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Summary

Biology and medicine are focused heavily on human genetics’ impact on the body, which

is reasonable as the first human genome was completely sequenced only last year. There are,

however, 1,000 times more genes in the bacteria, viruses and archaea that live in the gut -

collectively referred to as its microbiota - than in the human genome itself. They augment the

genes of their human hosts, and their presence in the gastrointestinal tract, where nutrients are

broken down and absorbed, suggest that consideration of the human genome alone may afford an

incomplete understanding of how the body functions. Biomedical data have a reputation for

being noisy; much of what is understood today as randomness might be explainable in the future

if we transition to a more integrative model of human biology - one that considers the genomes

of both the host and microbiota.

Here, I study how gut microbes have been involved in human adaptation to different

environments. Since this topic is broad, I divided it into three aims. Aim one examines whether

the microbiome accounts for the fact that genetics does not always predict phenotype in lactose

tolerance. Aim two studies whether gut microbes are acquired from humans’ mothers. Aim three

determines whether gut microbes acquired during infancy persist into, and throughout adulthood.

Together, these aims address how humans acquire their gut microbes, for how long they persist

in the gut, and what the metabolic consequences for the host are.

In aim one, I investigate the role of gut microbiota in lactose tolerance. This is because

the lactose tolerance phenotype is more prevalent than the genotype, lactase-persistence. To

address this discrepancy, I traveled with my colleague Victor Schmidt to Gabon and Vietnam,

where lactase persistence is rare. We genotyped over 800 women, including in Germany, where

lactase persistence is common, and measured their lactose tolerance phenotype. Approximately

20% of lactase-persisters were lactose tolerant by clinical standards. I then tested the hypothesis

that this phenotype was driven by their microbiota by surveying their stool metagenomes, but

saw no differences between tolerant and intolerant lactase non-persisters. To gain a better

understanding of how the stool microbiota metabolize lactose, my colleague Xiaoying Liu

cultured the stools with lactose in vitro, enabling measurement of not only H2, but also whether

the lactose is metabolized at all. Her results showed that some stools produced gas from lactose,

others metabolized little to no lactose, and the rest metabolized lactose into soluble products.
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These results showed that lactose tolerance could come from either no metabolism of lactose, or

metabolism into soluble products. The genus Bifidobacterium was associated with the latter. Our

results for the first time link microbial metabolism and taxa to non-genetic lactose tolerance.

Aim one’s results show that consideration of the human genome alone does, in fact,

afford an incomplete understanding of how the body functions. This impacts how we understand

our ancestors’ adaptation to novel environments during their migration out of Africa. Dairying

preceded the evolution of genetic lactose tolerance over 10,000 years ago: we propose that

Bifidobacterium initially facilitated dairying by making it tolerable, because without any

dairying, there would have been no positive selection for lactase persistence. The microbe and

host-genetic adaptation yield the same outcome, in that they have enabled humans to exploit

ruminants as converters of grass to energy in the form of milk. We conclude from this that

Bifidobacterium has been buffering selection for the lactase-persistence genotype for at least

15,000 years.

In my second aim, I examined mother-to-child transmission of microbial strains in

Germany, Gabon and Vietnam. I hypothesized that mothers share more gut microbial strains with

their own infants than those of other mothers. To test this, I collected stool samples from not only

the aforementioned women in Gabon, Vietnam, and Germany, but also from their children. I

assembled genomes from both sets of stool metagenomes to determine the extent to which gut

microbes from different mothers and infants are related. We used this to determine that strains of

microbes, particularly of the genus Prevotella, are indeed shared vertically (between mothers and

their children). We observed this vertical transmission in all three sampled countries, but also to a

lesser extent, horizontally (between unrelated mothers and infants) in Gabon and Vietnam. This

suggests that gut microbial strains persist in human populations in host lineage-specific fashion.

My third aim was to determine the temporal stability of microbes in the human gut. My

hypothesis was that the evidence for vertical lineage-specificity of gut microbes shown in aim

two is predicated on strains acquired during infancy persisting throughout hosts’ lives. To test

this, I collected stools from a 13 year-old human, and sequenced them alongside stools frozen

since his infancy. Indeed, we found the persistence of two microbial strains: one belonging to the

species Prevotella copri - the same taxon for which we found abundant evidence of vertical

transmission - and the other to Alistipes_A ihumii. They had both accrued less than than 40

single nucleotide polymorphisms since the participant’s infancy, which is within the expected
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range that microbes have been shown to evolve at in the human gut. They shared several

phenotypes with the species we’d previously shown to codiversify with humans, namely a high

sensitivity to oxygen. We also identified three strains that persisted in the gut of his mother

despite the same passage of 13 years, suggesting that gut microbes can persist not only from

infancy to adolescence, but also throughout adulthood.

Taken together, these three aims’ results indicate that gut microbiota exist in an intimate

metabolic association with their hosts. They are acquired vertically, but also horizontally in

communities with reduced dispersal limitation. They can confer a phenotype previously thought

to be conferred only by the host’s own genome: lactose tolerance. And we could demonstrate that

they persist in our guts, from the period of infant-acquisition through adolescence but also

throughout adulthood - for at least 13 years, thereby enabling their eventual transmission to a

next generation of infant hosts. This is of great consequence to evolutionary biology. It means

that evolution acts not solely on the human genome, but on the genomes of humans in concert

with those of their microbial gut symbionts. These aims demonstrate how an integrative

understanding of host-microbe interplay yields a more refined understanding of the human body,

blurring the line between evolutionary biology and modern medicine.
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Zusammenfassung

Biologie und Medizin konzentrieren sich stark auf die Auswirkungen der menschlichen

Genetik auf den Körper, vorangetrieben durch die erste vollständige Sequenzierung des

menschlichen Genoms im letzten Jahr. Jedoch gibt es 1.000-mal mehr Gene in den Bakterien,

Viren und Archaea, die im Darm leben und kollektiv als Mikrobiota bezeichnet werden, als im

menschlichen Genom selbst. Diese mikrobiellen Gene erweitern die Gene ihrer menschlichen

Wirte und ermöglichen somit zusätzliche metabolische Prozesse. Ihre Anwesenheit im

Magen-Darm-Trakt, wo Nährstoffe abgebaut und aufgenommen werden, legt nahe, dass allein

die Betrachtung des menschlichen Genoms kein vollständiges Verständnis dafür bietet, wie der

Körper funktioniert. Eine große Hürde für biomedizinische Daten ist ihre Ungenauigkeit,

aufgrund der eingeschränkten Möglichkeiten alle relevanten physiologischen Variablen zu

erfassen und zu bewerten. Vieles von dem, was heute als Zufälligkeit verstanden wird, könnte in

der Zukunft erklärbar sein, wenn wir zu einem integrativen Modell der menschlichen Biologie

übergehen - einem Modell, das die Genome sowohl des Menschen als auch ihrer Mikrobiota

berücksichtigt.

In meiner Forschung untersuche ich, wie Darmmikroben in die Anpassung des Menschen

an unterschiedliche Umgebungen involviert waren. Da dieses Thema breit angelegt ist, habe ich

es in drei Teile unterteilt. Teil eins untersuchte, ob das Mikrobiom dafür verantwortlich ist, dass

die Gene des Menschen nicht immer den Phänotyp bei Laktosetoleranz vorhersagen vermag. Teil

zwei untersuchte, ob eine Übertragung von Darmmikroben von den Müttern auf die Kinder in

Menschen stattfindet. Teil drei fokussierte sich auf die Frage, ob Darmmikroben, die während

der Kindheit erworben wurden, im Erwachsenenalter bestehen bleiben. Gemeinsam adressieren

diese Fragestellungen, wie Menschen ihre Darmmikroben erwerben, wie lange sie im Darm

verbleiben, und welche Stoffwechselkonsequenzen sich daraus für den Wirt ergeben.

Im Rahmen von Ziel Nummer eins untersuche ich die Rolle der Darmmikrobiota bei der

Laktosetoleranz. Dies liegt daran, dass der Phänotyp der Laktosetoleranz häufiger vorkommt als

der Genotyp der Laktasepersistenz. Um dies zu untersuchen, reiste ich zusammen mit meinem

Kollegen Victor Schmidt in zwei Länder, Gabun und Vietnam, in welchen Laktasepersistenz

selten vorkommt. Zusammen mit Daten aus Deutschland, wo Laktasepersistenz weit verbreitet

ist, sammelten wir Daten von 800 Frauen. Neben der Bestimmung ihres
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Laktosetoleranz-Phänotyps wurden sie genotypisiert. Etwa nur 20% der laktasepersistenten

Personen waren nach klinischen Maßstäben laktosetolerant. Anschließend testete ich die

Hypothese, dass dieser Phänotyp der phänotypische Laktosetolenranz trotz genetischer

Laktoseintoleranz durch das Mikrobiota angetrieben wird. Hierfür untersuchte ich ihre

Stuhlmetagenome, stellte aber keine Unterschiede zwischen phänotypisch toleranten und nicht

toleranten genotypischer laktoseintoleranten Personen fest. Um ein besseres Verständnis dafür zu

bekommen, wie das Mikrobiota Laktose metabolisieren kann, führte meine Kollegin Xiaoying

Liu in vitro Experimente durch. Sie kultivierte Stuhlproben mit Laktose und ermöglichte

H2-Messungen sowie direkte Messungen der Laktose-Metabolisierung. Ihre Ergebnisse zeigten,

dass einige Mikrobiota aus Stuhlproben Gas aus Laktose produzierten, andere wenig bis keine

Laktose verstoffwechselten, und der Rest Laktose in lösliche Produkte metabolisierte.

Schlussfolgerlich könnte Laktosetoleranz entweder durch keinen Laktosestoffwechsel oder durch

einen Stoffwechsel in lösliche Produkte entstehen könnte. Mit Letzterem wurde die Gattung

Bifidobacterium in Verbindung gebracht. Somit verknüpfen unsere Ergebnisse erstmals den

mikrobiellen Stoffwechsel und Taxa mit der nicht-genetischen Laktosetoleranz.

Die Ergebnisse von Ziel eins zeigen, dass die Betrachtung des menschlichen Genoms

allein kein vollständiges Verständnis dafür bietet, wie der Körper funktioniert. Dies hat

Auswirkungen auf unser Verständnis der Anpassung unserer Vorfahren an neue Umgebungen

während ihrer Migration aus Afrika. Die Milchproduktion erfolgte vor mehr als 10.000 Jahren,

bevor sich die genetische Laktosepersistenz entwickelte: Wir schlagen vor, dass Bifidobacterium

die Milchproduktion anfangs ermöglicht hat, indem es sie verträglich machte, denn ohne

Milchproduktion hätte es keine positive Selektion für Laktasepersistenz gegeben. Die Anpassung

von Mikroben und Wirtsgenetik führt zu demselben Ergebnis, nämlich dass sie es den Menschen

ermöglicht haben, Wiederkäuer als Umwandler von Gras in Energie in Form von Milch zu

nutzen. Daraus folgern wir, dass Bifidobacterium die Selektion für das

Laktasepersistenz-Genotyp seit mindestens 15.000 Jahren gepuffert hat.

In meinem zweiten Teil habe ich die Übertragung von mikrobiellen Stämmen von

Müttern auf ihre Kinder in Deutschland, Gabun und Vietnam untersucht. Ich habe die Hypothese

aufgestellt, dass Mütter mehr Darmmikrobenstämme mit ihren eigenen Kindern teilen als mit

Kindern anderer Mütter. Um dies zu überprüfen, habe ich Stuhlproben nicht nur von den zuvor

erwähnten Frauen in Gabun, Vietnam und Deutschland, sondern auch von ihren Kindern
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gesammelt. Ich habe Genome aus beiden Sets von Stuhlmetagenomen zusammengestellt, um den

Grad der Verwandtschaft zwischen Darmmikroben verschiedener Mütter und Kinder zu

bestimmen. Wir haben festgestellt, dass Mikrobenstämme, insbesondere der Gattung Prevotella,

tatsächlich vertikal geteilt werden (zwischen Müttern und ihren Kindern). Wir haben diese

vertikale Übertragung in allen drei untersuchten Ländern beobachtet, aber auch in geringerem

Maße horizontal (zwischen nicht verwandten Müttern und Kindern) in Gabun und Vietnam.

Diese Beobachtungen legen nahe, dass Darmmikrobenstämme in menschlichen Populationen in

einer spezifischen Weise persistieren, die von der Abstammungslinie des Wirts abhängt.

Mein drittes Ziel war es, die Stabilität von Mikroben im menschlichen Darm während des

menschlichen Lebens zu bestimmen. Meine Hypothese war, dass die vertikale Abstammung von

Darmmikroben, die in Teil 2 gezeigt wurde, auf dem Bestehenbleiben der mikrobiellen Stämme,

die während der Kindheit erworben wurden, im Verlauf des Lebens beruht. Um dies zu testen,

analysierte ich Stuhlproben von einem 13-jährigen Menschen zusammen mit Stuhlproben, die

seit seiner Kindheit eingefroren waren. Tatsächlich fand ich zwei mikrobiellen Stämme, die

beständig seit früher Kindheit an in der Versuchsperson vorhanden waren: Der erste Stamm

gehörte zu Prevotella copri - dasselben Taxon, das bereits im vorherigen Abschnitt mit vertikaler

Übertragung im Menschen in Zusammenhang gebracht wurde. Der zweite Stamm gehörte zu

Alistipes_A ihumii. Beide hatten seit der Kindheit des Teilnehmers weniger als 40

Einzelnukleotidpolymorphismen akkumuliert, was im erwarteten Bereich der mikrobiellen

Entwicklung von Genen im menschlichen Darm liegt. Diese zwei Stämme teilen einige

Phänotypen mit Mikroben, die gemeinsam mit Menschen diversifiziert sind. Hierzu gehört eine

hohe Empfindlichkeit gegenüber Sauerstoff. Des weiteren identifizierten wir auch drei Stämme,

die im Darm seiner Mutter trotz des gleichen Zeitraums von 13 Jahren persistierten. Die

Ergebnisse beider Versuchspersonen weisen darauf hin, dass Darmmikroben nicht nur von der

Kindheit bis zur Adoleszenz, sondern auch im Erwachsenenalter persistieren können.

Zusammenfassend zeigen die Ergebnisse dieser drei Ziele, dass Darmmikrobiota in enger

metabolischer Verbindung zu ihren Wirten stehen. Sie werden vertikal, aber auch horizontal in

Gemeinschaften mit eingeschränkter Ausbreitung übertragen. Sie können einen Phänotyp

verleihen, der zuvor nur durch das eigene Genom des Wirts vermittelt wurde: Laktosetoleranz.

Und wir konnten zeigen, dass sie in unseren Därmen bestehen bleiben, von der Phase des

Erwerbs in der Kindheit über die Adoleszenz bis hin zum Erwachsenenalter - für mindestens 13
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Jahre, was ihre spätere Übertragung auf eine nächste Generation von Kind-Wirten ermöglicht.

Dies ist von großer Bedeutung für die Evolutionsbiologie. Dies bedeutet, dass die Evolution

nicht nur auf das menschliche Genom wirkt, sondern auf die Genome der Menschen im

Zusammenspiel mit denen ihrer mikrobiellen Darm-Symbionten. Diese Ziele zeigen, wie ein

integriertes Verständnis der Wechselwirkung zwischen Wirt und Mikrobe zu einem präziseren

Verständnis des menschlichen Körpers führt und die Grenze zwischen Evolutionsbiologie und

moderner Medizin verwischt.
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Introduction

Homo sapiens accomplished an incredible feat during their 300,000 years of existence:

populating planet earth (Beyer et al. 2021). Explanations for how this was possible are

dominated by narratives about how the forces of evolution - mutation, gene flow, genetic drift,

and natural selection - have acted on the human genome (Fan et al. 2016; Marciniak and Perry

2017; Mathieson 2020). Such a focused effort on the human genome is important, as it is indeed

the primary unit upon which natural selection acts, and was not fully sequenced until 2022

(Moran and Sloan 2015; Nurk et al. 2022). The discovery of billions of bacteria, viruses and

archaea inhabiting the human gastrointestinal tract - the gut microbiota - suggest that humans are

part microbial: the 20,000 genes of their own genomes are complemented by those of their gut

microbes, which exceed a staggering 22 million (Willyard 2018; Tierney et al. 2019). This

genetic supplementation yields the profound implication that microbes may participate in host

adaptation to new environments (Suzuki and Ley 2020). It suggests that humans of the same

genotype could have different fitness because of their gut microbiota, and that natural selection

can, at times, act not on one in isolation, but rather on the two together (Moran and Sloan 2015).

This thesis focuses on a single question: How do gut microbes assist in human adaptation to new

environments? This question is vast - too vast for one thesis to address comprehensively - so it is

broken into three aims.

Aim 1 uses the microbiome to account for human phenotype-genotype disparity.

Candidate human genetic adaptations are well documented (Fan et al. 2016). The microbiota

may have played a role in how human genotypes arose (Suzuki and Ley 2020), and several of

them have already been positively or negatively associated with microbial taxa: AMY1 (a

high-starch diet) with Ruminococcus, PLD1 (energy harvest) with Akkermansia, and LCT

(dairying) with Bifidobacterium (Everard et al. 2013; Goodrich et al. 2017; Poole et al. 2019;

Suzuki and Ley 2020). More humans consume dairy than have the genetic adaptation to it

(Blekhman et al. 2015; Goodrich, Davenport, Beaumont, et al. 2016; Goodrich, Davenport,

Waters, et al. 2016), and those without the genetic adaptation have more Bifidobacterium

(Bonder et al. 2016). We tested whether Bifidobacterium confers lactose tolerance in the absence

of the host-genetic adaptation - both in Gabon and Vietnam, where the host-genetic adaptation is

rare, and in Germany, where it is prevalent.

16

https://paperpile.com/c/Cro4Bh/Bm7x
https://paperpile.com/c/Cro4Bh/oJ5y+BNZu+KLK3
https://paperpile.com/c/Cro4Bh/oJ5y+BNZu+KLK3
https://paperpile.com/c/Cro4Bh/zUfS+ordj
https://paperpile.com/c/Cro4Bh/xhIv+QmvS
https://paperpile.com/c/Cro4Bh/hKt6
https://paperpile.com/c/Cro4Bh/zUfS
https://paperpile.com/c/Cro4Bh/oJ5y
https://paperpile.com/c/Cro4Bh/hKt6
https://paperpile.com/c/Cro4Bh/NWA2+zF7G+clCH+hKt6
https://paperpile.com/c/Cro4Bh/NWA2+zF7G+clCH+hKt6
https://paperpile.com/c/Cro4Bh/PAGIR+e5GwA+q4Mqv
https://paperpile.com/c/Cro4Bh/PAGIR+e5GwA+q4Mqv
https://paperpile.com/c/Cro4Bh/8DoLO


Aim 2 examines whether or not gut microbes are transmitted between consecutive host

generations. If gut microbes perform consequential tasks for the host, but are not transmitted to

the next generation (vertical transmission), those benefits may be lost. To determine whether

vertical transmission exists, we surveyed the stool metagenomes of mothers and their children

from Gabon, Vietnam and Germany, and identified the extent to which microbial strains were

shared between them. Previous studies had identified strain-sharing events between mothers and

their infants, but their sampling was heavily-biased towards western populations (Asnicar et al.

2017; Yassour et al. 2018; Korpela et al. 2018). As a result of this, the impact of westernization

on how gut microbes pass from one generation of human host to the next remains largely

unknown. These previous studies determined strain-relatedness by mapping metagenome reads

to developer-curated reference databases (Nayfach et al. 2016; Shi et al. 2022; Beghini et al.

2021). This dilutes the differences between a given dataset’s strains with the differences they

have with strains in the western-biased reference databases. We overcame this by mapping

metagenome reads to genomes that we ourselves assembled from Gabon, Vietnam and Germany

(Olm et al. 2021), reducing database-bias in the first ever study to comparatively examine

microbial transmission in both westernized and non-westernized human populations.

It is not known for how long a gut microbe can survive in the human gut. This is because

longitudinal datasets cost time, and no one has ever tested whether microbial strains persist in the

human gut for longer than 5 years (Bäckhed et al. 2015; Yassour et al. 2016; Chu et al. 2017;

Vatanen et al. 2018). These same studies also suffered from the aforementioned pitfall of

reference-based alignment bioinformatics (Bäckhed et al. 2015; Yassour et al. 2016; Chu et al.

2017; Vatanen et al. 2018). Here, we had the unprecedented opportunity to collect stool samples

from an adolescent, from whom we also had frozen stool samples from their first 2.5 years of

life. We surveyed the stool metagenomes at each time point, spanning his first 2.5 and 12th - into

his 13th - year of life, assembled microbial genomes, and determined strain relatedness. We also

did the same for his mother, enabling us to test whether strains persist in the human gut not only

during the transition from infancy to adolescence, but also throughout adulthood.

Taken together, these three aims advance our understanding of how gut microbes have,

and continue to contribute to humans’ adaptation to diverse environments on earth. In aim one,

we studied one such adaptation - that of adults to dairy - and whether Bifidobacterium

contributes to it. Aims two and three studied how such contributions are possible; whether gut
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microbes are ubiquitous amongst humans or inherited vertically from their mothers, and whether

such microbes persist after infant-acquisition into, and throughout, adulthood. We conclude that

infants acquire gut microbes from their mothers, which persist in their guts not only into

adolescence but also into adulthood, throughout which they are capable of performing tasks once

thought to be only conferrable by the host’s own genome. Host-genetic explanations for humans’

numerous adaptations to life on earth are incomplete without considering potential interactions

with, and contributions from, their gut microbes.
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Abstract

The lactase-persistence (LP) genotype allows digestion of the milk sugar lactose in adults and

confers lactose tolerance. Genetically lactase non-persistent (LNP) individuals can also be

lactose tolerant, but responsible microbiota remain elusive. Here, we assessed lactose tolerance

as H2-production in breath after lactose dose, LP/LNP genotype, and gut microbiome

metagenomic diversity in 483 adults from Gabon (100% LNP), Vietnam (99% LNP), and

Germany (23% LNP). In all three populations, ~ 20% of LNP were lactose tolerant though

microbiomes differed. In-vitro lactose addition to stool showed low H2 production stemmed

either from minimal breakdown of lactose, or breakdown producing metabolites of the Bifid

shunt pathway - lactate and acetate - and the growth of Bifidobacterium. Our results indicate that

Bifidobacterium can confer lactose tolerance across populations, including where the LP

genotype is rare, and may have facilitated functional take-over by the human genome when

dairying first began 12,000 years ago.
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Introduction

Lactose is human milk’s primary carbohydrate and infants’ main energy source (Asp and

Dahlqvist 1974; Ségurel and Bon 2017). Lactase, a beta-galactosidase, hydrolyzes it in the small

intestine into glucose and galactose, which are absorbed into the blood (Asp and Dahlqvist 1974;

Ségurel and Bon 2017). Lactase is encoded by the LCT gene, whose transcription typically

downregulates after weaning (Ingram et al. 2009; Anguita-Ruiz, Aguilera, and Gil 2020). In such

genetically lactase non-persistent (LNP) individuals - who comprise the majority of humans -

dietary lactose passes unhydrolyzed from the small to large intestine, where it is fermented by

gut microbiota. This produces gasses (particularly hydrogen), bloating and abdominal pain: the

lactose intolerant phenotype (Misselwitz et al. 2013). Lactase persistence and lactose tolerance

are most commonly diagnosed by performing an overnight fast, consuming lactose and

measuring whether there are substantial increases in blood glucose (indicative of lactase

persistence) and breath hydrogen (indicative of lactose intolerance) (Itan et al. 2010). However,

sometimes LNP individuals do not make hydrogen, which poses an enigma.

One of the strongest and most recent examples of natural selection on the human genome

is the LCT transcriptional enhancer MCM6, which for approximately one third of humans

extends lactase expression from infancy to adulthood, known as the lactase persistent (LP)

genotype (Ingram et al. 2009; Ségurel and Bon 2017; Anguita-Ruiz, Aguilera, and Gil 2020).

This positive selection occurred between 7,000 - 10,000 years ago in independent dairying

societies, each with different MCM6 single nucleotide polymorphisms (Gallego Romero et al.

2012; Ségurel and Bon 2017; Jones et al. 2015). LP confers lactose tolerance, but the modern

prevalence of the phenotype exceeds that of the genotype (Itan et al. 2010; Ranciaro et al. 2014;

Hollfelder et al. 2021). The same dissonance is reported in our ancestors: dairying evolved as a

cultural practice 5,000 years before the emergence of LP (Ségurel and Bon 2017). This is often

explained by cultural evolution with Mongolians as an example, where less than five percent of

the population is LP but fermented dairy consumption is prevalent (Jeong et al. 2018; Curry

2018). Fermentation, however, only reduces the concentration of lactose in dairy by 20 - 50 %

(Alm 1982). It has been suggested that the gut microbiota may confer lactose tolerance to

genetically intolerant individuals (Ranciaro et al. 2014; Jeong et al. 2018; Hollfelder et al. 2021;

Segurel et al. 2020).
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A microbe with the metabolic potential to confer such tolerance is the genus

Bifidobacterium, whose species can uptake lactose, hydrolyze it with intracellular

beta-galactosidase and ferment resulting glucose with the “Bifid shunt” pathway (Parche et al.

2006; Catanzaro, Sciuto, and Marotta 2021). Microbiome genome-wide association studies

(GWAS) performed in the UK and USA suggest this may be the case, as LNPs harbor more

Bifidobacterium than do LPs (Blekhman et al. 2015; Goodrich, Davenport, Beaumont, et al.

2016; Goodrich, Davenport, Waters, et al. 2016); an association dependent on host

milk-consumption (Bonder et al. 2016). This led to the hypothesis that Bifidobacterium can

outcompete LNP hosts for lactose (Goodrich, Davenport, Waters, et al. 2016; Suzuki and Ley

2020), nevertheless being in symbiosis because its metabolism produces short-chain fatty acids

(SCFAs) as energy for the host. Here, we tested not only whether this competition exists, but also

what the consequence for the host is; namely whether it could confer tolerance to the milk sugar.

Consuming dietary lactose infused with live Bifidobacterium spp. reduces breath hydrogen (T.

Jiang, Mustapha, and Savaiano 1996), but whether this capability innately exists within LNPs

guts remains unstudied.

To investigate the role of the gut microbiome in lactose tolerance, we conducted a human

intervention study in which we surveyed stool microbiomes, assessed tolerance by measuring

hydrogen and glucose from lactose, and genotyped LP/LNP. We enrolled 483 participants in

three countries: Gabon (n = 152), Vietnam (n = 190) and Germany (n = 141). Approximately

20% of LNP participants in each country were lactose tolerant, which we termed

“microbially-acquired lactose tolerance” (MALT). There were however no differences in stool

metagenomes of MALT and intolerant LNP individuals. To characterize the microbial processes

underlying this phenotype, we cultivated a subset of LNP stool samples with lactose (n = 149),

sequenced their metagenomes and measured the metabolites produced. Stools responded in one

of four different ways: little hydrolysis of lactose without fermentation (“Inactive”), little

hydrolysis with weak fermentation (“Weak”), hydrolysis and fermentation producing high

hydrogen (“Gassy”), or hydrolysis and fermentation, producing low hydrogen (“Tolerant”). The

tolerant group was enriched in Bifidobacterium both in-vivo and -vitro, and the metabolic

byproducts of canonical Bifid shunt pathway, lactate and acetate. We conclude that MALT is a

widespread trait, comprised of LNPs with metabolically-active and inactive microbiota.

22

https://paperpile.com/c/E79KE7/9HjOr+twM1i
https://paperpile.com/c/E79KE7/9HjOr+twM1i
https://paperpile.com/c/E79KE7/G4kML+3JDnK+YqnDc
https://paperpile.com/c/E79KE7/G4kML+3JDnK+YqnDc
https://paperpile.com/c/E79KE7/PerwE
https://paperpile.com/c/E79KE7/YqnDc+sbAow
https://paperpile.com/c/E79KE7/YqnDc+sbAow
https://paperpile.com/c/E79KE7/aNcqh
https://paperpile.com/c/E79KE7/aNcqh


Bifidobacterium drives metabolically-active MALT, and likely enabled humans to practice

dairying before the evolution of LP.

Methods

Recruitment

Participants qualified for the study in Gabon (n = 152), Vietnam (n = 190) and Germany

(n = 141) with the following inclusion criteria: (1) between 18-40 y old, (2) born in the

country-of-testing, (3) no severe allergy to dairy, (4) not currently pregnant, (5) have no known

underlying medical conditions that may reasonably put themselves or other participants at risk,

and (6) willingness to follow the low-starch requirements for their pre-fast meal, fast overnight

and not consume anything prior to arrival at the study location (Supp Table

[Metadata_and_phenotyping]). Our field staff screened participants upon arrival at the clinic and

explained the above criteria, and all protocols, risks, and study motivations in local languages

before informed consent was provided. The following local ethical bodies authorized our

protocols for use in this study: Gabon: Comité National d’Ethique, protocol number:

N0025/2017/PR/SG/CNE; Vietnam: Scientific Ethics Review Committee and 108 Military

Central Hospital, protocol number: 108MCH/RES/VGCARE-03-16012018; Germany:

Ethik-Kommission an der Medizinischen Fakultät der Eberhard-Karls-Universität und am

Universitätsklinikum Tübingen, protocol number: 529/2018BO1.

Lactose tolerance phenotyping, genotyping, and dietary surveys

We assessed lactose tolerance using breath hydrogen tests (BHTs) and blood glucose tests

(BGTs) according to standard clinical protocols (Rezaie et al. 2017). Briefly, we measured

baseline breath gas and blood glucose levels, followed by a 25 g dose of lactose monohydrate

(Campro Scientific, Berlin, Germany) dissolved in 250 ml of water. We subsequently measured

breath gas and blood glucose levels at 30, 60, 120, and 180 min after the dose. We used

AlveoSampler bags and syringes (Quintron, Milwaukee, USA) to collect breath exhalant and

measured its hydrogen, methane and carbon dioxide with a daily-calibrated BreathTracker SC

(Quintron, Milwaukee, USA). We reported gas values after correction for CO2, as per

manufacturer's instructions. We collected BGT data with Accu-Chek Guide blood glucose
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monitors as per manufacturer’s instructions (Roche, Basil, Switzerland). We operationalized

lactose tolerance as an increase in breath hydrogen below 30 ppm and lactase persistence as an

increase in blood glucose equal to or greater than 20 mg / dl. We used a chi-squared test to

determine whether the HBT or BGT was a better predictor of LP.

To minimize fermentation in the large intestine from non-lactose sources on the day of

testing, participants were restricted to a set of approved low-starch ingredients for dinner the

evening prior (e.g., white rice, white pasta, boiled chicken, eggs). They were also required to

conduct an overnight fast for at least 12 h, and were not permitted to consume any food or drink

besides water during the fast and study duration (from 8:00 AM until 12:00). Smoking and

exercise were not permitted the morning of their visit to the clinic.

We assessed lactase persistence genotypes by collecting a saliva sample from each

participant with Saliva DNA Collection and Preservation Devices (Norgen, Thorold, Canada).

We extracted salivary genomic DNA using PowerSoil DNA extraction kits (Qiagen, Hilden,

Germany) and sequenced host DNA on an Infinium Global Screening Array (Illumina,

SanDiego, USA) at the University Hospital of Bonn, Life & Brain Research Centre. We assessed

the genotype of each participant at three lactase persistence SNPs (rs41525747, rs4988235, and

rs41380347) using Plinkv1.9 (Purcell et al. 2007). Participants collected stool from themselves

using a Fe-Col collection kit (Alpha Labs, Eastleigh, UK), which we froze within 8 h of

submission at -20 °C. We transported stool samples to Germany on dry ice and stored them at

-80 °C.

Participants conducted a health and dietary survey where the primary objectives were to

assess the relative degree of dairy intake across the different populations studied and whether or

not participants had symptoms during testing. Since each location had a unique suite of dairy

products available (e.g. condensed milk in Gabon, yogurt-coffee in Vietnam, or pizza in

Germany), we were unable to standardize questionnaires across regions. We therefore applied a

lactose score to each product in each of our regional surveys, based on available nutritional

information for the product. We then quantified the total lactose intake for each participant based

on the sum across all dietary products with lactose. Finally, we built a distribution of lactose

scores across all regions, and applied an arbitrary yet directly comparable ‘lactose score’ to each

participant. We note that these scores can only be used for comparisons within this study and do

not reflect a generalizable assessment of lactose intake in g / day.
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Associating blood glucose and breath hydrogen with LP genotype

Given that we measured two types of lactose tolerance phenotype data - both breath

hydrogen and blood glucose tests - we wanted to determine which of the two was a better

predictor of the LP genotype. To do this, we performed a χ2-test of genotype versus

TRUE/FALSE phenotype (glucose rise > 20 mg / dl or H2 rise > 30 ppm) with 1 degree of

freedom on the 481 samples for whom we had genotype, H2 rise, and glucose rise data.

Generalized linear models

For generalized linear models, all features and interactions of interest were included in

the model and sequentially removed until all were significant. When possible, contrasts were

adjusted for the Country variable. For instance in Model 1, given the lower H2 rise for German

individuals as seen by eye (Figure [In_vivo_phenotyping]), contrasts were set to first evaluate

the effect of “Germany” versus “Gabon” and “Vietnam” and then of “Gabon” versus “Vietnam”.

The p-values were adjusted using the Benjamini-Hochberg method with the number of all tested

variables and number of contrasts of categorical variables (e.g., “Country” was counted twice

since two tests were performed). Note that for Model 1, which was a two-part model; (i)

sequential removing of variables was conducted independently for each part, (ii) p-value

correction was done for both parts together, (iii) predicted values were computed such that if the

first part of the model predicted H2 rise > 1 ppm with a probability > 0.5, then the predicted

value of the second part was used, otherwise the predicted value was 0.

Microbiome sequencing

We extracted genomic DNA from frozen stool with PowerSoil DNA extraction kits

(Qiagen, Hilden, Germany). We prepared shotgun metagenomic libraries as per (Karasov et al.

2018) with slight modifications. Briefly, 1 ng of purified gDNA was used in a Nextera (Illumina,

San Diego, USA) Tn5 tagmentation reaction to fragment and ligate adaptors in a single reaction,

followed by a 14-cycle PCR to add sample-specific barcodes. We purified libraries with

Mag-Bind TotalPure NGS beads (Omega Biotech, Norcross, USA), which we pooled and

quantified as above. We size-selected libraries to 400-700 base pairs with a BluePippen (Sage

Science, Beverly, USA). We concentrated and purified them further as needed using DNA Clean
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& Concentrator-5 (Zymo Research, Irvine, USA) and sequenced them on a HiSeq 3000

(Illumina, San Diago, USA) with 150 paired end cycles.

Data processing and profiling

We performed metagenome quality-control with a pipeline described by Youngblut et al.

(Youngblut et al. 2020). Briefly, we used Skewer 0.2.2 (H. Jiang et al. 2014) and the bbtools

“bbduk” command to trim adapters and the bbtools “bbmap” command to filter reads that

mapped to the human genome (GRCh37/hg19). We assessed read quality with Fastqc 0.11.7 and

multiQC 1.5a. We subsampled metagenomes to 5 million reads and profiled their taxonomies

with KrakEN 2 and Bracken 2.2, and genes and pathways with HUMAnN 3.0.0.alpha.3 (Beghini

et al. 2021), each using custom databases curated by Struo2 (Youngblut and Ley 2021) with

GTDB release 95 (Parks et al. 2022).

Before performing machine learning on the 483 in vivo metagenomes, we filtered their

profiling output to taxa of prevalence ≥ 6.5 % (2719 genera) and pathways of prevalence ≥ 5 %

(p = 125 pathways). We used the same cutoffs before running machine learning on the 299 in

vitro metagenomes, which yielded 943 genera and 121 pathways at t = 0 h (149 metagenomes)

and 1033 genera and 144 pathways at t = 4.5 h (150 metagenomes).

Extracellular β-galactosidase activity in LNPs

We aliquoted 100 - 200 mg of stool in 1.5 ml Eppendorf tubes with 100 mM MES buffer

at pH 6 (6 μl buffer / mg fecal sample) and vortexed them at 2000 rpm for 5 min until thoroughly

homogenized. We centrifuged the tubes at 15,000 rpm for 30 min and stored the supernatants at

-20 °C before performing the β-galactosidase activity assay (Promega Corp., Madison, WI).

Briefly, we added 50 μl supernatant and 50 μl 2 X Assay buffer in 96-well plates, incubated them

at 37 oC for 30 min and measured the absorbance at 420 nm every 2 min, vortexing the plates at

120 rpm for 40 s before each measurement. We generated standards by correlating the

commercial β-galactosidase concentration (U / μl) with the slope of the absorbance. One unit

β-galactosidase hydrolyzes 1.0 μmols of o-nitrophenyl-b-D-galactopyranoside (ONPG) to

o-nitrophenol and galactose per min at pH 6 and 37 oC. We recorded extracellular

β-galactosidase activity in U / g feces.
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Amending LNP stools with lactose

We aliquoted 0.5 g fecal samples with 4 mL 30 mM lactose buffered with 100 mM MES

at pH 6 in Hungate anaerobic culture tubes in a glove box. We performed in vitro cultivation at

37 oC for 4.5 h with continuous shaking at 600 rpm. We measured headspace H2, CH4 and CO2

concentrations at 1.5 h, 3 h and 4.5 h with a gas chromatograph (SRI8610C; SRI Instruments,

Torrence, USA) with a packed column (3' x 1/8" S.S. HayeSep D Packed Teflon; Restek,

Bellefonte, USA) at 50 oC with a thermal conductivity detector (TCD) at 120 oC and a flame

ionization (FID) detector. We used N2 carrier gas with an input pressure of 207000 Pa. We

calculated the headspace gas concentrations with the ideal gas equation, with units mmol of gas

in the headspace per liter of culture.

We measured non-gaseous metabolites by collecting liquid samples before and after

cultivation. We centrifuged them at 12,000 g for 30 m, the supernatants from which we filtered

through a 0.22 μm syringe filter and preserved at -20 °C for HPLC analysis. We measured the

supernatants’ concentrations of lactose and the metabolites glucose, galactose, acetate, lactate,

propionate, butyrate, succinate, glycerol and ethanol in supernatants with HPLC (Shimadzu

LC40, Kyoto, Japan) with an Aminex HPX-87H column (Bio-Rad, California, USA). We

performed separations at a flow rate of 0.6 mL / minute at 60 °C with a refractive index detector,

a UV detector and 5 mM H2SO4 as the mobile phase. We calculated carbon consumption by

subtracting the total mass of lactose, glucose and galactose at the end of incubation from the total

mass of lactose (mg) at the beginning.

Comparing in vitro and in vivo H2 production

To test whether samples that produced low hydrogen in vitro similarly produced low

hydrogen in vivo, we collapsed the Inactive, Tolerant and Weak groups into one “low” in vitro

H2 production group and compared its in vivo H2 production to that of the sole “high” group:

Gassy. We compared their means with a Wilcoxon test.
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Metagenome analysis

Overview

We performed all analyses in R (R Core Team 2018) using the tidyverse R package suite

(Wickham et al. 2019). We used the phyloseq R package to rarefy in vivo metagenomes to their

minimum even depth (324,778) before calculating observed and Shannon diversity metrics with

its “estimate_richness” function (McMurdie and Holmes 2013). We calculated Bray Curtis

distance matrices on the non-rarefied in vivo metagenomes with phyloseq’s “distance” function;

ordinating and plotting them with the “ordinate” and “plot_ordination” functions. We calculated

differential abundance tests for in vivo metagenones by country with the DESeq2 R package

(Love, Huber, and Anders 2014); for the in vitro metagenomes, we used a Wilcoxon signed-rank

test to determine differences microbial growth on lactose, followed by a Benjamini-Hochberg

p-value correction. We performed Wilcoxon, ANOVAs and Tukey HSD posthoc tests with the

ggpubr R package “stat.test” and “stat_compare_means” functions (Kassambara 2020).

Machine learning models

We performed model selection on 120 cross-validation (CV) sets with 80-20 % train-test

dataset split. We fitted the model with highest average predictive accuracy on the test sets to all

data. For models with relative abundances of taxa, we performed feature selection on the train set

before fitting the predictive model. Our feature selection was adapted from the gRRF algorithm

(Deng and Runger 2013) to perform faster with the ranger R package (Wright, Wager, and Probst

2020) and to take the taxonomic structure into account when species and genus relative

abundances were included (Ruaud et al. 2022). For feature selection, we tuned the gamma

parameter for feature selection, as well as the k parameter when taking the taxonomy into

account. For the predictions of random forest models, the number of trees and maximal depth

were tuned; random forests were computed with the ranger R package (Wright, Wager, and

Probst 2020). We compared models using one-sided Wilcoxon signed-rank tests with accuracies

of CV sets matched between the two models. Models were interpreted with endoR (Ruaud et al.

2022).
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For the in vitro models, we first filtered out all taxa that did not significantly increase in

relative abundance over the course of the experiment in one of the groups (one-sided Wilcoxon

signed-rank test and adjusted p-value < 0.05).

Genome assembly from metagenomes

We assembled metagenomes as outlined by Suzuki and colleagues (Suzuki et al. 2022),

from all three sets of our metagenomes: the in vivo set, and those from the beginning and end of

cultivation with lactose in vitro. Briefly, we used metaSPAdes v3.15.4 to assemble contigs. We

differentially coverage-binned them with MetaBat v2.15.0, MaxBin v2.7.7 and VAMB v3.0.2,

and selected the highest-quality, non-redundant MAGs with Das-Tool v1.1.4. Lastly, we

dereplicated the MAGs with CheckM2 v1.0.1, and dRep v2.0.0 set to 99.99 % average

nucleotide identity (ANI). We taxonomically-classified these non-redundant MAGs with

GTDB-Tk database release 95 (Chaumeil et al. 2019), of which 209 were of the genus

Bifidobacterium.

Culturing and sequencing of Bifidobacterium isolates

We isolated Bifidobacterium species from frozen fecal samples stored in -80 °C. We

obtained feces from 10 adult individuals each from Vietnam (Son La, mean age = 25.7 years old,

mean weight = 52.7 kg, mean infant age = 7.7 months old) and Gabon (Babongo, mean age =

30.8 years old, mean weight = 44.2 kg, mean infant age = 8.5 months). The isolation protocol

was based on a previous study (Fouhy et al. 2015) with modifications. We grew all cultures

under anaerobic conditions using BD GasPak EZ (East Rutherford, NJ, US).

For the isolation process, we serially diluted one gram of frozen fecal sample (10−4–10−7)

in maximum recovery diluent (MRD) (Oxoid Ltd, Basingstoke, Hampshire, UK). We plated the

dilutions in triplicate on Man Rogosa Sharpe (MRS, Oxoid, Basingstoke, UK) agar

supplemented with 0.05% (wt/vol) L-cysteine hydrochloride (Merck, Germany), 5% (w/v)

lactose (Win Lab, Gemini House, Middlesex, Hab 7ET, UK), 100 μg/ml Mupirocin (Fluka), and

50 units of Nystatin. We then incubated the plates at 37 °C for 72 hours, and picked

approximately 50 colonies per individual from plates with the highest dilution. We cultured

individual colonies in liquid MRS media in 2 ml 96-well deep plates. We extracted DNA using

PureLink Pro 96 Genomic DNA Kit (Invitrogen, Carlsbad, CA, USA) and included negative
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control samples in every plate. We quantified DNA concentrations using the PicoGreen protocol

and the Gen5 microplate reader.

To further screen for Bifidobacterium spp., we developed a qPCR screening approach

using the KiCqStart SYBR Green qPCR ReadyMix (Sigma-Aldrich, St. Louis, MO, USA) and

previously described Bifidobacterium-specific primers (F-bifido:

5’-CGCGTCYGGTGTGAAAG-3’, and R-bifido: 5’-CCCCACATCCAGCATCCA-3’)

(Delroisse et al. 2008). We retained isolates showing melting temperatures between 86.5-88.0°C,

Cq values < 22.0, and DNA concentration > 0.25 ng/ul. This screening approach excluded

around 30 % of the total isolates that were non-Bifidobacterium, resulting in 735

Bifidobacterium-candidate isolates for subsequent sequencing. We performed prepared libraries

and sequenced isoaltes in the same way as for the aforementioned stool metagenomes.

Isolate-genome assembly and bioinformatic processing

We assembled post-quality control reads de novo on a per-sample basis. We subsampled

reads to 1,000,000 reads per sample using seqtk v1.2. We normalized reads using the bbnorm

command of bbtools v37.78 (target = 50, k = 31, minkmers = 15, and prefilter = t) and assembled

contigs with SPAdes v3.11.1. The assembly parameters included setting off coverage cutoff,

applying the “careful” parameter, and setting the minimal scaffold length to 500. Subsequently,

we refined assemblies using Pilon v1.22 with a chunk size of 10,000,000, and assessed their

quality with CheckM v1.0.16. We performed anannotation with Prokka v1.13, and assigned

taxonomies with CheckM and sourmash v2.0.0a4 (scaled = 10,000 and k = 31). Out of the 735

candidate-Bifidobacterium isolates, 531 isolates classified as belonging to the Bifidobacteriaceae

family. Furthermore, 503 isolates exhibited CheckM-estimated completeness > 95 % and

contamination < 10 %. We dereplicated those isolate genomes to ANI 99.999 % and

taxonomically-classified them with the same software versions as described for the MAGs,

which yielded 59 non-redundant Bifidobacterium isolate genomes.

Phenotyping Bifidobacterium isolate genomes and MAGs

We phenotyped the 209 Bifidobacterium MAGs together with the 59 Bifidobacterium

isolate genomes with Traitar v3.0.1, and inferred their phylogeny with PhyloPhlAn v3.0.3, which

we annotated with iTOL v5 (Asnicar et al. 2020; Letunic and Bork 2021). We further predicted
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whether or not each Bifidobacterium genome could metabolize particular carbohydrates, ranging

from monosaccharides, disaccharides and polysaccharides using a modified binary metabolic

phenotyping-pipeline originally described by Iablokov and colleagues (Iablokov et al. 2021). To

avoid false-positives and -negatives for carbohydrate phenotypes, we filtered the

aforementioned genomes to satisfy “high-quality” MIMAG standards (CheckM2-estimated

completeness >= 90 % and contamination <= 5 %), qualifying 139 of the original 209 for

carbohydrate phenotyping. (Bowers et al. 2017; Chklovski et al. 2022). We used a linear mixed

model to model the total number of carbohydrates metabolizable by each genome, with GTDB

species-designation as a random effect, and completeness, contamination, genome type (MAG or

isolate genome), and breath hydrogen production from lactose as fixed effects. We repeated the

same analysis with binary logistic regression - whether or not each carbohydrate had a “1” or ‘0”

phenotype for each genome - with the same aforementioned explanatory variables.

We had three high-quality Bifidobacterium MAGs from participants whose baseline

hydrogen measurements were above 30 ppm - likely due to failure to comply with the overnight

fasting protocol - which excluded them from the preceding breath hydrogen-based analyses. That

has, however, no bearing on our determination of whether carbohydrate metabolic potential of

Bifidobacterium differs by country, so we added those three to the set of 139, and repeated the

same generalized linear- and binary logistic regression-models without breath-hydrogen as an

explanatory variable.

Strain-sharing analysis

We generated sub-species representative genomes (SSRGs) by dereplicating our isolate

and metagenome-assembled genomes at 98 % average nucleotide identity with CheckM2 v1.0.1

and dRep v2.0.0. We identified single nucleotide polymorphisms by mapping our metagenome

reads to those SSRGs with inStrain v1.0.0, thereby generating inStrain profiles; one per

metagenome per SSRG. We did this for not only the adult participants of our study, but also their

children. We pairwise-compared all profiles with `inStrain compare` to produce popANI metrics

(Olm et al. 2021). As per inStrain documentation, we defined a shared strain as any pairwise

comparison where at least 50% of the SSRG is compared, and the popANI is at least 99.999%.
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Results

Recruitment & metagenomic libraries

We recruited 483 participants for this study; 152 in Gabon (Mean Age 26.4 y ± 0.51 SE),

190 in Vietnam (Mean Age 27.5 y ± 0.38 SE), and 141 in Germany (Mean Age 29.4 y ± 0.44

SE) (Figure 1 A; Table S1). All participants were female and born in the country of sampling.

We generated an average 3.7 million reads for each in vivo metagenome (Gabon Mean ± SE:

3,618,585 ± 60,421; Vietnam Mean ± SE: 3,811,863 ± 61,970; Germany Mean ± SE: 3,666,806

± 78,023) (Table S1).

Microbiome profiling

Gabonese microbiomes had greater species richness and Shannon diversity than those in

Vietnam and Germany (Figure 1 B). We detected more species in Vietnam than in Germany, but

Shannon diversity was greater in Germany (Figure 1 B), indicating that though there were fewer

species detected in the latter, their abundances were more even in each metagenome. Principal

component analysis of Bray-Curtis dissimilarity produced clusters from each country, with

Gabon and Vietnam more diffuse than Germany (Figure 1 C). The genera most differentially

abundant in Gabon, as compared to Vietnam and Germany, were Treponema_D, Succinivibrio,

Anaerovibrio, CAG-568, RUG 572 and UBA1436. The genus most abundant in Vietnam as

compared to Gabon and Germany was Actinotalea; those most abundant in Germany were

CAG-314, CAG-267, 51-20 and CAG-495 (Figure S1). Bacteroidaceae was the most abundant

phylum in each country (Figure 1D). The taxonomic bar plot for the sole Vietnamese LP is given

in plot S2.

32



Figure 1. Study recruitment, genotyping, and gut microbiome survey. (A) Summary of

recruitment and lactase persistence genotyping for participants in Gabon, Vietnam and Germany.

(B) Alpha diversity of participants’ stool metagenomes, rarefied to even sequencing depth.

P-values are based on Wilcoxon rank sum tests, corrected for multiple comparison with the

Benjamini-Hochberg procedure; * = p < 0.05; ** = p < 5x10-10. (C) Principle coordinate analysis

of Bray Curtis dissimilarities between stool metagenomes with colors corresponding to the

sampling locations in panel A. The first two principal components are plotted with the percent

variance explained by each. (D) Microbial taxa relative abundances from stool metagenomes,
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with individual participants from each country plotted by LP/LNP genotype, in order of

increasing age on the x-axis. Each color represents either a single bacterial family, all archaea, or

the sum of all other bacterial families represented in each metagenome.

Lactase persistence-genotyping and lactose tolerance-phenotyping

As expected, the LNP genotype was very prevalent in Gabon (100 %) and Vietnam (99.5

%) and less prevalent in Germany (23.4 %; Figure 1 A; Table S1). Surprisingly, 21 % of LNP

participants made little breath H2 from lactose (< 30 ppm) such that they did not qualify for a

lactose-intolerant diagnosis (20.4, 22.2 and 18.2 % in Gabon, Vietnam and Germany,

respectively) (Figure 2 B; Table S1). The % of LNP participants that were lactose tolerant by

both BHT and BGT ranged from 0 - 2 by country (Table S1). This indicates that LNP

participants making little H2 from lactose was not the outcome of small-intestinal lactase (i.e.,

false-positives for the LNP genotype), but rather due to the hypothesized microbially-conferred

tolerance. As expected given this result, glucose rise better discriminated LP from LNP

participants than did H2 rise (Glucose rise < 20 mg/dl: χ2
glucose = 284.44; H2 rise < 30 ppm: χ2

H2 =

209.01). Only in Germany was the BGT less sensitive than BHT: 99.1 % of LP participants were

tolerant by BHT but only 79.6 % were tolerant by BGT (Glucose rise < 20: χ2
glucose = 47.01; H2

rise < 30: χ2
H2 = 98.91). Participants that reported gastrointestinal symptoms during the 4 hours

of testing had hydrogen rises greater in magnitude than those that did not (Wilcoxon signed-rank

test, p-value = 0.045).

Modeling glucose production from lactose

To understand the association of covariates with glucose rise, we ran a linear model on

the genotype, age, BMI, and covariate-interactions (n = 140) of German participants, since that

was the only country wherein both LP and LNP were prevalent. As expected, genotype was

significantly associated with glucose rise. From all other covariates and their interactions, only

age showed a trend for negative association glucose rise (p-value = 0.06, adjusted p-value =

0.15) (Figure S2). We repeated the same model as above, except for only LP participants. From

the 108 samples with complete metadata, one was from Vietnam so it was removed (model fitted

on 107 Germans). No covariate was significantly associated with glucose rise.
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Since substantial LNPs produced glucose from lactose (Figure 2 B), we used the same

model above on LNPs-only to associate covariates with their glucose rises (n = 337 samples),

first comparing {Gabon, Germany} vs Vietnam; then Gabon vs Germany. Gabonese and

Germans had significantly higher glucose rises than Vietnamese (adjusted p-values = 0.0195)

and Gabonese than Germans (adjusted p-value = 0.0061). Though age was not significantly

associated with glucose rises (negative association, adjusted p-value = 0.0598), there was a

significant interaction effect between age and country Germany (adjusted p-value = 0.0108),

such that German LNP glucose rises decreased with age.

Figure 2. Lactose tolerance phenotyping. (A) Participants ingested 25 g lactose monohydrate

after an overnight fast to assess lactose malabsorption with hydrogen breath testing and blood
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glucose monitoring for 3 h. Microbiome samples were collected before ingestion of the lactose.

(B) The breath hydrogen and blood glucose made by each participant from lactose, separated by

their lactase persistence genotype. Participants with a hydrogen rise above 30 ppm (denoted by a

red line) were lactose intolerant; those below 30 ppm were lactose tolerant. The clinical cutoff

for lactose tolerance as determined by glucose is given by the line at 20 mg / dl; those above the

line are genetically-tolerant, and those below it are genetically-intolerant. (C) The variance in

hydrogen rise explained by 1) participant metadata alone, 2) participant metadata with the lactose

tolerance tests’ metabolic results, and 3) both with the addition of the microbiome, which

comprised both genus and pathway abundances. (D) Feature importance of generalized linear

models in explaining variance in breath hydrogen, colored by type of data.

Modeling in vivo H2-production from lactose

LP and LNP, without microbiome

We fit a generalized linear model to correlate H2 rise with glucose rise, age, CH4 rise,

country, and BMI, and tested for interaction effects of glucose rise with BMI and age in samples

with the necessary metadata (n = 445). Due to the data distribution, we used a two-part

generalized model: 1) probability of H2 rise > 1 ppm across all samples, and 2) for samples with

H2 rise > 1 ppm (n = 353 samples): regression of H2 rise with a Gamma distribution. The model

explained 35 % of the observed variance in H2 rise across all data (R2 = 0.35; p-values and

coefficients given in Table S2).

As expected, glucose is negatively associated with the probability of H2 rise > 1 ppm. H2

rise significantly increased with lower glucose rise (adjusted p-values = 1.5x10-2 and 1.6x10-5 for

each part of the model). There was a trend for higher CH4 production with increasing H2

production, consistent with CH4 being produced from H2, although the correlation was not

significant after p-value correction (adjusted p-values = 4.6x10-2 and 9.4x10-2 for each part of the

model). Age was positively associated with H2 rise (adjusted p-values = 1.5x10-2 and 1.4x10-2 for

each part of the model), such that older individuals were more likely to produce more H2 after

lactose ingestion. Age was positively associated with the probability of H2 rise > 1 ppm in people

with glucose rises <= 15 mg/dL (15/108 LP and 313/337 LNP); the closer to 15 mg/dL, the

smaller the effect of age. For those with glucose rises > 15 mg/dL, age was negatively associated
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with the probability of H2 rise > 1 ppm (93/108 = 86 % of the AA/AG individuals and 24/337 =

7 % of the LNP individuals).

Country was the covariate with the highest coefficient (Table S2), indicating a strong

influence of the country - and its confounding factors - on lactose fermentation in the gut.

Germans produced less H2 from lactose than do Gabonese and Vietnamese (adjusted p-values =

1.29x10-7 and 1.13x10-3 for each part of the model); when an H2 rise occurred (i.e., H2 rise > 1

ppm; 2nd part of the model), it was lower in Gabonese than in Vietnamese participants (adjusted

p-value = 1.7x10-2 for the 2nd part of the model). Finally, BMI was negatively associated with H2

rise (adjusted p-value = 2.8x10-3).

LNP only, without microbiome

We fit a generalized linear model to associated metadata with LNP participants’ H2 rises

(Gamma distribution, link = log, n = 337 samples, pseudocount of 1 since Gamma function does

not accept zeros, features: age, BMI, beta-galactosidase, ‘Country: Germany vs others’,

‘Country: Gabon vs Vietnam’). As was the case when modeling H2 rise with both LNP and LP

participants, age was positively associated with H2 production (Table S3), and BMI and

‘Country: Germany vs others’ were both negatively associated with H2 rise (Table S3).

LNP only, with microbiome

To determine the contribution of the microbiome to in vivo gas production, we subset

LNP participants with a glucose rise < 20 mg/dL (n = 323 samples). Our rationale was to

measure the percentage of explained variance in H2 rise due to microbial features by comparing

models (regression random forest models with 0.8 train-test split and 120 CV sets) with and

without these features. If the explained variance increases by including microbial features, the

increase would correspond to the conditional dependence of microbiome data and H2 rise given

all features in the baseline. Our baseline, or null model, consisted of H2 rise predicted using host

information: age, BMI, and country. We tested sets of features alone or combined: (i) metabolic

output: CH4 rise and extracellular β-galactosidase activity, (ii) taxonomic profiles: relative

abundances of genera, and (iii) metabolic profiles: relative abundances of MetaCyc pathways.

The R2 of the baseline was -0.085±0.18, which is a poor accuracy similar to random guessing.
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First, we verified that metabolic outputs associated with lactose degradation (extracellular

β-galactosidase activity) and H2 production (CH4 rise) were good predictors of H2 rise following

lactose ingestion. As expected, the model greatly improved by including these variables (R2 ~

0.15 ± 0.16, average variance explained by metabolic outputs = 0.24 ± 0.075; Wilcoxon

signed-rank test, adjusted p-value = 5.0x10-21). Next, we assessed the variance explained by the

gut microbiome. Individually, relative abundances of genera and pathways significantly

increased the accuracy of the baseline model (Wilcoxon signed-rank test, respective adjusted

p-values = 2.1x10-19 and 4.1x10-16). In particular, taxonomic profiles explained 0.13 ± 0.095 of

variance in H2 rise (R2 ~ 0.037 ± 0.15) and metabolic pathways explained 0.092 ± 0.090 (R2 ~

-0.029 ± 0.17). Combining taxonomic profiles to metabolic outputs significantly increased the

accuracy of models compared to metabolic outputs alone (average increase = 0.040 ± 0.085;

Wilcoxon signed-rank test, respective p-value = 2.8x10-6). However, combining pathways and

metabolic outputs did not increase the accuracy compared to (average decrease = -0.017 ± 0.075;

the decrease occurred because of the noise added by the metabolic pathways).

We hypothesized that relative abundances of the Bifidobacterium genus and species

would be responsible for the explained variance by taxonomic profiles. Although they

significantly increased model accuracy compared to baseline (Wilcoxon signed-rank test, p-value

= 1.38x10-4), relative abundances of Bifidobacterium genus and species did not account for the

majority of the explained variance due to taxonomic profiles (average increase = 0.030 ± 0.085

whereas taxonomic profiles explained 0.13 ± 0.095 of the H2 rise variance) and did not improve

the model with metabolic outputs when combined to it (average decrease = -0.033 ± 0.066).

To investigate which variables were responsible for the explained variance in H2 rise, we

looked at which metabolic outputs, genera, and pathways were most consistently selected across

CV sets in models with the three types of features (R2 ~ 0.20 ± 0.15) and at their average

importance across CV sets (Figure S3 A). On average across CV sets, 23 ± 8.5 features were

selected to make predictions. CH4 rise and the genus Agathobacter (family Lachnospiraceae)

were almost always selected and had the highest average feature importances (respectively

selected in 120 and 119 of 120 CV sets; Figure S3 A). BMI, the genus Acutalibacter (family

Ruminococcaceae), and the superpathway of L-serine and glycine biosynthesis I were next in

terms of number of times selected and average relative abundance (each selected in 99, 108, and

105 CV sets, respectively; Figure S3 A). Samples with H2 rise close to the mean were the best
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predicted on average across CV sets, such that predicted values varied around 62 ± 15, min-max

= 26-97, although the observed values had an average of 67 ± 45, min-max = 0-260 (Figure S3

B-C). This means that despite features being associated with H2 rise, low H2 rises were not well

predicted. Contrary to the in vivo model output that excluded the microbiome, the country of

origin of individuals was not important (Figure S3 A).

CH4 rise was a better predictor in the model than methanogens’ relative abundances.

While removing CH4 rise from the predictors led to a drop in accuracy (model with metadata,

betagal, and relative abundances of genera: R2 = 0.051 ± 0.15), methanogens’ relative

abundances were not even used for predictions (e.g., Methanobrevibacter A, the most abundant

and prevalent human gut methanogen, was selected in only 32 of the 120 CV sets). This suggests

that relative abundances are not an accurate proxy of metabolic activity (Figure S4).

In summary, we could explain up to 0.20 ± 0.15 of variance in in vivo H2 production from

lactose using metabolic outputs, taxonomic and metabolic profiles, and host covariates. CH4 rise

and the genus Agathobacter were the most important predictors. Nonetheless, low H2 rise

samples were not well predicted. Hence, to investigate low H2 production from lactose digestion

by gut microbiota, we set up controlled experiments to only look at the effect of microorganisms.

Modeling in vitro H2-production from lactose

Experimental design

To understand the microbial differences between LNPs that produce high- and low-H2

from lactose, we randomly selected stool samples from 75 of them that met, and 75 of them that

did not meet HBT criteria for lactose tolerance (H2 rise < 30 ppm and H2 baseline < 30 ppm). We

incubated these 150 samples with lactose for 4.5 h, measuring their metabolites and sequencing

their mirobiomes at the beginning and end of the experiment.

Stools responded to lactose in four different ways: (i) no H2 production due to no

metabolic activity (i.e., “Inactives”), (ii) low H2 production due to low carbon consumption

(“Weak”), and of the high carbon consumers, those with (iii) high- or (iv) low-H2 production

(“Gassy” and “Tolerant”, respectively, divided using k-means clustering) (Figure 3 B; Table S4;

Figure S5). The relative abundances of several taxa increased during cultivation with lactose, the

greatest magnitude of which was the genus Bifidobacterium in Tolerant, followed by Collinsella
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in Gassy, and Escherichia in the Weak and Inactive groups (Figure 3 C). Countries were

significantly associated with groups (χ2-test, χ2 = 14, df = 6, p-value = 0.029), such that: (i) the

majority of German samples belonged to the Tolerant and Gassy groups (8 and 6 of the 16

German samples, respectively), (ii) most Vietnamese samples had a low activity as they

belonged to the Inactive and Weak groups (23 and 22 of the 69 Vietnamese samples,

respectively), and (iii) Gaboneses samples were substantially represented in all groups (Table

S4). The Tolerant and Gassy groups had more extracellular beta galactosidase than the Inactive

and Weak groups (Figure S6). Host dietary lactose scores did not differ by in vitro classification

(Figure S7).

Figure 3. LNP stool microbiotas’ response to lactose. (A) Stool samples were cultivated with

lactose for 4.5 hours, during which microbial taxa and metabolites, including hydrogen, were

monitored. (B) Sample groupings based on the percent of lactose’s carbon consumed, and the
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hydrogen produced from it. (C) Changes in relative abundance during cultivation of the ten most

differentially-abundant taxa, by the four lactose metabolic groupings from (B). P-values < 0.05

after Benjemini-Hochberg correction are marked in blue. (D) Features of greatest importance in a

random forest model which classified metagenome membership to each of the four metabolic

groups from (B), as interpreted by endoR. Associations of genera with each group being that of

high or low relative abundance are given in blue and yellow, respectively. (E) Principal

component (PC) analysis on all metabolites measured at the end of the experiment. Metabolites

most correlated with each PC are shown in grey; the closer the arrows, the more correlated the

variables are on the PC. (F, left) Correlation of butyrate with hydrogen production. (F, right)

Correlation of lactate and hydrogen production at high and low % lactose consumption.

Metabolites produced from lactose

Principal component analysis (PCA) associated metabolites with the aforementioned

metabolic-response groups (Figure 3 E). PC1 separates high- from low-carbon consumers

(Figure 3 E). PC2 separates samples with high lactate and acetate production from those with

high hydrogen, butyrate, and propionate production. Glucose and galactose were associated with

the Inactive group, indicating that those monosaccharides had been cleaved from lactose, but not

fermented. Of the high-carbon consumers, those producing high hydrogen were associated with

the metabolites propionate and butyrate, and those producing low hydrogen with lactate and

acetate. H2 and butyrate were the most positively correlated variables on the 2 PCs (Figure 3 E

and F; Spearman’s test, S = 75582, df = 148, p-value = 2.4x10-40, R2 = 0.70). H2 and lactate

production were negatively correlated and dependent on carbon consumption (ANOVA on ranks,

p-values for carbon consumption < 2x10-16, lactate = 4.8x10-2, interaction effect of carbon

consumption and lactate = 6.3x10-11; the coefficient of determination of the model, R2 = 0.63;

Figure 3 F). The black line in Figure 3 F corresponds to a linear regression of H2 versus carbon

consumption, lactate, and their interaction effect at a fixed carbon consumption of 76 % (the

Gassy- and Tolerant-groups’ mean carbon consumption); the grey line is similar but at a fixed

carbon consumption of 38 % (the Weak group’s mean carbon consumption).

On average, 44 ± 33 % of the lactose was consumed (Figure S8 A). Glucose and

galactose were produced in equal amounts, but glucose was preferably consumed over galactose

(Figure S8 B). Remarkably, 12 samples had negative theoretical carbon consumption, meaning
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that glucose and galactose concentrations were higher at the end of the experiment than what

would be expected from the lactose cleavage. These samples belonged to 5 Vietnamese and 7

Gabonese individuals and did not show any trend for similar microbiome profiles at the

beginning of the experiment (Figure S8 C-D).

Predicting metabolic group with random forest

We fit random forest classifiers to predict metabolic groups using relative abundances of

microbial taxa and pathways at the end of the experiment as features. We limited our analysis to

genera and pathways that significantly increased in at least one of the groups (one-sided

Wilcoxon signed-rank test and adjusted p-value < 0.05; Table S5). The overall accuracy across

CV sets was 0.51 ± 0.082 (a random classifier of four groups having an expected accuracy of

0.25), with the balanced accuracy of each group being: Inactives = 0.74 ± 0.092; Weak = 0.53 ±

0.11; Tolerant = 0.80 ± 0.095; Gassy = 0.67 ± 0.097. Given the good accuracy, the model was fit

on all samples for interpretation: 114 features were selected, of which 29 were metabolic

pathways. Models using taxa and pathway abundances from the start of the experiment

performed less well, which was expected as the effects of lactose on the metagenomes were not

as exacerbated (Table S5). The classifier was interpreted using endoR (Ruaud et al. 2022).

Linking the in-vitro and vivo datasets

To determine whether samples that produced low hydrogen in vitro correspondingly

made less hydrogen in vivo, we grouped the ‘Inactives’, ‘Weak’, and ‘Tolerant’ groups into one

‘low’ group. Their mean in vivo hydrogen production was indeed lower than that of samples that

produced high hydrogen in vitro (i.e. ‘Gassy’), as tested with a Wilcoxon test (Figure S9). We

next tested whether levels of Bifidobacterium differed between the four in vitro clusters using an

ANOVA on log10-transformed relative abundances, and found that indeed, in vivo

Bifidobacterium was enriched in the Tolerant group only (Figure 5C). There were no

statistically-significant differences in in vivo symptom intensity by in vitro-classified group,

though we do note that the only participants to report the most severe symptoms did belong to

the Gassy group (Figure S10).
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Phenotyping Bifidobacterium genomes’ carbohydrate metabolism

Species-identity and CheckM2-estimated completeness explained variance in the 139

phenotyped Bifidobacterium genomes’ total number of metabolizable carbohydrates; country and

amount of breath hydrogen from lactose did not. Species-identity and completeness similarly

explained variance in whether or not each individual genome could metabolize each

carbohydrate, but country and breath hydrogen did not. Despite these differences by species, all

but two could metabolize lactose and glucose. The prevalence of genomes with the potential to

metabolize different carbohydrates varied by sampling location (Figure 4; carbohydrate metadata

are provided in Table S6). This is explainable by the aforementioned fact that carbohydrate

metabolism differs by species, and the relative abundances of those species differed by country.
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Figure 4. Biogeography of Bifidobacterium carbohydrate repertoires. Percentages of

Bifidobacterium genomes by location with the ability to metabolize each

phenotyped-carbohydrate. Whether or not the carbohydrate is of animal, plant, or universal

origin is given by the bar colors red, green and blue, respectively. Monosaccharides and their

derivatives, di- and oligo-saccharides, and polysaccharides are distinguished by green, red, and

blue bar borders, respectively. Descriptions of each carbohydrate are provided in Table S6.
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Bifidobacterium genome phenotyping

Bifidobacterium strain isolation yielded 59 non-redundant genomes. We assembled 7456

MAGs, of which 5,950 were over 50% complete, had less than 5% contamination and were

non-redundant (i.e., were dereplicated at 99.99% ANI). 150 of the 5,950 genomes were

Bifidobacterium MAGs. We inferred the phylogeny of all 209 Bifidobacterium genomes (Figure

5 A). We inferred their phenotypes: all had beta-galactosidase, and all but 1 (Bifidobacterium

angulatum; Germany) ferment lactose (Figure 5 A).

Figure 5. Bifidobacterium genomes, strain-sharing, and summary. (A) Phylogeny of 209

Bifidobacterium genomes, annotated by their country of origin, species membership, and

whether or not they have beta-galactosidase and the ability to ferment glucose. (B) The

relatedness of strains for which comparisons between both related- and unrelated- mother-child

pairs could be performed. A popANI greater to or equal than 99.999 % indicates a strain-sharing
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event, and is denoted by the grey line. Genera are ordered by decreasing difference in the median

popANIs of their strains compared between related-, and unrelated- mother-child pairs. (C) In

vivo Bifidobacterium abundance of the different participants, separated by their lactose

metabolism group membership in vitro. P values calculated with a Kruskal-Wallis test and

Dunn’s post hoc test, of which only those < 0.05 are shown. (D) Summary of how a

Bifidobacterium-mediated interaction between host genotype and microbiota determines whether

or not LNPs are LT. Dependence on the microbiome in determining LNP host phenotype is

shown with colored arrows: green and red depict tolerance and intolerance, respectively.

Strain sharing

We generated 3,212 sub-species representative genomes (SSRGs) by dereplicating the

5,590 non-redundant MAGs together with the 59 isolate genomes. We collected stool from 351

of the total 483 total participants’ infants, yielding a total of 351 mother-infant pairs. One of the

mothers had 2 infants, yielding a final mother-infant dataset of 351 lactose-phenotyped mothers

and 353 infants. We used these 704 metagenomes and 3,212 SSRGs to perform 18,755 strain

comparisons, 11,615 of which compared at least 50 % of the SSRG. 1 of these was a comparison

of Bifidobacterium strains in related mother-infant pairs, and it was a strain-sharing event

(Figure 5 B). 82 other strain-sharing events were identified, though they were not of strains

belonging to Bifidobacterium (Figure 5 B).
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Discussion

We measured the gas and glucose that 483 study participants in Gabon, Vietnam and

Germany made from lactose, genotyped LP/LNP, and surveyed their gut microbes to investigate

the contribution of the microbiome to lactose tolerance. As expected, LP individuals - the

majority of which were in Germany, where there is a history of dairying - made high glucose and

low hydrogen from lactose; they were lactose tolerant (LT). Genotype similarly predicted

phenotype for the majority of LNP participants, who made low glucose and high hydrogen from

lactose, qualifying them for a lactose intolerant diagnosis. However, one fifth of LNPs were LT.

This was the case in each of the three countries, despite their differing LNP prevalences (25 -

100 %), and locations on different continents. This confirms previous reports of a LP-LT

genotype-phenotype disconnect (Itan et al. 2010; Hollfelder et al. 2021), whose authors could

only speculate resulted from false negatives for LP (missed LP-conferring alleles) and/or a

contribution of gut microbiota (Ranciaro et al. 2014; Jeong et al. 2018). We are the first to test

both possibilities, as we novelly-combined both lactose phenotyping and genotyping with a

survey of the microbiome, which we hypothesized accounts for this discrepancy.

The 20% of LNP individuals with LT did not have substantial glucose rises, indicating

that their low-hydrogen production from lactose was not the result of missed LP-conferring

alleles in their genomes. Their microbiomes were not however different from the 80% of LNP

individuals that were intolerant, so we cultivated LNP stools with lactose in vitro. We observed 4

different responses of LNP gut microbiota to lactose: one of little hydrolysis with no

fermentation (“Inactive”), little hydrolysis with weak fermentation (“Weak”), hydrolysis with

fermentation yielding high-hydrogen (“Gassy”) and hydrolysis with fermentation yielding

low-hydrogen (“Tolerant”). This identifies two gut-microbial mechanisms by which LNP

individuals can be LT - one of metabolic activity and one of metabolic inactivity. Having ruled

out the possibility of false negatives for LP, we conclude that the LP-LT disconnect is in fact a

contribution of gut microbiota, which we term “microbially-acquired lactose tolerance” (MALT).

Bifidobacterium drives metabolically-active MALT because it was the singular microbial

genus enriched in stools classified as Tolerant in vitro, compared to those of the Weak, Inactive

and Gassy groups. Being able to extrapolate what we observed in vitro to the in vivo context is

dependent on two criteria, both of which we met: 1) Stools that made less hydrogen from lactose

in vitro were from hosts that made less hydrogen from lactose in vivo (Inactive, Weak and
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Tolerant, compared to Gassy), and 2) Individuals with Tolerant-classified stools had the same

metagenomic-enrichment for Bifidobacterium in vivo that they did in vitro. This explains why

we did not observe stool metagenome differences in vivo-classified tolerant and intolerant LNPs:

the latter were comprised of vitro-classified Gassy stools only (i.e., those without

Bifidobacterium enrichment), but the former comprised the Inactive-, Weak- and

Tolerant-classified stools grouped together, of which only the Tolerant-classified subset were

Bifidobacterium-enriched. Host-microbiome GWAS of the past overcame microbially-inactive

MALT’s dilution of the Bifidobacterium signal in tolerant LNPs by having comparatively larger

sample sizes. Those GWAS were an important step towards generating the hypothesis that

microbes may contribute to lactose tolerance, but by nature of being non-interventional,

insufficient to test it (Goodrich, Davenport, Waters, et al. 2016).

In addition to Bifidobacterium’s DNA being overly-abundant in Tolerant-classified

stools, so too were the metabolic end-products of its canonical Bifid shunt pathway, lactate and

acetate. The Bifid shunt ferments only hexoses, meaning dietary lactose that reaches the colon

needs to have first been hydrolyzed. We confirmed that both the Tolerant and Gassy groups - the

two that were metabolically-active - had more beta-galactosidase than their Inactive and Weak

counterparts. In the Tolerant group, Bifidobacterium fermented the resulting glucose via the Bifid

shunt into lactate and acetate while making relatively little hydrogen. Glucose fermentation in

the Gassy group - enriched in the genera Collinsella, Faecalibacterium and Agathobacter -

produced high hydrogen and butyrate. As the only group of the four to make high hydrogen,

Gassy represents the lactose metabolism of the 80%-majority of LNP individuals that made high

hydrogen in vivo, as confirmed by the fact that Gassy-classified stools’ hosts made more

hydrogen during in vivo phenotyping than did the hosts of the Inactives, Weak and Tolerant

groups.

The 20% of LNP individuals with MALT comprise not only stool metagenomes

classified as Tolerant in vitro, but also those of the Inactive and Weak groups, as all three share

the same decisive outcome in host phenotyping: low hydrogen production from lactose.

Abundance of E. coli was enriched in the Inactive and Weak groups, whose lac operon, which is

repressed in the presence of any glucose, activates in lactose’s presence and contains both a

permease to facilitate lactose’s transport into the cell and beta-galactosidase to hydrolyze it

(Maloy and Hughes 2013). This hydrolysis was represented in the metabolic profiles of the
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Inactive samples, wherein glucose and galactose were the defining metabolites, and in Weak

samples, wherein that same hydrolysis was followed only by weak fermentation. Unmetabolized

lactose has been hypothesized to increase osmotic load in the colon, thereby causing diarrhea

(Xue et al. 2020), but there were no differences in in vivo-reported symptoms between the in

vitro-classified groups (though we do note that the only severe symptoms were reported by

Gassy-classified participants). A weakness of this study is that we did not follow-up with

participants about their symptoms after the 3 hours of in vivo phenotyping. As a result, we

cannot conclude whether the Inactive and Weak groups, both of which underlie MALT as much

as the Tolerant group, are true- or false-positives for lactose tolerance. That outstanding question

should be the focus of further study.

MALT affords complete lactose tolerance in that it reduces gas production to levels

matching those of LP individuals, but it yields less energy for the host, since absorbing gut

microbe-produced SCFAs into the blood yields less energy than converting lactose to glucose in

the small intestine (Moffett et al. 2020). Producing less gas does however mean that

Bifidobacterium made dairy a more tolerable energy-source for ancestral humans. We conclude

that this, together with fermentation, helps account for the 5,000-year gap between the evolution

of dairying and the LP genotype. We presume that conferral of tolerability was dependent on the

abundance of Bifidobacterium available to metabolize lactose relative to that of other members

of the gut microbiota, because we showed here that other microbes produce gas from it. We

propose that in periods of extreme nutritional scarcity, before LP evolved, there was positive

selection on humans with greater abundances of Bifidobacterium, as only they were able to 1)

extract energy from lactose in the form of SCFAs, and 2) sufficiently tolerate dairy to be able to

consume it at all, thereby enabling uptake of its other nutritional components, including its

proteins, fats, vitamins, and minerals. This may explain why there is a signature of the genus

having codiversified with humans (Suzuki et al. 2022). The counter-argument that LNP human

ancestors without MALT-conferring Bifidobacterium could still reap dairy’s other nutritional

rewards does not hold, as the diarrhea ensuing from lactose intolerance is an experience some

have described as being similar to dysentery (Guerrant et al. 1992). This reduced gut-transit time

reduces energy-extraction from the rest of the LNP diet, thereby further increasing the fitness

disparity between LNPs with and without MALT-conferring Bifidobacterium.
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Taken together, we conclude that Bifidobacterium facilitated the evolution of LP. This is

because without dairying, which Bifidobacterium enabled, there would not have been positive

selection for the non-synonymous mutations in MCM6 that first conferred LP 10,000 years ago.

Instead, the MCM6 mutations would have emerged in several individuals, with genetic drift as

its only chance of survival in the population, which is much less likely. This also means that

Bifidobacterium buffered position selection on LP after it arose, because it afforded an

intermediary level of fitness between those with LP and those without it. This is how we explain

why LP has not gone to fixation in Germany such that 100% of our participants had it; instead,

only 77% did. The prevalence of MALT in German LNPs was high, at 20%, which suggests that

the signature of ancestral buffering still exists, and that it may also exist in other countries.

This does not, however, explain why MALT’s prevalence in Gabon and Vietnam was also

20%, because they do not have a thousands of years-old history of dairying, meaning there can

exist no legacy of ancestral buffering of Bifidobacterium on LP. Study participants in Gabon and

Vietnam did however report consuming some dairy in their diets. A difference between them,

and Germans dairying prior to LP 15,000 years ago, is that only the latter were faced with

nutrient scarcity, and the risk of starvation. This means that the evolutionary context in which

MALT has emerged in Gabon and Vietnam is different. Positive selection is not acting on both

the host and Bifidobacterium together, as it was for ancestral Germans threatened with food

scarcity, but rather on the microbiota alone: microbes that extract maximal ATP from 1 mol of

lactose (i.e., Bifidobacterium) have more fitness in dairying LNP guts than microbial competitors

with less extraction efficiency (e.g., E. coli).

Our carbohydrate metabolic potential analysis revealed a second explanation for why

MALT is prevalent in all three countries: Bifidobacterium metabolism is not restricted to lactose,

but can rather metabolize a diverse array of dietary carbohydrates. This means that infants,

whose levels of Bifidobacterium are high during breastfeeding, have their populations of that

genus sustained after weaning because those microbes metabolize carbohydrates in their solid

food diets, even though those differ by country. This explains a facet of how Bifidobacterium

strains persist in guts throughout hosts’ entire lifespans, an important prerequisite for the recent

discovery that members of this genus are transmitted between host generations (Suzuki et al.

2022). Our strain-sharing analysis here could only perform 1 comparison of Bifidobacterium

strains within a single related-mother infant pair, which is not robust enough to study its
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transmission dynamics. We conclude that this failure to detect shared-strains is because the

Bifidobacterium species abundant in children are generally less abundant in adults, and vice

versa, leading to a failure to be able to call SNPs on our assembled genomes with the

metagenomes of both mothers and their infants.

Mongolia offers an intriguing fourth example of this host genotype-microbiome interplay.

Only 5% of the population is LP, but they have been dairying for the past 5,000 years, and as

much as 30% of their calories are from dairy (Curry 2018; Wilkin et al. 2020). Some explain this

with the fact that fermentation is prevalent there: they recruit microbes to pre-metabolize lactose

outside the body, enabling consumption of that lactose-reduced dairy without issue (Curry 2018).

The same explanation has been given for the discrepancies between LP and lactose tolerance

observed in other populations. Indeed, adding lactose-metabolizing microbes - including

Bifidobacterium - to dairy before human consumption has been shown to reduce breath

hydrogen from lactose (T. Jiang, Mustapha, and Savaiano 1996; Aguilera et al. 2021; Masoumi

et al. 2021), as has giving LNPs Bifidobacterium probiotics, reviewed recently by Mysore

Saisrasad and colleagues (Mysore Saiprasad, Moreno, and Savaiano 2023). Others have however

proposed that microbes intrinsic to the human gut could also be increasing dairy’s tolerability

(Segurel et al. 2020; Suzuki and Ley 2020), and we are the first to test that hypothesis. We

implicated Bifidobacterium in this microbially-acquired lactose tolerance phenotype, and indeed,

the relative abundance of Bifidobacterium in Mongolian adults is as high as 80% (Liu et al.

2017).

A recent non-interventional study attempted to test our hypothesis and arrived at the

opposite conclusion, correlating Bifidobacterium with lactose intolerance in LNPs (Brandao Gois

et al. 2022). They genotyped for LNP, but rather than administer lactose and measure gas as we

did, participants self-reported both gastrointestinal symptoms and dairy consumption for 7 days.

Their association of Bifidobacterium with increased lactose intolerance symptoms is explained

by a confounder, which they even measured themselves: dairy consumption. LNPs that consume

more dairy are already known to have more Bifidobacterium (Bonder et al. 2016). Extrapolating

from our results, LNPs consuming large amounts of dairy will provide gut Bifidobacterium with

more lactose than they alone can metabolize, making that substrate available to the other

members of the microbiota - those whose metabolism of lactose is associated with lactose
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intolerance symptoms. Rather than contradict our conclusion, their outcome provides more

evidence to support it.

We posit that LP went close to fixation in populations wherein the genotype emerged

during times of extreme nutrient scarcity; when the threat of starvation was so high, that LP - the

ability to maximize energy extraction from lactose - was needed to survive. We postulate that

this was the case 15,000 years ago in northern Europe, where LP is prevalent, but not in

Mongolia 5,000 years ago and still today, where MALT and fermentation prior to consumption

are sufficient to make dairy tolerable (Curry 2018). In other words, whether LP moves close to

fixation or recruitment of Bifidobacterium are sufficient, depends on when dairying starts relative

to whether or not a society has surpassed its developmental time-point wherein food is scarce.

Despite the aforementioned study weakness that we only monitored symptoms within the

3-hour phenotyping window, there was nonetheless a difference in hydrogen production, such

that those with symptoms made more hydrogen. While the majority of participants submitted

samples before testing began, a small minority of them submitted them later in the day - after the

lactose had reached their colons - and were not recorded as such. The resulting metagenomes

were presumably mildly-enriched for taxa that responded to the dose. Nonetheless, this

confounder did not prevent the observed enrichment of metabolically-active MALT LNP

metagenomes for Bifidobacterium, both in vitro and in vivo.

In conclusion, we identified a new form of lactose tolerance, conferred not by human

hosts’ own genomes but rather by their gut microbiotas’ Bifidobacterium. It affords complete

lactose tolerance, as both LP and MALT are associated with low-hydrogen production. Though

LP results in more glucose from dairy, MALT enabled LNP-consumption of it throughout human

history, which we propose facilitated dairying before the evolution of LP, and has been buffering

selection for that genotype ever since.
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Supplemental Figures

Figure S1. Differential abundance of genera between each country’s in vivo metagenomes.

Values calculated with DESeq2; genera are colored by phyla.
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Figure S2. Relative abundances of microbial taxa sequenced from the single LP participant

from Vietnam. Each color represents either a single bacterial family, all archaea, or the sum of

all other bacterial families represented in each metagenome; colors correspond to the same taxa

as given in Figure 1 D.
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Figure S3. Accuracy of the random forest regression model predicting in vivo H2 rise with

host covariates and microbial relative abundances. (A) Number of times features were

selected and average Gini importance across the 120 cross validation sets with 80-20 % train-test

dataset split. (B) Comparison of the average predicted value with the observed one. The color

indicates the difference on average between the predicted and observed values. The grey line

indicates perfect prediction (y = x); the yellow dotted line (H2 rise = 30 ppm) indicates the

threshold delimiting lactose tolerant from intolerant individuals. (C) Absolute deviation

difference on average between the predicted and observed values (y-axis) according to the

observed value (x-axis). Points are colored by sampling country; accuracy of predictions did not

depend on the country; the yellow dotted line (H2 rise = 30 ppm) indicates the threshold

differentiating lactose-tolerant from -intolerant individuals.
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Figure S4. Relative abundances ofMethanobrevibacter A, the most abundant and prevalent

human gut methanogen, plotted against production of breath (A) CH4 or (B) H2 from

lactose in vivo.

Figure S5. Clustering of vitro samples based on H2 production and carbon consumption.

(A) Distribution of H2 production in vitro samples. (B) Distribution of H2 production in in vitro

samples after square root transformation. (C) K-means clustering of samples based on H2
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production (square root transformed) and carbon consumption. The two circled samples from

cluster 2, which group we then named “inactives”, were manually reclassified as cluster 4; this

cluster was then named LC for low carbon consumption.

Figure S6. Extracellular beta-galactosidase assessed by in-vitro cluster.

Figure S7. Dietary lactose score by in vitro cluster group by country.
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Figure S8. Gut microbiotas’ consumption of lactose during 4.5 h of anaerobic cultivation

with 36 mg of lactose. (A) Theoretical lactose consumed. (B) Glucose and galactose produced

during the experiment (difference of final concentrations with starting ones). Points are colored

by carbon consumption. (C-D) Principal coordinates of Bray-Curtis distances calculated with

relative abundances of genera in samples at the beginning of the experiments. (C) Samples are

colored by country. (D) Samples are colored by theoretical carbon consumption and represented

by a cross if the theoretical carbon consumption was negative.
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Figure S9. In vivo hydrogen production of participants whose stools were classified as low-

and high-hydrogen producers in vitro, respectively. The “Low” hydrogen producers in vitro

represent the Inactive, Weak and Tolerant groups, combined, and the “High” group are the Gassy

samples.

Figure S10. In vivo symptoms by in vitro classification. Study respondents’ self-reported

symptom discomfort at the end of the 3 h lactose tolerance phenotyping; “0”, “1”, “2”, and “3”

corresponded to no, mild, moderate, and severe gastrointestinal distress. They are grouped by

their in vitro stool classifications.
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Supplemental Tables

Table S1. Participant metadata, lactose-genotyping and -phenotyping overview.

Country

AllGabon Vietnam Germany

N 152 190 141 483

% Female 100 100 100 100

% Born In-Country 100 100 100 100

Age Mean ± SE 26.4 ± 0.51 27.5 ± 0.38 29.4 ± 0.44 27.7 ± 0.26

BMI Mean ± SE 24.8 ± 0.509 21.6 ± 0.200 23.8 ± 0.350 23.1 ± 0.198

Metagenome reads Mean

± SE

3,618,585 ±

60,421

3,811,863 ±

61,970

3,666,806 ±

78,023

3,708,692 ±

38,516

LNP (% of country total) 100.0 99.5 23.4 77.4

Mean H2 rise ± SE 71.9 ± 3.88 65.3 ± 3.23 54.5 ± 6.30 67.0 ± 2.35

% LT by HBT 20.4 22.2 18.2 21.1

% LT by HBT only 18.4 21.7 18.2 20.1

% LT by HBT & BGT 2.0 0.5 0.0 1.1

Mean BGT rise ± SE 6.95 ± 0.629 1.05 ± 0.456 10.3 ± 1.20 4.28 ± 0.399

% LT by BGT 5.9 0.5 12.1 3.7

% LT by BGT only 3.9 0.0 12.1 2.7

Mean CH4 rise ± SE 11.0 ± 1.31 3.67 ± 0.363 2.58 ± 0.756 6.56 ± 0.597

LP (% of country total) 0.0 0.5 76.6 22.6

Mean H2 rise ± SE - 93.0 ± N/A 1.86 ± 0.452 2.70 ± 0.950

% LT by HBT - 0.0 99.1 0.9

% LT by HBT only - 0.0 19.4 19.3
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% LT by HBT & BGT - 0.0 79.6 78.9

Mean BGT rise ± SE - 4.0 ± N/A 29.0 ± 1.11 28.7 ± 1.12

% LT by BGT - 0.0 79.6 78.9

% LT by BGT only - 0.0 0.0 0.0

Mean CH4 rise ± SE N/A 3.00 ± N/A 1.17 ± 0.275 1.18 ± 0.273

Abbreviations

BMI body mass index

LNP lactase non-persistant

LP lactase persistant

LT lactose tolerant

HBT hydrogen breath test (lactose tolerant: rise < 30 ppm)

BGT blood glucose test (lactose tolerant: rise > 20 mg / dL)

Table S2. Metadata p values in in vivo hydrogen modeling for both LNPs and LPs.

Model Feature (a) Coefficient P-value

Adjusted

p-value (b) Significant

Binomial: Y

= log( p(H2

rise > 1 ppm)

/ p(H2 rise

<= 1 ppm) )

Glucoserise 0.19

7.41E-0

3 1.67E-02 TRUE

Age 0.15

6.95E-0

3 1.67E-02 TRUE

Country: Gemany vs Gabon &

Vietnam -2.12

8.05E-0

9 1.45E-07 TRUE

Country: Gabon vs Vietnam -0.08 8.71E-0 1.00E+00 FALSE
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1

CH4rise 0.13

2.89E-0

2 5.20E-02 FALSE

Glucoserise:Age -0.01

1.13E-0

3 4.06E-03 TRUE

Gamma: Y =

log(H2 rise)

for

individuals

with H2 rise

> 1 ppm

Glucoserise -0.02

1.96E-0

6 1.76E-05 TRUE

Age 0.02

5.16E-0

3 1.55E-02 TRUE

BMI -0.03

7.07E-0

4 3.18E-03 TRUE

Country: Gemany vs Gabon &

Vietnam -0.33

2.12E-0

4 1.27E-03 TRUE

Country: Gabon vs Vietnam -0.19

9.68E-0

3 1.94E-02 TRUE

CH4rise 0.01

6.45E-0

2 1.05E-01 FALSE

(a)

The full model comprised the following features: glucose rise, age, BMI, glucose

rise * age, glucose rise*BMI, country, CH4 rise, lactose score. Features were

removed sequentially untill all were significant.

(b)
p-values were corrected using the Benjamini-Hochberg method with n = 18 (i.e.,

taking into account that all tested features and interactions).

Table S3. Metadata p values in in vivo hydrogen modeling for LNPs only.

Feature Coefficient p-value

Adjusted

p-value Significant
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Age 0.02 0.0063 0.0377 TRUE

BMI -0.03 0.001 0.0121 TRUE

Betagal 0.04 0.0287 0.0688 FALSE

Country: Germany vs

others -0.22 0.0114 0.0455 TRUE

Country: Gabon vs

Vietnam -0.15 0.0282 0.0688 FALSE

Table S4. Sample groupings by their carbon consumption and hydrogen production in

vitro.

Group

Percent carbon

consumed (%, mean ±

sd)

H2 produced

(mg, mean ± sd)

Country

Gabo

n

Vietna

m

German

y Total

Inactive 5.20 ± 12.81 0.01 ± 0.01 20 23 2 45

Weak 37.53 ± 11.81 0.07 ± 0.04 16 22 2 40

Gasssy 71.49 ± 14.25 0.23 ± 0.08 15 8 8 34

Tolerant 80.57 ± 11.47 0.06 ± 0.03 12 16 6 31

Table S5. Predicting metabolic group with random forest with genera and pathway relative

abundances as features.

Balanced accuracy

In vitro

experiment

Overall

accuracy

Inactive

s LCLH HCLH HCHH

# features

selected

# selected features that

were pathways

Beginning

0.4961±0

.0914

0.6709±

0.0896

0.5734±

0.0785

0.7018±

0.1200

0.6294±

0.1296 146 1

71



End

0.5172±0

.0818

0.7438±

0.0920

0.5322±

0.1122

0.8027±

0.0953

0.6659±

0.09707 114 29

Table S6. Carbohydrate phenotype descriptions and metadata.

Phen
otyp
e

Descriptio
n

Type_gro
up

Detailed
_group Origin Comment

Glc
D-glucose
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides universal

D-Glucose (Glc) is an aldohexose. Glc is a
building block of many dietary di-, oligo-, and
polysaccharides, including sucrose, lactose,
raffinose, starch, glycogen, and cellulose. Glc
is absorbed and metabolized by the host.
Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Glc utilizers

Gal

D-galactos
e
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides universal

D-Galactose (Gal) is an aldohexose. Gal is a
building block of many dietary oligo- and
polysaccharides of plant origin (e.g., raffinose,
galactan, galactomannan), lactose, human milk
oligosaccharides, glycosaminoglycans, N- and
O-linked glycans of plant/animal origin
(including the human host). Gal is absorbed
and metabolized by the host and fermented by
gut microbiota. Strains harboring a complete
set of genes encoding transporters and
catabolic pathways are deemed Gal utilizers

Rbs
D-ribose
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides universal

D-Ribose (Rbs) is an aldopentose. Rbs is a
building block of ribonucleotides, universally
essential metabolites such as ATP, NAD, etc.
Rbs and Rbs-5P are typically produced from
glucose by the pentose phosphate pathway in
most cell types (including the host); however,
Rbs is rarely present in nature in free form.
Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Rbs utilizers
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Fuc
L-fucose
utilization

monosacc
harides_an
d_derivati
ves

deoxymo
nosaccha
rides universal

L-Fucose (Fuc) is a deoxyhexose. Fuc is a
building block of human milk
oligosaccharides, N- and O-linked glycans of
plant/animal origin (including the human
host). Fuc is also found in side chains of some
plant polysaccharides, for example,
xyloglucans. Fuc can be salvaged by the host
and used for protein fucosylation. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Fuc utilizers

FL

2'FL and
3FL
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

2'- and 3-fucosyllactoses (FLs) are
trisaccharides with structures
Fuc(a1-2)Gal(b1-4)Glc and
Fuc(a1-3)[Gal(b1-4)]Glc, respectively. 2'FL is
the most abundant oligosaccharide in the milk
of mothers with secretor status, whereas 3FL
is abundant in the milk of non-secretors. FLs
are not metabolized by the host. Strains
harboring (i) a complete set of genes encoding
transporters and catabolic pathways OR (ii)
extracellular α-fucosidases are deemed FL
utilizers

LNF
PI

LDFT and
LNFP I
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

2'- and 3-fucosyllactoses (FLs) are
trisaccharides with structures
Fuc(a1-2)Gal(b1-4)Glc and
Fuc(a1-3)[Gal(b1-4)]Glc, respectively. 2'FL is
the most abundant oligosaccharide in the milk
of mothers with secretor status, whereas 3FL
is abundant in the milk of non-secretors. The
host does not metabolize FLs. Strains
harboring (i) a complete set of genes encoding
transporters and catabolic pathways OR (ii)
extracellular α-fucosidases (GH29 and GH95)
are deemed FL utilizers

GlcN
Ac

N-acetylgl
ucosamine
utilization

monosacc
harides_an
d_derivati
ves

aminosug
ars universal

N-acetylglucosamine (GlcNAc) is an
aminohexose. GlcNAc is a building block of
various polysaccharides (murein, chitin),
human milk oligosaccharides,

73



glycosaminoglycans, N- and O-linked glycans
of plant/animal origin (including the human
host). Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed GlcNAc utilizers

LNB

Lacto-N-b
iose
utilization

di_and_oli
gosacchari
des

disacchar
ides animal

Lacto-N-biose (LNB) is a disaccharide with
the structure Gal(b1-3)GlcNAc. LNB is a
structural component of type I chain human
milk oligosaccharides and glycolipids; it is
released by extracellular lacto-N-biosidases
(GH20 and 136). The host does not metabolize
LNB. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed LNB utilizers

LNT
LNT
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

Lacto-N-tetraose (LNT) is a tetrasaccharide
with the structure
Gal(b1-3)GlcNAc(b1-3)Gal(b1-4)Glc. LNT is
a major type I chain oligosaccharide found in
human milk. The host does not metabolize
LNT. Strains harboring (i) a complete set of
genes encoding transporters and catabolic
pathways OR (ii) extracellular
lacto-N-biosidases (GH20, GH136) are
deemed LNT utilizers

LNn
T

LNnT
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

Lacto-N-tetraose (LNnT) is a tetrasaccharide
with the structure
Gal(b1-4)GlcNAc(b1-3)Gal(b1-4)Glc. LNnT
is a major type II chain oligosaccharide found
in human milk. The host does not metabolize
LNnT. Strains harboring (i) a complete set of
genes encoding transporters and catabolic
pathways OR (ii) extracellular
β-galactosidases (GH2) and
β-N-acetylglucosaminidases (GH20) are
deemed LNnT utilizers

74



HM
O

HMO
utilization
via H1
cluster
ABC
transporter
s

di_and_oli
gosacchari
des

oligosacc
harides animal

Human milk oligosaccharides (HMOs) are
oligosaccharides with DP 3-20 found in
human milk. The host does not metabolize
HMOs. Strains harboring a specific gene
cluster (H1) encoding multiple predicted
HMO transporters and glycoside hydrolases
are deemed intracellular utilizers of multiple
HMO species (instead of individual
oligosaccharides)

Ngly
c

N-glycan
utilization

di_and_oli
gosacchari
des

oligosacc
harides universal

N-glycans (Nglyc) are oligosaccharides
covalently attached to protein at asparagine
(Asn) residues by an N-glycosidic bond.
N-glycans decorate many prokaryotic and
eukaryotic (plant, fungal, animal) proteins; all
eukaryotic N-glycans begin with
GlcNAcb1–Asn. Strains harboring a complete
set of genes encoding transporters and
catabolic pathways are deemed Nglyc utilizers

Ngly
c_co
re

N-glycan
core
utilization

di_and_oli
gosacchari
des

disacchar
ides universal

N-glycan core (Nglyc_core) is a glycopeptide
with the structure
Fuc(a1-6)GlcNAcb1-Asn-peptide. Nglyc_core
is released during the cleavage of the
N,N′-diacetylchitobiose core of N-glycans
(predominantly complex and hybrid) by
bacterial endo-β-N-acetylglucosaminidases
(e.g., GH18). Strains harboring a complete set
of genes encoding transporters and catabolic
pathways are deemed Nglyc_core utilizers

GNB

Galacto-N
-biose
utilization

di_and_oli
gosacchari
des

disacchar
ides animal

Galacto-N-biose (GNB) is a disaccharide with
the structure Gal(b1-3)GalNAc. GNB is a
structural component of Core I/II mucin
O-glycans; it can be released by
endo-α-N-acetylgalactosaminidases (GH101).
The host does not metabolize GNB. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed GNB utilizers
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Muc

Mucin
O-glycan
degradatio
n

di_and_oli
gosacchari
des

oligosacc
harides animal

Mucin O-glycans (Muc) are oligosaccharides
attached through GalNAc to protein at serine
(Ser) or threonine (Thr) residues by an
O-glycosidic bond. Muc are the primary
constituents of mucins, glycoproteins that are
expressed on various mucosal sites of the
body, especially the intestinal tract. Strains
harboring a complete set of genes encoding
extracellular glycoside hydrolases that
step-by-step degrade O-glycan chains are
deemed Muc degraders

GlcN
Ac6
S

N-acetylgl
ucosamine
-6-sulfate
utilization

monosacc
harides_an
d_derivati
ves

aminosug
ars animal

N-acetylglucosamine-6-sulfate utilization
(GlcNAc6S) is a sulfated derivative of
GlcNAc. GlcNAc6S can be found in terminal
or branched positions of mucin O-glycans; it is
released by GH20 sulfoglycosidases secreted,
for example, by Bifidobacterium bifidum.
Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed GlcNAc6S utilizers

NAN
A

N-acetylne
uraminic
acid
utilization

monosacc
harides_an
d_derivati
ves

sialic_aci
ds animal

N-acetylneuraminic acid (NANA) is the
predominant sialic acid (9-carbon backbone
2-keto acid sugar) in mammalian cells
(including the host). NANA is a building
block of human milk oligosaccharides,
complex N-glycans, O-glycans, and
lipid-associated glycoconjugates
(gangliosides). NANA can be recycled or
degraded by the host. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed NANA
utilizers

SL

Sialyllacto
se
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

3'- and 6'-sialyllactose (SLs) are trisaccharides
with structures NeuNAc(a2-3)Gal(b1-4)Glc
and NeuNAc(a2-6)Gal(b1-4)Glc, respectively.
SLs are among the most abundant sialylated
human milk oligosaccharides and are also
found in the milk of other mammals. The host
does not metabolize SLs. Strains harboring (i)
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a complete set of genes encoding catabolic
pathways OR (ii) extracellular α-sialidases are
deemed SL utilizers

Mal
Maltose
utilization

di_and_oli
gosacchari
des

disacchar
ides universal

Maltose (Mal) is a disaccharide with the
structure Glc(a1-4)a-Glc. Mal is produced
from starch and glycogen by extracellular
α-amylases (including those secreted by the
host). Maltose can be found in starch-derived
products like maltodextrin and corn syrup. The
host metabolizes Mal. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed Mal
utilizers

MOS

Maltoolig
osaccharid
e
utilization

di_and_oli
gosacchari
des

oligosacc
harides universal

Maltooligosaccharides (MOS) are oligomers
(DP 2-8) composed of 1,4-linked α-D-Glcp
residues. Example: maltotriose with the
structure Glc(a1-4)Glc(a1-4)a-Glc. MOS are
produced from starch, pullulan, and glycogen
by extracellular α-amylases and pullulanases
(including those secreted by the host). The
host metabolizes MOS. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed MOS
utilizers

ST

Starch
degradatio
n

polysacch
arides

homopol
ysacchari
des plant

Starch (ST) is a polysaccharide most green
plants produce for energy storage. ST consists
of α-D-Glcp residues that form 1,4-linked
linear (amylose) and 1,6-branched chains
(amylopectin). The host can metabolize ST.
Strains harboring genes encoding extracelluar
α-amylases (GH13_28 or GH13_32) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
maltose and maltooligosaccharides are
deemed ST degraders

RST

Resistant
starch
degradatio
n

polysacch
arides

homopol
ysacchari
des plant

Resistant starch (RST) is starch that reaches
the large intestine without being fully digested
due to native supramolecular structure and
morphology OR chemical modifications. The
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host does not metabolize RST. Strains
harboring genes encoding extracellular
RST-binding α-amylases (GH13_28) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
maltose and maltooligosaccharides are
deemed RST degraders

IMO

Panose
and
isomaltool
igosacchar
ide
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Panose and isomaltooligosaccharides (IMOs)
are oligosaccharides with structures
Glc(a1-6)Glc(a1-4)Glc,
Glc(a1-6)Glc(isomaltose),
Glc(a1-6)Glc(a1-6)Glc (isomaltotriose),
respectively. IMOs are found naturally in
some foods and manufactured commercially
from starch, which is enzymatically converted
into a mixture of isomaltooligosaccharides.
The host does not metabolize IMOs. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed IMO utilizers

Mlz
Melezitose
utilization

di_and_oli
gosacchari
des

oligosacc
harides animal

Melezitoze (Mlz) is a trisaccharide with the
structure Glc(a1-3)Fruf(b2-1a)Glc. Mlz is the
primary trisaccharide in honeydew, especially
in the more common honeydew of aphids that
live on spruces, constituting up to 70% of the
sugar fraction. The host does not metabolize
Mlz. Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Mlz utilizers

Cld

Cellobiose
and
cellodextri
n
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Cellobiose and cellodextrin (Cld) are
oligomers (DP 2-8) composed of 1,4-linked
β-D-Glcp residues. Cld are produced from
cellulose by extracellular
endo-β-1,4-glucanases/cellulases from various
GH families. The host does not metabolize
Cld. Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Cld utilizers
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Bgl

Beta-gluco
se
oligosacch
aride
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Beta-glucose oligosaccharides (Bgl) are
oligomers (DP 2-8) composed of
1,2/3/6-linked β-D-Glcp residues. Bgl are
produced from various beta-glucans of plant,
microbial, and fungal origin by extracellular
endo-β-1,4-glucanases from various GH
families. The host does not metabolize Bgl.
Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Bgl utilizers

BGL
12

1,2-beta-ol
igoglucan
utilization

polysacch
arides

homopol
ysacchari
des plant

1,2-β-oligoglucan (BGL12) is an oligomer
(DP 17–24) composed of 1,2-linked β-D-Glcp
residues. BGL12 in cyclic form is secreted by
some bacteria, e.g., Rhizobium phaseoli and
Brucella. The host does not metabolize
BGL12. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed BGL12 utilizers

mBG
L

Mixed
beta-gluco
se-containi
ng glucan
utilization

polysacch
arides

heteropol
ysacchari
des plant

Mixed β-glucose-containing glucan (mBGL)
is a polysaccharide composed of b-D-Glcp and
potentially b-D-Galp residues. The existence
of this glycan (potentially of plant or bacterial
origin) is predicted based on the presence of a
gene cluster (termed bgl cluster in Barratt et
al., 2022) that would encode the catabolic
machinery, namely multiple glycoside
hydrolases: endo-β-glucanase (GH30_3),
β-glucosidase (GH3), and a GH2-family
enzyme. Strains harboring the bgl gene cluster
are deemed mBGL utilizers

Mel
Melibiose
utilization

di_and_oli
gosacchari
des

disacchar
ides plant

Melibiose (Mel) is a disaccharide with the
structure Gal(a1-6)Glc. Mel is abundant in
soybeans and other legumes and seeds. The
host does not metabolize Mel. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Mel utilizers
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RFO

Raffinose
family
oligosacch
aride
utilization

di_and_oli
gosacchari
des

oligosacc
harides plant

Raffinose family oligosaccharide (RFOs) is a
group of oligomers including raffinose,
stachyose, and verbascose with structures
Gal(a1-6)Glc(a1-2b)Fruf,
Gal(a1-6)Gal(a1-6)Glc(a1-2b)Fruf, and
Gal(a1-6)Gal(a1-6)Gal(a1-6)Glc(a1-2b)Fruf,
respectively. RFOs are abundant in soybeans
and other legumes and seeds. The host does
not metabolize RFOs. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed RFO
utilizers

Lac
Lactose
utilization

di_and_oli
gosacchari
des

disacchar
ides animal

Lactose (Lac) is a disaccharide with the
structure Gal(b1-4)Glc. Lac is the most
abundant carbohydrate in the milk of humans
and other mammals. The host utilizes Lac.
Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Lac utilizers

GOS

Galactooli
gosacchari
de
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des universal

Galactooligosaccharides (GOS) are oligomers
(DP 2-8) composed of 1,3/4/6-linked
β-D-Galp. GOS are produced from type I
galactans by extracellular endo-β-galactanases
(GH53) and from type II arabinogalactans by
extracellular exo-β-1,3-galactanases
(GH43_24) and exo-β-galactobiohydrolases
(GH30_5). GOS are also found in small
quantities in mammalian milk and can be
synthesized enzymatically (this subtype of
GOS usually harbors a D-Glcp residue at the
reducing end). The host does not metabolize
GOS. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed GOS utilizers

AGI

Type I
galactan
and
arabinogal
actan

polysacch
arides

homopol
ysacchari
des;heter
opolysac
charides plant

Type I galactans and arabinogalactans (AGI)
are members of a group of plant
polysaccharides called hemicelluloses. For
example, potato galactan has a linear
backbone of 1,4-linked β-D-Galp residues,
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degradatio
n

some of which are substituted at C(O)3 with
α-L-Araf residues. The host does not
metabolize AGI. Strains harboring genes
encoding extracellular
endo-β-1,3/4-galactanases (GH53) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
galactooligosaccharides are deemed AGI
degraders

AGII

Type II
arabinogal
actan
degradatio
n

polysacch
arides

heteropol
ysacchari
des plant

Type II arabinogalactans (AGII) are plant
polysaccharides modifying arabinogalactan
proteins widely distributed in plant species.
For example, larch AGII has a branched
structure comprising a 1,3-linked β-D-Galp
chains backbone and 1,6-linked β-D-Galp side
chains. Side chains in larch AGII are modified
by α-L-Araf and α-L-Arap residues. The host
does not metabolize AGII. Strains harboring
genes encoding specific extracellular
glycoside hydrolases (including
exo-β-1,3-galactanases (GH43_24) and
exo-β-galactobiohydrolases (GH30_5)) AND
a complete set of genes encoding transporters
and catabolic pathways for the released
galactooligosaccharides are deemed AGII
degraders

GalA
f

Galactosyl
arabinose
utilization

di_and_oli
gosacchari
des

disacchar
ides plant

Galactosylarabinose (GalAf) is a disaccharide
with the structure Gal(a1-3)Araf. GalAf is a
structural component of gum arabic
arabinogalactan protein, from which it can be
released by
3-O-alpha-D-galactosyl-alpha-L-arabinofuran
osidases (GH39). The host does not
metabolize GalAf. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed GalAf
utilizers

GA
Gum
arabic

polysacch
arides

heteropol
ysacchari plant

Gum arabic (GA) is a subtype of
polysaccharides modifying arabinogalactan
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degradatio
n

des proteins characterized by heavy modification
of side chains by α-L-Araf, α-L-Arap,
α-L-Rhap, α-L-Fucp, GlcA, and
4-O-methyl-GlcA residues. The host does not
metabolize GA. Strains harboring genes
encoding a specific set of extracellular
glycoside hydrolases (including key
α-1,3/4-L-arabinofuranosidase
(GH43_22_34)) that remove side-chain
decorations AND a complete set of genes
encoding transporters and catabolic pathways
for the released galactooligosaccharides are
deemed GA degraders

Fru
D-fructose
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides plant

D-Fructose (Fru) is a ketohexose. Scr is a
building block of many plant di-, oligo-, and
polysaccharides, including sucrose, raffinose,
fructooligosaccharides, inulin, and levan. Scr
enriched in fruits, vegetables, honey, and
common sweeteners. The host inefficiently
absorbs and metabolizes Fru. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Fru utilizers

Scr
Sucrose
utilization

di_and_oli
gosacchari
des

disacchar
ides plant

Sucrose (Scr) is a disaccharide with the
structure Fruf(b2-1a)Glc. Scr is abundant in
fruits, vegetables, and nuts. The host
metabolizes Scr. Strains harboring a complete
set of genes encoding transporters and
catabolic pathways are deemed Scr utilizers

scFO
S

Short-chai
n
fructoolig
osaccharid
e
utilization

di_and_oli
gosacchari
des

oligosacc
harides plant

Short-chain fructooligosaccharides (scFOS)
are a group of oligosaccharides with low DP
(3-5), including 1-kestose and nystose with
structures Fruf(b2-1)Fruf(b2-1a)Glc and
Fruf(b2-1)Fruf(b2-1)Fruf(b2-1a)Glc,
respectively. scFOS are produced from inulin
by enzymatic hydrolysis or from sucrose by
enzymatic synthesis (transglycosylation). The
host does not metabolize scFOS. Strains
harboring a complete set of genes encoding
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transporters and catabolic pathways are
deemed scFOS utilizers

lcFO
S

Long-chai
n
fructoolig
osaccharid
e
utilization

di_and_oli
gosacchari
des

oligosacc
harides plant

Long-chain fructooligosaccharides (lcFOS)
are oligomers (DP 6-20) composed of 2,1- or
2,6-linked β-D-Fruf residues. 2,1-linked
lcFOS constitute a low-DP fraction of inulin
from chicory root (although most inulin chains
have larger DP). In addition, lcFOS can be
produced from inulin (2,1-) and levan (2,6-)
by extracellular inulinases and levanases
(GH32 and GH68). The host does not
metabolize lcFOS. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed lcFOS
utilizers

DFA

Difructose
dianhydrid
e
utilization
(productio
n)

di_and_oli
gosacchari
des

disacchar
ides plant

Difructose anhydrides (DFAs) are cyclic
disaccharides produced by the condensation of
two D-Fruf molecules. Example: DFA I with
the structure α-D-Fruf-1,2′:2,1′-β-D-Fruf.
DFAs can be generated by thermal, acidic, or
enzymatic treatment of inulin-, sucrose-, or
fructose-rich substrates. The host does not
metabolize DFAs. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed DFA
utilizers

bMn
OS

Beta-mann
ose
oligosacch
aride
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Beta-mannose oligosaccharides (bMnOS) are
oligomers (DP 2-8) composed of 1,4-linked
β-Manp residues. Example: mannotriose
Man(b1-4)-Man(b1-4)b-Man. bMnOS are
produced from β-mannan and glucomannan by
extracellular endo-β-1,4-mannanases (GH5
and GH26). The host does not metabolize
bMnOS. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed bMnOS utilizers

Gm
OS

Glucoman
nan
oligosacch

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari plant

Glucomannan oligosaccharides (GmOS) are
oligomers (DP 2-8) are composed of
1,4-linked β-Manp and β-Glcp residues.
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aride
utilization

des Example: mannosyl-glucose with the structure
Man(b1-4)b-Glc. GmOS are produced from
glucomannan by extracellular
endo-β-1,4-mannanases (GH5_8 and GH26).
The host does not metabolize GmOS. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed GmOS utilizers

bMA
N

Beta-mann
an family
polysacch
aride
degradatio
n

polysacch
arides

homopol
ysacchari
des;heter
opolysac
charides plant

Beta-mannan family polysaccharides
(bMANs) are members of a group of plant
polysaccharides called hemicelluloses.
bMANs have a linear backbone of 1,4-linked
β-D-Manp residues that can alternate with
β-D-Glcp residues (glucomannan). Some of
the β-D-Manp residues can be substituted at
C(O)6 with side chains starting with α-D-Galp
residues (galactomannan). The host does not
metabolize bMANs. Strains harboring genes
encoding extracellular endo-β-1,4-mannanases
(GH5_8 and GH26) AND a complete set of
genes encoding transporters and catabolic
pathways for the released beta-mannose
oligosaccharides are deemed (bMAN)
degraders

Xyl
D-xylose
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides universal

D-xylose (Xyl) is an aldopentose. Xyl is a
building block of various plant
polysaccharides (arabinoxylan, xylan,
xyloglucan, etc.). Xyl can be absorbed by the
host and incorporated into proteoglycans,
where it functions as a linker between the core
protein and glycosaminoglycan chains. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Xyl utilizers

XOS

Xylooligo
saccharide
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Xylooligosaccharides (XOS) are oligomers
(DP 2-8) composed of 1,4-linked β-D-Xylp
residues. Example: xylotriose with the
structure Xyl(b1-4)Xyl(b1-4)Xyl. XOS are
produced from xylans and arabinoxylans by
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extracellular glycoside hydrolases (e.g.,
GH10-family endo-β-1,4-xylanases). The host
does not metabolize XOS. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed XOS
utilizers

AXO
S

Arabinoxy
looligosac
charide
utilization

di_and_oli
gosacchari
des

oligosacc
harides plant

Arabinoxylooligosaccharides (AXOS) are
oligomers (DP 2-8) composed of 1,4-linked
β-D-Xylp residues, some of which are mono-
or disubstituted at C(O)2 or C(O)3 with
α-L-Araf residues. Example: A3XXX with the
structure Araf(a1-3)Xyl(b1-4)Xyl(b1-4)b-Xyl.
AXOS are produced from arabinoxylans by
extracellular glycoside hydrolases (e.g.,
GH10-family endo-β-1,4-xylanases). The host
does not metabolize AXOS. Strains harboring
(i) a complete set of genes encoding
transporters and catabolic pathways OR (ii)
genes encoding specific extracellular
α-L-arabinofuranosidases (GH43) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
α-L-Araf residues are deemed AXs degraders

XL

Xylan
degradatio
n

polysacch
arides

homopol
ysacchari
des plant

Xylans (XLs) are members of a group of plant
polysaccharides called hemicelluloses. XLs
have a linear backbone of 1,4-linked β-D-Xylp
residues. The host does not metabolize XLs.
Strains harboring genes encoding
endo-β-1,4-xylanases (GH10) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
xylooligosaccharides are deemed XL
degraders

AX

Arabinoxy
lan
degradatio
n

polysacch
arides

heteropol
ysacchari
des plant

Arabinoxylans (AXs) are members of a group
of plant polysaccharides called hemicelluloses.
AXs have a linear backbone of 1,4-linked
β-D-Xylp residues, some of which are
mono-/disubstituted at C(O)2 or C(O)3 with
α-L-Araf residues. AXs are not metabolized
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by the host. Strains harboring genes encoding
(i) endo-β-1,4-xylanases (GH10) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
arabinoxylooligosaccharides, OR (ii) genes
encoding specific extracellular
α-L-arabinofuranosidases (GH43) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
α-L-Araf residues are deemed AXs degraders

Ara

L-arabinos
e
utilization

monosacc
harides_an
d_derivati
ves

monosac
charides plant

L-arabinose (Ara) is an aldopentose. Ara is a
building block of various plant
polysaccharides (arabinoxylan,
arabinogalactan, and arabinan, etc.) and
glycoproteins. The host does not metabolize
Ara. Strains harboring a complete set of genes
encoding transporters and catabolic pathways
are deemed Ara utilizers

aAO
S

Alpha-ara
binooligos
accharide
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Alpha-arabinooligosaccharides (aAOS) are
oligomers (DP 2-8) composed of 1,5-linked
α-L-Araf residues, some of which can be
substituted at C(O)2 or C(O)3 with α-L-Araf
residues. Example: arabinotriose with the
structure Araf(a1-5)Araf(a1-5)Araf. aAOS are
produced from arabinans by extracellular
glycoside hydrolases (e.g.,
endo-α-1,5-L-arabinanases). The host does not
metabolize aAOS. Strains harboring (i) a
complete set of genes encoding transporters
and catabolic pathways (ii) OR genes
encoding specific extracellular
α-L-arabinofuranosidases (GH43_22) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
α-L-Araf residues are deemed aAOS utilizers

bAO
S

Beta-arabi
nooligosac
charide
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Beta-arabinooligosaccharides (bAOS) are
oligomers (DP 2-3) composed of 1,2-linked
β-L-Araf residues. Example: β-arabinobiose
with the structure Araf(b1-2)Araf. bAOS are
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produced from plant hydroxyproline‐rich
glycoproteins by extracellular
β-L-arabinobiosidases (GH121). The host does
not metabolize bAOS. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed bAOS
utilizers

AR

Arabinan
degradatio
n

polysacch
arides

homopol
ysacchari
des plant

Arabinans (AR) are plant polysaccharides
often associated with pectins, where they form
extensive side chains. AR have a linear
backbone of 1,5-linked α-L-Araf residues,
some of which are substituted at C(O)2 or
C(O)3 with α-L-Araf residues. The host does
not metabolize AR. Strains harboring genes
encoding specific extracellular
α-L-arabinofuranosidases (GH43_22) AND a
complete set of genes encoding transporters
and catabolic pathways for the released
α-L-Araf residues are deemed AR degraders

HRG
P

Hydroxypr
oline-rich
glycoprote
in
oligoarabi
nofuranosi
de
degradatio
n

di_and_oli
gosacchari
des

oligosacc
harides plant

Hydroxyproline-rich glycoprotein
oligoarabinofuranosides (HRGP) are
oligosaccharides attached to hydroxyproline
residues (Hyp) in Hyp-rich proteins of plant
origin by an O-glycosidic bond. Example:
Ara3‐Hyp and Ara4‐Hyp with structures
Araf(b1-2)Araf(b1-2)ArafbHyp, and
Araf(a1-3)Araf(b1-2)Araf(b1-2)ArafbHyp,
respectively. The host does not metabolize
HRGP. Strains harboring genes encoding
specific extracellular glycoside hydrolases
(e.g., β-L-arabinobiosidases) AND a complete
set of genes encoding transporters and
catabolic pathways for the released bAOS are
deemed HRGP degraders

XGl
OS

Xylogluca
n
oligosacch
aride
utilization

di_and_oli
gosacchari
des

disacchar
ides;olig
osacchari
des plant

Xyloglucan oligosaccharides (XGlOS) are
oligomers (DP2-8) composed of 1,4-linked
β-D-Glcp residues, some of which are
substituted at C(O)6 with side chains starting
with α-D-Xylp residues. XGlOS are produced
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from xyloglucans by extracellular glycoside
hydrolases (e.g., GH5-family
endo-β-1,4-glucanases). The host does not
metabolize XGlOS. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed XGlOS
utilizers

XGL

Xylogluca
n
degradatio
n

polysacch
arides

heteropol
ysacchari
des plant

Xyloglucans (XGLs) are members of a group
of plant polysaccharides called hemicelluloses.
XGLs have a linear backbone of 1,4-linked
β-D-Glcp residues, some of which are
substituted at C(O)6 with side chains starting
with α-D-Xylp residues. The host does not
metabolize XGL. Strains harboring genes
encoding endo-β-1,4-glucanases (GH5) AND
a complete set of genes encoding transporters
and catabolic pathways for the released
xyloglucan oligosaccharides are deemed XGL
degraders

GlcA

D-glucuro
nate
utilization

monosacc
harides_an
d_derivati
ves

uronic_a
cids universal

Glucuronate (GlcA) is a hexuronic acid. GlcA
is a building block of glycosaminoglycans
(e.g., chondroitin and dermatan sulfates),
microbial (gellan and xanthan gums) and plant
(gum arabic, rhamnogalacturonan I/II)
polysaccharides. The host does not metabolize
GlcA. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed GlcA utilizers

Glu
A

Glucuroni
de
utilization

di_and_oli
gosacchari
des

oligosacc
harides plant

Glucuronides (GluA) are oligosaccharides
containing glucuronic acid released during the
degradation of gum arabic and
rhamnogalacturonan I. The host does not
metabolize GluA. Strains harboring a
complete set of genes encoding transporters
and catabolic pathways are deemed GluA
utilizers

Gco

D-glucona
te
utilization

monosacc
harides_an
d_derivati

sugar_aci
ds universal

D-Gluconate (Gco) is a hexonate sugar acid.
Gco can be found in fruits, rice, meat, dairy
products, wine, honey, and vinegar. Gco is
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ves also used in various foods as coagulants for
tofu, agents to adjust the pH of ham, sausage,
and noodles, and as acidifiers and calcium
fortifiers for beverages. The host does not
metabolize Gco. Strains harboring a complete
set of genes encoding transporters and
catabolic pathways are deemed Gco utilizers

Glt

D-galacto
nate
utilization

monosacc
harides_an
d_derivati
ves

sugar_aci
ds animal

D-Galactonate (Glt) is a hexonate sugar acid.
Glt is an intermediate in D-galactose
metabolism in certain bacteria, such as
Stenotrophomonas maltophilia. Humans also
produce small amounts of D-galactonate, and
its levels increase in galactosemic patients.
Various reports have demonstrated the
presence of D-galactonate in mammalian
tissues and body secretions. The host does not
metabolize Glt. Strains harboring a complete
set of genes encoding transporters and
catabolic pathways are deemed Glt utilizers

Ino
Inositol
utilization

monosacc
harides_an
d_derivati
ves

sugar_alc
ohols universal

Inositol (Ino) or myo-inositol, is a carbocyclic
sugar alcohol. Ino is synthesized by the host
from glucose. Ino is abundant in the brain and
other mammalian tissues mediating cell
signaling and osmoregulation. Ino is also
enriched in various foods such as cantaloupe
and citrus fruits, bran, and seeds in the form of
phytic acid, which is not directly bioavailable
to the host. Strains harboring a complete set of
genes encoding transporters and catabolic
pathways are deemed Ino utilizers

Mtl

D-mannito
l
utilization

monosacc
harides_an
d_derivati
ves

sugar_alc
ohols plant

Mannitol (Mtl) is a hexose sugar alcohol. Mtl
is the most abundant polyol in nature,
produced by bacteria, yeasts, fungi, algae,
lichens, and many plants. Mtl is used as a
sweetener in candies and chewing gum. The
host does not metabolize Mtl. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Mtl utilizers
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Stl
D-sorbitol
utilization

monosacc
harides_an
d_derivati
ves

sugar_alc
ohols plant

Sorbitol (Stl) or glucitol is a hexose sugar
alcohol. Stl is used as a sweetener ingredient
in manufactured products (including diet
drinks and ice cream), mints, cough syrups,
and sugar-free chewing gum. Stl is present in
fruits, particularly in their dried forms, such as
prunes and dried pears. Stl is inefficiently
(slowly) metabolized by the host. Strains
harboring a complete set of genes encoding
transporters and catabolic pathways are
deemed Stl utilizers
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Abstract

The gut microbiomes of human populations worldwide have many core microbial species in

common. However, within a species, some strains can show remarkable population specificity.

The question is whether such specificity arises from a shared evolutionary history

(codiversification) between humans and their microbes. To test for codiversification of host and

microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in

Europe, Asia, and Africa, including mothers and their children. Between and within countries, a

parallel evolutionary history was evident for humans and their gut microbes. Moreover, species

displaying the strongest codiversification independently evolved traits characteristic of host

dependency, including reduced genomes and oxygen and temperature sensitivity. These findings

all point to the importance of understanding the potential role of population-specific microbial

strains in microbiome-mediated disease phenotypes.
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Main text

Across populations, humans share many of the same bacterial and archaeal species in

their gut microbiomes (1–3). Within these cosmopolitan species, different strains can dominate in

different populations (4–7). Strain variation can arise in several ways, from the uptake of new

strains to their in situ evolution (8). When strains and their hosts evolve in parallel, they

codiversify, and as a result, their phylogenies are congruent. Codiversification provides

opportunities to develop intimate host-microbial relationships across multiple generations (9).

Previous work showed that a small subset of gut bacterial lineages speciated with

hominid ancestors (10), but whether such patterns of codiversification extended within host

species, and specifically within humans, remained to be demonstrated. There are reasons not to

expect to see codiversification with humans: Our diets have changed with time, our populations

have expanded across the world, and modern lifestyles may have blurred any signals (11). The

identification of species that codiversified with humans has important implications for

understanding how humans evolved with their microbiomes and how strains within species may

interact with specific host populations (12).

Several human gut microbes are thought to have followed patterns of human migration

out of Africa. A notable example is the stomach-dwelling bacterium Helicobacter pylori, the

causative agent of gastritis and stomach cancer. Cultured isolates of H. pylori show spatial

patterns of strain diversity consistent with human migration patterns (13). A few prevalent gut

microbial species, including Prevotella copri, are also thought to have tracked human migration,

given how patterns of metagenome-derived strain variation mapped onto continents (4–6). Strain

distributions that map onto human migration patterns are suggestive of codiversification, as

geographic origins tend to reflect human genetic origins, especially at the continental level (14,

15). But on finer geographic and population scales, such as within countries, the assumption that

geography can stand in for genotype weakens (15). A host phylogeny is required to directly test

for codiversification by comparison to microbial phylogenies. Such comparative phylogenetic

analyses would also allow microbial taxa to be ranked by the degree of cophylogeny they

display.

Given the paucity in the public domain of matched human genotype and gut metagenome

datasets required for testing for codiversification, especially for undersampled regions (16), we

generated new paired datasets from individuals that we sampled in Gabon, Vietnam, and
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Germany. We also leveraged existing datasets for subjects from Cameroon, the Republic of

Korea (South Korea), and the UK by generating fecal metagenomes and/or host genotype data

(17–20) (Fig. 1A and table S1). In addition, we collected fecal metagenomes from children

whose mothers were study participants in Gabon, Vietnam, and Germany (Fig. 1A and table S2).

Altogether, our combined dataset of 839 adults and 386 children allowed us to assess

codiversification between humans and gut microbial species shared across and within

populations.

Fig. 1. The human phylogeny and selected bacterial phylogenies. (A) Sampling locations and

sizes. (B) A maximum likelihood phylogeny of human subjects based on 20,506

single-nucleotide polymorphisms. Tree branch colors indicate continental origins. Outer strip

colors indicate finer geographic locations, and labels refer to sampling locations. (C to H)

Maximum likelihood phylogenies for six bacterial species based on species-specific marker

genes. PACo effect size (ES) and q values (q) are shown. Bootstrap values >50% are plotted on

branches, and all phylogenies are rooted at the midpoint. Colors of branches and outer strips

correspond to sampling locations shown in (B). The scale bars show substitutions per site for all

phylogenies.
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Using 20,506 single-nucleotide polymorphisms, we created a maximum likelihood

phylogeny to represent the genetic relatedness of the human subjects. As expected, humans

clustered into three robust major groups matching their geographic origins (21), where

individuals from Asia and Europe formed sister clades nested within individuals from Africa

(Fig. 1B). We selected bacterial and archaeal species present in the guts of ≥100 adults with ≥10

individuals per major human group and ≥1 individual per country (see methods in the

supplementary materials and table S3). We then created phylogenies for the resulting 59 species

using two methods: (i) species-specific marker genes with StrainPhlan3 (7) and (ii)

metagenome-assembled genomes (MAGs) using PhyloPhlAn (22). MAG-based trees were

obtained for 33 of 59 taxa in adults.

Among the 59 taxa assessed for codiversification, 36 taxa have phylogenies that are more

similar to the human host phylogeny than to a permuted host phylogeny [q < 0.05, PACo positive

effect size (ES); see methods]. Eubacterium species showed the largest ES (q < 0.003; Fig. 1, C

and D, and table S4). Similar results were obtained using two other methods, Parafit (23) and

Phytools (24) (tables S4 and S5). Seven species that showed significant codiversification across

all three tests included Collinsella aerofaciens (Fig. 1E), Catenibacterium mitsuokai (Fig. 1F),

Eubacterium rectale, and P. copri (table S4). In contrast, Bacteroides, Alistipes, and

Parabacteroides species generally showed the least evidence of cophylogeny (Fig. 1, G and H,

and table S4). Results were robust to sample size (tables S6 and S7 and fig. S1) and to bootstrap

support for 36 to 50% of taxa (tables S4 and S8). Overall, species within the Firmicutes phylum

showed more evidence of cophylogeny (Wilcoxon rank sum test, P = 7.6 × 10−6) than others,

and Bacteroidetes species showed least (Wilcoxon rank sum test, P=1.5×10−6).

We also searched for a codiversification signal within each country. For a subset of taxa,

we observed codiversification in multiple countries independently (table S9). Within-country

tests included fewer individuals, so the codiversification signal tended to be weaker. Overall, 20

of 59 taxa showed positive ES with uncorrected P < 0.05 in at least one country, but only one

taxon remained significant after false discovery rate (FDR) correction: P. copri within Gabon (q

= 0.042; table S9). Notably, three species (P. copri, Coprococcus eutactus, and E. rectale) had

uncorrected P < 0.05 in three countries independently (table S9). These within-country results

indicate that codiversification is robust to hosts living in a shared environment and suggest that

codiversification is not driven by continental-scale processes alone.
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We sampled the gut metagenomes of children (average age = 7.4 months) of the

genotyped participants in Gabon, Vietnam, and Germany. Using the mothers’ genotypes allowed

us an unprecedented opportunity to test for codiversification of the child gut microbiome.

Among the 20 most prevalent child taxa tested (table S10), nine showed evidence of

codiversification (q < 0.05) (table S11). All four Bifidobacterium species tested showed

significant PACo ES (q < 0.05) (Fig. 2, A to D, and table S11). According to MAG-based

phylogenies, Bifidobacterium longum showed the strongest evidence of codiversification in

children (table S12). The signals of codiversification for several taxa also extended within

countries in children in Gabon and Germany, but not in Vietnam (table S11). These results show

that microbes common to the gut in early childhood have also codiversified with humans.

Fig. 2. Bacterial phylogenies derived from children’s microbiomes and strain sharing with

their mothers. (A to D) Four species of Bifidobacterium show evidence of cophylogeny based

on mothers’ genotypes. (E) Phylogeny of P. copri strains in adults and (F) in children. The colors

in (E) correspond to those in Fig. 1B. Bootstrap values ≥50% are shown as black dots on

branches, and the phylogenies are rooted at the midpoint. The scales show substitutions per site.

(G) Prevotella strain sharing between mothers and their own children (“related,” blue boxplots)

compared with sharing between women and unrelated children (“unrelated,” gray boxplots).
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(Left) Strain comparisons using SynTracker (39). (Right) Strain comparisons using inStrain (40).

Dashed red lines indicate the thresholds for strain sharing events [0.96 for synteny; 0.99999 for

popANI (population-level average nucleotide identity)]. *P < 0.05 and **P < 5 × 10−5 using

Wilcoxon-Mann-Whitney test. Codiversification test results for all 20 common child taxa are

reported in table S11.

There is little overlap in species composition between adult and child microbiomes;

nevertheless, of the overlapping 12 species detected, P. copri (Fig. 2, E and F) and Blautia

wexlerae showed evidence of codiversification in both adults (q < 0.01; table S4) and children (q

< 0.01; table S11). In addition, we observed that mothers and their children share the same

strains of P. copri (Fig. 2G and fig. S2). For mother-child pairs, strain sharing is often interpreted

as vertical transmission, but acquisition of strains from a shared environment cannot be excluded

(8). Indeed, our data also support strain sharing between community members: Within sampling

locations in Gabon and Vietnam, we observed instances of the same strains in the microbiomes

of mothers and unrelated children (fig. S2 and tables S13 and S14). Strain sharing is known

among families and socially engaging individuals in the human species (25) and other social

animal species (26, 27). Although vertical transmission from parents to offspring over long time

periods can result in patterns of codiversification, strain transmission between related individuals

in the same communities may also contribute to these patterns (28).

Modern humans emerged in Africa before colonizing the rest of the world (29). Microbial

species that migrated with their human hosts may also show signatures of out-of-Africa patterns,

and, indeed, some bacterial species exhibit such patterns (4–6). To test for an African origin for

the species tested here for cophylogeny, we quantified the number and direction of strain transfer

events by applying stochastic character mapping. Consistent with out-of-Africa migration events,

when the 10 most highly and 10 least highly ranked taxa (by PACo ES) were compared, the top

10 had significantly greater proportions of transfer events from Africa to the rest of the regions

compared with the bottom 10 (Wilcoxon rank sum test, P = 0.029) (fig. S3). Because this

analysis does not require host genotype data, we added data from 1219 public fecal

metagenomes derived from other human populations and from wild primates (tables S15 and

S16). Trends were the same with the expanded dataset (Wilcoxon rank sum test, P = 0.089) (Fig.

3, A to D, and fig. S4). Additionally, the top taxa also showed significantly more transfer events
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from Asia to other regions (Fig. 3, A, E, and F) and fewer transfer events from America to other

regions (Fig. 3A). Our results underscore the fact that each species has its own story. Caveats

include inaccurate assumptions of host genetic origin based on sampling locations, or a complex

history of strain transmission events among different human populations. As expected from

codiversification patterns observed in some bacterial families with hominids (10), for the top

taxa, primate strains tend to be basal in relation to all human strains (Fig. 3, D and F). In contrast,

taxa with least evidence of cophylogeny had primate strains nested within human strains (fig.

S5).
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Fig. 3. Strain transfer events and microbial phylogenies including data from public

metagenomes. (A) Results from stochastic character mapping on microbial phylogenies

including six countries from this study and public metagenomes. The boxplots compare the

occurrence of transfer events between sampling regions between the top 10 and bottom 10 taxa

identified by PACo ES. P values are based on the Wilcoxon rank sum test. (B) Sampling

locations and color keys correspond to the panels that follow. The colors of the branches and
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outer color strip indicate the estimated host genetic structure based on sampling locations (21).

Black dots next to the color strip indicate samples from the original six countries. Example

phylogenies: (C) Butyrivibrio crossotus, where African strains are basal; (D) Coprococcus

comes, where primate strains are basal, followed by African strains; (E) Phascolarctobacterium

succinatutens, where Asian strains are basal; (F) Faecalibacterium prausnitzii, where strains

from primates are basal, followed by strains from Asia. (G and H) Examples of microbial

phylogenies with ancient MAGs recovered from paleofeces of Native Americans. Bootstrap

values ≥50% are shown on branches. All trees were rooted at the midpoint. The scale bars show

substitutions per site.

Our inference of strain transfer events is based on present-day strains, yet ancient DNA

analysis can provide a snapshot directly from the past. We added high-quality ancient MAGs

recovered from 1000- to 2000-year-old paleofeces of Native North American tribes (30) to the

phylogenies of five gut microbial species (Fig. 3, G and H, and fig. S6). Consistent with the

known migration history of the Americas (31), the ancient MAGs were most closely related to

strains from modern East Asians, with high bootstrap values for species with significant

codiversification (Methanobrevibacter smithii and Anaerostipes hadrus; Fig. 3, G and H); this

was not the case for taxa that did not show significant codiversification (fig. S6).

We hypothesized that species that codiversified with their hosts are better adapted to the

host environment than those that did not. Therefore, we predicted codiversified species (high

PACo ES) to be enriched in features characteristic of host adaptation, including genome

reduction, enrichment in AT content and essential functions, and depletion of non-essential

functions (32). To test for these traits genomically, we collected publicly available genome

sequences for the 59 species (table S17). As expected, the degree of codiversification was

inversely correlated to genome size (Fig. 4A) and positively correlated with genomic AT content

(fig. S7A). The relationship with genome size, but not with AT content, remained significant

after correcting for phylogenetic relatedness (see methods), indicating that genome size reduction

arose independently in codiversified taxa.
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Fig. 4. Genomic and functional features correlated with codiversification. PACo effect size

correlated with: (A) Median genome size per species. (B) Percentage of total genes in the

genome annotated to COG D for cell cycle and replication. (C) Number of antimicrobial

resistance (AMR) markers annotated per genome. (D) Predicted Gram stain per species. (E)

Predicted catalase activity per species. (F) Predicted alkaline phosphatase activity. (G)

Percentage of antibiotics to which the species was resistant in vitro in a panel of 144 common

antimicrobials. (H) Survival in vitro after 48 hours of O2 exposure for a subset of culturable

102



species. (I) Relative growth of each species in vitro at 27°C compared with 37°C. (A) to (F): n =

59 species; (G) to (I): n = 18 species. Statistical significance was determined by Spearman’s

correlation [(A) to (C), (G), and (I)] or by Wilcoxon rank sum test [(D) to (F) and (H)].

Exploratory analyses were corrected using FDR across all gene categories and predicted traits [q

value; (B) to (F)]. pos, positive for the given trait; neg, negative for the given trait. **P < 0.01,

***P < 0.001, ****P < 0.0001. Exact P values are reported in table S18.

To further explore the genomic signatures of codiversification, we tested for differences

in 67 genomic features, including 23 functional categories [clusters of orthologous groups

(COGs)], in addition to pseudogenes, antibiotic resistance markers, plasmid markers, and 41

traits predicted from genomic content (see methods and table S18). Overall, ES correlated with

24 of 67 genomic features (FDR-adjusted P < 0.05), and five retained significance after

correction for phylogenetic relatedness (table S18). A random forest model including these

genomic characteristics accurately predicted ES (PACo q < 0.01), with a mean area under the

curve of 0.83 ± 0.22 (SD) across a fivefold cross-validation.

PACo ES was significantly correlated with the proportion of the genome dedicated to

essential functions such as replication, transcription, and translation (Fig. 4B, fig. S7B, and table

S18). In contrast, greater ES was associated with fewer pseudogenes (fig. S7C) and antibiotic

resistance markers Fig. 4C, and a smaller proportion of the genome dedicated for nonessential

functions, such as secretion and cell wall biogenesis (fig. S7D and table S18). Gram-positive

species were enriched for higher ES overall (Fig. 4D). A number of predicted traits related to

environmental survival, including oxygen sensitivity (Fig. 4E), inorganic phosphate scavenging

(Fig. 4F), and the use of diverse energy sources (fig. S7, E to I, and table S18), were reduced on

average in species with high ES.

To directly test the functions predicted from genome-based observations, we assessed in

vitro phenotypes of a representative set of 18 culturable species (see methods and table S19).

Consistent with the reduction in antibiotic resistance markers, codiversified species exhibited

significantly reduced antibiotic resistance in a previously published drug screen of 144

antimicrobial compounds (Fig. 4G) (33). Consistent with the predicted loss of catalase activity,

species with higher ES were significantly more likely to die upon exposure to atmospheric

oxygen (Fig. 4H). Increased temperature sensitivity has been associated with coevolved insect
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symbionts and is expected in gut microbes that enjoy a temperature-stable niche (34).

Accordingly, we observed that ES was significantly correlated with poor relative growth at

below-host temperature (27°C) (Fig. 4I). All in vitro phenotypic associations retained

significance after correction for phylogenetic relatedness, even in cases where the corresponding

genomic prediction did not (table S18).

Taken together, the features that associate with cophylogeny are highly reminiscent of

those commonly seen in host-associated microbes (35–37) and coevolved insect symbionts (32).

Patterns of host-microbial codiversification alone do not necessarily imply interactions or

adaptations between hosts and microbes (9, 28). However, together with the observed functional

attributes, such as smaller genomes and oxygen and temperature sensitivity, codiversified species

likely evolved host dependency.

By expanding metagenome collections into poorly characterized populations, and pairing

metagenome and host genomic data obtained from the same individuals, we have identified

common members of the human gut microbiota that have independently codiversified with

human populations. These codiversified species have repeatedly and independently acquired

traits that suggest limited survival capabilities outside of the host (2, 28, 35). Loss of an

environmental reservoir can facilitate dependence on resources produced by other gut microbes

and/or the host and lead to reduced genome size (35–37). The selection pressure on efficient

host-to-host transmission could result in strain sharing between related individuals, or those

living in proximity, such as we observed in our populations. Many of the traits characteristic of

codiversified species likely adapted to the niche of the animal gut (not necessarily human), and

whether humans reciprocally adapted to these microbial species or strains remains to be

investigated. The list of codiversified species provides a starting point to investigate

host-microbial coevolution in humans (12).

The list of human health conditions linked to the microbiome ranges from mulnutrition to

allergies and cardiovascular disease. The incidence of these diseases is population specific, and

the diversity of microbiomes is also population specific. Several of the species that codiversified

with humans, such as P. copri (4), E. rectale (5), and B. longum (38), are known to vary in their

functional capacity according to population. An awareness of differences in gut microbial strains

between populations has already led to the notion that probiotics for treating malnutrition should

be locally sourced (38). The microbiome is a therapeutic target for personalized medicine, and
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our results underscore the importance of a population-specific approach to microbiome-based

therapies.
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Material and Methods

Participant recruitment

Five hundred and fourteen adult women were recruited for the study from three

countries: Gabon (n = 171, average age = 27 years old), Vietnam (n = 192, average age = 28

years old), and Germany (n = 151, average age = 29 years old) (Table S1). Inclusion criteria

included: women between the ages of 18 and 40; no severe allergy to dairy products; not

currently self-reported as pregnant; no known underlying medical conditions; local residency.

Participants were screened for the above criteria by field staff and/or physicians upon arrival at

the participating clinics, and all protocols, risks, and study motivations were carefully explained

to participants in local languages. 386 children of women who participated in the study were

included for microbiome analysis: Gabon (n = 144, average age = 8.0 months), Vietnam (n =

164, average age = 6.7 months), and Germany (n = 78, average age = 7.7 months) (see Table S2

for detail). The average ages of the children did not differ significantly between populations

(Kruskal-Wallis p = 0.43), and aside from 3 children in Gabon, all were breastfed. All

participants provided informed consent for participation in the study for themselves, and as

applicable, for their child. All human research was approved by local ethical committees. The

study protocols for this study are as follows: Gabon, issuing authority: Comité National

d’Ethique, Protocol number: N0025/2017/PR/SG/CNE; Vietnam, issuing authority: Scientific

Ethics Review Committee and 108 Military Central Hospital, Protocol number:

108MCH/RES/VGCARE-03-16012018; Germany, issuing authority: Ethik-Kommission an der

Medizinischen Fakultät der Eberhard-Karls-Universität und am Universitätsklinikum Tübingen.

529/2018BO1.

Gut metagenome data generation

Participants in Gabon, Vietnam, and Germany used Fe-Col collection kits (Alpha Labs,

Eastleigh, UK) to collect stool from themselves and/or their child. Samples were frozen on dry

ice within 8 hours of collection and transported on dry ice for storage at -80°C. Sample

collection in Korea is described in (19). Genomic DNA was extracted from frozen stool using

PowerSoil DNA extraction kits (Qiagen, Hilden, Germany). Metagenomic library preparation

was performed as per reference (43) with slight modifications. Briefly, 1ng of purified gDNA
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was used in a Nextera (Illumina, San Diego, USA) Tn5 tagmentation reaction to fragment and

ligate adaptors in a single reaction, followed by a 14 cycle PCR to add sample specific barcodes.

Libraries were purified using Mag-Bind TotalPure NGS beads (Omega Biotech, Norcross,

USA), pooled, and quantified. Size selection (400-700bp) was performed on a BluePippin (Sage

Science, Beverly, USA). Libraries were concentrated and further purified as needed using DNA

Clean & Concentrator-5 (Zymo Research, Irvine, USA). Sequencing was conducted on a HiSeq

3000 System (Illumina, San Diago, USA) with 150 paired-end sequencing. We used a quality

control pipeline described in (43). Briefly, adapter trimming and quality control filtering was

conducted using Skewer0.2.2 and bbtools “bbduk” command. Reads mapping to the human

genome (GRCh37/hg19) were filtered using bbtools “bbmap” command. The read quality was

assessed using Fastqc 0.11.7 and multiQC 1.5a. The same pipeline was applied to all publicly

available metagenomes that were used in this study, including the previously published

metagenomes from Cameroon (PRJEB27005 and PRJEB30834)(17, 18) the UK

(PRJEB13747)(20), and the 1326 public metagenomes from various studies (see below).

Metagenome-assembled genome (MAG) generation and analysis

Paired-end reads were subsampled to ≤ 20 million per sample with seqtk 1.3. We used

metaSPAdes 3.12.0 for per-metagenome de novo assemblies. Contig binning with differential

coverage was conducted with three binners: MetaBAT 2.15, MaxBin 2.2.7, and VAMB 3.0.2.

We ran each binner 3 times with different parameter sets (MetaBAT: [-prob_threshold 0.6,

prob_threshold 0.7, -prob_threshold 0.8], MaxBin: [--maxP 92 --maxEdges 150, --maxP 94

-maxEdges 325, --maxP 97 --maxEdges 500], VAMB: [-l 24 -n 384 384, -l 32 -n 512 512, -l 40

-n 768 768]) for a total of 9 binning methods applied to each metagenome assembly. Only

contigs ≥1.5 kbp were used for binning. Per-metagenome differential coverage binning with

coverage calculated from all metagenomes would require an excessive number of read mapping

jobs (i.e., all pairwise combinations of metagenomes), so we utilized a subsampling approach.

Specifically, for each metagenome assembly, we mapped reads to the assembled contigs from

the target metagenome and reads from 39 other randomly selected metagenomes. Bowtie 2.4.1

was used for mapping reads to contigs. To reduce biases in coverage estimated resulting from

varying sampling depths among metagenomes, we subsampled to ≤5 million paired-end reads

prior to mapping in order to reduce biases from samples with high sequencing depths (e.g., >20
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million). We used DAS-Tool (1.1.2 for the current study and Lokmer et al. (2019) (17); 1.1.3 for

the Even et al. (2021) (18)) to select the highest quality, non-redundant contig bins (MAGs)

from all 9 binning methods, with quality based on CheckM 1.1.3-estimated completeness and

contamination.

The raw MAGs were filtered by CheckM-estimated completeness (≥ 50%) and

contamination (< 5%) and then dereplicated at 99.9 and 95% ANI with dRep (3.2.0 for the

current study; 3.2.2. For Lokmer et al. (2019) (17) and Even et al. (2021) (18)). Prodigal 2.6.3

was used for gene prediction. Multi-locus genome phylogenies were inferred via PhyloPhlAn

3.0.2, with DIAMOND 2.0.9 used for phylogenetic marker homology searches, MAFFT 7.480

used for the multiple sequence alignment, FastTree 2.1.10 used for initial tree inference, and

RAxML 8.2.12 used for final tree inference (starting from the phylogeny inferred from

FastTree). Outgroups for each clade-level phylogeny were automatically selected from sister

clades (e.g., sister genus). Specifically, the GTDB Release 95 genome metadata was used to

identify genomes in sister clades, and the outgroups were selected with preference given to

genomes with the highest CheckM-estimated completeness and contamination.

Mother-child strain sharing analysis

We used CheckM and dRep to dereplicate 6,234 filtered MAGs assembled from

mother-child metagenomes at 95% ANI and to identify 796 species representative genomes

(SRGs). Species were assigned to both GTDB and NCBI using gtdb_to_taxdump v0.1.6(44). We

mapped metagenome reads from 386 mother-child pairs to the SRGs with inStrain 1.5.3’s

“profile” function (--min_cov 5 --min_freq 0.05 --min_genome_coverage 0.1 --min_read_ani

0.95 -database_mode --skip_plot_generation) and used the “compare” function to calculate

popANI and percent_genome_compared (--min_cov 5 --min_freq 0.05 --ani_threshold 0.99999

-database_mode --skip_plot_generation). Pairwise comparisons with popANI ≥99.999% and

percent_genome_compared ≥50% were identified as strain sharing events. To test whether there

are significant strain sharing events within related mother-child pairs compared to within

unrelated mother-child pairs more than expected by chance, we used the hypergeometric

distribution R function “phyper”, with correction for multiple comparisons using the R function

“p.adjust” (--method = “BH”; Table S12).
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We used SynTracker (39) to quantify the relatedness of strains in related and unrelated

mother-child pairs using the 6,234 filtered MAGs, with each SRG as a reference genome, with

default parameters (--perc_identity = 97, --qcov_hsp_perc=70, --maxSep=15, --maxGap = 15).

Average pairwise synteny scores were calculated by randomly selecting 30 homologous 5kbp

regions/pairwise. Significance tests for the synteny scores and popANI of strains between

related and unrelated mother-child pairs were performed using the R function “wilcox.test” (--

alternative = less). Multiple testing correction was performed using the “p.adjust” function

(-method = “BH”). Note that unlike the marker-based phylogenies described below (i.e.,

studying the dominant strain per individual), results from inStrain and SynTracker represent

multiple strains per individual.

Data generation of human genotype data

We generated human genotype data from the participants in four countries (Gabon,

Vietnam, and Germany, and Cameroon) and used published genotype data for the participants in

Korea (19) and the United Kingdom (20). In Gabon, Vietnam, and Germany, we collected saliva

samples from each participant using Saliva DNA Collection and Preservation Devices (Norgen,

Thorold, Canada). Genomic DNA from saliva was extracted using PowerSoil DNA extraction

kits (Qiagen, Hilden, Germany). DNA was analyzed using the Infinium Global Screening Array

(Illumina, SanDiego, USA) and genotyped at the University Hospital of Bonn, Life & Brain

Research Centre. For Cameroon participants, host genotype data was generated for individuals

that were collected in 2013 and 2017 with published gut metagenomes (17, 18). For each

participant, approximately 2 ml of saliva was collected in a 15 ml falcon tube, to which we added

the same volume of a homemade buffer (5mM TRIS, 5mM EDTA, 5mM sucrose, 10mM NaCl

and 1% SDS, pH=8). DNA was then extracted following the procedure from (45). For samples

collected in 2013, the extracted DNA was then genotyped on an Illumina Omni2.5 genotyping

array at the University of Chicago Genomics Core, in Chicago, USA. For samples collected in

2017, after quantification using a PicoGreen assay and qPCR assays to check for amplification

and clustering, extracted DNA was genotyped on an Illumina Multi-Ethnic Global array at the

University of Minnesota Genomics Center.
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Using the GenomeStudio software, we excluded individuals with a call rate below 0.95,

as well as markers that failed genotyping, present on non-autosomal chromosomes, with a call

rate below 95% or a cluster separation below 0.3. For the previously published genotype data

from the UK (20) and Korea (19), we excluded close relatives (i.e., one individual per twin) and

individuals that did not have paired fecal metagenomes. Finally, genome assembly versions were

converted to GRCh38 using UCSC Genome Browser LiftOver and all datasets were merged in

PLINK v1.9. After merging, further quality control was conducted where variants that are

nonbiallelic, minor allele frequency of < 0.05, missing call rates of > 0.9, and deviated from

HardyWeinberg equilibrium (P< 10-5) were removed. This resulted in 20,506 SNPs that

overlapped across all six datasets.

Human phylogenetic inference from SNP data

We created 100 maximum likelihood trees in SNPhylo (version 20180901)(46) including

839 individuals using 20,506 SNPs, which were further filtered to remove uninformative SNPs

based on the following parameters (ld_threshold = 0.1, maf_threshold = 0.05, and missing_rate

= 0.1). This resulted in around 9,000 SNPs to create the host phylogeny (each bootstrapped tree

uses a slightly different number of SNPs). We picked the best tree out of the 100 trees based on

the maximum likelihood score and plotted the bootstrap values (referred as “HostBestTree”)

using “plotBS” in phangorn R package. To account for branches that have low bootstrap

support, a majority-rule consensus tree (47) was also created where the best tree with branches

with bootstrap values < 50% were collapsed (referred as “HostConsTree”) using the function

“as.polytomy” in ggtree R package. Although we acknowledge that the bootstrap value 50% is

low, the threshold was chosen to allow comparisons with the results obtained from the best

maximum likelihood phylogenies with minimal changes in the phylogeny size of host and

microbes (see below). The main results are reported using HostBestTree. The host tree was

rooted by midpoint. Final trees were annotated in iTOL v6 (48).

Microbial phylogenetic inference from StrainPhlAn data
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We created microbial phylogenies from adult and child metagenomes using StrainPhlAn

v3.0 (7). First, we picked the top 100 prevalent taxa in metagenomic samples of adults (n=839)

and children (n=386) using MetaPhlAn3 (v3.0.1) using the following parameters (--tax_lev a

-min_cu_len 2000). The taxonomy is based on NCBI. Next, we used StrainPhlan3 to generate

microbial phylogenies using the following parameters: samples2markers.py

(--breadth_threshold 80) and strainphlan.py (--phylophlan_mode accurate

--marker_in_n_samples 10 -sample_with_n_markers 10). To allow for between-population

comparisons, we selected taxa in adults that represent a total of ≥ 100 individuals, ≥ 10

individuals each from major human grouping; Africa (Cameroon and Gabon), Asia (Korea and

Vietnam), and Europe (Germany and UK) and ≥ 1 individual per country, which resulted in 59

taxa (Tables S3&S4). For child samples, we picked the top 20 taxa that had the largest trees due

to the smaller sample size (Tables S10&S11). The best tree out of 100 trees based on the

maximum likelihood score was selected (referred as “BacBestTree”), and a majority rule

consensus tree was created (referred to as “BacConsTree”). We chose StrainPhlan3 for the main

method to create strain-level phylogenies because it is suited for creating phylogenetic trees of

the most dominant strain per individual. All trees generated by StrainPhlAn3 are rooted by

midpoint. All MAG-based trees are rooted by an outgroup. Final trees were annotated in iTOL

v6 (48).

Public metagenomes and phylogenetic trees

We downloaded and curated public metagenomes accessible at the time of the study

(Tables S15&S16). We retained stool samples from subjects with no associated disease status

(healthy or control group), no current use of antibiotics, and with an age ranging from 12-65

years old (age mean ± s.d. = 36.7 ± 13.6 years old). All samples that indicated non-local

individuals (e.g., travelers) were also excluded. For visualization purposes, the collection locality

of the individual was used as a proxy for host genetic groups based on Duda and Zrzavy

(2016)(21). The assignment of genetic structure and color used in Fig. 3 can be found in Table

S15. When samples exceeded 100 individuals per population per study, we randomly selected

100 individuals to reduce the sampling bias. Samples were quality filtered using the same QC

pipeline described above. When multiple samples were available per individual, we combined
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the reads. Using StrainPhlAn3 with the same parameters described above, we were able to

extract marker genes from fecal metagenomes derived from 1219 human individuals

representing 19 countries in 21 studies (2–4, 20, 49–65), and 107 primate individuals

representing 27 species of primates from 12 countries in 2 studies (66, 67). The number of

sequence reads and detailed sample information for all public metagenomes used in this study

are shown in Table S16. Phylogenies for the 10 top-ranking and bottom-ranking taxa were

created using StrainPhlAn3 with the same parameters described above. High-quality ancient

MAGs from paleofeces described in (30) were shared by Alex Kostic with support from the

Peabody Museum. Six ancient MAGs that were identified at the species level were added to the

microbial phylogenies as reference genomes in StrainPhlAn3 (Fig. S6). All trees were annotated

in ITOL v6 (48).

Cophylogeny statistics

We mainly report the cophylogeny test results based on principle coordinate analysis and

procrustes distance (referred as “PACo”) from the function “PACo” in paco R package because

it is reported to have greater statistical power and lower type I error rates compared to other

methods (68). We also used two additional methods to quantify the degree of codiversification

between the host tree and the microbial tree: (i) function “parafit” in the ape R package, which is

based on principle coordinate analyses and euclidean distance (referred as “Parafit”)(23), and

(ii) the function “cospeciation” in phytools R package, which is based on Robinson-Foulds

distance (referred as “Phytools”)(24). All tests were conducted with 999 permutations. A recent

study investigating large host-microbe phylogenies noted that PACo and Parafit tests resulted in

significant host-restricted associations (p < 0.001) even when random host trees were used (11).

This observation was true in our study where all taxa resulted in p values < 0.001 when

one-toone host-microbe pairs were considered. Thus, for PACo and Parafit, we collapsed highly

similar microbial strains as a same strain to create one-to-many host-microbe pairs using the

function “cutreeDynamic” in dynamicTreeCut R package with the following parameters:

cutHeight = 0.99 and minClusterSize = 2. To represent the degree of host-microbial

cophylogeny, we calculated cophylogeny effect size (ES) for each taxon by representing the

percent change between the observed phylogenetic distance (obs_dist: distance between

microbial tree and host tree) and null phylogenetic distance (null_dist: average permuted
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distance between microbial tree and host tree) as the following: (null_dist - obs_dist) /

(null_dist). Thus, positive ES indicates evidence of cophylogeny (obs_dist < null_dist) and

negative ES indicates no evidence of cophylogeny (obs_dist > null_dist). Unlike Nishida and

Ochman (2021) (11), none of the taxa with negative ES resulted in p value < 0.05 using our

approach by collapsing highly related strains as mentioned above. To account for the uncertainty

of phylogenetic topologies, we applied the three codiversification tests on majority rule

consensus trees, where branches with bootstrap values < 50% were collapsed (HostConsTree vs

BacConsTree), in addition to best trees based on the maximum likelihood score (HostBestTree

vs BacBestTree). We acknowledge that collapsing branches with bootstrap values < 50% is low,

but collapsing branches with higher bootstrap values will significantly reduce the number of

branches in some microbial phylogenies. Thus, to compare the results between BestTree and

ConTree in all adult and child taxa with minimal differences in the number of tips, we decided

to use majority-rule consensus phylogenies. Overall, the number of strains represented in a

microbial tree did not bias the three codiversification test results for both between- and

within-country analyses (Table S6&S7). ES and q values from the three codiversification tests

were compared using Spearman's rho correlation (Table S5). To test for host-microbial

cophylogeny using child taxa, we used the host phylogeny based on the mother’s genotype and

microbial phylogeny based on the child’s metagenome and tested for codiversification using

PACo.

Transfer events between Africa, Europe and Asia

To quantify the occurrence and directions of host-switch/transfer events, we used

stochastic character mapping based on MCMC (69) implemented as SIMMAP in “phytools” R

package (24). We applied the character mapping on (i) marker-based and MAG-based trees of

adults in this study (six countries), (ii) marker-based trees of adults after adding public

metagenomes (23 countries), (iii) marker-based trees of adults only using public metagenomes

(19 countries), and (iv) marker-based trees of children in this study (three countries). Briefly, we

treated “host regions” (i.e., “Africa”, “America”, “Asia”, and “Europe”) as microbial traits,

inferred ancestral character states on microbial phylogeny using the equal rates model, repeated

this 100 times, and calculated the average number of character changes and direction of host

transfer events. Because larger trees will give a greater number of character changes on average,
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we divided the number of transfer events for each category by the total number of transfer

events of that microbial tree. Occurrence of transfer events from Africa to Asia and from Africa

to Europe were combined as “Africa to rest”. The same aggregation was applied to the two other

categories; “Asia to rest” and “Europe to rest”. Correlations between occurrence of transfer

events and PACo ES were based on Spearman rho correlation. Pairwise comparisons between

categories of transfer events were based on Wilcoxon rank sum test. FDR-corrected p values are

indicated as q values.

Genome feature analyses and trait prediction

Selection of genomes.

All genomes that were available from NCBI for each abundant/prevalent species in

adults (n = 59) on November 3, 2021 were downloaded via NCBI_genome_download. Genomes

were quality filtered (minimum completeness >80 and contamination <5 via CheckM (70)) and

the top 10 genomes per species were retained for further analysis. If fewer than 10 genomes

were available for a species, all genomes passing minimum quality filtering were used. A list of

the genome accessions considered per species can be found in Table S17 (n = 495 genomes

total).

Trait profiling.

Genome size and GC content were calculated as the median value per species across the

top filtered genomes. COG categories were annotated per genome via Prodigal (71) and

EggNOG-mapper (72), and genes mapped to each COG were calculated as the percentage of the

total genes annotated per genome. Pseudogenes per genome were annotated using dfast (73) and

calculated as a percentage of the genes annotated per genome. Antibiotics markers per genome

were annotated using ABRicate (https://github.com/tseemann/abricate) and the CARD database

(74). Phenotypic traits were predicted per genome using Traitar. Trait confidence from Traitar

(75) is expressed as an integer from 0 to 5; we converted this to a categorical prediction, with

[0,2.5] considered “negative” and [2.5,5] considered “positive” for the trait. Prior to statistical

testing, traits with near-constant values across all species genomes were filtered out using the

mlr package (76) at 10% threshold (10% of features must differ from the mode value). Resultant

p values from all statistical tests involving the COGs, pseudogenes, antibiotics markers and trait
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predictions were aggregated and corrected using False Discovery Rate with a significance

threshold of 0.05. FDR-corrected p values are indicated as q values.

Phylogenetic Generalized Least Squares (PGLS) correction.

A phylogenetic tree spanning all high-quality genomes used for genomic profiling was

constructed in Anvio (77), using all available bacterial marker genes (71 reference genes from

the Bacteria_71 HMM source, which were shared across all 495 annotated genomes) and

according to the default parameters outlined in the phylogenomics

workflow(https://merenlab.org/2017/06/07/phylogenomics/). The tree was rooted to M. smithii.

PGLS was then applied to traits of interest (genome size, GC content, all genomic traits passing

FDR correction) using a lambda model implemented in the phylolm package in R (78). PGLS

was performed by randomly selecting one genome per species to both prune the tree and select

the corresponding trait information. This random selection of tree tips and subsequent PGLS

calculation with the resulting tree was repeated for 100 iterations. The mean p value across all

iterations was used.

Machine learning.

We conducted machine learning with the goal of predicting cophylogeny (PACo q value

< 0.01) with all variables used for trait profiling (see above). Binary random forest classifiers

were trained across 5 cross validation (CV) folds, with Boruta (79) used for variable selection

within each fold, and area under the receiver operating characteristics curve (AUC) calculated

for each fold. To control for evolutionary relatedness among genomes (observations), we

blocked the CV folds by genus (i.e., genomes in the train or test splits did not belong to the same

genus). The following R packages were used: randomForest (80), Boruta (79), and mlr (76).

In vitro phenotyping

Selection of taxa.

Taxa were selected from an established collection of human gut bacterial isolates (33)

according to their ability to grow in vitro in the same rich media (mGAM) within 24h, allowing

for parallel growth phenotyping. Strain information is listed in Table S19. We confirmed that

this subset of 18 species did not differ significantly from the full list in terms of mean PACo ES
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(p=0.45, Wilcoxen Rank Sum test); variance of the PACo ES (p=0.29, Levene’s test for

Homogeneity of Variance) or distribution of bacterial phyla (p=0.11, Chisquared test). We

acknowledge however that the in vitro taxa tend towards an underrepresentation of Firmicutes

and a lower mean PACo ES (Table S19), a bias which is driven by the fastidious growth

requirements and/or lack of isolated type strains for many of the highly cophylogenetic

Firmicutes.

Oxygen sensitivity.

Each strain was inoculated from a 100 µL single-use glycerol stock aliquot into 10 mL

of anaerobic mGAM and grown anaerobically at 37ºC for 24 hours. Strains were then

subcultured 1/10000 into 10 mL fresh anaerobic mGAM for 16h overnight. Subcultures were

pelleted under atmospheric conditions (8000xg 2 min), washed in aerobic PBS, and normalized

to an O.D.600 of 1.0 in a final volume of 1 mL within a 2 mL tube. Tubes were then incubated

aerobically at 37ºC without shaking for 48h. Viability of the endpoint culture was assessed by

plating 100 µL onto solid medium in an anaerobic hood and incubating at 37ºC anaerobically for

48h. Supplemented BHI agar (BHI-s) was routinely used for all strains with the exception of

NT5011 (R. intestinalis), which failed to grow on BHIs agar during time-zero controls and was

therefore assessed on solidified mGAM agar. A total absence of growth was scored as “dead”

and at least one viable colony present was scored as “alive” (limit of detection: 10 CFU/mL).

The oxygen survival assay was performed at least three independent times per species and the

consensus survival of all three replicates taken. For three species which showed inconsistent

viability after 48h due to CFU counts approaching the limit of detection, consensus survival was

scored as the most frequent outcome out of five independent replicates. These three species

could also be removed entirely from analysis without affecting the outcome (n=15, p=0.002).

Temperature sensitivity.

50 µL of each strain was inoculated from a 100 µL single-use glycerol stock aliquot into

5 mL of anaerobic mGAM and grown anaerobically at 37ºC for 24 hours. Strains were then

subcultured 1/10000 into 5 mL fresh anaerobic mGAM for 16h overnight. Subcultures were

normalized to an O.D. of 0.02 in mGAM under anaerobic conditions and further diluted 1:2 into

a 100 µL volume per well within a 96-well plate. Half of one plate (48 technical replicates) was
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assessed per biological replicate for each strain. Plates were sealed with a BreathEasy

gas-permeable membrane and O.D.600 was read over 24 hours using an automated stacker and

plate reader placed within an incubator set to 37ºC or 27ºC. Three independent biological

replicates were performed per strain per temperature. One replicate of strain NT5009 at 37ºC

and one replicate of strain NT5075 at 37ºC were subsequently excluded due to contamination of

the working stock and contamination of the plate, respectively.

An area-under-the-curve (AUC) was calculated for each growth curve, which takes into

account the lag phase, growth rate and yield of the culture, as has been previously described

(33). Briefly, each growth curve was zeroed to the starting O.D., the AUC was calculated, and

each AUC for each species replicate was subsequently centered and scaled to the respective

37ºC control. The average normalized AUC of all three biological replicates per species was

used to yield the value “Normalized growth at 27ºC” for subsequent analysis.

Antibiotics resistance.

Antibiotics resistance data was obtained from a screen of 144 antimicrobial compounds

described in Maier et al (2018)(33) for the same n=18 species isolates used for oxygen and

temperature sensitivity (Table S19). Resistance to each drug was determined by minimum

inhibitory concentration as previously described (33). Overall antibiotics resistance per species

was calculated as the percentage of drugs to which the species was resistant out of the total 144

drugs assayed. PGLS was performed as described above for all phenotypic assays, except that

only one species representative was analyzed per species in phenotypic assays; therefore, the

random selection of each genome per species applied only to the tree pruning. Iteration was still

repeated for 100 iterations. The mean p value of all iterations was used.
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Supplemental Results

Tests for sample size bias.

To test whether sample size (the number of tips in the microbial phylogeny) affected the

cophylogeny test results, we ran Spearman correlations between cophylogeny results (effect size

(ES) or q value) and sample size for three different cophylogeny tests (PACo, Parafit, and

Phytools) on two different tree types (BestTree and ConsTree) and two datasets (adults and

children) (Table S6, Fig. S1A&B). None of the correlations were significant, suggesting that

sample size is not biasing the test results using all individuals. Similarly, when we tested for

correlations between sample size and cophylogeny test results within countries, none of the

correlations were significant after correcting for FDR (q value > 0.05) (Table S7). Based on

uncorrected p values of Spearman correlations, there was a trend that sample size correlated with

PACo ES in adults (rho = 0.152, p = 0.008 Fig. S1C and Table S7). This trend was mostly driven

by microbial species that had within-country sample sizes of <25 (Fig. S1C). None of the taxa

with evidence of within-country cophylogeny in adults (q < 0.05) have sample size <25 (Fig.

S1D, Table S9). Thus, the effect of sample size on PACo results should be minimal.

Cophylogeny tests.

To compare PACo results with other cophylogeny tests, we also applied Parafit (23) and

Phytools (24) (Table S5). Overall, ES and q values from the three codiversification tests tended

to yield similar results based on best maximum likelihood phylogenies using Spearman’s rho

correlation, especially for PACo and Parafit (Table S5). Although PACo is reported to have

lower type I error rates and greater statistical power compared to Parafit (68), the ES from the

two tests are highly correlated in our dataset (rho = 0.806, p = 1.4e-14) because the two tests use

similar algorithms (Table S5). In contrast, Phytools is based on Robinson-Foulds distances and

shows positive but non-significant correlations with either PACo or Parafit (rho = 0.031, p =

0.82 or rho = 0.100, p = 0.449, respectively), and the least number of significant taxa (q value <

0.05) (Table S5). The correlations were more variable when majority-rule consensus

phylogenies were used (Table S5, see below). Regardless of the differences among tests, among

the 36 taxa that showed positive ES in PACo, 16 taxa showed positive ES in all three tests with

q value < 0.1. Among them, seven taxa showed q value < 0.05 across all tests, including

Collinsela aerofaciens (Fig. 1H), Catenibacterium mitsuokai (Fig. 1G), Prevotella copri (Fig.
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2E), Doera longicatena, Coprococcus eutactus, Roseburia faecis, and Eubacterium rectale.

Despite the significant variation in quantifying cophylogeny among tests, the top and bottom

taxa are generally consistent irrespective of the test used (Table S4).

Bootstrap support.

To account for branches with low bootstrap support on both host and microbial

phylogenies, we created majority-rule consensus phylogenies by collapsing the branches with

bootstrap support ≤ 50 and re-ran the three cophylogeny tests (Table S4). For example, among

the 36 taxa that showed positive ES and q value < 0.05 using PACo based on best maximum

likelihood phylogenies, 13 taxa (36%) showed positive ES and q value < 0.05 using consensus

phylogenies. Parafit and Phytools also resulted in similar results, where 17/35 (49%) and 4/8

(50%) taxa remained robust to bootstrap support, respectively. Among the six tests conducted

(three cophylogeny tests on two types of trees), Collinsela aerofaciens (Fig. 1E),

Catenibacterium mitsuokai (Fig. 1F), Prevotella copri (Fig. 2E), and Doera longicatena showed

positive ES and q value < 0.05 across five tests. Despite the fact that there are no significant

correlations among the three cophylogeny tests when they are applied to majority-rule

consensus phylogenies (ES or q values, Table S5), Prevotella copri was the only taxa that

showed positive ES and q value < 0.05 across six tests. Furthermore, despite the little overlap in

species between adult and child microbiomes (12 taxa), we found P. copri (Fig. 2E&F) and B.

wexlerae showed evidence of copylogeny in both adults (q value < 0.01) and children (q value <

0.01) using the best maximum likelihood phylogenies (Tables S4&S11). Using majority-rule

consensus phylogenies, P. copri and B. longum showed evidence of cophylogeny in both adults

(q value < 0.05) and children (q value < 0.01). Although collapsing the branches with low

bootstrap support did affect some of the cophylogeny test results, results from some taxa were

robust to this change in the tree structure.

MAG-based phylogenies.

We created MAG-based phylogenies to compare the cophylogeny test results with

marker-based phylogenies created by StrainPhlan. We were able to create MAG-based

phylogenies for 33 out of the 59 taxa. Only 10 taxa met the prevalence criteria in marker-based

phylogenies (≥100 adults with ≥10 individuals per major human group and ≥1 individual per
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country). Among the 10 taxa, Roseburia faecis was the only taxa that showed evidence of

cophylogeny based on PACo (uncorrected p value < 0.05) which is consistent with the

marker-based results (Table S8). When we do not consider the prevalence criteria, a total of five

taxa showed evidence of cophylogeny using MAG-based best maximum likelihood phylogenies

based on PACo (uncorrected p value < 0.05): three taxa (Roseburia faecis, Catenibacterium

mitsuokai, and Bifidobacterium longum) showed consistent results with marker-based

phylogeny results, and two Parabacteroides species (P. merdae and P. distasonis) showed

inconsistent results from marker-based phylogeny results (Table S8). The inconsistent results of

Parabacteroides species are likely due to small sample size (<54 strains) and

underrepresentation of non-western samples (>72% are from Germany and UK samples) in the

MAGbased phylogeny. In children, MAG-based phylogenies were created for 10 out of the 20

taxa.

The only significant PACo result using MAG-based phylogeny was Bifidobacterium

longum (q = 0.01, based on consensus phylogeny), which also showed significant cophylogeny

using marker-based phylogeny (q = 0.003 and q = 0.007, based on best maximum likelihood tree

and consensus tree, respectively). Although the MAG-based analyses in adults and children

were underpowered, some of the top taxa were robust to different tree building methods.

Mother-child strain sharing.

We used two independent approaches to search for shared strains in mother-child pairs:

inStrain (40), a tool based on population-level nucleotide strain diversity (popANI), and

SynTracker (39), based on the synteny of long-stretches of DNA. We identified bacterial species

with strains more similar between mothers and their own children compared to unrelated

children. Of the 63 taxa (adult and child taxa combined) assessed for codiversification, 20 were

tested for strain sharing events (strain sharing is defined using the following cutoffs: 0.96 for

synteny, 0.99999 for popANI) between related and unrelated motherchild pairs. Of these,

notably, strains of P. copri and other Prevotella spp. were shared between mothers and their

children using two independent methods (Fig. 2G, Fig. S2). Eubacterium rectale (PACo, ES =

0.011, q = 0.003) and Bacteroides vulgatus (PACo, ES = 0.009, q = 0.018) also showed evidence

of mother-child strain sharing (Fig. S2).
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Notably, we also observed strain sharing between mothers and children who were not

their own, for individuals sampled in the same location (Fig. S2). For taxa where we find no

evidence of codiversification but evidence of strain sharing, such as Bacteroides uniformis (Fig.

S2), this pattern may be due to changes in lifestyle across time (e.g., greater sanitation or

isolation reducing group-level transmission). These observations suggest a model where

statistically significant patterns of cophylogeny can be generated with or without strict vertical

transmission (e.g., shared microbial source) as long as strain sharing between more genetically

related individuals exceeds that of less related individuals.
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Supplemental Figures

Figure S1. Correlations between sample size and PACo results. Correlations between sample

size (number of strains in a given microbial phylogeny) and (A) PACo effect size (ES) and (B)

PACo q values using all individuals. Each dot represents one of the 59 microbial taxa tested.

Correlations between sample size and (C) PACo ES and (D) PACo q value from within-country

analyses. Each dot is the 59 microbial taxa tested in six countries. In panel C, after excluding

within-country analyses involving less than 25 sample size (blue dashed line), sample size does
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not significantly correlate with PACo ES. Spearman correlation rho values and p values are

shown.

Figure S2. Strain sharing assessed within related and unrelated mother-child pairs in Gabon,

Vietnam, and Germany. (A) The relatedness of strains per species within related and unrelated

mother-child pairs, using SynTracker (left) and inStrain (right). Species listed are those

identified in both related and unrelated mother-child pairs. Dashed red lines indicate the

pairwise comparison thresholds for strain sharing events (0.96 for synteny; 0.99999 for
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popANI). (B) Strain sharing within related and unrelated mother-child pairs by country using

inStrain. The percentage of total strain comparisons (“n”) identified as strain sharing events

between related mother-child pairs, unrelated mother-child pairs sampled in the same location,

and unrelated mother-child pairs sampled in different locations. Stars correspond to q values

(corrected Wilcoxon-Mann-Whitney test for Fig. S2A and corrected hypergeometric test for Fig.

S2B; * = p < 0.05; ** = p < 5x10-5; *** = p < 5x10-25; Table S13). Comparisons were calculated

with samples collected from 6 locations in Gabon (average inter-location distance = 114km), 4

locations in Vietnam (average inter-location distance = 238km) and 1 location in Germany

(Table S14).

Figure S3. Boxplots comparing occurrence of transfer events between sampling regions for the

top 10 and bottom 10 taxa identified by PACo effect sizes using different tree-building
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approaches and populations (Table S4). Results of stochastic character mapping on microbial

trees based on (A) marker genes including adult metagenomes from six countries, (B) MAGs

including adult metagenomes from six countries, (C) marker genes including adult human

metagenomes from only the public dataset, and (D) marker genes including child metagenomes

from three countries. p values are based on Wilcoxon rank sum tests.
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Figure S4. Microbial phylogenies of the top 10 taxa (based on PACo) with addition of public

metagenomes. Colors of the branches and outer colorstrip indicate the host genetic structure

estimated from sampling locations(21). Arrows indicate strains from Primate hosts. The black

dots next to the outer colorstrip are samples from the initial analyses with six populations with

paired fecal metagenomes and human genomes (i.e., Gabon, Cameroon, Korea, Vietnam,

Germany, and the UK). Bootstrap values ≥50% are shown. All trees were rooted at the midpoint.

The scales show substitutions per site. Note that phylogenies for Butyrivibrio crossotus,

Coprococcus comes, Phascolarctobacterium succinatutens, and Faecalibacterium prausnitzii,

were included in Figure 3, and duplicated here to facilitate comparisons.
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Figure S5. Microbial phylogenies of the bottom 10 taxa (based on PACo) with addition of

public metagenomes. Colors of the branches and outer colorstrip indicate the host genetic

structure estimated from sampling locations(21). Arrows indicate strains from Primate hosts.

The black dots next to the outer colorstrip are samples from the initial analyses with six

populations with paired fecal metagenomes and human genomes (i.e., Gabon, Cameroon, Korea,

Vietnam, Germany, and the UK). Bootstrap values ≥50% are shown on branches. All trees were

rooted at the midpoint. The scales show substitutions per site.

Figure S6. Microbial phylogenies that represent ancient MAGs from Native Americans. Of the

five species that we recovered ancient MAGs for, these three species have nonsignficant PACo

ES (two species that have significant PACo ES are shown in Fig. 3G&H). The colors of the

branches and outer colorstrip indicate the host genetic structure estimated from sampling

locations(21). Samples from the initial analyses are shown as black dots next to the outlier color

strip. Arrows indicate strains from paleofeces of Native Americans. Bootstrap values ≥50% are

shown on branches. All trees were rooted at the midpoint. The scales show substitutions per

site.
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Figure S7. Selected genomic features that correlate with cophylogeny effect size. (A) Median

%GC content per species. (B) Percentage of total genes in the genome annotated to COG J for

translation. (C) Percentage of pseudogenes per total genes in the genome. (D) Percentage of total

genes in the genome annotated to COG M for cell wall/membrane/envelope biogenesis. (EI)

Predicted activity for (E) casein hydrolysis, (F) gelatin hydrolysis, (G) indole metabolism, (H)

melibiose metabolism and (I) hydrogen sulfide metabolism. N=59 species for all panels.

Statistical significance was determined by Spearman’s correlation (A-D) or by Wilcoxon rank
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sum test (E-I). Exploratory analyses were corrected using False Discovery Rate across all gene

categories and predicted traits (q value; B-I). COG, cluster of orthologous genes; pos, positive

for the given trait; neg, negative for the given trait. **p value <0.01, *** p value <0.001, ****p

value <0.0001. Exact p values are reported in Table S18.

Other Supplementary Material for this manuscript includes the following:

Tables S1 to S19
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Other Supplementary Material not included in manuscript:

Figure not in manuscript. Pairwise comparisons of mothers’ gut microbial strains with those of

their children, and those of unrelated children, all of which had the minimum popANI “same

strain” threshold of 0.99999. popANI of 1 indicates genome clonality, with lower scores

indicating more single nucleotide polymorphisms (SNPs) differentiating the strains’ genomes.

The pairwise comparison scores are divided into several categories: those of mothers with their

own children, and mothers with unrelated children having been sampled in the same town,

region, country, or internationally. The phylum of each compared strain is indicated by its color.

Results/Discussion not included in manuscript:

Though there is insufficient statistical power to test this, these preliminary suggests that there is a

gradient of strain-relatedness; the most-related being those shared between related mothers and

infants, followed by those of unrelated mothers and infants living in the same town, with an

increasing number of SNPs differentiating strains as the geographic distance between those

unrelated mothers and infants increases.
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Abstract

It is unknown whether microbial strains acquired by human infants persist in their guts

beyond age 5. This is due to the logistical challenge of conducting such extensive longitudinal

studies. In this case study, we sampled the stool of a 13-year old human, from whom we also had

frozen stool from their first 2.5 years of life. To determine whether gut microbial strains persist

over such long periods of time, we sequenced their stool metagenomes from both infancy and

adolescence - including several from the parents, assembled genomes from metagenomes

(MAGs), and called single-nucleotide polymorphisms (SNPs) by mapping metagenome reads to

those MAGs. To account for evolution over those elapsed 13 years, we defined a persistent strain

as instances where 99.999 % of the genome is identical (e.g., a microbe with a 4 kilobase pair

genome has a “same strain”-threshold of 40 SNPs). We detected 2 strains that spanned infancy

into adolescence: one belonging to the species Prevotella copri, and the second to Alistipes_A

ihumii. The Prevotella copri strain was first detected on day 4 of life and again on day 294, after

which it remained detectable throughout the majority of the adolescent samples. The Alistipes_A

ihumii strain was first detected later in adolescence, and was also identified as being present in

most of the adolescent stool samples. We also found that strains persisted within and between the

participant’s parents, belonging to the species Phocaeicola mediterraneensis, Alistipes_A ihumii,

Bacteroides uniformis, and Alistpies putredinis, as well as a novel bacterium we name

Persistoides, for which there was no phylum-level classification. While a recent cross-sectional

study suggested that certain strains persist in humans over very long periods of time, this is the

first direct evidence that individual strains do, in fact, persist from infancy into adolescence.
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Introduction

Humans have two sets of genes: those encoded by their own genome, and those encoded

by their microbial symbionts. The human genes amount to approximately 22,000, are inherited

vertically from parents, and are stable throughout life (Willyard 2018). The microbial genes in

the gut alone outnumber those of the human by a staggering 22 million, and start to be acquired

from the environment after birth (Tierney et al. 2019; Kennedy et al. 2023). They are distributed

amongst the genomes of thousands of bacterial, archaeal, and viral strains, which colonize infant

guts via transmission from diverse sources, including the hospitals in which they are born and

their parents (Lou et al. 2021; Olm et al. 2021; Enav, Bäckhed, and Ley 2022; Suzuki et al.

2022). This vertical transmission of gut microbes between host generations has contributed to a

subset of them having recently been shown to codiversify with humans, wherein patterns of

phylogenetic divergence between symbiont microbes reflect those of their human hosts (Suzuki

et al. 2022).

Beyond vertical transmission, codiversification of gut microbes with humans is

contingent on a second biological phenomenon: the persistence of these strains in the gut

throughout their human hosts’ lifetimes. This is because in a recent study of a westernized

population wherein codiversification was detected, not a single strain was

horizontally-transmitted; none were shared between unrelated mothers and infants (Suzuki et al.

2022). Without strain-persistence in the gut, these strictly vertically-acquired microbes would go

extinct in their host prior to their transmission to the next host generation, eliminating their

signature of host-codiversification that we know to exist. In light of this prediction, strains have

not been shown to exist for longer than 5 years in infant guts, or even those in adult guts, due to

the logistical challenges of conducting such lengthy longitudinal studies (Faith et al. 2013;

Bäckhed et al. 2015; Yassour et al. 2016; Chu et al. 2017; Vatanen et al. 2018).

Here, we conducted a case-study to determine whether microbial strains acquired during

a human’s infancy were still present in their gut during adolescence. The first sample collection

effort for this project was conducted 15 years ago, during the first 2.5 years of the participant’s

life (Koenig et al. 2011). We collected new stool samples from the same participant at ages 12

and 13, and sequenced their metagenomes, together with those from their infancy. We assembled

genomes from those metagenomes, which we then dereplicated, filtered, taxonomically-profiled,
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and mapped metagenome-reads to in order to detect gut microbial strains (Olm et al. 2021). This,

as well as any alignment-based approach for strain-resolved metagenomics, is made challenging

by the fact that microbes abundant during infancy differ from those abundant during adulthood.

Our hypothesis is that many of the same strains are present in both infancy and adulthood, but at

very low abundances, as that would maintain codiversification in populations wherein

transmission is strictly vertical. This very-low abundance means that strains will be at the limit of

detection; we deeply-sequenced the metagenomes to an average of 10 million paired-end reads to

capture as much strain-sharing between time points as possible.

Methods

Sampling

We froze stool samples collected throughout the infant’s first 2.5 years of life, along with

those of his mother, at -80 °C for 13 years. This original sampling was approved by Washington

University in St. Louis’ Internal Review Board (protocol 09-0039). Permission to collect new

stool samples from the same participants during the then-infant’s 12th and 13th years of life,

along with those of the mother and father, was granted by the University of Tübingen Medical

Faculty’s ethical committee (protocol 672/2018B02), and were also stored at -80 °C.

Gut metagenomes

We extracted DNA from stool samples with DNeasy Powersoil HTP 96 kits (Qiagen,

Venlo, Netherlands). We prepared libraries as previously described by Karasov and colleagues

(Karasov et al. 2018). Briefly, we size-selected fragments to 400-700 base pairs with BluePippin,

and used an Illumina HiSeq 3000 to sequence pooled libraries with paired-end 150 base pair

reads. We performed quality control on these metagenomes as described by Youngblut and

colleagues (Youngblut et al. 2020). We taxonomically profiled that output using Kraken2 and

Bracken v2, with a custom database curated by Struo2, using GTDB release 207 (Lu et al. 2017;

Youngblut and Ley 2021; Parks et al. 2022). We performed data analysis in R with the tidyverse

package suite (Wickham et al. 2019). We rarefied metagenomes to the lowest common read
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count before calculating Shannon diversity and unweighted Bray Curtis dissimilarity with the

package Phyloseq v3.17.

Metagenome-assembled genome (MAG) generation and analysis

We assembled MAGs as described by Suzuki and colleagues (Suzuki et al. 2022). Briefly,

we de novo assembled contigs with metaSPAdes v3.15.5, and binned them with differential

coverage using MetaBat v2.15.0, MaxBin v2.2.7 and VAMB v.4.1.1. We used Das-Tool v1.1.6 to

select the non-redundant bins of highest-quality. We dereplicated these MAGs to 98% average

nucleotide identity (ANI) with CheckM2 v1.0.1 and dRep v2.0.0, thereby generating sub-species

representative genomes (SSRGs). We filtered the SSRGs to a minimum CheckM2-estimated

completeness of 50% and maximum contamination of 5%, and taxonomically classified them

using GTDB-Tk database release 207 (Olm et al. 2017; Chaumeil et al. 2019; Chklovski et al.

2022).

Strain sharing analysis and phenotyping

We used inStrain v1.3.0 to map reads from all metagenomes to the SSRGs, which

generated inStrain `profiles` that catalog the SNPs in each metagenome, and pairwise-compared

those `profiles` with inStrain `compare` to compute popANI (Olm et al. 2021). We then used

inStrain to hierarchically-cluster the output of these pairwise comparisons to generate strain

clusters, each of which represented a unique strain. We used Traitar v3.0.1 to phenotype strain

genomes.

Results

Composition of gut microbial phyla was variable during the first year of life (Figure 1, A,

B, and C). The first and second weeks were taxonomically dominated by Firmicutes and

Proteobacteria, respectively, and weeks 3-10 by Firmicutes_A, each reaching peak relative

abundances of 75 % (Figure 1, C). This was followed by a bloom of Actinobacteria, which at its

peak on day 139 also reached a relative abundance of 75 % (Figure 1, C). Bacteriodota started

increasing in relative abundance by month 5, and reached 100 % relative abundance during

month 7 (Figure 1, C). By month 10, the microbiome consisted mostly of Bacteriodota and
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Firmicutes_A, which remained the case through the final infant sampling at age 2.3 years (Figure

1, C). The same two phyla remained most abundant at age 12, which remained the case at age 13

(Figure 1, C). Shannon diversity, which accounts for both the number of microbial species

detected and their evenness in the population, increased with infant age (Figure 1, A). It did not

reach its peak of 5 by the final infancy timepoints, but rather as an adolescent (Figure 1, A). On a

principal component of analysis plot of unweighted Bray Curtis distances, metagenomes formed

four clusters, each comprising metagenomes of the host with progressively increasing age, such

that the fourth cluster was formed by the oldest infant sample and those from adolescence,

consistent with metagenomes from both being dominated by Bacteriodota and Firmicutes_A

(Figure 1, B).

We assembled 1,659 metagenome-assembled genomes (MAGs). We dereplicated them at

99.9 % ANI to create a final set of 892 non-redundant MAGs, and dereplicated those further to

98 % ANI, thereby generating 269 sub-species representative genomes (SSRGs). We mapped

each of our 81 metagenomes to these SSRGs to identify SNPs, and compared those SNPs

between samples, which amounted to a total of 6,903 pairwise comparisons of 414 strains. 3,652

of the comparisons were identified as being the same strain (i.e., popANI >= 99.999 %). As

expected, the vast majority of these strain-sharing events were between time points during either

infancy (Figure S1), or during adolescence (Figure S2) (3492/3652; 96 %), but the rest were

detected in both (Figure 1, D) (160/3652; 4 %).

We identified two strains present in at least one of the child’s infant and adolescent stool

samples, one belonging to Prevotella copri and the second to Alistipes_A ihumii (Figure 1, D).

We inferred microbial phenotypes from these strains’ genomes with Traitar; both shared many

phenotypes, including that they are gram-negative, obligate anaerobes that can hydrolyze and

grow on lactose, and ferment glucose (Figure 1, E). Neither of them were phenotyped as being

motile, spore formers, or having catalase. We detected the same strains of Phocaeicola

mediterraneensis, Alistepes putredinis, and Alistipes_A ihumii in the mother, despite 13 years

having elapsed between sampling (Figure 1, E). We also detected a strain of a novel bacterium

with no phylum classification in GTDB in the mother’s stool on the infant’s third day of life,

which we detected in the infant’s stool 13 years later (Figure 1, E), to which we assign a genus

name Persistoides. We observed the same within-family persistence for a strain of Bacteroides

152



uniformis, detected in several of the infant samples and again in the father 12 years later (Figure

1, E).

Figure 1. Microbial diversity, taxonomic composition, persistent strains and their predicted

phenotypes in a human gut over 13 years. (A) Metagenomic Shannon diversity over time. (B)
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Principal component analysis of unweighted Bray Curtis distances, and yellow and black circles

depicting the youngest to oldest metagenomes from infancy to adolescence, respectively. (C)

Phylum-level composition of the gut microbiome over time. (D) Microbial strains acquired

during infancy detected in at least one adolescent time point. (E) Predicted phenotypes of the six

strains shared between infancy and adolescence, for which there exists a GTDB taxonomic

assignment.

Discussion

We sampled the same individual’s stool during infancy and adolescence to determine

whether microbes persisted in their gut, despite over 13 years having elapsed. This was indeed

the case for two microbial strains. The first persistent strain belonged to the species Prevotella

copri, which we detected as early as on the host’s 4th day of life. The next persistent strain was

of the species Bacteroides uniformis, and was not first detected until day 294. They were both

predicted based on their genomes to grow on lactose; they each encoded beta-galactosidase, and

the ability to ferment the resulting glucose. The participant breastfed until day 371 of life,

implicating breastmilk and its main carbohydrate, lactose, in providing substrate with which

these persistent strains could originally survive after colonizing the host’s gut environment. Both

strains were predicted from their genomes to be neither oxygen-tolerant nor spore-forming,

suggesting that they had, and continue to have, a reliance on their human host for survival.

We also collected stool samples from the then-infant’s mother that spanned the same 13

years, and identified three strains to have persisted in her gut; one of the species Phocaeicola

mediterraneensis, the second of Alistepes_A ihumii, and the third of Alistipes putredinis. Finally,

we identified two examples of strain persistence not within the same individual, but rather

between individuals of the same family: one Bacteroides uniformis strain detected in the infant’s

gut and that of their father’s 12 years later (from whom we only had stool samples collected

during his son’s adolescence), and the same between the mother and child, for a bacterial strain

whose phylum has no known taxonomic classification. The fundamental weakness of this

analysis is that we are operating at the limits of detection for these strains, meaning that our

false-negative rate for their detection is very high. This is because when calling SNPs for a given

SSRG, we need at least 50 % coverage from metagenome reads, and this is very hard to achieve
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for microbes that live in very-low abundance in their host. This means that we are, with certainty,

severely under-reporting the true temporal-stability of microbial strains, both in their duration of

gut persistence, and the number of strains for which that is the case. Future studies can overcome

this by enriching shotgun metagenomic libraries for DNA of specific taxa. Despite this

methodological shortcoming of our study, it is the first analysis to evaluate strain persistence in

the human gut for longer than five years, in either an infant or an adult (Faith et al. 2013;

Bäckhed et al. 2015; Yassour et al. 2016; Chu et al. 2017; Vatanen et al. 2018).

Strains that we identified in this study as having persisted in the humans guts for over a

decade belonged both to taxa that we recently found to have signal of codiversification with

humans (e.g., Prevotella copri), and those that we did not (e.g., Alistipes and Bacteroides

uniformis) (Suzuki et al. 2022). This is consistent with our understanding that gut microbial taxa

not undergoing codiversification with humans are frequently horizontally transmitted; colonized

by so many hosts, that their high prevalence makes them shared across populations, and by

extension, are also shared within hosts over time. Strains that were persistent in this study, but

for which there was no evidence of codiversification in our previous work (e.g., Alistipes and

Bacteroides uniformis), had genomes phenotyped as being oxygen-intolerant, which suggests

that they have other genomic strategies that confer their high inter-individual transmission.

Codiversifying strains are on the other hand reliant on vertical transmission, a transmission mode

recently shown to be prevalent in Prevotella copri (Suzuki et al. 2022), but also on their survival

in their host’s gut at least until they can be passed to that host’s offspring. Here, we could provide

evidence to suggest that this is the case for Prevotella copri: not only is it vertically-transmitted,

but it can persist in the gut until at least adolescence - when the host becomes capable of sexual

reproduction - which suggests that this persistence is the second half of the mechanism by which

it is codiversifying with humans.
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Figure S1. Microbial strains detected only during the child’s infant sampling period (first

panel of four). Each individual strain is given as a row, with the time points we identified them

in indicated by circles, colored by the participant in whose gut microbiome we detected it (red =

infant; blue = mother). The phylum of each strain is color-coded in the first column, and the

name of the species to which the strain belongs is given in its name.
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Figure S1. Microbial strains detected only during the child’s infant sampling period

(second panel of four). See first panel for figure legend.
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Figure S1. Microbial strains detected only during the child’s infant sampling period (third

panel of four). See first panel for figure legend.
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Figure S1. Microbial strains detected only during the child’s infant sampling period (fourth

panel of four). See first panel for figure legend.
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Figure S2. Microbial strains detected only during the child’s adolescent sampling period.

Each individual strain is given as a row, with the time points we identified them in indicated by

circles, colored by the participant in whose gut microbiome we detected it. The phylum of each

strain is color-coded in the first column, and the name of the species to which the strain belongs

is given in its name.
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Discussion

Taken together, these three projects describe a very intimate relationship between humans

and their gut microbial symbionts. We found that gut microbes can confer a tolerance to lactose

which has, until now, been thought to be conferred only by the host’s own genome. This

microbially-derived phenotype is 100% tolerant from the perspective of hydrogen production -

typically the sole focus of medical doctors’ diagnoses of patients - because LNPs enriched for

Bifidobacterium can make no hydrogen from lactose just as LPs do. The energetic consequence

for the hosts are however different, because the energetic yield from glucose absorbed in the

small intestine (genetic tolerance) is greater than the ATP the host can make after gut-uptake of

the Bifidobacterium-derived acetate (microbially-acquired tolerance). In other words, hydrogen

and symptoms meet tolerance criteria, but the host-energy derived from lactose is only

intermediary in microbially-acquired tolerance. This means that early in the cultural-adoption of

dairying, there was likely not only positive selection for LP, but also LNPs enriched with

Bifidobacterium. Selection was likely so strong that LNPs without sufficient Bifidobacterium for

microbial-tolerance died during starvation events. Studies of how humans have adapted to the

cultural practice of dairying have thus far centered on their own genetic adaptation; this study

reveals that human-only frameworks do not accurately reflect the biology of selection.

We are the first to study vertical gut microbiome transmission in both western and

non-western populations under the same project. This is important because the ways in which

metagenomic libraries are made, sequenced, and their resulting metagenomes

bioinformatically-processed and analyzed has a large impact on outcome, which renders

comparing the results between studies of little utility when we are concerned about where SNPs

are located at resolutions of 99.999% ANI. We controlled for these confounders in our study,

giving us the unprecedented opportunity to directly compare dynamics of human gut microbe

transmission in western and non-western populations. Consistent with other studies, mothers are

a significant source of microbes for their infant. However, unlike in Gabon and Vietnam, where

they were prevalent, there was not a single strain-sharing event between unrelated mothers and

infants in Germany. This was the case despite having conducted all of our sampling in the same

German town (as compared to the multiple towns of the Gabonese and Vietnamese strain-sharing

datasets), meaning we over-sampled German mother-infant pairs living closeby, thereby grossly
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inflating the probability of detecting unrelated strain-sharing in that country. We nonetheless

detected zero.

This suggests that the codiversification patterns we observed in Gabon and Vietnam were

driven by both horizontal- and vertical-transmission, whereas they were driven solely by vertical

transmission in Germany. This is in alignment with basic ecological theory, which posits that

environments with lower dispersal limitation (i.e., non-western ones) exhibit fewer island

dynamics (Koskella, Hall, and Metcalf 2017). There is, however, a technical limitation to this

claim of such magnitude, that it may be rendered invalid: we were operating at the limits of

strain-detection. This is because despite advances in the sensitivity of strain-resolved

metagenomics, the state-of-the-art has been constrained for years by the fact that taxa abundant

in adults are present at very low abundance in infants, and vice versa. This is in part the outcome

of a trend for preference of next-generation-sequencing- over culture-based approaches in this

sub-field (Fitzstevens et al. 2017). We have, however, reached the point where short-read

metagenomics cannot garner sufficient coverage on very-low-abundance representative genomes

to enable robust analysis. Deeper sequencing should in theory solve this problem, but the

detection of species in our dataset already saturated at 3 million paired-end reads; we sequenced

beyond that, and nonetheless found no unrelated mother-infant strain sharing in Germany.

Long-read sequencing may suffer from the same problem; reverting to isolating strains in vitro is

the best way to guarantee we don’t have false negatives for unrelated strain-sharing in Germany.

Enriching metagenome libraries with hybridization is however a molecular technique that should

be developed further, as it could work in both short- and long-read systems, where with efficient

probe-binding, it could be more easily deployed at scale in high-throughput workflows.

Operating at the limit of strain-detection was the fundamental weakness of not only the

strain-sharing project in Gabon, Vietnam and Germany, but also the longitudinal dataset, because

just as the gut ecosystems of mothers and their infants are so different, so too were those of the

longitudinally-studied participant’s infant and adolescent guts. inStrain’s false positive rate is

very low, but we cannot conclude that representative genomes with insufficient coverage in

metagenomes did not persist in the longitudinal dataset. In this sense, this was truly a discovery

dataset; one with which we could ask the question whether any strains persisted at all. My

aforementioned outlook for the field of strain-resolved metagenomics - to rely again on in vitro

culture directly from stool and to develop reliable hybridization protocols from stool
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metagenomes - will enable future researchers of both transmission- and persistence-questions to

conduct studies with not only a low false-positive rate, as we enjoyed here, but also a low

false-negative rate. This will further strengthen our understanding of how gut microbes persist

both within individuals, and also within lineages of human hosts over time, which we identified

here as being the foundation of their ability to confer phenotypes once thought to be conferrable

only by host genomes.
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