERNATES

In this section we explain the concept of Loop-Free Al-
ternates (LFAs) [4]. Afterwards, we review extensions for
improved protection capabilities and loop detection.

A. Foundations of LFAs

LFAs implement a FRR mechanism for IP unicast traffic
that prevents rerouting loops. Figure 4 shows the concept of
LFAs.
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Figure 4: Concept of LFAs.

When a node cannot reach a primary NH, it acts as point
of local repair (PLR), i.e., it leverages a pre-computed backup
entry to reroute the packet via an alternative NH on a backup
path towards the destination. Such neighbors are called LFAs
and they have to be chosen in a way that rerouting loops are
avoided. Some neighbors must not be chosen as LFAs because
rerouting the packet would result in a forwarding loop.

LFAs have different properties for protection and loop
avoidance. Some protect against link failures, others against
node failures. Link-protecting LFAs (LP-LFAs) have a shortest
path towards the destination that does not include the link
between PLR and primary NH. Thus, LP-LFAs protect against
the failure of the link between PLR and primary NH. The
authors of [24] and [25] analyze the protection capabilities of
LP-LFAs with a comprehensive set of topologies. They find
that LP-LFAs protect only 70% of destinations against single
link failures. Furthermore, LP-LFAs may cause loops when
at least one node or multiple links fail instead of a single
link only. To protect against the failure of the primary NH,
node-protecting LFAs (NP-LFAs) have a shortest path to the
destination that does not include the primary NH. In [24] the
authors evaluate NP-LFAs in different scenarios on a large
set of topologies. They show that NP-LFAs prevent loops for
single link and single node failures, but they protect only 40%
of destinations against single link failures.

B. Extensions for LFAs

In this paragraph we explain remote LFAs (rLFAs), topol-
ogy independent LFAs (TI-LFAs), and explicit LFAs (eLFAs)
to complement LFAs for increased protection capabilities.
All three LFA variants support link and node protection. We

indicate the protection mode with the prefix ’LP-’ for link
protection, and ’NP-’ for node protection. Furthermore, we
review a loop detection mechanism for LFAs. Figure 5 shows
the concept of rLFAs, TI-LFAs, and eLFAs, which we explain
in detail in the following.
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Figure 5: Concept of rLFAs, TI-LFAs, and eLFAs.
1) Remote LFAs (rLFAs): rLFAs [26] are remote nodes in

the network. When the PLR cannot reach a primary NH, the
packet is rerouted through a shortest path tunnel to the rLFA.
From there, the packet is forwarded on a shortest path towards
the destination. In [26] the authors prove that there is always
a LP-rLFA to protect against a single link failure in unit-link-
cost topologies. However, the authors of [25] find that this
property does not hold for topologies with arbitrary link costs.
NP-rLFAs cannot protect against all single link or single node
failures.

2) Topology-Independent LFAs (TI-LFAs): TI-LFAs [27]
are remote nodes in the network. When the primary NH is
unreachable, the PLR leverages a header stack of IP headers
to deviate traffic to the TI-LFA. The TI-LFA then sends the
original packet on a shortest path towards the destination. As
long as there is still a working shortest path to the destination,
LP-TI-LFAs can protect against any single link failure, and
NP-TI-LFAs against any single node failure.

3) Explicit LFAs (eLFAs): eLFAs [25] follow a similar
concept as TI-LFAs. An eLFA is a remote node that serves
as tunnel-end point when the PLR cannot reach the primary
NH. The PLR reroutes the packet through an tunnel on an
explicit path to the eLFA. The eLFA then forwards the packet
on a shortest path to the destination. In contrast to TI-LFAs,
eLFAs leverage additional forwarding entries for explicit paths
to prevent an IP header stack. The authors of [25] evaluate
eLFAs on a comprehensive set of different topologies. As long
as the destinaton is still reachable, LP-eLFAs protect against
any single link failure and NP-eLFAs protect against any single
node failure.

4) Loop Detection: LFAs and all of its variants share the
shortcoming that their deployment may cause forwarding loops
[24], [25] in case of unprotected failures. In [24] the authors
present a loop detection mechanism for LFAs. It is based on a
bit string in the packet header where each forwarding device
in the network is assigned a bit position. When a node needs
to reroute a packet, it checks whether its own bit is activated.
If this is not the case, the node activates the bit and reroutes
the packet. However, if the bit is already activated, the packet



has been rerouted by the node before, and thus, the packet is
dropped to prevent a loop. In [25] the authors describe loop
detection for all LFA variants.

V. TUNNEL-BASED BIER-FRR

In this section we review tunnel-based BIER-FRR. We
introduced this mechanism at the IETF [5]. First, we describe
the concept, explain two modes of operation and an exam-
ple. Then, we present changes to tunnel-based BIER-FRR
for deployment with the compact BIFT. Finally, we discuss
forwarding state.

A. Concept

When a BFR cannot forward a packet to a NH, the neighbor
may still be reachable on a backup path. Tunnel-based BIER-
FRR tunnels traffic through the routing underlay around the
failure to BIER nodes downstream in the BIER distribution
tree. A tunnel may be affected by the same failure but
the routing underlay quickly restores connectivity with FRR
mechanisms. With link protection, tunnel-based BIER-FRR
tunnels the BIER packet to the NH. With node protection,
BIER packets with adjusted BitStrings are tunneled to the
next-next-hops (NNHs). Additionally, one BIER packet is
tunneled to the NH to deliver a packet if only the link between
PLR and NH failed.

Protection capabilities of tunnel-based BIER-FRR depend
on the properties of the routing underlay. Tunnel-based BIER-
FRR protects against any single component failure which can
be handled by FRR mechanisms in the routing underlay. We
describe the operation of tunnel-based BIER-FRR for link and
node protection based on the normal BIFT.

1) Link Protection: Tunnel-based BIER-FRR with link
protection does not require changes to the BIFT. When a
primary NH is unreachable, the packet copy is tunneled to
the NH instead of being forwarded on Layer 2. The routing
underlay leverages IP-FRR to deliver the packet to the NH.

2) Node Protection: Tunnel-based BIER-FRR with node
protection tunnels BIER packets to the NNHs. However,
usually the NH adapts the BitString before the packet is
forwarded to the NNH. Thus, before the packet is tunneled, the
PLR performs modifications on the BitString that are usually
done by the NH, i.e., applying the F-BM. To that end, backup
entries in the BIFT are required which consist of a backup
NH, and a backup F-BM. There are two categories of backup
entries. First, for BFERs that are also NHs. In such backup
entries, the NH is the backup NH and in the backup F-BM
only the bit of the BFER is activated. This tunnels a packet to
the NH in case only the link between PLR and NH failed. The
second category of backup entries is for BFERs that are not
NHs. For their entries, the backup NH is the NNH towards
the BFER. The backup F-BM is the primary F-BM of the NH
for the NNH.

When a primary NH is unreachable, the BFR performs three
operations. First, the BFR applies the primary and the backup
F-BM to the packet clone. The primary F-BM clears BFERs
from the BitString that have a different NH. The backup F-BM
clears BFERs from the BitString that have a different NNH.

This leaves only bits of BFERs active that are activated in
both, the primary and backup F-BM, i.e., all BFERs that have
the same NH and the same NNH. Second, the packet copy
is tunneled to the backup NH. Third, only bits that are active
in both, the primary and backup F-BM are cleared from the
remaining bits.

B. Forwarding Example

Figure 6 shows a BIER topology with a node failure where
each BFR is also a BFIR and BFER. Table 3 displays the
BIFT of BFR 1 with backup entries for node protection.

Shortest-path tree of BFR 2

1

2

3
4

BFER NH F-BM
2 2 1010

2 0010
3 3 0100

3 0100
4 2 1010

4 1100

Figure 6: BIER topology with
a node failure. The shortest-path
tree of BFR 2 is shown to derive
the backup F-BM of BFR 1 for
BFER 4.

Table 3: BIFT of BFR 1
with backup entries for
node protection.

BFR 1 processes a packet with the BitString 1000. The
least-significant activated bit identifies BFER 4. However, the
primary NH BFR 2 is unreachable. Thus, both, the primary
F-BM 1010 and the backup F-BM 1100 are applied to the
BitString of the packet copy. This leaves the BitString 1000
and the packet is tunneled to BFR 4 through the routing
underlay. Bits that are activated in both, the primary and
backup F-BM are cleared from the remaining bits which leaves
0000 and processing stops. The packet is eventually delivered
by the routing underlay to BFR 4.

C. Compact BIFT

When the compact BIFT is used, tunnel-based BIER-FRR
with link protection can be deployed as described in Section
V-A1. Tunnel-based BIER-FRR with node protection requires
two modifications. First, multiple backup entries are required
for each primary forwarding entry. In the compact BIFT, each
primary forwarding entry corresponds to one specific NH. For
each NNH of the NH, one backup entry is required. The
backup entries are calculated as described in Section V-A2.
Second, when a BFR detects that a specific NH is unreachable,
it matches incoming packets on the backup entries of the
affected primary entry instead.

D. State Discussion

Tunnel-based BIER-FRR requires one backup entry for
each primary entry. Therefore, in a topology with n BFERs
the normal BIFT with backup entries contains n + n for-
warding entries. Deployment with the compact BIFT requires
significantly fewer forwarding entries because the average



number of neighbors is significantly smaller than the number
of destinations in a network. In a topology with an average
node-degree of k, each node has k neighbors, and each NH
has k− 1 NHs on average. As a result the average number of
forwarding entries per node is the sum of primary forwarding
entries and backup entries k + k · (k − 1).

VI. LFA-BASED BIER-FRR

In this section we review LFA-based BIER-FRR [3]. We
explain the concept, derivation of backup entries, and a for-
warding example.

A. Concept

LFA-based BIER-FRR leverages backup entries in the BIFT
to deviate traffic on backup paths when the primary path is
interrupted. A backup entry consists of a backup NH, and a
backup F-BM. When a primary NH is unreachable, further
processing depends on the availability of a backup entry. If
there is no backup entry, the bit of the BFER is cleared from
the remaining bits and no packet is delivered to this particular
BFER. Processing resumes with the next BFER. If there is a
backup entry, further packet processing differs in three ways
from regular BIER forwarding. First, the PLR applies the
backup F-BM instead of the primary F-BM to the BitString of
the packet clone. Second, the BIER packet is forwarded to the
backup NH instead of the primary NH. Third, the bits of the
backup F-BM instead of the primary F-BM are cleared from
the remaining bits. Afterwards, the next BFER is processed.

B. Derivation of Backup Entries

We describe how we derive a backup entry consisting of a
backup NH and a backup F-BM for a specific primary entry.
First, we identify BIER neighbors that are LFAs as described
in Section IV. LFA computation has to be performed on the
BIER topology because Layer 3 LFAs may not be available on
BIER layer due to topology differences. If no LFA is available,
the primary forwarding entry remains without a backup entry.
If there is an LFA L, it is selected as the backup NH. The
activated bits in the backup F-BM are determined as follows.
The bit that corresponds to an arbitrary BFER B is activated in
the backup F-BM only if one of the two following conditions
is fulfilled. First, L is an LFA to protect B. Second, L is the
primary NH on the path to B. This aggregates all BFERs that
are reached on a primary or backup path where L is the NH.

C. Forwarding Example

Figure 7 shows a BIER topology with a failed link between
BFR 1 and 2. Each BFR is both a BFIR and a BFER. Table 4
contains the BIFT of BFR 1 with backup entries for link
protection.

BFR 1 processes a BIER packet with the BitString 1110.
The least-significant activated bit identifies BFER 2. However,
the primary NH BFR 2 is unreachable and there is no backup
entry. Thus, the bit for BFER 2 is cleared from the remaining
bits 1100 and no packet is sent. The next destination is BFER
3. Since the primary NH BFR 3 is reachable, the primary F-
BM is applied and a packet clone with the BitString 0100 is

1

2

3
4

BFER NH F-BM
2 2 1010

- -
3 3 0100

- -
4 2 1010

3 1100

Figure 7: BIER topology
with a link failure.

Table 4: BIFT of BFR 1
with backup entries for link
protection.

forwarded to BFR 3. Clearing the F-BM from the remaining
bits leaves only one bit activated 1000 which corresponds to
BFER 4. However, the primary NH BFR 2 is unreachable.
Thus, the backup F-BM is applied and a packet copy with the
BitString 1000 is forwarded to the backup NH BFR 3. After
the backup F-BM has been cleared from the remaining bits,
no activated bits remain and processing stops. BFR 3 then
forwards the packet to its destination BFR 4.

VII. EXTENSIONS FOR LFA-BASED BIER-FRR

In this section, we expose major shortcomings of LFA-
based BIER-FRR in terms of matching order, coverage, and
forwarding state, and propose solutions. In the end we discuss
scalability in terms of forwarding entries.

A. Matching Order

In the previous example two packets are forwarded to
BFR 3. This is caused by the order in which receivers of a
packet are processed. The following scenario describes when
more than one packet is forwarded to one specific NH P . First,
a packet is forwarded to the primary NH P towards a set of
BFERs. Second, another BFER that should receive the packet
is processed but its primary NH is unreachable. However, P
is the backup NH. Thus, a second packet is forwarded to P
on a backup path. To avoid sending multiple packets over one
link, it is necessary to first process forwarding entries whose
primary NH is unreachable. Then, no additional packet is sent
because the backup F-BM aggregates primary and backup
paths that have the same NH.

B. Coverage

Depending on the topology, LFAs cannot protect against
arbitrary single component failures. rLFAs protect against any
single link failure on unit-link-cost topologies. TI-LFAs and
eLFAs guarantee protection against any single component
failure on arbitrary topologies. However, the deployment of
each of the three LFA extensions requires some sort of IP
or segment routing tunnel. Nevertheless, full protection is an
important property and we suggest to augment LFA-based
BIER-FRR with rLFAs, TI-LFAs, or eLFAs to increase the
coverage. rLFAs, TI-LFAs, and eLFAs need to be BFRs.
Therefore, computations have to be performed on the BIER
topology because not all Layer 3 devices may be BIER
devices.



C. Compact BIFT

We explain scalability issues of LFA-based BIER-FRR and
propose a solution that requires changes to how backup entries
are derived.

1) Problem Statement and Solution: LFA-based BIER-FRR
has been described for the BIFT that contains one primary
forwarding entry per BFER. In its proposed form LFA-based
BIER-FRR is incompatible with the compact representation of
the BIFT, which requires only one primary entry per neighbor.
In the following we describe the necessary changes to use
LFA-based BIER-FRR with the compact BIFT.

We propose to use a default BIFT that does not contain
any backup entries and is used for forwarding in the failure-
free case. In addition, we use failure-specific backup BIFTs.
When a BFR detects that a specific neighbor is unreachable,
it matches incoming packets on the backup BIFT that is
associated with the unreachable NH. When the failure has been
repaired or forwarding entries are updated, the BFR continues
matching on the default BIFT.

2) Derivation of Backup BIFTs: We explain how the
backup BIFT for a specific neighbor N is derived in two steps.
First we fill the BIFT with entries and afterwards activate bits
in specific F-BMs. We start with an empty backup BIFT. In the
first step, for each neighbor that is not N , the corresponding
primary entry from the default BIFT is added to the backup
BIFT. In the second step, for each BFER B whose primary
NH is N , LFAs are identified on the BIER topology. If an
LFA is available, the bit that corresponds to B is activated in
the F-BM of the BFR that is the LFA. If no LFA is available,
B cannot be protected.

D. State Discussion

In a topology with n BFERs the normal BIFT contains n
primary forwarding entries. LFA-based BIER-FRR requires n
additional backup entries, which totals in n + n forwarding
entries. In contrast, the compact BIFT contains only one for-
warding entry for each neighbor. Therefore, when the average
node degree is k, the compact BIFT requires on average only
k primary forwarding entries. On average each node has k
backup BIFTs with on average k − 1 entries, which results
in k + k · (k − 1) forwarding entries. Since the average node
degree is significantly smaller than the number of destinations
in a network, scalability of the compact BIFT is considerably
better.

VIII. COMPARISON OF LFA- AND TUNNEL-BASED
PROTECTION FOR BIER

In this section we compare LFA-based and tunnel-based
BIER-FRR. We point out similarities, and analyze protection
capabilities and overhead with regard to header size and for-
warding state. Afterwards, we discuss the impact of differences
between Layer 3 topology and BIER topology.

A. Similarities

Both approaches implement FRR for BIER for resilient
transport of IP multicast. Forwarding devices need to detect
unreachable NHs, e.g. through a BFD. Both FRR mechanisms
are based on pre-computed backup entries in addition to the

primary forwarding entries. It is not necessary to change the
structure of the BIFT. When the PLR cannot reach a primary
NH, affected packets are rerouted according to the backup
entries. Two modes of operation for link and node protection
with different protection properties are available. For both,
LFA- and tunnel-based BIER-FRR it is necessary to augment
the forwarding procedure of BIER.

B. Protection Capabilities

We compare coverage properties and occurrence of loops.
1) Coverage: Tunnel-based BIER-FRR is able to protect

traffic against arbitrary single component failures by design
when the routing underlay provides full FRR coverage. As
long as the destination is still reachable, an IP or segment rout-
ing tunnel is deployed to deliver the traffic to the unreachable
NH or NNHs.

Protection of LFA-based BIER-FRR depends on the topol-
ogy. The authors of [24] evaluate LP- and NP-LFAs on a
comprehensive set of topologies. They find that LP-LFAs
protect only 70% of destinations against single link failures
and cause loops when nodes fail. NP-LFAs avoid loops when
a node fails, but protect only 40% of destinations against single
link failures. LP-rLFAs protect against any single link failure
on unit link cost topologies. For any further guarantees TI-
LFAs, or eLFAs have to be deployed. Both LFA extensions
guarantee full protection for any single component failure
in the network. However, augmenting LFA-based BIER-FRR
with rLFAs, TI-LFAs, or eLFAs requires an additional header.
TI-LFAs require an IP header stack, eLFAs require additional
forwarding entries to implement backup paths.

2) Loops: Tunnel-based BIER-FRR cannot cause loops on
the BIER layer because the packet is tunneled to the backup
NH. When the packet is successfully delivered at the backup
NH, BIER forwarding continues. If the tunnel is interrupted,
the routing underlay is responsible for avoiding loops.

LFA-based BIER-FRR cannot guarantee to avoid loops
because depending on the failure scenario and the mode
of operation, all LFA variants can cause loops [24], [25].
With link protection, traffic may loop if at least one node or
multiple links fail. With node protection, loops are prevented
as long as not multiple components fails. In Section IV-B4
we review a loop detection mechanism for LFAs and all
variants to prevent loops in any failure scenario. However,
this mechanism significantly increases operational complexity
and modifications to the packet header are necessary.

C. Overhead

We compare both protection approaches according to packet
header size and required forwarding state.

1) Header Size: Tunnel-based BIER-FRR requires tunnel-
ing to protect traffic against failures. This adds an additional
header to the packet. When the tunnel is interrupted and
the routing underlay leverages a tunnel-based FRR protection
mechanism for unicast, e.g. TI-. or eLFAs, an additional header
is added to the packet. The basic form of the LFA-based BIER-
FRR approach does not require tunneling. However, rLFAs,
TI-LFAs, or eLFAs increase the protection capabilities of LFAs
to an appropriate level but require at least one additional IP



header. More header reduce the throughput and the Maximum
Transmission Unit (MTU) has to be decreased at domain
boundaries. The LFA-based approach requires a loop detection
mechanism to prevent loops. Such a mechanism is available,
however it increases packet header size even further.

2) Forwarding State: Both BIER-FRR approaches require
the same amount of forwarding state. In a topology with n
BFERs and an average node degree of k, the regular BIFT
contains n + n forwarding entries while the compact BIFT
requires on average only k + k · (k − 1) entries. Since k
is significantly smaller than n, deployment with the compact
BIFT provides better scalability.

D. Influence of the BIER Topology

When some network nodes in a Layer 3 network do not
support BIER, Layer 3 LFAs may disappear on the BIER
layer. Thus, coverage of LFA-based BIER-FRR depends on the
BIER topology. When regular LFAs have low coverage, LFA-
based BIER-FRR needs to be complemented with rLFAs, TI-
LFAs, or eLFAs. Backup paths may become longer in a sparse
BIER topology because LFAs may be reachable only through
a long Layer 3 tunnel. Tunnel-based BIER-FRR leverages
tunnels through the routing underlay to the BIER NH or BIER
NNHs for protection. Thus, tunnel-based BIER-FRR is not
affected in a negative way by a BIER topology that is different
from the Layer 3 topology.

IX. CONCLUSION

In this paper we compared LFA-based and tunnel-based
BIER-FRR for resilient and scalable transport of IP multi-
cast. Our discussion showed shortcomings of the LFA-based
approach. Sometimes multiple packets are sent over one link,
not all single link or single node failures can be protected,
and in some scenarios backup traffic may loop. We propose
extensions to overcome those shortcomings so that the capabil-
ities of LFA-based and tunnel-based BIER-FRR mechanisms
are equal. Differences remain in backup path length when the
BIER topology is different from the Layer 3 topology, and in
the need for additional headers.
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1. Introduction

IP multicast (IPMC) is leveraged for many services like IPTV, multicast
VPN, or the distribution of financial or broadcast data. It efficiently forwards
one-to-many traffic on tree-like structures to all desired destinations by sending
at most one packet copy per link in the distribution tree. IPMC is organized into
sets of receivers, so-called IPMC groups. Hosts subscribe to IPMC groups to
receive the traffic which is addressed to that group. Traditional IPMC methods
require per-IPMC-group state within core routers to forward the packets to the
right next-hops (NHs). This raises three scalability issues. First, the number
of IPMC groups may be large which require lots of space in forwarding tables.
Second, core routers are involved in the establishment, removal, and in the
change of an IPMC group. This requires significant signaling in the core network
every time subscribers change because many nodes possibly need to update their
forwarding information base, which imposes heavy load on core when churn
rates are large. Third, when the topology changes or in case of a failure, the
forwarding of any IPMC group possibly requires fast update, which is demanding
in a critical network situation. IPMC features are available in most off-the-shelf
hardware, but the features are turned off by administrators due to complexity
and limited scalability.

The Internet Engineering Task Force (IETF) developed Bit Index Explicit
Replication (BIER) [1, 2] as a solution to those problems. BIER features a
domain concept. Only ingress and egress routers of a BIER domain participate
in signalling. They encapsulate IPMC packets with a BIER header containing
a bit string that indicates the receivers of the IPMC group within the BIER
domain. Based on that bit string the packets are forwarded through the BIER
domain without requiring per-IPMC-group state in core routers.

BIER leverages the so-called bit indexed forwarding table (BIFT) for for-
warding decisions. Its entries are derived from paths induced by the interior
gateway protocol (IGP) which is used for unicast routing. In the following
we refer to that routing protocol with the term ’routing underlay’. Therefore,
BIER traffic follows the same paths as the unicast traffic carried by the rout-
ing underlay. So far, BIER lacks any protection capabilities. In case of a link
or node failure, the BIFT entries need to be changed so that BIER traffic is
carried around failed elements towards receivers. However, the BIFTs can be
updated only after the routing underlay has updated its forwarding information
base and based on the new paths, BIER forwarding entries are recomputed.
This takes a significant amount of time. In the meantime, packets are dropped.
When a multicast packet is dropped, all downstream subscribers cannot receive
the packet. Regular IP forwarding is affected as well by failures, but for uni-
cast traffic, fast reroute (FRR) [3] mechanisms have been proposed to reroute
affected packets on backup paths until the primary forwarding entries are up-
dated. IP-FRR leverages pre-computed backup actions for fast recovery in case
of a failure without the need for signaling. However, IP-FRR is not a suitable
protection method for multicast traffic because it does not consider the tree-like
forwarding structures along which IPMC packets are distributed.
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In this work, we introduce BIER-FRR. It has two different operation modes
to protect either only against link failures or also against node failures. We
recently proposed this mechanism in the BIER working group of the IETF [4].
BIER has been suggested as a novel transport mechanism for IPMC. However,
it cannot be configured yet on standard hardware. New, programmable data
plane technologies allow the definition of new packet headers and forwarding
behavior, and offer themselves for the implementation of prototypes. In [5], we
presented an early version of a P4-based prototype for BIER. It was based on
the P14 specification of P4 [6] and required a few workarounds because at that
time some P4 features were not available on our target, the software switch
BMv2. Moreover, there was no protection method available for BIER. We
now provide the description of a completely reworked prototype on the base of
the P16 specification of P4 [7]. The new prototype implements IP forwarding,
a simple form of IP-FRR, BIER forwarding, and BIER-FRR. It comprises a
controller hierarchy with local controllers that enables FRR techniques with
P4. We argue that local controllers are needed for protection and helpful for
local tasks in general. The evaluation of the prototype shows that BIER traffic
is not longer affected by network failures than unicast traffic when BIER-FRR
is enabled. Thus, the contribution of this paper is threefold: (1) a concept for
BIER-FRR, (2) an implementation of BIER and BIER-FRR with P4, and (3)
a controller hierarchy with local controllers to support FRR techniques in P4.
Finally, the P4-based prototype demonstrates the usefulness of BIER-FRR. The
source code of our prototype with the fully working data and control plane is
publicly available on GitHub.

The remainder of this paper is structured as follows. Section 2 reviews
basics of multicast. Section 3 contains fundamentals about IP-FRR, explains
why it is insufficient to protect multicast traffic, and examines related work.
Section 4 discusses related work for both legacy- and SDN-based multicast.
Section 5 gives a primer on BIER. Section 6 explains the resilience problem of
BIER and introduces BIER-FRR. In Section 7 we summarize necessary basics
of P4 needed for the understanding of the BIER prototype. Section 8 describes
the P4-based prototype implementation of IP, IP-FRR, BIER, and BIER-FRR.
The prototype is used to demonstrate the usefulness of BIER-FRR in Section 9.
Finally, Section 10 summarizes this paper and discusses further research issues.

2. Technological Background for IP Multicast

This section gives a primer on IP multicast (IPMC) for readers that are not
familiar with IPMC. IPMC supports one or more sources to efficiently commu-
nicate with a set of receivers. The set of receivers is called an IPMC group
and is identified by an IP address from the Class D address space (224.0.0.0 –
239.255.255.255). Devices join or leave an IPMC group leveraging the Internet
Group Management Protocol (IGMP) [8].

IPMC packets are delivered over group-specific distribution trees which are
computed and maintained by IPMC-capable routers. In the simplest form,
source-specific multicast trees based on the shortest path principle are computed
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and installed in the routers. The notation (S,G) identifies such a shortest path
tree for the source S and the group G.

IPMC also supports the use of shared trees that can be used by multiple
senders to send traffic to a multicast group. The shared tree has a single root
node called rendezvous point (RP). The sources send the multicast traffic to
the RP which then distributes the traffic over a shared tree. In the literature,
shared trees are denoted by (∗, G).

Protocol-independent multicast (PIM) leverages unicast routing information
to perform multicast forwarding. PIM cooperates with various unicast routing
protocols such as OSPF or BGP and supports both source-specific and shared
multicast distribution trees.

Pragmatic General Multicast (PGM) [9] reduces packet loss for multicast
traffic. It enables receivers to detect lost or out-of-order packets and supports
retransmission requests similar to TCP.

3. IP Fast Reroute

In this section we give a primer on IP fast reroute (IP-FRR). First, we
explain fundamentals of IP-FRR and describe Loop-Free Alternates. Then, we
discuss related work.

3.1. Fundamentals of IP-FRR

When a link or a node fails, devices may not be able to forward packets
to their NHs. As soon as a failure is detected in an IP network, the changed
topology is signaled through the network, new working paths are calculated,
and the forwarding tables of all devices are consistently updated. This process
is called reconvergence and may take up to several seconds. In the meantime,
packets are dropped in case of wrong or missing forwarding entries. IP-FRR
[3] protects IP unicast traffic against the failure of single links and nodes while
reconvergence is ongoing. It is based on pre-computed backup actions to quickly
reroute affected packets. Figure 1 shows an example for Loop-Free Alternates
(LFAs) [10] which is the most popular IP-FRR mechanism. When a node’s

PLR Destination

LFANo LFA

Default route
Backup route

Figure 1: A PLR reroutes a packet to a backup path when the NH on the primary path is
unreachable.

(primary) NH becomes unreachable, the node detects that failure after some
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time and reroutes the traffic locally over a backup path. Therefore, the node is
also called point of local repair (PLR). To reroute packets in a timely manner,
nodes store a backup NH in addition to the primary NH for each destination.
When the PLR detects that the primary NH is unrechable, e.g., by loss-of-light
detection, loss-of-carrier detection, a bidirectional forwarding detection1 (BFD)
[11], or any other suitable mechanism, it forwards the packet to its backup NH
instead. That backup NH is called Loop-Free Alternate (LFA) and it has to
be chosen such that rerouted traffic does not loop. However, some destinations
remain unprotected because there is not always an alternative hop that has a
shortest path towards the destination which avoids the failed element. The set
of protected destinations is also called coverage. The limited coverage of LFAs
has been evaluated in various studies [12, 13].

3.2. Related Work

The two surveys [14, 15] give an overview of several IP-FRR mechanisms.
We discuss only some of the papers. Equal-cost multi-path (ECMP) can be used
as a very basic FRR mechanism. When a PLR has at least two paths with equal
cost towards a destination, it quickly deviates traffic to the other path when the
primary NH is unreachable. However, this works only if two equal-cost paths
are available under normal conditions, which is mostly not the case. Not-via
addresses [16, 13] tunnel packets to the downstream next-next-hop (NNH) if
the NH is unreachable. To that end, the NNH is assigned a unique address
and an explicit backup path is constructed which does not include the failed
component. Loop-Free Alternates (LFAs) [10] forward packets to alternative
NHs if the primary NH is unreachable. Those alternative NHs have to be
chosen in a way that they have a working shortest path to the destination that
avoids rerouting loops. As such alternative neighbors do not exist for all PLRs
and destinations, the LFA mechanism cannot protect against all single link and
node failure. Remote LFAs [17] (rLFAs) extend the protection capabilities of
LFAs by sending affected packets through shortest path tunnels to nodes that
still reach the destination on a working shortest path. rLFAs protect against
any single link failure in unit link cost networks. However, they achieve only
partial coverage in case of node failures or non-unit link costs. An analysis can
be found in [12].

4. Related Work

We review work in the context of SDN-based multicast. Most traditional
multicast approaches were implemented with OpenFlow. Some works consid-
ered protection mechanisms. A few studies improve the efficiency of multicast
forwarding with SDN. Only a single work implements BIER without protection
using OpenFlow, but the implementation itself requires dynamic forwarding
state, which runs contrary to the intention of BIER.

1When a BFD is established between two nodes, they periodically exchanges keep-alive
notifications.
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4.1. Multicast Implementations with OpenFlow

The surveys [18, 19] provide an extensive overview of multicast implemen-
tations for SDN. They discuss the history of traditional multicast and present
multiple aspects for SDN-based multicast, e.g., multicast tree planning and
management, multicast routing and reliability, etc. In the following we briefly
discuss some exemplary works that implement multicast for SDN. More details
can be found in the surveys or the original papers.

Most related works with regard to SDN-based multicast implement explicit
flow-specific multicast trees. Most authors propose to compute traffic-engineered
multicast trees in the controller using advanced algorithms and leverage SDN
as tool to implement the multicast path layout. The following works provide
implementations in OpenFlow to show the feasibility of their approaches. Dy-
namic Software-Defined Multicast (DynSDM) [20, 21] leverages multiple trees to
load-balance multicast traffic and efficiently handle group subscription changes.
Modified Steiner tree problems are considered in [22, 23] to minimize the total
cost of edges and the number of branch nodes, or to additionally minimize the
source-destination delay [24]. In [25], the authors compute and install traffic-
engineered shared multicast trees using OpenFlow. In [26] and [27], traffic-
engineered Steiner trees are computed which minimize the number of edges of
the tree and provide optimized locations for multicast sources in the network.
The Avalanche Routing Algorithm (AvRA) [28] considers topological properties
of data center networks to optimize utilization of network links. Dual-Structure
Multicast (DuSM) [29] improves scalability and link utilization for SDN-based
data center networks by deploying different forwarding approaches for high-
bandwidth and low-bandwidth flows. In [30], Steiner trees are leveraged to
compute a multicast path layout including certain recovery nodes which are used
for reliable multicast transmission such as PGM. In [31], the authors evaluate
different node-redundant multicast tree algorithms in an SDN context. They
evaluate the number of forwarding rules required for each mechanism and study
the effects of node failures. The authors of [32] reduce the number of forward-
ing entries in OpenFlow switches for multicast. They propose to use address
translation from the multicast address to the receiver’s unicast address on the
last branching node of the multicast tree. This allows to omit multicast-specific
forwarding entries in leaf switches.

4.2. Multicast Protection with OpenFlow

Kotani et al. [33] suggest to utilize primary and backup multicast trees for
SDN networks. Multicast packets carry an ID to identify the distribution tree
over which they are forwarded. In case of a failure, the controller chooses an
appropriate backup multicast tree and reconfigures senders accordingly. This
mechanism differs in two ways from BIER-FRR. First, the controller has to be
notified, which is not suitable for fast recovery. Second, it requires significant
signalling effort in response to a failure.

The authors of [34] propose a FRR method for multicast in OpenFlow net-
works. Multicast traffic is forwarded along a default distribution tree. If a
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downstream neighbor is unreachable, traffic is switched to a backup distribu-
tion tree that contains all downstream nodes of the unreachable default subtree.
The backup distribution tree must not contain the unreachable neighbor as for-
warding node. VLAN tags are used to indicate the trees over which multicast
packets should be sent. This mechanism differs from BIER-FRR in a way that
it requires a significant amount of additional dynamic forwarding state to con-
figure the backup trees.

4.3. Improved Multicast Forwarding for SDN Switches

Some contributions improve the efficiency of devices to enable hardware-
based multicast forwarding. The work in [35] organizes forwarding entries of a
switch based on prime numbers and the Chinese remainder theorem. It reduces
the internal forwarding state and allows for more efficient hardware implemen-
tations. Reed et al. provide stateless multicast switching in SDN-based sys-
tems using Bloom filters in [36] and implement their approach for TCAM-based
switches. The authors compare their approach with existing layer-2 forwarding
and show that their method leads to significantly lower TCAM utilization.

4.4. SDN Support for BIER

The authors of [37, 38] implement two SDN-based multicast approaches us-
ing (1) explicit multicast tree forwarding and (2) BIER forwarding in OpenFlow.
They realize explicit multicast trees with OpenFlow group tables. To support
BIER, they leverage MPLS headers to encode the BIER bit string, which lim-
its the implementation to bit strings with a length of 20 bits, and therefore a
maximum of 20 receivers. Rules with exact matches for bit strings are installed
in the OpenFlow forwarding tables. When a packet with a BIER header ar-
rives at a switch and a rule for its bit string is available, the packet can be
immediately transmitted over the indicated interfaces. Otherwise, a local BIER
agent running on the switch and maintaining the BIFT is queried. The local
BIER agent installs a new flow entry for the specific bit string in the OpenFlow
forwarding table. Thus, this approach requires bit string-specific state instead
of IPMC group specific state. Furthermore, it is not likely to work well with
quickly changing multicast groups as most subscription changes require config-
uration changes in the forwarding table of the switch. BIER with support for
traffic engineering (TE) has been proposed in [39]. It uses the same header
format but features different forwarding semantics and is not compatible with
normal BIER. In [40] we have proposed and evaluated several FRR algorithms
for BIER-TE and implemented them in a P4-based prototype [5].

5. Bit Index Explicit Replication (BIER)

First, we give an overview of BIER [2]. Afterwards, we present the Bit Index
Forwarding Table (BIFT), which is the forwarding table for BIER. Then, we
describe the BIER forwarding procedure.
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5.1. Overview

We introduce essential nomenclature for BIER, the layered BIER architec-
ture, the BIER header, and the BIER forwarding principle.

5.1.1. BIER Domain

BIER leverages a domain concept to transport IPMC traffic in a scalable
manner, which is illustrated in Figure 2. Bit-Forwarding Routers (BFRs) for-
ward BIER multicast traffic within the BIER domain. Inbound multicast traffic
enters the domain through Bit-Forwarding Ingress Routers (BFIRs) and leaves
it through Bit-Forwarding Egress Routers (BFERs). Border routers usually im-
plement both BFIR and BFER functionality. When a BFIR receives an inbound
IPMC packet, it pushes a BIER header onto the IPMC packet which indicates
all BFERs that should receive a packet copy. BFRs utilize the information
in the BIER header to forward BIER packets to all desired destinations along
the paths induced by the interior gateway protocol (IGP). Thereby, packets
are replicated if needed. Finally, the BFERs remove the BIER header before
forwarding IPMC packets outside the domain.

BIER

Bit-Forwarding Ingress 
Router (BFIR)

Bit-Forwarding
Router (BFR)

Bit-Forwarding Egress
Router (BFER)

BIER

BIER

BIER

BIER

BIER

BIER domain

Figure 2: IPMC traffic enters a BIER domain through BFIRs which equip it with a BIER
header. BFRs forwarded the traffic based on the BIER header within the domain on paths
induced by the IGP. BFERs remove the BIER header when the traffic leaves the domain.

5.1.2. A Layered BIER Architecture

The BIER architecture can be subdivided into three layers: the IPMC layer,
the BIER layer, and the routing underlay which is the forwarding mechanism
for unicast traffic. In IP networks, the latter corresponds to the interior gateway
protocol (IGP). Figure 3 shows the relation among the layers.

The IPMC layer requests multicast delivery for IPMC packets to a set of
receivers in a BIER domain that depend on IPMC subscriptions. That is, when
an inbound IMPC packet arrives at a BFIR, the BFIR equips the IPMC packet
with an appropriate BIER header indicating all desired destinations. The BIER
layer forwards these packets through the BIER domain to all receivers indicated
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Figure 3: Layered BIER architecture with IPMC layer, BIER layer, and the routing underlay.

in the BIER header, thereby implementing a stateless point-to-multipoint tun-
nel für IPMC. The BIER layer leverages the forwarding information of the
routing underlay to populate the forwarding tables of the BFRs. As a result,
BIER traffic to a specific BFER follows the same path as unicast traffic towards
that BFER. If two BFR are connected on Layer 2, the BIER traffic is directly
forwarded; otherwise, the BFR neighbor is reachable only over the routing un-
derlay so that the BIER traffic is encapsulated and forwarded over the routing
underlay. When a BIER packet reaches a BFER that should receive a packet
copy, the BFER removes the BIER header and passed the IPMP packet to the
IPMC layer for further forwarding.

5.1.3. BIER Header and Forwarding Principle

The BIER header contains a bit string to identify BFERs. For brevity, we
talk in the following about the BitString of a packet to refer to the bit string
in the BIER header of that packet. The BitString is of a specific lenght. Each
bit in the BitString corresponds to one specific BFER. The bits are assigned
to BFERs starting with the least significant bit. BIER devices must support a
BIER header of 256 bits. As this may not suffice to assign bits to all BFERs in
large networks, the standard [2] defines subdomains to cope with that problem.
This is a technical detail that we do not consider any further and our proposed
solution can be easily adapted to subdomains.

When a BFIR receives an IPMC packet, it pushes a BIER header to the
IPMC packet, determines the set of BFERs that must receive the traffic of the
respective IMPC group, and activates in the BitString the bits corresponding
to these BFERs. Packets are forwarded based on the information in their BIER
header. A BFR sends a packet to any of its interfaces if at least one BFER
indicated in the BIER header is reached in the routing underlay over this specific
interface. To avoid duplicates, only those bits are kept in the BitString whose
BFERs can be reached over the specific interface.
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Figure 4 illustrates the BIER forwarding principle. It shows a small BIER
domain with four nodes, each of them being BFR, BFIR, and BFER. Hosts are
attached to all BIER nodes and participate in a single multicast group. Host 1
sends an IPMC packet to all other hosts. The figure visualizes how the BitString
changes along the forwarding tree whose paths are inherited from the routing
underlay.

2

3

1

4
Shortest path tree from the
routing underlay of BFR 1

IPMC Host 1

IPMC Host 3

IPMC Host 2

IPMC Host 4

BIER domain

1110
1010

0100 1000

Figure 4: An IPMC packet is forwarded from Host 1 to all other hosts via a BIER domain.
Within the domain, BIER packets are forwarded based on the BitString.

The information of the BIER forwarding tables depends only on the routing
underlay. In Section 5.2 we explain the structure of the table and how its entries
are calculated. In contrast to traditional IPMC forwarding, BIER forwarding
does not require knowledge about IPMC groups. This has several advantages.
BFRs do not neet to keep state per IPMC group. This frees core nodes of a BIER
domain from signalling and state processing per IPMC group when subscriptions
or routes change, e.g., in case of failures. This makes BIER forwarding in core
nodes more robust and scalable than traditional IPMC forwarding. BFIRs still
participate in IPMC signaling to keep track of group changes in order to adapt
the BIER header for each IPMC group. BFERs forward outbound IPMC traffic
in a traditional way.

5.2. Bit Index Forwarding Table

In this section we describe the Bit Index Forwarding Table (BIFT) which is
the forwarding table of BFRs. We explain its structure and the computation of
its entries.

First, we define BFR neighbors (BFR-NBRs) before we introduce the struc-
ture of the BIFT. The BFR-NBRs of a BFR A are those BFRs, that are adjacent
to A according to the paths of the routing underlay.

Each BFR maintains a Bit Index Forwarding Table (BIFT) to determine the
NH, i.e., BFR-NBR, when forwarding a packet. Table 1 shows the structure of
the BIFT. For each BFER, the BIFT contains one entry which consists of a
forwarding bitmask (F-BM) and the BFR-NBR to which the packet should be
sent. The F-BM is used in the forwarding process to clear bits in a packet’s
BitString before transmission. The BFR-NBR for a BFER is derived as the
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BFER F-BM BFR-NBR

Table 1: Header of the BIFT.

BFR-NBR on the path from the considered BFR to the BFER in the routing
underlay. The F-BM for a BFER is composed as a bit string where all bits are
activated that belong to BFERs with the same BFR-NBR. As a result, all BIFT
entries with the same BFR-NBRs also have the same F-BM.

Table 2 illustrates the BIFT of BFR 1 in the example given in Figure 4.

BFER F-BM BFR-NBR
1 - -
2 1010 2
3 0100 3
4 1010 2

Table 2: BIFT of BFR 1.

5.3. BIER Forwarding

In this paragraph we describe BIER forwarding. First, we explain the pro-
cedure how BIER processes packets. Then, we show a forwarding example.
Finally, we illustrate the BIER header stack.

5.3.1. BIER Forwarding Procedure

BFRs process BIER packets in a loop. When a BFR receives a BIER packet,
it determines the position of the least-significant activated bit in the BitString.
The position of that bit corresponds to a BFER which is processed in this
specific iteration of the loop. The BFR looks up that BFER in the BIFT, which
results in a BFR-NBR and a F-BM. Then, a copy of the BIER packet is created
for transmission to that BFR-NBR. Before transmission, all bits are cleared in
the BitString of the packet copy that are not reachable through the same BFR-
NBR. This is achieved by an AND-operation of the BitString and the F-BM. We
denote this action as “applying the F-BM to the BitString”. Then, the packet
copy is forwarded to the indicated BFR-NBR. All BFERs in the IPMC subtree
of that BFR-NBR eventually receive a copy of this sent packet if their bit is
activated in the BitString of the packet copy. Thus, all BFERs of this IMPC
subtree can be considered as processed. Therefore, their bits are removed from
the BitString of the remaining BIER packet. To that end, the BFR applies
the complement of the F-BM to the BitString of the remaining BIER packet.
This ensures that packets are delivered only once to intended receivers. If the
BitString in the remaining BIER packet still contains activated bits, the loop
restarts; otherwise the processing loop stops.

When the BFER that is currently processed corresponds to the BFR itself,
the F-BM and BFR-NBR of its BIFT entry are empty. Then, a copy of the
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BIER packet is created, the BIER header is removed, and the packet is passed
to the IPMC layer within the BFR. Afterwards, the processed bit is cleared
in the BitString of the remaining BIER packet, and the loop restarts if the
BitString contains activated bits; otherwise the loop stops.

5.3.2. BIER Forwarding Example

We assume that BFIR 1 in Figure 4 receives an IPMC packet from IPMC
Host 1 that should be sent to the IPMC Hosts 2, 3, and 4. Therefore, it adds
a BIER header with the BitString 1110 to the IPMC packet and processes it.
The least-significant activated bit corresponds to BFR 2. BFR 1 looks up the
activated bit in its BIFT which is shown in Table 2. Then, it creates a packet
copy and applies the F-BM to the BitString of that copy. This sets the BitString
to 1010. Then, the packet copy is forwarded to BFR 2. Aftwards, BFR 1 clears
the activated bits of the F-BM from the BitString of the remaining original
BIER packet. This leaves a packet with the BitString 0100. BFR 1 processes
the next activated bit, i.e. the bit for BFER 3. A packet copy is created, and
the F-BM is applied which leaves the BitString 0100 in the packet copy. Then
it is forwarded to BFR 3.

BFR 2 process the packet in the same way. As a result, it forwards one
packet copy with the BitString 1000 to BFR 4. Additionally, it sends an IPMC
packet without BIER header to its connected host. BFR 3 and 4 do the same
when they receive their respective BIER packet.

5.3.3. BIER Header Stack

Without loss of generality, we assume in the following that the routing un-
derlay is IP. Furthermore, we neglect the role of Layer 2 to facilitate readability.

Each BIER device is also an IP device. However, not every IP device is a
BIER device. In Figure 5, the “Pure IP-node” is an IP node without BIER
functionality. It belongs to the IP topology but not to the BIER topology. This
influences the header stack of forwarded BIER packets. BFR 1, 2 and 3 are

IPBFR 1

BFR 2 

BFR 3

BIER domain

BHIP BHIP

BH
BH

IPMC packet BH BIER header IP IP header

IP domain

Pure
IP-node

Figure 5: BIER traffic forwarded over pure IP nodes requires additional IP encapsulation.
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both IP and BIER devices. The three BFRs are BFR-NBRs to each other.
BFR 1 and 2 are neighbors to each other in both the IP and BIER topology
because they are directly connected on Layer 2. Therefore, they exchange BIER
packets on Layer 2 without an additional header. Since the pure IP node is not
part of the BIER topology, BFR 1 and BFR 3 are BFR-NBRs although they
are not neighbors in the IP topology. To exchange packets, BFR 1 and BFR
3 encapsulate BIER packets with an IP header and forward them via the pure
IP node. When BFR 1 or 3 receive the packet, they remove the IP header and
process the BIER header.

6. BIER Fast Reroute

The necessity for resilience mechanisms in BIER networks has been discussed
in [41] without proposing any mechanism. In this section we introduce BIER
fast reroute (BIER-FRR) to protect BIER traffic against link and node failures
by taking advantage of reconvergence and FRR mechanisms of the routing un-
derlay. We explain why regular BIER cannot protect BIER traffic sufficiently
against failures, and present BIER-FRR for link and node protection, respec-
tively. Finally, we discuss the protection properties of BIER-FRR.

6.1. Link Protection

In this paragraph we introduce BIER-FRR with link protection. First, we
explain why relying on the available features of BIER and a resilient routing
underlay is not sufficient for protection against link failures. Afterwards, we
describe BIER-FRR with link protection and show a forwarding example.

6.1.1. Resilience Problems of BIER for Link Failures

BFR-NBRs may be directly connected over Layer 2 or they may be reachable
only over Layer 3 so that IP encapsulation is needed for them to exchange BIER
traffic (see Section 5.3.3). This has impact on the effect of link failures.

If neighboring BFRs are reachable only over Layer 3, they exchange BIER
traffic IP-encapsulated towards each other. If a link on the path towards the
BFR-NBR fails, the BFR-NBR is not reachable until the routing underlay has
restored reachability. This may be due to IP-FRR, which is fast, or IP routing
reconvergence, which is slow. In any case, the reachability on the BIER layer
is also restored and no further action needs to be taken. Possibly, the path in
the routing underlay changed, which may affect the neighboring relationships
among BFRs, so that BIFTs need to be recomputed. This, however, is not
time-critical.

If BFR-NBRs are directly connected over Layer 2, they exchange packets
without an additional IP header. If the link between them is broken, protection
mechanisms on Layer 3, in particular IP-FRR, cannot help because the BIER
packet is not equipped with an IP header. Therefore, affected BIER traffic
cannot be forwarded until a new BFR-NBR is provided in the BIFT for affected
BFERs. Thus, the BIFT needs to be updated. This process takes time to
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recompute the entries based on the new paths from the routing underlay and
starts only after reconvergence of the routing underlay has completed. This
is significantly later than FRR mechanisms on the routing underlay restore
connectivity for unicast traffic.

BIER-FRR with link protection effects that a BFR affected by a link failure
can forward BIER traffic again as soon as its connectivity problem is detected
on the BIER layer and the routing underlay is able to forward unicast traffic
again.

6.1.2. BIER-FRR with Link Protection

PLR BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

BIER

BIER

Figure 6: BIER-FRR with link protection is needed for BFR-NBRs which are directly con-
nected on Layer 2: they IP-encapsulate BIER traffic towards a BFR-NBR after it is detected
unreachable.

The concept of BIER-FRR with link protection is illustrated in Figure 6.
BFRs must be able to detect link failures. This may happen, e.g., through loss of
light detection or through bidirectional forwarding detection (BFD) with BFR-
NBRs [42]. If an unreachable BFR-NBR is detected, a BFR IP-encapsulates
BIER traffic towards that BFR-NBR. As a result, the BIER traffic will reach
the affected BFR-NBR again as soon as reachability on the routing underlay is
restored. This can be very fast if the routing underlay leverages FRR. When
the traffic arrives at the BFR-NBR, the additional IP header is removed and
packets are processed as normal BIER traffic.

6.1.3. Example for BIER-FRR with Link Protection

Figure 7 shows the BIER topology from the earlier forwarding example in
Figure 4 with a link failure. For convenience, the BIFT of BFR 1 is displayed
again in Table 3.

When BFR 1 sends a BIER packet to all other BFERs, the BitString is 1110.
First a packet copy is successfully deliverd to BFER 2 and BFER 4 so that the
BitString of the remaining packet is 0100, i.e., next a packet must be forwarded
to BFER 3. However, BFR-NBR 3 is unreachable for BFR 1 due to the link
failure. Therefore, BFR 1 IP-encapsulates the BIER packets towards BFR 3. As
soon as the routing underlay restores connectivity, the IP-encapsulated BIER
packets is detoured via BFR 2 and BFR 4 towards BFR 3. Thus, BIER-FRR
with link protection may send a second packet copy over a link.
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Failure free BIER forwarding
Tunneled BIER packet
on backup path

1
1000

0100
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0100
BFER F-BM BFR-NBR

1 - -
2 1010 2
3 0100 3
4 1010 2

Figure 7: Packet paths and example topology
for BIER-FRR with link protection.

Table 3: BIFT of BFR 1.

6.2. Node Protection

We introduce BIER-FRR with node protection. First, we discuss why reg-
ular BIER cannot protect BIER traffic sufficiently fast against node failures.
Afterwards, we present the concept of BIER-FRR with node protection, extend
the BIFT with backup entries, show a forwarding example, and explain how
backup entries are computed.

6.2.1. Resilience Problems of BIER for Node Failures

If a BFR fails, all downstream BFRs are unreachable. This problem cannot
be quickly repaired by the routing underlay because traffic directed to the failed
node cannot be delivered. Thus, alternate BFR-NBRs are needed. These are
provided when the routing underlay has reconverged and the BIFT entries are
recomputed. This, however, may take long time.

BIER-FRR with node protection shortens this time so that affected BIER
traffic can be delivered in the presence of node failures as soon as connectivity
for unicast traffic is restored in the routing underlay.

6.2.2. BIER-FRR with Node Protection

We propose BIER-FRR with node protection to deliver BIER traffic even if
the BFR-NBR fails. The concept is shown in Figure 8. When a PLR cannot
reach a BFR-NBR, it tunnels copies of the BIER packet to all BFR next-next-
hops (BFR-NNH) in the distribution tree that should receive or forward a copy.
Thus, for each such BFR-NNH, an individual packet copy is created. The packet
is then tunneled to the BFR-NNH with an additional header of the routing
underlay; these packets are delivered as soon as the routing underlay restores
connectivity. When the BFR-NNH receives such a packet, it removes the tunnel
header and processes the resulting BIER packet.

If a BFR-NBR is unreachable, the link towards the BFR-NBR or the BFR-
NBR itself may have failed. Therefore, the BFR-NBR should also receive a
packet copy encapsulated by the routing underlay.

15



BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

PLR

BIERIP

BFR-NNH

BFR-NNH

Figure 8: Concept of BIER-FRR with node protection.

BFER F-BM BFR-NBR
1 primary F-BM primary NH

backup F-BM backup NH
... ... ...

Table 4: Structure of a BIFT with backup entries.

When a packet copy is sent to multiple BFR-NNHs instead of the BFR-NBR,
the the BitString of the forwarded packet copies must be modified appropriately
to avoid duplicate packets at BFERs. These modifications can be obtained with
backup F-BMs, which is explained in more detail in Section 6.2.5.

6.2.3. BIFT with Backup Entries

To support BIER-FRR with node protection, the BIFT must be extended
with backup entries. The structure of a BIFT with backup entries is shown in
Table 4.

The normal BIFT entries are called primary entries. The backup entries have
the same structure as the primary entries. When a BFR-NBR is reachable, the
primary entries are used for forwarding. If a BFR-NBR becomes unreachable,
the corresponding backup entry is used for forwarding in the same way as a
primary entry with only one difference. The packet is not forwarded natively
but instead it is always tunneled to the backup NH through the routing underlay.

6.2.4. Example for BIER-FRR with Node Protection

Figure 9 shows an example topology and Figure 10 illustrates the distribution
tree for BFR 1 and BFR 2 based on the paths from the routing underlay. Table 5
shows the BIFT of BFR 1 with primary and backup entries.

We illustrate the forwarding with BIER-FRR when BFR 2 fails. We assume
that BFR 1 needs to send a BIER packet to BFR 6, i.e. the packet contains
the BitString 100000. As BFR 2 is unreachable, the primary NH of BFR 1
to BFR 6, which is BFR 2, cannot be used. Therefore, the backup entry is
utilized. That means, the backup F-BM 101000 (see Table 5) is applied to the
copy of the BIER packet and then it is tunneled through the routing underlay
to the backup NH BFR 4. BFR 1 applies the complement of the backup F-BM
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Figure 9: A packet is sent from BFR 1
to BFR 6 over a backup path using node
protection.

Figure 10: Shortest-path tree of BFR 1 and
BFR 2.

BFER F-BM BFR-NBR
1 000001 -

- -
2 111010 2

000010 2
3 000100 3

000100 3
4 111010 2

101000 4
5 111010 2

010000 5
6 111010 2

101000 4

Table 5: BIFT of BFR 1 with primary and backup entries.

010111 to the BitString of the original BIER packet which is then 000000. As
the BitString of the remaining BIER packet has no activated bits anymore, the
forwarding process terminates at BFR 1.

The routing underlay delivers the packet copy from BFR 1 to BFR 4 as soon
as connectivity is restored. BFR 4 removes the tunnel header and forwards the
BIER packet to BFR 6.

If the BitString of the packet was 100100, i.e., BFER 3 should have received
a copy of the packet, too, a regular BIER packet would have been forwarded
directly to BFR 3 before BIER-FRR tunnels another copy of the BIER packet
to BFR 4. Thus, BIER-FRR with node protection may increase the traffic on
a link to ensure that all relevant NNHs receive a packet copy.

6.2.5. Computation of Backup Entries

We compute backup NHs and backup F-BMs for BFERs at a specific BFR
which we call PLR in this context. To that end, we distinguish two cases: the
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BFER is not a BFR-NBR (1) or it is a BFR-NBR (2).
In the first case, the BFER is reached from the PLR through the routing

underlay via a considered NH and next-next-hop (NNH). The considered NNH
becomes the backup NH for the BFER. The corresponding backup F-BM re-
quires activated bits for a set of BFERs. This set comprises all BFERs whose
paths in the routing underlay from the PLR also traverses the considered NH
and NNH. This F-BM can be computed by bitwise AND’ing the PLR’s F-BM
for the considered BFER and the considered NH’s F-BM.

In the second case, the considered BFER is a BFR-NBR. Then, the NH is
also taken as backup NH. This ensures that the NH receives a copy of the BIER
packet if the NH cannot be reached due to a link failure. To avoid that the NH
distributes further packet copies, the backup F-BM contains only the activated
bit for the considered BFER.

We illustrate both computation rules by an example. We consider the BIFT
of BFR 1 in Table 5. The backup entry of BFER 6 is an example for the first
computation rule. The backup NH for BFR 6 is BFR 4 as it is the NNH of BFR
1 on the path towards BFR 6 in Figure 10. The BFERs reachable from the
PLR through BFR 4 are BFER 4 and BFER 6. Therefore, the backup F-BM is
101000. It can be obtained by bitwise AND’ing the F-BM of BFR 1 for BFER
6 (111010) and the F-BM of BFR 2 for BFER 6 (101100). The latter can be
derived from the multicast subtree of BFR 2 in Figure 10.

The backup entry of BFER 2 is an example for the second computation rule.
The backup NH for BFER 2 is BFR 2 and the F-BM contains only one activated
bit for BFER 2 (000010).

6.3. Properties of BIER-FRR

We have argued that restoration of BIER connectivity may take long time in
case of a link failure since this process can start only after the reconvergence of
the routing underlay has completed. To shorten the outage time, we introduced
BIER-FRR which restores connectivity on the BIER layer as soon as unreach-
able BFR-NBRs are detected and the connectivity in the routing underlay is
restored.

The general concept of BIER-FRR is simple: it requires some sort of de-
tection that a BFR-NBR is no longer reachable, but it does not require any
additional signalling as it is a local mechanism. Furthermore, it leverages the
restoration of routing underlay so that BIER traffic can profit from FRR mech-
anisms in the routing underlay. It does not define alternate paths on the BIER
layer, which is in contrast to another solution reported in [43].

BIER-FRR comes in two variants: link protection and node protection. Link
protection is simple, it just encapsulates BIER traffic into a header of the routing
underlay, but it cannot protect against node failures. The encapsulated packet
may be sent over an interface over which also a regular copy of the same BIER-
packet is transmitted. That means, up to two packet copies can be transmitted
over at most one link in case of a failure, which runs in contrast to the actual
idea of multicast.
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Node protection is more complex. It requires a PLR to send backup copies of
a BIER packet to all relevant NNHs encapsulated with a header of the routing
underlay. This requires extensions to the BIFT for backup entries. However,
it protects against link and node failures. The encapsulated packets may be
sent over interfaces over which also a regular copy of the same BIER packet is
transmitted. That means that even multiple packet copies can be transmitted
over several links in case of a failure.

BIER-FRR is designed for single link and node failures. In case of multiple
failures, BIER-FRR suffers from potential shortcomings of the routing underlay
to cope with multiple failures, too, so that some traffic may be lost until the
BIFT is updated. Furthermore, if both a NH and a NNH fail, the subtree of the
NNH is no longer reachable until the BIFTs are updated. Some FRR techniques
may cause routing loops in case of multiple failures [12]. In contrast, BIER-FRR
cannot cause routing loops because it just leverages the routing underlay and
does not propose new paths in failure cases.

6.4. Application of IP-FRR Mechanism on BIER Layer

In Section 3.1 we introduced IP-FRR and described LFAs. In [43] we dis-
cussed the application of LFAs on the BIER layer, i.e., in addition to the pri-
mary BFR-NBR, the BIFT contains a backup BFR-NBRs respectively, to which
a BIER packet is forwarded when the primary NH is unreachable. We identified
two major disadvantages. First, their application leaves a significant amount of
BFERs unprotected against link or node failures because LFAs cannot guaran-
tee full protection coverage [12]. This holds in particular when node protection
is desired for which protection coverage is even lower than for link protection.
Second, LFAs on the BIER layer introduce new paths in the BIER topology,
which can cause rerouting loops for BIER traffic. Third, this approach assumes
IP with IP-FRR as routing underlay while our approach works with any rout-
ing underlay and FRR mechanism. Therefore, we argue that the application of
IP-FRR mechanisms on BIER layer is not sufficient for appropriate protection.

7. Introduction to P4

This section serves as a primer for readers who are not familiar with P4.
First, we explain the general P4 processing pipeline. Then, we describe the
concept of match+action tables, control blocks, and metadata. Finally, we
explain the recirculate and clone operations.

7.1. P4 Pipeline

P4 is a high-level language for programming protocol-independent packet
processors [44]. Its objective is a flexible description of data planes. It introduces
the forwarding pipeline shown in Figure 11. A programmable parser reads
packets and stores their header information in header fields which are carried
together with the packet through the pipeline. The overall processing model is
composed of two stages: the ingress and the egress pipeline with a packet buffer

19



Ingress pipeline

Match
actionPa

rs
er

D
ep

ar
se

r

In
pu

t

O
ut

pu
t

Bu
ffe

r

Egress pipeline

Match
action

Recirculation

Figure 11: P4 abstract forwarding pipeline according to [44].

in between. The egress port of a packet has to be specified in the ingress pipeline.
If no egress port has been specified for a packet at the end of the egress pipeline,
the packet is dropped. At the end of the egress pipeline, a deparser constructs
the packet with new headers according to the possibly modified header fields.
P4 supports the definition and processing of arbitrary headers. Therefore, it is
not bound to existing protocols.

7.2. Metadata

Metadata constitute packet-related information. There are standard and
user-defined metadata. Examples for standard metadata are ingress port or
reception time which are set by the device. User-defined metadata store arbi-
trary data, e.g., processing flags or calculated values. Each packet carries its
own instances of standard and user-define metadata through the P4 processing
pipeline.

7.3. Match+Action Tables

Match+action tables are used within the ingress and egress pipeline to apply
actions to specified packets. The P4 program describes the structure of each
match+action table. The rules are the contents of the table and are added to
the table during runtime.

As match+action tables are essential for the description of our prototype,
we introduce a compact notation for them by an example. The example is
given in Figure 12. The table has the name “MAT Simple IP” and describes an
implementation of simplified IP forwarding with match+action tables. In the
following we use the prefix “MAT ” for naming MATs.

7.3.1. Match Part

A table defines a list of match keys that describe which header fields or meta-
data are used for matching a packet against the table. The match type indicates
the matching method. P4 supports several match types: exact, longest-prefix
(lpm), and ternary. The latter features a wildcard match. In our example in
Figure 12, the match key is the destination IP address and lpm matching is
applied.
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Packet p MAT_Simple_IP

Match keys: p.DstIP (lpm)

Action Parameter

forward_IP - 2

- meta.egress_port
=  egress_port

next step

Match fields

192.168.0.1/32

forward_IP - 3192.168.0.2/32

 forward_IP  - egress_port

Action Parameters
Table definition

Table entries

miss
next step

Figure 12: Match+action table for simplified IP forwarding.

7.3.2. Actions

The table further defines a list of actions including their signature which can
be used by rules in case of a match. Actions are similar to functions in common
programming languages and consist of several primitive operations. Inside an
action further actions can be executed. Actions can modify header fields and
metadata of a packet. In our example, this is the forward IP action that requires
the appropriate egress port as a parameter. Each action is illustrated by a flow
chart on the right side of the table.

7.3.3. Rules

During runtime, the match+action tables can be filled with rules through
an application programming interface (API). The rules contain match fields
which are patterns that are to be matched against a packet’s context selected
by the match keys. In our example, the match fields are IP addresses. The rules
further specify an action in the table definition and suitable parameters which
are applied to the packet in case of a match.

In our example in Figure 12 we install two rules. In the first one, the match
field is the IP address 192.168.0.1 and it applies the action forward IP with
the parameter 2. This will send packets with the destination IP 192.168.0.1
over port 2. The match field for the second rule is 192.168.0.2 and it sends the
packet over port 3. For all other destination IPs a miss occurs and no egress
port is specified.

When describing match+action tables of our implementation in Section 8,
we omit the actual rules as they are configuration data and not part of the P4
implementation.

7.4. Control Blocks

A control block consists of a sequence of match+action tables, operations
and if-statements. They encapsulate functionality. Within control blocks other
control blocks can be called. Both the ingress and egress pipeline are control
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blocks that apply other control blocks. We use the prefix “CB ” for naming of
our other control blocks. Examples of control blocks in our implementation are
CB IPv4, CB BIER, or CB Ethernet.

7.5. Recirculation
P4 does not support native loops. However, as indicated in Figure 11, the

recirculation operation returns a packet to the beginning of the ingress pipeline.
It activates a standard metadata field, i.e., a flag, which marks the packet for
recirculation. The packet still traverses the entire pipeline and only at the end
of the egress pipeline the packet is returned to the start of the ingress pipeline.
When setting the recirculate flag, it is possible to specify which metadata fields
should be kept during recirculation. All others are reset to their default values.
In contrast, header fields modified during the processing remain modfied after
recirculation. Another standard metadata field stores whether a packet has been
recirculated.

7.6. Packet Cloning
P4 supports the packet cloning operation clone-ingress-to-egress (CI2E ).

CI2E can be called anywhere in the ingress pipeline. This activates the CI2E
metadata flag which indicates that the packet should be cloned. However, the
copy is created only at the end of the ingress pipeline. In the packet clone all
header changes are discarded that have been made within the ingress pipeline.
If CI2E has been called within the ingress pipeline, two packets enter the egress
pipeline. One is the original packet that has been processed by the ingress
control flow. The second packet is the copy without modifications from the
ingress pipeline. Figure 13 illustrates this by an example.

Ingress start Ingress end

Dst. IP: 192.0.0.1
change Dst.

IP to
  192.0.0.2

CI2E
Dst. IP: 192.0.0.3

Dst. IP: 192.0.0.1 to egress

to egress
change Dst.

IP to
192.0.0.3

Parsed packet Original packet

Cloned packet

Figure 13: Illustration of the clone-ingress-to-egress (CI2E) operation: the destination IP of
the clone is the one of the received packet although IP was modified before CI2E was called.

When the CI2E flag is set, it is possible to specify for the clone whether
metadata fields should persist or be reset. When a packet clone enters the
egress pipeline, an additional standard metadata flag identifies the packet as a
clone. This allows different processing for original and cloned packets.

8. P4-Based Implementation of BIER and BIER-FRR

In this section, we describe the P4-based implementation of IP, IP-FRR,
BIER, and BIER-FRR. We first describe the data plane followed by the control
plane. In the end, we briefly explain our codebase.
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8.1. Data Plane

First, we specify the handling of packet headers, then, we give a high-level
overview of the processing pipeline, followed by a detailed explanation of applied
control blocks.

8.1.1. Packet Header Processing

P4 requires that potential headers of a packet are defined a priori. Our
implementation supports the header suite Ethernet/outer-IP/BIER/inner-IP.
We use the inner IP header for regular forwarding and the outer IP header
for FRR. During packet processing, headers may be activated or deactivated.
Deactivated headers are not added by the deparser. Encaps actions in our
implementation activate a specific header and set header fields. Decaps actions
deactivate specific headers.

8.1.2. Overview of Ingress and Egress Control Flow

Figure 14 shows an overview of the entire data plane implementation which
is able to perform IP and BIER forwarding as well as IP-FRR and BIER-FRR. It

Ingress pipeline

CB_Port_
Status

CB_IPv4

CB_BIER
(ingress)

Updates port 
information

Applies BIFT

Applies BIER encapsulation
and IPv4 forwarding

Egress pipeline

CB_BIER
(egress) CB_Ethernet

BIER
recirculation

Updates MAC
addresses

Recirculation

Figure 14: Overview of ingress and egress control flow.

is divided into ingress and egress control flow which are given as control blocks.
In the ingress and egress control block the CB IPv4 and CB BIER control block
are only applied to their respective packets, i.e., the CB IPv4 control block is
applied to IP packets and the CB BIER control block is applied to BIER packets.
We first summarize their operations and describe their implementation in detail
in the following Sections.

When a packet enters the ingress pipeline, it is processed by the CB Port Status
control block. It updates the port status (up/down) and records it in the user-
defined metadata meta.live ports of the packet. This possibly triggers FRR
actions later in the pipeline. Then, the CB IPv4 control block or the CB BIER
control block is executed depending on the packet type.

The CB IPv4 control block is applied to both unicast and multicast IP
packets. Unicast packets are processed by setting an appropriate egress port,
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possibly using IP-FRR in case of a failure. IPMC packets entering the BIER
domain are equipped with a BIER header and recirculated for BIER forwarding.
IPMC packets leaving the BIER domain are forwarded using native multicast.

The CB BIER control block is applied to BIER packets. There is a CB BIER
control block for the ingress control flow and another for the egress control flow.
A processing loop for BIER packets is implemented which extends over both
CB BIER control blocks. At the beginning of the processing loop in the ingress
flow the BitString is copied to metadata meta.remaining bits. This metadata
is used to track for which BFERs a copy of the BIER packet still needs to
be sent. Then, rules from the MAT BIFT are applied to the packet. This
also comprises BIER-FRR actions which encapsulate BIER packets with an IP
header if necessary. Within these procedures, the BIER packet is cloned so that
the original packet and a clone enter the egress control flow. The processing
loop stops if the meta.remaining bits are all zero.

In the CB BIER control block of the egress control flow, the recirculate flag
is set for cloned packets. At the end of the egress control flow, the clone is
recirculated to the ingress control flow with modified meta.remaining bits to
continue the processing loop. The non-cloned BIER packet is just passed to the
CB Ethernet control block.

The CB Ethernet control block updates the Ethernet header of each packet.
Then, the packet is sent if an egress port is set and the recirculate flag has
not been activated. If the recirculate flag is activated, the packet is recirculated
instead. This applies to cloned BIER packets in the processing loop or to packets
that require a second pass through the pipeline: BIER-encapsulated IPMC
packets, BIER-decapsulated IPMC packets, IP-encapsulated BIER packets, or
IP-decapsulated BIER packets. If neither recirculate flag is activated and nor
the egress port is set, the packet is dropped.

8.1.3. CB Port Status Control Block

The control block CB Port Status records whether a port is up or down in
the user-defined metadata meta.live ports of a packet. Figure 15 shows that it
consists of only the match+action table MAT Port Status.

The table does not define any match keys. As a result, the first entry matches
every packet. We install only a single rule which calls the action set port status.
It copies the parameter live ports to the user-defined metadata meta.live ports.
Meta.live ports is a bit string where each bit corresponds to a port of the switch.
If the port is currently up, the bit is activated, otherwise, the bit is deacti-
vated. The metadata field meta.live ports is later used by both the CB IPv4
and CB BIER control block to decide whether IP-FRR and BIER-FRR should
be applied. The parameter live ports in the table is updated by the local con-
troller when the port status changes, which will be explained in Section 8.2.1.

8.1.4. CB IPv4 Control Block

The CB IPv4 control block handles IPv4 packets. Its operation is shown in
Figure 16.
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Packet p MAT_Port_Status

Match keys: -

Action Parameters

 set_port_status - live_ports

- meta.live_ports
  = live_ports

to either CB_IP or 
CB_BIER 

Figure 15: In the control block CB Port Status the table MAT Port Status copies the infor-
mation about live ports to the user-defined metadata field meta.live ports of the packet.

Packet p 
MAT_IP_unicast

Action Parameters

 forward_IP - egress_port

 decaps_IP -

no

yes

miss

MAT_IPMC_native

Match keys: p.DstIP (exact)

Action Parameters

 forward_IPMC - IPMC_group

- meta.egress_port  
  = egress_port

- remove IP 
  header of p
- set 
  meta.recirculate

- meta.mcast_group = 
  IPMC_group

meta.BIER
_decaps set?

miss

to egress

to egress

miss

MAT_IPMC_BIER

Match keys: p.DstIP (exact) 

Action Parameters

 encaps_BIER - BIER_bitstring

- push BIER header with 
  BIER_bitstring to p
- set meta.recirculate

Match keys: p.DstIP (lpm) &
meta.live_ports (ternary)

Figure 16: The CB IPv4 control block handles IPv4 packets.

It leverages three match+action tables: MAT IP unicast, MAT IPMC native,
and MAT IPMC BIER. Packets are processed by these tables depending on
their type. MAT IP unicast performs IP unicast forwarding including IP-FRR.
IPMC packets encounter a miss and are relayed by the control flow to MAT IPMC native
or MAT IPMC BIER. MAT IPMC native performs native multicast forwarding
for IPMC packets leaving the BIER domain while MAT IPMC BIER just adds
a BIER header for IPMC packets entering the BIER domain.

MAT IP unicast. This match+action table uses the IP destination address and
the metadata meta.live ports as match keys. The IP destination address is
associated with a longest prefix match and the meta.live ports with a ternary
match. We first explain our implementation of IP-FRR. The rules contain an
IP prefix and a required port pattern as match fields (not shown in the table).
Required port corresponds to a bit string of all egress ports and is a wildcard
expression with only a single zero or one for the primary egress port of the traffic,
i.e., *...*0*...* or *...*1*...*. If FRR is desired for an IP prefix, two rules
are provided: a primary rule with *...*1*...* as required port pattern, and a
backup rule with *...*0*...*.

The table offers two actions: forward IP and decaps IP. We explain both in
the following in detail.

The decaps IP action is applied to packets that are addressed to the node
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itself. For such rules the required port pattern is set to *...*. Those IP packets
are typically BIER packets that have been encapsulated in IP by other nodes
for BIER-FRR. Therefore, the IP header is removed and the recirculate flag is
set so that the packet can be forwarded as BIER packet in a second pass of the
pipeline. In theory, other IP packets with the destination IP addresses of the
node itself may have reached their final destination. They need to be handed
over to a higher layer within the node. However, this feature is not required in
our prototype so that we omit it in our implementation.

The forward IP action is applied for other unicast address prefixes and re-
quires an egress port as parameter. It sets the meta.egress port to the indicated
egress port so that the packet is switch-internally relayed to the right egress
port. The IP-FRR mechanism as explained above may be used in conjunction
with forward IP to provide an alternate egress port when the primary egress
port is down. This mechanism allows implementation of LFAs.

IPMC addresses encounter a miss in this table so that their packets are
further treated by the control flow in the CB IPv4 control block. It checks
whether the meta.BIER decaps bit has been set. If so, the IPMC packet came
from the BIER domain and has been decapsulated. Therefore, it is relayed to
the MAT IPMC native table for outbound IPMC traffic. Otherwise, the IMPC
packet has been received from a host and requires forwarding through the BIER
domain. Therefore, it is relayed to the MAT IPMC BIER table.

MAT IPMC native. This match+action table implements native IPMC for-
warding. It is used by a BFER to send IPMC packets to hosts outside the
BIER domain that have subscribed to a specific IPMC group. The table
MAT IPMC native uses the IP destination address as match key with an ex-
act match. It defines only the forward IPMC action and requires a switch-
internal multicast group as parameter, which is specific to the IPMC group
(IP destination address) of the packet. The action sets this parameter in the
meta.mcast group of the packet. As a consequence, the packet is processed by
the native multicast feature of the switch. This results in packet copies for every
egress port contained in the switch-internal multicast group meta.mcast group
with the corresponding egress port set in the metadata of the packets. The set
of egress ports belonging to that group can be defined through a target-specific
interface, which is done by the controller in response to received IGMP packets.
Packets encountering a miss in this table are dropped at the end of the pipeline.

MAT IPMC BIER. This match+action table uses the IP destination address
as match key with an exact match. It defines only the encaps BIER action and
requires the bit string as parameter, which is specific to the IPMC group (IP
destination address) of the packet. The action pushes a BIER header onto the
packet and sets the specified BitString. Then the recirculate flag is set so that
the packet can be forwarded as a BIER packet in a second pass of the pipeline.
Packets encountering a miss in this table are dropped at the end of the pipeline.
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8.1.5. CB BIER Control Block

The CB BIER control block processes BIER packets. It is illustrated in
Figure 17.

MAT_BIFT
Match keys:

meta.remaining_bits (ternary)
& meta.live_ports (ternary)

Action Parameters

 forward_BIER - primary_fbm
- primary_NH

 decaps_BIER - decap_bit

 encaps_IP - backup_fbm
- backup_NH

Packet p 

- apply primary_fbm to p.bitstring
- remove primary_fbm 
  from meta.remaining_bits
- set meta.egress_port to primary_NH 
- set CI2E flag

to egress

- remove BIER header from p
- remove decap_bit from 
  meta.remaining_bits
- set meta.BIER_decaps
- set recirculateflag
- set CI2E flag

- apply backup_fbm to p.bitstring
- remove backup_fbm from 
  meta.remaining_bits
- push IP header to p with 
  backup_NH as destination
- set recirculate flag
- set CI2E flag

miss

Is p a clone?
no

yes

to CB_Ethernet
Packet p

BIER (ingress) BIER (egress)

       if 
(!meta.rem_
bits_valid)

yes

no

- meta.remaining_bits = p.bitstring
- meta.rem_bits_valid = true

- set recirculate flag

Figure 17: The CB BIER control blocks in the ingress and egress pipeline implement BIER
fowarding as a processing loop.

The user-defined metadata meta.remaining bits is used during BIER pro-
cessing to account for the BFERs that still need a copy of the packet. It serves
as a control variable for the processing loop. When a BIER packet is pro-
cessed by the CB BIER control block for the first time, meta.remaining bits
is initialized with the BitString of the packet. The user-defined metadata
meta.remaining bits valid is initially zero. It is activated after meta.remaining bits
is initialized and prevents overwriting
meta.remaining bits when the packet is recirculated.

Then the match+action table MAT BIFT is applied. It implements BIER
forwarding including BIER-FRR according to the principle we developed for
IP-FRR in Section 8.1.4. Match keys are the packet’s meta.remaining bits in-
dicating BFERs, and meta.live ports indicating live egress ports. The match
types are ternary. Rules are provided for all individual BFERs both for failure-
free cases and failure cases. The match field of these rules consists of two bit
strings that we call dest BFER and required port (not shown in the table). The
dest BFER bit string has the bit position for the respective BFER activated
and all other bit positions set to wildcards (*...*1*...*). The required port
bit string is used as in Section 8.1.4 to select between primary and backup rules.
In case of a match, there are three possible actions.

Decaps BIER is called by the rule whose activated bit in dest BFER refers
to the node itself. It has a F-BM with only the bit of the BFER activated and
no primary or backup NH. If this rule matches, the node should receive a copy
of the packet. The action removes the BIER header of the packet, activates
the user-defined metadata flag meta.BIER decaps, and the recirculate flag so
that the resulting IPMC packet is processed in a second pass of the pipeline.
In addition, the complement of F-BM is used to clear the bit for the processing
node itself in meta.remaining bits.

Forward BIER is called by rules whose activated bit in dest BFER refers to
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other nodes and where the required port bit string indicates that the egress port
works. Thus, forward BIER is used for primary forwarding. It has the primary
F-BM and the primary NH (egress port) as parameters. The primary F-BM is
applied to clear bits from the BitString of the packet and the complement of the
backup F-BM is applied to meta.remaining bits. In addition, meta.egress port
is set to the primary NH.

Encaps IP is called by rules where the required port bit string indicates that
the primary egress port does not work for the BFER specified in dest BFER.
Thus, encaps IP is used for backup forwarding. It has the backup F-BM and
the backup NH (IP address) as parameters. The backup F-BM is applied to
clear bits from the BitString of the packet and the complement of the backup
F-BM is applied to meta.remaining bits. Then, an IP header is pushed with
the destination address of the backup NH. The recirculate flag for the packet is
activated as it requires IP forwarding in a second run through the pipeline.

At the end of decaps BIER, forward BIER, and encaps IP, a flag for CI2E
is set. This effects that a packet copy is generated at the end of the ingress
pipeline. For the copy (clone), the recirculate flag is activated in the CB BIER
control block in the egress control flow. With this packet, the BIER processing
loop continues. The meta.remaining bits information must be kept to account
for the BFERs that still need a packet copy.

When packets enter the MAT BIFT table with meta.remaining bits equal
to zero, they encounter a miss. As a result, they are dropped at the end of the
pipeline, which stops the processing loop for these BIER packets.

8.1.6. CB Ethernet Control Block

The CB Ethernet control block is visualized in Figure 18.

Packet p MAT_Ethernet
Match keys:

meta.egress_port (exact)

Action Parameters

 encaps_eth - src_MAC
- dst_MAC

- set p.src_MAC = srcMAC
- set p.dst_MAC = dstMAC

send or recirculate p

Figure 18: CB Ethernet control block.

It applies the match+action table MAT Ethernet to all packets. The match
key is the egress port of the packet and the match type is exact. Only the action
encaps eth is defined which requires the parameters src MAC and dst MAC. It
updates the Ethernet header of the packet by setting the source and destination
MAC address which are provided as parameters. Rules are added for every
egress port.
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This behavior is sufficient as we assume that any hop is an IP node. Although
MAC addresses are not utilized for packet switching, they are still necessary as
packet receivers in Mininet discard packets if their destination MAC address
does not match their own address.

8.2. Control Plane Architecture

The control plane is visualized in Figure 19. It consists of one global con-
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Figure 19: Controller architecture.

troller and one local controller per switch. The local controllers run directly on
the switch hardware as P4 switches are mostly whiteboxes. The local controller
takes care of tasks that can be performed locally while the global controller is in
charge of configuration issues that require a global network view. In theory, a
single controller could perform all tasks. However, there are three reasons that
call for a local controller: scalability, speed, and robustness. Performing local
tasks at the local controller relieves the global controller from unnecessary work.
A local controller can reach the switch faster than a global controller. And, most
important, a local controller does not need to communicate with the switch via
a network. In case of a network failure, the local controller still reaches the
switch while the global controller may be unable to do so. Local controllers
have also been applied for similar reasons in LoCoSDN [45], P4-MACSec [46],
and P4-IPSec [47]. In the following we explain the local and global controller
in more detail.

29



8.2.1. Local Controller

Each switch has a local controller. Switch and local controller communicate
via the so-called P4 Runtime which is essentially the Southbound interface in
the SDN context. The P4 Runtime uses a gRPC channel and a protobuf-based
communication protocol. It allows the controller to write table entries on the
switch.

Figure 19 shows that the local controller keeps information about the local
topology, learns about neighboring nodes, and port status, and configures this
information in the tables of the switch. Moreover, it relays some packets to the
global controller and writes table entries as a proxy for the global controller.

We leverage the local controller for three local tasks that we describe in the
following: IGMP handling, neighbor discovery, and port monitoring.

IGMP Handling. Multiple hosts are connected to a switch. They leverage the
Internet Group Message Protocol (IGMP) to join and leave IPMC groups. If the
switch receives an IGMP packet, it forwards it to its local controller which then
configures the switch for appropriate actions. For example, it adds a new host to
the IPMC group and configures the native IPMC feature of the switch to deliver
IPMC packets to the hosts. That feature is used only for carrying multicast
traffic from the switch to the hosts. To populate the MAT IPMC native table,
the local controller utilizes the Thrift channel instead of the P4 Runtime as this
API is target-specific.

Neighbor Discovery. For neighbor discovery, we implemented a simple propri-
etary topology recognition protocol. All nodes announce themselves to their
neighbors. It allows the local controller to learn the MAC address of the neigh-
bor for each egress port. The local controller stores this information in the
match+action table MAT Ethernet which is utilized in the CB Ethernet con-
trol block (see Section 8.1.6).

Port Monitoring. A P4 switch by itself is not able to find out whether a neigh-
boring node is reachable. However, a fast indication of this information is crucial
to support FRR. In a real network a local controller may test for neighbor reach-
ability, e.g., using a BFD towards all neighbors, loss-of-light, loss-of-carrier, or
any other suitable mechanism. Then, the local controller configures this in-
formation as a bit string in the match+action table MAT Port Status of the
switch whenever the port status changes. Failure detection is target-dependent
and out of scope of this document. Therefore we trigger failure processing of
the local controller manually with a software signal. The local controller then
activates IP-FRR and BIER-FRR if enabled and notifies the global controller
for recomputation of forwarding entries.

8.2.2. Global Controller

We divide the architecture of the global controller in three layers: commu-
nication, service, and application (see Figure 19).
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The communication layer is responsible for the communication with the local
controllers. Each switch is connected to its local controller. Since the P4 runtime
only allows one controller with write access, the global controller cannot directly
control the switches. Therefore, it communicates with the local controllers to
configure the switches. All changes calculated by the global controller are sent
to the local controller using a separate channel. The local controller forwards
the changes to the switch using the P4 runtime interface.

The service layer provides services for the application layer. This includes
information about the topology, multicast groups, and entries in the tables on
the switches. The application layer utilizes that information to calculate the
table entries.

The global controller receives IGMP messages and keeps track of subscrip-
tions to IPMC groups. If a host is the first to enter or the last to leave an
IPMC group at a BFER, the global controller configures the MAT IPMC BIER
table of all BFIRs with an appropriate bit string for the specific IPMC group
by activating or deactivating the corresponding bit of the BFER. As a result,
the BFIR starts or stops sending traffic from this IPMC group to the BFER.

The global controller sets all entries in the MAT IP unicast and MAT IPMC BIER
tables of all switches and the entries in the MAT BIFT s. If the global con-
troller is informed by a local controller about a failure, it first reconfigures
the MAT IP unicast and MAT IPMC BIER tables and then the entries of the
MAT BIFT s accordingly.

8.3. Codebase

The implementation of the BIER data plane and control plane including a
demo can be downloaded at https://github.com/uni-tue-kn/p4-bier. The pro-
vided code contains a more detailed documentation of the BIER(-FRR) imple-
mentation. The demo contains several Mininet network topologies that were
used to verify the functionality of BIER(-FRR). One of them is described in
Section 9.1. Links can be disabled using Mininet, which enables the verification
of the BIER-FRR mechanism. A simple host CLI allows multicast packets to
be sent and incoming multicast packets to be displayed.

9. Evaluation

In this section we illustrate that BIER traffic is better protected with BIER-
FRR. To that end, we conduct experiments in a testbed using our prototype. We
first explain the experimental setup, the timing behavior of our emulation and
our metrics. Finally, we describe the testbed setup and present experimental
protection results in an BIER/IP network with and without IP-FRR and BIER-
FRR, for link protection and node protection, respectively.

9.1. Methodology

First, we describe the general approach for our evaluation. Then, we discuss
the timing behavior of a software-based evaluation. As the prototype switch is
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differently controlled than typical routers, we adapt reaction times of the con-
troller after a failure to mimic the timely behaviour of updates for IP forwarding
tables and BIFTs. Finally, we explain our metrics.

9.1.1. General Setup

We emulate different topologies in Mininet [48]. The core network is im-
plemented with our P4-based prototype and the software-based simple switch
which is based on the BMv2 framework [49]. It forwards IP unicast, IP mul-
ticast, and BIER traffic. One source and several subscribers are connected to
the core network. The source periodically sends IP unicast and IP multicast
packets. IP unicast packets are forwarded as usual through the core network.
When IP multicast packets enter the core network, they are encapsulated with
a BIER header at the BFIR. BFERs remove BIER headers and forward the IP
multicast packets to the subscribers.

Rules for the match+action tables are computed by the global controller in
an initial setup phase. In different scenarios we simulate link and node failures
and observe packet arrivals at the subscribers. We study different combinations
of IP-FRR and BIER-FRR to evaluate the delay until subscribers receive traffic
again after a failure has been detected. Also in those cases, the local controller
notifies the global controller to perform IP reconvergence and BIFT recompu-
tation because FRR is meant to be only a temporary measure until the global
forwarding information base has been updated as a response to the link or node
failure.

We report events at the PLR and at all subscribers before and after the fail-
ure. For the PLR we show the following signals: failure detection at t0, updates
of IP forwarding entries, and updates of BIFT entries. For the subscribers we
record receptions of unicast and multicast packets.

9.1.2. Timing Behavior

Our switch implementation in a small, virtual environment has a different
timing behavior than a typical router in a large, physical environment. In par-
ticular signaling can be executed with insignificant delay in our virtual environ-
ment, e.g., notifying the global controller about the failure or the distribution of
updated forwarding entries. This is different with routers and routing protocols
in the physical world. Signaling requires significant time as routing protocols
need to exchange information about the changed topology. Routers compute
alternative routes and push them to their forwarding tables. Only after all uni-
cast paths have been recomputed and globally updated by the routing underlay,
BFRs can compute new forwarding entries for BIER and push them to their
BIFTs. Thus, the BIFT is updated only significantly later compared to the
unicast forwarding information base. To respect that in our evaluation, we con-
figure the global controller to install new IP forwarding entries on the switches
only after 150 ms after being informed about a failure and new BIFT entries
another 150 ms later.
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9.1.3. Metric

We perform experiments with and without IP-FRR and BIER-FRR, and
compare the time after which unicast and multicast traffic is delivered again at
the subscribers after a failure has been detected by the affected BFR.

9.2. Link Protection

We perform experiments for the evaluation of BIER-FRR with link pro-
tection. First, we explain the experimental setup. Afterwards, we report and
discuss the results for all scenarios.

9.2.1. Setup for Link Protection

BFER

NH

BFIRSource Subscriber

Core network

(PLR)

Figure 20: Two hosts the Source and the Subscriber are connected to a BIER network with
IP as the routing underlay.

We emulate the testbed depicted in Figure 20 in Mininet. Two hosts the
Source and the Subscriber are connected to a BIER/IP network. The host
Source sends every 10 ms packets to the host Subscriber over the core network.
Every other packet is sent by IP unicast and IPMC. The primary path carries
packets from PLR via NH to BFER. We simulate the failure of the link
between the PLR and the NH to interrupt packet delivery. We compare the
time until the host Subscriber receives unicast and multicast traffic again, after
the failure has been detected by the PLR. We perform experiments with and
without IP-FRR and BIER-FRR with link protection.

9.2.2. Without IP-FRR and BIER-FRR

In the first experiment, failure recovery is based only on IP reconvergence
and BIFT recomputation. Neither IP-FRR nor BIER-FRR are enabled. Fig-
ure 21(a) shows that the failure interrupts packet delivery at the Subscriber.
Unicast reconvergence is completed after about 170 ms after failure detection.
Updating the BIFT entries has finished only after about 370 ms in total. Unicast
and multicast packets are received again by the Subscriber only after updated
IP and BIER forwarding rules from the controller have been installed at the
PLR.

9.2.3. With IP-FRR but without BIER-FRR

In the second experiment, IP-FRR is enabled but BIER-FRR remains dis-
abled. Figure 21(b) shows that IP unicast traffic immediately benefits from
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(b) With IP-FRR but without BIER-FRR.
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(d) With IP-FRR and BIER-FRR.

Figure 21: Reception time of packets in the link failure scenario.
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IP-FRR when the PLR detects the failure. IP-FRR instantly reroutes pack-
ets and, therefore, IP unicast traffic is still delivered at the Subscriber. Both
IP reconvergence and BIFT recompuration are finished slightly later compared
to the previous scenario. The reason for the extended duration is that the
global controller needs to compute new forwarding entries for IP-FRR during
reconvergence, which is not needed if IP-FRR is disabled. After 200 ms, IP
reconvergence has finished and the primary IP unicast forwarding entries have
been updated. Multicast packets are delivered only after BIFT recomputation
after about 400 ms.

9.2.4. Without IP-FRR but with BIER-FRR

In the third experiment, IP-FRR is disabled but BIER-FRR is enabled.
Figure 21(c) shows that unicast traffic is delivered at the Subscriber when IP
reconvergence has finished after about 170 ms. Due to BIER-FRR, BIER traffic
benefits from the faster IP reconvergence, too. Multicast traffic is delivered
after 170 ms as well, and not only after BIFT recomputation. The BIFT is
updated only after about 400 ms in total which is slightly longer than in the
scenario without BIER-FRR. Although conceptually the BIFT does not require
modification for BIER-FRR with link protection, the match+action tables in
the P4 implementation need backup entries that tunnel BIER packets in case
of a failure. Therefore, the global controller has to compute new backup entries
for BIER-FRR in addition to primary BIFT entries during the recomputation
process. The slightly delayed BIFT recomputation is not a disadvantage for
BIER traffic because BIER-FRR reroutes BIER packets until both primary and
backup BIFT entries have been updated.

9.2.5. With IP-FRR and BIER-FRR

In the last experiment, IP-FRR and BIER-FRR are enabled. Figure 21(d)
illustrates that both unicast and multicast traffic are delivered at the Subscriber
without any delay despite of the failure. This is achieved by FRR mechanisms
in both the routing underlay and the BIER layer. IP-FRR immediately re-
stores connectivity for unicast traffic. BIER-FRR leverages the resilient routing
underlay to immediately reroute BIER packets. IP reconvergence has finished
after about 200 ms. BIFT recomputation finishes only after about 420 ms. In
both cases the longer time is explained by the additional FRR entries the global
controller has to compute during IP reconvergence and BIFT recomputation,
respectively.

9.3. Node Protection

In this paragraph we evaluate BIER-FRR with node protection. First, we
describe the experimental setup. Then, we report and discuss the evaluation
results for all four scenarios.
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Figure 22: Three hosts, Source, Subscriber1 and Subscriber2 are connected to a BIER net-
work with IP as the routing underlay.

9.3.1. Setup for Node Protection

Figure 22 shows the topology we emulated in Mininet. The three hosts
Source, Subscriber1, and Subscriber2 are connected to an BIER/IP network.
The Source alternately sends two IP unicast packets and one IP multicast
packet with 10 ms in between. The unicast packets are sent to Subscriber1
and Subscriber2. The IPMC group of the the IPMC packet is subscribed by
Subscriber1 and Subscriber2. On the primary path, packets are carried from
the PLR via the NH to BFER1 and BFER2, respectively. We simulate the
failure of the NH to interrupt packet delivery with a node failure. We evaluate
the time until both the Subscriber1 and the Subscriber2 receive traffic again
after the PLR detects the failure. We perform experiments with and with-
out IP-FRR and BIER-FRR with node protection. We discuss the outcome
and show figures only for Subscriber1 because results for Subscriber2 are very
similar.

9.3.2. Without IP-FRR and BIER-FRR

In the first scenario, the local controller at the PLR triggers only IP recon-
vergence and BIFT recomputation after failure detection. No FRR measures
are enabled. Figure 23(a) shows that the Subscriber1 receives IP unicast traf-
fic only after IP reconvergence which takes about 180 ms. Subscriber1 receives
multicast traffic only after BIFT recomputation which takes about 400 ms. Both
IP reconvergence and BIFT recomputation require slightly more time than in
the link failure scenario because now the local controller reports a node failure
which requires more rules to be recomputed.

9.3.3. With IP-FRR but without BIER-FRR

In the second scenario, IP-FRR is enabled but not BIER-FRR. Figure 23(b)
shows that IP unicast traffic immediately benefits from IP-FRR. Traffic is de-
livered at the Subscriber1 without any delay despite of the failure. IP recon-
vergence requires about 240 ms. Multicast traffic is received by the Subscriber1
only after BIFT recomputation which has finished only after about 520 ms.

36



Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(a) Without IP-FRR and BIER-FRR.
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Figure 23: Reception time of packets in the node failure scenario.
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Again, IP reconvergence and BIFT recomputation require slightly more time
than without IP-FRR because because additional IP-FRR entries have to be
computed.

9.3.4. Without IP-FRR but with BIER-FRR

In the third scenario, BIER-FRR is enabled but not IP-FRR. Figure 23(b)
shows that both IP unicast and multicast traffic are received at the Subscriber1
only after IP reconvergence which takes about 170 ms. Afterwards, IP traffic
is rerouted because of the updated forwarding entries. BIER traffic is rerouted
after that time as well, because BIER-FRR leverages the updated routing un-
derlay instead of requiring BIFT recomputation which has finished only after
about 500 ms.

9.3.5. With IP-FRR and BIER-FRR

In the last scenario, both IP-FRR and BIER-FRR are enabled. Figure 23(d)
shows that both IP unicast and multicast traffic are received by the Subscriber1
without any delay despite of the failure. IP-FRR reroutes IP unicast traffic as
soon as the failure is detected by the PLR. Similarly, BIER-FRR reroutes BIER
traffic immediately, too. Therefore, BIER traffic benefits from the resilience of
the routing underlay to forward BIER traffic although the NH failed and BIFT
recomputation has not finished, yet. IP reconvergence takes about 240 ms.
BIFT recomputation finished only after 600 ms.

10. Conclusion

BIER is a novel, domain-based, scalable multicast transport mechanism for
IP networks that does not require state per IP multicast (IPMC) group in core
nodes. Only ingress nodes of a BIER domain maintain group-specific infor-
mation and push a BIER header on multicast traffic for simplified forwarding
within the BIER domain. Bit-forwarding routers (BFRs) leverage a bit index
forwarding table (BIFT) for forwarding decisions. Its entries are derived from
the interior gateway protocol (IGP), the so-called routing underlay. In case of
a failure, the BIFT entries are recomputed only after IP reconvergence. There-
fore, BIER traffic encounters rather long outages after link or node failures and
cannot profit from fast reroute (FRR) mechanisms in the IP routing underlay.

In this work, we proposed BIER-FRR to shorten the time until BIER traf-
fic is delivered again after a failure. BIER-FRR deviates BIER traffic around
the failure via unicast tunnels through the routing underlay. Therefore, BIER
benefits from fast reconvergence or FRR mechanisms of the routing underlay
to deliver BIER traffic as soon as connectivity for unicast traffic has been re-
stored in the routing underlay. BIER-FRR has a link and a node protection
mode. Link protection is simple but cannot protect against node failures. To
that end, BIER-FRR offers a node protection mode which requires extensions
to the BIFT structure.

As BIER defines new headers and forwarding behavior, it cannot be con-
figured on standard networking gears. Therefore, a second contribution of
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this paper is a prototype implementation of BIER and BIER-FRR on a P4-
programmable switch based on P416. It works without extern functions or
other extensions such as local agents that impede portability. The switch offers
an API for interaction with controllers. A local controller takes care of local
tasks such as MAC learning and failure detection. A global controller configures
other match+action tables that pertain to forwarding decisions. A predecessor
of this prototype without BIER-FRR and based on P414 has been presented as
a demo in [5]. The novel BIER prototype including BIER-FRR demonstrates
that P4 facilitates implementation of rather complex forwarding behavior.

We deployed our prototype on a virtualized testbed based on Mininet and the
software switch BMv2. Our experiments confirm that BIER-FRR significantly
reduces the time until multicast traffic is received again by subscribers after link
or node failures. Without BIER-FRR, multicast packets arrive at the subscriber
only after reconvergence of the routing underlay and BIFT recomputation. With
BIER-FRR, multicast traffic is delivered again as soon as connectivity in the
routing underlay is restored, which is particularly fast if the routing underlay
applies FRR methods.
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∗University of Tuebingen, Chair of Communication Networks, 72076 Tuebingen, Germany
†Hirschmann Automation and Control GmbH, CTO Office, 72654 Neckartenzlingen, Germany

Email: {lukas.osswald,steffen.lindner, menth}@uni-tuebingen.de, lukas.wuesteney@belden.com

Abstract—Modern applications in industrial automation rely
on a deterministic network service, i.e., low latency, high re-
liability, and network convergence. Therefore, the IEEE 802.1
TSN Task Group introduces Time-Sensitive Networking (TSN).
Besides mechanisms for traffic shaping, time synchronization,
and reliability, TSN introduces three different configuration
models for resource reservation: the fully distributed, the fully
centralized, and the centralized network/distributed user model.
Furthermore, IEEE P802.1Qdd specifies the Resource Allocation
Protocol (RAP) to enable resource reservation for TSN streams in
the fully distributed model. In this paper we give an introduction
to RAP, and propose extensions to RAP for use in the hybrid
configuration model. Additionally, we implement a prototype
which is published under an open-source license.

Index Terms—TSN, Resource Allocation Protocol (RAP),
802.1Qdd, centralized network/distributed user model, CUC

I. INTRODUCTION

Many modern industrial applications, e.g., automation, re-
quire an ultra-low latency, deterministic network service. Typ-
ically, networks provide such a high quality of service (QoS)
by reserving bandwidths for flows using resource reservation
protocols. Audio/Video Bridging (AVB) is a standard for
realtime communication in Ethernets. It is further developed
under the name Time-Sensitive Networking (TSN) to meet
even stricter time constraints. The IEEE 802.1 TSN Task
Group (TG) defines concepts and protocols for resource man-
agement, time synchronization, bounded latency and delay
variation, avoidance of congestion-based packet loss, as well
as for reliability. The objectives are deterministic services
for unidirectional unicast and multicast streams which carry
realtime data. Thus, TSN supports the transport of multiple
protocols for realtime applications over the same link, and
facilitates integration of IT and Operational Technology (OT)
networks.

AVB introduced the Stream Reservation Protocol (SRP) for
admission control of streams. It is a hop-by-hop reservation
protocol with local resource management carried out by every
node, and supports a distributed configuration model. IEEE
Std 802.1Qcc [7] extends SRP to support additional TSN
features. Additionally, two new central entities for centralized
network management are introduced. An application-specific
Centralized User Configuration (CUC) receives flow requests

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under support code 16KIS1161 (Collaborative Project
KITOS). The authors alone are responsible for the content of the paper.

including requirements from applications, communicates them
in a uniform way to the Centralized Network Configuration
(CNC) which is responsible for resource management and
configures the switches to treat the flows with the requested
QoS. In addition, IEEE Std 802.1Qcc introduces the central-
ized network/distributed user model, we further refer to as
the hybrid configuration model. It leverages the CNC and
end station convey stream requirements with a distributed
resource reservation protocol to the network. The first bride,
connected to an end stations, directly forwards the request
to the CNC instead of performing distributed signalling. TSN
offers new mechanisms to provide QoS. The Resource Alloca-
tion Protocol (RAP) is being defined by the TSN TG in IEEE
P802.1Qdd to support these new mechanisms. RAP is a hop-
by-hop protocol for dynamic resource reservation based on the
Link-local Registration Protocol (LRP) for transport purposes.

The contribution of this paper is manifold. We survey
RAP and LRP, and point out the improvements to SRP.
As IEEE Std 802.1Qcc introduces centralized resource We
analyse RAP’s data model and propose extensions for RAP to
be able to reserve scheduled streams in a centrally managed
TSN network. Therefore, we describe a network based on
the centralized network/distributed user model which includes
a CNC, a new central component, called RAP-CUC, and
leverages RAP for resource reservation of streams. Then, we
provide a detailed architecture for a general CUC component,
whose core is independent of a user-specific protocol and CNC
implementation. Following that, we derive a specific CUC for
RAP as a user-specific protocol.

II. RESOURCE RESERVATION AND QOS MECHANISMS

In this section we give an overview of resource reserva-
tion and quality of service (QoS) mechanisms in realtime
networks, in particular in Audio/Video Bridging (AVB) and
Time-Sensitive Networking (TSN) Ethernet. Further, we give
an introduction to the resource reservation protocols of AVB.

A. Resource Reservation in Realtime Networks

Realtime streams have QoS requirements, e.g., bounded
delay and delay variation, and minimum throughput. Bridges
apply special mechanisms to guarantee the QoS for such
streams despite of other traffic load. For instance, they limit the
amount of realtime traffic to avoid overload in the network.
This is performed per stream and/or per aggregate with the
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help of shapers or policers. Another option is to assign
dedicated transmission slots to frames, which is also known
as scheduled traffic.

In both cases, admission control is performed. That is,
realtime streams are explicitly admitted. Their properties, e.g.,
transmission rate and burst size, are considered for bookkeep-
ing. Additional streams are admitted only if the remaining
transmission capacity suffices. Otherwise, admission requests
are declined to protect the QoS of already admitted streams.
For this purpose, static and dynamic resource reservation exist
which we review in the following.

1) Static Resource Reservation: With static resource reser-
vation, the realtime streams and their properties are known
prior to computation of configuration. Only a supportable
amount of traffic is admitted and configured to obtain prefer-
ential treatment by the network. Other streams cannot demand
this level of QoS at runtime.

2) Dynamic Resource Reservation: Dynamic resource
reservation leverages network protocols to signal admission
requests, configure QoS mechanisms in switches, and inform
the requesting entity about the result. A resource reserva-
tion protocol conveys the properties of streams such that
the network can take admission decisions. Such a resource
reservation protocol can be classified as distributed or agent-
based.

Distributed resource reservation leverages a resource reser-
vation protocol which signals stream requirements along the
path of the relevant stream. In case of success, it applies
configurations to the bridges along the path of the admitted
stream.

Agent-based resource reservation utilizes a centralized con-
troller with a global view. End stations communicate stream
properties and QoS requirements to the centralized controller
which computes configuration data and applies them to bridges
and hosts along the path of the stream.

In AVB networks, dynamic, distributed resource reservation
is used. In TSN networks, both dynamic and static resource
reservation are supported.

B. Resource Reservation and Traffic Shaping in AVB

In AVB [3], senders and receivers of a stream are denoted
as Talkers and Listeners. Subsequently, we give a short intro-
duction to resource reservation and traffic shaping in AVB.

1) Resource Reservation: The Stream Reservation Proto-
col (SRP) supports dynamic, distributed resource reserva-
tion in AVB networks. SRP leverages three protocols for
resource reservation: the Multiple VLAN Registration Protocol
(MVRP), the Multiple MAC Registration Protocol (MMRP),
and the Multiple Stream Registration Protocol (MSRP). These
three protocols use the Multiple Registration Protocol (MRP)
as transport layer. MRP transmits the data provided by appli-
cation protocols through the network where it is persistently
stored in each hop [6].

VLANs are used to limit the scope of streams within the
network. End stations may join a VLAN using MVRP. With
MMRP a station subscribes to traffic from specific multicast

or unicast MAC addresses. As a result, forwarding rules are
configured in the briges along the path from the Talker to the
Listener within the corresponding VLAN. MSRP is used to
reserve resources for these streams.

IEEE Std 802.1Qcc extends the capability of SRP for
TSN by introducing a central control elements for network
management and users control. We discuss the configuration
models of TSN in Section III.

2) Traffic Shaping: AVB introduces two traffic classes:
Class A and Class B. A maximum delay of 2 ms and 50
ms is guaranteed for the traffic of the respective traffic classes
over up to seven hops [3]. To achieve that, the traffic of both
classes is policed with a Credit-Based Shaper (CBS) [2] which
is a token bucket based algorithm to limit the burst size and
bandwidth of traffic aggregates.

C. Selected QoS Functions in TSN

The TSN standards specify multiple mechanisms to guaran-
tee QoS for realtime streams. Some of them are adopted from
AVB, others are new [8], [18]. In the following, we describe
two TSN-specifc mechanisms that are relevant in the context
of this paper.

1) Time-Aware Shaper (TAS): To achieve ultra-low la-
tency and delay variation for applications requiring hard
realtime, TSN supports scheduled traffic. The Time-Aware
Shaper (TAS) [4] leverages a TDMA paradigm. All bridges
are synchronized in time and forward traffic according to a
global schedule without queuing delay. If end stations are not
synchronized, their traffic may be buffered at the access bridge.
Optionally, Talkers which are synchronized to the network may
be included in the schedule.

TAS is optimally applicable with static and dynamic, agent-
based resource reservation. With agent-based resource reser-
vation, time-aware Talkers communicate the earliest and latest
possible transmit time of each stream to the network. After
schedule synthesis, the network notifies the Talkers about the
precise start of transmit in an interval for each stream.

2) Frame Replication and Elimination for Reliability
(FRER): IEEE Std 802.1CB introduces Frame Replication and
Elimination for Reliability (FRER) [5] to TSN which enables
seamless redundancy over multiple paths for a stream. Frames
are replicated at a bridge and sequence numbers are attached.
The duplicated frames are sent along disjoint paths to another
bridge which eliminates duplicate frames with the help of the
sequence numbers. If one path fails, the traffic still reaches
the destination over the working path.

III. CONFIGURATION MODELS FOR RESOURCE
RESERVATION IN TSN

This section presents the configuration models for TSN
specified in IEEE Std 802.1Qcc [7]. First, we give an overview
of the User/Network Interface (UNI). Afterwards, we examine
the configuration models, i.e., the fully centralized, the fully
distributed, and the centralized network/distributed user model,
further referred to as the hybrid configuration model.
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A. User/Network Interface (UNI)

IEEE Std 802.1Qcc defines a User/Network Interface (UNI)
leveraging YANG as a modeling language. The UNI is a bidi-
rectional interface that is used to communicate QoS require-
ments and stream properties of end stations, and propagate the
admission control status of a stream from the network to the
end stations. For that, it consists of four YANG groupings that
are further specified below.

1) 802.1Qcc Group-Talker: The group-talker is used to
convey the Talker related stream properties, QoS requirements,
and TSN capabilities for a stream to the network. It contains
fields for specifying traffic characteristics of the stream, i.e.,
interval, maximum frame size and maximum amount of frames
per interval. Time-aware Talkers additionally communicate
the earliest and the latest possible transmission start time
within an interval. Further, QoS properties like maximum
latency and delay variation can be included as user-to-network
requirements. A stream rank is included which is used by
bridges to determine streams to be dropped in an oversub-
scription scenario. Additionally, the Talker discloses the TSN
capabilities of its interface and specifies the characteristics of
a stream’s frame such that the network is able to associate it
with its stream.

2) 802.1Qcc Group-Listener: The group-listener is in-
tended as an admission control request for Listeners to indicate
participation in a stream. It comprises QoS requirements of a
Listener and its TSN capabilities.

3) 802.1Qcc Group-Status-Stream: The group-status-
stream defines information about the admission control status
of streams. The included information originates from the
network. The grouping includes a status code for the Talkers
and the Listeners each. In case of a failure, additional failure
information specifies the cause and identifies the device by
MAC address and interface name.

4) 802.1Qcc Group-Status-Talker-Listener: The group-
status-talker-listener comprises status information and config-
uration data for one Talker or Listener. It originates from the
network as a result of admission control procedure. It includes
the worst-case latency a frame of a stream can experience
along its path. Additionally, configuration data is provided to
the end station, e.g., the point in time a time-aware Talker has
to start transmission, or the VLAN ID and priority used for
stream identification.

B. Fully Centralized Configuration Model

Figure 1 illustrates the fully centralized configuration model.
The fully centralized model introduces a central network
management controller, i.e., Centralized Network Configura-
tion, and one or more controllers for user management, i.e.,
Centralized User Configuration.

(1) End stations signal admission control requests to a
Centralized User Configuration (CUC) via a user-specific
protocol. A commonly used user-specific protocol is OPC-UA
client-server, a protocol developed by the OPC Foundation [1].

(2) The CUC collects stream requirements of all users
participating in the same stream.

Centralized
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Configuration
(CNC)

Centralized
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Configuration
(CUC)

UNI

Configuration

Talker
Bridges

Listener

User-specific
Protocol

User-specific
Protocol

1,7
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Figure 1: The fully centralized configuration model is com-
posed of end stations, bridges, one or more CUCs, and a single
CNC. The CNC-CUC interface is defined by the User/Network
Interface (UNI)

(3) When all users provide sufficient information, the CUC
initiates the resource reservation process via the UNI with the
Centralized Network Configuration (CNC).

(4) A single CNC provides central network management.
It takes admission control decisions based on the users’
requirements obtained from all CUCs. The CNC computes
configurations for bridges and end stations.

(5) It configures the bridges with network management pro-
tocols like SNMP [10], RESTCONF [9], or NETCONF [13].

(6) The CNC communicates the computed configuration for
end stations and admission control status to the CUC.

(7) The CUC propagates both to the respective end stations.
(8) End stations reconfigure their interfaces accordingly and

can start data transmission. Afterwards, the CNC and CUC can
dynamically react on events, like node/link failures.

IEEE P802.1Qdj [16] further enhances the definition of
the interface between CNC-CUC. Therefore, it will provide a
fully functional YANG model for the centralized configuration
model in TSN. This model will based on the four YANG
groupings of the current UNI and may add extensions. As
a consequence, the implementation of a CNC-CUC interface
can be based on a YANG based protocol, e.g. RESTCONF or
NETCONF.

The fully centralized model introduces network manage-
ment with a global view to TSN networks. This enables com-
putation of globally optimized schedules for TAS, eliminating
queuing delay [12]. This makes the fully centralized model
suitable for environments that require precise timing of packets
and complex planning.

C. Fully Distributed Configuration Model

Figure 2 illustrates the fully distributed configuration model.
The fully distributed configuration model performs admis-
sion control decisions with a hop-by-hop resource reservation
protocol. As a consequence, the UNI is located between all
participating devices. SRP may be used for that purpose.
However, the Resource Allocation Protocol (RAP) is currently
defined to provide support for novel TSN mechanisms. End
stations signal stream requirements to the network. The bridges
take admission control decisions based on local information
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Figure 2: The fully distributed configuration model is com-
posed of end stations and bridges and was originally defined
for AVB networks.
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Figure 3: The centralized network/distributed user model is
composed of end stations, bridges and a single CNC.

only. Therefore, computation of a globally optimized schedule
for TAS is not optimally possible.

D. Hybrid Configuration Model

Figure 3 illustrates the hybrid configuration model. End sta-
tions communicate admission control requests via a distributed
resource reservation protocol. The edge bridges ensure that
admission control requests are directly forwarded to the CNC,
and not hop-by-hop as in the fully distributed model. The CNC
then takes admission control decisions and computes config-
urations as in the fully centralized model. As a consequence,
the UNI is located between end stations, the edge bridge, and
the CNC.

The hybrid model avoids the use of multiple, application
specific CUCs by relying on a single protocol for resource
reservation. This protocol can provide admission control as a
service to multiple applications. This can reduce implementa-
tion complexity of end stations and the network management
components. Still the same level of QoS as in the fully
centralized model can be achieved.

Currently, SRP is a candidate for resource reservation in
the hybrid configuration model but does not support all TSN
features. RAP mitigates this issue, but does not yet address
the hybrid configuration model in its current draft. A CNC for
the hybrid model must provide a RAP-capable interface. As
IEEE P802.1Qdj emerges, future CNCs will provide a REST-
CONF/NETCONF based interface. Therefore, we propose an
approach to implement the hybrid configuration model using
an extended RAP, a novel RAP-CUC, and a RESTCONF
based CNC in Section V.

IV. OVERVIEW OF LRP AND RAP FOR TSN NETWORKS

We first give an overview of the Link-Local Registration
Protocol (LRP) [14], as well as, its proxy models, and intro-
duce the current state of RAP [11].
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Figure 4: On the left side is a two port, RAP-capable bridge
and on the right side is a RAP-capable end station.

A. Link-Local Registration Protocol (LRP)

LRP has been specified in IEEE P802.1CS [14] as transport
protocol for TSN. We explain its architecture and signalling,
system types and proxy models.

1) Architecture and Signalling: LRP is intended to trans-
port LRP Data Units (LRPDU) hop-by-hop and to store
this data persistently. LRP is similar to MRP but addresses
scalability issues and adds new proxy mechanisms. LRP can be
efficiently used to distribute databases of up to 1MB between
communication peers, resolving scalability issues of MRP
which was optimized for databases of up to 1500 Bytes [14].

Figure 4 illustrates a LRP bridge and end station with
RAP as LRP application. The LRP protocol stack consists of
three layers: LRP application, LRP Database Synchronization
(LRP-DS), and LRP Database Transport (LRP-DT).

A LRP application implements application specific behav-
ior. It can take forwarding decisions and configure bridge
hardware based on received data. One or more LRP appli-
cations leverage the data synchronization service provided by
LRP-DS.

LRP-DS establishes connections and controls data synchro-
nization with LRP Portal instances. LRP Portals contain two
databases for transmission and receipt of data: the Applicant
Database and Registrar Database. The records of the Applicant
Database of one system are copied to the Registrar Database
of the peer. The connection managed by a Portal is bound to
a single LRP application and to a physical port of a device,
called target port. The target port is uniquely characterized
by the chassis identifier and port identifier of a system. It is
not required to reside on the same host as the Portal itself. For
Portal creation, LRP-DS supports several methods, i.e., manual
or protocol assisted configuration. Link Layer Discovery Pro-
tocol (LLDP) can be used for protocol assisted Portal creation.
Therefore, the target port associated with a Portal advertises
a list of applications and corresponding address information.
Based on that, the two LRP devices establish a connection
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between their applications. As an alternative LRP introduces
a special handshake for connection establishment, initiated by
sending an Exploratory Hello LRP Data Unit (LRPDU).

LRP-DT transmits and receives LRPDU via Transmission
Control Protocol (TCP) [15] or the Edge Control Protocol
(ECP) [6]. ECP is a simple transport mechanism implementing
flow control for the local link using a stop-and-wait automatic
repeat request paradigm [17].

2) System Types: IEEE P802.1CS defines three system
types.

i) A LRP system is native, when application, Portal and
target port are physically located in the system. Native systems
provide computational power for the applications, data storage
capabilities for the Portals and a local target port.

ii) A proxy system implements an application and Portal
instance. Additionally, it leverages the remote target port of
a controlled system, e.g., for Portal creation via LLDP. The
proxy systems can reside at a remote location like the edge of
the network or in the cloud.

iii) A controlled system only provides a physical port as a
remote target port for a proxy system, and does not have to
implement LRP itself. A proxy system and a controlled system
must be used in combination to form a functional LRP system.

Such a composite system only supports TCP for LRP-DT,
and LLDP or manual configuration for Portal creation. The
proxy system provides a list of application services and
address information to the controlled system via network
management. The controlled system advertises the provided
information on its local target port via LLDP to its peer. With
the advertised address and application information a peer-
to-peer, TCP connection is established. This connection can
be used to exchange application data between the peer’s and
the proxy system’s application. The controlled system is not
necessarily involved in data transport after the connection is
established.

3) Proxy Models: IEEE P802.1CS proposes four proxy
models using proxy/controlled systems for either relay sys-
tems, end systems, or both.

i) The ”full native system” model, consists of a native bridge
and a native end system. Connections can be established man-
ually, with LLDP, and Exploratory Hello LRPDUs. LRP-DT
can be based on ECP or TCP in that scenario. A use case for
the ”full native system model” is implementing the UNI for
the fully distributed configuration model with RAP as LRP
application.

ii) The ”proxied relay systems” model is illustrated in
Figure 5. It is composed of controlled relay systems providing
target ports for a proxy system. This proxy model can be
leveraged to implement the hybrid configuration model of TSN
where the proxy system is part of the CNC.

iii) The ”proxied end systems” model includes native relay
systems, controlled end systems and an end systems’ proxy.
A use case can be incorporating legacy or simple end systems
into a TSN network. The end systems’ proxy handles, e.g.,
admission control on behalf of the end systems with the
network.
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ApplicationApplication
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TCP
Portal

T L

Portal
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Figure 5: Hybrid configuration model implemented with LRP:
the proxy system’s application and address information is
announced by the target port of the controlled bridges via
LLDP. End stations discover the application of the proxy and
establish a connection. The resulting TCP connection is used
for data exchange between the LRP applications of the end
stations and the proxy system’s application.

iv) The ”end systems’ proxy and relay systems’ proxy”
model combines the two preceding proxy models. A use case
for the model is the fully centralized configuration model
of TSN. The end systems’ proxy is the CUC and the relay
systems’ proxy is the CNC. The proxies exchange application
data directly via TCP. The connection is set up by the
controlled end stations and bridges physically connected. Both
advertise address information of their proxy systems via LLDP
to create Portals.

B. Resource Allocation Protocol (RAP)

RAP is a protocol for dynamic resource reservation for uni-
cast and multicast streams. It is specified in IEEE P802.1Qdd
Draft 0.4 [11] as a successor for SRP. RAP advances SRP to
provide support for the recent evolution in TSN standardiza-
tion, e.g., FRER. We illustrate a RAP-capable bridge and end
station in Figure 4.

1) Domain Establishment with RAP: For resource reserva-
tion, all devices along the path of a stream must be members
of the same RAP domain. A RAP domain comprises the
set of neighbouring RAP devices which support a priority
for a traffic class. This priority characterizes one of eight
Resource Allocation classes (RA classes), along with a RA
Class Template (RCT). The RCT describes a set of TSN
mechanisms to be applied to streams of the class.

For domain establishment, each RAP capable device an-
nounces its RA classes link locally to its neighbours. Devices
identify domain boundaries based on the priority values of
the RA classes. The RCT is not evaluated for domain estab-
lishment, thus the use of different traffic shaping mechanisms
along a path is possible.

2) RAP Attributes: For resource reservation RAP end sta-
tions exchange structured data, so called attributes. RAP de-
fines three attributes, encoded as a Type-Length-Value (TLV).

i) As discussed in the previous section, all RAP end stations
declare RA class attributes for domain establishment link
locally.
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ii) The Talker Announce Attribute (TAA) is sent by Talkers
to its Listeners for conveying stream identification informa-
tion and traffic specification. For traffic specification, RAP
offers a TLV for token bucket based shaping, including
minimum/maximum frame size, committed information rate,
and committed burst size. An alternative is the MSRP traffic
specification, including maximum number of frame size and
maximum number of frames per interval. Additionally, the
network uses the TAA to compute the wort-case latency of
a path and give status information to the Listener.

iii) The Listener Attach Attribute (LAA) is declared by
a Listener for communicating the interest in participating
in a stream to the network. The network uses it to convey
admission control status to the Talker. The status carried by
LAAs can be: Listener Ready, Failed, or Partial Failed.

All attributes can be extended with organizationally specific
TLVs for adding custom features to RAP.

3) Resource Reservation Process: A resource reservation
process with RAP is initiated by a control application of an
end station which requires QoS guarantees for its application
data streams. As a result, Talkers declare TAAs and Listeners
declare LAAs to request resources for streams from the
network.

Figure 6(a) illustrates the signaling of Talker for reserving
resources for a multicast stream via two disjoint paths. The
Talker declares a TAA which is propagated by the bridges
in direction of all Listeners along the path of the stream.
On receipt of a TAA, bridges evaluate if sufficient resources
for applying the requested QoS level are available. When
resources are available, the attribute is forwarded in direction
of the Listeners. In case of an error, failure information is
attached to the TAA before forwarding. For computing worst-
case path latency, bridges add their maximum forwarding
latency to the accumulated latency field in the TAA.

Figure 6(b) illustrates the signaling of the Listeners. They
declare a LAA to signal participation in a stream each. After
a TAA and LAA of the same stream is registered on the ports
of a bridge, resources for the stream are finally reserved and
underlying QoS mechanisms are configured. When multiple
LAAs for the same stream are received by a bridge, it merges
the status information of all received LAAs before forwarding
in direction to the Talker.

After a successful resource reservation, RAP notifies the
control application which initiated resource reservation such
that it can start deterministic data transmission.

V. ANALYSIS AND EXTENSION OF RAP FOR HYBRID
CONFIGURATION MODEL

In this section we develop a concept for using RAP for
admission control in the hybrid configuration model. First, we
explain the problem statement for our scenario. We conclude
that a RAP-CUC is needed and propose a general architecture
for a CUC. We show the compatibility of RAP to the TSN
UNI. Finally, we describe the design and implementation of a
RAP-CUC.
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Figure 6: RAP signalling for reserving resources for an 1+1
protected, multicast stream.

A. Problem Statement

RAP standardization currently focuses on the fully dis-
tributed configuration model and mostly token bucket based
traffic shaping. The hybrid configuration model requires a
distributed signalling protocol, like RAP, and a CNC. Our
goal is to enable resource reservation for globally scheduled
realtime streams using RAP. We want to enable resource
reservation for time-aware end stations in a TSN network
following the hybrid configuration model. In our scenario the
CNC provides a RESTCONF-based CUC-CNC interface.

In hybrid configuration model end stations’ RAP requests
are directly forwarded to the CNC by edge bridges. Since
future CNCs will have a YANG based interface, we introduce
an additional component, as a gateway between end stations
and the CNC, to transform RAP-based requests to a format
understandable by the CNC. Additionally, this component
manages state of ongoing resource reservations. We state that
such a component is equal to the CUC component known from
fully centralized configuration model.

B. Life-Cycle of a TSN Stream

We assume that the life-cycle of a stream is managed by the
CUC which keeps track of the state of streams and reacts to
different events originating from CNC or end stations. We de-
fine the following states: new, pending, deployed, withdrawn,
error.

The initial state of a stream is new, when either the
requirements of a Talker or Listener is registered but not both.

6



Stream Management

Status
DB

Stream
Requirement

DB

Life-Cycle 
Manager

Protocol Connector

LRP-DT LRP-DS RAP-CUC
Application

Declaration 
DB

Registration 
DB

RAP over TCP (LRP Proxy)

CNC Connector

CNC
Request
Handler

Webhook 
Handler

Request-Response Webhook Response

Task

Layer

Database 

Access

(Queue-)
Message

Legende

Figure 7: The proposed CUC consists of a three layer ar-
chitecture: Protocol Connector, Stream Management, CNC
Connector. The Protocol Connector is specific for RAP.

The stream reaches the pending state, when Listener and
Talker requirements for a stream are received by the CUC. As
a reaction, the CUC initiates a resource reservation process
with the CNC.

When the CNC indicates a successful resource reservation,
the state advances to deployed.

Otherwise, the error state is reached, e.g., due to insufficient
resources. Additionally, the CNC can convey an error state to
the CUC, even after the stream has been successfully deployed,
e.g., on recognition of a link failure.

The state is withdrawn when either the Talker or all Lis-
teners cancel their intent to participate in the stream. As a
consequence, the CUC withdraws reserved resource from the
CNC to free network resources.

C. Design of a General CUC Architecture

The CUC fulfills three tasks: communicate with end sta-
tions, manage the life-cycle of streams, and request resources
for streams from the CNC. With regard to these tasks, we
propose a three layer architecture consisting of a Protocol
Connector, Stream Management, and CNC Connector. An
example for RAP as user-specific protocol is depicted in
Figure 7.

1) Protocol Connector Layer: The Protocol Connector
communicates with end stations over a user-specific proto-
col. Thus, the implementation depends on the user-specific
protocol and its signalling. The Protocol Connector extracts
data relevant for admission control from user-specific protocol
packets, transforms this data to group-talker or group-listener
structures, and hands it to the Stream Management Layer
(SML). In addition, it generates messages, as the user-specific
protocol defines, to notify end stations about stream status
changes and sends configuration data on behalf of the SML.

We describe an implementation of a Protocol Connector based
on RAP in Section V-E.

2) Stream Management Layer: The SML manages the
whole life-cycle of a stream as described in Section V-B.
Therefore, it stores stream requirements of end stations from
Protocol Connector, manages stream reservation and with-
drawal with the CNC Connector, and triggers notification
of end stations. For that, it keeps track of end stations
requirements in the Stream Requirement Database (SRDB)
and stream reservation status in the Status Database (SDB).
The SRDB stores the stream requirements per end station,
either as IEEE Std 802.1Qcc group-talker or group-listener.
The SDB contains a record for each stream currently under
management. Each record contains information about the state
of reservation process, a list of participating end stations,
and the group-status-stream and group-status-talker-listener
returned from CNC Connector on successful reservation.

SML is independent of the user-specific protocol and the
CNC’s implementation. Thus, the SML implements a general
model for life-cycle management of streams in TSN.

3) CNC Connector Layer: The CNC Connector conveys
stream requirements to the CNC and invokes remote procedure
calls. It uses the groupings of IEEE Std 802.1Qcc, commu-
nicated by the SML, to initiate stream reservation/withdrawal
process. For that, it communicates stream requirements, ini-
tiates computation and deployment of network configuration.
The signalling performed by the CNC Connector is specific
to the implementation of the CNC’s interface.

Since schedule synthesis is a complex problem, it can
take some time for larger networks [12]. A simple blocking,
request-response paradigm or polling for the result is using
resources inefficiently.

Therefore, we introduce the Webhook Handler for
subscription-based result propagation. The Webhook Handler
implements a REST-based application interface for providing
callback addresses to the CNC. For each request, the CNC
Connector obtains an Uniform Resource Identifier (URI) from
the Webhook Handler. This URI will be sent along the request
whose response is to be subscribed. The CNC transmits the
computational result to the specified URI. Thus, a high number
of open connections and blocking can be avoided.

D. Compatibility of RAP with TSN UNI

We analysed if RAP can be used for reserving resources for
scheduled streams originating from time-aware Talkers. There-
fore, we compared the minimum set of information, defined
by the UNI, needed to take admission control decisions, with
the attributes and signalling of RAP. Analysis has shown that
RAP currently does not provide sufficient information to the
CNC to take admission control decisions for the scheduled
streams with time-aware end stations.

RAP lacks the possibility to communicate the interval length
and the earliest/latest transmit time to the CNC. Additionally,
choosing a custom latency bound of a stream for schedule
synthesis is not possible using RAP. Furthermore, the resulting
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end station configuration, like the transmission start time of a
Talker, can not be communicated to the end stations.

We propose to consider including the interval time, the earli-
est/latest transmit time, and the maximum latency as optional
fields in the MSRP traffic specification. We also propose to
allow attachment of interface configuration to the LAA and
TAA attributes. These gaps can be immediately resolved by
integrating the proposed extensions as organizationally defined
TLVs in LAA/TAA.

E. Design of a RAP-specific Protocol Connector

We introduce a Protocol Connector which performs RAP
specific signalling with the end stations. For connecting the
end stations to the RAP-CUC, we leverage the ”proxied relay
systems” model of LRP as illustrated in Figure 5.

In that scenario the Protocol Connector for RAP is the LRP
proxy system and the end stations are native LRP systems. The
target port of the controlled edge bridge announces RAP as an
application and corresponding address information to the end
stations via LLDP. As an alternative, Portals can be manually
configured. The advertised information is used by the appli-
cations to establish a TCP connection. This connection from
the end stations to the Protocol Connector of the RAP-CUC
enables exchange of RAP attributes for resource reservation.

The Protocol Connector includes an implementation of
LRP-DT, LRP-DS and a newly introduced RAP-CUC ap-
plication component. The RAP-CUC application extracts in-
formation relevant for admission control from the received
TAA and LAA attributes. The information is passed to the
SML for managing state of stream reservation. Additionally,
withdrawal of attributes by end stations is conveyed, too. On
behalf of SML, the RAP-CUC application updates the fields
of the registered RAP attributes and controls forwarding for
conveying admission control results to the end stations.

VI. IMPLEMENTATION OF A RAP-SPECIFIC PROTOCOL
CONNECTOR

We release an implementation of the described RAP-CUC
[19]. The prototype follows the proposed general CUC archi-
tecture and consists of: the RAP specific Protocol Connector,
SML, and a partial implementation of the CNC Connector.

The Protocol Connector uses manual configuration for LRP
Portal creation. Since Portal creation results in a TCP connec-
tion from the end stations to the RAP-CUC, we omit imple-
mentation of LRP-DS and LRP-DT and directly establish the
aforementioned TCP connection. This approach is sufficient
for evaluating RAP as a resource reservation protocol for
hybrid configuration model.

We successfully tested our implementation against a pro-
prietary CNC which provides a RESTCONF-based interface.
We can not disclose implementation detail about the interface
of the CNC, therefore only a rudimentary CNC Connector is
provided.

The published CNC Connector can be used as a basis for
developing an other CNC Connectors for a specific CNC.
Furthermore, the RAP specific Protocol Connector can be

replaced by a custom Protocol Connector for connecting end
stations via other user-specific protocols.

VII. CONCLUSION

We gave an introduction to LRP and RAP as a future
resource reservation protocol of TSN. We found out RAP
currently lacks the ability to reserve resources for time-
aware scheduled streams in the hybrid configuration model.
To resolve the issues, we proposed an extension to RAP and
an approach for immediate remedy. We describe a general
architecture for CUC components and a specific implementa-
tion of a RAP-CUC. The implementation of the RAP-CUC
is published under an open-source license [19]. Future work
comprises further investigation of use-cases for LRP proxy
models.
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Abstract—In software-defined networks, forwarding entries on
switches are configured by a controller. In case of an unreachable
next-hop, traffic is dropped until forwarding entries are updated,
which takes significant time. Therefore, fast reroute (FRR)
mechanisms are needed to forward affected traffic over alternate
paths in the meantime. Loop-free alternates (LFAs) and remote
LFAs (rLFAs) have been proposed for FRR in IP networks.
However, they cannot protect traffic for all destinations and some
LFAs may create loops under challenging conditions.

This paper proposes robust LFA protection for software-
defined networks (RoLPS). RoLPS augments the coverage of
(r)LFAs with novel explicit LFAs (eLFAs). RoLPS ranks available
LFAs according to protection quality and complexity for selection
of the best available LFA. Furthermore, we introduce advanced
loop detection (ALD) so that RoLPS stops loops caused by LFAs.
We evaluate RoLPS-based protection variants on a large set of
representative networks with unit and non-unit link costs. We
study their protection coverage, additional forwarding entries,
and path extensions for rerouted traffic, and compare them with
MPLS facility backup. Results show that RoLPS can protect
traffic against all single link or node failures, and against most
double failures while inducing only little overhead. We implement
FRR on the P4-programmable switch ASIC Tofino and provide a
control plane logic based on RoLPS. Measurement results show
that the prototype achieves a throughput of 100 Gb/s, reroutes
traffic within less than a millisecond, and reliably detects and
drops looping traffic.

Index Terms—Software-Defined Networking, P4, Loop-Free
Alternates, Resilience, Link Protection, Node Protection, Scal-
ability,

I. INTRODUCTION

Software-defined networking (SDN) separates data plane
and control plane of forwarding nodes. A controller computes
and installs forwarding rules on data plane devices to instruct
them how to process data packets. Packet forwarding is im-
paired when a next-hop becomes unreachable due to a failure,
i.e., a failed link or a failed node. Without controller inter-
action, switches drop affected packets. However, notification
of the controller, recomputation of forwarding rules, and their
installation on data plane devices takes a considerable amount
of time. This outage time is too long, in particular for the
transport of realtime traffic.

In IP networks fast reroute (FRR) mechanisms are used
to quickly reroute packets via pre-computed backup paths
while forwarding entries are recomputed. FRR would also be

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

helpful in SDN to forward traffic with unreachable next-hops
without controller interaction via alternate paths. However,
SDN forwarding devices often have limited forwarding tables
so that adding many forwarding entries for FRR purposes
may be problematic. Loop-free alternates (LFAs) are a well-
known FRR method for IP networks that requires no additional
forwarding entries so that we consider them in this work.
LFAs constitute alternative next-hops that successfully forward
traffic towards the destination when the default next-hop is un-
reachable. The authors of [1] proposed to use LFAs to protect
traffic without controller interaction in SDN-based networks.
However, LFAs suffer from two major shortcomings. First,
they cannot protect traffic for all destinations against single
link failures (SLF) and single node failures (SNF). Second,
some LFAs may cause rerouting loops in case of node failures
or multiple failures.

In previous work [2] we improved the usage of LFAs
in software-defined networks. We introduced explicit LFAs
(eLFAs) based on explicit tunnels to protect destinations that
cannot be protected by other LFAs. We proposed advanced
loop detection (ALD) to detect and stop loops, which prevents
severe overload that may happen with LFAs in failure cases.
We described loop avoidance (LA), which leverages ALD,
ranks available LFAs according to their protection quality
and overhead, and chooses the best one. Furthermore, we
showed how LA can be implemented in OpenFlow. Finally,
a simulation-based evaluation showed that LA can protect all
traffic in SDN networks against SLF and SNF and with less
overhead compared to other FRR methods.

his paper is an extension of [2] with the following advances.
(1) We augment eLFAs with explicit multipoint-to-point
rerouting tunnels. This significantly decreases the required
number of additional forwarding entries for explicit tunnels.
(2) We modify ALD so that it can detect and stop loops faster
while being implementable on P4 devices. (3) We update the
simulative evaluations according to the new mechanisms. (4)
We include topology-independent LFAs (TI-LFAs) [3] in the
simulative evaluations because they are conceptually similar
to eLFAs. (5) We improved the overall presentation, including
a renaming of LA into RoLPS as the name LA did not capture
the entire concept. (6) We implement a prototype of RoLPS on
the P4-programmable switching ASIC Tofino featuring LFAs,
rLFA, eLFA, and ALD, and a RoLPS-based SDN controller,
and thereby, show its technical feasibility. (7) We demonstrate
that the technical solution performs well by showing that the
prototype operates at 100 Gb/s, reroutes traffic within less than
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a millisecond, and reliably detects and drops looping traffic.
The paper is structured as follows. In Section II we discuss

related work. Then, we review state of the art for LFAs
in Section III. Section IV introduces eLFAs and ALD for
improved protection of the SDN data plane, and a RoLPS-
based control plane logic for that features and existing LFAs.
Section V describes the simulative evaluation methodology
and discusses performance results based on comprehensive
study. We present the implementation of a P4-based hardware
prototype in Section VI. We evaluate its performance in
Section VII by measurements. Finally, we conclude the paper
in Section VIII. A table of acronyms and a glossary are
provided at the end of the paper to facilitate the reading.

II. RELATED WORK

In this section we describe related work. First, we discuss
legacy FRR mechanisms to position LFAs. Then, we review
FRR for SDN.

A. FRR in Legacy Networks

Rai et al. [4], Raj et al. [5], and Papan et al. [6] present
surveys that provide a wide overview of FRR in legacy
networks. Hutchinson et al. [7] discuss the architecture and
design of resilient network systems, i.e., specifying and re-
alizing appropriate components. They review state-of-the-art
contributions and identify future research issues.

1) MPLS Networks: For MPLS [8] two major FRR mech-
anisms have been proposed [9]. One-to-one backup reroutes
packets on preconfigured paths that avoid the failure. Facility
backup tunnels the packets locally around the failure to the
next-hop for link protection, or to the next-next-hop for node
protection. Only recently, the authors of [10] propose a loop
detection mechanism for MPLS. It is based on special MPLS
labels that are pushed on the MPLS header stack when a packet
is rerouted. This allows nodes to detect whether a packet has
already been rerouted.

2) IP Networks: Not-via addresses [11] protect both IP
and MPLS networks. The routing table of a node contains
one additional forwarding entry for every outgoing link.
When the default next-hop is unreachable, those additional
entries are used to deviate the packet from its shortest path
through a tunnel around the failure. This causes a similar
path layout as MPLS facility backup [12]. Failure insensitive
routing (FIR) [13] leverages interface-specific routing tables
to encode failure information. Depending on the ingress in-
terface, packets are rerouted on precomputed backup paths
around the failure. Multiple routing configurations (MRCs)
[14] implement multiple disjoint routing topologies so that
always at least one topology provides a working path towards
the destination despite the failure. For each topology, an entire
set of forwarding entries is required which at least doubles
the amount of forwarding entries. Maximally redundant trees
(MRTs) [15] leverage a similar approach. A red and a blue set
of backup forwarding entries are computed so that at least one
set delivers the packet in case of a failure. However, MRTs
triple the number of forwarding entries in the network and may
lead to extensive backup paths [16]. LFAs can be combined

with MRTs to reduce backup path length and link load [17].
Independent directed acyclic graphs (IDAGs) [18] compute
only two sets of maximally disjoint forwarding entries, i.e.,
doubling the amount of forwarding entries so that one is
working in case of a failure. The authors of [19] encode
failure information in the packet header. Nodes leverage this
information to identify the failure and reroute packets on
disjoint paths around it.

3) LFA-Based Protection: LFAs [20] with either link or
node protection locally reroute packets around the failure
on shortest paths. Therefore, they do not require additional
forwarding entries but cannot protect all destinations. Csikor
et al. [21], [22] increase the number of protected destinations
by optimizing link costs. rLFAs [23]–[25] augment LFAs to
increase the number of protected destinations by rerouting
packets to remote nodes through shortest path tunnels. They do
not need additional forwarding entries but still cannot protect
all destinations. The performance of both LFAs and rLFAs can
be enhanced by adding links to the network [26]. In [27], the
authors present a self-configuring extension for LFAs based on
probes. It installs alternative hops in other nodes to prevent
rerouting loops. Topology-independent LFAs (TI-LFAs) [3]
leverage segment routing (SR) [28] to protect against failures.
SR is based on forwarding instructions in the packet header
which may be stacked. TI-LFAs leverage SR to implement
explicit tunnels to remote nodes. As eLFAs leverage explicit
tunnels, too, they can be viewed as a very specific but rather
untypical form of TI-LFAs.

B. FRR Protection in SDN

We discuss FRR in the context of SDN. We first address
general FRR approaches for SDN and then we discuss related
work for FRR in OpenFlow- and P4-based networks.

1) FRR in SDN: There have been many proposals to make
the SDN control plane more resilient [29]. However, there
are only very few efforts to protect traffic in the data plane.
If the controller is notified about the failure, it may update
its topology, and recompute and install updated forwarding
entries. Sharma et al. [30] measure that recomputation takes
about 80-100 ms. However, the authors clarify that this number
highly depends on the number of affected flows, path lengths,
and traffic bursts in the control network. In particular, it is
likely that the time for rerouting is significantly higher in larger
networks. Da Silva et al. [31] and Chiesa et al. [32] present
surveys that give overviews of FRR in SDN with significantly
faster protection than recomputation of forwarding entries.

2) OpenFlow-Based FRR: FRR capabilities have been in-
troduced in OpenFlow with Version 1.1. The authors of [33]
provide a BFD-based protection scheme for earlier OpenFlow
versions than 1.1. It is based on a bidirectional forwarding de-
tection (BFD) where nodes periodically exchange information
about their reachability. Van Adrichem et al. [34] measure
that failure detection takes about 3-30 ms on the software-
based Open vSwitch depending on the configuration of the
BFD. SlickFlow [35] encodes primary and backup paths in
the packet header to reroute packets when an unavailable
egress port is selected. SPIDER [36] leverages additional
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state in the OpenFlow pipeline. Packet labels carry reroute
and connectivity information. Braun et al. [1] propose loop
detection for LFAs (LD-LFA) which increases the number
of protected destinations but may erroneously drop packets.
The authors of [37] use labels in the packet header that
carry failure information to trigger rerouting in other nodes.
Cevher et al. [38] implement MRCs in OpenFlow. The authors
of [39] implement multi-topology routing which uses virtual
topologies to provide redundancies in routing tables. If a
failure is detected, packet forwarding is switched to a topology
which is not affected by the failure. BOND [40] optimizes
memory management for backup rules and leverages global
hash tables to accelerate failure recovery.

3) P4-based FRR: P4 does not provide native FRR ca-
pabilities. Therefore, the hardest challenge is to provide the
data plane devices with information about which neighbors
are reachable, i.e., which port is up or down.

Sedar et al. [41] propose to use registers to store information
about which egress port is up or down. Depending on the
port status registers, primary or backup forwarding actions are
triggered. However, the authors depend on a local agent to
populate the registers. Shared Queue Ring (SQR) [42] caches
recent traffic in a delayed queue. If a link failure is detected,
the cached traffic is sent over alternative paths. Lindner et al.
[43] implement 1+1 protection in P4 which replicates traffic,
includes sequence numbers, and sends it over disjoint paths.
The joint head end of those paths deduplicates the traffic.
Hirata et al. [44] implement a FRR scheme in P4 which is
similar to MRCs. Multiple routing topologies with disjoint
paths are deployed. A field in the packet header identifies
the topology which should be used for forwarding. D2R [45]
is a resilience mechanism which works entirely in the data
plane. When a failure is detected, the data plane itself, i.e.,
the failure-detecting switch, recomputes a new path to the
destination. A primitive for reconfigurable fast reroute (PURR)
[46] stores additional egress ports for each destination. During
packet processing, the first working egress port is selected for
forwarding.

III. LFAS: STATE OF THE ART

We review LFAs and remote LFAs (rLFAs) and give an
overview of previous work regarding loop detection for LFAs.
Finally, we explain topology-independent LFAs (TI-LFAs).

A. LFAs and rLFAs

In this subsection we introduce the concept of LFAs and
rLFAs. Then, we discuss three important properties of LFAs.
First, we differentiate protection levels for LFAs, i.e., link pro-
tection and node protection. Second, we explain the influence
of links cost on LFA-based protection. Third, we point out
that LFAs may generate loops under some conditions.

1) Concept: LFAs [20] have been proposed in the context
of FRR for IP networks to quickly protect traffic against the
failure of links and nodes while primary forwarding entries
are recomputed.

A point of local repair (PLR) denotes a node that detects
an unreachable next-hop and reroutes affected traffic to some

other neighbor. However, some neighbors would send the
traffic back to the PLR, which creates a loop. The other
neighbors can forward the traffic without creating a loop and
are called loop-free alternates (LFAs). They are used by a PLR
to reroute traffic in case of a failure.

NH DPLR

LFA

rLFAN1

Shortest 
path tunnel

Default path
LFA backup path
rLFA backup path

S

N2 N2

Figure 1: In case of a failure, a PLR may reroute a packet to
an LFA or tunnel it via a shortest path to a rLFA. The (r)LFA
then forwards the packet via a shortest path to its destination.

LFAs are illustrated in Figure 1. Traffic is forwarded on
shortest paths. A packet is sent from sender S to destination
D. The default path is via PLR and NH. When PLR cannot
reach its next-hop NH due to a link failure, it cannot reroute the
packet via neighbors S or N1 as they forward traffic towards D
to PLR, which creates a loop. However, PLR may reroute the
packet via LFA which can forward the packet to D. Thus,
the node LFA represents an LFA for PLR with respect to
destination D.

We now assume that NH fails so that LFA has no working
path towards D. If PLR reroutes the packet to LFA, LFA may
use PLR as an LFA and return the packet. Thus, a loop occurs.

Remote LFAs (rLFAs) [23]–[25] have been introduced
to protect more destinations than LFAs by sending packets
through shortest path tunnels to remote nodes. In our example,
the node rLFA is an rLFA for PLR with respect to destination
D. If NH fails, PLR may tunnel the packet to rLFA which
decapsulates the packet and sends it to D via a shortest path.

2) Protection Level: We already observed that some
(r)LFAs protect only against link failures, others protect also
against node failures. The first are classified as link-protecting
(LP), the second as node protecting (NP). A link-protecting
LFA (LP-LFA) forwards traffic to a destination via a path that
avoids a PLR’s failed link. A node-protecting LFA (NP-LFA)
forwards traffic to a destination via a path that avoids a PLR’s
failed next-hop. Thus, NP-LFAs are also LP-LFAs, but not
vice-versa. Therefore, a PLR can protect more destinations
with LP-LFAs than with NP-LFAs. For some destinations,
there may be no LP-LFA or NP-LFA at all. Then, rLFAs may
help.

3) Influence of Link Cost: Networks are configured without
link costs, i.e., unit link cost networks, or with link costs,
i.e., non-unit link cost networks, e.g., for traffic-engineering.
(r)LFAs have different protection properties in unit link cost
networks than in non-unit link cost networks. The authors of
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[1], [2] showed that for some destinations there is no LP-LFA
or NP-LFA in both unit-link cost networks and non-unit link
cost networks. Then, some destinations may be protected with
rLFAs. Csikor et al. [25] proved that there is always an LP-
rLFA for any destination in unit link cost networks. However,
in [2] we showed that this is not the case in non-unit link
cost networks. Furthermore, we showed that in both unit link
cost networks and non-unit link cost networks there is not
always an NP-rLFA for a destination [2] although there are
more NP-rLFAs in unit link cost networks. Thus, in general,
more destinations can be protected in unit link cost networks
with (r)LFAs than in non-unit link cost networks.

4) LFA-Generated Loops: Forwarding loops in networks
are problematic for two reasons. First, the traffic cannot reach
its destination. Second, looping traffic consumes bandwidth,
which may lead to packet loss for other traffic. However,
looping traffic does not loop forever because the TTL field
in the IP header limits the number of forwarding hops. As
TTL=64 is a typical value, looping traffic can easily waste
the 30-fold of the capacity it would normally occupy on a
link. Therefore, routing loops are detrimental and should be
avoided.

Depending on their protection level (r)LFAs may cause
rerouting loops in specific failure scenarios. We distinguish
and order four failure scenarios: single link failure (SLF) <
single node failure (SNF) < double link failure (DLF) < single
link and single node failure (SLF+SNF).

LP-(r)LFAs do not cause rerouting loops for SLF but they
may cause loops in other scenarios. NP-(r)LFAs prevent loops
for both SLF and SNF [2], but fewer destinations can be
protected by them. In case of multiple failures, even NP-
(r)LFAs may generate loops. Some LP- or NP-(r)LFAs have
the “downstream” property [12] and they avoid loops in case of
multiple failures. However, only a few LFAs have that property
so that only a few destinations can be protected by them. We
do not consider them any further in this study.

B. Loop Detection for LFAs

The authors of [1] propose loop detection based on bit
strings. They use it in combination with LFAs to protect more
destinations by LFAs without suffering from loops. In addition,
they suggest to protect destinations with LFAs with the highest
possible protection level to maximize the coverage against link
and node failures. They call this approach LD-LFA.

1) Loop Detection Based on Bit Strings: The loop detection
in [1] requires a bit string in the packet header to indicate
nodes that have rerouted the packet before. Each node in
the network is associated with a bit position. If a packet is
rerouted, the node activates it bit in the packet’s header. If a
node receives a packet with its corresponding bit activated, the
packet is dropped.

The authors suggest an implementation in OpenFlow but do
not deliver a prototype. An advantage of this approach is that
a packet can be rerouted by multiple nodes. A disadvantage
is the missing scalability. Bit strings in packet headers should
be small. In OpenFlow, MPLS labels may be reused for that
purpose, but they are only 4 bytes long which is not enough

to number all nodes of a large network. Therefore, multiple
nodes may be associated with the same bit. If one of these
nodes reroutes a packet, the packet is dropped if it is received
by another of those nodes. This causes erroneous drops for
rerouted packets.

2) LFA Selection: For some PLRs there are several LFAs
available for a specific destination. The authors of [1] sug-
gested to prefer NP-LFAs over LP-LFAs in such a case. They
showed for various network topologies that significantly fewer
destinations can be protected by NP-LFAs than by LP-LFAs.
Therefore, they suggested to protect the remaining destinations
with LP-LFAs if possible. In addition, they proposed to utilize
loop detection based on bit strings to avoid rerouting loops
caused by LP-LFAs. They did not consider rLFAs.

C. Topology-Independent LFAs

In this subsection we explain topology-independent LFAs
(TI-LFAs) [3]. First, we review segment routing (SR) [28].
Then, we describe TI-LFAs.

1) Segment Routing: IP networks leverage destination-
based forwarding to deliver packets. That is, a packet carries
the IP address of the destination in its header which is used
by network devices to determine the appropriate next-hop
according to entries in a forwarding table. In contrast, with
SR the packet source determines the processing of a packet.
To that end, SR leverages forwarding instructions in the packet
header. The packet source constructs a set of header segments
that are added to the packet. Each header segment corresponds
to a specific action. Nodes process a packet according to the
segments in its header. To that end, network devices maintain a
certain number of forwarding entries to map a header segment
to a specific action.

Currently, there are two major technologies that implement
SR. SRv6 [47] is based on IPv6 and its extension header. Each
IPv6 address in the extension header corresponds to one header
segment. SR-MPLS ([48]) leverages stacked MPLS labels, i.e.,
the header stack, where each MPLS label is a header segment.
To facilitate readability we only use the terminology of SR-
MPLS, i.e., header stack and label, in the following.

Header segments may instruct nodes to perform arbitrary
actions, e.g., forwarding a packet, pushing or removing other
header segments, etc. In the following we focus on two specific
types of header segments. The first type are header segments
for global forwarding. We refer to such header segments with
the term “global labels”. Global labels instruct the nodes to
forward a packet according to shortest paths towards a specific
destination. As a result, a global label is similar to destination-
based forwarding in IP networks. At the destination the global
label is removed and the node processes the next header
segment. When global labels are used for all destinations,
every nodes requires n− 1 forwarding entries where n is the
number of destinations in the network. The second type are
header segments for local forwarding. We refer to that kind
of header segments with the term “local labels”. Local labels
instruct nodes to forward a packet over a specific link towards
a next-hop. Before a node forwards a packet to the NH, it
removes its local label from the header stack. When local
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labels are used for all nodes, every node requires d forwarding
entries where d is the number of neighbors of that node.

A source may construct a header stack that contains both
global labels and local labels. As a result, forwarding differs
depending on which type of label is on top of the header
stack. On some subpaths the packet is forwarded according to
a global label and on some subpaths the packet is forwarded
according to a local label.

2) Concept of TI-LFAs: TI-LFAs leverage SR to forward
packets on explicit paths around a failure. That is, TI-LFAs
are not restricted to shortest paths because they construct
a header stack with explicit forwarding instructions so that
the packet avoids the failure. As a result, TI-LFAs with LP
protect against any single link failure independently of link
costs, and TI-LFAs with NP protect against any single node
failure independently of link costs. However, multiple header
segments may be necessary which increases the size of the
header stack and thereby the overhead in terms of additional
packet headers. The authors of TI-LFAs state that “in an MPLS
world, this may create a long stack of labels to be pushed that
some hardware may not be able to push.” ([3], 2021, p. 6).

The size of a specific header stack depends on how the
explicit backup path is implemented. The straightforward
approach is to use one explicit forwarding instruction for
every hop, i.e., local labels. However, this requires one header
segment for each hop which causes large header stacks. The
size of the header stack can be reduced if subpaths of the
explicit path are implemented with already existing global
labels. That is, one global label replaces multiple local labels.
This is possible when working shortest paths are subpaths of
the explicit path. However, this may not be possible for all
subpaths because sometimes no working shortest subpath is
available due to the failure.

The authors of [3] do not specify how the header stack
to implement explicit paths is built. In particular, this is
an optimization that highly depends on the failure scenario,
topology, link costs, and path selection. Therefore, we see
research potential for the optimization of the TI-LFA header
stack. This, however, is out of scope of this document. In the
following we assume that TI-LFAs implement explicit paths
only with local labels.

IV. ROBUST LFA PROTECTION FOR SOFTWARE-DEFINED
NETWORKS (ROLPS)

LFAs originated from IP networks. They are attractive for
SDN because they entail only little overhead in terms of
additional forwarding state. However, they have three major
shortcomings. They have been designed only for shortest-
path routing based on link costs, they cannot protect all
destinations, and they may cause loops under some conditions.

In the following we explain how LFAs can be applied in
SDN which allows for general destination-based forwarding.
We present explicit LFAs so that all destinations can be
protected in case of a failure, provided they can be physically
reached by a working path. We describe an advanced loop
detection method to detect and stop loops and prevent erro-
neous packet drop after up to n reroute actions. Finally, we

propose how to utilize these components and consider different
protection variants.

A. Applicability of LFAs for SDN

In the context of IP networks, equations considering link
costs are used to classify neighboring nodes into non-LFAs,
LP-LFAs, and NP-LFAs with regard to some destination [12].
Forwarding in SDN does not need to follow shortest path
routing based on link costs, but general destination-based
forwarding may be applied. Therefore, we briefly explain how
(r)LFAs can be used in that context. Essentially, we need to
classify neighboring nodes into no-LFAs, LP-LFAs, and NP-
LFAs. A PLR’s neighboring node is

• no LFA if its standard forwarding procedure forwards the
traffic to the destination via a path containing the PLR.

• an LP-LFA if its standard forwarding procedure forwards
the traffic to the destination via a path that does not
contain the link from PLR to its next-hop towards the
destination.

• an NP-LFAs if its standard forwarding behavior forwards
the traffic to the destination via a path that does not
contain the PLR’s next-hop towards the destination.

This definition can be applied to normal LFAs, rLFAs, and to
eLFAs that are presented later in this section.

Path computation is not a focus of this paper. To limit the
parameter space for ease of understanding, we consider in the
evaluation in Section V link-cost-based forwarding which is a
special case of the more general destination-based forwarding.

B. Explicit LFAs

We first give an example where (r)LFAs cannot protect
a destination. Such destinations can be protected by explicit
LFAs (eLFAs) which are based on explicit tunnels. However,
explicit tunnels require additional forwarding entries. In [2]
we suggested to implement explicit tunnels with explicit
point-to-point rerouting tunnels. In this paper, we propose
explicit multipoint-to-point rerouting tunnels as an alternative
which requires significantly less additional forwarding entries.
Finally, we explain the relation between eLFAs and TI-LFAs.

1) Protection through Explicit Tunnels: The network in
Figure 2 forwards traffic on shortest paths based on costs
that are annotated on the links. PLR sends a packet to D
but the primary next-hop is unreachable. Although there is
a physical path via N1 and eLFA, there is no (r)LFA available.
N1 is not an LFA because it sends traffic to D via PLR. eLFA
cannot serve as rLFA because the shortest path from PLR to
eLFA traverses D. The problem can be solved by setting up
an explicit tunnel via N1 to eLFA a priori. If D is no longer
reachable, PLR can send the packet over that explicit tunnel,
and from eLFA the packet reaches D via a shortest path. Thus,
eLFA is an eLFA for PLR with regard to D.

2) Explicit Point-to-Point Rerouting Tunnels: Now we ex-
plain the concept of explicit point-to-point tunnels which we
introduced in [2]. In Subsection VI-C3 we describe technical
details about the implementation of explicit tunnels in general
with P4.
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Figure 2: In case of a failure, a PLR may reroute a packet to
an eLFA via an explicit tunnel which then forwards the packet
via a shortest path to its destination. In contrast to rLFAs, the
PLR cannot reach the eLFA via a shortest path.

Explicit point-to-point rerouting tunnels do not follow stan-
dard paths. Therefore, they are configured with a unique
identifier, e.g., a unique number or IP address, in advance.
When a PLR reroutes a packet through an explicit point-to-
point rerouting tunnel, it adds the identifier of that tunnel to the
packet. Nodes use the identifier to forward the packet along the
explicit path. To that end, the nodes along an explicit path need
additional forwarding entries for the identifier of that tunnel.
Additional forwarding entries for FRR purposes are undesired
overhead for the data plane as they limit its scalability.

3) Explicit Multipoint-to-Point Rerouting Tunnels: The
overhead of additional forwarding entries from explicit tunnels
can be reduced by using explicit multipoint-to-point tunnels.
That is, the explicit tunnels from multiple PLRs towards the
same endpoint, i.e., an eLFA, build a destination tree where
the PLRs are the sources and the eLFA is the sink. Such
an explicit multipoint-to-point rerouting tunnel corresponds
to a specific eLFA and is identified by a single unique
identifier. When a PLR reroutes a packet towards a specific
eLFA, it adds the identifier of the corresponding multipoint-to-
point rerouting tunnel to the packet. As a result, overlapping
subpaths of explicit tunnels towards the same eLFA require
only a single additional forwarding entry in nodes along that
subpath. Therefore, multipoint-to-point rerouting tunnels are
prefered over point-to-point rerouting tunnels. We evaluate the
effect of multipoint-to-point rerouting tunnels in comparison
to point-to-point rerouting tunnels in Section V-C.

4) Relation to TI-LFAs: Explicit tunnels can be imple-
mented in different ways. We suggest eLFAs which implement
explicit tunnels with a single tunnel header and additional for-
warding entries in forwarding devices. Alternatively, TI-LFAs
leverage a header stack with explicit forwarding instructions
based on already available forwarding entries. Section III-C
contains details about the construction of the TI-LFA header
stack. Either way creates overhead to implement explicit
tunnels. In Section V-C we evaluate the number of additional
forwarding entries that are required by eLFAs. In Section V-D
we quantify the size of the packet header stack when TI-LFAs
are used.

C. Advanced Loop Detection

The loop detection method in [1] suffered from scalability
problems. Therefore, we propose that packets are dropped if
they are rerouted more than n times. This requires only a
counter in the packet header which is increased with each
reroute action. When the counter reaches the limit, the packet
is dropped. We denote this advanced loop detection (ALD).
Generally, ALD can be configured to support an arbitrary
number of redirects. However, a large number can be counter-
productive as packets are dropped later in case of loops and
consume more bandwidth. In our context, we allow a packet
to be rerouted twice so that double failures can be survived.

1) Implementation in OpenFlow: Due to technical restric-
tions of OpenFlow, conditions can be checked only at the
beginning of the forwarding pipeline. However, at that stage,
there is no knowledge about the packet’s next hop and failed
interfaces. Fortunately, it is possible to increase the reroute
counter while rerouting. Thus, only the next-hop of a rerouted
packet can determine whether the packet’s reroute counter
exceeds the limit and then the packet is dropped. This wastes
bandwidth on the last link over which the packet was rerouted.

We provided a more detailed sketch of an OpenFlow-based
implementation of ALD in [2]. That particular proposal was
still based on bit strings. However, it avoids erroneous packet
drops after a single reroute in contrast to the solution in [1].

2) Implementation in P4: P4 offers more implementation
flexibility. Therefore, it is possible to check whether a packet
is rerouted and whether its rerouting counter exceeds the
limit before the packet is forwarded to the egress port. As a
consequence, packets are dropped before transmission, which
does not waste bandwidth. More details about the P4-based
implementation of ALD are given in Section VI-D.

D. RoLPS Protection Variants

With SDN a controller configures flow entries on data
plane devices. Alternative paths can be configured so that
the device can switch over to a secondary next-hop if the
first hop becomes unreachable. The secondary next-hop is
also configured by the controller. In this section we present a
ranking scheme for LFAs to choose the best one as a secondary
next-hop. We further define protection variants and propose a
corresponding nomenclature.

1) LFA Ranking: A controller can classify neighboring and
remote nodes of a potential PLR into LFAs, rLFAs, and eLFAs,
and as LP or NP for a specific destination. These LFAs can
be ranked according to their protection level, i.e., NP is better
than LP. Recall that NP-LFAs are also LP-LFAs, but not

Rank LFA Type
0 NP-LFA
1 NP-rLFA
2 NP-eLFA
3 LP-LFA
4 LP-rLFA
5 LP-eLFA

Table 1: Ranking of LFA types according to protection level
and complexity. Preference is given to LFAs with lower rank
number.
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Mechanism C-LFA C-rLFA LD-LFA ALD-NP-rLFA ALD-LP-eLFA ALD-NP-eLFA
(nLD-LP-LFA) (nLD-LP-rLFA) (ALD-NP-LFA)

Loop detection • • • •
Protection against all SLF o o • •
Protection against all SNF •
Additional forwarding entries • •

Table 2: Properties of protection variants.
Legend: o = only for unit link costs; • = independent of link costs.

vice-versa. They can also be ranked according to complexity.
Normal LFAs are simplest as they do not require tunneling.
eLFAs are most complex as they entail additional forwarding
entries for explicit tunnels.

With SDN, it is important to have an alternative next-hop
in case the primary next-hop is unreachable as it may take too
long until the forwarding is fixed by the controller. Therefore,
we rank LFAs first according to their protection level and then
according to their complexity. This yields the ranking given in
Table 1. The ranking is used to select the best available LFA
during computation.

2) Protection Variants: We define several protection vari-
ants with respect to loop detection, LFA complexity, and
protection level. The following naming scheme is used: {nLD,
ALD}-{LP, NP}-{LFA, rLFA, eLFA}. Loop detection may
be activated or not {ALD, nLD}. Either the LP property is
sufficient or NP is desired {LP, NP}. Only normal LFAs may
be allowed, normal and rLFAs may be allowed, or normal,
remote, and explicit LFAs are supported {LFA, rLFA, eLFA}.

eLFAs are preferably implemented with explicit multipoint-
to-point rerouting tunnels (see Section IV-B3). However, for
comparison we sometimes refer to eLFAs with point-to-point
tunnels. To that end, we add the suffix “-p2p” to the protection
variant. We omit a suffix for eLFAs with multipoint-to-point
rerouting tunnels because this is the preferable way That
is, *-*-eLFA refers to protection variant with eLFAs with
multipoint-to-point rerouting tunnels and *-*-eLFA-p2p refers
to protection variants with eLFAs with point-to-point rerouting
tunnels.

If a protection variant requires the NP property, the LFA
selection process starts with the search for an LFA of rank 0.
If the search is successful, this LFA is configured as secondary
next-hop for a specific destination, and the algorithm stops.
Otherwise the search continues with the next higher rank
number. This possibly continues up to rank 5. That means, NP-
(e/r)LFAs are preferentially utilized, but LP-(e/r)LFAs may be
used if the destination cannot be protected otherwise. This is
needed, e.g., if the protected next-hop is the destination. If no
LFA has been found for the last rank, there is no physical
connection between PLR and destination.

If a protection variant requires only the LP property, the
LFA selection process starts with the search for an LFA of
rank 3. The algorithm also stops if no LFAs has been found
for the last rank. In that case there is no physical path between
PLR and destination. Note that LFAs of rank 3 may also be NP
as every NP-LFA also fulfills the LP property. LP-LFAs are
just not preferred over NP-LFAs when the protection variant
requires only the LP property.

Protection variants requiring the NP property may still suffer

from loops since some destinations can be protected only with
LP-(e/r)LFAs. For example they occur when the destination
of a flow fails. nLD-LP-LFA and nLD-LP-rLFA leverage only
the classic LP-LFAs [20] and LP-rLFAs [23]. They are widely
used in IP networks and we denote them as the classic LFA
and rLFA variants (C-LFA, C-rLFA). ALD-NP-LFA1 has been
investigated as a preferred protection variant in [1] under the
name LD-LFA.

Table 2 summarizes the most important protection variants
investigated in our study. It summarizes properties regarding
protection level and complexity. ALD-mechanisms prevent
loops in any failure scenario. *-*-rLFA protect against all
protectable SLF in networks with unit link costs. *-*-eLFA
methods achieve that protection level even in networks with
non-unit link costs. *-NP-eLFA protects even against all
protectable SNF in networks with either unit or non-unit link
costs.

V. SIMULATIVE PERFORMANCE EVALUATION OF
LFA-BASED PROTECTION

In this section we analyze the efficiency of LFA-based FRR
mechanisms. First, we describe the methodology. The perfor-
mance metrics of interest are protection coverage, required
amount of additional forwarding entries, required amount of
header segments for TI-LFAs, and path lengths. We compare
them for RoLPS protection variants and other well-known
FRR mechanisms. Finally, we discuss the presented results.

A. Methodology

We explain the methodology for the simulation-based eval-
uation. We describe the general approach, and discuss the
topology data set and link costs used in the evaluation.

1) General Approach: We take a network topology includ-
ing link costs and a RoLPS protection variant as input pa-
rameters. Then we compute LFAs according to Section IV-D.
We evaluate different protection variants against various sets
of failure scenarios, i.e., S ∈ {SLF,SNF,DLF,SLF+SNF}
(see Section III-A4). To that end, we consider all source-
destination pairs f ∈ F in the network and analyze how their
traffic is forwarded in a specific failure scenario s ∈ S.

Although RoLPS works for general destination-based for-
warding (see Section IV-A), we limit the evaluation to shortest
paths routing based on link costs to reduce the parameter
space.

1Approximation of LD-LFAs with better loop detection.
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2) Network Topologies: We evaluate 205 wide area, com-
mercial, research, and academic networks from the Internet
topology zoo [49] and three typical data center topologies
(fat-tree, DCell, BCube) which were studied in [1]. For each
topology we calculate both average values and maximum
values for the considered metrics. We explain these metrics in
Sections V-B1, V-C1, and V-E1. We visualize the results in bar
diagrams or complementary cumulative distribution functions
(CCDFs).

3) Link Costs: In Subsection III-A3 we showed that link
costs have a significant impact on the protection properties
of LFAs. To account for that fact, we perform evaluations on
then networks with both unit link cost and non-unit link cost.
However, the topology zoo does not include link costs for all
networks. Therefore, we calculate link costs on all networks
as proposed in [50]. For each link we derive the specific load
based on a homogeneous traffic matrix, shortest paths, and
unit link costs. The link cost of each link is the inverse of its
load multiplied by the largest link load in the network so that
the smallest link cost is 1. Over all topologies this leads to an
average link cost of 6.8 and a coefficient of variation of link
costs of 1. Thus, the generated link costs differ substantially.

B. Protection Coverage

In this subsection we evaluate and compare the coverage of
RoLPS protection variants. First, we explain the metric. Then,
we briefly describe the evaluated protection mechanisms.
Finally, we discuss results for networks with unit link costs
and with non-unit link costs.

1) Metric: We introduce the three terms ’protected’, ’un-
protected’, and ’looped’ to refer to the quality of protection
which is provided by a FRR mechanism for a flow in a specific
scenario that consists of topology, failure scenario, and link
costs. A flow is considered protected in two cases. First, if the
packet is still successfully delivered at the destination although
the path from source to destination was interrupted by a failure.
Second, if a packet is dropped to prevent a loop because the
destination is not reachable anymore. A flow is unprotected if
the packet is dropped although the destination is still reachable.
Finally, a flow is denoted as looped if a microloop was caused
by local rerouting. We report the average fraction of protected,
unprotected, and looped flows over all 208 topologies (see
Section V-A2) in bar diagrams. The term coverage refers to
the fraction of protected flows in a scenario.

2) Evaluated Protection Variants: We consider the classic
protection variants C-LFA (nLD-LP-LFA) and C-rLFA (nLD-
LP-rLFA) as well as the LD-LFA (ALD-NP-LFA) from [1].
We further study the new protection variants ALD-NP-rLFA
and ALD-{LP,NP}-eLFA since they have stronger protection
properties.

3) Coverage: In this section we present results for the
number of protected destinations for different failure scenarios.
First, we evaluate unit link cost networks. Then, we discuss
non-unit link cost networks.

a) Networks with Unit Link Costs: Figure Figure 3(a)
shows the coverage in percent for different sets of failure
scenarios in networks with unit link costs. Subfigure 3(a) (i)
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(iii) DLF
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(a) Networks with unit link costs.
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(b) Networks with non-unit link costs.

Figure 3: Coverage averaged over 208 topologies depending
on protection method and set of failure scenarios.

shows that only C-LFA and LD-LFA cannot protect all des-
tinations against SLF, i.e., their coverage is less than 100%.
All other protection variants provide full coverage.

Subfigure 3(a) (ii) shows that SNFs cause many rerouting
loops with C-LFA (17%) and C-rLFA (34%). This is mostly
caused by failed destinations. As C-rLFA protect more des-
tinations than C-LFA, they also cause more loops when the
next-hop is the destination. Thus, loop detection is even more
important when C-rLFA is used because more flows loop in
case of node failures than with C-LFA. LD-LFA protects more
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traffic (81%) than C-(r)LFA in case of SNF as it preferentially
uses NP-LFAs if available. Moreover, it prevents loops.

The new protection variants have significantly higher cov-
erage. ALD-NP-rLFA protects around 99% of the destinations
with SNF. This results from dropping packets that cannot be
delivered anymore due to a failed destination; if they looped,
the corresponding flow would count as looped. The coverage
of ALD-LP-eLFA is slightly lower, i.e., 94%. This is because
NP-(e/r)LFAs are not preferentially chosen for this protection
variant so that there are more LFAs in use without the NP
property. Finally, ALD-NP-eLFA protects all destinations for
three reasons. First, it leverages rLFAs or eLFAs to provide
protection for destinations that cannot be protected with LFAs.
Second, it uses NP-(e/r)LFAs to protect against node failures
and falls back to unsafe LP-(e/r)LFAs only when (e/r)LFAs
with NP property are not available. Third, ALD detects and
stops all loops that may be caused by LFAs with LP. This
turns flows that cannot reach their destination into protected
flows instead of looped flows.

Subfigure 3(a) (iii) shows the coverage against DLFs. No
mechanism is able to protect all destinations. C-LFA and
LD-LFA protect around 70% of the destinations. C-rLFA
cover more flows (92%). However, protection variants without
loop detection, i.e., C-LFA and C-rLFA, lead to loops. All
newly proposed protection variants achieve roughly the same
coverage, i.e., 96%, and prevent loops.

Finally, Subfigure 3(a) (iv) shows results for SLF+SNF.
They are similar to the results of DLFs, but the fraction
of rerouting loops caused by both C-LFA and C-rLFA is
significantly higher. This is due to node failures which cause
significant rerouting loops for protection variants without loop
detection.

b) Networks with Non-Unit Link Costs: Figure Fig-
ure 3(b) shows the coverage for different sets of failure
scenarios in networks with non-unit link costs. Subfigure 3(b)
(i) shows the coverage against SLF. Both C-LFA and LD-
LFA protect only around 60% of the destinations. In networks
with non-unit link costs, C-rLFA cannot protect all destinations
anymore against SLF and achieve only a coverage of 88%.
The same holds for ALD-NP-rLFA. Only the eLFA-based
protection variants are able to protect all destinations against
SLF.

Subfigure 3(b) (ii) shows the coverage against SNF. Both
C-LFA and C-rLFA cause many rerouting loops. LD-LFA
prevents loops but protects only 76% of the destinations.
ALD-NP-rLFA and ALD-LP-eLFA protect a higher fraction of
destinations, i.e., 94% and 93%, because they prevent loops of
unsafe LFAs with LP, but they have no suitable backup path for
some node failures. ALD-NP-eLFA protects all destinations
against SNF even in networks with non-unit link costs as it
prevents loops and leverages NP-(e/r)LFAs wherever possible.

Finally, Subfigure 3(b) (iii) and Subfigure 3(b) (iv) present
the coverage for DLF and SLF+SNF. The results are similar
to those from networks with unit link costs, but the coverage
here is slightly lower.

C. Additional Forwarding Entries
We now evaluate the number of additional forwarding

entries to implement explicit tunnels. First, we explain the
metric. Then, we discuss the investigated FRR mechanisms.
Finally, we present results for networks with unit link costs
and non-unit link costs.

1) Metric: In a network with n nodes, each node maintains
n − 1 forwarding entries for destination-based forwarding.
eLFAs require additional forwarding entries to implement
explicit tunnels. In contrast, both LFAs and rLFAs are based on
shortest paths, and therefore, do not need additional forward-
ing entries. We calculate the average and maximum amount
of additional forwarding entries per node relative to n− 1 for
each network and present the results for all topologies in a
CCDF.

2) FRR Mechanisms under Study: We compare the required
amount of additional forwarding entries only for eLFA-based
RoLPS protection variants as others do not require additional
forwarding entries. To evaluate the efficiency of multipoint-
to-point rerouting rerouting tunnels, we report results for
ALD-{LP,NP}-eLFA and compare them to the corresponding
mechanisms with point-to-point rerouting tunnels, i.e., ALD-
{LP,NP}-eLFA-p2p. In addition, we present results for state-
of-the-art MPLS-facility-backup (MPLS-FB-{LP,NP}) with
LP and NP property.

3) Results: We present results for the fraction of additional
forwarding entries. First, we evaluate unit link cost networks.
Then, we discuss non-unit link cost networks.

a) Networks with Unit Link Costs: Figure 4(a) shows a
CCDF for the relative amount of additional forwarding entries
for the considered FRR mechanisms in networks with non-unit
link costs. First, we compare LP mechanisms. With MPLS-
FB-LP, in 40% of the networks at least one node requires
120% or more additional entries (max-curve). However, on
average in only 6% of the networks more than 100% additional
entries are needed (avg-curve). The curves for ALD-LP-eLFA
and ALD-LP-eLFA-p2p are omitted because those protection
variants do not induce any additional forwarding entries. This
is because (r)LFAs alone protect all destinations against all
SLF in networks with unit link costs. Therefore, explicit
LFAs are not needed and no additional forwarding entries are
required.

Now, we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 62% of the topologies have at
least one node that requires 200% or more additional entries.
And in 40% of the topologies 100% or more additional entries
are required on average. Protection mechanisms with eLFAs,
i.e., ALD-NP-eLFA and ALD-NP-eLFA-p2p, require less for-
warding entries because they protect most of the destinations
by NP-rLFAs and only the few remaining destinations are
protected by eLFAs which induce forwarding state in the
network. When ALD-NP-eLFA-p2p is used, only 20% of
topologies have a node that requires 50% or more additional
entries. However, some topologies contain at least one node
that requires 200% or more additional entries. On average, no
topology requires more than 65% or more additional entries.
ALD-NP-eLFA is even more efficient because it leverages
multipoint-to-point rerouting tunnels to reduce the number
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(a) Networks with unit link costs. ALD-LP-eLFA does not induce any
additional entries and is omitted in the figure.
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(b) Networks with non-unit link costs.

Figure 4: CCDFs for fraction of additional forwarding entries.

of additional forwarding entries even further. There is no
topology with a node that requires more than 70% of addi-
tional entries. 90% of the networks require only 15% or less
additional entries on average.

b) Networks with Non-Unit Link Costs: Figure 4(b)
shows a CCDF for the relative amount of additional forward-
ing entries for the considered FRR mechanisms in networks
with non-unit link costs. Again, we compare LP mechanisms
first. MPLS-FB-LP requires lots of additional entries. Around
55% of the topologies have at least one node that requires
120% or more additional entries (max-curve). However, in
only 8% of the networks more than 100% additional entries are
needed on average (avg-curve). eLFA-based protection mech-
anisms, i.e., ALD-LP-eLFA and ALD-LP-eLFA-p2p, are more
efficient. When ALD-LP-eLFA-p2p is used, 22% of networks
contain at least one node that requires 100% or more additional
entries. On average, in 20% of networks nodes require 25% or
more additional entries. ALD-LP-eLFA reduces the number of
additional forwarding entries by leveraging multipoin-to-point
tunnels. There is no topology with a node that requires more
than 80% of additional entries and in 95% of the networks
less than 15% additional entries are needed on average.

Now we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 75% of networks have at least
one node that requires 120% or more additional entries, 40%

even more than 340%. In around 44% of the networks, 100%
or more entries are required on average, and in 8% of the
networks even 250% or more additional entries are required.
ALD-NP-eLFA-p2p requires less entries. Only 45% of net-
works contain a node that requires 100% or more additional
entries, but 20% of networks require even more than 210%.
On average, 22% of networks require 50% or more additional
entries. ALD-NP-eLFA is even more efficient. No network
contains a node that requires more than 80% additional entries.
In 90% of the networks, less than 30% additional entries are
required on average.

Thus, in networks with non-unit link costs, somewhat more
additional entries are needed but ALD-{LP,NP}-eLFA still
require significantly less entries than MPLS-FB-{LP,NP} and
ALD-{LP,NP}-eLFA-p2p.

D. Size of Header Stacks for TI-LFAs

In this section we evaluate the number of required segments
to implement explicit paths with TI-LFAs using local labels.
First, we explain the metric, and the studied mechanisms.
Then, we present the results.

1) Metric: We count the number of header segments that
are added to the packet by the respective mechanism for
FRR purposes. That is, we do not count the header segment
that identifies the original destination of the packet. For each
network we record both the average and maximum number of
additional header segments added to a packet and present the
results as a CCDF.

2) Reroute Mechanisms under Study: We evaluate TI-LFAs
that use only local labels (see Section III-C) because they
implement explicit tunnels with multiple header segments.
However, we leverage TI-LFAs only when there are no LFAs
or rLFAs to protect a destination to avoid unnecessary addi-
tional header segments.

rLFAs, and eLFAs also leverage tunnels. However, both
require only one additional header segment for tunneling
which is why we omit those curves in the figure to facilitate
readability. LFAs do not require additional header segments.

3) Results: Figure 5 shows the results for networks with
non-unit link costs.
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Figure 5: CCDF for number of additional header segments.
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First, we discuss TI-LFAs with LP. In most networks, i.e.,
roughly 80%, TI-LFAs with LP require at least two additional
header segments. In 20% of networks TI-LFAs with LP require
on average 3 or more additional header segments. However,
23% of networks have at least one TI-LFA with LP that
requires 6 or more additional header segments.

Now, we discuss TI-LFAs with NP. In general, TI-LFAs
with NP require more additional header segments than TI-
LFAs with LP. In 19% of networks TI-LFAs with NP require
on average 5 or more additional header segments. 40% of
networks even contain at least one TI-LFA with NP that
requires 6 or more additional header segments.

In Section III-C2 we mentioned that the size of the TI-
LFA header stack may be reduced. This, however, requires
optimization which is a promising approach and an interesting
research issue, but it is out of the scope of this document.

We omit a figure for results for networks with unit-link
costs because of two reasons. First, TI-LFAs with NP require
slightly fewer header segments but the results show no further
insights. Second, for LP all destinations can be protected with
either LFAs or rLFAs, i.e., no TI-LFAs are used, which was
to be expected.

E. Path Lengths

In this section we report results for path lengths. First, we
explain the metric and evaluated FRR mechanisms, then, we
present the results.

1) Metric: We measure the path lengths of all flows that
are affected by SLF but were successfully delivered due to
local rerouting. For each topology, we calculate the average
and maximum path lengths and present the results for all
topologies in a CCDF.

2) Reroute Mechanisms under Study: We choose path
lengths for rerouting as a baseline which recomputes shortest
paths after a failure. We compare these results to the ones for
ALD-{LP,NP}-eLFA and MPLS-FB-{LP,NP}.

3) Results: Figure 6 shows a CCDF for average and max-
imum path lengths of successfully delivered flows with SLF
in networks with unit link costs.
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Figure 6: CCDF for path lengths of successfully delivered
flows for SLF in networks with unit link costs.

We observe that rerouting leads in fact to the shortest
maximum and average path lengths. All FRR mechanisms
under study lead to longer maximum and average path lengths.
The path lengths of the different FRR mechanisms does not
differ.

The same analysis in networks with non-unit link costs
leads to slightly longer paths but without any further insights.
Therefore, we omit the corresponding figure.

F. Discussion

We investigated various RoLPS protection variants with
regard to protection coverage, additional forwarding entries,
and path lengths on a set of 208 topologies with both unit
link costs and non-unit link costs, and compared them with
MPLS-facility-backup.

The evaluations of protection coverage showed that C-LFA
cannot protect many destinations in case of link failures. C-
rLFAs can protect all destinations in case of SLF in networks
with unit link costs. However, the usage of C-(r)LFA leads to
many loops in case of node failures. The use of ALD avoids
such loops. LD-LFA [1] prevents loops but cannot protect all
destinations. ALD-NP-eLFA protects all destinations against
SLF and SNF in networks with unit and non-unit link costs
because it leverages eLFAs to complement (r)LFAs.

The explicit LFAs induce additional forwarding entries in
the data plane, which is not desired. Therefore, we com-
pared the additional forwarding entries for ALD-{LP,NP}-
eLFA, ALD-{LP,NP}-eLFA-p2p, and MPLS-FB-{LP,NP}.
ALD-{LP,NP}-eLFA require only very few additional entries
compared to ALD-{LP,NP}-eLFA-p2p, and MPLS facility
backup. Both MRCs [14] and IDAGs [18] always require
100% additional entries, and MRTs [15] need 200% more.
Not-via addresses [11] need 100% · d more entries where
d is the average node degree. Although TI-LFAs require at
most d additional forwarding entries per node, they impose
significant overhead in form of multiple additional header
segments. ALD-{LP,NP}-eLFA add only one additional packet
header for tunneling and our evaluation shows that they require
less additional forwarding entries than other comparable FRR
mechanisms. Therefore, ALD-{LP,NP}-eLFA can be consid-
ered very lightweight which makes them attractive for FRR in
SDN.

All evaluated FRR mechanisms, i.e., ALD-{LP,NP}-eLFA
and MPLS-FB-{LP,NP} extend backup paths by about the
same, and backup paths are only slightly longer than the
average and maximum length of recomputed shortest paths.

VI. IMPLEMENTATION OF ROLPS IN P4

We start with a short introduction of P4 and the implemen-
tation platform. Then we summarize important basics of P4
and describe the implementation of the RoLPS prototype.

A. Overview of P4 and the Implementation Target

P4 is a high-level programming language for protocol-
independent packet processors [51]. P4 programs are mapped,
i.e., compiled, to the programmable processing pipeline of
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so-called targets, e.g., the software switch BMv2 [52] or
the switching ASIC Tofino [53]. When a P4 program is
successfully compiled for a target, it offers an API to let the
control plane configure the device during runtime, e.g., to write
forwarding entries.

In [2] we sketched how the predecessor of RoLPS could
be implemented in OpenFlow. However, due to technical
restrictions of OpenFlow the implementation concept required
multiple workarounds which made it complex (see Section
III-B1 and Section IV-C1). P4 offers significantly more flexi-
bility than OpenFlow. It allows a flexible description of the
data plane, in particular, the definition of arbitrary packet
headers and packet parsers, and conditional application of
programmable match+action tables (MATs). Therefore, imple-
mentation of novel features in P4 is easier than in OpenFlow.

In this paper we describe the implementation of RoLPS
in P4. Our target is the P4-programmable high-performance
switching ASIC Tofino [53] which is used in the Edgecore
Wedge 100BF-32X [54] switch with 32 100 Gb/s ports. We
made the source code for the RoLPS data plane and control
plane publicly available2.

B. P4 Pipeline

Figure 7 illustrates the abstract forwarding model of P4. A
user-programmable parser extracts the information from the
packet header and stores them in so-called header fields. They
are carried with the packet through the processing pipeline,
possibly with additional metadata which are similar to reg-
ular variables from other high-level programming languages.
Metadata are packet-specific and discarded after the packet is
sent to an egress port.
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Figure 7: P4 abstract forwarding model according to [51].

The P4 abstract forwarding model is divided into two stages,
the ingress and the egress pipeline, which are separated by a
packet buffer. Match+action tables (MATs) allow for packet-
specific processing. They have entries consisting of custom
match fields and types that map header fields and metadata to
actions, e.g., modifying header fields, and parameters.

P4 offers three match types: exact, longest-prefix match
(LPM), and ternary. For an exact match the header field or
metadata field must be exactly the same as the match field in
the MAT, e.g., a specific IP address. LPM is well-known from
standard IP forwarding. Ternary facilitates wildcard matches.
P4 does not allow to match a packet multiple times on the
same MAT to prevent processing loops.

2https://github.com/uni-tue-kn/p4-lfa

After the egress pipeline, the deparser writes the potentially
modified header fields into the packet header and the packet
is sent through the specified egress port.

However, P4 does not support FRR natively. Port status
information cannot be accessed by the data plane by default.
This makes the implementation of FRR in P4 a serious
challenge.

C. Implementation of LFAs

First, we describe how the port status can be determined
in P4. Afterwards, we describe the implementation of LFAs
without tunnels followed by LFAs with tunnels, i.e., rLFAs
and eLFAs, and ranking-based selection of LFA types.

1) Port Status Detection in P4: Executing backup actions,
e.g., forwarding to an LFA, requires a reliable and timely
detection when a port goes down. However, P4 does not
support such a feature. In [55] we proposed a workaround for
the Tofino platform which detects port-down events within 1
ms without controller interaction. We leverage this workaround
to implement RoLPS-based protection and summarize it in the
following.

Registers in P4 provide persistent storage, i.e., their content
survives processed packets. The individual register fields can
be accessed by an index. We leverage a register to store the
current status of the egress ports by single bits (0: down, 1:
up). Each register field stores the status of one port, i.e., one
bit. The port ID serves as an index to access the corresponding
register field. The challenge is updating the registers when the
port status changes, which is platform-specific.

Port-down events are tracked as follows. Tofino has means
outside the P4 programmable data plane to detect port-down
events. We configured the Tofino such that it creates a ‘port-
down packet’ in case of a port-down event. The packet
contains the ID of the corresponding port and the packet is
sent to a switch-intern port. We programmed the p4 pipeline
such that the port status register for the respective port is set
to zero upon reception of a port-down packet.

Port-up events are tracked differently. When the Tofino
receives a packet over a specific port, it activates the status
bit of that port in the register. To ensure that port-up events
are detected sufficiently fast, we take advantage of topology
packets that are regularly sent by the Tofino to all egress ports
for neighbor detection. The frequency for topology packets can
be configured to an appropriate value. While the detection of
port-down events is time-critical, detection of port-up events is
more relaxed because FRR mechanisms reroute affected traffic
in the meantime via alternative ports.

2) Implementation of LFAs without Tunnels: As described
in the previous section, the register fields provide information
whether specific egress ports are up or down. However, the
egress port of a packet is known only after matching the packet
on a MAT. To mitigate this problem, we implemented FRR as
shown in Figure 8. First, the packet is matched against a MAT
that performs regular IPv4 routing, i.e., it determines the next-
hop and thereby the egress port of a packet. Second, the ID of
the selected egress port is used to access the register fields to
retrieve the port status of that egress port. If the egress port is
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Figure 8: P4 implementation of FRR. A packet is matched
against an IPv4 forwarding MAT to determine its egress port.
If that port is down, the packet is matched against a FRR-MAT
to determine its backup egress port.

up, the packet is forwarded. If the port is down, FRR actions
are triggered, i.e., the packet is matched against a FRR-MAT
using the IP destination address and the ID of the failed egress
port. This selects a backup entry with a preinstalled LFA, i.e.,
backup egress port, for forwarding.

3) LFAs with Tunnels: LFAs with tunnels are implemented
in a similar way as LFAs without tunnels. However, the
backup actions in the FRR-MAT contain an encapsulation
action which adds an additional IP header to the packet for
tunneling to the remote node, i.e., the rLFA or eLFA.

If the remote node is an rLFA, the encapsulating IP header
contains the IP address of that node. The packet is then
forwarded on standard paths towards the rLFA.

If the remote node is an eLFA, the encapsulating IP header
contains a unique IP address which identifies the explicit path
towards the eLFA (see Section IV-B2). When the controller
installs eLFAs in the network, it also sets up explicit tunnels
towards the eLFAs. To that end, it calculates appropriate
tunnel-specific forwarding entries and configures them on
the forwarding devices along the explicit path. Thereby, the
controller leverages explicit multipoint-to-point rerouting tun-
nels (see Section IV-B3) if possible to reduce the number
of additional forwarding entries. That is, it configures only
one additional forwarding entry on forwarding devices on
overlapping subpaths of explicit paths towards the same eLFA.

4) Implementation of Ranking-Based Selection of LFA
Types: The ranking-based selection of LFAs as described
in Section IV-D is part of the control plane. The controller
precomputes appropriate LFA types depending on the desired
protection variant and installs corresponding egress ports and
encapsulation actions in the FRR-MATs of the data plane
devices.

D. Implementation of ALD

We implement ALD so that it allows two redirects, i.e., the
packet is dropped when it has to be rerouted a third time. To
that end, we define the ALD field as a 2-bit custom header
field in the packet header. These bits track how often a packet
has been rerouted. Packets initially carry the bit pattern ‘00’ in
the ALD field. When a node reroutes a packet with bit pattern
‘00’, it replaces the bit pattern with ‘01’. When a node reroutes
a packet with bit pattern ‘01’, it replaces the bit pattern with
‘10’. When a node cannot forward a packet with bit pattern
‘10’ due to a failed egress port, it drops the packet.

VII. HARDWARE-BASED PERFORMANCE EVALUATION

In this section we conduct a performance evaluation of the
RoLPS hardware prototype. It is based on the Tofino [53], a
P4-programmable switch ASIC, which is used in the Edgecore
Wedge 100BF-32X [54], a switch with 32 100 Gb/s ports. We
present measurement results for throughput, restoration time,
and loop detection.

A. Throughput

Every P4 program successfully compiled for the Tofino
processes packets at a speed of 100 Gb/s. To verify that
property for our prototype, we conducted the following ex-
periment. We utilized an EXFO FTB-1 Pro traffic generator
[56] which generates up to 100 Gb/s of traffic. We connected
it to the Tofino which processes the traffic and sends it back
to the traffic generator. This way we measure the traffic rate
forwarded by Tofino. In fact, we obtained a throughput of
100 Gb/s for both failure-free forwarding and forwarding with
activated FRR.

B. Restoration Time

The evaluation of restoration times is more complex. We
describe the testbed, the measurement procedure and metric,
as well as the experimental scenarios. Then, we present
measurement results.

1) Testbed: Figure 9 shows the testbed for the performance
evaluation. Center of the testbed is the above mentioned
Tofino.
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Figure 9: Topology for restoration time measurements. The
additional network consists of five other BMv2s and 10 links.

It is connected to two BMv2 [52] P4 software switches.
To perform evaluations for more realistic network sizes, we
connected the Tofino to an additional network which consists
of five BMv2s and 10 links. All BMv2s run on a server with an
Intel Xeon Gold 6134 with 3.2 GHz and 12 cores, and 32 GB
RAM. A controller is connected to the Tofino and all BMv2s.
It configures them upon start, i.e., it discovers the topology,
and computes and installs appropriate forwarding rules. It runs
on the same server as the BMv2s. Furthermore, the above
mentioned traffic generator is connected to the Tofino and
serves as a traffic source in the experiment.
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2) Measurement Procedure and Metric: The traffic gener-
ator sends traffic to the Tofino which forwards the packets on
the primary path to the destination BMv2-1. BMv2-1 monitors
the packet arrivals. Then, we deactivate the link from Tofino
to BMv2-1 on the primary path to trigger a port-down event
at the Tofino. We derive the restoration time for the FRR
mechanism from a tcpdump log at BMv2-1. It is the duration
of the interval within which BMv2-1 does not receive any
packets.

In these experiments, the traffic generator sends only with
100 Mb/s instead of 100 Gb/s. This avoids overload on the
BMv2s which can process packets only with around 900 Mb/s
[57]. Avoiding overload is important only to obtain correct
measurement results from BMv2-1. The restoration time on
the Tofino is not affected by any overload.

3) Experiments: We perform two experiments to measure
the restoration time without and with FRR.

a) Forwarding without FRR: For this experiment we
disabled the FRR feature on Tofino. When the Tofino detects
the failure, it notifies the controller. The controller then updates
its topology, computes new forwarding entries, and installs
them on the affected devices so that traffic can be forwarded
again.

b) Forwarding with FRR: In this experiment the FRR
feature is enabled. Thus, if BMv2-1 is no longer reachable,
the Tofino forwards traffic destined to BMv2-1 to BMv2-2
which relays the traffic to BMv2-1.

4) Results: We performed the above described experiments
10 times. Figure 10 shows the average restoration time without
and with FRR on the Tofino, including 95% confidence
intervals.
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Figure 10: Restoration time on Tofino without and with FRR.

If FRR is disabled, traffic is delivered again after 86 ms.
As rerouting without FRR requires controller interaction, the
measured restoration time depends on controller load, network
size, and communication delay. In this experiment, there is
only a single flow affected by the faiure, the overall network
is small despite the additional network, and the controller is
directly connected to the Tofino. Therefore, the experimental
result for the restoration time is likely lower than restoration
times in production networks.

If FRR is enabled, traffic is delivered after a small restora-
tion time of 0.6 ms. Here, the switchover from primary egress
port to backup egress port at the Tofino is independent of
controller load, network size, and communication delay as
FRR is a switch-local mechanism. Thus, restoration times can
be greatly reduced by FRR on P4-capable hardware. More-
over, the mechanism is general enough to support all RoLPS

protection variants by appropriate configuration through the
controller.

C. Loop Detection

We experimentally evaluate the capability of ALD to detect
and stop loops. We present the modified testbed, explain two
different experiments and the studied metric, and finally we
discuss measurement results.

1) Testbed: Figure 11 shows the testbed. The Tofino is
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Controller Primary path

Backup path

2
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Figure 11: Testbed for evaluation of ALD.

now conntected to two BMv2s (BMv2-1, BMv2-2) which are
also connected with each other. The controller configures the
Tofino and all BMv2s with available LP-LFAs upon startup. In
the experiments, the traffic generator sends a packet towards
BMv2-1. The Tofino has BMv2-2 as an LFA when BMv2-
1 is not reachable. Likewise, BMv2-2 has the Tofino as an
LFA when BMv2-1 is not reachable. If BMv2-1 fails, traffic
destined to that node loops between the Tofino and BMv2-2.
However, the TTL in the IP header is set to 64 when sent by
the traffic generator and decremented whenever forwarded by
a node. The packet is dropped when its TTL reached 0.

2) Experiments and Metric: We perform two experiments
with ALD disabled and ALD enabled on the switches. We
track packet arrivals at BMv2-2 using tcpdump. Thereby we
can observe how often a looping packet is received.

3) Results: Figure 12 illustrates a log of packet arrivals at
BMv2-2, starting with time 0 at first packet arrival. Without

w/o ALD

w/ ALD

0 59 118 177 236
Packet arrival time (ms)

Figure 12: Packet arrivals at BMv2-2 without and with ALD.

ALD, BMv2-2 receives the packet 32 times. Thus, the packet
looped between the Tofino and BMv2-2 until it was dropped
due to TTL=0. With ALD, BMv2-2 receives the packet only
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once. It then redirects the packet to the Tofino which then
drops the packet at the attempt to reroute the packet for the
third time. Therefore, BMv2-2 receives the packet only once.

VIII. CONCLUSION

In this paper we presented robust LFA protection for
software-defined networks (RoLPS). It leverages loop-free
alternates (LFAs) and remote LFAs (rLFAs) known from
IP networks to forward traffic over alternative next-hops if
primary next-hops are not reachable. However, this alone
cannot protect all destinations against failures and may cause
forwarding loops under challenging conditions. Therefore,
we proposed explicit LFAs (eLFAs) using explicit rerouting
tunnels to cover all destinations. eLFAs are conceptually sim-
ilar to topology-independent LFAs (TI-LFAs) but do require
only a single additional header segment for protection while
protection with typical TI-LFAs may require a clearly larger
header stack. Furthermore we describe advanced loop detec-
tion (ALD) to stop forwarding loops. These mechanisms are
simple and do not require controller interaction. We suggested
various protection variants that utilize (e/r)LFAs with different
protection quality and complexity.

We evaluated RoLPS through simulations based on 208
representative topologies. The results revealed that existing
(r)LFAs cannot provide all destinations and lead to substantial
forwarding loops in case of node failures. More elaborate
RoLPS variants with eLFAs and ALD, e.g., ALD-NP-eLFA,
protect all traffic against all single link or node failures in
networks with both unit and non-unit link costs. Further-
more, they protect most destinations against multiple failures
(> 90%) and prevent forwarding loops. A drawback of eLFAs
is that they required additional forwarding entries. However,
our evaluation showed that RoLPS protection variants require
only very few eLFAs, in particular compared to other FRR
mechanisms such as MPLS facility backup, MRTs, MRCs,
IDAGs, or not-via addresses. Thus, the full protection coverage
against single link or node failures together with the need
for only a few additional forwarding entries make RoLPS
attractive for software-defined networks. In addition, RoLPS
protection variants extends lengths of backup paths compared
to those of shortest path recomputation, but there is no visible
difference to backup path lengths with MPLS facility backup.

We implemented a P4-based prototype that features RoLPS-
based protection variants. The source code is publicly avail-
able. A measurement study showed that the prototype achieves
a throughput of 100 Gb/s, restores connectivity in less than 1
ms including failure detection, and reliably detects and stops
forwarding loops.
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ACRONYMS AND GLOSSARY

FRR fast reroute
PLR point of local repair
LFA loop-free alternate [20]
rLFA remote LFA [23], [24]
eLFA explicit LFA [2]
TI-LFA topology-independent LFA [3]
MPLS multiprotocol label switching [8]
MRT maximally redundant tree [15]
IDAG independent directed acyclic graph [18]
MRC multiple routing configuration [14]
SLF single link failure
SNF single node failure
DLF double link failure
LP link protecting
NP node protecting
ALD advanced loop detection
RoLPS robust LFA protection for SDN

Table 3: Acronyms.

Point of local
repair (PLR)

A node that cannot forward a packet to the default
next-hop because of a failure. It executes precomputed
backup actions to locally reroute packets around the
failure.

Loop-free
alternate (LFA)

Alternative next-hop that successfully forwards failure-
affected traffic towards the destination. Simple LFAs
cannot protect all destinations.

rLFA Remote nodes in the network that successfully forward
traffic towards the destination. PLRs reach rLFAs
through shortest path tunnels. rLFAs protect more
destinations than LFAs. However, they cannot protect all
destinations against SLF in non-unit link cost networks
or SNF in general.

eLFA Similar to rLFAs. However, PLRs reach eLFAs through
explicit tunnels implemented by additional forwarding
entries. eLFAs protect against all SLF and SNF
independent of link costs. Multipoint-to-point tunnels
reduce the number of additional forwarding entries.

Link protecting
(LP)

A link protecting (e/r)LFA avoids the link between PLR
and next-hop. They may cause rerouting loops for SNF.

Node
protecting (NP)

A node protecting (e/r)LFA avoids the next-hop. There
are significantly less NP-(e/r)LFAs than LP-(e/r)LFAs.
NP implies LP, i.e., it is the stronger property.

Loop detection
(LD) [1]

A mechanism to detect and stop rerouting loops caused
by LFAs. May erroneously drop packets.

LD-LFA [1] LD-LFA preferably uses NP-LFAs for protection. Only
when no NP-LFA is available, LP-LFAs are used
to increase the number of protected destinations. In
addition, LD-LFA leverages loop detection to prevent
loops.

Advanced
loop detection
(ALD)

A mechanism to detect and stop loops caused by LFAs.
Allows to reroute a packet two times to cope with
double failures.

Robust LFA
protection for
SDN (RoLPS)

Protection concept presented in this paper. It defines
eLFAs and ALD. RoLPS ranks (e/r)LFAs and selects the
best one. Uses ALD to detect and stop loops.

Table 4: Glossary.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3090843

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



16

REFERENCES

[1] W. Braun and M. Menth, “Loop-Free Alternates with
Loop Detection for Fast Reroute in Software-Defined
Carrier and Data Center Networks,” Journal of Network
and Systems Management, vol. 24, 2016.

[2] D. Merling, W. Braun, and M. Menth, “Efficient Data
Plane Protection for SDN,” in IEEE Conference on
Network Softwarization (NetSoft), Jun. 2018.

[3] P. Francois, C. Filsfils, A. Bashandy, B. Decraene, and
S. Litkowski, Topology Independent Fast Reroute using
Segment Routing, https://tools.ietf.org/html/draft- ietf-
rtgwg-segment-routing-ti-lfa-06, Feb. 2021.

[4] S. Rai, B. Mukherjee, and O. Deshpande, “IP Resilience
within an Autonomous System: Current Approaches,
Challenges, and Future Directions,” IEEE Communica-
tions Magazine, vol. 43, 2005.

[5] A. Raj and O. Ibe, “A Survey of IP and Multiprotocol
Label Switching Fast Reroute Schemes,” Computer
Networks, vol. 51, no. 8, 2007.
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Karls University Tübingen, Germany. He wrote his
bachelor and master thesis at the chair of communi-
cation networks of Prof. Dr. habil. Michael Menth.
He started his Ph.D. in September 2019 at the com-
munication networks research group. His research
interests include software-defined networking, P4
and congestion management.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3090843

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



18

Michael Menth (Senior Member, IEEE) is pro-
fessor at the Department of Computer Science at
the University of Tuebingen/Germany since 2010
and chairholder of Communication Networks. He
studied, worked, and obtained diploma (1998),
PhD (2004), and habilitation (2010) degrees at
the universities of Austin/Texas, Ulm/Germany, and
Wuerzburg/Germany. His special interests are per-
formance analysis and optimization of communica-
tion networks, resilience and routing issues, resource
and congestion management, industrial networking

and Internet of Things, software-defined networking and Internet protocols.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3090843

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



Publications

2.6 A Survey on Data Plane Programming with P4: Fundamentals,
Advances, and Applied Research

214



A Survey on Data Plane Programming with P4:
Fundamentals, Advances, and Applied Research

Frederik Hausera, Marco Häberlea, Daniel Merlinga, Steffen Lindnera,
Vladimir Gurevichb, Florian Zeigerc, Reinhard Frankc, Michael Mentha

aUniversity of Tuebingen, Department of Computer Science, Chair of Communication
Networks, Tuebingen, Germany

bIntel, Barefoot Division (BXD), United States of America
cSiemens AG, Corporate Technology, Munich, Germany

Abstract

Programmable data planes allow users to define their own data plane algorithms
for network devices including appropriate data plane application programming
interfaces (APIs) which may be leveraged by user-defined software-defined net-
working (SDN) control. This offers great flexibility for network customization,
be it for specialized, commercial appliances, e.g., in 5G or data center networks,
or for rapid prototyping in industrial and academic research. Programming
protocol-independent packet processors (P4) has emerged as the currently most
widespread abstraction, programming language, and concept for data plane pro-
gramming. It is developed and standardized by an open community, and it is
supported by various software and hardware platforms.

In the first part of this paper we give a tutorial of data plane programming
models, the P4 programming language, architectures, compilers, targets, and
data plane APIs. We also consider research efforts to advance P4 technology.
In the second part, we categorize a large body of literature of P4-based applied
research into different research domains, summarize the contributions of these
papers, and extract prototypes, target platforms, and source code availability.
For each research domain, we analyze how the reviewed works benefit from P4’s
core features. Finally, we discuss potential next steps based on our findings.

Keywords: P4, SDN, programmable data planes

Email addresses: frederik.hauser@uni-tuebingen.de (Frederik Hauser),
marco.haeberle@uni-tuebingen.de (Marco Häberle), daniel.merling@uni-tuebingen.de
(Daniel Merling), steffen.lindner@uni-tuebingen.de (Steffen Lindner),
vladimir.gurevich@intel.com (Vladimir Gurevich), florian.zeiger@siemens.com (Florian
Zeiger), reinhard.frank@siemens.com (Reinhard Frank), menth@uni-tuebingen.de (Michael
Menth)

Preprint submitted to JNCA August 5, 2021

ar
X

iv
:2

10
1.

10
63

2v
3 

 [
cs

.N
I]

  4
 A

ug
 2

02
1



1. Introduction

Traditional networking devices such as routers and switches process packets
using data and control plane algorithms. Users can configure control plane
features and protocols, e.g., via CLIs, web interfaces, or management APIs, but
the underlying algorithms can be changed only by the vendor. This limitation
has been broken up by SDN and even more by data plane programming.

SDN makes network devices programmable by introducing an API that al-
lows users to bypass the built-in control plane algorithms and to replace them
with self-defined algorithms. Those algorithms are expressed in software and
typically run on an SDN controller with an overall view of the network. Thereby,
complex control plane algorithms designed for distributed control can be re-
placed by simpler algorithms designed for centralized control. This is beneficial
for use cases that are demanding with regard to flexibility, efficiency and secu-
rity, e.g., massive data centers or 5G networks.

Programmable data planes enable users to implement their own data plane
algorithms on forwarding devices. Users, e.g., programmers, practitioners, or
operators, may define new protocol headers and forwarding behavior, which is
without programmable data planes only possible for a vendor. They may also
add data plane APIs for SDN control.

Data plane programming changes the power of the users as they can build
custom network equipment without any compromise in performance, scalabil-
ity, speed, or power on appropriate platforms. There are different data plane
programming models, each with many implementations and programming lan-
guages. Examples are Click [1], VPP [2], NPL [3], and SDNet [4].

Programming protocol-independent packet processors (P4) is currently the
most widespread abstraction, programming language, and concept for data
plane programming. First published as a research paper in 2014 [5], it is now
developed and standardized in the P4 Language Consortium, it is supported by
various software- and hardware-based target platforms, and it is widely applied
in academia and industry.

In the following, we clarify the contribution of this survey, point out its
novelty, explain its organization, and provide a table with acronyms frequently
used in this work.

1.1. Contributions
This survey pursues two objectives. First, it provides a comprehensive intro-

duction and overview of P4. Second, it surveys publications describing applied
research based on P4 technology. Its main contributions are the following:

• We explain the evolution of data plane programming with P4, relate it
to prior developments such as SDN, and compare it to other data plane
programming models.

• We give an overview of data plane programming with P4. It comprises
the P4 programming language, architectures, compilers, targets, and data
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plane APIs. These sections do not only include foundations but also
present related work on advancements, extensions, or experiences.

• We summarize research efforts to advance P4 data planes. It comprises
optimization of development and deployment, testing and debugging, re-
search on P4 targets, and advances on control plane operation.

• We analyze a large body of literature considering P4-based applied re-
search. We categorize 245 research papers into different application do-
mains, summarize their key contributions, and characterize them with
respect to prototypes, target platforms, and source code availability. For
each research domain, we analyze how the reviewed works benefit from
P4’s core features.

We consider publications on P4 that were published until the end of 2020
and selected paper from 2021. Beside journal, conference, and workshop papers,
we also include contents from standards, websites, and source code repositories.
The paper comprises 519 references out of which 377 are scientific publications:
73 are from 2017 and before, 66 from 2018, 113 from 2019, 116 from 2020, and
9 from 2021.

1.2. Novelty
There are numerous surveys on SDN published in 2014 [6, 7], 2015 [8, 9, 10],

and 2016 [11, 12] as well as surveys on OpenFlow (OF) from 2014 [13, 14, 15].
Only one of them [12] mentions P4 in a single sentence. Two surveys of data
plane programming from 2015 [10, 9] were published shortly after the release of
P4, one conference paper from 2018 [16] and a survey from 2019 [17] present P4
just as one among other data plane programming languages. Likewise, Michel
et al. [18] gives an overview of data plane programming in general and P4 is one
among other examined abstractions and programming languages. Our survey is
dedicated to P4 only. It covers more details of P4 and a many more papers of
P4-based applied research which have mostly emerged only within the last two
years.

A recent survey focusing on P4 data plane programming has been published
in [19]. The authors introduce data plane programming with P4, review 33 re-
search works from four research domains, and discuss research issues. Another
recent technical report [20] reviews 150 research papers from seven research do-
mains. While typical research areas of P4 are covered, others (e.g., industrial
networking, novel routing and forwarding schemes, and time-sensitive network-
ing) are not part of the literature review. The different aspects of P4, e.g., the
programming language, architectures, compilers, targets, data plane APIs, and
their advancements are not treated in the paper. In contrast to both surveys on
P4, we cover a greater level of detail of P4 technology and their advancements,
and our literature review is more comprehensive.
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1.3. Paper Organization
Figure 1 depicts the structure of this paper which is divided into two main

parts: an overview of P4 and a survey of research publications.
In the first part, Section 2 gives an introduction to network programmabil-

ity. We describe the development from traditional networking and SDN to data
plane programming and present the two most common data plane programming
models. In Section 3, we give a technology-oriented tutorial of P4 based on its
latest version P416. We introduce the P4 programming language and describe
how user-provided P4 programs are compiled and executed on P4 targets. Sec-
tion 4 presents the concept of P4 architectures as intermediate layer between
the P4 programs and the targets. We introduce the four most common archi-
tectures in detail and describe P4 compilers. In Section 5, we categorize and
present platforms that execute P4 programs, so-called P4 targets that are based
on software, FPGAs, ASICs, or NPUs. Section 6 gives an introduction to data
plane APIs. We describe their functions, present a characterization, introduce
the four main P4 data plane APIs that serve as interfaces for SDN controllers,
and point out controller use case patterns. In Section 7, we summarize research
efforts that aim to improve P4 data plane programming.

The second part of the paper surveys P4-based applied research in com-
munication networks. In Section 8, we classify core features of P4 that make
it attractive for the implementation of data plane algorithms. We use these
properties in later sections to effectively reason about P4’s value for the im-
plementation of various prototypes. We present an overview of the research
domains and compile statistics about the included publications. The super-
ordinate research domains are monitoring (Section 9), traffic management and
congestion control (Section 10), routing and forwarding (Section 11), advanced
networking (Section 12), network security (Section 13), and miscellaneous (Sec-
tion 14) to cover additional, different topics. Each category includes a table to
give a quick overview of the analyzed papers with regard to prototype imple-
mentations, target platforms, and source code availability. At the end of each
section, we analyze how the reviewed works benefit from P4’s core features.

In Section 15 we discuss insights from this survey and give an outlook on
potential next steps. Section 16 concludes this work.

1.4. List of Acronyms
The following acronyms are used in this paper.

ACL access control list

ALU arithmetic logic unit

API application programming interface

AQM active queue management

ASIC application-specific integrated circuit

AWW adjusting advertised windows

bmv2 Behavioral Model version 2
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Figure 1: Organization of the paper.

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

CLI command line interface

DAG directed acyclic graph

DDoS distributed denial of service

DPI deep packet inspection

DPDK Data Plane Development Kit

DSL domain-specific language

eBPF Extended Berkeley Packet Filter

ECN Explicit Congestion Notification

FPGA field programmable gate array

FSM finite state machine

GTP GPRS tunneling protocol
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HDL hardware description language

HLIR high-level intermediate representation

IDE integrated development environment

IDL Intent Definition Language

IDS intrusion detection system

INT in-band network telemetry

LDWG Language Design Working Group

LPM longest prefix matching

LUT look up table

MAT match-action-table

ML machine learning

NDN named data networking

NF network function

NFP network flow processing

NFV network function virtualization

NIC network interface card

NPU network processing unit

ODM original design manufacturer

ODP Open Data Plane

OEM original equipment manufacturer

OF OpenFlow

ONF Open Networking Foundation

OVS Open vSwitch

PISA Protocol Independent Switching Architecture

PSA Portable Switch Architecture

REG register

RPC remote procedure call

RTL register-transfer level

SDK software development kit

SDN software-defined networking

SF service function

SFC service function chain

SRAM static random-access memory

TCAM ternary content-addressable memory

TSN Time-Sensitive Networking
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TNA Tofino Native Architecture

uBPF user-space BPF

VM virtual machine

VNF virtual network function

VPP Vector Packet Processors

WG working group

XDP eXpress Data Path

2. Network Programmability

In this section, we first define the notion of network programmability and
related terms. Then, we discuss control plane programmability and data plane
programming, elaborate on data plane programming models, and point out the
benefits of data plane programming.

2.1. Definition of Terms
We define programmability as the ability of the software or the hardware

to execute an externally defined processing algorithm. This ability separates
programmable entities from flexible (or configurable) ones; the latter only allow
changing different parameters of the internally defined algorithm which stays
the same.

Thus, the term network programmability means the ability to define the pro-
cessing algorithm executed in a network and specifically in individual processing
nodes, such as switches, routers, load balancers, etc. It is usually assumed that
no special processing happens in the links connecting network nodes. If nec-
essary, such processing can be described as if it takes place on the nodes that
are the endpoints of the links or by adding a "bump-in-the-wire" node with one
input and one output.

Traditionally, the algorithms, executed by telecommunication devices, are
split into three distinct classes: the data plane, the control plane, and the man-
agement plane. Out of these three classes, the management plane algorithms
have the smallest effect on both the overall packet processing and network be-
havior. Moreover, they have been programmable for decades, e.g., SNMPv1 was
standardized in 1988 and created even earlier than that. Therefore, management
plane algorithms will not be further discussed in this section.

True network programmability implies the ability to specify and change both
the control plane and data plane algorithms. In practice this means the ability
of network operators (users) to define both data and control plane algorithms
on their own, without the need to involve the original designers of the network
equipment. For the network equipment vendors (who typically design their own
control plane anyway), network programmability mostly means the ability to
define data plane algorithms without the need to involve the original designers
of the chosen packet processing application-specific integrated circuit (ASIC).
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Network programmability is a powerful concept that allows both the network
equipment vendors and the users to build networks ideally suited to their needs.
In addition, they can do it much faster and often cheaper than ever before and
without compromising the performance or quality of the equipment.

For a variety of technical reasons, different layers became programmable at
different point in time. While the management plane became programmable in
the 1980s, control plane programmability was not achieved until late 2000s to
early 2010s and a programmable switching ASICs did not appear till the end of
2015.

Thus, despite the focus on data plane programmability, we will start by dis-
cussing control plane programmability and its most well-known embodiment,
called software-defined networking (SDN). This discussion will also better pre-
pare us to understand the significance of data plane programmability.

2.2. Control Plane Programmability and SDN
Traditional networking devices such as routers or switches have complex data

and control plane algorithms. They are built into them and generally cannot
be replaced by the users. Thus, the functionality of a device is defined by its
vendor who is the only one who can change it. In industry parlance, vendors
are often called original equipment manufacturers (OEMs).

Software-defined networking (SDN) was historically the first attempt to
make the devices, and specifically their control plane, programmable. On se-
lected systems, device manufacturers allowed users to bypass built-in control
plane algorithms so that the users can introduce their own. These algorithms
could then directly supply the necessary forwarding information to the data
plane which was still non-replaceable and remained under the control of the
device vendor or their chosen silicon provider.

For a variety of technical reasons, it was decided to provide an APIs that
could be called remotely and that is how SDN was born. Figure 2 depicts SDN
in comparison to traditional networking. Not only the control plane became
programmable, but it also became possible to implement network-wide control
plane algorithms in a centralized controller. In several important use cases,
such as tightly controlled, massive data centers, these centralized, network-wide
algorithms proved to be a lot simpler and more efficient, than the traditional
algorithms (e.g. Border Gateway Protocol (BGP)) designed for decentralized
control of many autonomous networks.

The effort to standardize this approach resulted in the development of Open-
Flow (OF) [21]. The hope was that once OF standardized the messaging API
to control the data plane functionality, SDN applications will be able to lever-
age the functions offered by this API to implement network control. There
is a huge body of literature giving an overview of OF [13, 14, 15] and SDN
[6, 7, 8, 9, 11, 10, 12].

However, it soon became apparent that OF assumed a specific data plane
functionality which was not formally specified. Moreover, the specific data
plane, that served as the basis for OF, could not be changed. It executed the
sole, although relatively flexible, algorithm defined by the OF specifications.
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In part, it was this realization that led to the development of modern data
plane programming that we discuss in the following section.

Traditional 
networking

Control plane

SDN with 
fixed-function data planes

Data plane

Control plane

APIAPI

Programability
(by the user)

Agent

Data plane

Programability
(by the user)

Figure 2: Distinction between traditional networking and SDN with fixed-function data planes.

2.3. Data Plane Programming
As mentioned above, data plane programmability means that the data plane

with its algorithms can be defined by the users, be they network operators or
equipment designers working with a packet processing ASIC. In fact, data plane
programmability existed during most of the networking industry history because
data plane algorithms were typically executed on general-purpose CPUs. It is
only with the advent of high-speed links, exceeding the CPU processing capabil-
ities, and the subsequent introduction of packet processing (switching) ASICs
that data plane programmability (or lack thereof) became an issue.

The data plane algorithms are responsible for processing all the packets that
pass through a telecommunication system. Thus, they ultimately define the
functionality, performance, and the scalability of such systems. Any attempt
to implement data plane functionality in the control plane typically leads to
significant performance degradation. When data plane programming is provided
to users, it qualitatively changes their power. They can build custom network
equipment without any compromise in performance, scalability, speed, or energy
consumption.

For custom networks, new control planes and SDN applications can be de-
signed and for them users can design data plane algorithms that fit them ideally.
Data plane programming does not necessarily imply any provision of APIs for
users nor does it require support for outside control planes as in OF. Device
vendors might still decide to develop a proprietary control plane and use data
plane programming only for their own benefit without necessarily making their
systems more open (although many do open their systems now). Figure 3 visu-
alizes both options.

Four surveys from [10, 9, 16, 17] give an overview on data plane program-
ming, but do not set a particular focus to P4.
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Figure 3: Data plane programmability may be used by vendors for more efficient development
or by users to provide own data and control plane algorithms.

2.4. Data Plane Programming Models
Data plane algorithms can and often are expressed using standard program-

ming languages. However, they do not map very well onto specialized hardware
such as high-speed ASICs. Therefore, several data plane models have been pro-
posed as abstractions of the hardware. Data plane programming languages are
tailored to those data plane models and provide ways to express algorithms
for them in an abstract way. The resulting code is then compiled for execu-
tion on a specific packet processing node supporting the respective data plane
programming model.

Data flow graph abstractions and the Protocol Independent Switching Ar-
chitecture (PISA) are examples for data plane models. We give an overview
of the first and elaborate in-depths on the second as PISA is the data plane
programming model for P4.

2.4.1. Data Flow Graph Abstractions
In these data plane programming models, packet processing is described by

a directed graph. The nodes of the graph represent simple, reusable primitives
that can be applied to packets, e.g., packet header modifications. The directed
edges of the graph represent packet traversals where traversal decisions are per-
formed in nodes on a per-packet basis. Figure 4 shows an exemplary graph for
IPv4 and IPv6 packet forwarding.

Examples for programming languages that implement this data plane pro-
gramming model are Click [1], Vector Packet Processors (VPP) [2], and BESS
[22].

2.4.2. Protocol-Independent Switching Architecture (PISA)
Figure 5 depicts the PISA. It is based on the concept of a programmable

match-action pipeline that well matches modern switching hardware. It is a gen-
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Figure 4: Data flow graph abstraction: example graph for IPv4 and IPv6 forwarding.

eralization of reconfigurable match-action tables (RMTs) [23] and disaggregated
reconfigurable match-action tables (dRMTs) [24].
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Figure 5: Protocol-Independent Switch Architecture (PISA).

PISA consists of a programmable parser, a programmable deparser, and a
programmable match-action pipeline in between consisting of multiple stages.

• The programmable parser allows programmers to declare arbitrary headers
together with a finite state machine that defines the order of the head-
ers within packets. It converts the serialized packet headers into a well-
structured form.

• The programmable match-action pipeline consists of multiple match-action
units. Each unit includes one or more match-action-tables (MATs) to
match packets and perform match-specific actions with supplied action
data. The bulk of a packet processing algorithm is defined in the form of
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such MATs. Each MAT includes matching logic coupled with the mem-
ory (static random-access memory (SRAM) or ternary content-addressable
memory (TCAM)) to store lookup keys and the corresponding action data.
The action logic, e.g., arithmetic operations or header modifications, is im-
plemented by arithmetic logic units (ALUs). Additional action logic can
be implemented using stateful objects, e.g., counters, meters, or registers,
that are stored in the SRAM. A control plane manages the matching logic
by writing entries in the MATs to influence the runtime behavior.

• In the programmable deparser, programmers declare how packets are seri-
alized.

A packet, processed by a PISA pipeline, consists of packet payload and
packet metadata. PISA only processes packet metadata that travels from the
parser all the way to the deparser but not the packet payload that travels
separately.

Packet metadata can be divided into packet headers, user-defined and in-
trinsic metadata.

• Packet headers is metadata that corresponds to the network protocol head-
ers. They are usually extracted in the parser, emitted in the deparser or
both.

• Intrinsic metadata is metadata that relates to the fixed-function compo-
nents. P4-programmable components may receive information from the
fixed-function components by reading the intrinsic metadata they produce
or control their behavior by setting the intrinsic metadata they consume.

• User-defined metadata (often referred as simply metadata) is a temporary
storage, similar to local variables in other programming languages. It
allows the developers to add information to packets that can be used
throughout the processing pipeline.

All metadata, be it packet headers, user-defined or intrinsic metadata is
transient, meaning that it is discarded when the corresponding packet leaves
the processing pipeline (e.g., is sent out of an egress port or dropped).

PISA provides an abstract model that is applied in various ways to create
concrete architectures. For example, it allows specifying pipelines containing
different combinations of programmable components, e.g., a pipeline with no
parser or deparser, a pipeline with two parsers and deparsers, and additional
match-action pipelines between them. PISA also allows for specialized com-
ponents that are required for advanced processing, e.g., hash/checksum calcu-
lations. Besides the programmable components of PISA, switch architectures
typically also include configurable fixed-function components. Examples are
ingress/egress port blocks that receive or send packets, packet replication en-
gines that implements multicasting or cloning/mirroring of packets, and traffic
managers, responsible for packet buffering, queuing, and scheduling.
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The fixed-function components communicate with the programmable ones
by generating and/or consuming intrinsic metadata. For example, the ingress
port block generates ingress metadata that represents the ingress port number
that might be used within the match-action units. To output a packet, the
match-action units generates intrinsic metadata that represents an egress port
number; this intrinsic metadata is then consumed by the traffic manager and/or
egress port block.

Figure 6 depicts a typical switch architecture based on PISA. It comprises a
programmable ingress and egress pipeline and three fixed-function components:
an ingress block, an egress block, and a packet replication engine together with
a traffic manager between ingress and egress pipeline.
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Figure 6: Exemplary switch architecture based on PISA.

P4 (Programming Protocol-Independent Packet Processors) [5] is the most
widely used domain-specific programming language for describing data plane
algorithms for PISA. Its initial idea and name were introduced in 2013 [25]
and it was published as a research paper in 2014 [5]. Since then, P4 has been
further developed and standardized by the P4 Language Consortium [26] that is
part of the Open Networking Foundation (ONF) since 2019. The P4 Language
Consortium is managed by a technical steering committee and hosts five working
groups (WGs). P414 [27] was the first standardized version of the language. The
current specification is P416 [28] which was first introduced in 2016.

Other data plane programming languages for PISA are FAST [29], Open-
State [30], Domino [31], FlowBlaze [32], Protocol-Oblivious Forwarding [33],
and NetKAT [34]. In addition, Broadcom [3] and Xilinx [4] offer vendor-specific
programmable data planes based on match-action tables.

2.5. Benefits
Data plane programmability entails multiple benefits. In the following, we

summarize key benefits.
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Data plane programming introduces full flexibility to network packet pro-
cessing, i.e., algorithms, protocols, features can be added, modified, or removed
by the user. In addition, programmable data planes can be equipped with a
user-defined API for control plane programmability and SDN. To keep com-
plexity low, only components needed for a particular use case might be included
in the code. This improves security and efficiency compared to multi-purpose
appliances.

In conjunction with suitable hardware platforms, data plane programming
allows network equipment designers and even users to experiment with new
protocols and design unique applications; both do no longer depend on vendors
of specialized packet-processing ASICs to implement custom algorithms. Com-
pared to long development circles of new silicon-based solutions, new algorithms
can be programmed and deployed in a matter of days.

Data plane programming is also beneficial for network equipment developers
that can easily create differentiated products despite using the same packet
processing ASIC. In addition, they can keep their know-how to themselves
without the need to share the details with the ASIC vendor and potentially
disclose it to their competitors that will use the same ASIC.

So far, modern data plane programs and programming languages have not
yet achieved the degree of portability attained by the general-purpose program-
ming languages. However, expressing data plane algorithms in a high-level lan-
guage has the potential to make telecommunication systems significantly more
target-independent. Also, data plane programming does not require but encour-
ages full transparency. If the source code is shared, all definitions for protocols
and behaviors can be viewed, analyzed, and reasoned about, so that data plane
programs benefit from community development and review. As a result, users
could choose cost-efficient hardware that is well suited for their purposes and
run their algorithms on top of it. This trend has been fueled by SDN and is
commonly known as network disaggregation.

3. The P4 Programming Language

We give an overview of the P4 programming language. We briefly recap its
specification history and describe how P4 programs are deployed. We introduce
the P4 processing pipeline and data types. We discuss parsers, match-action
controls, and deparsers. Finally, we give an overview of tutorials and guides to
P4.

3.1. Specification History
The P4 Language Design Working Group (LDWG) of the P4 Language Con-

sortium has standardized so far two distinct standards of P4: P414 and P416.
Table 1 depicts their specification history.

The P414 programming language dialect allows the programmers to describe
data plane algorithms using a combination of familiar, general-purpose imper-
ative constructs and more specialized declarative ones that provide support for
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Table 1: Specification history of P414 and P416.

P414
Version 1.0.2 03/2015
Version 1.1.0 01/2016
Version 1.0.3 11/2016
Version 1.0.4 05/2017
Version 1.0.5 11/2018

P416
Version 1.0.0 05/2017
Version 1.1.0 11/2018
Version 1.2.0 11/2018
Version 1.2.1 06/2020

the typical data-plane-specific functionality, e.g., counters, meters, checksum
calculations, etc. As a result, the P414 language core includes more than 70
keywords. It further assumed a specific pipeline architecture based on PISA.

P416 has been introduced to address several P414 limitations that became
apparent in the course of its use. Those include the lack of means to describe
various targets and architectures, weak typing and generally loose semantics
(caused, in part, by the above-mentioned mix of imperative and declarative
programming constructs), relatively low-level constructs, and weak support for
program modularity.

Support for multiple different targets and pipeline architecture is the ma-
jor contribution of the P416 standard and is achieved by separating the core
language from the specifics of a given architecture, thus making it architecture-
agnostic. The structure, capabilities and interfaces of a specific pipeline are
now encapsulated into an architecture description, while the architecture- or
target-specific functions are accessible through an architecture library, typically
provided by the target vendor. The core components are further structured into
a small set of language constructs and a core library that is useful for most P4
programs. Compared to P414, P416 introduced strict typing, expressions, nested
data structures, several modularity mechanisms, and also removed declarative
constructs, making it possible to better reason about the programs, written in
the language. Figure 7 illustrates the concept which is subdivided into core
components and architecture components.

P414
language

P416 language

Core library

Core
components

Architecture
components

Architecture description

Architecture library

Figure 7: Comparison of the P414 and P416 language according to [28].

Due to the obvious advantages of P416, P414 development has been discon-
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tinued, although it is still supported on a number of targets. Therefore, we focus
on P416 in the remainder of this paper where P4 implicitly stands for P416.

3.2. Development and Deployment Process
Figure 8 illustrates the development and deployment process of P4 programs.
P4-programmable nodes, so-called P4 targets, are available as software or

specialized hardware (see Section 5). They feature packet processing pipelines
consisting of both P4-programmable and fixed-function components. The exact
structure of these pipelines is target-specific and is described by a corresponding
P4 architecture model (see Section 4) which is provided by the manufacturer of
the target.

P4 programs are supplied by the user and are implemented for a particular
P4 architecture model. They define algorithms that will be executed by the
P4-programmable components and their interaction with the ones implemented
in the fixed-function logic. The composition of the P4 programs and the fixed-
function logic constitutes the full data plane algorithm.

P4 compilers (see Section 4) are also provided by the manufacturers. They
translate P4 programs into target-specific code which is loaded and executed by
the P4 target.

The P4 compiler also generates a data plane API that can be used by a
user-supplied control plane (see Section 6) to manage the runtime behavior of
the P4 target.

P4 program 
(data plane)

Control plane

P4 architecture 
model

P4 targetSupplied by the manufacturer

Supplied by the user

Data plane API
CodeP4 compiler

Figure 8: P4 deployment process according to [28].

3.3. Information Flow
P416 adopts PISA’s concept of packet metadata. Figure 9 illustrates the

information flow in the P4 processing pipeline. It comprises different blocks,
where packet metadata (be it headers, user-defined or intrinsic metadata) is
used to pass the information between them, therefore representing a uniform
interface.

The parser splits up the received packet into individual headers and the
remaining payload. Intrinsic metadata from the ingress block, e.g., the ingress
port number or the ingress timestamp, is often provided by the hardware and can
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be made available for further processing. Many targets allow the user metadata
to be initialized in the parser as well. Then, the headers and metadata are
passed to the match-action pipeline that consists of one or more match-action
units. The remaining payload travels separately and cannot be directly affected
by the match-action pipeline processing.

While traversing the individual match-action pipeline units, the headers can
be added, modified, or removed and additional metadata can be generated.

The deparser assembles the packet back by emitting the specified headers
followed by the original packet payload. Packet output is configured with in-
trinsic metadata that includes information such as a drop flag, desired egress
port, queue number, etc.

Parser Deparser

Intrinsic
metad.

Headers

Payload

Intrinsic
metad.

Intrinsic
md.

Headers

P4 block w/
interface

Match-
action unit

Match-
action unit

P4 block w/
interface

P4 block w/
interface

P4 block w/
interface
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User 
metad.

User 
metad.

User 
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Figure 9: Information flow.

3.4. Data Types
P416 is a statically typed language that supports a rich set of data types for

data plane programming.

3.4.1. Basic Data Types
P416 includes common basic types such as Boolean (bool), signed (int),

and unsigned (bit) integers which are also known as bit strings. Unlike many
common programming languages, the size of these integers is specified at bit
granularity, with a wide range of supported widths. For example, types such as
bit<1>, int<3>, bit<128> and wider are allowed.

In addition, P4 supports bit strings of variable width, represented by a spe-
cial varbit type. For example, IPv4 options can be represented as varbit<320>
since the size of IPv4 options ranges from zero to 10 32-bit words.

P416 also supports enumeration types that can be serializable (with the
actual representation specified as bit<N> or int<N> during the type definition)
or non-serializable, where the type representation is chosen by the compiler and
hidden from the user.
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3.4.2. Derived Data Types
Basic data types can be composed to construct derived data types. The

most common derived data types are header, header stack, and struct.
The header data type facilitates the definition of packet protocol headers,

e.g., IPv4 or TCP. A header consists of one more fields of the serializable types
described above, typically bit<N>, serializable enum, or varbit. A header also
has an implicit validity field indicating whether the header is part of a packet.
The field is accessible through standard methods such as setvalid(), setInvalid(),
and isValid(). Packet parsing starts with all headers being invalid. If the parser
determines that a header is present in the packet, the header fields are extracted
and the header’s validity field is set valid. The standard packet emit() method
used by a deparser equips packets only with valid headers. Thus, P4 programs
can easily add and remove headers by manipulating their validity bits. A sample
header declaration is shown in Figure 10.

A header stack is used to define repeating headers, e.g., VLAN tags or
MPLS labels. It supports special operations allowing headers to be “pushed”
onto the stack or “popped” from it.

Struct in P4 is a composed data type similar to structs in programming
languages like C. Unlike the header data type, they can contain fields of any
type including other structs, headers, and others.

typedef bit <48> macAddr_t;

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit <16> etherType;

}

Figure 10: Sample declaration of the Ethernet header.

3.5. Parsers
Parsers extract header fields from ingress packets into header data and meta-

data. P4 does not include predefined packet formats, i.e., all required header for-
mats including parsing mechanisms need to be part of the P4 program. Parsers
are defined as finite state machine (FSM) with an explicit Start state, two ending
states (Accept and Reject), and custom states in between.

Figure 11 depicts the structure of a typical P4 parser for Ethernet, MPLS,
IPv4, TCP, and UDP headers. Figure 12 shows the source code fragment of the
example parser in a P416 program. The process starts in the Start state and
switches to the Ethernet state. In this state and the following states, information
from the packet headers is extracted according to the defined header structure.

State transitions may be either conditional or unconditional. In the given
example, the transition from the Start state to the Ethernet state is uncondi-
tional while in the Ethernet state the transition to the MPLS, IPv4, or Reject
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Figure 11: Example for the FSM of a P4 parser that parses packets with Ethernet, MPLS,
IPv4, TCP, and UDP headers.

state depends on the value of the EtherType field of the extracted Ethernet
header. Based on previously parsed header information, any number of further
headers can be extracted from the packet. If the header order does not comply
with the expected order, a packet can be discarded by switching to the Reject
state. The parser can also implicitly transition into the Reject state in case of
a parser exception, e.g., if a packet is too short.

3.6. Match-Action Controls
Match-action controls express the bulk of the packet processing algorithm

and resemble traditional imperative programs. They are executed after success-
ful parsing of a packet. In some architectures they are also called match-action
pipeline units. In the following, we give an overview of control blocks, actions,
and match-action tables.

3.6.1. Control Blocks
Control blocks, or just controls, are similar to functions in general-purpose

languages. They are called by an apply() method. They have parameters and
can call also other control blocks. The body of a control block contains the
definition of resources, such as tables, actions, and externs that will be used for
processing. Furthermore, a single apply() method is defined that expresses the
processing algorithm.

P4 offers statements to express the program flow within a control block.
Unlike common programming languages, P4 does not provide any statements
that would allow the programmer to create loops. This ensures that all the
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parser SampleParser(packet_in p, out headers h) {

state start {
transition parse_ethernet;

}

state parse_ethernet {
p.extract(h.ethernet);
transition select(h.ethernet.etherType) {

0x8847: parse_mpls;
0x0800: parse_ipv4;

default: reject;
};

}

state parse_ipv4 {
p.extract(h.ipv4);
transition select(h.ipv4.protocol) {

6: parse_tcp;
17: parse_udp;

default: accept;
}

}

state parse_udp {
p.extract(h.udp);
transition accept;

}
/* Other states follow */

}

Figure 12: Sample parser implementation of the FSM in Figure 11.

algorithms that can be coded in P4 can be expressed as directed acyclic graphs
(DAGs) and thus are guaranteed to complete within a predictable time interval.
Specific control statements include:

• a block statement {} that expresses sequential execution of instructions.

• an if() statement that expresses an execution predicated on a Boolean
condition

• a switch() statement that expresses a choice from multiple alternatives

• an exit() statement that ends the control flow within a control block and
passes the control to the end of the top-level control

Transformations are performed by several constructs, such as

• An assignment statement which evaluates the expression on its right-hand-
side and assigns the result to a header or a metadata fields
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• A match-action operation on a table expressed as the table’s apply()
method

• An invocation of an action or a function that encapsulate a sequence of
statements

• An invocation of an extern method that represents special, target- and
architecture-specific processing, often involving additional state, preserved
between packets

A sample implementation of basic L2 forwarding is provided in Figure 13.

control SampleControl(inout headers h, inout standard_metadata_t
standard_metadata) {

action l2_forward(egressSpec_t port) {
standard_metadata.egress_spec = port;

}

table l2 {
key = {

h.ethernet.dstAddr: exact;
}
actions = {

l2_forward; drop;
}
size = 1024;
default_action = drop();

}

apply {
if (h.ethernet.isValid ()) {

l2.apply ();
}

}
}

Figure 13: Sample control block implementing basic L2 forwarding.

3.6.2. Actions
Actions are code fragments that can read and write packet headers and

metadata. They work similarly to functions in other programming languages
but have no return value. Actions are typically invoked from MATs. They can
receive parameters that are supplied by the control plane as action data in MAT
entries.

As in most general-purpose programming languages, the operations are writ-
ten using expressions and the results are then assigned to the desired header
or metadata fields. The operations available in P4 expressions include stan-
dard arithmetic and logical operations as well as more specialized ones such
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as bit slicing (field[high:low]), bit concatenation (field1 ++ field2), and
saturated arithmetic (|+| and |-|).

Actions can also invoke methods of other objects, such as headers and
architecture-specific externs, e.g., counters and meters. Other actions can also
be called, similar to nested function calls in traditional programming languages.

Action code is executed sequentially, although many hardware targets sup-
port parallel execution. In this case, the compiler can optimize the action code
for parallel execution as long as its effects are the same as in case of the sequen-
tial execution.

3.6.3. Match-Action Tables (MATs)
MATs are defined within control blocks and invoke actions depending on

header and metadata fields of a packet. The structure of a MAT is declared
in the P4 program and its table entries are populated by the control plane at
runtime. A packet is processed by selecting a matching table entry and invoking
the corresponding action with appropriate parameters.

The declaration of a MAT includes the match key, a list of possible actions,
and additional attributes.

The match key consists of one or more header or metadata fields (variables),
each with the assigned match type. The P4 core library defines three standard
match types: exact, ternary, and longest prefix matching (LPM). P4 archi-
tectures may define additional match types, e.g., the v1model P4 architecture
extends the set of standard match types with the range and selector match.

The list of possible actions includes the names of all actions that can be
executed by the table. These actions can have additional, directional parameters
which are provided as action data in table entries.

Additional attributes may include the size of the MAT, e.g., the maximum
number of entries that can be stored in a table, a default action for a miss, or
static table entries.
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Figure 14: Structure of MATs in P4.
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Figure 14 illustrates the principle of MAT operation. The MAT contains
entries with values for match keys, the ID of the corresponding action to be
invoked, and action data that serve as parameters for action invocation. For
each packet, a lookup key is constructed from the set of header and metadata
fields specified in the table definition. It is matched against all entries of the
MAT using the rules associated with the individual field’s match type. When
the first match in the table is found, the corresponding action is called and the
action data are passed to the action as directionless parameters. If no match is
found in the table, a default action is applied.

As a special case, tables without a specified key always invoke the default
action.

3.7. Deparser
The deparser is also defined as a control block. When packet processing

by match-action control blocks is finished, the deparser serializes the packet.
It reassembles the packet header and payload back into a byte stream so that
the packet can be sent out via an egress port or stored in a buffer. Only valid
headers are emitted, i.e., added to the packet. Thus, match-action control blocks
can easily add and remove headers by manipulating their validity. Figure 15
provides a sample implementation.

control SampleDeparser(packet_out p, in headers h) {
apply {

p.emit(h.ethernet);
p.emit(h.mpls);
p.emit(h.ipv4);
/* Normally , a packet can contain either
* a TCP or a UDP header (or none at all),
* but should never contain both
*/

p.emit(h.tcp);
p.emit(h.udp);

}
}

Figure 15: Sample deparser implementation.

3.8. P4 Tutorials
The P4 Language Consortium provides a GitHub repository with simple

programming exercises and a development VM containing all required software
[35]. A guide on GitHub lists useful information for P4 newcomers, e.g. demo
programs, information about other GitHub repositories, and an overview of
P4 [36]. The Networked Systems Group at ETH Zürich provides resources for
people who want to learn programming in P4, including lecture slides, references
to useful documentation, examples and exercises [37].
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4. P4 Architectures & Compilers

We present P416 architectures and introduce P4 compilers.

4.1. P416 Architectures
We summarize the concept of P416 architectures, describe externs, and give

an overview of the most common P416 architectures.

4.1.1. Concept
As described before, P416 introduces the concept of P4 architectures as an

intermediate layer between the core P4 language and the targets. A P4 archi-
tecture serves as programming models that represents the capabilities and the
logical view of a target’s P4 processing pipeline. P4 programs are developed for
a specific P4 architecture. Such programs can be deployed on all targets that
implement the same P4 architecture. The manufacturers of P4 targets provide
P4 compilers that compile architecture-specific P4 programs into target-specific
configuration binaries.

4.1.2. Externs
P4 architectures may provide additional functionalities that are not part

of the P4 language core. Examples are checksum or hash computation units,
random number generators, packet and byte counters, meters, registers, and
many others. To make such extern functionalities usable, P416 introduces so-
called externs.

Most of the externs have to be explicitly instantiated in P4 programs using
their constructor method. The other methods provided by these externs can
then be invoked on the given extern instance. Other externs (extern functions)
do not require explicit instantiating.

Along with tables and value sets, P4 externs are allowed to preserve addi-
tional state between packets. That state may be accessible by the control plane,
the data plane, or both. For example, the counter extern would preserve the
number of packets or bytes that has been counted so that each new packet can
properly increment it. The specifics of the state depend on the nature of the
extern and cannot be specified in the language; this is done inside the vendor-
specific API definitions.

While the P4 processing pipeline only allows packet header manipulation,
extern functions may operate on packet payload as well.

4.1.3. Overview of Common P416 Architectures
We describe the four most common P416 architectures.
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v1model. The v1model mimics the processing pipeline of P414. As depicted
in Figure 16, it consists of a programmable parser, an ingress match action
pipeline, a traffic manager, an egress match-action pipeline, and a deparser. It
enables developers to convert P414 programs into P416 programs. Additional
functionalities tracking the development of the reference P4 software switch
Behavioral Model version 2 (bmv2) (see Section 5) are continuously added. All
P4 examples in this paper are written using v1model.
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Figure 16: v1model architecture.

Portable Switch Architecture (PSA). The PSA is a P4 architecture created and
further developed by the Architecture WG [38] in the P4 Language Consortium.
Besides, the WG also discusses standard functionalities, APIs, and externs that
every target mapping the PSA should support. Its last specification is Version
1.1 [39] from November 2018. Figure 17 illustrates the P4 processing pipeline
of the PSA. It is divided into an ingress and egress pipeline. Each pipeline
consists of the three programmable parts: parser, multiple control blocks, and
deparser. The architecture also defines configurable fixed-function components.

PSA specifies several packet processing primitives, such as:

• Sending a packet to an unicast port

• Dropping a packet

• Sending the packet to a multicast group

• Resubmitting a packet, which moves the currently processed packet from
the end of the ingress pipeline to the beginning of the ingress pipeline for
the purpose of packet re-parsing

• Recirculating a packet, which moves the currently processed packet from
the end of the egress pipeline to the beginning of the ingress pipeline for
the purposes of recursive processing, e.g., tunneling

• Cloning a packet, which duplicates the currently processed packet. Clone
ingress to egress (CI2E) creates a duplicate of the ingress packet at the end
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of the ingress pipeline. Clone egress to egress (CE2E) creates a duplicate of
the deparsed packet at the end of the egress pipeline. In both cases, cloned
instances start processing at the beginning of the egress pipeline. Cloning
can be helpful to implement powerful applications such as mirroring and
telemetry.
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Figure 17: Portable Switch Architecture (PSA) with programmable and fixed-function parts
and special packet processing primitives.

SimpleSumeArchitecture. The SimpleSumeArchitecture is a simplified P4 ar-
chitecture that is implemented by FPGA-based P4 targets. As depicted in
Figure 18, it features a parser, a programmable match-and-action pipeline, and
a deparser.
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Figure 18: SimpleSumeArchitecture.

Tofino Native Architecture (TNA). TNA is a proprietary P416 architecture de-
signed for Intel Tofino switching ASICs (see Section 5.3). Intel has published
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the architecture definitions and allows developers to publish programs written
by using it.

The architecture describes a very high-performance, “industry-strength” de-
vice that is relatively complex. The basic programming unit is a so-called
Pipeline() package that resembles an extended version of the Portable Switch
Architecture (PSA) pipeline and consists of 6 top-level programmable compo-
nents: the ingress parser, ingress match-action control, ingress deparser, and
their egress counterparts. Since Tofino devices can have two or four processing
pipelines, the final switch package can be formed anywhere from one to four
distinct pipeline packages. More complex versions of the Pipeline() package
allow the programmer to specify different parsers for different ports.

TNA also provides a richer set of externs compared to most other archi-
tectures. Most notable is TNA RegisterAction() which represents a small
code fragment that can be executed on the register instead of simple read/write
operations provided in other architectures. TNA provides a clear and consis-
tent interface for mirroring and resubmit with additional metadata being passed
via the packet byte stream. The same technique is also used to pass intrinsic
metadata which greatly simplifies the design.

Additional externs that are not present in other architectures include low-
pass filters, weighted random early discard externs, powerful hash externs that
can compute CRC based on user-defined polynomials, ParserCounter, and oth-
ers.

The set of intrinsic metadata in Tofino is also larger than in most other P4
architectures as presented before. Notable is support for two-level multicasting
with additional source pruning, copy-to-cpu functionality, and support for IEEE
1588.

4.2. P4 Compiler
P4 compilers translate P4 programs into target-specific configuration bina-

ries that can be executed on P4 targets. We first explain compilers based on the
two-layer model which are most widely in use. Then we mention other compilers
in less detail.

4.2.1. Two-Layer Compiler Model
Most P4 compilers use the two-layer model, consisting of a common frontend

and a target-specific backend.
The frontend is common for all the targets and is responsible for parsing,

syntactic and target-independent semantic analysis of the program. The pro-
gram is finally transformed into an intermediate representation (IR) that is then
consumed by the target-specific backend which performs target-specific trans-
formations.

The first-generation P4 compiler for P414 was written in Python and used
the so-called high-level intermediate representation (HLIR) [40] that represented
P414 program as a tree of Python objects. The compiler is referred to as p4-hlir.

The new P4 compiler (p4c) [41] is written in C++ and uses C++-object-
based IR. As an additional benefit, the IR can be output as a P416 program or a
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Figure 19: Structure and operation principle of P4 compilers using the two-layer model.

JSON file. The latter allows the developers and users to build powerful tools for
program analysis without the need to augment the compiler. Figure 19 visualizes
its structure and operating principle. The compiler consists of a generic frontend
that accepts both P414 and P416 code which may be written for any architecture.
It furthermore has several reference backends for the bmv2, eBPF, and uBPF
P4 targets as well as a backend for testing purposes and a backend that can
generate graphs of control flows of P4 programs. In addition, p4c provides the
so-called “mid-end” which is a library of generic transformation passes that are
used by the reference backends and can also be used by vendor-specific backends.
The compiler is developed and maintained by P4.org.

P4 target vendors design and maintain their own compilers that include the
common frontend. This ensures the uniformity of the language which is accepted
by different compilers.

4.2.2. Other Compilers
MACSAD [42] is a compiler that translates P4 programs into Open Data

Plane (ODP) [43] programs. Jose et al. [44] introduce a compiler that maps
P4 programs to FlexPipe and RMT, two common software switch architectures.
P4GPU [45] is a multistage framework that translates a P4 program into inter-
mediate representations and other languages to eventually generate GPU code.

5. P4 Targets

We describe P4 targets based on software, FPGA, ASIC, and NPU. Ta-
ble 2 compiles an overview of the targets, their supported architectures, and the
current state of development.

5.1. Software-Based P4 Targets
Software-based P4 targets are packet forwarding programs that run on a

standard CPU. We describe the 9 software-based P4 targets mentioned in Ta-
ble 2.
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Table 2: Overview of P4 targets.

Target P4 Version P416
Architecture

Active
Development

Software
p4c-behavioral P414 n.a. X
bmv2 P414, P416 v1model, psa X
eBPF P416 ebpf_model.p4 X
uBPF P416 ubpf_model.p4 X
XDP P416 xdp_model.p4 X
T4P4S P414, P416 v1model, psa X
Ripple n.a n.a n.a
PISCES P414 n.a. X
PVPP n.a. n.a. X
ZodiacFX P416 zodiacfx_model.p4 n.a.

FPGA
P4→NetFPGA P416 SimpleSumeSwitch X
Netcope P4 n.a. n.a. X
P4FPGA P414, P416 n.a. X

ASIC
Barefoot Tofi-
no/Tofino 2

P414, P416 v1model, psa,
TNA

X

Pensando Capri P416 n.a X
NPU
Netronome P414, P416 v1model X

5.1.1. p4c-behavioural
p4c-behavioral [46] is a combined P4 compiler and P4 software target. It

was introduced with the first public release of P4. p4c-behavioral translates the
given P414 program into an executable C program.

5.1.2. Behavioral Model version 2 (bmv2)
The second version of the P4 software switch Behavioral Model (bmv2) [47]

was introduced to address the limitations of p4c-behavioural (see also [48]). In
contrast to p4c-behavioral, the source code of bmv2 is static and independent
of P4 programs. P4 programs are compiled to a JSON representation that is
loaded onto the bmv2 during runtime. External functions and other extensions
can be added by extending bmv2’s C++ source code. bmv2 is not a single
target, but a collection of targets [49]:

• simple_switch is the bmv2 target with the largest range of features. It con-
tains all features from the P414 specification and supports the v1model ar-
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chitecture of P416. simple_switch includes a program-independent Thrift
API for runtime control.

• simple_switch_grpc extends simple_switch by the P4Runtime API that
is based on gRPC (see Section 6.3.1).

• psa_switch is similar to simple_switch, but supports PSA instead of
v1model.

• simple_router and l2_switch support only parts of the standard meta-
data and do not support P416. They are intended to show how different
architectures can be implemented with bmv2.

Although bmv2 is intended for testing purposes only, throughput rates up
to 1Gbit/s for a P4 program with IPv4 LPM routing have been reported [50].
bmv2 is under active development, i.e., new functionality is added frequently.

5.1.3. BPF-based Targets
Berkeley Packet Filters (BPFs) add an interface on a UNIX system that

allows sending and receiving raw packets via the data link layer. User space
programs may rely on BPFs to filter packets that are sent to it. BPF-based P4
targets are mostly intended for programming packet filters or basic forwarding
in P4.

eBPF. Extended Berkeley Packet Filters (eBPFs) are an extension of BPFs for
the Linux kernel. eBPF programs are dynamically loaded into the Linux kernel
and executed in a virtual machine (VM). They can be linked to functions
in the kernel, inserted into the network data path via iproute2, or bound to
sockets or network interfaces. eBPF programs are always verified by the kernel
before execution, e.g., programs with loops or backward pointers would not be
executed. Due to their execution in a VM, eBPF programs can only access
certain regions in memory besides the local stack. Accessing kernel resources is
protected by a white list. eBPF programs may not block and sleep, and usage
of locks is limited to prevent deadlocks. The p4c compiler features the p4c-ebpf
back-end to compile P416 programs to eBPF [51].

uBPF. user-space BPFs (uBPFs) relocate the eBPF VM from the kernel space
to the user space. p4c-ubpf [52] is a backend for p4c that compiles P4 HLIR for
uBPF. In contrast to p4c-ebpf, it also supports packet modification, checksum
calculation, and registers, but no counters.

XDP. eXpress Data Path (XDP) is based on eBPF and allows to load an eBPF
program into the RX queue of a device driver. p4c-xdp [53] is a backend for
p4c that compiles P4 HLIR for XDP. Similar to p4c-ubpf, it supports packet
modification and checksum calculation. In contrast to p4c-ebpf, it supports
counters instead of registers.
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5.1.4. T4P4S
T4P4S (pronounced "tapas") [54, 55] is a software P4 target that relies on

interfaces for accelerated packet processing such as Data Plane Development Kit
(DPDK) [56] or Open Data Plane (ODP) [43]. T4P4S provides a compiler that
translates P4 programs into target-independent C code that interfaces a network
hardware abstraction library. Hardware-dependent and hardware-independent
functionalities are separated from each other. Its source code is available on
GitHub [57]. Bhardwaj et al. [58] describe optimizations for improving T4P4S
performance by up to 15%.

5.1.5. Ripple
Ripple [59] is a P4 target based on DPDK. It uses a static universal binary

that is independent of the P4 program. The data plane of the static binary is
configured at runtime based on P4 HLIR. This results in a shorter downtime
when updating a P4 program in contrast to targets like T4P4S. Ripple uses
vectorization to increase the performance of packet processing.

5.1.6. PISCES
PISCES [60] transforms the Open vSwitch (OVS) [61] into a software P4 tar-

get. OVS is a popular SDN software switch that is designed for high throughput
on virtualization platforms for flexible networking between VMs. The PISCES
compiler translates P4 programs into C code that replace parts of the source
code of OVS. This makes OVS dependent on the P4 program, i.e., OVS must
be recompiled with every modification of the P4 program. PISCES does not
support stateful components such as registers, counters, or meters. The devel-
opers claim that PISCES does not add performance overhead to OVS. As the
last commit in the public repository [62] is from 2016, PISCES seems not to be
under active development.

5.1.7. PVPP
PVPP [63, 64] integrates P4 programs into plugins for Vector Packet Proces-

sors (VPP) (see Section 2.4.1). The P4-to-PVPP compiler comprises two stages.
First, a modified p4c compiler translates P4 programs into target-dependent
JSON code. Then, a Python compiler translates the JSON code into a VPP
plugin in C source code. According to the authors, performance decreases by 5-
17% compared to VPP but is still significantly better than OVS. Unfortunately,
the source code and further information are not available for the public.

5.1.8. ZodiacFX
The ZodiacFX is a lightweight development and experimentation board orig-

inally designed as OF switch featuring four Fast Ethernet ports. It is based on
an Atmel processor and an Ethernet switching chip [65]. The authors provided
an extension [66, 67] to run P4 programs on the board. P4 programs are com-
piled using an extended version of p4c and the p4c-zodiacfx backend compiler.
Then, the result of this compilation is used to generate a firmware image. Zanna
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et al. [68] compare the performance of P4 and OF on that target, and find out
that differences among all test cases are small.

5.2. FPGA-Based P4 Targets
Several tool chains translate P4 programs into implementations for field

programmable gate arrays (FPGAs). The process includes logic synthesis, ver-
ification, validation, and placement/routing of the logic circuit for the FPGA.
We describe the P4→NetFPGA, Netcope P4, and P4FPGA tool chain. Finally,
we mention research results for FPGA-based P4 targets.

5.2.1. P4→NetFPGA
The P4→NetFPGA workflow [69, 70] provides a development environment

for compiling and running P4 programs on the NetFPGA SUME board that
provides four SFP+ ports [71]. The development environment is built around
the P4-SDnet compiler and the SDnet data plane builder from Xilinx, i.e., a full
license for the Xilinx Vivado design suite is needed. Custom external functions
can be implemented in a hardware description language (HDL) such as Verilog
and included in the final FPGA program. This also allows external IP cores
to be integrated as P4 externs in P4 programs. The P4→NetFPGA tool chain
supports P416 based on the P4 architecture SimpleSumeSwitch (see Section 4.1).

5.2.2. Netcope P4
Netcope P4 [72] is a commercial cloud service that creates FPGA firmware

from P4 programs. Knowledge of HDL development is not needed and all nec-
essary IP cores are provided by Netcope. The cloud service can be used in
conjunction with the Netcope software development kit (SDK). This combi-
nation allows developers to combine the VHDL code of the cloud service with
custom HDL code, e.g., from an external function. As target platform, Netcope
P4 supports FPGA boards from Netcope, Silicom, and Intel that are based on
Xilinx or Intel FPGAs.

5.2.3. P4FPGA
P4FPGA [73] is a P414 and P416 compiler and runtime for the Bluespec

programming language that can generate code for Xilinx and Altera FPGAs.
The last commit in the archived public repository [74] is from 2017.

5.2.4. Research Results
Benácek and Kubátová [75, 76] present how P4 parse graph descriptions

can be converted to optimized VHDL code for FPGAs. The authors demon-
strate how a complex parser for several header fields achieves a throughput
of 100Gbit/s on a Xilinx Virtex-7 FPGA while using 2.78% slice look up ta-
bles (LUTs) and 0.76% slice registers (REGs). In a follow-up work [77], the
optimized parser architecture supports a throughput of 1Tbit/s on Xilinx Ul-
traScale+ FPGAs and 800Gbit/s on Xilinx Virtex-7 FPGAs. Da Silva et al.
[78] also investigate the high-level synthesis of packet parsers in FPGAs. Kekely
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and Korenek [79] describe how MATs can be mapped to FPGAs. Iša et al. [80]
describe a system for automated verification of register-transfer level (RTL)
generated from P4 source code. Cao et al. [81, 82] propose a template-based
process to convert P4 programs to VHDL. They use a standard P4 frontend
compiler to compile the P4 program into an intermediate representation. From
this representation, a custom compiler maps the different elements of the P4
program to VHDL templates which are used to generate the FPGA code.

5.3. ASIC-Based P4 Targets
5.3.1. Intel Tofino

Intel Tofino is the world’s first user programmable Ethernet switch ASIC.
It is designed for very high throughput of 6.5Tbit/s (4.88 B pps) with 65 ports
running at 100Gbit/s. Its successor, the Tofino 2 ASIC, supports throughput
rates of up to 12.8Tbit/s with ports running at up to 400Gbit/s. Tofino has
been built by Barefoot Networks, a former startup company that was acquired
by Intel in 2019.

The Tofino ASIC implements the TNA, a custom P4 architecture that signif-
icantly extends PSA (see Section 4.1). It provides support for advanced device
capabilities which are required to implement complex, industrial-strength data
plane programs. The device comes with 2 or 4 independent packet processing
pipelines (pipes), each capable of serving 16 100Gbit/s ports. All pipes can
run the same P4 program or each pipe can run its own program independently.
Pipes can also be connected together, allowing the programmers to build pro-
grams requiring longer processing pipelines.

The Tofino ASIC processes packets at line rate irrespective of the complex-
ity of the executed P4 program. This is achieved by a high degree of pipelining
(each pipe is capable of processing hundreds of packets simultaneously) and par-
allelization. In addition to standard arithmetic and logical operations, Tofino
provides specialized capabilities, often required by data plane programs, such as
hash computation units and random number generators. For stateful processing
Tofino offers counters, meters, and registers, as well as more specialized process-
ing units. Some of them support specialized operations, such as approximate
non-linear computations required to implement state-of-the-art data plane algo-
rithms. Built-in packet generators allow the data plane designers to implement
protocols, such as BFD, without using externally running control plane pro-
cesses. These and other components are exposed through TNA which is openly
published by Intel [83].

Tofino fixed-function components offer plenty of advanced functionality. The
buffering engine has a unified 22MB buffer, shared by all the pipes, that can
be subdivided into several pools. Tofino Traffic Manager supports both store-
and-forward as well as the cut-through mode, up to 32 queues per port, precise
traffic shaping and multiple scheduling disciplines. Tofino provides nanosecond-
precision timestamping that facilitates both the implementation of time synchro-
nization protocols, such as IEEE 1588, as well as precise delay measurements.
Additional intrinsic metadata support a variety of telemetry applications, such
as INT.
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The development is conducted using Intel P4 Studio which is a software
development environment containing the P4 compiler, the driver, and other
software necessary to program and manage the Tofino. A special interactive vi-
sualization tool (P4i) allows the developers to see the P4 program being mapped
onto the specific hardware resources further assisting them in fitting and opti-
mizing their programs. Intel P4 compiler for Tofino has special capabilities,
allowing it to parallelize the code thereby taking advantage of the highly paral-
lel nature of Tofino hardware.

A number of original design manufacturers (ODMs) produce open systems
(white boxes) with the Tofino ASIC that are used for research, development,
and production of custom systems. Examples include the EdgeCore Wedge
100BF-32X [84], APS Networks BF2556-1T-A1F [85] and BF6064-T-A2F [86],
NetBerg Aurora 610 [87], and others.

Most white box systems follow a modern, server-like design with a separate
board management controller, responsible for handling power supplies, fans,
LEDs, etc., and a main CPU, typically x86_64, running a Linux operating sys-
tem. The main CPU is connected to the Tofino ASIC via a PCIe interface. Some
boards also provide one or more high-speed on-board Ethernet connections for
faster packet interface. External Ethernet ports support speeds from 10Gbit/s
to 100Gbit/s using standard QSFP28 cages although some systems offer lower-
speed (1Gbit/s) ports as well. Most of these systems are also powerful enough
to support running development tools natively, e.g., a P4 compiler, even though
this is not necessarily required.

Tofino ASICs are also used in proprietary network switches, e.g., by Arista
[88] and Cisco [89]. Some Tofino-based switches are supported by Microsoft
SONiC [90].

5.3.2. Pensando Capri
The Capri P4 Programmable Processor [91, 92] is an ASIC that powers

network interface cards (NICs) by Pensando Systems aimed for cloud providers.
It is coupled with fixed function components for cryptography operations like
AES or compression algorithms and features multiple ARM cores.

5.4. NPU-Based P4 Targets
Network processing units (NPUs) are software-programmable ASICs that

are optimized for networking applications. They are part of standalone network
devices or device boards, e.g., PCI cards.

Netronome network flow processing (NFP) silicons can be programmed with
P4 [93] or C [94]. A C-based programming model is available that supports
program functions to access payloads and allows developing P4 externs. The
Agilio P4C SDK consists of a tool chain including a backend compiler, host
software, and a full-featured integrated development environment (IDE). All
current Agilio SmartNICs based on NFP-4000, NFP-5000, and NFP-6480 are
supported. Harkous et al. [95] investigate the impact of basic P4 constructs on
packet latency on Agilio SmartNICs.
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6. P4 Data Plane APIs

We introduce data plane APIs for P4, present a characterization, describe the
three most commonly used P4 data plane APIs, and compare different control
plane use cases.

6.1. Definition & Functionality
Control planes manage the runtime behavior of P4 targets via data plane

APIs. Alternative terms are control plane APIs and runtime APIs. The data
plane API is provided by a device driver or an equivalent software component.
It exposes data plane features to the control plane in a well-defined way. Figure
20 shows the main control plane operations. Most important, data plane APIs
facilitate runtime control of P4 entities (MATs and externs). They typically
also comprise a packet I/O mechanism to stream packets to/from the control
plane. They also include reconfiguration mechanisms to load P4 programs onto
the P4 target. Control planes can control data planes only through data plane
APIs, i.e., if a data plane feature is not exposed via a corresponding API, it
cannot be used by the control plane.

Control plane

Runtime
control

Packet
I/O

Load
P4 program

P4 target

Data plane
API

MAT Extern
CPU port

Figure 20: Runtime management of a P4 target by the control plane through the data plane
API. The figure depicts the four most central operations: Runtime control of MATs and
extern objects, packet-in/out, and loading of P4 programs.

It is important to note that P4 does not require a data plane APIs. P4 targets
may also be used as a packet processor with a fixed behavior that is defined by
the P4 program where static MAT entries are part of the P4 program itself.

6.2. Characterization of Data Plane APIs
Data plane APIs in P4 can be characterized by their level of abstraction,

their dependency on the P4 program, and the location of the control plane.

6.2.1. Level of Abstraction
Data plane APIs can be characterized by their level of abstraction.

• Device access APIs provide direct access to hardware functionalities like
device registers or memories. They typically use low-level mechanisms like
DMA transactions. While this results in very low overhead, this type of
API can be neither vendor- nor device-independent.

35



• Data plane specific APIs are APIs with a higher level of abstraction. They
provide access to objects defined by the P4 program instead of hardware-
specific parts. In contrast to device access APIs, vendor- and device-
independence is possible for this type of API.

6.2.2. Dependency on the P4 Program
Data plane APIs can be characterized by their dependency on the P4 pro-

gram.

• Program-dependent APIs have a set of functions, data structures, and
other names that are derived from the P4 program itself. Therefore, they
depend on the P4 program and are applicable to this P4 program only.
If the corresponding P4 program is changed, function names, data struc-
tures, etc., might change, which requires a recompilation or modification
of the control plane program.

• Program-independent APIs consist of a fixed set of functions that receives
a list of P4 objects that are defined in the P4 program. Thus, the names
of the API functions, data structures, etc., do not depend on the program
and are universally applicable. If the corresponding P4 program changes,
neither the names, nor the definitions of the API functions will change
as long as the control plane “knows” the names of the right tables, fields
and other object that need to be operated on. Program-independent APIs
model configurable objects either with the object-based or the table-based
approach. As known from object-oriented programming, the object-based
approach relies on methods that are defined for each class of data plane
objects. In contrast, the table-based approach treats every class of data
plane object as a variation of a table. This reduces the number of API
methods as only table manipulations need to be provided as methods.

6.2.3. Control Plane Location
Data plane APIs can be characterized by the location of the control plane.

• APIs for local control are implemented by the device driver and are exe-
cuted on the local CPU of the device that hosts the programmable data
plane. Usually, the APIs are presented as set of C function calls just like
for other devices that operating system are accessing.

• APIs for remote control add the ability to invoke API calls from a separate
system. This increases system stability and modularity, and is essential
for SDN and other systems with centralized control. Remote control APIs
follow the base methodology of remote procedure calls (RPCs) but rely
on modern message-based frameworks that allow asynchronous commu-
nication and concurrent calls to the API. Examples are Thrift [96] or
gRPC [97]. For example, gRPC uses HTTP/2 for transport and includes
many functionalities ranging from access authentication, streaming, and
flow control. The protocol’s data structures, services, and serialization
schemes are described with protocol buffers (protobuf) [98].
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6.3. Data Plane API Implementations
We introduce the three most common data plane APIs: P4Runtime, Bare-

foot Runtime Interface (BRI), and BM Runtime. All of them are data-plane
specific and program-independent. Table 3 lists their properties that have been
introduced before.

6.3.1. P4Runtime API
P4Runtime is one of the most commonly used data plane APIs that is stan-

dardized in the API WG [99] of the P4 Language Consortium. For implementing
the RPC mechanisms, it relies on the gRPC framework with protobuf. Its most
recent specification v1.3.0 [100] was published in December 2020.

Operating Principle. Figure 21 depicts the operating principle of P4Runtime.
P4 targets include a gRPC server, controllers implement a gRPC client. To
protect the gRPC connection, TLS with optional mutual certificate authenti-
cation can be enabled. The API structure of P4Runtime is described within
the p4runtime.proto definition. The gRPC server on P4 targets interacts
with the P4-programmable components via platform drivers. It has access to
P4 entities (MATs or externs) and can load target-specific configuration bina-
ries. The structure of the API calls to access P4 entities are described in the
p4info.proto. It is part of the P4Runtime but developers can extend it to
use custom data structures, e.g., to implement interaction with target-specific
externs. P4Runtime provides support for multiple controllers. For every P4
entity, read access is provided to all controllers whereas write access is only
provided to one controller. To manage this access, P4 entities can be arranged
in groups where each group is assigned to one primary controller with write ac-
cess and arbitrary, secondary controllers with read access. Interaction between
controllers and P4 targets works as follows. P4 compilers (see Section 4.2)
with support for P4Runtime generate a P4Runtime configuration. It consists
of the target-specific configuration binaries and P4Info metadata. P4Info de-
scribes all P4 entities (MATs and externs) that can be accessed by controllers
via P4Runtime. Then, the controllers establish a gRPC connection to the gRPC
server on the P4 target. The target-specific configuration is loaded onto the P4
target and P4 entities can be accessed.

Implementations. gRPC and protobuf libraries are available for many high-
level programming languages such as C++, Java, Go, or Python. Thereby,
P4Runtime can be implemented easily on both controllers and P4 targets.

• Controllers: P4Runtime is supported by most common SDN controllers.
P4 brigade [101] introduces support for P4Runtime on the Open Network
Operating System (ONOS). OpenDaylight (ODL) introduces support for
P4Runtime via a plugin [102]. Stratum [103] is an open-source network
operating system that includes an implementation of the P4Runtime and
OpenConfig interfaces. Custom controllers, e.g., for P4 prototypes, can
be implemented in Python with the help of the p4runtime_lib [104].
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Figure 21: P4Runtime architecture (similar to [100]).

• Targets: The PI Library [105] is the open-source reference implementa-
tion of a P4Runtime gRPC server in C. It implements functionality for
accessing MATs and supports extensions for target-specific configuration
objects, e.g., registers of a hardware P4 target. The PI Library is used by
many P4 targets including bmv2 [106] and the Tofino.

6.3.2. Barefoot Runtime Interface (BRI)
The BRI consists of two independent APIs that are available on Tofino-based

P4 hardware targets. The BfRt API is an API for local control. It includes C,
C++ and Python bindings that can be used to implement control plane pro-
grams. The BF Runtime is an API for remote control. As for P4Runtime, it
is based on the gRPC RPC framework and protobuf, i.e., bindings for different
languages are available. An additional Python library implements a simpler,
BfRt-like interface for cases where simplicity is more essential than the perfor-
mance of BF Runtime.

6.3.3. BM Runtime API
BM Runtime API is a program-independent data plane API for the bmv2

software target. It relies on the Thrift RPC framework. bmv2 includes a
command line interface (CLI) program [107] to manipulate MATs and configure
the multicast engine of the bmv2 P4 software target via this API.

6.4. Controller Use Case Patterns
We present three use case patterns which are abstractions of the controller

use cases introduced in the P4Runtime specification [100]. However, these are
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Table 3: Characterization of data plane specific APIs.

API Program
inde-
pen-
dence

Control plane location

P4Runtime X Remote (gRPC)
BF Runtime X Remote (gRPC)
BfRt API X Local (C, C++ and Python bindings)
BM Runtime X Remote (Thrift RPC)

neither conclusive nor complete as derivations or extensions are possible.

6.4.1. Embedded/Local Controller
P4 hardware targets (see Section 5) comprise or are attached to a com-

puting platform. This facilitates running controllers directly on the P4 target.
Figure 22 depicts this setup. The controller application may either use a local
API, e.g., C calls, or just execute a controller application that interfaces the
data plane via an RPC channel.

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Figure 22: Embedded/local controller use case pattern. The P4 target comprises an embedded
controller that is running a control plane program.

6.4.2. Remote Controllers
Remote controllers resemble the typical SDN setup where data plane devices

are managed by a centralized control plane with an overall view on the network.
Controllers need to be protected against outages and capacity overload, i.e.,
they need to be replicated for fail-safety and scalability. Figure 23 depicts two
possible use cases. In the first shown use case (a), the programmable data plane
on the P4 target is managed by remote controllers. In the second shown use
case (b), the P4 target is managed by both, the embedded controller and remote
controllers. Remote controllers might be interfaced using the remote API of the
programmable data plane or an arbitrary API that is provided by the embedded
controller. This option is often used for the implementation of so-called hierar-
chical control plane structures where control plane functionality is distributed
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among different layers. Control plane functions that do not require a global view
of the network, e.g., link discovery, MAC learning for L2 forwarding, or port
status monitoring, can be solely performed by the embedded/local controller.
Other control plane functions that require an overall view of the network, e.g.,
routing applications, can be performed by the remote controller, possibly in
cooperation with the embedded/local controller where the local controller acts
as proxy, i.e., it relays control plane messages between the P4 target and the
global controller. Hierarchical control planes improve load distribution as many
tasks can be performed locally, which reduces load on the remote controllers.
In particular, time-critical operations may benefit from local controllers as ad-
ditional delays caused by the communication between a P4 target and a global
controller are avoided.
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...

P4 target

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Remote API

Remote
controller

...

(a) Remote
controllers

(b) Local/embedded controller +
remote controllers

Remote API

Remote
controller

...

Figure 23: Remote controller use case pattern.

7. Advances in P4 Data Plane Programming

We give an overview on research to improve P4 data plane programming.
Figure 24 depicts the structure of this section. We describe related work on
optimization of development and deployment, testing and debugging, research
on P4 targets, and research on control plane operation.

7.1. Optimization of Development and Deployment
We describe research work on optimizing the development & deployment

process of P4.
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Figure 24: Organization of Section 7.

7.1.1. Program Development
Graph-to-P4 [108] generates P4 program code for given parse graphs. This

introduces a higher abstraction layer that is particularly helpful for beginners.
Zhou et al. [109] introduce a module system for P4 to improve source code
organization. DaPIPE [110] enables incremental deployment of P4 program
code on P4 targets. SafeP4 [111] adds type safety to P4. P4I/O [112] presents
a framework for intent-based networking with P4. Network operator describe
their network functions with an Intent Definition Language (IDL) and P4I/O
generates a complete P4 program accordingly. To that end, P4I/O provides a
P4 action repository with various network functions. During reconfiguration,
table and register state are preserved by applying backup mechanisms. P4I/O is
implemented for a custom bmv2. Mantis [113] is a framework to implement fast
reactions to changing network conditions in the data plane without controller
interaction. To that end, annotations in the P4 code specify dynamic compo-
nents and a quick control loop of those components ensure timely adjustments
if necessary. Lyra [114] is a pipeline abstraction that allows developers to use
simple statements to describe their desired data plane without low-level target-
specific knowledge. Lyra then compiles that description to target-specific code
for execution. GP4P4 [115] is a programming framework for self-driven net-
works. It generates P4 code from behavioral rules defined by the developer. To
that end, GP4P4 evaluates the quality of the automatically generated programs
and improves them based on genetic algorithms. FlowBlaze.p4 [116, 117, 118]
implements an executor for FlowBlaze, an abstraction based on an extended fi-
nite state machine for building stateful packet processing functions, in P4. This
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library maps FlowBlaze elements to P4 components for execution on the bmv2.
It also provides a GUI for defining the extended finite state machine. Flight-
plan [119] is a programming tool chain that disaggregates a P4 program into
multiple P4 programs so that they can be executed on different targets. The
authors state that this improves performance, resource utilization, and cost.

7.1.2. Compiler Optimization
pcube [120] is a preprocessor for P4 that translates primitive annotations in

P4 programs into P4 code for common operations such as loops. CacheP4 [121]
introduces a behavior-level cache in front of the P4 pipeline. It identifies flows
and performs a compound of actions to avoid unnecessary table matches. The
cache is filled during runtime by a controller that receives notifications from
the switch. P5 [122] optimizes the P4 pipeline by removing inter-feature de-
pendencies. dRMT [24] is a new architecture for programmable switches that
introduces deterministic throughput and latency guarantees. Therefore, it gen-
erates schedules for CPU and memory resources from a P4 program. P2GO [123]
leverages monitored traffic information to optimize resource allocation during
compilation. It adjusts table and register size to reduce the pipeline length, and
offloads rarely used parts of the program to the control plane. Yang et al. [124]
propose a compiler module that optimizes lookup speed by reorganizing flow
tables and prioritization of popular forwarding rules. Vass et al. [125] analyze
and discuss algorithmic aspects of P4 compilation.

7.2. Testing and Debugging
We describe research work on simulation, program verification, testing, bench-

marking, and debugging.

7.2.1. Simulation
PFPSim [126] is a simulator for validation of packet processing in P4. NS4

[127, 128] is a network simulator for P4 programs that is based on the network
simulator NS3.

7.2.2. Program Verification
McKeown et al. [129] introduce a tool to translate P4 to the Datalog declar-

ative programming language. Then, the Datalog representation of the P4 pro-
gram can be analyzed for well-formedness. Kheradmand et al. [130] introduce
a tool for static analysis of P4 programs that is based on formal semantics. P4v
[131] adapts common verification methods for P4 that are based on annota-
tions in the P4 program code. Freire et al. [132, 133] introduce assertion-based
verification with symbolic execution. Stoenescu et al. [134] propose program
verification based on symbolic execution in combination with a novel description
language designed for the properties of P4. P4AIG [135] proposes to use hard-
ware verification techniques where developers have to annotate their code with
First Order Logic (FOL) specifications. P4AIG then encodes the P4 program
as an Advanced-Inverter-Graph (AIG) which can be verified by hardware verifi-
cation techniques such as circuit SAT solvers and bounded model checkers. bf4
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[136] leverages static code verification and runtime checks of rules that are in-
stalled by the controller to confirm that the P4 program is running as intended.
netdiff [137] uses symbolic execution to check if two data planes are equivalent.
This can be useful to verify if a data plane behaves correctly by comparing it
with a similar one, or to verify that optimizations of a data plane do not change
its behavior. Yousefi et al. [138] present an abstraction for liveness verification
of stateful network functions (NFs). The abstraction is based on boolean for-
mulae. Further, they provide a compiler that translates these formulae into P4
programs.

7.2.3. Testing
P4pktgen [139] generates test cases for P4 programs by creating test packets

and table entries. P4Tester [140] implements a detection scheme for runtime
faults in P4 programs based on probe packets. P4app [141] is a partially auto-
mated open source tool for building, running, debugging, and testing P4 pro-
grams with the help of Docker images. P4RL [142] is a reinforcement learning
based system for testing P4 programs and P4 targets at runtime. The correct
behavior is described in a simple query language so that a reinforcement agent
based on Double DQN can learn how to manipulate and generate packets that
contradict the expected behavior. P4TrafficTool [143] analyzes P4 programs
to produce plugin code for common traffic analyzers and generators such as
Wireshark.

7.2.4. Benchmarking
Whippersnapper [144] is a benchmark suite for P4 that differentiates between

platform-independent and platform-specific tests. BB-Gen [145] is a system to
evaluate P4 programs with existing benchmark tools by translating P4 code into
other formats. P8 [146] estimates the average packet latency at compilation time
by analyzing the data path program.

7.2.5. Debugging
Kodeswaran et al. [147] propose to use Ball-Larus encoding to track the

packet execution path through a P4 program for more precise debugging ca-
pabilities. p4-data-flow [148] detects bugs by creating a control flow graph of
a P4 program and then identifies incorrect behavior. P4box [149] extends the
P416 reference compiler by so-called monitors that insert code before and after
programmable blocks, e.g., control blocks, for runtime verification. P4DB [150]
[151] introduces a runtime debugging system for P4 that leverages additional de-
bugging snippets in the P4 program to generate reports during runtime. Neves
et al. [152] propose a sandbox for P4 data plane programs for diagnosis and
tracing. P4Consist [153] verifies the consistency between control and data plane.
Therefore, it generates active probe-based traffic for which the control and data
plane generate independent reports that can be compared later. KeySight [154]
is a troubleshooting platform that analyzes network telemetry data for detecting
runtime faults. Gauntlet [155] finds both crash bugs, i.e., abnormal termination
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of compilation operation, and semantic bugs, i.e., miscompilation, in compilers
for programmable packet processors.

7.3. Research on P4 Targets
We describe research work on virtualization of P4 data planes, composite

targets, P4 externs, secure behavior of targets, and testbeds.

7.3.1. Virtualization of P4 Data Planes
P4 targets are designed to execute one P4 program at any given time. Virtu-

alization aims at sharing the resources of P4 targets for multiple P4 programs.
Krude et al. [156] provide theoretical discussions on how ASIC- and FPGA-
based P4 targets can be shared between different tenants and how P4 programs
can be made hot-pluggable.

HyPer4 [157] introduces virtualization for P4 data planes. It supports sce-
narios such as network slicing, network snapshotting, and virtual networking.
To that end, a compiler translates P4 programs into table entries that configure
the HyPer4 persona, a P4 program that contains implementations of basic prim-
itives. However, HyPer4 does not support stateful memory (registers, counters,
meters), LPM, range match types, and arbitrary checksums. The authors de-
scribe an implementation for bmv2 and perform experiments that reveal 80 to
90% lower performance in comparison to native execution.

HyperV [158, 159, 160] is a hypervisor for P4 data planes with modular
programmability. It allows isolation and dynamic management of network func-
tions. The authors implemented a prototype for the bmv2 P4 target. In com-
parison to Hyper4, HyperV achieves a 2.5x performance advantage in terms of
bandwidth and latency while reducing required resources by a factor of 4. Hy-
perVDP [161] extends HyperV by an implementation of a dynamic controller
that supports instantiating network functions in virtual data planes.

P4VBox [162], also published as VirtP4 [163], is a virtualization framework
for the NetFPGA SUME P4 target. It allows executing virtual switch instances
in parallel and also to hot-swap them. In contrast to HyPer4, HyperV and Hy-
perVDP, P4VBox achieves virtualization by partially re-configuring the hard-
ware.

P4Visor [164] merges multiple P4 programs. This is done by program over-
lap analysis and compiler optimization. Programming In-Network Modular Ex-
tensions (PRIME) [165] also allows combining several P4 programs to a single
program and to steer packets through the specific control flows.

P4click [166] does not only merge multiple P4 programs, but also combines
the corresponding control plane blocks. The purpose of P4click is to increase
the use of data plane programmability. P4click is currently in an early stage of
development.

The Multi Tenant Portable Switch Architecture (MTPSA) [167] is a P4
architecture that offers performance isolation, resource isolation, and security
isolation in a switch for multiple tenants. MTPSA is based on the PSA. It
combines a Superuser pipeline that acts as a hypervisor with multiple user
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pipelines. User pipelines may only perform specific actions depending on their
privileges. MTPSA is implemented for bmv2 and NetFPGA-SUME [168].

Han et al. [169] provide an overview of virtualization in programmable data
planes with a focus on P4. They classify virtualization schemes into hypervisor
and compiler-based approaches, followed by a discussion of pros and cons of
the different schemes. The aforementioned works on virtualization of P4 data
planes are described and compared in detail.

7.3.2. Composite P4 Target
Da Silva et al. [170] introduce the idea of composite P4 targets. This tries

to solve the problem of target-dependent support of features. The composed
data plane appears as one P4 target; it is emulated by a P4 software target but
relies on an FPGA and ASIC for packet processing.

eXtra Large Table (XLT) [171] introduces gigabyte-scale MATs by leveraging
FPGA and DRAM capabilities. It comprises a P4-capable ASIC and multiple
FPGAs with DDR4 DRAM. The P4-capable ASIC pre-constructs the match
key field and sends it with the full packet to the FPGA. The FPGA sends back
the original packet with the search results of the MAT lookup. The authors
implement a DPDK based prototype for the T4P4S P4 software target.

HyMoS [172] is a hybrid software and hardware switch to support NFV
applications. The authors create a switch by using P4-enabled Smart NICs as
line cards and the PCIe interface of a computer as the switch fabric. P4 is used
for packet switching between the NICs. Additional processing may be done
using DPDK or applications running on a GPU.

7.3.3. P4 Externs
Laki et al. [173, 174] investigate asynchronous execution of externs. In con-

trast to common synchronous execution, other packets may be processed by the
pipeline while the extern function is running. The authors implement and eval-
uate a prototype for T4P4S. Scholz et al. [175] propose that P4 targets should
be extended by cryptographic hash functions that are required to build secure
applications and protocols. The authors propose an extension of the PSA and
discuss the PoC implementation for a CPU-, network processing unit (NPU)-,
and FPGA-based P4 target. Da Silva et al. [176] investigate the implementation
of complex operations as extensions to P4. The authors perform a case study
on integrating the Robust Header Compression (ROHC) scheme and conclude
that an implementation as extern function is superior to an implementation as
a new native primitive.

7.3.4. Secure Behaviour of Targets
Gray et al. [177] demonstrate that hardware details of P4 targets influence

their packet processing behavior. The authors demonstrate this by sending a
special traffic pattern to a P4 firewall. It fills the cache of this target and results
in a blocking behavior although the overall data rate is far below the capacity
of the used P4 target. Dumitru et al. [178] investigate the exploitation of pro-
gramming bugs in bmv2, P4-NetFPGA, and Tofino. The authors demonstrate
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attack scenarios by header field access on invalid headers, the creation of infinite
loops and unintentionally processing of dropped packets in the P4 targets.

7.3.5. Testbeds
Large testbeds facilitate research and development on P4 programs. The

i-4PEN (International P4 Experimental Networks) [179] is an international P4
testbed operated by a collaboration of network research institutions from the
USA, Canada, and Taiwan. Chung et al.[180] describe how multi-tenancy is
achieved in this testbed. The 2STiC testbed [181], a national testbed in the
Netherlands comprising six sites with at least one Tofino-based P4 target, is
connected to i-4PEN.

7.4. Research on Control Plane Operation
When new forwarding entries are computed by the controller, the data plane

has to be updated. However, updating the targets has to be performed in a
manner that prevents negative side effects. For example, microloops may occur
if packets are forwarded according to new rules at some targets while at other
devices old rules are used because updates have to arrive yet.

Sukapuram et al. [182, 183] introduce a timestamp in the packet header that
contains the sending time of a packet. When switches receive a packet during an
update period, they compare the timestamp of both the packet and the update
to determine whether a packet has been sent before the update, and thus, old
rules should be used for forwarding.

Liu et al. [184] introduce a mechanism where once a packet is matched
against a specific forwarding rule, it cannot be matched downstream on a rule
that is older. To that end, the packet header contains a timestamp field that
records when the last applied forwarding rule has been updated. If the packet is
matched against an older rule, the packet is dropped, otherwise the timestamp
is updated and the packet is forwarded.

Ez-Segway [185] facilitates updating by including data plane devices in the
update process. When a data plane device receives an update, it determines
which of its neighbors is affected by the update as well, and forwards the update
to that neighbor. This prevents loops and black holes.

TableVisor [186] is a transparent proxy-layer between the control plane and
data plane. It provides an abstraction from heterogeneous data plane devices.
This facilitates the configuration of data plane switches with different properties,
e.g., forwarding table size.

Molero et al. [187] propose to offload tasks from the control plane to the
data plane. They show that programmable data planes are able to run typical
control plane operations like failure detection and notification, and connectivity
retrieval. They discuss trade-offs, limitations and future research opportunities.

8. Applied Research Domains: Classification & Overview

In the following sections, we give an overview of applied research conducted
with P4. In this section, we classify P4’s core features that make it attractive
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for the implementation of data plane algorithms. We define research domains,
visualize them in a compact way, and explain our method to review correspond-
ing research papers in the subsequent sections. Finally, we delimit the scope of
the surveyed literature.

Applied
Research
Domains

Routing and
Forwarding 
Section XI

Source Routing
Multicast

Publish/Subscribe Systems
Named Data Networks
Data Plane Resilience

Traffic Management and
Congestion Control 

Section X

Data Center Switching
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Traffic Scheduling

Load Balancing
Congestion Notification

Traffic Offloading

Traffic Aggregation

Miscellaneous Applied
Research Domains 

Section XIV

Network Coding
Distributed Algorithms
State Migration

Monitoring 
Section IX

Network
Security 

Section XIII

Advanced
Networking 
Section XII

Cellular Networks (4G/5G)
Internet of Things (IoT)
Industrial Networking
Time-Sensitive Networking (TSN)
Network Function Virtualization (NFV)

Service Function Chaining (SFC)

Firewalls

DDoS Attack Mitigation
Intrusion Detection Systems (IDS)

Detection of Heavy Hitters
Flow Monitoring

Sketches
In-Band Network Telemetry

DSL-based Monitoring Systems

Other Fields of Application
Path Tracking

Port Knocking

Connection Security
Other Fields of Applications

Application Support

Other Fields of Applications

Figure 25: Categorization of the surveyed works into applied research domains and subdomains
– they correspond to sections and subsections in the remainder of this paper.

8.1. Classification of P4’s Core Features
We identify P4’s core features for the implementation of prototypes. We

classify them in the following to effectively reason about P4’s usefulness for the
surveyed research works.

8.1.1. Definition and Usage of Custom Packet Headers
P4 requires the definition of packet headers (Section 3.5). These may be

headers of standard protocols, e.g., TCP, use-case-specific protocols, e.g., GTP
in 5G, or new protocols. As P4 supports the definition of custom headers, it is
suitable for the implementation of data plane algorithms using new protocols
or extensions of existing protocols, e.g., for in-band signalling.

8.1.2. Flexible Packet Header Processing
Control blocks with MATs (Section 3.6) comprise the packet processing logic.

Packet processing includes default actions, e.g., forwarding and header field
modifications, or custom, user-defined actions. Both may be parameterized
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via MATs or metadata. Entries in the MATs are maintained by a data plane
API (Section 6). The flexible use of actions, the definition of new actions, and
their parameterization offer high flexibility for header processing, which is often
needed for research prototypes.

8.1.3. Target-Specific Packet Header Processing Functions
While the above-mentioned features are part of the P4 core language and

supported by any P4-capable platform, devices may offer additional architecture-
or target-specific functionality which is made available as P4 extern (Section 4).
Typical externs include components for stateful processing, e.g., registers or
counters, operations to resubmit/recirculate the packet in the data plane, mul-
ticast operations, or more complex operations, e.g., hashing and encryption/de-
cryption. P4 software targets allow users to integrate custom externs and use
them within P4 programs. While this is also possible to some extent on some
P4 hardware targets, e.g., the NetFPGA SUME board, high-throughput P4 tar-
gets based on the Tofino ASIC have only a fixed set of externs (Section 5.3).
Depending on the use case, the availability of externs may be essential for the
implementation of prototypes. Thus, externs facilitate the implementation of
more complex algorithms but make implementations platform-dependent.

8.1.4. Packet Processing on the Control Plane
Similar to control plane SDN (e.g., OF), more complex, and optionally cen-

tralized packet processing can be outsourced to an SDN control plane; packet
exchange and data plane control is performed via a data plane API (Section 6).
While OF only allows the exchange of complete packets, P4 enables the end-
users to define the packet formats.

8.1.5. Flexible Development and Deployment
Users are able to easily change the P4 programs on P4 targets that are

installed in a network. This facilitates agile development with frequent deploy-
ments and incremental functionality extensions by deploying new versions of a
P4 programs.

8.2. Categorization of Research Domains
To organize the survey in the following sections, we define research domains

and structure them in a two-level hierarchy as depicted in Figure 25. This
categorization helps the reader to get a quick overview in certain applied areas
and improves the readability of this survey. The choice of the research domains
is dominated by the fields of applications, but the summaries of the sections will
show that the prototypes in these areas benefit from different core features of
P4.

For each research domain, we provide a table that lists the publications with
publication year, P4 target platforms, and source code availability. This sup-
ports efficient browsing of the content and backs our conclusions in the section-
specific summaries.
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8.3. Scope of the Surveyed Literature
We consider the literature until the end of 2020 and selected papers from

2021, including journal papers, conference papers, workshop papers, and preprints.
Out of the 377 scientific publications we surveyed in this work (see Section 1),
245 fall in the area of applied research. 68 of those research papers were pub-
lished in 2018 or before, 80 were published in 2019, 93 were published in 2020,
and 4 were published in 2021. 60 out of all 245 research publications released
the source code of their prototype implementations.

Table 4 depicts a statistic on major publication venues for the papers of
applied research domains. It helps the reader to identify potential venues for
prospective own publications based on P4 technology.

9. Applied Research Domains: Monitoring

We describe applied research on detection of heavy hitters, flow monitoring,
sketches, in-band network telemetry, and other areas of application. Table 5
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

9.1. Detection of Heavy Hitters
Heavy hitters [268] (or "elephant flows") are large traffic flows that are the

major source of network congestion. Detection mechanisms aim at identifying
heavy hitters to perform extra processing, e.g., queuing, flow rate control, and
traffic engineering.

HashPipe [188] integrates a heavy hitter detection algorithm entirely on the
P4 data plane. A pipeline of hash tables acts as a counter for detected flows.
To fulfill memory constraints, the number of flows that can be stored is limited.
When a new flow is detected, it replaces the flow with the lowest count. Thus,
light flows are replaced, and heavy flows can be detected by a high count. Lin
et al. [190] describe an enhanced version of the algorithm.

Popescu et al. [191] introduce a heavy hitter detection mechanism. The
controller installs TCAM entries for specific source IP prefixes on the switch. If
one of these entries matches more often than a threshold during a given time
frame, the entry is split into two entries with a larger prefix size. This procedure
is repeated until the configured granularity is reached.

Harrison et al. [192] presents a controller-based and distributed detection
scheme for heavy hitters. The authors make use of counters for the match key
values, e.g., source and destination IP pair or 5-tuple, that are maintained by
P4 switches. If a counter exceeds a certain threshold, the P4 switch sends a
notification to the controller. The controller generates more accurate status
reports by combining the notifications received from the switches.

Kucera et al. [193] describe a system for detecting traffic aggregates. The
authors propose a novel algorithm that supports hierarchical heavy hitter detec-
tion, change detection, and super-spreader detection. The complete mechanism
is implemented on the P4 data plane and uses push notifications to a controller.
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Table 4: Statistics of scientific publications regarding applied research conducted with P4.

Venue #Publications

Journals 41

IEEE ACCESS 9
IEEE/ACM ToN 7
IEEE TNSM 6
JNCA 4
Miscellaneous 15

Conferences 168

ACM SOSR 14
IEEE NFV-SDN 12
IEEE ICNP 12
IEEE ICC 10
ACM SIGCOMM 10
IEEE/IFIP NOMS 8
ACM CoNEXT 7
IEEE NetSoft 7
USENIX NSDI 6
IEEE INFOCOM 6
ACM/IEEE ANCS 5
IFIP Networking 5
IEEE GLOBECOM 4
CNSM 4
IEEE CloudNet 3
APNOMS 3
IFIP/IEEE IM 3
Miscellaneous 49

Workshops 36

EuroP4 11
Morning Workshop on In-Network Computing 5
SPIN 3
ACM HotNets 3
INFOCOM Workshops 3
Miscellaneous 11
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Table 5: Overview of applied research on monitoring (Section 9).

Research work Year Targets Code

Detection of Heavy Hitters (Section 9.1)

HashPipe [188] 2017 bmv2 [189]
Lin et al. [190] 2019 Tofino
Popescu et al. [191] 2017 -
Harrison et al. [192] 2018 Tofino
Kucera et al. [193] 2020 bmv2
IDEAFIX [194] 2018 -
Turkovic et al. [195] 2019 Netronome
Ding et al. [196] 2020 bmv2 [197]

Flow Monitoring (Section 9.2)

TurboFlow [198] 2018 Tofino, Netronome [199]
∗Flow [200] 2018 Tofino [201]
Hill et al. [202] 2018 bmv2
FlowStalker [203] 2019 bmv2
ShadowFS [204] 2020 bmv2
FlowLens [205] 2021 bmv2, Tofino [206]
SpiderMon [207] 2020 bmv2
ConQuest [208] 2019 Tofino
Zhao et al. [209] 2019 bmv2, Tofino

Sketches (Section 9.3)

SketchLearn [210] 2018 Tofino [211]
MV-Sketch [212] 2020 bmv2, Tofino [213]
Hang et al. [214] 2019 Tofino
UnivMon [215] 2016 p4c-behavioural
Yang et al. [216, 217] 2018/19 Tofino [218]
Pereira et al. [219] 2017 bmv2
Martins et al. [220] 2018 bmv2
Lai et al. [221] 2019 Tofino
Liu et al. [222] 2020 Tofino
SpreadSketch [223] 2020 Tofino [224]
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Research work Year Targets Code

In-Band Network Telemetry (Section 9.4)

Vestin et al. [225] 2019 Netronome
Wang et al. [226] 2019 Tofino
IntOpt [227] 2019 P4FPGA
Jia et al. [228] 2020 bmv2 [229]
Niu et al. [230] 2019 Tofino, Netronome
CAPEST [231] 2020 bmv2 [232]
Choi et al. [233] 2019 bmv2
Sgambelluri et al. [234] 2020 bmv2
Feng et al. [235] 2020 Netronome
IntSight [236] 2020 bmv2, NetFPGA-SUME [237]
Suh et al. [238] 2020 -

DSL-Based Monitoring Systems (Section 9.5)

Marple [239, 240] 2017 bmv2 [241]
MAFIA [242] 2019 bmv2 [243]
Sonata [244] 2018 bmv2, Tofino [245]
Teixeira et al. [246] 2020 bmv2, Tofino

Path Tracking (Section 9.6)

UniRope [247] 2018 bmv2, PISCES
Knossen et al. [248] 2019 Netronome
Basuki et al. [249] 2020 bmv2

Other Areas of Application (Section 9.7)

BurstRadar [250] 2018 Tofino [251]
Dapper [252] 2017 -
He et al. [253] 2018 Tofino
Riesenberg et al. [254] 2019 bmv2 [255]
Wang et al. [256] 2020 Tofino
P4STA [257] 2020 bmv2, Netronome [258]
Hark et al. [259] 2019 -
P4Entropy [260] 2020 bmv2 [261]
Taffet et al. [262] 2019 bmv2
NetView [263] 2020 bmv2, Tofino
FastFE [264] 2020 Tofino
Unroller [265] 2020 bmv2, Netcope P4-to-VHDL
Hang et al. [266] 2019 Tofino
FlowSpy [267] 2019 bmv2
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IDEAFIX [194] is a system that detects elephant flows at edge switches of
Internet exchange point networks. The proposed system analyzes flow features,
stores them with hash keys as indices in P4 registers, and compares them to
thresholds for classification.

Turkovic et al. [195] propose a streaming approach for detecting heavy hit-
ters via sliding windows that are implemented in P4. According to the authors,
interval methods that are typically used to detect heavy hitters are not suitable
for programmable data planes because of high hardware resources, bad accuracy,
or a need for too much intervention by the control plane.

Ding et al. [196] propose an architecture for network-wide heavy hitter
detection. The authors’ main focuses are hybrid SDN/non-SDN networks where
programmable devices are deployed only partially. To that end, they also present
an algorithm for an incremental deployment of programmable devices with the
goal of maximizing the number of network flows that can be monitored.

9.2. Flow Monitoring
In flow monitoring, traffic is analyzed on a per-flow level. Network devices

are configured to export per-flow information, e.g., packet counters, source and
target IP addresses, ports, or protocol types, as flow records to a flow collector.
These flow records are often duplicates of network packets without payload data.
The flow collector then performs centralized analysis on this data. The three
most widely deployed protocols are Netflow [269], sFlow [270], and IPFIX [271].

TurboFlow [198] is a flow record generator designed for P4 switches that
does not have to make use of sampling or mirroring. The data plane generates
micro-flow records with information about the most recent packets of a flow.
On the CPU module of the switch, those micro-flow records are aggregated and
processed into full flow records.

“∗Flow” [200] partitions measurement queries between the data plane and a
software component. A switching ASIC computes grouped packet vectors that
contain a flow identifier and a variable set of packet features, e.g. packet size
and timestamps, while the software component performs aggregation. “∗Flow”
supports dynamic and concurrent measurement applications, i.e., measurement
applications that operate on the same flows without impacting each other.

Hill et al. [202] implement Bloom filters on P4 switches to prevent sending
duplicate flow samples. Bloom filters are a probabilistic data structure that can
be used to check whether an entry is present in a set or not. It is possible to
add elements to that set, but it is not possible to remove entries from it. For
flow tracking, Bloom filters test if a flow has been seen before without control
plane interaction. Thereby, only flow data is forwarded to the collector from
flows that were not seen before.

FlowStalker [203] is a flow monitoring system running on the P4 data plane.
The monitoring operations on a packet are divided in two phases, a proactive
phase that identifies a flow and keeps a per-flow packet counter and a reactive
phase that runs for large flows only and gathers metrics of the flow, e.g., byte
counts and packet sizes. The controller gathers information from a cluster of
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switches by injecting a crawler packet that travels through the cluster at one
switch. ShadowFS [204] extends FlowStalker with a mechanism to increase the
throughput of the monitored flows. It achieves this by dividing forwarding tables
into two tables, a faster and a slower one. The most utilized flows are moved to
the faster table if necessary.

FlowLens [205] is a system for traffic classification to support security net-
work applications based on machine learning algorithms. The authors propose
a novel memory-efficient representation for features of flows called flow marker.
A profiler running in the control plane automatically generates an application-
specific flow marker that optimizes the trade-off between resource consumption
and classification accuracy, according to a given criterion selected by the oper-
ator.

SpiderMon [207] monitors network performance and debugs performance fail-
ures inside the network with little overhead. To that end, SpiderMon monitors
every flow in the data plane and recognizes if the accumulated latency exceeds
a certain threshold. Furthermore, SpiderMon is able to trace back the path of
interfering flows, allowing to analyze the cause of the performance degradation.

ConQuest [208] is a data plane mechanism to identify flows that occupy
large portions of buffers. Switches maintain snapshots of queues in registers to
determine the contribution to queue occupancy of the flow of a received packet.

Zhao et al. [209] implement flow monitoring using hash tables. Using a
novel strategy for collision resolution and record promotion, accurate records
for elephant flows and summarized records for other flows are stored.

9.3. Sketches
Flow monitoring as described in Section 9.2 requires high sampling rates to

produce sufficiently detailed data. As an alternative, streaming algorithms pro-
cess sequential data streams and are subject to different constraints like limited
memory or processing time per item. They approximate the current network
status based on concluded summaries of the data stream. The streaming al-
gorithms output so-called sketches that contain summarized information about
selected properties of the last n packets of a flow.

SketchLearn [210] is a sketch-based approach to track the frequency of flow
records. It features multilevel sketches that aim for small memory usage, fast
per-packet processing, and real-time response. Rather than finding the perfect
resource configuration for measurement traffic and regular traffic, SketchLearn
characterizes the statistical error of resource conflicts based on Gaussian distri-
butions. The learned properties are then used to increase the accuracy of the
approximated measurements.

Tang et al. [212] present MV-Sketch, a fast and compact invertible sketch.
MV-Sketch leverages the idea of majority voting to decide whether a flow is a
heavy hitter or heavy changer. Evaluations show that MV-Sketch achieves a
3.38 times higher throughput than existing invertible sketches.

Hang et al. [214] try to solve the problem of inconsistency when a controller
needs to collect the data from sketches on one or more switches. As accessing
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and clearing the sketches on the switches is always subject to latency, not all
sketches are reset at the same time, and there might be some delay between
accessing and clearing the sketches. The authors propose to use two asymmetric
sketches on the switches that are used in an interleaved way. Furthermore, the
authors propose to use a distributed control plane to keep latency low.

UnivMon [215] is a flow monitoring system based on sketches. After sampling
the traffic, the data plane produces sketches and determines the top-k heaviest
flows by comparing the number of sketches for each flow. Those flows are passed
to the control plane which processes the data for the specific application.

Yang et al. [216, 217] propose to adapt sketches according to certain traffic
characteristics to increase data accuracy, e.g., during congestion or distributed
denial of service (DDoS) attacks. The mechanism is based on compressing and
merging sketches when resources in the network are limited due to high traffic
volume. During periods with high packet rates, only the information of elephant
flows is recorded to trade accuracy for higher processing speed.

Pereira et al. [219] propose a secured version of the Count-Min sketch. They
replace the function with a cryptographic hash function and provide a way for
secret key renewal.

Martins et al. [220] introduce sketches for multi-tenant environments. The
authors implement bitmap and counter-array sketches using a new probabilistic
data structure called BitMatrix that consists of multiple bitmaps that are stored
in a single P4 register.

Lai et al. [221] use a sketch-based approach to estimate the entropy of
network traffic. The authors use CRC32 hashes of header fields as match keys
for match-action tables and subsequently update k-dimensional data sketches
in registers. The content of the registers is then processed by the control plane
CPU which calculates the entropy value.

Liu et al. [222] use sketches for performance monitoring. They introduce
lean algorithms to measure metrics like loss or out-of-order packets.

SpreadSketch [223] is a sketch data structure to detect superspreaders. The
sketch data structure is invertible, i.e., it is possible to extract the identification
of superspreaders from the sketch at the end of an epoch.

9.4. In-Band Network Telemetry
Barefoot Networks, Arista, Dell, Intel and VMware specified in-band net-

work telemetry (INT) specifically for P4 [272]. It uses a pure data plane imple-
mentation to collect telemetry data from the network without any intervention
by the control plane. It was specified by INT is the main focus of the Applica-
tions WG [273] of the P4 Language Consortium. Instructions for INT-enabled
devices that serve as traffic sources are embedded as header fields either into
normal packets or into dedicated probe packets. Traffic sinks retrieve the results
of instructions to traffic sources. In this way, traffic sinks have access to infor-
mation about the data plane state of the INT-enabled devices that forwarded
the packets containing the instructions for traffic sources. The authors of the
INT specification name network troubleshooting, advanced congestion control,
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advanced routing, and network data plane verification as examples for high-level
use cases.

In two demos, INT was used for diagnosing the cause of latency spikes during
HTTP transfers [274] and for enforcing QoS policies on a per-packet basis across
a metro network [275].

Vestin et al. [225] enhance INT traffic sinks by event detection. Instead of
exporting telemetry items of all packets to a stream processor, exporting has to
be triggered by an event. Furthermore, they implement an INT report collector
for Linux that can stream telemetry data to a Kafka cluster.

Wang et al. [226] design an INT system that can track which rules in MATs
matched on a packet. The resulting data is stored in a database to facilitate
visualization in a web UI.

IntOpt [227] uses INT to monitor service function chains. The system com-
putes minimal monitoring flows that cover all desired telemetry demands, i.e.,
the number of INT-sources, sinks, and forwarding nodes that are covered by
this flow is minimal. IntOpt uses active probing, i.e., monitoring probes for the
monitoring flows are periodically inserted into the network.

Jia et al. [228] use INT to detect gray failures in data center networks
using probe packets. Gray failures are failures that happen silently and without
notification.

Niu et al. [230] design a multilevel INT system for IP-over-optical networks.
Their goal is to monitor both the IP network and the optical network at the
same time. To that end, they implement optical performance monitors for
bandwidth-variable wavelength selective switches. Their measurements can be
queried by a P4 switch that is connected directly to it.

CAPEST [231] leverages P4-enabled switches to estimate the network ca-
pacity and available bandwidth of network links. The approach is passive, i.e.,
it does not disturb the network. A controller sends INT probe packets to trigger
statistical analysis and export results.

Choi et al. [233] leverage INT for run-time performance monitoring, veri-
fication, and healing of end-to-end services. P4-capable switches monitor the
network based on INT information and the distributed control plane verifies
that SLAs and other metrics are fulfilled. They leverage metric dynamic logic
(MDL) to specify formal assertions for SLAs.

Sgambelluri et at. [234] propose a multi-layer monitoring system that uses
an OpenConfig NETCONF agent for the optical layer an P4-based INT for the
packet layer. In their prototype, they use INT to measure the delay of packets
by computing the processing time at each switch.

Feng et al. [235] implement an INT sink for Netronome Smart NICs. After
parsing the INT headers using P4, they use algorithms written in C to perform
INT tasks like aggregation and notification. Compared to a pure P4 implemen-
tation, this increases the performance.

IntSight [236] is a system for detecting and analyzing violations of service-
level objects (SLOs). SLOs are performance guarantees towards a network, e.g.,
concerning bandwidth and latency. IntSight uses INT to monitor the perfor-
mance of the network during a specific period of time. Egress devices gather
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this information and produce a report at the end of the period if an SLO has
been violated.

Suh et al. [238] explore how a sampling mechanism can be added to INT.
Their solution supports rate-based and event-based sampling. Based on these
sampling strategies, INT headers are only added to a fraction of the packets to
reduce overhead.

9.5. DSL-Based Monitoring Systems
Monitoring tasks can often be broken down in a set of several basic opera-

tions, e.g., map, filter, or groupby. A domain-specific language (DSL) allows to
combine these basic operations in more complex tasks.

Marple [239, 240] is a performance query language that supports existing
constructs like map, filter, groupby, and zip. A query compiler translates the
queries either to P4 or to a simulator for programmable switch hardware. State-
less constructs of the query language, e.g., filters, are executed on the data plane.
Stateful constructs, e.g., groupby, use a programmable key-value store that is
split between a fast on-chip SRAM cache and a large off-chip DRAM backing
store. The results are streamed from the switch to a collection server.

MAFIA [242] is a DSL to describe network measurement tasks. They identify
several fundamental primitive operations, examples are match, tag, timestamp,
sketch, or counter. MAFIA is a high-level language to describe more com-
plex measurement tasks composed of those primitives. The authors provide a
Python-based compiler that translates MAFIA code into a P4 program in P414
or P416 for a PISA-based P4 target.

Sonata [244] is a query-driven telemetry system. It provides a query interface
that provides common operators like map and reduce that can be applied on
arbitrary packet fields. Sonata combines the capabilities of both programmable
switches and stream processors. The queries are partitioned between the pro-
grammable switches and the stream processors to reduce the load on the stream
processors. Teixeira et al. [246] extend the Sonata prototype by functionalities
to monitor the properties of packet processing inside switches, e.g., delay.

9.6. Path Tracking
In path tracking, or packet trajectory tracing, information about the path a

packet has taken in a network is gathered.
UniRope [247] consists of two different algorithms for packet trajectory trac-

ing that can be selected dynamically to be able to choose the trade-off between
accuracy and efficiency. These two algorithms are compact hash matching and
consecutive bits filling. With compact hash matching, the forwarding switch
calculates a hash value and stores it in the packet. With consecutive bits filling,
the packet trajectory is recorded in the packet hop by hop and reconstructed at
the controller.

Knossen et al. [248] present two different approaches for path tracking in P4.
In hop recording, all forwarding P4 nodes record their ID in the header of the
target packet. The last node can then reconstruct the path. In forwarding state
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logging, the first P4 node records the current version of the global forwarding
state of the network and its node identifier in a header of the target packet. If
the version of the global forwarding state does not change while the packet flows
through the network, the last P4 node in the network can reconstruct the path
using the information in the header.

Basuki et al. [249] propose a privacy-aware path-tracking mechanism. Their
goal is that the trajectory information in the packets cannot be used to draw
conclusions about the network topology or routing information. They achieve
this by recording the information in an in-packet bloom filter.

9.7. Other Fields of Application
BurstRadar [250] is a system for microburst detection for data center net-

works that runs directly on P4 switches. If queue-induced delay is above a
certain threshold, BurstRadar reports a microburst and creates a snapshot of
the telemetry information of involved packets. This telemetry information is
then forwarded to a monitoring server. As it is not possible to gather telemetry
information of packets that are already part of the egress queue, the telemetry
information of all packets and their corresponding egress port are temporarily
stored in a ring buffer that is implemented using P4 registers.

Dapper [252] is a P4 tool to evaluate TCP. It implements TCP in P4 and
analyzes header fields, packets sizes, and timestamps of data and ACK packets
to detect congestion. Then, flow-dependent information are stored in registers.

He et al. [253] propose an adaptive expiration timeout mechanism for flow
entries in P4 switches. The switches implement a mechanism to detect the last
packet of a TCP flow. In case of a match, it notifies the controller to delete the
corresponding flow entries.

Riesenberg et al. [254] implement alternate marking performance measure-
ment (AM-PM) for P4. AM-PM measures delay and packet loss in-band in a
network using only one or two bit overhead per packet. These bits are used for
coordination and signalling between measurement points (MPs).

Wang et al. [256] describe how TCP-friendly meters can be designed and
implemented for P4-based switches. According to their findings, meters in com-
mercial switches interact with TCP streams in such a way that these streams
can only reach about 10% of the target rate. The experimental evaluation of
their TCP-friendly meters shows achieved rates of up to 85% of the target rate.

P4STA [257] is an open-source framework that combines software-based traf-
fic load generation with accurate hardware packet timestamps. Thereby, P4STA
aggregates multiple traffic flows to generate high traffic load and leverage pro-
grammable platforms.

Hark et al. [259] use P4 to filter data plane measurements. To save re-
sources, only relevant measurements are sent to the controller. The authors
implement a prototype and demonstrate the system by filtering measurements
for a bandwidth forecast application.

P4Entropy [260] presents an algorithm to estimate the entropy of network
traffic within the P4 data plane. To that end, they also developed two new
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algorithms, P4Log and P4Exp, to estimate logarithms and exponential functions
within the data plane as well.

Taffet et al. [262] describe a P4-based implementation of an in-band moni-
toring system that collects information about the path of a packet and whether
it encountered congestion. For this purpose, the authors repurpose previously
unused fields of the IP header.

NetView [263] is a network telemetry framework that uses proactive probe
packets to monitor devices. Telemetry targets, frequency, and characteristics
can be configured on demand by administrators. The probe packets traverse
arbitrary paths by using source routing.

FastFE [264] is a system for offloading feature extraction, i.e., deriving cer-
tain information from network traffic, for machine learning (ML)-based traffic
analysis applications. Policies for feature extraction are defined as sequential
programs. A policy enforcement engine translates these policies into primitives
for either a programmable switch or a program running on a commodity server.

Unroller [265] detects routing loops in the data plane in real-time. It achieves
this by encoding a subset of the path that a packet takes into the packet.

Hang et al. [266] use a time-based sliding window approach to measure
packet rates. The goal is to record statistics entirely inside the data plane
without having to use the CPU of a switch. Their approach is able to measure
traffic size without sampling.

FlowSpy [267] is a network monitoring framework that uses load balancing.
Different monitoring tasks are distributed among all available switches by an ILP
solver. This reduces the workload on single switches in contrast to monitoring
frameworks that perform all monitoring tasks on ingress or egress switches only.

9.8. Summary and Analysis
This research domain greatly benefits from all five core features described in

Section 8.1. Definition and usage of custom packet headers enables new monitor-
ing schemes where relevant information can be added to packets while it travels
through a P4-enabled network. One example is In-band Network Telemetry
(INT) (Section 9.4) that has been specified specifically for P4. Another ex-
ample are path tracking mechanisms (Section 9.6) where the path of a packet
is recorded in a dedicated header of the packet. In the case of INT, this goes
hand in hand with flexible packet header processing as INT headers may contain
instructions that other INT-enabled switches need to execute. Target-specific
packet header processing functions in the form of stateful packet processing us-
ing, e.g., registers, is used by all areas of monitoring as it is necessary to gather
data over a certain time frame instead of just looking at a single packet. Because
the register space is severely limited on most hardware targets, an efficient usage
of the available resources is of great importance. Sketches (Section 9.3) is one
approach to solve this. After monitoring data is gathered on the control plane,
the result is often processed on the control plane. This can range from simple
notifications to splitting operations between data plane and control plane where
the resources on the data plane are not sufficient. Some DSL-based monitor-
ing approaches (Section 9.5) make use of flexible development and deployment.
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With these approaches, a P4 program is generated automatically on the basis
of a monitoring workflow defined by an administrator.

10. Applied Research Domains: Traffic Management and Congestion
Control

We describe applied research on data center switching, load balancing, con-
gestion notification, traffic scheduling, traffic aggregation, active queue manage-
ment (AQM), and traffic offloading. Table 6 shows an overview of all the work
described. At the end of the section, we summarize the work and analyze it
with regard to P4’s core features described in Section 8.1.

10.1. Data Center Switching
Trellis [276, 277] is an open-source multipurpose L2/L3 spine-leaf switch

fabric for data center networks. It is designed to run on white box switches
in conjunction with the ONOS controller where its main functionality is im-
plemented. It supports typical data center functionality such as bridging using
VLANs, routing (IPv4/IPv6 unicast/multicast routing, MPLS segment rout-
ing), and vRouter functionality (BGBv4/v6, static routes, route black-holing).
Trellis is part of the CORD platform that leverages SDN, network function vir-
tualization (NFV), and Cloud technologies for building agile data centers for
the network edge.

DC.p4 [279] implements typical features of data center switches in P4. The
list of features includes support for VLAN, NVGRE, VXLAN, ECMP, IP for-
warding, access control lists (ACLs), packet mirroring, MAC learning, and
packet-in/-out messages to the control plane.

Fabric.p4 is [281, 277] the underlying reference data plane pipeline imple-
mented in P4. By introducing support for P4 switches, the authors aim at in-
creasing the platform heterogeneity for the CORD fabric. Fabric.p4 is currently
based on the V1Model switch architecture, but support for PSA is planned. It
is inspired by the OpenFlow data plane abstraction (OF-DPA) and currently
supports L2 bridging, IPv4/IPv6 unicast/multicast routing, and MPLS segment
routing. Fabric.p4 comes with capability profiles such as fabric (basic profile),
spgw (S/PGW), and INT. For control plane interaction, ONOS is extended by
the P4Runtime.

RARE [283] (Router for Academia, Research & Education) is developed in
the GÉANT project GN4-3 and implements a P4 data plane for the FreeRouter
open-source control plane. Its feature list includes routing, bridging, ACLs,
VLAN, VXLAN, MPLS, GRE, MLDP, and BIER among others.

10.2. Load Balancing
SHELL [285] implements stateless application-aware load balancing in P4. A

load balancer forwards new connections to a set of randomly chosen application
instances by adding a segment routing (SR) header. Each application instance
makes a local decision to either decline or accept the connection attempt. After
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Table 6: Overview of applied research on traffic management and congestion control (Sec-
tion 10).

Research work Year Targets Code

Data Center Switching (Section 10.1)

Trellis [276, 277] 2019 bmv2 [278]
DC.p4 [279] 2015 bmv2 [280]
Fabric.p4 [281] 2018 bmv2 [282]
RARE [283] 2019 bmv2, Tofino [284]

Load Balancing (Section 10.2)

SHELL [285] 2018 NetFPGA-SUME
SilkRoad [286] 2017 Tofino
HULA [287] 2016 -
MP-HULA [288] 2018 -
Chiang et al. [289] 2019 bmv2
W-ECMP [290] 2018 bmv2
DASH [291] 2020 bmv2
Pizzutti et al. [292, 293] 2018/20 bmv2
LBAS [294] 2020 Tofino
DPRO [295] 2020 bmv2
Kawaguchi et al. [296] 2019 bmv2
AppSwitch [297] 2017 PISCES
Beamer [298] 2018 bmv2, NetFPGA-SUME [299]

Congestion Notification (Section 10.3)

P4QCN [300] 2019 bmv2
Jiang et al. [301] 2019 -
EECN [302] 2020 bmv2
Chen et al. [303] 2020 bmv2
Laraba et al. [304] 2020 bmv2

Traffic Scheduling (Section 10.4)

Sharma et al. [305] 2018 bmv2
Cascone et al. [306] 2017 -
Bhat et al. [307] 2019 bmv2
Kfoury et al. [308] 2019 bmv2
Chen et al. [309] 2019 Tofino
Lee et al. [310] 2019 bmv2

Traffic Aggregation (Section 10.5)

Wang et al. [311] 2020 Tofino
RL-SP-DRR [312] 2019 bmv2
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Research work Year Targets Code

Active Queue Management (AQM) (Section 10.6)

Turkovic et al. [313] 2018 bmv2, Netronome
P4-Codel [314] 2018 bmv2 [315]
P4-ABC [316] 2019 bmv2
P4air [317] 2020 bmv2, Tofino
Fernandes et al. [318] 2020 bmv2
Wang et al. [319] 2018 bmv2, Tofino
SP-PIFO [320] 2020 Tofino
Kunze et al. [321] 2021 Tofino [322]
Harkous et al. [323] 2021 bmv2, Netronome

Traffic Offloading (Section 10.7)

Andrus et al. [324] 2019 -
Ibanez et al. [325] 2019 NetFPGA-SUME
Kfoury et al. [326] 2020 Tofino
Falcon [327] 2020 Tofino
Osiński et al. [328] 2020 Tofino

connection initiation, the client includes a previously negotiated identifier in
all subsequent packets. In the prototypical implementation, the authors use
TCP time stamps for communicating the identifier, alternatives are identifiers
of QUIC or TCP sequence numbers.

SilkRoad [286] implements stateful load balancing on P4 switches. SilkRoad
implements two tables for stateful processing. One table maps virtual IP ad-
dresses of services to server instances, another table records active connections
identified by hashes of 5-tuples to forward subsequent flows. It applies a Bloom
filter to identify new connection attempts and to record those requests in reg-
isters to remember client requests that arrive while the pool of server instances
changes. In [329], the accompanying demo is described.

HULA [287] implements a link load-based distance vector routing mecha-
nism. Switches in HULA do not maintain the state for every path but the next
hops. They send out probes to gather link utilization information. Probe pack-
ets are distributed throughout the network on node-specific multicast trees. The
probes have a header that contains a destination field and the currently best
path utilization to that destination. When a node receives a probe, it updates
the best path utilization if necessary, sends one packet clone upstream back to
the origin, and forwards copies along the multicast tree further downstream.
This way the origin will receive multiple probe packets with different path uti-
lization to a specific destination. Then, flowlets are forwarded onto the best
currently available path to its destination.

MP-HULA [288] extends HULA by using load information for n best next
hops and compatibility with multipath TCP (MP-TCP). It tracks subflows of
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MP-TCP with individual flowlets per sub-flow. MP-HULA aims at distributing
those subflows on different paths to aggregate bandwidth. To that end, it is
necessary to keep track of the best n next-hops which is done with additional
registers and forwarding rules.

Chiang et al. [289] propose a cost-effective congestion-aware load balancing
scheme (CCLB). In contrast to HULA, CCLB replaces only the leaf switches
with programmable switches, and thus is more cost-effective. They leverage
Explicit Congestion Notification (ECN) information in probe packets to recog-
nize congestion in the network and to adapt the load balancing. CCLB further
uses flowlet forwarding and is implemented for the bmv2.

W-ECMP [290] is an ECMP-based load balancing mechanism for data cen-
ters implemented for P4 switches. Weighted probabilities based on path utiliza-
tion, are used to randomly choose the best path to avoid congestion. A local
agent on each switch computes link utilization for the ports. Regular traffic
carries an additional custom packet header that keeps track of the current max-
imum link utilization on a path. Based on the maximum link utilization, the
switches update port weights if necessary.

DASH [291] is an adaptive weighted traffic splitting mechanism that works
entirely in the data plane. In contrast to popular weighted traffic splitting
strategies such as WCMP, DASH does not require multiple hash table entries.
DASH splits traffic based on link weights by portioning the hash space into
unique regions.

Pizzutti et al. [292, 293] implement congestion-aware load balancing for
flowlets on P4 switches. Flowlets are bursts of packets that are separated by a
time gap, e.g., as caused by factors such as TCP dynamics, buffer availability,
or link congestion. For distributing subflows on different paths, the congestion
state of the last route is stored in a register.

LBAS [294] implements a load balancer to minimize the processing latency
at both load balancers and application servers. LBAS does not only reduce the
processing latency at load balancers but also takes the application servers’ state
into account. It is implemented for the Tofino and its average response time is
evaluated.

DPRO [295] combines INT with traffic engineering (TE) and reinforcement
learning (RL). Network statistics, such as link utilization and switch load, are
gathered using an adapted INT approach. An RL-agent inside the controller
adapts the link weights based on the minimization of a max-link-utilization
objective.

Kawaguchi et al. [296] implement Unsplittable flow Edge Load factor Bal-
ancing (UELB). A controller application monitors the link utilization and com-
putes new optimal paths upon congestion. The path computation is based on
the UELB problem. The forwarding is implemented in P4 for the bmv2.

AppSwitch [297] implements a load balancer for key-value storage systems.
However, the focus lies on a local agent and the control plane communication
with the storage server.

Beamer [298] operates in data centers and prevents interruption of connec-
tions when they are load-balanced to a different server. To that end, the Beamer
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controller instructs the new target server to forward packets of the load-balanced
connection to the old target server until the migration phase is over.

10.3. Congestion Notification
P4QCN [300] proposes a congestion feedback mechanism where network

nodes check the egress ports for congestion before forwarding packets. If a
node detects congestion, it calculates a feedback value that is propagated up-
stream. The mechanism clones the packet that caused the congestion, updates
the feedback value in the header, changes the origin of the flow, and forwards
it as a feedback packet to the sender. The sender adjusts its sending rate to
reduce congestion downstream. The authors describe an implementation where
bmv2 is extended by P4 externs for floating-point calculations.

Jiang et al. [301] introduce a novel adjusting advertised windows (AWW)
mechanism for TCP. The authors argue that the current calculation of the
advertised window in the TCP header is inaccurate because the source node does
not know the actual capacity of the network. AWW dynamically updates the
advertised window of ACK packets to feedback the network capacity indirectly
to the source nodes. Each P4 switch calculates the new AWW value and writes
it into the packet header.

EECN [302] presents an enhanced ECNmechanism which piggybacks conges-
tion information if the switch notices congestion. To that end, the ECN-Echo
bit is set for traversing ACKs as soon as congestion occurs for a given flow.
This enables fast congestion notification without the need for additional control
traffic.

Chen et al. [303] present QoSTCP, a TCP version with adapted congestion
window growth that enables rate limiting. QoSTCP is based on a marking ap-
proach similar to ECN. When a flow exceeds a certain rate, the packet gets
marked with a so-called Rate-Limiting Notification (RLN) and the congestion
window growth is adapted proportional to the RLN-marked packet rate. Me-
tering and marking is done using P4.

Laraba et al. [304] detect ECN misbehavior with the help of P4 switches.
They model ECN as extended finite state machine (EFSM) and store states and
variables in registers. If end hosts do not conform to the specified ECN state
machine, packets are either dropped or, if possible, the misbehavior is corrected.

10.4. Traffic Scheduling
Sharma et al. [305] introduce a mechanism for per flow fairness scheduling in

P4. The concept is based on round-robin scheduling where each flow may send
a certain number of bytes in each round. The switch assigns a round number
for each arriving packet that depends on the number of sent bytes of flow in the
past.

Cascone et al. [306] introduce bandwidth sharing based on sending rates
between TCP senders. P4 switches use statistical byte counters to store the
sending rate of each user. Depending on the recorded sending rate of the user,
arriving packets are pushed into different priority queues.
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Bhat et al. [307] leverage P4 switches to translate application layer header
information into link-layer headers for better QoS routing. They use Q-in-Q
tunneling at the edge to forward packets to the core network and present a
bmv2 implementation for HTTP/2 applications, as HTTP/2 explicitly defines
a Stream ID that can directly be translated in Q-in-Q tags.

Kfoury et al. [308] present a method to support dynamic TCP pacing with
the aid of network state information. A P4 switch monitors the number of
active TCP flows, i.e., they monitor the SYN, SYN-ACK, and ACK flags and
notify senders about the current network state if a new flow starts or another
terminates. To that end, they introduce a new header and show by simulations
that the overall throughput increases.

Chen et al. [309] present a design for bandwidth management for QoS with
SDN and P4-programmable switches. Their design classifies packets based on
a two-rate three-color marker and assigns corresponding priorities to guarantee
certain per flow bandwidth. To that end, they leverage the priority queuing
capabilities of P4-switches based on the assigned color. Guaranteed traffic goes
to a high-priority queue, best-effort traffic goes to a low-priority queue, and
traffic that exceeds its bandwidth is simply dropped.

Lee et al. [310] implement a multi-color marker for bandwidth guarantees in
virtual networks. Their objective is to isolate bandwidth consumption of virtual
networks and provide QoS for its serving flows.

10.5. Traffic Aggregation
Wang et al. [311] introduce aggregation and dis-aggregation capabilities for

P4 switches. To reduce the header overhead in the network, multiple small pack-
ets are thereby aggregated to a single packet. They leverage multiple register
arrays to store incoming small packets in 32 bit chunks. If enough small packets
are stored, a larger packet gets assembled with the aid of multiple recirculations;
each recirculation step appends a small packet to the aggregated large packet.

RL-SP-DRR [312] is a combination of strict priority scheduling with rate
limitation (RL-SP) and deficit round-robin (DRR). RL-SP ensures prioritiza-
tion of high-priority traffic while DRR enables fair scheduling among different
priority classes. They extend bmv2 to support RL-SP-DRR and evaluate it
against strict priority queuing and no active queuing mechanism.

10.6. Active Queue Management (AQM)
Turkovic et al. [313] develop an active queue management (AQM) mecha-

nism for programmable data planes. The switches are programmed to collect
metadata associated with packet processing, e.g., queue size and load, that are
used to prevent, detect, and dissolve congestion by forwarding affected flows
on an alternate path. Two possible mechanisms for rerouting in P4 are de-
scribed. In the first mechanism, primary and backup entries are installed in the
forwarding tables and according to the gathered metadata, the suitable action
is selected. The second mechanism leverages a local controller on each switch
that monitors flows and installs updated forwarding rules when congestion is
noticed.
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P4-CoDel [314] implements the CoDel AQM mechanism specified in RFC
8289 [330]. CoDel leverages a target and an interval parameter. As long as the
queuing delay is shorter than the target parameter, no packets are dropped.
If the queuing delay exceeds the target by a value that is at least as large as
the interval, a packet is dropped, and the interval parameter is decreased. This
procedure is repeated until the queuing delay is under the target threshold again.
The interval is then reset to the initial value. To avoid P4 externs, the authors
use approximated calculations for floating-point operations.

P4-ABC [316] implements activity-based congestion management (ABC) for
P4. ABC is a domain concept where edge nodes measure the activity, i.e., the
sending rate, of each user and annotate the value in the packet header. Core
nodes measure the average activity of all packets. Depending on the current
queue status, the average activity, and activity value in the packet header, a
drop decision is made for each packet to prevent congestion. The P416 imple-
mentation for the bmv2 requires externs for floating-point calculations.

P4air [317] attempts to provide more fairness for TCP flows with different
congestion control algorithms. To that end, P4air groups flows into different
categories based on their congestion control algorithm, e.g., loss-, delay- and
loss-delay-based. Afterwards, the most aggressive flows are punished based on
the previous categorization with packet drops, delay increase, or adjusted receive
windows. P4air leverages switch metrics and flow reactions, such as queuing
delay and sending rate, to determine the congestion control algorithm used by
the flows.

Fernandes et al. [318] propose a bandwidth throttling solution in P4. Incom-
ing packets are dropped with a certain probability depending on the incoming
rate of the flow and the defined maximum bandwidth. Rates are measured us-
ing time windows and byte counters. Fernandes et al. extend the bmv2 for this
purpose.

Wang et al. [319] present an AQM mechanism for video streaming. Data
packets are classified as base packets (basic image information) or enhancement
packets (additional information to improve the image quality). When the queue
size exceeds a certain threshold, enhancement packets are preferably dropped.

SP-PIFO [320] features an approximation of Push-In First-Out (PIFO) queues
which enables programmable packet scheduling at line rate. SP-PIFO dynam-
ically adapts the mapping between packet ranks and available strict-priority
queues.

Kunze et al. [321] analyze the design of three popular AQM algorithms
(RED, CoDel, PIE). They implement PIE in three different variants for Tofino-
based P4 hardware targets and show that implementation trade-offs have sig-
nificant performance impacts.

Harkous et al. [323] use virtual queues implemented in P4 for traffic man-
agement. A traffic classifier in the form of MATs assigns a data plane slice
identifier to traffic flows. P4 registers are used to implement virtual queues for
each data plane slice for traffic management.
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10.7. Traffic Offloading
Andrus et al. [324] propose to offload video stream processing of surveillance

cameras to P4 switches. The authors propose to offload stream processing for
storage to P4 switches. In case the analytics software detected an event, it
enables a multistage pipeline on the P4 switch. In the first step, video stream
data is replicated. One stream is further sent to the analytics software, the
other stream is dedicated to the video storage. The P4 switch filters out control
packets and rewrites the destination IP address of all video packets to the video
storage.

Ibanez et al. [325] try to tackle the problem of P4’s packet-by-packet
programming model. Many tasks, such as periodic updates, require either
hardware-specific capabilities or control-plane interaction. Processing capabili-
ties are limited to enqueue events, i.e., data plane actions are only triggered if
packets arrive. To eliminate this problem, the authors propose a new mechanism
for event processing using the P4 language.

Kfoury et al. [326] propose to offload media traffic to P4 switches which act
as relay servers. A SIP server receives the connection request, replaces IP and
port information with the relay server IP and port, and forwards the request to
the receiver. Afterwards, the media traffic is routed through the relay server.

Falcon [327] offloads task scheduling to programmable switches. Job requests
are sent to the switch and the switch assigns a task in first-come-first-serve
order to the next executor in a pool of computation nodes. Falcon reduces the
scheduling overhead by a factor of 26 and increase scheduling throughput by a
factor of 25 compared to state-of-the-art schedulers.

Osinski et al. [328] present vBNG, a virtual Broadband Network Gateway
(BNG). Some components, such as PPPoE session handling, are offloaded to
programmable switches.

10.8. Summary and Analysis
The research domain of traffic management and congestion control benefits

from three core properties of P4: custom packet headers, flexible header process-
ing and target-specific packet header processing functions. Data center switching
mainly relies on packet header parsing of well-known protocols, such as IPv4/v6
or MPLS. More advanced protocol solutions, such as VXLAN and BIER, can be
implemented by leveraging the flexible packet header processing property of P4.
The presented efforts on load balancing (Section 10.2) also use this property
of P4 to implement novel approaches. Target-specific packet header processing
functions such as externs are widely used in Section 10.3. Most works lever-
age externs such as metering and marking which may not be supported on all
hardware targets. A similar phenomenon appears in Section 10.4. Here, many
papers are based on priority queues. The approaches on AQM in Section 10.6
encounter similar limitations. Floating-point operations are not part of the P4
core. Some targets may provide an extern for this functionality. Multiple works
avoid this problem by either using approximations or by relying on self-defined
externs in software.
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11. Applied Research Domains: Routing and Forwarding

We describe applied research on source routing, multicast, publish-subscribe-
systems, named data networking, data plane resilience, and other fields of appli-
cation. Table 7 shows an overview of all the work described. At the end of the
section, we summarize the work and analyze it with regard to P4’s core features
described in Section 8.1.

11.1. Source Routing
With source routing, the source node defines the processing of the packet

throughout the network. To that end, a header stack is often added to the
packet to specify the operations the other network devices should execute.

Lewis et al. [331] implement a simple source routing mechanism with P4
for the bmv2. The authors introduce a header stack to specify the processing
of the packet towards its destination. That header stack is constructed and
pushed onto the packet by the source node. Network devices match the header
segments to determine how the packet should be processed.

Luo et al. [333] implement segment routing with P4. They introduce a
header which contains segments that identify certain operations, e.g., forwarding
the packet towards a specific destination or over a specific link, updating header
fields, etc. Network nodes process packets according to the topmost segment in
the segment routing header and remove it after successful execution.

Kushwaha et al. [335] implement bitstream, a minimalistic programmable
data plane for carrier-class networks, in P4 for FPGAs. The focus of bitstream
is to provide a programmable data plane while ensuring several carrier-grade
properties, like deterministic latencies, short restoration time, and per-service
measurements. To that end, the authors implement a source routing approach
in P4 which leaves the configuration of the header stack to the control plane.

The authors of [336] show a demo of segment routing over IPv6 data plane
(SRv6) implementation in P4. It leverages the novel uSID instruction set for
SRv6 to improve scalability and MTU efficiency.

11.2. Multicast
Multicast efficiently distributes one-to-many traffic from the source to all

subscribers. Instead of sending individual packets to each destination, multicast
packets are distributed in tree-like structures throughout the network.

Bit Index Explicit Replication (BIER) [386] is an efficient transport mecha-
nism for IP multicast traffic. In contrast to traditional IP multicast, it prevents
subscriber-dependent forwarding entries in the core network by leveraging a
BIER header that contains all destinations of the BIER packet. To that end,
the BIER header contains a bit string where each bit corresponds to a spe-
cific destination. If a destination should receive a copy of the BIER packet, its
corresponding bit is activated in the bit string in BIER header of the packet.
Braun et al. [337] present a demo implementation of BIER-based multicast in
P4. Merling et al. [339] implement BIER-based multicast with fast reroute
capabilities in P4 for the bmv2 and for the Tofino [340].
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Table 7: Overview of applied research on routing and forwarding (Section 11).

Research work Year Targets Code

Source Routing (11.1)

Lewis et al. [331] 2018 bmv2 [332]
Luo et al. [333] 2019 bmv2 [334]
Kushwaha et al. [335] 2020 Xilinx

Virtex-7
Abdelsalam et al. [336] 2020 bmv2

Multicast (11.2)

Braun et al. [337] 2017 bmv2 [338]
Merling et al. [339, 340] 2020/21 bmv2,

Tofino
[341, 342]

Elmo [343] 2019 - [344]
PAM [345] 2020 bmv2

Publish/Subscribe Systems (11.3)

Wernecke et al. [346, 347, 348, 349] 2018/19 bmv2
Jepsen et al. [350] 2018 Tofino
Kundel et al. [351] 2020 bmv2 [352]
FastReact-PS [353] 2020 -

Named Data Networks (11.4)

NDN.p4 [354, 355] 2016/18 bmv2 [356, 357]
ENDN [358] 2020 bmv2

Data Plane Resilience (11.5)

Sedar et al. [359] 2018 bmv2 [360]
Giesen et al. [361] 2018 Tofino, Xil-

inx SDNet
SQR [362] 2019 bmv2,

Tofino
[363]

P4-Protect [364] 2020 bmv2,
Tofino

[365, 366]

Hirata et al. [367] 2019 -
Lindner et al. [368] 2020 bmv2,

Tofino
[369, 370]

D2R [371] 2019 bmv2
PURR [372] 2019 bmv2,

Tofino
Blink [373] 2019 bmv2,

Tofino
[374]
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Research work Year Targets Code

Other Fields of Applications (11.6)

Contra [375] 2019 -
Michel et al. [376] 2016 bmv2
Baktir et al. [377] 2018 bmv2
Froes et al. [378] 2020 bmv2
QROUTE [379] 2020 bmv2
Gimenez et al. [380] 2020 bmv2
Feng et al. [381] 2019 bmv2
PFCA [382] 2020 bmv2
McAuley et al. [383] 2019 bmv2
R2P2 [384] 2019 Tofino [385]

Elmo [343] is a system for scalable multicast in multi-tenant datacenters.
Traditional IP multicast maintains subscriber dependent state in core devices
to forward multicast traffic. This limits scalability, since the state in the core
network has to be updated every time subscribers change. Elmo increases scal-
ability of IP multicast by moving a certain subscriber-dependent state from the
core devices to the packet header.

Priority-based adaptive multicast (PAM) [345] is a control protocol for data
center multicast which is implemented by the authors in P4. Network adminis-
trators define different policies regarding priority, latency, completion time, etc.,
which are installed on the core switches. The network devices than monitor link
loads and adjust their forwarding to fulfill the policies.

11.3. Publish/Subscribe Systems
Publish/subscribe systems are used for data distribution. Subscribers are

able to subscribe to announced topics. Based on the subscriptions, the data
packets are distributed from the source to all subscribers.

Wernecke et al. [346, 347, 348, 349] implement a content-based publish/sub-
scribe mechanism with P4. The distribution tree to all subscribers is encoded
directly in the header of the data packets. To that end, the authors introduce
a header stack which is pushed onto the packet by the source. Each element
in the stack consists of an ID and a value. When a node receives a packet, it
checks whether the header stack contains an element with its own ID. If so, the
value determines to which neighbors the packet has to be forwarded.

Jepsen et al. [350] introduce a description language to implement pub-
lish/subscriber systems. The data plane description is translated into a static
pipeline and dynamic filters. The static pipeline is a P4 program that describes
a packet processing pipeline for P4 switches, the dynamic filters are the for-
warding rules of the match-action tables that may change during operation,
e.g., when subscriptions change.
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Kundel et al. [351] propose two approaches for attribute/value encoding
in packet headers for P4-based publish/subscribe systems. This reduces the
header overhead and facilitates adding new attributes which can be used for
subscription by hosts.

FastReact-PS [353] is a P4-based framework for event-based publish/sub-
scribe in industrial IoT networks. It supports stateful and stateless processing
of complex events entirely in the data plane. Thereby, the forwarding logic can
be dynamically adjusted by the control plane without the need for recompila-
tion.

11.4. Named Data Networking
Named data networking (NDN) is a content-centric paradigm where infor-

mation is requested with resource identifiers instead of destinations, e.g., IP
addresses. Network devices cache recently requested resources. If a requested
resource is not available, network devices forward the request to other nodes.

NDN.p4 [354] implements NDN without caching for P4. However, the imple-
mentation cannot cache requests because of P4-related limitations with stateful
storage. Miguel et al. [355] leverage the new functionalities of P416 to extend
NDN.p4 by a caching mechanism for requests and optimize its operation. The
caching mechanism is implemented with P4 externs.

Enhanced NDN (ENDN) [358] is an advanced NDN architecture. It offers a
larger catalog of content delivery features like adaptive forwarding, customized
monitoring, in-network caching control, and publish/subscribe forwarding.

11.5. Data Plane Resilience
Sedar et al. [359] implement a fast failover mechanism without control plane

interaction for P4 switches. The mechanism uses P4 registers or metadata fields
for bit strings that indicate if a particular port is considered up or down. In
a match-action table, the port bit string provides an additional match field to
determine whether a particular port is up or down. Depending on the port
status, default or backup actions are executed. The authors rely on a local P4
agent to populate the port bit strings.

Giesen et al. [361] introduce a forward error correction (FEC) mechanism
for P4. Commonly, unreliable but not completely broken links are avoided. As
this happens at the cost of throughput, the proposed FEC mechanism facilitates
the usage of unreliable links. The concept features a link monitoring agent that
polls ports to detect unreliable connections. When a packet should be forwarded
over such a port, the P4 switch calculates a resilient encoding for the packet
which is then decoded by the receiving P4 switch.

Shared Queue Ring (SQR) [362] introduces an in-network packet loss recov-
ery mechanism for link failures. SQR caches recent traffic inside a queue with
slow processing speed. If a link failure is detected, the cached packets can be
sent over an alternative path. While P4 does not offer the possibility to store
packets for a certain amount of time, the authors leverage the cloning operation
of P4 to keep packets inside the buffer. If a cached packet has not yet met
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its delay, it gets cloned to another egress port which takes some time. This
procedure is repeated until the packet has been stored for a given time span.

P4-Protect [364] implements 1+1 protection for IP networks. Incoming pack-
ets are equipped with a sequence number, duplicated, and sent over two disjoint
paths. At an egress point, the first version of each packet is accepted and
forwarded. As a result, a failure of a single path can be compensated without
additional signaling or reconfiguration. P4-Protect is implemented for the bmv2
and the Tofino. Evaluations show that line-rate processing with 100 Gbit/s can
be achieved with P4-Protect at the Tofino.

Hirata et al. [367] implement a data plane resilience scheme based on multi-
ple routing configurations. Multiple routing configurations with disjoint paths
are deployed, and a header field identifies the routing configuration according to
which packets are forwarded. In the event of a failure, a routing configuration
is chosen that avoids the failure.

Lindner et al. [368] present a novel prototype for in-network source pro-
tection in P4. A P4-capable switch receives sensor data from a primary and
secondary sensor, but forwards only the data from the primary sensor if avail-
able. It detects the failure of the primary sensor and then transparently forwards
data from a secondary sensor to the application. Two different mechanisms are
presented. The counter-based approach stores the number of packets received
from the secondary sensor since the last packet from the primary sensor has
been received. The timer-based approach stores the time of the last arrival of
a packet from the primary sensor and considers the time since then. If certain
thresholds are exceeded, the P4-switch forwards the data from the secondary
sensor.

D2R [371] is a data-plane-only resilience mechanism. Upon a link failure,
the data plane calculates a new path to the destination using algorithms like
breadth-first search and iterative deepening depth-first search. As one pipeline
iteration has not enough processing stages to compute the path, recirculation is
leveraged. In addition, Failure Carrying Packets (FCP) is used to propagate the
link failure inside the network. While the authors claim that their architecture
works with hardware switches, e.g., the Tofino, they only present and evaluate
a bmv2 implementation.

Chiesa et al. [372] propose a primitive for reconfigurable fast ReRoute
(PURR) which is a FRR primitive for programmable data planes, in partic-
ular for P4. For each destination, suitable egress ports are stored in bit strings.
During packet processing, the first working suitable egress port is determined by
a set of forwarding rules. Encoding based on Shortest Common Supersequence
guarantees that only few additional forwarding rules are required.

Blink [373] detects failures without controller interaction by analyzing TCP
signals. The core concept is that the behavior of a TCP flow is predictable when
it is disrupted, i.e., the same packet is retransmitted multiple times. When this
information is aggregated over multiple flows, it creates a characteristic failure
signal that is leveraged by data plane switches to trigger packet rerouting to
another neighbor.
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11.6. Other Fields of Applications
Contra [375] introduces performance-aware routing with P4. Network paths

are ranked according to policies that are defined by administrators. Contra
applies those policies and topology information to generate P4 programs that
define the behavior of forwarding devices. During runtime, probe packets are
used to determine the current network state and update forwarding entries for
best compliance with the defined policies.

Michel et al. [376] introduce identifier-based routing with P4. The authors
argue that IP addresses are not fine-granular enough to enable adequate for-
warding, e.g., in terms of security policies. The authors introduce a new header
that contains an identifier token. Before sending packets, applications transmit
information on the process and user to a controller that returns an identifier
that is inserted into the packet header. P4 switches are programmed to forward
packets based on that identifier.

Baktir et al. [377] propose a service-centric forwarding mechanism for P4.
Instead of addressing locations, e.g., by IP addresses, the authors propose to
use location-independent service identifiers. Network hosts write the identifier
of the desired service into the appropriate header field, the switches then make
forwarding decisions based on the identifier in the packet header. With this
approach, the location of the service becomes less important since the controller
simply updates the forwarding rules when a service is migrated or load balancing
is desired.

Froes et al. [378] classify different traffic classes which are identified by a
label. Packet forwarding is based on that controller-generated label instead of
IP addresses. The traffic classes have different QoS properties, i.e., prioritization
of specific classes is possible. To that end, switches leverage multiple queues to
process traffic of different traffic classes.

QROUTE [379] is a quality of service (QoS) oriented forwarding scheme
in P4. Network devices monitor their links and annotate values, e.g., jitter or
delay, in the packet header so that downstream nodes can update their statistics.
Furthermore, packet headers contain constraints like maximum jitter or delay.
According to those values, forwarding decisions are made by the network devices.

Gimenez et al. [380] implement the recursive internet-work architecture
(RINA) in P4 for the bmv2. RINA is a networking architecture which sees
computer networking as a type of inter-process communication where layering
should be based on scope/scale instead of function. In general, efficient imple-
mentations require hardware support. However, up to date only software-based
implementations are available. The authors hope that with the advance of pro-
grammable hardware in the form of P4, hardware-based RINA will soon be
possible.

Feng et al. [381] implement information-centric network (ICN) based for-
warding for HTTP. To that end, they propose mechanisms to convert packets
from ICN to HTTP packets and vice-versa.

PFCA [382] implements a forwarding information base (FIB) caching ar-
chitecture in the data plane. To that end, the P4 program contains multiple
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MATs that are mapped to different memory, i.e., TCAM, SRAM, dynamic ran-
dom access memory (DRAM), with different properties regarding lookup speed.
Counters keep track of cache hits to move (un)popular rules to other tables.

McAuley et al. [383] present a hybrid error control booster (HEC) that can
be deployed in wireless, mobile, or hostile networks that are prone to link or
transport layer failures. HECs increase the reliability by applying a modified
Reed-Solomon code that adds parity packets or additional packet block acknowl-
edgments. P4 targets include an error control processor that implements this
functionality. It is integrated into the P4 program as P4 extern so that the
data plane can exchange HEC packets with it. A remote control plane includes
the booster manager that controls HEC operations and parameters on the P4
targets via a data plane API.

R2P2 [384] is a transport protocol based on UDP for latency-critical RPCs
optimized for datacenters or other distributed infrastructure. A router module
implemented in P4 or DPDK is used to relay requests to suitable servers and
perform load balancing. It may also perform queuing if no suitable server is
available. The goal of R2P2 is to overcome problems that typically come with
TCP-based RPC systems, e.g., problems with load distribution and head-of-
line-blocking.

11.7. Summary and Analysis
The research domain of routing and forwarding greatly benefits from P4’s

core features. First, the definition and usage of custom packet headers enables
administrators to tailor the packet header to the specific use case. Two exam-
ples are source routing (Section 11.1) and multicast (Section 11.2). Both areas
leverage custom headers to define lightweight mechanisms based on additional
information in the packet header which are not part of any standard protocol.
Although most of the projects were developed only for the bmv2, they should
be easily portable to hardware platforms as more complex, target specific oper-
ations are not required. Second, users are able to define flexible packet header
processing depending on the information in the packet header, e.g., publish/-
subscribe systems (Section 11.3), named data networks (Section 11.4), and data
plane resilience (Section 11.5). Parametrized custom actions and (conditional)
application of multiple MATs allow for adaptable packet processing for many
specific use cases. Similar to the previous P4 core feature, most projects were
developed for the bmv2 but they should be easy to transfer if no target-specific
actions are used. Third, we found that many papers in the area of data plane
resilience (Section 11.5) leverage target-specific packet header processing func-
tions. Often registers are used to store information whether egress ports are
up or down to execute backup actions if necessary. Most projects were imple-
mented for the hardware platform Tofino. As a result, the implementations are
highly target-specific and transferring them to other hardware platforms highly
depends on the capabilities of the target platform and the used externs.
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12. Applied Research Domains: Advanced Networking

We describe applied research on cellular networks (4G/5G), Internet of
things (IoT), industrial networking, Time-Sensitive Networking (TSN), network
function virtualization (NFV), and service function chains (SFCs). Table 8
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

12.1. Cellular Networks (4G/5G)
P4EC [387] builds a local exit for LTE deployments with cloud-based EPC

services. A programmable switch distinguishes traffic and reroutes traffic for
edge computing. Non-critical traffic is forwarded to the cloud-based EPC.

The Trellis switch fabric (introduced in Section 10.1) features the spgw.p4
profile [281, 277], an implementation of a Serving and PDN Gateway (SPGW)
for 5G networking. ONOS runs an SPGW-u application that implements the
3GPP control and user plane separation (CUPS) protocol to create, modify, and
delete GPRS tunneling protocol (GTP) sessions. It provides support for GTP
en- and decapsulation, filtering, and charging.

SMARTHO [389] proposes a handover framework for 5G. Distributed units
(DUs) include real-time functions for multiple 5G radio stations. Several DUs
are controlled by a central unit (CU) that includes non-real-time control func-
tions. P4 switches are part of the CU and all DU nodes. SMARTHO introduces
a P4-based mechanism for preparing handover sequences for user devices that
take a fixed path among 5G radio stations controlled by DUs. This decreases
the overall handover time, e.g., for users traveling in a train.

Aghdai et al. [390] propose a P4-based transparent edge gateway (EGW)
for mobile edge computing (MEC) in LTE or 5G networks. Delay-sensitive and
bandwidth-intense applications need to be moved from data centers in the core
network to the edge of the radio access network (RAN). 5G networks rely on
GTP-U for encapsulating IP packets from the mobile user to the core network.
IP routers in between forward packets based on the outer IP address of GTP-
U frames. The authors deploy EGWs as P4 switches at the edge of the IP
transport network where service operators can deploy scalable network functions
or services. Each MEC service gets a virtual IP address, the P4-based EGWs
parse the inner IP destination address of GTP-U. If it sees traffic targeting a
virtual IP address of a MEC service, it forwards it to the IP address of one of
the serving instances of the MEC application. In their follow-up work [391], the
authors extend EGWs by a handover mechanism for migrating network state.

GRED [392] is an efficient data placement and retrieval service for edge
computing. It tries to improve routing path lengths and forwarding table sizes.
They follow a greedy forwarding approach based on DT graphs, where the for-
warding table size is independent of the network size and the number of flows
in the network. GRED is implemented in P4, but the authors do not specify on
which target.
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Table 8: Overview of applied research on advanced networking (Section 12).

Research work Year Targets Code

Cellular Networks (4G/5G) (12.1)

P4EC [387] 2020 Tofino
Trellis [281] - - [388]
SMARTHO [389] 2018 bmv2
Aghdai et al. [390, 391] 2018/19 Netronome
GRED [392] 2019 bmv2
HDS [393] 2020 -
Shen et al. [394] 2019 Xilinx SDNet
Lee et al. [395] 2019 Tofino
Ricart-Sanchez et al. [396] 2019 NetFPGA-SUME
Singh et al. [397] 2019 Tofino
TurboEPC [398] 2020 Netronome
Vörös et al. [399] 20200 Tofino
Lin et al. [400] 2019 Tofino

Internet of Things (12.2)

BLESS [401] 2017 PISCES
Muppet [402] 2018 PISCES
Wang et al. [403] 2019 Tofino
Madureira et al. [404] 2020 bmv2
Engelhard et al. [405] 2019 bmv2

Industrial Networking (12.3)

FastReact [406] 2018 bmv2
Cesen et al. [407] 2020 bmv2
Kunze et al. [408] 2020 Tofino, Netronome

Time-Sensitive Networking (TSN) (12.4)

Rüth et al. [409] 2018 Netronome
Kannan et al. [410] 2019 Tofino
Kundel et al. [411] 2019 Tofino
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Research work Year Targets Code

Network Function Virtualization (NFV) (12.5)

Kathará [412] 2018 -
P4NFV [413] 2018 bmv2
Osiński et al. [414] 2019 -
Moro et al. [415] 2020 -
DPPx [416] 2020 bmv2
Mohammadkhan et al. [417] 2019 Netronome
FOP4 [418, 419] 2019 bmv2, eBPF
PlaFFE [420] 2020 Netronome

Service Function Chains (SFCs) (12.6)

P4SC [421, 422] 2019 bmv2, Tofino [423]
Re-SFC [424] 2019 bmv2
FlexMesh [425] 2020 bmv2
P4-SFC [426] 2019 bmv2, Tofino [427]

HDS [393] is a low-latency, hybrid, data sharing framework for hierarchical
mobile edge computing. The data location service is divided into two parts:
intra-region and inter-region. The authors present a data sharing protocol called
Cuckoo Summary for fast data localization for the intra-region part. Further,
they developed a geographic routing scheme to achieve efficient data location
with only one overlay hop in the inter-region part.

Shen et al. [394] present an FGPA-based GTP engine for mobile edge com-
puting in 5G networks. Communication between the 5G back-haul and the
conventional Ethernet requires de- and encapsulation of traffic with GTP. As
most network entities do not have the capability to process GTP, the authors
leverage P4-programmable hardware for this purpose.

Lee et al. [395] evaluate the performance of GTP-U and SRv6 stateless
translation as GPT-U cannot be replaced by SRv6 without a transition period.
To that end, they implement GTP and SRv6 on P4-programmable hardware.
They found that there are no performance drops if stateless translation is used
and that SRv6 stateless translation is acceptable for the 5G user plane.

Ricart-Sanchez et al. [396] propose an extension for the P4-NetFPGA frame-
work for network slicing between different 5G users. The authors extend the
capabilities of the P4 pipeline and implement their mechanism on the NetFPGA-
SUME. However, the authors do not provide any details about their implemen-
tation.

Singh et al. [397] present an implementation for the Evolved Packet Gateway
(EPG) in the Mobile Packet Core of 5G. They show that they can offload the
functionality to programmable switching ASICs and achieve line rate with low
latency and jitter while scaling up to 1.7 million active users.
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TurboEPC [398] presents a redesign of the mobile packet core where parts
of the control plane state is offloaded to programmable switches. State is stored
in MATs. The switches then process a subset of signaling messages within the
data plane itself, which leads to higher throughput and reduced latency.

Vörös et al. [399] propose a hybrid approach for the next generation NodeB
(gNB) where the majority of packet processing is done by a high-speed P4-
programmable switch. Additional functions, such as ARQ or ciphering, are
offloaded to external services such as DPDK implementations.

Lin et al. [400] enhance the Content Permutation Algorithm (eCPA) for
secret permutation in 5G. Packet payloads are split into code words and shuffled
according to a secret cipher. They implement eCPA for switches of the Inventec
D5264 series.

12.2. Internet of Things (IoT)
BLESS [401] implements a Bluetooth low energy (BLE) service switch based

on P4 that acts as a proxy enabling flexible, policy-based switching and in-
network operations of IoT devices. BLE devices are strictly bound to a central
device such as a smartphone or tablet. IoT usage requires cloud-based solutions
where central devices connect to an IoT infrastructure. The authors propose a
BLE service switch (BLESS) that is transparently inserted between peripheral
and central devices and acts like a transparent proxy breaking up the peer-to-
peer model. It maintains BLE link layer connections to peripheral devices within
its range. A central controller implements functionalities such as service discov-
ery, access policy enforcement, and subscription management so that features
like service slicing, enrichment, and composition can be realized by BLESS.

Muppet [402] extends BLESS by supporting the Zigbee protocol in parallel
to BLE. In addition to the features of BLESS, inter-protocol services between
Zigbee and BLE and BLE/Zigbee and IP protocols are introduced. An example
for the latter are HTTP transactions that are automatically sent out by the
switch if it sees a specified set of BLE/Zigbee transactions. The data plane
implementation of BLESS is extended by protocol-dependent packet parsers and
processing and support for encrypted Zigbee packets via packet recirculation.

Wang et al. [403] implement aggregation and disaggregation of small IoT
packets on P4 switches. For a small IoT packet, the header holds a large propor-
tion of the packet’s total size. In large streams of IoT packets, this causes high
overhead. The current aggregation techniques for IoT packets are implemented
by external servers or on the control plane of switches, both resulting in low
throughput and added latency. Therefore, the authors propose an implemen-
tation directly on P4 switches where IoT packets are buffered, aggregated, and
encapsulated in UDP packets with a custom flag-header, type, and padding. In
disaggregation, the incoming packet is cloned to stripe out the single messages
until all messages are separated.

Madureira et al. [404] present the Internet of Things Protocol (IoTP), an
L2 communication protocol for IoT data planes. The main purpose of IoTP is
data aggregation at the network level. IoTP introduces a new, fixed header and
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is compatible with any forwarding mechanism. The authors implemented IoTP
for the bmv2 and store single packets of a flow in registers until the data can be
aggregated.

Engelhard et al. [405] present a system for massive wireless sensor networks.
They implement a physically distributed, and logically centralized wireless ac-
cess systems to reduce the impairment by collisions. P4 is leveraged as connec-
tion between a physical access point and a virtual access point. To that end,
they extend the bmv2 to provide additional functionality. However, they give
information about their P4 program only in form of a decision flow graph.

12.3. Industrial Networking
FastReact [406] outsources sensor data packet processing from centralized

controllers to P4 switches. The sensor data is recorded in variable-length time
series data stores where an additional field holds the current moving average
calculated on the time series. Both data for all sensors can be polled by a cen-
tral controller. For controlling actuators directly on the data plane, FastReact
supports the formulation of control logic in conjunctive normal form (CNF).
It is mapped to actions to either forward signal data to the controller, discard
it, or directly send it to the actuator. FastReact also features failure recovery
directly on the switch. For every sensor and actuator, timestamps for the last
received packets along a timeout limit is recorded. If failures are detected, sensor
data are forwarded following failover rules with backup actuators for particular
sensors.

Cesen et al. [407] leverage P4-capable switches to move control logic to
the network. Control applications reside in controllers that are responsible for
emergency intervention, e.g., if a given threshold is exceeded. The connection
to the controller may be faulty and, therefore, controller intervention may not
be fast enough. In this work, the authors generate emergency packets, i.e., stop
commands, directly in the data plane. The action is triggered if the switch
receives a packet with a specific payload.

Kunze et al. [408] investigate the applicability of in-network computing to
industrial environments. They offload a simple task, i.e., coordinate transfor-
mation, to different programmable P4 targets. They come to the conclusion,
that, while in general possible, even simple task have heavy demands on pro-
grammable network devices and that offloading may lead to inaccurate results.

12.4. Time-Sensitive Networking (TSN)
Rüth et al. [409] introduce a scheme for implementing in-network control

mechanisms for linear quadratic regulators (LQR). LQRs can be described by
a multiplication of a matrix and a vector. The vector describes the control
of the actuator, the matrix describes the current system state. The result of
the multiplication is a control command. The destination of a switch describes
a specific actuator. When a switch receives a control packet, it matches the
destination of the packet onto a match-and-action table. The lookup provides
the control vector for the actuator. The control vector from the lookup is then
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multiplied with the system state matrix that is stored in a register to calculate
the control command for the actuator. The resulting control command is written
into the packet header and the packet is forwarded to the target actuator.

Kannan et al. [410] introduce the Data Plane Time synchronization Proto-
col (DPTP) for distributed applications with computations directly on the P4
data plane. DPTP follows a request-response model, i.e., all P4 switches re-
quest the global time from a designated master switch. Therefore, each switch
features a local control plane that generates time requests sent to the master
switch. Additionally, the control plane handles overflows in time calculation for
administration.

Kundel et al. [411] demonstrate timestamping with nanosecond accuracy.
They describe a simple setup with a Tofino-based switch and a breakout cable to
connect two ports of the switch. In the experiment, timestamps at the moment
of sending and reception are recorded in the packet header. The authors compare
those two timestamps to show that very fine-grained measurements are possible.

12.5. Network Function Virtualization (NFV)
Kathará [412] runs NFs as P4 programs either on software or hardware

targets. For software-based deployment, the framework leverages Docker con-
tainers that run NFs as container images or individual setups for Quagga, Open
vSwitch, or bmv2 container images. For hardware-based deployment on P4
switches, NFs are either replicated on every P4 switch or distributed on mul-
tiple P4 switches as needed. In both cases, a load balancer or service classifier
forwards flows to the appropriate P4 switch. As a main advantage, P4 programs
can be shifted between the bmv2-based P4 software targets and hardware tar-
gets depending on the required performance.

P4NFV [413] also deals with the idea of running NFs either on software-
or hardware-based P4 targets. The authors adopt the ETSI NFV architecture
with control and monitoring entities and add a layer that abstracts various
types of software- and hardware-based P4 targets as P4 nodes. For optimized
deployment, the targets performance characteristics are part of the P4 node de-
scription. For runtime reconfiguration, the authors propose two approaches. In
pipeline manipulation, the P4 program features multiple match-action pipelines
that can be enabled or disabled by setting register flags. In program reload, a
new P4 program is compiled and loaded to the P4 target. The authors propose
to perform state management and migration either directly on the data plane
or via a control plane.

Osiński et al. [414] use P4 to offload the data plane of virtual network
functions (VNFs) into a cloud infrastructure by allowing VNFs to inject small
P4 programs into P4 devices like SmartNICs or top-of-rack switches. This
results in better performance and a microservice-based approach for the data
plane. A new P4 architecture model that integrates abstractions used to develop
VNF data planes was developed.

Moro et al. [415] present a framework for NF decomposition and deployment.
They split NFs into components that can run on CPUs or that can be offloaded
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to specific programmable hardware, e.g., P4 programmable switches. The pre-
sented orchestrator combines multiple functions into a single P4 program that
can be deployed to programmable switches.

DPPx [416] implements a framework for P4-based data plane programma-
bility and exposure which allows enhancing NFV services. They introduce data
plane modules written in P4 which can be leveraged by the application plane.
As an example, a dynamic optimization of packet flow routing (DOPFR) is
implemented using DPPx.

Mohammadkhan et al. [417] provide a unified P4 switch abstraction frame-
work where servers with software NFs and P4-capable SmartNICs are seen as
one logical entity by the SDN controller. They further leverage Mixed Integer
Linear Programming (MILP) to determine partitioning of P4 tables for optimal
placement of NFs.

FOP4 [418] [419] implements a rapid prototyping platform that supports
container-based, P4-switch-based, and SmartNIC-based NFs. They argue that
a prototyping platform is needed to quickly develop and evaluate new NFV use
cases.

PlaFFE [420] introduces NFV offloading where some features of VNFs or
embedded Network Functions (eNFs) are executed on SmartNICs using P4.
Additionally, P4 is used to steer traffic either through the eNFs or through
VNFs using SR-IOV.

12.6. Service Function Chains (SFCs)
P4SC [421] [422] implements a SFC framework for P4 targets. SFCs are

described as directed acyclic graph of service functions (SFs). In P4SC, SFs
are represented by blocks. Each block has a unique identifier, a P4 program for
ingress processing, and a P4 program for egress processing. P4SC includes 15
SF blocks, e.g., L2 forwarding, which are extracted from switch.p4. After the
user specified all SFCs for a particular P4 target, the P4SC converter merges
the directed acyclic graphs of all SFCs with an LCS-based algorithm into an
intermediate representation. Then, the P4SC generator creates the final P4
program based on the intermediate representation to be deployed onto the P4
target. P4 program generation includes runtime management, i.e., the gener-
ator creates one API per SFC while hiding SF-specific details, e.g., names of
particular match-and-action tables.

Re-SFC [424] improves P4SC’s resource usage by using resubmit operations.
If the specified order of SFs in an SFC does not match the pre-embedded SF of
the P4 switch, incoming flows cannot be processed. P4SC solves this problem by
permitting redundant NF embeds, i.e., if SFs of one SFC are required by another
SFCs, those SFs are just replicated. To reduce the costly usage of match-and-
action tables, Re-SFC introduces resubmit actions where packets are re-bounced
to the ingress.

FlexMesh [425] tackles the problem of fixed SFC flow control, i.e., when
the specified order of SFs does not match the pre-embedded SF, by leveraging
MATs. SFs can be dynamically bypassed, and recirculation is used to build any
desired SF chain.
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P4-SFC [426] is an SFC framework based on MPLS segment routing and
NFV. P4 is used to implement a traffic classifier. A central orchestrator deploys
service functions as VNFs and configures the traffic classifier based on definitions
of SFCs.

12.7. Summary and Analysis
As the research domain of advanced networking covers different topics, al-

most all core properties of P4 are covered. The area of cellular networks (Section
12.1) greatly benefits from the definition and usage of custom packet headers as
many works are based on tunneling technologies, such as GTP. Further, flexible
packet header processing allows implementing new 5G concepts such as gNB
or EPG. Some use cases still require offloading tasks to specialized hardware
or software by leveraging the target-specific packet header processing function
property of P4, e.g., for ARQ or ciphering in the context of gNB. Network func-
tion virtualization (NFV) (Section 12.5) benefits from flexible development and
deployment as single network functions (NFs) can be replaced or relocated dur-
ing operation. New protocols and extensions to existing protocols presented in
Section 12.6 rely on definition and usage of custom packet headers and flexible
packet header processing.

13. Applied Research Domains: Network Security

We describe applied research on firewalls, port knocking, DDoS attack mit-
igation, intrusion detection systems, connection security, and other fields of
application. Table 9 shows an overview of all the work described. At the end
of the section, we summarize the work and analyze it with regard to P4’s core
features described in Section 8.1.

13.1. Firewalls
Ricart-Sanchez et al. [428] present a 5G firewall that analyzes GTP data

transmitted between edge and core networks. P4 allows an implementation of
parsing and matching GTP header fields such as 5G user source IP, 5G user
destination IP, and identification number of the GTP tunnel. The P4 pipeline
implements an allow-by-default policy, DROP actions for specific sets of keys
can be installed via a data plane API. In a follow-up work [429], the authors
extend the 5G firewall by support for multi-tenancy with VXLAN.

CoFilter [430] implements an efficient flow identification scheme for stateful
firewalls in P4. To solve the problem of limited table sizes on SDN switches,
flow identifiers are calculated by applying a hashing function to the 5-tuple of
every packet directly on the switch. The proposed concept includes a novel
hash rewrite function that is implemented on the data plane. It resolves hash
commission and hash table optimization using an external server.

P4Guard [431] replaces software-based firewalls by P4-based virtual firewalls
in the VNGuard [479] system. VNGuard introduces controller-based deploy-
ment and management of virtual firewalls with the help of SDN and NFV. The
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Table 9: Overview of applied research on network security (Section 13).

Research work Year Targets Code

Firewalls (13.1)

Ricart-Sanchez et al. [428, 429] 2018/19 NetFPGA-SUME
CoFilter [430] 2018 Tofino
P4Guard [431] 2018 bmv2
Vörös and Kiss [432] 2016 p4c-behavioral

Port Knocking (13.2)

P4Knocking [433] 2020 bmv2
Almaini et al. [434] 2019 bmv2

DDoS Mitigation Mechanisms (13.3)

LAMP [435] 2018 bmv2
TDoSD@DP [436, 437] 2018/19 bmv2
Kuka et al. [438] 2019 Xilinx UltraScale+, Intel

Stratix 10
Paolucci et al. [439, 440] 2018/19 bmv2, NetFPGA-SUME
ML-Pushback [441] 2019 -
Afek et al. [442] 2017 p4c-behavioral
Cardoso Lapolli et al. [443] 2019 bmv2 [444]
Cai et al. [445] 2020 -
Lin et al. [446] 2020 bmv2
Musumeci et al. [447] 2020 bmv2
DIDA [448] 2020 bmv2
Dimolianis et al. [449] 2020 Netronome
Scholz et al. [450] 2020 bmv2, T4P4S,

Netronome, NetFPGA
SUME

[451]

Friday et al. [452] 2020 bmv2
NetHide [453] 2018 -

Intrusion Detection Systems & Deep Packet Inspection (13.4)

P4ID [454] 2019 bmv2
Kabasele and Sadre [455] 2018 bmv2
DeepMatch [456] 2020 Netronome [457]
Qin et al. [458] 2020 bmv2, Netronome [459]
SPID [460] 2020 bmv2
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Research work Year Targets Code

Other Fields of Application (13.6)

Chang et al. [461] 2019 bmv2
Clé [462] 2019 -
P4DAD [463] 2020 bmv2
Chen [464] 2020 Tofino [465]
Gondaliya et al. [466] 2020 NetFPGA SUME
Poise [467] 2020 Tofino [468]

Connection Security (13.5)

P4-MACsec [469] 2020 bmv2, NetFPGA-SUME [470]
P4-IPsec [471] 2020 bmv2, NetFPGA-SUME, Tofino [472]
SPINE [473] 2019 bmv2 [474]
Qin et al. [475] 2020 bmv2
P4NIS [476] 2020 bmv2 [477]
LANIM [478] 2020 bmv2

P4-based firewall comprises a single MAT that allows ALLOW/DROP decision
for Layer 3/4 header fields as match keys. The flow statistics are recorded with
the help of counters. Another MAT allows enabling/disabling the firewall at
runtime.

Vörös and Kiss [432] present a firewall implemented in P4. The parser sup-
ports Ethernet, IPv4/IPv6, UDP, and TCP headers. A ban list comprises MAC
address/IP address entries that represent network hosts. Packets matching this
ban list are directly dropped. To mitigate port scan or DDoS attacks, coun-
ters track packet rate and byte transfer statistics. Another MAT implements
whitelist filtering.

13.2. Port Knocking
Port knocking is a simple authentication mechanism for opening network

ports. Network hosts send TCP SYN packets in predefined sequences to certain
ports. If the sequence is completed correctly, the server opens up a desired port.
Typically, port knocking is implemented in software on servers.

P4Knocking [433] implements port knocking on P4 switches. The authors
propose four different implementations for P4. In the first implementation,
P4 switches track the state of knock sequences in registers where the source
IP address is used as an index. The second implementation uses a CRC-hash
of the source IP address as index for the knocking state registers. To resolve
the problem of hash collisions, the third implementation relies on identifiers
that are calculated and managed by the controller. The fourth implementation
solely relies on the controller, i.e., P4 switches forward all knocking packets to
the controller.
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Almaini et al. [434] implement port knocking with a ticket mechanism on P4
switches. Traffic is only forwarded if the sender has a valid ticket. Predefined
trusted nodes have a ticket by default, untrustworthy nodes must obtain a ticket
by successful authentication via port knocking. The authors use the HIT/MISS
construct of P4 as well as stateful P4 components to implement the concept.
Port knocking sequences and trusted/untrusted hosts can be maintained by the
control plane.

13.3. DDoS Attack Mitigation
LAMP [435] presents a cooperative mitigation mechanism for DDoS attacks

that relies on information from the application layer. Ingress P4 switches add
a unique identifier to the IP options header field of any processed packet. The
last P4 switch ahead of the target host stores this mapping and empties the
IP options header field. If a network hosts, e.g., a database server, detects an
ongoing DDoS attack on the application layer, it adds an attack flag to the IP
options header field and sends it back to the switch. The switch forwards this
packet to the ingress switch to enable dropping of all further packets of this
flow.

TDoSD@DP [436] is a P4-based mitigation mechanism for DDoS attacks
targeting SIP proxies. Stateful P4 registers record the number of SIP INVITE
and SIP BYE messages. Then, a simple state machine monitors sequences of
INVITE and BYE messages. Many INVITES followed by zero BYE messages
lead to dropping SIP INVITE packets where valid sequences of INVITE and
BYE messages will keep the port open. In a follow-up work [437], the authors
present an alternative approach where P4 switches act as distributed sensors.
An SDN controller periodically collects data from counters of P4 switches to
perform centralized attack detection. Then, attack mitigation is performed by
installing DROP rules on the P4 switches.

Kuka et al. [438] present a DDoS mitigation system that targets volumet-
ric DDoS attacks called reflective amplification attacks. The authors port an
existing VHDL implementation into a P4 program that runs on FPGA targets.
The implementation selects the affected subset of the incoming traffic, extracts
packet data, and forwards it as a digest to an SDN controller. The SDN con-
troller continuously evaluates this information; a heuristic algorithm identifies
aggressive IP addresses by looking at the volumetric contribution of source IP
addresses to the attack. In case of a detected attack, the SDN controller installs
DROP rules.

Paolucci et al. [439, 440] present a stateful mitigation mechanism for TCP
SYN flood attacks. It is part of a P4-based edge packet-over-optical node that
also comprises traffic engineering functionality. P4 registers keep per-session
statistics to detect TCP SYN flood attacks. One register records the port num-
ber of the last TCP SYN packet, the another one records the number of at-
tempts matching the TCP SYN flood behavior. If the latter one exceeds a
defined threshold, the packets are dropped.

ML-Pushback [441] proposes an extension of the Pushback DDoS attack
mitigation mechanism by machine learning techniques. P4 switches implement
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a data collector mechanism that collects dropped packets and forwards them
as digest messages to the control plane. On the control plane, a deep learning
module extracts signatures and classifies the collected digest with a decision
tree model. Attack mitigation is performed by throttling attacker traffic via
rate limits.

Afek et al. [442] implement known mitigation mechanisms for SYN and DNS
spoofing in DDoS attacks for OpenFlow and P4 targets. The OpenFlow imple-
mentation targets Open vSwitch and OpenFlow 1.5 where P4 implementations
are compiled for p4c-behavioral without control plane involvement. In addi-
tion, the authors implemented a set of algorithms and methods for dynamically
distributing the rule space over multiple switches.

Cardoso Lapolli et al. [443] describe an algorithmic approach to detect and
stop DDoS attacks on P4 data planes. The algorithm was specifically created
under the functional constraints of P4 and is based on the calculation of the
Shannon entropy.

Cai et al. [445] propose a novel method for collecting traffic information to
detect TCP port scanning attacks. The authors propose the "0-replacement"
method as an efficient alternative to existing sampling and aggregation methods.
It introduces a pending request counter (PRcounter) and relies on registers to
bind hashing identifiers of the attackers’ IP addresses to PRcounter values. The
authors describe the concept as compliant to PSA, but only simulation results
are given.

Lin et al. [446] present a comparison of OF- and P4-based implementations
of basic mitigation mechanisms against SYN flooding and ARP spoofing attacks.

Musumeci et al. [447] present P4-assisted DDoS attack mitigation using an
ML classifier. An ML-based DDoS attack detection module with a classifier
is running on a controller. The P4 switch forwards traffic to the module; the
DDoS attack detection module responds with a decision. The authors consider
three use cases: packet mirroring + header mirroring + metadata extraction. In
metadata extraction, P4 switches implement counters that store occurrences of
IP, UDP, TCP, and SYN packets. In the case that one of the counters exceeds
a defined threshold, the P4 switch inserts a custom header with the counter
values and sends it to the DDoS attack detection module.

DIDA [448] presents a distributed mitigation mechanism against amplified
reflection DDoS attacks. In this type of DDoS attack, spoofed requests lead to
responses that are by magnitude larger. An example is a DNS ANY query. The
authors rely on count-min sketch data structures and monitoring intervals to
put the number of requests and responses into relation. In case of a detected
DDoS attack, ACLs are used to block the traffic near to the attacker.

Dimolianis et al. [449] introduce a multi-feature DDoS detection scheme
for TCP/UDP traffic. It considers the total number of incoming traffic for a
particular network, the significance of the network, and the symmetry ratio of
incoming and outgoing traffic for classifications. The feature analysis is time-
dependent and focuses on distinct time intervals.

Scholz et al. [450] propose a SYN proxy that relies on SYN cookies or
SYN authentication as protection against SYN flooding DDoS attacks. The
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authors present a software implementation based on DPDK and compare it to a
bmv2-based P4 implementation that is ported to the T4P4S P4 software target,
Netronome P4 hardware target, and NetFPGA SUME P4 hardware target.
Evaluation results, benefits, and challenges for each platform are discussed.

Friday et al. [452] present a two-part DDoS detection and mitigation scheme.
In the first part, a P4 target applies a one-way traffic analysis using bloom
filters and time-dependent statistics such as moving averages. In the second
part, the P4 target analyzes the bandwidth and transport protocols used by
various applications to perform a volumetric analysis. The processing pipeline
then decides about malicious traffic to be dropped. Administrators may supply
custom network parameters used for dynamic threshold calculation that are
then installed via an API on the data plane. The authors demonstrate the
effectiveness of the proposed approach by three use cases: UDP amplification
DDoS attacks, SYN flooding DDoS attacks, and slow DDoS attacks.

NetHide [453] prevents link-flooding attacks by obfuscating the topology of
a network. It achieves this by modifying path tracing probes in the data plane
while preserving their usability.

13.4. Intrusion Detection Systems (IDS) & Deep Packet Inspection (DPI)
P4ID [454] reduces intrusion detection system (IDS) processing load by ap-

ply pre-filtering on P4 switches (IDS offloading/bypassing). P4ID features a
rule parser that translates Snort rules with a multistage mechanism into MAT
entries. The P4 processing pipeline implements a stateless and a stateful stage.
In the stateless stage, TCP/ICMP/UDP packets are matched against a MAT
to decide if traffic should be dropped, forwarded to the next hop, or forwarded
to the IDS. In the stateful stage, the first n packets of new flows are forwarded
to the IDS. This allows that traffic targeting well-known ports can be also ana-
lyzed. Combining the feedback of the IDS for packet samples with the stateless
stage is future work.

Kabasele and Sadre [455] present a two-level IDS for industrial control system
(ICS) networks. The IDS targets the Modbus protocol that runs on top of TCP
in SCADA networks. The first level comprises two whitelists: a flow whitelist
for filtering on the TCP layer and a Modbus whitelist. If no matching entry is
found for a given packet, it is forwarded to the second layer. This is in stark
contrast to legacy whitelisting where packets are just dropped. In the second
level, a Zeek network security analyzer acts as deep packet inspector running on
a dedicated host. It analyzes the given packet, makes a decision, and instructs
the controller to update filters on the switch.

DeepMatch [456] introduces deep packet inspection (DPI) for packet pay-
loads. The concept is implemented with the help of network processors; its
prototype is built with the Netronome NFP-6000 SmartNIC P4 target. The
authors present regex matching capabilities that are executed in 40Gbit/s (line
rate of the platform) for stateless intra-packet matching and about 20Gbit/s
for stateful inter-packet matching. The DeepMatch functionalities are natively
implemented in Micro-C for the Netronome platform and integrated into the P4
processing pipeline with the help of P4 externs.
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Qin et al. [458] present an IDS based on binarized neural networks (BNN)
and federated learning. BNNs compress neural networks into a simplified form
that can be implemented on P4 data planes. Weights are compressed into single
bits and computations, e.g., activation functions, are converted into bit-wise
operations. P4 targets at the network edge then apply BNNs to classify incoming
packets. To continuously train the BNNs on the P4 targets, the authors propose
a federated learning scheme. Each P4 target is connected to a controller that
trains an equally structured neural network with samples received from the P4
target. A cloud service aggregates local updates received from the controllers
and responds with weight updates that are processed into the local model.

In the Switch-Powered Intrusion Detection (SPID) framework [460], switches
compute and store flow statistics, and perform traffic change detection. If a
relevant change in traffic is detected, measurement data is pushed to the control
plane. In the control plane, the measurement data is fed to a ML-based anomaly
detection pipeline to detect potential attacks.

13.5. Connection Security
P4-MACsec [469] presents an implementation of IEEE 802.1AE (MACsec)

for P4 switches. A two-tier control plane with local switch controllers and a cen-
tral controller monitor the network topology and automatically set up MACsec
on detected links between P4 switches. For link discovery and monitoring, the
authors implement a secured variant of LLDP that relies on encrypted payloads
and sequence numbers. MACsec is directly implemented on the P4 data plane;
encryption/decryption using AES-GCM is implemented on the P4 target and
integrated in the P4 processing pipeline as P4 externs.

P4-IPsec [471] presents an implementation of IPsec for P4 switches. IPsec
functionality is implemented in P4 and includes ESP in tunnel mode with sup-
port for different cipher suites. As in P4-MACsec, the cipher suites are imple-
mented on the P4 target and integrated as P4 externs. In contrast to standard
IPsec operation, IPsec tunnels are set up and renewed by an SDN controller
without IKE. Site-to-site operation mode supports IPsec tunnels between P4
switches. Host-to-site operation mode supports roadwarrior access to an inter-
nal network via a P4 switch. To make the roadwarrior host manageable by the
controller, the authors introduce a client agent tool for Linux hosts.

SPINE [473] introduces surveillance protection in the network elements by IP
address obfuscation against surveillance in intermediate networks. In contrast
to software-based approaches such as TOR, SPINE runs entirely on the data
plane of two nodes with intermediate networks in between. It applies a one-time-
pad-based encryption scheme with key rotation to encrypt IP addresses and, if
present, TCP sequence and acknowledgment numbers. The SPINE nodes add a
version number representing the encryption key index to each packet by which
the receiving switch can select the appropriate key for decryption. The key sets
required for the key rotation are maintained by a central controller.

Qin et al. [475] introduce encryption of TCP sequence numbers using
substitution-boxes to protect traffic between two P4 switches. An ONOS-based
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controller receives the first packet of each new flow and applies security poli-
cies to decide whether the protection should be enabled. Then, it installs the
necessary data in registers and updates MATs to enable TCP sequence number
substitution.

P4NIS [476] proposes a scheme to protect against eavesdropping attacks. It
comprises three lines of defense. In the first line of defense, packets that belong
to one traffic flow are disorderly transmitted via various links. In the second line
of defense, source/destination ports and sequence/acknowledgment numbers are
substituted via s-boxes similar to the approach of Qin et al. [475]. The third
line of defense resembles existing encryption mechanisms that are not covered
by P4NIS.

LANIM [478] presents a learning-based adaptive network immune mecha-
nism to prevent against eavesdropping attacks. It targets the Smart Identifier
Network (SINET) [480], a novel, three-layer Internet architecture. LANIM ap-
plies the minimum risk ML algorithm to respond to irregular conditions and
applies a policy-based encryption strategy focusing on the intent and applica-
tion.

13.6. Other Fields of Application
Chang et al. [461] present IP source address encryption. It accomplishes

non-linkability of IP addresses as proactive defense mechanism. Network hosts
are connected to trusted P4 switches at the network edges. In between, packets
are exchanged via untrusted switches/routers. The P4 switch next to the sender
encrypts the sender IP address by applying an XOR operation with a hash
calculated by a random number and a shared key. The P4 switch next to the
receiver decrypts the original sender IP address. The mechanism includes a
dynamic key update mechanism so that transformations are random.

Clé [462] proposes to upgrade particular switches in a legacy network to P4
switches that implement security network functions (SNFs) such as rule-based
firewalls or IDS on P4 switches. Clé comprises a smart device upgrade selection
algorithm that selects switches to be upgraded and a controller that forwards
traffic streams to the P4 switches that implement SNFs.

P4DAD [463] presents a novel approach to secure duplicate address detec-
tion (DAD) against spoofing attacks. Duplicate address detection is part of
NDP in IPv6 where nodes check if an IPv6 address to be applied conflicts with
another node. As the messages exchanged in duplicate address detection are
not authenticated or encrypted, it is vulnerable to message spoofing. As simple
alternative to authentication or encryption, P4DAD introduces a mechanism
to filter spoofed NDP messages. The P4 switch maintains registers to create
bindings between IPv6 addresses, port numbers, and address states. Thereby,
it can detect and drop spoofed NDP messages.

Chen [464] shows how AES can be implemented on Tofino-based P4 targets
in P4 using MATs as lookup tables. Expansion of the AES key is performed in
the control plane. MAT entries specific to the encryption keys are generated by
a controller.
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Gondaliya et al. [466] implement six known mechanisms against IP ad-
dress spoofing for the NetFPGA SUME P4 target. Those are Network Ingress
Filtering, Reverse Path Forwarding (Loose, Strict and Feasible), Spoofing Pre-
vention Method (SPM), and Source Address Validation Improvement (SAVI).
The authors compare the different mechanisms with regard to resource usage
on the FPGA and report that the implementations of all mechanisms achieve
a throughput of about 8.5Gbit/s and a processing latency of about 2µs per
packet.

Poise [467] introduces context-aware policies for securing P4-based networks
in BYOD scenarios. Instead of relying on a remote controller or software-based
solution, Poise implements context-aware policy enforcement directly on P4 tar-
gets. Network administrators define context-aware security policies in a declara-
tive language based on Pyretic NetCore that are then compiled into P4 programs
to be executed on P4 targets. BYOD clients run a context collection module
that adds context information headers to network packets. The P4 program gen-
erated by Poise then parses and uses this information to enforce ACLs based on
device runtime contexts. P4 targets in Poise are managed by a Poise controller
that compiles the P4 programs, installs them on the P4 targets, and provides
configuration data to the collection modules. The authors present a prototype
including PoiseDroid, an implementation of the context collection module for
Android devices.

13.7. Summary and Analysis
Several prototypes apply P4’s custom packet headers, e.g., for building a

GTP firewall for 5G networks, a DDoS attack mitigation mechanism for the
SIP, or an IDS for the Modbus protocol in industrial networks. It is also used
for in-band signaling, e.g., in cooperative DDoS attack detection. All prototypes
rely on flexible packet header processing ; outstanding for this section, many of
them also rely on target-specific packet header processing functions offered by
the P4 target. Some works require custom externs, e.g., for applying MACsec or
IPsec on P4 data planes. As for prototypes from the research area Monitoring
(Section 9), many prototypes rely on registers and counters for recording statis-
tics, e.g., for detecting attacks in DDoS mitigation or in IDSs. While custom
packet headers and basic packet header processing are supported by all P4 hard-
ware targets, the portability of prototypes using these specific functions is very
limited. Several prototypes also rely on packet processing on the control plane
where information (e.g., from blocking lists, IDS rules) is translated into MAT
rules for data plane control or data received from the data plane (e.g., statistical
data or packet digests) is used for runtime control. Flexible deployment allows
to re-deploy network security programs on P4 switches in large networks.

14. Miscellaneous Applied Research Domains

This section summarizes work that falls outside of the other application do-
mains. We describe applied research on network coding, distributed algorithms,
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state migration, and application support. Table 10 shows an overview of all the
work described. At the end of the section, we summarize the work and analyze
it with regard to P4’s core features described in Section 8.1.

14.1. Network Coding
In Network Coding (NC) [517], linear encoding and decoding operations are

applied on packets to increase throughput, efficiency, scalability, and resilience.
Network nodes apply primitive operations, e.g., splitting, encoding, or decoding
packets, to implement NC mechanisms such as multicast, forward error correc-
tion, or rerouting (resilience).

Kumar et al. [481] implement primitive NC operations such as splitting, en-
coding, and decoding for a PSA software switch. This is the first introduction
of NC for SDN, as fixed-function data plane switches, e.g., as in OF, did not
support such operations. The authors describe details of their implementation.
The open-source implementation [482] relies on clone and recirculate operations
to generate additional packets for encoding and decoding operations and packet
processing loops. Temporary packet buffers for gathering operations are imple-
mented with P4 registers. However, P4 hardware targets are not considered.

Gonçalves et al. [483] implement NC operations that may use information
from multiple packets during processing. The authors implement their concept
for PISA in P416. It features multiple complex NC operations that focus on
multiplications in Galois fields used for encoding and decoding operations. NC
operations are implemented in P4 externs that extend the capabilities of the
software switch to store a specific amount of received packets. Again, hardware
targets are not considered.

14.2. Distributed Algorithms
We describe related work on event processing and in-network consensus.

14.2.1. Event Processing
Data with stream characteristics often require specific processing. For ex-

ample, sensor data may be analyzed to determine whether values are within
certain thresholds, or chunks of data are aggregated and preprocessed.

P4CEP [484] shifts complex event processing from servers to P4 switches
so that event stream data, e.g., from sensors, is directly processed on the data
plane. The solution requires several workarounds to solve P4 limitations regard-
ing stateful packet processing.

DAIET [485] introduces in-network data aggregation where the aggregation
task is offloaded to the entire network. This reduces the amount of traffic and
reliefs the destination of computational load. The authors provide a prototype
implementation in P414 but only a few details are disclosed.

Sankaran et al. [486] increase the processing speed of packets by reducing
the time that is required by forwarding nodes to parse the packet header. To
that end, ingress routers parse the header stack to compute a so-called unique
parser code (UPC) which they add to the packet header. Downstream nodes
need to parse only the UPC to make forwarding decisions.
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Table 10: Overview of applied research on miscellaneous research domains (Section 14).

Research work Year Targets Code

Network Coding (Section 14.1)

Kumar et al. [481] 2018 bmv2 [482]
Gonçalves et al. [483] 2019 bmv2

Distributed Algorithm (Section 14.2)

P4CEP [484] 2018 bmv2, Netronome
DAIET [485] 2017 -
Sankaran et al. [486] 2020 -
Zang et al. [487] 2017 bmv2
Dang et al. [488, 489] 2016/20 Tofino [490]
P4BFT [491, 492] 2019 bmv2, Netronome
SwiShmem [493] 2020 -
SC-BFT [494] 2020 bmv2 [495]
LODGE [496] 2018 bmv2
LOADER [497] 2020 [498]
FLAIR [499] 2020 Tofino

State Migration (Section 14.3)

Swing State [500] 2017 bmv2
P4Sync [501] 2020 bmv2 [502]
Xue et al. [503] 2020 bmv2
Kurzniar et al. [504] 2020 bmv2
Sankaran et al. [505] 2020 NetFPGA-SUME

Application Support (Section 14.4)

P4DNS [506] 2019 NetFPGA SUME [507]
P4-BNG [508] 2019 bmv2, Tofino, Netronome,

NetFPGA-SUME
[509]

ARP-P4 [510] 2018 bmv2
Glebke et al. [511] 2019 Netronome
COIN [512] 2019 -
Lu et al. [513] 2019 Tofino
Yazdinejad et al. [514] 2019 bmv2
P4rt-OVS [515] 2020 - [516]
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14.2.2. In-Network Consensus
Distributed algorithms or mechanisms may require consensus to determine

the right solution or processing. This includes communication between partici-
pating entities and some ways to determine the right solution.

Zhang et al. [487] propose to offload parts of the Raft consensus algorithm
to P4 switches. However, the mechanisms require an additional client to run on
the switch. The authors implement their application for a P4 software switch,
but details are not presented.

Dang et al. [488, 489] describe a P4 implementation of Paxos, a protocol
that solves consensus for distributed algorithms in a network of unreliable pro-
cessors based on information exchange between switches. This work contains a
detailed description of a complex P4 implementation. The authors explain all
components, provide code snippets, and discuss their design choices.

P4BFT [491, 492] introduces a consensus mechanism against buggy or mali-
cious control plane instances. The controller responses are sent to trustworthy
instances which compare the responses and establish consensus, e.g., by choos-
ing the most common response. The authors propose to offload the comparison
process to the data plane.

SwiShmem [493] is a distributed shared state management layer for the
P4 data plane to implement stateful distributed network functions. In high-
performance environments controllers are easily overloaded when consistency of
write-intensive distributed network functions, like DDoS detection, or rate lim-
iters, is required. Therefore, SwiShmem offloads consistency mechanisms from
the control plane to the data plane. Then, consistency mechanisms operate at
line rate because switches process traffic, and generate and forward state update
messages without controller interaction.

Byzantine fault refers to a system where consensus between multiple entities
has to be established where one or more entities are unreliable. Byzantine fault
tolerance (BFT) describes mechanisms that handle such faults. However, BFTs
often require significant time to reach consensus due to high computational
overhead to reduce uncertainty. Switch-centric BFT (SC-BFT) [494] proposes to
offload BFT functionalities, i.e., time synchronization and state synchronization,
into the data plane. This significantly accelerates the consensus procedure since
nodes process information at line rate.

LODGE [496] implements a mechanism for switches to make forwarding
decisions based on global state without control of a central instance. Developers
define global state variables which are stored by all stateful data plane devices.
When such a node processes a packet that changes a global state variable, the
switch generates and forwards an update packet to all other stateful switches
on a predefined distribution tree. LOADER [497] introduces global state to
the data plane. Consensus is maintained by the data plane devices through
distributed algorithms, i.e., the switches send notification messages when global
state changes. This increases scalability in comparison to mechanisms where
consensus is managed by a central control entity.

FLAIR [499] accelerates read operations in leader-based consensus protocols
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by processing the read requests in the data plane. To that end, FLAIR devices
in the core maintain persistent information about pending write operations on
all objects in the system. When a client submits a read request, the FLAIR
switch checks whether the requested object is stable, i.e., if it has pending write
operations. If the object is stable, the FLAIR switch instructs another client
with a stable version of the object, to send it to the requesting client. If the
object is not stable, the FLAIR switch forwards the write request to the leader.

14.3. State Migration
In Swing State [500], switches maintain state in registers that should be

migrated to other nodes. For migration, state information is carried by regular
packets created by the P4 clone operation throughout the network.

P4Sync [501] is a protocol to migrate data plane state between switches.
Thereby, it does not require controller interaction and provides guarantees on the
authenticity of the transferred state. To that end, it leverages the switch’s packet
generator to transfer the content of registers between devices. Authenticity in a
migration operation is guaranteed by a hash chain where each packet contains
the hashed values of both the current payload and the payload of the previous
packet.

Xue et al. [503] propose a hybrid approach for storing flow entries to address
the issue of limited on-switch memory. While some flow entries are still stored in
the internal memory of the switch, some flow entries may be stored on servers.
Switches access them with only low latency via remote direct memory access
(RDMA).

Kuzniar et al. [504] propose to leverage programmable switches to act as
in-network cache to speed up queries over encrypted data stores. Encrypted
key-value pairs are thereby stored in registers.

Sankaran et al. [505] describe a system to relieve switches from parsing
headers. They propose to parse headers at an ingress switch only and add a
unique parser code to the packet that identifies the set of headers of the packet.
With this information, following switches can parse relevant information from
the headers without having to parse the whole header stack.

14.4. Application Support
This subsection describes work that focuses on support or implementation

of existing applications and protocols.
P4DNS [506] is an in-network DNS system. The authors propose a hybrid

architecture with performance-critical components in the data plane and compo-
nents with flexibility requirements in the control plane. The data plane responds
to DNS requests and forwards regular traffic while cache management, recursive
DNS requests, and uncached DNS responses are handled by the control plane.

P4-BNG [508] implements a carrier-grade broadband network gateway (BNG)
in P4. The authors aim to provide an implementation for many different tar-
gets. To that end, they introduce a layer between data plane and control plane.
This hardware-specific BNG data plane controller runs directly on the targets
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to provide a uniform interface to the control plane. It then configures the data
plane according to the control commands from the control plane.

ARP-P4 [510] implements MAC address learning based on ARP solely on
the P4 data plane. To substitute a control plane, the authors integrate MAC
learning as an external function.

Glebke et al. [511] propose to offload computer vision functionalities, in
particular, time-critical computations, to the data plane. To that end, the
authors leverage convolution filters on a P4-programmable NIC. The necessary
computations are distributed to various MATs.

COordinate-based INdexing (COIN) [512] is a mechanism to ensure efficient
access to data on multiple distributed edge servers. To that end, the authors
introduce a centralized instance that indexes data and its associated location.
When an edge server requires data that it has not cached itself, it requests the
data index at the centralized instance which provides a data location.

Lu et al. [513] propose intra-network inference (INI) and implement it in
P4. It offloads neural network computations into the data plane. To that end,
each P4 switch communicates via USB with a dedicated neural compute stick
which performs computations.

Yazdinejad et al. [514] present a P4-based blockchain enabled packet parser.
The proposed architecture focuses on FPGAs and aims to bring the security
characteristics of blockchains into the data plane to greatly increase processing
speed.

P4rt-OVS [515] is an extension for the OVS based on BPFs to combine the
programmability of P4 and the well-known features of the OVS. P4rt-OVS
enables runtime programming of the OVS, in particular, the deployment of new
network features without recompilation of the OVS. It contains a P4-to-BPF
compiler which allows developers to write data plane code for the OVS in P4.

14.5. Summary and Analysis
P4 facilitates the development of prototypes in the domain of network cod-

ing (see Subection 14.1) by providing target-specific packet header processing
functions. The prototypes heavily rely on externs to implement complex packet
processing behavior, i.e., encoding and decoding operations, packet splitting
and packet merging. Such prototypes were mainly developed for the bmv2 and
portability to hardware platforms depends on the properties of the used ex-
terns and the capabilities of the hardware targets. Distributed algorithms (see
Section 14.2) leverage all sorts of P4’s core features. Some prototypes define
and use custom packet headers to transport information that are not available
in standard protocols. Others rely on flexible packet header processing and
target-specific packet header processing functions to implement unconventional
and complex packet processing behavior. Some prototypes require packet pro-
cessing on the control plane to resolve consistency issues or make network-wide
configuration decisions. In the context of state migration (see Section 14.3)
the prototypes mainly leverage externs to enable stateful processing. As a re-
sult, most projects were developed for the bmv2 with only limited portability
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to hardware platforms. Finally, some prototypes reimplement traditional net-
work protocols or network elements, e.g., DNS, BNG, or ARP. Those projects
mainly define and use custom packet headers for information transport, flexible
packet header processing to implement the functionality of the specific protocol
or network element, target-specific packet header processing functions for com-
plex packet processing, and packet processing on the control plane for corner
cases.

15. Discussion & Outlook

We discuss the findings of this survey and present an outlook.

15.1. P4 as a Language for Programmable Data Planes
From a variety of data plane programming approaches, P4 became the cur-

rently most widespread standard. Learning resources (Section 3.8) and the bmv2
P4 software target (Section 5.1) consitute low entry barriers for P4 technology.
This is appealing for academia and hardware support on high speed platforms
make P4 relevant for industry. The large body of literature that we surveyed
in this work demonstrates that P4 has the right abstractions to build proto-
types for many use cases in different application domains. Moreover, P4 allows
simple and flexible definition of data plane APIs (Section 6) that can be used
by simple control plane programs or complex, enterprise-grade SDN controllers.
Thus, P4 allows practitioners and researchers to express their data plane and
control plane algorithms in a simple way and thereby unleashes a great innova-
tion potential. As P4 is supported by multiple platforms, there is a potentially
large user group. In addition, P4 is an open programming language so that the
source code can be published as open source. Therefore, public P4 code can
profit from a large user community, both in quantity and quality, which is a
benefit for software maintenance and security.

15.2. P4 Targets Revisited
We have listed many available P4 targets in Section 5. However, our litera-

ture overview showed that mostly the bmv2 development and testing platform
and P4 hardware targets based on the Tofino ASIC were applied in the reviewed
papers.

The vast majority of prototypes runs on the software switch bmv2. One
reason is that it is freely available for everyone. In addition, the complexity of
the code is not constrained by hardware restrictions. And finally, any required
extern can be customized. Therefore, there is no limit on algorithmic complex-
ity so that bmv2 can serve as a platform for any use case – but only from a
functional point of view. As it is a pure software-based prototyping solution, it
cannot provide high throughput and is, therefore, not suitable for deployment
in productive environments.

The Tofino ASIC is the base for P4 hardware targets with high throughput on
many ports. It is currently the only available programmable data plane platform
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with throughput rates over 12.8Tbit/s and ports running at up to 400Gbit/s.
Therefore, Tofino-based devices are appropriate programmable data planes for
production environments like data centers or core networks. Tofino uses P4
as native programming language. Therefore, comprehensive tools are offered to
support the P4 development process on this platform. Moreover, P4 gives access
to all features of the Tofino chip so that there is no penalty of using P4 as a
programming language. Existing restrictions are due to the functional limitation
of a high speed platform. Thus, prototypes for Tofino are more challenging but
prove the technical feasibility of a new concept at commercial scale. Probably
for these reasons the Tofino turned out to be the mostly used hardware platform
in our survey.

P4 can be also used on FPGA- or NPU-based targets. They come with only
a few ports and lower throughput rates so that they may be used for special-
purpose server applications but not for typical switching devices. They ex-
cel through the possibility to extend the target functionality with user-defined
externs. These cards are typically programmed by vendor-specific languages.
P4 support is achieved by trans-compilers that translate P4 programs into the
vendor-specific format. P4 programmability might be limited to a restricted
feature set while access to all features of a target is only possible through the
vendor-specific programming language. Whether the application of P4 for such
targets is beneficial compared to vendor-specific programming languages or in-
terfaces mainly depends on the use case, level of knowledge of the programmer,
and if prospect target-independence is a goal.

15.3. Target Independence and Portability
Many of the surveyed works profited from P4’s core features that we sum-

marized in Section 8. Often P4 programs were developed only for the bmv2
target due to the complexity of their algorithm, required interaction with fixed-
function blocks, or dependence on custom extern functions. The portability of
such programs is limited to platforms with similar externs and even then the
code needs to be significantly adapted.

In some use cases, the authors even miss the original objectives of P4. They
suggest P4 for complex packet processing operations while P4 has been primarily
conceived for packet header processing with simple operations on high speed data
planes.

Although some of the presented prototypes may not be portable to current
P4 hardware targets, they are close to modern switch architectures as their
overall pipeline is described in P4. Thereby, the conceptual feasibility of new
data plane algorithms can be proven. This is an advantage of bmv2-based
prototypes compared to general software implementations.

15.4. A Business Perspective for P4-Programmable Data Planes
Today, the most prevalent hardware network appliances are proprietary de-

vices for which customized hardware and software are jointly developed.
Data plane programming breaks with this process. Programmable packet

processing ASICs such as the Tofino may be sold by specialized manufacturers
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and integrated by other vendors with a motherboard, CPU, memory, and con-
nectors in white box switches. The accompanying software, i.e., data plane and
control plane programs, might be provided by the same vendor, a third party,
or implemented by the users themselves.

Because software is developed independently of hardware, the agility of the
development process can be increased, which can reduce the time to market.
Hardware platforms become reusable; they can be leveraged for multiple pur-
poses with the help of appropriate P4 programs.

Network solution providers may leverage the lowered entry barrier for cus-
tomized hardware appliances to develop and sell P4 software for various P4-
capable targets, at least with moderate adaptation effort. A decade of imple-
mentation experience may no longer be a prerequisite for that business.

In addition, companies with large networks and particular use cases, e.g.,
special applications in data centers, may use customized algorithms to overcome
inefficiencies of standardized protocols or mechanisms.

Large companies can avoid vendor lock-in by acquisition of programmable
components instead of black boxes. The components are assembled possibly
with open-source software leveraging data plane programming, SDN, and NFV.
The ACCESS 4.0 architecture [518] and the O-RAN Alliance [519] are examples.
This type of disaggregation also enables cost scaling effects where off-the-shelf
components are bought at moderate cost instead of expensive specialized appli-
ances.

15.5. Outlook
P4 is primarily a programming language for high-speed switches. Currently,

it is supported by Intel’s Tofino ASIC, but other manufacturers already an-
nounced support for P4 for the future.

The many prototypes surveyed in this paper showed that there is a need
for more functionality on programmable switches, which may be provided by
extern functions. While they reduce portability, they enable more use cases.
Examples for such extern functions are features that have been used in some
of the pure software-based P4 prototypes. They encrypt and decrypt packet
payload, support floating-point operations, provide flexible hash functions, or
allow more complex calculations. Those externs might be provided by the target
manufacturers for common use cases or integrated by users.

Hardware with a vendor-specific programming language may benefit from
offering interfaces and cross-compilers for P4 together with useful extern func-
tions. Although this may not give access to the full functionality of the plat-
form, users with P4 programming knowledge can customize such devices for
their needs without worrying about hardware details.

The biggest driver for P4 is possibly disaggregation. While currently de-
vices from different vendors can be orchestrated by a customized controller, P4
may have the potential to extend disaggregation towards specialized appliances
based on off-the-shelf programmable hardware. Hardware without an open pro-
gramming interface cannot profit from that market.
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16. Conclusion

In this paper, we first gave a tutorial on data plane programming with P4.
We delineated it from SDN and introduced programming models with a special
focus on PISA which is most relevant for P4. We provided an overview of the
current state of P4 with regard to programming language, architectures, com-
pilers, targets, and data plane APIs. We reported research efforts to advance P4
that fall in the areas of optimization of development and deployment, research
on P4 targets, and P4-specific approaches for control plane operation.

In the second part of the paper, we analyzed 245 papers on applied research
that leverage P4 for implementation purposes. We categorized these publica-
tions into research domains, summarized their key points, and characterized
them by prototype, target platform, and source code availability. For each re-
search domain, we presented an analysis on how works benefit from P4. To that
end, we identified a small set of core features that facilitate implementations.
The survey proved a tremendous uptake of P4 for prototyping in academic re-
search from 2018 to 2021. One reason is certainly the multitude of openly
available resources on P4 and the bmv2 P4 software target. They are an ideal
starting point for creating P4-based prototypes, even for beginners.

The many P4-based activities which emerged only within short time show
that P4 technology can speed up the evolution of computer networking. While
multiple hardware targets are available, most hardware-based prototypes lever-
age the Tofino ASIC that is optimized for high throughput on many ports and
particularly suited for data center and WAN applications. However, the ma-
jority of P4-based prototypes was implemented with the bmv2 software switch.
Many of them were not ported to hardware, probably due to the complexity
of their data plane algorithms and lack of required extern functions on cur-
rent hardware. This may change in the future if new P4 hardware targets are
available. We expect P4 to become a base technology for multiple hardware
appliances, in particular in the context of disaggregation and for small-scale
markets.
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ABSTRACT Time-Sensitive Networking (TSN) is an enhancement of Ethernet which provides various
mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with
strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the
transmission of their frames by end stations is coordinated in such a way that none or very little queuing
delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses
so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The
TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work,
we consider scheduling in TSN which comprises the computation of periodic transmission instants at end
stations and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of
TSN features and standards. We state the TSN scheduling problem and explain common extensions which
also include optimization problems. We review scheduling and optimization methods that have been used in
this context. Then, the contribution of currently available research work is surveyed. We extract and compile
optimization objectives, solved problem instances, and evaluation results. Research domains are identified,
and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.

INDEX TERMS Time-sensitive networking (TSN), time-aware shaper (TAS), scheduling, optimization,
ethernet bridging.

I. INTRODUCTION
Modern applications, e.g., Industry 4.0 factory automation
and motion control, demand highly deterministic network
service. Exceeding latency and jitter bounds can result in
immediate degradation of manufacturing quality or endanger
health of machinery and operators. Some of these appli-
cations have to exchange data streams with precise timing
to keep application-specific deadlines. Time-Sensitive Net-
working (TSN) is an emerging technology which enhances
Ethernet networks with real-time properties. In TSN, talkers
send uni- or multicast streams, called streams, to traffic sinks,

The associate editor coordinating the review of this manuscript and

approving it for publication was Divanilson Rodrigo Campelo .

called listeners. The network admits streams and guarantees
quality of service (QoS). Time-triggered (TT) traffic consti-
tutes periodic data streams with real-time requirements such
as bounded latency or jitter. The transmission times of TT
streams at their respective talkers must be scheduled such that
excessive queuing in the network is avoided and their require-
ments are met. Although TT traffic has high priority, it can be
delayed by low-priority frames in transmission blocking links
for short time. To ensure that links are not occupied by low-
priority traffic when needed for TT traffic, the standard IEEE
Std 802.1Qbv [6] introduces an enhancement for scheduled
traffic. The Time-Aware Shaper (TAS) can be implemented
with this enhancement. It defines periodic time slices during
which queues may send traffic to an output port and delays
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TABLE 1. Surveys covering related topics to this paper.

the respective traffic. In TSN, the TAS is used to protect TT
traffic from other traffic classes. Therefore, TSN requires that
appropriate TAS time slices are scheduled for output queues
on all switches, in addition to the transmission times of all
TT streams at their talkers. This combination guarantees very
short delays for TT streams in TSN.

Standardization does not yet cover methods for comput-
ing such schedules. However, the topic has been examined
by many publications. These research works use different
methods for schedule synthesis, evaluation, and objectives
for optimization. We survey the currently available literature
for TSN schedule computation. The paper focuses on pub-
lications published until March of 2023 about TSN sched-
ule planning with the TAS. Works about stream scheduling
related to other technologies than TSN or for other traf-
fic shapers in TSN than the TAS are not covered in this
survey.

A. RELATED SURVEYS
To the best of our knowledge, no other review covers schedul-
ing algorithms for TSN as its main topic. In fact, there is
no survey about scheduling for TT streams for Ethernet net-
works, regardless of the used standard. However, there are
surveys which intersect with the content of this work. Table 1
compiles the focus and the relationship of these surveys to
this paper.

Nasrallah et al. [1] survey standards for low-latency com-
munication. Besides DetNet and 5G, they also give a tutorial
on the TSN standards. They reference a small number of
papers related to traffic scheduling in TSN. However, they
do not elaborate on their content as scheduling is not the
focus of this work. Thus, only the most seminal works about
scheduling from this time are referenced.

Minaeva et al. [2] give a literature summary for schedul-
ing time-triggered real-time systems. They highlight research
works from 1968 to 2020. As opposed to this work, they
not only consider scheduling of streams in networks, but all
systems with periodic schedules. Seminal works for TSN
scheduling algorithms in the literature are mentioned, e.g., [7]
and [8]. Out of 126 references, only 6 of them intersect with
this work.

Deng et al. [4] review awide range of topics about AVB and
TSN from the literature of 2007 – 2021. Besides scheduling

approaches, they also give an overview of reliability and
security modeling, and delay analysis in the mentioned areas.
As a wider range of topics is covered, only a small part of the
survey is concerned with scheduling. From the 128 discussed
works, 17 works intersect with this survey.

Seol et al. [3] review TSN as a whole. The authors cover
publications of the years 2014 – 2020. An overview of active
research directions is given, including computing routings
and schedules in TSN. Not only the literature about schedul-
ing for the TAS is summarized, but also work concerned
with other queuing mechanisms, hardware, and simulation
frameworks. Therefore, only a small fraction of the literature
about scheduling for TAS-based queuing in TSN is surveyed.
They cover 207 research works, of which 29 are included in
this work. Because of the wide range of topics covered, these
works are referenced for further reading but their content is
not discussed.

The recent survey of Gavriluţ et al. [5] gives an excellent
introduction in the history of real-time Ethernet technologies.
Additionally, they present typical problems in the design of
networks for time-critical applications, e.g., scheduling, rout-
ing, worst-case delay analysis, topology synthesis, and band-
width allocation. Seminal works for each of these problems
are reported and summarized. Important results are recalled.
However, the focus is much broader than the scheduling
problem for the TAS. Thus, many works about scheduling
were not covered.

B. CONTRIBUTION
In contrast to the mentioned surveys of Table 1, we focus on
papers about scheduling algorithms and related topics which
use the TAS. This survey claims the following contributions:

• We give a tutorial on TSN basics.
• We define the TSN scheduling problem for TAS and
modifications to it. Additionally, we introduce common
solution methods used in the literature

• We survey currently available TSN literature about
scheduling for the TAS.

• We identify research directions, categorize the available
literature, and highlight contributions to these topics.

• We compare the available algorithms and the presented
evaluations to derive open research questions in this
area.
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C. SURVEY STRUCTURE
This paper is structured as follows. In Section II we present
a brief introduction to TSN with a special focus on the
TAS. Then, we formally define the scheduling problem in
TSN and give a tutorial to common solutions methods from
literature in Section III. Section IV gives an overview of the
state-of-the-art of TSN scheduling and categorizes the pre-
sented literature. Section V compares the presented research
work with regard to modelling assumptions, optimization
objective, problem instances and scalability. Furthermore,
we present the publication history of the surveyed literature in
Section VI. We discuss issues and open research questions in
Sections VII. Finally, we conclude the paper in Section VIII.

D. LIST OF FREQUENTLY USED ACRONYMS
The following acronyms are used in this paper.

ASAP As Soon As Possible.
AVB Audio Video Bridging.
BE Best Effort.
CBS Credit-Based Shaper.
CP Constraint Programming.
CQF Cyclic Queuing and Forwarding.
GA Genetic Algorithm.
GCL Gate Control List.
FIFO First-In-First-Out.
FRER Frame Replication and Elimination for

Reliability.
gPTP generalized Precision Time Protocol.
GRASP Greedy Randomized Adaptive Search

Procedure.
ILP Integer Linear Programming.
OMT Optimization Modulo Theories.
PBO Pseudo-Boolean Optimization.
PSFP Per-Stream Filtering and Policing.
QoS Quality of Service.
SMT Satisfiability Modulo Theories.
SRP Stream Reservation Protocol.
TAS Time-Aware Shaper.
TSN Time-Sensitive Networking.
TT Time-Triggered.
VLAN Virtual LAN.

II. FOUNDATIONS OF TSN
TSN is a set of standards for deterministic data transmis-
sion with real-time requirements over Ethernet networks.
In this section, we present a short tutorial about TSN. First,
we present AVB based on which TSN was developed. Then,
we introduce TSN with a special focus on scheduling and the
TAS.

A. AUDIO VIDEO BRIDGING
Historically, multimedia equipment was interconnected with
half-duplex point-to-point links for data transmission. These
links were often dedicated to a single purpose, i.e., the trans-
mission of one specific data stream. This results in a large

number of links which is expensive, hard to maintain, and
error prone. Switched computer networks solved these prob-
lems. The most widely adopted technology for switched local
area networks today is Ethernet. However, professional audio
and video applications need bounded latencies and jitter, i.e.,
real-time guarantees for data streams. Switching in Ether-
net networks was not designed for real-time transmissions.
Therefore, the Audio Video Bridging (AVB) task group of
the IEEE was founded to develop a standard to meet the
requirements ofmultimedia applications in switched Ethernet
networks.

AVB is organized in standards for time synchronization,
admission control, and traffic shaping.

1) TIME SYNCHRONISATION
Network devices need a common understanding of time to
ensure that all end stations in a network are able to coordinate
their actions. Every AVB-capable device is equipped with a
clock. The standard IEEE 802.1AS [9] defines a protocol to
synchronize the clocks of all devices in an AVB network.
This protocol is based on the Precise Time Protocol (PTP)
introduced in IEEE 1588 [10] and is denoted as general-
ized Precise Time Protocol (gPTP). The gPTP defines an
algorithm to select a so-called Grandmaster among the par-
ticipating nodes of the protocol. The internal clock of the
Grandmaster is used as reference clock. All other devices
synchronize their clocks to the clock of the Grandmaster with
time information sent from the Grandmaster. Intermediate
nodes adjust the received time information to compensate
propagation delays, processing delays, and different clock
speeds before retransmitting them. The gPTP allows sub-
microsecond precision for devices with at most seven hops
distance to each other. This is needed for applications running
on different end stations to synchronize their actions.

2) ADMISSION CONTROL
The Stream Reservation Protocol (SRP) introduced in IEEE
802.1Qat [11] allows senders of periodic data streams,
denoted as talkers, to reserve bandwidth in a multi-hop Eth-
ernet network. A talker which wants to send data advertises a
new data stream to its connected bridge. This advertisement
contains information about bandwidth and real-time require-
ments, the periodicity of the stream, and the destinationMAC
address. The destinationmay be amulticast group. The bridge
forwards the advertisement if the requested resources are
available. Worst-case latencies are calculated at every bridge.
When the request reaches the destination of a data stream,
denoted as listener, the listener acknowledges that it is ready,
and the bandwidth is reserved along the path.

3) TRAFFIC SHAPING
Traffic shaping is the generic term for techniques that dis-
tribute packet transmissions in time. The AVBworking group
defines the so-called Credit-Based Shaper (CBS) in IEEE
802.1Qav [12]. It can be leveraged to smooth out bursts such
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that receiving devices are not overwhelmed. This reduces
buffering and congestion in the network. The CBS is a leaky
bucket traffic shaper with at least two FIFO queues for two
traffic classes. These classes are denoted as class A and
class B. Both queues have a credit measured in bit. Dispatch-
ing and transmitting a frame from a queue is only allowed
if the credit of the respective queue is non-negative. Credit
increases linearly during times no frame is transmitted and
decreases linearly during transmissions. Latency bounds for
streams can be guaranteed by using a special configuration
for the CBS defined in IEEE 802.1BA [13]. These are specific
to the requirements of the AVB domain, guaranteeing 2ms
and 50ms for class A and B traffic in networks with at most
7 hops. However, the average delay of a frame increases to up
to 250µs per hop in the worst case when the CBS is used.

B. TIME-SENSITIVE NETWORKING
Ethernet networks are used in a wide range of industrial use
cases as Ethernet is cheap and easy to implement. However,
use cases such as industrial automation, in-vehicle commu-
nication or avionics have hard real-time requirements and
need reliability. Data streams not meeting their deadlines may
not only be worthless but impose safety risks. The latency
guarantees and average delays offered by AVB fail to comply
with the requirements of such use cases.

Time-Sensitive Networking (TSN) is a set of standards
enhancing AVB for deterministic and reliable transmission
of data over switched Ethernet networks. TSN is currently
developed in the IEEE 802.1 TSN task group and adds new
mechanisms for scheduling, traffic shaping, path selection,
stream reservation, filtering and policing, and fault-tolerance.
Most of the standards are enhancements of IEEE 802.1Q [14]
which defines bridges and Virtual LANs (VLANs). We give
a brief tutorial on the standards and mechanisms relevant for
the scope of this survey, i.e., traffic scheduling in TSN with
the TAS.

1) SIMILARITIES TO AVB
Similar toAVB, every device in TSN is equippedwith a clock.
TSN also uses the gPTP defined in IEEE 802.1AS [9] to
synchronize clocks of all network devices. The CBS and an
enhancement of the SRP are also part of TSN.

2) PATH SELECTION
TSN introduces a new mechanism for path selection in IEEE
802.1Qca [15]. In contrast to traditional Ethernet networks,
it is not necessary to use Spanning Tree Protocols or Short-
est Path Bridging. Paths can be computed by an arbitrary
algorithm and are only limited to be trees. Thus, frames can
be forwarded on an arbitrary path. Forwarding information
of these so-called Explicit Trees are distributed with the
Intermediate System to Intermediate System (IS-IS) protocol
and stored in bridges. The Explicit Tree for the forwarding of
a frame is determined by the MAC address of the root bridge
of the Explicit Tree and the VLAN ID in the frame’s header.

3) PRIORITIES
Every egress port of a TSN bridge is equipped with up
to eight egress queues. These queues are First-In-First-Out
(FIFO) queues. They correspond to the eight VLAN priorities
defined in IEEE 802.1Q [14]. The VLAN tag in the header
of an Ethernet frame determines the egress queue in which
the frame waits for transmission. Every queue is equipped
with a so-called Transmission Selection Algorithm (TSA).
The TSA signals whether a frame is ready for transmission to
a transmission selection mechanism. A possible implementa-
tion for a TSA is the CBS which allows frame transmissions
only when the credit is positive. This selection mechanism
selects the next queue from which a frame is dispatched and
sent. TSN uses strict priority as transmission selection, i.e.,
the next frame is dispatched from the highest priority queue
which signals a frame is ready for transmission.

4) FRAME PREEMPTION
High-priority traffic can be delayed due to conflicts with
lower-priority traffic. IEEE 802.1Qbu [16] describes a mech-
anism for frame preemption in TSN which reduces such
delays. Traffic is divided into preemptable frames and so-
called express frames. The transmission of preemptable
frames is paused and finished later if an express frame is ready
for transmission. Consequently, a preempted frame is divided
into fragments which are reassembled by the receiving node.
The minimum size of a frame fragment is defined to be
64 byte. However, every fragment of a frame except for the
last one has a trailer containing a 4 byte check sequence for
error detection. Therefore, a frame can only be preempted
after at least 60 byte were transmitted and the last 63 byte
of a frame cannot be preempted.

5) RELIABILITY AND THE FILTERING OF DUPLICATES
Bridging in classical Ethernet networks assumes that no
frames are duplicated and therefore no duplicates must be
filtered. However, safety critical applications may require
protection against frame loss and permanent link failures.
IEEE 802.1CB [17] introduces a mechanism which allows
to sent multiple copies of the same frame, possibly over
disjoint paths, and to eliminate duplicates. Thus, only a single
copy of the same frame is forwarded or delivered to a higher
layer on an end station. This mechanism is denoted as Frame
Replication and Elimination for Reliability (FRER).

6) TRAFFIC SCHEDULING
Time-triggered (TT) traffic, also denoted as scheduled traffic,
consists of periodic data streams with hard real-time require-
ments such as bounded latency and jitter. The properties of
TT streams such as period, maximum frame size, frames per
period, as well as the range of possible transmission offsets
from their respective talkers, are known in advance. The
transmission times of these streams at their respective talkers
can be controlled and must be coordinated to ensure that all
streams meet their real-time requirements. The computation
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FIGURE 1. Path of a frame through a bridge. The egress port implements
the enhancement for scheduled traffic. Every such egress ports has eight
egress queues guarded by a transmission gate (G). The GCL controls the
timed opening and closing of these gates.

of their periodic transmission times is denoted as traffic
scheduling.

a: TRAFFIC SHAPING
TSN introduces new traffic shapers in addition to the CBS.
An example for another shaper which can be used instead of
the CBS is Cyclic Queuing and Forwarding (CQF) defined in
IEEE 802.1Qch [18]. Time is divided into slots of predefined
length. The length of a slot is denoted as cycle time. Bridges
buffer all frames received during a slot and transmit them
in the subsequent slot. Thus, stream latencies can easily be
calculated from the cycle time and the number of hops.

IEEE 802.1Qbv [6] defines an enhancement for scheduled
traffic. It can be leveraged to implement the Time-Aware
Shaper (TAS). The TAS allows protecting TT traffic from
other traffic such as AVB traffic or best-effort (BE) traffic.
Additionally, the transit of TT streams through a network can
be scheduled. Every egress queue has a so-called transmis-
sion gate or simply gate. Gates are either open or closed.
Frames can only be dispatched and sent from an egress queue
if the respective gate is open. The closing and opening of a
gate is controlled by a so-called Gate Control List (GCL).
A GCL entry consists of a time interval [Ti,Ti+1] and a bit-
vector. The bit-vector indicates which gates are opened or
closed during the time interval [Ti,Ti+1]. Therefore, a GCL
entries defines a time slice exclusively available to traffic
with a priority corresponding to an open queue. These GCLs
are executed periodically for an indefinite number of times.
The computation of GCLs and appropriate cycle times, i.e.,
periods of these GCLs, is denoted as scheduling or GCL
synthesis. The number of available GCL entries in an egress
port is limited and depends on the used bridge. Figure 1

FIGURE 2. Time slices, GCL entries, and guard bands. The duration of a
guard band may be not available for BE traffic as a frame can only be
sent if transmission finishes before the respective gate is closed.

depicts the architecture of a typical TSN bridge according to
IEEE 802.1Q [14], including the components of the TAS.

The TAS can be used to protect traffic by scheduling the
GCLs accordingly.

b: GATE CLOSINGS AND GUARD BANDS
If the transmission of a frame is not finished until the end
of the time slice the transmission started, a frame in the next
time slice may be forced to wait until transmission finishes.
Thus, it would be possible that a frame of a TT stream
must wait because of a frame of BE traffic. This problem
is avoided in TSN. Bridges detect automatically whether a
frame transmission would conflict with a gate closing and
hold conflicting frames back in this case. A guard band
is a time interval with the length of the transmission of a
maximum sized standard Ethernet frame. The duration of a
guard band at the end of a time slice may not be available
for transmissions to comply with closed gates. However,
we emphasise that guard bands in TSN are implicit, i.e., they
must not be configured explicitly. Transmissions may even
start during a guard band if the transmission finishes before
the next gate closing. Figure 2 depicts a guard band which
restricts the transmission of BE traffic before the respective
gate is closed. If frame preemption is used, the maximum
size of a frame that cannot be preempted is 123 byte. This is
due to the minimum size of a frame fragment, i.e., 60 byte of
the frame and an additional 4 byte check sequence. A frame
with 123 byte cannot be preempted until the first 60 byte
are transmitted as the resulting first fragment would be too
small otherwise. However, the last 63 byte also cannot be
preempted as the resulting last fragment would be too small.
Therefore, guard bands can be reduced to the length of a
transmission of 123 byte if frame preemption is used.

c: SCHEDULER VS. TRAFFIC SCHEDULING
The term scheduler is sometimes used as a synonym for traf-
fic shaper. For instance, the CBS and the TAS are schedulers
in this terminology. Unfortunately, the term scheduler has
also another meaning in the context of this survey. Many
research works denote algorithms to plan GCL entries and
frame transmissions in time with the TAS as schedulers.
To avoid confusions, we will only use the second meaning in
the remainder of this paper, i.e., a scheduler is a scheduling
algorithm for the TAS. There are research works that use
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the first meaning in their title or abstract or cover schedul-
ing algorithms for other traffic shapers in TSN, e.g., Cyclic
Queuing and Forwarding (CQF). Thus, these works give the
impression that they are in the scope of this survey, e.g., [19],
[20], [21], [22], [23], [24], [25], [26], and [27]. However,
we remark that this survey only covers research works about
scheduling algorithms and the scheduling problem for the
TAS. Therefore, we do not discuss works which propose
new shapers, i.e., new schedulers, or analyse other shapers
than the TAS.

The challenge in planning a TSN network is to compute
the schedules that coordinate the transmission times for all
streams at their respective talkers and the GCLs of bridges
such that the requested real-time requirements of all TT
streams are met. This problem is formally defined in the next
section.

III. THE TSN SCHEDULING PROBLEM
First, we introduce a common network model, relevant prop-
erties of TT streams, and the definition of schedules. Second,
we state constraints for valid schedules. Then, we discuss
scheduling and optimization in the context of TSN and the
computational complexity of these problems. Furthermore,
we present common problem extensions solved in the liter-
ature. Finally, we give an introduction to common solution
techniques that have been applied to the scheduling problem.

A. NOMENCLATURE
A node of a TSN network is an end station or a TSN-capable
bridge. End stations are sources and destinations of data
streams. Bridges switch frames based on their header. We
remark that a node may be a bridge and an end station at
the same time, i.e., it implements bridging capabilities and is
an end point of data streams. Links are full-duplex Ethernet
connections between an end station and a bridge or between
two bridges. TSN bridges are inevitably subject to multiple
delays. These delays must be considered to ensure determin-
istic transmissions according to a schedule. The processing
delay of a bridge is the time between a frame arrives at an
ingress port, and it is put in an egress queue. The transmission
rate of an egress port is the rate at which data can be trans-
mitted over a link. The propagation delay of a link is the time
needed for electrical signals to traverse the link. The queuing
delay of a frame is the time the frame waits in an egress queue
for transmission. Ethernet uses a preamble before of a frame
transmission to signal a new transmission starts, and an inter-
frame gap between two frame transmissions to ensure that
the receiver can process a new frame. The maximum size
of a frame in TSN is 1542 byte, including inter-frame gap
and preamble. A TT stream is a periodically repeated data
stream with real-time requirements. Every stream has a talker
as source and possibly multiple listeners as destinations. The
earliest and latest transmission offsets describe the time range
during which a talker can start transmission relative to the
start of a period. The deadline of a stream is the time at which
all frames of the stream must have arrived at all destinations,

FIGURE 3. The period of stream A is three times the period of stream B.
For modelling purposes, the hyperperiod is introduced, i.e., all streams
are assumed to have that larger period. To cover the full duration of the
hyperperiod, B is modelled by three consecutive copies B1, B2, and B3.

also relative to the start of a period. The entire payload of a
stream must be delivered before the deadline. The payload of
a stream may be sent with multiple frames.

The hyperperiod H of a set of streams S is the least
common multiple of the periods of the streams. Let s ∈ S
be a stream with period ps. A schedule for all streams in
S contains H

ps
consecutive replications of s, each having

the hyperperiod as period. Scheduling algorithms typically
consider transmission times, earliest and latest transmission
offsets, and deadlines relative to the beginning of the hyperpe-
riod. Figure 3 depicts an example with two streams A and B.
The period of stream A is three times the period of stream B.
A schedule for both streams thus contains only one period of
stream A and three periods of stream B. A schedule for a set
of TT streams in a TSN network consists of the transmission
offsets of all streams at their respective talkers, and GCL
configurations for all bridges. Transmission offsets of frames
at bridges along their path follow implicitly. Schedules must
be periodic, i.e., repeatable an indefinite number of times. The
hyperperiod of a set of streams is the period of schedules for
these streams.

B. SCHEDULING CONSTRAINTS
Given a problem instance for the TSN scheduling problem,
i.e., a set of TT streams and a network topology. Every sched-
ule which complies with the real-time requirements of all TT
streams is considered a valid solution of the TSN scheduling
problem. Such schedules are denoted as valid schedules in the
TSN scheduling literature. The following constraints restrict
the set of all possible schedules to the set of valid schedules.

1) BRIDGE DESIGN
TSN bridges are currently assumed to be store-and-forward
bridges. Frames cannot be forwarded by a bridge before they
have arrived at the egress queue. The duration of a transmis-
sion depends on the transmission rate of the sending egress
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port, the size of the frame, and the propagation delay of the
used link. The processing delay of the bridge must also be
considered.

2) EXCLUSIVE LINK USAGE
No two frames can be in transmission over a link in the same
direction at the same time.

3) DEADLINES
A stream meets its deadline when all of its frames arrive
at the stream’s destination before its deadline. For multicast
streams, this holds for all destinations.

4) ROUTING
The frames of a stream follow some routing. Every instance
of the same stream follows the same routing.

5) FRAME ORDER
There is no reordering of frames of the same stream. Frames
that are sent earlier arrive earlier than frames sent later.
This holds hop-by-hop and end-to-end. The source node of
a stream sends frames of a stream in-order. There are no
duplicates, i.e., a frame cannot be replicated by a bridge.

6) FIFO QUEUES
The order of frame arrivals at an egress queue must match the
order at which frames are sent.

7) QUEUE SIZE
Frames of scheduled traffic must not be dropped for any
reason.

8) GATE CONTROL
If a frame waits in an egress queue, it can only be sent when
the respective gate is open. The gate must stay open until
transmission finishes.

9) TRANSMISSION SELECTION
If multiple gates of an egress port are open and frames in the
respective queues arewaiting for transmission, the queuewith
the highest priority is the next queue to dispatch a frame.

10) ADDITIONAL FEATURES
Various modifications of the problem are presented in the
literature. Additional constraints may be needed to model
these problems. For example, multiple queues can be reserved
for TT traffic per egress port. Queue assignment of streams
must be modeled in this case. We discuss these problem
modifications in Section III-E.

C. FINDING A SCHEDULE VS. OPTIMIZATION
There may be multiple schedules for a given problem
instance. In fact, most problem instances have a large num-
ber of schedules as possible solutions. So far, the definition
of the scheduling problem does not differentiate between

these solutions. A common way to compare solutions is to
introduce an objective function. Such a function maps solu-
tions to real numbers. The solution to an optimization prob-
lem is the schedule which minimizes or maximizes the objec-
tive function, i.e., has a smaller or larger objective value than
any other schedule. Examples for objectives are minimizing
end-to-end delays or jitter of TT streams. Another possible
objective is minimizing the flowspan, i.e., the duration such
that all frames have arrived at their respective destinations.

D. COMPUTATIONAL COMPLEXITY
The problem of deciding whether there is a valid schedule
for a set of TT streams in a TSN network is known to be
NP-complete [7] in general as Bin Packing can be reduced
to it. This even holds without queuing [28]. NP is a class of
decision problems, i.e., contains only problems which can be
answered by either yes or no. Finding a schedule or finding an
optimal schedule are not decision problems. Therefore, they
are not contained in NP. However, they are computationally
at least as hard as the question whether there is a schedule.

E. PROBLEM EXTENSIONS AND RESTRICTIONS
The definition of the basic problem in Section III-B only
describes the common properties of the problems in the lit-
erature reviewed in this survey. Much research work focuses
on special cases or problem extensions with additional con-
straints. This section introduces these problem variations in a
general way such that they are clear in the remainder of this
survey.

1) JOINT ROUTING
The definition of Section III-B assumes that the routing of
every stream is a predefined part of the input and fixed. Much
research work is dedicated to a variation of the scheduling
problem with joint routing, which relaxes this assumption.
In contrast to the basic problem, the routing of streams is vari-
able and computed simultaneously with the schedule. This
gives the scheduling algorithm more flexibility, as streams
can be routed to omit heavily loaded links and thus con-
flicting scheduling constraints. A common approach is that
the algorithm gets a set of possible paths as input for every
stream, and it selects one per stream as the stream’s routing.
Other algorithms select arbitrary paths. Both approaches are
possible due to IEEE 802.1Qca [15] as the standard allows
arbitrary paths to be configured for every stream.

2) RELIABILITY
Research work dedicated to joint routing and scheduling
can take reliability considerations into account. Such works
define a model of possible faults and their probabilities.
Scheduling algorithms can compute schedules which meet
the real-time requirements of all streams with high probabil-
ity for a given fault model. These schedules are denoted as
robust schedules relative to a given fault model. For instance,
scheduling approaches can compute schedules which are
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robust against single link failures. This can be achieved by
introducing redundant streams with the same payload and
routing them through disjoint paths.

3) GCL SYNTHESIS
GCLs for all egress ports must be constructed. One possible
approach is to open the gates for scheduled traffic at the
beginning of a hyperperiod and never closing them. However,
this approach comes with the drawback that no other queue
can send. This may be necessary to protect other TT streams
with tighter bounds by avoiding congestion in the queues for
TT traffic.

Another common approach is to use a postprocess-
ing scheme after scheduling transmission offsets, e.g.,
in [28] and [29]. GCLs are constructed such that the gate of a
queue is opened when a transmission from this queue should
start according to the schedule. The respective gate is closed
when the transmission is finished according to the schedule.
This approach allows a scheduler to use gates to delay frames.
However, the number of available GCL entries is limited
in real hardware bridges. Therefore, scheduling transmission
offsets and synthesizing GCLs can also be considered in a
joint scheduling algorithm instead of a postprocessing, e.g.,
in [30] and [31].

4) QUEUING
Queuing can cause serious problems for schedules of streams
with real-time requirements [29]. Frames can get lost in
non-deterministic events, such as link or end station failure.
A frame missing in an egress queue may result in another
frame being dispatched earlier than expected and scheduled.
As a result, this frame may change the arrival order in some
egress queue, ultimately resulting in a stream missing its
deadline. Such problems can be avoided in two ways. First,
by avoiding queuing at all. Second, by not allowing frames to
wait in the same egress queue at the same time. In this way,
it is not possible that some frame is dispatched earlier than
scheduled due to a missing frame in an egress queue. These
restrictions are not imposed by bridges according to IEEE
802.1Q [14]. Instead, they are considered during scheduling
such that a scheduling algorithm only computes schedules
robust against these non-deterministic events. In the follow-
ing, we discuss problem extensions and restrictions from the
literature.

a: UNRESTRICTED QUEUING
Allowing frames of different streams to be in the same
queue at the same time is denoted as unrestricted queuing.
Figure 4(a) depicts a schedule by showing frame arrivals and
transmissions of a single bridge. The schedule shows two
streams, A and B, with two frames per period. The queuing
state is shown implicitly. A frame is queued at the same
time with all other frames that arrive before the frame is
transmitted. Thus, the frames A1 and B1 are in the egress
queue at the same time. If A1 does not arrive according to

the schedule, e.g., due to a permanent link failure, B1 is
transmitted earlier than scheduled. This is the case in the sec-
ond period depicted in Figure 4(b). Consequently, B1 arrives
earlier than scheduled in some other egress queue. This may
result in some other frame experiencing more queuing delay
than scheduled, ultimately leading to a missed deadline.

b: ISOLATION
The problems of queuing in case of non-deterministic events
can be solved by not allowing frames of different streams to
be in the same queue at the same time. If a frame is missing
in a queue and no other frame is scheduled to be queued
at the same time, no other frame can be transmitted earlier
than scheduled. This approach is denoted as frame isolation
in the literature. It was introduced in [29]. Figure 4(c) shows
a schedule valid with frame isolation. If A1 does not arrive at
the bridge, the schedule of B1 and B2 is unaffected.

c: NO-WAIT SCHEDULING
In no-wait scheduling, frames are dispatched and sent imme-
diately after arriving at an egress queue. Queuing is not
allowed. The rational of this constraint is to avoid all con-
sequences of non-deterministic events related to queuing.
It was introduced to the domain of TSN in [28]. Figure 4(d)
depicts a no-wait schedule for two streams. All frames are
sent immediately after arrival. For example, B1 is received
and transmitted after A1 and before A2 in the same period.

d: QUEUE ASSIGNMENT
Instead of restricting queue usage, the scheduling problem
can also be extended by allowing more than one queue per
egress port for TT streams [29], [31]. A scheduling algorithm
for such a problem not only schedules transmission offsets
andGCL entries, but also assignments of TT streams to egress
queues. This is especially interesting with respect to frame
isolation, as frames of multiple streams can simultaneously
wait for transmission by the same egress port in different
queues.

5) INTEGRATION OF AUDIO VIDEO BRIDGING
TT streams and AVB traffic can coexist in the same network
at the same time. TSN bridges may support to use the CBS
and the TAS in parallel according to [6]. TT streams and
AVB streams compete for the same links, but use different
queues in the egress ports. Therefore, the scheduling problem
can be extended to also include a set of AVB streams as
input. They are scheduled at their respective talkers, and
considerations for the behavior of the CBS must be included
during scheduling.

6) INTEGRATION OF BE TRAFFIC
BE streams have no real-time requirements, they are gener-
ally aperiodic and unknown a priori such that they cannot
be scheduled. However, some schedules may be beneficial
for BE traffic. For instance, large bursts of TT traffic within
a long hyperperiod could be avoided to facilitate frequent
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FIGURE 4. Queuing restrictions from TSN scheduling literature. Frame
arrivals at an ingress port and transmissions at an egress port of the
same bridge are shown. Processing delays are omitted to increase
comprehensibility.

transmission opportunities for BE traffic, which may reduce
the delay of BE traffic. Another example is avoiding GCL
entries unless they save substantial capacity for other traffic.
For each GCL entry, a guard band is needed within which
frame transmissions cannot start. Therefore, compact sched-
ules maximize capacity for BE traffic [28], [32].

7) DYNAMIC RECONFIGURATION
An entirely different problem related to the basic problem is
dynamic reconfiguration of existing schedules. Such recon-
figurations are necessary when streams are removed or new
streams should be integrated into a schedule. While removing
streams is rather easy, adding new streams to an existing

schedule can be complicated for two reasons. First, the trans-
mission offsets of already scheduled streams may have to
be changed. Second, links and egress queues are occupied
by earlier scheduled streams, which places constraints on
possible transmission offsets for new streams. The runtime of
a scheduler during reconfiguration must be very low in many
scenarios, such as in automotive use cases [33]. This is due
to fast changing real-time requirements and traffic patterns of
safety-critical applications. Recomputing the whole schedule
with offline algorithms may be computationally infeasible in
such cases.

8) MULTICAST
Streams in bridged Ethernet networks can be multicast
streams according to [14]. Multicast streams have more than
one listener as destinations. Therefore, the routing of a mul-
ticast stream is a tree. A multicast stream can be modelled
by a set of unicast streams. However, only a single copy of a
frame is transmitted per hop in TSN. Thus, this modelling is
not appropriate. Scheduling algorithms may contain consid-
erations for multicast streams instead of assuming all streams
to be unicast. Joint routing approaches must compute trees
instead of paths for every stream.

9) TASK SCHEDULING
Tasks are applications running on end stations. They are exe-
cuted periodically. Their execution depends on data received
via TT streams. Additionally, they can send TT streams after
they processed some received data. Scheduling algorithms for
TSN can schedule tasks and TT streams in a joint approach.

F. OPTIMIZATION METHODS
Weclassify the scheduling algorithms in the literature in exact
and heuristic approaches. Exact approaches compute a sched-
ule, or an optimal schedule if an objective is given, if one
exists, or prove the problem instance infeasible. Heuristic
approaches do not guarantee to find an optimal schedule.
Instead, they try to find reasonably good solutions within
short time. In the common case, they cannot deduce whether a
problem instance is infeasible, nor is finding a solution guar-
anteed if one exists. In this section, we introduce common
solution techniques and explain their basics.

1) EXACT APPROACHES
As the Scheduling Problem for TSN is NP-complete, there
is probably no polynomial-time algorithm to compute TSN
schedules. Therefore, it is reasonable to rely on the advances
of the past decades in mathematical and combinatorial opti-
mization. All exact solution approaches in the literature are
based on the following four techniques.

a: INTEGER LINEAR PROGRAMMING
An Integer Linear Program (ILP) describes the space of
possible solutions to a problem with linear inequalities.
Every assignment of variables which fulfills all inequalities
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FIGURE 5. Example of an ILP model.

FIGURE 6. Example of a formula used in SMT solving. The basic structure
is a formula from propositional logic, but predicates from other theories
may be used as atomic formulas instead of Boolean variables.

corresponds to a solution of the problem and vice versa.
Some variables may be restricted to take only integer values.
A linear objective function may describe the quality of solu-
tions. Figure 5 depicts an ILP which minimizes an objective
function. ILP solvers compute a feasible assignment which
minimizes the objective function. Every encountered solution
in the solution process corresponds to an upper bound on
the objective value of the optimal solution. Additionally, the
solver can infer lower bounds for the objective value of the
optimal solution during the solution process. So even when
finding the optimal solution is not possible in reasonable
time, ILP solvers yield estimations of the maximum gap to
the optimum. Widely used state-of-the-art ILP solvers are
CPLEX [34] and Gurobi [35].

b: SATISFIABILITY MODULO THEORIES
Satisfiability Modulo Theories (SMT) solvers find solutions
to problems described by first-order formulas. Formulas
model a problem with variables and predicates which are
connected by logical operators. Besides Boolean variables,
SMT solvers allow formulating predicates in other logical
theories and use them as atomic formulas. SMT solvers have
an interface for theory-specific solvers so that the problem
can be modelled with the best suitable theory. Examples of
theories are the theory of linear arithmetic with integers or
the theory of bit vectors. Figure 6 depicts a formula with
predicates from the theory of linear arithmetic with integers.
The basic structure of a model is a formula from proposi-
tional logic, but predicates from integer arithmetic are used
as atomic formulas.

The solver searches for an assignment of the variables that
evaluate the formula to true. It uses techniques from SAT

solving to reason about satisfiability, combined with theory-
specific solvers for conjunctions of predicates. SMT solving
is only about finding some satisfying solution. When the best
assignment regarding some objective function is computed,
the term OMT is used. Z3 [36] is a widely used SMT solver
which can also be used for optimization.

c: CONSTRAINT PROGRAMMING
Constraint Programming (CP) is a general solution approach
to combinatorial problems. The set of feasible solutions to a
problem is described in a declarative way. In this sense, ILP
and SMT solving are special cases of CP solving. However,
CP solvers use backtracking, local search, and constraint
propagation techniques to solve CP models as opposed to
ILP solvers. Another relevant case of CP is the restriction of
variable domains to a finite set. CP-SAT is a widely used CP
solver [37].

d: PSEUDO-BOOLEAN OPTIMIZATION
Similar to ILPs the solution space of a problem in Pseudo-
Boolean Optimization (PBO) is modelled with linear inequal-
ities, but all variables must be binary. However, instead of
using mathematical optimization as in ILP solving, tech-
niques from SAT solving like propagation and conflict
refinement are employed. A linear objective function can be
minimized by adding it as a constraint to the model with
some bound. The solver is calledmultiple times with different
bounded objective constraints. Every infeasible solver run
gives a lower bound on the optimal objective values. Every
solution yields an upper bound on the optimal solution. The
optimal solution is found, with respect to some minimal
precision, when the gap between lower and upper bound is
smaller than the minimal precision provided by the user.

2) HEURISTIC APPROACHES
Because finding optimal solutions for realistic problem
instances is infeasible in many cases, heuristic algorithms are
used. Such algorithms are used to find suitable solutions in
reasonable time, generally without knowing whether there
are better solutions. Metaheuristic approaches are common
algorithms that can be applied for a wide range of problems.
Alternatively, there are heuristics that use problem-specific
knowledge for many problems, and there may be combina-
tions of both.

a: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE
Greedy Randomized Adaptive Search Procedure (GRASP) is
a metaheuristic which can be adapted to various problems. Its
building blocks are a greedy-randomized algorithm to con-
struct initial feasible solutions, and a local search algorithm.
The greedy randomized algorithm incrementally constructs
a solution by making random decisions among the set of
decisions with the smallest increase in cost until a feasible
solution is found. The local search explores neighboring solu-
tions, i.e., solutionswithminimal changes, to the intermediate

VOLUME 11, 2023 61201



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 7. Classification of the surveyed research works in the scope of TSN scheduling.

solution. It explores the solution space until it finds a local
optimum. Both steps are repeated a predefined number of
times and the best encountered solution is returned. To adapt
GRASP for a specific problem, a greedy randomized algo-
rithm to generate initial solutions and a local search algorithm
must be constructed.

b: TABU SEARCH
Tabu Search is a metaheuristic to systematically explore the
solution space. It uses an initial solution as start and moves
to the best neighboring solution. The algorithm keeps a tabu
list of previously visited solutions or changes to solutions to
avoid walking cycles in the solution space. Only neighboring
solutions or changes to solutions which are not contained in
the tabu list are considered for the move. The best encoun-
tered solution after a specific number of moves is returned.

To construct a problem-specific heuristic, a heuristic to gen-
erate an initial solution and a function returning the possible
changes to some given solution must be built.

c: SIMULATED ANNEALING
Simulated Annealing (SA) is a metaheuristic used to find
good approximations of the global optimum of an opti-
mization problem. It is inspired by cooling processes in
physics. A global variable for temperature is used. Temper-
ature decreases slowly to 0 in discrete steps. In each step,
a neighboring solution is randomly selected, and the objec-
tive function is evaluated. The probability of moving to a
neighboring solution depends on the current temperature and
the objective value of the considered solution. A move to a
neighboring solution which is worse than the current solution
is possible with small probability to escape from local optima.
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As temperature decreases, the probability of moving to solu-
tions with worse objective value vanishes. The best solution
encountered after some acceptance criterion holds is returned.
To adapt SA to a specific problem, a heuristic to generate an
initial solution and a function returning the possible changes
to some given solution must be built. Additionally, the way
the temperature is decreased and the acceptance criterion
must be selected.

d: GENETIC ALGORITHMS
Genetic algorithms (GA) are a metaheuristic approach
inspired by evolution processes and natural selection in
biology. Candidate solutions are considered as individuals.
Chromosomes represent properties of these individuals and
are coded into bitstrings. At every point in time, there is
a pool of individuals, i.e., the population. New individuals
are constructed from two or more existing solutions, i.e.,
genetic crossover is performed. Individuals may be altered
randomly, i.e., their chromosomes are mutated. When tran-
siting to the next generation, some individuals die and are
removed from the population. The probability of dying for
an individual depends on its fitness. The fitness function is
the optimization objective of the modeled problem. The best
individual encountered after some number of generations is
returned. As in biology, high-quality solutions have a higher
probability to survive and reproduce, which in terms yields
new high-quality solutions. To construct a problem-specific
heuristic, a heuristic to generate initial solutions must be
constructed. Suitable crossover as well as mutation and selec-
tion mechanisms have to be used. Parameters like population
size, stopping criterion, and probabilities for selection and
mutation must be designed.

e: LIST SCHEDULING
List scheduling (LS) is a metaheuristic to schedule tasks on
identical machines. The tasks are sorted in a list according to
some measure of priority. In every step, the first task in the
list is selected. If a suitable machine is available, the task is
executed on this machine, otherwise the next task in the list is
selected. These steps are repeated until all tasks are executed.
Considering streams as tasks and end stations as machines
yields a heuristic for TSN scheduling. Awell-known heuristic
from the scheduling literature can be considered to be special
case of list scheduling. As-soon-as-possible (ASAP) schedul-
ing orders streams by priority and schedules them one by one
at the earliest possible time along their paths.

f: MACHINE LEARNING
Machine learning is the generic term for a wide range of
methods. Tools from linear algebra, statistics, and probability
theory are used to construct mathematical models that can
make decisions or construct solutions to a problem. The con-
struction of such a model is denoted as learning or training.
Typically, it takes a large amount of time and computational
effort to train a model, but answers to request can be obtained
really fast afterwards. Examples ofmachine learningmethods

are deep learning and reinforcement learning. However, the
details of these methods are way beyond the scope of this
survey. We refer to [38] and [39] for an introduction.

IV. LITERATURE SURVEY
In the following section, we give an overview of the literature
about TSN scheduling. We categorize research work based
on whether scheduling with fixed routing or joint routing is
considered. Both sections are further grouped by the main
topics of the respective papers. Comparability of techniques
and results of research works in the same group is ensured by
this classification. Figure 7 depicts this classification.

A. SCHEDULING W/FIXED ROUTING
We give an overview of research works which only deal
with the scheduling of TT streams. In all papers presented
in this section, the routing of TT streams is fixed and given
as input to the scheduling algorithm. Such scheduling algo-
rithms cannot change the routing during scheduling in case
of conflicting streams. We group publications in categories
based on similar topics, like model assumptions or problem
extensions.

1) SCHEDULING W/O PROBLEM EXTENSIONS
We discuss publications solving the unmodified scheduling
problem.

FIGURE 8. Incremental approach of Steiner [7]. Similar ideas were used
by other approaches, e.g., in [29].

Early work about scheduling of TT traffic in Ethernet
networks was conducted by Steiner [7]. Even though this
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FIGURE 9. Multi-layered ring topology used in [40].

work is not specific to TSN, it influenced many research
works covered by this survey. The author proposes the use
of SMT solving for the scheduling of TT streams. An incre-
mental approach is presented. Figure 8 depicts this approach.
Streams are scheduled one after another. Schedules of already
scheduled streams are fixed in later iterations. Backtracking is
used in case of infeasibility, i.e., the schedule of some stream
is unfixed and the stream is scheduled again simultaneously
with the new stream. Backtracking is repeated until a sched-
ule is found, or no stream schedules are left to unfix. This
idea was adopted by many later works for TSN scheduling,
e.g., [29] and [31].

Oliver et al. [31] give an SMT model based on mapping
streams to transmission time windows of egress queues. The
number of these transmission windows is fixed per egress
port, and their placement and size is computed by the schedul-
ing algorithm. As a side effect of using a fixed number of
transmission windows, the number of gate events and thus
guard bands is limited, even though the authors do not explore
this matter. The authors use isolation to restrict the problems
imposed non-deterministic behavior, e.g., frame loss. Two
queues per egress port are dedicated for TT traffic. They
evaluate the solving time of their approach with respect to the
number of streams and the number of transmission windows
per egress port. Their results indicate that the solving time
increases exponentially with the number of streams. How-
ever, for reasonable numbers of streams and transmission
windows, solving time is more sensible to the number of
transmission windows. A comparison to the SMT from [29]
shows that the window-based approach with one window per
egress port is faster in finding a schedule. The average jitter
is significantly reduced when the number of transmission
windows per egress port is increased.

Steiner et al. [41] suggest the SMT model from [31] as
a starting point for the standardization of TSN scheduling
mechanisms. They demonstrate their model by reporting the
same evaluation results as in [31] with a reduced number of
transmission windows.

Hellmanns et al. [40] extend the Tabu Search algorithm
of [28] for no-wait scheduling. They construct a 2-stage
approach for hierarchical networks which consist of multiple
rings on different layers. They argue that such topologies are

common in factory automation. Figure 9 depicts a model of
such a topology. First, they schedule streams with talker and
listener in the same ring. This step is done individually for
every ring. No queuing is allowed in these schedules. Then,
they simulate the transmission of all streams with end points
in different rings as if they were sent at the same time from
their respective talkers. No queuing restrictions apply to these
streams, i.e., unrestricted queuing from Section III-E4.a is
allowed. If all streams meet their deadlines in this simulation,
the simulated behavior is used as schedule. They compare
this approach with scheduling all streams at once with the
Tabu Seach algorithm. Their evaluations demonstrate that
the proposed 2-stage scheduling scales better for problem
instances with many streams compared to the original Tabu
Search approach. The latter does not produce results for more
than 1000 streams due to memory limitations. The 2-stage
scheduling is two orders of magnitude faster in the special
case of multi-layered ring topologies. The authors report that
the number of needed GCL entries is significantly reduced by
the 2-stage approach.

Another heuristic for no-wait scheduling is proposed by
Zhang et al. [22]. They analyze how frame transmissions
may conflict and derive the range of possible transmission
offsets per frame. A comparison to the SMT of [31] and
the ILP of [28] shows clear performance benefits of the
proposed heuristic. The SMT was able to schedule about
300 streams, while the ILP scheduled about 1000 streams,
and the heuristic scheduled 1200 streams in the evaluation
scenario.

Kim et al. [42] give a heuristic algorithm to compute valid
schedules, and a post-processing to reduce end-to-end delays.
Streams are ordered by priority and are scheduled one after
another. The individual frames of a stream are scheduled
along the stream’s path. The hyperperiod is divided into inter-
vals and every frame is assigned to the earliest unoccupied
interval. The presented evaluations indicate that end-to-end
delays are reduced by up to one third per stream in the
evaluation scenarios.

The authors of Kim et al. [43], [44] propose a genetic
algorithm to schedule TT traffic in automotive scenarios.
Genes encode the scheduling order of frames. Frames are
scheduled as soon as possible according to this order and
along the respective stream’s path. The objective function
used to compare scheduling orders is the weighted sum of
end-to-end delays, jitter, and bandwidth utilization of the
corresponding schedule. As in [28], a schedule compression
algorithm is employed to reduce the bandwidth occupation of
guard bands. The proposed approach outperformed random
schedules regarding all three metrics in almost all evaluation
scenarios. The approach from [42] is also outperformed with
regard to the used objective.

Ansah et al. [45] present a scheduling algorithm in the
special case of a line topology where all talkers converge
in a single bridge. Based on this method, they also give an
algorithm to compute GCLs in such a topology if the streams
are schedulable.
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The special case of an in-vehicle networkwith only a single
hop is analyzed in [46]. They assume all traffic streams to be
send continuously and belonging to different traffic classes
and egress queues. Essentially, they implement round robin
traffic shaping with the TAS. However, we remark that real
in-vehicle networks are more complex and thus the gained
insights are limited.

The authors of [47] compare the suitability of a large set
of metaheuristics for TAS scheduling. They maximize the
number of scheduled streams for the same problem instance
with various functions of a metaheuristic library. The authors
observed the best results with math based and system based
heuristics and interpret this as a hint for future research
directions.

Vlk et al. [48] propose a heuristic algorithm to schedule
very large-scale problem instances. The algorithm shares
many similarities with the well known DPLL algorithm from
SAT solving [49], e.g., probing, backtracking in the case of
conflicts, and restarts. Frames are scheduled one by one. If a
conflict arises, all decisions are reverted up to the conflict-
ing frame. The authors compare the heuristic with SMT-,
ILP-, and GRASP-based algorithms. The schedulability of an
approach with respect to some set of problem instances is the
fraction of solvable problem instances within some time limit.
The proposed heuristic outperforms all other approaches
regarding schedulability and solving time. In fact, they were
able to schedule instances with up to 10812 streams in a tree-
like topology with 2000 nodes. This result outperforms all
other approaches in the literature. Evaluations with a real-
world instance from avionics are also presented.

Wang et al. propose a deep reinforcement learning
approach for no-wait scheduling in [50]. They train machine
learning models for various network topologies. The model
aims to reduce the maximum arrival time among all frames
to reduce the number of guard bands. For networks with up
to 9 bridges and 10 end stations, the authors report solving
times of at most 400 s.

2) RESEARCH WORK ABOUT QUEUING
We highlight works which allow or deal with the implications
of queuing.

Craciunas et al. [29] construct an incremental SMT model
to schedule TT streams based on [7]. They define flow isola-
tion and frame isolation as properties of a schedule to prevent
some sources of non-determinism, e.g., single link failures.
They present models to compute schedules with either flow
or frame isolation. Besides isolation in the time domain, they
also employ isolation in the spatial domain by the possibility
of assigning different streams to different queues. The authors
identified the problem of clock synchronization errors and
introduce gaps between frame transmission to cope with this
problem. They compare the effect of frame and flow isolation
to the solving time of their SMT model. Their evaluations
indicate that flow isolation reduces solving times compared

FIGURE 10. Size based isolation proposed in [53]. Frame transmissions
from an egress port connected to an end station are shown. Assume F1
and F2 are scheduled to wait some time in the same egress queue. If the
first frame F1 has not arrived at the egress queue, F2 cannot be
transmitted in the time slice dedicated for F1 as it is too short.

to frame isolation. However, more problem instances can be
scheduled with frame isolation.

Vlk et al. [51] investigate the effect of the isolation con-
straints from [29] on schedulability. When a frame is lost
during transmission and does not reach the next egress queue
as scheduled, another frame may be dispatched earlier than
scheduled from this queue. This frame in term can causemore
non-determinism on its path. Not allowing frames of different
streams to be in the same queue at the same time solves this
problem, but reduces the solution space considerably. Amod-
ification for bridges implementing the TAS is proposed to
cope with this conflict. Queues with this modification check
whether the next frame is the correct one with respect to the
schedule. If this is not the case, the queue idles until the next
frame transmission is scheduled. A comparison shows clear
benefits regarding schedulability. The number of streams
which are scheduled to arrive before their deadline is also
significantly increased compared to isolation models.

The authors of [52] present a heuristic to schedule streams
with queuing. The heuristic is based on transmissionwindows
similar to [31]. In contrast to earlier works which include
queuing in their model [29], [31], they drop isolation con-
straints. Network calculus is employed for a worst-case end-
to-end latency analysis. They minimize the occupation per-
centage of egress ports, i.e., the percentage of the hyperperiod
which is reserved for TT traffic. In this way, long and frequent
time intervals for lower-priority traffic are scheduled. Their
evaluations indicate that their approach is superior regarding
end-to-end delay and schedulability of streams compared to
earlier works from the same authors.

Chaine et al. [53] use queuing for jitter control. They pro-
pose to schedule streams without queuing at all egress ports
except for egress ports connected to end stations. Frames
are buffered in these egress ports and are released such that
jitter constraints are satisfied. The authors present a novel
isolation approach, denoted as size based isolation. Frames
must be buffered in increasing frame size order if they are
stored in the same queue. Two GCL entries are used to close
and open the corresponding gate between two frame trans-
missions. In this way, frames cannot be transmitted during an
earlier time slice than scheduled if another frame is missing
in the queue, as earlier time slices are too short. Figure 10
depicts such a scenario. The authors give an ILP model to
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FIGURE 11. Effect of the schedule compression algorithm from [28].
Scheduled frame transmissions (F) and guard bands (GB) over a single
link are shown.

compute schedules with their approach. A comparison of
their approach to an unspecified approach for latency mini-
mization demonstrates that their approach reduces schedul-
ing time significantly. However, this comes with the cost of
higher latencies.

Bujosa et al. [54] propose a heuristic scheduling algo-
rithm which handles queue assignment of streams. Instead
of scheduling frames or streams one after another on their
entire path, they schedule all transmissions over a single link
before scheduling the transmissions over another link. They
present results about the scalability and schedulability of their
approach compared to a CP approach from the literature [55].
Not surprisingly, scheduling is significantly slower with a CP
approach compared to a heuristic.

3) SCHEDULING W/OTHER TRAFFIC
The schedule of TT streams may affect other traffic classes.
AVB and BE traffic cannot be scheduled, but QoS metrics
of these classes can be influenced when they are taken into
account during the scheduling of TT streams. We summarize
works with such considerations.

Dürr et al. [28] present an ILP and a Tabu Search algorithm
to compute no-wait schedules for TT streams. Theymodel the
problem with job-shop scheduling, a widely used modelling
framework in the scheduling literature. The authors measure
the solving times of their Tabu Search and conclude that
the network topology and size have no influence on solving
times. They minimize the flowspan to construct a large time
slice for BE traffic at the end of the computed schedules.
They propose a compression algorithm as post-processing
for schedules which aims to reduce the number of GCL
entries needed to deploy a schedule. The authors note that this
increases the available bandwidth for BE traffic as the number
of guard bands is reduced. Figure 11 depicts the effect of the
schedule compression algorithm. They report that the number
of GCL entries can be reduced by 24% on average. Parts of
the content of this work are also featured in the PhD thesis of
Nayak [56].

The authors of [57] give an ILP to compute schedules for
TT streams and additionally present a GRASP heuristic to
schedule AVB streams. They restrict queuing by enforcing
frame isolation. Their heuristic computes a routing for AVB
streams such that they meet their deadlines. It reduces the
search space by only considering a fixed number of shortest

paths for every pair of nodes as possible routings. The sched-
ule of TT streams, computed by their ILP model, serves as
input for the heuristic and cannot be changed. They compare
their AVB routingwith the naïve approach of always selecting
the shortest path. The comparison demonstrates that more
AVB streams can be scheduled with their approach. A com-
parison of solving times of their ILP to the SMT from [29] is
conducted. They state that their proposed ILP does not scale
well for industrial-size instances and further efforts to create
a suitable heuristic are needed.

The authors of [58] propose an SDN-based method for
traffic bandwidth allocation in safety-critical environments.
While this work does not present a scheduling algorithm for
the TAS, it gives a method to configure the CBS such that
latency requirements of streams are met. They use a particle
swarm optimization heuristic for this purpose. Evaluation
results for the schedulability of stream reservation messages
under varying network utilization by TT traffic are reported.

Santos et al. [59] present an extensive SMT-based mod-
elling of the scheduling problem with openly accessible
implementation. Their model contains a range of features
known from previous works, e.g., transmission windows,
multicast, guard bands, and bandwidth considerations for BE
traffic which were not covered by a single approach in the
past. The starvation of BE traffic is prevented by restricting a
user-defined fraction of a hyperperiod exclusively to be used
by other traffic which is related to the approach of minimiz-
ing the flowspan [28]. Additionally, unrestricted queuing is
integrated which is uncommon in exact approaches so far.
The authors mention the limitation of only one gate opening
per queue per hyperperiod in the presented model which
reduces the available bandwidth for other traffic classes. They
evaluate their approach on a realistic sized network and report
successful scheduling for up to 10 multicast streams. The
model is also used in the well known simulation framework
OMNeT++ [60]. The thesis of Santos [61] explains the
model in detail.

Houtan et al. [62] compare schedules computed with vari-
ous objectives for the same SMT model with respect to the
QoS of BE traffic. They propose minimization and maxi-
mization of frame offsets, with the goal of increases the QoS
by grouping frames together. Additionally, they also suggest
two objectives whichmaximize the gaps between consecutive
frame transmissions over a link. They integrate frame and
flow isolation in their SMT model. Unfortunately, their work
lacks a description which one was used in the evaluations.
A comparison of the different objective functions indicates
that larger gaps between frame transmissions of TT streams
increase the QoS of BE streams. For instance, BE traffic may
experience less starvation and average latencies are reduced.
Figure 12 depicts how BE traffic may benefit from maxi-
mizing the gaps between TT frame transmissions. However,
we note that the used system model features deadlines for
BE traffic, and they measure the number of deadline misses,
so a comparison with the other mentioned research works is
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FIGURE 12. Effects of different objective functions to BE traffic in [62].
Frame transmissions of TT and BE traffic over a single link are shown.

not possible. The solving time for their SMT depends heavily
on the objective function used.

Themodel of [29] is used for an in-vehicle scenario in [63].
The authors present simulation results with typical traffic
patterns in such a scenario. They compare end-to-end delays
for schedules using the TAS to schedules using the strict pri-
ority mechanism. Their results indicate that scheduling with
the TAS can ensure real-time requirements of TT streams
while the performance of lower-priority traffic is less affected
compared to the strict priority mechanism.

Barzegaran et al. [64] give a CP approach to compute
transmission windows for TT streams. In contrast to other
window-based approaches [31], [41], they assume that not
all end stations support TSN. They use a worst-case delay
analysis to eliminate solutions that may violate the real-time
requirements of the given problem instance. They compare
their approach to the algorithms presented in [29], [31],
[52], and [57]. They outperform these approaches in terms of
solving time, but end-to-end delays and bandwidth utilization
are significantly worse compared to [29] and [31]. They also
perform simulation runs of their schedules with OMNeT++.
The results indicate that their worst-case analysis for end-
to-end delays holds but overestimates the simulated delays
considerably.

The coexiestence of the TAS and Cyclic Queuing and
Forwarding (CQF) in TSN is investigated by Pei et al. [65].
They propose to use CQF for rate constrained traffic with
deadlines, i.e., some egress queues per egress port are shaped
by CQF. Streams of scheduled traffic and rate constrained
traffic are scheduled simultaneously. They are scheduled one
after another in least laxity first order, i.e., the next scheduled
stream is the stream which deadline expires next. The same
approach is used only for scheduled traffic streams as an alter-
native for comparison. The evaluation shows that the joint
handling of scheduled traffic and rate constrained streams
results in higher schedulability.

Another approach which combines the TAS and CQF is
presented by [66]. They consider the scenario of multiple
traffic classes with different real-time constraints. Besides
of scheduled traffic with low latency and jitter requirements,
there are also two other traffic classes with uncritical periodic
streams and best effort traffic. The uncritical periodic streams
are assigned by egress queues shaped by the CQF. The authors
present a heuristic to compute a schedule for all traffic classes
simultaneously. The evaluations show that sorting streams in

FIGURE 13. Timing signals of two clock oscillators. Clock 1 runs slower
than clock 2. Therefore, the difference between both clocks increases
over time.

earliest deadline first order before scheduling is beneficial for
the schedulability. In contrast to that, sorting streams by frame
size or period reduces schedulability considerably.

Wang et al. [67] propose a combined scheduling scheme
for TT and AVB streams. AVB streams are shaped with CQF.
They use guard bands to protect TT frames fromAVB frames.
Their heuristic tries to schedule as many AVB streams as
possible while load balancing the traffic amount between the
time slots of the CQF mechanism. The authors report that
their approach significantly reduces jitter and solving times
compared to another approach for CQF.

Huang et al. [68] propose a recursive scheduling heuristic
using backtracking. They use a complex in-vehicle topology
to evaluate their approach and also include AVB streams in
the evaluation scenario. We highlight that they give detailed
stream parameters which is rare for real-world use cases.
They also include Frame Replication and Elimination for
Reliability [17] to cope with frame loss of safety critical traf-
fic. Additionally, an SMTmodel is presented and compared to
their heuristic. The heuristic outperforms the SMT in regard
to schedulability, scalability, and end-to-end latencies by far
in the evaluation scenario.

4) SCHEDULING W/RELIABILITY
Reliable transmission of data streams is one of the design
goals of TSN. Additionally, to hardware features ensuring
reliability, schedules can be assembled to mitigate the effects
of various faults. We discuss publications which take such
considerations into account.

The clock frequencies of two clocks are not exactly equal
for technical reasons. This results in so-called clock drift, i.e.,
clocks running with different speeds. Figure 13 depicts this
problem. Craciunas et al. [69] extend their model from [29]
to cope with clock drift during scheduling. They introduce a
parameter for the maximum allowed clock drift into all equa-
tions which contain transmission offsets or reception times
of frames. Effectively, they merely increase the gap between
frame transmissions which is already contained in the model
of [29]. Clocks are resynchronized after some predefined out-
of-sync detection timeout. The authors present a design space
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study which investigates the relationship between the maxi-
mum allowed clock drift, the worst-case clock drift rate, the
maximum possible diameter of the synchronization spanning
tree, and the out-of-sync detection timeout. Their findings
on a number of test networks indicate that shorter out-of-
sync detection timeouts are needed for higher clock drift
rates. Themaximum possible diameter of the synchronization
spanning tree is negatively affected by higher clock drift rates.
Evaluations for a test case regarding schedulability, end-to-
end latency, and solving time are conducted. The results show
that end-to-end latency increases for higher allowed clock
drifts. Maximizing the allowed clock drift yields a maximal
robust schedule for a given problem instance, but solving time
increases by an order of magnitude compared to setting a
fixed maximum clock drift in advance.

Feng et al. [70] consider the scheduling problem in the
presence of frame loss. Instead of scheduling redundant
streams over disjoint paths, as in [71], [72], and [73], reliabil-
ity is achieved by multiple transmissions of a stream over the
same path. Thus, the proposed approach is only applicable
in the case of spontaneous frame loss and temporary link
failures. The research work focuses on choosing an appropri-
ate number of repetitions per stream for a trade-off of relia-
bility and network utilization. In contrast to similar works,
considerations for AVB and BE streams are also included
in the algorithm, as repeated transmissions of TT streams
deplete the available bandwidth and may lead to starvation
of other traffic otherwise. The presented algorithm uses the
SMT model from [29] as a sub-routine. Their results show
that increasing the fault probability leads to a higher number
of retransmissions which in turn results in less available
bandwidth for BE traffic.

In later works, Feng et al. [74] studied a similar problem,
but also considered ACK and NACK messages and queue
assignment of streams. In contrast to [70], every TT stream is
sent exactly twice. Transmission windows for BE streams are
computed after the scheduling of TT streams. The scheduled
transmission intervals for the retransmissions can be used to
transmit BE traffic when no retransmissions are needed.

Dobrin et al. [75] present a heuristic scheme to schedule
streams with reliability considerations. They consider trans-
mission losses for frames such that only one frame is affected
by a fault at a time and the fault is fixed by some prede-
fined number of retransmissions. Their approach first tightens
the deadlines to take some number of retransmissions into
account. Then, they schedule streams in earliest deadline first
order. Additional considerations for rate constrained traffic
are also included in their scheme, following the scheduling of
the TT streams. Unfortunately, no evaluations are presented.
The authors note that future works will address more realistic
fault models.

5) RECONFIGURATION OF SCHEDULES
The reconfiguration of schedules has two distinct meanings
in the context of scheduling for the TAS. First, an update to an

existing schedule must be computed when the set of streams
or the requirements change. Second, a modified schedule
from the first case must be deployed to hardware devices,
i.e., GCLs and transmission offsets are reconfigured. This
section focuses on the first meaning as the deployment of
schedules is out of scope for scheduling algorithms. Adding
and removing streams from an existing schedule is necessary
in dynamically changing environments, e.g., automotive use
cases. While removing a stream is straightforward, adding
new streamsmay require more effort.We summarize research
works concerned with this problem extension.

Raagaard et al. [76] propose an algorithm for online
scheduling of new TT streams in an existing schedule. They
use a heuristic which schedules streams as early as possi-
ble such that schedules comply with isolation. When a new
stream should be added to an existing schedule, they calculate
whether there is a starting offset such that the stream can be
scheduled without changing the existing schedule. If this is
not possible, the stream is assigned to unused queues of the
egress ports along the stream’s path. The authors state that
adding streams to an empty schedule resembles theworst case
of removing all streams from a schedule and adding a set of
new streams. Thus, they evaluate how many streams can be
scheduled in a specific time. They report that their heuristic
is able to schedule about 1300 frames per second in medium-
sized test cases.

Pang et al. [77] compute schedules with an ILP such that
updating a schedule does not lead to frame loss or additional
update overhead. In contrast to [28] and [57], their approach
is not limited to TSN and streams are scheduled one by
one. Schedules of streams from previous iterations are fixed
in later iterations. When some stream cannot be scheduled,
backtracking is used by removing some stream of an earlier
iteration from the schedule. The authors prove that a set of
additional constraints of the ILP imply no conflicts during
schedule updates. They evaluate their algorithm with respect
to frame loss during updates and update duration on real-
world train and automotive networks. The results confirm
that no frames are lost and no time overhead is needed for
schedule updates.

Another algorithm for schedule updates is proposed by
Wang et al. [78]. They present a heuristic scheduling algo-
rithm with backtracking similar to [68]. Additionally, they
present an algorithm for incremental schedule updates which
omits frame loss during updates. A comparison between both
algorithms shows that the incremental update algorithm is
faster while it has poor schedulability for higher network
utilization.

Gärtner et al. [79] introduce a measure for schedule flexi-
bility denoted as flexcurve. The flexcurve is a function that
captures the number of possible embeddings of a stream
in an existing schedule. Thus, higher values correspond to
more possibilities to reschedule a stream. Already scheduled
streamsmay be selectedwith thismeasure and shifted to other
times to introduce gaps for new streams into a schedule. The
paper elaborates on the details of computing and updating
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the flexcurves. The authors compare their algorithm to
a not specified SMT approach and the algorithm of
Santos et al. [59]. In contrast to the SMT approach, solving
time of the proposed reconfiguration algorithm is linear for
up to 100 streams in the evaluation scenario. The approach of
Santos et al. [59] results in schedules with lower flexibility
and thus is less suitable for dynamic reconfiguration. A jour-
nal extension of this work is presented in [80].

6) GCL SYNTHESIS
Most research works use a post-processing to compute GCLs
from transmission offsets. However, this comes with the
drawback that GCLs have limited size in bridges and a
schedule may not be deployable. We present literature which
discusses explicit GCL generation.

Jin et al. [30] present an SMT approach to schedule TSN
streams with a fixed number of gate openings. Reducing the
number of gate events also reduces the number of guard
bands, such that more bandwidth is available for lower-
priority traffic. Their modelling assumptions regarding queu-
ing are even more restrictive than frame isolation as only
exactly one frame is allowed to be in a queue at any given
time. Their approach allows multiple queues for TT traffic
per egress port, but assigning streams to queues is not part of
the SMT model. This is done before solving the SMT model
by a greedy heuristic which aims to balance the workload of
all queues of an egress port. As their SMT model cannot be
solved in reasonable time, they use an incremental scheme
to schedule small groups of streams separately. Subsets of
streams are scheduled one after another such that the sched-
ules of previously scheduled subsets are fixed in later itera-
tions. The objective when optimizing a subset is to minimize
the maximal number of GCL entries for all egress ports.
They also propose a heuristic algorithm which complies with
a limited number of GCL entries. Their evaluations show
that the heuristic algorithm is an order of magnitude faster
than naïve heuristics while reducing the number of GCL
entries considerably. Instances with up to 10000 streams were
scheduled in reasonable timewhile the SMT approach has not
produced a feasible schedule for an instance with 100 streams
within 2 days.

Another incremental SMT scheme which aims to reduce
the number of GCL entries is given in [81]. Their approach
divides the hyperperiod into slices. Streams and GCLs are
scheduled for every slice individually. GCLs are updated and
deployed at the beginning of every slice during schedule
execution. The authors compare the number of GCL entries
needed with schedules computed for an entire hyperperiod.
Their results demonstrate that the number of GCL entries can
be reduced while keeping end-to-end delays in reasonable
bounds. However, it is not a surprise that fewer GCL entries
are required when updating the GCLs regularly is allowed,
as even a single entry per GCL is sufficient with frequent
updates.

A rather simple CP model for scheduling on a single
link with only four types of constraints is presented in [82].

However, they propose a post-processing to reduce the num-
ber of GCL entries needed in a schedule. For a small test
case of only three streams, the authors report a reduction of
bandwidth loss due to guard bands by 42.8%.

7) TASK SCHEDULING
Tasks are applications running on end stations. We highlight
publications which consider the scheduling of tasks on end
stations, additionally to scheduling data streams between
these tasks.

In [83], Feng et al. compute schedules for streams and
tasks sending or receiving streams simultaneously. Themodel
includes dependencies between streams and tasks, e.g.,
an application can only be executed when all frames of some
stream were received. The authors scheduled instances with
11 streams and more than 100 tasks. As many other works,
the authors note the exponential increase of solving times for
larger instances.

The authors of [84] present a CP model for scheduling
of TT traffic which takes characteristics of control applica-
tions into account. Control applications have an execution
interval and can only produce output streams for actuators
when certain input streams of sensors have arrived. Although
the quality of control application execution covers multiple
aspects, the only one taken into account is jitter. Queuing is
allowed in their model, but is restricted to frame isolation.
They compare exact and heuristic search strategies to find
solutions to the proposed CP model. For all presented test
cases, both search strategies find the optimal solution with
zero jitter, but the heuristic approach is orders of magnitude
faster.

These preliminary works were extended in [85]. In contrast
to [84], a more realistic quality measure for streams of control
applications is integrated into the CP model. It constitutes of
jitter and end-to-end delays of input and output streams of
control applications, and jitter for control application execu-
tion. They compare their model with the model from [29]
which is extended to include stream precedence for input
and output streams of control applications. That means the
model is able to enforce that control applications are executed
after their respective input streams have arrived. Analogously,
streams sent by a control application are scheduled to be
transmitted after the execution of the application has finished.
The authors report that the presented model outperforms the
model from [29] with respect to the proposed quality measure
by up to a factor of two on the test cases under consideration.
Additionally, they compute a schedule for a realistic test case
of an automotive mobile robot and validate their algorithm on
a simulation platform and on real hardware. The PhD thesis
of Barzegaran [86] features this work.

McLean et al. [87] present a converged approach for task
and message scheduling in automotive environments using
TSN. The authors propose metaheuristics based on genetic
algorithms and simulated annealing to compute the mapping
of tasks to processing cores. A combination of list scheduling
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FIGURE 14. Transmissions of two frames A and B over a link to a listener.
B cannot be scheduled to be transmitted at another time. In this case,
scheduling is only possible when the scheduler splits A into two frames.

and earliest deadline first scheduling is used to compute
schedules for message transmissions and task executions.
Instead of rejecting solutions violating one or more timing
constraints, the objective penalizes such solutions. Thus, the
algorithm is able to move towards feasible solutions when
fining an initial feasible solution is hard. The evaluations
show that the simulated annealing algorithm results in lower
solving times and better solutions compared to the genetic
algorithm heuristic.

Another converged approach for task andmessage schedul-
ing is proposed by Arestova et al. [88]. The authors introduce
the concept of earliest and latest start times for tasks in cause-
effect chains of tasks and streams. These times represent the
range of valid execution times for tasks and are used for the
fast rejection of invalid solutions. An incremental scheduling
heuristic which uses these times is presented. Additionally,
a repair function is integrated to recover from cases where
timing constraints are violated. The evaluations demonstrate
that the approach results in significantly reduced solving
times and worst case response times compared to approaches
from the related work.

8) OTHER TOPICS
This section summarizes research works with unique topics
that fit not well into the previous groups.

Jin et al. propose an SMT model which also handles an
optimized fragmentation of messages in [89]. Messages can
be transmitted with multiple frames. How messages are split
into frames is an additional degree of freedom in the presented
optimization. Due to performance reasons when solving the
model, they also give heuristics for message fragmentation
and scheduling. The presented evaluations demonstrate that
schedulability increases considerably by up to 50% when
message fragmentation is also taken into account. Figure 14
depicts an example of how schedulability can benefit from
message fragmentation. Additionally, the presented heuristic
algorithms can schedule instances an order of magnitude
larger than the SMT approach.

A genetic algorithm approach which takes frame preemp-
tion into account is presented in [90]. Their model contains
different kinds of MAC interfaces for preemptable and non-
preemptable frames. Consequently, the presented synthesis
problem not only covers the assignment of streams to queues,
but also the assignment of queues to interfaces. Queues are

FIGURE 15. Example of a converged network with 5G and Ethernet links
as considered in [91].

strictly prioritized, i.e., frames contained in a higher-priority
queue always preempt frames of a lower-priority queue. The
proposed GA aims to maximize the reliability of a schedule.
Reliability of a stream is defined as the maximum number
of allowed retransmissions without missing the deadline, and
the reliability of a schedule is the minimum reliability of all
streams. The authors present a comparison of the proposed
GA with well-known approaches from automotive traffic
scheduling. The baseline approaches are outperformed with
respect to schedulability and reliability. The authors explain
this result with the fact that their algorithm is specifically
constructed to use all the available TSN queues and to utilize
them in a way suitable for preemption.

The authors of [91] give a CP model for TSN in joint con-
verged wired and wireless networks. Their model integrates
Ethernet and 5G links simultaneously. Figure 15 depicts an
example for such a converged network. Frames transmitted
over a 5G link must be scheduled to fit into predefined
transmission slots. They aim to minimize unusable resources
in both types of links, i.e., time occupied by guard bands for
Ethernet links and unused bandwidth resources for 5G links.
The presented evaluations indicate that minimizing only one
kind of unusable resources leads to unsatisfying results for
the respective other kind.

Lin et al. [92] evaluate the impact of the so-called net-
work cycle to schedulability. The network cycle is a design
methodology for frame schedules. All stream periods are
assumed to be integer multiples of the network cycle. Frame
transmissions are alignedwith network cycles. The rational of
this is to omit conflicts between streamswith different periods
when streams are scheduled incrementally. They propose an
incremental heuristic which considers the network cycle. The
authors report the highest schedulability when the network
cycle is set to the greatest common divisor of all stream
periods.

The authors of [93] developed a graphical modelling tool
for TSN scheduling. They use logic programming to deduce
facts about the given problem instance. These facts are in
term used for constraint generation of an SMT model. If an
instance is infeasible, the conflict refinement capabilities of
the SMT solver is leveraged to guide the user in changing
the network configuration appropriately. Three test scenarios

61210 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

are presented where the streams causing infeasibility are
identified.

Machine learning techniques were introduced to the
domain of TSN scheduling in [94]. Tu et al. present a semi-
supervised machine learning model to partition streams in
groups before scheduling. They compare their approach with
the partitionings in [71] and [95], and state that they are
outperformed regarding schedulability. However, it is not
clear how this statement is backed by the actual computation
of schedules with the resulting stream groups.

We highlighted the contributions of research works for the
scheduling problem with fixed routings. We compare and
discuss the research works presented in this section together
with the research works for the joint routing problem in
Section V.

B. SCHEDULING W/JOINT ROUTING
In this section, we give an overview of research work which
inspects the joint routing and scheduling problem. In contrast
to works in IV-A, algorithms proposed by publications in this
section compute a routing and a schedule for a given set of
streams simultaneously. Again, we group the literature based
on the main topic of the respective papers.

1) JOINT SCHEDULING AND ROUTING W/O
PROBLEM EXTENSIONS
This section compiles publications which handle the joint
routing and scheduling problem. Research works are only
included when they do not focus on an additional topic high-
lighted in this survey.

An early ILP model which addresses the problem of joint
routing and scheduling is presented in [8]. Although it is
not exclusively for TSN, the authors state it is applicable
for such networks. Their evaluations show that schedulability
increases considerably compared to the same test cases with a
fixed routing. They compare the solving time of their ILP for
joint routing and scheduling with ILPs solely for scheduling.
As expected, the solving time is larger for joint routing and
scheduling compared to scheduling with a fixed routing.
Nevertheless, they still recommend joint routing as solution
quality increases considerably.

Falk et al. [96] extend the ILP from [28] to simultaneously
compute routing and schedule of TT streams. They analyze
the scalability of the joint routing and scheduling problem
using ILPs. The authors report that solving time is more influ-
enced by the number of streams than the size of the network
topology for their ILP. The evaluations show that network
topologies with more paths between any pair of nodes tend to
yield harder problem instances, as more routings are possible
for any stream.

Nie et al. [97] schedule and route streams incrementally.
Streams are grouped by divisibility of their periods, such
that streams in the same group can share the same links.
The authors focus completely on the case of large period

differences and omit the worst case of all streams having the
same period. In contrast to similar works, e.g., [71] and [98],
they consider only no-wait scheduling. Time is divided into
time slots whose lengths equal the greatest common divisor
of the periods of all streams. Although many evaluations are
performed for different network topologies, network sizes,
and traffic types, no results not seen in other works were
presented.

Xu et al. [99] propose an incremental SMT scheme sim-
ilar to [71] and [98]. However, they partition streams with
machine learning using some of the ideas from [94]. The
authors compare this partitioning approach with the parti-
tioning algorithms from [71], [94], [95], and [100]. The best
schedulability was obtained for the proposed partitioning
method, second to the methods from [71] and [94]. Schedula-
bility is slightly increased when more streams are scheduled
simultaneously, as more conflicting streams are handled in
the same iteration. Additionally, the authors compare the
incremental scheme with their global scheduling approach
from [101]. The incremental scheme outperforms the global
approach with respect to schedulability and scalability. The
difference in schedulability between both methods increases
for higher link utilization.

The authors of [102] present a PBOmodel for joint routing
and scheduling. They compare the solving time of their PB
approach with the solving time when routing and scheduling
are computed in separate steps by the same model. Their ini-
tial evaluations indicate that solving routing and scheduling in
separate steps reduces the overall solving time. Surprisingly,
their evaluations also show that the 2-step approach performs
significantly worse for larger instances compared to the joint
approach. They explain this behavior by the capability of
SAT solvers to learn from conflicts. Whenever the solver runs
into a conflicting variable assignment, it interferes the cause
of the conflict and adds a clause to the model which pre-
vents the conflict explicitly. The learned clauses are dropped
after the routing step in the 2-step approach. Schedulability
increases when routing and scheduling are performed in a sin-
gle step. They state that instances with more routing options
lead to easier solvable scheduling problems as streams can be
distributed over the network.

Arestova et al. [103] construct a genetic algorithm for
joint routing and scheduling. In contrast to other works with
genetic algorithms [100], [104], the authors focus on elab-
orating on the construction for such an approach in detail.
They combine the genetic algorithm with a neighborhood
search heuristic to find better solutions efficiently. They allow
queuing with flow isolation constraints from [29]. Addition-
ally, a schedule compression algorithm similar to the one
in [28] is presented, which is used to reduce the number of
guard bands. In a brief evaluation section, they compare their
approach with the well-known NEH algorithm [105] from
job-shop scheduling. The proposed approach finds feasible
schedules faster, while the resulting schedules have compara-
ble flowspans. The authors report that scheduling with joint
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FIGURE 16. Example of a conflict graph used in [108] for a single link
topology. Assume the transmission of each frame takes 5 time units.
Edges indicate stream schedules which are not compatible. The black
circled vertices are an independent set and induce a schedule.

routing takes only slightly more time than scheduling with
fixed routing with the genetic algorithm.

Kentis et al. [106] investigate the relation of port utilization
and GCL schedule duration in a short paper. They employ a
simple heuristic for schedulingwhich is not further explained,
and compare the resulting schedule duration with shortest-
path routing and the proposed congestion-aware routing. For
most test cases, the duration of the schedule is reduced. How-
ever, they do not motivate why shorter schedule durations are
beneficial.

The authors of [107] present an algorithm based on ant
colony optimization. First, they give a heuristic based on
simulated annealing and genetic algorithms. The authors state
that integrating transmission delays into this approach is hard
and propose an ant colony optimization heuristic to overcome
this problem. They give the fundamental building blocks of
such an algorithm and demonstrate that it can be suitable for
TSN scheduling, but also note that further investigation is
needed. Unfortunately, they do not elaborate on the routing,
and the only related evaluation indicates that increasing the
number of edges increases the solving time. The authors com-
pare their TSN-adapted ant colony optimization algorithm
with another ant colony optimization that is not specific for
TSN scheduling. They conclude that the adapted algorithms
results in less jitter and end-to-end delays, and converges after
fewer iterations.

Falk et al. propose a joint routing and scheduling algorithm
in [108] which is not based on constraints for frame trans-
missions. Their approach constructs a conflict graph where
each vertex represents a schedule for a single stream. Vertices
are connected by an edge if and only if the corresponding
stream schedules are conflicting. This reduces the scheduling
problem to finding an independent set in a conflict graph,
i.e., a set of vertices which are pairwise not connected by an
edge. Figure 16 depicts an example for a conflict graph and
an independent set. The authors use incremental heuristics to

FIGURE 17. Flow diagram of the proposed approach in [109].

construct independent sets in such graphs. Their evaluations
demonstrate that the conflict graph approach has advantages
regarding runtime and memory consumption compared to
ILPs. They remark that their implementation is just a proof
of concept, and more efficient algorithms to find independent
sets are known. They further note that this approach is cheap,
as no expensive ILP solver is needed.

An enhanced CP approach for routing and scheduling is
presented by Vlk et al. [109]. The authors present separate
models for routing and scheduling, and use them in a prob-
lem decomposition algorithm. First, they compute a routing
for the given streams. A schedule is computed using this
routing. If no schedule was found, constraints are added to
the routing model to prohibit the last routing solution. These
steps are repeated until a schedule is found. Alternatively,
it may be the case that all possible routings for some stream
lead to a conflict while scheduling. In that case, an instance
is deemed as infeasible. Figure 17 depicts a flow diagram
of the proposed approach. Most other research works which
performs routing and scheduling in separate steps considers
an instance infeasible after only one pass of routing and
scheduling. The model also includes queue assignment of
streams as additional degrees of freedom. The authors sub-
stitute their scheduling model with the algorithms from [28],
[29], and [110], and compared schedulability of the resulting
algorithms with their approach. Their CP model was able to
schedule the most instances, while the SMT model sched-
uled significantly fewer instances than all other algorithms.
Scheduling time was similar for all algorithms except for the
SMT model, which needed multiple times longer for most
instances.

He et al. [111] present a deep learning based approach
for joint routing and scheduling. They use a graph neural
network to handle arbitrary sized network topologies. They
evaluate their approach on various random network topolo-
gies and compare it with [8], [28], [40], and [104]. All other
approaches were outperformed in regard to schedulability
and scalability for various numbers of streams and network
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topology sizes. They also compare different encodings, poli-
cies, and sampling strategies featured in their deep learning
approach. The results give useful insights for future works
involving deep learning in TSN scheduling. Additionally, the
authors present measurements of jitter on a real hardware
testbed which integrates their deep learning scheduling algo-
rithm. They report no frame losses and ultra low jitter, which
indicates that the constructed schedules are valid.

2) SCHEDULING W/RELIABILITY
Reliability is an important topic in the literature of joint
routing and scheduling. The possibility of selecting disjoint
paths for redundant stream copies further increases reliability
in these research works.

Pozo et al. [112] present an ILP for joint routing which
considers reliability constraints. After a single link failure,
all streams over this link must be rescheduled and rerouted.
The authors propose a fast heuristic for this case. They also
evaluate which properties of a schedule are beneficial for
the repairability in case of a failure. The results indicate that
schedules which maximize the gaps between frame transmis-
sions are much easier to repair than schedules which mini-
mize the flowspan, even for three simultaneous link failures.

Atallah et al. [113] give a heuristic for fault-tolerant joint
scheduling, routing, and topology generation. Their algo-
rithm starts with a full mesh topology. Streams are routed
and scheduled one after another. A k-shortest-paths algorithm
is used to enumerate possible paths for a stream. If a path
with available time slots is found, schedule and routing are
fixed for later iterations. This is repeated multiple times with
disjoint paths for redundant copies of a stream to ensure
reliability. Links and bridges are only included in the final
topology when they are used by some stream. The algorithm
also selects bridges such that more expensive bridges are
only used when necessary. Figure 18 depicts this approach
for topology generation. The authors compare their algorithm
to another approach which realizes redundant paths through
multiple copies of the network topology. The proposed algo-
rithm scheduled all problem instances, while it reduces finan-
cial costs for network hardware considerably.

The authors of [71] propose an incremental ILP scheme to
comply with requirements for the robustness against single
link failures. First, the authors present a GRASP heuristic
for routing which considers reliability constraints. Streams
are replicated and routed over disjoint paths to comply with
requirements regarding robustness to single link failures. The
resulting routing is used as input to the incremental ILP
approach. Streams are partitioned into groups by introducing
a conflict metric and computing a weighted cut in the conflict
graph. Groups of streams are scheduled one after another.
The computed schedules are fixed when the next group is
scheduled. They model egress ports with only one queue for
TT traffic and frame isolation. A comparison of the presented
ILP with the ILPs from [8] and [102] demonstrates that it
outperforms both approaches regarding solving times.

FIGURE 18. Topology generation approach of [113]. A full mesh topology
is used during routing and scheduling. Links used in the final routing are
indicated in red. Only these links are included in the final topology. The
approach covers the selection of bridges from a library depending on the
generated topology. More expensive bridges with a higher number of
ports are indicated in dark blue.

Instead of robustness against link failures, Zhou et al. [114]
consider reliability against frame loss, i.e., frames that are lost
spontaneously during transmission without a permanent link
failure. They integrate constraints regarding the loss proba-
bility along the routed path of a stream in their SMT model.
However, these probabilities are only approximated, as the
used theory solver cannot handle exponentials. An incre-
mental scheme similar to [71] is used. Subsets of streams
are scheduled and routed one after another until all streams
are scheduled. Stream schedules are fixed in subsequent
iterations. They use redundant copies of streams to further
reduce the probability of frame loss, as there may be no single
path with the required reliability. In contrast to other works,
e.g., [71], [72], and [73], they do not enforce paths to be link
disjoint. Their evaluations show that schedulability with a
given level of reliability against frame loss increases with a
higher number of redundant copies per stream.

Syed et al. [115] present an ILP and a heuristic for
scheduling and path selection in in-vehicle networks. They
leverage Frame Replication and Elimination for Reliability
(FRER) [17] to ensure robustness against frame loss of safety-
critical streams. The ILP model is similar to the ILP used in
prior works by the same authors [116]. They report solving
times of about a day with the ILP while the heuristic solved
the same instances in a few minutes.

Following their works in [115], Syed et al. [117] devel-
oped an alternative to FRER. The authors propose a network
coding scheme to mitigate temporary and permanent link
failures. Two disjoint paths are used to transmit two frames.
A third path disjoint from the other two is used to transmit the
XORed data of these two frames. The loss of one frames can
be tolerated as the lost frame can be reconstructed from the
other two. Therefore, the redundant transmission of n frames
results in 3

2n frame transmission with this scheme. This is a
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significant reduction compared to the 2n frames needed with
FRER.

Another incremental scheme for scheduling and routing
in safety-critical automotive applications is presented by
Zhou et al. [118]. They consider possibly undetected system-
atic faults of bridges, i.e., implementation bugs or divergence
from specifications, instead of randomly arising errors like
frame loss. Messages and bridges have an Automotive Safety
Integrity Level (ASIL) assigned [119] which defines reliabil-
ity constraints of the respective component. A higher ASIL
corresponds to higher reliability. Additionally, to computing
routing and scheduling, their algorithm also selects which
bridges to use from a library. Messages can be decomposed
into redundant message copies with lower ASIL to be sent
over bridges with lower ASIL. A comparison of the presented
algorithm with and without message decomposition shows
that the total financial costs for bridges can be reduced by
up to 23.55% in the evaluation scenarios. The authors note
that higher ASILs increase the required number of message
copies, which leads to more congestion in the network and
thus higher end-to-end delays. Evaluations on a real-life auto-
motive test case are presented. Synthesis time increases con-
siderably with ASIL decomposition. However, the selected
bridges cost only a third compared to using only bridges with
the highest ASIL. The PhD thesis of Zhou [120] compiles the
content of [114], [118], and [121].

The authors of [72] present separate CPmodels to compute
schedules and routings as work-in-progress. These models
take security and reliability considerations into account. The
routing computed with the first model is used as fixed input
for the scheduling model, similar to [71]. Redundant streams
with disjoint paths are added if needed to comply with secu-
rity and reliability constraints.

The ideas from [72] are extended in [55]. Besides the CP
model, a simulated annealing algorithm combined with a list
scheduler is given. Additionally, a post-processing for latency
reduction of scheduled streams is applied after scheduling.
Their evaluations without security and reliability constraints
indicate that the SA approach is able to find a feasible sched-
ule in reasonable time, even for huge problem instances.
However, they also introduce a measure for schedule and
routing costs. This measure contains stream latencies, penal-
ties for streams which were not scheduled, and penalties for
overlapping paths. The results demonstrates that schedules
computed by SA have up to three times higher costs com-
pared to schedules computed by the CP approach. Introducing
the security and reliability constraints to the same problem
instances increased the costs of schedules computed by SA by
up to a factor of∼ 3.5. Nevertheless, the authors state that the
SA approach can be useful in comparing costs and reliability
capabilities of topologies, or to reconfigure the network in
case of link failures.

Li et al. [122] propose a heuristic for joint routing and
scheduling with reliability constraints. A greedy algorithm
is used to select paths for redundant copies of streams such

that link utilization is balanced. Frames are scheduled as
soon as possible. Both algorithms are combined in an iter-
ative local search scheme. Already scheduled and routed
streams are randomly removed from time to time, and the
remaining streams are rescheduled and rerouted in random
order. While the authors report a reduction in frame losses
by their approach, end-to-end delays are significantly larger
compared to schedules with routings computed by Dijkstra’s
algorithm.

3) SCHEDULING W/OTHER TRAFFIC
This section presents research works concerned with schedul-
ing in the presence of other traffic classes.

Gavriluţ et al. [123] construct a GRASP heuristic to sched-
ule TT streams while taking AVB traffic into account. In con-
trast to [57], their approach handles TT and AVB streams
simultaneously. The routing of AVB streams is given and
cannot be changed. The problem of finding a routing for
AVB streams in the presence of TT streams was addressed
and evaluated by Laursen et al. [124]. The authors of [124]
propose a hill climbing based heuristic algorithm. In the first
evaluation of [123], the authors use a shortest paths algorithm
to compute the routing for TT streams. The results show that
using the GRASP heuristic with an objective that considers
tardiness of AVB streams leads to AVB streams meeting
their deadlines. In contrast to that, the GRASP heuristic
with other objectives not considering AVB streams results
in schedules with late AVB streams. Even better results are
obtained when a routing with load balancing is used before
scheduling, which also decreases overall runtime. They report
that AVB traffic does not benefit fromminimizing the number
of queues for TT streams. However, this is rather obvious,
as their system model assumes that AVB streams already
have an assignment to AVB queues. Solving time of the
GRASP heuristic increases considerably when AVB streams
are taken into account. A short preview of these results was
previously published in [125] and the implementation details
of the heuristic are elaborated in [126].

The routing algorithm in [124] only considers AVB streams
in an offline scenario. Another work which focuses on the
routing of AVB streams in the presence of scheduled traffic
is presented in [127]. The authors propose an online routing
algorithm for AVB and TSN streams. The algorithm is based
on ant colony optimization and compared to the approach
of [124]. The evaluations indicate that the ant colony opti-
mization algorithm outperforms the approach of [124] with
respect to solving times.

Gavriluţ et al. [128] propose an algorithm which assigns
messages to traffic classes, i.e., whether a message should be
transmitted with TT or AVB streams and which AVB class
should be used. The assignment algorithm is based on the tabu
search metaheuristic. Additionally, the parameters for the
CBS are estimated such that AVB streams comply with their
real-time requirements. Afterwards, streams are scheduled
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with an adaption of the algorithm from [123] and [126]. The
evaluations show that the assignment algorithm significantly
increases the number of schedulable streams. Compared to
the SMT approach of [29], the assignment to traffic classes
increases the schedulability of legacy streams that cannot be
reassigned or rescheduled.

Berisa et al. [129] propose a heuristic for the joint routing
and scheduling of TT streams in the presence of AVB streams.
They make use of frame preemption to increase the schedu-
lability of AVB streams. To that end, they present a worst-
case response-time analysis of AVB streamswith preemption.
The heuristic is based on prior works by Gavriluţ et al. [123].
Their evaluations demonstrate that the schedulability of AVB
streams can be increased by allowing frame preemption while
the runtime of the heuristic also increases significantly in this
case.

Alnajin et al. [32] give a QoS-aware routing algorithm for
TSN streams with respect to various metrics. They present
four scheduling heuristics combined with these routings.
They compare these algorithms regarding the number of
guard bands needed in the resulting schedules. Their eval-
uations show that their heuristics can reduce the number of
guard bands significantly. They note that reducing the number
of guard bands is beneficial for BE traffic.

Li et al. [130] present a heuristic for joint routing and
scheduling to eliminate non-deterministic queuing delay in
networks with mixed time-critical traffic. Their scheduling
algorithm divides the bandwidth resources into time slots
and assigns streams to these slots such that transmission
conflicts cannot arise. Similar to [31], the maximum length
of the resulting GCLs is bounded instead of being computed
by a post-processing from transmission offsets. The solving
time with the heuristic is compared to [71], [96], and [103].
Solving time is the only inspected metric as the presented
algorithm, and the three compared approaches have no objec-
tive functions. In the presented scenarios, all three methods
were outperformed by multiple orders of magnitude. The
authors report schedules for 4000 streams with just 12 GCL
entries per egress port on average.

Yang et al. [131] use deep reinforcement learning for the
joint routing and scheduling problem. Additionally, they take
AVB and BE streams into account. The authors elaborate
on the details of their machine learning model and present
evaluations about the learning phase. They introduce three
baseline approaches also based on machine learning for com-
parison. The proposed model results in slightly lower average
latencies for all traffic classes in the evaluation scenario.

4) MULTICAST
This section highlights research works specifically concerned
with multicast streams in a joint routing and scheduling
approach.

The joint routing and scheduling model from [8] is
extended for multicast support in [132]. The authors state
that while this extension is trivial for pure scheduling models,

joint routing and scheduling with multicast is more compli-
cated as additional constraints for the routing are needed. Var-
ious pre-processing steps are presented to reduce the solution
space and thus solving time. The authors report that the time
to find a feasible solution was reduced by up to 82.4% while
the overall solving time was reduced by up to 47.6%.

Another approach for joint routing and scheduling with
multicast streams is presented by Li et al. [133]. Similar
to [132], the authors use pre-processing to simplify solving
of the model. The streams are divided into groups by spectral
clustering based on their properties. Similar to [71] and [72],
these groups are routed and scheduled one after another such
that previously computed schedules and routes are fixed.
The authors report that random clustering result in slightly
longer flowspans. As in similar incremental approaches,
reduced overall solving times and increased schedulability
are reported.

Yu et al. [134] propose an incremental approach with ILPs.
In contrast to [132], they route and schedulemulticast streams
one by one.Multiple queues per egress port and queue assign-
ment are also integrated in their model. Additionally, they
propose a pre-processing scheme which aims to simplify the
topology. The pre-processing merges cliques in the topology
to a single link. If routing and schedule can be computed, both
are modified for the original graph. Otherwise the conflicting
links are expanded and routing and scheduling are repeated.
Compared to [7] with a Steiner tree as fixed routing, the
proposed approach can schedule significantlymore instances.

A biology-inspired algorithm is given by
Pahlevan et al. [104]. They construct a genetic algorithm for
joint routing and scheduling which also comprises features
like multicast streams and dependencies between streams.
The authors state multicast capabilities as one of their main
contributions, but consider multicast streams simply as mul-
tiple unicast streams. In contrast to [29], [31], and [125],
only a single queue per egress port is dedicated to TT traffic.
While their evaluations indicate that solving time increases
compared to scheduling with a fixed routing, they show that
schedulability increases by joint routing and scheduling.

In later works, Pahlevan et al. [100] present a heuristic
list scheduling algorithm for the same purpose. They model
queuing and multicast streams in the same way as in [104].
Their evaluations again demonstrate that joint routing and
scheduling increases schedulability.

5) RECONFIGURATION OF SCHEDULES
Reconfiguration of streams can benefit from modifying not
only a schedule, but also the respective routing. Newly added
streams can be routed over paths with low utilization. This
section compiles the literature about reconfiguration in joint
routing and scheduling apporaches.

Research work from Syed et al. [116] deals with joint rout-
ing and scheduling in in-vehicle networks. They propose an
ILP model for streams that are known in advance which
takes load balancing into account. They compute schedules
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and routings for these streams such that as many streams
as possible can later be added dynamically. The evaluations
compare algorithmic details that are hard to asses without
detailed knowledge of the presented approach.

Following their work in [116], Syed et al. present multiple
heuristics for the dynamic scheduling of new streams in an
existing schedule [135]. Their heuristics are based on mod-
elling the scheduling problem as a vector bin packing prob-
lem. They evaluate the time needed for adding new streams in
an automotive use case, as reconfiguration in such scenarios
has strict timing requirements.

The authors of [33] construct multiple heuristics for
dynamic scheduling and routing with reliability constraints.
All heuristics are based on the same idea as in [135]. Every
stream is replicated twice when added to an existing schedule
to ensure reliability. The best heuristic is able to schedule
500 streams in about 410ms. The authors state this is a
reasonable response time in automotive use cases.

Yu et al. [136] developed a heuristic for online rescheduling
in scenarios with virtual machines as communication end-
points. Virtual machines in a cloud computing environment
may be migrated from one physical device to another such
that schedules and routings must be updated. Additionally, all
streams are multicast streams, which complicates reschedul-
ing after a VM migration. Therefore, the multicast tree for a
stream is computed such that the maximal distance from any
possible device where a VM could run to any destination is
minimized. The authors state that this will reduce conflicts
when a VM is migrated, as the new paths are short. Given
a schedule and a stream that is migrated, a greedy heuris-
tic computes the new schedule based on the precomputed
multicast tree. The authors compare their proposed routing
heuristic with an optimal routing obtained by an ILP. Solving
times are significantly reduced, while the routing objective
grows only slightly compared to the optimal routing. Schedu-
lability in case of a migration is considerably increased in
comparison to the same scheduling heuristic used with a
routing computed by the KMB algorithm [137].

Li et al. [138] consider the reconfiguration of routing,
scheduling, and mapping of applications to end stations in
case of permanent end station failure. They extend the ILP
of [139] to schedule applications to end stations for global
reconfiguration. As the resulting ILP instances are hard to
solve, they propose a heuristic routing andmapping algorithm
as alternative. The results of this heuristic are fixed in the ILP
model, such that only a schedule is computed. The heuristic
approach is able to reconfigure almost all instances, while the
ILP times out for most of them in their evaluations. While
both algorithms have exponential runtime in the number of
streams, the heuristic is two orders of magnitude faster for
the considered instances.

An incremental approach which schedules streams one by
one is presented in [98]. In contrast to [134], the computed
schedules are constrained to no-wait scheduling, i.e., no queu-
ing delays are allowed. The authors compare the proposed

approach with [8] and [71] with respect to schedulability and
show that schedulability is slightly increased. The proposed
pre-processing for the routing approach gives only minor
improvements regarding schedulability. The authors report
that 97.5% of the streams in an instance with 2000 streams
were scheduled in less than 10 seconds per stream. They state
this is fast enough for online scenarios.

6) OTHER TOPICS
This sections summarizes research works with unique topics
that do not fit well into the previous groups.

The authors of [121] propose a heuristic model to sched-
ule streams in the presence of frame preemption similar
to [90]. Additionally, they also include route computation in
their algorithm. They present an SMT model for this pur-
pose and use it in an incremental approach, similar to [95],
[102], and [140]. The presented results show that scheduling
time not only increases with the network size and the number
of streams, but also with the maximum number of allowed
preemptions and retransmissions. However, allowing more
preemptions increases schedulability only to some instance-
specific threshold.

Gavriluţ et al. [73] give multiple algorithms to simul-
taneously compute scheduling and routing of TT streams.
In contrast to [71], [72], and [96], these algorithms addition-
ally generate the network topology with minimal financial
costs imposed by network hardware. They present a problem-
specific heuristic, a GRASP heuristic, and a CP approach,
and compare them to each other regarding solving time and
solution quality. Their optimization objective captures worst-
case end-to-end delays as well as topology costs, i.e., costs for
links and bridges which are selected from a library. Redun-
dant copies of streams are included for reliability consider-
ations. Their evaluations focus on a comparison of the three
presented algorithms. As expected, the CP approach does not
scale well. The GRASP heuristic finds better solutions in
minutes compared to the CP approach in two days.

An SMT model which includes scheduling, routing, and
queue assignment of streams simultaneously is presented
by [101]. The authors state that saving bandwidth by not
using the same GCL cycle for all egress ports is also novel
to their approach. However, this is not true as other works
even schedule GCL closing events, e.g. [30] and [41]. They
propose tominimize the number of bridges used by scheduled
traffic in order to maximize utilization. In comparison to the
list scheduler of [100], schedulability is increased while the
solving time approaches the timeout after 40 h for fairly small
instances.

Zhang et al. [141] construct a heuristic which allows dif-
ferent routes for frames of the same stream to enable load
balancing. The required mechanism is implemented by an
SDN architecture. The scheduling procedure is a mix of
evolutionary algorithm and greedy algorithm. Multiple vari-
ations of the heuristic are compared in the evaluations. In the
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presented scenarios, scheduling time increased linearly with
the number of streams.

Another incremental scheme for scheduling and routing is
presented byMahfouzi et al. [95], [140]. The authors investi-
gate the stability of control applications, i.e., latency and jitter
of messages sent by these applications. Instead of grouping
streams by some conflict measure, they divide the network
period in slices and group the streams by the time slice in
which their transmission can start. They allow routing only
over some fixed number of precomputed shortest paths per
source-destination pair, similar to [123] and the AVB routing
in [57]. Their model allows unrestricted queuing without
further discussion of this topic. The evaluations indicate that
the number of allowed paths has a huge impact to solving
time. More possible paths result in a significant increase in
solving times. However, they note that three paths per pair
of nodes may be sufficient, as schedulability is over 90% in
this case. They conclude that the search space can be reduced
without decreasing schedulability considerably.

Yang et al. [142] present a network architecture for indus-
trial use cases based on TSN hardware and software-defined
networking (SDN). They focus on so-called chain flows.
Chain flows consist ofmultiple streamwhich are joined at one
or more nodes. For instance, an industrial controller may join
streams from multiple sensors and forward a single stream to
an actuator. The authors propose a tabu search heuristic and
an ILP for the scheduling of chain flows. They report benefits
in scalability and schedulability in comparison to handling
every stream of a chain flow individually.

Chain flows are further investigated by Gong et al. [143].
They propose a heuristic time-tabling algorithm combined
with a tabu search for schedule reconfiguration when the
network topology is changed. In contrast to the magazine
article [142], they elaborate on the details of these algo-
rithms. However, the reported results are consistent with the
results in [142].

Hellmanns et al. [144] focus their work not on the ability
to compute schedules, but analyze how input pre-processings
and solver configuration influence the scalability of solving
a joint routing and scheduling ILP model. They categorize
optimizations by whether they are input pre-processing, e.g.,
topology reduction, model generation related, e.g., tighter
variable bounds, or solver configurations, e.g. the use of value
hints for variables. They give an ILP without any optimiza-
tions as baseline for their evaluations. Different combinations
of the proposed optimizations are tested on the same set of
problem instances and compared with respect to scalability
and schedulability. Their evaluations indicate that solving
time can greatly benefit from input pre-processings, but the
effects of model generation optimizations and solver con-
figurations are negligible. Some of the optimizations even
increase solving time. However, queuing is not supported by
their base model. Thus, the observations only hold for the no-
wait case without queuing delay. It is not clear whether these

results can be transferred to other problem extensions from
the literature.

Bhattacharjee et al. [145] propose two algorithms for the
placement of talker applications in a network. Additionally,
both approaches also solve the joint routing and scheduling
problem. The first algorithm is an ILP for the placement
of talker applications that is combined with the GRASP
heuristic of [123]. The second algorithm is a simulated
annealing (SA) heuristic which computes the placement of
talker applications, the schedule, and the routing for a given
problem instance. The evaluations show that both algorithms
behave approximately similar with respect to load balancing
and solving times. However, the authors report considerably
reduces stream latencies with the SA heuristic.

V. COMPARISON AND DISCUSSION
We compare the presented research work from Section IV.
First, we compile modelling assumptions and problem exten-
sions. Second, we present common scheduling objectives.
Then, we investigate problem instances used for evaluations.
Finally, we summarize results regarding the scalability of the
presented approaches.

A. MODELLING ASSUMPTIONS AND
PROBLEM EXTENSIONS
Table 2 compiles important modelling assumptions and prob-
lem extensions in the surveyed research works with fixed
routings. Table 3 shows the same information for research
works about the joint routing problem. In the following sec-
tion, we compile the contributions to each of these topics.

1) OTHER TRAFFIC
Only five works examine TT and AVB streams simultane-
ously. Pop et al. [57] present a GRASP heuristic for the
handling of AVB streams. The heuristic gets a schedule of TT
streams as input and cannot change it. The authors of [125]
present a short preview of AVB-aware scheduling, which was
later extended in [123]. An adaption of this approach was
used in [128]. The authors present an algorithm to assign
messages to traffic classes in networks supporting AVB and
TSN simultaneously. Feng et al. [83] consider the bandwidth
available to AVB and BE traffic in their approach as they
consider repeated frame loss which may result in starvation.
Berisa et al. [129] use frame preemption and a worst-case
end-to-end delay analysis to increase the schedulability of
AVB streams. Huang et al. [68] give parameters for AVB
streams in an in-vehicle network and include them in their
evaluation scenario. Wang et al. [67] consider the joint han-
dling of AVB and TT streams. AVB streams are shaped by
CQF. Their objective aims to reduce the influence of non-
periodic BE traffic to AVB streams. Some works focus solely
on the routing of AVB streams in the presence of scheduled
traffic in TSN [124], [127]. Li et al. [58] present a heuristic
to configure the CBS in the presence of scheduled traffic.
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TABLE 2. Overview of considered problem extensions and restrictions in the literature of scheduling approaches with a fixed routing.

Other research works handle BE traffic by minimizing the
flowspan which yields a large time slot at the end of a sched-
ule exclusively for other traffic, e.g., [28], [40], and [62].
Pei et al. [65] evaluate their approach in the presence of BE
traffic and rate constrained traffic. Yao et al. [66] consider
the joint scheduling of periodic stream without real-time
requirements in their approach. The tables indicate works
that do not mention BE traffic, but use objective functions
that are beneficial to other traffic or that limit the number
of guard bands with (✓). For instance, Oliver et al. [31] limit
the number of guard bands indirectly by introducing a fixed
number of transmission time windows per egress port.

2) QUEUING
Queuing is a controversial topic in the TSN scheduling liter-
ature as non-determinism, e.g., frame loss, may cause serious
problems. Some research works do not allow queuing at all,
e.g., [28], [71], and [96]. The majority of the algorithms
in the literature uses frame isolation introduces by [29].
These works are indicated by (✓) in the Tables 2 and 3.
Vlk et al. [51] discuss the effects of isolation constraints.
They report results indicating that isolation constraints reduce
schedulability significantly. Without isolation, the number
of scheduled streams can be increased for all evaluated
topologies and problem instance sizes. Additionally, isolation
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TABLE 3. Overview of considered problem extensions and restrictions in the literature of joint routing approaches.

results in larger runtimes compared to scheduling without
isolation. In contrast, the differences in end-to-end delays
are negligible. However, they propose a different solution to
deal with non-determinism, effectively modifying the TAS.
Thus, their results are not applicable to current TSN imple-
mentations. There are some researchworks which allow unre-
stricted queuing, e.g., [59] and [75]. Most of these works do
not elaborate on the consequences of unrestricted queuing.
In contrast to that, Reusch et al. [52], Barzegaran et al. [64],
and Berisa et al. [129] introduced countermeasures for the
mentioned consequences. The authors include a worst-case

end-to-end delay analysis in their algorithms such that even
in the case of non-determinism, deadlines are met.

3) FIXED GCL LENGTH
Most algorithms presented in the literature handle the gen-
eration of GCLs indirectly. They schedule transmission off-
sets of frames at end stations and intermediate bridges. The
GCLs are generated by a post-processing after scheduling.
This step is only mentioned, and the respective authors do
not elaborate on it. Examples for such works are [29], [48],
and [55]. However, computing GCLs by a post-processing
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comes with two drawbacks. First, GCLs have limited size
in bridges. Thus, GCLs obtained by a post-processing may
not be deployable. Second, the scheduling algorithm can-
not include considerations for guard bands. There are some
exceptions to this in the literature. Jin et al. [30] present
a heuristic to compute schedules with a limited number of
GCL entries per egress port. Santos et al. [59] give a detailed
SMT model for TSN scheduling which includes the explicit
representation of GCLs. Yao et al. [66] limit the number of
GCL entries and the maximum queue size in their heuristic,
i.e., schedules which do not meet these constraints are not
considered valid solutions. Some works limit the number of
GCL entries indirectly by introducing transmission windows
for egress ports. Streams are mapped to these transmission
windows and their number is fixed before scheduling. Exam-
ples of such works are [31], [41], and [52]. All schedules for
no-wait scheduling can be deployed with a fixed number of
GCL entries. As no queuing delay is allowed, frames cannot
be scheduled to wait at closed gates. Such a schedule can be
deployed by opening all gates for TT traffic at the start of a
hyperperiod and never closing them.

4) RECONFIGURATION
In some scenarios it may be infeasible to compute new
schedules every time a stream should be integrated into or
removed from an existing schedule. For instance, automotive
scenarios may include ad-hoc connections between cars and
infrastructure. Computing new schedules every time a new
stream is added may take too much time, even with heuristic
algorithms. Syed et al. [33], [135] consider reconfiguration
in such automotive scenarios. Additionally, they also present
preliminary work about computing schedules suitable for
later reconfiguration in [116]. Raagaard et al. [76] present a
heuristic to add streams to an existing schedule. When the
heuristic fails, they assign the new stream to other egress
queues which were unused before. Pang et al. [77] present
work about deploying an updated schedule to a network
already executing another schedule. Their approach allows
updating the schedule without frame loss or new streams
interfering with the old schedule. Another use case for recon-
figuration is the reallocation of tasks sending and receiving
TT streams. Yu et al. [136] use virtual machines as end sta-
tions in their model. These virtual machines may be migrated
from one physical device to another, which requires updating
schedules and routings. A similar example for reconfigura-
tion is presented in [138]. The authors propose an approach
for updating a schedule in case of a permanent end station
failure. Schedules and routings must be updated in this case
as in [136]. Gärtner et al. [79] introduce a measure for sched-
ule flexibility which also considers deadlines. They use this
measure to update schedules in a beneficial way for future
updates. Lin et al. [92] show in their evaluations that aligning
frame transmissions to the greatest common divisor results in
schedules that are suitable for adding streams later.

TABLE 4. Fault models in research works dedicated to reliability.

5) RELIABILITY
Table 4 compiles fault models used in the literature. The
listed researchworks construct schedules robust in the respec-
tive fault model. Computing schedules robust against frame
loss is the most common kind of reliability in the TSN
scheduling literature. Park et al. [77] handle frame loss by
allowing the retransmission of frames. Schedules for such a
scenario must schedule enough time between frame transmis-
sions such that retransmissions do not interfere with other
frames. Another way to deal with frame loss is proposed
by Feng et al. [70], [74]. In contrast to [77], they do not use
retransmissions, but they schedule redundant copies of the
same stream over the same path. Zhou et al. [114] approx-
imate the probability of frame loss in a joint routing and
scheduling model. Redundant copies of streams are routed
over not necessarily disjoint paths to reduce the probability of
frame loss. Robustness against permanent single link failures
are also covered in several works. There are two approaches in
the TSN scheduling literature to handles such failures. First,
redundant copies of streams are scheduled and routed over
link-disjoint paths before a link failure arises. Examples for
such works are [33], [71], [73], and [113]. Huang et al. [68]
and Syed et al. [115] use Frame Replication and Elimination
for Reliability [17] to implement this approach. Second,
streams can be rescheduled and rerouted after a link fail-
ure occurred. Pozo et al. [112] present a heuristic for fast
rescheduling and rerouting in this case. We remark that all
works about computing schedules robust against permanent
link failures are also robust against frame loss. Both coun-
termeasures against link failures are also effective against
frame loss. Another kind of reliability is considered in [69].
The authors compute schedules robust against clock drift, i.e.,
clocks of different devices running not with the same speed.
They introduce gaps between frame transmissions such that
the maximum possible clock drift does not affect other frame
transmissions. Unknown hardware bugs or deviations from
TSN standards are treated by [118]. The proposed algorithm
selects expensive bridges with higher certification for paths
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of streams with higher safety requirements. In contrast to all
other mentioned works with reliability, Syed et al. [117] use
an encoding scheme to reconstruct lost frames. The XORed
data of two frames is transmitted over a path disjoint to the
paths of both frames.

6) MULTICAST
Every algorithm in literature can be used for multicast
streams, as a multicast stream can be substituted by a set of
unicast streams. However, the number of streams negatively
affects the solving time for a problem instance. Tables 2 and 3
indicate multicast support only for works which include
some considerations for the efficient integration of multicast
streams without introducing a set of new streams. Most such
works handle multicast streams by scheduling only a sin-
gle frame per link, regardless of the number of consecutive
links in the multicast tree of the respective stream. Examples
for such works are [31], [41], [59], [83], [85], and [128].
An analysis of the joint routing and scheduling problem with
multicast streams is presented in [132]. Yu et al. [136] com-
pute routings and schedules for multicast streams such that
migrating a virtual machine sending or receiving TT streams
can be done easily. Some works allow multicast streams, but
do not elaborate on the implementation details, e.g., [22].

7) TASK SCHEDULING
Only a few research works are concerned with the joint
scheduling of streams and tasks. Some of them have inte-
grated dependencies between streams and tasks, i.e., tasks can
only be scheduled after some stream has arrived. Such works
are presented in [83], [84], [85], [87], [88], and [104]. Other
works focus on the scheduling of tasks which produce TT
streams while considering safety and security considerations.
Preliminary results for this scenario are presented in [72] and
extended in [55].

8) SECURITY CONSIDERATIONS
While many works focus on the reliability of data transmis-
sions, security aspects were mostly ignored so far. An excep-
tion to this are the works of Reusch et al. [55], [72]. The
authors identified the problem of replay and impersonation
attacks. However, security aspects are not covered by cur-
rent TSN standards. The authors propose to use the TESLA
protocol [146] to mitigate these problems. The additional
messages for key exchanges and the additional tasks for
verification and key management are considered during
scheduling.

B. SCHEDULING OBJECTIVE
Objective functions are used to measure the quality of solu-
tions and to compare them. We discuss common objectives
from the literature and classify research works by their objec-
tive. Table 5 shows which research work features which kind
of objective.

TABLE 5. Categorization of research works based on optimization
objectives.

1) NO OBJECTIVE
Many research works have no scheduling objective and
only try to find some schedule which fulfills all con-
straints, e.g., [76], [96], [108], and [111]. We note that many
SMT approaches feature no objective [7], [41], [59], [93],
[95], [140]. In contrast to ILP solving, SMT solvers were not
originally designed for optimization. Therefore, many SMT
approaches focus on finding a feasible schedule.

2) LATENCY AND JITTER
TSN and the TAS were designed for traffic with hard real-
time requirements. Therefore, latency and jitter of streams
are interesting properties of schedules. Objective func-
tions including them are the most common kind of objec-
tives in TSN schedule optimization. Oliver et al. [31] and
Barzegaran et al. [84] minimize the per-stream jitter. Min-
imizing the flowspan, i.e., the time all TT stream arrive
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at their destination, is a common objective. Examples of
approaches using this objective include [28], [40], [50], [62],
[68], [100], [103], and [104]. A related but different objective
is the minimization of end-to-end delays of TT streams [8],
[51], [65], [77], [79], [131], [132]. Kim et al. [43], [44]
minimize multiple objectives weighted by constant factors.
They take end-to-end delays, jitter, and bandwidth occupation
into account. Barzegaran et al. [85] use a combination of
jitter and end-to-end latency as measure of schedule quality.
Nie et al. [97] minimize end-to-end latency and transmission
offsets simultaneously. We remark that these objectives are
not competing, as opposed to most multi-criterion problems.
Minimization of transmission offsets is also pursued by [22]
and [98] which is related but not equal to flowspan or end-to-
end latencyminimization. Zhou et al. [141] use a combination
of jitter, end-to-end delays, number of scheduled streams, and
link utilization.

3) QUEUING
Research works which apply isolation constraints for queuing
often use more than one queue per egress port for scheduled
traffic. In that way, they are able to schedule more streams
as isolation only concern streams in the same egress queue.
The assignment of streams to egress queues per egress port
is a degree of freedom in the respective scheduling prob-
lems. Therefore, they try to minimize the number of queues
reserved for TT streams per egress port, as the remaining
queues are available for other traffic. Examples for such
works include [29], [51], [57], [74], [109], and [125].

4) OTHER TRAFFIC
The schedule of TT streams has an influence on the Qual-
ity of Service for other traffic classes. Current approaches
for scheduling in TSN focus on AVB traffic and BE traf-
fic. For the joint scheduling of TT and AVB streams,
Gavriluţ et al. [123], [125] minimize the tardiness of AVB
streams as their deadlines are considered to be not strict.
Another objective related to AVB streams is used in [129].
The presented heuristic has the objective to schedule as many
AVB streams as possible. Yang et al. [131] minimize the the
weighted sum of stream latencies of scheduled traffic, AVB,
and BE streams. Wand et al. [67] use CQF to shape AVB
streams in their approach. The objective function aims to load
balance the AVB frame transmissions between the time slots
of the CQFmechanism. This reduces the probability that non-
periodic BE traffic overloads such a slot. The authors of [52]
minimize the occupation percentage of egress ports, i.e., the
percentage of a hyperperiod with no active transmission win-
dow for TT traffic. The rational of this is that low occupation
corresponds to long and frequent time intervals available to
other traffic. A similar objective is used in [64] as the authors
minimize the average bandwidth occupied by transmission
windows for scheduled traffic. Smirnov et al. [102] use a
multi-criterion objective for joint routing and scheduling.
They reduce the influence of scheduled traffic to other traffic,
and simultaneously minimize the number of GCL entries

needed to deploy a schedule. The work in [62] focuses
on comparing the influence of different objective functions
to the QoS of BE traffic. They propose minimization and
maximization of frame offsets, hoping that grouping frames
together increases the QoS. Additionally, they also suggest
two objectives whichmaximize the gaps between consecutive
frame transmissions on a link. They assume that starvation of
other traffic classes is reduced in this way.

5) ROUTING
Research works about joint routing and scheduling often
consider the quality of the routing in their objective. All of
them have in common that the length of the paths is mini-
mized. This is reasonable as longer paths correspond to higher
link utilizations, end-to-end latencies, and harder scheduling
instances. Schweissguth et al. [132] propose amulti-objective
optimization for joint routing and scheduling. First, routing
and schedule with minimized path lengths are computed. The
obtained path lengths are used as maximum path lengths
per stream in a second run. The second run minimizes end-
to-end latencies. The joint routing approach of [107] min-
imizes the number of links in the routing. Li et al. [138]
simultaneously minimize the path lengths and a measure for
scheduling conflicts of streams routed over the same link.
Yu et al. [134] schedule and route streams one after another.
They minimize a weighted sum of the number of links used
for the currently scheduled stream, and the bandwidth uti-
lization. Li et al. [133] simultaneously minimize path lengths
in the routing, and the flowspan. Yu et al. [136] consider
the migration of sources of TT streams. They minimize the
maximum distance from all possible source nodes of a stream
to all destination nodes in a multicast tree. Li et al. [122]
maximize the number of streams which are scheduled and
routed, and also try to minimize the maximum link load as a
secondary objective.

6) TOPOLOGY SYNTHESIS
In addition to joint routing and scheduling, some works also
construct the network topology. TSN bridges are expensive,
and thus such objectives always include costs for bridges.
Gavriluţ et al. [73] minimize multiple objectives weighted
by constant factors. The first objective is the tardiness of
TT streams to guide their GRASP heuristic to solutions with
no deadline misses. The second objective is topology costs.
A similar objective is used in [55]. The weighted sum of rout-
ing and schedule costs is minimized. Routing costs constitute
of overlap penalties for redundant paths and path lengths.
Schedule costs constitute of punishments for not schedula-
ble streams and stream latencies. Another approach which
minimizes topology costs is proposed in [118]. Selecting
bridges from a library is part of the presented problem, which
imposes costs for bridges and additional costs when multiple
vendors are used. Xu et al. [101] minimize the number of
bridges needed to schedule and route all streams such that
the utilization is maximized.
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7) RELIABILITY
Reliability requirements can be ensured by constraining
the set of feasible solutions. However, some works choose
to maximize reliability for their respective fault model.
Pozo et al. [112] maximize the idle times of links and frames,
as such schedules are easier to repair upon link failure.
Craciunas et al. [69] maximize the allowed out-of-sync clock
drift to cope with synchronization problems and maximize
robustness against clock drift. Park et. al. [90] maximize the
number of times a frame can be retransmitted without missing
its deadline, as they include preemption in their model.

8) GCL SYNTHESIS
TSN bridges do not have an unlimited number of GCL entries
per egress port. The minimization of GCL entries is consid-
ered by [30]. The reason for this is that the authors propose
an incremental approach and the overall number of needed
GCL entries is not known in advance. Reducing the number
of gate events also reduces the number of guard bands which
is beneficial for BE traffic. Kentis et al. [106] minimize the
GCL schedule duration. However, it is not clear why schedule
duration matters, as the limiting factor in TSN hardware is the
number of GCL entries.

9) OTHERS
Some research works use a problem specific objective not
comparable to other works. We present them for the sake
of completeness. The authors of [89] minimize the number
of frames as they propose a joint approach for scheduling
and message fragmentation. Syed et al. [115] and [116] use
a modelling specific objective which is related to load bal-
ancing of ports in an in-vehicle architecture with one central
processing unit. Ginthür et al. [91] minimize the wasted
bandwidth for different link layer technologies, i.e., Ethernet
and 5G links. Feng et al. [83] minimize the response time of
tasks which may be dependent on streams as they consider
the joint scheduling of streams and tasks. Chaine et al. [110]
maximize the length of transmission timewindows of streams
at their respective talkers such that latency and jitter require-
ments are met. This is the only work in TSN scheduling
which employs a quadratic objective function. Bhattachar-
jee et al. [145] employ a multi-criterion objective. Their first
objective is to minimize the maximum load across all servers
as the considered problem includes the placement of talker
applications. The second objective is to minimize the average
hop count of all streams. Lin et al. [92] present a heuristic for
incremental scheduling that aims to maximize the probability
that more streams can be added later. This is required in
industrial use cases as turning off machines to deploy a new
schedule may be expensive. Yang et al. [142] state that they
maximize the number of scheduled streamswhile minimizing
the link occupancy rate. However, this rate is not defined
in the published magazine article. Gong et al. [143] also
maximize the occupancy ratewhileminimizing themaximum
link utilization. They define the occupancy rate as the fraction

TABLE 6. Overview of investigated problem instances in the literature of
the scheduling problem with fixed routing.

of bandwidth reserved for scheduled traffic actually used
for transmissions. Min et al. [47] compare metaheuristics by
maximizing the number of scheduled stream for the same
problem instance.
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TABLE 7. Overview of investigated problem instances in the literature of
the joint routing problem.

C. PROBLEM INSTANCES
Before we describe evaluation results, we describe the
problem instances used for evaluations in the literature.
We present an overview of used network topologies, net-
work sizes, and numbers of streams. Tables 6 and 7 com-
pile this information about the problem instances used for
evaluations with fixed routing and joint routing, respectively.

Unfortunately, some research works do not elaborate on
the used topologies, which makes assessing and compar-
ing the results to other works harder. Most research works
only use synthetic test cases. Ring topologies are com-
monly used in evaluations, e.g., in [8], [40], [67], [87],
[88], [96], [97], [100], [101], [104], [108], [109], and [132].
Hellmanns et al. [40] argue that rings are a common topology
in real-world industrial facilities. Other systematic topolo-
gies used include line [31], [67], [96], grid [100], [104],
and snowflake-like [52], [62], [93], [125] networks. Vari-
ous randomly generated topologies are also used in eval-
uations. Erdós-Rényi graphs (ER) are the most common
ones [28], [96], [111], [114] [118], [121], [122], but Barabási-
Albert graphs (BA) [28], [96], [111], [122] [134] and ran-
dom regular graphs (RRG) [28], [111], [122] are also used.
A few research works features evaluations with real-world
topologies. Syed et al. [33], [115], [116], [117], [135]
use a real-world automotive architecture for their evalu-
ations. A large automotive architecture including stream
parameters is discussed in [68]. Other automotive archi-
tectures are used by Kim et al. [43], [44], Li et al. [130],
Mahfouzi et al. [95], [140], and Wang et al. [46]. Zhou et al.
[114], [118] conclude their evaluations by investigating a
real-world example fromGeneralMotors. The authors of [73]
also use a real-world problem instance from General Motors.
However, this instance is only a set of streams without
topology. Min et al. [47] use the network topology of the
National Science Foundation of the United States of Amer-
ica. Barzegaran et al. [64] presents evaluations with real-
world test cases from General Motors and a real-world space-
craft. Pang et al. [77] evaluate an algorithm for schedule
updates in a real-world in-train network and a spacecraft.
Similarly, the authors of [79] evaluate their algorithm for
schedule reconfigurations with the topology of a not specified
machine. Vlk et al. [48], Chaine et al. [53], Huang et al. [98],
Gavriluţ et al. [128], and Berisa et al. [129], perform evalua-
tions with a real-world spacecraft topology.

All research works concerned with synthetic test cases
use randomly generated streams. Sources and destinations
of these streams are selected uniformly from the sets of
talkers and listeners in the respective topology. The number
of streams varies considerably between different research
works. It ranges from 2 streams in the smallest instance of
Falk et al. [96] to up to 10812 streams in the largest instance
of Vlk et al. [48]. All works, which describe the placement
of deadlines, place them at the end of the respective stream’s
period. No research work allows deadlines to be after the end
of the hyperperiod a frame was sent. Stream periods range
from 32µs in [30] to 500ms in [29]. All research works
assume transmission rates of either 100Mb/s or 1Gb/s per
egress port.

D. SCALABILITY
Scheduling in TSN is known to be NP-complete. Therefore,
solving times and sizes of feasible problem instances matter.
Almost all research works about TSN scheduling include
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or even focus on evaluating the scalability of the respective
proposed approach. These evaluations measure the solving
times for selected problem instances. Tables 8 and 9 compile
the reported runtimes needed to solve the largest problem
instance for which a schedule was found in the respective
research work. Tables 10 and 11 report the same results
for research works which feature the joint computation of
schedules and routings. We divided results in separate tables
for exact and heuristic algorithms for better comparability.
In cases where it was not clear which problem instance can be
considered as the largest one, we used the number of streams
as tie-breaker. This is justified by several research works
surveyed in this paper, e.g., in [96]. The tables are meant to
show general tendencies and improvements, not to suggest
one approach over the other. Caution is needed when inter-
preting the tables. It shows the reported times after which an
algorithm terminated, not the time until a first valid schedule
was obtained, as almost all papers do not report this time.
This is a systematic disadvantage of exact approaches as they
only terminate when the optimal solution is found or some
timeout is reached, while heuristic algorithms may terminate
much earlier with suboptimal solutions. Some research works
deal with more parameters than the size of the network
and the number of streams, e.g., Oliver et al. [31] present
evaluations about the influence of the number of transmis-
sion windows per egress port to scalability. Other works
handle problem extensions, e.g., AVB or task scheduling.
Approximations are given when results are not stated in
the text and had to be estimated by the presented figures.
Ranges are given when multiple instances are considered to
be the largest. We identified two tendencies with respect to
solving times.

First, heuristic approaches can handle larger instances than
approaches with exact solution methods. While the num-
ber of network nodes is approximately in the same range,
heuristic algorithms can schedule problem instances with
more streams compared to exact approaches. Typical num-
bers of streams in exact approaches are less than 100, e.g.,
in [8], [69], and [96]. However, there are some notable
exceptions. Craciunas et al. [29] present an incremental
scheduling algorithm with backtracking, which scheduled
instances with 1000 streams in their evaluations. Later works
present incremental approaches which were able to schedule
as many as 2000 streams [98]. Oliver et al. [31] assigned
streams to transmission windows of egress ports and report
solved instances with 750 streams. Heuristic approaches were
able to schedule instances with more than 10000 streams,
e.g., [48] and [30].

Second, exact approaches which solve the joint routing
and scheduling problem can only handle instances with
smaller numbers of nodes compared to approaches solely
for scheduling. Typical networks in evaluations of joint rout-
ing algorithms contain less than 50 nodes [71], [72], [73].
This is due to the solution space growing heavily with an
increased number of possible paths per stream. However,
there are approaches able to compute routings and schedules

TABLE 8. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with exact approach and fixed routing are included for comparability.

TABLE 9. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with heuristic approach and fixed routing are included for comparability.

for problem instances with up to 96 nodes [109], [134].
Most networks in the literature of scheduling with a fixed
routing contain less than 96 nodes. The range of the number of
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TABLE 10. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with exact approach and joint routing are included for comparability.

streams is approximately the same for approaches with fixed
routing and joint routing.

VI. PUBLICATION HISTORY
We give an overview of the publication history of TSN
scheduling. First, we highlight seminal works from the lit-
erature. Then, we analyze the development of the field with
respect to the number of published papers per year.

A. SEMINAL WORKS
Early works about per-flow scheduling in Ethernet networks
were presented by Steiner [7] and Schweissguth et al. [8].
While these works are not specifically for TSN and abstract
on the details of the real-time enhancement for Ethernet. they
influencedmany later works presented in this survey. The first
works specifically about scheduling in TSNwere presented in
2016. Dürr et al. [28] presented an ILP for no-wait scheduling
and identified the problem of guard bands consuming band-
width. Craciunas et al. [29] adapted the work of Steiner [7] for
TSN. They introduced isolation constraints and incremental
scheduling to the domain of TSN. Gavrilut et al. [73] is
the first work which features joint routing and reliability
considerations. Raagard et al. [76] introduced reconfiguration
of schedules to TSN scheduling. Oliver et al. [31] proposed
a scheduling approach with limits the number of used GCL
entries by computing them in a joint approach with trans-
mission offsets. All earlier works computed GCLs by a post-
processing after scheduling.

B. PUBLISHED PAPERS
Figure 19 shows the number of papers about TSN scheduling
per year. The first papers about scheduling in TSN were
published in 2016. The general trend is that the field grows

TABLE 11. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with heuristic approach and joint routing are included for comparability.

almost monotonously from one year to the next, with only
one exception in 2019. We observe a significant increase in
published works since the year 2020. Given the fast growth
of the last 2 years, we expect even more research works about
TSN scheduling in the future.

VII. FUTURE WORKS
In this section, we discuss the results of the literature study.
First, we suggest improvements for future research works.
Then, we highlight open problems not handled sufficiently
so far.

A. SUGGESTIONS FOR IMPROVEMENT
The surveyed literature features many high quality research
works. However, there is room for improvement in the pre-
sentation of some of these works. We suggest improvements
in the hope that the overall quality of the TSN scheduling
literature can be improved even more in the future. First,
we discuss shortcomings and improvements in the presenta-
tion of evaluation methodologies. Then, we suggest the use
of the technical terminology used in Ethernet bridging.
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FIGURE 19. Number of published research works per year about TSN
scheduling. Only works published before March 2023 are counted.

1) EVALUATION METHODOLOGIES
The scalability of the proposed solutions from the litera-
ture was extensively evaluated. Unfortunately, the impact of
possible additional features and changes in parameters to
the various objective functions was mostly ignored so far.
Although scalability is an important property of a scheduling
algorithm, it would be interesting to see more evaluations
regarding solution quality. Most test cases in the literature
are synthetically constructed, both network topology and
streams. Even though it is hard to obtain test cases from the
industry, let alone publish them, we would like to see more
evaluations with realistic instances. It is not clear whether
the proposed algorithms are suitable for large industry-scale
instances or how they look like. It is also extremely difficult to
compare the results of different research works as there is no
public set of test cases for benchmarks. Consequently, there
is little research work available about which algorithm should
be used in which setting.

Unfortunately, it is also hard to assess the significance
of evaluation results in some papers for two reasons. First,
the instances solved are not sufficiently described. At least
the topology and a description of assumed delays, e.g., pro-
cessing and propagation delay, should be contained in the
description of the network. Important properties of streams
like deadlines or periods are often missing. Second, some
evaluations report results for individual problem instances
and are thus more of anecdotal character. There are easy
and hard instances for every algorithm. Comparing multiple
approaches on the same selected instances can be useful,
but this may have the taste of picking specific instances in
support of some conclusion. Instead of reporting results for
individual instances, average results for multiple instances
with the same evaluation setting should be reported. However,
we acknowledge that evaluations for specific scenarios can be
of interest. Especially readers from the industry may enjoy
a rigorous report about a specific running system. We only
want to emphasize that strong conclusions should be backed
up by strong evidence and extensive evaluation. Another
property covered by many evaluations is the schedulability
of the respective proposed approach. These evaluations treat

instances as infeasible when no schedule was found before
some timeout. Thus, comparing the schedulability of two
scheduling approaches which support different features is
biased, as timeouts do not prove infeasibility. This may lead
to wrong conclusions in favor of some algorithm or model,
although schedulability is actually equal.

2) TERMINOLOGY
Many works surveyed in this paper use a vocabulary loosely
related to Ethernet bridging. However, the standards and other
relevant literature use a specific technical terminology. We
suggest that the scheduling community adopts this jargon.
Readers from adjacent research domains or who have prior
knowledge in Ethernet bridging can benefit from a consistent
vocabulary. The word stream is used in several standards,
e.g., [11], [12], and [147]. Therefore, we suggest to use stream
instead of flow. Network devices which send or receive data
streams are denoted as end stations in the original bridging
standard IEEE 802.1D [148]. The source end station of a
stream is denoted as talker, while the destination end station
is denoted as listener. Layer 2 switching devices are denoted
as bridges instead of switches in IEEE 802.1D [148] and
in the names of many other standards, e.g., in [9] and [14].
Thus, we suggest to use these terms when describing network
topologies.

Frames are the units of data transmission, as TSN is a
layer 2 technology, while packets are the units of data trans-
missions in layer 3 technologies (cf. [149]). Although the
meaning of the term packet is clear in the context of schedul-
ing, it is technically wrong. Routing is the process of path
computation on layer 3. Therefore, the term path selection is
more appropriate in TSN. However, we note that we used the
term routing in this survey several times. The reason for this
is to ensure consistency with the reviewed literature which
solves the so-called joint routing problem.

B. OPEN PROBLEMS
The available literature is comprehensive with regard to solu-
tion approaches to the unmodified scheduling problem in
TSN. However, there is still a wide field of relevant aspects
which are not yet understood.

1) IMPACT OF GUARD BANDS AND GCL ENTRIES
To the best of our knowledge, the impact of guard bands on
bandwidth available to lower-priority traffic was not evalu-
ated in the literature. Likewise, the impact of available GCL
entries on available bandwidth for lower-priority traffic is not
investigated in detail. The evaluations so far suggest that AVB
streams benefit from schedules with many holes between TT
streams with regard to tardiness. However, such schedules
may need more gate closings and thus guard bands, which
reduces the available bandwidth. It is not clear how AVB
and BE traffic can be simultaneously integrated in a unified
approach for the scheduling of TT streams.
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2) ROUTING AND MULTICAST
The joint routing and scheduling problem was explored in
detail in the literature. All research works about this topic
agree that schedulability benefits from joint routing and
scheduling. However, solving the joint routing problem is
significantly harder compared to scheduling with a given
routing. Unfortunately, there is currently no exact and scal-
able approach known for joint routing. Additionally, it is not
understood which properties a routing should have to ben-
efit schedule synthesis and quality. TSN supports multicast
streams which are relevant in real use cases. Some of the
algorithms presented in researchworks covered by this survey
can handle multicast streams. However, the literature lacks
evaluations and insights about the appropriate integration of
multicast streams in a schedule.

3) ONLINE RECONFIGURATION
There is also little work about online schedule reconfigura-
tion, though it is important for operation. In some scenarios,
e.g., automotive networks, insertion and removal of streams
at execution time of the schedule can be important. So far
it is not explored exhaustively what properties a schedule
should have such that reconfiguration can by computed effi-
ciently. However, there are preliminary works about this
topic [79], [116]. Instead of rescheduling all streams, many
works about reconfiguration try to resolve conflicts by
assigning streams to other traffic classes [76] or paths
[136], [138]. Other ways to resolve scheduling conflicts
instead of rescheduling all streams may be needed in the
future. Unfortunately, there are no reconfiguration algorithms
for most of the problem extensions from Section III-E.

4) QUEUING AND HANDLING OF NON-DETERMINISM
An important open problem in TSN is sufficient integration of
queuing. Almost all research works use isolation constraints
from [29], i.e., they do not allow frames of different streams
to reside in the same queue at the same time. However,
this is not a requirement of the TAS. Some approaches
even separate streams by assigning them to different egress
queues during scheduling. The rational of this is to reduce the
impact of non-determinism like frame loss. Other attempts
to reduce the influence of such causes of non-determinism
are not yet explored. The benefits of unrestricted queuing
regarding schedulability or solution quality has not yet been
evaluated.

Real hardware bridges are subject to non-determinism.
There is jitter in processing delays, and clocks are not exactly
synchronized in reality. Additionally, frames that are sched-
uled to arrive approximately at the same time at two ingress
ports of the same bridge may cause race conditions, i.e.,
processing order is not deterministic. All research works
covered by this survey assume bridges are perfectly deter-
ministic. Thus, the literature lacks handling of such causes of
non-determinism.

5) FILTERING AND POLICING
Per-Stream Filtering and Policing (PSFP) is a standard
defined in IEEE 802.1Qci [147] for filtering and policing in
TSN. Currently, there are no devices available implement-
ing PSFP. However, filtering and policing could be used to
prevent violations of schedules through unexpected packets.
Packets not scheduled, delayed frames, and frames larger than
expected can be filtered at execution time of a schedule. Thus,
PSFP requires configuration of filtering entries that need to be
derived from the schedule. A joint approach may be needed
as PSFP imposes additional restrictions, e.g., the number of
available filtering entries will be limited in bridges.

6) SECURITY ASPECTS
The security of real-time Ethernet networks was mostly
ignored so far. All considerations for reliability and safety
in TSN assume that no malicious party is involved in the
communication. The standards do not cover countermea-
sures against replay or impersonation attacks. This may be
a problem for highly vulnerable use cases of TSN, e.g.,
factory automation and in-vehicle networks. Future schedul-
ing algorithms may integrate security considerations. For
instance, key exchange and management result in additional
streams that must be protected from other traffic. However,
source authentication and integrity may also be implemented
by future TSN standards or application layer protocols.
Other security problems may be countered with PSFP, e.g.,
jamming and Denial-of-Service attacks by malicious end
stations.

7) LEGACY DEVICES
Traditional Ethernet is a widespread layer 2 technology
for industrial applications. Such applications are typically
designed to be used for years or even decades. Thus, integrat-
ing legacy devices which are not capable of traffic schedul-
ing or time synchronization will be a major problem in the
next years for the deployment of TSN. Future scheduling
algorithms may help to integrate such devices. For instance,
scheduling algorithms can reserve bandwidth for the com-
munication of these devices. However, new devices, e.g.,
gateways or proxies, may be needed to fully support the
coexistence of legacy devices and scheduled traffic.

8) USE OF TSN MECHANISMS
TSN is not limited to scheduled traffic and the TAS. Other
traffic classes may have real-time requirements, but cannot
be scheduled as the respective streams are not periodic.
Different traffic classes may have different sets of real-
time requirements, e.g., demanding bounded jitter instead
of bounded latency. TSN features more mechanisms which
may be applied to fulfill these requirements, such as Asyn-
chronous Traffic Shaping [150] or Cyclic Queuing and
Forwarding [18]. A major open problem in TSN is the
coexistence of multiple mechanisms and the assignment of
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streams to them. Input may be a set of streams or traffic rates
with their descriptors and real-time requirements, and output
is their assignment to appropriate TSN mechanisms together
with the complete network configuration. This problem goes
far beyond the TSN scheduling problem, but may impose
additional constraints on the latter. Some requirements can
only be fulfilled by scheduling the respective streams and
computing GCLs for the TAS. Others may not even know
the traffic streams in advance and can be implemented by
the CBS or even simpler mechanisms. As even computing
GCLs for the TAS is a challenging task for current state-
of-the-art scheduling and optimization algorithms, such a
comprehensive approach is currently unreachable. Hopefully,
future works will move towards such long term goals and
enable users to exploit the full potential of TSN.

9) UNDERSTANDING OF THE TSN PROBLEM
So far, scalability analyses have been conducted on special
algorithms. However, they do not provide insights in what
makes the TSN problem hard. This also pertains to all prob-
lem extensions like joint routing and multicast, reliability,
robustness, BE or ABE traffic, etc. Moreover, properties
of schedules such as tightness or average duration of open
periods of the TAS have not yet been investigated. It would
be helpful to understand the impact of problem extensions on
the structure of schedules in an intuitive way. A better under-
standing of extensions and their impact on schedule structure
may facilitate the development of heuristic algorithms that
solve larger instances of the TSN problem with acceptable
quality compared to exact approaches.

VIII. CONCLUSION
TSN is a set of standards to enable real-time transmission over
switched Ethernet networks. IEEE 802.1Qbv [6] defines traf-
fic scheduling combined with the Time-Aware Shaper (TAS),
i.e., transmissions of periodic high-priority streams are sched-
uled such that packets hardly interfere and that ultra-low
latency is achieved. Moreover, the TAS protects scheduled
traffic against traffic from other traffic classes. This approach
requires the configuration of transmission times for streams
at the Talkers (source nodes) as well as the configuration of
the TAS on the switches.

In this paper, we first gave an introduction to TSN with
focus on traffic scheduling and the TAS. We defined the
‘‘TSN scheduling problem’’ and discussed common exten-
sions such as scheduling with fixed or joint routing, various
forms of queuing, support for reliability or lower-priority
traffic, or respecting technical restrictions. Some of these
extensions lead to optimization problems. We summarized
frequently used scheduling and optimization methods to
tackle these challenges. Then we reviewed a large body of
literature about the TSN scheduling problem and classified it
regarding the mentioned extensions. Subsequently, we ana-
lyzed and compared the works with respect to modelling
assumptions, scheduling objectives, problem instances, and
scalability, and pointed out advances. We tracked seminal

works and identified popular publication venues for TSN
scheduling. We discussed the area by suggesting improve-
ments and pointing out open problems.

This survey serves researchers to identify the current state
of the art and open problems in TSN scheduling. The many
problem extensions suggest that the construction of an effi-
cient scheduling or optimization algorithm which considers
all relevant aspects is infeasible. We expect future work to
provide a better understanding of the complexity of the TSN
scheduling problem to cover more problem extensions while
maintaining scalability.
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