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Summary

A key feature of intelligent systems is the ability to generalize beyond one’s experiences. The process
of deriving general rules from limited observations is the principle of induction. Generalizing based
on a finite number of observations to future samples requires a priori assumptions. In machine
learning, the set of assumptions made by the learning algorithm are called inductive biases. To
design successful learning systems, it is essential to ensure that the inductive biases of the system
align well with the structure of the data. Conversely, to understand why learning systems fail in a
particular way it is integral to understand their inherent assumptions and biases.

In this dissertation, we study unsupervised representation learning in two di�erent application
domains. We look through the lens of evaluation to unmask inductive biases in object-centric models
in computer vision as well as show how to successfully employ inductive biases to integrate domain
knowledge for modeling neuronal morphologies.

First, we establish a benchmark for object-centric video representations to analyze the strengths and
weaknesses of current models. Our results demonstrate that the examined object-centric models
encode strong inductive biases such as a tendency to perform mostly color segmentation that work
well for synthetic data but fail to generalize to real-world videos.

Second, we propose a self-supervised model that captures the essence of neuronal morphologies.
We demonstrate that by encoding domain knowledge about neuronal morphologies in the form of
the appropriate inductive biases into our model, it can learn useful representations from limited
data and outperform both previous models and expert-defined features on downstream tasks such
as cell type classification.

Third, we employ our model for neuronal morphologies to a large-scale dataset of neurons from
the mouse visual cortex and prove its utility for analyzing biological data. We demonstrate that our
learned representations capture the morphological diversity of cortical pyramidal cells and enable
data analysis of neuronal morphologies on an unprecedented scale. We use the learned embeddings
to describe the organization of neuronal morphologies in the mouse visual cortex, as well as discover
a new cell type and analyze cortical area and layer di�erences.

Taken together, our findings indicate that identifying the implicit inductive biases in object-centric
models is necessary for understanding their failure modes. Conversely, tailored inductive biases,
that take the intricacies of the domain into account, enable the successful design of machine learning
models for neuronal morphologies.
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Zusammenfassung

EinwesentlichesMerkmal intelligenter Systeme ist die Fähigkeit aus Erfahrungen Schlussfolgerungen
zu ziehen und daraus Vorhersagen für die Zukunft zu tre�en. Induktion beschreibt die Ableitung all-
gemein gültiger Gesetzmäßigkeiten aus einer begrenztenAnzahl von Beobachtungen. Um allgemeine
Aussagen basierend auf einer endlichen Anzahl von Beobachtungen zu tre�en, ist es erforderlich
a priori Annahmen zu machen. In maschinellem Lernen werden solche Annahmen als induktive
Verzerrung des Algorithmus bezeichnet. Um erfolgreiche lernende Systeme zu entwickeln, müssen
die induktiven Verzerrungen des Systems mit der Struktur der Daten übereinstimmen. Umgekehrt
kann die Analyse inhärenter Annahmen und Verzerrungen von lernenden Systemen dabei helfen zu
verstehen, warum Algorithmen in bestimmten Situationen versagen.

In dieser Dissertation untersuchen wir zwei Anwendungsbereiche von unüberwachtem Repräsenta-
tionslernen. Im Bereich Computer Vision analysieren wir, wie induktive Verzerrung die Inferenz von
objektzentrierten Modellen beeinflusst. Des Weiteren zeigen wir, wie man durch gezieltes Einsetzen
induktiver Verzerrung Fachkenntnisse aus den Neurowissenschaften in Algorithmen integrieren
und diese zur Modellierung neuronaler Morphologien einsetzen kann.

Zunächst erstellen wir eine Benchmark für objektzentrierte Video-Repräsentationen, um die Stärken
und Schwächen aktueller Modelle zu analysieren. Unsere Ergebnisse zeigen, dass die untersuchten
objektzentrierten Modelle starke induktive Verzerrungen aufweisen. Sie erkennen zum Beispiel
Objekten bevorzugt anhand homogener Farben. Diese induktiven Verzerrungen lassen sich nicht
auf reale Videos übertragen und führen deshalb zum Versagen von objektzentrierten Modellen bei
solchen.

Im zweiten Teil der Dissertation entwickeln wir ein selbstüberwachtes Modell zur Modellierung
neuronaler Morphologien. Wir zeigen, dass unser Modell durch die Integration von Fachwissen in
Form von induktiven Verzerrungen nützliche Repräsentationen der neuronale Morphologien aus
begrenzten Daten lernen kann. Die gelernten Repräsentationen können anschließend zur Klassi-
fizierung von Zelltypen verwendet werden und übertre�en dabei sowohl Repräsentationen früherer
gelernter Modelle als auch Repräsentationen, die von Experten definiert wurden.

Im letzten Teil der Dissertation wenden wir unser Modell für neuronale Morphologien auf einen
großen Datensatz von Neuronen aus dem visuellen Kortex einer Maus an und zeigen den Nutzen
der Repräsentationen für die Analyse biologischer Daten. Wir demonstrieren, dass unsere erlernten
Repräsentationen die morphologische Vielfalt der kortikalen Pyramidenzellen erfassen können und
somit eine Analyse großer Datenmengen ermöglichen. Wir verwenden die erlernten Repräsen-
tationen zur Beschreibung der Organisation der neuronalen Morphologien im visuellen Kortex,
wobei wir Gebiets- und Schichtunterschiede des Kortexes analysieren und einen neuen Zelltyp
beschreiben.

Zusammenfassend zeigen unsere Ergebnisse, dass die Identifizierung impliziter induktiver Verzer-
rungen in objektzentrierten Modellen notwendig ist, um ihre Fehlerquellen zu verstehen. Umgekehrt
ermöglichen maßgeschneiderte induktive Verzerrungen die erfolgreiche Entwicklung von Modellen
für maschinelles Lernen neuronaler Morphologien.
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1 Introduction

In the last decade, machine learning has made enormous progress and is nowadays applied to
countless applications ranging from natural language processing and computer vision to weather
prediction and medical diagnosis (Espeholt et al., 2022; Esteva et al., 2017, 2019). Since the advent
of deep learning and the increasing availability of large amounts of data and compute resources,
machine learning algorithms exhibit unprecedented performances on diverse tasks across many data
domains. However, while machine learning has taken over most of artificial intelligence research,
there has been an ongoing debate about how much structure should be built into machine learning
systems a priori (LeCun and Manning, 2018; Marcus, 2018; Sutton, 2019; Welling, 2019).1 Building
strong assumptions into models can facilitate learning if the assumptions match the underlying
problem well, but restricts the solutions that can be learned. In recent years, the trend in machine
learning has shifted to designing general methods that leverage the increasingly large computational
resources to learn from experiencewith few built-in assumptions. However, machine learningmodels
often struggle with systematic generalization and transfer of knowledge under domain shifts.

In contrast, humans and other animals are incredible learners. They are able to continually learn
throughout their lifetime, use prior knowledge and generalize it to di�erent contexts as well as learn
from limited number of examples (Tenenbaumet al., 2011). To enable fast learning from few examples,
prior assumptions are necessary. The Garcia e�ect nicely illustrates the interplay of inductive biases
and learning in biological systems: If animals experience nausea after consuming food, they learn to
avoid the respective taste in the future (Garcia et al., 1955). In contrast, experiments have shown
that rodents are unable to associate sound or light stimuli with nauseating food intake (Garcia and
Koelling, 1966). Hence, while the specific taste which identifies nauseating food is learnt through
experience, the animal has an innate bias about which sensory cues can be associated with nausea,
namely taste but not audiovisual stimuli. This simplifies the learning problem as it limits the range
of possible solutions. To learn such an association only one or a few experiences are necessary.
Afterwards, the animal will generalize it to future instances of similar tastes.

The principle of deriving a general rule from a finite set of observations is called induction. It is based
on the assumption that the future to some degree resembles the past (Hume, 1739). Conclusions
drawn via induction are not guaranteed to be true. Induction rather makes a probabilistic statement
about what is likely going to happen (Goodfellow et al., 2016).2

Machine learning can be thought of as the automation of inductive reasoning (von Luxburg, 2020).
Given a finite set of observations, called the training set, a machine learning algorithm is optimized to
make accurate predictions about unseen data points. Generalization to unseen examples is impossible
without imposing prior assumptions on the function to learn (Mitchell, 1980). Given a finite amount
of data, there are multiple (possibly infinitely many) functions that equally well explain the observed
data. Each of them can lead to di�erent predictions for unobserved data. Hence, without imposing
any bias, i.e. when treating all hypotheses as equally likely, predictions for unseen data points would
be an arbitrary guess. This is independent of the number of available training points. Thus, to choose

1Similar debates with respect to the origin of knowledge in biological systems arose in cognitive science, where nativists
argued for innate structures that underlie cognitive abilities, while empiricists advocated for a tabula rasa view, arguing that
knowledge originates from experience (Spelke, 1998). Analogously, the “nature versus nurture” debate in biology evolved
around the question how much of our behavior is determined by our genetic makeup versus shaped by the environment.
Nowadays, evidence suggest that both factors contribute substantially and interact tightly (Robinson, 2004; Traynor and
Singleton, 2010).

2Induction is usually contrasted with deduction. Deductive reasoning is the process of inferring a logically certain
conclusion for a particular data point from one or more general premises.

9



between these possible hypotheses, additional assumptions need to be made. These assumptions
or restrictions on the hypothesis space are called inductive biases in machine learning (Hüllermeier
et al., 2013).

Wolpert and Macready (1997) formalized the notion that there is no general learner in the “No-
free-lunch Theorem”. It states that instilling a model with inductive biases that lead to a better
performance for one task is guaranteed to decrease its performance on other tasks. Therefore, no
machine learning algorithm is universally better than any other considering all learning problems.
However, that does not mean that for a specific task all machine learning algorithms perform
equally well. Given a specific task, finding the appropriate inductive biases that align well with
the underlying problem structure, will lead to favoring a function or hypothesis in the learning
process that reflects prior domain knowledge about the target function and hence will lead to a
better performance (Goodfellow et al., 2016). When developing machine learning algorithms, it is
therefore integral to ensure that the inductive biases that are explicitly and implicitly encoded in the
modeling decisions align well with the structure of the problem at hand in order to achieve good
generalization. It is equally important to understand how inductive biases a�ect the trained models
and their generalization capabilities. Analyzing the inductive biases of a model can shed light on its
failure cases and identify ways to improve it.

In this dissertation, we take a closer look at two di�erent applications of unsupervised representation
learning, namely object-centric learning and modeling of neuronal morphologies. In the first appli-
cation, we analyze the inductive biases of object-centric video models in order to understand their
failure cases and identify the necessary steps to scale them to natural data. In the latter, we show how
to incorporate domain knowledge in the form of inductive biases into our model in order to capture
the patterns in neuronal morphologies. We then use the proposed model to analyze organization
principles of cortical neurons in the mouse visual cortex.

In the following, we first give some necessary background knowledge for representation learning
and inductive biases in machine learning, specifically deep learning. Subsequently, we introduce the
two fields of application.

1.1 Definitions and background
In this section, we briefly introduce background topics and definitions used throughout this disser-
tation. Additional domain-specific background is provided in Sections 2.1 and 3.1.

Representation learning
The way in which information is represented can massively simplify or complicate an information
processing task (Goodfellow et al., 2016). Representation learning denotes the process of automati-
cally extracting or learning discriminative feature representations from raw data (Bengio et al., 2013).
The question of what constitutes a “good” representation is not generally answerable. Informally,
a “good” representation is one that facilitates the extraction of information for subsequent tasks
and is therefore highly dependent on the downstream task. In general, representations should be
expressive, meaning that they need to retain all relevant information for the task at hand, while being
as simple as possible. Simple here can refer to properties such as being low-dimensional, sparse or
disentangled with respect to the underlying factors of variation (Bengio et al., 2013).
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Representation learning can be seen as opposed to manually engineering features as it was — and in
somedomains still is— common. Feature engineering refers to the process of designing preprocessing
pipelines and data transformations to obtain a representation of the data that extracts useful features
for subsequent machine learning applications (Bengio et al., 2013). It often entails substantial manual
labor. Computer vision research has long been focused on engineering the right input features for
object recognition models, inventing for example SIFT (Lowe, 1999) and HOG features (Dalal and
Triggs, 2005). With the advent of deep learning, these have been rapidly replaced with end-to-end
learning of feature representations through deep neural networks. The learned representations often
outperform manually-designed features as they are directly optimized for utility for the downstream
task (Goodfellow et al., 2016).

Representation learning can be done both in a supervised as well as in an unsupervised setting. In
supervised learning, given a set of labeled data pointsD = {(x1,y1), ..., (xn,yn)} ⇢ X ⇥Y which are
sampled independently from a distribution PX,Y , the model is trained to associate inputs x with
their respective labels y. To train a network in a supervised fashion, a su�ciently large training
dataset with ground truth annotations is required. This can result in a prohibitively large manual
labelling e�ort, especially with increasing network sizes that need increasing numbers of training
samples to avoid overfitting. Furthermore, the assigned labels impose a strong bias on the features
that the network learns as it is only incentivized to retain information that is useful for predicting
the labels.

In contrast, in the unsupervised training paradigm, the network is only allowed to observe a dataset
D = {x1, ...,xn} ⇢ X consisting of samples x without labels attached. Unsupervised learning tries
to recover useful structure or patterns from the data without using a supervisory signal in the form
of explicit targets associated with the input data. This alleviates the potential heavy annotation costs
as well as the bias towards only learning features that are necessary to predict the labels.

Self-supervised learning refers to a specific unsupervised learning paradigm inwhich labels for training
are automatically constructed from unlabeled data. The resulting input-label pairs are subsequently
used to train models in a supervised way (Jing and Tian, 2019).

Inductive biases in machine learning
The term inductive bias refers to all underlying assumptions of a learning algorithm that are used to
make predictions on unseen data points (Mitchell, 1980; Hüllermeier et al., 2013). Models learn a
specific solution based on their inductive biases. These inductive biases can stem from the model’s
architecture, the optimization procedure used and the training objective, among others.

Inductive biases in deep learning architectures The term deep learning originates from the concept
of successively composingmultiple layers of elementary building blocks into amore complex network,
hence the characterization as deep. The stacking of multiple layers leads to the inductive bias of
hierarchical processing: the data is explained by a complex function f(x) that is a composite of
multiple simpler functions fl (LeCun et al., 2015; Goyal and Bengio, 2022): f(x) = (fL � ... � f1),
where L 2 N is the depth of the network. The activations of each layer can be seen as a distributed
representation of the input (Hinton et al., 1984) that becomes progressively more abstract with
increasing depth.

TheMulti-layer perceptron (MLP) (Rosenblatt, 1958) is one of the basic deep learning architectures,
where fl(x) = �(Wlx+ bl). Each layer fl consists of a learnable weight matrix Wl and bias term bl.
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� denotes an element-wise non-linearity. In contrast to the architectures described later in this section,
MLPs lack weight-sharing as well as a notion of locality. They impose minimal prior assumptions on
the structure of the data as each unit can interact with all other units in the previous and subsequent
layers and the strength of the interactions is learned.

The convolutional neuronal network (CNN) (LeCun et al., 1998) has been very influential in the advent
of deep learning, especially in the computer vision domain. CNNs use convolutional layers as their
primary building blocks. Convolutional layers apply a smaller kernel repeatedly over all spatial posi-
tions of the input, thereby significantly reducing the number of parameters of the network by using
weight-sharing and explicitly encoding translational equivariance into the network (LeCun et al.,
2015; Battaglia et al., 2018). Additionally, they encode locality as a relational inductive bias, meaning
that only entities in close proximity to each other interact directly (LeCun et al., 2015; Battaglia et al.,
2018). These proved to be strong inductive biases for processing natural images, as neighboring
pixel values are often highly correlated and motifs in images are translation-invariant.

Images and videos are a special data modality in that the information is arranged on a regular grid
of pixel values. Deep neural networks (DNNs) are very successful in processing this kind of data as
the structure of the data can be directly built into the models, as exemplified by CNNs. However,
data is not generally organized in grids. Therefore, geometric deep learning has emerged as a way
to generalize DNNs to non-Euclidean data, such as graphs and manifolds (Bronstein et al., 2017).
Graph neural networks (GNNs) have been developed to cater to data that comes in the form of graphs.
GNNs are invariant to permutations over nodes and edges (Battaglia et al., 2018). They can express
arbitrary relationships between entities in the graph depending on whether two nodes are connected
by an edge and therefore allow for the exchange of information via message passing (Scarselli et al.,
2009). This is in contrast to CNNs or MLPs, in which the interaction between inputs is fixed through
the connections of units in the architecture and hence identical for all inputs.

Recently, transformers that use attention as their primary layers led to a paradigm shift first in natural
language processing (Vaswani et al., 2017), which then transferred over to computer vision (Doso-
vitskiy et al., 2021; Caron et al., 2021) and graph learning (Zhang et al., 2020; Dwivedi and Bresson,
2021). Transformer attention is based on similarity-based information flow between parts of the
input. These input parts, for instance words in language modeling or patches of pixels in images, are
encoded into so-called tokens. All tokens can exchange information independent of their position in
the input, such as the word position in a sentence or the spatial location of an image patch.3 Thus,
transformers exhibit a non-local inductive bias and can model long-range dependencies in the data.
Furthermore, the attention mechanism is permutation equivariant over tokens (Goyal and Bengio,
2022). The switch to transformer architectures in computer vision led to more flexible information
processing based on similarity of image patches, but meant giving up the well working inductive
biases of convolutions for images. With enough training data, it has been shown that the transformer
architectures with less specific thus weaker biases for images are still competitive in performance on
di�erent computer vision tasks (Dosovitskiy et al., 2021).

In this dissertation, we consider two di�erent forms of architectural biases. As we discuss in more
detail in Chapter 2, object-centric models make the notion that complex scenes are composed of
simpler building blocks explicit by enforcing a compositional representation through their archi-
tecture: Instead of learning one distributed representation of an image or video, they learn a set of
multiple representations in a shared format, each representing one object in the scene. Second, in
Chapter 3, we draw on domain specific knowledge of neuronal morphologies to design a novel atten-

3However, by adding positional encodings to the token values, locality information can be taken into account.
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tion layer, namely ���������-����������� ���������, that combines transformer attention and GNN
message-passing to optimally process the sparse, long-ranging branches of neuronal skeletons.

Inductive biases through data augmentations Recently, models trained using self-supervised or
contrastive learning have tremendously improved in their performance (Chen et al., 2020; Caron
et al., 2021). One important ingredient to make this learning paradigm work is the definition of
appropriate data augmentation strategies. Data augmentations are applied to the input data and
encode the desired invariances of the learned representations (Cabannes et al., 2023). In computer
vision tasks such as object classification, successful data augmentations include color distortions
and random cropping of the input images, reflecting the notion that the underlying semantic object
identity does not change with color and size changes or translations of the object in the image (Chen
et al., 2020; Bachmann et al., 2023). In Chapter 3.2, we develop appropriate data augmentations for
spatially-embedded graphs, and more specifically for neuronal skeletons, to enable self-supervised
learning for neuronal morphologies.

Inductive biases through training objectives The learning objective including regularization
terms plays a significant role in the function a model learns. This can be nicely illustrated by
examining the solutions learned for linear regression when either using L1- or L2-regularization
during optimization. The linear regression model assumes a linear relationship between the target
value y and the input values x: ŷ = wTx + ✏, where w 2 Rd are the model parameters and ✏ is
the noise term. To estimate the parametersw, commonly the mean squared error (MSE) between
the predicted value ŷ and the target value y is optimized: MSE =

1
n

PN
i=1(ŷi � yi)

2. If additional
regularization in the form of the L1-norm or L2-norm on the parameters w is added, the learned
solutions di�er: While L1-regularization encourages sparse solutions, setting some weights to zero,
L2-regularization encourages all weights to decrease in magnitude (Bishop, 2006).

Similarly, for deep learning architectures the choice of loss function heavily influences the function
learned by the network. Training classification with a cross-entropy loss encourages the model to
learn the simplest predictor for the class membership, often discarding other possible predictive
features in the data (Jacobsen et al., 2019; Malhotra et al., 2020). In unsupervised learning, the
reconstruction loss on pixels is commonly used to train autoencoders for images. To satisfy the
reconstruction objective, the model needs to reconstruct the pixels of the image including high-
frequency details. This is necessary for the generation of images but might not be optimal if the
goal is to learn a representation of the semantic content (see Section 2.3). In contrast, placing a
reconstruction loss on higher-level features of a deep neural network is hypothesized to rather enforce
learning about semantic concepts (Gatys et al., 2016; Seitzer et al., 2023). In self-supervised learning,
contrastive objectives are commonly used (Chen et al., 2020). In contrastive learning, a sample is
contrasted with a positive match, often an augmented version or a di�erent modality of the same
sample, and negative counterparts such as random other samples. The contrastive loss encourages
positive pairs to have similar representations while negative pairs are separated in latent space. This
leads to a representation that retains information that is present in both views or modalities of the
positive pair.

Inductive biases versus data Strong inductive biases are especially useful in the low data regime.
In general, the more constrained the hypothesis space of a model the less it needs to learn from
data. Consequently, building the right assumptions into a model enables generalization from fewer
training examples. On the other hand, when ample data is available, strong inductive biases can
be relaxed while keeping a high performance. For instance, it has been shown that MLPs achieve
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competitive performance to CNNs when trained with enough data (Bachmann et al., 2023). Similarly,
the rise of vision transformers has shown that given enough data the inductive biases of convolutions
are not necessary for good performance on image data and transformers can even outperform CNNs
in some settings (Dosovitskiy et al., 2021). Hence a lack of inductive biases can be compensated by
su�cient training data. For further discussion of the interaction of inductive biases and availability
of data, see Chapter 5.

Every choice — conscious or unconscious — in the process of designing and optimizing a model has
underlying assumptions and inductive biases that become part of the model. As discussed in this
chapter, this is not only necessary but also desirable in order to achieve good generalization in specific
tasks with better sample e�ciency. When developing and evaluating unsupervised machine learning
algorithms, it is therefore crucial to consider the inductive biases that are explicitly and implicitly
encoded in the modeling decisions and how they a�ect the trained model and its generalization
performance.

1.2 Thesis structure
This dissertation is partitioned into two main result chapters. Each chapter contains an introduction
into the application domain, a summary of the respective publications as well as an additional
discussion that transcends the discussion done in the original publications. Chapter 2 describes
the computer vision application, namely a study that benchmarks object-centric video models and
analyzes their inductive biases. In Chapter 3, we present two publications that are part of the
application for neuroscience. The first publication describes the design of a novel self-supervised
model for spatially-embedded graphs that learns a low-dimensional representation of the spatial
structure of the graph. Here, we deliberately use inductive biases to encode domain knowledge
for the design of a model for neuronal morphologies. The second publication builds on this work
by applying the proposed model to a large-scale dataset of neuronal morphologies to analyze the
cortical organization of excitatory neurons in the mouse visual cortex. The last two chapters of
this dissertation give a broader perspective on common themes encountered in both application
domains.
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1.3 Publications
Publications included in this dissertation
This dissertation is based on two first author, peer-reviewed articles and one first author preprint
that is currently under review. The full publications are included in the Appendix. For each article
the main motivation, results, and discussion are summarized in the respective chapter.

• Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas
Geiger, and Alexander S. Ecker. Benchmarking unsupervised object representations for video
sequences. Journal of Machine Learning Research (JMLR), 22(183):1–61, 2021.

• Marissa A. Weis, Laura Hansel, Timo Lüddecke, and Alexander S. Ecker. Self-supervised graph
representation learning for neuronal morphologies. Transactions on Machine Learning Research
(TMLR), 2023.

An earlier version of this work was additionally presented as a peer-reviewed poster at
COSYNE 2022.

• Marissa A. Weis, Stelios Papadopoulos, Laura Hansel, Timo Lüddecke, Brendan Celii, Paul G.
Fahey, J. Alexander Bae, Agnes L. Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J. Bumbarger,
Manuel A. Castro, Forrest Collman, NunoMaçarico da Costa, Sven Dorkenwald, Leila Elabbady,
Akhilesh Halageri, Zhen Jia, Chris Jordan, Dan Kapner, Nico Kemnitz, Sam Kinn, Kisuk Lee,
Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell, Shanka Subhra Mondal,
Shang Mu, Barak Nehoran, Sergiy Popovych, R. Clay Reid, Casey M. Schneider-Mizell, H.
Sebastian Seung, William Silversmith, Marc Takeno, Russel Torres, Nicholas L. Turner, William
Wong, JingpengWu, Wenjing Yin, Szi-chieh Yu, Jacob Reimer, Andreas S. Tolias, and Alexander
S. Ecker. Large-scale unsupervised discovery of excitatory morphological cell types in mouse
visual cortex. bioRxiv, 2023.

Preprint currently under review.

Related work not included in this dissertation
The following publication is a peer-reviewed conference paper that is not formally included in this
dissertation.

• Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann
Pitassi, and Richard Zemel. Flexibly fair representation learning by disentanglement.
In Proc. of the International Conf. on Machine learning (ICML), 2019.
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2 Object-centric learning

Humans perceive the world in terms of objects (Spelke and Kinzler, 2007). The visual system groups
the raw visual information into semantically meaningful entities. Leveraging the compositionality
of the world and representing it in terms of objects is thought to be the foundation for higher-level
cognition such as language, planning and reasoning (Gre� et al., 2020; Peters and Kriegeskorte,
2021).

With the advent of deep learning, the performance of computer vision models has surged. Early
approaches focused on solving specific visual tasks such as object classification in images (LeCun
et al., 1998; Krizhevsky, 2009; Russakovsky et al., 2015). The prevailing paradigm of the application of
deep learning in computer vision was to learn one distributed representation per image (Krizhevsky
et al., 2012). This works well in settings in which images contain one dominant object, such as in
the omnipresent benchmarks MNIST, CIFAR and ImageNet (LeCun et al., 1998; Krizhevsky, 2009;
Russakovsky et al., 2015) but it is less suitable for images that contain multiple objects. Distributed
representations do not capture the compositional nature of visual scenes and have been shown to
often rely on surface statistics instead of on the underlying semantic concepts as well as to fail to
generalize (Brendel and Bethge, 2019; Geirhos et al., 2019; Gre� et al., 2020; Geirhos et al., 2020).
With increasing success in single-object classification, the field evolved towards more di�cult tasks
that entail reasoning over more complex scenes featuring multiple objects. Benchmarks such as
COCO (Lin et al., 2014) or Cityscapes (Cordts et al., 2016) require localizing and identifying multiple
objects in a scene. Considerable progress has beenmade in trainingmodels in a supervised fashion on
those tasks. But the supervised learning paradigm comeswith several drawbacks. Manual annotation
of the necessary labels for training are expensive to generate4 and annotations can be subjective or
ambiguous. In the case of object detection, depending on context and task the delineation of an
object can be di�cult to assess and di�erent granularity levels are possible.

In contrast, the goal of object-centric models is to learn representations of complex visual scenes by
decomposing the scenes into their individual objects without the use of supervision and representing
the objects independently. Instead of learning one distributed representation per image or video as
formerly done, object-centric models learn a set of representations that each encode di�erent parts of
the image. Thus, object-centric models incorporate compositionality as an inductive bias. If models
are able to take advantage of the modularity of the world, they do not need to learn about all possible
object combinations but can generalize the knowledge about objects to scenes in which objects are
placed in novel configurations. This leads to better sample e�ciency and generalization (Dittadi
et al., 2022); similar to human vision.

2.1 Definitions and background
Definition of “object” There is no generally agreed upon definition of what constitutes an ob-
ject (Gre� et al., 2020). Objects are entities that exhibit physical cohesion (Peters and Kriegeskorte,
2021) and can be separated from other entities, meaning that they are internally connected and
externally bounded (Spelke and Kinzler, 2007). Objects show coherent motion and obey the laws of
persistence (Spelke, 1990). Following Gre� et al. (2020), we use the term “object” in this dissertation
to refer to entities that fulfil the functional role of useful building blocks of visual scenes.

4However, for the task of instance segmentation recent studies have questioned the validity of this argument. For further
discussion, see Sec. 2.3.
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Human perception of objects In cognitive psychology, object representation is postulated as
a core knowledge system in humans (Spelke and Kinzler, 2007). Human perception of objects
and their perceived motion is governed by the constraints on objects in the physical world. The
representation of objects and their motion is thought to be based on three principles: cohesion,
continuity, and contact. First, objects stay internally connected and maintain their boundaries as they
move. Second, objects move on connected, unobstructed paths and third, they interact only if they
come in contact with each other (Spelke, 2003; Spelke and Kinzler, 2007). Together, these principles
enable humans to represent objects even if they move partially or fully out of view, known as object
permanence. The ability to represent objects is a prerequisite for reasoning about objects and their
future behavior (Spelke, 1990, 1998).

Object representation is a property that arises early on in infancy and might even be partially
innate (Spelke, 1990, 1998; Ullman et al., 2012). Infants can follow moving regions and separate
them from stationary background (Ullman et al., 2012). Already two months old babies show
signs of representing partially occluded objects and approximately six months old babies exhibit
object permanence (Baillargeon, 1986; Spelke, 1998). Object perception is refined during infancy and
increasingly complex scenes can be processed (Needham, 1998). While object representation based on
spatio-temporal continuity is present already in young infants, the perception of objects based on other
properties as postulated by Gestalt theory (Wertheimer, 1923) is successively acquired (Spelke, 1990).
Gestalt theory states that perception “tends to assume the simplest and most regular organization
that is consistent with a given visual array” (Spelke, 1990). It includes the principles of similarity,
good form, good continuation and common fate. Adults use Gestalt principles in addition to spatio-
temporal continuity for object perception. Only a limited amount of about three to four objects can
be represented in the adult working memory simultaneously (Spelke and Kinzler, 2007; Carey, 2009).
These objects are primarily tracked based on the principle of spatio-temporal continuity. Other object
properties such as texture and color are secondary and might change without the represented object
identity changing (Carey, 2009; Peters and Kriegeskorte, 2021).

Object representation is not unique to humans, but has also been found in animals (Spelke, 2003).
Newborn chicks exhibit object representation and object permanence (Regolin and Vallortigara, 1995;
Lea et al., 1996). Likewise, primates have been found to represent objects (Hauser et al., 1996).

Compositionality as an inductive bias for object-centric vision Grouping the raw perceptual
input, i.e. pixels or intensity values as detected by photoreceptors in the retina, into a low dimensional
and structured representation based on objects is a powerful inductive bias for higher-level cognition
and causal understanding (Peters and Kriegeskorte, 2021; Brady et al., 2023).

Unsupervised learning of disentangled representations is impossible without inductive biases (Lo-
catello et al., 2019). To achieve object representation, machine learning models rely on several
inductive biases to decompose a scene into objects without supervision. The most important one is
compositionality: Representations of individual objects are independent of each other, and objects
can be flexibly recombined into new scenes. This notion can be directly built into the architecture of
a model or it can be enforced by the training objective.

In object-centric models, an image is no longer represented by one distributed representation z 2 Rd,
where d is the dimensionality of the representation vector, but instead by a structured representation
that consists of a set of vectors Z = {z0, ..., zK |zk 2 Rd} where each vector zk represents one
separate entity in the image. These object vectors are referred to as slots. Slots share a common
format and are ideally independent of each other (Gre� et al., 2020). One common strategy to
achieve the decomposition into independent objects is to restrict the capacity of the individual slot
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representations in order to bias the models to finding simple building blocks of the scenes (Engelcke
et al., 2020a). This inductive bias is especially powerful in combination with depth reasoning and
amodal completion5 of objects as occlusions of objects can be more easily resolved.

Object-centric models Given that object perception is an integral part of human vision, and it
is thought to be a prerequisite for reasoning about the world, it is assumed to also be beneficial
for computer vision. Both in terms of sample e�ciency and generalization as well as to improve
structural understanding of the world, it is desirable to instill machine learning models with object
representations. Recently, the field of object-centric representation learning has gained traction in the
deep learning and computer vision community. Object-centric models have been proposed both for
images (Crawford and Pineau, 2019; Gre� et al., 2019; Burgess et al., 2019; Jiang and Ahn, 2020; Lin
et al., 2020; Locatello et al., 2020; Sajjadi et al., 2022) and for videos (Kosiorek et al., 2018; Veerapaneni
et al., 2020; Jiang et al., 2020; Singh et al., 2022b), where the additional challenge is to keep a stable
percept of objects over time.

Object-centric models show a considerable variability in their design choices with respect to how they
infer compositional representations from visual scenes, the format of their object representations as
well as how they generate visual scenes from object representations.6 In the following, we highlight
some popular and influential design choices.

Object-centric models commonly learn a set of latent vectors, called slots. Each slot represents part
of the scene, which can either be an object or (part of) the background. However, at initialization all
slots are equal, thus requiring a mechanism to break the symmetry in order to prevent slots from
representing the same object (Gre� et al., 2020). To bind slots to distinct parts of the image di�erent
models use di�erent strategies. One strategy is to sequentially bind slots to objects (Eslami et al.,
2016; Kosiorek et al., 2018; Crawford and Pineau, 2019; Burgess et al., 2019; Engelcke et al., 2020b;
von Kügelgen et al., 2020). This ensures that slots only represent parts of the scene that have not
yet been explained by previous slots. However, it introduces an potentially arbitrary order onto
the object representations. A di�erent approach is to instead bind slots to spatial locations in the
scene by dividing the image into to a regular grid and allowing the discovery of only one object per
grid cell (Crawford and Pineau, 2019; Lin et al., 2020; Jiang and Ahn, 2020; Jiang et al., 2020) or by
introducing competition across slots to explain pixels (Gre� et al., 2017, 2019; Locatello et al., 2019).
This approach allows for a parallel refinement of the object representations. One successful line of
work using parallel refinement is based on S���A�������� (Locatello et al., 2019). S���A��������
achieves symmetry breaking by sampling initial slot representations from a learned distribution
and binding them via attention to parts of the input and then iteratively refining them. To prevent
slots from representing the same object, slots compete for binding to pixels. S���A�������� inspired
many follow-up works that use the S���A�������� module in their architecture due to its flexibility
and good performance (Singh et al., 2022a,b; Kipf et al., 2022; Elsayed et al., 2022; Sajjadi et al., 2022;
Seitzer et al., 2023; Zadaianchuk et al., 2023).

A di�erent categorization of object-centric models can be based on the format of the learned rep-
resentations. One class of object-centric models learns a continuous representation per object and
image-sized segmentation masks (Gre� et al., 2017; van Steenkiste et al., 2018; Gre� et al., 2019;
Veerapaneni et al., 2020; Engelcke et al., 2020b; Weis et al., 2021; Engelcke et al., 2021; Zoran et al.,
2021; Kabra et al., 2021; Kipf et al., 2022; Elsayed et al., 2022; Singh et al., 2022b). The other class

5Amodal completion refers to the ability to represent occluded parts of objects. Even if an object is only partially visible,
the full object is perceived (Chen et al., 2016).

6See Yuan et al. (2023) for a recent review.
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pre-imposes additional structure onto the object representations (Eslami et al., 2016; Kosiorek et al.,
2018; Crawford and Pineau, 2019; Lin et al., 2020; Jiang et al., 2020): Specific dimensions of the object
representation are fixed to encode presence, location, size and appearance of the respective object.
The latter commonly use S������ T����������� (Jaderberg et al., 2015) in order to render the objects
from the factored latents. This enables them to learn object-sized segmentation masks as opposed to
image-sized masks, which is computationally more e�cient, especially with increasing numbers of
objects per scene.

Despite the fact that most models are phrased such that object latents can be sampled at inference
time, they usually do not act as proper generative models for the scene as a whole as only the
individual objects can be sampled but not the interplay between them in the scene (von Kügelgen
et al., 2020). Thus, some works have focused on developing valid scene generative models using
object-centric latents (Jiang and Ahn, 2020; Engelcke et al., 2020b; von Kügelgen et al., 2020; Engelcke
et al., 2021; Wang et al., 2023a; Tangemann et al., 2023).

Most works utilize a reconstruction or next-step prediction objective based on the pixel values to train
the object-centric models without supervision in an autoencoder setting (Burgess et al., 2019; Gre�
et al., 2019; Locatello et al., 2020; Veerapaneni et al., 2020). Here each slot is decoded separately into
a reconstructed image and an associated object mask. The final image is then created by summing
over the individual images weighted by the decoded masks. Alternatively, in the case of models with
factored latents, the objects are rendered and placed on the background using a S������ T����������
to obtain the image reconstruction (Lin et al., 2020; Jiang et al., 2020).

For a long time, object-centric models were only capable of successfully learning to decompose
scenes into objects in simple and synthetic toy settings. Recently, some approaches have scaled to
more natural data by employing supervisory signals such as location cues, depth or optic flow (Kipf
et al., 2022; Elsayed et al., 2022) or by utilizing features of pre-trained networks and a reconstruction
objective in latent space (Seitzer et al., 2023; Zadaianchuk et al., 2023). However, there still remains a
gap to real-world applications (Yang and Yang, 2022; Zadaianchuk et al., 2023).
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2.2 Benchmarking unsupervised object representations

This section summarizes:

Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas
Geiger, and Alexander S. Ecker. Benchmarking unsupervised object representations for video
sequences. Journal of Machine Learning Research (JMLR), 22(183):1–61, 2021.

The full publication can be found in the appendix on page 69.

Motivation
Object-centric models learn representations of visual scenes by decomposing them into objects
without the use of supervision and representing the objects individually. Determining the delineation
of individual objects can be highly ambiguous in still images. In contrast, videos are particularly
useful to learn object-centric representation, since common motion gives a strong cue for objectness
and information can be accumulated and disambiguated over time. In the emergent field of object-
centric learning for video data, several promising models have been proposed (Kosiorek et al., 2018;
He et al., 2019; Veerapaneni et al., 2020; Jiang et al., 2020). However, each study used an individual
evaluation protocol to determine the performance of their model, ranging from evaluating tracking
to object counting and block stacking tasks in a reinforcement learning setting. Furthermore, the
studies used di�erent synthetic datasets for training and evaluation. Therefore, a fair comparison
between the models was impossible and their capabilities were di�cult to judge. To move forward, a
principled analysis of the models and their inductive biases was lacking.

We therefore proposed a benchmark to unify the evaluation of unsupervised object-centric models
for videos and to analyze their strengths and failure modes in a principled way. As this was the first
comparative study of object-centric video models, we focused on the evaluation of basic perceptual
abilities which are the prerequisite for any further object-centric task that reasons over or manipulates
objects in visual scenes. Object-centric video models need to fulfil several key criteria: They need to
(1) identify the objects in a scene, (2) accurately segment them, as well as (3) maintain a consistent
representation of the objects over time. To quantitatively assess these perceptual abilities multi-object
tracking (MOT) can be used (Bernardin and Stiefelhagen, 2008). MOT metrics are well established
in supervised tracking as they give a good indication of basic perceptual abilities including figure-
ground segmentation, object detection and object tracking (Milan et al., 2016; Dendorfer et al., 2020;
Sun et al., 2022). We therefore used them to systematically evaluate the capabilities of object-centric
video models in our benchmark.

Results
We systematically tested the performance of four state-of-the-art models for object-centric learning
from videos and two baselines on their basic perceptual abilities. To this end, we set up a benchmark
with four procedurally generated datasets featuring multi-object scenes with increasing visual
complexity and di�erent challenging out-of-distribution test sets. The datasets span multiple levels
of visual complexity with respect to variability in objects, background and motion patterns. The
benchmark includes datasets with both 2D and 3D scenes. Datasets progress from uniformly
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colored to textured objects and background. Objects in the scene as well as the background can
exhibit no motion, linear motion and non-linear motion depending on the dataset. Additionally,
we defined seven out-of-distribution test sets that feature especially challenging scenarios such as
heavy occlusion, objects with the same color, objects of certain sizes as well as objects with changing
properties over time such as continuous size, color and rotation changes. These test sets permitted
us to diagnose the specific scenarios in which the models struggle. Together, this benchmarking
suite enabled us to characterize the failure modes of object-centric videos models and their intrinsic
inductive biases: All models struggledwith occlusion handling. Even those that are equippedwith an
explicit mechanism to reason over depth of objects were not able to correctly resolve occlusions. The
models showed a bias towards relying on color as a cue for objectness, struggling to separate objects
with similar colors and completely failing at identifying textured objects. The spatial-transformer
based models were additionally prone to failures when objects in the scene had di�ering sizes and
when the object sizes deviated from their size priors. All models completely failed to learn to identify
objects in scenes with natural image statistics, even though the scene properties and motion patters
were deliberately kept simple. All in all, our study demonstrated that the examined models for
object-centric representation learning for videos only worked in limited settings for synthetic scenes
with their inductive biases tuned to the specific scene statistics.

Discussion
Our results demonstrated that none of the examined object-centric models for videos are able to
consistently detect and track objects even in relatively simplistic synthetic scenes and they completely
fail to detect objects in scenes with more natural image statistics. Their inductive biases are tuned to
synthetic datasets and do not generalize to natural scenes.

The models mostly performed color segmentation; merging objects of similar colors into one object
slot and failing to detect objects that were similarly colored to the background. This reveals a
mismatch between the intuitions behind object-centric learning andwhat the models learn in practice.
Separating objects even of similar color and encoding their simple shapes should be more e�cient
in terms of representational complexity than encoding the complex shapes of multiple merged
objects. But none of the models performed depth reasoning with amodal segmentation masks well
in practice. Instead, the models learned to encode the more complex modal object masks and hence
rather merged objects of similar colors. Enabling depth reasoning in conjunction with amodal masks
would facilitate resolving occlusion, which is a key capability of human object vision and necessary
for stable object representations. Color segmentation works fairly well in the synthetic datasets with
uniformly colored objects, but fails in scenes with textured objects.7 The limited capacity of the
object slots is not su�cient to represent high-frequency textures. Scaling the capacity per object slot
does not solve this problem (Papa et al., 2022) as this weakens the prior to finding “simple” building
blocks. In addition, the inductive biases of the reconstruction objective are not well aligned with the
task of object-centric learning in datasets with high visual complexity. It requires the reconstruction
of pixel-level details such as high-frequency textures. Objects however are rather characterized by
their shape than by their texture (Geirhos et al., 2019; Karazija et al., 2021).

To scale object-centric models to natural data it is necessary to move away from these strong inductive
biases that were developed based on simple synthetic datasets as they do not generalize to datasets
with higher visual complexity. In the following section, we discuss the progress that has been made
in object-centric learning since the publication of our study.

7Similar results were shown for object-centric models of static scenes (Karazija et al., 2021; Yang and Yang, 2022).
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2.3 Advances in object-centric learning
Scaling to natural data Our benchmark has shown that unsupervised object-centric video models
are restricted to synthetic datasets and even for those, they struggle to solve more complex situations
such as scenes featuring occlusion or textured objects. To move towards solving unsupervised object
representation learning for real-world data, better inductive biases or additional supervision are
needed. Since our benchmark was published, several studies have been released that address some
of the problems we identified. The main objective is to move away from simple synthetic scenes and
to scale the approaches to (more) natural data. The proposed solutions can be roughly classified into
two approaches: (1)Moving away from unsupervised learning by incorporating supervisory signals
or (2) replacing the reconstruction loss on the RGB-pixel values, or a combination of the two.

In the first case, additional supervisory signals are used in order to detect and segment objects in the
images or videos. Kipf et al. (2022) proposed to condition the object slots on the object location in the
first frame of a video, reducing the problem to tracking the objects through the video without having
to discover them first. Furthermore, several works have explored using additional modalities such as
depth or optic flow as supervisory signals in the loss (Kipf et al., 2022; Elsayed et al., 2022; Karazija
et al., 2022; Bao et al., 2023) as detailed below. Additional supervision in the form of object masks
obtained by motion segmentation has been used to guide object discovery (Bao et al., 2022, 2023).
Adding weak supervision improves performance of object-centric models for datasets with higher
visual complexity, but requires su�ciently large annotated or multi-modal datasets for training,
which can be di�cult to obtain for real-world datasets.

Second, object-centric models are commonly trained using a reconstruction loss in pixel space. To
optimize this loss, models are required to reconstruct high-frequency details such as textures in the
images or videos. However, this might not be relevant for representing objects, and competes with
the limited capacity of the individual object slots. Therefore, a training objective that is better aligned
with the goal of learning about semantically meaningful objects would be desirable. One line of work
has replaced the RGB-reconstruction with the reconstruction of optic flow fields (Kipf et al., 2022;
Bao et al., 2023) or depth values (Elsayed et al., 2022; Bao et al., 2023). Optic flow is an informative
signal for grouping image regions into objects as common fate is a strong cue for objectness that is
also heavily used by human vision (Wertheimer, 1923; Spelke, 1990). Both optic flow and depth
tend to be fairly uniform within an object; especially for rigid objects which were considered in the
respective studies (Kipf et al., 2022; Karazija et al., 2022; Elsayed et al., 2022). Therefore, they provide
a good supervisory signal for object detection and segmentation. An alternative approach is to
replace the RGB-reconstruction with the reconstruction of higher-level latent features extracted from
a deep neural network (DNN). These could either stem from a pre-trained vision model (Seitzer
et al., 2023; Zadaianchuk et al., 2023) or from a variational autoencoder with quantized latent space
trained in parallel (Bao et al., 2023). High-level features of DNNs are thought to encode semantically
more meaningful information compared to pixel intensity values (Gatys et al., 2016; Amir et al.,
2022; Seitzer et al., 2023), which makes them suitable for object-centric learning. Other studies
introduced auxiliary losses based on cycle-consistency objectives in features space additionally to
the reconstruction loss (Didolkar et al., 2023) or as the sole objective on top of pre-trained latent
features (Wang et al., 2023b) to guide the segmentation of objects. Bao et al. (2023) compared
di�erent reconstruction targets for object-centric learning including RGB-values, depth, optic flow
and quantized latent features and concluded that the latter was best suited for object discovery.

While the above listed changes have led to substantial progress in object-centric learning going from
sprite-based and synthetic to more realistic datasets, state-of-the-art models are still far away from
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solving object representation learning in real-world videos with all its challenges. Recent models
show promising performance on complex synthetic datasets that mimic certain aspects of natural
videos (Karazija et al., 2021; Gre� et al., 2022) or constrained real-world datasets such as YouTube-
Aquarium (Singh et al., 2022b) or streets scenes with uniform object types and motion patterns
(Geiger et al., 2013; Sun et al., 2020). However, unsupervised object discovery in unconstrained
real-world datasets remains an open problem (Yang and Yang, 2022; Zadaianchuk et al., 2023).

Evaluation Encouragingly, since the publication of our study and the development of object-centric
learning into a more mature field of study, newly published models are now routinely evaluated on
commonly used datasets and metrics, facilitating the comparison of di�erent methods. Furthermore,
with the development of more potent object-centric models, multiple datasets and benchmarks have
been published to test the increasing abilities of the models, as well as closing the gap between the
toy datasets that have been previously used in object-centric learning and natural images (Karazija
et al., 2021; Gre� et al., 2022; Tangemann et al., 2023). These are still synthetic datasets but they
exhibit more complex image statistics that form a good trade-o� between being controllable with
access to ground truth labels for evaluation and approaching the actual goal, namely finding models
that work well on natural scenes with all their challenges. Recent publications have also started to
evaluate their models on real-world datasets in constrained (Singh et al., 2022b; Elsayed et al., 2022)
and unconstrained settings (Zadaianchuk et al., 2023).

Evaluation of object-centric models has mostly been done in terms of their segmentation performance.
While localizing and segmenting objects in a scene is a prerequisite for building object representations,
it does not evaluate whether the representations can capture any further properties of the objects. A
correct segmentation shows that the object representations accurately encode the location and the
shape of the object, and in video models potentially also the motion patterns. But so far many other
object properties have been disregarded in the evaluation of object-centric representations with the
exception of some studies that have assessed the capability of decoding object properties such as
material or color from the learned latents (Locatello et al., 2020; Dittadi et al., 2022). Other studies
specialized on evaluating how specific properties of the models a�ect performance such as the role of
the bottleneck of the latent embeddings (Engelcke et al., 2020a) or the number of slots (Zimmermann
et al., 2023). More work is needed here in the future to get a deeper understanding of the performance
of object-centric models that go beyond their segmentation performance.

Is unsupervised object-centric learning still necessary? Unsupervised object-centric learning is
mostly pitched under the assumption that data annotation is expensive and labeling objects can be
ambiguous. Therefore, discovering objects purely from raw pixel data is desirable, however di�cult
as seen by the limited progress that has been made in the last years. In contrast, supervised learning
has generated many models that successfully detect and track objects in real-world datasets (Zhang
et al., 2022; Kirillov et al., 2023; Zong et al., 2023). Therefore, one might ask if and why unsupervised
learning is still relevant in this domain.

There are several aspects to consider here. First, supervised segmentation is a self-enhancing process
that requires increasingly less manual labeling e�ort. Segmentation models are able to generate data
annotations that can be refined by human annotators, requiring less e�ort than labeling the images
from scratch (Kirillov et al., 2023). These annotated datasets can then be used to train better models,
which in turn generate better segmentations that require less manual refinement. Recently, Kirillov
et al. (2023) demonstrated that iterating over model training and dataset generation with successively
less human intervention can yield both a well-performing model and a large-scale labeled dataset
for instance segmentation. However, the model proposed by Kirillov et al. (2023) is foremost an
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instance segmentation network. Therefore, it does not equip uswith a general purpose representation
of objects that can be used for downstream tasks out of the box.8 But arguably once an accurate
segmentation of objects has been determined, encoding the object information in a representation is
simpler than extracting individual object representations from pixel values of a whole scene. Indeed,
it is assumed that human vision follows a segmentation first, representation second approach (Peters
and Kriegeskorte, 2021). The ambiguity of how to partition scenes into objects however remains.
Kirillov et al. (2023) addressed this by predictingmultiple valid segmentations of di�erent granularity
levels for a given input at training time. In general, neither supervised nor unsupervised learning
on its own can resolve this issue, but rather additional information about the downstream tasks is
required to infer the correct granularity level of the representation.

The second claim of object-centric learning is that through the architectural compositionality bias
the models exhibit superior robustness and generalization capabilities (for further discussion of
compositionality as a useful inductive bias, see Chapter 4). Generalization of object-centric models to
di�erent out-of-distribution scenarios has been demonstrated empirically in synthetic settings (Singh
et al., 2022a; Dittadi et al., 2022). Therefore, taking inspiration from the structured latent approach
for future computer vision models is promising. But compositionality could also be incorporated
in supervised models or arise in unsupervised models trained on enough data without explicitly
building it into the architecture. Recent studies on large self-supervised vision and vision-language
models indicate that these models encode high-level semantic information including information
about objects parts that are shared across object classes (Amir et al., 2022; Oquab et al., 2023).
However, early studies suggest that language-vision models currently do not exhibit compositionality
in multi-object settings (Bogin et al., 2021; Bommasani et al., 2022; Lewis et al., 2023; Ma et al.,
2023). But if more powerful vision foundation models are developed in the future, object-centric
representations might emerge as a side product or conversely, when managing to train object-centric
models on large real-world data corpora, general vision foundation models might emerge.

While computer vision is a domain in which abundant data with associated labels is available, this
often does not hold for other domains or even for subdomains of computer vision, for instancemedical
images or rare object classes. Therefore, object-centric learning is an ideal test bed to discover good
inductive biases for unsupervised learning and for compositional generalization. This knowledge
can then be transferred to data domains in which we do not have enough annotated data for robust
supervised learning without strong inductive biases (see Chapter 5 for further discussion).

Furthermore, unsupervised object-centric learning might be interesting in its own right to study
human vision. Object representation is thought to arise unsupervised or weakly-supervised in infant
vision and parts of it might even be innate (Spelke, 1990; Carey, 2009; Ullman et al., 2012). Using
unsupervised object-centric learning and comparing it to human vision might generate insights into
the inductive biases that human vision encodes. Uncovering the inductive biases which lead to a
robust visual system with exceptional generalization capabilities would be both highly interesting
from a scientific point of view to further our understanding of how the human brain works as well
as from an engineering perspective to build better and more robust artificial vision systems.

Taken together, while unsupervised object-centric learning is currently not competitive to supervised
learning for tasks such as instance segmentation where su�ciently large labeled training datasets
are available, it can still lead to interesting insights both into the inductive biases of biological vision
as well as into useful inductive biases for unsupervised learning to enable sample-e�cient learning
and systematic compositionality.

8However, naively, the masked image embeddings could be used as an object representation.
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3 Modeling of neuronal morphologies

The human brain contains billions of neurons with trillions of connections in the form of synapses
between them, rendering it a highly complex system that is nearly impossible to grasp in its entirety.
To further our understanding of how this system functions, neuroscientists are endeavoring to break
it down into cells as its building blocks and categorize these into di�erent cell types. Defining such
cell types is a useful abstraction that facilitates the study of neural circuitry, cortical organization and
relationships to functional properties (Masland, 2004; Fishell and Heintz, 2013; Zeng and Sanes, 2017;
Mukamel and Ngai, 2019; Zeng, 2022). Early descriptions of cell types based on the cells’ shapes,
commonly referred to as morphology, date back to Ramón y Cajal in 1911. Since then, numerous
criteria for classifying neurons into cell types have been proposed based on their morphological,
molecular or functional properties. Despite trying to classify neurons for decades, precisely how to
define cortical neuronal cell types remains an open research question (Zeng and Sanes, 2017).

Neurons exhibit intricate three dimensional (3D) shapes that include branching dendrites, tiny
protrusions such as spines, but also long-reaching axons that can span the entire brain. Therefore,
neuronal morphologies are di�cult to summarize into a more tractable representation from which
cell types can be easily inferred. Formerly, there were two approaches to morphological cell type clas-
sification: First, experts in the field inspect each cell individually to determine its cell type (Ramón y
Cajal, 1911; Larkman, 1991; DeFelipe et al., 2013; Markram et al., 2015). This approach su�ers from
being underpowered (Zeng and Sanes, 2017). It can only take a limited number of neurons into ac-
count and the selection of cells is often biased towards neurons that are easy to image and reconstruct.
Furthermore, the classification can only be based on human-accessible features (Zeng and Sanes,
2017) and expert annotation can be unreliable. Studies have shown that there can be a high variation
between experts’ classification (DeFelipe et al., 2013). Additionally, manually classifying each cell
is very time consuming, and thus does not scale to larger datasets. For these reasons, the field has
moved towards automatically classifying cells into cell types based on expert-defined features. These
features can be calculated from the reconstructions of the neurons, such as the number of branching
points or the bifurcation angles, and can subsequently be used as input features to classifiers or
clustering methods (Oberlaender et al., 2011; Marx and Feldmeyer, 2012; Narayanan et al., 2017;
Gouwens et al., 2019). This approach remedies the scalability problem of manual annotation of the
cells, but it retains human biases by only taking a pre-selected subset of morphological features into
account. Features that are not obvious to humans or that are di�cult to quantify are disregarded,
hindering an unbiased census and the discovery of new cell types.

While the ever-increasing dataset sizes are problematic for manual annotation, they provide optimal
conditions for unsupervised machine learning techniques, that have shown surging performances
over the last decade in numerous domains. These techniques o�er the possibility to identify patterns
in a data-driven way, dispensing with the need for human annotations and manual feature selection.
This makes them especially suitable for the application to neuronal morphology modeling.

This dissertation describes the design of a machine learning method to learn a descriptor of neuronal
morphologies purely from data. First, we ask what are the appropriate inductive biases in designing
a machine learning model that is capable of encoding complex neuronal morphologies into a low
dimensional embedding? In Section 3.2, we answer this question: Building on recent developments
in self-supervised learning, we design a novel graph attention model that takes as its input spatially-
embedded graphs — such as neuronal skeletons — and embeds them in a low dimensional latent
space. By doing so, every neuron is assigned a “bar code” that captures the essence of its 3D shape.
This model addresses the shortcomings of the previous methods. First, it is scalable to a large number
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of neurons, making it capable of dealing with growing dataset sizes. Second, it does not rely on
manually defined features. Instead, the model learns from the data which features are relevant
to distinguish individual neurons, thereby reducing human biases in the feature selection. This
allows the model to consider features that have not been previously accounted for, opening up the
possibility of discovering new cell types. Subsequently, in Section 3.3, we apply the model to a
large-scale dataset of the mouse visual cortex containing tens of thousands of cells to perform a
comprehensive census of excitatory neurons in the mouse visual cortex.

3.1 Definitions and background
Cortical organization principles The cerebral cortex forms the outer layer of the brain in humans
and other mammals. It can be partitioned into multiple areas that are responsible for processing
sensory and motor information as well as performing higher-level associational tasks (Zeng and
Sanes, 2017). Sensory information is processed in dedicated regions of the cortexwhich are associated
with individual sensory modalities. As such there is a visual cortex, a somatosensory cortex and an
auditory cortex, among others (Kandel et al., 2000).

The visual cortex in mammals consists of multiple areas that are interconnected by feedforward
and feedback connections. The theory of cortical hierarchy postulates that feedfoward connections
drive information flow from the primary visual cortex (V1) to increasingly specialized areas, while
feedback connections influence neural responses based on past experiences, attention and perceptual
tasks (Gilbert and Li, 2013; D’Souza et al., 2022). For primates, such a hierarchical organization of the
visual areas was found (Felleman and Van Essen, 1991). Similarly, there exists evidence that rodents,
such as rats (Coogan and Burkhalter, 1993) and mice (Glickfeld and Olsen, 2017; D’Souza et al.,
2022) likewise exhibit a hierarchical organization of cortical visual areas. However, the hierarchy in
mouse visual cortex is deemed to be shallower than in primates (D’Souza et al., 2022).

The mouse visual cortex can be further subdivided into areas, namely the primary visual cortex (V1)
and higher visual areas: lateromedial (LM), laterointermediate (LI), anterior (A), anterolateral (AL),
rostrolateral (RL), anteromedial (AM), posterior (P), postrhinal (POR), and posteromedial area
(PM), that are thought to fulfil di�erent functionalities (Wagor et al., 1980; Wang and Burkhalter,
2007; Marshel et al., 2011; D’Souza et al., 2022). LM is commonly believed to be the second processing
stage after V1, akin to the secondary visual cortex in primates (Wang and Burkhalter, 2007; D’Souza
et al., 2022). In this dissertation, we focus on analyzing the organization of the mouse primary visual
cortex (V1) as well as the higher visual areas RL and AL, which are assumed to be part of the second
and third processing stage of the dorsal stream, respectively (D’Souza et al., 2022).

Neuronal morphologies The cerebral cortex of a mouse consists of approximately 14 million
neurons (Herculano-Houzel et al., 2015). Neurons come in a vast variety of shapes and forms. They
have three main morphological compartments: soma, dendrites and axon (Kandel et al., 2000). The
soma is the cell body that contains the nucleus and the machinery necessary for cell metabolism.
Dendrites are highly bifurcated processes branching away from the soma. They receive input from
other neurons and propagate it to the soma. In contrast, the axon is a long and thin process that
transmits information to other neurons. It can project locally or to long-range targets. In a subtype of
neurons called pyramidal cells, dendrites can be classified as apical or basal (Kandel et al., 2000).
Apical dendrites originate from the apex of pyramidal cells and usually run up towards the pia mater,
or in short pia, a membrane enveloping the brain. Horizontal and inverted neurons form an exception
to that rule: Their apical dendrites run horizontally or down towards the white matter, respectively.
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Apical dendrites can have multiple oblique dendrites branching o� from their main shaft and the top
of the apical dendrite can be either atufted or end in a tuft of various degrees (Hattox and Nelson,
2007; Oberlaender et al., 2011; Markram et al., 2015). Dendrites originating from the base of the soma
are called basal dendrites (Kandel et al., 2000). To characterize the morphology of a neuron typically
the branching patterns of the apical and basal dendrites and targets of the axon are described.

Neuronal connectivity Neurons connect and transmit information to each other via synapses.
Synaptic connections are directional; the signaling neuron is called the presynaptic neuron, and the
receiving neuron is called the postsynaptic neuron. Individual neurons commonly receive inputs
from thousands of presynaptic neurons. They integrate this information and forward the aggregated
information to postsynaptic neurons. The synapse is located on the axon of the presynaptic neuron.
On the postsynaptic neuron, the synapse can either be located on small protrusions of the dendrites,
called the spines, or directly on the dendrite (Kandel et al., 2000).

Neuronal cell types To understand the organization of the brain, neuroscientists have tried to break
down its complexity into basic building blocks, namely into cell types. While there is no general
agreed upon definition of neuronal cell types, they can be broadly defined as a group of neurons
with homogeneous properties within the group that di�er with respect to the properties of other
cells (Masland, 2004; Fishell and Heintz, 2013; Zeng and Sanes, 2017; Mukamel and Ngai, 2019; Zeng,
2022).

Cortical neurons can be subdivided into two classes: Excitatory neurons are characterized by spiny
dendrites and the use of glutamate as a neurotransmitter. They project to local or long-range targets.
Inhibitory interneurons on the other hand primarily form local connections and are characterized by
aspiny or sparsely spiny dendrites. Interneurons use �-amino-butyric acid (GABA) or neuropeptides
as neurotransmitters (DeFelipe et al., 2002; Nelson et al., 2006; Zeng and Sanes, 2017; Gouwens
et al., 2019). Excitatory neurons typically make up 80% or more of neurons in the cortex (DeFelipe
and Fariñas, 1993; DeFelipe et al., 2002; Masland, 2004; Markram et al., 2015). They can be further
subdivided into cell types based on their morphological (Ramón y Cajal, 1911; Jiang et al., 2015;
Markram et al., 2015; Gouwens et al., 2019), functional (Markram et al., 2015; Gouwens et al.,
2019; de Vries et al., 2020) and transcriptomic (Nelson et al., 2006; Zeisel et al., 2015; Tasic et al.,
2016; Saunders et al., 2018; Tasic et al., 2018; Yao et al., 2021, 2023) properties or combinations of
those (Markram et al., 2015; Cadwell et al., 2016; Fuzik et al., 2015; Gouwens et al., 2019; Scala et al.,
2019, 2021; BRAIN Initiative Cell Census Network, 2021). Electrophysiological properties include
the resting potential and firing rates of the neurons and their tuning curves. Molecular analyses
focus on the genetic makeup of the neurons, their protein composition or transcriptome. Typical
morphological properties that have been used to define cell types include the shape and branching
patterns of dendrites and axons, as well as the shape of the soma and more fine-grained features such
as spine densities (Zeng and Sanes, 2017). We focus on the analysis of excitatory cortical neuron
types based on morphology in this dissertation.

Laminar organization The cortex of mammals is organized into layers. Depending on the brain
area, the number and thickness of layers and their function can vary. Typically, the cortex consists
of six layers which are numbered increasingly from pia to white matter. Each layer is defined by
its distribution of cell types as well as by the inputs and outputs the cells in it receive (Brodmann,
1909; DeFelipe et al., 2002; Kandel et al., 2000). In Section 3.3, we analyze the organization of the
mouse visual cortex which follows the typical six-layer structure (Senzai et al., 2019) and focus
on the description of excitatory neurons. Excitatory neurons are found in cortical layers II–VI and
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show a specialized distribution over layers (DeFelipe et al., 2002): Layer I (L1) consists of dendrites
originating from excitatory neurons based in the layers below and axons projecting to other areas of
the cortex. Layers II and III (L2/3) mainly contain small pyramidal cells. Layer IV (L4), as the input
layer, primarily receives sensory input from the thalamus (Harris and Shepherd, 2015). Layer V (L5)
is known for its large pyramidal neurons that constitute the major output pathways projecting to
other cortical and subcortical areas. Layer VI (L6) has a heterogeneous neuronal population and
transitions into the white matter within which axons to and from other cortical areas run (Kandel
et al., 2000).

Excitatory morphological cell types Excitatory neurons can be classified into cell types based on
di�erent properties of their morphologies, their projection patterns as well as their layer of origin.
The axonal projection patterns define three broad classes: Intratelencephalic (IT) neurons project only
within the telencephalon, which includes the cerebral cortex as well as several subcortical regions. IT
neurons can be found in layers II–VI. Pyramidal tract (PT) neurons project to subcerebral areas such
as the brainstem, the spinal cord and the midbrain. They are only found in layer V. Corticothalamic
(CT) neurons project to the thalamus and are based in layer VI (Harris and Shepherd, 2015; Tasic et al.,
2018; Scala et al., 2021; Young et al., 2021; Zhang et al., 2021). Some specialized excitatory classes have
been consistently described in the literature: L4-IT neurons have a crucial role in the circuit as they
receive the main input from the thalamus but few excitatory connections from other layers. They can
be subdivided into three classes that show varying prevalence in di�erent species and cortical areas:
pyramidal, star-pyramidal and spiny stellate cells (Oberlaender et al., 2011; Harris and Shepherd,
2015). Their projections mostly run locally. L5-PT, also called extra-telencephalic (ET) neurons,
are large neurons characterized by thick apical tufts that run into layer I. They receive input from
local IT cells, as well as the thalamus and cortical areas (Harris and Shepherd, 2015). They scarcely
project to local cells, but mainly have long-range projections to subcortical and subcerebral areas.
Another distinct subpopulation of L5 neurons are the so-called near-projecting (NP) neurons (BRAIN
Initiative Cell Census Network, 2021; Zhang et al., 2021; Schneider-Mizell et al., 2023) that exhibit
sparse and long basal dendrites and are targeted by a specialized group of interneurons (Schneider-
Mizell et al., 2023). L6-CT cells di�er from L6-IT cells in terms of molecular properties (Greig
et al., 2013; Harris and Shepherd, 2015) and receive diverse input from local neurons as well as
long-range inputs from cortical areas (Thomson, 2010; Harris and Shepherd, 2015). Besides the
typical IT neurons, layer VI also contains horizontal and inverted neurons. Finally, L6 subplate
neurons originate in the lower part of layer VI and mostly project locally (Gouwens et al., 2019; Zeng
and Sanes, 2017). Depending on the study, further morphological classes of excitatory neurons are
distinguished based on their layer of origin and dendritic branching patterns.

Morphometrics Morphometrics denote quantitative measurements of the shape or form of an
object or organism (Oxford English Dictionary, 2023). In neuroscience, the term is used to describe
quantitative summary statistics of neuronal morphologies. Morphometrics have been widely used
to automatically extract features that represent neuronal morphologies (Ascoli et al., 2008; Scorcioni
et al., 2008; Oberlaender et al., 2011; Marx and Feldmeyer, 2012; Narayanan et al., 2017; Wang et al.,
2018; Gouwens et al., 2019; Laturnus et al., 2020; Schneider-Mizell et al., 2023). These can then be
used as feature representations for statistical data analysis and can serve as input to machine learning
methods such as classifiers or clustering methods for automated cell type classification. To calculate
morphometrics, neuronal reconstructions are commonly skeletonized (Celii et al., 2023) and the
morphometrics are then computed based on the resulting graph or skeleton (Laturnus et al., 2020).
Typical morphometrics include lengths of the di�erent neuronal compartments, diameters, and
their bifurcation angles, among others (Scorcioni et al., 2008). As they describe local features of the
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morphology, a large set of these morphometrics is usually combined to gain a meaningful description
of the overall shape of the neuron. Therefore, significant e�ort goes into the design and selection of
the used morphometrics. However, which features are chosen is subjective and can be inconsistent
between studies. Furthermore, the features are often tailored to the studied neuron population and
are thus not generally applicable. The use of disparate sets of morphometrics in di�erent studies can
lead to inconsistent classification outcomes and hinders comparability.

Morphometrics can be seen akin to manually engineered features in computer vision and as such
exhibit similar limitations (see Section 1.1). We therefore chose to learn a morphological descriptor
directly from the data using self-supervised learning, avoiding the need for manual feature selection.
The next section introduces our proposed model for neuronal morphologies.
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3.2 Representation learning for neuronal morphologies

This section summarizes:

Marissa A. Weis, Laura Hansel, Timo Lüddecke, and Alexander S. Ecker. Self-supervised
graph representation learning for neuronal morphologies. Transactions on Machine Learning
Research (TMLR), 2023.

The full publication can be found in the appendix on page 133.

Motivation
The morphology of cortical neurons is highly complex and exhibits a great variety between neurons.
To analyze the intricate 3D structures of neurons, there mainly have been two approaches so far.
Traditionally, experts have manually classified neurons into cell types based on their morphology by
visual inspection (Ramón y Cajal, 1911; Larkman, 1991; DeFelipe et al., 2013; Markram et al., 2015).
More recently, researchers have tried to automate this process by manually defining features that can
be computed from the skeletons of the neurons (Oberlaender et al., 2011; Marx and Feldmeyer, 2012;
Narayanan et al., 2017; Gouwens et al., 2019). These summary statistics, known as morphometrics,
are then used as the input features for classifiers. Manually classifying neurons is restricted to small
dataset sizes. Furthermore, this method is prone to bias as experts do not necessarily agree on the cell
type (DeFelipe et al., 2013). The computation of summary statistics solves the scalability issue but is
still biased by the manual feature definition process towards features that experts deem important
and that are visible to the human eye. Thus, it might not be a comprehensive representation of the
underlying morphology.

In computer vision, the paradigm shift from manually defining features to learning features in a
data-driven way has greatly accelerated progress on di�cult tasks. Recent advances in recording
techniques and the resulting increase in datasets sizes in neuroscience provide the means to use
data-driven unsupervised machine learning methods for the analysis of neuronal morphologies
and promise that the same principle can be applied here. Therefore, we designed a self-supervised
machine learning model to learn low-dimensional embeddings that capture the essence of 3D
morphologies of neurons in a data-driven way. This alleviates the need to manually annotate the data
and does not pre-impose human biases through manual feature selection. The resulting embeddings
can be used as a compact representation of the neuronal morphologies for downstream analyses
such as cell type classification.

Results
We proposed G����DINO, a self-supervised learning algorithm, that can encode complex 3D neu-
ronal skeletons in the form of graphs into low-dimensional latent embeddings. G����DINO is based
on a novel attention mechanism that takes both the global graph structure as well as local node
neighborhoods into account. Thus, it can e�ciently process the sparse and long-ranging branches
typical for neuronal skeletons. Furthermore, we defined tailored data augmentation strategies to
enable self-supervised learning on spatially-embedded graphs and to incorporate domain knowledge
into the model.
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Our results demonstrated that our proposedmodel,G����DINO, successfully captures the essence of
3D graphs in low-dimensional latent embeddings. As a proof of concept, we used a synthetic dataset,
that gives us access to ground truth class information, to show that our novel adjacency-conditioned
attention mechanism (AC-���������) is able to recover information contained only in the graph
connectivity. We additionally demonstrated that G����DINO using AC-��������� outperformed
traditional message passing based GNNs for neuronal cell type classification. G����DINO’s mor-
phological embeddings learned to di�erentiate between spiny and aspiny neurons based solely on
their dendritic morphology without the need for supervision during training. Furthermore, we were
able to recover known excitatory cell types by clustering the latent embeddings and outperformed
approaches that use manually selected morphometrics. In subsequent analyses, we showed that
the embeddings can be used to predict distinct morphological characteristics such as tuftedness of
pyramidal cells or anatomical features such as the cortical layer of origin of the neurons. G����DINO
performed on par or better than previous data-driven approaches on these tasks. Taken together,
we found that our learned morphological embeddings are able to capture the essence of intricate
3D morphologies of neurons and are well suited as representations of neuronal morphologies for
further downstream analysis.

Discussion
Our results demonstrated that compact representations of neuronal morphologies can be learned in
a data-driven way even on comparatively small morphological datasets.

While we hypothesize that our novel AC-���������mechanism can be beneficial in various graph
learning settings outside of the neuroscientific domain, this remains to be empirically validated.
Preliminary experiments on a botanical tree dataset indicated that G����DINO is useful in other
domains where individual samples are graphs and node features are spatially embedded. For
datasets with a more pronounced domain shift, it will likely be necessary to adapt the augmentation
strategies to fit the respective data domain. Likewise, the model is not tied to the unsupervised
learning objective, but can equally be applied in a supervised setting if the necessary ground truth
annotations are available.

The dataset sizes in this study are rather small for self-supervised learning as they only entail a few
hundred to a thousand samples. While the well-aligned inductive biases of the model allow us to
learn useful features without overfitting on the training data, more data would presumably lead to
better and more robust representations. We explore this in Section 3.3.

Our results confirm that learning a representation of neuronal morphologies is possible in a data-
driven fashion. This opens up avenues for the discovery of new cell types as the model learns which
features are relevant to distinguish between the individual cells without being restricted to predefined
features. As the focus of this study was to demonstrate our ability to replicate known findings in an
unsupervised way and reproduce cell types that are already established in the literature, an in-depth
biological analysis of the identified cell types was beyond the scope of this work. However, the next
section focuses on exactly that: We use our model to embed a novel dataset of unprecedented size in
a low-dimensional representation space and analyze the cortical organization of excitatory neurons
in the mouse visual cortex.
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3.3 Discovery of excitatory morphological cell types

This section summarizes:

Marissa A. Weis, Stelios Papadopoulos, Laura Hansel, Timo Lüddecke, Brendan Celii, Paul
G. Fahey, J. Alexander Bae, Agnes L. Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J.
Bumbarger, Manuel A. Castro, Forrest Collman, Nuno Maçarico da Costa, Sven Dorkenwald,
Leila Elabbady, Akhilesh Halageri, Zhen Jia, Chris Jordan, Dan Kapner, Nico Kemnitz, Sam
Kinn, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell,
Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, R. Clay Reid, Casey
M. Schneider-Mizell, H. Sebastian Seung, William Silversmith, Marc Takeno, Russel Torres,
Nicholas L. Turner, WilliamWong, Jingpeng Wu, Wenjing Yin, Szi-chieh Yu, Jacob Reimer,
Andreas S. Tolias, and Alexander S. Ecker. Large-scale unsupervised discovery of excitatory
morphological cell types in mouse visual cortex. bioRxiv, 2023.

The full publication can be found in the appendix on page 163.

Motivation
Since Ramón y Cajal, neuronal morphologies have been used to classify neurons into cell types
(Ramón y Cajal, 1911). However, whether there exist distinct morphological types of cortical excita-
tory neurons or if instead they form a continuum of variation is still an open research question.

Previous studies that characterized neuronal morphologies have two main limitations. First, they
often consider only a low number of neurons (Zeng and Sanes, 2017), the selection of which is biased
by which neurons can be successfully reconstructed. Second, they rely on hand-picked features
that might not capture all axes of variations of the morphologies. In Section 3.2, we introduced
G����DINO. G����DINO embeds neuronal skeletons into morphological embeddings in a data-
driven way. While the previous publication was a proof of concept that it is possible to learn a
low-dimensional embedding of highly complex neuronal morphologies that can be used to reproduce
known cell types and organization principles (see Section 3.2), in this study we applied G����DINO
to a novel neuronal dataset of unprecedented size to discover cortical organization principles in the
mouse visual system.

Over the course of five years, theMICrONS project densely imaged and reconstructed all neurons and
their connectivity in a millimeter cube of one individual mouse brain, more specifically of the visual
cortex of the mouse (MICrONS Consortium et al., 2023). By densely imaging and reconstructing all
cells in the volume, the data allows for a complete census of neurons in this brain area, as it is not
prone to selection bias based on which cells were sampled for imaging. While the MICrONS data is
an extremely valuable source for the research of cortical organization, it is also very challenging to
analyze. The raw data encompasses over one petabyte of image data (MICrONS Consortium et al.,
2023). The scale of the dataset makes it challenging to analyze with traditional methods. But it is
the perfect setting for unsupervised machine learning, which has been shown to excel in high-data
regimes. We therefore use G����DINO to extract low-dimensional embeddings of more than 50,000
neurons in the mouse visual cortex from areas V1, RL and AL and analyze the di�erences in cortical
organization between layers and visual areas.
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Results
We used G����DINO to extract morphological embeddings of approximately 55,000 neurons and
neuronal fragments. We found that our learned morphological embeddings can be used for qual-
ity control of the MICrONS dataset (MICrONS Consortium et al., 2023), enabling us to separate
neuronal fragments from full neurons and distinguishing excitatory from inhibitory neurons. Our
subsequent analysis was focused on the excitatory neurons. We demonstrated that the morphological
embeddings learn to encode the soma depth of the neurons, even though the soma location was
not provided to the model. We therefore used the morphological embeddings to predict the layer
of origin of the cells based on a small annotated subset of the neurons. As a proof of concept that
the learned embeddings are indeed an expressive representation of the neuronal morphologies, we
related our embeddings to a subset of expert-annotated cells and showed good correspondence to
previously described excitatory cell types.

We proceeded with a layer-wise analysis, investigating the main axis of variation of the dendritic
morphologies of each layer. We found that excitatory neurons in layers II/III and IV form a continuum
of morphological variation. Neurons in layer II/III showed a gradual decrease in the width of their
apical dendritic arbor as well as smaller apical tufts with increasing cortical depth. For layer IV, we
found a strong area di�erence between the primary visual cortex and higher visual areas. Namely,
atufted L4 neurons were primarily located in the primary visual cortex, while L4 neurons with
apical tufts were more frequent in higher visual areas. Layer V showed a less continuous variation of
neuronal morphologies. We found that L5-ET cells form a rather distinct cluster from the rest of the
L5 cells, while L5-NP cells were more the end of a continuous spectrum. Layer VI exhibited the most
diversity in terms of morphological shapes featuring inverse and horizontal cells as well as narrow
pyramidal cells with a spectrum of apical termination points in di�erent higher layers.

Lastly, we identified a newmorphological feature, the “basal bias”. While the basal dendrites of most
neurons accumulated more mass below the soma, we found one group of neurons on the border of
layer IV and V that exhibited a striking pattern of basal dendrites. They tended to curve upwards
with respect to the soma and avoided reaching into layer V. These neurons were mainly located in
the primary visual cortex as opposed to higher visual areas and were mostly atufted.

Taken together, the studied population of excitatory neurons from the mouse visual cortex showed
significant variation of dendritic morphologies, both within and across cortical layers. This variation
mostly formed a continuum, with only a few distinct cell clusters in deeper layers.

Discussion
In summary, our learned morphological embeddings enabled us to characterize the cortical organi-
zation of neuronal morphologies in the mouse visual cortex, both corroborating known features as
well as making novel observations.

First, we found that atufted L4 neurons are mostly present in the primary visual cortex, while L4
neurons in the higher visual areas were more tufted. One possible explanation for this pattern is
that the primary visual cortex as the first stage in cortical visual processing and layer IV as the
input layer might be less modulated by feedback connections, which are often sampled through
apical tufts reaching into layer I (Larkum, 2013; Fi�ek et al., 2023). Second, we found a novel L4
cell type that is characterized by a bias of the basal dendrites to avoid reaching into layer V that
primarily occurs in V1. Avoiding layer V and therefore input from L5 neurons could be an additional
mechanism to focus on the thalamic input and the forward drive of the microcircuit as L5 neurons
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sample feedback heavily (Kim et al., 2015). Further analyses are required that take connectivity
patterns and functional properties of the neurons into account to explore these hypotheses.

In general, we found that themorphologies of excitatory neuronsmostly display continuous variation
rather than forming discrete clusters of cell types. However, this does not prove that there are no
discrete neuronal cell types. While this study suggests that the global structure of excitatory dendritic
morphologies follows a continuum, it is possible that if other features or modalities are considered,
the cells might indeed form distinct clusters (for further discussion see Section 3.4).

An alternative explanation for the continuous variation that needs further study is the high level of
noise in the data that could lead to a more continuous appearance. The reconstruction of neuronal
morphologies from electron microscopy images involves a multi-step pipeline over which noise can
accumulate (MICrONSConsortium et al., 2023). The reconstruction of the dendritic treesmight fail at
random positions, which could lead to a more continuous appearance of the dendritic morphologies
across the dataset. While we were able to remove large fractions of fragmented cells based on the
morphological embeddings, further analyses and more extensive manual proof-reading are required
to fully eliminate this possibility.

Going forward, an important step is to quantify the notion of discrete versus continuous variation in
the data. We show qualitative results that indicate a continuous variation. But a statistical measure
or hypothesis test is missing that can quantify the probability of the underlying data lying on a
continuum as opposed to originating from discrete clusters. Here more theoretical work is needed
to model discrete versus continuous variation in a principled way.

Summarizing, we characterized multiple di�erences in neuronal morphologies between visual areas
and layers aswell as identified a novel cell type. However, while a descriptive study is the prerequisite,
it is only the first step towards understanding cortical organization. The next step is to analyze why
these di�erences exist and how they relate to the functional properties of the neurons as well as their
role in the microcircuits of the brain.
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3.4 Limitations and future directions
Sections 3.2 and 3.3 summarize our two studies that introduced and applied the self-supervised graph
learning model, G����DINO, to neuronal datasets to learn low-dimensional descriptors of neuronal
morphologies. However, G����DINO is only the first step in analyzing neuronal morphologies in a
data-driven way. In the following section, we discuss some notable limitations and future research
directions for modeling neuronal morphologies.

Morphological features G����DINO operates on graphs that represent the skeletons of neurons.
This representation abstracts away many of the more fine-grained details of neuronal morphology
such as the width of neuronal segments or the presence of spines. The model thus only learns to
encode the global structure of the neuronal morphology. This facilitates the optimization process
and prevents the model from overfitting on those details. However, the omitted fine-scale structure
of neurons can be predictive of cell types (Dorkenwald et al., 2022; Elabbady et al., 2022). For
instance, previous studies found variation in the density and size of synapses between neuronal
types (Schneider-Mizell et al., 2023; Celii et al., 2023). Others used soma shape and fine-grained soma
features to di�erentiate between cell types (Ascoli et al., 2008; Elabbady et al., 2022). Integrating
additional morphological information into our model, especially across multiple scales, represents a
promising future research avenue. There are multiple ways this could be achieved: First, specific
properties such as the number of spines could be extracted from the reconstructed neurons prior to
skeletonization (Celii et al., 2023) and integrated as additional features of the graph nodes. In this
case, augmentations on these additional node features are required to avoid creating a short-cut by
which the model can trivially learn to di�erentiate between individual cells. Alternatively, instead of
manually selecting certain fine-scale details such as the number of spines and using them as node
features, local segments of the reconstructed cells can be encoded into learned representations prior
to skeletonization and adopted as the initial node features for G����DINO. By doing so, data-driven
features across multiple scales of the morphology can be learned. Dorkenwald et al. (2022) proposed
a model to encode local segments using a convolutional encoder and a contrastive learning objective.
A similar approach could be used to obtain representations of the local morphology of neurons.
Instead of averaging over the local encodings to extract a global cell embedding, as was done by
Dorkenwald et al. (2022), the local representations could then be aggregated using G����DINO,
obtaining a hierarchical model of neuronal morphologies across di�erent scales.

Due to insu�cient reconstruction quality in the data, we removed axons prior to learning the
morphological embeddings. However, axonal projections have long been used to characterize
excitatory cells, di�erentiating them broadly into intratelencephalic (IT), pyramidal tract (PT) and
corticothalamic (CT) neurons based on the regions that their axons target (Harris and Shepherd,
2015). Reconstructing axons of excitatory cortical neurons is challenging as they can span the entire
brain and therefore need imaging of a large volume of the brain to be fully captured (Zeng and
Sanes, 2017; Peng et al., 2021). Additionally, they are di�cult to trace due to their long and thin
branches. When reliable axon reconstructions for a su�cient number of neurons become available,
G����DINO can be trained on thesewithout any alterations. Themodel itself is not tuned to dendritic
morphologies, but currently restricted by the availability of data.

Integrating further features into our data-driven representation to account for local morphological
properties as well as axonal projections might change the interpretation of a continuous variation
across dendritic arbors and lead to a more distinct clustering of excitatory cortical cell types. Similarly,
integrating features from other modalities such as transcriptomic or electrophysiological properties
might lead to a more distinct separation (see discussion below).
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Inductive biases As discussed in Chapter 1, every learning algorithm has its implicit and explicit
inductive biases. While these are necessary for learning and generalization, they also strongly
influence the learned representations. While we eliminated biases through human-defined features,
G����DINO comes with biases on its own. We chose a graph-based input representation as opposed
to a voxel or point-cloud representation. This fits the data, as neuronal morphologies are rather sparse
with long-ranging branches, which makes using voxels computationally ine�cient, whereas point
clouds would disregard all information contained in the connectivity. Both GNNs and transformers
are not well suited to process neuronal morphologies on their own. GNNs based on message
passing cannot handle aggregating information over the long-ranging branches without becoming
prohibitively deep (Dwivedi et al., 2022). Furthermore, they tend to over-smooth the node features
with increasing depth of the GNN (Rusch et al., 2023). Transformers applied to graphs on the other
hand can capture long-range dependencies as they leverage full-connections between all nodes, but
they cannot use the information encoded in the graph connectivity as information flow between
nodes is solely based on feature similarity. Thus, we chose to create our own architecture with a novel
attention mechanism that interpolates between transformer attention and graph message passing, to
allow for information exchange between distant nodes while simultaneously being able to use the
information given by the graph connectivity.

Furthermore, we designed graph augmentations that are aligned with biological appropriate invari-
ances and that take advantage of the spatial meaning of node features. But our proposed graph
augmentations encode specific invariances in the learned representations which might not be optimal
for all downstream tasks. For example, we use rotation around the axis orthogonal to the pia as a
data augmentation leading to rotation-invariant embeddings, as we hypothesize that rotation is not a
discriminating property for cell types. However, Weiler et al. (2022) found a correlation between the
orientation tuning of L2/3 cells and the maximal horizontal extent of their apical dendrites, suggest-
ing that the asymmetries in the dendritic arbors fulfil a functional role. To study such phenomena,
the proposed augmentations need to be adapted to fit the underlying research question.

One inductive bias that is missing in G����DINO, but which might be helpful to model the hier-
archical structure of neurons is compositionality. Compositionality as an inductive bias is crucial
for object-centric learning, but has so far been neglected for neuronal morphologies. However, just
as scenes consist of di�erent objects which in turn are composed of object parts, the brain consists
of individual cells that are made of di�erent compartments. While compositionality of neurons is
not as well understood as compositionality of visual scenes, leveraging compositional modeling
could still o�er similar advantages. As we argued above, learning a hierarchical representation of
neuronal morphologies could improve our modeling capabilities and leveraging compositionality in
this context might be advantageous (for further discussion see Chapter 4).

Interpretability of embeddings While our results demonstrate that the learned embeddings
capture morphologies of neurons well and can be used for diverse downstream tasks, one downside
of using learned features is their lack of interpretability. This is in contrast to classical morphometrics
and a clear limitation of the approach. While the features are more flexible than manually selected
features, additional steps are required in order to make them human interpretable. For instance,
clusters identified based on the learned embeddings need to be analyzed by experts or with the
help of known morphometrics to determine their di�erences. While this certainly requires e�ort,
examining tens of clusters is feasible while analyzing thousands of neurons individually is impossible.
Furthermore, by doing so we identified a novel morphometric that is a characteristic feature of
neurons at the layer IV – V boundary. Going forward, this feature can now be included in automatic
analysis pipelines.
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Are there discrete cell types of excitatory cortical neurons? The mammalian brain consists of
26 million to 86 billion neurons depending on the species (Herculano-Houzel et al., 2015). These
neurons show an extremely high variability in their shapes and functions. To permit studying the
brain, neurons have been discretized into cell types to reduce the complexity of analyzing their
organization and function (Zeng, 2022). Despite the long history of cell typing, there is no universal
definition of how to delineate neuronal cell types (Masland, 2004; Fishell and Heintz, 2013; Zeng
and Sanes, 2017; Mukamel and Ngai, 2019; Zeng, 2022). While there exists a consensus that neurons
can be broadly divided into excitatory, spiny neurons and inhibitory, aspiny neurons (DeFelipe
et al., 2002; Zeng and Sanes, 2017), the exact definition and number of more granular cell types is
often disputed (Kanari et al., 2019). Previous studies used disparate sets of features across multiple
modalities to define cell types. There have been e�orts of unifying cell typing schemes (Ascoli
et al., 2008), but finding a universal definition is complicated by the fact that cell properties are
heterogeneous between species, brain areas and individual cells and classifications schemes based
on di�erent modalities do not necessarily align (Zeng, 2022).

Neurons have traditionally been categorized into cell types based on their morphology. Following
this approach in Section 3.3, we analyzed the neuronal morphologies of a densely imaged volume
in the mouse visual cortex containing tens of thousands of neurons. Our results suggest that the
dendritic morphologies of excitatory cortical neurons in the mouse visual cortex mostly form a
continuum, with some notable exceptions of distinct classes such as L5-ET neurons. In contrast,
previous studies examining dendritic morphology of cortical neurons usually defined distinct cell
types and categorized the neurons accordingly (Oberlaender et al., 2011; Markram et al., 2015;
Gouwens et al., 2019; Kanari et al., 2019). While there is reasonable agreement on broad cell classes
in these studies (see Section 3.1), the number of defined cell types di�ers from study to study. In
rodents, estimates range between nine and nineteen morphological types of excitatory neurons in
cortical sensory areas (Oberlaender et al., 2011; Markram et al., 2015; Narayanan et al., 2017; Kanari
et al., 2019; Gouwens et al., 2019; Schneider-Mizell et al., 2023). These discrepancies can arise due to
a number of reasons: Studies di�er in recording techniques as well as classification methods, sample
sizes vary and considered morphological features are disparate.

Sample size and selection bias of samples can influence classification outcomes. The lower sample
sizes of previous studies could have contributed to the impressions of discrete cell types. When
comparing two neurons of di�erent ends of a continuous spectrum, they appear distinct. By densely
reconstructing neurons, the continuous variation becomes observable. Therefore, only the more re-
cent large-scale datasets that aim at densely recording whole brain regions are suitable to comprehen-
sively study this question of continuous versus discrete variation as they do not su�er from selection
biases (MICrONS Consortium et al., 2023; BRAIN Initiative Cell Census Network, 2021).

Second, most studies employ clusteringmethods on the respective morphological features to discover
cell types (Oberlaender et al., 2011; Marx and Feldmeyer, 2012; Narayanan et al., 2017; Gouwens
et al., 2019). However, clustering inherently assumes discrete groups, hence encouraging the notion
of distinct cell types. While previous studies usually report distinct classes, they also note variability
within their proposed classes and further (continuous) variability between classes can be observed
in their visualizations of morphometrical properties (Gouwens et al., 2019; Kanari et al., 2019;
Schneider-Mizell et al., 2023).

While morphology is probably the oldest (Ramón y Cajal, 1911), it is only one of multiple modalities
that can be considered for cell typing (Zeng, 2022).9 Nowadays, transcriptomics in the form of RNA-

9Other modalities that have been used for cell typing include electrophysiological properties, molecular features such as
transcriptomics, and the connectivity of neurons (see Section 3.1).
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sequencing is widely use to generate cell type taxonomies due to its scalability both in the number of
expressed genes as well as the number of cells that can be recorded (BRAIN Initiative Cell Census
Network, 2021; Yao et al., 2021; Zeng, 2022; Yao et al., 2023). Noteworthy, similar to our findings,
current transcriptomics studies observed continuous variation between types of cortical (Tasic et al.,
2016, 2018; Gouwens et al., 2020; Scala et al., 2021; Yao et al., 2021) and subcortical neurons (Stanley
et al., 2019; Wang and Lefebvre, 2022). Furthermore, they demonstrated that variation within
transcriptomic types aligns with variation in other modalities (Gouwens et al., 2020; Scala et al.,
2021). For instance, the excitatory IT type as defined by transcriptomics has been shown to exhibit
continuous variation over cortical depth (Scala et al., 2021; Yao et al., 2021), analogous to the gradual
change of dendritic morphologies that we found along increasing soma depth.

Together recent studies inmorphology and transcriptomics suggest that there are a few broad families
of cortical cell types with continuous variation within those classes (Gouwens et al., 2020; Scala et al.,
2021; Yao et al., 2021; Weis et al., 2023). This continuous variation makes it di�cult to discretize
the cell types further and puts into question whether a comprehensive catalogue of cell types can
be defined. However, so far a principled statistical analysis of how to characterize discrete versus
continuous variation in the data, especially in a hierarchical setting, is lacking. Thus, theoretical
work on how to model these is needed.

Going forward, to answer the question how to best characterize the hierarchy of (cortical) neuron
classes and how to integrate meaningful continuous variation into that schema, a joint classification
of (1) comprehensive properties of (2) multiple modalities (3) in densely recorded brain volumes is
needed. While di�erent modalities have been found to co-vary to a certain degree, using multiple
of them would give a more complete characterization of the neurons and enable a more holistic
cell typing schema (Zeng and Sanes, 2017). Additional modalities might di�erentiate classes that
are not separable in one modality. For instance, a distinct projection pattern separating L2/3- from
L5-IT neurons has been described (Peng et al., 2021). Furthermore, considered features within
a modality need to be reasonably complete. For morphological characterization, the common
approach of defining a fixed set of morphometrics might not capture all factors of variation of the
morphologies. A comprehensive set of morphological features across scales needs to be taken into
account. Hence, building on top of our work and advancing representation learning for neuronal
morphologies might o�er new insights (see Section 3.2). Last, large scale datasets that densely
record neurons without selection biases and preferably including multiple modalities are needed.
Datasets such as MICrONS (MICrONS Consortium et al., 2023) and BICCN (BRAIN Initiative Cell
Census Network, 2021) are excellent starting points to further investigate multi-modal variation of
cortical neurons.
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4 Discussion

In this dissertation, we studied two di�erent applications of unsupervised representation learning
and how they are influenced by inductive biases. We saw that too strong inductive biases in machine
learningmodels can hinder learning and progress towards more general applications (see Chapter 2).
On the other hand, using inductive biases to encode domain knowledge intomachine learningmodels
can lead to sample e�cient models and new scientific discoveries in that domain (see Chapter 3). For
a detailed discussion of the results of the individual publications, we refer to Sections 2.2, 3.2 and 3.3
as well as the publications themselves. In the following chapter, we discuss some overarching themes
from a broader perspective.

Evaluation of unsupervised representations Evaluating unsupervised representations is chal-
lenging. As discussed in Section 1.1, representation learning is not a clearly defined task. What
constitutes a good representation is dependent on the subsequent use case of the representation.
Often representation learning aims at learning a generally good representation that can be used
for several downstream tasks which might not be defined or anticipated at the time of model train-
ing (Oquab et al., 2023). Consequently, it is not straightforward to design a quantitative measure
that conclusively evaluates the representation. Nevertheless, there are several strategies to assess the
representational quality: (1) Evaluation can be done qualitatively by for example using visualization
techniques. Alternatively, for a quantitative evaluation, the representation can be assessed (2) using
metrics that do not rely on ground truth labels such as the unsupervised loss on held-out data
or pretext tasks based on pseudo labels or (3) by evaluating (proxy) tasks based on labeled test
data. The latter is beneficial as it enables quantitative evaluation of the model but alleviates the
annotation costs compared to labeling a whole training set. However, this is only possible if the
downstream task is a priori known and the data can be annotated with reasonable e�ort. Since
oftentimes the goal of unsupervised representation learning is to obtain a representation that is
useful for several downstream tasks, representational quality is commonly judged based on one or a
selected subset of proxy tasks. For example, the quality of self-supervised vision models is often
evaluated by training a linear classifier on the ImageNet dataset (Russakovsky et al., 2015) on top
of the learned representations and assessing its object classification accuracy (Jing and Tian, 2019).
However, evaluating a representation based on proxy tasks can only give an incomplete picture as it
is unclear how the representation would perform for others tasks (Bengio et al., 2013).

In this dissertation, we evaluated unsupervised representation learning models in two di�erent
application domains. Both come with their own challenges depending on the underlying data and
the aim of the project and hence the evaluation strategies di�er significantly.

In case of the object-centric models (see Chapter 2), the objective of the models is clearly defined,
namely to decompose visual scenes into their respective objects, but it is di�cult to specify a simple
rule of what constitutes an object. Hence, object-centric learning tries to recover the underlying
structure of the scene without supervision, commonly using reconstruction as a pretext task for
training. For evaluation, we can exploit that object-centric representation learning is tightly linked
to other computer vision tasks such as tracking and instance segmentation for which numerous
datasets with annotations exist (Lin et al., 2014; Cordts et al., 2016; Milan et al., 2016; Dendorfer
et al., 2020). Annotations can be generated with comparably little e�ort as untrained workers are
able to perform the labeling. Furthermore, there are good generative models in the form of graphic
engines to generate synthetic data with ground truth labels that can be used for evaluation (Gre�
et al., 2022; Raistrick et al., 2023). Hence, we can leverage segmentation and tracking as proxy tasks
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to quantitatively evaluate object-centric models (Weis et al., 2021; Karazija et al., 2021; Gre� et al.,
2022; Kipf et al., 2022; Zadaianchuk et al., 2023). However, as discussed in Section 2.3, these proxy
tasks only evaluate certain aspects of the object representations. In our benchmark, we therefore
additionally evaluated the models on out-of-distribution test sets that featured specific, challenging
scenarios of visual scenes to get a better understanding of the models’ performances.

The most challenging scenario for evaluating unsupervised representations is when the ground truth
is not a priori known and the representations are meant to help with the discovery of new knowledge.
This was the case for our study of excitatorymorphologies in themouse visual cortex (see Section 3.3).
In contrast to segmentation in computer vision, generating test data to evaluate models of neuronal
morphologies is much more challenging. There does not yet exist a good generative model of
neuronal morphologies to generate synthetic data and labeling of existing data can only be done by
trained experts. Even if experts are available to annotate data, whether and which morphological
cell types of excitatory cortical neurons exist is an open research question. Hence, we cannot easily
generate datasets with ground truth annotations for quantitative evaluation. Consequently, we
resorted to two strategies for evaluation: (1) Relating the representations to already known features
of the data based on existing knowledge in neuroscience such as previously described cell types and
morphometrics and (2) qualitatively evaluating the representations using visualization techniques
such as t-SNE (van der Maaten and Hinton, 2008) and manually inspecting the results of cluster
analyses. First, while there is no consensus on the identity of morphological cell types of excitatory
cortical neurons, there are patterns in the morphologies that have consistently been described in
previous literature. We can leverage these to show that our learned embeddings reflect these patterns.
To do so, expert annotations are needed, which was done for a small subset of the data in the case of
the MICrONS dataset (Schneider-Mizell et al., 2023). Furthermore, we can relate the embeddings to
anatomical features such as the soma depth that can be automatically extracted from the raw data,
showing that the embeddings capture meaningful variation in the data. Second, extensive manual
inspection of the learned embeddings was done. To make this feasible, we performed clustering
of the learned embeddings and manually analyzed the found clusters. Furthermore, we used t-
SNE and traversals in latent space to visualize patterns in the embeddings. However, in the end,
machine learning models for scientific discovery can only generate hypotheses about the underlying
domain. Hence, the ultimate evaluation needs to be done by experimentally testing and validating
the proposed hypotheses. In the case of neuronal morphologies, the next step would be to relate
the found organization principles of the morphologies to other modalities to determine whether for
instance the found di�erences between visual areas are reflected in the connectivity as well as the
functional properties of the neurons.

In summary, evaluating unsupervised representations is challenging and requires tailored strategies
depending on the task and data. The important aspects of object-centric representations, namely
the successful discovery of objects, can be evaluated using the numerous datasets for segmentation
available in computer vision. While the limitation remains that other aspects of the object-centric
representations are neglected in the evaluation, it gives us a good understanding of the strengths and
weaknesses of the models. In contrast, evaluating models that are meant to generate new knowledge
in scientific fields are more di�cult to evaluate as data is expensive to generate and labeling is
often impossible since the underlying ground truth is not known. Thus, evaluating unsupervised
representations in these domains requires a lot of manual work and a cycle of repeated modeling
and experimental validation of the hypotheses generated by the models.
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Compositionality Compositionality postulates that complex structures can be constructed from
simpler building blocks using a set of compositional rules (Schulz et al., 2017). Humans use compo-
sitionality for many areas of cognition such as language (Chomsky, 1965) or visual perception (Lake
et al., 2015). Compositionality is linked to systematic generalization by decomposing knowledge into
independent parts that can be recombined flexibly (Bahdanau et al., 2019; Ruis et al., 2020; Goyal and
Bengio, 2022). Systematic generalization here denotes that “the meaning for a novel composition of
existing concepts can be derived systematically from the meaning of the composed concepts” (Goyal
and Bengio, 2022). Equipping models with a notion of compositionality is advantageous as it enables
models to generalize to novel configurations of learned concepts, which leads to better sample
e�ciency (Diuk et al., 2008; Lake et al., 2015). Furthermore, compositionality is thought to help
with continual learning as new concepts can be learned without overwriting old ones (Li et al., 2020;
Mendez and Eaton, 2021, 2023). However, so far deep learning models struggle with capturing and
utilizing compositionality in the data (Lake and Baroni, 2018; Loula et al., 2018; Keysers et al., 2020;
Bogin et al., 2021; Ma et al., 2023; Wiedemer et al., 2023).

Compositionality is relevant in both data domains that we considered in this dissertation: Visual
scenes are composed of individual objects which in turn are made of individual parts. Likewise, the
brain is a composition of cells which in turn consist of di�erent morphological compartments.

In Chapter 2, we analyzed object-centric models that explicitly build compositionality into their archi-
tectures to perform unsupervised object discovery inspired by human object perception. However,
current object-centric models hard-code the modularity and only encode one layer of abstraction
with commonly a fixed number of objects (Burgess et al., 2019; Locatello et al., 2019; Gre� et al., 2019;
Kipf et al., 2022; Seitzer et al., 2023). But the visual world is more complex and exhibits numerous
hierarchical levels of compositionality: Scenes consists of objects, which are composed of parts which
can often be broken down even further. Hence, going forward it would be desirable to design models
that can more flexible route information on multiple hierarchical levels and for di�erent numbers of
objects to take full advantage of the compositionality of the visual world (Hinton, 2021).

In Chapter 3, we proposed a model that learns representations of neuronal morphologies. Neurons
are complex structures which can be decomposed into di�erent neuronal compartments, such as
the soma, dendrites and the axon (Kandel et al., 2000). Recursively, the di�erent compartments
can be subdivided into smaller segments. However, compositionality of neurons is not as well
understood as for visual scenes. Dendritic trees of neurons might exhibit recurring branching
patterns or motifs that are not easily visible to humans. So far, compositionality has not been taken
into account when modeling neuronal morphologies. Going forward building compositionality
into the neuronal representations by building them up hierarchically would be an interesting future
research direction (see discussion in Section 3.4).

Thus, while the two data domains are di�erent in many regards, they are both hierarchically struc-
tured. But, while object-centric models already use compositionality as an inductive bias, neuronal
morphologymodels currently do not. This is due to the fact that less work in general has been done in
modeling neuronal morphologies using machine learning and we have a much better understanding
of what constitutes the individual parts in visual scenes . With GraphDINO we now have a capable
model for the global dendritic morphology of neurons that in the future can be adapted to exploit
compositionality. Going forward, both domains could profit from models that can utilize systematic
compositionality. However, research on leveraging compositionality in deep learning models is still
in its infancy and further work is needed to find the correct inductive biases to build models that can
take advantage of compositionality over abstract concepts (Smolensky et al., 2022).
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5 Outlook

Are strong inductive biases still necessary? In last years, the availability of data and compute
resources for machine learning has massively increased. There has been a rapid progress in the
development of increasingly powerful and specialized hardware for machine learning. Compute
resources used for training machine learning models have doubled every six months between 2010
and 2022 (Sevilla et al., 2022). Similarly, dataset sizes, especially those used for training large language
models and large computer vision models, have surged (Schuhmann et al., 2022; Common Crawl;
Kirillov et al., 2023). The increased availability of data and compute resources has changed the way
new machine learning methods are developed. It poses the question if is still necessary or desirable
to build prior knowledge and structure into machine learning systems in the form of inductive biases
or whether the right way forward is to have mostly unconstrained methods that learn from the
massive amounts of data everything they need to know about the world from scratch (LeCun and
Manning, 2018; Sutton, 2019; Welling, 2019).

Looking back at artificial intelligence history, general approaches that leveraged large amounts
of computation and data often outperformed models that were based on human-knowledge sys-
tems (Sutton, 2019). Chess was solved by performing deep search over the action space (Campbell
et al., 2002). Similarly, Go was solved using search strategies in combination with reinforcement
learning without explicitly encoding prior knowledge about the game into the model (Silver et al.,
2017).10 Current large language models like GPT-� show remarkable text-generating capabilities
without imposing formalized linguistic knowledge on the systems (OpenAI, 2023). Scaling data and
compute resources and solving the engineering challenges that accompany training models at scale
has brought machine learning systems a long way in solving a wide array of tasks. However, today’s
models are still far away from common sense reasoning and general intelligence. Consequently,
the question on how to best spend research resources, on finding the right structure or focusing on
scalable methods, is still highly relevant.

As discussed in Chapter 1, every model contains explicit and implicit inductive biases and they
are essential in the classical machine learning setting in which we try to learn general rules from
finite datasets. There is no generalization without them and they are especially important in the
low data regime. However, there is a trade-o� between how much structure needs to be set a priori
depending on how much data is available. With increasing dataset sizes and the creation of so called
foundation models (Bommasani et al., 2022), picking narrow and specific inductive biases becomes
less important. Instead of constraining the hypothesis space with inductive biases, more data can be
used to learn the rules from the data directly (Tolstikhin et al., 2021; Bachmann et al., 2023).

Following the recent trends in machine learning, one could conclude that researching the right
inductive biases for a task has become secondary and the more promising avenue is to invest in
scaling model size, compute resources and dataset sizes further. But equipping machine learning
models with appropriate priors has several advantages: (1) There will always be data domains in
which we cannot collect enough data to train large-scale models from scratch. As long as the correct
hypothesis is included, a constrained hypothesis space leads to more e�cient learning. (2) The goal
of science is to generate knowledge about the world. Creating large, well-performing models does
not necessarily further our understanding about the underlying data distribution. The objective

10While the first version of A����G� still relied on learning from human game play (Silver et al., 2016), the successor
model A����G� Z��� was trained without human knowledge (Silver et al., 2017). However, others have argued that the
design choices of A����G� Z��� encode prior knowledge and cannot be seen as tabular rasa learning as claimed by the
authors (Marcus, 2018).
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should rather be to find simple, constrained models that explain a phenomenon well. (3) Related to
that, training general models purely from data gives us less knowledge and control over what they
learn. Building in inductive biases or analyzing the ones of trainedmodels helps model explainability
and interpretability.

In domains such as natural language processing (NLP) and computer vision, nowadays large
datasets are available for numerous tasks and ample data can be collected at comparably little
cost by crawling the internet. Consequently, those are the domains with substantial progress in
machine learning in the last decade. However, this is not true for all data domains where machine
learning could be of use. There are many domains with limited available data and in which more
data cannot easily be generated. Even for domains with abundant data such as computer vision
or NLP, data is restricted to specific subdomains and tasks. For example, deep learning models
exhibit extraordinary performance in object classification for a fixed set of object classes. But the
distributions of all object classes in the world follows a long-tail distribution (Zhu et al., 2014). For
rare classes very little data is available. Similarly, large language models work incredibly well for
languages such as English which are well represented in the machine learning community and
their datasets. However, this is not the case for a large fraction of the world’s languages (Joshi
et al., 2020; Bommasani et al., 2022). There are numerous other domains for which data cannot
easily be generated such as medical data or experimental data for scientific research. Neuronal
morphologies is one such domain (see Chapter 3). The MICrONS dataset has an immense sample
size for neuronal morphologies (MICrONS Consortium et al., 2023), but it is far smaller than current
datasets in computer vision or NLP. Generating experimental data is incredibly time consuming and
costly. Hence, data availability in this realm will always be limited and researching the appropriate
inductive biases to leverage machine learning for data analysis in these domains is required.

Second, science aims to understand how the natural world works. In order to do so, scientists build
models that are simpler representations of a system or natural phenomenon in order to understand
its inner workings. If we look at machine learning models from the perspective of using them as tools
to generate scientific insights, creating large, general models with high accuracy on a certain task does
not necessarily further our understanding of the underlying data distribution. In contrast, if we can
find the right assumptions to train a simple model on limited data, the incorporated inductive biases
can give us insights into the underlying phenomena, since successful generalization implies that the
assumptions and the underlying problem are well aligned. Reversely, domain knowledge can help
us to build simpler and more e�cient machine learning models in that realm (see Chapter 3).

Third, machine learning models are more and more influencing our everyday life as part of many
applications. Training general models from large amounts of data gives us little control over which
decision functions they learn and makes it di�cult to understand which features were crucial for a
given prediction. However, especially in safety-critical applications it is imperative to know how and
when models work and even more importantly when they fail. Consciously equipping models with
inductive biases or analyzing the ones of trained models can help to understand their strengths and
weaknesses and therefore enhances model explainability and interpretability.

Last, progress in machine learning is usually measured as gain in performance. However, better
performance is not the only objective that should be taken into account when developing and
deploying machine learning models. We also need to consider the consequences and e�ects on a
broader societal level. We are in the midst of a human-induced climate change. Energy production is
(currently) not an unlimited resource and consequently we need to use it e�ciently. Training large
models from scratch is problematic since it is very energy intensive (Strubell et al., 2019; Bender et al.,
2021). Additionally, while inference is usually cheap in comparison, when done in large models
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millionfold per day the required energy amount is substantial (Desislavov et al., 2023). Moreover,
data has to be collected or generated and is not unbiased. If everything is learned from data, we
have to ensure that the models do not replicate the unfavourable or discriminating biases in the
data or even enhance them (Bender et al., 2021). Additionally, already today there is a concerning
development of an increasing number of underpaid workers, mostly in the Global South, to generate,
annotate and filter the massive amounts of data that are needed to feed the data-hungry models.
Depending on the data domain, there are also privacy issues to consider (Papernot et al., 2017).
Taken together, the performance of machine learning models should not be the only criterion in their
development, but societal consequences need to be considered as well.

All in all, finding machine learning algorithms with better inductive biases that allow us to learn
e�ciently with less energy consumption, from less data and that ensure not to blindly replicate biases
in the data is highly desirable. Furthermore, in the context of using machine learning for scientific
discovery the goal should be to find simple, constrained models that distill knowledge about the
world. Therefore, investing in researching the right inductive biases and finding the optimal trade-o�
between innate structure and learning is still highly relevant.
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Benchmarking unsupervised object representations for video
sequences

The following 61 pages have been published as:

Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas
Geiger, and Alexander S. Ecker. Benchmarking unsupervised object representations for video
sequences. Journal of Machine Learning Research (JMLR), 22(183):1–61, 2021.

A summary of the motivation, results, and discussion can be found in Section 2.2 on page 20.

Abstract
Perceiving the world in terms of objects and tracking them through time is a crucial prerequisite for
reasoning and scene understanding. Recently, several methods have been proposed for unsupervised
learning of object-centric representations. However, since these models were evaluated on di�erent
downstream tasks, it remains unclear how they compare in terms of basic perceptual abilities such
as detection, figure-ground segmentation and tracking of objects. To close this gap, we design
a benchmark with four data sets of varying complexity and seven additional test sets featuring
challenging tracking scenarios relevant for natural videos. Using this benchmark, we compare the
perceptual abilities of four object-centric approaches: V�MON, a video-extension of MON��, based
on recurrent spatial attention, OP�, which exploits clustering via spatial mixture models, as well as
TBA and SCALOR, which use explicit factorization via spatial transformers. Our results suggest that
the architectures with unconstrained latent representations learn more powerful representations in
terms of object detection, segmentation and tracking than the spatial transformer based architectures.
We also observe that none of the methods are able to gracefully handle the most challenging tracking
scenarios despite their synthetic nature, suggesting that our benchmarkmayprovide fruitful guidance
towards learning more robust object-centric video representations.
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Abstract

Perceiving the world in terms of objects and tracking them through time is a crucial
prerequisite for reasoning and scene understanding. Recently, several methods have been
proposed for unsupervised learning of object-centric representations. However, since these
models were evaluated on different downstream tasks, it remains unclear how they compare
in terms of basic perceptual abilities such as detection, figure-ground segmentation and
tracking of objects. To close this gap, we design a benchmark with four data sets of varying
complexity and seven additional test sets featuring challenging tracking scenarios relevant
for natural videos. Using this benchmark, we compare the perceptual abilities of four
object-centric approaches: ViMON, a video-extension of MONet, based on recurrent
spatial attention, OP3, which exploits clustering via spatial mixture models, as well as
TBA and SCALOR, which use explicit factorization via spatial transformers. Our results
suggest that the architectures with unconstrained latent representations learn more powerful
representations in terms of object detection, segmentation and tracking than the spatial
transformer based architectures. We also observe that none of the methods are able to
gracefully handle the most challenging tracking scenarios despite their synthetic nature,
suggesting that our benchmark may provide fruitful guidance towards learning more robust
object-centric video representations.

Keywords: Unsupervised learning, object-centric representations, benchmark, tracking,
segmentation
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1. Introduction

Humans understand the world in terms of objects (Marr, 1982; Spelke and Kinzler, 2007;
Johnson, 2018). Being able to decompose our environment into independent objects that can
interact with each other is an important prerequisite for reasoning and scene understanding
(Spelke, 1988). Similarly, an artificial intelligence system would benefit from the ability to
represent visual scenes in a structured way (Ullman et al., 2017; Lake et al., 2017; Greff et al.,
2020) by both extracting objects and their interactions from video streams, and keeping
track of them over time.

Recently, there has been an increased interest in unsupervised learning of object-centric
representations. The key insight of these methods is that the compositionality of visual scenes
can be used to both discover (Eslami et al., 2016; Greff et al., 2019; Burgess et al., 2019)
and track objects in videos (Greff et al., 2017; van Steenkiste et al., 2018; Veerapaneni et al.,
2020) without supervision. However, it is currently not well understood how the learned
visual representations of different models compare to each other quantitatively, since the
models have been developed with different downstream tasks in mind and have not been
evaluated using a common protocol. Hence, in this work, we propose a benchmark based on
procedurally generated video sequences to test basic perceptual abilities of object-centric
video models under various challenging tracking scenarios.

An unsupervised object-based video representation should (1) effectively identify objects
as they enter a scene, (2) accurately segment objects, as well as (3) maintain a consistent
representation for each individual object in a scene over time. These perceptual abilities can
be evaluated quantitatively in the established multi-object tracking framework (Bernardin
and Stiefelhagen, 2008; Milan et al., 2016). We propose to utilize this protocol for analyzing
the strengths and weaknesses of different object-centric representation learning methods,
independent of any specific downstream task, in order to uncover the different inductive
biases hidden in their choice of architecture and loss formulation. We therefore compiled
a benchmark consisting of four procedurally generated video data sets of varying levels of
visual complexity and two generalization tests. Using this benchmark, we quantitatively
compared three classes of object-centric models, leading to the following insights:

• All of the models have shortcomings handling occlusion, albeit to different extents.
• OP3 (Veerapaneni et al., 2020) performs strongest in terms of quantitative metrics, but

exhibits a surprisingly strong dependency on color to separate objects and accumulates
false positives when fewer objects than slots are present.

• Spatial transformer models, TBA (He et al., 2019) and SCALOR (Jiang et al., 2020),
train most efficiently and feature explicit depth reasoning in combination with amodal
masks, but are nevertheless outperformed by the simpler model, ViMON, lacking a
depth or interaction model, suggesting that the proposed mechanisms may not yet
work as intended.

Our code, data, as well as a public leaderboard of results is available at https://
eckerlab.org/code/weis2021/.
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2. Related work

Several recent lines of work propose to learn object-centric representations from visual inputs
for static and dynamic scenes without explicit supervision. Though their results are promising,
methods are currently restricted to handling synthetic data sets and as of yet are unable
to scale to complex natural scenes. Furthermore, a systematic quantitative comparison of
methods is lacking.

Selecting and processing parts of an image via spatial attention has been one prominent
approach for this task (Mnih et al., 2014; Eslami et al., 2016; Kosiorek et al., 2018; Burgess
et al., 2019; Yuan et al., 2019; Crawford and Pineau, 2019). As an alternative, spatial
mixture models decompose scenes by performing image-space clustering of pixels that belong
to individual objects (Greff et al., 2016, 2017, 2019; van Steenkiste et al., 2018; Locatello
et al., 2020). Xu et al. (2019) use optic flow to learn to segment objects or object parts
in dynamic scenes. While some approaches aim at learning a suitable representation for
downstream tasks (Watters et al., 2019a; Veerapaneni et al., 2020), others target scene
generation (Engelcke et al., 2020; Kügelgen et al., 2020; Ehrhardt et al., 2020; Jiang and
Ahn, 2020). We analyze three classes of models for processing videos, covering three models
based on spatial attention and one based on spatial mixture modeling.

Spatial attention models with unconstrained latent representations use per-
object variational autoencoders, as introduced by Burgess et al. (2019). Kügelgen et al.
(2020) adapt this approach for scene generation. So far, such methods have been designed
for static images, but not for videos. We therefore extend MONet (Burgess et al., 2019) to
be able to accumulate evidence over time for tracking, enabling us to include this class of
approaches in our evaluation. Recent concurrent work on AlignNet (Creswell et al., 2020)
applies MONet frame-by-frame and tracks objects by subsequently ordering the extracted
objects consistently.

Spatial attention models with factored latents use an explicit factorization of the
latent representation into properties such as position, scale and appearance (Eslami et al., 2016;
Crawford and Pineau, 2019). These methods use spatial transformer networks (Jaderberg
et al., 2015) to render per-object reconstructions from the factored latents (Kosiorek et al.,
2018; He et al., 2019; Jiang et al., 2020). SQAIR (Kosiorek et al., 2018) does not perform
segmentation, identifying objects only at the bounding-box level. Henderson and Lampert
(2020) explicitly reason about the underlying 3D scene structure. We select Tracking-by-
Animation (TBA) (He et al., 2019) and SCALOR (Jiang et al., 2020) for analyzing spatial
transformer methods in our experiments, which explicitly disentangle object shape and
appearance, providing access to object masks.

Spatial mixture models cluster pixels using a deep neural network trained with ex-
pectation maximization (Greff et al., 2017; van Steenkiste et al., 2018). IODINE (Greff
et al., 2019) extends these methods with an iterative amortised variational inference pro-
cedure (Marino et al., 2018), improving segmentation quality. SPACE (Lin et al., 2020)
combines mixture models with spatial attention to improve scalability. To work with video
sequences, OP3 (Veerapaneni et al., 2020) extends IODINE by modeling individual objects’
dynamics as well as pairwise interactions. We therefore include OP3 in our analysis as a
representative spatial mixture model.
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Objects Background

Data Set Shape Motion Count Over Sequence Size Variation Orientation Color Motion Color

SpMOT 4 Templates (2D) Linear Varies (0-3) Minimal Fixed 6 Colors None Black
VOR 2 Templates (3D) Static Varies (0-4) Moderate Random 6 Colors Moving Camera Random
VMDS 3 Templates (2D) Non-Linear Fixed (1-4) Moderate Random 2563 Colors None 2563 Colors
texVMDS 3 Templates (2D) Non-Linear Fixed (1-4) Moderate Random ImageNet textures Linear ImageNet crop

Table 1: Summary of data sets and example video sequences. See Appendix B for details.

3. Object-Centric Representation Benchmark

To compare the different object-centric representation learning models on their basic percep-
tual abilities, we use the well-established multi-object tracking (MOT) protocol (Bernardin
and Stiefelhagen, 2008). In this section, we describe the data sets and metrics considered in
our benchmark, followed by a brief description of the models evaluated.

3.1 Data Sets

Current object-centric models are not capable of modeling complex natural scenes (Burgess
et al., 2019; Greff et al., 2019; Lin et al., 2020). Hence, we focus on synthetic data sets that
resemble those which state-of-the-art models were designed for. Specifically, we evaluate
on four synthetic data sets1 (see Table 1), which cover multiple levels of visual and motion
complexity. Synthetic stimuli enable us to precisely generate challenging scenarios in a
controllable manner in order to disentangle sources of difficulty and glean insights on what
models specifically struggle with. We design different scenarios that test complexities that
would occur in natural videos such as partial or complete occlusion as well as similar object
appearances and complex textures.

Sprites-MOT (SpMOT, Table 1 left), as proposed by He et al. (2019), features simple
2D sprites moving linearly on a black background with objects moving in and out of frame
during the sequence. Video-Multi-dSprites (VMDS, Table 1 right) is a video data set we
generated based on a colored, multi-object version of the dSprites data set (Matthey et al.,
2017). Each video contains one to four sprites that move non-linearly and independently
of each other with the possibility of partial or full occlusion. Besides the i.i.d. sampled
training, validation and test sets of VMDS, we generate seven additional challenge sets that
we use to study specific test situations we observed to be challenging, such as guaranteed
occlusion, specific object properties, or out-of-distribution appearance variations. Video
Objects Room (VOR, Table 1 middle) is a video data set we generated based on the static
Objects Room data set (Burgess et al., 2019), which features static objects in a 3D room
with a moving camera. Textured Video-Multi-dSprites (texVMDS, Table 3) is based
on the generative model of VMDS regarding shapes, number and movement dynamics of
the objects, but instead of being uniformly colored the objects feature random texture crops
taken from ImageNet (Deng et al., 2009). Additionally, the background is a linearly moving
ImageNet crop. For full details on the data sets and their generation, see Appendix B.

1Data sets are available at this URL.
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3.2 Metrics

Our evaluation protocol follows the multi-object tracking (MOT) challenge, a standard
and widely-used benchmark for supervised object tracking (Milan et al., 2016). The MOT
challenge uses the CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008), which quantita-
tively evaluate different performance aspects of object detection, tracking and segmentation.
To compute these metrics, predictions have to be matched to ground truth. Unlike Bernardin
and Stiefelhagen (2008) and Milan et al. (2016), we use binary segmentation masks for
this matching instead of bounding boxes, which helps us better understand the models’
segmentation capabilities. We consider an Intersection over Union (IoU) greater than 0.5
as a match (Voigtlaender et al., 2019). We include an ablation experiment to test how this
threshold affects the results. The error metrics used are the fraction of Misses (Miss),
ID switches (ID S.) and False Positives (FPs) relative to the number of ground truth
masks. In addition, we report the Mean Squared Error (MSE) of the reconstructed
image outputs summed over image channels and pixels.

To quantify the overall number of failures, we use the MOT Accuracy (MOTA), which
measures the fraction of all failure cases compared to the total number of objects present in
all frames. A model with 100% MOTA perfectly tracks all objects without any misses, ID
switches or false positives. To quantify the segmentation quality, we define MOT Precision
(MOTP) as the average IoU of segmentation masks of all matches. A model with 100%
MOTP perfectly segments all tracked objects, but does not necessarily track all objects.
Further, to quantify detection and tracking performance independent of false positives, we
measure the Mostly Detected (MD) and Mostly Tracked (MT) metrics, the fraction
of ground truth objects that have been detected and tracked for at least 80% of their lifespan,
respectively. If an ID switch occurs, an object is considered detected but not tracked. For
full details regarding the matching process and the evaluation metrics, refer to Appendix A.

3.3 Models

We consider one color-segmentation baseline and three classes of unsupervised object-centric
representation learning models: (1) a spatial attention model with unconstrained latents, Vi-

MON, which is our video extension of MONet (Burgess et al., 2019); (2) spatial transformer-
based attention models, TBA (He et al., 2019) and SCALOR (Jiang et al., 2020); (3) a
scene mixture model, OP3 (Veerapaneni et al., 2020). At a high-level, these methods share
a common structure which is illustrated in Fig. 1a. They decompose an image into a fixed
number of slots (Burgess et al., 2019), each of which contains an embedding zt,k and a
mask mt,k of (ideally) a single object. These slots are then combined in a decoding step
to reconstruct the image. Below, we briefly describe each method. Appendix C provides a
detailed explanation of the methods in a unified mathematical framework.

As a simple baseline, we evaluate the performance of k-Means clustering on the RGB
pixel values on a per frame basis and tracking performance by frame-to-frame matching
based on the IoU of the segmentation masks using Hungarian matching (Kuhn, 1955). For
full details refer to Appendix D.1.

Video MONet (ViMON) is our video extension of MONet (Burgess et al., 2019).
MONet recurrently decomposes a static scene into slots, using an attention network to
sequentially extract attention masks mk 2 [0, 1]H⇥W of individual objects k. A Variational
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Figure 1: Common principles of all models: Decomposition of an image into a fixed number
of slots, each of which contains an embedding zt,k and a mask mt,k of (ideally) a single object.
Dotted lines: temporal connections. Solid lines: information flow within one frame.

Autoencoder (VAE) (Kingma and Welling, 2014) encodes each slot into a latent representation
zk 2 RL of the corresponding object. We use MONet as a simple frame-by-frame baseline
for detection and segmentation that does not employ temporal information. ViMON

accumulates evidence about the objects over time to maintain a consistent object-slot
assignment throughout the video. This is achieved by (1) seeding the attention network the
predicted mask bmt,k 2 [0, 1]H⇥W from the previous time step and (2) introducing a gated
recurrent unit (GRU) (Cho et al., 2014), which aggregates information over time for each
slot separately, enabling it to encode motion information. For full details on MONet and
ViMON, as well as information regarding hyperparameter tuning and ablations to provide
context for the design decisions, refer to Appendix C.1, C.2 and E.3.

Tracking-by-Animation (TBA) (He et al., 2019) is a spatial transformer-based atten-
tion model. Frames are encoded by a convolutional feature extractor f before being passed
to a recurrent block g called Reprioritized Attentive Tracking (RAT). RAT re-weights slot
input features based on their cosine similarity with the slots from the previous time step
and outputs latent representations for all K slots in parallel. Each slot latent is further
decoded into a mid-level representation yt,k consisting of pose and depth parameters, as well
as object appearance and shape templates (see Fig. 1c). For rendering, a Spatial Transformer
Network (STN) (Jaderberg et al., 2015) is used with an additional occlusion check based
on the depth estimate. TBA is trained on frame reconstruction with an additional penalty
for large object sizes to encourage compact bounding boxes. TBA can only process scenes
with static backgrounds, as it preprocesses sequences using background subtraction (Bloisi
and Iocchi, 2012). For full details on TBA as well as information regarding hyperparameter
tuning, refer to Appendix C.3.

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al.,
2020) extends IODINE (Greff et al., 2019) to operate on videos. IODINE decomposes an
image into objects and represents them independently by starting from an initial guess of the
segmentation of the entire frame, and subsequently iteratively refines it using the refinement
network f (Marino et al., 2018). In each refinement step m, the image is represented by K
slots with latent representations zm,k. OP3 applies IODINE to each frame xt to extract
latent representations zt,m,k, which are subsequently processed by a dynamics network d (see
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Model MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #

SpMOT

k-Means 36.2 ± 0.0 77.6 ± 0.0 76.8 ± 0.0 76.3 ± 0.0 80.5 ± 0.0 19.3 ± 0.0 0.2 ± 0.0 44.3 ± 0.0 -
MONet 70.2 ± 0.8 89.6 ± 1.0 92.4 ± 0.6 50.4 ± 2.4 75.3 ± 1.3 4.4 ± 0.4 20.3 ± 1.6 5.1 ± 0.5 13.0 ± 2.0

ViMON 92.9 ± 0.2 91.8 ± 0.2 87.7 ± 0.8 87.2 ± 0.8 95.0 ± 0.2 4.8 ± 0.2 0.2 ± 0.0 2.1 ± 0.1 11.1 ± 0.6

TBA 79.7 ± 15.0 71.2 ± 0.3 83.4 ± 9.7 80.0 ± 13.6 87.8 ± 9.0 9.6 ± 6.0 2.6 ± 3.0 8.1 ± 6.0 11.9 ± 1.9

OP3 89.1 ± 5.1 78.4 ± 2.4 92.4 ± 4.0 91.8 ± 3.8 95.9 ± 2.2 3.7 ± 2.2 0.4 ± 0.0 6.8 ± 2.9 13.3 ± 11.9

SCALOR 94.9 ± 0.5 80.2 ± 0.1 96.4 ± 0.1 93.2 ± 0.7 95.9 ± 0.4 2.4 ± 0.0 1.7 ± 0.4 1.0 ± 0.1 3.4 ± 0.1

VOR

k-Means -38.0 ± 0.1 76.5 ± 0.0 69.9 ± 0.1 62.9 ± 0.1 72.7 ± 0.1 22.1 ± 0.0 5.2 ± 0.0 110.7 ± 0.1 -
MONet 37.0 ± 6.8 81.7 ± 0.5 76.9 ± 2.2 37.3 ± 7.8 64.4 ± 5.0 15.8 ± 1.6 19.8 ± 3.5 27.4 ± 2.3 12.2 ± 1.4

ViMON 89.0 ± 0.0 89.5 ± 0.5 90.4 ± 0.5 90.0 ± 0.4 93.2 ± 0.4 6.5 ± 0.4 0.3 ± 0.0 4.2 ± 0.4 6.4 ± 0.6

OP3 65.4 ± 0.6 89.0 ± 0.6 88.0 ± 0.6 85.4 ± 0.5 90.7 ± 0.3 8.2 ± 0.4 1.1 ± 0.2 25.3 ± 0.6 3.0 ± 0.1
SCALOR 74.6 ± 0.4 86.0 ± 0.2 76.0 ± 0.4 75.9 ± 0.4 77.9 ± 0.4 22.1 ± 0.4 0.0 ± 0.0 3.3 ± 0.2 6.4 ± 0.1

VMDS

k-Means -3.3 ± 0.0 89.8 ± 0.0 98.3 ± 0.0 93.3 ± 0.1 96.4 ± 0.0 1.0 ± 0.0 2.6 ± 0.0 99.7 ± 0.0 -
MONet 49.4 ± 3.6 78.6 ± 1.8 74.2 ± 1.7 35.7 ± 0.8 66.7 ± 0.7 13.6 ± 1.0 19.7 ± 0.6 17.2 ± 3.1 22.2 ± 2.2

ViMON 86.8 ± 0.3 86.8 ± 0.0 86.2 ± 0.3 85.0 ± 0.3 92.3 ± 0.2 7.0 ± 0.2 0.7 ± 0.0 5.5 ± 0.1 10.7 ± 0.1

TBA 54.5 ± 12.1 75.0 ± 0.9 62.9 ± 5.9 58.3 ± 6.1 75.9 ± 4.3 21.0 ± 4.2 3.2 ± 0.3 21.4 ± 7.8 28.1 ± 2.0

OP3 91.7 ± 1.7 93.6 ± 0.4 96.8 ± 0.5 96.3 ± 0.4 97.8 ± 0.1 2.0 ± 0.1 0.2 ± 0.0 6.1 ± 1.5 4.3 ± 0.2
SCALOR 74.1 ± 1.2 87.6 ± 0.4 67.9 ± 1.1 66.7 ± 1.1 78.4 ± 1.0 20.7 ± 1.0 0.8 ± 0.0 4.4 ± 0.4 14.0 ± 0.1

Table 2: Analysis of SOTA object-centric representation learning models for MOT. Results
shown as mean ± standard deviation of three runs with different random training seeds.

Fig. 1d), which models both the individual dynamics of each slot k as well as the pairwise
interaction between all combinations of slots, aggregating them into a prediction of the
posterior parameters for the next time step t+ 1 for each slot k. For full details on IODINE

and OP3, refer to Appendix C.4 and C.5, respectively.

SCALable Object-oriented Representation (SCALOR) (Jiang et al., 2020) is a
spatial transformer-based model that factors scenes into background and multiple foreground
objects, which are tracked throughout the sequence. Frames are encoded using a convolutional
LSTM f . In the proposal-rejection phase, the current frame t is divided into H⇥W grid cells.
For each grid cell a object latent variable zt,h,w is proposed, that is factored into existence,
pose, depth and appearance parameters. Subsequently, proposed objects that significantly
overlap with a propagated object are rejected. In the propagation phase, per object GRUs
are updated for all objects present in the scene. Additionally, SCALOR has a background
module to encode the background and its dynamics. Frame reconstructions are rendered
using a background decoder and foreground STNs for object masks and appearance. For
full details on SCALOR as well as information regarding hyperparameter tuning, refer to
Appendix C.6.

4. Results

We start with a summary of our overall results across the three data sets and four models
(Table 2) before analyzing more specific challenging scenarios using variants of the VMDS
data set.
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A simple color segmentation algorithm is not sufficient to solve tracking even in simplistic
data sets (Table 2), in which color is a good predictor for object identity. While k-Means

does well at detecting objects, on VMDS even outperforming the other models, its overall
tracking performance is significantly worse than the other models, mainly due to a high
number of false positives and in SpMOT and VOR also due to a high number of misses,
which occur in these two data sets due to multiple objects often having the same color, which
a color segmentation algorithm is by definition not able to separate. In the following, we will
therefore focus on analyzing the object-centric methods.

We first ask whether tracking could emerge automatically in an image-based model like
MONet, which may produce consistent slot assignments through its learned object-slot
assignment. This is not the case: MONet exhibits poor tracking performance (Table 2).
While MONet correctly finds and segments objects, it does not assign them to consistent
slots over time (Fig. E.4). In the following, we will thus focus on the video models: ViMON,
TBA, OP3 and SCALOR.

SpMOT. All models perform tracking well on SpMOT with the exception of one training
run of TBA with poor results leading to high standard deviation (cp. best TBA model:
89.8% MT; Table E.1). SCALOR outperforms the other models on the detection and
tracking metrics MD and MT, while ViMON exhibits the highest MOTP, highlighting its
better segmentation performance on SpMOT.

VOR. TBA is not applicable to VOR due to the dynamic background which cannot be
resolved using background subtraction. ViMON and OP3 show similarly good performance
on detection (MD) and segmentation (MOTP), while ViMON outperforms OP3 on the
tracking metrics MOTA and MT. OP3 accumulates a high number of false positives leading
to a low MOTA due to the splitting of objects into multiple masks as well as randomly
segmenting small parts of the background (Fig. E.5). In contrast, SCALOR has almost no
false positives or ID switches, but accumulates a high number of misses leading to a poor
MOTA. It often segments two objects as one that are occluding each other in the first frame,
which is common in VOR due to the geometry of its scenes (Fig. F.17, last row).

VMDS. OP3 outperforms the other models on VMDS, on which TBA performs poorly,
followed by SCALOR, which again accumulates a high number of misses. We will analyze
the models on VMDS qualitatively and quantitatively in more detail in the following.

4.1 Impact of IoU Threshold for Matching

To examine whether the IoU threshold used for matching object predictions to ground truth
impacts the ordering of the models, we compute all metrics with regard to the IoU thresholds
[0.1 .. 0.9] in steps of 0.1 on the VMDS test set. The ordering of the models with regard to
their MOTA is consistent over all matching thresholds except for a threshold of 0.9, but the
performance difference between the models increases with higher thresholds (Fig. 2a). Thus,
we will perform all following experiments with an IoU threshold of 0.5. For all metrics, see
Fig. E.6 in Appendix.

4.2 Accumulation of Evidence over Time

Recognition and tracking of objects should improve if models can exploit prior knowledge
about the objects in the scene from previous video frames. To test whether the models
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(a) (b) (c)

Figure 2: a) MOTA and MOTP performance of models shown for different IoU threshold
used for matching model predictions to ground truth objects. Note that MOTA can become
negative, since the number of FPs is unbounded. b) MOTA on frames 11–20 of the VMDS
test set with warm starts of 1–10 frames (0 = no warm start). Difference to performance of
warm start = 2 shown. c) Distribution of failure cases dependent on number of objects in
VMDS videos. Mean of three training runs. Error bars: standard deviation.

exploit such knowledge, we evaluate their MOTA performance on VMDS after warm starting
with up to 10 frames which are not included in evaluation (Fig. 2b). Note that the models
were trained on sequences of length 10, but are run for 20 frames in the case of a warm
start of 10 frames. The performance of ViMON improves with longer warm starts, showing
that the GRU accumulates evidence over time. TBA, in contrast, does not use temporal
information beyond 2–3 frames, while SCALOR’s performance slightly drops after 3 frames.
OP3 appears to most strongly rely on past information and is able to integrate information
over longer time scales: its performance does not even saturate with a warm start of 10
frames. However, the effect for all models is rather small.

4.3 Challenging Scenarios for Different Models

The number of objects in the sequence matters for ViMON, TBA and SCALOR: more
objects increase the number of failure cases (Fig. 2c). In contrast, OP3 does not exhibit this
pattern: it accumulates a higher number of false positives (FPs) in videos with fewer (only
one or two) objects (Fig. E.1), as it tends to split objects into multiple slots if fewer objects
than slots are present.

Occlusion leads to failure cases for all models (Fig. 3a–b). Partial occlusion can lead to
splitting of objects into multiple slots (Fig. 3a). Objects that reappear after full occlusion
are often missed when only a small part of them is visible (Fig. 3a). In particular, SCALOR

tends to segment two objects as one when they overlap while entering the scene, leading to a
high number of misses.

Color of the object is important. TBA often misses dark objects (Fig. 3b). In contrast,
ViMON, OP3 and SCALOR struggle with scenes that feature objects of similar colors as
well as objects that have similar colors to the background (Fig. 3c,e).

False positives are more prevalent for OP3 and TBA than for ViMON and SCALOR

(Table 2). FPs of OP3 are due to objects split in multiple masks (Fig. 3a) and random
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Figure 3: Example failure cases for all models on VMDS. Segmentation masks are binarized
and color-coded to signify slot assignment.

small parts of the background being individually segmented (Fig. 3e), while TBA tends to
compose larger objects using multiple smaller, simpler components (Fig. 3d).

4.4 Performance on Challenge Sets

Based on the challenging scenarios identified above, we design multiple ‘challenge sets’: videos
featuring (1) heavy occlusion, (2) objects with same colors, (3) only small objects and (4)
only large objects (Fig. 4a, top). For details, see Appendix B.1.1.

Occlusion reduces performance of all models compared with the i.i.d. sampled VMDS
test set, albeit to different degrees (Fig. 4a; for absolute performance see Table E.3). OP3 is
more robust to occlusion than the other models.

Tracking objects with the same color is challenging for all models (Fig. 4a). In particular,
OP3 appears to rely on object color as a way to separate objects.

OP3, ViMON and SCALOR are not sensitive to object size (Fig. 4a). They exhibit
only slightly decreased performance on the large objects test set, presumably because large
objects cause more occlusion (Fig. 4a). TBA shows increased performance on small objects
but performs poorly on the large objects set.
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Figure 4: a) Performance on challenge sets relative to performance on VMDS test set (100%)
and example video sequences. b) Performance on out-of-distribution sets relative to VMDS
test set (100%) and example video sequences. Note that MOTA can become negative, since
the number of FPs is unbounded.

4.5 Performance on Out-of-distribution Test Sets

Next, we assess generalization to out-of-distribution (o.o.d.) changes in object appearance
that are not encountered during training. In the training set of VMDS, object color, size
and orientation are constant throughout a video. To test o.o.d. generalization, we evaluate
models trained on VMDS on three data sets that feature unseen object transformations
(Fig. 4b and Table E.4): continuous changes in object color or size as well as continuous
rotation around the object’s centroid while moving. For details, see Appendix B.1.2.

Continuous changes in object size do not pose a serious problem to TBA, OP3 and
SCALOR, while ViMON’s performance drops (Fig. 4b). Surprisingly, continuous color
changes of objects do not impact the performance of any model. Tracking performance of
ViMON drops significantly for rotated objects, while OP3 and SCALOR are affected less.
TBA’s tracking performance is not as strongly influenced by object rotation (for absolute
values, see Table E.4).

4.6 Stability of Training and Runtime

TBA and SCALOR train faster and require less memory than OP3 and ViMON (see
Table E.5 for details). However, two training runs converged to suboptimal minima for
TBA (note the high variance in Table 2 and see Table E.1 and Table E.2 for individual
runs). Training OP3 is sensitive to the learning rate and unstable, eventually diverging in all
experiments. Interestingly, it often reached its best performance directly prior to divergence.
ViMON and TBA are less sensitive to hyperparameter settings in our experiments. For a
more detailed analysis of the runtime, see Appendix E.2.
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Model MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #

texVMDS

k-Means -99.5 ± 0.0 76.4 ± 0.0 25.3 ± 0.0 24.3 ± 0.1 30.3 ± 0.0 69.2 ± 0.0 0.5 ± 0.0 129.8 ± 0.0 -
MONet -73.3 ± 5.5 67.7 ± 1.1 16.0 ± 3.4 12.3 ± 3.1 24.7 ± 4.7 73.1 ± 5.1 2.2 ± 0.8 98.0 ± 1.7 200.5 ± 5.7

ViMON -85.5 ± 2.8 69.0 ± 0.6 24.2 ± 1.3 23.8 ± 1.4 34.7 ± 1.7 65.0 ± 1.7 0.3 ± 0.0 120.2 ± 2.5 171.4 ± 3.3

OP3 -110.4 ± 4.3 70.6 ± 0.6 16.5 ± 5.1 16.2 ± 5.0 22.9 ± 6.6 76.9 ± 6.7 0.2 ± 0.1 133.4 ± 2.9 132.8 ± 16.2
SCALOR -99.2 ± 11.7 74.0 ± 0.5 6.5 ± 0.6 6.3 ± 0.6 12.3 ± 0.4 87.5 ± 0.4 0.2 ± 0.0 111.5 ± 11.4 133.7 ± 11.1

Table 3: MOT performance on texVMDS and example video sequences. Results shown as
mean ± standard deviation of three runs with different random training seeds. Note that
MOTA can become negative, since the number of FPs is unbounded.

4.7 Towards natural data

Object-centric methods have mostly been shown to work on synthetic data sets and seem to
rely to a certain extent on color segmentation. To quantify how these methods fare with
more realistic images, we created a fourth data set that keeps the simple scene composition of
VMDS (1–4 object and few shapes), but has a higher level of visual complexity. To this end,
we generated moving object masks as in VMDS, but filled each object and the background
with the content of a different image taken from ImageNet (Table 3, bottom). We refer to
this data set as texVMDS. Humans can easily detect objects in these video through motion
cues,2 while the evaluated models fail at detecting and tracking objects in this data set
(Table 3).

Most of the statistics of the objects in texVMDS are identical to those of VMDS (shape,
size, velocity, number of objects); the main difference is the visual complexity of the object
and background texture. We therefore tune the dimensionality of the latent space for
MONet and SCALOR, to account for the higher visual complexity, while keeping all
other hyperparameters identical to VMDS. OP3 already has a significantly larger latent
dimensionality and uses that for synthetic as well as natural data in their publication.
Therefore we keep these hyperparameters. For full details see Appendix D.

TBA is not applicable to texVMDS due to the dynamic background which cannot be
resolved using background subtraction. All other models perform poorly. They fail to learn
the object boundaries despite the fact that there are only four different object shapes and
objects and background move independently, which makes them easy to tell apart for humans.
Moreover, they generate large amounts of false positives, often using multiple slots for the
background or an object, with the split between slots mostly following color changes (see
Fig. F.8, Fig. F.14, Fig. F.18).

5. Discussion

Our experimental results provide insights into the inductive biases and failure cases of
object-centric models that were not apparent from their original publications. Despite

2See https://eckerlab.org/code/weis2021/ for example videos.
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the positive results shown in each of the papers for the evaluated methods, a controlled,
systematic analysis demonstrates that they do not convincingly succeed at tracking, which is
fundamentally what object-centric video methods should enable.

TBA has a significantly lower MOTP than the other models on all datasets, suggesting
that the simple rendering-based decoder using a fixed template might be less suitable to
generate accurate segmentation masks (see also Fig. F.10 and Fig. F.9) compared to the
VAE-based approaches of ViMON, OP3 and SCALOR.

Handling occlusion of objects during the video is a key property object-centric repre-
sentations should be capable of. Qualitatively and quantitatively, OP3 is more robust to
occlusion than the other models, suggesting that its dynamics network which models interac-
tions between objects is currently most successful at modeling occluded objects. Surprisingly,
TBA and SCALOR, which explicitly encode depth, do not handle occlusion more gracefully
than ViMON, whose simpler architecture has no explicit way of dealing with depth. Moving
forward, occlusion handling is a key component that object-centric video models need to
master. It can be addressed by either equipping the model with a potent interaction module,
that takes pairwise interaction between objects (including occlusion) into account, similar
to OP3’s dynamics model, or ensuring that the depth reasoning of the models works as
intended, which may be preferable, as explained below.

All models struggle with detecting objects that have similar color as the background (for
TBA: dark objects, since background is removed and set to black in a pre-processing step).
Color is a reliable cue to identify objects in these datasets. However, the auto-encoding
objective incurs little extra loss for missing objects with similar color as the background and,
thus, the models appear to not to learn to properly reconstruct them. In order to scale to
data with more visual complexity, one might want to replace the pixel-wise reconstruction
with for instance a loss based in feature space in order to focus more on reconstructing
semantic content rather than high-frequency texture, as is done when using perceptual loss
functions (Gatys et al., 2015; Hou et al., 2017) or by using contrastive learning (Kipf et al.,
2020). Furthermore, the models—particularly so OP3—struggle with separating objects
of similar colors from each other. This result hints at a mismatch between the intuitions
motivating these models and what the models actually learn: it should be more efficient in
terms of the complexity of the latent representation to decompose two objects—even of similar
colors—into two masks with simple shapes, rather than encoding the more complicated
shape of two objects simultaneously in one slot. However, since none of the models handle
occlusion with amodal segmentation masks (i. e. including the occluded portion of the object)
successfully, they learn to encode overly complex (modal) mask shapes. As a consequence,
they tend to merge similarly colored objects into one slot. This result suggests that resolving
the issues surrounding the depth reasoning in combination with amodal segmentation masks
would enable much more compact latents and could also resolve the merging of similarly
colored objects.

A major difference between models is the spatial transformer based model formulation
of TBA and SCALOR, compared to ViMON and OP3, which operate on image-sized masks.
The parallel processing of objects and the processing of smaller bounding boxes renders
training TBA and SCALOR to be significantly faster and more memory efficient, enabling
them to scale to a larger number of objects. On the downside, the spatial transformer
introduces its own complications. TBA depends strongly on its prior on object size and
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performs well only when this prior fits the data well as well as when the data contains little
variation in object sizes, as in SpMOT (Table 2). However, it is not able to handle VMDS
and its larger variation in object sizes and shapes. SCALOR performs tracking well in scenes
where objects are clearly separated, but struggles to separate objects that partially occlude
each other when entering the scene. This difficulty is caused by its discovery mechanism
which can propose at most one bounding box per grid cell, leading to a high number of
misses on data sets which feature significant occlusion (VOR and VMDS). Unfortunately,
simply increasing the number of proposals does not provide a simple solution, as SCALOR’s
performance is sensitive to properly tweaking the number of proposals.

Choosing a class of models is therefore dependent on the data set one wants to apply
it to as well as the computational resources at one’s disposal. Data sets that feature a
high number of objects (>10) that are well separated from each other make a method like
SCALOR, which can process objects in parallel, advisable. On data sets with a lower number
of objects per scene which feature heavy occlusion, methods like OP3 and ViMON will likely
achieve better results, but require a high computational budget for training.

In conclusion, our analysis shows that none of the models solve the basic challenges of
tracking even for relatively simple synthetic data sets. Future work should focus on developing
robust mechanisms for reliably handling depth and occlusion, additionally combining the
transformer-based efficiency of TBA and SCALOR with the stable training of ViMON

and the interaction model of OP3. The key open challenges for scaling these models to
natural videos include their computational inefficiency, complex training dynamics, as well
as over-dependence on simple appearance cues like color.
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Appendices

In the appendix, we first discuss the metrics used (Section A) and describe the data
generation process (Section B). We then describe the methods MONet, ViMON, TBA,
IODINE, OP3 and SCALOR (Section C). Section D contains information regarding the
implementation details and training protocols. Finally, we provide additional qualitative and
quantitative experimental results in Section E.

Appendix A. Evaluation Protocol Details

We quantitatively evaluate all models on three data sets using the standard CLEAR MOT
metrics (Bernardin and Stiefelhagen, 2008). Our evaluation protocol is adapted from the
multi-object tracking (MOT) challenge (Milan et al., 2016), a standard computer vision
benchmark for supervised object tracking. In particular, we focus on the metrics provided
by the py-motmetrics package3.

A.1 Mapping

In each frame, object predictions of each model in the form of binary segmentation masks
are mapped to the ground truth object segmentation masks. We require that each pixel is
uniquely assigned to at most one object in the ground truth and the predictions, respectively.
Matching is based on the Intersection over Union (IoU) between the predictions and the
ground truth masks (Voigtlaender et al., 2019). A valid correspondence between prediction
and object has to exceed a threshold in IoU of 0.5. Predictions that are not mapped to any
ground truth mask are classified as false positives (FPs). Ground truth objects that are not
matched to any prediction are classified as misses. Following (Bernardin and Stiefelhagen,
2008), ground truth objects that are mapped to two different hypothesis IDs in subsequent
frames are classified as ID switches for that frame.

A.2 MOT Metrics

MOT Accuracy (MOTA) measures the fraction of all failure cases, i.e. false positives
(FPs), misses and ID switches compared to total number of objects present in all frames.
MOT Precision (MOTP) measures the total accuracy in position for matched object
hypothesis pairs, relative to total number of matches made. We use percentage Intersection
over Union (IoU) of segmentation masks as the accuracy in position for each match. Mostly
Tracked (MT) is the ratio of ground truth objects that have been tracked for at least 80%
of their lifespan.(i.e. 80% of the frames in which they are visible). MT as implemented by
py-motmetrics counts trajectories of objects as correctly tracked even if ID switches occur.
We use a strictly more difficult definition of MT that counts trajectories with ID switches as
correctly detected but not correctly tracked. Consequently, we add the Mostly Detected
(MD) measure which does not penalize ID switches. Match, Miss, ID Switches (ID S.)

3https://pypi.org/project/motmetrics/
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and FPs are reported as the fraction of the number of occurrences divided by the total
number of object occurrences.

MOTA = 1�
PT

t=1Mt + FPt + IDStPT
t=1Ot

(1)

where Mt, FPt,and IDSt are the number of misses, false positives and ID switches, respectively,
for time t, and Ot is the number of objects present in frame t. Note that MOTA can become
negative, since the number of FPs is unbounded.

MOTP =

PT
t=1

PI
i=1 d

i
tPT

t=1 ct
(2)

where dit is the total accuracy in position for the ith matched object-hypothesis pair measured
in IoU between the respective segmentation masks and ct is the number of matches made in
frame t.

Note that we exclude the background masks for ViMON and OP3 before evaluating
tracking based on IoU. The Video Object Room (VOR) data set can contain up to three
background segments, namely the floor and up to two wall segments. In order to exclude
all background slots regardless of whether the model segments the background as one or
as multiple masks, we remove all masks before the tracking evaluation that have an IoU of
more than 0.2 with one of the ground truth background masks; we empirically tested that
this heuristic is successful in removing background masks regardless of whether the models
segments it as one or as three separate ones.

Appendix B. Data Set Generation Details

B.1 Video Multi-dSprites (VMDS)

The Multi-DSprites Video data set consists of 10-frame video sequences of 64⇥64 RGB images
with multiple moving sprites per video. In order to test temporal aggregation properties of
the models, the test set contains 20 frame-long sequences. Each video contains one to four
sprites following the data set proposed in Burgess et al. (2019) that move independently
of each other and might partially or fully occlude one another. The sprites are sampled
uniformly from the dSprites data set (Matthey et al., 2017) and colored with a random RGB
color. The background is uniformly colored with a random RGB color. Random trajectories
are sampled per object by drawing x and y coordinates from a Gaussian process with squared
exponential covariance kernel cov[xs, xt] = exp[�(xs � xt)2/(2⌧2)] and time constant ⌧ = 10

frames, and then shifted by an initial (x, y)-position of the sprite centroid, which is uniformly
sampled from [10, 54] to ensure that the object is within the image boundaries. Trajectories
that leave these boundaries are rejected. In occlusion scenarios, larger objects are always in
front of smaller objects to disambiguate prediction of occlusion. The training set consists of
10,000 examples whereas the validation set as well as the test set contain 1,000 examples
each. Additionally, we generated four challenge sets and three out-of-distribution test sets for
VMDS that contain specifically challenging scenarios. Each test set consists of 1,000 videos
of length 10 frames, which we describe in the following.
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B.1.1 VMDS Challenge Sets

Occlusion test set. In each video, one or more objects are heavily occluded and thus often
are not visible at all for a few frames. This is ensured by sampling object trajectories that
cross path, i.e. at least in one video frame, two objects are centered on the same pixel. The
time step and spatial position of occlusion is sampled randomly. Object trajectories are
sampled independently as described above and then shifted such that they are at the sampled
position of occlusion at time t. Videos contain two to four sprites (Fig. E.3), since at least
two objects are necessary for occlusion.

Small Objects. Videos contain one to four sprites with all sprites being of the smallest
size present in the original dSprites (Matthey et al., 2017) data set (Fig. E.3). Other than
that, it follows the generation process of the regular training and test set.

Large Objects. Videos contain one to four sprites with all sprites being of the largest
size present in the original dSprites (Matthey et al., 2017) data set (Fig. E.3). Other than
that, it follows the generation process of the regular training and test set.

Same Color. Videos contain two to four sprites which are identically colored with a
randomly chosen color. Other than that, it follows the generation process of the regular
training and test set (Fig. E.3).

B.1.2 VMDS Out-of-Distribution Test Sets

Rotation test set. Sprites rotate around their centroid while moving. The amount of
rotation between two video frames is uniformly sampled between 5 and 40 degrees, and is
constant for each object over the course of the video. Direction of rotation is chosen randomly.
Rotation is not included as a transformation in the training set (Fig. E.4).

Color change test set. Sprites change their color gradually during the course of the
video. The initial hue of the color is chosen randomly as well as the direction and amount
of change between two frames, which stays the same for each object over the course of the
video. Saturation and value of the color are kept constant. Color changes are not part of the
training set (Fig. E.4).

Size change test set. Sprites change their size gradually during the course of the video.
The original dSprites data set (Matthey et al., 2017) contains six different sizes per object.
For each object, its size is sampled as either the smallest or largest in the first frame as well
as a random point in time, at which it starts changing its size. At this point in time, it will
either become larger or smaller, respectively, increasing or decreasing each frame to the next
larger or smaller size present in the original dSprites data set, until the largest or smallest
size is reached. Size changes are not part of the training set (Fig. E.4).

B.1.3 texVMDS

The Textured Multi-DSprites Video data set consists of 10-frame video sequences of 64⇥64
RGB images with 1–4 moving sprites per video. The background is a linearly moving crop
from a uniformly sampled image (Deng et al., 2009) from the ImageNet Large Scale Visual
Recognition Challenge dataset (ILSVRC2012) and the texture of each sprite is similarly
cropped from a uniformly sampled ILSVRC2012 image (Deng et al., 2009). The direction
of the moving background is uniformly sampled from one of 8 directions (up, down, left,

17

87



Weis, Chitta, Sharma, Brendel, Bethge, Geiger and Ecker

right, upper-right, upper-left, lower-right, lower-left). Other than that, texVMDS follows the
generation process of the regular VDMS.

B.2 Sprites-MOT (SpMOT)

Sprites-MOT, originally introduced by He et al. (2019), consists of video sequences of length
20 frames. Each frame is a 128⇥128 RGB image. It features multiple sprites moving linearly
on a black background. The sprite can have one of four shapes and one of six colors. For
more information, refer to the original paper (He et al., 2019). We generate a training set
consisting of 9600 examples, validation set of 384 samples and test set of 1,000 examples
using the author-provided public codebase4. However, instead of using the default setting of
20 frames per sequence, we instead generate sequences of length 10, in order to facilitate
comparison to the other data sets in our study which have only 10 frames per sequence.

Frames are downsampled to a resolution of 64⇥64 for training ViMON, OP3 and
SCALOR.

B.3 Video Objects Room (VOR)

We generate a video data set based on the static 3D Objects Room data set (Burgess et al.,
2019), with sequences of length 10 frames each at a resolution of 128⇥128. This data set
is rendered with OpenGL using the gym-miniworld5 reinforcement learning environment.
It features a 3D room with up to four static objects placed in one quadrant of the room,
and a camera initialized at the diagonally opposite quadrant. The objects are either static
cubes or spheres, assigned one of 6 colors and a random orientation on the ground plane
of the room. The camera then follows one of five trajectories moving towards the objects,
consisting of a small fixed distance translation and optional small fixed angle of rotation each
time step. The wall colors and room lighting are randomized, but held constant throughout
a sequence. The training set consists of 10,000 sequences whereas the validation set and the
test set contain 1,000 sequences each.

Frames are downsampled to a resolution of 64⇥64 for training ViMON, OP3 and
SCALOR.

Appendix C. Methods

In this section we describe the various methods in a common mathematical framework. For
details about implementation and training, please refer to Section D.

C.1 MONet

Multi-Object-Network (MONet) (Burgess et al., 2019) is an object-centric representation
model designed for static images. It consists of a recurrent attention network that sequentially
extracts attention masks of individual objects and a variational autoencoder (VAE) (Kingma
and Welling, 2014) that reconstructs the image region given by the attention mask in each
processing step.

4https://github.com/zhen-he/tracking-by-animation
5https://github.com/maximecb/gym-miniworld
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Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) pa-
rameterized by  . At each processing step k, the attention network receives the full image
x 2 [0, 1]H⇥W⇥3 as input together with the scope variable sk 2 [0, 1]H⇥W . The scope sk keeps
track of the regions of the image that haven’t been attended to in the previous processing
steps and thus remain to be explained. The attention network outputs a soft attention mask
mk 2 [0, 1]H⇥W and the updated scope with the current mask subtracted:

mk = sk�1↵ (x, sk�1), (3)
sk+1 = sk(1� ↵ (x, sk)), (4)

where ↵ (x, sk) 2 [0, 1]H⇥W is the output of the U-net and s0 = 1. The attention mask
for the last slot is given by mK = sK�1 to ensure that the image is fully explained, i.e.PK

k=1mk = 1.
VAE: The VAE consists of an encoder g : [0, 1]H⇥W⇥3 ⇥ [0, 1]H⇥W ! RL⇥2 and a decoder
h : RL ! [0, 1]H⇥W⇥3 ⇥ [0, 1]H⇥W which are two neural networks parameterized by � and ✓,
respectively. The VAE encoder receives as input the full image x and the attention mask mk

and computes (µk, log�k), which parameterize the Gaussian latent posterior distribution
q�(zk|x,mk) = N (µk,�kI). Using the reparametrization trick (Kingma and Welling, 2014),
zk 2 RL is sampled from the latent posterior distribution. zk is decoded by the VAE decoder
into a reconstruction of the image component bxk 2 [0, 1]H⇥W⇥3 and mask logits, which are
used to compute the reconstruction of the mask bmk 2 [0, 1]H⇥W via a pixelwise softmax
across slots. The reconstruction of the whole image is composed by summing over the K
masked reconstructions of the VAE: bx =

PK
k=1 bmk � bxk.

Loss: MONet is trained end-to-end with the following loss function:

L(�; ✓; ;x) = � log

KX

k=1

mkp✓(x|zk) + �DKL(

KY

k=1

q�(zk|x,mk)kp(z))

+�
KX

k=1

DKL(q (mk|x)kp✓(mk|zk)),

(5)

where p✓(x|zk) is the Gaussian likelihood of the VAE decoder and zk 2 RL is the latent
representation of slot k.

The first two loss terms are derived from the standard VAE objective, the Evidence Lower
BOund (ELBO) (Kingma and Welling, 2014), i.e. the negative log-likelihood of the decoder
and the Kullback–Leibler divergence between the unit Gaussian prior p(z) = N (0, I) and
the latent posterior distribution q�(zk|x,mk) factorized across slots. Notably, the decoder
log-likelihood term p✓(x|zk) constrains only the reconstruction within the mask, since it is
weighted by the mask mk. Additionally, as a third term, the Kullback–Leibler divergence
of the attention mask distribution q (mk|x) with the VAE mask distribution p✓( bmk|zk) is
minimized, to encourage the VAE to learn a good reconstruction of the masks.

C.2 Video MONet

We propose an extension of MONet (Burgess et al., 2019), called Video MONet (ViMON),
which accumulates evidence over time about the objects in the scene (Fig. C.1).
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ViMON processes a video recurrently by reconstructing one frame at a time and predicting
the next frame of the video. The processing of each frame follows a logic similar to MONet

with some notable differences. In the following, we use t to indicate the time step in the
video and k to indicate the processing step within one video frame.

GRU

VAE
Encoder

VAE
Dec.

K slots sequential

Attn.
Net

xt

mt,k

mt,k^

ht-1,k ht,k

zt,k

xt+1^xt^

Figure C.1: ViMON.
Attention network fol-
lowed by VAE encoder
and GRU computes la-
tent zt,k.

Attention Network: The attention network of ViMON outputs
an attention mask mt,k 2 [0, 1]H⇥W in each step k conditioned
on the full frame xt 2 [0, 1]H⇥W⇥3, the scope st,k 2 [0, 1]H⇥W

and additionally the mask bmt,k 2 [0, 1]H⇥W that was predicted
by the VAE in the previous time step, in order to provide it with
information about which object it should attend to in this specific
slot k:

mt,k = st,k�1↵ (xt, st,k�1, bmt,k). (6)

VAE: The VAE of ViMON consists of an encoder g(xt,mt,k;�)
and a decoder h(zt,k; ✓). In contrast to MONet, the encoder in
ViMON is followed by a gated recurrent unit (GRU) (Cho et al.,
2014) with a separate hidden state ht,k per slot k. Thus, the GRU
aggregates information over time for each object separately. The
GRU outputs (µt,k, log�t,k) which parameterize the Gaussian latent
posterior distribution q�(zt,k|xt,mt,k) where zt,k 2 RL is the latent
representation for slot k at time t:

z0t,k = g(xt,mt,k;�), (7)
(µt,k, log�t,k),ht,k = f(GRU(z0t,k,ht�1,k))), (8)

q�(zt,k|xt,mt,k) = N (µt,k,�t,kI) 8t, k, (9)

where g is the VAE encoder and f is a linear layer. The latent representation zt,k is
sampled from the latent posterior distribution using the reparametrization trick (Kingma
and Welling, 2014). Subsequently, zt,k is linearly transformed into bzt+1,k via a learned
transformation A 2 RL⇥L: bzt+1,k = Azt,k with bzt+1,k being the predicted latent code for
the next time step t + 1. Both zt,k and bzt+1,k are decoded by the shared VAE decoder
h✓ into a reconstruction of the image bxt,k 2 [0, 1]H⇥W⇥3 and a reconstruction of the mask
bmt,k 2 [0, 1]H⇥W as well as bxt+1,k and bmt+1,k, respectively.
Loss: ViMON is trained in an unsupervised fashion with the following objective adapted
from the MONet loss (Eq. (5)) for videos. To encourage the model to learn about object
motion, we include a prediction objective in the form of a second decoder likelihood on the
next-step prediction p✓(xt+1|bzt+1,k) and an additional mask loss term, which encourages
the predicted VAE mask distribution p✓( bmt+1,k|bzt+1,k) to be close to the attention mask
distribution q (mt+1,k|xt+1) of the next time step for each slot k:

20

90



Benchmarking Unsupervised Object Representations

L(�; ✓; ;x) =
TX

t=1

LnegLL + �Lprior + �Lmask

LnegLL = �(log

KX

k=1

mt,kp✓(xt|zt,k) + log

KX

k=1

mt+1,kp✓(xt+1|bzt+1,k))

Lprior = DKL(

KY

k=1

q�(zt,k|xt,mt,k)kp(z))

Lmask =

KX

k=1

DKL(q (mt,k|xt)kp✓(mt,k|zt,k)) +DKL(q (mt+1,k|xt+1)kp✓(mt+1,k|bzt+1,k))

C.3 Tracking-by-Animation

Feature
Extractor

Tracker
Array

MLP

Spatial
Transformer

(x,y)...

K slots parallel

xt

xt^

zt,k

ct

ht-1,k ht,k

yt,k

Figure C.2: TBA. Fea-
ture extractor CNN f and
tracker array g to get la-
tent zt,k. MLP h out-
puts mid-level representa-
tion yt,k, and Spatial Trans-
former renders reconstruc-
tion.

Tracking-by-Animation (TBA) (He et al., 2019) is a spatial
transformer-based attention model which uses a simple 2D ren-
dering pipeline as the decoder. Objects are assigned tracking
templates and pose parameters by a tracker array, such that
they can be reconstructed in parallel using a renderer based on
affine spatial transformation (Fig. C.2). In contrast to ViMON,
TBA uses explicit parameters to encode the position, size, as-
pect ratio and occlusion properties for each slot. Importantly,
TBA is designed for scenes with static backgrounds, and pre-
processes sequences using background subtraction (Bloisi and
Iocchi, 2012) before they are input to the tracker array.
Tracker Array: TBA uses a tracker array to output a latent
representation zt 2 RL⇥K at time t using a feature extractor
f(xt; ) and a recurrent ’state update’, where ct 2 RM⇥N⇥C

is a convolutional feature representation. The convolutional
feature and latent representation have far fewer elements than
xt, acting as a bottleneck:

ct = f(xt; ), (10)
ht,k = RAT (ht�1,k, ct;⇡), (11)
zt = g(ht;�). (12)

Though the state update could be implemented as any
generic recurrent neural network block, such as an LSTM
(Hochreiter and Schmidhuber, 1997) or GRU (Cho et al., 2014),
TBA introduces a Reprioritized Attentive Tracking (RAT)
block that uses attention to achieve explicit association of slots
with similar features over time. Firstly, the previous tracker
state ht�1,k is used to generate key variables kt,k and �t,k:
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{kt,k, b�t,k} = Tht�1,k, (13)

�t,k = 1 + ln(1 + exp(b�t,k)), (14)

where T is a learned linear transformation, kt,k2RS is the addressing key, and b�t,k2R
is an un-normalized version of a key strength variable �t,k2(1,+1). This key strength acts
like a temperature parameter to modulate the feature re-weighting, which is described in
the following. Each feature vector in ct, denoted by ct,m,n 2RS , where m2 {1, 2, . . . ,M}
and n2{1, 2, . . . , N} are the convolutional feature dimensions, is first used to get attention
weights:

Wt,k,m,n =
exp(�t,kSim(kt,k, ct,m,n))P

m0,n0 exp(�t,kSim(kt,k, ct,m0,n0))
. (15)

Here, Sim is the cosine similarity defined as Sim(p,q)=pqT/(kpkkqk), and Wt,k,m,n is
an element of the attention weight Wt,k2 [0, 1]M⇥N , satisfying

P
m,nWt,k,m,n=1. Next, a

read operation is defined as a weighted combination of all feature vectors of ct:

rt,k =

X

m,n

Wt,k,m,n ct,m,n, (16)

where rt,k 2 RS is the read vector, representing the associated input feature for slot k.
Intuitively, for slots in which objects are present in the previous frame, the model can
suppress the features in rt,k that are not similar to the features of that object, helping achieve
better object-slot consistency. On the other hand, if there are slots which so far do not
contain any object, the key strength parameter allows rt,k to remain similar to ct, facilitating
the discovery of new objects.

The tracker state ht,k of the RAT block is updated with an RNN parameterized by ⇡,
taking rt,k instead of ct as its input feature:

ht,k = RNN(ht�1,k, rt,k;⇡). (17)

The RAT block additionally allows for sequential prioritization of trackers, which in
turn allows only a subset of trackers to update their state at a given time step, improving
efficiency. For full details on the reprioritization and adaptive computation time elements of
the RAT block, please refer to the original paper (He et al., 2019).
Mid-Level Representation: The key feature of TBA is that each latent vector zt,k is fur-
ther decoded into a mid-level representation yt,k = {yct,k,yl

t,k,y
p
t,k,Y

s
t,k,Y

a
t,k} corresponding

to interpretable, explicit object properties, via a fully-connected neural network h(zt,k; ✓) as
follows:

yt,k = h(zt,k; ✓). (18)

h✓ is shared by all slots, improving parameter efficiency. The different components of the
mid-level representation are:
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• Confidence yct,k2 [0, 1]: Probability of existence of an object in that slot.

• Layer yl
t,k2{0, 1}O: One-hot encoding of the discretized pseudo-depth of the object

relative to other objects in the frame. Each image is considered to be composed of O
object layers, where higher layer objects occlude lower layer objects and the background
is the zeroth (lowest) layer. E.g., when O=4, yl

t,k=[0, 0, 1, 0] denotes the third layer.
For simplicity and without loss of generality, we can also denote the same layer with
its integer representation ylt,k = 3.

• Pose yp
t,k=[bsxt,k, bs

y
t,k,btxt,k,bt

y
t,k]2 [�1, 1]4: Normalized object pose for calculating the scale

[sxt,k, s
y
t,k] = [1 + ⌘xbsxt,k, 1 + ⌘ybsyt,k] and the translation [txt,k, t

y
t,k] = [

W
2
btxt,k,

H
2
btyt,k], where

⌘x, ⌘y > 0 are constants.

• Shape Ys
t,k 2 {0, 1}U⇥V and Appearance Ya

t,k 2 [0, 1]U⇥V⇥3: Object template, with
hyperparameters U and V typically set much smaller than the image dimensions H
and W . Note that the shape is discrete (for details, see below) whereas the appearance
is continuous.

In the output layer of h✓, yct,k and Ya
t,k are generated by the sigmoid function, yp

t,k is
generated by the tanh function, and yl

t,k as well as Ys
t,k are sampled from the Categorical and

Bernoulli distributions, respectively. As sampling is non-differentiable, the Straight-Through
Gumbel-Softmax estimator (Jang et al., 2017) is used to reparameterize both distributions
so that backpropagation can still be applied.
Renderer: To obtain a frame reconstruction, the renderer scales and shifts Ys

t,k and Ya
t,k

according to yp
t,k via a Spatial Transformer Network (STN) (Jaderberg et al., 2015):

mt,k = STN(Ys
t,k,y

p
t,k), (19)

bxt,k = STN(Ya
t,k,y

p
t,k). (20)

where mt,k2{0, 1}D and bxt,k2 [0, 1]D⇥3 are the spatially transformed shape and appearance
respectively. To obtain the final object masks bmt,k, an occlusion check is performed by
initializing bmt,k = yct,kmt,k, then removing the elements of bmt,k for which there exists an
object in a higher layer. That is, for k=1, 2, . . . ,K and 8j 6= k where ylt,j > ylt,k:

bmt,k = (1�mt,j)� bmt,k. (21)

In practice, the occlusion check is sped up by creating intermediate ‘layer masks’, partially
parallelizing the operation. Please see the original paper for more details (He et al., 2019).
The final reconstruction is obtained by summing over the K slots, bxt =

PK
k=1 bmt,k � bxt,k.

Loss: Learning is driven by a pixel-level reconstruction objective, defined as:

L(�; ;⇡; ✓;x) =
TX

t=1

 
MSE(bxt,xt) + � · 1

K

KX

k=1

sxt,k syt,k

!
, (22)

where MSE refers to the mean squared error and the second term penalizes large scales
[sxt,k, s

y
t,k] in order to make object bounding boxes more compact.
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C.4 IODINE
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Figure C.3: OP3. Refinement network f fol-
lowed by LSTM and dynamics network d com-
pute latent zt,k.

The Iterative Object Decomposition Infer-
ence NEtwork (IODINE) (Greff et al., 2019),
similar to MONet (Burgess et al., 2019),
learns to decompose a static scene into a
multi-slot representation, in which each slot
represents an object in the scene and the
slots share the underlying format of the in-
dependent representations. In contrast to
MONet, it does not recurrently segment
the image using spatial attention, rather it
starts from an initial guess of the segmen-
tation of the whole image and iteratively
refines it. Thus, the inference component
of both models differ, while the generative
component is the same.

Iterative Inference: As with MONet,
IODINE models the latent posterior q(zk|x)
per slot k as a Gaussian parameterized by
(µm,k,�m,k) 2 RL⇥2. To obtain latent rep-
resentations for independent regions of the
input image, IODINE starts from initial
learned posterior parameters (µ1,k,�1,k) and
iteratively refines them using the refinement
network f� for a fixed number of refinement steps M . f� consists of a convolutional neural
network (CNN) in combination with an LSTM cell (Hochreiter and Schmidhuber, 1997)
parameterized by �. In each processing step, f� receives as input the image x 2 [0, 1]H⇥W⇥3,
a sample from the current posterior estimate zm,k 2 RL and various auxiliary inputs ak, which
are listed in the original paper (Greff et al., 2019). The posterior parameters are concatenated
with the output of the convolutional part of the refinement network and together form the
input to the refinement LSTM. The posterior parameters are additively updated in each
step m in parallel for all K slots:

(µm+1,k,�m+1,k) = (µm,k,�m,k) + f�(zm,k,x,ak). (23)

Decoder: In each refinement step m, the image is represented by K latent representations
zm,k. Similar to MONet, each zm,k is independently decoded into a reconstruction of the
image bxm,k 2 [0, 1]H⇥W⇥3 and mask logits emm,k, which are subsequently normalized by
applying the softmax across slots to obtain the masks mm,k 2 [0, 1]H⇥W . The reconstruction
of the whole image at each refinement step m is composed by summing over the K masked
reconstructions of the decoder: bx =

PK
k=1mm,k � bxm,k.

24

94



Benchmarking Unsupervised Object Representations

Training: IODINE is trained by minimizing the following loss function that consists
of the Evidence Lower BOund (ELBO) (Kingma and Welling, 2014) unrolled through N
iterations:

L(✓,�, (µ1,k,�1,k);x) =
MX

m=1

m

M

"
� log

KX

k=1

mm,kp✓(x|zm,k) +DKL

 
KY

k=1

q�(zm,k|x)kp(z)
!#

,

(24)

where p✓(x|zm,k) is the decoder log-likelihood weighted by the mask mk and DKL is the
Kullback-Leibler divergence between the unit Gaussian prior p(z) = N (0, I) and the latent
posterior distribution q(zm,k|x) factorized across slots.

C.5 Object-centric Perception, Prediction, and Planning (OP3)

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al., 2020) extends
IODINE to work on videos and in a reinforcement learning (RL) setting. It uses the above
described IODINE as an observation model to decompose visual observations into objects
and represent them independently. These representations are subsequently processed by a
dynamics model that models the individual dynamics of the objects, the pairwise interaction
between the objects, as well as the action’s effect on the object’s dynamics, predicting the
next frame in latent space (Fig. C.3). By modeling the action’s influence on individual
objects, OP3 can be applied to RL tasks.

OP3 performs M refinement steps after each dynamics step.

Refinement network: The refinement steps proceed as in the description for IODINE

in Section C.4. The input image xt 2 [0, 1]H⇥W⇥3, which is the frame from a video
at time t, is processed by the refinement network f� conditioned on a sample from the
current posterior estimate zt,m,k 2 RL. The refinement network outputs an update of the
posterior parameters (µt,m,k,�t,m,k) (see Eq. (23)). The posterior parameters (µ1,1,k,�1,1,k)
are randomly initialized.

Dynamics model: After refinement, samples from the current posterior estimate zt,M,k

for each slot k are used as input to the dynamics network. The dynamics model d consists
of a series of linear layers and nonlinearities parameterized by  . It models the individual
dynamics of the objects per slot k, the pairwise interaction between all combinations of
objects, aggregating them into a prediction of the posterior parameters for the next time step
t+ 1 for each object k. The full dynamics model additionally contains an action component
that models the influence of a given action on each object, which we do not use in our
tracking setting. The predicted posterior parameters are then used in the next time step as
initial parameters for the refinement network.

(µt,1,k,�t,1,k) = d (zt�1,M,k, zt�1,M,[ 6=k]). (25)
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Training. OP3 is trained end-to-end with the ELBO used at every refinement and
dynamics step, with the loss L(✓,�;x) given by:

TX

t=1

1

T

M+1X

m=1

min(m,M)

M

 
� log

KX

k=1

mt,m,kp✓(xt|zt,m,k) +DKL(

KY

k=1

q�(zt,m,k|xt)kq(zt,1,k|xt))

!
,

(26)
where for time step 1, q(z1,1,k|x1) = N (0, I).

C.6 SCALable Object-oriented Representation (SCALOR)

SCALable Object-oriented Representation (SCALOR) (Jiang et al., 2020) is a spatial
transformer-based model that extends SQAIR (Kosiorek et al., 2018) to scale to cluttered
scenes. Similar to TBA, it factors the latent representations in pose, depth and appearance
per object and uses spatial transformers (Jaderberg et al., 2015) to render objects in parallel.
In contrast to TBA, it can handle dynamic backgrounds by integrating a background RNN
that models background transitions.

Proposal-Rejection Module: SCALOR uses a proposal-rejection module g to discover
new objects. All frames up to the current time step x1:t are first encoded using a convolutional
LSTM f . The resulting features are then aggregated with an encoding of propagated object
masks and divided into H ⇥W grid cells.

cimg
t = f(x1:t; ), (27)

cmask
t = MaskEncoder(MP

t ), (28)

caggt = Concat([cimg
t , cmask

t ]. (29)

Per grid cell a latent variable zt,h,w is proposed. Proposal generation is done in parallel.
Each zt,h,w consists of existence, pose, depth and appearance parameters (zprest,h,w, z

pose
t,h,w, z

depth
t,h,w , zwhat

t,h,w).

zprest,h,w ⇠ Bern(·|g1(caggt )), (30)

zdeptht,h,w ⇠ N (·|g2(caggt )), (31)

zposet,h,w ⇠ N (·|g3(caggt )), (32)

where g1, g2 and g3 are convolutional layers.
The appearance parameters zwhat

t,h,w are obtained by first taking a glimpse from frame xt
of the area specified by zposet,h,w via a Spatial Transformer Network (STN) (Jaderberg et al.,
2015) and subsequently extracting features from it via a convolutional neural network:

cattt,h,w = STN(xt, z
pose
t,h,w), (33)

zwhat
t,h,w ⇠ N (·|GlimpseEnc(cattt,h,w)), (34)

ot,h,w,mt,h,w = STN�1
(GlimpseDec(zwhat

t,h,w), z
pose
t,h,w), (35)

where ot,h,w is the object RGB glimpse and mt,h,w is the object mask glimpse.
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Figure C.4: SCALOR Feature ex-
tractor CNN f followed by tracker
RNNs or proposal-rejection module
to compute latent zt,k. Spatial Trans-
former in addition to background
module renders reconstruction.

In the rejection phase, objects that overlap more
than a threshold ⌧ in pixel space with a propagated
object from the previous time step are rejected.

Propagation Module: During propagation, for
each object k from the previous time step t � 1 a
feature attention map at,k from the encoded frame
features cimg

t is extracted centered on the position
of the object in the previous time step and used to
update the hidden state ht,k of the tracker RNN for
object k.

at,k = att(STN(cimg
t , zposet�1,k), (36)

ht,k = GRU([at,k, zt�1,k],ht�1,k), (37)
zt,k = update(at,k,ht,k, zt�1,k), (38)

where STN is a spatial transformer module (Jader-
berg et al., 2015). If zprest,k = 1 the latent representa-
tion zt,k of the respective object k will be propagated
to the next time step.

Background: The background of each frame xt
is encoded using a convolutional neural network con-
ditioned on the masks Mt of the objects present at
time step t and decoded using a convolutional neural
network.

(µbg,�bg
) = BgEncoder(xt, (1�Mt)), (39)

zbgt ⇠ N (µbg,�bg
), (40)

bxbg
t = BgDecoder(zbgt ). (41)

Rendering: To obtain frame reconstructions bxt foreground object appearances and
masks are scaled and shifted using via a Spatial Transformer Network (STN):

bxfg
t,k = STN�1

(ot,k, z
pose
t,k ), (42)

�t,k = STN�1
(mt,k · zprest,k �(�zdeptht,k ), zposet,k ), (43)

bxfg
t =

X

K

bxfg
t,k�t,k. (44)

Subsequently, foreground objects and background reconstruction are combined as follows
to obtain the final reconstruction:

bxt = bxfg
t + (1�Mt)� bxbg

t . (45)
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Training: SCALOR is trained on frame reconstruction using the evidence lower bound
(ELBO):

TX

t=1

� log p✓(xt|zt) +DKL(q�(zt|z<t,xt)kq(zt|z<t)). (46)

Appendix D. Model Implementation Details

D.1 Baseline: k-Means

As a baseline, we implement a simple color segmentation algorithm to evaluate if this is
sufficient to solve the benchmark data sets. To this end, we cluster the videos using the
k-Means algorithm as implemented by sklearn (Pedregosa et al., 2011). The number of
clusters are chosen equal to the number of slots in the other models, i.e. K = 5 for SpMOT,
K = 6 for VMDS and K = 8 for VOR. We run the clustering three times per video with
different random seeds. Each pixel is treated as one sample with 3 features (RGB values).
k-Means clustering is performed for each frame in the video separately. To obtain the tracking
performance, we match objects in consecutive frames using IoU of the extracted segmentation
masks with the Hungarian matching algorithm (Kuhn, 1955).

D.2 MONet and Video MONet

VAE: Following Burgess et al. (2019), the VAE encoder is a CNN with 3x3 kernels, stride 2,
and ReLU activations (Table D.1). It receives the input image and mask from the attention
network as input and outputs (µ, log �) of a 16-dimensional Gaussian latent posterior. The
GRU has 128 latent dimensions and one hidden state per slot followed by a linear layer with
32 output dimensions. The VAE decoder is a Broadcast decoder as published by Watters
et al. (2019b) with no padding, 3x3 kernels, stride 1 and ReLU activations (Table D.2). The
output distribution is an independent pixel-wise Gaussian with a fixed scale of � = 0.09 for
the background slot and � = 0.11 for the foreground slots.
Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) and
follows the architecture proposed by Burgess et al. (2019). The down- and up-sampling
components consist each of five blocks with 3x3 kernels, 32 channels, instance normalization,
ReLU activations and down- or up-sampling by a factor of two. The convolutional layers are
bias-free and use stride 1 and padding 1. A three-layer MLP with hidden layers of size 128
connect the down- and the up-sampling part of the U-Net.
Training: MONet and ViMON are implemented in PyTorch (Paszke et al., 2019) and
trained with the Adam optimizer (Kingma and Ba, 2015) with a batch size of 64 for MONet

and 32 for ViMON, using an initial learning rate of 0.0001. Reconstruction performance
is evaluated after each epoch on the validation set and the learning rate is decreased by a
factor of 3 after the validation loss has not improved in 25 consecutive epochs for MONet

and 100 epochs for ViMON, respectively. MONet and ViMON are trained for 600 and
1000 epochs, respectively. The checkpoint with the lowest reconstruction error is selected
for the final MOT evaluation. MONet is trained with � = 0.5 and � = 1 and ViMON is
trained with � = 1 and � = 2. K = 5 for SpMOT, K = 6 for VMDS and K = 8 for VOR.
Due to the increased slot number for VOR, batch size for ViMON had to be decreased to
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Type Size/Ch. Act. Func. Comment

Input 4 RGB + Mask
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 64 ReLU
Conv 3x3 64 ReLU
MLP 256 ReLU
MLP 32 Linear

Table D.1: Architecture of ViMON VAE Encoder.

Type Size/Ch. Act. Func. Comment

Input 16
Broadcast 18 + coordinates
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 1x1 4 Linear RGB + Mask

Table D.2: Architecture of ViMON VAE Decoder.

24 to fit into the GPU memory. Respectively, the initial learning rate is set to 0.000075 for
ViMON on VOR. We initialize the attention network and the VAE in ViMON with the
pre-trained weights from MONet to facilitate learning and speed up the training. Note that
for all evaluations, the reconstructed masks bm from the VAE were used.

Sprites-MOT Initialization: When training MONet and Video MONet on Sprites-
MOT from scratch, MONet struggles to learn the extreme color values of the objects that
Sprites-MOT features. Instead it completely focuses on learning the shapes. To circumvent
that, we initialized the weights of the models with MONet weights that were trained for
100 epochs on Multi-dSprites.
Hyperparameter tuning: Hyperparameters for MONet and ViMON were selected using
the best MSE on the validation set of VMDS. Hyperparameter tuning for MONet included
� from {0.5, 1.0} and � from {0.5, 1.0, 2.0} and initial learning rate from {1e-05, 1e-04}.

Hyperparameter tuning for ViMON included � from {0.5, 1.0} and � from {1.0, 2.0, 5.0,
10.0, 50.0} and initial learning rate from {1e-05, 1e-04, 1e-03}.

Hyperparameters for texVMDS were kept fixed to the best selected hyperparameters
for VMDS, except for the VAE latent dimension, which is tuned to account for the higher
visual complexity. The VAE latent dimension 16 is selected from {16, 32, 64, 128} as the one
with the best MOTA for MONet on texVMDS validation set — analogous to the SCALOR
hyperparameter tuning paradigm — and subsequently also used for training of ViMON on
texVMDS.
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D.3 Tracking by Animation

Preprocessing: TBA expects its input frames to contain only foreground objects. In He
et al. (2019), the authors use Independent Multimodal Background Subtraction (IMBS)
(Bloisi and Iocchi, 2012) to remove the background from data sets consisting of natural videos
with static backgrounds. Background subtraction algorithms maintain a spatio-temporal
window around each pixel in the sequence, and remove the dominant mode based on a
histogram of color values. Since the default implementation of IMBS has several hand-tuned
thresholds corresponding to natural videos (e.g., for shadow suppression), it cannot be directly
applied to synthetic data sets like VMDS without significant hyperparameter tuning. We
instead re-generate all of the VMDS data sets with identical objects and motion but a black
background for our experiments with TBA, to mimic a well-tuned background subtraction
algorithm.

Architecture: For SpMOT, we follow the same architecture as in (He et al., 2019),
while we increase the number of slots from K = 4 to K = 5 and number of layers from O = 3

to O = 4 for VMDS. Since TBA does not model the background, this makes the number of
foreground slots equal to the other models in our study.

Hyperparameter tuning: Further, we increase the size prior parameters U ⇥ V used
for the shape and appearance templates from 21⇥ 21 which is used for SpMOT, to 64⇥ 64

for VMDS, which we empirically found gave the best validation loss among 48⇥ 48, 56⇥ 56,
64⇥ 64 and 72⇥ 72. All other architectural choices are kept fixed for both data sets, and
follow He et al. (2019). Note that due to this, we trained the TBA models at its default
resolution of 128⇥128 unlike the 64⇥64 resolution used by MONet and OP3.

Training and Evaluation: We train for 1000 epochs using the same training schedule
as He et al. (2019). The checkpoint with the lowest validation loss is selected for the final
MOT evaluation. Further, we observed that the discrete nature of the shape code used in
TBA’s mid-level representation leads to salt-and-pepper noise in the reconstructed masks.
We therefore use a 2⇥ 2 minimum pooling operation on the final output masks to remove
isolated, single pixel foreground predictions and generate 64⇥ 64 resolution outputs, similar
to MONet and OP3 before evaluation.

Deviation of SpMOT results compared to original publication: Our results were
generated with 100k training frames, while the original TBA paper (He et al., 2019) uses
2M training frames for the simple SpMOT task. Further, we report the mean of three
training runs, while the original paper reports one run (presumably the best). Our best run
achieves MOTA of 90.5 (Table E.1). Third, we evaluate using intersection over union (IoU)
of segmentation masks instead of bounding boxes.

D.4 OP3

Training: The OP3 loss is a weighted sum over all refinement and dynamics steps (Eq. (26)).
For our evaluation on multi-object tracking, we weight all time steps equally. In contrast
to the original training loss, in which the weight value is linearly increased indiscriminately,
thus weighting later predictions more highly, we perform the linear increase only for the
refinement steps between dynamics steps, thus weighting all predictions equally.

OP3, as published by Veerapaneni et al. (2020), uses curriculum learning. For the first
100 epochs, M refinement steps are taken, followed by a single dynamics step, with a final
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refinement step afterwards. Starting after 100 epochs, the number of dynamics steps is
incremented by 1 every 10 epochs, until five dynamics steps are reached. Thus, only 5 frames
of the sequence are used during training at maximum.

We chose to use an alternating schedule for training, where after each dynamics step,
M = 2 refinement steps are taken, and this is continued for the entire sequence. Thus, the
entire available sequence is used, and error is not propagated needlessly, since the model is
enabled to refine previous predictions on the reconstruction before predicting again. Note
that this is the schedule OP3 uses by default at test-time, when it is used for model predictive
control. Note that we still use 4 refinement steps on the initial observation to update the
randomly initialized posterior parameters, as in the released implementation. We split all
10-step sequences into 5-step sequences to avoid premature divergence.

Hyperparameter tuning: Note that OP3 by default uses a batch size of 80 with the
default learning rate of 0.0003. As we found training OP3 to be very unstable, leading
to eventual divergence in almost all experiments that have been performed for this study,
we tested batch sizes [64, 32, 16, 8] and found reducing the batch size significantly, to 16,
improved performance. We found the default learning rate to be too large for SpMOT in
particular, as the model diverged significantly earlier than on VMDS and VOR. We tested
learning rates [0.0002, 0.0001, 0.00006, 0.00003], and found decreasing the learning rate to
0.0001 rectified the observed premature divergence.

The checkpoint prior to divergence with the lowest KL loss is selected for the final MOT
evaluation, as the KL loss enforces consistency in the latents over the sequence. Interestingly,
the checkpoint almost always corresponded to the epochs right before divergence.

D.5 SCALOR

Architecture: We follow the same architecture as in Jiang et al. (2020). We use a grid of
4⇥ 4 for object discovery with a maximum number of objects of 10. The standard deviation
of the image distribution is set to 0.1. Size anchor and variance are set to 0.2 and 0.1,
respectively.

For SpMOT, background modeling is disabled and the dimensionality of the latent object
appearance is set to 8.

For VMDS, the dimensionality of background is set to 3 and the dimensionality of the
latent object appearance is set to 16. For object discovery, a grid of 3 ⇥ 3 cells with a
maximum number of objects of 8 is used.

For VOR, the dimensionality of background is set to 8 and the dimensionality of the
latent object appearance is set to 16.

For texVMDS, the dimensionality of background is set to 32 and the dimensionality of
the latent object appearance is set to 16. For object discovery, a grid of 3⇥ 3 cells with a
maximum number of objects of 8 is used.

Best model checkpoint according to the validation loss was chosen for MOT evaluation.
Hyperparameter tuning: For VMDS, we run hyperparameter search over number of

grid cells {3⇥ 3, 4⇥ 4}, background dimension {1, 3, 5}, maximum number of objects {5, 8,
10} (dependent on number of grid cells), size anchor {0.2, 0.25, 0.3, 0.4}, zwhat dimensionality
{8, 16, 24} and end value of ⌧ {0.3, 0.5}.
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For SpMOT, we run hyperparameter search over maximum number of objects {4, 10},
size anchor {0.1, 0.2, 0.3}, zwhat dimensionality {8, 16} and whether to model background
(with background dimensionality 1) or not.

For VOR, we run hyperparameter search over size anchor {0.2, 0.3} and background
dimensionality {8, 12}.

For texVMDS, we keep hyperparameters fixed as for VMDS and only tune background
dimension {3, 8, 16, 32, 64, 128} and zwhat dimensionality {16, 32, 64, 128} to account for
the higher visual complexity of the data set.

We picked best hyperparameters according to the validation loss with the exception of the
data set texVMDS, for which the best validation loss was given by the model using a latent
dimensionality of 128 for both background and object. This led to the model using only
the background slot to reconstruct the whole frame without using the object slots (object
matches ˜3%). As a sanity check, we picked the model which had the best MOTA on the
validation set (shown in Table 3), but it also did not perform well on the more complex
texVMDS data set.

We additionally tested if down-weighing the log-likelihood during training by a factor of
10, while keeping the high latent dimensionality (128 for both zwhat and background) would
help, by decreasing the focus on reconstructing the high frequency textures, but it still relied
on the background to reconstruct the image without using object slots.

Training: We train SCALOR with a batch size of 16 for 300 epochs using a learning
rate of 0.0001 for SpMOT and VOR and for 400 epochs for VMDS. For the final MOT
evaluation, the checkpoint with the lowest loss on the validation set is chosen.

Appendix E. Additional Results

Table E.1 lists the individual results for the three training runs with different random seeds
per model and data set. The results of ViMON and SCALOR are coherent between the
three runs with different random seed, while TBA has one run on SpMOT with significantly
lower performance than the other two and shows variation in the three training runs on
VMDS. OP3 exhibits one training run on SpMOT with lower performance than the other
two.

Fig. E.2 shows the fraction of failure cases dependent on the number of objects over all
types of failures (misses, ID. switches and FPs). Fig. E.1 shows the fraction of failure cases
dependent on the number of objects present in the video for the three different failure cases
separately; ID switches, FPs and misses. For ViMON, TBA and SCALOR, the number
of failures increase with the number of objects present regardless of the type of failure. In
contrast, OP3 shows this pattern for ID switches and misses, while it accumulates a higher
number of false positives (FPs) in videos with fewer (only one or two) objects.

Fig. E.4 shows a comparison between MONet and ViMON on VMDS. MONet correctly
finds and segments objects, but it does not assign them to consistent slots over time, while
ViMON maintains a consistent slot assignment throughout the video.

Fig. E.5 shows failures cases of OP3 on VOR.
Table E.3 and Table E.4 list the results for the four models, ViMON, TBA, OP3 and

SCALOR, on the VMDS challenge sets and out-of-distribution (o.o.d.) sets respectively.
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Model Run MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #

SpMOT

1 36.2 77.6 76.8 76.3 80.5 19.2 0.2 44.3 -
k-Means 2 36.2 77.6 76.8 76.3 80.5 19.2 0.2 44.3 -

3 36.3 77.6 76.8 76.2 80.5 19.3 0.2 44.2 -

1 70.0 90.6 92.8 49.4 74.7 4.1 21.2 4.7 10.4
MONet 2 69.4 90.0 92.7 48.1 74.2 4.1 21.6 4.8 13.4

3 71.3 88.1 91.6 53.8 77.1 4.9 18.0 5.8 15.2

1 92.7 92.0 87.5 87.0 94.9 4.9 0.2 2.2 10.5
ViMON 2 92.8 92.0 86.9 86.3 94.8 5.0 0.2 2.0 11.8

3 93.2 91.6 88.8 88.3 95.2 4.6 0.2 2.0 10.9

1 90.5 71.4 90.2 89.8 94.4 5.3 0.3 3.9 10.3
TBA 2 58.4 70.7 69.6 60.8 75.0 18.1 6.9 16.6 14.6

3 90.1 71.5 90.3 89.4 94.0 5.5 0.5 3.9 10.9

1 92.4 80.0 94.5 93.7 97.3 2.4 0.4 4.8 4.3
OP3 2 81.9 74.9 86.9 86.5 92.8 6.8 0.3 10.9 30.1

3 92.9 80.1 95.9 95.2 97.6 2.0 0.4 4.7 5.6

1 94.4 80.1 96.5 92.3 95.4 2.4 2.2 1.0 3.3
SCALOR 2 94.7 80.2 96.4 93.1 95.8 2.4 1.8 1.1 3.4

3 95.5 80.2 96.3 94.0 96.4 2.4 1.2 0.9 3.6

VOR

1 -38.0 76.5 69.8 62.8 72.6 22.1 5.3 110.7 -
k-Means 2 -38.1 76.5 69.8 63.0 72.7 22.1 5.2 110.8 -

3 -37.9 76.5 70.0 62.9 72.8 22.0 5.2 110.7 -

1 28.0 81.3 73.8 26.7 57.4 18.0 24.6 29.4 14.1
MONet 2 44.5 82.4 78.2 45.4 68.7 15.0 16.3 24.2 11.8

3 38.5 81.6 78.7 39.8 67.0 14.4 18.5 28.5 10.8

1 89.0 88.9 90.2 89.8 92.9 6.8 0.3 3.9 7.1
ViMON 2 89.0 89.8 89.9 89.6 93.0 6.8 0.2 4.0 6.2

3 89.0 89.9 91.0 90.6 93.8 6.0 0.2 4.8 5.9

1 64.8 89.5 87.2 85.1 90.3 8.8 0.9 25.5 3.1
OP3 2 66.2 88.1 88.6 85.1 90.7 7.9 1.4 24.5 2.9

3 65.3 89.3 88.2 86.1 91.1 8.0 0.9 25.8 3.0

1 74.1 85.8 75.6 75.5 77.4 22.6 0.0 3.3 6.4
SCALOR 2 74.6 86.0 75.9 75.9 78.1 21.9 0.1 3.5 6.4

3 75.1 86.1 76.5 76.4 78.2 21.7 0.0 3.1 6.3

Table E.1: Analysis of SOTA object-centric representation learning models for MOT. Results
for three runs with different random training seeds.
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Model Run MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #

VMDS

1 -3.3 89.8 98.3 93.4 96.4 1.0 2.6 99.7 -
k-Means 2 -3.3 89.8 98.2 93.2 96.4 1.1 2.6 99.7 -

3 -3.2 89.8 98.2 93.4 96.4 1.0 2.6 99.6 -

1 51.7 79.6 75.1 36.7 67.6 12.9 19.5 15.9 20.8
MONet 2 44.3 76.1 71.8 34.8 65.9 15.0 19.1 21.5 25.3

3 52.2 80.2 75.6 35.5 66.5 13.0 20.5 14.2 20.4

1 87.0 86.8 86.7 85.4 92.4 6.8 0.7 5.5 10.6
ViMON 2 87.1 86.8 86.1 85.1 92.3 7.1 0.6 5.3 10.8

3 86.5 86.7 86.0 84.6 92.1 7.2 0.7 5.6 10.6

1 68.5 76.1 69.3 65.3 80.7 16.5 2.8 12.2 26.0
TBA 2 38.9 73.8 55.1 50.5 70.2 26.6 3.2 31.3 30.8

3 56.0 75.0 64.3 59.2 76.7 19.8 3.5 20.8 27.5

1 93.1 94.2 97.2 96.7 98.0 1.9 0.2 4.9 4.0
OP3 2 92.7 93.4 96.9 96.3 97.8 2.0 0.2 5.1 4.3

3 89.4 93.3 96.2 95.8 97.6 2.2 0.2 8.3 4.6

1 75.7 88.1 69.4 68.3 79.8 19.4 0.8 4.0 13.9
SCALOR 2 72.7 87.2 66.7 65.6 77.6 21.6 0.8 4.9 14.2

3 73.7 87.6 67.5 66.2 77.9 21.2 0.9 4.2 14.0

texVMDS

1 -99.5 76.4 25.4 24.3 30.3 69.2 0.5 129.8 -
k-Means 2 -99.5 76.4 25.3 24.4 30.4 69.2 0.5 129.9 -

3 -99.5 76.4 25.3 24.3 30.3 69.2 0.5 129.8 -

1 -70.8 67.1 15.5 13.4 24.9 73.9 1.2 95.7 203.0
MONet 2 -68.1 69.2 20.4 15.4 30.4 66.5 3.1 98.6 192.5

3 -80.9 66.7 12.1 8.1 18.9 78.9 2.2 99.8 205.9

1 -88.2 68.3 24.2 23.8 35.5 64.2 0.3 123.7 174.6
ViMON 2 -86.6 69.0 22.6 22.0 32.4 67.4 0.3 119.0 172.7

3 -81.6 69.8 25.8 25.4 36.3 63.4 0.3 117.9 166.9

1 -105.6 71.5 20.6 20.4 28.3 71.6 0.2 133.9 113.6
OP3 2 -116.0 70.1 9.4 9.2 13.6 86.3 0.1 129.6 153.2

3 -109.7 70.3 19.5 19.0 26.9 72.8 0.3 136.6 131.8

1 -84.8 73.3 6.4 6.3 12.5 87.3 0.2 97.3 149.5
SCALOR 2 -99.5 74.4 7.3 7.0 12.7 87.1 0.3 112.1 125.0

3 -113.4 74.4 5.8 5.6 11.8 88.0 0.3 125.2 126.7

Table E.2: Analysis of SOTA object-centric representation learning models for MOT. Results
for three runs with different random training seeds.
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Figure E.1: Distribution of failure cases dependent on number of objects in VMDS videos
split by failure class. Mean of three training runs. Error bars: SD.

Figure E.2: Distribution of failure cases dependent on number of objects in VMDS videos
for each model. Mean of three training runs.

Results are shown as the mean and standard deviation of three training runs with different
random seed per model.

E.1 Out-of-distribution test sets

To test whether the models can in principle learn additional object transformations as
featured in the VMDS o.o.d. sets, we additionally train the models on a new training set
that includes size and color changes as well as rotation of objects.

ViMON, OP3 and SCALOR are able to learn additional property changes of the objects
when they are part of the training data while TBA fails to learn tracking on this more
challenging data set (Fig. E.3; for absolute values Table E.4).

E.2 Stability of training and runtime

To assess runtime in a fair way despite the models being trained on different hardware,
we report the training progress of all models after one hour of training on a single GPU
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Figure E.3: Performance on out-of-distribution sets relative to VMDS test set (100%). *
indicates that models were trained on a data set that included color, size and orientation
changes of objects.

Figure E.4: Comparison of MONet and ViMON on VMDS. Example sequence of data set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the attention masks. Color-coded segmentation maps in third row
signify slot-assignment. Note how the object-slot assignment changes for consecutive frames
(3rd row) for MONet, while ViMON maintains a consistent slot assignment throughout the
video.

(Table E.5). In addition, we quantify inference time on the full VMDS test set using a batch
size of one.

E.3 ViMON Ablations

Removing the GRU or the mask conditioning of the attention network reduces tracking
performance (MOTA on VMDS from 86.8% to 70.6% and 81.4%, respectively; Table E.6)

E.4 Impact of IoU Threshold for Matching

To examine whether the IoU threshold used for matching object predictions to ground truth
impacts the ordering of the models, we compute all metrics with regard to the thresholds
[0.1 .. 0.9] in steps of 0.1 on the VMDS test set. The ordering of the models with regard

36

106



Benchmarking Unsupervised Object Representations

Occlusion Same Color Small Objects Large Objects

Model MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT

ViMON 67.1 ± 0.4 82.5 ± 0.0 63.0 ± 0.1 72.2 ± 0.1 83.6 ± 0.1 70.4 ± 0.3 86.3 ± 0.2 83.3 ± 0.2 83.4 ± 0.4 70.7 ± 0.5 85.1 ± 0.1 76.1 ± 0.7

TBA 37.5 ± 10.4 72.8 ± 0.8 38.3 ± 4.6 47.2 ± 9.4 73.0 ± 0.7 45.2 ± 3.9 74.3 ± 0.7 71.9 ± 0.4 65.3 ± 1.6 25.6 ± 15.0 73.4 ± 0.9 44.7 ± 6.7

OP3 85.3 ± 1.0 91.6 ± 0.4 89.6 ± 0.9 51.5 ± 1.3 86.5 ± 0.3 66.3 ± 1.3 93.3 ± 1.6 93.0 ± 0.4 97.0 ± 0.2 83.8 ± 2.0 92.2 ± 0.4 93.5 ± 0.4

SCALOR 58.8 ± 1.0 86.6 ± 0.4 46.8 ± 1.2 53.7 ± 1.1 83.4 ± 0.3 46.2 ± 1.1 74.4 ± 0.7 86.1 ± 0.4 67.6 ± 1.3 66.1 ± 1.9 86.6 ± 0.5 62.4 ± 1.4

Table E.3: Performance on VMDS challenge sets. Results shown as mean ± standard
deviation for three runs with different random training seeds. Examples sequences for each
challenge set shown below.

Size Color Rotation

Model MOTA MOTP MD MT MOTA MOTP MD MT MOTA MOTP MD MT

ViMON 61.4 ± 2.5 78.0 ± 0.3 71.3 ± 2.1 66.8 ± 1.9 87.4 ± 0.4 86.2 ± 0.2 86.4 ± 0.1 85.0 ± 0.2 -10.4 ± 4.0 70.5 ± 0.4 39.5 ± 2.6 29.8 ± 1.0

ViMON* 80.3 ± 0.9 82.1 ± 0.5 82.5 ± 0.4 79.8 ± 0.5 84.5 ± 0.6 84.6 ± 0.5 83.4 ± 0.5 81.8 ± 0.3 78.7 ± 1.6 82.0 ± 0.6 79.2 ± 0.4 76.4 ± 0.6

TBA 52.3 ± 8.7 73.3 ± 0.7 59.8 ± 4.9 51.8 ± 4.9 56.1 ± 11.4 75.1 ± 0.9 63.7 ± 5.4 59.0 ± 5.2 52.4 ± 9.9 73.6 ± 0.8 59.3 ± 6.2 49.8 ± 5.5

TBA* 1.3 ± 7.8 68.4 ± 1.9 30.6 ± 4.5 24.8 ± 3.4 -16.5 ± 8.1 69.6 ± 1.5 29.1 ± 3.8 25.4 ± 3.3 -7.5 ± 7.9 69.4 ± 1.4 26.6 ± 4.0 20.6 ± 3.4

OP3 87.0 ± 1.9 90.8 ± 0.4 96.4 ± 0.1 95.3 ± 0.1 90.8 ± 1.2 93.5 ± 0.5 97.3 ± 0.1 95.8 ± 0.1 54.7 ± 5.7 84.2 ± 0.7 87.1 ± 1.7 80.5 ± 2.5

OP3* 84.0 ± 2.8 91.2 ± 1.0 95.9 ± 0.8 94.5 ± 1.2 83.6 ± 3.7 91.6 ± 1.3 95.5 ± 0.5 92.9 ± 1.6 74.5 ± 2.2 89.8 ± 0.7 94.8 ± 0.6 93.3 ± 0.8

SCALOR 68.1 ± 1.7 84.9 ± 0.4 63.3 ± 1.7 60.0 ± 2.0 75.5 ± 1.1 89.9 ± 0.5 67.0 ± 1.4 65.7 ± 1.6 46.5 ± 1.8 82.1 ± 0.5 41.9 ± 1.7 37.1 ± 1.3

SCALOR* 67.5 ± 1.2 85.2 ± 0.6 61.2 ± 1.2 57.1 ± 0.7 73.3 ± 0.7 89.8 ± 0.5 64.8 ± 1.1 63.0 ± 0.9 61.6 ± 1.4 83.5 ± 0.4 53.4 ± 1.5 50.2 ± 1.1

* Models trained on a data set that featured color, size and orientation changes of objects during the sequence.

Table E.4: Performance on VMDS OOD test sets. Results shown as mean ± standard
deviation for three runs with different random training seeds. Examples sequences for each
o.o.d. set shown below.

to their MOTA is consistent over all matching thresholds, but the performance difference
between the models increases with higher thresholds (Fig. E.6). For low thresholds (0.1 –
0.3) TBA outperforms SCALOR in MD, MT, Matches and Misses but has a significantly
lower segmentation performance as measured by MOTP.
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Figure E.5: Failure cases of OP3 on VOR. Example sequences of VOR test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.

Figure E.6: Results of ViMON, TBA, OP3 and SCALOR on the VMDS test set using
different IoU thresholds for matching ground truth objects to model predictions.
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Training Inference

Model Resolution No. Param. Batch Size Memory [MiB] No. Iters Epochs Memory [MiB] Avg. runtime / batch Total runtime

ViMON 64⇥64 714,900 18 10,860 3687 6.63 910 0.28 s/it 4min 39s
TBA 128⇥128 3,884,644* 64 10,564 4421 28.29 972 0.24 s/it 4min 05s
OP3 64⇥64 876,305 10 10,874 2204 2.20 4092 0.54 s/it 9min 04s
SCALOR 64⇥64 2,763,526 48 10,942 2547 12.23 930 0.29 s/it 4min 48s

* The TBA parameter count scales with the feature resolution, which is kept fixed using adaptive pooling. This
makes the parameter count independent of input resolution.

Table E.5: Runtime analysis (using a single RTX 2080 Ti GPU). Training: models trained
on VMDS for one hour. Inference: models evaluated on VMDS test set with batch size=1
(10 frames).

Model MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #

ViMON w/o Mask conditioning 70.6 87.8 75.7 66.0 81.4 13.4 5.2 10.8 16.9
ViMON w/o GRU 81.4 86.9 79.8 77.3 88.2 10.3 1.4 6.8 18.9

Table E.6: Ablation experiments for ViMON on VMDS.

Appendix F. Supplementary Figures

See figures F.5 – F.13 for additional, randomly picked examples of reconstruction and
segmentation for k-Means, ViMON, TBA, OP3 and SCALOR on the four data sets
(VMDS, SpMOT, VOR and texVMDS).
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Figure F.1: Results of k-Means on VMDS. Random example sequences of VMDS test
set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.2: Results of k-Means on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.3: Results of k-Means on VOR. Random example sequences of VOR test set shown
with corresponding outputs of the model. Note that k-Means does not give a reconstruction
of the input.
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Figure F.4: Results of k-Means on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.5: Results of ViMON on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.6: Results of ViMON on SpMOT. Random example sequences of SpMOT test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.7: Results of ViMON on VOR. Random example sequences of VOR test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.8: Results of ViMON on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Reconstruction shows sum of
components from all slots, weighted by the reconstructed masks from the VAE. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.9: Results of TBA on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment. Note that background subtraction is performed in the
preprocessing of TBA, hence the black background in the reconstructions.
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Figure F.10: Results of TBA on SpMOT. Random example sequences of SpMOT test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.
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Figure F.11: Results of OP3 on VMDS. Random example sequences of VMDS test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.12: Results of OP3 on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model after final refinement step. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.13: Results of OP3 on VOR. Random example sequences of VOR test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.14: Results of OP3 on texVMDS. Random example sequences of texVMDS test
set shown with corresponding outputs of the model after final refinement step. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.15: Results of SCALOR on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.

54

124



Benchmarking Unsupervised Object Representations

Figure F.16: Results of SCALOR on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model. Binarized color-coded segmentation
maps in third row signify slot-assignment.
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Figure F.17: Results of SCALOR on VOR. Random example sequences of VOR test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.
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Figure F.18: Results of SCALOR on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Binarized color-coded segmentation
maps in third row signify slot-assignment.
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A summary of the motivation, results, and discussion can be found in Section 3.2 on page 30.

Abstract
Unsupervised graph representation learning has recently gained interest in several application
domains such as neuroscience, where modeling the diverse morphology of cell types in the brain is
one of the key challenges. It is currently unknown how many excitatory cortical cell types exist and
what their defining morphological features are. Here we present G����DINO, a purely data-driven
approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled
large-scale datasets. G����DINO is a novel transformer-based representation learning method for
spatially-embedded graphs. To enable self-supervised learning on transformers, we (1) developed
data augmentation strategies for spatially-embedded graphs, (2) adapted the positional encoding
and (3) introduced a novel attention mechanism, AC-A��������, which combines attention-based
global interaction between nodes and classic graph convolutional processing. We show, in two
di�erent species and across multiple brain areas, that this method yields morphological cell type
clusterings that are on parwithmanual feature-based classification by experts, butwithout using prior
knowledge about the structural features of neurons. Moreover, it outperforms previous approaches
on quantitative benchmarks predicting expert labels. Our method could potentially enable data-
driven discovery of novel morphological features and cell types in large-scale datasets. It is applicable
beyond neuroscience in settings where samples in a dataset are graphs and graph-level embeddings
are desired.
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Abstract

Unsupervised graph representation learning has recently gained interest in several applica-
tion domains such as neuroscience, where modeling the diverse morphology of cell types
in the brain is one of the key challenges. It is currently unknown how many excitatory
cortical cell types exist and what their defining morphological features are. Here we present
GraphDINO, a purely data-driven approach to learn low-dimensional representations of
3D neuronal morphologies from unlabeled large-scale datasets. GraphDINO is a novel
transformer-based representation learning method for spatially-embedded graphs. To enable
self-supervised learning on transformers, we (1) developed data augmentation strategies for
spatially-embedded graphs, (2) adapted the positional encoding and (3) introduced a novel
attention mechanism, AC-Attention, which combines attention-based global interaction
between nodes and classic graph convolutional processing. We show, in two di�erent species
and across multiple brain areas, that this method yields morphological cell type cluster-
ings that are on par with manual feature-based classification by experts, but without using
prior knowledge about the structural features of neurons. Moreover, it outperforms pre-
vious approaches on quantitative benchmarks predicting expert labels. Our method could
potentially enable data-driven discovery of novel morphological features and cell types in
large-scale datasets. It is applicable beyond neuroscience in settings where samples in a
dataset are graphs and graph-level embeddings are desired.

1 Introduction

The brain is structured into di�erent areas that contain diverse types of neurons (Ascoli et al., 2008). The
morphology of cortical neurons is highly complex with widely varying shapes. Cell morphology has long been
used to classify neurons into cell types (Ramón y Cajal, 1911), but characterizing neuronal morphologies
is still a challenging open research question. Morphological analysis has traditionally been carried out by
visual inspection (Ascoli et al., 2008; Defelipe et al., 2013) or by computing a set of predefined, quantitatively
measurable features such as number of branching points (Uylings & Van Pelt, 2002; Scorcioni et al., 2008;
Oberlaender et al., 2012; Polavaram et al., 2014; Markram et al., 2015; Lu et al., 2015; Gouwens et al.,
2019). However, both approaches have deficits: expert assessments have a high variance (Defelipe et al.,
2013) and the manual definition of morphological features introduces biases (Wang, 2018), thus calling for
more unbiased, data-driven approaches to characterize the morphology of neurons.

Recent advances in recording technologies have greatly accelerated data collection and therefore the amount
of data available (MICrONS Consortium et al., 2023; Ramaswamy et al., 2015; Scala et al., 2021; Allen
Institute, 2016; Peng et al., 2021; Winnubst et al., 2019). These developments have opened the floor
for data-driven approaches based on unsupervised machine learning methods (Schubert et al., 2019,
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Elabbady et al., 2022). One form of data representation that is particularly suitable for neurons is rep-
resenting the skeleton of a neuron as a tree. In such a tree, the root node represents the neuron’s cell body
and the node features are their 3D locations. The availability of a number of such skeleton datasets has
recently sparked some work on graph-level representation learning of neuronal morphologies (Laturnus &
Berens, 2021; Zhao et al., 2022; Chen et al., 2022a). Following this line of research and work from the graph
learning community (Sun et al., 2020; You et al., 2020), we present an unsupervised graph-level representation
learning approach.

Our contributions in this paper are fourfold:

1. We propose a new self-supervised model to learn graph-level embeddings for spatial graphs. Unlike
previous methods, our approach does not require human annotation or manual feature definition.

2. We introduce a novel attention module that combines transformer-style attention and message pass-
ing between neighboring nodes as in graph neural networks.

3. We apply this approach to the classification of excitatory neuronal morphologies and show that it
produces clusters that are comparable with known excitatory cell types obtained by manual feature-
based classification and expert-labeling.

4. We outperform existing approaches based on manual feature engineering and auto-encoding in pre-
dicting expert labels.

Our code is available at https://eckerlab.org/code/weis2023/.

2 Related Work

2.1 Representation learning for neuronal morphologies

Morphology has been used for a long time to classify neurons by either letting experts visually inspect
the cells (Ramón y Cajal, 1911; Defelipe et al., 2013) or by specifying expert-defined features that can be
extracted and used as input to a classifier (Oberlaender et al., 2012; Markram et al., 2015; Kanari et al.,
2017; Wang, 2018; Kanari et al., 2019; Gouwens et al., 2019) (see Armañanzas & Ascoli (2015) for review).
Ascoli et al. (2008) made an e�ort to unify the used expert-defined features.

With the advent of new technologies for microscopic imaging, electrical recording, and molecular analysis
such as Patch-seq (Cadwell et al., 2015) that allow the simultaneous recording of transcriptomy, electro-
physiology and morphology of whole cells, several works have explored the prediction of cell types from
multiple modalities (Gala et al., 2021) or one modality from the other (Cadwell et al., 2015; Scala et al.,
2021; Gouwens et al., 2020).

Multiple previous works try to either hand-engineer or learn a representation of neuronal morphologies.
Laturnus & Berens (2021) propose a generative approach involving random walks in graphs to model neuronal
morphologies. Schubert et al. (2019) process 2D projections of morphologies with a convolutional neural
network (CNN) to learn low-dimensional representations. Seshamani et al. (2020) extract local mesh features
around spines and combine them with traditional Sholl analysis (Sholl, 1953). Gouwens et al. (2019) define
a set of morphological features based on graphs and perform hierarchical clustering on them. We use the
latter as a baseline for a classical approach with pre-defined features and Laturnus & Berens (2021) as a
baseline of a model with learned features.

Concurrent work (Zhao et al., 2022) proposes a contrastive graph neural network to learn neuronal embed-
dings with a focus on retrieval e�ciency from large-scale databases. Elabbady et al. (2022) learn represen-
tations of neurons based on subcellular features of the somatic region of the neurons and show that those
features are su�cient for classifying cell types on large-scale EM datasets. Chen et al. (2022b) propose a
combination of graph-based processing and manually-defined features to learn embeddings of neuronal mor-
phologies using a LSTM-based network and contrastive learning. We compare to the latter in Section 5.8.
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2.2 Graph Neural Networks (GNNs)

Graph neural networks learn node representations by recursively aggregating information from adjacent
nodes as defined by the graph’s structure. While early approaches date back over a decade (Scarselli et al.,
2009), recently numerous new variants were introduced for (semi-) supervised settings: relying on convolution
over nodes (Duvenaud et al., 2015; Hamilton et al., 2017; Kipf & Welling, 2017), using recurrence (Li et al.,
2016), or making use of attention mechanisms (Veli�koviÊ et al., 2018). A representation for the whole graph
is often derived by a readout operation on the node representations, for instance averaging. See Dwivedi
et al. (2020) for a recent benchmark on graph neural network architectures.

Transformer-based GNNs. Similar to us, Zhang et al. (2020) and Dwivedi & Bresson (2021) use trans-
former attention to work with graphs. However, Zhang et al. (2020) compute transformer attention over
the nodes of sampled subgraphs, while Dwivedi & Bresson (2021) compute the attention only over local
neighbors of nodes, which boils down to a weighted message passing that is conditioned on node feature
similarity, and trains with supervision. Unlike these previous approaches, we compute the attention between
nodes of the global graph and adapt the transformer attention to consider the adjacency matrix of the graph,
which allows the model to take into account both the direct neighbors of a node as well as all other nodes in
the graph. Mialon et al. (2021) consider encoding local sub-structures into their node features and leverage
kernels on graphs in their attention as relative positional encodings. Their 1-step random walk (RW) kernel
is similar to our AC-Attention mechanism, except that the influence of the adjacency in their attention
is not learnable. Ying et al. (2021) propose strategies to adapt positional encodings to graphs in order to
leverage the structural information of the graphs with transformer attention. Specifically, they propose to
use three di�erent structural encodings: (1) a centrality encoding based on the node degree; (2) edge encod-
ings based on the edge features and (3) a spatial encoding based on the shortest path between two nodes.
For neural skeletons, the centrality encoding is not e�ective as all the nodes besides the soma have a node
degree of two or three. Furthermore, the edge encoding is not applicable since in the neuronal graphs do not
have edge features. We use Laplacian positional encodings instead as it was shown that they are beneficial
to capture structural and positional information (Dwivedi & Bresson, 2021) and outperform previously pro-
posed positional encodings (Zhang et al., 2020). We did not use any additional positional encodings such as
shortest-path encodings (Ying et al., 2021), but they could be easily integrated into our model. Concurrent
to our work, Rampáöek et al. (2022) proposed a two-stream architecture, in which transformer attention and
message passing are computed in parallel and then combined after each block. In contrast, we propose one
combined attention mechanism that subsumes transformer attention and message passing with a learned
trade-o� per node between the two settings. Chen et al. (2022a) incorporate structural information into the
transformer attention by extracting a subgraph representation around each node before computing attention
over nodes.

Self-supervised learning on graphs. Self-supervised learning has proven to be a useful technique for
training image feature extractors (Oord et al., 2018; Chen et al., 2020; Chen & He, 2021; Caron et al., 2021)
and has been investigated for learning graph (Li et al., 2016; Hassani & Khasahmadi, 2020; Qiu et al., 2020;
You et al., 2020; Xu et al., 2021) and node (Veli�koviÊ et al., 2019) representations. Narayanan et al. (2017)
learn graph representations through skip-gram with negative sampling by predicting present sub-graphs.
You et al. (2020) propose four data augmentations for contrastive learning of graph-level embeddings. Sun
et al. (2020) learn graph-level representations in a contrastive way, by predicting if a subgraph and a graph
representation originate from the same graph. Similarly, Hassani & Khasahmadi (2020) put node features of
one view in contrast with the graph encoding of a second view and vice versa. They build on graph di�usion
networks (Klicpera et al., 2019) and only augment the structure of the graph but not the initial node features.
We use Sun et al. (2020) and You et al. (2020) as a baseline for graph-level unsupervised representation
learning. Qiu et al. (2020) propose a generic pre-training method which uses an InfoNCE objective (Oord
et al., 2018) to learn features by telling augmented versions of one subgraph from other subgraphs with
random walks as augmentations. Xu et al. (2021) aim to capture local and global structures for whole-
graph representation learning. They rely on an EM-like algorithm to jointly train the assignment of graphs
to hierarchical prototypes, the GNN parameters and the prototypes. Zhu et al. (2021) propose adaptive
augmentation, which considers node centrality and importance to generate graph views in a contrastive
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framework. Similar to our approach, Thakoor et al. (2022) use two encoders of which only one is trained and
the other is an exponential moving average of the first. In contrast to our approach, though, their training
objective encourages the node embeddings of two augmented versions of the same graph to be similar – not
the graph-level embedding. Moreover, they use node feature and edge masking as graph augmentations.

Unlike most prior work, we contrast two global views of a graph in order to learn a whole-graph representation.
Our method operates on spatially embedded graphs, in which nodes correspond to points in 3D space. We
make use of this knowledge in the choice of augmentations.

3 GraphDINO

Augmentations

A. GraphDINO training

B. Embedding

EMA weight update

Graph input

Embedding

max. similarity

Encoder

Vector

Encoder

z
p1

p2

1

z2

Objective function
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• drop sub-branches
• jitter node location 

Encoder
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Figure 1: A. Self-supervised learning of low di-
mensional vector embeddings z1, z2 that capture the
essence of the 3D morphology of individual neurons us-
ing GraphDINO. Two augmented “views” of the neu-
ron are input into the network, where the weights of
one encoder (bottom) are an exponential moving aver-
age (EMA) of the other encoder (top). The resulting
latent embeddings z are projected to probability distri-
butions p by a MLP. The objective is to maximize the
similarity between p1 and p2. B. An individual neu-
ron is represented by its vector embedding as a point
in the D-dimensional vector space.

We propose GraphDINO, a method for self-
supervised representation learning of graphs. It is
inspired by recent progress in self-supervised repre-
sentation learning of images that has been shown
to be competitive to supervised learning without re-
lying on labels. The core idea is to enforce that
the representations of two augmented versions of the
same image are close to each other in latent space.

DINO (Caron et al., 2021) is an implementation
of this self-supervised learning framework consist-
ing of two encoders with a transformer backbone.
To avoid mode collapse, only one encoder is di-
rectly trained through backpropagation (student)
while the weights of the other encoder (teacher) are
an exponential moving average (ema) of the stu-
dent’s weights. The latent representations z œ RD1

given by the encoders are mapped to probability
distributions p œ RD2 by a multi-layer perceptron
(MLP) and subsequent softmax operator over which
the cross-entropy loss is computed (Fig. C.4). For
further explanation of DINO see Appendix C.1.

GraphDINO adapts this self-supervised framework
to the data domain of graphs (Fig. 1). In order
to use information given by the connectivity of the
graph, we modify the computation of the trans-
former attention to take the graph adjacency matrix
into account and use the graph Laplacian as posi-
tional encoding.

More specifically, we introduce the following modifications: (1) we incorporate the graph’s adjacency ma-
trix into the attention computation; (2) we use the graph Laplacian as positional encoding; (3) we define
augmentations suitable for spatial graphs.

Input. Input to the network is the 3D shape of a neuron which is represented as an undirected graph
G = (V, E). V is the set of nodes {vi}N

i=1 and E the set of undirected edges E = {eij = (vi, vj)} that
connect two nodes vi, vj . The features of each node vi in the graph are encoded into a token using a linear
transformation. These tokens are then used as input to the transformer model, which consists of l multi-head
attention modules with h heads each.

Attention bias. Key-value query attention became popular in natural language modelling (Vaswani et al.,
2017) and is now used routinely also in image models (Dosovitskiy et al., 2020).
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To make use of the information given by the adjacency matrix A œ RN◊N of the input graph — i.e. the
neighborhood of nodes —, we bias the attention towards A by adding a learned bias to the attention matrix
that is conditioned on the input token values:

Attention(Q, K, V, A) = ‡

A
⁄

QKT

Ô
dk

+ “A
B

V, with [⁄i, “i] = exp (Wxi), (1)

where K, Q, V are the keys, queries and values which are computed as a learned linear projection of the
tokens. ‡(·) denotes the softmax function. xi œ RD is the token of node vi, W œ R2◊D is a learned weight
matrix, ⁄, “ œ RN are two factors per node that trade o� how much weight is assigned to neighboring nodes
versus all other nodes in the graph, and N is the number of nodes.

When “ = 0 and ⁄ = 1, the adjacency-conditioned attention (AC-Attention) reduces to regular trans-
former attention. In the other extreme case (⁄ = 0,), the attention matrix is dominated by A and the
transformer attention computation is akin to the message passing algorithm that is commonly used when
working with graphs (Scarselli et al., 2009; Duvenaud et al., 2015; Gilmer et al., 2017). GraphDINO is
more flexible than both regular message passing and point-cloud attention since it can decide how much
weight is given to the neighbors of a node while maintaining the flexibility to attend to all other nodes in
the graph as well.

Positional encoding. Following Dwivedi et al. (2020), we use the normalized graph Laplacian matrix L
as positional encoding, which is computed by L = I ≠ D≠1/2AD≠1/2 = UT �U, where I is the identity
matrix, D the N ◊ N degree matrix, A the adjacency matrix, and U and � are the matrices of eigenvectors
and eigenvalues, respectively. The positional encodings are the first 32 eigenvectors with largest eigenvalues.
Positional encodings are added to the nodes features after tokenization.

Table 1: Overview of data augmentations for spatially-
embedded graphs such as neuronal skeletons.

Level Augmentations
Graph (1) Subsampling, (2) Rotation, (5) Translation

Subgraph (3) Jittering, (4) Branch deletion

Data augmentation. Data augmentation
plays an important role in self-supervised
learning and needs to be adapted to the data,
since it expresses which invariances should be
imposed. Given the spatial neuronal data, we
apply the following augmentations: (1) Sub-
sampling: We subsample the original graph
to a fixed number of n nodes by randomly re-
moving nodes that are not branching points
(i.e. nodes connected to more than two other
nodes), and connecting the two neighbors of
the removed node. This facilitates batch pro-
cessing. Furthermore, this augmentation re-
tains the global structure of the neuron, while
altering local structure in the two views. (2)

Rotation: we perform random 3D rotation around the y-axis, that is orthogonal to the pia. (3) Jittering:
we randomly translate individual node positions by adding Gaussian noise with N (0, ‡1). (4) Subgraph
deletion: We identify branches that connect leaf nodes to the last upstream parent node in the graph,
i.e. terminal branches that do not split into further branches, and randomly delete n of them starting at
a random location along the branch, while maintaining the overall graph structure. (5) Graph position:
we randomly translate the graph as a whole by adding Gaussian noise with N (0, ‡2) to all nodes. Unlike
Caron et al. (2021), we do not di�erentiate between the augmentations seen by the student and the teacher
network.
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4 Data and Experiments

4.1 Synthetic graphs

To demonstrate that our novel attention mechanism is strictly more powerful than simple all-to-all attention
on a graph, we generate a synthetic graph dataset. In this dataset, the five classes share similar node
locations but di�er in how the nodes are connected. See Appendix A for the detailed generation process. We
use this dataset to test the e�cacy of our novel attention mechanism, AC-Attention, and the positional
encoding.

4.2 Neuronal and tree graphs

We apply GraphDINO to five publicly available neuronal datasets and one non-neuronal dataset.

Blue Brain Project (BBP): Rat somatosensory cortex. Available from the Neocortical Microcircuit
Collaboration Portal of the Blue Brain Project1 (Ramaswamy et al., 2015), the dataset contains 1,389 neurons
from juvenile rat somatosensory cortex. We train GraphDINO without supervision on the 3D dendritic
morphologies of all neurons. For evaluation, we use the subset of 616 neurons which have been labeled by
experts into cell types and cortical layer. Of these 616 neurons 286 are excitatory that have been assigned
to 14 cell types (Markram et al., 2015). See Appendix C.5.1 for more details on the dataset. We use this
dataset to evaluate the capability of GraphDINO to learn useful representations of neuronal morphologies
that align with known cell types, perform ablation experiments on the novel graph augmentation strategies
and compare to previous work using manually-defined features.

M1 PatchSeq: Mouse motor cortex. The M1 PatchSeq dataset contains 275 excitatory and 371
inhibitory cells from M1 in adult mouse primary motor cortex (Scala et al., 2021).2 The excitatory cells
(M1 EXC) have been classified into tufted, untufted and other neurons based on their morphology in a
previous study (Laturnus & Berens, 2021). We use this dataset to compare to previous work that learns
morphological embeddings in a data-driven way. We train GraphDINO without supervision on the 3D
dendritic morphologies of the 646 neurons. For evaluation, we follow the evaluation protocol and use the
same dataset split as Laturnus & Berens (2021). We additionally report the 5-nearest neighbour accuracy
of three additional dataset splits to estimate the variance due to the chosen split, since the test set is very
small (60 neurons) and the balanced accuracy is strongly influenced by the morphologically heterogeneous
“other” class that is only represented by six samples in the test set (Laturnus & Berens, 2021).

Allen Brain Atlas (ACT): Mouse visual cortex. As part of the Allen Cell Types Database, the dataset
contains 510 neurons from the mouse visual cortex with a broad coverage of types, layers and transgenic
lines.3 See Allen Institute (2016) for details on how the dataset was recorded. It comes with a classification
of each neuron into spiny, aspiny, or sparsely spiny, where spiny are assumed to be excitatory neurons and
all else are inhibitory (Gouwens et al., 2019). Additionally, the cortical layer of each neuron is provided.

Brain Image Library (BIL): Whole mouse brain. The Brain Image Library contains 1,741 recon-
structed neurons from cortex, claustrum, thalamus, striatum and other brain areas in mice (Peng et al.,
2021).4

Janelia MouseLight (JML): Whole mouse brain. The Janelia MouseLight platform contains 1,200
projection neurons from the motor cortex, thalamus, subiculum, and hypothalamus (Winnubst et al., 2019).5

Joint training on ACT, BIL and JML. Following Chen et al. (2022b), for joint training of the ACT,
BIL and JML datasets, we rotate the neurons such that the first principal component is aligned with the

1
http://microcircuits.epfl.ch/#/main

2
https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/

3
http://celltypes.brain-map.org/

4
https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/

5
http://mouselight.janelia.org/
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y-axis. Chen et al. (2022b) group the neurons of the three datasets ACT, BIL and JML into eleven classes
based on the cortical layer or brain region they originate from. They then evaluate their learned embeddings
on a subset of six (for BIL) or four classes (for ACT and JML) that have a broad coverage across the datasets.
See Appendix C.5.4 for further details.

Botanical Trees. The Trees dataset (Seidel et al., 2021) is a highly diverse dataset comprised of 391
skeletons of trees stemming from 39 di�erent genuses and 152 species or breedings. The skeletons were
extracted from LIDAR scans of the trees. Nodes of the skeletons have a 3D coordinate associated with
them. We normalize the data such that the lowest point (start of the tree trunk) is normalized to (0, 0, 0).

4.2.1 Data Preprocessing

Since the objective of GraphDINO is to learn purely from the 3D dendritic morphology of neurons, we
normalize each graph such that the soma location is centered at (0, 0, 0) (no cortical depth information
is given to the model). Furthermore, axons are removed for all experiments in the paper, because the
reconstruction of axonal arbors of excitatory neurons from light microscopy images is di�cult due to their
small thickness and long ranges that they cover (Kanari et al., 2019) and thus often unreliable. The input
nodes V have features vi = [x, y, z] where vi œ R3 are the spatial xyz-coordinates in micrometers [µm].

4.2.2 Training details.

GraphDINO is implemented in PyTorch (Paszke et al., 2019) and trained with the Adam optimizer (Kingma
& Ba, 2015). The latent dimensionality of z is 16 for the synthetic graphs and 32 for the neuronal and the
botanical tree datasets. For M1 PatchSeq we use a latent dimensionality of 64. See C.2 for an overview of
the hyperparameters used for training on the di�erent datasets. At inference time, the latent embeddings
z are extracted from the student network for the unaugmented graphs. We use scipy for fitting Gaussian
Mixture models (GMM) and k-nearest neighbor classifiers (kNN) (Pedregosa et al., 2011).

5 Results

Figure 2: t-SNE embedding of latent repre-
sentations of 3D synthetic graphs shown for
one example run per model. Accuracy av-
eraged over five random seeds and given as
mean ± standard deviation. “–” means re-
moving one component from the full model.

We first establish that GraphDINO works on the synthetic
graph dataset and show that our novel AC-Attention is
necessary for exploiting information from graph connectiv-
ity. Second, we show that our novel augmentation strate-
gies are suitable for spatially-embedded graphs that are tree-
structured and that classical GNN message-passing is not suf-
ficient when graphs have long-ranging branches. Then, we
move to the gradually more complex, biological questions of
spiny-aspiny di�erentiation, cell type recovery and consistency
with existing labels. To this end, we employ in total five neu-
ronal datasets that encompass two species and range across
multiple brain areas. Finally, we compare our model to sev-
eral previous works based on manually-defined morphological
features as well as approaches with learned features. See Ap-
pendix B for the application of GraphDINO to a non-neuronal dataset.

5.1 AC-Attention recovers information encoded by graph connectivity

We start by demonstrating the e�cacy of our novel AC-Attention module. For this experiment, we use
the synthetic graph dataset where classes di�er in how nodes are connected whereas the distribution of node
positions does not vary across classes. Therefore, considering the graph structure is necessary to di�erentiate
between the classes (more details in Appendix A). We train GraphDINO on the synthetic graph dataset
without labels in three configurations: (1) with AC-Attention, (2) with regular transformer attention
and (3) with transformer attention and without positional encoding. We asses the quality of the learned
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embedding using the ground truth labels. A linear classifier on the learned embeddings achieves a test
set accuracy of (1) 95% ± 4, (2) 29% ± 6, and (3) 20% ± 1, showing that AC-Attention allows us to
capture the structure of spatially embedded graphs when the location of the nodes alone does not provide
su�cient information. Removing both AC-Attention and the positional encoding results in the classifier
performing at chance level. Using only the positional encoding performs slightly better than chance, because
the positional encodings contain some information about node connections through the graph Laplacian. To
make full use of the information given by the connectivity of the graphs, using AC-Attention is essential
(Fig. 2).

5.2 Tailored graph augmentations are well-suited for spatially-embedded graphs

Table 2: Ablation results on the BBP
dataset. Cell-type classification accu-
racy [%] of our model and ablations
averaged over three random seeds and
given as mean ± standard deviation.
“–” indicates removal of an augmenta-
tion or model component.

Model Accuracy
GraphDINO 65.8 ± 1

– 3D rot. 55.4 ± 1

– node jitter 64.8 ± 2

– graph translation 55.6 ± 2

– drop branch 64.6 ± 1

subsampling: 50 nodes 60.0 ± 0

subsampling: 200 nodes 62.0 ± 3

– adjacency (“ = 0) 62.8 ± 1

– attention (⁄ = 0) 59.8 ± 2

In self-supervised learning, data augmentation is used to obtain two
views that define a positive input pair. The augmentations here
are chosen to encode invariances that should not change the under-
lying sample identity. In previous contrastive learning for graphs,
these augmentations were for example dropping random edges or
masking node features (You et al., 2020). These augmentations are
not appropriate for our spatially-embedded graphs that form a tree
and whose only node features are their 3D location in space. Thus
we designed five novel augmentation techniques specifically for spa-
tially embedded graphs such as neural morphologies or botantical
trees: subsampling, rotation, node jittering, branch deletion and
graph translation (see Section 3).

To test the importance of the individual graph augmentations we
perform a set of ablation experiments using the BBP dataset. We
remove one augmentation from our model at a time and evaluate
the leave-one-out 5-nearest neighbor accuracy when predicting the
expert labels. For the subsampling augmentation we vary the num-
ber of retained nodes. Our full model achieves an average accuracy
of 65.8% when classifying the excitatory cells into the 12 expert
labels (Appendix C.5.1). When removing individual data augmentations the accuracy decreases (Tab. 2).
Especially 3D rotation and graph translation are important augmentation strategies whose removal lead to
substantial performance deterioration.

5.3 Message-passing is not su�cient for long-range graphs

Table 3: Cell-type classification accuracy [%]
on the BBP dataset. Performance of our
model and InfoGraph (Sun et al., 2020) av-
eraged over three random seeds and given as
mean ± standard deviation.

Model Accuracy
InfoGraph (Sun et al., 2020) 48.2 ± 0

GraphDINO 65.8 ± 1

Next, we investigate whether classical message-passing is suf-
ficient to process graphs with long-ranging branches such as
neuronal morphologies. Therefore, we train GraphDINO

once when only using message passing while removing the
global attention (setting ⁄ = 0 in Eq. 1). This decreases
the performance to 59.8% (Tab. 2). Additionally, we train
InfoGraph (Sun et al., 2020), as a baseline for an unsu-
pervised method that learns graph-level representations and
uses GNN message-passing. InfoGraph achieves accuracy
of 48.2% (Tab. 3). Thus, we conclude that using global at-
tention is beneficial in situations where graphs contain long-range branches. Global attention enables infor-
mation flow between distant (in terms of graph connectivity) nodes that might be close in space or function.

5.4 Morphological embeddings di�erentiate between spiny/aspiny cells and layers

To evaluate the capability of GraphDINO to capture essential features of 3D neuronal shapes purely data-
driven, we train GraphDINO on the BBP dataset and use t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten & Hinton, 2008) to map the learned embeddings of the BBP dataset into 2D (Fig. 3) for
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Figure 3: A. t-SNE embedding (perplexity=30) of latent representation of 3D neuronal morphologies of
the BBP dataset showing a separation into spiny and aspiny neurons (n = 616). B. t-SNE embedding
(perplexity=30) of the latent representations of the morphologies of the spiny neurons colored by the cluster
found by our model (n = 286). C. Relative cortical layer distribution of neurons per cluster across L2/3—L6.
Higher values are indicated by red. D. As B. but neurons colored by their total apical length revealing an
organization of the latent space in terms of morphological properties. E. Log-likelihood of Gaussian Mixture
Model on held-out test set for spiny neurons used to select the optimal number of clusters. F. Example
neurons for each cluster are shown with apical dendrites in lighter color, while basal dendrites are colored
darker. Soma is indicated by black circle.
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visualization. A clear separation between spiny and aspiny neurons can be observed (see Fig. 3A), indicating
that our learned representation captures meaningful biological di�erences of the neuronal morphologies.

Interestingly, some of the spiny neurons end up in the aspiny cluster (Fig. 3A bottom right). These are
inverted L6 neurons (Fig. 3F Cluster 15), whose size and dendritic tree are morphologically similar to the
surrounding aspiny neurons that also show a downwards bias in the dendritic tree.

5.5 Morphological embeddings recover known excitatory cell types

To identify cell types, we fit a Gaussian mixture model (GMM) with a diagonal covariance matrix to our
learned representation of the spiny neurons. To determine the number of clusters, we fit 1,000 GMMs with
di�erent random seeds using five-fold cross-validation for 2—30 clusters. We average over the log-likelihood
for each number of clusters over repetitions and folds. We find n = 15 to be the optimal number of clusters
(Fig. 3E).

Having identified the optimal number of clusters, we re-fit the GMM to the full dataset including all spiny
neurons. To avoid picking a particularly good or bad random clustering, we fit 100 models and choose the
one that has the highest average adjusted rand index (ARI) to all other clusterings.

The spiny neurons cluster nicely into di�erent shapes and layers (Fig. 3F and Appendix Fig. D.6), retrieving
known excitatory cell types. The first four spiny clusters contain mainly cells from layer 2/3 (L2/3) (Fig. 3C)
and group them by morphology: Cluster 1 contains wide and short neurons from layer 2/3, while L2/3
neurons in cluster 4 are more elongated with a less pronounced apical tuft (Fig. 3F). Clusters 5-7 group cells
from layer 4 (L4) (Fig. 3C), di�erentiating between spiny stellate cells (cluster 5) and atufted L4 neurons
(cluster 7) (Fig. 3F). Within layer 5 and 6, neurons are grouped by their size, amount of apical tuft and
obliques, as well as the direction of the apical-like dendrites: For instance, cluster 10 groups thick-tufted
pyramidal cells from layer 5 and cluster 15 contains inverted L6 neurons (Fig. 3F).

Most clusters show a strong preference for grouping cells whose soma position is in a certain layer (Fig. 3C)
even though the model — in contrast to the experts who labeled the cells — does not have access to
anatomical knowledge such as cortical layer of origin. One exception are pyramidal L6 cells with upward-
directed apicals that separate less well and get rather clustered with L4 and L5 neurons of the same size
and similar morphological shape. This is to be expected, as the model only learns to di�erentiate between
di�erent morphologies but has no knowledge about anatomical features such as soma depth.

5.6 Data-driven clusters are consistent with expert labels

To compare our data-driven features to manually-designed features, we compute the adjusted rand index
(ARI) between our clusters and the expert-identified cell types on the BBP dataset and compare the per-
formance to the clusters based on morphometrics obtained by Gouwens et al. (2020). We achieve an ARI
performance of 0.31 when clustering neurons across all cortical layers together while using significantly less
prior information than Gouwens et al. (2019). In comparison, Gouwens et al. (2019) reached an ARI of 0.27
with a feature space specifically designed for spiny neurons and by splitting the neurons into their cortical
layer of origin before performing the clustering. This approach reduces the complexity of the problem sig-
nificantly, since misassignments across layers are excluded by construction. When performing the clustering
like Gouwens et al. (2019) only within the layers, we achieve an ARI of 0.46 (Tab. 4).

5.7 Morphological embeddings encode distinct morphological features

Laturnus & Berens (2021) classified the M1 EXC dataset (Scala et al., 2021) into three classes based on
presence of an apical tuft (tufted, untufted and others). Following their work, we train a 5-nearest-neighbor
classifier on our learned embeddings and show that GraphDINO learns meaningful features to di�erentiate
between the three classes (Tab. 5). Our method outperforms their MorphVAE method as well as a baseline
using density maps of the neurons (Laturnus & Berens, 2021). This dataset is rather small and Laturnus
& Berens (2021) used only a single train/test split. To estimate how reliable the reported accuracy metrics
are, we compute the cross-validated accuracy across multiple di�erent train/test splits, which show a vari-
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Table 4: Adjusted rand index (ARI) between
identified clusters and expert labels for the
learned embeddings from GraphDINO and
manually-defined features by Gouwens et al.
(2019) and expert labels, when performing the
clustering within cortical layers and across the
whole cortex.

Clustering Features ARI
across layers GraphDINO 0.31
within layers Gouwens et al. (2019) 0.27

GraphDINO 0.46

Table 5: Balanced accuracy [%] on M1 EXC test set us-
ing the learned embeddings from either GraphDINO or
MorphVAE (Laturnus & Berens, 2021) (mean ± SEM
across three runs and across three data splits, respec-
tively). Percentages in brackets indicate the amount of
labels used during training for MorphVAE. GraphDINO
is trained without labels.

Accuracy Accuracy
over runs over splits

Model (mean ± SEM) (mean ± SD)

MorphVAE (100 %) 70 ± 5 -
MorphVAE (0 %) 58± 7 -
Density Map (0 %) 60 -
GraphDINO (0 %) 68 ± 5 71 ± 9

ability across splits of ±9% (standard deviation; Tab. 5). We conclude that GraphDINO likely outperforms
MorphVAE trained withoutsupervision and performs approximately on par with MorphVAE trained fully
supervised.

5.8 Morphological embeddings encode cortical regions

TreeMoCo (Chen et al., 2022b) is an LSTM-based model that was concurrently proposed to perform un-
supervised representation learning on neuronal graphs. The model uses as input the simplified skeletons
of neurons that only contain the branching points as nodes. They compute 26 manually-selected features
in addition to the xyz-coordinates as node features to describe the morphology of the skeletons between
branching points. TreeMoCo is trained on a combination of the datasets BIL, JML and ACT and quan-
titatively evaluated on the task of predicting the brain anatomical region or cortical layer of origin of the
neurons on a subset of the neuronal classes. Chen et al. (2022b) remove 955 neurons from the dataset due
to “reconstruction errors” and evaluate on a 80-20% training-test split. Since we did not have access to the
exact neurons used for training and evaluation both in terms of split and which neurons were removed, we
trained unsupervised on the joint dataset and evaluated using 5-fold cross-validation, i.e. splitting the data
into five folds and evaluating each fold, given the other four folds as training data and reporting the average
performance across folds. For further details regarding the evaluation, see Appendix C.5.4.

Table 6: Cell-type classification on the TreeMoCo dataset.
Performance of our model (GraphDINO) averaged over
three random seeds and given as mean ± standard devi-
ation. TreeMoCo and GraphCL performance given as
the average accuracy over the last five epochs per dataset.
úResults taken Fig. C1 of Chen et al. (2022b).

Model BIL-6 JML-4 ACT ACT spiny
TreeMoCoú 76.9 59.7 53.9 -
GraphCLú 66.3 50.6 55.6 -
GraphDINO 79± 1 63± 6 54± 5 73± 6

GraphDINO performs on par or better than
TreeMoCo and GraphCL when predict-
ing the origin of neurons (Tab. 6). Note
that GraphDINO is fully data-driven while
TreeMoCo and GraphCL additionally em-
ploy manually extracted node features.

Note that the evaluation reported by Chen
et al. (2022b) uses excitatory and inhibitory
neurons at the same time. With this approach,
morphologies of neurons of the “same” class can
look very di�erent (Fig. C.5). A better proxy
task to evaluate the encoding capabilities of the
models would be to restrict the evaluation to
only excitatory cells. For the ACT dataset this
information is available. We therefore repeated the evaluation only on this subset (Tab. 6), which should
provide a more meaningful baseline for future studies.

11

145



Published in Transactions on Machine Learning Research (06/2023)

6 Limitations

GraphDINO is designed to learn graph-level representations of spatially-embedded tree-structured graphs
using self-supervised learning. As we focus on graphs where each node has a location in 3D space and design
the data augmentations accordingly, the approach is not expected to work out-of-the-box on graphs that
have di�erent node features. AC-Attention is likely to be beneficial in many other scenarios as well, since
it can smoothly interpolate between message passing and global attention based on node similarity, but this
hypothesis remains to be tested empirically. Data augmentations would need to be adapted to the respective
data domain and the respective invariances that should be encoded or supervised learning to be used. The
attention mechanism is not tied in any way to the self-supervised learning objective we use.

We encode the desired invariance for neuronal morphologies in GraphDINO via tailored data augmenta-
tions. Rotation and translation equivariance could alternatively be built into the architecture of the encoders
explicitly. Recent works have proposed such architectures for GNNs (Satorras et al., 2021), as well as for
transformers (Fuchs et al., 2020). Adapting these for AC-Attention would be an interesting future research
direction.

Computing the full transformer attention matrix has a quadratic complexity and might therefore be com-
putationally infeasible for graphs with a large number of nodes. We solve this problem here by subsampling
the neuronal skeletons to a smaller number of nodes, which has the added benefit of being a strong data
augmentation that keeps the global morphology of the neuron intact while altering the local structure be-
tween the two views. However, this approach might not be suitable for all graph datasets. There has been
some work in building attention mechanism that scale linearly with the number of input tokens (Wang et al.,
2020; Kitaev et al., 2020; Choromanski et al., 2021), but integrating them with the message passing might
not be straightforward.

Self-supervised learning has been shown to be most successful when training on large datasets (Bao et al.,
2022; Oquab et al., 2023). We equipped GraphDINO with appropriate inductive biases to make it possible
to learn on the smaller publicly available neuronal datasets that have been used in previous studies. Nev-
ertheless, applying GraphDINO to neuronal datasets with more samples will likely improve its learning
capabilities. With the continual development of better imaging techniques and initiatives like MICrONS

(MICrONS Consortium et al., 2023) more large-scale datasets of neuronal morphologies will be available to
test this hypothesis.

In terms of neuronal cell type classification, we did not take some features into account that have been
previously used to di�erentiate cell types, such as the shape of the soma (as formerly used for GABAergic
interneurons) or spine densities (Ascoli et al., 2008). Future work could focus on incorporating them into our
framework. Depending on the type of feature, they could be easily integrated by adding them as features of
the graph or as additional node features.

7 Conclusion

Increasingly large and complex datasets of neurons have given rise to the need for unbiased and quantitative
approaches to cell type classification. We have demonstrated one such approach that is purely data-driven
and self-supervised, and that learns a low-dimensional representation of the 3D shape of a neuron. By using
self-supervised learning, we do not pre-specify which cell types to learn and which features to use, thereby
reducing bias in the classification process and opening up the possibility to discover new cell types. A similar
approach can also be useful in other domains beyond neuroscience, where samples of the dataset are spatial
graphs and graph-level embeddings are desired, such as tree classification in forestry.
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Appendices

A Synthetic graph dataset

A B

Figure A.1: Example classes 1 (A) and 2 (B) of syn-
thetic graph dataset. Samples within one class share
graph connectivity. Samples between classes share
mean node locations. Node locations are drawn from
N (µ, ‡).

To test whether our model is able to use information
encoded in the connectivity of the graphs, we gener-
ate a synthetic graph dataset with five classes that
di�er in connectivity while having similar node loca-
tions. We create this synthetic graph dataset by uni-
formly sampling 20 mean node positions in 3D space
in [≠50, 50]3. The mean node locations are shared
between the five classes to ensure that the presence
of a specific node does not encode class member-
ship. For each class, we construct a distinct graph
connectivity as follows: We first randomly sample a
root node and two children, then we recursively sam-
ple one or two children per child (with a branching
probability of 50%) until all 20 nodes are connected.
Using this method, we generate 100,000 graphs for
the training set and 10,000 graphs for validation and
test set each (with 1

5 class probability) by sampling
node positions from N (µ, ‡) with µ equal to the above drawn means and ‡ = 10.

Tab. C.1, Tab. C.2 and Tab. C.3 list the hyperparamers used for experiments on the synthetic graphs.

A

B

C

Figure A.2: t-SNE embedding of synthetic graph dataset colored by class
membership for A five runs of GraphDINO with GraphAttention, B
five runs of GraphDINO with regular transformer attention, and C five
runs of GraphDINO with transformer attention and without positional
encoding.

t-SNE of the learned la-
tent spaces: To visualize the
learned latent space we per-
form t-SNE with a perplexity
of 30 to reduce the embedding
to two dimensions (Fig. A.2).

Linear classifier: We train a
supervised linear classifier on
the extracted embeddings of
GraphDINO for 100 epochs
and a learning rate of 0.01.
To train the classifier, we
use the test set that has
not been used in training
GraphDINO, and split it in
8,000 samples for training the
classifier and 2,000 samples
for evaluating held-out test set
accuracy.
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Cluster 1

10

1511

7

8

2A. B.

Figure B.3: A. t-SNE embedding of Trees dataset colored by cluster membership based on GMM clustering
with 15 clusters. B. Three example tree morphologies are shown for di�erent clusters.

B Application to di�erent domain: Tree Morphologies

We developed a model that is able to learn graph-level embeddings of spatially-embedded graphs. So far,
we have shown that it yields meaningful cell types clusterings of neuronal morphologies. To show that
GraphDINO is applicable to data domains beyond neuronal morphologies, we train our model on 3D
skeletons of individual trees (from a forest).

The Trees dataset (Seidel et al., 2021) is a highly divers dataset comprised of 391 skeletons of trees stemming
from 39 di�erent genuses and 152 species or breedings. The skeletons were extracted from LIDAR scans of
the trees. Nodes of the skeletons have a 3D coordinate. We normalize the data such that the lowest point
(start of the tree trunk) is normalized to (0, 0, 0).

GraphDINO learns a latent space that orders tree morphologies with respect to their size, crown size and
crown shape (Fig. B.3, Fig. D.7).

C Extended Methods

C.1 Background: DINO

DINO (Fig. C.4) (Caron et al., 2021) is a method for self-supervised image representation learning. Similar
to previous approaches, it consists of two image encoders which process di�erent views of an image. These
views are obtained by image augmentation. The training objective is to enforce both encoders to generate
the same output distribution when the same input image is shown. This can be implemented by the cross
entropy loss function:

q
i ≠qi log pi. Both encoders are transformers that share the architecture but di�er in

their weights: One of the encoders is the student encoder which receives weight updates through gradients
of the training objective while the other encoder’s (teacher) weights are an exponential moving average of
the student’s weights. In contrast to some other self-supervised methods, DINO does not require contrastive
(negative) samples. To prevent collapse, i.e. predicting the same distribution independent of the input image,
two additional operations on the teacher’s predictions are crucial: sharpening by adjusting the softmax
temperature, and centering using batch statistics. Besides competitive performance on downstream image
classification tasks, another key finding of the paper is that object segmentations emerge in the self-attention
when applying DINO training on visual transformer image encoders.

C.2 Data preprocessing.

To speed up data loading during training, we reduce the number of nodes in the graph of each neuron to
1000 nodes in the same way as when subsampling and ensure that it contains only one connected compo-
nent. If there are unconnected components, we connect them by adding an edge between two nodes of two
unconnected components that have the least distance between their spatial coordinates.
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Figure C.4: The DINO method for self-supervised image representation learning (figure adapted from Caron
et al. (2021)).

C.3 Training details and hyperparameters

To select hyperparameters we run three grid searches and pick the best hyperparameters according to the
lowest average loss over the BBP and M1 PatchSeq dataset.

For the optimization, we run a hyperparameter search over batch size œ {32, 64, 128}, learning rate œ
{10≠3, 10≠4, 10≠5}, and number of training iterations œ {20, 000, 50, 000, 100, 000}.

For the augmentation strength, we run a hyperparameter search over jitter variance ‡1 œ {1.0, 0.1, 0.001},
number of deleted branchesn œ {1, 5, 10}, and graph position variance ‡2 œ {0.1, 1.0, 10.0}.

For the architecture, we run a hyperparameter search over latent dimension œ {16, 32, 64}, number of
GraphAttention blocks (depth) œ {5, 7, 10}, and number of attention heads per block œ {2, 4, 8}.

C.3.1 Architecture Hyperparameters

Table C.1: Hyperparameters used for the architecture for the di�erent datasets. D1: Dimensionality of
latent embedding z. D2: Dimensionality of probability distribution p. PE: Positional encoding. T temp:
Softmax temperature of teacher network.

Dataset D1 D2 # layers # heads MLP dims PE dims T temp
Synthetic Graphs 16 300 4 4 16 16 0.04
BBP 32 1000 10 8 64 32 0.06
M1 PatchSeq 64 1000 7 8 64 32 0.06
Joint dataset (BIL, JML, ACT) 32 1000 7 4 64 32 0.06
Trees 32 1000 7 8 64 32 0.06

Tab. C.1 lists the hyperparameters used for the architecture for the di�erent datasets. For the synthetic
graph dataset, we downscale the network as it is a simpler dataset. DINO (Caron et al., 2021) uses an output
dimensionality of 65,536 for p when training on ImageNet (Deng et al., 2009) (1,000 classes). The number
of classes in the neuronal datasets is unknown, but previous literature described 14 – 19 cell types (Gouwens
et al., 2019; Markram et al., 2015). Hence, we decrease the number of dimensions D2 of p proportionally to
1,000, approximately retaining the ratio between classes and number of dimensions.

C.3.2 Optimization Hyperparameters

The learning rate is linearly increased to the value given in Tab. C.2 during the first 2,000 iterations and
then decayed using a exponential decay with rate 0.5 (Loshchilov & Hutter, 2016).
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Table C.2: Hyperparameters used for optimization for the di�erent datasets.

Dataset Iterations Batch size Learning rate
Synthetic Graphs 100,000 512 10≠4

BBP 100,000 64 10≠4

M1 PatchSeq 50,000 128 10≠3

Joint dataset (BIL, JML, ACT) 100,000 128 10≠3

Trees 100,000 64 10≠4

C.3.3 Augmentation Hyperparameters

Table C.3: Augmentation hyperparameters for the di�erent datasets. # nodes: Number of nodes to
subsample to. ‡1: Variance of node jittering. # DB: Number of deleted branches. ‡2: Variance of graph
translation.

Dataset # nodes ‡1 # DB ‡2

Synthetic Graphs 15 0.1 0 0
BBP 100 0.001 10 10.0
M1 PatchSeq 100 0.1 10 10.0
Joint dataset (BIL, JML, ACT) 200 1.0 5 10.0
Trees 200 0.1 5 10.0

C.3.4 Computation

All trainings were performed on a NVIDIA Quadro RTX 5000 single GPU. Training on the neuronal BBP
dataset ran for approximately 10 hours for 100,000 training iterations.

C.4 Inference

To extract the latent representation per sample, we encode the unaugmented graphs subsampled to 200 nodes
using the student encoder and extract the latent representation z using the weights of the last iteration of
training (no early-stopping is used).

C.5 Evaluation

C.5.1 Evaluation on BBP

For visualization of the latent space, we use t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten & Hinton, 2008) with PCA-initialization, Euclidean distance and a perplexity of 30.

For quantitative evaluation we use the subset of labeled excitatory neurons (n = 286) with the following
14 expert labels: L23-PC, L4-PC, L4-SP, L4-SS, L5-STPC, L5-TTPC1, L5-TTPC2, L5-UTPC, L6-BPC,
L6-IPC, L6-TPC-L1, L6-TPC-L4, L6-UTPC, L6-HPC (Markram et al., 2015).

For the ablation experiments and the comparison to InfoGraph Sun et al. (2020), we perform k-nearest
neighbor (kNN) classification with k = 5 in a leave-one-out setting predicting the above listed expert labels
with two exceptions: We remoev the L6-HPC cells, since there are only three samples in the dataset, and
we group the L5-TTPC1 and L5-TTPC2 into one class L5-TTPC following previous work that found that
they rather form a continuum then two separate classes (Gouwens et al., 2019; Kanari et al., 2019).

For the clustering analysis and the comparison to Gouwens et al. (2019), we follow Gouwens et al. (2019)
and compute the adjusted rand index between our found clusters and the 14 expert labels. To determine
the optimal number of clusters, we use cross-validation to compute the log-likelihood of held-out data of the
Gaussian Mixture model and choose the number of clusters with the highest log-likelihood. The optimal
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number of clusters is 15 for the BBP dataset. To perform clustering within cortical layers, we chose the
number of clusters per layer based on the number of clusters with the majority of cells from the cortex-wide
clustering (Fig. 3): four for layer 2/3, layer 5 and layer 6 and three for layer 4.

C.5.2 Comparison to InfoGraph (Sun et al., 2020)

We use the o�cial implementation6 to train InfoGraph on the BBP dataset. We perform a hyperparameter
search for InfoGraph as detailed in the original publication (Sun et al., 2020) and extend it to include
more training epochs to train it for approximately the same number of iterations as GraphDINO. In
detail, we run a grid search over learning rate (lr) œ {10≠2, 10≠3, 10≠4}, number of training epochs œ
{10, 20, 100, 200, 1, 000, 2, 000} and GNN layers œ {4, 8, 12}. We select the hyperparameters based on the
lowest unsupervised loss. The chosen hyperparameters are: lr = 0.001, epochs = 1, 000 and four GNN layers
with a hidden dimensionality of 32.

We evaluate the performance of InfoGraph (Sun et al., 2020) using a kNN classifier analogous to the
ablation experiments (Appendix. C.5.1).

C.5.3 Comparison to MorphVAE (Laturnus & Berens, 2021)

We follow the evaluation protocol of Laturnus & Berens (2021) and perform k-nearest neighbor (kNN)
classification with k = 5 on the learned latent embeddings of the excitatory neurons to predict whether they
are untufted, tufted or “other” on the test set (n = 60) and report the balanced accuracy. The “other” class
only contains six examples in the test set. To get an estimate of the variance that is due to the chosen data
split, we additionally evaluate three further data splits and report the average test set performance over the
three splits. We report the performance of MorphVAE as given in Tab. 3 of Laturnus & Berens (2021).

C.5.4 Comparison to TreeMoCo (Chen et al., 2022b)

A fair comparison to TreeMoCo proved di�cult. We tried to replicate their setting as best as possible from
the information given in the paper as well as by inferring it from their code base7 while trying to set up a
more fair benchmark for future works.

We downloaded the three datasets BIL, JML and ATC using the o�cial code base of TreeMoCo and used
it to assign the eleven class labels: L1, L2/3, L4, L5, L6, VPM, CP, VPL, SUB, PRE, MG and Others as
used by Chen et al. (2022b). However, our cell counts slightly di�er from those given in Chen et al. (2022b).
More specifically, the JML dataset contained 1,200 neurons instead of 1,107.

Chen et al. (2022b) removed a substantial amount of the neurons (995 of 3,358 neurons) from the datasets
due to reconstruction errors. Since we did not have access to the identities of these neurons, we trained
GraphDINO unsupervised on all cells with more than 200 nodes (ntotal = 3, 138; nBIL = 1, 739, nJML =
889, nACT = 510) and evaluated the proposed classes as assigned by the TreeMoCo code base. We
replicated the proposed data preprocessing by centering the somata at (0, 0, 0) and aligning the neurons’
first principal component to the y-axis.

Chen et al. (2022b) performs the quantitative evaluation on a 80-20% training-test data split. Since we
did not have access to the exact split, we performed five cross-validations instead and report the average
accuracy over folds.

According to the paper, Chen et al. (2022b) perform k-nearest neighbor classification (k = 5 or k = 20
depending on the dataset). We unify the evaluation and report the kNN accuracy with k = 5 for all
experiments in this paper. For reference, we list the k = 20 performance in Tab. C.4. In their code base,
the implementation of kNN is weighted, where the neighbors vote is weighted by the cosine similarity of
the embeddings. We follow the description in the paper (Chen et al., 2022b) and use the standard kNN
classification without weighing the neighbors’ votes.

6
https://github.com/sunfanyunn/InfoGraph

7We additionally tried to reach out to the authors but did not get a reply.
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Table C.4: Cell-type classification on the
TreeMoCo dataset. Performance of our model
(GraphDINO) averaged over three random
seeds and given as mean ± standard deviation
when using k = 20 for the kNN classifer.

Model BIL-6 ACT
Ours 78 ± 2 54± 4

Figure C.5: Example neurons labeled as Isocortex 4
of the ACT dataset.

The performances reported by Chen et al. (2022b) are overfitted on the test set: They picked the best
test set performance over epochs (for the three datasets separately) (see Fig. C1 in Chen et al. (2022b)).
Additionally, they picked whether to use the latent embedding z or the projection head’s output p based on
the test set performance per dataset. To give an estimate of the less overfitted performance of TreeMoCo

(Chen et al., 2022b) (at least with respect to which epoch to evaluate), we report the averaged performance
over the last five epochs given by Fig. C1 (Chen et al., 2022b).

Similarly, the performance of GraphCL (You et al., 2020) as reported by Chen et al. (2022b) is picked as
the best test set performance per dataset over training epochs. We therefore report the average accuracy
over the last five epochs with the given by Fig. C1 (Chen et al., 2022b).

D Complete cluster visualizations

In the Fig. D.6 and Fig. D.7, we show the cluster assignments of all samples of the excitatory BBP dataset
(n = 286) and the Trees dataset (n = 391), respectively.
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Figure D.6: Clusters of spiny neurons of BBP dataset as identified by GMM based on our learned feature
space. Apical dendrites are colored lighter, while basal dendrites are shown in a darker color. Soma is
marked by a black circle.
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Figure D.7: Clusters of trees as identified by GMM based on our learned feature space.
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Abstract
Neurons in the neocortex exhibit astonishing morphological diversity which is critical for properly
wiring neural circuits and giving neurons their functional properties. The extent to which the mor-
phological diversity of excitatory neurons forms a continuum or is built from distinct clusters of cell
types remains an open question. Here we took a data-driven approach using graph-based machine
learningmethods to obtain a low-dimensional morphological “bar code” describingmore than 30,000
excitatory neurons in mouse visual areas V1, AL and RL that were reconstructed from the millimeter
scale MICrONS serial-section electronmicroscopy volume. We found a set of principles that captured
the morphological diversity of the dendrites of excitatory neurons. First, their morphologies varied
with respect to three major axes: soma depth, total apical and total basal skeletal length. Second,
neurons in layer 2/3 showed a strong trend of a decreasing width of their dendritic arbor and a
smaller tuft with increasing cortical depth. Third, in layer 4, atufted neurons were primarily located
in the primary visual cortex, while tufted neurons weremore abundant in higher visual areas. Fourth,
we discovered layer 4 neurons in V1 on the border to layer 5 which showed a tendency towards
avoiding deeper layers with their dendrites. In summary, excitatory neurons exhibited a substantial
degree of dendritic morphological variation, both within and across cortical layers, but this variation
mostly formed a continuum, with only a few notable exceptions in deeper layers.

Note
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Abstract
Neurons in the neocortex exhibit astonishing morphological diversity which is critical for properly wiring neural circuits and
giving neurons their functional properties. The extent to which the morphological diversity of excitatory neurons forms a
continuum or is built from distinct clusters of cell types remains an open question. Here we took a data-driven approach using
graph-based machine learning methods to obtain a low-dimensional morphological “bar code” describing more than 30,000
excitatory neurons in mouse visual areas V1, AL and RL that were reconstructed from the millimeter scale MICrONS serial-
section electron microscopy volume. We found a set of principles that captured the morphological diversity of the dendrites
of excitatory neurons. First, their morphologies varied with respect to three major axes: soma depth, total apical and total
basal skeletal length. Second, neurons in layer 2/3 showed a strong trend of a decreasing width of their dendritic arbor and
a smaller tuft with increasing cortical depth. Third, in layer 4, atufted neurons were primarily located in the primary visual
cortex, while tufted neurons were more abundant in higher visual areas. Fourth, we discovered layer 4 neurons in V1 on
the border to layer 5 which showed a tendency towards avoiding deeper layers with their dendrites. In summary, excitatory
neurons exhibited a substantial degree of dendritic morphological variation, both within and across cortical layers, but this
variation mostly formed a continuum, with only a few notable exceptions in deeper layers.
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1 Introduction
Neurons have incredibly complex and diverse shapes. Ever since Ramón y Cajal, neuroanatomists have studied their mor-
phology [19] and have classified them into different types. From a computational point of view, their dendritic morphology
constrains which inputs a neuron receives, how these inputs are integrated and, thus, which computations the neuron and the
circuit it is part of can learn to perform.

Less than 15% of neocortical neurons are inhibitory, yet they are morphologically the most diverse and can be classified
reliably into well-defined subtypes [3, 7]. The vast majority of cortical neurons are excitatory. Excitatory cells can be
divided into spiny stellate and pyramidal cells [16]. Although pyramidal cells have a very stereotypical dendritic morphology,
they exhibit a large degree of morphological diversity. Recent studies subdivide them into 10–20 cell types using manual
classification [14] or clustering algorithms applied to dendritic morphological features [6, 10, 15].

Existing studies of excitatory morphologies have revealed a number of consistent patterns, such as the well-known thick-
tufted pyramidal cells of layer 5 [8, 6, 10, 14, 15]. However, a commonly agreed-upon morphological taxonomy of excitatory
neuron types is yet to be established. For instance, Markram et al. [14] describe two types of thick-tufted pyramidal cells
based on the location of the bifurcation point of the apical dendrite (early vs. late). Later studies suggest that these form two
ends of a continuous spectrum [10, 6]. Other authors even observe that morphological features overall do not form isolated
clusters and suggest an organization into families with more continuous variation within families [21]. There are two main
limitations of previous morphological characterizations: First, many rely on relatively small numbers of reconstructed neurons
used to asses the morphological landscape. Second, they represent the dendritic morphology using summary statistics such as
point counts, segment lengths, volumes, density profiles (so-called morphometrics; [15, 23, 13]) or graph-based topological
measures [9]. These features were handcrafted by humans and may not capture all crucial axes of variation.

We here take a data-driven approach using a recently developed unsupervised representation learning approach [26] to
extract a morphological feature representation directly from the dendritic skeleton. We apply this approach to a large-scale
anatomical dataset [2] to obtain low-dimensional vector embeddings (“bar codes”) of more than 30,000 neurons in mouse
visual areas V1, AL and RL. Our analysis suggests that excitatory neurons’ morphologies form a continuum, with notable
exceptions such as layer 5 thick-tufted cells, and vary with respect to three major axes: soma depth, total apical and total
basal skeletal length. Moreover, we found a number of novel morphological features in the upper layers: Neurons in layer 2/3
showed a strong trend of a decreasing width of their dendritic arbor and a smaller tuft with increasing cortical depth. In layer 4,
morphologies showed area-specific variation: atufted neurons were primarily located in the primary visual cortex, while tufted
neurons were more abundant in higher visual areas. Finally, layer 4 neurons in V1 on the border to layer 5 showed a tendency
towards avoiding layer 5 with their dendrites.
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2 Results
2.1 Self-supervised learning of embeddings for 30,000 excitatory neurons from visual cortex
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Figure 1: Pipeline to generate vector embeddings for large
scale datasets that capture the morphological features of
the neurons’ dendritic trees. A. Imaging of brain volume via
electron microscopy and subsequent segmentation and tracing
to render 3D meshes of individual neurons that are used for
skeletonization. B. Self-supervised learning of low dimensional
vector embeddings z1, z2 that capture the essence of the 3D
morphology of individual neurons using GraphDINO. Two aug-
mented “views” of the neuron are input into the network, where
the weights of one encoder (bottom) are an exponential moving
average (EMA) of the other encoder (top). The objective is to
maximize the similarity between the vector embeddings of both
views. Vector embeddings of similar neurons are close to each
other in latent space. C. An individual neuron is represented
by its vector embedding as a point in the 32-dimensional vector
space. D. Quality control to remove neurons with tracing errors.

Our goal was to perform a large-scale census of the den-
dritic morphologies of excitatory neurons without prescribing
a-priori which morphological features to use. Therefore, we
used machine learning techniques [26] to learn the features di-
rectly from the neuronal morphology.

Our starting point was a 1.3⇥ 0.87⇥ 0.82mm3 volume of
tissue from the visual cortex of an adult P75–87 mouse, which
has been densely reconstructed using serial section electron mi-
croscopy [2]. This volume has been segmented into individual
cells, including non-neuronal types and more than 54,000 neu-
rons whose soma was located within the volume. From these
detailed reconstructions we extracted each neuron’s dendritic
tree and represented it as a skeleton (Fig. 1A) [1]: each neu-
ron’s dendritic morphology was represented as a graph, where
each node had a location in 3d space. This means we focused
on the location and branching patterns of the dendritic tree,
not fine-grained details of spines or synapses (see companion
paper [22]), or any subcellular structures (see companion pa-
per [4]).

Our next step was to embed these graphs into a vector
space that defined a measure of similarity, such that similar
morphologies were mapped onto nearby points in embedding
space (Fig. 1B). To do so, we employed a recently developed
self-supervised learning method called GRAPHDINO [26] that
learns semantic representations of graphs without relying on
manual annotations. The idea of this method is to generate
two “views” of the same input by applying random identity-
preserving transformations such as rotations around the verti-
cal axis, slightly perturbing node locations or dropping sub-
branches (Fig. 1B, top and bottom). Then both views are en-
coded using a neural network. The neural network is trained
to map both views onto similar vector embeddings. For model
training, the data was split into training, validation and test data
to ensure that the model did not overfit (Sec. 4.5). The model
outputs a 32-dimensional vector for each neuron that captures
the morphological features of the neuron’s dendritic tree. Thus,
each neuron is represented as a point in this 32-dimensional
vector space (Fig. 1C).

At this stage, we performed another quality control step:
Using the learned embeddings as a similarity metric between
neurons, we clustered the neurons into 100 clusters and manu-
ally inspected the resulting clusters. We found a non-negligible
fraction of neurons whose apical dendrite left the volume or
was lost during tracing (see Methods for details). We removed
neurons whose somata are in close proximity to the imaged vol-
ume boundary (Fig. 2A). Additionally, we used the clusters containing fragmented neurons as examples for broken neurons
and trained a classifier to predict whether a neuron has reconstruction errors using the learned morphological embeddings as
input features (Fig. 2B, Fig. A.2A, B). We then removed all neurons from the dataset that were classified as erroneous. Also,
at this point we removed all interneurons from the dataset since we focused on excitatory neurons in this paper (Fig. 2C,
Fig. A.2B, C).
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Figure 2: Visualization of soma depths and cortical layer assignments of excitatory neuronal morphologies showing mostly a contin-
uum with distinct clusters only in deeper layers. A. Top view of the EM volume with approximate visual areas indicated. All neurons
with their soma origin within the red boundary were used for analysis. B. Distribution of complete neurons and fragments along cortical
depth as determined by our classifier based on the morphological embeddings. C. Distribution of excitatory neurons and interneurons along
cortical depth. D. Classifier prediction for cortical layer origin based on the learned morphological embeddings. E. t-SNE embedding
(perplexity = 300) of the vector embeddings of excitatory neuronal morphologies colored by the respective soma depth of the neurons
relative to the pia (n = 33,997). F. t-SNE embedding colored by cortical layer assignments as predicted by a cross-validated classifier
trained on the morphological embeddings as features and a subset of manually labeled excitatory neurons (n = 922). G. Cross-section of
the brain volume depicting soma positions of neurons colored by their assigned cortical layer. Cortical layer thicknesses for primary visual
cortex (V1) (left) and higher visual areas (HVA) (right) given as mean ± standard deviation. H. t-SNE embedding of excitatory neuronal
morphologies colored by expert-defined cell types. I. Example morphologies of the expert-defined cell types.

2.2 Dendritic morphologies mostly form a continuum with distinct clusters only in deeper layers
We computed the vector embeddings of all excitatory neurons in our volume, which spanned the mouse visual areas V1, RL
and AL (Fig. 2A). Dendritic morphology followed mostly a continuum that tracked the cortical depth of the soma from the
pia, in counter-clockwise direction in Fig. 2E from layer 2/3 to layer 6. Note that the soma location within the cortex was not
provided to the model, but the soma was centered on the origin of the coordinate system. Cells were mostly organized along a
continuum and only a few distinct clusters were visible in the deeper layers. Therefore we decided to not assume the existence
of clusters a-priori, as many previous studies [6, 15, 10, 14] did, but instead investigated the major axes of variation within the
morphological embedding space.
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The learned embedding space also reflects known cell types (Fig. 2H, I) that were assigned by expert neuroanatomists [22]
using cortical origin of the somata and their long-range projection type (IT: intratelencephalic or intracortical; ET: extratelen-
cephalic or subcortical projecting, NP: near projecting, and CT: corticothalamic). Note that both sources of information were
not provided to the model, showing that dendritic morphology alone is sufficient to infer these broad cell type classes. One
exception are the 6P-CT and 6P-IT cells, who were partly intermingled in embedding space. 6P-IT cells show a high variance
in their dendritic morphology which in some cases are indistinguishable from 6P-CT cells when no information about the
projection type is used (Fig. 2H, I).
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Figure 3: Schematic of morphometric de-
scriptors computed from neuronal skeletons
and their labeled compartments. SOMA
DEPTH. Depth of the centroid of the soma rel-
ative to the pia. HEIGHT. Extent of the cell in
y-axis. TOTAL APICAL LENGTH. Total length
of the skeletal branches of the apical dendrites.
APICAL WIDTH. Maximum extent of the apical
dendritic tree in the xz-plane. TOTAL BASAL
LENGTH. Total length of the skeletal branches
of the basal dendrites. BASAL BIAS. Depth in
y-axis of center of mass of basal dendrites rela-
tive to the soma.

Since an organization into cortical layers is well established, we sepa-
rated cells by cortical layer to study the morphological rules of organiza-
tion. We determined the layer boundaries by training a classifier using our
32-dimensional embeddings and a set of 922 neurons manually assigned to
layers by experts (Fig. 2D, F, G). As expected, the inferred layer boundaries
indicated that layer 4 was approximately 20% thicker in V1 than in higher vi-
sual areas RL and AL (Fig. 2G; mean± SD: 118± 6 µm in V1 vs. 97± 6 µm
in HVA), the difference being compensated for by layers 2/3 and 6 each be-
ing approximately 10 µm thinner. In the following we proceed by assign-
ing neurons to layers based on their soma location relative to these inferred
boundaries.

To visualize the main axes of morphological variation within each layer,
we performed nonlinear dimensionality reduction using t-distributed stochas-
tic neighbor embedding (t-SNE; [24]) and identified a number of morpholog-
ical features that formed major axes of variation within the two-dimensional
space (Fig. 4).

What do these axes of variation in the two-dimensional t-SNE embed-
dings mean in human-interpretable terms? To answer this question, we
looked for morphological metrics that formed gradients within the t-SNE
embedding space. Based on visual inspection, we found the following six
morphological metrics to account well for a large fraction of the dendritic
morphological diversity in our dataset (see Fig. 3 for an illustration): (1)
depth of the soma relative to the pia, (2) height of the cell, (3) total length of
the apical dendrites, (4) width of the apical dendritic tree, (5) total length of the basal dendrites, and (6) location of the basal
dendritic tree relative to the soma (“basal bias”).

2.3 Layer 2/3: Width and length of apical dendrites decrease with depth
We start with layer 2/3 (L2/3) where we found a continuum of dendritic morphologies that formed a gradient from superficial
to deep, with deeper neurons (in terms of soma depth) becoming thinner and less tufted (Fig. 4A1, A2, A3). The strongest
predictors of the embeddings were the depth of the soma relative to the pia and the total height of the cell (coefficient of
determination R2 > 0.9; Fig. 4B). These two metrics were also strongly correlated (Spearman’s rank correlation coefficient,
⇢ = 0.93; Fig. 4C), since nearly all L2/3 cells had an apical dendritic tree that reached to the pial surface (see example
morphologies in Fig. 4A, top). L2/3 cells varied in terms of their degree of tuftedness: both total length and width of their
apical tuft decreased with the depth of the soma relative to the pia (Fig. 4A2, A3). L2/3 cells also varied along a third axis:
the skeletal length of their basal dendrites (Fig. 4A4), but this property was not strongly correlated with either soma depth or
shape of the apical dendrites (Fig. 4C).

2.4 Layer 4: Small or no tufts and some cells’ basal dendrites avoid layer 5
The dendritic morphology of layer 4 (L4) was again mostly a continuum and appeared to be a continuation of the trends
from L2/3: The skeletal length of the apical dendrites was shorter, on average, than that of most L2/3 cells (Fig. 4A2) and
approximately 20% of the cells were untufted. Within L4 the total apical skeletal length was not correlated with the depth of
the soma (⇢ = 0.0; Fig. 4C), suggesting that it forms an independent axis of variation. There was also quite some variability
in terms of the total length of the basal dendritic tree, but – as in L2/3 – it was not correlated with any of the other properties.

Our data-driven embeddings revealed another axis of variation that had previously not been considered important: the
location of the basal dendritic tree relative to the soma (“basal bias”; Fig. 3). We found that many L4 cells avoided reaching
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into L5 with their dendrites (Fig. 4A3). As a result, the depth of the basal dendrites was anticorrelated with the depth of the
soma (⇢ = �0.29; Fig. 4A3 and Fig. 4C). We will come back to this observation later (see Sec. 2.8).

2.5 Layer 5: Thick-tufted cells stand out
Layer 5 (L5) showed a less uniformly distributed latent space than L2/3 or L4. Most distinct was the cluster of well-known
thick-tufted pyramidal tract (PT) cells [8, 6, 10, 14, 15] on the bottom right (Fig. 4A4, light green points), also known as
extratelencephalic (ET) projection neurons. These cells accounted for approximately 17% of the cells within L5 (based on a
classifier trained on a smaller, manually annotated subset of the data; see Methods). They were restricted almost exclusively
to the deeper half of L5 (Fig. 4A1, A4 inset 2, C inset top right) and compared to other L5 cells they have the longest skeleton
for all three dendritic compartments: apical, basal and oblique.

Another morphologically distinct type of cell was apparent: the near-projecting (NP) cells [11, 6] with their long and
sparse basal dendrites (Fig. 4A4, inset 3). These cells accounted for approximately 4% of the cells within L5. They tended to
send their dendrites deeper (relative to the soma), had little or no obliques and tended to have small or no apical tufts. However,
the dendritic morphology of this cell type appeared to represent the extreme of a continuum rather than being clearly distinct
from other L5 cells.

The remaining roughly 80% of the cells within L5 varied continuously in terms of the skeletal length of the different
dendritic compartments. While there was a correlation between apical and basal skeletal length (apical vs. basal: ⇢ = 0.43;
Fig. 4C), there was also a significant degree of diversity. Within this group there was no strong correlation of morphological
features with the location of the soma within L5 (depth vs. apical length ⇢ = 0.2, depth vs. basal ⇢ = 0.06; Fig. 4C).

In upper L5 we found a group of cells that resembled the L4 cells whose dendrites avoid L5 (Fig. 4A4, inset 1). This type
of cell was restricted to the uppermost portion of L5 and morphologically resembled L4 cells by being mostly atufted. We
refer to these cells as displaced L4 cells. The presence of these cells suggests there are no precise laminar boundaries based
on morphological features of neurons, but instead different layers blend into one another, a finding also observed by other
authors [15, 4].

2.6 Layer 6: Long and narrow, oblique and inverted pyramidal neurons
Dendritic morphology in layer 6 (L6) also formed a continuum with a large degree of morphological diversity. The dominant
feature of L6 was the large variety of cell heights (R2 > 0.9; Fig. 4B). Overall, the height of a cell was not strongly correlated
with its soma’s location within L6 (⇢ = �0.13; Fig. 4C). Unlike other layers, where the apical dendrites usually reach all the
way up to layer 1, many cells in L6 have shorter apical dendrites. However, due to tracing errors, our analysis overestimated
the number of such short cells. We therefore manually inspected 183 putative untufted early-terminating neurons within L6
and found that, among those, 45 % were incompletely traced, whereas 55 % were true untufted cells whose apical dendrite
terminated clearly below L1.

As described previously [6, 15], the dendritic tree of L6 cells is narrower than in the layers above. Also consistent with
previous work, we found a substantial number of horizontal and inverted pyramidal neurons, where the apical dendrite points
sideways or downwards, respectively (Fig. 4A4, inset 1 & 6).
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Figure 4: t-SNE visualization of vector embeddings per cortical layer reveal axes of variation in neuronal morphologies. A. t-SNE
embeddings per layer colored by percentiles of various morphometric descriptors with example neuronal morphologies along the axis of
variation displayed above the embedding. B. R2 scores of the six morphometric descriptors (see Fig. 3) per layer showing the strength
as predictors of the 32d embeddings. C. Spearman’s rank correlation coefficient between morphometric descriptors per layer. Layer 2/3
(blue) Continuum of dendritic morphologies with thinner and less tufted neurons in increasing distance to the pia. Layer 4 (turquoise)
Continuation of L2/3 trends with shorter apical dendrites and more untufted cells. Many cells avoid reaching dendrites into L5 (basal bias).
Layer 5 (green) Clustering of thick-tufted ET and NP cells. Upper L5 cells resemble L4 cells that avoid reaching into L5, indicating too
strict laminar borders. Layer 6 (orange) Continuum with a large morphological diversity e.g. in cell heights, and existence of horizontal
and inverted pyramidal neurons.
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2.7 Pyramidal neurons are less tufted in V1 than in higher visual areas

AL RL

V1

A. Total apical length

0

6,024

Soma position x, μm

So
m

a 
po

si
tio

n 
y,

 μ
m

 

600 1,4001,000

600

0

200

400

L2/3

L4

L5

L6

HVAV1

White matter

Pia

B. Basal bias

Soma position x, μm

So
m

a 
po

si
tio

n 
y,

 μ
m

 

600 1,4001,000

600

0

200

400

L2/3

L4

L5

L6

HVAV1

White matter

Pia

-200

139

0

C. Atufted TuftedSmall tuft

So
m

a 
po

si
tio

n 
x

AL RL

V1

Soma position z

So
m

a 
po

si
tio

n 
x

AL RL

V1

D. Basal bias

L2/3

L4

L5

L6

L2/3

L4
L5

Soma position z

AL RL

V1 200 μm

200 μm

After our layer-wise survey of excitatory neurons’ morphological
features, we next asked whether there are inter-areal differences be-
tween primary visual cortex (V1) and higher visual areas (HVAs).
The total length the apical dendrites of neurons in V1 was signifi-
cantly shorter than for neurons in HVA (Fig. 5A): For L2/3, neurons
in V1 had on average 16% shorter apical branches than in HVA
(mean± SD: 1,423± 440 µm in V1 vs. 1,688± 554 µm in HVA;
t-test: p < 0.0025, Cohen’s d = 0.53). Similarly, L4 neurons
in V1 had on average 16% shorter apical branches than in HVA
(851± 264 µm vs. 1,019± 313 µm; p < 0.0025, d = 0.58). In L5,
neurons in V1 had on average 14% shorter apical branches than L5
neurons in HVA (1,326± 661 µm vs. 1,549± 745 µm; p < 0.0025,
d = 0.32). While the trend continued in L6, the difference in
apical length between V1 and HVA neurons was smaller. There
was only a 4% increase in apical length in HVA compared to V1
(1,112± 383 µm vs. 1,159± 397 µm; p < 0.0025, d = 0.12).
For this analysis, only neurons with identified apical dendrites were
taken into account (see companion paper; Celii et al. [1]).

Upon closer inspection, we observed that L4 contained substan-
tially more untufted neurons than higher visual areas RL and AL
(Fig. 5A). We clustered each layer’s morphological embeddings
into 15 clusters using a Gaussian Mixture Model and looked for
clusters that were restricted to particular brain areas. Clusters that
were clearly confined to V1 or HVAs were primarily found in L4.
When classifying (manually, at the cluster-level) L4 neurons into
untufted, small tufted and tufted, we observed that untufted neu-
rons were almost exclusively located in V1, while tufted neurons
were more frequent in HVAs (Fig. 5C).

2.8 Layer 4 cells avoiding layer 5 are located pri-
marily in primary visual cortex
We observed a second area difference, which was related to the
novel morphological cell type in L4. Recall that these cells’ den-
drites avoid reaching into L5. Interestingly, these cells were located
in a very narrow strip of around 50 µm above the border between
L4 and L5 (Fig. 5B). Moreover, they were also untufted and almost
exclusively located in V1 (Fig. 5D).

Figure 5: Inter-areal differences between primary visual cortex (V1) and higher visual areas (HVAs). A. Side view showing apical
skeletal length, color-coded by percentiles (dark=short, bright=long). Projection from the side orthogonal to the V1/HVA border after a 14
degree rotation around y-axis (vertical dashed line); top: pia; bottom: white matter. B. Side view showing basal bias (as in A) (dark=negative
basal bias: center of mass of basal dendrites is above the soma; bright=positive basal bias: center of mass of basal dendrites is below soma).
C. Top view showing density of untufted (left), small tufted (middle) and tufted (right) L4 cells. Atufted neurons are mostly confined to V1,
while tufted neurons are more abundant in HVA. Dashed lines: area borders between primary visual cortex (V1), anterolateral area (AL) and
rostrolateral area (RL), estimated from reversal of the retinotopic map measured using functional imaging. D. Top view (as in C) showing
horizontal distribution of L4 cells whose dendrites avoid reaching into L5 and who are mostly located in V1.
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3 Discussion
In summary, our data-driven unsupervised learning approach identified the known morphological features of excitatory cortical
neurons’ dendrites and enabled us to make four novel observations: (1) Superficial L2/3 neurons are wider than deep ones;
(2) L4 neurons in V1 are less tufted than those in HVAs; (3) a novel untufted L4 cell type that is specific to V1 whose
basal dendrites avoid reaching into L5; (4) excitatory cortical neurons form mostly a continuum with respect to dendritic
morphology, with some notable exceptions.

First, our finding that superficial L2/3 neurons are wider than deeper ones is clearly visible in the data both qualitatively
and quantitatively. A similar observation has been made recently in concurrent work [25].

Second, the trend of deeper neurons being less tufted continues into L4 where a substantial number of cells are completely
untufted. Here we see a differentiation with respect to brain areas: completely untufted cells are mostly restricted to V1 while
HVA neurons in L4 tend to be more tufted. Why would V1 neurons be less tufted than those in higher visual areas? V1 – as
the first cortical area for visual information processing – and L4 – as the input layer, in particular – might be less modulated
by feedback connections than other layers and higher visual areas. Therefore, these neurons might sample the feedback input
in L1 less than other neurons.

Third, we found that some neurons in L4 of V1 avoid reaching into L5 with their dendrites. To our knowledge, this
morphological pattern has not been described before in the visual cortex. Retrospectively, it can be observed in Gouwens and
colleagues’ data: their spiny m-types 4 and 5, which are small- or untufted L4 neurons, show a positive basal bias (assuming
their “basal bias y“ describes the same property; Gouwens et al. [6]; Suppl. Fig. 15). What function could this avoiding
L5 have? Similarly to the nonexisting tuft of these neurons, avoiding L5 could support these neurons in focusing on the
thalamic input (which targets primarily L4) and, thus, represent and distribute the feedforward drive within the local circuit.
It is therefore tempting to speculate that these untufted, L5-avoiding L4 neurons might be precursors of spiny stellate cells,
which are nearly absent in the mouse visual cortex [20], but exist only in somewhat more developed sensory areas like barrel
cortex or in cat and primate V1.

Fourth, except from the well-known L5 thick-tufted extratelencephalic (ET) projection neurons that form a cluster in L5,
our data and methods suggest that excitatory neurons in the mouse visual cortex form mostly a continuum with respect to
dendritic morphology. This result does not rule out the possibility that there are in fact distinct types; it simply suggests that
features beyond dendritic morphology need to be taken into account to clearly identify them. For instance, the results of [22]
suggest that the 5P-NP cells can be separated from other layer 5 pyramidal neurons by considering the class of interneurons
that target them. It is also not guaranteed that our data-driven method identifies all relevant morphological features. Every
method has (implicit or explicit) inductive biases. We tried to stay clear of explicit human-defined features, but by choosing
a graph-based input representation we provide different inductive biases than, for instance, a voxel-based representation or
one based on point clouds. However, the fact that we could reconcile known morphological features, discover novel ones
and achieve excellent classification accuracy on an annotated subset of the data suggests that our learned embeddings indeed
contain a rich and expressive representation of a neuron’s dendritic morphology.

Our observation that morphologies forms mostly a continuum is in line with a recent study in motor cortex examining
the relationship between transcriptomic and morphological cell types [21]. These authors found a substantial degree of (con-
tinuous) morphological variation within transcriptomically defined cell types. Moreover, they found that morphological and
transcriptomic features correlated, suggesting a more fine-grained organization of neurons into a relatively small number of
distinct and broad “families,” each of which exhibits substantial continuous variation among its family members. Our analysis
supports this notion: excitatory cells can be mostly separated by layers into roughly a handful of families, each of which
contains a substantial degree of variation in terms of morphology, which might also co-vary with other modalities.
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4 Methods
4.1 Dataset
The dataset consists of a 1.3⇥ 0.87⇥ 0.82mm3 volume of tissue from the visual cortex of an adult P75-87 mouse, which has
been densely reconstructed using serial section electron microscopy (EM) [2]. We here use the subvolume 65, which covers
approximately 1.3 ⇥ 0.56 ⇥ 0.82 mm3. It includes all layers of cortex and spans primary visual cortex (V1) and two higher
visual areas, anterolateral area (AL) and rostrolateral area (RL). We refer to the original paper on the dataset [2] for details on
the identification and morphological reconstruction of individual neurons.

4.2 Skeletonization and cell compartment label assignment
The EM reconstructions yield neuronal meshes. These meshes might be incomplete or exhibit different kinds of errors includ-
ing merges of other neuronal or non-neuronal compartments onto the neurons. Therefore an automatic proof-reading pipeline
that results in neuronal skeletons was executed (companion paper; Celii et al. [1]).

For the skeletal detection from the reconstructed meshes, the meshes were first downsampled to 25% of their resolution
and made watertight. Then glia and nuclei meshes were identified and removed. For the remaining meshes the locations
of the somata were identified using a soma detection algorithm [27]. Each neurite submesh was then skeletonized using a
custom skeletonization algorithm which transformed axonal and dendritic processes into a series of line segments to obtain
the skeleton (companion paper; Celii et al. [1]). For each skeleton, the highest probability axon subgraph was determined and
all other non-soma nodes were labeled as dendrites. A final heuristic algorithm classifies subgraphs of dendritic nodes into
compartments, such as apical trunks generally projecting from the top half of somas and with a general upward trajectory and
obliques as projections off the apical trunks at an approximate 90 degree angle. For further details on the compartment label
assignment please see companion paper [1].

4.3 Coordinate transformations
The EM volume is not perfectly aligned. First, the pial surface is not a horizontal plane parallel to the (x, z) plane, but is
instead slightly tilted. Second, the thickness of the cortex varies across the volume such that the distance from pia to white
matter is not constant. Without any pre-processing, an unsupervised learning algorithm would pick up these differences and,
for instance, find differences of layer 6 neurons across the volume simply because in some parts of the volume they tend to
be located deeper than in others and their apical dendrites that reach to layer 1 tend to be larger. Using relative coordinates
can solve such issues if pia and white matter correspond to planes (approximately) parallel to the (x, z) plane. To transform
our coordinate system in such standardized coordinates, we first applied a rotation about the z-axis of 3.5 degrees. This
transformation removes the systematic rotation with respect to the native axes (Fig. A.1B). To standardize measurements
across depth (y axis) and to account for differential thickness of the cortex, we estimated the best linear fit for both pial
surface and white matter boundary by using a set of manually placed points, which were located on a regular grid along (x, z)
with a spacing of 25µm. Then for each (x, z) coordinate, the y coordinate was normalized such that the pia’s z coordinate
corresponds to the average depth of the pia and the same for the white matter. This transformation results in an approximation
of the volume where pia and white matter boundaries are horizontal planes orthogonal to the y axis and parallel to the (x, z)
plane. Fig. A.1C shows example neurons before and after normalization. All training and subsequent analysis were performed
on this pre-processed data.

4.4 Expert cell type labels
For a subset of the neurons in the volume experts labeled neurons according the following cell types: layer 2/3 and 4 pyramidal
neurons, layer 5 near-projecting (NP), extratelencephalic (ET) and intratelencephalic (IT) neurons, layer 6 intratelencephalic
(IT) and cortico-thalamic (CT) neurons, Martinotti cells (MC), basket cells (BC), bipolar cells (BPC) and neurogliaform cells
(NGC). Cell types were assigned based on visual inspection of individual cells taking into account morphology, synapses
and connectivity, nucleus features and their (x, y, z) location. All neurons were taken from one 100 µm column in the pri-
mary visual cortex (see companion paper, Schneider-Mizell et al. [22]). We did not use neurons with expert labels to train
GRAPHDINO, but used them only for evaluation.
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4.5 Morphological feature learning using GRAPHDINO
For learning morphological features in an unsupervised, purely data-driven way, we used a recently developed machine
learning method called GRAPHDINO [26]. GRAPHDINO maps the skeleton graph of a neuron onto a 32-dimensional
feature vector, which we colloquially refer to as the neuron’s “bar code”. For training GRAPHDINO, each neuron’s skele-
ton is represented as an undirected graph G = (V,E). V is the set of nodes {vi}Ni=1 and E the set of undirected edges
E = {eij = (vi, vj)} that connect two nodes vi, vj . Each node has a feature vector attached to it that holds the 3d Cartesian
coordinate of the node, relative to the soma of the neuron. The soma has the coordinate (0, 0, 0), i.e. is at the origin of the
coordinate system. Because axons are not well reconstructed in the data yet, we focus on the dendritic skeleton only and
remove segments labeled as axon. We train GRAPHDINO on a subset of the dataset, retaining 5,113 neurons for validation
and 2,941 neurons for testing. The test set is chosen to contain the 1,011 neurons that were labeled by expert anatomists into
morphological cell types (Sec. 4.4; [22]). The training and validation sets are i.i.d. sampled from the remaining neurons with
a 90%-10% split (Fig. A.3).

GRAPHDINO is trained by generating two “views” of the same input graph by applying random identity-preserving
transformations (described below). These two views are both encoded by the same neural network. The training objective
is to maximize the similarity between the embeddings of these two views. To obtain the two views of one input graph, we
subsampled the graph, randomly rotated it around the y-axis (orthogonal to pia), dropped subbranches and perturbed node
locations. When subsampling the graph, we randomly dropped all but 200 nodes, always retaining the branching points.
Rotations around the y-axis were uniformly distributed around the circle. During subbranch deletion we removed n = 5

subbranches. For node location jittering we used � = 1. In addition the entire graph was randomly translated with � = 1. For
further details on the augmentation strategies, see Weis et al. [26].

The ADJACENCY-CONDITIONED ATTENTION network architecture we used had seven AC-ATTENTION layers with four
attention heads each. The dimensionality of the latent representation z was set to 32 and the dimensionality of the projection p
was 5, 000. All other architecture details are as described in the original paper [26]. For training we used the Adam optimizer
[12] with a batch size of 128 for 50, 000 iterations. The learning rate increased linearly to 10

�3 during the first 1,000 iterations
and then decayed using a exponential schedule with a decay rate of 0.5.

4.6 Morphological clustering
For qualitative inspection of the data and the analyses in Fig. 5C+D we clustered the neurons using the learned vector em-
bedding of each neuron’s morphological features. We fit a Gaussian Mixture model (GMM) with diagonal covariance matrix
using scipy [17] on the whole dataset as well as per cortical layer using 60 clusters and 15 clusters, respectively. As we
found no evidence that these clusters (or any other clustering with fewer or more clusters) represent distinct cell types, we do
not use this clustering to define cell types, but rather think of them as modes or representing groups of neurons with similar
morphological features.

4.7 Data quality control steps
The dataset was generated by automatic segmentation of EM images and subsequent automatic processing into skeletons. As
a consequence, not all cells were reconstructed perfectly. There was a significant fraction of wrongly merged or incompletely
segmented cells. We used a combination of our learned GRAPHDINO embeddings and supervised classifiers trained on a
subset of the neurons (n = 1, 011) which were manually proofread and annotated by experts (see Sec. 4.4 and companion pa-
per, Schneider-Mizell et al. [22]). Our quality control pipeline was as follows: First, we computed GRAPHDINO embeddings
on the full dataset of 54,192 neurons (including both excitatory and inhibitory neurons). Next, we removed neurons which
were close to the boundaries of the volume, as these neurons were only partly reconstructed. After this step we were left with
43,666 neurons. Within this dataset we identified neurons which were incorrectly reconstructed using a supervised classifier
described in the next section, reducing the dataset to 37,362 neurons. Subsequently, we identified interneurons using a super-
vised classifier described in the next section, reducing the dataset to 33,997 excitatory neurons. Finally, on this dataset we
manually proofread around 480 atufted neurons. As a result, we identified and removed another set of 2,684 neurons whose
reconstructions were incomplete, leaving us with a final sample size of 31,313 putative excitatory and correctly reconstructed
neurons for our main analyses.
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4.8 Supervised classifiers
To identify reconstruction errors and interneurons, we used a subset of the dataset (n = 1, 011) that was manually proofread
and annotated with cell type labels by experts (see Sec. 4.4 and companion paper, Schneider-Mizell et al. [22]). Based on these
and additional neurons we identified, we trained classifiers to detect segmentation errors, inhibitory cells and cortical layer
membership using our learned 32-dimensional vector embeddings of the neurons’ skeletons (see Sec. 4.5). In our subsequent
analysis, we focused on neurons that were identified as complete and excitatory by our classifier. We used the inferred cortical
layer labels to perform layer-specific analyses.

For all classifiers, we used ten-fold cross-validation on a grid search to find the best hyperparameters. We tested logistic
regression with the following hyperparameters: type of regularization (none, L1, L2 or elastic net), regularization weight
(C 2 0.5, 1, 3, 5, 10, 20, 30) and whether to use class weights that are inversely proportional to class frequencies or no weights.
In addition, we tested support vector machines (SVMs) with the following hyperparameters: type of kernel (Linear, RBF or
polynomial), L2 regularization weight (C 2 0.5, 1, 3, 5, 10, 20, 30) and degree of polynomial (d 2 2, 3, 5, 7, 10, 20 for the
polynomial kernel and whether to use class weights or no weights. After having determined the optimal hyperparameters
using cross-validation, we retrained the classifier using the optimal hyperparameters on its entire training set.

Removal of fragmented neurons. To remove fragmented neurons prior to analysis, we trained a classifier to differentiate
between the manually proofread neurons from all layers (n = 1, 011) and fragmented cells (n = 240). We identified
fragmented cells using our clustering of the vector embeddings of the whole dataset without boundary neurons (n = 43, 666)
into 25 clusters per layer and manually identified clusters that contained fragmented cells (2–3 clusters per layer). We then
sampled 60 fragmented cells per layer as training data for our classifier.

We trained a support vector machine (SVM) using cross-validation as described above. Its cross-validated accuracy was
95%. The best hyperparameters were: polynomial kernel of degree 4 and C = 3. We used those hyperparameters to retrain on
the full training set of 1,251 neurons. Using this classifier, we inferred whether a neuron is fragmented for the entire dataset
(n = 43, 666). We then removed cells predicted to be fragmented (n = 6, 304) from subsequent analyses.

To validate the classification into fragmented and whole cells, we manually inspected ten neurons that were not in “frag-
mented” clusters before classification, but were flagged as fragmented by the classifier. Nine out of the ten had missing
segments due to segmentation errors or due to apical dendrites leaving the volume.

Removal of inhibitory neurons. Analogously, we trained a classifier to predict whether a neuron was excitatory or in-
hibitory by using the manually proofread and annotated neurons (n = 1, 011) (Sec. 4.4). As input features to the classifier we
used our learned bar codes and additionally two morphometric features: synaptic density on apical shafts (number of synapses
per micrometer of skeletal length except those located on spines) and spine density (number of spines per micrometer of
skeletal length). These two features have been shown to separate excitatory from inhibitory neurons well in previous work
(see companion paper, Celii et al. [1]). The annotated dataset contained 922 excitatory and 89 inhibitory neurons.

We trained a logistic regression. Its cross-validated balanced accuracy was 99%. The best hyperparameters were: L2
regularization (C = 5) and using class weights. We used those hyperparameters to retrain on the full training set of 1,011
neurons. Using this classifier, we inferred whether a neuron was excitatory or inhibitory for the entire dataset after removing
fragmented cells and after removal of 227 neurons that did not have spine and synapse densities available (n = 37, 135). We
then removed all inhibitory cells from subsequent analyses (n = 3, 138).

Inference of cortical layers. To determine cortical layer labels for the entire dataset, we followed a two-stage procedure.
First, we inferred the layer of each neuron using a trained classifier. Then we determined anatomical layer boundaries based
on the optimal cortical depth that separates adjacent layers.

We first trained a SVM classifier for excitatory cells on the 922 manually annotated excitatory neurons by pooling the cell
type labels per layer. Its cross-validated balanced accuracy was 89%. The best hyperparameters were: polynomial kernel of
degree 5, C = 3. Using this classifier, we inferred the cortical layer of all excitatory neurons (n = 33, 997; Fig. 2).

The spatial distribution of inferred layer assignments was overall well confined to their respective layers. As expected,
there was some spatial overlap of labels at the boundaries, since layer boundaries are not sharp. We nevertheless opted for
assigned neurons to layers based on their anatomical location rather than their inferred label. To do so, we determined the
optimal piecewise linear function that separates two consecutive layers. At the end, the layer assignments were purely based
on the soma depth of each neuron relative to the inferred layer boundaries – not on the classifier output.
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Inference of coarse cell type labels. In Fig. 4 we show cell type labels for layer 5. These were determined by training
a support vector machine to classify the excitatory neurons into cell types using the 922 manually annotated neurons. The
cross-validated balanced accuracy of this classifier was 85%. The best hyperparameters were: polynomial kernel of degree 2,
C = 20, using class weights. Using this classifier, we inferred cell type labels for all excitatory neurons (n=33,997).

4.9 Manual validation of apical skeletons
We found a significant fraction of atufted neurons across layers 4–6. To determine the extent to which these cells are actually
atufted or an artifact of incomplete reconstructions, we manually inspected ca. 480 neurons in Neuroglancer [5] with respect
to the validity of their apical termination. During manual inspection, we annotated neurons’ reconstruction as “naturally
terminating,” “out-of-bounds,” “reconstruction issue” or “unsegmented region.” Reconstruction issues are the case where the
EM slice was segmented correctly, but the tracing missed to connect two parts of the same neuron. Unsegmented regions are
the case where one or multiple EM images or parts thereof were not segmented correctly and therefore the neuron could not
be traced correctly. In addition, we classified the neurons as either “atufted,” “small tufted” or “tufted,” both before validation
and after correcting reconstruction errors.

For layer 4, we inspected 120 atufted neurons. Of those, 64% had missing segments on their apical dendrites and 36% had
a natural termination. Note, however, that 74% of the neurons had a consistent tuft before and after validation. Even though
parts of the apical dendrite were missing, qualitatively the degree of tuftedness did not change. For atufted neurons this means
that their apical dendrite merely terminated early, but this reconstruction error did not change their classification as atufted.
In layer 4, neurons with a natural termination ended more superficially than neurons with missing segments. We therefore
excluded L4 neurons from the analysis whose apicals ended more than 154 micrometers below the pia to exclude neurons
with reconstruction errors from our analysis. This threshold was selected such that the F1-score was maximized, i.e. retaining
as many atufted neurons with natural termination, while removing as many neurons with missing segments as possible. The
threshold was computed on the 120 validated neurons. This process excluded 557 neurons from layer 4.

For layer 5, we inspected 176 neurons with early-terminating apical dendrites. Of those, 59 showed a natural apical
termination, while 117 had reconstruction issues or left the volume. We found no clear quantitative metric like the depth of
the apical to exclude neurons with unnatural terminations. Therefore, we excluded neurons based on their cluster membership
from further analysis if the cluster contained more than 50% of neurons with unnatural terminations. Of the 15 clusters, we
excluded four, corresponding to 1,258 out of 5,858 L5 neurons.

For layer 6, we inspected 183 neurons with early terminating apicals. Of those, 100 showed a natural apical termination,
while 83 had reconstruction issues or left the volume. Due to the slant of the volume, long, narrow L6 cells near the volume
boundary had a high likelihood of leaving the boundary with their apical dendrite. Therefore, we excluded all L6 neurons
whose apical dendrite leaves the volume (n = 867) prior to our analysis. We considered a neuron as leaving the volume if the
most superficial point of its apical tree was within a few micrometers of the volume boundary.

Overall, we excluded 2,684 neurons as a result of this manual validation step, resulting in a final sample size of 31,313
neurons used in our analysis (Figs. 4+5).

4.10 Cortical area boundaries
Cortical area boundaries were manually drawn from retinotopic maps of visual cortex taken before EM imaging. For further
details see companion paper [2].

4.11 Dimensionality reduction
For visualization of the learned embeddings, we reduced the dimensionality of the 32d embedding vector to 2d using t-
distributed stochastic neighbor embedding (t-SNE; [24]) using the openTSNE package [18] with cosine distance and a per-
plexity of 30 for t-SNE plots for individual cortical layers and a perplexity of 300 for the whole dataset.

4.12 Morphometric descriptors
We computed morphometrics based on the neuronal skeletons for analysis of the learned latent space. Morphometrics are not
used for learning the morphological vector embeddings. We computed morphometrics based on compartment labels: soma,
apical dendrites, basal dendrites and oblique dendrites (Sec. 4.2). They are visualized in Fig. 3. TOTAL APICAL LENGTH
is defined as the total length of all segments of the skeletons that are classified as apical dendrites. TOTAL BASAL LENGTH
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is computed analogously. DEPTH refers to the depth of the soma centroid relative to the pia after volume normalization
(Sec. 4.3), where pia depth is equal to zero. HEIGHT is the absolute difference between the highest and the lowest skeleton
node of a neuron in y-direction. APICAL WIDTH refers to the widest extent of apical dendrites in the xz-plane. BASAL BIAS
describes the difference between the soma depth and the center of mass of the basal dendrites along the y-axis.

4.13 Statistics
Apical lengths in Sec. 2.7 were compared between V1 and HVA per laminar layer with four independent two-tailed Student’s
t-tests. The single-test significance level of 0.01 was corrected for multiple tests using Bonferroni correction to 0.0025. Only
neurons that had any nodes labeled as apical were taken into account for this analysis. In L2/3, n = 6, 760 neurons were taken
into account from V1 and n = 3, 436 from HVA; for L4 n = 5, 217 (V1) and n = 2, 534 (HVA); for L5 n = 3, 708 (V1) and
n = 1, 924 (HVA); and for L6 n = 3, 959 (V1) and n = 2, 618 (HVA).

Data availability
Data for this paper was analyzed at materialization version 374. Data is publicly available via https://www.microns-explorer.
org/cortical-mm3 and will be updated closer to publication.

Code availability
The code for GRAPHDINO is available at https://eckerlab.org/code/weis2021b/. Analysis code will be made
available on the Eckerlab Github repository (forthcoming). Analyses were performed in Python 3.10 using custom code and
the libraries Matplotlib362, Numpy124, openTSNE062, Pandas152, Pytorch113, Scikit-learn120, Scipy110, and Seaborn012
for general computation, machine learning and data visualization.
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[20] Federico Scala, Dmitry Kobak, Shen Shan, Yves Bernaerts, Sophie Laturnus, Cathryn Rene Cadwell, Leonard Hartma-
nis, Emmanouil Froudarakis, Jesus Ramon Castro, Zheng Huan Tan, et al. Layer 4 of mouse neocortex differs in cell
types and circuit organization between sensory areas. Nature communications, 10(1):4174, 2019.

[21] Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn Cadwell, Jesus Castro, Leonard Hartmanis,
Xiaolong Jiang, Sophie Laturnus, Elanine Miranda, Shalaka Mulherkar, Zheng Tan, Zizhen Yao, Hongkui Zeng, Rickard
Sandberg, Philipp Berens, and Andreas Tolias. Phenotypic variation of transcriptomic cell types in mouse motor cortex.
Nature, 598:1–7, 2021.

[22] Casey M Schneider-Mizell, Agnes Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J. Bumbarger, Leila Elabbady,
Daniel Kapner, Sam Kinn, Gayathri Mahalingam, Sharmishtaa Seshamani, Shelby Suckow, Marc Takeno, Russel Tor-
res, Wenjing Yin, Sven Dorkenwald, J. Alexander Bae, Manuel A. Castro, Paul G. Fahey, Emmanouil Froudakis,
Akhilesh Halageri, Zhen Jia, Chris Jordan, Nico Kemnitz, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Eric Mitchell,
Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Stelios Papadopoulos, Saumil Patel, Xaq Pitkow, Sergiy Popovych,
William Silversmith, Fabian H. Sinz, Nicholas L. Turner, William Wong, Jingpeng Wu, Szi-chieh Yu, , Jacob Reimer,
Andreas S. Tolias, H Sebastian Seung, R Clay Reid, Forrest Collman, and Nuno Maçarico da Costa. Cell-type-specific
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A Appendix

Figure A.1: Volume Pre-processing. A. x-y (left) and y-z (right) 2D cross-sectional views of the EM volume as seen in Neuroglancer. Red
scatter points - linear model of pia, Green scatter points - linear model of L6 - white matter boundary. B. Pia and white matter boundary
models shown with (right) and without (left) rotating the volume by 3.5 degrees about the z-axis. C. Three example excitatory neuronal
skeletons shown from two 2D projections (x-y) and (y-z) after rotation and depth normalization to the mean pia and white matter depths.
Red scatter points - pia model after normalization. Green scatter points - white matter boundary after normalization. Gray shadow - pia,
white matter and neuronal skeleton after rotation but before normalization.
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Figure A.2: A. Top view of the volume showing the distribution of complete neuron versus fragments predictions by our classifier based on
the learned morphological embeddings. Density of fragmented neurons is high at the volume borders, since neurons have a high likelihood
of leaving the imaged volume with their dendrites. Additionally, we see a high number of fragmented neurons in areas where we know there
have been issues during the imaging process, proving that the classifier works as intended. B. t-SNE embedding of neuronal morphologies
colored by neuron-fragment predictions. C. Top view of the volume showing a uniform distribution of excitatory versus inhibitory neurons
across the volume. D. t-SNE embedding of neuronal morphologies colored by excitatory-inhibitory predictions.
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Figure A.3: t-SNE embedding of neuronal morphologies colored by the dataset split: A. training, B. validation and C. test set as used for
GRAPHDINO training.
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