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Abstract
Research in medicine and healthcare utilizes high-dimensional, multi-modal and complex data
to stratify patients for improving diagnosis and treatment and discovering novel insights into
diseases. Machine learning has the potential to positively impact medicine and healthcare due
to the ability of machine learning methods to find complex patterns in high-dimensional data
and correlate these patterns with relevant endpoints. However, substantial advancements in
these two research fields can only be achieved by an interdisciplinary effort involving physicians,
machine learning experts, data scientists, and more. One approach that utilizes expertise
from all involved parties while also enabling scientists from different disciplines to interact on
equal footing is the use of inherently interpretable prediction models. This thesis explores the
viability of inherently interpretable prediction models for research in medicine and healthcare.
The contributions of this thesis lie in two different fields: data-centric and model-centric
research. On the data-centric side, this thesis explores the prerequisites that data have to
fulfill to allow the training of inherently interpretable models. Since this type of prediction
model needs to be conceptually simple, data has to fulfill quality requirements to allow the
training of high performing models that are inherently interpretable. Results presented in this
thesis show that a carefully designed recording setup allows to distinguish perturbation-evoked
potentials from ongoing electroencephalography with simple linear models. Furthermore, a
carefully curated dataset allows to train specialized prediction models for the classification of
Plasmodium falciparum-specific protein antigen candidates. These models vastly outperform
more complex prediction services for similar tasks. On the model-centric side, this thesis
explores the possibility to increase the expressiveness of inherently interpretable models for
prediction tasks in medicine and healthcare. The results of this thesis show that a combination
of interpretable kernel functions with artificial neural networks creates inherently interpretable
kernel networks that achieve state-of-the-art prediction performance on tested prediction tasks.
Furthermore, these kernel networks can be robustly and efficiently trained on all dataset sizes.
Since available data in medicine and healthcare ranges from small- to large-scale, this property
is important for models that aim to be generally applicable in the targeted research areas. With
the models proposed and the results presented in the included research, this doctoral thesis
advances current knowledge towards inherently interpretable machine learning for medicine
and healthcare.
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Zusammenfassung
Für die Forschung im Bereich der Medizin und der Gesundheitsversorgung werden hochdimen-
sionale, multimodale und komplexe Daten benutzt, um eine detailliertere Unterteilung von
Patienten zu ermöglichen. Dies hat zum Ziel, die Diagnose und Behandlung von Patienten zu
optimieren und neuartige Erkenntnisse über Krankheiten zu gewinnen. Maschinelles Lernen
kann einen potenziell positiven Einfluss auf diese beiden Forschungsfelder haben, da Prädiktions-
modelle des Maschinellen Lernens die Fähigkeit haben, komplexe Muster in hochdimensionalen
Daten zu erkennen und diese mit relevanten Endpunkten in Korrelation zu setzen. Um einen
signifikanten Fortschritt im Bereich der Medizin und der Gesundheitsversorgung zu erreichen,
ist eine interdisziplinäre Anstrengung unter Beteiligung von Ärzten, Experten des maschinel-
len Lernens, Datenwissenschaftlern und weiteren Interessensgruppen erforderlich. Inhärent
interpretierbare Prädiktionsmodelle können ein wichtiger Ansatz für solch interdisziplinäre
Forschung sein, da sie die Expertise der verschiedenen Fachleute vereint und so eine Kooperation
auf Augenhöhe unterstützt. Diese Doktorarbeit untersucht die Realisierbarkeit von inhärent
interpretierbaren Modellen für die Forschung in Medizin und Gesundheitsversorgung. Hierbei
liegen die wissenschaftlichen Beiträge dieser Arbeit in zwei Forschungsfeldern: Datenzentrierte
und modellzentrierte Forschung. Im datenzentrierten Teil werden die Voraussetzungen unter-
sucht, die Daten erfüllen müssen, um das Training von inhärent interpretierbaren Modellen zu
ermöglichen. Da diese Art von Prädiktionsmodellen eine konzeptuelle Einfachheit erfordern,
muss eine besonders hohe Qualitätsanforderung an Trainingsdaten gestellt werden, um ein
erfolgreiches Training mit entsprechender Prädiktionsperformanz zu erreichen. Die Ergebnisse
dieser Arbeit zeigen, wie ein entsprechend ausgearbeitet Aufnahmeszenario ermöglicht, unter
Verwendung von linearen Modellen sogenannte Perturbation-Evoked Potentials vom Ruhe-EEG
zu unterschieden. Außerdem wird gezeigt, wie speziell kuratierte Daten das Training von
Modellen für die Vorhersage von Antigenkandidaten gegen Plasmodium falciparum ermöglichen.
Modelle, die auf diesen spezialisierten Daten trainiert wurden, erreichen eine signifikant besse-
re Prädiktionsperformanz als komplexere Modelle, die auf nicht kuratierten Daten trainiert
wurden. Die modellzentrierte Forschung dieser Doktorarbeit untersucht die Möglichkeit, die
Ausdrucksstärke von inhärent interpretierbaren Modellen für den Einsatz im medizinischen
Kontext oder dem Gesundheitswesen zu verbessern. Die in dieser Arbeit vorgestellten Ergeb-
nisse zeigen, wie aus einer Kombination aus interpretierbaren Kernfunktionen mit künstlichen
neuronalen Netzen inhärent interpretierbare Modelle entstehen. Diese Modelle erreichen State
of the Art Prädiktionsperformanz auf getesteten Vorhersageaufgaben. Außerdem wird gezeigt,
dass diese Modelle robust und effizient auf verschiedenen Datensatzgrößen trainiert werden
können. Da die Größe von Datensätzen in Medizin und Gesundheitsversorgung stark schwankt,
ist diese Eigenschaft eine Voraussetzung für einen weiträumigen Einsatzbereich. Die in dieser
Arbeit vorgeschlagenen Modelle und präsentierten Ergebnisse stellen einen wissenschaftlichen
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Fortschritt für die Forschung zu inhärent interpretierbaren maschinellem Lernen in Medizin
und Gesundheitsversorgung dar.

x



List of Figures
2.1 Interpretability of selected kernel functions . . . . . . . . . . . . . . . . . . . . 10

4.1 Schematic overview of PEP data collection . . . . . . . . . . . . . . . . . . . . 18
4.2 Schematic overview of PlasmoFAB data collection . . . . . . . . . . . . . . . . 19
4.3 CMKN architecture and interpretation . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 COmic architecture and interpretation . . . . . . . . . . . . . . . . . . . . . . . 25

I.1 Schematic of the experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 40
I.2 Grand average of perturbation trials . . . . . . . . . . . . . . . . . . . . . . . . 43
I.3 Grand average at different electrodes . . . . . . . . . . . . . . . . . . . . . . . . 44
I.4 Onsets of training windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
I.5 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I.6 Detailed analysis of classification result . . . . . . . . . . . . . . . . . . . . . . . 49
I.7 ROC curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
II.1 Schematic overview of the pre-processing steps for the creation of PlasmoFAB . 57
III.1 Schematic overview of an CMKN model . . . . . . . . . . . . . . . . . . . . . . 71
III.2 Evaluation of the interpretation capabilities of CMKN using synthetic data . . 73
III.3 Visualization of CMKN’s interpretation capabilities . . . . . . . . . . . . . . . . 76
IV.1 Schematic of COmic architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 84
IV.2 COmic results on single omics data . . . . . . . . . . . . . . . . . . . . . . . . . 88
IV.3 COmic results on multi omics data . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi





List of Tables
I.1 Window lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
I.2 Classification results for different window sizes . . . . . . . . . . . . . . . . . . 46
I.3 Classification results for different layouts . . . . . . . . . . . . . . . . . . . . . . 48
II.1 Composition of the PlasmoFAB benchmark . . . . . . . . . . . . . . . . . . . . 58
II.2 Test results on PlasmoFAB benchmark . . . . . . . . . . . . . . . . . . . . . . . 63
III.1 CMKN performance on HIV prediction task . . . . . . . . . . . . . . . . . . . . 74
III.2 CMKN performance on splice site benchmarks . . . . . . . . . . . . . . . . . . 77
IV.1 Omics dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiii





Acronyms
ANN Artificial Neural Network

auPR Area Under the Precision-Recall Curve

auROC Area Under the Receiver Operating Characteristic Curve

CKN Convolutional Kernel Network

CMKN Convolutional Motif Kernel Network

CNN Convolutional Neural Network

COmic Convolutional Omics Kernel Network

DMFS Distant Metastasis Free Survival

EEG Electroencephalography

MCC Matthew’s Correlation Coefficient

ML Machine Learning

PAM Position-Aware Motif Kernel

PEP Perturbation-Evoked Potential

PIK Pathway-Induced Kernel

PIMKL Pathway-Induced Multiple Kernel Learning

PlasmoFAB Plasmodium falciparum-Specific Antigene Candidate Benchmark

RFS Relapse Free Survival

RKHS Reproducing Kernel Hilbert Space

RL Reinforcement Learning

SL Supervised Learning

SLDA Shrinkage Linear Discriminant Analysis

SSL Self-Supervised Learning

XAI Explainable Artificial Intelligence

xv





1 List of Publications

This cumulative doctoral thesis is based on the manuscripts listed below. The order of the
listed publications is determined by topic rather than the chronological order. Since each
work was a collaboration of several scientists, the following pages are dedicated to indicate my
personal contributions.

Accepted Publications

1. Ditz, Jonas C., Schwarz, Andreas, and Müller-Putz, Gernot R. "Perturbation-evoked
potentials can be classified from single-trial EEG." Journal of neural engineering 17.3
(2020): 036008.

2. Ditz, Jonas C.∗, Wistuba-Hamprecht, Jacqueline∗, Maier, Timo, Fendel, Rolf, Pfeifer,
Nico, and Reuter, Bernhard. "PlasmoFAB: a benchmark to foster machine learn-
ing for Plasmodium falciparum protein antigen candidate prediction." Bioinformatics
39.Supplement_1 (2023): i86-i93.

3. Ditz, Jonas C., Reuter, Bernhard, and Pfeifer, Nico. "Inherently interpretable position-
aware convolutional motif kernel networks for biological sequencing data." Scientific
Reports 13, 17216 (2023)

4. Ditz, Jonas C., Reuter, Bernhard, and Pfeifer, Nico. "COmic: convolutional kernel
networks for interpretable end-to-end learning on (multi-) omics data." Bioinformatics
39.Supplement_1 (2023): i76-i85.

* indicates equal contribution

1





2 Introduction

Why are you using models that you do not understand to investigate something that you do
not understand? This question was asked as a response to a talk at a machine learning (ML)
summer school that I attended during my doctoral studies. There were several ML experts in
the audience that day. However, it took one of the few non-experts to ask this question. In
retrospective, the answer that was provided by the present ML experts was even more striking:
the world is complex and, hence, we have to increase the complexity of models as much as
possible. This answer has to be noteworthy for scientists as it seems to be in stark contrast to
the law of parsimony, more famously known as Occam’s razor∗, a philosophical concept that
has supported the falsifiability criterion of the scientific method for centuries [1]. Yet there are
large parts of the machine learning community that work towards increasing complexity, just
as suggested by the answer [2, 3, 4]. While these models’ achievements that were rightfully
celebrated seem to validate this approach of increased complexity, simpler but understandable
models offer a key benefit to both researching scientists and users in an application scenario:
they can help them to understand the problem at hand. Since gaining an understanding
about the investigated research subject is fundamental in healthcare, one of the key questions I
investigated during my doctoral studies was what the prerequisites for understandable models
in healthcare are.

In the digital world, living life is equivalent to generating data. Internet traffic is closely
monitored and used to automatically generate profiles about users. Most governments create
and store information about their citizens ranging from occupation and place of residency to
health status. The progress of pupils and students in schools and universities is closely tracked
and analyzed. Even our body consist of and constantly generates data that we are able to
extract and store. The genomic information can be accessed using sequencing techniques and
several other methods exist to access additional information, like the transcriptome, proteome,
metabolome, microbiome, or phenome. Almost everything in the digital world either produces
and/or stores data. While this data can be seen as a discretization and simplification of
reality, it still is usually high-dimensional and, hence, seemingly of high complexity. Since
humans cannot comprehend high-dimensional data, considerable effort is put into extracting
humanly comprehensible information from data. In the field of machine learning, this effort
can be roughly separated into three categories. Unsupervised or self-supervised learning (SSL)
describes methods that try to group together samples based solely on characteristics of the

∗William of Ockham (* 1287, †10 April 1347) was an English philosopher and theologian
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observed data. The main idea is that the learned groups and characteristics, often referred to
as patterns, are a mimicry of reality and therefore act as a comprehensible representation of
the real world. On the other hand, supervised learning (SL) describes methods that correlate
patterns with comprehensible output variables, often referred to as labels. These labels can be
continuous for regression problems or categorical for classification problems. The third category,
reinforcement learning (RL), summarizes methods that try to learn a sequence of actions based
on complex data. While self-supervised and reinforcement learning were mentioned for the
sake of completeness, the scope of the remaining thesis will focus on supervised learning.

The desire to create increasingly complex models can be intuitively understood by looking at
the concept that embodies the core of ML theory, called empirical risk minimization (ERM) [5].
In plain English, ERM is used to minimize the error produced by a model for a specific dataset.
To introduce this concept more formally, assume a joint probability distribution D over X × Y
that gives rise to pairs over an arbitrary domain set X , which will be called instance space,
and a set of labels Y . The domain points are often called instances. The task for a model is to
produce a prediction function h : X → Y. The error of this prediction function is most often
defined as the probability to draw a random pair (x, y) ∼ D such that the prediction function
yields a result that is different from y [6]:

LD(h)
def
= P(x,y)∼D [h(x) ̸= y]

def
= D (¶(x, y) : h(x) ̸= y♢) . (2.1)

Since the distribution D is unknown to the model, ERM utilizes a sequence of known pairs of
instances with corresponding labels† S = ¶(x1, y1), . . . , (xm, ym)♢ , (xi, yi) ∼ D to estimate the
model’s error [6]:

LERM(h)
def
=

♣¶i : h(xi) ̸= yi♢♣
m

, (2.2)

where i ∈ ¶1, . . . ,m♢. The obvious goal of utilizing machine learning is to find a labeling
function that is as close as possible to the distribution that gives rise to the labeled instances.
Given the notion established in the previous paragraph that the data generating process of
the world is highly complex, it only seems consequential to find an equally complex prediction
function‰. Furthermore, the ERM paradigm together with basic statistics resulted in a plethora
of different performance metrics that can be used by researchers to quantify the validity of their
complex models ranging from simple accuracy to more complex measures like the area under
the receiver operating characteristic curve (auROC) [8] or Matthew’s correlation coefficient
(MCC) [9].

From a scientific point of view, there are three main issues that arise from increasing model
complexity to improve prediction performances. The first more general and philosophical
problem comes from the modern machine learning practice to use performance metrics not
only for evaluating models but also as a target during training. This procedure results in a
questionable validity of performance metrics as an evaluation tool for ML models, an idea that

†This sequence of domain points is often called a training set. However, these sequences are not guaranteed
to fulfill the requirements of a set, e.g., some instances may occur multiple times and the order of instances can
be taken into account by some algorithms. [6]

‰In the classical machine learning literature, the bias-complexity trade-off is usually used to advise against
overly complex models as it can lead to overfitting on training data [6]. However, empirical results suggest
that this limitation is not prevalent for one type of models that is at the forefront of highly complex and
over-parametrized learners: (deep) artificial neural networks (ANNs) [7].
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is famously verbalized in the adage Goodhart’s law§. The second issue has a more practical
nature. The world in its entirety might be highly complex but (supervised) learning tasks
are not performed on the entire world. Usually only a tiny part of all available information is
needed for a specific prediction task. And while this information can still be high-dimensional
(e.g., gene expression data), we often have prior knowledge about the data that reduces the
complexity (e.g., gene interaction networks for gene expression data). The singular focus on
increasing model complexity to compensate for high-dimensional data disregards previously
attained scientific knowledge and raises the danger of learning spurious correlations [12, 13].
And the last issue comes from the fact that using a highly complex, black-box model to compute
predictions from data points renders it impossible to understand the rationale behind the
assignment of predicted outcomes directly from the model. This prevents one of the most
crucial aspects of conducting science: knowledge discovery. Using prior knowledge to create
intrinsically interpretable models offers a solution to all three of these issues by (i) providing an
additional mode for model evaluation, (ii) simpl++ifying the input data domain with previously
attained knowledge, and (iii) opening the black box to provide means for understanding the
rationale behind a prediction.

2.1 Preliminaries

Throughout this thesis, different concepts will be mentioned. This section serves as a summary
for the collection and introduction of important concepts.

2.1.1 Performance Metrics

As already mentioned, performance metrics serve as an indicator of a prediction model’s success.
Although there are numerous metrics introduced in ML literature, only metrics that are relevant
for the remaining thesis will be described here. Furthermore, the binary version of these metrics
will be introduced. All of the following performance metrics can be derived using four basic
quantities. True positives (TP) describe the number of data points that belong to the positive
class and are correctly classified by the model. False positives (FP) are data points that belong
to the negative class but are wrongly classified by the model. True negatives (TN) are all data
points belonging to the negative class that are correctly classified by the model. Finally, false
negatives (FN) describe the number of data points that belong to the positive class but are
wrongly classified by the model.

Accuracy is the most basic performance metric. It indicates the number of correctly
classified samples and is defined as [14]

Acc =
TP + TN

TP + TN + FP + FN
. (2.3)

A slightly more advanced version is called balanced accuracy. This metric tends to perform
better on imbalanced data and has different definitions in the literature. For this thesis, the

§Goodhart’s law states: “When a measure becomes a target, it ceases to be a good measure”. [10, 11]
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balanced accuracy is defined as the arithmetic mean of sensitivity and specificity [15]:

Accbal =
1

2



TP
TP + FN

+
TN

TN + FP



. (2.4)

Another commonly used metric is the F1 score, which is defined as the harmonic mean of
precision and recall [16]:

F1 =
2TP

2TP + FP + FN
. (2.5)

Matthew’s correlation coefficient (MCC) is a metric that puts equal emphasis on all four of
the basic quantities and provides a more robust measure than the previous mentioned metrics.
It is also widely accepted as one of the most reliable performance metrics for biological data
and defined as [9]

MCC =
TP · TN − FP · FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (2.6)

Additionally to these mathematically motivated metrics, there are graphically motivated
performance metrics. Probably the most widely used metric in ML literature is called the
area under the receiver operating characteristic curve (auROC) [8]. The ROC curve
describes a plot that shows the change of true positive rate (TNP = TP

TP+FN
) against false

positive rate (FPR = FP
FP+TN

) for different discrimination thresholds of a model [17]. In order
to compare different models, this curve is often reduced to a single number that describes the
area under the ROC curve. Although there are different methods to discretize the auROC
calculation, the well-known utilization of a Wilcoxon-Mann-Whitney statistic [18] was used in
this thesis:

auROC =

∑

x−∈N−

∑

x+∈N+ 1
[

h(x−) < h(x+)
]

(TN + FP) (TP + FN)
, (2.7)

where N− denotes the set of negative samples and N+ denotes the set of positive samples, and
1

[

h(x−) < h(x+)
]

is an indicator function that returns 1, if the prediction for the negative
sample is smaller than the prediction for the positive sample and 0 otherwise. Since it becomes
more widely known that the auROC estimate is overly optimistic in many scenarios [19], it
becomes increasingly common to use a different graphically motivated metric called the area
under the precision-recall curve (auPR). The PR curve plots precision (Pr = TP

TP+FP
)

against recall (R = TP
TP+FN

) at different discrimination thresholds of a model. However, due
to the properties of the PR space, the auPR cannot be estimated using linear interpolation
methods [20]. All auPR values in this thesis are approximated with the average precision
(AveP), which is a commonly used, robust approximation for the auPR [21]:

auPR ≈ AveP =
∑

t∈T

∆Rt Prt, (2.8)

where T is the set of all thresholds, Prt is the precision at the t-th threshold, and ∆Rt is the
change in recall between the t-th and the previous threshold.
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2.2 Let’s Talk About Data

At the core of every single machine learning application lies data. One can develop the most
sophisticated, intelligent new method, data will be used to judge the usability of this method.
Even the most advanced machine learning model cannot compensate for a lack of informative
structure within a dataset. And attempts to interpret a model are futile if the data cannot be
interpreted due to poor quality. Nevertheless, the quality of data was mostly ignored by the
machine learning community in the past, which is clearly noticeable from the fact that it took
until 2021 before one of the most important machine learning conferences, the Conference on
Neural Information Processing Systems (NeurIPS), introduced a track that focuses on data.
There are still highly active sub-fields of machine learning research that consider the quantity
of data more important than the quality, e.g., reflected by the common practice of the natural
language processing (NLP) community to scrap huge amounts of unfiltered text data from
the internet [22] or the practice to exploit underpaid workers to create large, labeled image
datasets with minimal quality control [23].

While the quality of data might be a minor concern in economical applications of machine
learning, where the main incentive is the maximization of monetary interests, the usage of
high-quality data is non-negotiable in high-stakes scenarios like healthcare. Two aspects can be
identified that play an important role in determining the quality of data for healthcare-related
ML applications. For this thesis the two aspects will be called specificity and completeness. The
first aspect, specificity, points at the fact that a dataset has to contain information that is specific
for the targeted prediction task. A general limitation of ML models is the inability to guarantee
an acceptable prediction performance for data that is generated from a different distribution
than the training data. This limitation is called a lack of out-of-distribution generalization
[24]. Furthermore, a model’s prediction performance tends to decrease if that model is trained
on datasets which contain a lot of unrelated information or “noise” [25]. However, since the
process of data generation is laborious and expensive, especially for healthcare-related data, it
is a common practice to either reuse pretrained models or reuse data for different purposes
[26, 27, 28, 29, 30, 31, 32]. While there should not be a general advise against these practices,
e.g., they can help to significantly decrease resource usage, great care has to be taken when
reusing models or data. The process often relies on complex mathematical modeling that
decreases the understandability of resulting models [33]. The second aspect, completeness,
describes whether a dataset contains enough information to paint a complete picture of the
targeted prediction task. For healthcare-related data, completeness does not exclusively mean
that data contains the targeted information, e.g., samples from the gene that is supposed to
be investigated or to ensure that every important protein is included in the dataset. The
balanced representation of meta-information, like ethnicity, gender, or age, is equally important.
Excluding minorities can lead to an incomplete knowledge about the researched subject, e.g.,
diseases or treatment results, and biased prediction models [34, 35, 36, 37].

However, similar to the fact that modern science is rarely advanced by individuals but in
a community effort, relying on an individual or a single research group for the judgment of
a data’s specificity and completeness is an unnecessary limitation. Utilizing the collective
expertise provided by the scientific community is a much more robust approach. There are
several examples showing the benefits of a community effort to judge the quality of data ranging
from recidivism prediction [35, 38] over facial recognition [37] to medical imagery [36]. In order
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to provide researchers with the means necessary for such an assessment of data, two main
prerequisites have to be fulfilled. Researchers have to be able to find the data and they have to
be able to understand the purpose of the data. In the past years, there were several efforts to
establish standards for these two prerequisites. Most noticeable was the introduction of the
FAIR principles that were introduced to improve the f indability, accessibility, interoperability,
and reuse of data [39]. Together with the easy-to-follow FAIRification framework, researchers
are provided with a simple opportunity to ensure the first prerequisite. To fulfill the second
prerequisite, Gebru and colleagues developed a datasheet for datasets [40]. These datasheets
provide researchers with all information necessary to understand the dataset such as details
about the creation process, data characteristics, recommended uses, and other information.

2.3 A Kernel Of Truth

One of the core principles that were utilized in the development of the interpretable models
introduced with this thesis is the use of kernels. In general, kernels describe a type of similarity
measure and the underlying idea of the use of kernels is quite simple. Most traditional machine
learning methods like support vector machines (SVMs) are using halfspaces to separate samples
into classes, i.e., assuming w.l.o.g. R

n as the domain set X , the prediction function can be
written as h(x) = ⟨w, x⟩ + b with w, x ∈ R

n and b ∈ R. However, realistic data is rarely
separable by halfspaces due to their restricted expressive power. To overcome this limitation,
all instances can be mapped into an often higher-dimensional feature space F by defining
a non-linear mapping φ : X → F . This feature space can be any Hilbert space¶ including
infinite-dimensional spaces. Learning a separating halfspace in the feature space results in
a prediction model that is linear in F but non-linear in the original instance space X . The
validity of this mapping approach can be easily shown since, for every probability distribution
D over X × Y, it is possible to define an image probability distribution Dφ over F × Y using
the following definition: ∀A ⊆ F ,Dφ(A) = D(φ−1(A)). Therefore, the following equation holds
for every prediction function h over the feature space: LDϕ(h) = LD(h ◦ φ), where h ◦ φ is the
composition of the prediction function onto the mapping. [6]

Increasing the dimensionality of instances to improve the expressiveness of a model comes
with an important disadvantage: the curse of dimensionality [41]. In machine learning, this
term refers to two issues that arise when the dimensionality of instances becomes larger. First,
under the assumption of uncorrelated dimensions, the number of instances needed to robustly
train a prediction model increases with the dimensionality of instances due to the higher
VC-dimension‖ of the model. And second, the complexity of calculations in higher dimensions
can result in models that are computationally infeasible to train. While there is a vast amount
of literature about the first problem (and a detailed introduction of the issue would be out of
scope of this thesis), the computational complexity issue can be resolved using the so-called
kernel trick. This approach utilizes the fact that the feature space F has an inner product and

¶The term Hilbert space describes any vector space for which a distance function in form of an inner product
is defined. Furthermore, the space has to be complete with regard to the distance function.

‖The Vapnik–Chervonenkis (VC) dimension of a prediction model is the maximum number of points that
the model can shatter [42].
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defines a kernel function such that, for two instances x1, x2 ∈ X ,

K(x1, x2) = ⟨φ(x1), φ(x2)⟩ (2.9)

is the similarity of the two instances within the feature space. Defining such kernel functions
allows for learning linear prediction models in high-dimensional spaces without the need to
either explicitly specify the mapping φ or use points in the high-dimensional space. The
theoretical basis for this property is the well-known representer theorem [43], which states
that a linear combination of a kernel function evaluated on a set of instances can be used to
express any function that minimizes an ERM functional in the corresponding feature space.
The representer theorem provides the mathematical reason why the feature space of a kernel
method is usually called a reproducing kernel Hilbert space (RKHS)∗∗. The findings of the
representer theorem can be used to show that the only information needed to train a kernel
method is the matrix G ∈ R

m×m s.t., Gi,j = K(xi, xj) defined over the training set. This
matrix is usually called the kernel’s Gram matrix. The use of kernel functions is possible for
any prediction model that only relies on inner products, which sounds limiting but includes
almost all commonly used prediction models [44, 43, 45]. Furthermore, kernel functions can
be used to incorporate prior knowledge into prediction models. This is especially useful for
healthcare-related data. There are established kernel functions for biological sequences, like
the spectrum kernel [46, 47], the mismatch kernel [48], and the weighted degree kernel (with
shifts) [49], as well as kernel functions for two- and three-dimensional molecular structures
[50, 51, 52].

2.3.1 Interpretable Kernel Functions for Healthcare-Related Data

While the use of kernels can improve prediction performance by introducing non-linearity and
prior knowledge to machine learning models, they are not inherently designed to make a model
interpretable. If the goal is to achieve a method that provides interpretability, prior knowledge
has to be carefully incorporated into the mapping and similarity measure. One kernel function
that offers performance improvement and interpretability and acts as an important prior work
for this thesis is the oligo kernel [53]. Meinicke and colleagues defined so-called oligo functions
that encode the occurrence of a k-mer using a tuneable degree of positional uncertainty. The
term k-mer describes strings of length k over an alphabet. The prior knowledge used by the
oligo kernel is the fact that the occurrence of k-mers contain crucial information for computing
the similarity of biological sequences. Furthermore, this occurrence can have a certain degree
of positional uncertainty in real-world biological sequences, i.e., two sequences can be highly
similar even if the occurrence of certain k-mers slightly differ between these two sequences.
The authors utilized oligo functions to define the oligo kernel as

Koligo(xi, xj) =
√
πσ

∑

ω∈Ak

∑

p∈Si
ω

∑

q∈S
j
ω

exp



− 1

4σ2
(p− q)2



, (2.10)

where xi and xj are biological sequences, Ak is the set of all k-mers over an alphabet A, Si
ω

is the set of starting positions of k-mer ω in sequence xi, and Sj
ω is defined equivalently for

∗∗This notion is not entirely precise since the representer theorem is based on the fact that the feature space
of a kernel is an RKHS. However, the details are out of scope of this thesis and the interested reader is referred
to the literature about the representer theorem and reproducing kernel Hilbert spaces in general.
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2.4 The Good, the Bad, and the Kernel Network

Although kernel methods can handle high-dimensional data, as described in the previous
section, there is an issue arising from the use of traditional kernel methods that limits their
applicability to certain data. As mentioned before, the prerequisite to train a kernel method is
the Gram matrix. However, calculating this matrix scales quadratically with the number of
instances in the training set resulting in the inapplicability of kernel methods to datasets with
a vast number of instances, which is often referred to as “big data”. Although small to medium
sized datasets are still more commonly found in healthcare-related fields, “big data” starts to
become a crucial part of research and application due to technical advances in data-generating
processes resulting in decreased prices for collecting biological data and the introduction of
electronic information management systems for patient data like the electronic health record
(EHR) [56, 57]. In other words, prediction models for healthcare should be ideally applicable to
all sizes of datasets. Utilizing large amounts of available instances requires models to have an
efficient training procedure and one type of models that are exceptionally good at handling large
amounts of data are artificial neural networks (ANN) [58]. Two main factors are contributing
to the scalability of ANNs. First, the training process utilizes the gradient of a loss surface
and stochastic gradient methods can be used to iteratively use smaller chunks of the available
instances to approximate the real gradient [58]. Second, the computations involved in training
ANNs can be massively parallelized. Furthermore, there are several different types of networks
available. These so-called architectures, which include but are not limited to convolutional,
recurrent, or transformer networks, allow the application of ANNs on different input data
resulting in a highly flexible model type [58]. Neural networks are usually trained in an end-to-
end scheme that combines feature embedding and prediction in one model. The benefits of this
training procedure come in form of the reduced labor that is necessary to perform additional
pre-processing like feature embeddings and a harmonization of the whole prediction pipeline
[59]. However, neural networks are usually deployed as heavily over-parameterized deep learners,
On the one hand, this requires additional effort to robustly train such a complex model on
small or medium sized datasets. Although this limits their usability on many healthcare-related
prediction problems, there is a significantly increased number of published works utilizing
these model types for healthcare-related tasks and indicating their potential in recent years
[60, 3, 61, 62, 63]. On the other hand, there is the issue that over-parametrization results in
incomprehensibly complex models that do not provide any means to directly understand the
decision making process. In other words, deep models are black boxes.

One recent strain of research that aims to keep the scalability and end-to-end training capa-
bilities of neural networks but improve their robustness on smaller datasets is the combination
of neural networks and kernel methods [64, 65, 66, 67, 68, 69]. A seminal work towards kernel
networks was published by Mairal and colleagues [65, 66]. One of the core ideas is the use of
the Nyström method that allows to project points onto a finite-dimensional subspace of an
RKHS belonging to some kernel K [70]. The subspace is defined by selecting a set of anchor
points Z = ¶z1, . . . , zk♢, zi ∈ X and define a subspace E ≤ F that is spanned by the anchor

points, i.e. E def
= Span (φ(z1), . . . , φ(zk)). Mairal used findings from [70] and [71] to introduce

an explicit formula for the orthogonal projection of instances onto the subspace E . Assuming
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that all anchor points have unit l2 norm, Mairal’s projection ψ : X → E is defined as:

ψ(x) = ∥x∥ G
− 1

2
ZZ GZ



x

∥x∥



, (2.13)

where x ∈ X is an instance, GZZ = (K(zi, zj))i=1,...,k;j=1,...,k is the Gram matrix over the

set of anchor points, G
− 1

2
ZZ is the (pseudo-)inverse square root of the Gram matrix, and

GZ



x
∥x∥



=


K


z1,
x

∥x∥



, . . . ,K


zk,
x

∥x∥

T
is a vector containing the evaluation of the

kernel function between the l2-normalized instance x and every anchor point. Mairal and
colleagues showed in their work that such an explicit parametrization can be incorporated into
a convolutional layer that enables a neural network to learn feature representations within
the subspace of an RKHS. Furthermore, this allows to define a gradient on the anchor points,
which enables the tuning of anchor points within the same end-to-end learning scheme used
for model training. The result is a neural network that uses the RKHS of a kernel function
instead of the domain space X to solve a prediction task. Due to the similarity to kernel
methods, these network are called kernel networks. Mairal and colleagues showed that the use
of the kernel embedding allows kernel networks to be robustly trained on smaller datasets. In a
following work, Chen and colleagues showed the feasibility of these kernel networks for different
biological data modalities [67, 68, 69]. While these previous publications introduce a type of
learning model that can be robustly applied to different sized datasets in healthcare-related
fields, they focused on utilizing kernel functions that do not provide inherent interpretability.
Consequentially, the resulting models required post-hoc modeling to compute interpretations.

2.5 Towards Interpretable Machine Learning for Healthcare

Interpretability is a concept that gains increasing traction in machine learning. Although
it is not mathematically definable, interpretability is usually used in the machine learning
community to summarize methods and algorithms that allow humans to understand the cause
of a decision [72, 73, 74]. In many cases this involves analyzing the influence of specific features,
e.g., pixels/superpixels in imagery or gene products in gene expression data. Another approach
is to analyze model internals like weights in linear models, tree structure in decision trees,
or feature detectors in ANNs. Interpretability in machine learning can be categorized by
three main characteristics: (i) local vs. global, (ii) inherent/intrinsic vs. post-hoc, and (iii)
model-specific vs. model-agnostic. The first characteristic describes the type of interpretation
that is provided. Local interpretability allows humans to understand a model’s decision made
for one specific instance. Global interpretability allows humans to understand a model’s
behavior in general by providing an understandable decision surface. The second characteristic
describes whether prediction and interpretability come from the same model. Inherently
interpretable models are prediction models that allow to directly assess the decision surface
and model internals to enable understanding of the model’s behavior and specific decisions.
These models are sometimes referred to as white boxes. Post-hoc models cannot be used to
make predictions but are designed to provide the means for understanding prediction models
that are incomprehensible to humans due to their complexity. As mentioned before, these
types of prediction models are also known as black boxes. The third characteristic describes
whether an interpretability method can be used for any type of prediction model or can only
be used for specific model types.
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Currently, a significant research effort in terms of interpretability is directed towards post-hoc
models [75, 76, 77, 78, 79, 80, 81, 82]. The rationale behind this research effort is quite obvious:
using post-hoc models to provide interpretability does not impose any restrictions on the
complexity of the prediction model. In other words, the current trend of steadily increasing
model complexity is not hindered by the use of post-hoc interpretability. However, there are
limitations to post-hoc models that render their applicability in high-stakes scenarios, like
healthcare, questionable. One issue arises from the fact that post-hoc models are unfaithful
with regard to the computations done by the prediction model [83]. It is possible to show
that many post-hoc methods that are utilizing the information flow through a deep model
ignore deeper layers when they calculate the interpretation [84]. Due to this unfaithfulness,
an interpretation that was calculated with a post-hoc model cannot guarantee to accurately
reflect the cause of the decision made by a prediction model. Especially in healthcare, decisions
that are made based on an unfaithful or wrong model interpretation can cause serious harm.
Beside these technical issues, a general shortcoming of post-hoc interpretation is the fact
that computed interpretations for a single decision can be significantly different dependent on
parameter-choice and algorithm-choice due to the fact that providing post-hoc interpretability
is underdetermined [85]. Currently, there is no accepted method to compare and rank the
validity of two different post-hoc interpretations. While this might pose a negligible problem in
research due to the commonly assumed cooperative scenario, the situation changes drastically
if there are parties involved that have adversarial motivations [85]. For example, a profit-driven
company offering a treatment-decision support system might have different incentives than a
physician who is using the system to treat patients. As the provider of interpretability, the
company can choose a method that maximizes their incentive but that does not guarantee
that this method also maximizes the physician’s incentive. Inherently interpretable models do
not suffer from many of these limitations. They are faithful with regards to the computation,
since the same model computes the prediction and interpretation. Furthermore, inherently
interpretable models are using internals and the direct access to the decision surface when
computing interpretations. Therefore the provided information used to understand the cause
of a decision is unique. This mitigates the variability issue arising from the use of post-hoc
methods. In other words, inherently interpretable models do not share the properties that
make post-hoc methods questionable in high-stake scenarios††.

This thesis advances the field of interpretable machine learning for healthcare by first showing
how curated, high-quality data with validated prior knowledge can be used to reduce the
necessity for complex models, one of the main prerequisites for inherently interpretable machine
learning models. The focus will lie on specificity, the first aspect of data quality as defined in
section 2.2. In the following chapters, the importance of data that contain validated information
for a targeted prediction task will be shown. Furthermore, the results in this thesis indicate
that a careful curation process allows to reuse healthcare-related data by ensuring specificity
for the new prediction task. For datasets published in research that contributed to this thesis,
compliance with the FAIR principles [39] is ensured and datasheets [40] are provided. Second,
this thesis shows how prior knowledge can be incorporated into machine learning models to not

††One thing that has to be clearly stated is that none of the mentioned limitations of post-hoc interpretation
should be read as a general advise against the use of black-boxes in high-stake scenarios. There are ongoing
discussions about this question between scientists, politicians, companies, and interest groups and the complexity
of this matter cannot be adequately addressed in this thesis.
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only reduce the complexity of these models but also make them intrinsically interpretable. To
this end, Mairal’s work on kernel networks is utilized to combine interpretable kernel functions
with ANNs to create conceptually simple models that enable users to compute global and local
interpretation without the need for post-hoc methods. The presented models are applicable
to two of the most commonly used data modalities in healthcare: biological sequences and
tabular omics data with an underlying graphical structure.
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3 Objectives

The overarching goal of my thesis was to explore the possibility to utilize inherently interpretable
machine learning models for healthcare-related prediction problems that provide the means to
unambiguously and faithfully interpret the cause for a decision by simultaneously achieving a
prediction performance that is comparable to state-of-the-art methods. I approached this goal
from the two main directions for inherently interpretable machine learning: data-centric and
model-centric research.

In the data-centric part of my thesis, I investigate two main research questions. The first came
from the field of brain-computer interfaces (BCIs), which is a subfield of neural engineering. I
investigated perturbation-evoked potentials (PEPs). This neural activity pattern gets elicited
when humans lose their balance control. Being able to robustly capture the occurrence of
a PEP can provide benefits in many different applications including gait rehabilitation [86],
virtual reality [87], and aviation/driving assistance systems [88]. In order to investigate
the feasibility of integrating PEP-detection into systems, I developed an experimental study
that allows the recording of high-quality PEP data using electroencephalography (EEG).
Furthermore, I investigated the possibility to detect PEPs from high-quality data with a linear
classifier for various recording setups, i.e., different electrode layouts. The second research
question arose from the continuous need to develop effective drugs and vaccines to fight malaria.
Although this disease caused by the parasite Plasmodium falciparum (Pf) is one of the most
relevant infectious diseases, the utilization of computational methods to efficiently explore
protein antigen candidates for drug/vaccine development is hindered by the current sparsity
of Pf-specific proteins with known functionality [89, 90, 91, 92]. To address the challenge
for utilizing computational methods for protein prescreening, I aimed to develop a manually
curated benchmark with validated labels for the training of prediction models. Furthermore, I
investigated the implications of using pre-trained prediction models.

The model-centric part of my thesis is focused on kernel networks and the possibility to
make them inherently interpretable. As a first research question, I investigate whether a
carefully designed kernel function can be used to develop an inherently interpretable kernel
network for biological sequences. The need for a model that is specifically designed for this
data type arises from the fact that biological sequences contain valuable information for various
healthcare-related prediction tasks ranging from drug resistance [93] to binding affinity [60, 94].
However, in recent years it became increasingly obvious that focusing on a single biological
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data type is detrimental to capturing the real structure behind many prediction tasks [95].
To provide the possibility to utilize this so-called multi-omics approach, I aimed to develop
inherently interpretable kernel networks for tabular omics data. Since a majority of omics
modalities are provided as tabular data, e.g., gene expression, DNA methylation, copy number
variation, immunoassay, etc., providing a kernel network that can be applied on such data
enables researchers to combine commonly used modalities for multi-omics prediction.
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4 Results and Discussion

In the following chapter, I will summarize my research towards inherently interpretable machine
learning for healthcare. First, the main ideas and results of each manuscript will be briefly
presented and individually discussed. Section 4.1 focuses on the data-centric part of my
thesis by presenting and discussing my research on perturbation-evoked potentials as well as
Plasmodium falciparum-specific proteins that are potential antigens. My model-centric research
is presented in section 4.2. Here I will present and discuss my research on the creation of
inherently interpretable kernel networks for different biological data modalities. Both sections
will relate the work I have done in the respective fields to each other and to the main goal
of inherently interpretable machine learning for healthcare. An integrated discussion of my
research that connects the different directions I explored and provides a joint perspective on
my research towards inherently interpretable machine learning for healthcare will be presented
in section 4.3.

During this chapter, I will switch between the subject pronouns we and I. If the general work
published in manuscripts is presented, I will use the plural pronoun since each manuscript has
several authors. If my own contributions and views are presented, I will indicate that by using
the singular pronoun.

4.1 Towards Inherently Interpretable Machine Learning for
Healthcare - A Data-Centric Perspective

As indicated in the introduction, data is of the utmost importance for machine learning. This
holds especially true if the aim is to utilize inherently interpretable methods. Therefore, the
research I conducted for manuscripts 1 and 2 is focused on creating high-quality data that
is specific for the desired prediction task. Furthermore, I explored how high-quality data
impacts the possibility to achieve high prediction performances using conceptually simple, i.e.,
potentially interpretable, models. The prediction tasks investigated in the first two manuscripts
are linked by a common issue: missing high-quality training data, i.e., a trustworthy ground
truth.
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that the majority of P.falciparum proteins cannot be included in drug target screenings.
Training machine learning models to provide a fast and relatively resource-efficient procedure
for identifying protein antigen candidates has the potential of vastly improving the search
for an effective drug or vaccine against malaria. The main limitation for employing such ML
models is the lack of training data with high-quality labels that indicate whether a sample is a
protein antigen candidate. With the second published manuscript, we aimed to close this gap.

The gold standard for P.falciparum-specifc proteins to be labeled as potential antibody
targets is experimental evidence for the proteins to be visible from the outside of infected
host cells. This include transmembrane proteins, surface proteins, membrane-located proteins,
and exported proteins. We employed a mixture of established computational algorithms
for sequence comparison with literature search, and domain expertise to select a subset of
P.falciparum-specific protein sequences from the database PlasmoDB. Each protein in the
subset fulfilled the condition that it was possible to assign a high-quality (ideally gold standard)
label indicating whether it is a protein antigen candidate or not. We published the protein
sequences with their corresponding labels as our benchmark PlasmoFAB.

The creation of PlasmoFAB involved a multi-step curation process. First, we identified
proteins that contain known epitopes. This term describes the part of an antigen that the
host’s immune system recognizes. Therefore, the presence of an epitope is a clear identifier for a
protein antigen candidate. We used results from the basic local alignment search tool (BLAST,
[98]) applied on the Immune Epitope Database∗ (IEDB) to discover all P.falciparum-specific
proteins that contain known epitopes. Second, we used PlasmoDB’s data fields to identify all
proteins that contain a specific sequence motif called Plasmodium exported element (PEXEL)
or host targeting (HT). Proteins that contain PEXEL/HT are usually exported into the
extracellular space. For the third step, we used experimental evidence published in [99]. In
this work, mass-spectrometry was used to identify surface-exposed sporozoite proteins and we
included these results in our benchmark. The last step to identify protein antigen candidates
involved a combined string and literature search. We performed a string search on PlasmoDB
for proteins that belong to specific protein families that fulfill the requirements to be protein
antigen candidates. For each hit of our string search, we performed a literature search to
verify whether there is experimental evidence. While the previous steps were conducted to
identify positive samples for our benchmark, i.e., protein antigen candidates, the next step
was conducted to find negative samples, i.e., proteins that do not fulfill the prerequisites to
be considered protein antigen candidates. Here we combined a literature search with domain
expertise to compile a list of intracellular proteins. Since intracellular proteins cannot leave an
infected cell except for specific situations like the burst of an infected cell which only occurs late
in the infection cycle, they cannot reliably be targeted by drugs or vaccines. More importantly,
these situations usually occur after cell death and, thus, to late for meaningful interventions.
Our benchmark was published on Zenodo†.

We used PlasmoFAB to investigate the benefits of specialized ML models over pre-trained
prediction services. Prediction services offer pre-trained models that can be easily applied to
new datasets. However, they cannot provide any performance guarantees due to issues with

∗https://www.iedb.org/
†https://doi.org/10.5281/zenodo.7433086
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out-of-distribution generalization. We were able to show that comparatively simple models
that are trained on specialized data, i.e., our benchmark PlasmoFAB, vastly outperform the
more complex prediction services. Our results clearly show the benefit of creating high-quality
data for model training over the use of pre-trained prediction services.

4.1.3 Discussion of Data-Centric Research

With our work published in the article “Perturbation-evoked potentials can be classified from
single-trial EEG” we showed that neural activity data specific to the investigated prediction
task allows to achieve high performances with linear, thus interpretable, models. Furthermore,
specific data enables researchers to investigate different scenarios, e.g., varying recording setups,
that are important for a realistic application of these neural activities.

As mentioned in the introduction, the choice of performance metric has substantial im-
plications. The performance of prediction models trained to classify PEPs was evaluated
with several different performance measures, including accuracy, true positive/negative rate,
and auROC. None of the used performance measures are known to be particularly robust on
imbalanced data. However, the use is valid in our case since we carefully balanced the training
and validation data used in model performance assessment. The rationale behind the choice of
performance measures was that the used values are widely accepted in the neural engineering
community and, hence, easily understandable for researchers. Therefore, we decided that the
accessibility of our results is more important than a choice of performance metric that enables
comparability even if imbalanced data is used in other experiments.

While the experimental setup allowed for the recording of high-quality PEP data, the manual
tilting of participants prevented a more detailed analysis of the neural pattern. One of the open
questions that we were unable to answer due to the experimental setup (see supplementary
material of the original manuscript for more details) is whether the perturbation direction has
an influence on the neural pattern. The ability to infer the perturbation direction from the
neural activity could be extremely useful in scenarios like aviation and rehabilitation, where this
information is needed to compute the system’s best possible reaction to a detected perturbation.
Substituting the manual tilting for an automatic solution would enable experiments with
controlled directional tilting. Another question that we were unable to answer is whether a
physical perturbation is needed to elicit a PEP. If only a visual perturbation is needed, this
neural activity pattern could be useful for the improvement of virtual reality. A mismatch
between visual and vestibular sensory information can lead to dizziness and loss of balance
control [87]. If a PEP can be elicited by visual perturbations, detecting this PEP can be used
to identify visualizations that are problematic and either replace them with alternatives or try
to avoid similar visualizations in the future. These two questions remained open due to the
fact that the neural activity data recorded with our experimental procedure was not specific
enough for answering them. In other words, the fact that these two questions remained open
supports one of the main claims of this thesis: the importance of data’s specificity.

With our work published in the article “PlasmoFAB: A Benchmark to Foster Machine
Learning for Plasmodium falciparum Protein Antigen Candidate Prediction” we show that
manually curating labels for protein sequences is key for training machine learning models

21



that can be used to help advancing healthcare-related research. The most important gain of
deploying computational methods for protein prescreening lies in the potential of drastically
reducing time- and resource-consuming experimental procedures. Therefore, cost-efficient
computational prescreening allows researchers to consider an increased number of proteins for
drug and vaccine development.

The main goal of the research that has cumulated into our published benchmark PlasmoFAB
was to enable the use of computational methods, in particular machine learning models, for the
investigation of proteins that are expressed by the parasite Plasmodium falciparum. Although
this parasite is one of the most severe threats to human health nowadays, due to the fact
that P.falciparum causes malaria and the whole genome is extensively sequenced, the function
of a majority of P.falciparum-specific proteins is still unknown. Furthermore, there were
no reliable labels indicating potential protein antigens prior to PlasmoFAB’s release. This
seriously hindered the deployment of machine learning models to help explore the vast number
of proteins with unknown function. We closed this significant gap by publishing PlasmoFAB.
However, in the process, we also showed the importance of high-quality data for machine
learning in healthcare and, particularly, for interpretable machine learning in healthcare. The
performances of pretrained prediction services severely dropped on PlasmoFAB’s test data
compared to models trained on our specialized dataset. Furthermore, the conceptually simpler
interpretable model that we tested (SVM with oligo kernel) was still able to outperform most
of the pretrained prediction services.

The focus of the ML models trained in the work described in section 4.1 did not lie on
interpretability. Nevertheless, the main result presented in the first two manuscripts is a crucial
prerequisite for interpretable machine learning. We showed in manuscript 1 and 2 that a carefully
created dataset enables training of prediction models that achieve high performance even if
the deployed models were conceptually simple. Although a prediction model’s performance is
not a sufficient condition to guarantee meaningful interpretations, to achieve a high prediction
performance is a necessary condition for the meaningfulness of a calculated interpretation. This
becomes obvious when we remember the main purpose of interpretability in machine learning:
understanding the cause of a decision. Prediction models with medium to low performance are
not able to learn a decision function that captures the pattern or structure within the data that
are relevant for the prediction task. If an interpretation for a decision made by such a model is
calculated, there is no guarantee that the result of this interpretation contains any information
to either advance knowledge about the studied prediction task or help researchers and users
validate a decision made by the model. This is true for inherently interpretable and post-hoc
interpretation models. Therefore, high prediction performance is a necessary condition for
interpretability and the results presented in the first two published manuscripts show that
this can be achieved by carefully curating training data as an alternative to deploying overly
complex prediction models.

The results presented in the first two published manuscripts demonstrate the importance of
high quality data for inherently interpretable machine learning for healthcare. The following
section will present the results of the second research direction that I explored towards inherently
interpretable machine learning for healthcare.
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where ♣x♣ and ♣x′♣ denote the length of the corresponding sequences, ωp is the motif in sequence
x at position p, ωq is the motif in sequence x′ at position q, p̃ denotes the projection of position
p onto the upper half of the unit circle, and q̃ denotes the projection of position q onto the upper
half of the unit circle. This projection ensures that positions are encoded with unit ℓ2-norm
vectors. This allows to incorporate PAM into a convolutional kernel layer. The parameter α
determines the degree of compositional uncertainty, i.e., the influence that mismatching motifs
have on the kernel evaluation. The parameter σ determines the degree of positional uncertainty,
i.e., the influence that distant motifs have on the kernel evaluation. Finally, the parameter β is
used to compensate for the decreased absolute distance that the projection onto the upper half
of the unit circle introduces. The constant C =

√

π2σ2

2αβ
arises from the derivation of the kernel

function and the details can be found in the supplement of the original work. We used this new
kernel function and a variant of the Nyström method [70, 71, 66] to develop our convolutional
motif kernel network (CMKN), an ANN architecture that allows for inherently interpretable
learning on biological sequences.

As a first experiment, we created synthetic DNA data with distinct compositional and
positional features and investigated whether CMKN models are able to recover the embedded
patterns. Our results suggest that CMKN models are able to recover biologically meaningful
patterns with high accuracy. Additionally, we used two healthcare-related prediction tasks to
evaluate the performance capabilities of our newly developed network architecture: antiretroviral
drug resistance prediction of HIV isolates and splice site detection. CMKN models were able
to perform similarly to or outperform all state-of-the-art competitors on both prediction tasks.
For the antiretroviral drug resistance task, CMKN models successfully learned known drug
resistance mutation (DRM) positions from the data. Furthermore, the motifs learned at each
position focused mainly on known mutations that are causing drug resistance. On the splice
site detection task, CMKN models were able to recover sequence patterns that are associated
with real splice sites such as the poly pyrimidine tract before an acceptor site or the AG dimer
directly in front of a donor site.

While biological sequences contain valuable information for many healthcare-related prediction
tasks, it is well known that an integrated use of several different biological data modalities can
provide novel insights that are crucial in investigating diseases and developing novel treatments.
Many omics data modalities are stored as tabular data, like gene expression, DNA methylation
and others. Therefore, kernel networks have to be utilizable on tabular data to allow the
incorporation of more data modalities with valuable information into research projects. The
next section describes my research into the development of convolutional kernel networks for
tabular omics data.

4.2.2 Convolutional Omics Kernel Networks (Manuscript 4)

As described in the introduction, a kernel function that enables interpretable learning on
tabular omics data is the pathway-induced kernel by Manica and colleagues [55]. We developed
a convolutional kernel layer that projects input data into a subspace of the kernel’s RKHS.
Similar to the development of CMKN, a variant of the Nyström method was utilized. However,
the expressiveness of PIK (as introduced in section 2.3.1) comes from using several kernel
functions in combination, one for each utilized pathway. While previous work used multiple
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cohort. Here, we predicted RFS using gene expression and copy number alteration (CNA) data.
Again, COmic models were able to outperform competitors. Additionally, we investigated how
well the training of COmic models scales to different dataset sizes and increasing numbers of
omics modalities. We were able to show that COmic models can be easily applied to datasets
with a vast number of samples and several different omics modalities since the computation
time needed for training a Comic model scales linearly in sample count and number of omics
modalities.

4.2.3 Discussion of Model-Centric Research

With our work published in the article “Inherently Interpretable Position-Aware Convolutional
Motif Kernel Networks for Biological Sequencing Data”, we showed that a carefully defined
kernel function can be embedded into convolutional kernel networks to create inherently
interpretable prediction models for biological sequences. Our method provides end-to-end
trainable ANNs that achieve state-of-the-art performance on healthcare-related prediction
tasks while enabling researchers and users to compute global and local interpretations without
the need for post-hoc models.

In comparison to previously proposed kernel networks, CMKN shows one limitation. The
focus of interpretability makes the definition of deeper kernel layers more sophisticated than
in previous methods. In other proposed kernel networks, the kernel function used to define a
kernel layer can be defined recursively which, in turn, allows for a straightforward creation of
deeper kernel layers. However, the resulting RKHS is non-interpretable. We will investigate
whether a deeper kernel layer that preserves CMKN’s property of being inherently interpretable
can be defined in future work. Furthermore, we will investigate how CMKN’s architecture
can be extended to recover combinations of motifs and positions that are important for the
decision. In some prediction tasks based on biological sequences, motifs at specific positions
can be non-informative when considered secluded from each other. However, they can be of
utmost importance, if considered together. Being able to utilize combinations of motif-position
pairs for prediction and interpretation could enhance the performance of CMKN models and
their usefulness for knowledge advancement. Another potentially beneficial research direction is
the inclusion of phylogenetic information into CMKNs. It is well known that the evolutionary
history and relationships among individuals contain valuable information and is reflected within
genomic sequences (which is also reflected in amino acid sequences of translated proteins)
[100, 101]. Therefore, extending CMKN models to also utilize phylogenetic information for
predictions is a promising future research direction.

Another limitation of CMKN comes from the chosen network architecture. Our model
is based on a convolutional neural network. While this type of architecture ensures an
efficient implementation of the subspace projection, it imposes the strict prerequisite onto input
sequences to have the exact same length. Possible solutions to this limitation could be offered
by different network architecture, like recurrent networks, and there are published examples on
recurrent kernel networks [68]. However, the proposed models did not ensure to be inherently
interpretable. Since a vast majority of real-world biological sequence datasets do not fulfill the
prerequisite of ensuring that all samples have the same sequence length, a promising future
research direction would be to explore the feasibility of inherently interpretable recurrent kernel
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networks. If successful, this research would result in an inherently interpretable prediction
model that is applicable to a larger number of real-world datasets.

With our work published in the article “COmic: Convolutional Kernel Networks for Inter-
pretable End-to-End Learning on (Multi-)Omics Data”, we present an inherently interpretable
ANN, trainable using a simple end-to-end learning scheme, that can be applied to tabular omics
data. Our model was able to perform similarly to or outperform state-of-the-art competitors
on breast cancer survival prediction using different cohorts. Furthermore, we showed that our
network architecture allows to create global and local interpretations without the need for
post-hoc models.

The main obstacle to applying COmic models to new datasets is the creation of appropriate
Laplacian matrices. Currently, these Laplacians have to be created manually. This provides the
benefit that users can tailor these matrices to incorporate specific prior knowledge that they
decide to be optimal for the prediction task at hand. However, manually creating Laplacians
can be time-consuming and requires some knowledge in graph theory. This could prevent
researchers in the biological or medical field to utilize COmic. A possible solution to this
problem is learning the Laplacian matrices directly from the input data. Several publications
show that inferring Laplacians from graph signal data is possible [102, 103]. Recently, it was
also shown that specialized neural networks can learn Laplacians from graph signal data using
gradient-based end-to-end learning [104]. However, the learning of graphs is computationally
highly expensive and only feasible for small graphs. Realistic biological graphs usually consist
of several hundred nodes and further research is required to investigate whether the previously
described methods can be scaled to larger graphs. Incorporating Laplacian inference into
COmic models could allow users to only specify a subset of the input features for which a
Laplacian is then directly learned. There are two main advantages in extending the COmic
functionality in this way. First, users’ workload would be significantly reduced since predefined
Laplacians are not required. Second, users can use this functionality to investigate different
feature combinations, e.g., different sets of genes in gene expression data, in order to find new
graphs or pathways that provide additional or new knowledge about relevant endpoints, like
diseases.

The proposed methods, CMKN and COmic, result in inherently interpretable models, as
shown with the results published in the corresponding manuscripts. In their seminal review
about interpretability and explainability in AI, Arrieta and colleagues introduced three levels
of transparency that an inherently interpretable model can fulfill [74]. From highest to lowest,
these levels of transparency are simulatability, decomposability, and algorithmic transparency.
Both of the proposed models fulfill the requirements to be at least in the second highest level of
transparency, decomposability, if the interpretation is aimed at an audience of domain experts.
The projection onto an intelligible RKHS together with the use of strictly linear layers enables
domain experts to understand and explain all parts of the resulting model. Furthermore, it
provides them with the ability to understand the behavior of a CMKN/COmic model. However,
under certain circumstances, CMKN/COmic models can be categorized within the highest
level of transparency, simulatability. For a model to fall within this category, a human has
to be able to simulate it or strictly think about it [74]. For CMKN models, this property is
fulfilled if the number of anchor points is kept low and the length of biological sequences is
manageable. For COmic models, this property is fulfilled if the number of anchor points and
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the number of pathways is kept low.

The results published in manuscript 3 and 4 indicate that a correctly chosen kernel function
creates inherently interpretable kernel networks with state-of-the-art performance capabilities.
However, kernel networks offer additional benefits. On the one hand, they allow to scale kernel
learning to large-scale datasets. We showed with COmic that inherently interpretable kernel
networks can be utilized on datasets with hundreds of thousands of samples with relative
ease. Consequently, our proposed models mitigate the scalability issue of traditional kernel
methods and provide a feasible solution to apply kernel learning within the big data regime.
As previously mentioned, the size of biological and medical datasets are expected to vastly
increase in the near future which renders scalable models an important necessity. On the other
hand, kernel networks offer the possibility to make certain kernels computationally feasible.
This point refers mainly to our introduced position-aware motif kernel (PAM). While there is
a similarity between PAM and the oligo kernel (introduced by Meinicke and colleagues [53]),
the latter had to find a trade-off between computational feasibility and expressiveness due
to the fact that the oligo kernel was meant to be used with traditional kernel methods like
SVMs. Therefore, the oligo motif was limited to discrete k-mers which ensured an efficient
computation of needed Gram matrices. For PAM, there is no efficient way to implement the
computation of the Gram matrix rather than a greedy approach due to the use of motifs. This
leads to serious drops in computational performance with increasing sample numbers, motif
sizes, and sequence lengths. However, kernel networks do not compute Gram matrices and
can push the expressiveness of kernels by mostly ignoring the trade-off between computational
feasibility and expressiveness.

While biological sequences and tabular omics data are the main data modalities used
in personalized medicine, there are additional modalities used in healthcare that are not
covered by the presented prediction models. Three of the more prominent data modalities
in healthcare are written doctoral nodes, a non-standardized textural data modality used
by healthcare practitioners to transfer diagnosis and treatment information about patients
to other professionals, time-series data containing information about changes in the health
status of patients and treatment responses, and medical imagery data produced by procedures
like computed tomography (CT) scans or magnetic resonance imagery (MRI). Inherently
interpretable models for these data modalities need to be developed to enable a full integration
of inherently interpretable machine learning into healthcare. Therefore, future research should
investigate the possibility to develop novel models that allow for inherently interpretable
learning on data modalities that are not yet covered by the presented methods but provide
important information for healthcare.

4.3 Integrated Discussion

With this thesis, I present the research I conducted during my doctoral studies. The common
theme of my research was to explore the applicability of inherently interpretable machine
learning in healthcare. Decision-making in healthcare and, in particular, in precision medicine
depends on the utilization of high-dimensional and multi-modal data generated by individual
patients. Machine learning has a huge potential for these two research fields due to the
ability to detect patterns within high-dimensional data and correlate these patterns with
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specified outcomes. However, there is a significant limitation to fully utilizing machine learning
for knowledge advancement in the mentioned fields. ML experts can build highly complex
models to optimize predictions on high-dimensional data but usually lack the expertise to fully
conceptualize medical research. On the other hand, healthcare experts, like medical doctors,
offer the needed domain expertise but lack the training to conceptualize and, hence, understand
predictions made by ML models. I argue that inherently interpretable models can act as a
bridge to bring together ML experts and healthcare experts and have the potential to positively
impact the interdisciplinary research that is needed in healthcare and precision medicine. I
approached the viability of inherently interpretable machine learning for healthcare from two
different research directions.

The first part of my research explored the impact of high-quality data on utilizing prediction
models for healthcare-related tasks and the possibility for achieving high performances with
conceptually simple models, an important prerequisite for the viable application of inherently
interpretable models. One argument that is often presented against inherently interpretable
models is that they lack the expressiveness of black-box models due to their innately simpler
concept. However, my results show that the argumentation against conceptually simpler
models can be countered by putting more effort into increased data quality. If the used
data is highly complex and lacks specificity for the investigated prediction task, increasing
a model’s complexity can positively impact the achieved prediction performance. Since the
higher complexity of data usually results in more complex patterns that are correlated with
the targeted end point, the higher expressiveness of conceptually complex black-box models
can lead to an improvement of learning these complex patterns. However, on the task of
classifying neural activity associated with perturbations, we showed that carefully ensuring a
high specificity of the training data allows for substantial prediction performances even with
simple linear models. Additionally, we showed that an interpretable model trained on specialized
protein data outperforms complex pre-trained black-boxes. For the sake of completeness, I
have to point out that the best performance on the Plasmodium falciparum-specific protein
antigen classification task was achieved by combining a black box feature encoder, namely the
language model ProtT5, with an inherently interpretable prediction model. Nevertheless, the
overall results of my data-centric research towards inherently interpretable machine learning
in healthcare show the importance of putting a focus on data quality for the goal of making
inherently interpretable models viable in healthcare. It is worth noting that the importance of
data quality is widely recognized in biological and medical science and, based on the results of
my work, I strongly support current movements in the machine learning research community
that the importance of data quality should be one of the future focuses of research in machine
learning.

The efforts in my data-centric research were focused on the specificity aspect of the datasets,
using the definition of this aspect that was provided in the introduction. Since the manual
curation and validation of data points and labels requires a lot of labor, my colleagues and I
were able to create small- to medium-scale datasets with the resources available to us. However,
that limited the possibility to investigate the impact of the second aspect of data that I defined
in the introduction: completeness. Since data is only an abstraction of reality, sufficient samples
are needed to ensure that a research subject can be thoroughly investigated. This holds
especially true in healthcare, where there are numerous ways to stratify patients including
ethnicity, genetic variations, environmental exposures, age, societal differences, and many
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more. The described aspect of completeness was not part of my research since creating a
large number of high-quality data is impossible for a single researcher or research group. This
requires large community efforts and there are already such efforts ongoing like the international
cancer genome consortium (ICGC, https://dcc.icgc.org/). However, I am confident that such
high-quality and large datasets will become more widely available in the future. To fully benefit
from these community efforts, inherently interpretable models need to be scalable to large-scale
datasets. This motivated the second part of the research I conducted towards the overarching
goal of my thesis: model-centric research.

The model-centric part of my research focused on investigating the possibility to make kernel
networks inherently interpretable. In my opinion, artificial neural networks are among the most
interesting types of prediction models currently used in machine learning. What motivates
me to make this statement is the fact that the underlying idea of ANNs is incredible simple,
propagating activation through a weighted network and adjusting the weights based on a
computed loss, yet they can become arbitrarily expressive and, in theory, can learn any function.
Due to their expressiveness being based on the used architecture, ANNs are a highly flexible
type of prediction model that can be easily adapted and optimized for different data modalities
and prediction tasks. Furthermore, due to the possibility of massively parallelizing the training
procedure, ANNs can be applied to any dataset from small-scale data with a few hundred
samples to large-scale data with hundreds of thousands of samples. However, the expressiveness
of neural networks comes with the cost of becoming highly complex deep learners that are
virtually impossible to understand for humans, i.e., black boxes. The advances in combining
ANNs with kernel methods in recent years [65, 66, 105] showed that it might be possible to
overcome the black-box nature of ANNs without sacrificing their expressiveness, although
previous work did not try to create inherently interpretable prediction models. With the results
achieved by the two kernel networks proposed in my research, CMKN and COmic, we have
shown that neural networks can have high prediction performances while being inherently
interpretable. That opens the door to applying inherently interpretable machine learning
models to large-scale biological and medical datasets.

However, before I start discussing the benefits that inherently interpretable models can bring
to the research in biology, medicine, and healthcare, I would like to discuss a few benefits that
inherently interpretable models can offer to machine learning projects in general. As mentioned
in the introduction, the common practice in ML is to use the same performance metrics during
the training of prediction models and for evaluating the training success, i.e., applying trained
models to test splits or new data. One might argue that iterative, gradient-based training
procedures use a loss function instead of a performance metric during the training, but model
selection, an important part of the training process, is usually based on performance metrics
not the loss function. The resulting situation is that the measure of success becomes a target
during training. And, as stated by Goodhart’s law, a targeted measure ceases to be a good
measure. I would like to argue that inherently interpretable models can offer a solution to
this issue. Being able to directly access the decision surface and, thus, interpret the reason
behind a prediction made by a model allows researchers and users to use prior knowledge
to evaluate the validity of a model’s decision making process. For example, if a model is
trained to make a prediction based on gene expression data and the best performing model
only uses genes that are known to be unrelated to the predicted endpoint, the validity of
the model has to be questioned even though it achieved the best performance. One possible
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explanation for this situation could be that the model is relying on spurious correlations. An
issue that would be impossible to detect with looking at the performance measure alone. This
example is just a simplified thought experiment but it shows the potentially positive impact
that inherently interpretable models can have. However, like all expertise-driven systems, this
type of evaluation is far more labor-intensive than simply comparing performance measures.
A significant amount of domain expertise is needed to evaluate the decision process of an
inherently-interpretable model and experts have to judge whether the use of features that are
unknown to be related to the endpoint points towards the exploitation of spurious correlations
or points towards gaps in the currently available knowledge about the investigated subject.

Another problem that can be mitigated by inherently interpretable models is resource
consumption in terms of needed computation time for model training. Nowadays, it is well
known that deep learning models require significant amounts of energy for training. Using
GPUs for training a single instance of a base version of BERT, an NLP model that has to be
considered small in modern standards, produces approximately 652 kg CO2eq of emissions
[106]. And usually deployed training procedures train hundreds or even thousands of model
instances. As exhaustively discussed during this thesis, one prerequisite for making models
inherently interpretable is decreasing the complexity of models. This decreased complexity
is accompanied by a decrease of model size, thus, the resources needed to train inherently
interpretable models are less than for bigger, more complex models. Another, less obvious,
aspect for reduced resource consumption during training of inherently interpretable models is
hyperparameter optimization. Usually, these hyperparameters are optimized by training models
with different hyperparameter combinations, e.g., using a manual, grid, or random search
[107, 108, 109]. These methods require to retrain models for each tested combination, which
immensely increases the resource consumption of the training procedure. However, as shown in
manuscripts 3 and 4, the hyperparameters of my developed inherently interpretable models
have meaning within the data domain and, thus, can be selected based on prior knowledge.
This possibility drastically reduces the number of hyperparameter combinations that have to
be tested. We show in manuscript 3 and 4 that selecting hyperparameters based on domain
expertise actually leads to prediction models that outperform competitors. This demonstrates
that inherently interpretable models can drastically reduce resource consumption by providing
a resource-efficient (basically free) method of hyperparameter optimization. I view this second
benefit as the more crucial one. The current state of our world with the ongoing climate
catastrophe demands fundamental changes about the way we live, how our economy works,
and how we consume [110, 111, 112]. Reducing resource consumption is not an option, it is a
necessity if we want to soften the impact of the climate catastrophe and retain the earth as a
livable environment. While there is an increasing amount of efforts and events dedicated to
this purpose, e.g., the ICT4S conference series‰, reducing resource consumption should become
a major consideration in the mainstream ML research and inherently interpretable models have
the potential to help with that.

Apart from the general benefits for machine learning, inherently interpretable models have
the potential to significantly impact the medical field. Given the fact that biological data
consists of several different modalities and most medical questions can only be answered by
combining information from more than one data modality, prediction models can help refining

‰https://conf.researchr.org/series/ict4s
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the stratification process of patients, a procedure that is often referred to as personalized
medicine. However, black-box models hide their decision process behind highly complex
mathematical projections that deny domain experts any sense of agency when working with
them. Either they trust the model’s prediction or they have to revert to established diagnosis
approaches for patient stratification to regain a sense of agency. This creates situations of
unequal power, where healthcare practitioners are denied the authority in their own field of
expertise. Additionally, it leads to the disregard of knowledge that was acquired over many
years and sometimes even decades. While this transfer of power in everyday medical practice
is concerning, the potential negative impact of unequal power on interdisciplinary research
projects should also not be underestimated. In healthcare, the detailed mechanism of action for
many diseases and, especially, treatments is not completely understood yet. For example, there
exists a group of genes that are known to be involved in the processing of pharmaceuticals.
These ADME (absorption, distribution, metabolism, and excretion) genes play a vital role in
many treatments like chemotherapy but which genes belong to the ADME group and the precise
effect of these genes on different treatments remain open research questions [113, 114, 115].
Black boxes could hinder knowledge advancement in these cases. As an example, utilizing
black boxes to predict the optimal dose of a pharmaceutical for the chemotherapy of a patient
might reduce the negative impacts of this treatment option and simultaneously increase the
reduction of cancer cells, but it obscures the decision boundary used to solve this problem from
domain experts. Maybe the black box’s decision boundary could point towards mechanisms of
action that are not yet known. This information could help domain experts to improve existing
treatments or develop new treatments with the potential to mitigate negative impacts and
improving the recovery prognosis for patients. One might argue that this can be solved by using
post-hoc interpretability methods, an approach that is usually called XAI (explainable artificial
intelligence). However, there are severe shortcomings to the application of XAI methods.
These models can only approximate the real decision surface of the used prediction model
[85]. Furthermore, they are optimized to yield an explanation that “makes sense” in the eye of
the person who is training the explanation model [85, 116]. Since these are usually machine
learning experts with limited domain expertise, there is a real danger that explanations that
could point towards new mechanisms of action are discarded in favor of explanations that
fit more with the limited understanding of the ML expert. Inherently interpretable models
do not suffer from these limitations. They provide direct access to their decision boundary.
Furthermore, the interpretation of a decision is provided within the data domain on which the
model is trained as shown by the results presented in the two manuscripts described in the
model-centric part of my research. Domain experts can use their own knowledge to directly
evaluate the decision made by an inherently interpretable model and investigate whether the
correlations used by the prediction model point towards unknown mechanisms of action that
could advance the current knowledge about treatments and diseases. Therefore, inherently
interpretable models have the potential to positively impact interdisciplinary research in general
and medical research in particular.

I used this integrated discussion to share my educated opinion about the benefits that
inherently interpretable prediction models offer to machine learning research, especially in
interdisciplinary projects. This leaves me with the opportunity to sketch out my vision for future
research conducted on the topic of this thesis, which is inherently interpretable machine learning
for healthcare. Unfortunately, making prediction models inherently interpretable remains a
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niche research direction within the wider ML community. However, I do hope that increasing
efforts will be invested into further researching the potential of inherently interpretable models
due to the fact that the awareness towards potentially severe flaws of solely relying on black-
box models gets more and more traction among ML researchers and political stakeholders
[83, 117, 118, 119, 120]. The results achieved by the inherently interpretable kernel networks
presented throughout this thesis indicate that these models can achieve high scalability and
expressiveness. Research questions that remain open include investigating the possibility for
deep kernel networks that remain inherently interpretable or the exploration of new kernel
functions that are computationally infeasible for traditional kernel methods but can be used
with kernel networks and incorporate currently unused domain expertise. I do believe that we
have only scratched the surface of the real potential of inherently interpretable models and
I am excited to see what the future has in store for this research direction. However, there
is one important issue that cannot be solved by traditional machine learning, not even with
inherently interpretable models, and I call this issue abstraction of causality. What I mean
by this term is the fact that scientists are usually not only interested in solving a prediction
problem but want to explore the causal structures of the world that allow a certain prediction
to be solvable. Interpreting the cause of a decision made by a prediction model does not reveal
information about causality in the data, i.e., in the world, but only causality within the model.
In other words, the result is an abstraction of the world’s causality by the model’s causality.
There is a scientific discipline§ that tries to infer causal structures within the world, called
causal inference [121, 122, 123]. In recent years, there are novel developments to incorporate
causal inference into the machine learning framework [124, 125, 126]. I see the possibility to
solve the abstraction of causality issue with machine learning models that are able to truly infer
causal structures within the data. However, this research direction is only at the beginning
and currently faces several challenges that need to be overcome before causal models can be
generally used in application scenarios. One of these challenges is that causal inference and,
thus, causal machine learning is based on graphical models. Currently, the utilized graphs tend
to be on the smaller size for real-world applications in healthcare [127] and a general issue
arises from the need to validate that derived graphs are able to capture the causal structure in
the data. There is no universally agreed upon solution for such a validation procedure which
often results in controversial discussions whether a published causal model is valid. However, I
do believe that these issues will be resolved in the future given the previous mentioned fact that
research about combining causal inference and machine learning is still at the very beginning
and gained increased attention from researchers in recent years. Once causal machine learning
becomes more widely accepted, I see immense potential for causal models to be applied to
prediction problems in healthcare and advancing the knowledge about diseases and treatments.

§With the term “scientific discipline” I refer to work that is conducted with regard to the scientific method.
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5 Conclusion

Nowadays, medical routines in diagnosis and treatment often rely on an overly simplified
stratification of patients. This is necessary due to the fact that humans are notoriously bad in
conceptualizing high-dimensional spaces. Therefore, doctors would be overwhelmed if presented
with the raw biological data that each individual patient produces and resort to using easy-to-
access and easy-to-understand data like age, weight, sex, body temperature, electrocardiograms,
or described symptoms when diagnosing and treating patients. Furthermore, the advancement
of knowledge about diseases and potential cures (drugs or vaccines) depends on a complete
understanding of the biological status of patients. In my opinion, machine learning has the
potential to provide substantial benefits to medical research and healthcare due to the ability
to find patterns in high-dimensional spaces and relate these patterns to outcome variables.

However, ML experts often lack the knowledge to fully conceptualize the complexity of
medicine and healthcare. I argue that significant advancement can only be achieved through
an interdisciplinary effort. Inherently interpretable machine learning can help to realize such
an expert-in-the-loop scenario with a balanced power dynamic between the involved disciplines.
My research shows that inherently interpretable models can achieve state-of-the-art prediction
performance on healthcare-related tasks and provide biologically meaningful interpretations.
Furthermore, inherently interpretable models allow for an interpretation of decisions within
the data domain, thereby allowing domain experts to use them for evaluating predictions and
advance knowledge, and provide direct access to their decision surface. This possibility to
directly access the learned decision surface mitigates the issue of ambiguous interpretations due
to hyperparameter choices in post-hoc models. Therefore, the use of inherently interpretable
models offers the additional benefit of a possible solution for decreasing the chance of discarding
interpretations that could lead to novel insights.

So: Why are you using models that you do not understand to investigate something that
you do not understand?
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6 Appendix

Publications contributing to this doctoral thesis, as listed in Chapter 1, are included in the
following appendix. The corresponding citations can be found in Chapter 1. All publications
are printed as published except some minor template changes.
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The first published article “Perturbation-Evoked Potentials can be classified from single-trial
EEG” was published under a Creative Commons CC-BY license (https://creativecommons.org/
licenses/by/4.0/), which permits reuse and reproduction in any medium, provided the original
work is properly cited.

The second published article “PlasmoFAB: A Benchmark to Foster Machine Learning for
Plasmodium falciparum Protein Antigen Candidate Prediction” was published under a Creative
Commons CC-BY license (https://creativecommons.org/ licenses/by/4.0/), which permits
reuse and reproduction in any medium, provided the original work is properly cited.

The third published article “Inherently Interpretable Position-Aware Convolutional Motif
Kernel Networks for Biological Sequencing Data” was published under a Creative Commons
CC-BY license (https://creativecommons.org/ licenses/by/4.0/), which permits reuse and
reproduction in any medium, provided the original work is properly cited.

The fourth published article “COmic: Convolutional Kernel Networks for Interpretable End-
to-End Learning on (Multi-)Omics Data” was published under a Creative Commons CC-BY
license (https://creativecommons.org/ licenses/by/4.0/), which permits reuse and reproduction
in any medium, provided the original work is properly cited.
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I Perturbation-Evoked Potentials can be classified

from single-trial EEG

Jonas C. Ditz Andreas Schwarz Gernot R. Müller-Putz

Abstract

Objective: Loss of balance control can have serious consequences on interaction between humans
and machines as well as the general well-being of humans. Perceived balance perturbations are
always accompanied by a specific cortical activation, the so-called perturbation-evoked potential
(PEP). In this study, we investigate the possibility to classify PEPs from ongoing EEG.
Approach: 15 healthy subjects were exposed to seated whole-body perturbations. Each
participant performed 120 trials; they were rapidly tilted to the right and left, 60 times respectively.
Main Results: We achieved classification accuracies of more than 85% between PEPs and
rest EEG using a window-based classification approach. Different window lengths and electrode
layouts were compared. We were able to achieve excellent classification performance (87.6 ± 8.0%
accuracy) by using a short window length of 200 ms and a minimal electrode layout consisting
of only the Cz electrode. The peak classification accuracy coincides in time with the strongest
component of PEPs, called N1.
Significance: We showed that PEPs can be discriminated against ongoing EEG with high
accuracy. These findings can contribute to the development of a system that can detect balance
perturbations online.

I.1 Introduction

The sense of balance is crucial for humans in their everyday routine. Standing and walking are
not possible without it. Every human being learns balance control during early childhood and
the loss of balance control always leads to uncomfortable, often potentially dangerous situations.
The possibility to compensate for loss of balance control can alleviate harmful consequences
and, therefore, vastly improve human experience. In gait rehabilitation, exoskeletons are used
to support patients during rehabilitation sessions [86]. However, with the ability to compensate
for loss of balance control, the support provided by an exoskeleton can be limited to an on
demand state. Thereby, the independence of patients can be increased for better rehabilitation.
The system takes control from the patient if it is needed to prevent falling.

In virtual reality (VR), the conflict between sensory and vestibular information can lead to
different physiological effects, inter alia, postural instability [87]. If the system is able to detect
postural instability, i.e. perceived balance perturbation, alternative visualization protocols as
well as emergency shut downs of the visual environment can be put into action as soon as they
are needed. Nevertheless, a reliable and potent detection method for the loss of balance has to
be found.

Electroencephalography (EEG) studies found a specific activity pattern that was elicit as
a response to a balance perturbation [128, 129, 130, 131, 132]. This cortical activity, called
perturbation-evoked potential (PEP), consists of four distinguishable parts. After an initial
small positive wave (P1), a large negative deflection (N1) follows. The third and fourth part
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is again a positive wave (P2) followed by a negative wave (N2). The last two parts are often
collectively referred to as late perturbation-evoked response (PER). Timings of the different
parts usually reported by researchers are 30 - 90 ms after perturbation onset for P1, 80 - 160
ms after perturbation onset for N1, and 200 - 400 ms after perturbation onset for late PERs
[133].

PEPs have been thoroughly investigated on the neurophysiological level, linking them to
cortico-cortical transfer processes [134], error-potentials (mismatch between actual and expected
position) [132], and compensatory motor planning processes [135]. Regardless of the underlying
neural processes, loss of balance control is always accompanied by a PEP (especially the N1
component is always reproducible) independent of the mode of perturbation [133]. Therefore,
a system that can reliably detect changes in state of mind (i.e. occurrences of specific neural
activation patterns) can be used for the detection of PEPs.

Control over a computer or machine by solely using one’s mind is the main goal of research
in the field of Brain-computer interfaces (BCIs) [136, 137, 138]. While there has been a strong
focus on using BCIs for controlling assistive devices [139, 140], BCIs can improve the interaction
between humans and machines in the context of human-machine interaction (HMI). These
so-called passive BCIs (pBCI) do not provide active control to users; moreover, they monitor
their state of mind and detect changes in the state of mind of users [141, 142]. Studies have
shown that implicit information about the state of mind of a user can be found in distinct
brain patterns. Working memory load can be detected by monitoring oscillatory power in
theta band over frontal-midline electrodes [143]. Error-related potentials are specific activity
patterns that are elicited when a user makes or perceives an error and are used to compensate
for erroneous interactions [144, 145, 146]. Another potential that is used in pBCIs is the
Bereitschaftspotential (BP), which precedes spontaneous movements [147, 148]. Due to their
ability to detect changes in user’s mental state, pBCIs are a promising tool for detecting
perceived balance perturbation.

In this study, we investigate whether PEPs can be autonomously discriminated from ongoing
EEG. Fifteen healthy participants were exposed to seated whole-body perturbations. Each
participant performed 120 trials; they were 60 times rapidly tilted to the right and 60 times
rapidly tilted to the left. We developed a method that can decode PEPs from ongoing EEG
recordings. Additionally, we evaluated parameters imperative for boosting PEP classification
for existing pBCI systems such as different window lengths and smaller electrode layouts.
Finally, we constructed an offline scenario to test our PEP detection method.

I.2 Materials and Methods

I.2.1 Participants

Fifteen healthy participants (6 female, 9 male) took part in the study. Participants were
between 19 and 57 years old with an average age of 26.7 ± 9.4 years. All participants had
normal or corrected-to-normal vision and were without any known medical condition. The
study was approved by the ethics committee of the Medical University of Graz. All participants
gave written informed consent and received monetary compensation for their efforts.
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was put on the wall in front of the chair (see Figure I.1). Participants were asked to take a
comfortable position in the chair and rest their arms on their legs in order to reduce muscle
tension in the arms and shoulders. We further instructed them to stay relaxed and fixate the
cross in front of them during the whole experiment. In the beginning of the experiment, two
perturbations (one perturbation to the right, one to the left) were performed to familiarize
them with the task at hand. Subsequently, each trial had the following structure: Within the
first four seconds of each trial at a randomly chosen time point, participants were rapidly tilted
either to the left or the right (based on a random generator). The chair was tilted manually
using a mechanical lever. The chair stayed tilted until 8 seconds after trial start. Thereafter,
the chair was put back into the neutral position for an inter-trial interval of 4 seconds. In this
way, each participant experienced 60 perturbations to the left and 60 to the right in random
order (120 perturbations in total). Each event during the experiment was indicated by a marker.
The synchronization of marker data and amplifier was realized using LabStreamingLayer (LSL)
[97].

I.2.4 Perturbation onset detection

We recorded the perturbation onset for each trial using the intrinsic accelerometer (3 axes)
of the LiveAmp, which was fixed on the backside (upper left corner) of the tilting chair (see
Figure I.1). We applied thresholding on the first derivative of the abscissa (x axis in Figure
I.1) to acquire trial based perturbation onsets.

I.2.5 Data preprocessing

In order to detect artefact-contaminated trials and exclude them from further analysis, we
performed statistical tests. For this purpose, data was band-pass filtered between 0.3 and
35 Hz (zero-phase Butterworth filter, 4th order) and three different statistical parameters
were considered for the rejection of artifact-tainted trials. First, we performed an amplitude
threshold rejection removing all trials with an amplitude that exceeded ±125 µV. Afterwards,
we tested trials for an abnormal joint probability and an abnormal kurtosis. The rejection
threshold was four times the standard deviation (STD) for both tests. 13.8% of the trials were
rejected on average. The approach used for outlier rejection does not need additionally recorded
channels and is well tested in different BCI scenarios [149, 150]. After artifact rejection, we
band-pass filtered the raw EEG between 0.3 and 10 Hz using a causal 4th order Butterworth
filter.

I.2.6 Perturbation-evoked potential

We epoched the EEG from -0.5s to 1.5s with respect to the perturbation onset acquired from
the accelerometer. Additionally, we acquired rest trials with a length of 2s 4.5s prior to the
perturbation onset from -4.5s to -2.5s. Therefore, our time region of interest (tROI) had a
duration of 2s. For each participant, we calculated the average over all trials for each condition
(perturbation, rest) as well as the 95% confidence interval using nonparametric t-percentile
bootstrap statistics (α = 0.05) [151]. Additionally, to account for statistically significant
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Table I.1: Different window lengths used for binary classification of PEPs with the corresponding
number of features. For each window the subject-specific offset with the highest discriminability
between rest trials and PEP trials was deduced in a calibration phase.

Window size Number of fea-
tures per chan-
nel

Number of fea-
tures per trail

Trail-to-feature ratio

1 sample 1 29 8.28
200 ms 6 174 1.38
400 ms 11 319 0.75
600 ms 16 464 0.52

differences between conditions, we performed the nonparametric Wilcoxon Rank Sum test (α =
0.01) on each time point. We corrected for multiple comparisons (with n = 1250 comparisons)
using the Bonferroni correction∗.

I.2.7 Binary single-trial classification

We used a two-phase window-based approach comparable to the method used in [152, 153]
for the classification of PEPs. A schematic of the classification pipeline can be found in the
supplementary material (Figure S1). In the beginning, we resampled our data to 25 Hz in
order to save computational effort and split our data into two sets: calibration set (containing
two thirds of the data) and test set (containing the remaining third of the data). In order
to simulate online behavior, we took the trials that were recorded first for the calibration set
and the trials that were recorded last for the test set. In the first phase, called the calibration
phase, we trained shrinkage linear discriminant analysis (sLDA) classifiers [154, 155] using
only trials in our calibration set. In order to train the classifiers, we performed a 10 times
5-fold cross-validation. In each fold, we moved a window over our tROI in steps of 40 ms, i.e.
we trained a classifier every 40 ms (2000ms / 40ms + 1 = 51 classifiers for the whole tROI).
For each time point, features were extracted by taking amplitude values of each electrode in
steps of 40 ms, i.e. the number of features varies depending on the used window length (see
Table I.1 for an overview of tested window sizes). The number of features of, for example,
a 200 ms window is 200ms / 40ms + 1 = 6, where we add one since the first sample in the
window is included as a feature. We separated the calibration set into training and validation
set in each cross-validation fold and trained the classifiers using only trials from the training
set. Afterwards, we evaluated each classifier using the validation set. After cross-validation,
we calculated the mean validation accuracy for each time point and used the best performing
classifier of the time point with the highest mean validation accuracy for the second phase.

In the second phase, called the test phase, we extracted features from the unseen test set
similar as in the calibration phase. We applied the trained classification model to the features
of the test set. Accuracies stated in this work are always test accuracies, i.e. the classification

∗A bonferroni correction for 1250 comparisons using a significance level of α = 0.01 leads to significant p

values at p < 0.000008.
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Table I.2: Results of binary classification for different window sizes. Peak accuracy and latency
with respect to perturbation onset are shown as mean and standard deviation of the individual
participant accuracies and for the grand average

Window size Peak ac-
curacy (%,
participant-
specific)

Peak ac-
curacy (%,
grand aver-
age)

Latency (ms,
relative to
perturba-
tion onset,
participant-
specific)

Latency (ms,
relative to
perturbation
onset, grand
average)

1 sample 93.4 ± 5.4 81.6 221.3 ± 108.9 120
200 ms 95.1 ± 5.8 83.5 277.3 ± 76.3 280
400 ms 95.3 ± 5.5 78.4 434.7 ± 157.8 440
600 ms 95.7 ± 4.4 76.2 536.0 ± 165.5 640

different sized training windows is shown above the box plot. For a training window consisting
of a single sample, the window onset was 184.7 ± 80.4 ms (mean ± STD) after perturbation
onset. The average window onset for a training window with a length of 200 ms was 82 ± 74.2
ms (mean ± STD) after perturbation onset. When a window length of 400 ms was chosen for
training, the window onset was on average 58.7 ± 74.2 ms (mean ± STD) after perturbation
onset. An average window onset of 17.3 ± 152.2 ms (mean ± STD) before perturbation onset
was calculated for a training window with a size of 600 ms.

Both independent variables (window length and electrode layout) had a statistically significant
effect on the peak accuracy at the 0.05 level. The result of the two-way ANOVA for the window
length was [F(3, 224) = 1.96, p = 0.121]. For the electrode layout the main effect yielded
[F(3, 224) = 15.04, p < 0.001]. The interaction of both independent variables did not have a
statistically significant effect on peak accuracy: [F(9, 224) = 0.06, p = 0.999]. We performed
Tukey’s honest significant difference criterion to compensate for multiple comparisons (Tukey,
1949). The test showed that the smallest (1 sample) and largest (600 ms) window lengths were
significantly different at the 0.05 level. For the second independent variable, the test showed a
significant difference at the 0.05 level between the minimal layout and all other layouts. We
then took a more detailed look at the classification differences between the tested window
lengths. The full electrode layout (29 channels) was used for the comparison. In Figure I.5(a)
the classification accuracy of all four window lengths for each time point of the tROI are
plotted on the left side while the right side shows boxplots of the participant-specific peak
accuracies for each condition. Above chance level classification was possible for all four window
lengths. However, peak accuracy shifted away from perturbation onset with increasing size
of the window. Table I.2 summarizes the results for each window. The high inter-participant
variability of peak latency led to the difference between grand average peak accuracy and the
mean of participant-specific peak accuracy.

Furthermore, we investigated how a reduction of EEG channels impacts classification perfor-
mance. We tested four different layouts: the full layout using all 29 recorded channels, a medium
sized layout with 15 channels, a small layout with 5 channels, and a minimal layout with one
channel. Based on our previous results, we used a window length of 200 ms for the comparison.
Figure I.5 (b) shows the grand average classification performance for each time point of tROI
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Table I.3: Results of binary classification for different layouts using a window size of 200 ms.
Peak accuracy and latency with respect to perturbation onset are shown as mean and standard
deviation of the individual participant accuracies and for the grand average.

Layout Peak ac-
curacy (%,
participant-
specific)

Peak ac-
curacy (%,
grand aver-
age)

Latency (ms,
relative to
perturba-
tion onset,
participant-
specific)

Latency (ms,
relative to
perturbation
onset, grand
average)

minimal (1 channel) 87.6 ± 8.0 71.5 240.0 ± 78.6 280
small (5 channels) 93.1 ± 5.9 81.2 282.7 ± 76.3 320
medium (15 channels) 94.4 ± 5.6 82.7 282.7 ± 73.2 280
full (29 channels) 95.1 ± 5.8 83.5 277.3 ± 76.3 280

on the left side. The right side displays a box plot of peak accuracies of all subjects for each
layout. All electrode layouts achieved above chance level performance. The results for each
electrode layout are summarized in Table I.3. Differences between participant-specific and
grand average peak accuracy occurred due to variations of peak latency between participants.

Based on our previous results, we decided to use the minimal layout with a window length
of 200 ms for further analysis. Figure I.6 shows classification results for each of the subjects
and the grand average on the left side. Shaded areas indicate the standard deviation (STD) of
the grand average. The dashed red line marks the grand average chance level. The confusion
matrices shown on the bottom of the left side were calculated for the perturbation onset at 0
ms and for the time point of the maximal accuracy peak at 280 ms. The peak accuracy for
each of the participants is shown on the right side of Figure I.6. Participant-specific chance
level is indicated by a dashed red line. The grand average classification accuracy exceeded
chance level performance between 40 ms and 780 ms after perturbation onset with a peak
accuracy of 71.5% correctly classified trials. Since we evaluated the performance of a classifier
every 40 ms, we were able to calculate confusion matrices for different time points of the
perturbation. In Figure I.6, we show the confusion matrix calculated at perturbation onset (0
ms) and at the maximal accuracy peak (280 ms). At perturbation onset, the classifier achieved
a true positive rate (TPR) of 10.8% and a true negative rate (TNR) of 93.3%. The Cohen-α
coefficient for this time point was 0.364. At the accuracy peak 280 ms after perturbation onset,
the classifier achieved a TPR of 49.7% and a TNR of 92.5%. Here, the Cohen-α coefficient was
0.593. TPR, TNR, and Cohen-α coefficient were calculated using the confusion matrices of the
grand average classification result.

Each participant exceeded participant-specific chance level classification performance. The
maximum accuracy was achieved 240.0 ± 78.6 ms (mean ± STD) after perturbation onset.
On average, the participant-specific classification accuracy peaked at 87.6 ± 8.0% (mean ±
STD). The difference between grand average peak accuracy and the participant-specific results
occurred due to inter-participant variability of peak time which can be seen on the left side
of Figure I.6. For this reason, we calculated TPR, TNR and Cohen-α coefficient for each
participant at the participant-specific peak times. Participants achieved a TPR of 81.5 ±
12.2% (mean ± STD) and a TNR of 93.5 ± 6.4% (mean ± STD) on average. The average
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perturbations while the PEPs in Quant’s experiment were elicited using dislocation of the feet.

The P1 component of PEPs was not distinguishable from background EEG for all of the
recorded participants. This finding is consistent with P1 responses observed in previously
conducted studies involving seated perturbation tasks [131, 163, 162]. The P1 has a small
amplitude which can result in difficulties separating this early PEP component from background
EEG. Since the perturbation was induced by hand, there were small mechanical differences
in the perturbation movement between the trials. Together with the small amplitude, these
variations could have led to the absence of a P1 response in PEPs of single participants due to
the averaging of trials (Figure I.2).

The comparison between PEPs elicited during right perturbation trials and left perturbation
trials showed that the P2 component had a higher amplitude during left trials. Evaluating the
accelerometer data showed a difference in the perturbation speed/acceleration between left
and right trials (see Figure S3 in the supplementary material). Furthermore, we surmise that
the amplitude difference is partly caused due to our referencing with only one electrode at the
left mastoid. To confirm this theory, we performed a subsequent reanalysis of the comparison
between left and right trials and applied a common average reference (CAR) [164, 165]. The
difference in P2 amplitude at Pz between the two executed perturbation directions was not
detectable after re-referencing our recorded data using this spatial filtering approach (P2
amplitude at Pz left trials: 11.3 ± 3.7 µV; P2 amplitude at Pz right trials: 11.1 ± 3.2 µV;
see Figure S2 in the supplementary material). The result of our reanalysis together with the
accelerometer data supports the assumption of an artificial difference between left and right
trials due to several confounders. This agrees with findings published in literature, where
no effect of motor or sensory information [166] or psychological factors [167] on late PEP
components was found. Since there is a high probability that the difference between PEPs
elicited during left trials and PEPs elicited during right trials is not founded in neural activity,
we did not attempt to train a classifier for the discrimination of left and right trials.

I.4.2 Binary single-trial classification

The result of binary classification shows that a PEP can be discriminated from ongoing resting
EEG with an accuracy of above 80%. To the best of our knowledge, there are no other studies
with the goal of classifying PEPs. We used a calibration approach to detect the time interval
in which the discriminability of perturbation and rest trials is maximal. Our results show that
this time interval is congruent with the occurrence of the N1 component around 140 ms after
the perturbation onset. All of the four tested window lengths are centered around this EEG
correlate. Since the PEP has a participant-specific latency, this centering around the EEG
correlate explains the window onset variability shown in Figure I.5. This finding supports our
hypothesis that a PEP can be decoded by the electrical properties of this activity pattern.

The reason why we chose the window sizes used in this work is that 1 sample serves as a
minimal example while 200 ms is enough to fully envelope the N1 component. 400 ms and 600
ms are used to analyze how classification performance is affected by longer time windows. Our
investigation of different window sizes for the classification showed that there are no significant
differences between the peak classification performances of the four tested window lengths.
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This is not surprising for the three longer window sizes (200 ms, 400 ms, and 600 ms) since the
classifier mainly uses information provided by the N1 component for the detection of a PEP and
all three window lengths are big enough to fully contain this component. It is interesting that a
single sample is already enough to achieve a classification performance similar to those achieved
with longer windows. This can be explained by the high amplitude of the N1 component, which
is big enough to encode sufficient information in a single sample. However, the usage of only
a single sample can prove to be problematic since such a restriction in terms of time makes
the classifier vulnerable to artifacts. On the other hand, an increase in window size means
that the static delay introduced by the window-based classification approach will also increase.
The 200-ms-window achieved peak accuracies around 100 ms after the amplitude peak of the
N1 component in contrast to a delay of around 300 ms for the 400-ms-window and a delay of
around 400 ms for the 600-ms-window. Our results suggest that a window length of 200 ms is
a good trade off that allows for a classification that is stable and robust against artifacts and
introduces a reasonable delay. We used the full layout to compare different window lengths
in order to utilize all information that was available to us when assessing the difference in
classification performance of different windows.

Since our previous results show that there is no significant effect of window length on
classification peak accuracy, we decided to use the 200 ms window for the comparison of
different layouts because this window length achieves a good tradeoff between static delay and
robustness. Four layouts were considered: the full layout of 29 electrodes, a medium layout
with 15 electrodes, a small layout consisting of 5 electrodes, and a minimal layout with only 1
electrode. While the full, medium, and small layout performed without significant difference
reaching peak classification accuracies around 94% on average, the minimal layout reached
slightly lower accuracy peaks with a maximal classification performance of 87.6% on average
around 240 ms after the perturbation onset. This finding agrees with the localization of the
PEP N1. Since the component is distributed over frontal, central, and parietal areas with the
peak amplitude located at Cz, the removal of channels that are far away from Cz does not
change the classification accuracy and suggests that no additional discriminating information
can be found in these channels. This hypothesis is supported by the high accuracies of well
above 80% (peak) achieved with the minimal layout that uses only the Cz electrode.

To analyze our classifier in more detail, we looked at the classification results using a 200 ms
window length and the minimal electrode layout. We chose these parameters due to the findings
discussed above. We found that all participants were able to reach a peak classification accuracy
above 70%. We calculated confusion matrices at different timepoints to judge the behaviour of
our classifier. The confusion matrix calculated at perturbation onset (0 ms) indicated that
almost all trials were classified as rest trials (see Figure I.6). This behavior is expected since all
trials look like rest trials at perturbation onset (flat EEG). Therefore, classifying all trials as
rest trials is the correct behavior at perturbation onset and our classifier showed this behavior.
The confusion matrix showed that only half of the PEP trials were correctly classified at grand
average peak accuracy. However, there was a high variety of classification peak latency, i.e.
for many participants we did not take the best performing time point when calculating the
confusion matrix. For this reason, we calculated confusion matrices for each participant at the
specific peak time. These matrices showed much better results (TPR: 81.5 ± 12.2%; TNR: 93.5
± 6.4%; Cohen-α: 0.804 ± 0.112). Furthermore, we calculated AUROC values at different time
points to get a better performance measurement of our classifier at different points in our tROI.
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At perturbation onset, we calculated an AUROC value of 0.54. Since every trial looked like a
rest trial at perturbation onset, as previously mentioned, we expected the classifier to fail at this
time point and the AUROC value supports our expectation. An AUROC value of 0.73 indicates
that our classifier only reached fair performance at grand average peak accuracy. Again, this
behavior is not unexpected since there was a high inter-participant variability of peak accuracy.
When only the best performances are considered, by combining participant-specific time points
of peak accuracy, we found that our classifier reached an classification performance with an
AUROC value of 0.93.

I.4.3 Limitations and future work

We prepared resting trials by using a virtual onset between perturbations. Participants were
instructed to stay as relaxed as possible and did not perform a mental or physical task during
these periods. In a real-world scenario, however, PEPs have to be discriminated from ongoing
EEG during mentally or physically demanding tasks like flying an airplane or doing physical
therapy for the purpose of rehabilitation.

Another limitation of selecting resting trials in this way is that subjects are constantly
prepared for being tilted. Although we randomized perturbation onsets to some degree, this
anticipation of the perturbation cannot be completely prevented. Due to the manual tilting
during trials, the acceleration showed a systematic divergence between the two tilting conditions.
This is unfortunately a confounder, preventing further investigations between left and right
perturbations. However, the ability to distinguish tilts to the left from tilts to the right is
of great importance for several fields such as application of exoskeleton. Therefore, future
experimental setups should incorporate controlled tilting procedures to validly investigate
different tilt directions.

The use of a window-based classification approach will introduce a static delay in an online
scenario. Although other online BCI systems do not suffer severely from that delay [168, 169], a
BCI that is supposed to detect loss of balance control works under strong time restrictions. One
example would be a patient in rehabilitation therapy to restore lost walking functionality. The
patient is walking with minimal support but is attached to a system that prevents falling if a loss
of balance control is detected. Such a system has to react in an instant to prevent the patient
from falling and hurting themselves. Future research should address the delay introduced due
to the window-based classification approach and investigate whether the duration of that delay
could be problematic in real-world scenarios.

The classifier used for discriminating PEP and rest condition, namely sLDA, has one
important restriction: the performance depends on the estimated covariance matrix. However,
the stability of this estimation decreases with an increase of the size of the feature space (curse
of dimensionality; see [155]). The usage of a shrinkage algorithm already addresses this problem
but the use of further dimension reduction techniques could improve the classification in terms
of performance and stability. Successfully implemented methods are e.g. principal component
analysis (PCA) [170], sequential forward selection (SFS) [171], or smoothing with a moving
average filter [172].
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We have shown that classification can be performed with high accuracy using only a small
number of channels (93.1% with five channels; 87.6% with one channel). This result is crucial
for real-world scenarios since size is an important factor in integrating new parts into an existing
system. Furthermore, companies that are specialized in EEG hardware are investigating into
shrinking the size of their hardware during the last years to improve mobility. Although the
developments in the hardware section are promising for PEP-detection systems, a thoroughly
online study has to be conducted to really determine the viability of such a system. In such an
online study, one has to investigate not only the reliability of PEP detection but also the false
positive rate (TPR). The TPR should be well below one per minute since compensating loss of
balance control usually restricts the user and such restrictions should only be put in place if
they are necessary. Finally, tests have to be performed with actual use cases of a system that
compensates loss of balance, e.g. with patients during gait rehabilitation, while using a VR
headset, or during actual flights.

I.5 Conclusion

In this study we showed that perturbation-evoked potentials can be robustly discriminated
from ongoing EEG using a linear classification approach. Furthermore, we show that this
discrimination can be achieved using only a few electrodes for recording. Our findings are a
first step to make information about the user’s balance control state accessible for computers
and machines. This would enable a machine to react to perceived balance perturbations which
could improve interactions between humans and machines. An improvement of this interaction
is important to enhance rehabilitation medicine or VR experience.

Acknowledgement

The authors would like to thank Dietmar Josef Schäfauer for his help in planning and con-
structing the tilting chair used to perturb participants. Supported by TU Graz Open Access
Publishing Fund.

54



II PlasmoFAB: A Benchmark to Foster Machine

Learning for Plasmodium falciparum Protein

Antigen Candidate Prediction

Jonas C. Ditz∗ Jacqueline Wistuba-Hamprecht∗ Timo Maier Rolf Fendel
Nico Pfeifer Bernhard Reuter

Abstract

Motivation: Machine learning methods can be used to support scientific discovery in healthcare-
related research fields. However, these methods can only be reliably used if they can be trained on
high-quality and curated datasets. Currently, no such dataset for the exploration of Plasmodium
falciparum protein antigen candidates exists. The parasite Plasmodium falciparum causes the
infectious disease malaria. Thus, identifying potential antigens is of utmost importance for the
development of antimalarial drugs and vaccines. Since exploring antigen candidates experimentally
is an expensive and time-consuming process, applying machine learning methods to support this
process has the potential to accelerate the development of drugs and vaccines, which are needed
for fighting and controlling malaria.
Results: We developed PlasmoFAB, a curated benchmark that can be used to train machine
learning methods for the exploration of Plasmodium falciparum protein antigen candidates. We
combined an extensive literature search with domain expertise to create high-quality labels
for Plasmodium falciparum specific proteins that distinguish between antigen candidates and
intracellular proteins. Additionally, we used our benchmark to compare different well-known
prediction models and available protein localization prediction services on the task of identifying
protein antigen candidates. We show that available general-purpose services are unable to provide
sufficient performance on identifying protein antigen candidates and are outperformed by our
models that were trained on this tailored data.
Availability: PlasmoFAB is publicly available on Zenodo with DOI 10.5281/zenodo.7433087.
Furthermore, all scripts that were used in the creation of PlasmoFAB and the training and
evaluation of machine learning models are open source and publicly available on GitHub here:
https://github.com/msmdev/PlasmoFAB.

II.1 Introduction

Malaria is a major health problem worldwide, causing more than 247 million cases and
approximately 619,000 deaths in 2021 [90]. Almost all malaria cases are caused by Plasmodium
falciparum (P.falciparum), predominantly in Africa. Children, pregnant women, and malaria-
naïve subjects are at high risk to develop severe malaria [173, 174]. Furthermore, the increase
in resistance to both insecticides that target the mosquito vector and anti-malaria drugs, as well
as the COVID-19 pandemic, led to an increase of morbidity in several highly endemic countries
in the past years [89]. Vaccines are very effective means in protecting against infectious diseases
as recently demonstrated in the case of COVID-19. The RTS,S vaccine is the first malaria
vaccine recommended by the World Health Organization (WHO) for widespread use in children
in endemic settings with a substantial reduction of severe malaria cases, but limited reduction
of transmission of malaria[175, 176]. Besides this first success in fighting severe malaria, there
is still an urgent need to develop an effective malaria vaccine that confers sterile protection
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and reduces malaria transmission. However, developing an effective malaria vaccine is still
challenging due to the complex, multi-stage life-cycle of P.falciparum, which is genetically
highly diverse and employs several immune evasion strategies. As a result, our understanding
of immune responses to P.falciparum-specific antigens that mediate naturally acquired or
experimentally induced protection is incomplete.

More than 5,300 genes are expressed during the life-cycle of P.falciparum [177]. However,
only a small subset of proteins that are expressed by P.falciparum is considered in current
target candidate screening processes for an effective malaria vaccine [91, 92]. Since most of
the unused proteins have unknown function and experimental validation remains costly and
time-intensive, computational methods can be used for pre-screening of proteins of interest.
For example, trans-membrane topology prediction is an established task in bioinformatics,
where the aim is to predict how and if a protein resides in the cell membrane, i.e., predict the
location and length of trans-membrane domains. The class of membrane proteins is one of the
most important classes of proteins for medical use. About 25-30% of natural proteins reside in
the cell membrane and are, thus, often bound by antibodies during an immune reaction [178].
Another class of relevant proteins for vaccine and drug development is the class of exported
proteins. Many of these fulfill important functions for parasite survival. For example, certain
proteins ensure that infected red blood cells stick to the microvasculature, one of the factors that
makes malaria a potentially fatal disease [179, 180]. In recent years, several scholars developed
general-purpose models for sub-cellular localization prediction and offered them as prediction
services to be used by the academic community [26, 27, 28, 29, 30]. While general-purpose
models provide researchers with an easy-to-use solution for performing prediction tasks, the
lack of out-of-distribution generalization capabilities of most general-purpose models leads to
sub-optimal prediction performances on novel datasets and misleading pre-screening results [24].
However, training supervised machine learning models for protein antigen candidate prediction
needs a sufficient amount of protein sequences with high-quality labels. Currently, only a small
fraction of publicly available P.falciparum protein sequences have high-quality labels, making
the training of models for identification of such antigens for vaccine and drug development
exponentially harder. With this work, we introduce the Plasmodium Falciparum-specific
Antigen candidate Benchmark (PlasmoFAB), a manually pre-processed and curated dataset
containing labeled protein sequences for Plasmodium falciparum protein antigen candidate
prediction.

This manuscript is structured as follows. We describe in detail the process of creating
PlasmoFAB including the used data sources, pre-processing, and validation steps. Afterwards
we present our experiments for predicting P.falciparum protein antigen candidates. Here we
show the limitations of using established tools and present approaches that provide solutions
to overcome these limitations. We conclude our work with a discussion about necessary actions
that have to be taken in order to further improve PlasmoFAB and, hence, further foster the
development of vaccines and drugs to control malaria.

56





Table II.1: Composition of the PlasmoFAB benchmark. The difference between the sum of
sequences in each inclusion criterion and the total number of unique sequences in the positive
set occurs due to the fact that some proteins fulfill more than one inclusion criterion. These
proteins were not duplicated, resulting in the mismatch between the sum of proteins in each
criterion and the total number of proteins in PlasmoFAB.

Positive Set (Unique Total = 438) Negative Set (Unique Total = 384)

Inclusion Criterion Identified By # Proteins Inclusion Criterion Identified By # Proteins

IEDB epitope BLAST match (high confidence) 57 Intracellular Proteins
Combined string and

literature search;
Domain expertise

384

IEDB epitope BLAST match (medium confidence) 60
PEXEL/HT motif PlasmoDB query 265
Sporozoite proteins Mass-spectrometry [99] 13
VSA family /
Membraneproteins

Combined string and literature search 302

Plasmodium species. The protein sequences of the reference strain 3D7 of P.falciparum, available
in PlasmoDB, are the data source for our curated benchmark. We only selected sequences with
experimental evidence, i.e., the corresponding P.falciparum protein has to be referenced in
published work with a unique publication identifier. However, these sequences do not have a
sub-cellular location label. We combined an extensive literature search with domain expertise
to create high-quality sub-cellular location labels that can be used to train ML models on the
task of protein antigen candidate prediction for P.falciparum. In other words, PlasmoFAB’s
positive set contains P.falciparum proteins that are accessible at the surface or the exterior
of infected cells, like surface proteins, transmembrane proteins, membrane-located proteins,
or exported proteins. On the other hand, PlasmoFAB’s negative set contains intracellular
proteins, which are needed by the parasite to maintain the intracellular life cycle in hepatocytes
or erythrocytes. The executed pre-processing steps for the creation of PlasmoFAB are detailed
in the following section. A schematic overview of our pre-processing can be found in Figure
II.1 and the basic statistics of PlasmoFAB are shown in Table II.1.

II.2.1 IEDB Epitopes

An epitope is the part of an antigen that is recognized by the immune system of a host
organism, i.e., the binding site of an antibody. The Immune Epitope Database (IEDB,
https://www.iedb.org/, [182]) contains sequences of known epitopes. We used exact string
matching and BLAST similarity matching to compare P.falciparum protein sequences with
sequences contained in the IEDB. Proteins that either contained exact matches of epitope
sequences or a positive BLAST hit with high or medium confidence score were labeled as
antigen candidates for our benchmark.

II.2.2 PEXEL/HT Motif

The majority of P.falciparum proteins that are either exported into the extracellular space
by the parasite or integrated into the membrane of infected erythrocytes contain a specific
amino acid sequence called Plasmodium exported element (PEXEL) or host targeting (HT)
[183, 184]. Therefore, the presence of this motif is a strong indicator of a protein antigen
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candidate. PlasmoDB indicates the presence of the PEXEL/HT motif within a sequence by a
flag in one of its data fields. For PlasmoFAB, we included all proteins with the PEXEL/HT
motif as positive antigen candidates.

II.2.3 VSA families and known membrane proteins

Variant surface antigen (VSA) families describe proteins that are typically located on cell
surfaces. There are three known VSA families in the P.falciparum genome: Plasmodium falci-
parum erythrocyte membrane protein 1 (PfEMP1), repetitive interspersed family (RIFIN), and
sub-telomeric variable open reading frame (STEVOR). The first family, PfEMP1, summarizes
proteins that are expressed on the surface of infected erythrocytes during the trophozoite and
schizont stage of the infection cycle. These proteins are mainly responsible for effective evasion
of immune responses [180]. Proteins belonging to the RIFIN family are exported onto the cell
surface of infected erythrocytes as well. They mediate the sequestration of erythrocytes which
results in erythrocyte rosetting that further helps parasites to evade immune responses and
can block the blood flow [180]. Similar to the other two VSA families, STEVOR proteins are
also used by P.falciparum parasites to evade host immune responses. They play active roles in
the trophozoite, schizont, merozoite, and gametocyte stages of the infection cycle [185, 180].
Beside the members of VSA families, there are a number of known membrane proteins. In
the sporozoite stage, those include thrombospondin-related anonymous protein (TRAP), also
known as sporozoite surface protein 2 (SSP2), apical membrane antigen 1 (AMA1), liver stage
antigen 1 (LSA1), and exported protein 1 (Exp-1), also known as circumsporozoite-related
antigen (CRA). Additionally, we included known surface proteins that can be found in other
stages of the infection cycle like the family of monomeric serine-threonine protein kinases
(FIKK, [186]), the helical intersperse sub-telomeric family of exported proteins (PHIST, [187]),
and the multigene family of cytoadherence linked asexual gene (CLAG, [188]).

Each entry in PlasmoDB has a textual product description field containing information about
the sample in textual form. We performed a string search on the textual product description
field using the names of the VSA families as search terms: ’PfEMP1 ’, ’RIFIN ’, ’STEVOR’.
For additional known membrane and exported proteins, we did not only included the names
but also descriptive search terms since the textual product description field is not standardized.
The additional search terms were ’surface’, ’circumsporozoite’, ’membrane’, ’exported’, ’serine
repeat antigen’, ’TRAP’, ’FIKK ’, ’GLURP’, ’CLAG’, ’PHIST ’, and ’GPI-anchor ’. However,
the source and rationale behind the annotation in PlasmoDB’s textual product description
field are not always disclosed. To ensure that only validated membrane and exported proteins
are included in our benchmark, we performed a literature search for each protein that was
selected by our string search and included only proteins with published experimental evidence
into our benchmark. To further enrich the set of known membrane proteins, we added a list of
sequences validated by the UniProtKB/SwissProt (reviewed) database. This database contains
high quality, manually annotated proteins sequences [189].
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II.2.4 Sporozoite surface-exposed proteins

The authors in [99] used mass-spectrometry to identify potential surface-exposed sporozoite
proteins of P.falciparum. They assigned priority scores to each investigated protein ranging
from 1 (high confidence) to 6 (low confidence). We downloaded the publicly available data from
[99] and selected all proteins with a priority score from 1 to 3. We used the unique transcript
ID of these proteins to merge this information into the PlasmoDB data table and included
them into our benchmark as antigen candidates.

II.2.5 Intracellular proteins

The pre-processing steps described above added positive samples, i.e., P.falciparum protein
antigen candidates, to our benchmark. However, PlasmoFAB needs negative samples, i.e.,
proteins that are not P.falciparum protein antigen candidates, to be usable for training of
supervised ML methods. A model can only learn to detect true protein antigen candiates, if
a set of high-quality negative samples, a so-called negative set, is available. Similar to the
positive samples, we curated the negative samples to ensure that only intracellular P.falciparum
proteins are included into the negative set. Intracellular proteins can only leave the cytoplasm
in specific situations that do not reliably occur in the infection cycle, like the burst of an
infected erythrocyte or if macrophages digest an infected erythrocyte and subsequently present
an intracellular protein as an antigen. However due to the unreliability of these incidents
and the fact that both can only occur late in the infection cycle, intracellular proteins are
not suitable as antibody targets. Enzymes constitute a subset of intracellular proteins. We
performed a string search with the term ’*ase’ on PlasmoDB’s textual product description
field and included all proteins with published experimental evidence of being enzymes into the
negative set of our benchmark. While there is a small number of enzymes that are exported
to the cell membrane, we made sure to exclude all enzymes from the negative set for which
published experimental evidence of being membrane-located exists. Furthermore, we included
a list of known intracellular proteins compiled by a domain expert and a list of intracellular
proteins validated by UniProtKB/SwissProt (reviewed).

II.3 Utilizing Machine Learning for Plasmodium Falciparum Protein Anti-
gen Candidate Exploration

Manually exploring P.falciparum proteins for potential antigen candidates is a time consuming
and expensive procedure. With the help of our curated benchmark, we can utilize supervised
ML to accelerate the process with a pre-screening of potential proteins that reduces the
required workload of researchers in the laboratory. The usefulness of such a pre-screening
process highly depends on the accuracy that prediction models are able to achieve. We
compared the performance of several ML approaches that are commonly used for textual data,
especially for biological sequences. The used methods include a kernelized support vector
machine (SVM) utilizing the oligo kernel [53], the protein language model embedding ESM-1b
[190] combined with a logistic regression (LR) classifier as well as an SVM, and the protein
language model embedding ProtT5 [191], which we also combined with an LR classifier and an
SVM. Furthermore, we also tested the performance of existing protein localization prediction
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tools on the P.falciparum protein antigen candidate prediction task. These tools are publicly
offered as a service for protein localization prediction tasks and included TMHMM [192],
DeepTMHMM [27], DeepLoc 1.0 [28], DeepLoc 2.0 [29], and Phobius [30]. To ensure a fair
comparison between pre-trained prediction services and our self-trained models, we defined
a test set that was separated from the training data before model training was performed.
We used MMseqs2 [193, 194] to ensure that each sequence in the test set had at most 30%
homology to sequences in the training set, which is the default setting of MMseqs2. The test set
consists of 60 sequences (30 antigen targets and 30 intracellular proteins) with the remaining
788 sequences in PlasmoFAB used as a training set. All performance measures shown in this
section are computed on the test set.

To assess the performance of each method, we used three performance measures that are
widely used in computational biology due to their ability to handle imbalanced data with
relative ease. First, we used balanced accuracy, which has different definitions in literature.
We used the arithmetic mean of sensitivity and specificity [15] given by

Accbal =
1

2



TP
TP + FN

+
TN

TN + FP



, (II.1)

where TP is the number of correctly predicted protein antigen candidates (i.e., true positives),
FP is the number of wrongly predicted protein antigen candidates (i.e., false positives), TN is
the number of correctly predicted intracellular proteins (i.e., true negatives), and FN is the
number of wrongly predicted intracellular proteins (i.e., false negatives). Additionally, we used
the F1-score that is the harmonic mean of precision and recall [16] given by

F1 =
2TP

2TP + FP + FN
, (II.2)

with TP, FP, and FN defined in the same way as above. Finally, we also included the Matthews
correlation coefficient (MCC, [9]), which is widely recognized as one of the most reliable
performance measures for binary classification on biological data. The MCC is defined as

MCC =
TP · TN − FP · FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (II.3)

Again, the definition of TP, FP, TN, and FN are the same as above. Since the classes in
PlasmoFAB are balanced, we also report precision, recall, and specificity to provide a quick
overview over the distribution of FN and FP for the predictions of the tested models.

II.3.1 Using PlasmoFAB’s training sequences for model training

Hyperparameter optimization and model selection was exclusively performed on PlasmoFAB’s
training sequences to avoid information leakage from the test sequences. As a baseline model,
we trained a kernelized SVM utilizing the oligo kernel, a kernel function that was specifically
developed for biological sequences [53]. This kernel computes the similarity of two sequences
based on k-mer occurrence with a tunable degree of positional uncertainty. The SVM that
was trained for P.falciparum protein antigen candidate prediction had three hyperparameters
that needed to be optimized: the k-mer length, the positional uncertainty parameter σ, and
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the regularization parameter CSVM. We performed a grid search utilizing repeated nested
cross-validation to optimize all three hyperparameters. The resulting choices were k = 1,
σ = 18, and CSVM = 0.001.

Additionally, we used two more complex language embedding models that are commonly used
for biological sequences: ESM-1b and ProtT5. The first, ESM-1b, is a pre-trained transformer
model [190], which is offered as a feature generator for downstream prediction models. It was
developed to be used on biological sequences. ESM-1b follows the self-supervised bidirectional
encoder representation from transformation (BERT) pre-training procedure. This language
model is a transformer architecture with 33 layers and utilizes self-attention with 20 attention
heads. The resulting features have a dimensionality of 1280 with a token context size of 1024.
ESM-1b was trained on sequence clusters derived from the UniProt database [195]. We refer
the interested reader to the original publication for all technical details about ESM-1b. The
token context size together with a positional encoding of fixed length limits input sequences to
a maximum of 1024 characters. Since there is a significant number of sequences in PlasmoFAB
that exceed this character limit, we followed published recommendations to cut the middle
part of sequences that exceed the 1024 character limitation [29] to be able to use ESM-1b on
our benchmark. In total, 261 sequences were affected by this cutting procedure. The computed
feature embeddings were used as inputs for the two tested downstream prediction models,
LR and SVM. Again, we exclusively optimized the regularization parameters CLR and CSVM,
respectively. After performing the grid search, the optimal parameter choices were CLR = 0.15
and CSVM = 20.

The second language embedding that we used was ProtT5-XL-UniRef50 (ProtT5, [191]).
This transformer model, based on the language model T5 [196], is specifically developed for
biological data and prediction tasks. Similar to ESM-1b, ProtT5 acts as a feature generator
for downstream prediction models. In contrast to other language models, ProtT5 follows an
encoder-decoder approach and uses a simplified BERT training objective. The architecture
employs 24 layers and also utilizes self-attention with 32 attention heads. ProtT5 has an
embedding dimensionality of 1024. Since ProtT5 does not use a positional encoding of fixed
length but learns a positional encoding for each attention head, the length of input sequences is
not limited in theory. ProtT5 was first pre-trained on the BFD database [197] and fine-tuned
on UniRef50 [198]. We refer the interested reader to the original publication for all technical
details about ProtT5. Although sequence length is not limited when using ProtT5, finite
computation power limits the usable sequence length in practice. With the computing resources
available to us, an Nvidia Tesla V100 with 32GB RAM, the maximal usable sequence length
was 6000 residues. Longer sequences were shortened in the same way we shortened sequences
for ESM-1b. Five sequences in PlasmoFAB were affected by this reduction of sequence length.
Again, we used the feature embedding as inputs for the two downstream prediction models,
LR and SVM, and optimized the regularization parameter via a grid search. The optimal
parameters were CLR = 0.2 and CSVM = 2.0.

II.3.2 Evaluating prediction models on PlasmoFAB’s test sequences

Table II.2 shows the performance of all models on PlasmoFAB’s test set. The models trained by
ourselves can be directly applied to the test set. Since the publicly available prediction services

62



Table II.2: Performance of trained prediction models and prediction services on PlasmoFAB’s
test set. We trained different models on PlasmoFAB’s training set including a support vector
machine utilizing the oligo kernel (SVMoligo), a combination of the a linear regression with
either ESM1b or ProtT5 language model embedding (LRESM1b and LRProtT5), and a support
vector machine combined with either ESM1b or ProtT5 language model embedding (SVMESM1b

and SVMProtT5). Furthermore, we used publicly available, pre-trained prediction services on
PlasmoFAB’s test set. These services include Phobius, TMHMM, DeepTMHMM, Deeploc 1.0,
and Deeploc 2.0.

Model MCC F1 Bal. Acc. Precision Recall Specificity

SVMoligo 0.3145 0.5882 0.6500 0.7143 0.5000 0.8000
LRESM1b 0.7071 0.8000 0.8333 1.0000 0.6667 1.0000
SVMESM1b 0.7071 0.8000 0.8333 1.0000 0.6667 1.0000
LRProtT5 0.7338 0.8235 0.8500 1.0000 0.7000 1.0000
SVMProtT5 0.6917 0.8077 0.8333 0.9545 0.7000 0.9666

DeepTMHMM 0.4395 0.6909 0.7167 0.7600 0.6333 0.8001
DeepLoc 2.0 0.4009 0.7079 0.7009 0.6000 0.6923 0.7095
DeepLoc 1.0 0.2691 0.6071 0.6357 0.5667 0.6538 0.6176
TMHMM 0.3015 0.6316 0.6500 0.6667 0.6000 0.7000
Phobius 0.2722 0.6667 0.6333 0.6111 0.7333 0.5333

do not always provide a binary output, we converted the prediction output for each service into
a binary label. TMHMM and Phobius provide topology predictions for input sequences and
we assigned a positive label to all samples with at least one predicted trans-membrane helix or
at least one predicted extracellular region. Otherwise the sample was assigned a negative label.
DeepTMHMM refines the prediction of TMHMM by providing a label for each residue in an
input sample. For the DeepTMHMM output, we assigned a positive label to all samples with
residues that had the membrane domain label (’M ’) assigned. Furthermore, a positive label was
assigned to samples where DeepTMHMM predicted the outside cell label (’O’) for all residues.
If none of these conditions was fulfilled, the sample was assigned a negative label. DeepLoc 1.0
and 2.0 are tools for subcellular localization prediction and, hence, offer a multi-label output.
Each label corresponds to a different subcellular localization. We used the top predicted label
for each input sample. If this label was ’cell membrane’ or ’extracellular ’, the sample was
assigned a positive label, otherwise a negative label was assigned.

Our results show that models directly trained on PlasmoFAB training set clearly outperform
the available prediction services. The best performance was achieved by combining ProtT5
feature embedding with logistic regression. None of the tested prediction services was able to
achieve a comparable performance to the specialized models.

II.4 Discussion

Computational antigen pre-screening with machine learning methods can drastically reduce
time- and resource-consuming experimental exploration procedures and, thereby, accelerate
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development of drugs and vaccines. However, these computational pre-screening methods
heavily depend on high-quality data to produce reliable results. In this work, we take important
steps towards utilizing computational pre-screening for Malaria drug and vaccine development
by providing PlasmoFAB, a benchmark that consists of Plasmodium falciparum-specific pro-
tein sequences with curated labels that distinguish between protein antigen candidates and
intracellular proteins.

Experimental validation is the gold standard to determine subcellular localization labels
for proteins. We ensured that each label in PlasmoFAB achieves this gold standard or, if
experimental validation is not feasible, comes as close to the gold standard as possible. As
detailed in section II.2, the biggest subgroup of proteins that were assigned as antigen candidates
was the group of VSA family members and known membrane proteins. We performed an
exhaustive literature search and only included proteins into this subgroup for which published
experimental evidence exists. Other subsets with experimentally validated labels are sporozoite
proteins and proteins that contain the PEXEL/HT motif. Sporozoite proteins were validated
by mass-spectrometry [99]. PEXEL/HT motif occurrence is a property of the protein sequence.
This property is experimentally validated since PlasmoFAB only includes experimentally
validated protein sequences. Furthermore, there is experimental evidence that P.falciparum
parasites use the PEXEL/HT motif to export proteins [184, 183]. This supports our decision to
include PEXEL/HT motif occurrence as an indication of protein antigen candidates. The last
remaining subgroup in PlasmoFAB’s positive set are proteins with known epitopes. IEDB only
includes epitopes that are experimentally validated and we used BLAST to perform similarity
matching between IEDB entries and P.falciparum protein sequences. Although BLAST does
not fulfill the gold standard of experimental validation, it is widely considered as the gold
standard for sequence similarity matching. By restricting ourselves to BLAST matches with
high or medium confidence, we ensured that the reduction in label quality of proteins in this
subgroup is minimized. PlasmoFAB’s negative set contains two groups of proteins: enzymes
and intracellular proteins. We performed an exhaustive literature search to ensure that all
included enzymes have experimental evidence of being intracellular. We excluded enzymes, if
there is at least one publication with experimental evidence that suggests that the enzyme is
being exported outside the cell. The other subgroup, intracellular proteins, were classified by a
domain expert. While this does not fulfill the gold standard of experimental validation, we
ensured to minimize the reduction in label quality by using domain expertise.

PlasmoFAB uses data that belongs to the Plasmodium falciparum strain 3D7. The genome
of this specific strain of the P.falciparum parasite was the first to be published by Gardner
and colleagues in 2002 [185]. It is still today one of the most important information sources
for malaria research [176, 175, 92, 91]. Therefore, we made the decision to concentrate
on P.falciparum strain 3D7 for the first version of PlasmoFAB. For future work, we want
to further refine PlasmoFAB by deriving high-quality labels for protein sequences of other
P.falciparum strains in order to incorporate as much information about P.falciparum protein
antigen candidates as possible into our benchmark.

One potentially surprising result is the sub-optimal performance of publicly available predic-
tion services, like DeepTMHMM or DeepLoc 2.0, even though these services are relatively new
and show impressive performance capabilities in their respective manuscripts. Our results do
not provide evidence that the published performance capabilities of these models are overly
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optimistic or that they should not be used in general. On the contrary, we would like to
emphasize that prediction services provide a fast and easy-to-use way for researchers without a
strong background in machine learning to utilize prediction models in their research or the
possibility to use prediction models even if not enough data for model training is available.
However, our results highlight one common problem of general purpose models: their lack
of out-of-distribution generalization [24]. Models learn certain aspects of the training data’s
distribution and allow trained models to achieve high prediction performance of unseen data
as long as these data points came from the same distribution. However, if those unseen data
points came from a different distribution, there is no guarantee that the model will be able
to reliably make predictions on the new data. We see this out-of-distribution generalization
issue in the relatively poor performance of the used prediction services. Since the P.falciparum
proteins are likely to be differently distributed than the proteins used to train the prediction
services, these services perform poorly when applied to our test set. This result supports our
claim that providing curated datasets with high-quality labels for model training is essential for
maximising the potential of computational prediction methods on biological prediction tasks
like the pre-screening of P.falciparum protein antigen candidates. Therefore, our proposed
PlasmoFAB benchmark offers a solution to one fundamental obstacle in utilizing computational
prediction methods in the development process of drugs and vaccines against malaria.

One goal of developing PlasmoFAB was to provide the malaria research community with
a tool to utilize machine learning in protein antigen exploration processes. However, the
potential target user group of PlasmoFAB can only benefit from the data if it fulfils two basic
requirements. First, potential users have to be enabled to reliably find, access, and reuse data.
And second, potential users have to be able to make an informed decision whether the data
is applicable for their specific problem. We tackle the first problem by making PlasmoFAB
publicly available via Zenodo, which is a platform by researchers for researchers that aims to
support open science. By uploading our dataset to Zenodo we ensure that the FAIR principles
[39] are taken into account. Additionally, we release PlasmoFAB in form of comma-separated
values (CSV) files. This file format is universally used in different research communities and
should maximize the number of researchers that can use our dataset. Furthermore, we created
a datasheet for PlasmoFAB as described in [40]. With this datasheet, we provide information
about the motivation behind creating PlasmoFAB, the creation process, the assumptions made,
and applicable use cases. Users who are interested in using PlasmoFAB can use the datasheet
to make an informed decision about the applicability.

II.5 Conclusion

With this work, we introduce PlasmoFAB, a new and carefully curated benchmark for the
training of models for Plasmodium falciparum protein antigen candidate prediction. The
benchmark was created by manually validating extracellular, surface-exposed, and intracellular
P.falciparum proteins to ensure high-quality labels for every sample in the dataset. Such
a curated benchmark is an important prerequisite to incorporate learning models into pre-
screening protocols for protein antigen candidates.

We furthermore compared commonly used prediction models with publicly available prediction
services on the P.falciparum protein antigen candidate prediction task. Our results show the
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limitations of existing prediction services, which are vastly outperformed by simpler prediction
models that are specifically trained for P.falciparum protein antigen candidate prediction.

We are confident that our contribution provides a tool that can be used to help the research
community to explore the vast number of Plasmodium falciparum proteins with unknown
functionality and identify new targets for drugs and vaccines against malaria.
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III Inherently Interpretable Position-Aware

Convolutional Motif Kernel Networks for

Biological Sequencing Data

Jonas C. Ditz Bernhard Reuter Nico Pfeifer

Abstract

Artificial neural networks show promising performance in detecting correlations within data that
are associated with specific outcomes. However, the black-box nature of such models can hinder
the knowledge advancement in research fields by obscuring the decision process and preventing
scientist to fully conceptualize predicted outcomes. Furthermore, domain experts like healthcare
providers need explainable predictions to assess whether a predicted outcome can be trusted in
high stakes scenarios and to help them integrating a model into their own routine. Therefore,
interpretable models play a crucial role for the incorporation of machine learning into high stakes
scenarios like healthcare. In this paper we introduce Convolutional Motif Kernel Networks, a
neural network architecture that involves learning a feature representation within a subspace of
the reproducing kernel Hilbert space of the position-aware motif kernel function. The resulting
model enables to directly interpret and evaluate prediction outcomes by providing a biologically
and medically meaningful explanation without the need for additional post-hoc analysis. We
show that our model is able to robustly learn on small datasets and reaches state-of-the-art
performance on relevant healthcare prediction tasks. Our proposed method can be utilized on
DNA and protein sequences. Furthermore, we show that the proposed method learns biologically
meaningful concepts directly from data using an end-to-end learning scheme.

III.1 Introduction

Biological sequences contain valuable information for a wide variety of biological processes.
While this property makes them crucial for advances in related research fields, it also provides
the potential to improve diagnosis and treatment decisions in healthcare systems. For this
reason, a large amount of machine learning approaches that solve learning tasks on biological
sequences were developed over the last years. Among others, these approaches include the
prediction of splice sites [199] and translation initiation sites [200], predicting binding affinity
between proteins and DNA/RNA [60, 94], drug resistance prediction [93], or the denoising of
biological sequence data [201]. However, trained models can only be safely incorporated into
medical routines if their prediction outcomes can be thoroughly interpreted and understood
even by domain experts, e.g., healthcare providers like medical practitioners, without strong
knowledge in the foundations of machine learning. Kernel methods and statistical models
provide the possibility to interpret results within the data’s domain, hence, allowing domain
experts to judge outcomes using their own expertise. Yet, scalability issues in terms of data
size limit their utility considering the rapid increase of available data in medical and biological
research. On the other hand, gradient-based learning approaches like neural networks can
handle huge data pools with relative ease but are normally developed as black-box models.
Although there are model-agnostic techniques to interpret these models, e.g., saliency maps
[202] or Shapley additive explanations (SHAP) [76], recent work by Rudin [83] advises the
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use of inherently interpretable models for high stakes scenarios over post-hoc explaining black-
box models. One problem of post-hoc ML explanation models identified by Rudin is their
unfaithfulness regarding the original model’s computation, which can result in misleading
explanations. Sixt and colleagues showed this unfaithfulness for attribution methods by
proving that most methods ignored later layers of a model when computing explanations
[84]. Furthermore, Bordt and colleagues showed the limitations of post-hoc explanations in
adversarial contexts [85]. Lipton warned about the danger of optimizing post-hoc methods to
produce plausible but misleading explanations [116]. In high stakes scenarios like healthcare,
decisions made on misleading or wrong explanations can cause dangerous situations with the
potential to further harm patients or other vulnerable groups.

In recent years, several efforts were published to combine kernel functions and neural
networks [64, 203, 65, 66]. Combining these two approaches enhances neural networks with
the interpretability and robustness of kernel methods. On the other hand, it allows to extend
learning within a reproducing kernel Hilbert space (RKHS) to problems with massive numbers
of data points. Recently, Chen and colleagues introduced these efforts into data mining
on biological sequences by developing convolutional kernel networks based on a continuous
relaxation of the mismatch kernel [67]. Although these models show promising performance,
the choice of kernel resulted in the necessity of a post-hoc model for interpretation. Another
limitation results from the fact that the mismatch kernel restricts considered k-mer occurrences
to a position-independent representation [48, 47]. In many medical tasks, however, positional
and compositional variability provide key information. One kernel network approach that
utilizes positional information is the recurrent kernel network (RKN) proposed by Chen and
colleagues[68]. Another recent approach to incorporate positional information was proposed by
Mialon and colleagues [204]. They utilizes a fixed matrix to introduce positional information.
While these architectures showed promising performance capabilities, the chosen architectures
resulted once again in black-box models with the need for post-hoc interpretation. The oligo
kernel proposed by Meinicke and colleagues is able to model positional variability and can
additionally provide traditional monomer-based representations as well as position-independent
k-mer representations as limiting cases [53]. Furthermore, the oligo kernel allows for intuitive
and simple interpretation of k-mer relevance and positional variability. However, the oligo
kernel cannot be directly incorporated into a convolutional network architecture and does not
take into account information provided by compositional variability of motifs. While k-mers
are short sequences with fixed letters at each position, motifs are short sequence patterns that
can represent more than one possible letter at each position. The above mentioned limitations
motivated our work presented here.

This work is structured in the following way. Section III.2 introduces the position-aware
motif kernel function and details how to incorporate the position-aware motif kernel into a
convolutional kernel layer and how to interpret a trained CMKN model. Section III.3 provides
details regarding the conducted experiments on synthetic and real-world data and the results.
Finally, section III.4 provides a discussion of presented prediction and interpretation results
and section III.5 completes this work with a conclusion.

In summary, our manuscript provides the following contributions:

• We extend convolutional kernel network models for biological sequences to incorporate
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positional information and make them inherently interpretable, which removes the
necessity for post-hoc explanation models. The new models are called convolutional
motif kernel networks (CMKNs).

• This extension is achieved by introducing a new kernel function, called position-aware
motif kernel, that quantifies the position dependent similarity of motif occurrences.

• We use one synthetic and two real-world datasets to show how our method can be used
as a research tool to gain insight into biological sequence data and how CMKNs can
provide local interpretation that can help domain experts, e.g., healthcare providers, to
quickly interpret and validate prediction outcomes of a trained CMKN model with their
domain expertise.

III.2 Methods

In the following section, we will introduce our new kernel function and show how this kernel
can be used to create inherently interpretable kernel networks.

III.2.1 Position-Aware Motif Kernel

We introduce a new kernel function that incorporates the positional uncertainty of the oligo
kernel [53] but is defined for arbitrary sequence motifs. Furthermore, our kernel function can be
used to construct a convolutional kernel layer as described by Mairal [66]. Our kernel function
is based on two main ideas: First, we introduce a mapping of sequence positions onto the unit
circle, which allows us to represent the position comparison term by a linear operation followed
by a non-linear activation function. Second, we introduce a k-mer comparison term. This
extension enables the kernel function to deal with inexact k-mer matching, which capacitates
our kernel function to handle arbitrary sequence motifs. We call our new kernel function
position-aware motif kernel (PAM).

The first part of our position-aware motif kernel compares sequence positions. In prior work,
e.g., Meinicke et al., 2004 [53] or Mialon et al., 2021 [204], a quadratic term is usually employed
to measure the similarity of positions. We utilize a linear comparison term instead. First, all
positions are mapped onto the upper half of the unit circle to create unit ℓ2-norm vectors:

p̃ =


(cos


p
♣x♣π



, sin


p
♣x♣π

T
, where ♣x♣ denotes the length of the corresponding sequence.

Due to the position vectors now having unit ℓ2-norm, the position comparison term can be
written as follows: − 1

4σ
∥p̃− q̃∥2

2 = 1
2σ

(p̃T q̃ − 1). This allows us to define the following position
comparison kernel function over pairs of sequence positions:

Kposition(p, q) = exp



β

2σ2



p̃T q̃ − 1




, (III.1)

where β is a scaling parameter that compensates for the reduced absolute distance between
sequence positions due to the introduced mapping and σ is a positional uncertainty parameter
similar to the homonymous σ parameter of the oligo kernel.

The second part of our position-aware motif kernel compares sequence motifs. For biological
sequences, a motif describes a nucleotide or amino acid pattern of a certain length. Sequence
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motifs can be written in form of a normalized position frequency matrix (nPFM), which is a
matrix in R

♣A♣×k
+ with ♣A♣ being the size of the alphabet over which the motif is created and

k being the length of the motif. An nPFM has to fulfill the additional constraint that each
column has unit ℓ2-norm (see supplement for more details). For two motifs ω and ω′ of length
k given as flattened nPFMs, i.e., the columns are concatenated to convert the matrix into a
vector, we define the following motif comparison kernel function:

KnPFM(ω, ω′) = exp


α


ωTω′ − k


. (III.2)

This function will become one if the two motifs match exactly and will approach zero with
increasing difference of the two motifs. The parameter α determines how fast the function
approaches zero and, hence, specifies the influence of inexact matching motifs.

We define our position-aware motif kernel by forming the product kernel using the functions
introduced in Equation III.1 and III.2 and aggregating the kernel evaluation of all motif-position
pairs with a sum. In other words, the position-aware motif kernel for pairs of sequences x and
x

′ over an alphabet A is given by:

KPAM(x,x′) = C

♣x♣
∑

p=1

♣x′♣
∑

q=1

K0((ωp, p), (ωq, q)) (III.3)

with

K0((ωp, p), (ωq, q)) = KnPFM(ωp, ωq) ·Kposition(p, q) = exp



α


ωT
p ωq − k



+
β

2σ2



p̃T q̃ − 1




.

Here, ♣x♣ and ♣x′♣ are the lengths of the respective sequences, ωp is the motif of length k starting
at position p in sequence x represented as a flattened nPFM, and ωq is defined analogously

to ωp but for sequence x
′. The constant C =

√

π2σ2

2αβ
results from the derivation of the motif

kernel matrix elements as the inner product of two sequence representatives ϕx, ϕx′ in the
feature space of all motifs as detailed in the Supplement.

III.2.2 Extracting a Feasible Kernel Layer using Nyström’s Method

Mairal and colleagues showed that a variant of the Nyström method [70, 71] can be used to
incorporate learning within a reproducing kernel Hilbert space (RKHS) into neural networks
[65, 66]. We use the same approach to construct a finite-dimensional subspace of the RKHS H
over motif-position pairs that is implicitly defined by K0 and incorporate learning within this
subspace into a neural network architecture.

Consider a set of n anchor points z1, . . . , zn, where each anchor point is a motif-position pair
zi = (ωzi

, pzi
). We define an n-dimensional subspace E of H that is spanned by a set of anchor

points, i.e.
E = Span (ϕz1 , . . . , ϕzn) , (III.4)

where ϕzi
denotes the projection of each anchor point into the RKHS H. Utilizing the kernel

trick, a motif-position pair can be projected onto E without explicitly calculating the images of
the anchor points ϕz1 , . . . , ϕzn . This natural parametrization is given by [66]

ψ((ω, p)) = K
− 1

2
ZZKZ((ω, p)). (III.5)
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calculating the mean positive weight of the edges that connect the position with the output
state that corresponds to the class. The importance ι of position p for class c can thereby be
expressed as:

ιpc =
1

♣Np♣
∑

n∈Np

ι̃n,c , ι̃n,c =















∑

¶m♣m∈N(n)♢wn,mι̃m,c, if N (n) ∩N (O) = ∅
1, if N (n) ∩N (O) = oc

0, otherwise.

(III.6)

Here, Np denotes the set of neurons contributing to the importance of position p, N (n) denotes
the set of neurons from the next layer connected by an edge with positive weight to neuron
n ∈ Np, wn,m denotes the weight of the edge connecting neuron n with neuron m ∈ N (n),
and N (O) denotes the set of ♣c♣ neurons oc, each representing a single class, in the output
layer. Furthermore, the motif associated with the class at that position is retrieved by
identifying all learned motifs with positive weights and calculating the weighted mean motif
using the learned weights. This procedure is similar to inferring feature importances from the
primal representation using the learned parameters of a SVM. Said utilization of the primal
representation is possible for linear kernels and most string kernels [53]. The importance of
each amino acid at each position of the motif can be directly accessed by sorting the rows
of each column of the associated nPFM in decreasing order. Additionally, motif functions
enhance CMKN models with the ability to compute local interpretations, i.e., an explanation
of prediction results for single inputs within the data’s domain. For an input sequence and a
learned motif-position pair, we can estimate the importance of that pair by calculating the
ℓ2-norm of the corresponding motif function. To assess the class that a model associates with
an important position, the class-specific motifs that were learned by a model at that position
can be retrieved and ranked by the ℓ2-norm of the motif functions on the input sequence. The
motif with the highest ℓ2-norm determines which class a model assigns to the position. We
show an exemplary visualization for domain experts of this procedure in Figure III.3b.

III.3 Experiments

We used synthetic data to evaluate CMKN’s ability to recover meaningful sequence patterns.
Furthermore, we evaluated the performance capability of our proposed method on two different
prediction tasks: antiretroviral drug resistance prediction and splice site recognition.

III.3.1 Recovering Meaningful Patterns in Synthetic Data

In order to assess whether CMKN models can reliably recover distinct biological patterns
from sequences, we created a synthetic dataset containing 1000 randomly generated DNA
sequences of length 100. The set was equally split into negative and positive sequences, with a
distinct motif embedded into each class of sequences at a specific position (see Figure III.2a
for the embedded motifs). For negative sequences, the motif was embedded at position 20 with
a positional uncertainty of ± 5 positions. For positive sequences, the motif was embedded
at position 80 with a positional uncertainty of ± 5 positions. The compositional variablity
shown in Figure III.2a can be understood in a way that one-third of the 5-mers embedded into
negative sequences had a thymine at position 2 while two-third of the k-mers had a cytosine.
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Table III.1: CMKN performance on HIV prediction task

Mean performance and standard derivation of prediction models for three different HIV drug
classes: PIs, NRTIs, NNRTIs. Models include polynomial kernel SVMs (SVMpoly), oligo kernel
SVMs (SVMoligo), random forests (RF), convolutional neural networks (CNN), convolutional
kernel networks (CKNseq), and convolutional motif kernel networks (CMKN). Highest values

are displayed in bold.
Drug Class Model Accuracy F1 Score auROC MCC

PI
SVMpoly 0.90 ± 0.04 0.83 ± 0.09 0.95 ± 0.03 0.75 ± 0.10
SVMoligo 0.92 ± 0.03 0.86 ± 0.09 0.97 ± 0.03 0.81 ± 0.09

RF 0.92 ± 0.04 0.85 ± 0.13 0.97 ± 0.03 0.79 ± 0.13
CNN 0.91 ± 0.3 0.84 ± 0.11 0.94 ± 0.05 0.77 ± 0.11

CKNseq 0.84 ± 0.05 0.72 ± 0.12 0.88 ± 0.05 0.60 ± 0.11
CMKN 0.92 ± 0.03 0.87 ± 0.09 0.96 ± 0.03 0.81 ± 0.10

NRTI
SVMpoly 0.86 ± 0.06 0.82 ± 0.09 0.90 ± 0.05 0.70 ± 0.12
SVMoligo 0.88 ± 0.05 0.85 ± 0.09 0.94 ± 0.03 0.75 ± 0.10

RF 0.88 ± 0.06 0.84 ± 0.12 0.94 ± 0.04 0.74 ± 0.15
CNN 0.88 ± 0.05 0.85 ± 0.09 0.93 ± 0.04 0.74 ± 0.12

CKNseq 0.79 ± 0.06 0.73 ± 0.12 0.85 ± 0.05 0.54 ± 0.13
CMKN 0.89 ± 0.05 0.86 ± 0.09 0.93 ± 0.05 0.76 ± 0.11

NNRTI
SVMpoly 0.82 ± 0.06 0.76 ± 0.11 0.84 ± 0.06 0.63 ± 0.14
SVMoligo 0.89 ± 0.05 0.86 ± 0.11 0.94 ± 0.05 0.79 ± 0.12

RF 0.88 ± 0.05 0.85 ± 0.09 0.93 ± 0.07 0.75 ± 0.12
CNN 0.89 ± 0.04 0.86 ± 0.08 0.94 ± 0.06 0.78 ± 0.10

CKNseq 0.73 ± 0.06 0.63 ± 0.16 0.78 ± 0.08 0.42 ± 0.15
CMKN 0.91 ± 0.03 0.89 ± 0.06 0.95 ± 0.05 0.81 ± 0.08

Amino acid sequences of virus protein variants with corresponding drug resistance information
were extracted from Stanford University’s HIV drug resistance database (HIVdb) [205, 206].
An overview of the available data for each of the drugs included in the evaluation can be found
in the Supplement. The network architecture used for HIV drug resistance prediction consists
of a single convolutional motif kernel layer followed by two fully-connected layers. The first
fully-connected layer projected the flattened output of the kernel layer onto 200 nodes and the
second fully-connected layer had two output states, one for the susceptible class and one for
the resistant class. The motif length and the hyperparameter α of the kernel function were
both fixed to 1 based on prior biological knowledge (for details see supplement material). The
scaling hyperparameter β was fixed to ♣x♣2

10 with ♣x♣ = 99 for PI datasets and ♣x♣ = 240 for
NRTI/NNRTI datasets. This compensates for the transformation of sequence positions (for
details see supplement material). The number of anchor points and the positional uncertainty
parameter σ were optimized using a grid search (for details see supplement material). Due
to the limited number of available samples, each model was trained using a 5-fold stratified
cross-validation. The data splits for each fold were fixed across models to ensure the same
training environment for each hyperparameter combination. Training success was evaluated
using the performance measures accuracy, F1 score, and area under the receiver operating
characteristic curve (auROC). Due to the fact that some datasets were highly unbalanced, we
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also included the Matthew’s correlation coefficient (MCC) [207] in the performance assessment.

Mean performances achieved for each of the three investigated drug classes can be found
in Table III.1. Our method was able to achieve high accuracy, F1 score, and auROC values
for each drug class. Even though the classification problem is highly imbalanced for some of
the tested drugs, our model is still able to achieve a high Matthew’s correlation coefficient
(MCC) value with mean MCC performance exceeding 0.75 for each of the three investigated
drug classes. We compared CMKN’s performance to previously used models for HIV drug
resistance prediction: SVMs with polynomial kernel [93] and random forest (RF) classifiers
[208]. Furthermore, we included a SVM utilizing the oligo kernel and the CKNseq model [67]
into our analysis. Additionally, we performed an ablation test by replacing the kernel layer
with a standard convolutional layer to investigate the influence of our kernel architecture onto
prediction performance (denoted by CNN in Table III.1). The results for all models can be
found in Table III.1. Our method either outperformed the competitors or achieved similar
performance.

III.3.3 Utilizing CMKN’s interpretation capabilities to identify resistance muta-
tion positions and motifs

Apart from assessing CMKN’s prediction performance, we investigated how well our models
were able to learn biologically meaningful patterns from drug resistance data. For each sequence
position, we calculated the position importance for each class as described in Section III.2.3
and identified peaks with a sliding window approach, i.e., the mean importance of a window of
length 11 around each position was calculated and subtracted from the position importance.
We selected the 10 highest peaks identified using this sliding window approach. For each
peak position, the associated mean motif (of length one) as well as the two most important
amino acids of this mean motif were retrieved using the approach described in Section III.2.3.
To get position importance and mean motifs for one of the three investigated drug classes
(PIs, NRTIs, and NNRTIs), we averaged the importance values as well as the mean motifs
over all models that belong to drugs of the same drug class (8 models for PIs, 6 models for
NRTIs, and 3 models for NNRTIs). Figure III.3a displays the top ten position of the resistant
and susceptible class together with the top two amino acids of the corresponding mean motif
for each of the three investigated drug classes. The results indicate that CMKN models are
able to learn biologically meaningful patterns from real-world datasets. The most important
positions identified by CMKN models correspond mainly to known drug resistance mutation
(DRM) positions while the corresponding learned motifs are focused on DRMs. This result is
consistent for all three tested drug types. However, CMKN models provide more than a global
interpretation. Figure III.3b shows the result of CMKN’s local interpretation capabilities (as
described in section III.2.3) for the model trained on nelfinavir (NFV) data and three randomly
selected isolates. First we identified the ten most important positions learned by the model.
Afterwards, we retrieved the resistant and susceptible motifs for each position from the trained
model. Using the motif functions, we were able to identify which positions the model indicated
to be informative for the susceptible class and which positions were indicated to be informative
for the resistant class using the procedure described in section III.2.3. This local interpretation
shows biologically meaningful patterns and can be used by domain experts to verify a prediction
made by the model. For a more detailed discussion of the visualization results, see section III.4.
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Table III.2: Test performance on splice site benchmarks. The displayed methods include higher
order Markov Chain (MC) classifiers [209], a combination of higher order Markov Chains and
SVMs with polynomial kernel (MC-SVM) [210], SVMs with the locality improved kernel (LIK)
[209], SVMs with the weighted degree kernel (WD) [209], SVMs with the weighted degree
kernel with shifts (WDS) [209], SpliceRover [211], and our CMKN. Highest numbers are shown
in bold. Dashes indicate missing values in the original manuscripts.

Model
NN269 DGSplicer

Acceptor Donor Acceptor Donor
auROC auPRC auROC auPRC auROC auPRC auROC auPRC

MC 0.97 0.88 0.98 0.92 0.97 0.31 0.98 0.42
MC-SVM 0.97 0.88 0.98 0.90 0.95 - 0.95 -

LIK 0.98 0.92 0.98 0.93 - - - -
WD 0.98 0.93 0.99 0.93 0.98 0.32 0.98 0.40
WDS 0.99 0.94 0.98 0.93 0.97 0.29 0.97 0.36

SpliceRover 0.99 - 0.98 - - - - -
CMKN 0.97 0.94 0.98 0.96 0.97 0.65 0.98 0.65

classification problems: distinguishing decoys from true targets for acceptor sites and for donor
sites.

We used two benchmarks to assess performance of our model on the splice site recognition
task: NN269 [212] and DGSplicer [213]. Both benchmarks provide test sets and are highly
imbalanced. Details on training and test sets for both benchmarks can be found in the
Supplement. For splice site recognition, we used the same architecture that was used for the
HIV drug resistance prediction. The hyperparameter α was again fixed to 1. We similarly fixed
the scaling parameter to β = ♣x♣2

10 with ♣x♣ = 90 for acceptor sequences and ♣x♣ = 15 for donor
sequences on the NN269 benchmark and ♣x♣ = 36 for acceptor sequences and ♣x♣ = 18 for donor
sequences on the DGSplicer benchmark. The number of anchor points, the motif length k, and
the positional uncertainty parameter were optimized using a grid search with 5-fold stratified
cross-validation on the training data (details can be found in the Supplement). The model with
the best hyperparameter combination was retrained on the whole training set and evaluated
using the test set. Training success was evaluated using the area under the precision-recall
curve (auPRC), to account for class imbalance, and the auROC to enable comparison with
previously published models.

We compared our method to several methods that were previously applied on splice site
recognition. These included higher order Markov Chain (MC) classifiers, SVMs with the
locality improved kernel (LIK), the weighted degree kernel (WD), and the weighted degree
kernel with shifts (WDS) published in [209], a method combining higher order Markov Chains
and SVMs with polynomial kernel (MC-SVM) published in [210], and a CNN architecture
called SpliceRover [211]. On the NN269 benchmark, our method performed comparable to
other methods in terms of auROC and outperformed almost all competitors in terms of auPRC
(see Table III.2). On the DGSplicer benchmark, our method performed comparable to other
methods in terms of auROC, while substantially outperforming all competitors in terms of
auPRC (see Table III.2). An evaluation of CMKN’s interpretation on the splice site prediction
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task can be found in the Supplement.

III.4 Discussion

In this work, we introduced convolutional motif kernel networks (CMKNs), a convolutional
network architecture that allows for end-to-end learning within a subspace of our proposed
position-aware motif kernel’s RKHS.

By combining a convolutional network architecture with a kernel function, our model is
able to perform robust end-to-end learning on relatively small datasets as was shown on data
from Standford’s HIVdb. Our model was able to generalize to validation data with only
a few hundred training samples even in highly unbalanced scenarios. However, due to the
fact that our model is based on a standard convolutional network architecture, CMKNs can
easily be used on datasets with several hundreds of thousands of samples, as shown on the
splice site prediction benchmarks. This allows to utilize our proposed kernel function on very
large datasets, something that would be notoriously hard using standard kernel methods like
SVMs, since the calculation of a large Gram matrix for our position-aware motif kernel is
computationally very demanding.

We included accuracy and auROC as performance measures in our evaluation, since both
measures are often used in the ML literature. However, on imbalanced data their informative
value is decreased due to a bias towards the majority class [214] as can be seen by considering
the auROC vs. auPRC performances on the DGSplicer benchmark in Table III.2. Therefore,
we included measures that provide better insights on imbalanced data with few positives: F1
and MCC for HIV drug resistance prediction and auPRC for splice site prediction. Considering
F1, MCC, and auPRC, our model performed similar or better compared to all other models.

Another advantage of introducing kernel function evaluation into a neural architecture is
the possibility to overcome the black-box nature of neural networks. Since learning within our
proposed kernel layer admits a projection onto a subspace of the RKHS of our position-aware
motif kernel, each output node of the kernel layer is associated with a position-motif pair. This
allows for a biological interpretation of the learned weights associated with each node of the
kernel layer. With these global interpretation capabilities, our model can be used as a tool
for data mining on biological sequence data. We showed on HIV drug resistance data that
our model is able to learn biologically meaningful patterns using standard end-to-end learning
methods (see Figure III.3a). The majority of the ten most important positions correspond
to known DRM positions (nine for PI drugs, eight for NRTI drugs, seven for NNRTI drugs).
Furthermore, the top amino acids in the learned resistant motifs reflect known DRMs while
the top amino acids in the learned susceptible motifs either reflect the wildtype or none DRMs.
There are three exceptions where the susceptible motif features amino acids that lead to an
increased drug resistance. These exceptions are leucine (L) and valine (V) at position 50 for PI
drugs, valine (V) at position 184 for NRTI drug, and aspartic acid (D) at position 215 for NRTI
drugs. However, these exceptions appear to occur due to the averaging of motifs over all drugs
for a specific drug class. While all of the four mentioned mutations cause an increase resistance
against a subset of drugs [215, 216, 217], they are also a cause of increased susceptibility or
have no effect for other drugs [205, 218, 219]. Valine at position 50 reduces susceptibility to
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fosamprenavir (FPV), lopinavir (LPV), and darunavir (DRV) but increases susceptibility to
tipranavir (TPV). Leucine at position 50 confers high-level resistance to atazanavir (ATV)
but increases susceptibility to all other PI drugs. For NRTI drugs, valine at position 184
reduces susceptibility to lamivudine (3TC) but increases susceptibility to zidovudine (AZT),
stavudine (d4T), and tenofovir (TDF). At position 215, a mutation to aspartic acid is a so-called
thymidine analog mutation that reduces susceptibility to AZT and d4T but has no effect on
susceptibility to all other NRTI drugs.

Apart from the data mining capabilities of our proposed CMKN model, the motif functions
enrich our model with the capability to provide local interpretations for prediction results
within the data’s domain. Figure III.3b shows an example of the visualization capabilities of
our CMKN model using nelfinavir (NFV) data, one of the PI drugs. The figure was created
with the following steps. First, the trained NFV model was used to build the susceptible and
resistant motifs for each of the ten most informative resistance positions learned for the NFV
drug, as described in Section III.2.3 and III.3.3. Afterwards, we assessed for each position
if the model relates the position to the susceptible or resistant calss, as described in Section
III.2.3. For the first input, which was correctly classified as susceptible, the visualization shows
that the model associated susceptible motifs with each of the positions except for position 63
and 88. However, a domain expert can quickly verify that the model falsely classified that the
amino acid asparagine (N) at position 88 indicates resistance, since asparagine corresponds to
the wildtype and is therefore in accordance with a susceptible isolate. Furthermore, there is
no experimental evidence supporting that position 63 is associated with a resistance causing
mutation. Using this knowledge, a domain expert can make an educated decision that the
prediction is correct. For the correctly classified resistant input, the model associates resistant
motifs with positions 63, 71, 90, and, again falsely, with position 88. Since a mutation to
methionine (M) at position 90 causes a strong resistance against NFV [215, 220, 221, 222], a
domain expert could again directly validate the prediction result. The interpretation capabilities
gain importance in case of a wrongly classified input as shown in the bottom part of Figure
III.3b. Here a domain expert would see that a susceptibility to NFV was predicted while three
positions, 10, 84, and 88, are associated with resistant motifs. We again have the previously
described, apparently systematic, error at position 88, but a mutation to valine (V) at position
84 causes a moderate resistance against NFV [223]. Additionally, a mutation to phenylalanine
(F) at position 10 is known to be associated with reduced in vitro susceptibility to NFV
[215, 224]. Thus, the visualization provides the domain expert with all information needed to
treat the prediction outcome with the adequate caution. This shows that utilizing the proposed
kernel formulation in our model’s architecture, together with the proposed motif functions, can
provide a visualization of a trained model’s output that helps domain experts to validate the
predictions.

III.5 Conclusion

Our convolutional motif kernel network architecture provides inherently interpretable end-to-
end learning on biological sequence data and achieves state-of-the-art performance on relevant
healthcare prediction tasks, namely predicting antiretroviral drug resistance of HIV isolates
and distinguishing decoys from real splice sites.
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We show that CMKN is able to learn biologically meaningful motif and position patterns
on synthetic and real-world datasets. CMKN’s global interpretation can foster data mining
and knowledge advancement on biological sequence data. On the other hand, CMKN’s local
interpretation can be utilized by domain experts to judge the validity of a prediction.

Possible future improvements include investigating a combination of different motif kernel
layers to combine different motif lengths and extend the architecture to utilize meaningful
combinations of motifs. Another improvement that we want to explore in future work is the
extension of the kernel formulation to multi-layer networks while securing the interpretation
capabilities.
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IV COmic: Convolutional Kernel Networks for

Interpretable End-to-End Learning on

(Multi-)Omics Data

Jonas C. Ditz Bernhard Reuter Nico Pfeifer

Abstract

Motivation: The size of available omics datasets is steadily increasing with technological
advancement in recent years. While this increase in sample size can be used to improve the
performance of relevant prediction tasks in healthcare, models that are optimized for large datasets
usually operate as black boxes. In high-stakes scenarios, like healthcare, using a black-box model
poses safety and security issues. Without an explanation about molecular factors and phenotypes
that affected the prediction, healthcare providers are left with no choice but to blindly trust the
models. We propose a new type of artificial neural network, named Convolutional Omics Kernel
Network (COmic). By combining convolutional kernel networks with pathway-induced kernels,
our method enables robust and interpretable end-to-end learning on omics datasets ranging in
size from a few hundred to several hundreds of thousands of samples. Furthermore, COmic can
be easily adapted to utilize multiomics data.
Results:We evaluated the performance capabilities of COmic on six different breast cancer
cohorts. Additionally, we trained COmic models on multiomics data using the METABRIC
cohort. Our models performed either better or similar to competitors on both tasks. We show
how the use of pathway-induced Laplacian kernels opens the black-box nature of neural networks
and results in intrinsically interpretable models that eliminate the need for post hoc explanation
models.
Availability: Datasets, labels, and pathway-induced graph Laplacians used for the single-omics
tasks can be downloaded here. While datasets and graph Laplacians for the METABRIC cohort
can be downloaded from the above mentioned repository, the labels have to be downloaded from
cBioPortal. COmic source code as well as all scripts necessary to reproduce the experiments and
analysis are publicly available at https://github.com/jditz/comics.

IV.1 Introduction

n recent years, artificial neural networks (ANNs) show promising performance when employed
to learn correlations between data points and outcome variables. They combine feature
extraction and prediction training in a single end-to-end learning scheme lowering the necessary
amount of labor put into feature engineering and can be used on very large datasets with
relative ease. With the advent of big data and high-throughput data generation techniques
in computational biology and healthcare, resulting in an increased number of data points
available for the training of prediction models, the use of ANNs in these fields has vastly
increased. In computational biology, ANNs showed promising performance capabilities when
applied to prediction tasks in regulatory genomics [60, 225, 226] and in biological image analysis
[227, 228, 229]. Furthermore, several authors showed the potential of ANNs in healthcare
scenarios such as diagnosis [230, 231], drug discovery [232, 233], epidemiology [234], personalized
medicine [235], and operational efficiency [236]. However, utilizing ANNs for prediction tasks
usually comes with two shortcomings: First, a large amount of data is needed to robustly
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train a deep neural network and, second, neural network models operate as black-boxes. While
the first problem can be tackled by shrinking the complexity of the neural network, which
increases the stability of the model but often leads to a decrease in performance, the second
shortcoming is most often addressed using post-hoc interpretation models. This technique
involves solving a secondary task that utilizes a pre-trained prediction model such that the
computed solution provides a humanly understandable interpretation for the results computed
by the prediction model. Commonly used methods include Shapley additive explanation
(SHAP, [76]), counterfactual explanation using generative models [77], and saliency methods
like Layer-wise Relevance Propagation (LRP, [78]), Deep Taylor Decomposition (DTD, [79]),
GuidedBP [80], or DeepLIFT [81]. Using post-hoc interpretation methods can provide additional
information to improve understanding and advance scientific knowledge in low-risk scenarios but
they have several properties that render their use in high-risk scenarios potentially problematic.
Most post-hoc interpretation methods are unfaithful to the computations of the original model
[83]. Furthermore, many saliency methods ignore information provided by deeper layers of
ANNs [84]. Recent work showed that post-hoc methods are limited in adversarial contexts
[85] and can be exploited to provide seemingly plausible but misleading explanations [116].
In healthcare, decisions that are made based on wrong or misleading explanations have the
potential to cause harm to patients.

Kernel methods can provide both robustness on small datasets and interpretation capabilities
within the domain of the data. These methods utilize the kernel trick to solve a prediction
task by implicitly projecting data into the reproducing kernel Hilbert space (RKHS) of a
kernel function and solve the classification or regression problem within the RKHS. While
the use of a kernel functions does not always guarantee interpretation capabilities, there are
several kernel functions for biological data that result in interpretable models, e.g., the oligo
kernel for sequences [53] or the pathway-induced kernel for omics data [55]. Combining kernel
functions with ANNs is a promising direction to increase the robustness of ANN models
on small datasets and several efforts in that direction have been published in recent years
[64, 203, 65, 66]. Chen and colleagues showed the feasibility of kernel networks for biological
sequences by using a relaxation of the mismatch kernel [48] to build convolutional and recurrent
neural network architectures [67, 68]. Furthermore, they showed how to use convolutional
kernel neural networks on graph-structured data like protein structures [69]. While these
models showed promising results and increased robustness, the choice of the kernel function
resulted in models that are not intrinsically interpretable. However, we recently showed that
a carefully chosen kernel function results in intrinsically interpretable kernel networks for
biological sequence data [237]. With this work we introduce Convolutional Omics Kernel
Networks (COmic), a neural network architecure that allows for intrinsically interpretable
end-to-end learning on (multi-)omics data. This is achieved by using a kernel function based
on graph Laplacians of biological networks to project input samples into a subspace of the
corresponding reproducing kernel Hilbert space (RKHS) with a variant of the Nyström method.
Using max-pooling combined with strictly linear layers for classification results in COmic models
that provide global interpretation, while attention layers can be used to create COmic models
that provide local interpretation. In this manuscript, we use the definition most commonly
found in the interpretable ML literature for global and local interpretation [73]. In simple
words, global interpretation can be used to answer the question "How does the trained model
make predictions?", while local interpretation can be used to answer the question "Why did the
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model make a certain prediction for a specific input?".

We show the performance and interpretation capabilities of COmic models on six different
breast cancer microarray cohorts. These cohorts contain microarray gene expression data
from patients with breast cancer and were stratified on the occurrence of a relapse within 5
years. We compare our proposed method to 15 previously published approaches including
several methods based on support vector machines (SVMs) like network-based SVMs [238],
recursive feature elimination SVMs [239], and graph diffusion kernels for SVMs [240, 241] as
well as classification by average pathway expression [242], classification by significant hub genes
[243], classification by pathway activity [244], and pathway-induced multiple kernel learning
(PIMKL, [55]). We show how the projection into a subspace of the RKHS of pathway-induced
kernels in combination with linear and attention layers leads to global and local interpretations,
respectively. Furthermore, we use the METABRIC cohort [245] to show how COmic models
can be used on multi-omics data. On the METABRIC breast cancer cohort, we predicted
disease-free survival using gene expression (mRNA) and copy number alteration (CNA) data.

This work is structured as follows. We first introduce COmic by describing the pathway-
induced kernel and define the necessary network architecture to build a COmic model. After-
wards, we show how to achieve a globally interpretable COmic model using strictly linear layers
and a locally interpretable COmic model using attention layers. We evaluate COmic models
on six breast cancer cohorts and show how COmic models can be utilized for multi-omics
data. With this manuscript, we introduce a new kernel network architecture that can be both
robustly trained on small-scale (multi-)omics datasets and easily utilized for prediction tasks
on (multi-)omics datasets with several hundreds of thousands of data points. Furthermore, our
method results in intrinsically interpretable models offering global and local interpretations of
prediction results.

IV.2 Convolutional Omics Kernel Networks

In the following section, we describe the theoretical background of convolutional kernel networks
for prediction tasks on omics-based datasets.

IV.2.1 Pathway-Induced Kernel Functions

The foundation of pathway-induced kernel functions are so-called graph Laplacian matrices.
To define these matrices we first assume G = (V,E) to be an undirected graph with vertices
V = ¶v1, . . . , vn♢ and edges E. Furthermore, G is assumed to be a weighted graph with weight
matrix W ∈ R

n×n, where wij = wji ≥ 0 describes the weight of the edge between vertices vi

and vj . The degree of each vertex vi ∈ V is defined as di =
∑n

j=1wij . The diagonal matrix
with the degrees d1, · · · , dn on the diagonal is called the degree matrix D. The unnormalized
graph Laplacian L ∈ R

n×n is defined as [54]:

L := D −W (IV.1)

Since an unnormalized graph Laplacian has undesirable mathematical properties in case of
very broadly distributed degrees within G [54], we use a normalized graph Laplacian instead,
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which is defined as:
Lsym := D− 1

2LD− 1
2 (IV.2)

Similar to previous manuscripts, see e.g., [246, 55], we use molecular interaction networks
(MIN) as graphs underlying the normalized graph Laplacians. Using known interaction networks
allows to define a kernel function that computes the similarity of molecular measures (gene
expression, DNA methylation, etc.) under the assumed interactions defined by the network.
Given two molecular measures xi ∈ R

n and xj ∈ R
n, we define the kernel function as

KMIN(xi, xj) = xT
i LMINxj , (IV.3)

where LMIN is the normalized graph Laplacian (as defined in Eq. IV.2) of a molecular interaction
network.

Manica and colleagues proposed to use pathway-specific sub-networks instead of whole
interaction networks for computing normalized graph Laplacians [55]. This method allows
for a more tailored induction of prior knowledge into a prediction task. The authors call this
approach pathway-induced (PI) kernel functions. Here, the similarity between two molecular
measures is not computed using a single graph Laplacian but with a set of p graph Laplacians
L = ¶LPI1 , . . . , LPIp

♢ each defined over a pathway-specific sub-network of the molecular
interaction network. Therefore the pathway-induced kernel for two molecular measures xi ∈ R

n

and xj ∈ R
n is not a single function but a set of functions defined as

KPI(xi, xj) = ¶KPI1(xi,PI1 , xj,PI1), . . . ,KPIp
(xi,PIp

, xj,PIp
)♢ (IV.4)

with
KPIr

(xi,PIr
, xj,PIr

) = xT
i,PIr

LPIr
xj,PIr

, (IV.5)

where LPIr
∈ R

d×d is the symmetric graph Laplacian of the rth pathway-specific sub-network
with d nodes and xi,PIr

∈ R
d and xj,PIr

∈ R
d are vectors containing only the signal values

of the molecular measures that correspond to nodes within the pathway-specific sub-network
described by LPIr

. Manica and colleagues used multiple kernel learning (MKL) to combine the
set of pathway-induced kernel functions into a single learning framework. In contrast to prior
work, we are using a variant of the Nyström method to formulate an explicit parametrization
of an orthogonal projection onto a finite-dimensional subspace of a pathway-induced kernel’s
RKHS. This enables us to define pathway-induced kernel layers that can be incorporated into
artificial neural networks. By using a neural network architecture as the basis for COmic, the
resulting models can be tailored to specific datasets (single- or multi-omics) as well as the
desired form of interpretation. We will show that in the following sections.

IV.2.2 Convolutional Kernel Layer projects onto a finite-dimensional RKHS-
Subspace

Convolutional kernel networks make use of a variant of the Nyström method to project input
samples into a finite-dimensional subspace of the RKHS H of a kernel function. To achieve
this, a set of q anchor points z1, . . . , zq is used to define a q-dimensional subspace E of H. The
anchor points lie in the input space of the kernel function and the RKHS subspace is defined as

E = Span(ϕz1 , . . . , ϕzq ), (IV.6)
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where ϕ(zi) denotes the image of the ith anchor point under the kernel function. The orthogonal
projection of input points onto E admits an explicit parametrization that utilizes the kernel trick
to avoid explicitly calculating the images ϕ(zi) [66, 70, 71]. For an input x, i.e., a molecular
measure in case of omics data, the explicit parametrization ψ(x) ∈ R

q is defined as

ψ(x) = K
− 1

2
ZZKZ(x), (IV.7)

where KZZ = (K(zi, zj))i=1,...,q;j=1,...,q is the gram matrix formed by the anchor points, K
− 1

2
ZZ de-

notes the (pseudo-)inverse square root of the Gram matrix, andKZ(x) = [K(x, z1), . . . ,K(x, zp)]T .
As shown in Figure IV.1, each pathway-induced kernel function has to be modelled with a
separate orthogonal projection. This means that a COmic model utilizing p pathway-induced
kernel functions maps each input onto p representations ψPI1 , . . . , ψPIp

∈ R
q. These representa-

tions are then used to solve the prediction task for the input. In the next section, we show two
different approaches to combine the representations leading to globally or locally interpretable
models, respectively.

The anchor points can be initialized using k-means on all input samples with the number of
clusters set to the number of anchor points. Afterwards, the anchor points are optimized with
the end-to-end learning scheme used to train the whole network. For all experiments described
in this manuscript, anchor points were initialized using k-means++ [247].

IV.2.3 Globally and Locally Interpretable COmic Models

Globally interpretable COmic models are based on multi-kernel learning (MKL). A simple
approach to MKL is finding an optimal linear combination of all utilized kernels. This approach
learns a weight for each kernel and, therefore, can be used to determine the influence each
kernel has on the prediction outcome. Since kernels are directly associated with pathways
in PIMKL, Manica and colleagues show that MKL weights can be used to determine the
importance of different pathways for a prediction [55]. We can embed a similar weighted sum
of pathway-induced kernels into the architecture of COmic models. Each kernel embedding
produced by the PI-kernel layer described in section IV.2.2 is passed into a one-dimensional max
pooling layer. This results in a single activation Ar = max (ψP Ir ) for each pathway-induced
kernel, where max (ψP Ir ) denotes the maximum value in vector ψP Ir . This activation is high,
if the input is similar to one of the learned anchor points, and low otherwise. By concatenating
all activations and passing them into a strictly linear fully-connected layer, the model learns a
single weight for each pathway-induced kernel and the prediction is calculated as a weighted
sum of all kernels, i.e.,

ŷ =
p

∑

r=1

wrAr, (IV.8)

where ŷ is the overall prediction, wr ∈ R is the weight and Ar ∈ R is the activation of the rth
pathway-induced kernel. We call this architecture pooling-based COmic model. In contrast
to the MKL approach, the weights can become negative. This enhances the interpretation
capabilities of pooling-based COmic models, since we cannot only infer if a pathway is important
for the prediction task but also with which class each pathway is associated by looking at the
sign of the weight. The top part of Figure IV.1 shows a schematic of a pooling-based COmic
model.
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Locally interpretable COmic models are based on multiple instance learning (MIL). In MIL,
each sample is represented as a bag of instances with a single label per bag [248, 249, 250].
There are two general approaches to solve an MIL problem: the instance-level approach and
the embedding-level approach. In the instance-level approach, an instance-level classifier
predicts a score for each of the instances in the bag. Afterwards, scores are aggregated by
MIL pooling to compute the prediction for the bag. In the embedding-level approach, a low-
dimensional embedding of each instance is computed and MIL pooling is used on the embedded
instances to create a bag representation. This representation is used by a bag-level classifier
to provide the prediction. While it was shown that the embedding-level approach leads to
better performances [251], the instance-level approach leads to interpretable models [252]. Ilse
and colleagues proposed an MIL-model based on neural networks that combines the strength
of both approaches, called attention-based multiple instance learning [253]. Their approach
can be utilized for COmic models in the following way. The output of our proposed PI-kernel
layer can be viewed as a bag of low-dimensional instances H = ¶ψP I1 , . . . , ψP Ip♢, where each
ψP Ir ∈ R

q is the projection onto a q-dimensional subspace of the RKHS of one pathway-induced
kernel. Attention-based MIL pooling is then used to compute the bag representation, i.e.,

ψ̃ =
p

∑

r=1

arψP Ir , (IV.9)

where

ar =
exp¶wT tanh(V ψT

P Ir
)♢

∑p
j=1 exp¶wT tanh(V ψT

P Ij
)♢ . (IV.10)

w ∈ R
l×1 and V ∈ R

l×m are parameters of the attention layer. As noticed by Ilse and colleagues,
the tanh(·) non-linearity introduces a potential limitation due to the fact that it is roughly
linear only for x ∈ [−1, 1]. This limitation can be reduced by using a gating mechanism [254].
In this case, the attention weights are calculated as

ar =
exp¶wT (tanh(V ψT

P Ir
) ⊙ sigm(UψT

P Ir
))♢

∑p
j=1 exp¶wT (tanh(V ψT

P Ij
) ⊙ sigm(UψT

P Ij
)♢ . (IV.11)

Again, w ∈ R
l×1, V ∈ R

l×m, and U ∈ R
l×m are parameters of the attention layer. In both

cases, the training of all attention layer parameters is part of the end-to-end training routine
for the whole network and, hence, does not introduce the need for additional measures. We
call this architecture attention-based COmic model. Since the attention weights ap are input
specific, they enhance a model with local interpretation capabilities. The bottom part of Figure
IV.1 shows a schematic of an attention-based COmic model.

IV.3 Experiments on Cancer Benchmark Data

To assess the performance and interpretation capabilities of our COmic models we use publicly
available cancer benchmarks. The evaluation involves tasks on single-omics data as well as
multi-omics data.
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Table IV.1: Total number of patients, number of patients in each class, and sources of the
datasets used in single- and multi-omics prediction experiments. The first six rows contain
information about the single-omics datasets used to train COmic models and compare the results
to previously published methods. The last line contains information about the METABRIC
multi-omics dataset used in multi-omics prediction experiments. The single-omics classes are
DMFS/RFS below 5 years and above 5 years while the multi-omics classes are RFS NO and
RFS YES.

Dataset Patients DMFS/RFS Source
< 5y / NO ≥ 5y / YES

GSE11121 181 28 153 [255]
GSE1456 153 34 119 [256]
GSE2034 275 93 182 [257]
GSE2990 158 42 116 [258]
GSE4922 228 69 159 [259]
GSE7390 191 56 135 [260]

METABRIC 1980 803 1177 [245]

IV.3.1 Single-Omics Prediction on Breast Cancer Benchmark Cohorts

We trained COmic models on six different public breast cancer Affymetrix HGU133A microarray
datasets (GSE11121, GSE1456, GSE2034, GSE2990, GSE4922, and GSE7390) that were
previously used to benchmark knowledge-based classification methods that use interaction
network priors. The task was to predict for each patient if metastasis free survival (DMFS) or
relapse free survival (RFS) exceeded five years. On GSE11121 and GSE4922, the end point
was DMFS while RFS was considered for all other cohorts. Details about the datasets can be
found in Table IV.1. Both, pooling-based and attention-based COmic models, used 50 different
pathways to build kernel layers with 30 anchor points each. We used the Laplacians derived
from a merge between KEGG pathways and Pathway Commons that were publicly released by
Manica and colleagues ([55], see original manuscript and corresponding supplementary material
for details). Furthermore, we used gated attention together with an attention dimension of
128 for the attention-based COmic models. Networks were trained for 200 epochs with the
Adam optimizer [261] using the class-balanced loss function [262]. The batch size was set to
32. All models presented in this work were trained on a single NVIDIA GeForce GTX 1080
Ti. We used the area under the receiver operating characteristic (auROC) as our performance
measure to be comparable to previously published results on the benchmarks. Competitors’
performances shown in Figure IV.2A are taken from [55], for the PIMKL model, and [263], for
all other competitors.

As shown in Figure IV.2A, COmic models either outperformed competitors or performed
similar to previously published methods. Notably, the globally interpretable pooling-based
COmic models were able to achieve a small improvement in terms of auROC compared to all
other models. On the other hand, the locally interpretable attention-based models achieved a
similar performance as the previously best-performing model, PIMKL. We derived exemplary
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visualizations to evaluate the interpretation capabilities of COmic models. Since the pooling-
based variant learns a molecular signature by weighting each pathway, we assessed the stability
of this signature across the six breast cancer benchmarks. Each box in Figure IV.2B represents
one of the 50 pathways used for the prediction task and are created from the six corresponding
weights learned by the models trained on the different datasets. The pathway signature remains
quite stable over the six different datasets and high (absolute) weights are associated with
known cancer pathways like androgen response [264], hedgehog signaling [265], notch signaling
[266], and MYC target [267]. With the introduction of attention-based COmic models, we
introduce models with the capability of providing local interpretations, i.e., visualizations
that provide insights into the decision process for a specific sample. We show an exemplary
visualization of attention weights for three different, randomly chosen patients in the GSE11121
dataset in Figure IV.2C. For patient 1, the DMFS was correctly predicted to exceed 5 years.
Patient 2 was correctly classified to have a DMFS below 5 years and patient 3 was wrongly
classified to have a DMFS above 5 years while the actual DMFS of patient 3 was shorter than
5 years. The highest attention weights are associated with known cancer pathways. For patient
2, the highest amount of attention is given to hedgehog signaling. Androgen response gets the
highest attention for patient 1 and 3. More examples can be found in the supplement.

One key advantage of artificial neural networks over kernel methods is their applicability
on datasets with a vast number of samples. In the following, we will investigate, if our kernel
networks provide the same applicability to large-scale datasets. Thus, we created simulated
omics datasets of four different sizes: 100 samples, 1000 samples, 10000 samples, and 100000
samples. We then repeatedly trained pooling-based and attention-based COmic models on each
simulated dataset five times and calculated the mean training time. Figure IV.2D shows the
results. Since the batch size is usually chosen based on the number of samples in the training
set, we calculated the mean training time for two different batch sizes. The blue and green
lines show the training times of models trained with a fixed batch size of 32 samples per batch.
The red and yellow lines show the training times of models with an adaptive batch size of
one percent of the total sample count, i.e., each batch included a single sample, in case of the
smallest simulated dataset, and 1000 samples , in case of the largest simulated dataset. The
results show that COmic models can be easily trained on datasets with several hundreds of
thousands of samples with the training time being linear depended on the number of samples.
Furthermore, choosing an appropriate batch size can improve the training time by more than
50% on large-scale datasets.

IV.3.2 Multi-Omics Prediction on the METABRIC Benchmark Cohort

Since our proposed kernel layer can be incorporated into any ANN, COmic models can be
flexibly expanded to multi-omics datasets. One possibility is to directly add the pathway kernels
for the additional omics datatypes to the kernel layer, thereby increasing the number of graph
Laplacians in the kernel layer. Another simple approach is to create sub-networks for each omics
type, i.e., combine the output of pooling- or attention-based single-omics COmic models with
a simple fully connected network. There are numerous other ways to expand COmic models to
multi-omics data and, since our proposed approach is knowledge-driven, the individual solution
has to be selected with the context of the data in mind. Similar to the authors of PIMKL,
we chose the METABRIC cohort to investigate the practicality of applying COmic models to
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alone with an increase in variance. The runtime analysis (right side of Figure IV.3) shows a
linear dependency on the number of omics modalities.

IV.4 Discussion

Kernel methods allow to induce prior knowledge into a prediction task resulting in increased
robustness and the introduction of interpretation capabilities. In this work we propose COmic,
a method to incorporate pathway-induced kernel functions into convolutional kernel networks.
We are able to create learning models that can be robustly trained on small-scale datasets
and scale very well with the number of samples. Thus, they can be efficiently applied to large
datasets with hundreds of thousands of samples. Furthermore, our models provide global and
local interpretations of predictions made on molecular measures due to the pathway-induced
kernel function.

We used six different breast cancer cohorts to compare the performance of COmic models
to previously proposed methods that use prior knowledge for prediction tasks with molecular
measures as input data. The results presented in Figure IV.2A show that our method reaches
state-of-the-art performance on classifying patients based on their DMFS/RFS from gene
expression data: Compared to the considered competitors, COmic performs similar or even
better. However, COmic models have the advantage that the time needed to train a model scales
linearly with the number of samples (see Figure IV.2D). This enables the use of COmic models
on datasets with hundreds of thousands of samples. We provide evidence that our method
can be readily applied on large datasets by training models on simulated single-omics data
with sizes ranging from 100 to 100,000 samples. Although datasets and patient cohorts used in
computational biology and medicine traditionally have smaller sample sizes, high-throughput
methods and the nowadays more frequently used big data paradigm will result in increasing
sample counts in biological and medical datasets. At this day, TCGA already contains data
from more than 85,000 patients. While methods that can deal with large datasets are usually
deployed as black-box models, our method provides increased insight into the decision making
process.

Using single-omics datasets strongly limits the decision process for diagnosis of a majority of
diseases. Nowadays, it is well known that multi-omics information has to be incorporated to get
a complete image of the pathomechanism causing a certain disease. Therefore, methods that
are limited to a single datatype face serious constraints if employed as a decision-support system
or to deepen knowledge about a pathomechanism. Our proposed method does not face the
limitation of only using single-omics data as we show in our experiment with the METABRIC
multi-omics cohort. The results show again that our method improves single-omics prediction
as demonstrated by the performance on the gene expression data. The lower performance
that both methods, PIMKL and COmic, show on the copy number alteration data can be
explained by the sparseness of CNA data. Sparse data poses serious problems for prediction
models [268] and both methods are not specifically designed for sparse data. However, we can
show in Figure IV.3 that COmic models are able to achieve slightly better performance than
PIMKL models on the multi-omics prediction task. This indicates that our approach could be
advantageously used on multi-omics data, while the flexibility of the architecture (as described
in section IV.3.2) enables researchers to tailor COmic models for specific datasets using domain
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expertise.

Computing an interpretation of a machine learning method, either with post-hoc methods or
through intrinsically interpretable models, is beneficial if and only if the interpretation serves
a purpose. This purpose cannot be defined in general as it is highly dependent on the task,
the data, and the user that is presented with the obtained interpretation. For the presented
experiments, we investigated if the inherent interpretation capabilities of our COmic models
are able to learn biological meaningful concepts directly from data. First, we considered the
global interpretation capabilities of COmic. Here, COmic models assign a weight to each of
the used pathways and the weights reflect the role that each pathway plays in classifying an
input sample, i.e., a patient. We trained COmic models on six different single-omics breast
cancer cohorts. Since we expect the biological processes in the cohorts to share high similarities,
the weight signatures of all models should be similar if the COmic method is able to learn
meaningful pathways from data. As shown in Figure IV.2B, this assumption is indeed well
fulfilled with all six models having similar weight signatures. Furthermore, pathways with a
high weight assigned to them are mainly known cancer-related pathways. Therefore, COmic
models are able to learn biological meaningful pathway weights. Although the previously
published PIMKL method also has a global interpretation capability, our method is able to
learn pathways that are important for both, the negative and the positive class, due to the fact
that the learned weights can be positive or negative. PIMKL only learns positive weights.

While global interpretation is useful to gain insights into a dataset, local interpretation can
be used to get insights into the decision a model makes for a specific input. Attention-based
COmic models can provide this insight utilizing the attention weights that are computed
for each input sample separately. These weights directly determine the influence that each
pathway has on the decision made by the model. We can visualize these influence using a
heatmap (as shown in Figure IV.2C) to quickly see which pathways played an important role
in the decision made. We randomly selected three samples from the GSE11121 dataset to
evaluate if the attention weights are biological meaningful. Similar to the weight signatures
of the globally interpretable COmic models, the attention weights of the locally interpretable
COmic models highlighted known cancer-related pathways. Interestingly, the selected patient
with a DMFS below five years has attention weights that are strongly focused on a single
pathway. This is true for all correctly classified patients with a DFMS below five years (see
supplement). On the other hand, patients with a DMFS below five years that were wrongly
classified to have a DMFS above five years show attention weight patterns similar to those of
patients with a DMFS above five years (see patient 3 in Figure IV.2 and additional examples
in the supplement). This could indicate that the wrongly classified patients exhibit a different
mechanism causing a DMFS below five years, compared to the correctly classified ones, which
was not learned by the model. The local interpretation capabilities of COmic models can help
to directly show possible directions to further investigate the data. Furthermore, the results of
our experiments strongly suggest that both COmic model types are able to generate biologically
meaningful interpretations. We chose heatmaps to visualize attention weights, since it appeared
convenient for the considered prediction task on the studied dataset. However, different forms
of explanations can be computed with attention weights, e.g., counterfactual explanation [269]
and adversarial explanation [270]. The most suitable form of explanation is highly dependent
on the application, target user group, and the goal aimed at by the explanation. Therefore,
the chosen visualization should be understood as an example and not a general application
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recommendation.

COmic models have a few hyperparameters that can be optimized using appropriate methods
like, e.g., grid search or random search. These hyperparameters include the number of anchor
points, the attention type, the dimensionality of the attention layer’s parameters V and U , and
the choice of pathways used for kernel layers. Furthermore, different initialization procedures
for the anchor points can be explored, e.g., a parameter-free clustering that combines initializing
anchor points with optimizing the number of anchor points for each pathway-induced kernel
layer. We recommend to explore hyperparameter optimization when applying COmic models.
However, minimizing energy consumption is a pressing concern that should be considered in
every line of research nowadays. Therefore, we limited the computations performed for this
work to the minimum required to support our claims. The hyperparameters for all models
presented in this work were chosen by combining prior experience about kernel networks with
domain expertise. Interestingly, this computation-free approach to hyperparameter selection
already leads to competitive performance of our method on the considered prediction tasks.

IV.5 Conclusion

The introduced convolutional omics kernel networks utilize prior knowledge by pathway-induced
kernel functions to provide robust end-to-end learning on small- to large-scale molecular
measure datasets. Furthermore, utilizing pathway-induced kernel functions makes our method
intrinsically interpretable with the ability to provide global and local interpretations.

We show the competitive performance of our method on six different single-omics breast
cancer cohorts while providing new interpretation capabilities that exceed the possibilities
of previously proposed methods. Furthermore, we show that COmic models can be readily
adapted to multi-omics datasets.

On a larger scale, we show that incorporating a carefully crafted kernel function into an
artificial neural network allows to robustly train ANNs on small-scale datasets as they frequently
occur in computational biology and medicine. On the other hand, our method enables scientist
to utilize kernel functions for large datasets as they arise more frequently with the increasing
use of high-throughput methods and big data.
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