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Abbreviations and symbols

Abbreviations
In general, terms in this thesis are spelled out in full and not abbreviated, except
for the cases below. The list includes mostly terms where the abbreviation is more
common than the full name, such as CA1 or fMRI.

CA1-4 Cornu Ammonis, subfields of the hippocampus.
CI Confidence interval
fMRI Functional magnetic resonance imaging
HC Hippocampus
HRL Hierarchical reinforcement learning
MDS Multidimensional scaling
MEC Medial entorhinal cortex
mPFC Medial prefrontal cortex
MWU Mann-Whitney-U-test
PC Place cell
RSC Retrosplenial cortex
SLSQP Sequential least squares programming
STDP Spike-time dependent plasticity
SURF Speeded-up Robust Features, image feature detection algorithm.
SVF Synaptic vector field, assigns movement vectors to positions.
U-SURF Upright SURF
VR Virtual reality
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Abbreviations and symbols

Mathematical symbols

Mathematical symbols for each included publication in alphabetical order. Latin
and Greek letters are listed separately. Bold symbols refer to vectors or tensors. The
codes [A1-4] refer to the full texts in the appendix and are used throughout the
thesis.

[A1] Dual Population Coding for Path Planning in Graphs
with Overlapping Place Representations

c Graph update counter
di SURF feature descriptor, 64-dimensional vector
E Set of all edges αij

F Set of all SURF features f

Fg Set of features visible at the goal
Ft Set of features visible at time step t

f Individual SURF feature
i, j, k, l Feature enumerators
Jt Indices of outgoing edges αij at time point t

l Learning step
Ni Neighborhood, set of simultaneously visible features to fi

P Set (Bundle) of paths p

p Dijkstra path
t Time step

αij Direction from fi to fj

βi Bearing of fi
β̂i Stored bearing of fi
γ Generic angle
η Heading vector
θN Neighborhood threshold
θS Descriptor similarity threshold
κ Stiffness constant
ν Allocentric reference direction
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Mathematical symbols

[A2] Hierarchical Planning in Multilayered State-Action
Networks

A− Weight update strength constant
j, k Position-encoding neurons
sj Time since the last spike of neuron j

wk,j Connection from neuron k to j

wP1 Connections to directly neighboring neurons
wP2 Connections to neurons one position away
wPR Connections between region and position neurons
wRR Connections between region neurons

τ0, τSTDP time constants

[A3] Gateway identity and spatial remapping in a combined
grid and place cell attractor

D Gateway database
d Periodic distance function
e Percentage of winning cells in maxe

G Grid cell activity
Ĝ Grid cell activity estimated from place cells
gij Activity of grid cell ij
H Cartesian coordinate transformation matrix
I Weight function synaptic strength constant
ij Grid cell at position (i, j) in the grid
maxe Winner-take-all nonlinearity
n2 Number of cells per module, arranged in a n× n square
P Place cell activity
Rβ Grid orientation rotation matrix
spq Shifts around the standard rhomboid
T Weight function global inhibition constant
t Time step
U Uniform distribution
v(t) True velocity at time point t

9



Abbreviations and symbols

v̂(t) Estimated velocity at time point t

Wp
g Weights from grid to place cells

wij
k l Connection weights from cell ij to cell kl

xij Cartesian coordinates of grid cell ij
xmax Highest activity input in maxe

α Gain parameter defining grid spacing
β Grid orientation
Γ Gateway identifier
ϵ Estimation error
σ Weight function Gaussian width

[A4] Metric information in cognitive maps: Euclidean
embedding of non-Euclidean environments

dij Distance from i to j

E Set of edges
eij Edge from vi to vj

G Graph
i, j, k Places in the maze
n Number of vertices
p, q Embedding solution enumerators
T Triplet of neighboring places
V Set of vertices
vi Vertex at place i

X Set of vertex positions
xi Position of vi

αijk Heading change at j when moving from i to k

λ1, λ2 Stress function weight constants
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Summary

Decades of research into the neural representation of physical space have uncovered
a complex and distributed network of specialized cells in the mammalian brain. It
is now clear that space is represented in some form, but the realization remains
debated. Accordingly, the overall aim of my thesis is to further the understanding
of the neural representation of space, the cognitive map, with the aid of theoretical
computational modeling (as opposed to data-driven modeling). It consists of four
separate publications which approach the problem from different but complementing
perspectives:

The first two publications consider goal-directed navigation with topological graph
models, which encode the environment as a state-action graph of local positions
connected by simple movement instructions. Graph models are often less constrained
than coordinate-based metric maps and offer a variety of computational advantages;
for example, graph search algorithms may be used to derive optimal routes between
arbitrary positions. In the first model, places are encoded by population codes of
low-level image features. For goal-directed navigation, a set of simultaneous paths
is obtained between the start and goal populations and the final trajectory follows
the population average. This makes route following more robust and circumvents
problems related to place recognition. The second model proposes a hierarchical
place graph which subdivides the known environment into well-defined regions. The
region knowledge is included in the graph as superordinate nodes. During wayfinding,
these nodes distort the resulting paths in a way that matches region-related biases
observed in human navigation experiments.

The third publication also considers region coding but focuses on more concrete
biological implementation in the form of place cell and grid cell activity. As opposed
to unique nodes in a graph, place cells may express multiple firing fields in different
contexts or regions. This phenomenon is known as “remapping” and may be fun-
damental to the encoding region knowledge. The dynamics are modeled in a joint
attractor neural network of place and grid cells: Whenever a virtual agent moves
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into another region, the context changes and the model remaps the cell activity to
an associated pattern from memory. The model is able to replicate experimental
findings in a series of mazes and may therefore be an explanation for the observed
activity in the biological brain.

The fourth publication again returns to graph models, joining the debate on the
fundamental structure of the cognitive map: The internal representation of space
has often been argued to either take the form of a non-metric topological graph or
a Euclidean metric map in which places are assigned specific coordinates. While the
Euclidean map is more powerful, human navigation in experiments often strongly
deviates from a (correct) metric prediction, which has been taken as an argument for
the non-metric alternative. However, it may also be possible to find an alternative
metric explanation to the non-metric graphs by embedding the latter into metric
space. The method is shown with a specific non-Euclidean example environment
where it can explain subject behavior equally well to the purely non-metric graph,
and it is argued that it is therefore a better model for spatial knowledge.

Beyond the individual results, the thesis discusses the commonalities of the mod-
els and how they compare to current research on the cognitive map. I also consider
how the findings may be combined into more complex models to further the under-
standing of the cognitive neuroscience of space.
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Zusammenfassung

In den letzten Jahrzehnten hat die Forschung nach der Frage, wie Raum im Gehirn
repräsentiert wird, ein weit verzweigtes Netzwerk von spezialisierten Zellen aufge-
deckt. Es ist nun klar, dass Räumlichkeit auf irgendeine Art repräsentiert sein muss,
aber die genaue Umsetzung wird nach wie vor debattiert. Folgerichtig liegt das
übergeordnete Ziel meiner Dissertation darin, das Verständnis von der neuronalen
Repräsentation, der Kognitiven Karte, mithilfe von theoretischer Computermodel-
lierung (im Gegensatz zu datengetriebener Modellierung) zu erweitern. Die Arbeit
setzt sich aus vier Publikationen zusammen, die das Problem aus verschiedenen,
aber miteinander kompatiblen Richtungen angehen:

In den ersten beiden Publikationen geht es um zielgerichtete Navigation durch
topologische Graphen, in denen die erkundete Umgebung als Netzwerk aus loka-
len Positionen und sie verbindenden Handlungen dargestellt wird. Im Gegensatz zu
Koordinaten-basierten metrischen Karten sind Graphenmodelle weniger gebunden
und haben verschiedene Vorteile wie z.B. Algorithmen, die garantiert optimale Pfade
finden. Im ersten Modell sind Orte durch Populationen von einfachen Bildfeatures
im Graphen gespeichert. Für die Navigation werden dann mehrere Pfade gleichzei-
tig zwischen Start- und Zielpopulationen berechnet und die schlussendliche Route
folgt dem Durchschnitt der Pfade. Diese Methode macht die Wegsuche robuster und
umgeht das Problem, Orte entlang der Route wiedererkennen zu müssen.

In der zweiten Publikation wird ein hierarchisches Graphenmodell vorgeschlagen,
bei dem die Umgebung in mehrere Regionen unterteilt ist. Das Regionenwissen ist
ebenfalls als übergeordnete Knoten im Graphen gespeichert. Diese Struktur führt
bei der Wegsuche dazu, dass die berechneten Routen verzerrt sind, was mit dem
Verhalten von menschlichen Probanden in Navigationsstudien übereinstimmt.

In der dritten Publikation geht es auch um Regionen, der Fokus liegt aber auf der
konkreten biologischen Umsetzung in Form von Place Cell und Grid Cell-Aktivität.
Im Gegensatz zu einzigartigen Ortsknoten im Graphen zeigen Place Cells multiple
Feuerfelder in verschiedenen Regionen oder Kontexten. Dieses Phänomen wird als

13



Zusammenfassung

Remapping bezeichnet und könnte der Mechanismus hinter Regionenwissen sein. Wir
modellieren das Phänomen mithilfe eines Attraktor-Netzwerks aus Place- und Grid
Cells: Immer, wenn sich der virtuelle Agent des Modells von einer Region in eine
andere bewegt, verändert sich der Kontext und die Zellaktivität springt zu einem
anderen Attraktor, was zu einem Remapping führt. Das Modell kann die Zellaktivi-
tät von Tieren in mehreren Experimentalumgebungen replizieren und ist daher eine
plausible Erklärung für die Vorgänge im biologischen Gehirn.

In der vierten Publikation geht es um den Vergleich von Graphen- und Karten-
modellen als fundamentale Struktur der kognitiven Karte. Im Speziellen geht es
bei dieser Debatte um die Unterscheidung zwischen nicht-metrischen Graphen und
metrischen euklidischen Karten; euklidische Karten sind zwar mächtiger als die Al-
ternative, aber menschliche Probanden neigen dazu, Fehler zu machen, die stark
von einer metrischen Vorhersage abweichen. Deshalb wird häufig argumentiert, dass
nicht-metrische Modelle das Verhalten besser erklären können. Wir schlagen eine
alternative metrische Erklärung für die nichtmetrischen Graphen vor, indem wir die
Graphen im metrischen Raum einbetten. Die Methode wird in einer bestimmten
nicht-euklidischen Beispielumgebung gezeigt, in der sie Versuchspersonenverhalten
genauso gut vorhersagen kann, wie ein nichtmetrischer Graph. Wir argumentieren
daher, dass unser Modell ein besseres Modell für Raumrepräsentation sein könnte.

Zusätzlich zu den Einzelergebnissen diskutiere ich außerdem die Gemeinsamkeiten
der Modelle und wie sie in den derzeitigen Stand der Forschung zur kognitiven Karte
passen. Darüber hinaus erörtere ich, wie die Ergebnisse zu komplexeren Modellen
vereint werden könnten, um unser Bild der Raumkognition zu erweitern.
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Chapter 1

Introduction

In the late 17th century, famous physicist Isaac Newton originally defined the con-
cept of absolute, observer-independent physical space as a theoretical basis for his
Principia. The question whether such a space exists and if it can be perceived as such
kicked off a centuries-long and still ongoing philosophical debate involving famous
names like Berkeley, Hume, or Kant (O’Keefe and Nadel, 1978).

The argument revolves around the problem that, by definition, an observer-
independent space cannot be observed. What remains is the subjective experience,
that is, the perception and internal representation of space and its structure. Points
of dispute are, for example, if this subjective experience of space is learned or innate,
how it is understood in relation to the world or the observer, or if and how it follows
mathematical and geometrical rules. Regardless of its philosophical status, if space
is processed by our cognitive apparatus, its experience becomes an issue of cognitive
and computational psychology and may be studied with empirical and theoretical
methods (O’Keefe and Nadel, 1978; Mallot, 2024).

The modern research field that studies how space is perceived and processed is
called “spatial cognition” and was arguably established by John O’Keefe and Lynn
Nadel with the publication of their book The Hippocampus as a Cognitive Map in
1978. The lab had famously discovered place-encoding cells in the rat hippocampus
a few years earlier (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976). For the discovery
of these “place cells”, John O’Keefe was awarded the 2014 Nobel prize in Physiology
or Medicine together with Edvard Moser and May-Britt Moser for their discovery
of the related position-encoding “grid cells”.

Today, 45 years later, The Hippocampus as a Cognitive Map remains the the-
oretical pillar on which nearly all subsequent study of spatial cognition and the
hippocampal formation rests. Key questions in the field concern the acquisition of
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Chapter 1 Introduction

spatial knowledge, its properties, how we use it, how the understanding of space
changes over the life span, and how it varies from individual to individual (Nadel,
2013; Warren et al., 2017).

The perception and utilization of space is closely interlinked with many other cog-
nitive domains including vision, object recognition, social cognition, language, and
the understanding of events, actions, and causality. Among these, spatial cognition
is the most widespread and is considered to be the evolutionary predecessor of the
other domains (Mallot, 2024; Peer et al., 2021).

In this thesis, I present four computational models of spatial cognition which
revolve around an internal representation of space, the so-called “cognitive map”. In
the following, this concept is introduced, as well as the related topics navigation,
wayfinding, hierarchy, the involved brain areas and neurons, remapping, and the
general organization of the spatial knowledge.

1.1 Navigation: from routes to maps
“Navigation is the process of determining and maintaining a course or
trajectory from one place to another.”
– Gallistel, 1990, p. 35.

This statement concisely describes navigation as a process with four parts: a start,
a goal, the planning of a route, and finally performing the selected behavior. In
the course of evolution, organisms have developed a multitude of strategies to deal
with each part in various ways. Generalizing broadly, the strategies may be divided
into two frameworks depending on their complexity (O’Keefe and Nadel, 1978, [A1]
Mallot et al., 2020):

(1) Stimulus-response association, and

(2) the representation of places and their relations in a cognitive map.

1.1.1 Stimulus-response association

The term stimulus-response association or recognition-triggered response describes
an innate or learned reflexive or reflex-like behavior that is triggered upon the recog-
nition of a specific cue (Trullier et al., 1997; [A1] Mallot et al., 2020). In the literature,
this framework has also been called “means-end-relations” (Tolman, 1932), “taxon
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system” (O’Keefe and Nadel, 1978) or “control laws” (Kuipers, 1978). In a stimulus-
response association, behavior is inflexible and entirely depends on the particular
cues that may be encountered by the animal. These include, for example, phototaxis
(orienting towards light), chemotaxis (following a chemical gradient), or thigmotaxis
(moving along a wall) (Mallot, 2024). The approach of a target landmark, which in-
volves orienting the body towards an observable goal, is referred to as “guidance”,
“piloting”, or “homing” if the landmark is the animal’s home location (O’Keefe and
Nadel, 1978; Trullier et al., 1997; Franz and Mallot, 2000; Eichenbaum, 2017). In a
more general theoretical context, the stimulus-response association may be consid-
ered a state-action pair, which can account for more behavior than just navigation.

It directly follows that by learning stimulus-response-stimulus triplets, individual
actions may be chained together to more complex sequences (e.g., Collett et al.,
1998; Collett and Collett, 2002). Such a series that leads the animal from one place
to the next until a distant goal is reached is called a “route”. Routes allow the
animal to reach places that are not immediately observable, but the sequences alone
are generally considered inflexible because they depend on the correct ordering of
events from start to goal (O’Keefe and Nadel, 1978; Eichenbaum, 2017; Mallot, 2024).
For example, route knowledge usually does not include detours or alternatives if a
passage is blocked.

The stimulus-response and route frameworks may be maximized by considering
overlapping population codes of states and routes and linking them up to topological
graphs from which novel routes can be inferred from the combination of known
route segments (Trullier et al., 1997; Mallot and Basten, 2009; Madl et al., 2015;
Eichenbaum, 2017; [A1] Mallot et al., 2020). Graph models are again introduced in
Section 1.4.

However, contrary to the beliefs of early behaviorist psychology, a range of be-
haviors have been observed that are ill-explained by simple stimulus-response asso-
ciations. During navigation, animals dynamically weigh multiple inputs and desires
which may lead to different behaviors in the same situation, such as hunger, thirst,
fear, or curiosity. They have explicit place memories from which optimal strategies
may be derived and can suddenly change their behavior if relevant information is
acquired. In this sense, the behavior is not based on the encountered stimuli alone
but also depends on the internal states of the animal, such as goals, desires, beliefs,
percepts, and so on. The framework that accommodates the inner state and beliefs
of the animal is called the “cognitive map” (Mallot, 2024).
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1.1.2 The cognitive map

The internal representation of places in a relational structure is called the “cognitive
map”. As opposed to mere route knowledge, places in the cognitive map are system-
atically related to each other by a set of spatial transformation rules (O’Keefe and
Nadel, 1978). The idea is generally attributed to Edward Tolman, who observed
latent learning without reward in rodents, which could not be explained with the
then prevalent behaviorist theory, i.e., reward-based stimulus-response associations:

“We believe that in the course of learning something like a field map
of the environment gets established in the rat’s brain [...] and it is this
tentative map, indicating routes and paths and environmental relation-
ships, which finally determines what responses, if any, the animal will
finally release.”
– Tolman, 1948, p. 192.

Whereas a route specifies a predefined sequence of actions from start to goal, a map
specifies none of these. Instead, actions and behavior may directly be derived from
places in the map and it can be used to navigate from any arbitrary place in the
map to any other, including novel shortcuts and detours (Tolman, 1948; O’Keefe
and Nadel, 1978; Gallistel, 1990; Trullier et al., 1997; Mallot, 2024; [A4] Baumann
and Mallot, 2023b). In O’Keefe and Nadel (1978), this system is called “locale”
and is declarative knowledge (“knowing that”), in contrast to the “knowing how”
of the taxon system (Squire and Knowlton, 1995). The cognitive map is the most
general and flexible navigation framework, and it is now generally accepted that
many animals, but definitely humans, have access to this representation (Gallistel,
1990; Nadel, 2013; Warren, 2019; [A4] Baumann and Mallot, 2023b).

A key concept related to (metric) cognitive maps are spatial reference frames. A
map may generally be defined in an egocentric or allocentric fashion. In an egocentric
map, places and landmarks are defined relative to the observer’s fixed body axes, i.e.,
an object is to the front or behind, or left or right of the observer. For an illustration
of the reference directions, see Fig. 1.1. Whenever the observer moves, the positions
of all objects in the map shift instead. In an allocentric map, places and landmarks
have static coordinates and relations may, for example, be expressed with cardinal
directions like north or west. The position of the observer in the map is dynamically
updated and relative directions need to be computed from the observer’s orientation
and position in the map (Moser et al., 2017; Mallot, 2024).
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1.1 Navigation: from routes to maps

Figure 1.1: Reference frames. The relative distance and direction between animal
and goal depends on the choice of allocentric (the coordinate origin) or egocentric
(the rat) reference frame. Here, “North” is defined in the same allocentric coordinate
system as the coordinate origin but drawn on the rat for illustrative purposes. It is
not a separate reference. Figure redrawn from Nyberg et al. (2022) with permission.

The orientation of the observer and map are especially important for successful
navigation: If distances are over- or underestimated, the animal can simply stop
or continue moving forward relative to the actual distance, but if directions are
wrong, the goal will be missed entirely. Therefore, it is imperative to have access to a
reference direction. This reference is in principle arbitrary and can be maintained by
path integration or may be inferred from landmark positions or compass-like senses.
Path integration describes the ability to track one’s own position by accumulating
traveled direction and distance relative to a starting point. It can be performed even
without external information (e.g., in the dark) by relying on inertial information,
but is susceptible to the accumulation of errors (Eichenbaum, 2017; Epstein et al.,
2017; Peer et al., 2021).

Relying on fixed external references such as the directions of landmarks, compass-
like information like the bearing of the sun, the stars, or geomagnetism, is much
more robust and powerful, and many species have developed the ability to use this
information to travel vast distances (e.g., Wiltschko and Wiltschko, 2005; Müller
and Wehner, 2007).

The necessity to track and relate spatial information to these external references
makes the formation and maintenance of a map much more complex than simple
route knowledge (Eichenbaum, 2017). However, once formed, the information con-
tent of a map is much higher than route knowledge, because it describes all possible
routes in the map, and each new addition to the map is automatically related to
all other places, albeit at a computational cost. Map knowledge is also more robust
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than the strict sequences in route knowledge: The position of a place or landmark
is independent of others, and it may be removed without impacting the remainder
(O’Keefe and Nadel, 1978).

Of course, both types of navigation can coexist, and are likely used by many
animals, including humans. In rodent experiments, it has been shown that the avail-
ability of extra-maze references, together with a large number of choices, favors the
use of a map-based strategy, while the absence of cues and minimal choices favor
landmark-based homing. This is supported by findings that the different types of
navigation utilize different regions of the brain, and inhibiting one region will lead to
the expression of the other behavior in conflicting situations (McDonald and White,
1994; McDonald et al., 2004).

1.2 The neural basis of the cognitive map

The cognitive map is built from individual experiences of the environment. However,
some of its properties may also depend on the scaffolding of the map, that is, specific
features of the underlying brain circuits. As such, to fully understand navigation, it
is necessary to analyze the physiology involved in the cognitive map.

45 years ago, O’Keefe and Nadel (1978) reviewed the effects of hippocampal dam-
age on the performance of rodents in a variety of navigation tasks and concluded that
the hippocampus is generally necessary for navigation, but only in tasks that require
a cognitive map. Animals with damaged or lesioned hippocampus instead relied on
route following and recognition-triggered behavior, which have been shown to be
supported by non-hippocampal areas like the dorsal striatum instead (O’Keefe and
Nadel, 1978; Morris et al., 1982; McDonald and White, 1994; Eichenbaum, 2017).

Accordingly, O’Keefe and Nadel suggested the hippocampus as the locus of the
cognitive map. Their claim was supported by the earlier discovery of the so-called
“place cells” in the dentate gyrus and the CA1 and CA4 subfields (cornu ammonis,
usually abbreviated) of the rat dorsal hippocampus: These cells were observed to
fire whenever the rat was at a specific position or combined position and orientation
within the testing environment (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976). The
preferred firing area of a place cell is known as its “place field”; for an example, see
Fig. 1.2a. The place fields of multiple cells overlap, and the entire environment is
represented by a population code of place cells (Wilson and McNaughton, 1993).

Place cells encode the animal’s location in an allocentric reference frame and
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1.2 The neural basis of the cognitive map

Figure 1.2: Example firing fields of (a) a model hippocampal place cell and (b)
an entorhinal grid cell, based on the same trajectory. Spikes of the target cell are
recorded while the animal explores the environment. The accumulated spikes per bin
can then be plotted as an activity heatmap. The plots here are schematic examples
generated by the model described in [A3] Baumann and Mallot (2023a) and are not
based on actual recordings.

are anchored to local landmarks and geometry (O’Keefe, 1976). Their place fields
rotate, shift, stretch, and deform in response to corresponding changes to local cues
and the enclosure walls, but only if the animal has learned the undistorted version
beforehand (Muller and Kubie, 1987; O’Keefe and Burgess, 1996). However, the cells
do not require the presence of these cues and continue to fire at the same location
in the dark or if the cues are removed O’Keefe and Nadel, 1978; Moser et al., 2017.

Since their discovery in rodents, the existence of place cells has been confirmed in
many other species, including (but not limited to) non-human primates (Rolls and
O’Mara, 1995), bats (Yartsev and Ulanovsky, 2013), and humans (Ekstrom et al.,
2003). Consistent with the cognitive map theory, fMRI recordings in humans have
also found activity in the hippocampus that corresponds to the distance between
locations (Morgan et al., 2011; Howard et al., 2014; Deuker et al., 2016; Epstein et
al., 2017). Note that it is generally assumed that the hippocampal formation serves
the same broader function in all mammalian species and findings in one species
can be transferred to another; however, the question whether the same underlying
navigational systems are available to humans and other animals, is still unresolved
(Epstein et al., 2017).

Following the discovery of place cells, a number of other cell types supporting the
cognitive map hypothesis have been found in the hippocampal formation, particu-
larly in the entorhinal cortex, presubiculum, subiculum, and dorsal hippocampus
(Moser et al., 2017; Nyberg et al., 2022). Key among these were the compass-like
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head direction cells which are tuned to allocentric directions (Taube et al., 1990),
border or boundary vector cells which signal the presence and distance of nearby
walls (Solstad et al., 2008; Savelli et al., 2008; Lever et al., 2009), speed cells tuned
to running speed (Kropff et al., 2015), discrete object-encoding cells (Deshmukh and
Knierim, 2011), and metric distance-encoding grid cells (Fyhn et al., 2004; Hafting
et al., 2005; Doeller et al., 2010). Among these, many cells are also conjunctive, ex-
pressing multiple types of information at the same time (Solstad et al., 2008; Kropff
et al., 2015; Hardcastle et al., 2017).

Especially the grid cells received much attention due to their striking resemblance
to a coordinate system. Located in the (medial) entorhinal cortex, these cells fire
periodically in a way that tiles the environment into a continuous 2D hexagonal
grid with consistent spacing and orientation (Fig. 1.2b), and multiple grid cells are
organized in modules of similar firing properties. Like place cells, grid cells always fire
at the same positions, regardless of orientation or running speed, implying that grid
cells have continuous access to information about traveled distance and direction.
Consequently, they are considered a mechanism for path integration (McNaughton
et al., 2006; Peer et al., 2021).

Like place fields, the firing fields of grid cells also stretch, deform, and rotate if the
learned environment is changed accordingly (Krupic et al., 2015), suggesting that
the activity may be linked to external cues in a way that can override blind path
integration (Moser et al., 2017). Head direction and border cells have been suggested
as candidates for relating the grid cells to the fixed environments (McNaughton et
al., 2006; Epstein et al., 2017; Peer et al., 2021).

In addition, cell activity is highly context-dependent: When the rat moves or is
moved from one enclosure to another, place fields unpredictably change to a new,
uncorrelated pattern (Lever et al., 2002; Leutgeb et al., 2005; Leutgeb et al., 2007;
Colgin et al., 2008; Julian et al., 2018). If the animal later returns to the first en-
closure, the original pattern can be observed again, and the process is repeatable.
The place cells express two orthogonal place codes, one for each context. This phe-
nomenon is known as (global) remapping. It can also be observed in passive animals
when cues in the environment are changed to resemble another environment (Bo-
stock et al., 1991; Lever et al., 2002; Leutgeb et al., 2005), and in dependence of the
current task, goal, or recent history (Latuske et al., 2018; Keinath et al., 2020). The
addition or manipulation of barriers within an environment does not cause global
place cell remapping (Muller and Kubie, 1987; Duvelle et al., 2021; Widloski and
Foster, 2022), although single place fields may be affected.
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Remapping also occurs in grid cells, although it behaves slightly different: When
the context changes, the firing peaks of different grid modules have been observed
to shift to a new, uncorrelated pattern while scale and relative orientation remain
unchanged (Fyhn et al., 2007; Marozzi et al., 2015). Due to functional and anatomical
projections from the entorhinal cortex to the hippocampus, grid cell realignment has
previously been suggested as a possible candidate for causing place cell remapping,
but not exclusively (Monaco and Abbott, 2011; Bush et al., 2014; Moser et al., 2017).

Taken together, the findings suggest that the cognitive map is instantiated by
a network of entorhinal and hippocampal neurons which encode position, distance,
and orientation with sufficient accuracy and flexibility to enable a dynamic repre-
sentation of the animal’s location (Epstein et al., 2017; Moser et al., 2017; Nyberg
et al., 2022). In addition, the hippocampal formation creates unique representations
for different tasks, regions, or contexts which are specific to that cognitive structure
(Eichenbaum, 2017; Latuske et al., 2018; Widloski and Foster, 2022).

1.3 Wayfinding and regions

To guide navigation, the cognitive map must, at the very least, enable the animal
to derive the current direction and distance to its goal. In its simplest form, this
information may correspond to a Euclidean straight line, but many environments
and behaviors require more circuitous paths and may allow for detours and shortcuts
(Nyberg et al., 2022).

While the exact mechanisms for wayfinding remain unknown, experimental work
has made a variety of discoveries that provide insight into how the hippocampal
formation might be involved (Nyberg et al., 2022). Evidence for distance coding
corresponding to both Euclidean straight-line and path distance has been found in
humans (Howard et al., 2014; Brunec et al., 2017) and bats (Sarel et al., 2017); the
latter study also found evidence for goal-direction-encoding cells in bat CA1. Goal-
directed fMRI correlates were also measured in the human entorhinal and subicular
regions (Chadwick et al., 2015).

Recent models propose that the grid cells may be involved in obtaining this in-
formation. For example, by comparing the shift in grid cell population codes at the
current and goal locations, a goal-directed vector could be derived (Bush et al., 2015;
Banino et al., 2018). Alternatively, the grid cells could directly probe different di-
rections, virtually moving the activity ahead of the animal until the goal is found
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(Erdem and Hasselmo, 2012). If the cognitive map contains information about the
connectedness of locations, such as the adjacency of place fields, a gradient could be
spread throughout the map. This gradient could then guide the animal towards the
goal and even around obstacles (Erdem and Hasselmo, 2012; Ponulak and Hopfield,
2013; [A2] Brucklacher et al., 2021), similar to breadth-first search in graph theory.

An additional factor for wayfinding, especially over large distances, is the subdivi-
sion of space into separate regions or hubs that hierarchically structure large spaces
to simplify search and to support planning. Specifically, the term “regionalization”
is used in this context to refer to the observation that humans cluster locations
and landmarks hierarchically on the basis of spatial and non-spatial attributes like
neighborhood, shared boundaries, and semantics (Noack et al., 2017; Mallot, 2024).

Overall, navigation is influenced by the shape and position of superordinate re-
gions, navigational bottlenecks like gateways or boundaries between regions, and
nested structures like rooms within buildings (Mallot, 2024). For example, direc-
tions and distances between places in different regions are biased towards the center
of gravity of their superordinate regions from memory (Stevens and Coupe, 1978),
and distance estimates and response time increase over region boundaries (McNa-
mara, 1986; Peer and Epstein, 2021). Regional knowledge is quickly acquired, and
subjects preferably perform routes that cross the fewest region boundaries or reach
the goal region as fast as possible (Wiener and Mallot, 2003). The behavior may
be explained by a “fine-to-coarse” planning strategy, where more distant places are
represented at a lower resolution, and only the current region is fully represented;
details about the later path are worked out as the corresponding regions are entered
(Wiener and Mallot, 2003). In [A3] Baumann and Mallot (2023a) we propose that
this mechanism may be realized by global remapping in different contexts.

Environmental hierarchy and regionalization are less explored in non-human an-
imals, but studies of rodent behavior in hierarchically structured mazes indicate
that the animals also act efficiently in accordance with a hierarchical task structure
(Roberts, 1979; Fountain and Rowan, 1995).

1.4 Structure and content of the cognitive map

The cognitive map is a theoretical construct to explain spatial processing in the
brain, particularly in the hippocampal formation. It assumes that the animal stores
information about the environment in a simplified form and that this information
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corresponds to the environment to at least some degree. Due to preconceptions about
maps, one might be led to believe that we carry around an actual two-dimensional
map in our heads, and introspection might not necessarily disagree. However, this is
not the intent behind the term. The cognitive map is not meant as a picture which
looks like the content it represents, but rather as an information structure from
which map-like images can be reconstructed and navigational behavior generated.
Like the intuitive image one would have of a map, this structure has classically
been assumed to be Euclidean metric; that is, places and landmarks are embedded
in Euclidean space (O’Keefe and Nadel, 1978; Gallistel, 1990; McNaughton et al.,
2006; Nadel, 2013). Euclidean space is a continuous metric space defined by (usually
two or three) coordinate axes, and relationships between points can be expressed in
terms of vectors, distances, and angles (Peer et al., 2021).

The creation of a Euclidean metric map requires the ability to determine the
absolute position and orientation of one’s own body and all encountered landmarks
relative to the coordinate origin. This process can happen iteratively and is the
central topic of simultaneous localization and mapping (SLAM) in mobile robotics
(e.g., Durrant-Whyte and Bailey, 2006).

Once properly formed, a Euclidean metric map is a powerful computational tool
for navigation, because every position in the map is automatically related to every
other position (Fig. 1.3). Trajectories between arbitrary locations can directly be
inferred from the map and do not need to be learned individually. This includes
the ability to navigate to novel places and to find shortcuts or generate detours
and allows the structure to store an immense amount of data ((Nadel, 2013); [A4]
Baumann and Mallot, 2023b).

However, it turns out that human performance in navigational tasks is often much
worse than what a single coherent Euclidean map would predict. Direction and
distance estimates and shortcuts show systematic errors that go against geometric
postulates like the triangle inequality, which a Euclidean map should in principle
adhere to (Tversky, 1992; Foo et al., 2005; Warren et al., 2017; Meilinger et al., 2018;
Warren, 2019). The findings imply that space is encoded much less precisely than
what would be expected from a coordinate-based metric map.

Therefore, a less restrictive alternative is often proposed: Spatial knowledge may
take the form of a non-metric graph (also often called topological graph because
it reflects a coarser topology rather than an exact map), which consists of nodes
describing places or possible states and edges describing adjacency, paths, actions,
or transition probabilities (Fig. 1.3). Navigation works similar to route knowledge
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Figure 1.3: Maps and graphs. (a) Euclidean metric map with ground truth posi-
tions. All places are represented by specific unique coordinates and vectors to arbi-
trary positions can be calculated. (b) Non-metric graph. In the graph, only specific
places and the relations between them are encoded, but no other positions. Addi-
tional connections and the location of other places cannot be directly inferred from
the graph, but it may be possible to guess them; for example, if the graph is labeled
with distance and direction information, direct shortcuts between distant nodes can
be obtained from vector addition (Warren, 2019). (c) There is no guarantee that
the cognitive map matches the ground truth. Instead, it may be distorted, e.g, due
to measurement error. Both models can account for such a distortion, but in the
metric map, conflicts might eventually arise between local position information and
the stored representation.

in that each trajectory is a unique state-action sequence (Kuipers, 1978; Kuipers,
2000; Mallot and Basten, 2009; Stachenfeld et al., 2017). However, unlike simpler
stimulus-response-based behavior, a graph can be much more complex; states may
have more than one associated action and novel sequences can derived from the
graph at any point.

The discrete states make the graph model much less robust than a metric map: If
place recognition fails along the way, the route cannot be continued and the animal
needs return to a place it recognizes and start anew. Robustness of navigation thus
depends foremost on the invariance of place recognition, which may improve with
larger catchment areas (like place fields) or population-coded places and routes ([A1]
Mallot et al., 2020). To allow for detours and shortcuts, the graph may be labeled
with local vector information like the distance and direction to neighboring places.
By adding the vector information along a path in the graph, the direct connection
between distant points can be inferred. Compared to the metric map, the individual
labels are still independent from each other and need not be consistent or adhere
to metric postulates. Therefore, the so labeled graphs may be better at explaining
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large deviations from the Euclidean metric observed in human navigation (Warren
et al., 2017; Warren, 2019).

What the graph model gains in explanatory power and simplistic elegance, it
in turn loses in computational and storage efficiency. Each addition to the graph
requires the explicit encoding of at least one, if not multiple links to its neighbors,
resulting in an enormous number of pairwise links in a well-known environment
(Nadel, 2013).

The two model classes, metric map and non-metric graph, are often considered in
opposition (Chrastil and Warren, 2014; Warren, 2019; Peer et al., 2021). However,
finding definite evidence for either model is not easy, because they tend to be cor-
related in most regular environments, and both path-based and metric information
can be derived from either model. It has also been argued that both models may
be available to the brain in a complementary fashion, for example, with Euclidean
metric immediate environments connected by a hierarchical region graph (Kuipers,
1982; Meilinger, 2008). Still, it remains open to debate whether spatial knowledge
is Euclidean metric, graph-based, or a combination of both (Peer et al., 2021).

1.5 Aim of this thesis

The interaction with space is one of the fundamental abilities that most if not
all living beings developed over their evolutionary history. The ability to move and
navigate is more specialized but has still resulted in an immense breadth of behaviors
and adaptations with varying complexity. Research on the neural representation of
space in mammals has uncovered a highly developed system of specialized cell types
situated in the hippocampus, entorhinal cortex, prefrontal cortex, and more. The
characteristic firing patterns of these cells have prompted investigators to search for
the neural mechanisms underlying both single cell activity and the overall network
with behavioral studies, neuroimaging, and theoretical modeling.

The considerable difference between measurable single-cell activities in restricted
environments and the resulting complex behaviors makes the cognitive neuroscience
of space a highly conceptual field. In fact, the cognitive map, the theoretical neural
representation of space, is an interpretation of what investigators expect the com-
bined system to do but not a measurable quantity (so far). Accordingly, theoretical
modeling is needed to combine the findings from electrophysiology and behavioral
studies to further our understanding of spatial cognition and the underlying systems.
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In the following, I present four theoretical computational models for the cognitive
map, which contribute to different facets like wayfinding, hierarchy, and the struc-
tural and functional organization of the system. Roughly following the order of the
introduction, the works focus on various aspects related to the population coding
of positions and routes, effects of region boundaries, place and grid cell remapping,
and graph versus map-based representations. Beyond the individual results, I also
discuss which aspects of the models best match our current knowledge of the cogni-
tive map, the functional implications, and ways to combine the findings into more
complex models. Note that a more detailed summary of the results is given in the
next chapter.

• In [A1] Mallot et al. (2020), we consider a parsimonious model for the cognitive
map based on simple visual features. Sets of these features are distinct enough
that positions and routes can robustly be represented by population coding. By
following “votes” towards the next position along the route, a virtual agent
is able to navigate a large-scale environment without further structural or
behavioral constraints.

• In [A2] Brucklacher et al. (2021), we propose a neural network for hierarchical
wayfinding based on superordinate region nodes. Activity is spread throughout
the network to create a gradient that leads a virtual agent towards the goal.
Importantly, this gradient is influenced by the superordinate region nodes,
which enables the model to replicate region biases observed in human naviga-
tion experiments.

Importantly, these graph models operate under the assumption that each place
in the environment corresponds to a specific unique node (or population of nodes)
in the graph. Hippocampal place cells, on the other hand, remap between contexts
and express multiple firing fields in larger environments (see Section 1.2).

• To account for this phenomenon, in [A3] Baumann and Mallot (2023a), we pro-
pose a model for place and grid cell remapping based on the context change at
region boundaries. Whenever a region is entered, associated place cell patterns
are reactivated from memory and the system changes to the region-specific
place code by relying on attractor dynamics. The model matches remapping
behavior and cell activity observed in multi-compartment environments and
predicts a regionalized hierarchical cognitive map.

34



Bibliography

• Lastly, in [A4] Baumann and Mallot (2023b), we join the longstanding debate
on the functional organization of the cognitive map: Fundamentally, the repre-
sentation of space in the brain must deviate from real space due to restrictions
that come with successive local egocentric measurements. These deviations are
especially apparent in non-Euclidean environments and have been used to ar-
gue that human spatial knowledge is mostly non-metric and therefore best
explained by a non-metric graph model. We argue for a metric alternative, a
distorted Euclidean embedding, which can explain human navigational perfor-
mance in a virtual reality (VR) experiment equally well.
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Chapter 2

Results

This chapter gives a brief summary of the findings of each publication. The full
results including relevant figures and interpretations can be found in the appendix.
Further details are also given in Chapter 3: Discussion.

2.1 [A1] Dual Population Coding for Path
Planning in Graphs with Overlapping Place
Representations (Mallot et al., 2020)

We presented a parsimonious view-based graph model for spatial navigation, which
relies on simple image features for place recognition and series of recognition-
triggered responses for wayfinding but does not require explicit metric or coordinate-
based information. Invariant encoding of places and routes is achieved via dual
population coding: Each position is defined by a set of simple but descriptive image
features (SURF, Bay et al., 2008) with overlapping catchment areas, connected to
neighboring features as nodes in a large graph. For wayfinding, multiple parallel
routes are calculated between the local features and the features at the goal; the
goal can then be reached by following the set of routes by combining them in a
voting scheme.

The algorithm was tested in a virtual street network by repeatedly guiding a vir-
tual agent from start to goal in real-time. The algorithm performed well; routes were
only slightly longer than optimal straight-line trajectories and performance was not
hindered by aliases in the feature graph, which led to occasional impossible connec-
tions. As a consequence of the population coding of routes, the resulting trajectories
were not paths in the graph but a metric average of multiple simultaneous routes.
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The algorithm also sometimes guided the agent along alternative roads over multiple
repeats of the same trial if the routes were of similar length.

We concluded that navigation based on stimulus-response association can success-
fully be combined with spatial population coding and graph knowledge. The method
requires only simple image processing and avoids more complex problems like the
selection of optimal views or learning a consistent metric map. The trade-off is that
the redundancy encoded in the graph comes with higher memory and processing
requirements.

2.2 [A2] Hierarchical Planning in Multilayered
State-Action Networks (Brucklacher et al.,
2021)

Complex environments can be subdivided into multiple meaningful regions which
simplify path planning and have a measurable effect on human navigation (e.g.,
Wiener and Mallot, 2003; Hochmair et al., 2008). To simulate the effects of regional-
ization on wayfinding, we created a series of spiking neural networks representing a
low-level place graph connected to a simpler high-level region graph. We then investi-
gated the influence of this hierarchical structure on planning speed and the resulting
route choice in comparison to non-hierarchical single-level models. Directed routes
were obtained by initiating a wave of spiking activity at the goal location which
propagated through the network, resulting in a goal-directed gradient.

We found that the hierarchical structure drastically sped up the wayfinding pro-
cess and that the algorithm chose biased routes in line with human navigational
behavior: Rather than selecting a straight-line trajectory like the non-hierarchical
single-level model, the multi-level model found routes that preferentially entered the
goal region as quickly as possible, which also has been observed in human navigation
(Wiener and Mallot, 2003). The additional region nodes only slightly increase the
size of the graph compared to the non-hierarchical version but lead to better results.
We concluded that the model may be a more biological plausible cognitive map than
a model without region representation.

42



2.3 Baumann and Mallot (2023a)

2.3 [A3] Gateway identity and spatial remapping
in a combined grid and place cell attractor
(Baumann and Mallot, 2023a)

Place and grid cells have been observed to remap to uncorrelated but specific firing
patterns in different compartments of the experimental maze. The cell behavior
cannot be explained from path integration, i.e., grid cell activity, and local sensory
input alone. We proposed a model of place and grid cells in which remapping is
triggered by context changes, in this case when moving from one compartment to
another. In the model, each entrance to a region (the “gateway”) is associated with a
stored place cell population code, which is reinstated whenever the region is entered.
Attractor dynamics then also cause the grid cells to remap, and local path integration
may resume.

We let a virtual agent explore multi-compartment environments and compared
the simulated cell behavior to results from rodent research. Importantly, gateways
in the model are linked to local cues and can therefore be confused if two regions
look similar enough. This will lead to expression of the same firing fields in visually
identical rooms, in line with measurements from rodent place and grid cells in multi-
compartment environments (e.g., Fuhs et al., 2005; Carpenter et al., 2015; Grieves
et al., 2016). By making the gateways direction-selective, the model was also able
to replicate directionally selective firing fields which have been commonly observed
in narrow corridors.

Based on the results, we argued that remapping is a fundamental property of cog-
nitive maps, indicating that the map is divided into multiple regions. That is, the
world is at least divided into similar and dissimilar parts, and only the current con-
text is represented in full; however, because animals can clearly execute trajectories
into other regions, some sort of higher-level representation must exist. The theory
is possibly supported by the existence of region-encoding cells in the perirhinal or
medial prefrontal cortices (cf. Hyman et al., 2012; Bos et al., 2017).

We also proposed that the model dynamics might be realized by hypothetical “gate
cells”, which would learn a place cell pattern via neuronal plasticity and reactivate
that pattern whenever the relevant stimuli occurred. A candidate for such a cell type
may exist in the retrosplenial cortex (Jacob et al., 2017), which has been suggested to
be involved in the recognition of context changes (Pothuizen et al., 2008; Wesierska
et al., 2009).
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2.4 [A4] Metric information in cognitive maps:
Euclidean embedding of non-Euclidean
environments (Baumann and Mallot, 2023b)

Literature on the representational structure of the cognitive map, i.e., what form spa-
tial information might take in the brain, generally distinguishes between Euclidean
metric and non-metric graph-based representations. This long-standing debate in
part arose due to the observation that human behavior in many cases strongly devi-
ates from what a Euclidean metric map would predict. Non-metric models can often
better explain the deviations but sacrifice useful metric properties in turn.

We focused on a specific example, a navigation experiment by Warren et al. (2017),
in which human participants explored a non-Euclidean environment in VR. Partici-
pant estimates were strongly biased towards the non-Euclidean distortions, which led
the authors to conclude that similarly, only a non-Euclidean graph-based cognitive
map could explain the findings. We considered another alternative, a systematically
distorted Euclidean metric map, obtained by embedding the non-metric graph into
2D coordinates.

We compared the models on the same dataset as Warren et al. (2017) and found
that the distorted map predicted the behavior equally well, even though a Euclidean
metric map can in principle not represent the non-Euclidean environment without
errors. Our results at least partially disagree with the original study, and we argue
that the embedded graph may be a better model for the cognitive map, because it
utilizes the additional information conveyed by the metric constraints rather than
discarding it. Our findings also support the possibility of combined models with both
metric and non-metric properties (e.g., Peer et al., 2021).
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Chapter 3

Discussion

This thesis considers specificities of spatial cognition and the cognitive map through
a lens of computational modeling. The findings of each included publication are al-
ready discussed at length in their respective sections in the appendix; therefore, in
the following overall discussion, the focus lies not so much on the individual results,
but rather on the additional knowledge that can be gained from the combination
of the individual findings, how the different models may complement each other,
or where they might disagree. I specifically discuss how the models and the cogni-
tive map in general may be used for wayfinding, navigation, and the hierarchical
segmentation of complex large-scale environments and conceptual spaces. Many of
the points offer potential future avenues of research for theoretical computational
modeling or behavioral and electrophysiological neuroscience.

Ever since the discovery of place cells and related parahippocampal cell types,
the field of spatial cognition has advanced at a tremendous rate. The cells have
become one of the most powerful tools in understanding the processes behind spatial
mapping and the cognitive system and navigation may become one of the first
brain functions that are fully unraveled. With this in mind, the models discussed
here successfully describe a variety of phenomena and findings from long-distance
navigation, regionalization, spatial hierarchy, and remapping – but there are also
many particularities that they do not cover. Humans and rodents do not have a
perfect 3D reconstruction of the environment in their head, but there is also more
structure to their knowledge than simple images or rote memorization. As always
with extremes, the true cognitive map likely lies somewhere in between.
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3.1 Population coding of routes and wayfinding

To model navigation, increasingly complex systems can be created that account for
mechanisms like invariant landmark of place recognition, strategic selection of way-
points and reference frames, the embedding of disparate places in a coherent metric
map, or hierarchical structures. However, following Occam’s razor, models always
come with a trade-off between power and simplicity, i.e., how many functions or
how much data they can explain with the fewest parameters possible. It is therefore
of interest to consider the more parsimonious models for spatial navigation.

In state-action graphs describing navigation (e.g., Kuipers, 1978; Franz et al.,
1998; Kuipers, 2000; Warren et al., 2017; Warren, 2019), a place in the environment
usually corresponds to a single node in the graph, such that a unique state-action
scheme can control each navigational step. Without further specification of places,
this type of encoding is very fragile: if a place is not recognized along the way,
navigation may fail, possibly catastrophically. On the other hand, improving place
recognition or, for example, selecting which places or landmarks make good choices
for nodes in the graph, leads to much more complicated models.

In [A1] Mallot et al. (2020), we argued that, from an evolutionary point of view,
robust wayfinding should be possible even with only rudimentary place recognition
and distributed place representations. Accordingly, we proposed a (in some respects)
minimal view graph model (cf. Franz et al., 1998), a type of state-action network
where views are associated with movement instructions towards the next place along
a route.

The model differs from the classical state-action graphs by using population codes
for both place and route definitions: At any point in time, sets of descriptive low-
resolution image patches like corners or edges (SURF, Bay et al., 2008) are extracted
from the scene. The features are intended as a rudimentary place recognition system
that eschews the need for more complex image segmentation or landmark or object
recognition methods. While the features are relatively unique, they are prone to
aliasing, i.e., there may be other places in the environment which contain the same
features, especially in large graphs.

Each SURF feature has a specific area from which it can be detected, its catch-
ment area. A specific position in the environment was thus defined by the population
code of features with overlapping catchment areas, and the entire environment was
mapped by a graph of these features. Invariant place recognition was then gained
by defining a place similarity threshold function which allowed for the graded recog-
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nition of places from parts of the corresponding population code. The system was
intended to function similar to how place cells may encode each position with a
population code of overlapping place fields (Wilson and McNaughton, 1993), but
directly based on visual input.

For wayfinding, multiple non-overlapping routes were obtained from breadth-first
search (Dijkstra’s algorithm) throughout the graph, and movement instructions were
assigned to each feature along the routes. As a consequence of the overlapping place
code, action selection was also based on a set of instructions at each point along
the way, and the resulting movement was decided by a voting scheme. Because
each feature had a specific catchment area and many features were part of a route,
this population coding system led to route representation with a certain breadth,
allowing for trajectories which are not part of the graph itself.

In testing, the algorithm efficiently and robustly guided an agent around a large
virtual environment, finding routes that were only 10% to 20% longer than optimal
straight-line trajectories. The method successfully combined spatial population cod-
ing with graph-based representation and guidance. However, what the model gained
in simplicity and robustness, it lost in computational efficiency: Over time, the in-
discriminate addition of newly detected features led to massive graphs which were
costly to store and access.

With [A2] Brucklacher et al. (2021), we proposed an alternative navigation scheme
based on a hierarchical state-action network in multi-region environments. The states
at the lower level of the hierarchy were modeled as neurons that each represented a
specific place in the environment, comparable to place cells (but without place fields
or population codes). Connections between states were bidirectional and represented
vectors from one place to the other. For wayfinding, the vertices corresponding to
the goal were activated and propagated a wave of neuronal activity throughout the
network, which strengthened goal-directed connections (cf. Ponulak and Hopfield,
2013). The wave passed through the entire map and formed a gradient vector field
pointing back to its origin, which could be followed to reach the goal.

Gradient-based navigation is comparable to the population coding of routes with
a certain breadth in the sense that deviating from the center of the route will not
necessarily result in failure or a restart of the wayfinding process; at least to a certain
extent, the correct path remains available. However, as opposed to a set of routes,
the gradient vector field extends over the entire environment and can always lead
the agent towards the goal barring local minima.

In addition, the graph was outfitted with higher-level region nodes that were con-
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nected to the lower level in a way that allowed the activity to spread to distant
regions faster. The so defined regions also distorted the vector field in a way that
allowed the model to replicate navigation behavior of humans in similar environ-
ments. For example, when choosing among equally long paths to the goal, subjects
have been observed to prefer routes that crossed less region borders and routes that
entered the goal region as quickly as possible (Wiener and Mallot, 2003; Hochmair
et al., 2008).

Both models describe plausible methods to derive goal-directed routes on the
level of place cells. Both models are also robust, because the solutions they give
allow for deviations from the direct route to the goal without immediate failure.
Aside from these commonalities, however, the models function very differently and
make different predictions on how a biological implementation, i.e., the cognitive
map, may be involved in wayfinding.

3.1.1 The role of preplays and graph search

Biological evidence for the encoding of future trajectories has been found in a place
cell firing behavior known as “(p)replay”: during rest or pauses in navigation, for
example, at decision points in mazes, temporally compressed sequences of place cell
activity can be measured that depict paths ahead of the animal. These trajectories
can be completely novel and pass through unexplored portions of the environment,
suggesting that they are a neural mechanism for prospective planning and not just
route memory (Johnson and Redish, 2007; Dragoi and Tonegawa, 2011; Pfeiffer and
Foster, 2013; Ólafsdóttir et al., 2015).

Preplays differ from the sets of paths in [A1] Mallot et al. (2020) in some respects.
While the sequence depicted by a preplay may also have a certain breadth due to
the spatial extent of the involved place fields, there is no indication that this is
a result of multiple parallel paths like in the wayfinding algorithms used in our
model. Furthermore, preplay events do not always occur (or are at least not always
measured) and do not necessarily correspond to the animal’s future path. The role
of the sequences in wayfinding remains inconclusive (Nyberg et al., 2022).

Research suggests that hippocampal preplay may, for example, only aid plan-
ning under specific circumstances, such as when the task places a high cognitive or
mnemonic demand on the animal, but not if the task is simple (Pfeiffer and Fos-
ter, 2013; Xu et al., 2019). The sequences may also depict routes to places that are
to be avoided or to alternative goals. Accordingly, hippocampal preplays may be
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related to memory consolidation by actively maintaining a representation of less-
visited places (Nyberg et al., 2022). This is similar to a suggested role of the medial
prefrontal cortex (mPFC): In the region, temporally compressed activity sequences
occur simultaneous to hippocampal preplays (Tang et al., 2021; Nyberg et al., 2022).
The difference seems to be that while the hippocampus alternates between different
possible routes during deliberation, the mPFC maintains and predicts the actual
upcoming choice. In this sense, both regions are likely involved in a cooperative
interaction for wayfinding, memory consolidation and decision making (Tang et al.,
2021).

In any case, preplays seem to be deliberate virtual paths through the mental rep-
resentation of space and, as such, place a strong demand on models of the cognitive
map that intend to be biologically plausible. This is exemplified in a critical differ-
ence between graph-theoretical models (including [A1] Mallot et al., 2020 and [A2]
(Brucklacher et al., 2021)) and preplays in biology: There seems to be no search (in
the graph-theoretical sense) prior to the preplay, or it at least cannot be detected
in the place cell activity. That is, there is no expanding wave or functionally similar
breadth-first search throughout the biological network (Pfeiffer, 2020). Rather, the
hippocampus appears to be already aware of the upcoming route and goal choices
before the actual preplay occurs. Preplays are therefore either not indicative of a
path planning process at all, or another mechanism must exist. Note that the oft-
cited “sweep” ahead of the animal in Johnson and Redish (2007) describes the linear
activation sequence of place cells in the replay and is not meant to imply a searching
behavior.

As already mentioned in the introduction, the involvement of grid cells may be
a possible solution for this conundrum. Recent evidence suggests that grid cells are
directly involved in place cell replays: During the events, grid and place cells show
increased coordination (Ólafsdóttir et al., 2016; Yamamoto and Tonegawa, 2017)
and inhibiting direct input from medial entorhinal cortex to CA1 reduces the length
of preplays in awake animals, suggesting that the input is necessary for proper route
simulation (Yamamoto and Tonegawa, 2017; Nyberg et al., 2022). In agreement,
fMRI recordings from human entorhinal cortex show increased grid cell-like activity
during imagined navigation (Bellmund et al., 2016).

If the position encoded by the grid cells could, for example, be virtually moved
while the animal remains in place, it may be possible for the brain to directly cal-
culate goal-directed vectors from the difference in population codes for the current
location and the goal (Bush et al., 2015; Banino et al., 2018). If the goal is too far
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away or unknown, the virtual movement could instead be used to probe different
directions originating from the animal’s current position; the so generated activity
could then be evaluated to find positions closer to the goal (Erdem and Hasselmo,
2012). In line with this hypothesis, grid cells in the superficial layers of the medial
entorhinal cortex can also replay trajectories without accompanying place cell activ-
ity (O’Neill et al., 2017), but whether this means that the areas and cell types play
a separate role in wayfinding remains to be determined (Nyberg et al., 2022).

In [A3] Baumann and Mallot (2023a), we suggested that grid and place cells are
functionally connected to form a combined stable attractor in which changes to the
activity of one cell type will directly influence the other. The combined attractor
model was intended as an explanation for remapping, but it could also be used to
simulate preplays, for example, with directional probes (Fig. 3.1). In line with the
suggested grid cell mechanisms, the model would predict sequences of place cell
activity from virtual grid cell movements and could thereby explain spontaneous
place cell preplays without preceding search.

3.2 Regions and remapping

In human spatial memory and path planning tasks, differences in distance estimation,
recall speed, and preferred routes arise depending on region partition and transitions
between regions (Stevens and Coupe, 1978; McNamara, 1986; McNamara et al.,
1989; Wiener and Mallot, 2003; Hochmair et al., 2008; Schick et al., 2019). Note
that the definition of what constitutes a region is often not clear-cut; coherent areas
separated by physical barriers are obvious examples, but regions may also overlap
or have different definitions depending on the involved task or context. In any case,
navigation is influenced by this hierarchical structure, and it is therefore likely that
the cognitive map is similarly hierarchically organized into regions (Julian et al.,
2018).

In [A3] Baumann and Mallot (2023a) we argued that the remapping observed
in place and grid cells (e.g., Fyhn et al., 2007), i.e., the expression of independent
firing fields in different contexts, may be the mechanism behind this hierarchical
organization. That is, the world is divided into regions of different abstract contexts,
which are dynamically expressed by the place and grid cell population patterns.
Remapping naturally occurs at region boundaries, for example, when the animal
moves from one compartment to another, but it does not occur within a coherent
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Figure 3.1: Grid cell forward probes could generate preplays even after remapping.
The figure shows a simplified 1-dimensional example of the place cell model of grid
cell summation, as described in [A3] Baumann and Mallot (2023a). That is, place
cell formation is a result of grid cell peak coincidence. This system is able to generate
place cell preplays by successively activating neighboring grid cells, which will lead
to place cell discharge (PC1, PC2) whenever activity peaks in the two grid cell
modules coincide. Importantly, the system only needs to know the correct grid cell
sequence (e.g., the toroidal surface model in Guanella et al., 2007), but nothing about
the relationship between place cell firing fields, and is therefore compatible with
remapping: Grid cells remap module-wise by shifting the positions of cell firing peaks,
but the ordering of cells within a module remains the same (Marozzi et al., 2015).
Therefore, the same sequence of cells can still be activated after remapping, but
other peaks will coincide, leading to a different place cell preplay in the new context.
This example is based on a similar model for goal-directed navigation proposed in
Erdem and Hasselmo (2012).

region. Due to reuse of the same cells in different population codes in other contexts,
only the current context, i.e., the current bounded region, can be fully represented
at a time. At region boundaries, the local context change causes the cells to remap,
thus representing the new region in the cognitive map (Klukas et al., 2021). In this
way, remapping should necessarily lead to a hierarchical representation of the world.

To capture these properties, we designed an attractor neural network of place
and grid cell firing. In the model, the context is realized as a database of region
transitions with associated place cell patterns: Whenever the simulated animal moves
from one compartment to another, the corresponding pattern is reactivated via top-
down input, and both place and grid cells remap concurrently due to reciprocal
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connections. Because the place code in the model is limited to the current region
and only changes when the animal moves to another region, transitions between
regions must be an especially important navigational bottleneck; and unless the
animal can virtually remap, wayfinding should be limited to the current region and
nearby region transitions. Indeed, preplays often occur at decision points in mazes
(Johnson and Redish, 2007; Xu et al., 2019), which may correspond to context or
region boundaries, but it is unknown whether these can cross the boundaries or how
remapping is involved.

The limitations raise the question of how routes may be planned into other, cur-
rently unavailable regions in the first place. In [A2] Brucklacher et al. (2021), we
presented a hierarchical wayfinding algorithm relying on a graph with representative
region nodes. In the model, the entire graph was available at all times and remap-
ping between regions was not considered. To include these considerations, the model
could be changed to only represent one region at a time while other regions would
remain collapsed until they are entered (Fig. 3.2). Cells at the region boundary
would then directly connect to the neighboring higher-level region nodes, making
them subgoals for long-distance navigation akin to the gateways in [A3] Baumann
and Mallot (2023a). As in [A2] Brucklacher et al. (2021), the so constructed cog-
nitive map should lead to navigation in accordance with the hierarchical structure
presented by the region nodes. For example, routes might preferably enter the goal
region as soon as possible and cross the least amount of region boundaries regard-
less of actual region size, in line with human behavior (Wiener and Mallot, 2003;
Hochmair et al., 2008; Schick et al., 2019).

Still, the complete remapping between contexts remains puzzling: It is clearly not
the case that details about another context are inaccessible outside of that context.
We can easily visualize familiar places and routes, and we are usually not surprised
when we travel to other locations. The system must have a predictive component and
some information about distances, directions, and spatial extent must be available
in advance.

A possible explanation may be that this information is instead available at lower
resolutions or reduced level of detail. Other regions may be represented by simplified
spatial schemata or “gists” (Farzanfar et al., 2023) describing only abstract relations
or the commonalities between multiple environments. A gist of space is a represen-
tation with reduced detail, just like the gist of an experience is meant as a brief
summary of a particular memory. The integration of multiple schemata might allow
for the independent representation of other contexts; without such a system, an al-
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Figure 3.2: Hierarchical graph with region transitions. (a) A graph of two known
regions with their corresponding higher-level region nodes R1, R2. The white nodes
are transitions between the two regions. As in [A2] Brucklacher et al. (2021), the
region nodes are bidirectionally connected to each lower-level node (edges omitted
for clarity). (b) The lower level of the graph is collapsed and only the current region
remains available for navigation. Due to the connection between the transition nodes
(white) and the goal region (R2), they become important subgoals along the way.
Once the goal region is entered, navigation can proceed as normal. In this scheme,
wayfinding would function as in [A2] Brucklacher et al. (2021), but the system would
allow for remapping and the reuse of place cells to generate the place code in other
regions.

gorithm purely based on sequences of discrete regions alone might be too restrictive
to explain the full experience of (human) navigation.

3.2.1 Neurological evidence for region coding

In the brain, candidates for region or broader context representation exist in various
areas. In humans, the prefrontal cortex has been suggested as a locus for representing
this hierarchical structure (Balaguer et al., 2016; Schapiro et al., 2016), in line with
the general involvement of the area in complex planning tasks (Spiers and Gilbert,
2015; Epstein et al., 2017). Cells in the medial prefrontal cortex show different firing
patterns depending on time, region, and task (Hyman et al., 2012), although the
patterns are less distinct than different hippocampal place codes.

In the rodent perirhinal cortex, neurons have been found that continuously fire
while the animal stays within a specific region like an arm of the experimental maze
(Bos et al., 2017). Functional connectivity suggests that the postrhinal cortex might
also provide navigational context to the hippocampus via the MEC, but further
research, for example, from lesion studies, is required to confirm its involvement in
remapping (Ho and Burwell, 2014; Julian et al., 2018).
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The retrosplenial cortex is likely also involved in the encoding of regions and
context: The area is reciprocally connected to the hippocampus and parahippocam-
pal region and plays a role in spatial working memory (Vann et al., 2009) and the
representation of situated contexts like rooms within a larger building (Kim and
Maguire, 2018). Lesions in the area impair the ability to deal with conflicting spa-
tial cues and to account for context changes like switching from light to darkness or
distal and local cues (Pothuizen et al., 2008; Vann et al., 2009). Interestingly, some
cells in the retrosplenial cortex have direction-specific local firing fields at doorways
between experimental rooms (Jacob et al., 2017), and are therefore candidates for
the theoretical gateway units proposed in [A3] Baumann and Mallot (2023a).

3.3 The form of spatial knowledge

The cognitive map models discussed in the previous sections are a mixture of non-
metric graph-based and metric map-based approaches to spatial representation. In
general, metric maps are more focused on the representation of geometry and the
embedding of places and landmarks in a shared coordinate system, while graph-based
models focus on relations between places and state-action-state transitions. Both
types of representations have their advantages and disadvantages; for a summary,
see Section 1.4 in the introduction or Peer et al. (2021) for a recent review.

Regardless of computational or functional advantages, the question may be asked
whether the information represented in the human cognitive map is more graph-
or map-like. The form of the spatial representation in the brain has been debated
since the very beginnings of the study of spatial cognition, dating back to Edward
Tolman’s “means-end-field” (Tolman (1932), a state-action graph) and O’Keefe and
Nadel (1978) arguing for Euclidean metric properties to represent a similarly Eu-
clidean metric world.

In general, graph models are not metric and thus less constrained than metric
maps: Spatial relations between encoded places are independent and can describe
arbitrary information that need not reflect any real-world properties. For example,
if distance or direction between nodes are encoded (the “labeled graph”, cf. Warren,
2019), the information can violate metric postulates like the triangle inequality. In a
consistent metric map, on the other hand, stored information needs to adhere to the
metric and cannot be arbitrary. Under the metric scheme, these constraints greatly
reduce the number of possible configurations that the cognitive map can take, and
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compromises must be made to account for subjective measurement errors (O’Keefe
and Nadel, 1978).

This possible mismatch between the subjective experience of space and the cor-
responding map may be used to distinguish the models to reveal the underlying
structure of spatial knowledge: In a recent navigation study by Warren et al. (2017),
human participants explored a VR maze by physically walking around a large room
while wearing head-mounted displays. Importantly, the maze contained two seamless
non-Euclidean wormholes connecting distant parts. These wormholes were intended
to create a mismatch between the subjective experience of the maze, i.e., the local po-
sition information from path integration in the real physical room, and the presented
virtual reality. After learning the maze, participants had to estimate directions to
the remembered positions of different landmarks.

The authors found that the estimates were systematically biased towards the
wormholes in a way that best matched vectors along the shortest path (through the
wormholes) in the maze, but not the shortest distance in Euclidean metric space, i.e.,
a straight line in the physical room. Forward and backward estimates also differed
on the same landmark pair, i.e., the estimated direction from landmark a to b was
not the inverse of the estimated direction from b to a. The authors concluded that
the results are incompatible with a Euclidean metric map and are better explained
by a non-metric graph labeled with local vector information.

In [A4] Baumann and Mallot (2023b) we considered another alternative, a dis-
torted metric map of the maze that would minimize the difference to the subjective
experience of the participants in the Warren et al. (2017) experiment. We were able
to obtain such a map by embedding the proposed labeled graph into 2D Euclidean
coordinates via the minimization of a stress function. We compared the models on
the original dataset and found that our model, the “embedded graph”, predicted
the directional estimates equally well, thereby refuting the conclusion in Warren
et al. (2017). At least from this study, it can therefore not be concluded that the
cognitive map takes the form of a non-metric graph rather than a metric map, and
the question remains open.

In support of metric models like the embedded graph, we argued that the main
difference between the two model classes lies in the treatment of repeated measure-
ments as familiarity with the environment increases: In the beginning, the lack of
constraints in the non-metric graph may be computationally advantageous, because
spatial knowledge can immediately be stored, while the estimation of coordinates for
the metric embedding remains imprecise with only few measurements. However, as

57



Chapter 3 Discussion

more information about the environment is acquired, this dynamic changes: In the
non-metric labeled graph, improving distance and angle information will only ever
improve a single label without exploiting the constraints that these measurements
might impose on adjacent labels. In the metric embedding, on the other hand, the
update of one estimate will also improve the estimate of other adjacent places if
not the entire map. Since place learning is usually not finished after a single pass,
the embedding is therefore the preferable representation. The main advantage of
a metric cognitive map is thus not its resemblance to the physical world but the
possibility to integrate repeated measurements into a consolidated structure ([A4]
Baumann and Mallot, 2023b).

Of course, the purely non-metric graph and the complete Euclidean metric map
are extremes, and mixed models that combine non-metric and metric information
are probable and may have useful advantages, like the hierarchically structured map
with different types of representation at different levels discussed in the previous
section (Section 3.2, see also Couclelis et al. (1987), Kuipers (2000), and Meilinger
(2008)). A combined hierarchical model with metric representation at the lowest
level but only simplified relational (graph-based) knowledge of more distant regions
could be a very efficient way to represent extended space, because only the most
immediate surroundings need to be available in detail for navigation.

On the other hand, there is no intrinsic requirement for more abstract superordi-
nate regions to be represented as a non-metric graph. A metric model could also be
used for higher-level maps at different resolution levels, much like an actual drawn
map; after all, it is unlikely that available metric information would not be used
by the brain. Consider, for example, multiple buildings on a campus, each repre-
sented as a separate region in the cognitive map. With increased familiarity, general
knowledge about the relative distance, scale, and orientation of the buildings would
accumulate in addition to the local maps. Over time, the individual buildings could
then also be combined in a higher-level metric map of the campus.

Another alternative to the dichotomy of metric and non-metric spatial knowledge
is the possibility that the brain is able use either model depending on the circum-
stance. For example, metric maps may preferably be used in open areas with many
possible paths, while graph-based models may be more efficient in environments
with few alternative routes like the interior of buildings (Peer et al., 2021). It is
also possible that the brain uses both models dynamically and can transform one
type of representation into the other. That is, metric maps can be constructed from
graph knowledge and vice versa. Such redundant coding would give the cognitive
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map increased power and flexibility, but it might be inefficient if one type of coding
is enough.

3.3.1 Non-spatial domains

The distinction between metric and non-metric representations is not only relevant
to physical space, especially when considering the complex role of the hippocampus
and the hippocampal formation. In addition to the encoding of space and position,
the hippocampus is also necessary for the formation of long-term memory (Buzsáki
and Moser, 2013). Accordingly, both memory and general planning may have evolved
from earlier navigation mechanisms, and the brain might treat physical and mental
spaces fundamentally the same. The representational structure of the cognitive map,
that is map coding, landmark representation, regionalization, and route planning,
may therefore be a general system for a wide variety of non-spatial cognitive domains
(Tolman, 1948; O’Keefe and Nadel, 1978; Buzsáki and Moser, 2013; Eichenbaum and
Cohen, 2014; Constantinescu et al., 2016; Epstein et al., 2017; Eichenbaum, 2017;
Bellmund et al., 2018).

For example, in the rodent hippocampus, cells have been identified in addition to
place cells that code for odors (Wood et al., 1999), time points (MacDonald et al.,
2011; Rubin et al., 2015), and sound frequencies (Aronov et al., 2017) independent of
location. In humans, fMRI responses from the hippocampal formation match vector
coding in conceptual or abstract spaces: For example, hippocampal activity was
found to match interpersonal distances in a social space spanned by the affiliations
and social hierarchy of multiple people (Tavares et al., 2015). Similarly, grid-like
activity was measured in the entorhinal cortex when human subjects viewed images
of birds with variable neck and leg length sourced from an abstract 2D “bird space”
spanned by these two parameters. Response increased when the depicted image
sequences were aligned to a sixfold rotational symmetry axis, indicative of grid
representation (Constantinescu et al., 2016).

The findings suggest that these domains are also encoded as metric, which would
allow the brain to represent arbitrary states in these abstract spaces rather than just
discrete stimuli or events (Aronov et al., 2017). Wayfinding would correspond to the
consideration of future states and state transitions and may therefore play a more
general role in planning or prospective thinking (Buzsáki and Moser, 2013; Epstein
et al., 2017), and replays of past routes through conceptual spaces might correspond
to episodic memory (Eichenbaum, 2017). Consistent with these ideas, damage to
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the hippocampus results in global amnesia in both spatial and non-spatial domains
(Squire and Knowlton, 1995; Squire, 2004; Eichenbaum, 2017).

Following the preceding discussion, abstract spaces might also be divided into dif-
ferent regions, like, for example, a group of mutual acquaintances in the social space.
The same systems that encode hierarchy and higher-level regions in physical space
could also represent abstract categories. In the temporal domain, time-encoding cell
ensembles in the hippocampus form qualitatively different representation in a man-
ner resembling place cell remapping when the main temporal parameter is altered,
(MacDonald et al., 2011; Buzsáki and Moser, 2013). So far, the interaction between
region boundaries, gateways, and remapping has been mostly restricted to the spa-
tial domain, but these properties (and in this sense, the models discussed here) may
have a much broader application and play a general role in all cognitive systems.

3.4 Open questions and future research

• Gateway-based coding and rooms with multiple entrances: In [A3]
Baumann and Mallot (2023a), we proposed that the place code within a room
is based on remapping at its entrance. The model is consistent with cell record-
ings from multicompartment mazes, but the rooms usually only have a single
entrance. What happens to the place code if the animal enters a previously
learned room from another entrance? Will it generate a new place code like
in the hairpin maze (e.g., direction-specific firing in Derdikman et al., 2009)
or can it recover the original code and its coordinates when the room is recog-
nized? And at what point does that happen?

• Preplays and remapping: As discussed above, the interaction between the
prediction of upcoming paths in preplays and hippocampal remapping is unex-
plored. If preplays indeed reflect future paths, then cases must exist where the
upcoming path will lead the animal into another region, which is not currently
represented in the hippocampal place code (due to remapping). Is virtual
remapping possible, or can preplays simply not cross region boundaries?

• Regionalization and place coding in natural environments: Funda-
mentally, the remapping model discussed here is based on the assumption
that natural outdoor environments are also subdivided into different regions.
That is, remapping should also occur when the animal simply explores its en-
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vironment, and not just in clearly defined mazes. There may be fundamental
differences between the cognitive maps of wild and laboratory animals due to
the limited world of the latter.

• Refinement of the embedded graph: So far, the embedded graph model
has only been evaluated on a single dataset, and it may very well be unable
to match the non-metric graph on other datasets. The big remaining question
is whether the same behavior that has been explained by a non-metric graph
can also always be explained with a metric embedding.
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Abstract

Topological schemes for navigation from visual snapshots have been based on graphs
of panoramic images and action links allowing the transition from one snapshot point
to the next; see, for example, Cartwright and Collett (1987) or Franz et al. (1998).
These algorithms can only work if at each step a unique snapshot is recognized
to which a motion decision is associated. Here, we present a population coding
approach in which place is encoded by a population of overlapping “firing fields”,
each of which is activated by the recognition of an unspecific “micro-snapshot” (i.e.
feature), and associated to a subsequent action. Agent motion is then computed by
a voting scheme over all activated snapshot-to-action associations. The algorithm
was tested in a large virtual environment (Virtual Tübingen, Van Veen et al., 1998)
and shows biologically plausible navigational abilities.

A1.1 Introduction

A1.1.1 Parsimonious Representations of Space

The evolution of spatial cognition in animals started from simple stimulus-response
behaviors such as stimulus-driven orienting reactions, and proceeded further by a
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number of innovations that include (i) mechanisms for egomotion perception and
path integration, (ii) the memorization of stimulus-response pairs composed of a dis-
tinguishable landmark and a navigational action (“recognition-triggered response”),
(iii) the concatenation of such recognition-triggered responses into chains or routes,
and (iv) the linking-up of multiple recognition-triggered responses into networks or
graphs in which novel routes can be inferred by the combination of known route
segments (Trullier et al., 1997; Mallot and Basten, 2009; Wiener et al., 2011; Madl
et al., 2015). In addition, mechanisms for invariant landmark and place recognition,
strategic selection of way- or anchor-points, metric embedding of place-graphs, or
hierarchical graph structures may improve navigational performance and are thus
likely to play a role.

Since many different models can be built on these elements, it is of interest to ask
for a minimal or most parsimonious model supporting a given level of behavioral
flexibility. In this paper, we address this question for the case of the minimal cognitive
architecture supporting way-finding behavior. By a minimal model, we mean a model
meeting the following requirements:

1. A minimal model should be close to the evolutionary starting point of stimulus-
response schemata;

2. it should require only a small amount of visual invariance in object recognition
and therefore work with the rawest possible image information;

3. it should use simple decision processes in path planning such as recognition-
triggered responses; and

4. it should not rely on explicit metric information which is hard to obtain.

With these constraints in mind, we present a model for graph-based navigation
that marks a lower bound of cognitive complexity required for way-finding and that
can be used to study further improvements resulting from additional evolutionary
innovations

The model presented in this paper is not primarily about the hippocampal system
for place as is known from rodents and some other mammalian groups, although
some inspiration has been drawn from these results. Our main interest, however, is
a computational theory of navigation based on devices such as snapshots and state-
action schemata. Such computational theory will have implications for navigational
behavior in insects, mammals, humans, and even robots.
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Figure A1.1: Graph-navigation in single-unit and population coding. A:
In standard topological navigation, every place is represented by a unique node
and route segments are given by the graph-links. The desired trajectory shown in
blue is therefore a graph path. B: In dual population coding, a bundle of paths
is constructed for a given navigation problem. Three such paths without common
nodes (except start and goal) are shown in red, orange, and yellow colors in the
figure. The desired trajectory (shown in blue) is then calculated by a voting scheme
over the currently visible nodes of all paths. It is generally not a path of the graph.

A1.1.2 Dual Population Coding

Two basic elements of spatial representations are (i) stimulus-response schemata
such as Tolman’s (1932) means-ends-relations, O’Keefe and Nadel’s (1978) taxon
system, Kuipers’ (1978) control laws, or the place-recognition-triggered response
of Trullier et al. (1997), and (ii) the representations of places and place relations
such as Cartwright and Collett’s (1982) snapshot-codes for places or O’Keefe and
Nadel’s (1978) locale system. The two systems are connected by the role that place
recognition takes as a “stimulus” in the stimulus-response schemata involved.

In the classical state-action-approach, it is assumed that each place is a state
represented by just one node of a graph (Franz et al., 1998; Kuipers, 1978; Kuipers,
2000; Muller et al., 1996) such that a unique state-action schema will control each
navigational step. If place recognition fails, navigation will go wrong. Robustness
of navigation therefore depends foremost on the robustness and invariance of place
recognition as a prerequisite. Here, we argue that in an evolutionary view of naviga-
tion, robust pathfinding should be possible even with rudimentary place recognition
and distributed place representations.

Our model differs from standard models of topological navigation (Franz et al.,
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1998; Kuipers, 1978; Kuipers, 2000; Muller et al., 1996) in two major respects that
can be summarized as “dual population coding” (see Fig. A1.1): first, at any instant
in time, many nodes of the graph are activated and encode the agent’s position in a
population scheme. This avoids costly selection processes of strategic anchor points
and has the additional advantage that the visual cues and recognition processes can
be kept simple. Of course, population coding of space is well in line with empirical
findings in the place-cell literature (Wilson and McNaughton, 1993). Second, as
a consequence of population coding of space, route selection has to be based on
many interacting recognition-triggered response schemata, one for each active unit
in the population code. This is implemented by a voting scheme where the suggested
motion decisions from all active schemata are averaged. The idea of view voting
has been suggested earlier for human behavioral data (Mallot and Gillner, 2000).
In insect navigation, a similar scheme has been suggested for route following with
multiple snapshots by (Baddeley et al., 2012; Differt and Stürzl, 2021; Smith et
al., 2007), but unlike our model, these models do not allow for alternative route
decisions from a given position. As a result of dual population coding, the trajectory
eventually found by the algorithm is not a path of the graph, but a metric average
of bundles of many paths connecting individual nodes in the population codes for
start and goal.

A1.2 Navigation Algorithm
This section will explain the algorithm in five steps, starting from the initial defini-
tion and later matching of features, and proceeding to the learning of graph edges
and their directional labels. Once the graph is learned, the voting scheme is applied
for pathfinding. All examples shown are taken from a virtual reality implementation
where a simulated agent is exploring and later navigating in the “Virtual Tübingen”
environment (Van Veen et al., 1998).

A1.2.1 Feature Detection

Micro-snapshots are defined as “upright speeded-up robust features” (U-SURF), as
implemented in the OpenCV computer vision library (Bay et al., 2008; Bradski,
2000). SURF finds interest points as intensity blobs by searching local maxima of
the determinant of the image Hessian; color information is ignored. Scale invariance
is achieved by considering each feature point at its optimal scale. In a second step, a
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Figure A1.2: Place fields. Top row: two views from a scene with detected features
(a window and a letter from a company nameplate). Middle row: local maps of the
environment superimposed with the similarity of the reference feature to any feature
detected from each position in the map (mini ||dref −di,x||2). The black × marks the
position where the reference feature was first detected. Third row: same map with
points where one feature was identified with the reference feature, based on both
the similarity criterion and the neighborhood consensus criterion. Note that the set
of locations is not connected. Also, in the larger open space (left column: Market
place), the place fields tend to be larger than in smaller places (right column: Street
crossing “Krumme Brücke”).
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64-dimensional vector (“descriptor”) is associated with each blob, containing infor-
mation about image intensity gradients in a small patch around the interest point.
The descriptor is used to compare and match features with each other. In U-SURF,
it is not assigned a unique orientation and is therefore not rotation invariant. Ro-
tation invariance is not required in our algorithms since the agent is confined to
movements in the plane. The number of scale levels was limited to two octaves with
two layers each since information about the viewing distance of a feature should
not be completely ignored. SURF feature robustness was further increased by con-
sidering only features that appear in two successive frames. Whenever we refer to
features as extracted from a given frame it means that those features also appeared
in the preceding frame.

The features of a frame were ranked according to the value of the determinant of
the local Hessian, i.e. their contrast. Then, the features were pruned so that only
up to 30 features per frame were used for further analysis. In principle, the amount
of features per frame could also be reduced globally by increasing the detection
threshold of the SURF method. However, this could potentially lead to situations
where no feature would be detected at locations where contrast is low.

We denote the features as fi and their descriptors as di; F = {fi|i = 1, ..., n} is
the set of all features stored in the system.

A1.2.2 Feature Matching

Whenever a feature is detected by the U-SURF procedure, it is checked for identity
with all stored features in F using two criteria. First, the root mean squared differ-
ence between the descriptors of the compared features should be below a threshold
ϑS. Second, to avoid aliasing in large sets of features, we require that the features
share a context of at least ϑN other features (neighborhood consensus). To this
end, we store for each feature fi the set Ni of simultaneously visible other features.
Two features fi, fj are thus identified with each other, if ||di − dj||2 < ϑS and
|Ni ∩Nj| ≥ ϑN . If an encountered feature is found to be novel, it is included into F .

The threshold for neighborhood consensus, ϑN , depends on the total number of
features detected in each image. In our simulations, the value was set to ϑN = 4 at up
to 30 different features per frame. Note that aliasing still occurred occasionally even
with expanded feature-neighbor matching (see Sect. A1.2.3 and Fig. A1.4 below).
In practice, the algorithm is robust against a small amount of outliers and can find
and navigate routes even with faulty map data. See Sects. A1.2.5 and A1.3 for more
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Figure A1.3: Graph edge learning. Left: The dotted line shows the trajectory
of agent with time steps (small dots) and learning steps (bold dots). Two features
fi and f2 have already been encountered and added to the feature set. The agent is
currently moving with heading η in the place field of feature f1, but outside of the
place field of feature f2. Right: The agent has now passed the overlap zone where
both features are detected. At the next learning step, feature f2 is detected but
feature f1 has moved out of sight. In this situation, a bidirectional pair of edges
aij, aji is added to the graph and the edges are labeled with the current heading or
its inverse, ±η.

details.
Figure A1.2 shows two features in the respective images from the Virtual Tübingen

data set. In the second row, the position from which each feature was first defined
and added to F is marked by a cross. For all positions in open space, color indicates
the similarity of the most similar visible feature with the stored one; dark blue
marks locations inside of houses that cannot be entered by the agent. The third row
of Fig. A1.2 shows the area from which the feature is detected, using the two-step
comparison procedure with similarity of descriptors and neighborhood consensus. It
will be called the place field of the feature and roughly corresponds to the catchment
areas in snapshot homing or the firing fields of a neuron tuned to the feature.

A1.2.3 Graph Edge Formation

If a feature that was previously visible gets out of sight, the agent must have traveled
a path out of the place field of this feature to some point inside the place fields of
other features that remain or have become visible. This is the basic idea of learning
graph edges in the algorithm. In order to avoid too high densities of graph links,
new edges are not stored at every time step, but at a slower pace.

The basic time step of the algorithm is the frame, i.e. the recording of one image;
we denote frames by the index t. The frame rate used in the graphics simulations
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Figure A1.4: Map of the testing environment “Virtual Tübingen” with
view graph. The view graph can be embedded into a map by placing each feature at
the agent’s position from where it was first detected, and drawing the graph’s edges
between them blue lines). The shown graph completely maps the virtual environment
and consists of 222,433 nodes and 3,492,096 edges. Some of the edges connect very
distant features (long blue lines crossing the empty white space). These are wrong
connections resulting from aliasing.

below is 30 frames per second. Graph learning does not occur at every time step, but
only once in a while, when the agent has moved sufficiently far away from the last
learning event. Learning steps are counted by a second counter l. In the simulations
below, the distance that the agent must have traveled before a new learning step
occurs was set to two simulated meters, which corresponds to 30 frames. Note that
we use the position ground truth of the VR simulation for stepping l. This can
easily be relaxed by some simple path integration algorithm which was, however,
not implemented. The time steps at with learning counter l is stepped, are denoted
by t(l).

Let F1 and F2 be the sets of features visible at two subsequent learning steps l

and l+1, respectively. Assume fj ∈ F1 and fj ̸∈ F2. We then add a pair of directed
edges ajk, akj (forward and backward) between fj and up to three randomly chosen
features fk ∈ F2 to the graph. The edges are labeled with the current heading or its
inverse, respectively (see Fig. A1.3 and next paragraph). The number three of edges
created per vanishing feature is chosen to avoid exceedingly high computation costs
in later graph search. For the same reason, the upper limit of a node’s degree after
repeated visits is set to 100.

An example of the graph after prolonged exploration appears in Fig. A1.4.
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A1.2.4 Edge Labeling and Reference Direction

During the entire travel, the agent is estimating and maintaining an allocentric
reference direction ν which is initialized to the value ν = 0 at frame 1 (see Fig. A1.5).
All other angles are expressed relative to this reference direction, i.e. in an allocentric
scheme similar to the head direction in allocentric path integration (Cheung and
Vickerstaff, 2010; Taube, 2007). The dependent angles are (i) the current heading
angle ηi, (ii) the feature bearings β̂i stored with each feature fi upon definition of
the feature, and (iii) the directional labels of the edges aij, aji which are initialized
with or against the current heading angle, i.e. aij = ηt or αji = ηt + π, respectively.

The reference direction is constantly affected by a noise process n and updated
according to the available landmark cues, i.e. the bearings of known features. Let Ft

denote the set of known features visible at frame t and β̂i be their stored bearings.
The agent compares the current feature bearings with the stored ones and computes
the average deviation as a circular mean. Then, the reference direction is updated
as

νt+1 = νt +
λ

|Ft|
cmean
{i|fi∈Ft}

(
β̂t,i − βt,i

)
+ n, (A1.1)

where λ is set to 0.05 and the standard deviation of n is set to σ = 0.025 rad. The
circular mean of a set of angles {γi} is defined as

cmean(γi)
A

:= atan2
(∑

i∈A

cos γi,
∑
i∈A

sin γi

)
. (A1.2)

This updating rule attributes the average bearing error to the reference direction.
It can compensate for the noise, but introduces a new type of error if the features
are unequally distributed in the image. Assume, for example, that the agent relies
only on features on its left. If it moves forward, these features will move further to
the left, leading to positive deviations β̂i − βi. The algorithm will then assume that
the reference direction has turned to the left. As a result, the reference direction in
a large environments drifts with the agent’s position, as is illustrated in Fig. A1.6.
However, in prolonged exploration, the assumed reference directions convergence to
a stable, locally consistent distribution over explored space.

In addition, the stored bearings for each feature, β̂i are updated at each learning
step at which the feature i is re-detected by the iterative mean:

β̂t(l+1),i =
ci

ci + 1
β̂t(l),i +

1

ci + 1
βt(l+1),i, (A1.3)
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Figure A1.5: The head-direction system. A: During the entire simulation, the
system is maintaining a reference direction ν which is initialized to the movement
direction in the first frame. Heading angle η and feature bearings βi are always
expressed relative to ν. The “true north” direction is known to the virtual reality
simulation, but not to the agent. B: If a feature is detected, its stored bearing label
β̂i is compared to the actual bearing in the current image, βi and the reference
direction is updated so as to reduce the difference between β̂i and βi. Of course, this
is done for many features simultaneously, as described in Eq. A1.1.

where ci is a counter stepped at each update and βt(l),i is measured relative to the
current compass direction νt.

Finally, a link aij may be rediscovered upon a later encounter of the same location.
In this case the associated direction label αij is updated as

αnew
ij =

cij
cij + 1

αold
ij +

1

cij + 1
ηt. (A1.4)

Again, this can happen only when the slow learning counter l is stepped. As for
the bearings, cij is a counter stepped at every update and the ηt is measured from
the current compass direction. Note that the counters ci and cij in Eqs. A1.3 and
A1.4 can be avoided by replacing the bearing and heading angles by unit vectors
and storing sums of these unit vectors as labels. From the accumulated vectors, the
angles can then simply be obtained by the atan2 function.

After training, the agent will have built a data structure {F,E} where F is a
set of features fi with descriptors di, expected bearings β̂i, and feature contexts Ni;
the subset of currently detected features Fi characterizes the position of the agent.
R is a set of directed edges aij with direction labels αij indicating the direction of
movement required to get from the place field of feature i into the place field of
feature j. In addition to this stored data, a reference direction ν is maintained as a
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Figure A1.6: Compass direction drift over a large explored area. The ν
estimate may deviate substantially (over 90◦) from its starting value, but remains
locally consistent.

working memory and updated from the comparison of known and perceived feature
bearings. This latter system models the head-direction systems of rodents and flies
(Seelig and Jayaraman, 2015; Taube, 2007). Place recognition is based entirely on
the recognition of features and the associated place fields.

A1.2.5 Pathfinding and Voting

The algorithm presented here is able to navigate the mapped environment by using
graph search methods on the view graph. It is able to guide an agent to any user-
selected goal location, as long as the environment has been explored sufficiently.
The goal location is defined by a set of known features, and can for example be
provided by an image depicting the goal. The algorithm then calculates multiple
non-overlapping paths from features at the agent’s current position to the set of
goal features, and uses a voting scheme to obtain navigable trajectories the agent
can follow towards the goal location (Fig. A1.7).

In each pathfinding event, for one currently visible feature, the shortest path is
found to one of the features in the goal set with Dijkstra’s algorithm (Dijkstra, 2022).
Then, the nodes of that path are temporarily removed from the graph, except for
the first and last nodes, and the search is repeated for another randomly selected
pair of nodes. Due to the node removal, each path will have zero overlap with all
previous paths. Still, when represented in a metric map, path trajectories will be
similar due to overlapping place fields.

The search terminates when the pair of randomly selected start and goal nodes is
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Figure A1.7: Route examples. Two different examples of path bundles (orange)
from the agent’s current position (black cross) to a goal locations (set of green dots).
The blue background shows the edges of the view graph, as described in Fig. A1.4.

unconnected in the graph lacking the temporarily removed nodes or when an upper
limit has been reached. For example, in the tests detailed in the “Evaluation” section
below, we used 30 successive Dijkstra searches, but the algorithm regularly found
only a lower number of routes (∼27), depending on the amount of exploration. Note
that all edges are considered to have the same length, i.e., Dijkstra paths only differ
in the number of edges they traverse.

Once a bundle of paths has been obtained, we could use the initial edge labels
αij to determine the movement direction from the start location. Later however, it
is not clear which step of each path applies at each position along the overall travel.
Therefore, at each position, we determine the set of currently visible features also
included in the present bundle. From each such feature we take the next edge along
the respective path and thus obtain a set of movement votes (Fig. A1.8).

Each Dijkstra path p in the bundle P has an ordered set of edges Ep =

{aij, ajk, akl, ...} and set of nodes Fp = {fi, fj, fk, fl, ...}. At navigation time, the
set of visible features is Ft. We now consider the indices of all outgoing edges
of currently visible features contained in a path of the bundle, Jt = {(i, j)|fi ∈
Ft ∧ aij ∈

∪
p∈P Ep}. The set of locally applicable motion directions is then given by

αij|(i, j) ∈ Jt. From these we obtain the movement consensus as

αt = cmean
Jt

αij, (A1.5)

where cmean is the circular mean as defined in Eq. A1.2.
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Figure A1.8: Direction voting. 360◦ panorama frame with detected SURF fea-
tures (black and orange circles with vertical bar). During pathfinding, movement is
derived from features that are also part of the path bundle (orange circles): The thick
lines originating from the orange features show their respective movement direction
vote relative to 0◦ (thin vertical stripe). The histogram shows the votes sorted into
10◦ bins and the mean direction αt.
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The final heading vector ηt+1 is calculated with stiffness κ ∈ [0, 1] as

ηt+1 = κηt + (1− κ)(cosαt, sinαt)
⊤. (A1.6)

This results in a smoothing of the trajectory to reduce sway and reduce corner-
cutting behavior; κ was set to 0.7.

Moving into the direction of ηt+1 ideally leads the agent along a route specified by
the bundle of paths, where it will continue to encounter labeled nodes. To facilitate
this process, during path following, the number of features detected in each frame
is doubled, which improves the odds of detecting labeled nodes. If the number of
usable nodes, |Jt|, drops below a threshold of two, we assume that the agent has
diverged from the path. In this case, a new bundle of Dijkstra paths is calculated
with the current feature set Ft as a starting point.

A1.3 Evaluation
Our procedure differs in three important respects from standard approaches to graph-
based navigation such as (Franz et al., 1998; Kuipers, 1978; Kuipers, 2000; Schölkopf
and Mallot, 1995). First, the state of the agent is not characterized by a single node
of the graph, but by a set of nodes which is unique for each confusion area. Second,
path planning, i.e., the process of generating a path from the map, is not a single
graph search but a two-step process involving a bundle of graph paths and a local
voting scheme for direction. Third, we do not employ an explicit control law or
homing scheme for approaching intermediate goals. Indeed, such intermediate goals
are not explicitly used. Rather, the agent proceeds in small, “ballistic” steps.

The algorithm determines if the goal is reached by comparing the set of currently
visible features, Ft, to the set of goal features, Fg, and considers the goal to be
reached if |Ft ∩ Fg| / |Fg| ≥ 0.35. Note that there may be some offset between the
agent’s final position and exact goal location since there is no optimization step in
our ballistic procedure.

Relying on the average of a set of movement instructions solves the problem of
wrong connections introduced into the graph due to aliasing, if enough alias-free
paths are present. A crucial problem of mapping without global metric embedding
and only relying on visual similarity is aliasing, the possibility that two features at
distinct locations are confused. This can lead to the formation of wrong or impossible
connections in the graph, which tend to be shorter than navigable connections (see
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A1.3 Evaluation

Figure A1.9: Performance in “Virtual Tübingen”. A: Map depicting the eval-
uation routes. B: Results of the evaluation. The box plot shows route length above
an optimal trajectory, as depicted in A. Performance is somewhat worse for route
2, because it traverses a wide open area containing lots of distant landmarks, which
are worse for exact navigation. C–E: Ten repetitions of each of the routes 2, 3 and
4. C: repetitions of route 2 show larger variations in open spaces. D: repetitions
of route 3 show occasional choice of route alternatives as well as directional sway
within single repetitions. E: repetitions of route 4 show the lowest variability among
the evaluation routes.
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Fig. A1.4). However, as long as a sufficient number of correct edges corresponding
to navigable trajectories exist, the votes of the erroneous connections will not cause
navigation to fail.

Finally, if the agent is unable to move during navigation, for example due to
obstacles or being stuck in a corner, or if no consensus can be found in the set of
movement instructions, the bundle of paths is recalculated, which has always solved
the problem in our simulation. If the agent ever gets lost, for example because no
known features are recognized, it may return to exploration behavior for a short
while (e.g., random walk).

The algorithm was tested and evaluated in a virtual environment of the downtown
area of Tübingen, Germany (3D model based on (Van Veen et al., 1998)), rendered in
the Unity engine (Unity Technologies, 2018). The agent in the virtual environment
was equipped with a 360◦ horizontal FoV and 60◦ vertical FoV camera projecting to
a 1280× 240 pixel image. Depending on location, the SURF feature detector would
detect some 20 to 350 features per image, which were pruned to a maximum of 30
during exploration and 60 during path following.

When the agent had explored every street of the model at least once, exploration
was terminated (compare Fig. A1.4). In the subsequent test phase, five pathfinding
tasks were defined as start and goal views. Each task was repeated 20 times, and
the traveled distance was measured and compared to that of the shortest possible
route (Fig. A1.9A). The algorithm solved the tasks by first selecting features from
the start view and estimating the reference direction ν from the features’ bearings.
Next, 30 Dijkstra paths were calculated, and from these, the overall trajectory was
generated as described above.

The trajectories found for a single task may greatly differ between repetitions due
to many stochastic influences, such as node selection for start and goal nodes and
the noise added to the reference direction update. Further variation is introduced
by numerical effects in collision detection and the latency between concurrent com-
ponents of the programs running the algorithm and simulation. The algorithm may
even guide the agent along different roads over multiple trials if they are close in
length to the optimal route (see Fig. A1.9D).

The algorithm managed to successfully and efficiently guide the agent from start
to goal in all trials with steady directional movement. On average, the agent’s routes
were only 10% to 20% longer than the optimal routes (Fig. A1.9B). The agent per-
formed better, i.e., the routes were shorter, when they were leading mostly through
roads and alleys rather than traversing large open spaces such as the market square.
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The algorithm was able to guide the agent even with large drift in the reference
direction ν of over 90◦ offset from the starting ν (see Fig. A1.6).

In conclusion, double population coding successfully combines the idea of spatial
population coding with topological navigation by stimulus-response associations. It
does not require highly processed input information but works with sequences of
raw panoramic snapshots and basic feature extraction. Navigational performance
is overall good. With respect to the question of parsimony, systematic work on the
number of required features and graph links is required. In future work, the algorithm
will be used to model human navigational performances such as the perception of
local reference directions (Mou and McNamara, 2002), view voting (Mallot and
Gillner, 2000), or local metric in spatial long-term memory (Warren, 2019).
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Hierarchical Planning in Multilayered
State-Action Networks

Authors: Matthias Brucklacher, Hanspeter A Mallot, and Tristan
Baumann, 2021.

Abstract

The ability to decompose large tasks into smaller subtasks allows humans to solve
complex problems step-by-step. To transfer this ability to an automated system,
we propose a spiking neural network inspired by the neurobiological mechanics of
spatial cognition to represent space on multiple levels of abstraction. As behavioral
experiments suggest that humans integrate spatial knowledge in a graph of places,
neurons in the state-action network encode locations while connections between
them represent transition actions. In a series of simulation experiments, the influence
of hierarchy on planning speed and on the resulting route choice in comparison to
single-level models is investigated. We find that the model chooses biased subgoals
in line with experiments on human navigation.

A2.1 Introduction

Evidence for the use of hierarchical representations for decomposition of complex
tasks is ample and its advantages have frequently been discussed (Wiener and Mal-
lot, 2003; Botvinick et al., 2009; Sutton et al., 1999). One approach to model it,
is Hierarchical Reinforcement Learning (Botvinick et al., 2009; Sutton et al., 1999)
(HRL). There, memorization of longer state-action sequences with known subgoals,
so-called “options”, is introduced. The issue then shifts to how these options are
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learned, termed the “option discovery problem” (Botvinick et al., 2009). In this work,
a different approach is presented, in which the hierarchical structure of the environ-
ment is explicitly represented. Thereby, we address the shortcoming of mechanistic,
neural-level models for hierarchical problem-solving. As suggested in previous work
on graph-based navigation (Mallot et al., 2020; Kuipers, 2000), the state-action net-
work proposed here is a set of environmental states (the neurons/nodes) connected
by transition actions (the synapses/edges). It is then hierarchized by a layer of re-
gion neurons to represent extended areas, for example districts within a city, an
island surrounded by water or even a whole country. Indeed, evidence for neurons
encoding larger navigation segments has been found by Bos et al. (2017).

Human navigation in regionalized environments underlies two strong biases. In an
experimental study by Wiener and Mallot (2003), subjects first explored a virtual
environment and were then asked to navigate to a given landmark. The environments
were divided into multiple regions either by clear boundaries (a river)or common
landmark categories (animals, cars). When choosing among equally long paths to
the goal, subjects preferred routes that crossed less region borders. Interestingly,
they also showed a strong bias to access the region containing the goal as quickly as
possible, neglecting alternative routes of equal length. In this paper, a similar setting
is used to assess model behavior at region transitions, since these are critical points
for hierarchical planning systems. We study interaction of the hierarchical network
with a biologically plausible planning mechanism from Ponulak and Hopfield (2013)
who applied it to single-level networks that lacked explicit action representation. This
planning mechanism can be executed in parallel, in contrast to serial graph searches
such as Dijkstra’s algorithm in Mallot et al. (2020). Simulation experiments firstly
focus on the influence of hierarchical structure on planning time, as faster planning
would be a major advantage for natural and artificial system, and secondly on route
choice.

A2.2 Path-planning in neural state-action
networks

Each neuron in the state-action network illustrated in Figure A2.1 encodes a mem-
orized state in the environment. This can be a visual feature of an object in the
environment, for example a landmark. When the agent recognizes this feature, the
respective neuron receives a sensory input current. Together with the global in-
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Figure A2.1: Components of the hierarchical state-action network. Left: Each
synaptic connection between neurons is linked to a transition action that partici-
pates in voting when active. Strong synapses (bold) dominate the voting process
and result in motion (red vector on the right) towards the goal marked by a circle.
Strengthening of goal-directed connections is a result of the planning process de-
scribed in the main text. Right: Region neurons (shown enlarged) represent extended
areas in space. Each region neuron is bidirectionally connected to each lower-level
neuron within its region (connections omitted for clarity).
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hibitory current, the position of the agent is then encoded in a localized bump of
activity (Ponulak and Hopfield, 2013), a distributed representation. Connections
between neurons are bidirectional and represent transition vectors as shown in Fig-
ure A2.1. Since this work focuses on planning, we assume the network structure to
be given and refer to Mallot et al. (2020) for unsupervised learning of state-action
networks.

For path-planning, both sensory input and the global inhibitory system are turned
off and the neurons corresponding to the goal location are activated. This leads to
a wave of activity propagating throughout the network. As the wave passes, goal-
directed connections are strengthened (Ponulak and Hopfield, 2013). This is achieved
through the use of a time-dependent update rule for synaptic weights that requires
the use of spiking neurons. As neuron k spikes after neuron j, the connection from
k to j, wkj , becomes stronger than the opposing connection from j to k:

dwkj(t)

dt
= δ(sk) · A− ·

(
1− exp

(
−sj
τ0

))
exp

(
− sj
τSTDP

)
(A2.1)

Here, A− is a constant regulating the strength of the weight update, sj and sk

denote the time since the last spike of neuron j and k respectively. τ0 ≪ τSTDP and
τSTDP are time constants. Evidence for such a mechanism that requires only locally
available information has been found for instance by Roberts and Leen (2010). After
planning, sensory input is turned on again and restores the activity bump at the
agent’s current location (black neurons in Figure A2.1). The action to execute is
then determined by a voting process, in which actions (vectors in squares in Fig-
ure A2.1) are weighted by both synaptic weights and presynaptic neuronal activity.
Phrased differently, during navigation the agent follows a synaptic vector field (SVF)
assigning a vectorial action to each position.

A2.3 Results
Increased planning speed To test the influence of hierarchical structure upon plan-
ning speed, a two-dimensional network of 24 × 24 neurons is set up. Each neuron
is bidirectionally connected to neighbors one (with wP1 = 6, Figure A2.1) and two
edges (wP2 = 1) away on the grid. Wavefront propagation in this single-level network
is compared to hierarchical networks with an additional layer of 2× 2 (respectively
3× 3 and 4× 4) neurons. These region neurons are connected to neighboring region
neurons with wRR = 3 and to the lower-level with wPR = 2. Since it can be assumed
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that regions overlap, neurons on borders are connected to region neurons of all ad-
jacent regions (cf. Figure A2.1) with reduced synaptic weights to normalize input
from the higher layer.

A wave of spiking activity is initiated by activating the goal neuron in the upper
right corner of the network, creating a goal-directed SVF as it propagates (Figures
A2.2a-c). In the hierarchical networks, the wave travels on both levels. As shown in
Figure A2.2d, addition of the second layer drastically speeds up the planning process.
Until all neurons are activated, the single-level network takes 55.6ms, compared to
32.4ms of the network with 2× 2 regions (not shown), 35.6ms (3× 3) and 38.2ms
for the network with 4× 4 regions. This equals a reduction of planning time by up
to 42%.

Influence of hierarchy on route choice Following the design of an experiment
on human navigation by Wiener and Mallot (2003), we set up an environment of
discrete places arranged on a grid and distributed across two islands interconnected
by bridges (Figure A2.3). As in Wiener and Mallot (2003), the agent is placed on a
crossroad and must navigate to a given place on the opposing island. To determine
the influence of hierarchical network structure, we compare two agents: one with a
single-level representation of the environment and a second one with an additional
region neuron for each of the two islands. Network connectivity follows the previously
described simulation.

In the planning phase, the neuron representing the goal is activated. In the single-
level network, the resulting activity wave spreads radially from the goal (Figure
A2.3a), whereas in the hierarchical network, it propagates quicker inside the re-
gion containing the goal neuron (Figure A2.3b) and then slows down at the border.
Again, wave propagation is faster in the hierarchical network. The resulting SVFs
are oriented towards the goal, but in the hierarchical network, vectors within the
left region tend to point stronger to the goal region than in the single-level network.
Figures A2.3c) and d) show the resulting trajectories of an agent that is limited
to discrete transitions between the places: these are shown as black horizontal or
vertical lines whose thickness indicates the frequency with which each step was cho-
sen. The grey band shows the average trajectory calculated from all node-to-node
paths. The single-level model chooses paths leading straight to the goal. In contrast,
the hierarchical model displays a preference to reach the goal region as quickly as
possible as indicated by the bent grey line. Both models reliably reach the goal on
an optimal (shortest possible) route: the single-level model in 88% of trials and the
hierarchical model in 90%. Note that here all trajectories consisting of rightward
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(a) Single-level (b) Hierarchical (3× 3 regions)

(c) Hierarchical (4× 4 regions) (d) Duration of planning period

Figure A2.2: Influence of hierarchical structure on planning time. (a): Activity in
a single-level network after 30ms. (b) and (c): same as (a) for hierarchical networks
of different region sizes, as illustrated by black lines. Regions neurons are shown in
increased size. (d): Influence of region size on planning speed (2× 2 corresponds to
the largest regions).
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(a) Without hierarchy after 32ms (b) With hierarchy after 25ms

(c) Without hierarchy (d) With hierarchy

Figure A2.3: Influence of hierarchy on route choice. (a) and (b): Wavefront propa-
gation from the goal marked by the circle in networks without and with hierarchical
structure. For the latter, region neurons are shown in increased size. (c) and (d):
SVF established by the wave and resulting trajectories. single-level model in 88% of
trials and the hierarchical model in 90%. Note that here all trajectories consisting of
rightward and upward steps in the figure have the same total length (are optimal).

and upward steps in the figure have the same total length (are optimal).

A2.4 Discussion
Addition of a hierarchically superordinate layer to the network leads to an increase in
planning speed as well as behavioral effects in line with studies on human navigation.
Compared to their single-level counterparts, the hierarchical networks took much
less time for the planning process. The increase in wave velocity resulted from an
activity wave in the higher layer that provided synaptic input to the wavefront on
the lower level. Larger regions provide an advantage here (Figure A2.2d), but it
can be assumed that there is an optimal granularity. As regions become larger, the
activity wave on the higher level speeds up, and in the extreme case decays before
it can provide input to the lower-level wave.

Simulation experiments on navigational behavior of the model show that a virtual
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agent, equipped with neurons to represent regions, set the closest transition point to
the goal region as a subgoal for navigation, disregarding equally short alternatives.
This effect was caused by the altered shape of the propagating wavefront: Activa-
tion of a region neuron provided additional synaptic input to all neurons within
that region. This input then led to a quick wave traversal of the goal region while
transition to the neighboring region was more costly, slowing the wave down at the
borders (Figure A2.3b). From there, it propagated perpendicularly to the borders –
in contrast to the wavefront of the single-level networks that spread radially from
the goal (Figure A2.3a). The resulting SVF of the hierarchical network was thus
biased towards region transitions and with it the resulting path choices. This obser-
vation is in line with behavior of human subjects (Wiener and Mallot, 2003) that
preferred to reach the goal region as quickly as possible, too. Here, model behavior
is in contrast to HRL. If, in HRL, options are chosen purely based on the reward
structure of the environment, all paths of equal length will be selected with equal
probability, as can also be expected from breadth-first path searches. Compared
to HRL, subgoal selection is much more straightforward in our model, where it is
simply a result of altered wavefront propagation, whereas in HRL it leads to the
option discovery problem (Botvinick et al., 2009). To allow for task-domains beyond
navigation, states and actions in the present model would have to be generalized
similarly to implementations of HRL (Sutton et al., 1999).

A2.5 Conclusion
The proposed model combines a multilayered state-action network with bio-inspired
planning. When investigating model behavior, we found that it selects subgoals in
line with human subjects. In combination with the model’s biological plausibility,
this poses it as a candidate explanation for hierarchical navigation, although exper-
imental evidence is not conclusive yet. Computationally, the parallel nature of the
propagating wavefront in combination with an increased planning speed through
hierarchical structure provides a strong advantage over serial graph searches. The
network is thus an attractive solution for autonomous vehicles, captures the advan-
tages of hierarchical representations, and can be implemented energy efficiently in
spiking neuromorphic hardware.
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Gateway identity and spatial remapping
in a combined grid and place cell
attractor

Authors: Tristan Baumann and Hanspeter A Mallot, 2023.

Abstract

The spatial specificities of hippocampal place cells, i.e., their firing fields, are subject
to change if the rat enters a new compartment in the experimental maze. This
effect is known as remapping. It cannot be explained from path integration (grid
cell activity) and local sensory cues alone but requires additional knowledge of the
different compartments in the form of context recognition at the gateways between
them. Here we present a model for the hippocampal-entorhinal interplay in which
the activity of place and grid cells follows a joint attractor dynamic. Place cells
depend on the current grid cell activity but can also reset the grid cell activity in
the remapping process. Remapping is triggered by the passage through a gateway.
When this happens, a previously stored pattern of place cell activity associated
with the gateway is reactivated from a “gateway database”. The joint attractor will
then reinstate the grid cell pattern that was active when the gateway had first been
learned and path integration can proceed from there. The model is tested with
various mazes used in the experimental literature and reproduces the published
results, and we make predictions for remapping in a new maze type. We propose
the involvement of memory in the form of “gate cells” that drive the place cells and
with them the joint hippocampal-entorhinal loop into the corresponding attractor
whenever a compartment is entered.

95



Appendix A3 Baumann and Mallot (2023)

A3.1 Introduction

The neural substrate of spatial representation, the cognitive map, is generally
thought to be found in place cells located in the hippocampus (HC). First described
by O’Keefe and Dostrovsky (1971), these cells fire maximally whenever the animal
is within a small localized region in space, the cell’s place field (O’Keefe and Nadel,
1978; Moser et al., 2017). The environment is covered by the overlapping place
fields of different place cells and the population activity can be used to decode
the animal’s position and even future trajectories once the firing fields have been
mapped (Wilson and McNaughton, 1993; Dragoi and Tonegawa, 2011; Pfeiffer and
Foster, 2013; Ólafsdóttir et al., 2015; Pfeiffer, 2020).

In the five decades since the discovery of place cells, many other cell types sup-
porting spatial representation have been found, including (but not limited to) head
direction cells (Taube et al., 1990a; Taube et al., 1990b), border cells (Solstad et
al., 2008), and grid cells (Fyhn et al., 2004; Hafting et al., 2005). Especially grid
cells have received much attention: Located in the medial entorhinal cortex (MEC)
(Fyhn et al., 2004) and pre- and parasubiculum (Boccara et al., 2010), these cells
fire at regularly spaced intervals, tiling the environment into a regular hexagonal
lattice. Grid cells are dorsoventrally organized into discrete modules of constant
scale and orientation; between modules, scale is increasing in discrete steps (Hafting
et al., 2005; Stensola et al., 2012). Within a module, grid phase and orientation
between neighboring cells remains fixed (Fyhn et al., 2007). Due to their regular
firing properties and the fact that the pattern persists in complete darkness, grid
cells are generally thought to be involved in path integration (Hafting et al., 2005;
Fyhn et al., 2007; Rowland et al., 2016; Grieves and Jeffery, 2017).

Grid cells are a common spatially modulated cell in the MEC (Hafting et al., 2005)
and form a major input to place cells (Brun et al., 2008; Jeffery, 2011; Rowland et
al., 2016). However, silencing input from MEC to CA1 does not eliminate place cell
activity (Brun et al., 2008; Bush et al., 2014; Brandon et al., 2014) and in rat pups,
place cells form before grid cells (Langston et al., 2010; Wills et al., 2012; Bush et al.,
2014). Place cells show relatively stable place fields before the hexagonal grid cell
pattern is fully developed, suggesting a strong input from allothetic or external cues
such as landmarks or boundaries (Bjerknes et al., 2014; Muessig et al., 2015; Moser
et al., 2015; Grieves et al., 2018).

This external input causes context-dependent firing changes: When the animal
moves or is moved from one compartment to another, place cell specificities may
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undergo complete changes to an independent pattern of firing fields. This process is
known as “remapping” (Muller and Kubie, 1987; Lever et al., 2002; Leutgeb et al.,
2005; Colgin et al., 2008; Julian et al., 2018): Place cells randomly rearrange their
firing fields to new, uncorrelated locations, form additional firing fields or cease firing
altogether. When the animal later returns or is returned to the original compartment,
the place cells remap to their original pattern (Lever et al., 2002; Leutgeb et al.,
2005). A given place cell therefore represents different places at different times or,
more correctly, in different “spatial contexts”. Remapping also occurs in grid cells:
When the context changes, the firing field locations of different modules may shift
but grid scale and relative orientation remain unchanged (Fyhn et al., 2007; Cheng
and Frank, 2011; Marozzi et al., 2015). Due to direct anatomical projections from
MEC to the hippocampus and the finding that electrical stimulation of MEC grid
cells causes place cell remapping (Kanter et al., 2017), grid cell realignment has
previously been suggested as a possible candidate for triggering place cell remapping
(Monaco and Abbott, 2011; Bush et al., 2014).

An important puzzle piece in understanding the remapping process is the nature
of the “context change” by which it is triggered. Remapping can be observed when
the animal moves to different compartments within a maze, or when the color and
location of cues (Bostock et al., 1991) or the overall shape and texture of the com-
partment is changed (Lever et al., 2002; Leutgeb et al., 2005; Wills et al., 2005;
Colgin et al., 2010; Jeffery, 2011). Non-spatial contexts may lead to a modulation of
place cell firing rates (“rate remapping” (Latuske et al., 2018)), as has been shown
for changes of the current task or goal (Allen et al., 2012) or in the dependence
on recent history (Keinath et al., 2020). For a review of remapping types, see La-
tuske et al. (2018). Importantly, remapping seemingly does not occur if the context
remains unchanged: For example, grid cell patterns are undisturbed within each
compartment in Fyhn et al. (2007) and Derdikman et al. (2009) and Carpenter et al.
(2015).

This suggests that the current compartment is equivalent to the current context,
for as long as no remapping occurs, the rat must be within the same area. Therefore,
remapping suggests a regionalization of the rat’s cognitive map, although the rat
may not have direct access to that information. In this sense, the pattern of active
cells provides both information about the current context and the position of the
animal within that context (Latuske et al., 2018). Overall, the findings suggest that
remapping is an active process that reflects the recruitment of a unique cognitive
map from a “cognitive atlas” (Julian et al., 2018), a putative higher-level hierarchical
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structure of spatial representation.
How can the hippocampal-entorhinal circuit acquire, maintain and reactivate a

multitude of unique, context-dependent maps in a noisy infinite-context world? Some
hints to this question may be hidden in a number of particularities of the remapping
process:

1. Similar contexts lead to similar representations.
In visually or geometrically identical but otherwise separate compartments,
place and grid cell firing patterns have been observed to repeat (Derdikman
et al., 2009; Spiers et al., 2015; Carpenter et al., 2015; Grieves et al., 2016;
Harland et al., 2017). That is, the place and grid cell activity at corresponding
positions in different rooms is highly correlated. This similarity is behaviorally
relevant: In a spatial memory task by Grieves et al. (2016), rats had to memo-
rize odor-coded buried rewards in each of four identical rooms connected by a
lateral corridor. The rooms were either arranged in parallel or radially around
a curved corridor (Fig. A3.1). The animals learned the task faster and per-
formed significantly better in the distinguishable radial condition, where place
cells remapped to different patterns in each room, but failed in the parallel
condition, where the patterns repeated (Grieves et al., 2016). Remapping also
does not just reflect a direction or mode of movement: Derdikman et al. (2009)
only observed remapping in a hairpin maze with actual physical walls, and not
in rats that were trained to run comparable zig-zag lines in an open room.

Figure A3.1: Schematic example of findings by Grieves et al. (2016). The place
fields of the same place cell are shown in two environments. Firing repeats at cor-
responding positions in each room in the parallel environment, but not when the
rooms are arranged radially.

2. Entrance orientation is sufficient to distinguish contexts.
The superior performance in the radial condition is attributed to the head
direction system which is assumed to maintain a global reference while the
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animal explores the different compartments (Harland et al., 2017). If the ori-
entation of the compartments is the same and they are entered from the same
geocentric direction, the reference is also the same and the rooms are con-
fused. On the other hand, if the compartments extend into different directions,
such as in the radial arrangement in Fig. A3.1, the head direction reference
may be used to detect this difference and the compartments can be distin-
guished. If the head direction system is silenced, this ability disappears and
the radially arranged rooms also show the same local pattern (Harland et al.,
2017). In agreement, the inverse case, where locally and globally identical com-
partments show different firing patterns, has also been reported (Skaggs and
McNaughton, 1998; Tanila, 1999; Grieves et al., 2016; Harland et al., 2017;
Keinath et al., 2020). Notably, Keinath et al. (2020) found that the most
recent entrance influences the place cell firing rate in a compartment with
multiple entrances, even if the firing field positions remain the same. Overall,
the distinguishing cues seem to be entrance position and direction relative to
the compartment, i.e., also orientation references.

3. Local cues only play a limited role.
Overall, the remapping dynamics suggest a strong bias towards local cues, i.e.,
the sensory and geometrical information of the current surroundings. These
findings led to the formulation of border or boundary vector cell models of
place cell firing (Hartley et al., 2000; Barry et al., 2006; Bush et al., 2014;
Grieves et al., 2018): These cells fire whenever the animal is located at a
preferred distance and angle from a nearby wall and thus reflect the local
geometry. Based on the repeating patterns in identical compartments, the
models suggest that geometric cues measured by boundary vector cells and
mediated by the head direction system are the main determinants for place
fields. However, boundary vector cells show no remapping. The cells have been
reported to continue firing at the same fixed distance and allocentric direction
from boundaries across multiple environments, regardless of context (Lever et
al., 2009). This is exemplified in e.g., Spiers et al. (2015), where the change of
wall color in one of multiple identically shaped parallel rooms caused a different
place cell pattern to emerge in the changed room only. Therefore, remapping
dynamics must occur at least partially independent of boundary vector cells,
and models based on them require additional context (e.g., “contextual gating”
in Grieves et al. (2018)).
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4. Place and grid cells remap together.
Remapping appears to happen nearly instantaneously (Jezek et al., 2011) and
both cell types remap concurrently (Fyhn et al., 2007) at the maxima of contex-
tual difference, such as gateways between compartments or region transitions
(Tanila, 1999; Leutgeb et al., 2005; Derdikman et al., 2009; Carpenter et al.,
2015; Grieves et al., 2016). Therefore, the context-defining information must
be available immediately at the transition. After remapping, patterns usually
remain stable and no further remapping occurs as long as the local context
remains the same.

Overall, the findings imply that gateways between compartments play a special
role: Distinct place and grid cell patterns arise immediately if the compartments can
be distinguished at the entrance. On the other hand, if they cannot be distinguished,
the context is the same and the cell patterns reflect that similarity. In this sense,
the context of the current environment would be based on the most recent gateway
rather than just local cues.

Here, we propose a combined grid-and-place cell attractor model augmented with
a place memory that is able to capture these remapping dynamics. The attractor
is based on the observed connectivity loop of direct projections from MEC to HC
(Brun et al., 2008; Jeffery, 2011; Monaco and Abbott, 2011; Rowland et al., 2016)
and recurrent connections back from HC to MEC (Hafting et al., 2005; Boccara
et al., 2010; Bush et al., 2014; Rennó-Costa and Tort, 2017): As in other models
(Gaussier et al., 2007; Almeida et al., 2009; Cheng and Frank, 2011; Monaco and
Abbott, 2011; Lyttle et al., 2013; Li et al., 2020), the activity of multiple grid cell
modules is summed to form realistic place fields; in addition, we assume that place
cells also connect to grid cells and may thus support the current attractor or drive
the system into a new one.

Place cell remapping means that path integration is overruled at certain points,
based on local position information at that point. This implies that the recognition
of local position information is essential. We specifically look at natural region tran-
sitions in the form of gateways between rooms and introduce a mechanism called the
“gateway identifier”, which represents context at entrances, including head direction.
Each gateway has two gateway identifiers, one on each side.

To obtain repeating place and grid cell patterns in similar environments, the model
has access to a “gateway database”, a memory that stores and reactivates place
cell patterns associated with the different gateway identifiers. The model exploits
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the ability of place cells to remap to arbitrary positions when directly stimulated
(Diamantaki et al., 2018): Whenever a known gateway is passed, the associated
pattern is reactivated and the place cell activity changes to it. Recurrent input from
the place cells to grid cells then causes a shift in the grid cell firing fields until the
matching attractor is reached.

Within a region, cell activity is based on path integration only. As such, firing
fields are only determined by the local position information encountered at the last
gateway and some additional noise. Importantly, entrances to ostensibly different
regions may share the same gateway identifier if they share the same local position
information, leading to the experimentally observed repetition of activity in similar
compartments. Finally, when the system identifies an unknown entrance, it randomly
remaps and the new activity pattern is added to the database.

Our model is related to models of working memory by Bouchacourt and Buschman
(2019), where representations are maintained through recurring connections between
a structured sensory layer (the grid cells) and a random, unstructured layer (the
place cells). As a model of working memory, the model is inherently limited in its
capacity once representations in the unstructured layer start to overlap. In this sense,
the gateway database is a long-term memory that binds working memory patterns
to context and is able to reinstantiate these patterns in a top-down manner.

In the following, we show that the model is able to replicate the remapping dy-
namics observed in multicompartment environments (e.g., Tanila, 1999; Fuhs et al.,
2005; Carpenter et al., 2015; Grieves et al., 2016), and we propose a novel multicom-
partment setup (L-shaped rooms, Virtual environments) to confirm or refute the
role of gateways as the main determinants for local context.

A3.2 Materials and Methods

See Fig. A3.2.

A3.2.1 Model overview

The model consists of an attractor neural network with fixed weights, simulating the
cognitive map of a rat exploring a series of virtual environments. The cell activity
is iteratively simulated in real-time; we denote the discrete time step of a single
computational sequence as t.
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Figure A3.2: Model overview. (a) 3×100 grid cells are modeled by moving a stable
activity peak over a toroidal surface. The cells form three layers with different input
gains, resulting in hexagonal patterns with different scale and orientation. The circles
on the layers sketch the firing fields, not the attractor peaks (which are the same
for every layer). (b) Grid cell activity is combined in a weighted sum and filtered
by an (invertible) winner-take-all scheme to form the place cell activity. The place
cells in turn activate the grid cell module with the inverse operation, completing the
larger attractor loop. (c) At region transitions such as room entrances, place cell
patterns are memorized so that they may be recalled in the future (yellow arrows).
When the virtual rat enters another region, place cell activity is either randomized
or a corresponding place cell pattern is reactivated, followed by a shift of the grid
cell firing peaks to the best matching attractor.

102



A3.2 Materials and Methods

The core of the model is a grid cell attractor based on (Guanella et al., 2007).
Input arrives in the form of an egomotion velocity vector, which shifts grid cell ac-
tivity peaks to form the well-known hexagonal firing fields. Grid cells are arranged
in multiple layers that differ in orientation and gain; from these, place cell activity
is obtained by summing over the grid cells in a winner-take-all scheme. We adopted
this modeling approach to place cell firing fields from previous studies (Almeida
et al., 2009; Monaco and Abbott, 2011; Lyttle et al., 2013; Li et al., 2020) in order
to keep the system simple. However, local position information can easily be added
as another input to the place cell layer. The place cells then feed back into the grid
cell module to complete a larger attractor loop (Fig. A3.2). To explore remapping
dynamics, a predefined remapping signal is triggered whenever the virtual rat passes
through a gateway and the corresponding gateway identifier is activated. It causes
the place cells to either remap to a new, random pattern if the gateway is unknown,
or to a previously memorized pattern if the gateway is recognized. By memorizing
patterns at the gateways, compartments become associated with specific cell con-
figurations, which remain active for as long as the rat does not move to another
compartment.

To distinguish rotated but otherwise identical compartments, head direction infor-
mation is also implicitly included, but simply assumed to be perfect in its compass-
like function. I.e., the virtual rat is always aware of “true north”. This allows us to
essentially ignore the virtual rat’s heading and treat the step-wise path integration
as a straight-forward x, y-vector addition in a fixed reference frame. Throughout the
paper, we use symbolic cardinal directions: North, east, south and west mean up,
right, down and left in the figures.

A3.2.2 Grid Cells

Egomotion is processed by the grid cell module, consisting of 300 grid cells divided
into three independent granularity layers with increasing scale and varying orienta-
tion. Three layers are required for realistic remapping based on independent shifts,
as described in (Monaco and Abbott, 2011). In accordance with measurements by
Stensola et al. (2012), the grid scale, i.e., the shortest distance between two activity
peaks, was set to 40cm for the most fine-grained granularity layer and increased by
a factor of 1.42 per layer to 57cm and 80cm for the coarser layers.

In the rodent brain, grid cells in the same granularity layer have been reported to
share the same orientation (Stensola et al., 2012), are aligned to nearby walls, and
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the orientation remains constant across different contexts (Krupic et al., 2015). In
our model, grid orientation was fixed at 8.8◦ for layers 1 and 2 and 98.8◦ for layer 3,
in accordance with the measurements by Krupic et al. (2015).

Within a layer, a stable activity peak is maintained by attractor dynamics
(Guanella et al., 2007). n2 = 100 cells form a topologically organized periodic sheet
where neighboring cells have neighboring firing fields (Fig. A3.3a). The cells are
connected to all others by short-range activation and long-range inhibition. In or-
der to achieve the hexagonal geometry, the cells are arranged in a rhomboid with
angles 60◦ and 120◦, i.e., composed of two equilateral triangles. The rhomboid is
the primitive cell of the hexagonal grid. The Cartesian coordinates xij of grid cell
ij within a rhomboid with lattice constant 1/n are

xij =
1

2n

(
(i+ j)√
3(j − i)

)
=

1

2n

(
1 1

−
√
3

√
3

)(
i

j

)
=: H

(
i

j

)
. (A3.1)

A 5×5 cell example is depicted in Fig. A3.3a. To derive an expression for the hexag-
onal periodic distance function, we pad a set of eight shifted rhomboids around the
standard rhomboid by considering the shifts spq = H (p, q)⊤ for (p, q) ∈ {−n, 0, n}2.
For given Cartesian points x, x′ the periodic distance function is

d(x, x′) = min
(p,q)∈{−n,0,n}2

||x − x′ + spq||, (A3.2)

where || · || is the Euclidean norm. This description of periodic boundary conditions
in a rhomboid is equivalent to the twisted torus approach of Guanella et al. (2007),
but can easily be generalized to an arbitrary number of grid cells.

We can now describe the activity of grid cell ij at time step t,

gij(t) =
n∑

k=1

n∑
l=1

gkl(t− 1) wij
kl, (A3.3)

where the weights wij
kl follow a Gaussian function of the periodic distance defined

above,
wij

kl = I exp
(
−d(xij, xkl + αRβv̂(t))2

σ2

)
− T. (A3.4)

The intensity I = 0.3 defines the overall synaptic strength, σ = 0.24 is the width of
the Gaussian and T = 0.05 is a global inhibition parameter. The scale of the grid is
defined by the gain parameter α ∈ {0.05, 0.035, 0.025} corresponding to 40cm, 57cm
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Figure A3.3: (a) Grid cell rhomboid (with only 5× 5 cells for clarity). An activity
peak (dark gray circle) is centered on cell g5,4 . The thin lines show periodic boundary
conditions along grid cell indexes i, j. The vectors p, q correspond to the side length
of the rhomboid and give the shift distance spq for eq. A3.2. (b) Convergence to an
attractor when the model is initialized with zero place cell activity and random grid
cell activity (red), or when the model remaps to a random place cell pattern (blue).
Average of 100 repetitions.

and 80cm for the three layers. The orientation is given by the rotation matrix Rβ

with β ∈ {8.8◦, 8.8◦, 98.8◦}, respectively. Initially, the cell activity gij(t0) is set to
a random value drawn from a uniform distribution U(0, 0.1), but a stable peak is
formed in the next time steps (initial attractor formation, Fig. A3.3b).

If the virtual rat moves with velocity v(t) = (v1, v2)
⊤, synaptic weights in direction

of the egomotion estimate v̂(t) increase, causing the activity peak on the grid cell
layer to move by a corresponding amount. The egomotion estimate is obtained from
the true velocity by adding multiplicative noise to both components,

v̂(t) = ((1 + ϵ1)v1, (1 + ϵ2)v2)
⊤, ϵ1, ϵ2 ∼ U(−0.25, 0.25). (A3.5)

In the sequel, rather than describing the dynamics of individual cells, we combine
the activities of all three layers into a single 1× 300 grid cell activity matrix

G(t) = [g1(t), ..., g300(t)] . (A3.6)

For example, the grid cell activity g221 now refers to g21 in granularity layer 3.
This allows us to describe cell and layer-layer interactions in the form of matrix
multiplications.
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A3.2.3 Place Cells

Place cells form a single layer of 300 cells. In most situations, i.e., as long as no
remapping occurs, the place cell activity P(t) is obtained by summing over grid cell
activity with random weights:

P(t) = maxe

(
P(t) Wp

g

)
, (A3.7)

where Wp
g is a 300 × 300 synaptic weight matrix drawn from U(−1, 1). The weight

matrix describes the excitatory and inhibitory input from grid to place cells. As
in previous studies describing place fields as originating from random summation of
grid cell inputs (Almeida et al., 2009; Monaco and Abbott, 2011; Lyttle et al., 2013),
a winner-take-all nonlinearity maxe was used to sparsify place cell activity:

y = maxe(x) =
1

xmax

x if x > (1− e)xmax,

0.01 x otherwise.
(A3.8)

xmax is the highest x in the input set and e = 0.1 is the percentage of most active
cells whose activity is maintained, while all others are attenuated by a factor 0.01.

The winner-take-all scheme restricts cell activity to local maxima, resulting in
place fields qualitatively similar to real place cell recordings. Importantly, by only
attenuating cells below threshold rather than setting their activity to zero, the entire
operation becomes invertible, i.e., it enables place cells to predict grid cells in turn.
This property is required for the combined grid-and-place cell attractor loop and
remapping dynamics described in the following.

A3.2.4 Combined attractor and inverse place cell - grid cell
activation

By linking the place cell activity output back to the grid cells, an attractor is formed.
It ensures that a specific place code will always match a specific grid cell arrange-
ment. However, during normal exploration, the place cell input must not hinder the
movement of the grid cell peak by the velocity vector. That is, the estimated activ-
ity of grid cells from place cell input, Ĝ(t) should not differ substantially from the
grid cell activity G(t). The required feedback connections from the place cell layer
to the grid cell layers have been shown to exist in the form of recurrent MEC-HC
connections (Hafting et al., 2005; Boccara et al., 2010; Bush et al., 2014; Rennó-
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Costa and Tort, 2017) and could be learned by standard neural network techniques
(Zhang et al., 1997; Linsker, 1997). For the purpose of this study we implemented a
straight-forward inversion,

Ĝ(t) = max−1
e (P(t)) (Wp

g)
−1, (A3.9)

where (Wp
g)

−1 is the inverse or Moore-Penrose-pseudoinverse of Wp
g from Eq. A3.7.

In our simulations, the random matrices came out with full rank in about 99% of
the trials. The nonlinearity max−1

e (x) is the inverse operation of eq. A3.8,

x = max−1
e (y) = ymax

y if y > 1− e,

100 y otherwise.
(A3.10)

From eqs. A3.7 and A3.9, it is easy to see that Ĝ(t) ≈ G(t) except for a scaling
factor. We can therefore stop the intrinsic dynamic of the grid cell module and
restart it with the image of the place cell activity G(t) := Ĝ(t). This will lead to a
normal continuation of the grid cell dynamics, as long as Ĝ(t) falls in the basin of
attraction of the current grid cell attractor. The intrinsic dynamics of the grid cell
module will take care of remaining errors in the inversion process in the next few
time steps. The convergence to the attractor after remapping is shown in Fig. A3.3b.
The exact inversion of the forward weight matrix and nonlinearity is likely over-
specified. The only requirement for a biological implementation would be that the
inverse grid to place cell activation would fall into the same attractor basin. Since the
cells are active simultaneously, it may be possible to learn the required connections
via Hebbian dynamics. We opted for the matrix and nonlinearity inversion out of
mathematical convenience and did not attempt to model biological neural dynamics
such as synaptic plasticity or noise.

A3.2.5 Remapping and gateway database

Remapping occurs whenever the virtual rat moves from one compartment to another.
At the transition, the model is provided a “gateway identifier” Γ, which, in our sim-
ulations, is simply a number corresponding to the identity of the local context of
the newly entered compartment. The gateway identifier is an auxiliary construct
that represents the necessary information that a biological organism would need to
recognize a place, e.g., from vision, olfaction or proprioception (Cheng et al., 2013).
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Importantly, the gateway identifier also includes head direction information, so that
otherwise identical compartments may be distinguished by their orientation, but it
does not include path integration or distance information, so that parallel, identical
rooms cannot be distinguished by their relative position. In the virtual environments
described below, entrances that look the same and are oriented in the same direction
share the same gateway identifier (see Fig. A3.4). In the hippocampal-entorhinal net-
work, gate information could be modeled by an additional “gate cell” connected to
the place cell layer (see Discussion). This hypothetical cell would activate a spe-
cific place cell pattern whenever the room was entered through the corresponding
gateway.

In the current implementation of the model, the newly encountered gateway iden-
tifier Γ is used to index the gateway database D = P0, ...,Pn. If the database has
an entry PΓ ∈ D, the stored place cell pattern is reactivated by setting P(t) := PΓ.
With the attractor rules described in eq. A3.9, the grid cell attractor will shift to the
attractor matching the reactivated place cell pattern. As a side effect, accumulated
path integrator noise is also reset when a known gateway is passed.

This mechanism may generate errors at wide gateways that can be passed with
different sideways offsets. This problem could be avoided by assuming that the rat
shows strict centering behavior at gateways. Here, we measure the sideways offset
and add it to the displacement vector v̂ in eq. A3.4. In biology, offset information
could for example be provided by border or boundary vector cells, or depth percep-
tion.

Resetting the place cell activity and the subsequent convergence of the network
to the new grid-and-place cell attractor concludes the remapping process. Grid and
place cells have completely changed their firing fields, but the change is consistent
in that the same pattern will be activated whenever a given gateway is encountered.
Therefore, similar compartments that share the same gateway identifiers will show
the same place and grid cell patterns.

The gateway database models the rat’s overall knowledge of the compartments; it
is a cognitive atlas in the sense of Julian et al. (2018) that encompasses all context-
specific maps. Initially, the gateway database is empty and the model is initialized
with random activity. When the rat learns a novel gateway identifier, the current
place cell activity pattern is stored. This may happen in three different cases:

1. When entering an unknown room, a novel view will appear. A new gateway
identifier is encountered and a random pattern of place cell activity is gener-
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ated and stored in the database together with the identifier.

2. When entering a known room, the gateway identifier is recognized and the
associated place cell activity pattern is loaded into the place cell layer.

3. New gateway identifiers can also be stored when leaving a room such that the
room can be recognized when it is later reentered through the same gate. In
order to model direction-specific firing fields observed in linear track environ-
ments (McNaughton et al., 1983; Derdikman et al., 2009), this feature of the
model is applied only in wide rooms in which the rat can turn around, but not
in narrow corridors.

Note that random weight matrices and random initial place cell patterns were cho-
sen as an assumption-free approach to remapping. A more realistic approach would
incorporate some sensory information about the compartment, to allow for graded
similarity between contexts: Grieves et al. (2016) for example found a decrease in
correlation between rotated rooms proportional to the angle between them. Another
alternative to random remapping would be to continue the currently active pattern
over region boundaries and show no remapping at all. In that case, grid patterns
would continue undisturbed across regions.

A3.2.6 Simulation and exploration procedures

For fast parallel computing of the cell matrices, the model was implemented in the
machine learning interface TensorFlow (Martín Abadi et al., 2015) running in real-
time on a normal notebook PC (CPU: Intel i7-10750H, GPU: NVIDIA GeForce RTX
2070). The model was evaluated in three repetitive multicompartment environments,
realized as virtual 3D models in Unity (Unity Technologies, 2021).

The 3D world was only used for collision detection and exploration, not visual
input. The gateway identifiers were predefined at locations that match remapping
events in experimental findings, and visually similar entrances were assigned the
same identifier. All walls had the same thickness (2 cm) and height (11 cm). The
environments are described in detail below.

An agent, the “virtual rat”, represented by a 4.8 cm diameter cylinder, explored
the environments either by random walking (parallel rooms and L-shaped rooms)
or guided by the experimenter (Hairpin maze). The virtual rat moved at a constant
speed of 14 cm/s. For the random walk, at each time step t, the movement direction
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Figure A3.4: (a) - (d) Virtual environment floor plans used in the simulations.
The red dotted lines mark region transitions and the adjacent integers the gateway
identifier Γ: Equal numbers indicate the same local context and therefore cause
remapping to the same patterns. The asterisk (*) marks the starting position. (b),
the hairpin maze, has two starts based on traversal direction. Note that in (c), the
gateway identifier of both rooms is the same , Γ = 1, but in (d), it is different: Γ = 1
for the southwest and Γ = 4 for the northeast room.

was rotated by a random angle drawn from U(−10◦, 10◦). To avoid exploration
deadlocks such as continued movement into a corner, the random walk trajectory
reflected off of walls. The hairpin maze environment was explored by hand to obtain
complete traversals which are unlikely to result from random walking. Position data
(cylinder midpoint) and cell activities were sampled once per time step, which had
a duration of approximately 0.1 s.

A3.2.7 Virtual environments

Parallel rooms (Fig. A3.4a). The layout is based on two- or four-room maze experi-
ments where identical rooms are arranged in parallel and are either entered from the
same direction (Skaggs and McNaughton, 1998; Fuhs et al., 2005; Spiers et al., 2015;
Grieves et al., 2016) or from different directions (Tanila, 1999; Grieves et al., 2016).
We combined both layouts in a single two-by-two rooms environment where two sets
of parallel rooms are placed on the opposite sides of a central corridor. The rooms
are locally indistinguishable except for the position and direction of the entrance.
In the figure, the two rooms entered from the north have gateway identifier 1 and
the rooms entered from the south gateway identifier 6. The four identifiers of the
corridor are all distinguishable by the combination of view and heading.

Hairpin maze (Fig. A3.4b). We created a virtual hairpin maze similar to Derdik-
man et al. (2009). In hairpin mazes, cell activity has been observed to repeat every
second arm and to depend on running direction (Derdikman et al., 2009). Accord-
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ingly, we defined the turns between arms as region transitions, with every second
arm sharing the same gateway identifier. As described above, place cell patterns in
corridors are only memorized when the corridor is entered, and not when it is left.
That is, entrances and exits depend on the traversal direction, which will lead to
direction-selective firing fields. The maze was traversed on a guided path from the
start to the end in separate eastbound and westbound trials.

L-shaped rooms (Fig. A3.4c,d). This novel layout consisted of two adjacent iden-
tical L-shaped rooms connected by a single diagonal hallway. In the “same context”
condition (Fig. A3.4c), both rooms are entered at the same position (south-east cor-
ner) and with the same heading. The rooms are therefore locally indistinguishable
and share the same gateway identifier. In the “different context” condition (Fig.
A3.4d), one entrance was rotated by 90◦ so that the rooms are entered with a dif-
ferent heading. Previous studies have suggested that entry direction alone may be
sufficient for rats to distinguish otherwise identical contexts (Tanila, 1999; Grieves
et al., 2016; Keinath et al., 2020). However, in these experiments, entrance position
and bearing remained visible from the entire room and could have been used as land-
marks. Models reflecting local cues alone would therefore predict the same activity
in the far part of the room in both conditions. In the L-shaped rooms, the entrance
is not visible from the far part of the room. Therefore, if contextual information
can be maintained in absence of context-defining cues, cell patterns or behavioral
measures should differ even if the rooms are completely identical.

A3.2.8 Data analysis

For each environment, place and grid cell activity maps were produced by sorting
the localized activity of each cell into 2 × 2cm bins, averaged over all time steps.
Activity maps were smoothed by a 3× 3 bin Gaussian kernel. Due to the radius of
the virtual rat and the wall thickness, activities in different compartments were at
least three bins apart, and smoothing did not extend across walls.

To assess firing field repetition, Pearson correlations were calculated between dif-
ferent regions of interest on the same cell activity map. Only same-size regions were
compared; we did not attempt to correlate scaled cell activities. To account for ran-
dom variations, each environment was explored ten times with different random
number seeds, and the correlations were averaged. Place and grid cell results are
reported separately.

Additionally, as a means of confirming the regions of interest as correlation max-
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ima, we created autocorrelograms by correlating activity maps with bin-wise shifted
versions of themselves.

A3.3 Results
In the following, we report model predictions for a series of environments, in the
form of binned place and grid cell activities. In the model, the cells form a combined
attractor where the activity of one cell type directly influences the other. There-
fore, correlation results for the different cell types, although reported separately, are
highly similar.

A3.3.1 Parallel rooms (Fig. A3.5)

We compared place and grid cell activity of matching bins for the four rooms (num-
bers 1 to 4 in fig. A3.5a) combined into parallel (west: rooms 1 and 3 versus east: 2
and 4) , opposed (north: 3 and 4 versus south: 1 and 2) and rotated opposed (north:
3 and 4, rotated 180◦, versus south: 1 and 2), rotated by 180◦ to match entrance
direction. All place cells in all repetitions showed space-dependent activity patterns.
Consistent with findings from animal research (Tanila, 1999; Fuhs et al., 2005; Spiers
et al., 2015; Carpenter et al., 2015; Grieves et al., 2016), we observed highly repet-
itive activity for the parallel condition (mean east/west correlation 0.75, 95% con-
fidence interval (CI) [0.69, 0.79]), but not in the opposed condition (north/south
0.01, 95% CI [-0.10,0.12]) or rotated opposed condition (north rotated/south -0.01,
95% CI [-0.13,0.10]). Parallel room correlations were significantly higher than those
of opposed rooms (u = 0.0, p < 0.0001, Mann-Whitney-U-Test, MWU) and rotated
opposed rooms (u = 0.0, p < 0.0001, MWU).

Grid cell correlations match the findings from place cells. Activity similarly re-
peated in the parallel condition (east/west 0.84, 95% CI [0.81, 0.87]) and was uncor-
related in the opposed condition (north/south 0.01, 95% CI [-0.10,0.12]) and rotated
opposed condition (north rotated/south -0.02, 95% CI [-0.13,0.09]).

Like in the place cells, the parallel room correlations were significantly higher than
those of opposed rooms (u = 0.0, p < 0.0001, MWU) and rotated opposed rooms
(u = 0.0, p < 0.0001, MWU), indicating that the difference in activity in the opposed
rooms is not just caused by the room orientation. Overall, the results suggest that
remapping at room entrances is sufficient to decorrelate cell patterns for different
contexts while still producing repetitive activity under similar contexts.
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Figure A3.5: Parallel rooms. (a) Example of place cell activity in the different
rooms (1-4) and the corridor (middle). (b) Average room-wise correlations for place
and grid cells. As expected, the correlation between parallel rooms is high and the
correlation between opposed rooms low. (c, d) Place cell (left) and grid cell (right)
correlation distribution between parallel, opposed, and rotated opposed rooms. In
agreement with the average room-wise correlation matrix in (a), cell correlations
cluster around 0 for the opposed condition. The distributions are relatively narrow
and don’t overlap. (e) Linear autocorrelogram of all cells shifted in bin-wise incre-
ments, including activity in the corridor. The vertical gray lines signal shifts where
the rooms line up. (f) Examples of 3 place cells, expressing similar place fields in
parallel rooms but different place fields in opposed rooms. (g) The same can be seen
in grid cell firing fields. The grid structure in the larger layers is not visible because
the rooms are shorter than the grid scale. The codes refer to the model repetition
(pr0-pr9) and cell identity (0-599).
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A3.3.2 Hairpin maze (Fig A3.6)

In the hairpin maze, firing fields have been shown to depend both on the direction of
movement and arm identity (Derdikman et al., 2009). Trajectories (Fig. A3.6a) were
split into eastbound (from arm 1 to arm 10) and westbound (from arm 10 to arm 1).
The agent entered the initial arm and was guided through the maze to the end of
the last arm, where it exited the maze. It then reentered the same arm for a separate
trajectory in the opposite direction. For each of the ten random initializations of the
model, the maze was traversed twice in either direction for a total of 40 traversals.

Results depended on the overall traversal directions (eastbound vs. westbound),
as well as the local directions within each arm. Remapping occurred at the apices
between the arms (Fig. A3.4b). In agreement with animal studies (Derdikman et al.,
2009), model place and grid cell firing fields repeated in every second arm.

A clear checkerboard pattern (Fig. A3.6b) emerged from the correlation of place
cells in different arms. Excluding the outer arms, arms traversed in the same di-
rection (i.e., odd- or even-numbered arms) showed a significantly higher correla-
tion (eastbound 0.90, 95% CI [0.88, 0.92]; westbound 0.92, 95% CI [0.90, 0.93])
than arms traversed in a different direction (eastbound -0.01, 95% CI [-0.12, 0.11];
westbound -0.02, 95% CI [-0.13, 0.09]; Same direction vs. alternating: eastbound
u = 0.0, p < 0.0001, westbound u = 0.0, p < 0.0001, MWU). Firing fields in the
eastbound and westbound traversals were uncorrelated (0.01, 95% CI [-0.11, 0.12]).

Grid cell results were generally similar to place cells. Grid cell activity was also
highly correlated in same-direction arms (eastbound 0.92, 95% CI [0.90, 0.94]; west-
bound 0.94, 95% CI [0.92, 0.95]) but not in alternating arms (eastbound -0.03, 95%
CI [-0.14, 0.09]; westbound -0.03, 95% CI [-0.14, 0.08]; Same direction vs. alternat-
ing: eastbound u = 0.0, p < 0.0001, westbound u = 0.0, p < 0.0001, MWU). Again,
overall eastbound and westbound traversal correlations were uncorrelated (0.01, 95%
CI [-0.11, 0.12]).

Correlation between the outer and inner arms was low on average (eastbound
0.14 95% CI [0.03,0.25], westbound 0.24 95% CI [0.13,0.34]). In the model, non-zero
correlations between the outer and inner arms are a result of random remapping and
noise, but are not indicative of any corridor similarities. The outer arms were treated
as separate regions with their own gateway identifiers. In a biological animal, low
but non-zero correlation might reflect a degree of similarity or confusion between
the outer and inner arms, but this was not modeled.

In general, the matching correlations in the hairpin maze are higher and the
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Figure A3.6: Hairpin Maze. (a) Exploration of the maze. The red dots mark
eastbound cell activity of the cell in (f), where activity > 10% of max. (b) Arm-
wise place cell (top) and grid cell (bottom) correlation for eastbound (left) and
westbound (right) traversals. (c, d) Place cell (left) and grid cell (right) correlation
distribution for the inner arms (arms 2 to 9), traversed in the same or different
directions. The plots show the combined eastbound and westbound data. (e) Linear
autocorrelogram of all cells, shifted in one-bin increments. The autocorrelation peaks
whenever the activity is shifted by two arms. (f,g) Example place fields of the
same cell for eastbound and westbound traversals. The cells show the characteristic
repeating patterns. (h) Same as (f,g) but for a grid cell from the smallest layer. The
grid pattern is obscured by the narrow maze arms.
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Figure A3.7: L-shaped rooms. (a) Random walk exploration in the different en-
trance condition. The red dots mark eastbound cell activity of the lower left cell in
(e), where activity > 10% of max. (b) Place cell (left) and grid cell (right) correla-
tion for same and different entrances. (c) Linear autocorrelogram of all cells, shifted
diagonally in one-bin increments. The autocorrelation peaks in the same condition
where the rooms overlap. The autocorrelogram includes firing information from the
corridor, which was excluded from the other comparisons. (d) Cell correlations as in
(b). (e) Firing field examples, from left to right in both conditions: Place cell, grid
cell from the largest granularity layer, grid cell from the smallest granularity layer.

confidence interval is narrower compared to the other two environments. This is
likely a result of the manual exploration with frequent region transitions, which
caused accumulated path integrator noise to be reset more often.

A3.3.3 L-shaped rooms (Fig. A3.7)

The L-shaped rooms environment was explored in two entrance conditions, same,
where both rooms were entered from the same direction, and different, where both
rooms were entered from different directions. Note that the conditions were explored
by separate, unpaired models, i.e., cells are not matched between conditions.

As in the other environments with repeating activity, place cell correlation (Fig.
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Figure A3.8: Schematic phase diagram of the remapping process. Left: 2-
dimensional projection of the joint state space of place and grid cells for two at-
tractors P1, G1 and P2, G2. The projection is spanned by the straight lines trough
P1, P2 (x-axis) and trough G1, G2 (y-axis). Right: Agent trajectory in a two-room
maze. For further explanation, see text.

A3.7b) was significantly higher in the same condition (0.63, 95% CI [0.56, 0.69])
compared to the different condition (0.06, 95% CI [-0.05, 0.17], Place cell same vs.
different: u = 0.0, p < 0.0001, MWU).

For grid cells, correlations in same (0.74, 95% CI [0.69, 0.79]) were higher than
between place cells but similarly uncorrelated in the different condition (0.10, 95%
CI [-0.01, 0.21]) (Statistic: u = 0.0, p < 0.0001, MWU).

Firing patterns repeated when the rooms were indistinguishable at their entrances,
but differed otherwise. Compared to the repeating activity conditions in the other
two environments, the correlations in the same condition were lower. This may be
a result of a less frequent path integrator reset, since the L-shaped rooms contained
only two region transitions. Therefore, input noise may have played a higher role.

The bend in the rooms does not impact the results. It is not considered a gateway
and causes no remapping. Because the model relies on path integration alone, it does
not matter whether the entrance remains visible. The L-shaped rooms only serve as
an illustration of what sort of activation to expect in a case that has not previously
been covered.
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A3.4 Discussion

Place and grid cells have been observed to express uncorrelated firing patterns in
different contexts (Muller and Kubie, 1987; Lever et al., 2002; Leutgeb et al., 2005;
Fyhn et al., 2007; Colgin et al., 2008; Julian et al., 2018). The phenomenon, called
“remapping”, has long been understood as a means of spatial pattern separation
(Leutgeb et al., 2007) and may reflect a hierarchical organization of spatial rep-
resentation (Julian et al., 2018). Remapping does not reflect purely local sensory
differences, as both separate and identical patterns have been observed in similar
contexts (Tanila, 1999; Carpenter et al., 2015; Grieves et al., 2016). However, the
dynamics that give rise to the different firing patterns remain unknown.

In this study, we explore the idea that remapping is triggered by context change,
defined as a transition between spatial regions such as the compartments of a maze.
The mechanism requires a memory of contexts, implemented in our model as the
gateway database. Within this memory, each context is represented as a pair con-
sisting of (i) an identifier that can be detected from sensory input such as a snapshot
and (ii) the pattern of place cell activity prevailing when the context was first en-
countered. Remapping occurs when a known gateway identifier is detected, e.g. by
snapshot matching. In this case, the ongoing place cell activities are overridden by
the stored place cell activity pattern of the recognized gateway. Projections into
entorhinal cortex drive the grid cell attractor into its corresponding state and the
normal path integration dynamics proceed from there.

The process is schematically illustrated in fig. A3.8: In a two-room environment,
the agent starts by exploring the northern room. The accompanying attractor tra-
jectory is shown as a dashed blue line in the left part of the figure. As soon as the
agent enters the southern room, the gateway identifier 1 is recognized, the place
cells remap to the stored pattern, and the system converges to the closest attrac-
tor, (P1, G1). Exploration of the southern room results in continuous attractor shifts
until the gateway is passed again (2) and another remapping event occurs.

Importantly, similar regions are assumed to share the same gateway identifier and
entering them causes the same pattern to be activated. Thereby, the model was able
to generate repetitive place and grid cell firing patterns qualitatively similar to those
observed in multicompartment environments. In the hairpin maze, the model also
replicated the directionally selective firing commonly observed in corridors.

Within each region, grid cell activity is solely controlled by noisy path integration.
This causes drift over time, which is also reset by remapping. Local cues, landmarks
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and geometry do not influence cell activity and were indeed not modeled at all. We
thus present an alternative to boundary vector cell models of place cell remapping,
where geometric cues measured by boundary vector cells are the main determinants
for place fields (Hartley et al., 2000; Barry et al., 2006; Bush et al., 2014; Grieves
et al., 2018). In these models, repetitive patterns in similar compartments are a
result of locally similar geometry.

With the L-shaped rooms environment, we propose a novel multicompartment
setup where the two model types may be compared: At the far part of the rooms,
the bend in the L-shape obscures the room entrance which is manipulated in two
different contexts. Our model predicts that the cell patterns selected at the entrance
persist over the entire region, even in parts of the rooms that are locally indistin-
guishable. I.e., if firing fields or behavioral measures are different between rooms, the
context signal from the gateway identifier is sufficient to explain place cell remap-
ping. If activity instead repeats, local cues are more important than the context at
the entrance.

Note that we do not wish to imply that boundary vector cells play no role in place
field generation. They provide position encoding independent from path integration
(Bicanski and Burgess, 2020) and are able to explain place field deformation when
the environment changes shape (O’Keefe and Burgess, 1996; Grieves et al., 2018) or
barriers are inserted (Barry et al., 2006; Grieves et al., 2018). However, as mentioned
in the introduction, boundary vector cells do not remap (Lever et al., 2009) and
would need additional contextual gating to maintain distinct place cell patterns in
different contexts.

A3.4.1 Implications for biology

The underlying assumption behind the context-dependent cognitive map is one of
hierarchy. This is directly implied by the vaguely defined term “context” itself, but
also by the lack of remapping within a context; the spatial representation can there-
fore be at least divided in similar and dissimilar parts. The re-use of place cells in
different population codes implies that, within a specific context, information about
other contexts is unavailable. However, rats are clearly able to execute trajectories
across region boundaries, so some sort of higher-level representation likely exists.
Possible candidates may be cell ensembles in the medial prefrontal cortex (Hyman
et al., 2012) or neurons in the perirhinal cortex (Bos et al., 2017): The former show
different firing patterns depending on region, time and task and could therefore en-
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code context (Hyman et al., 2012). The latter are neurons that fire continuously
while the rat is within a specific region in space, such as an arm of a maze.

For our model, the representation of other regions is less important than the rep-
resentation of transitions to these regions, i.e., the gateways. For this, we introduced
the notions of “gateway identifier” and “gate cell”, which represent the recognition
of the entrance and the shift to the associated cell attractor. The biological gate
cell would learn a place cell pattern via neuronal plasticity and reactivate that pat-
tern whenever the relevant stimuli occurred. Outside of the associated places, the
cell should remain silent. The activation of place cells from memory is plausible: for
example, with replays (Pfeiffer, 2020) and preplays (Dragoi and Tonegawa, 2011;
Pfeiffer and Foster, 2013; Ólafsdóttir et al., 2015), the rat brain has been shown to
depict sequences of place cells without the animal physically occupying the associ-
ated locations.

The gate cell attractor mechanism is intended as an alternative to contextual gat-
ing (M. Hayman and Jeffery, 2008), where the grid cell inputs into the hippocampus
are modulated by a contextual signal to create different firing fields. Their model
requires the continuous excitation and inhibition of large clusters of cells to produce
orthogonal place field patterns. The advantage of our memory-driven gate cell sys-
tem would be that it is more efficient: relatively few place cells need to be memorized
and reactivated a single time to initially drive the attractor. I.e., the gate cell model
scales much better with a high number of competing rooms or regions. On the other
hand, the gate cell model cannot recover learned cell patterns at arbitrary positions,
such as when the animal is placed by an experimenter (discussed below). In a sense,
the distinction between the models is one of degree, i.e., how strongly the perception
of context is influenced by memory and sensory information, and where exactly the
neuronal connections lie.

For gateway-based context, it is of utmost importance for the animal to correctly
recognize gateways, or specifically, the new region behind the gateway. A failure to
do so could result in catastrophic mislocalization. Clearly, rats are able to detect
changes in context, but evidence for an (over-)representation is scarce. Spiers et al.
(2015) and Grieves et al. (2018) report the clustering of place fields around doorways
to compartments, indicating that the doorways are at least salient landmarks; on the
other hand, Duvelle et al. (2021) explicitly did not find such an overrepresentation
in an experiment where the passage between compartments was blocked by lockable
doors.

After detection, the rat must also be able to store gateways and associated place
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cell patterns in long-term memory. A possible candidate may be the retrosplenial
cortex (RSC): The rat RSC is reciprocally connected to the hippocampal formation
and involved in a variety of spatial tasks (Vann et al., 2009). Lesions of the RSC only
cause modest spatial deficits within a context, but impair spatial memory (Vann et
al., 2009) and the ability to account for context changes, such as distal cue rotation
or switching from light to darkness (Wesierska et al., 2009; Pothuizen et al., 2008).

Around 9% of RSC cells are head direction cells, some of which are additionally
tuned to specific movements and locations (Chen et al., 1994; Jacob et al., 2017).
Here, of particular interest may be a rare type of RSC cell described in the sup-
plementary material of Jacob et al. (2017): The cells show localized firing at the
doorway between two compartments and are tuned to a particular direction. This
is precisely the behavior predicted for the gateway identifier units in our model.

Mathematically speaking, the definition and detection of gateways is non-trivial.
A biologically plausible solution would be the prediction or tracking of changes
geometric and visual information over time; at region transitions, this change is
especially high (surprise, Butz et al. (2004) and Klukas et al. (2022)). In mobile
robotics, the detection of doorways and narrow passages is a well-known problem
with a variety of approaches based on cameras and laser range finders (e.g., Anguelov
et al. (2004)) and posterior map segmentation (Thrun, 1998).

In humans, the cognitive map is generally thought to be hierarchically organized:
in spatial memory and path planning tasks, differences arise in subjective distance
estimation, recall speed (McNamara, 1986; McNamara et al., 1989) and preferred
routes depending on region partition and transitions (Schick et al., 2019). In rodents,
on the other hand, path planning is relatively unexplored. The best candidates are
preplays, high-frequency place cell sequences observed in periods of inactivity. The
preplays depict future trajectories, sometimes even through unexplored parts of
the environment, indicating a planning component (Dragoi and Tonegawa, 2011;
Pfeiffer and Foster, 2013; Ólafsdóttir et al., 2015). However, whether preplays can
cross region boundaries into other sub-maps is yet unknown.

A3.4.2 Remapping and place learning

Remapping at gateways is sufficient to replicate the place and grid cell dynamics
observed in multicompartment environments, and it is the minimal requirement for
distinct patterns in different rooms. However, there are many situations in which
remapping is not quite as straight-forward. For example, what happens if the rat is
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enters a compartment in darkness, or if it is placed at an arbitrary position by the
experimenter? What if the surrounding cues are changed while the animal is within
the room? Or what about environments with multiple entrances?

Remapping can also occur if the animal does not pass through a gateway (e.g.,
Lever et al., 2002; Anderson and Jeffery, 2003; Colgin et al., 2010; Jezek et al., 2011;
Marozzi et al., 2015). For example, in Jezek et al. (2011), rats are “teleported” be-
tween two environments by the switching of light cues, and their firing fields remap
accordingly. Gateways are convenient, but in principle, arbitrary positions could
be associated with a place cell pattern much in the same way. These key locations
could then be recognized and reactivated whenever the animal would experience
environmental contextual change, prompting it to reorient itself. In the model, this
type of remapping would be straight-forward to implement, but it would come with
increased memory requirements and a high risk of aliasing within a region. Remem-
bering every single location seems plausible for small, well known environments as
in Jezek et al. (2011), especially if the animals are rewarded with randomly strewn
food, but it seems unlikely that a rat could immediately localize itself when placed in
an open field. Alternatively, the distance and direction to a remembered place could
be inferred from depth perception or path integration (i.e., information provided by
the boundary vector cells (Lever et al., 2009)) and the animal may be able adjust
the shift the cell patterns to the correct position. In both cases, it would be more
efficient to primarily memorize salient and behaviorally relevant locations, such as
gateways.

Similarly, compartments with multiple entrances are no problem if the place cell
pattern is memorized when leaving through each of them, meaning that the envi-
ronment has been explored adequately. Keinath et al. (2020) report a difference
in firing rate but not place field position depending on the most recent entrance,
i.e., the animals were able to recover the overall place code in a familiar environ-
ment. Still, there is a qualitative difference between remapping to a novel pattern
on first entry and reproducing a previous pattern. The former requires some sort of
gateway representation, and the latter a memory. How representations evolve in an
unfamiliar environment with multiple rooms and entrances remains to be explored.

In the behavioral experiment by Grieves et al. (2016), rats eventually improved in
their ability to distinguish multiple identical rooms over days, although they never
reached the performance of the control group. Similarly, Carpenter et al. (2015)
showed that an initially repeating grid cell pattern between two identical, parallel
rooms changed into one continuous pattern over both rooms after prolonged experi-
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ence. The findings indicate that the identical room problem is not unsurmountable,
even if it takes a lot of time. Interestingly, one interpretation of the findings by
Carpenter et al. (2015) is that, instead of learning to differentiate the two rooms as
different regions, the animals combined them into one larger region with no further
remapping at the gateways. This explanation nicely fits to the notion of gateways
based on surprise (e.g., Butz et al., 2004; Klukas et al., 2022). After all, the entrances
are not surprising if the animals know the rooms in and out. Our model currently
does not simulate long-term learning dynamics and changing gateway and region
definitions - it doesn’t even detect and recognize gateways automatically. However,
the addition of such functions in future iterations is feasible.

A3.4.3 Remapping without the MEC

Evidence points towards grid cells in the MEC as an important driving force behind
hippocampal place cell remapping (Monaco and Abbott, 2011; Bush et al., 2014;
Kanter et al., 2017): Grid cell remap concurrently with place cells, the MEC directly
projects to the hippocampus (Fyhn et al., 2007), and electrical stimulation of the
area leads to hippocampal remapping (Kanter et al., 2017). In accordance, place cell
activity and remapping in our model directly arise from grid cell input. However,
place cells must be at least partially independent from MEC input: Their activity
persists and the cells continue to remap in different contexts, even if grid cell firing
is disrupted (Brandon et al., 2014) or the entire MEC is lesioned (Schlesiger et al.,
2018).

In our model, place cell activity is sustained by grid cell input and would therefore
immediately cease if the input was severed. To maintain activity in the absence
of grid cell input, the model place cells would either need to be augmented with
recurrent weights or input from another source. This presents an opportunity to
reconcile our model with boundary vector cell models (Hartley et al., 2000; Barry
et al., 2006; Bush et al., 2014; Grieves et al., 2018), where local geometry, i.e.,
the distance to walls, determines place fields. A combined model could continue
to function with interrupted path integration. Perhaps, a combined model with
context-dependent grid cells and context-independent boundary vector cells could
also explain the phenomenon of partial remapping Latuske et al. (2018), where only
some firing fields remap, while others stay at the same location.

Interestingly, place fields that are newly formed while grid cells are interrupted,
remain the same when grid cell activity is later restored (Brandon et al., 2014). This
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is consistent with the proposed feedback connections from place cells to grid cells in
our model; once grid cell activity is restored, the newly formed place fields should
move the grid cell activity to the closest attractor.

In conclusion, we suggest that remapping is a mechanism subserving the integra-
tion of the systems for path integration and place recognition, i.e., O’Keefe and
Nadel’s (1978) Locale and Taxon systems. The cognitive map is thereby structured
into a set of contexts or local charts, memorized by gateway identifiers. Within the
charts, navigation is based on local metrics. On a coarser scale, the map is likely
organized by the adjacencies of the charts, i.e., some sort of graph structure.
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Abstract

The structure of the internal representation of surrounding space, the so-called cog-
nitive map, has long been debated. A Euclidean metric map is the most straight-
forward hypothesis, but human navigation has been shown to systematically deviate
from the Euclidean ground truth. Vector navigation based on non-metric models can
better explain the observed behavior, but also discards useful geometric properties
such as fast shortcut estimation and cue integration.

Here, we propose another alternative, a Euclidean metric map that is systemati-
cally distorted to account for the observed behavior. The map is found by embedding
the non-metric model, a labeled graph, into 2D Euclidean coordinates. We compared
these two models using human data from Warren et al. (2017), where participants
had to navigate and learn a non-Euclidean maze (i.e., with Wormholes) and perform
direct shortcuts between different locations. Even though the Euclidean embedding
cannot correctly represent the non-Euclidean environment, both models predicted
the data equally well. We argue that the so embedded graph naturally arises from
integrating the local position information into a metric framework, which makes the
model more powerful and robust than the non-metric alternative. It may therefore
be a better model for the human cognitive map.

131



Appendix A4 Baumann and Mallot (2023b)

A4.1 Introduction

A4.1.1 The cognitive map

The spatial long-term memory contains representations of places, landmarks, and
local views. A sequence of navigational actions connecting these representations is
called a route and animals with such route knowledge are able to navigate between
known places by following these routes (Collett et al., 1998; Collett and Collett, 2002;
Warren, 2019; Mallot, 2024). If knowledge about many different items, places, and
routes is integrated and novel routes and shortcuts can be inferred from previously
learned route segments, the representation is called a map (Tolman, 1948; O’Keefe
and Nadel, 1978; Gallistel, 1990; Trullier et al., 1997; Mallot, 2024). The cognitive
map is thus a form of declarative memory in the sense that it characterizes “knowing
what” or “knowing where” as opposed to the non-declarative “knowing how” of
routes or guidance information (O’Keefe and Nadel, 1978; Squire and Knowlton,
1995).

A cognitive map is the most general form of spatial long-term memory, and it is
believed that many animals, including humans, have access to this representation
(Gallistel, 1990; Nadel, 2013; Warren, 2019). This is exemplified by the existence
of neural correlates of position, the place cells (O’Keefe and Nadel, 1978; Rolls and
O’Mara, 1995; Ekstrom et al., 2003; Yartsev and Ulanovsky, 2013), which encode
the position of the animal within the current context via population activity.

The intuition of an internal map is relatively straight-forward, because it matches
maps encountered in everyday life: In general, such maps may be broadly character-
ized by two frameworks: Euclidean metric maps and topological graphs. Euclidean
metric maps, such as a bird’s eye view of a city or a satellite image, assign unique
coordinates to each position that approximate the real-world geometry by preserving
the metric relationships between positions. Topological graphs, such as a subway or
bus chart or an instruction manual, describe states and possible actions that lead
from one state to another, rather than geometry.

The metric framework (Fig. A4.1C) is considerably better suited to explain envi-
ronments with a Euclidean geometric structure, and, based on the Kantian notion
of an a priori assumption of absolute external space (Kant, 1781), it has often
been argued that the cognitive map must likewise be Euclidean metric to capture
these properties (O’Keefe and Nadel, 1978; Gallistel, 1990; McNaughton et al., 2006;
Nadel, 2013). This theory is supported by the existence of grid cells in the entorhinal
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cortex, which are believed to encode metric path integration information (Hafting
et al., 2005; McNaughton et al., 2006; Peer et al., 2021).

The notion of an absolute Euclidean metric may be challenged, for example, by
pointing out that the intuition of straight lines on a curved surface (or any surface
that is not a plane) are actually geodesics and not true straight lines in an Eu-
clidean sense (Helmholtz (1876) and Mallot (2024), cf. Indow (1999)). But even an
approximately Euclidean or non-Euclidean metric map may be advantageous, since
geometric relationships between places are preserved in a highly efficient manner.
That is, distances, routes, and shortcuts can be directly inferred from the map and
need not be memorized individually. This property enables metric maps to store an
immense amount of data, making them powerful informational tools (Nadel, 2013).

However, results from navigation experiments often disagree with the Euclidean
metric map hypothesis: Human performance in shortcut or triangle completion tasks,
which are often taken as evidence for an Euclidean representation, is highly unre-
liable with angular errors of over ±90◦ and angular standard deviations between
25◦−45◦ (Foo et al., 2005; Ishikawa and Montello, 2006; Chrastil and Warren, 2013;
Warren, 2019). The Euclidean metric postulates are often violated and angle and dis-
tance estimations are systematically biased by features of the environment such as
landmarks, junctions or region boundaries (Byrne, 1979; McNamara, 1986; Sadalla
and Montello, 1989; Tversky, 1992; Warren, 2019; Kim and Doeller, 2022), or the
number and recency of preceding turns (Brunec et al., 2017; Meilinger et al., 2018;
Peer et al., 2021). In rats, place cells have been shown to stretch and shear following
room deformation, while still preserving topological information about the environ-
ment (O’Keefe and Burgess, 1996; Dabaghian et al., 2014). These results imply that
space is encoded much worse than what a precise metric map would predict.

As an alternative, the comparatively weaker class of topological graphs is often
proposed. The environment is expressed through neighborhood or adjacency rela-
tions, forming a network of places as graph vertices and paths or actions connecting
them as edges (Gillner and Mallot, 1998; Kuipers, 1978; Mallot and Basten, 2009;
Warren, 2019; Peer et al., 2021). The graph may be labeled with pairwise distance or
angle measurements, but this information need not adhere to the metric postulates
and is therefore not metric (Fig. A4.1A). Still, shortcuts and novel routes can be
derived via vector addition of the labels along paths in the graph; indeed, Warren
et al. (2017) suggest vector addition based on labeled graphs best explains human
performance in navigation experiments.

Nevertheless, poor navigational performance, biases, and large errors are not
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Figure A4.1: Cognitive map hypotheses. (a) Non-metric topological graph, labeled
with distance measurements. The labels are independent of each other and do not
need to adhere to the triangle inequality. (b) Embedded graph from (a). To find
a Euclidean embedding, the distance labels need to be adjusted to create a valid
configuration, for example, by stretching or compressing the edges or “wiggling” on
the vertices until the difference between map and labels is minimized. As opposed
to the non-metric labeled graph, changes to one label will therefore influence others.
(c) Euclidean metric map. Places are directly assigned coordinates based on their
position in the world. Over time, the coordinates may be refined by repeated mea-
surements and the map will approach the Euclidean ground truth. The same can be
expected from the embedded graph optimization if the labels are refined.
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enough to completely rule out a Euclidean metric representation because the map
may be systematically biased or distorted to large degrees while still being metric
(Warren, 2019). Overall, the distance errors in metrically embedded maps will be
smaller than in labeled graphs where distance labels are independent. Metric em-
bedding is thus a means for efficiently exploiting all available distance information.

A4.1.2 Distorted maps and non-Euclidean environments

Each individual cognitive representation will generally be different due to acquisi-
tion order, biases, and accumulation of measurement errors. One possible advantage
of map-like representations in spatial memory is the mutual refinement of (possibly
conflicting) local position information over time: As the agent explores the envi-
ronment, it will repeatedly obtain distance and angle measurements of connections
between the known places or graph states.

With a topological graph, repeated measurements of the same information could
be used to create more precise labels by averaging. However, the labels will always
remain independent of labels corresponding to adjacent connections and, in a trian-
gle, might persistently violate the triangle inequality which defines a mathematical
metric (Fig. A4.1a). In the following, we therefore refer to this representation as the
non-metric labeled graph.

Additional precision can only be gained if repeated measurements of one connec-
tion will also improve estimates along other connections in the graph. This may,
for example, be achieved by metric embedding (Fig. A4.1b). Since the acquisition
of spatial memory is not complete after a single pass through the environment but
relies on the consolidation of many local measurements, metric embedding seems to
be a natural method for continuous integration of local information. In this sense,
cue integration might be the main reason for organizing spatial representations in a
metric framework.

If the measured labels are not perfect, Euclidean metric embedding can only ap-
proximate the true Euclidean metric relations and will result in a distorted depiction.
The so embedded graph could therefore be an alternative metric explanation for the
large deviations in human navigation, as opposed to the non-metric labeled graph.

In regular environments, differences between a non-metric labeled graph, an em-
bedded graph, and a Euclidean metric map will be minimal, because the models are
likely to approach the same underlying ground truth as measurements are refined.
Therefore, cases need to be considered in which the models would make different
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predictions. With the advent of immersive virtual reality, a unique opportunity has
opened up to present non-Euclidean environments, thus dissociating presented met-
ric information from the underlying true Euclidean positions (Zetzsche et al., 2009;
Kluss et al., 2015; Warren et al., 2017; Widdowson and Wang, 2023). The non-
Euclidean manipulations have been shown to heavily influence navigation but are
usually not noticed by the subjects (Zetzsche et al., 2009; Warren et al., 2017).

A4.1.3 Evidence from wormhole experiments

In the following, we focus on a specific example, Warren et al. (2017), because the
experiment offers an excellent setup to investigate the hypotheses with respect to
systematic distortion and the data are available online.

Warren et al. (2017) presented participants with a non-Euclidean environment
and argued that, if the cognitive map is Euclidean metric, participants should have
greater difficulties in learning the non-Euclidean environment compared to control,
because mismatches between the cognitive map and the environment should occur.
On the other hand, a non-metric graph should have no such issues.

Using head-mounted display virtual reality, Warren et al. created a hedge maze
augmented with two invisible wormholes. The wormholes functioned as instant seam-
less teleportation and 90◦ rotation between different parts of the maze while par-
ticipants continued to walk normally in the real-life room, therefore creating a mis-
match between maze position and path integration information. Interestingly, only
one participant reported noticing any kind of spatial anomaly in the maze.

Participants had to memorize object positions within the maze and were later
asked to walk direct shortcuts between them. For this, the participants were moved
to a starting object and had time to orient themselves. Then, the walls of the maze
disappeared, and the participants had to walk to the presumed position of a tar-
get object. The initial angles of the subjects’ trajectories were measured and used
as directional estimates to compare the non-metric labeled graph and undistorted
Euclidean map models.

Warren et al. found that directional estimates were heavily distorted towards the
wormholes. This is predicted by vector addition along the shortest path on a la-
beled graph but not by straight lines in Euclidean ground truth coordinates. The
authors thus rejected the Euclidean map hypothesis in favor of the non-metric la-
beled graph, arguing that only a non-Euclidean structure could explain the observed
results (Warren et al., 2017; Warren, 2019). A distorted Euclidean map was briefly
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considered but rejected on the basis that such a map “must still satisfy the metric
postulates [...] in the inertial coordinate system” (Warren et al., 2017). However,
the metric embedding is not a simple averaging of the path integration coordinates
(Warren’s “inertial coordinates”) but the result of an optimization that also takes
into account the other connections in the graph. The representation of a goal will
therefore not necessarily end up in the middle between the path integration vectors
obtained along two different paths but may be closer to one or the other.

We reexamined the data used in Warren et al. (2017) with respect to the possibility
of a distorted Euclidean map. In the following, we show that such a map can be
found by first creating a non-metric labeled graph for the maze and then embedding
the graph into 2D Euclidean coordinates. This is achieved by the minimization of
the angle and distance differences between graph and map, following the method
described in Hübner and Mallot (2007) and Mallot (2024) for the embedding of
view graphs. In an ordinary Euclidean environment, the embedding will recover
the ground truth coordinates, but in a non-Euclidean environment, a residual error
between embedding and local measurements must remain. Because of this error, the
models should make different predictions, and may be distinguished by comparing
their predictions to experimental data. That is, shortcuts derived from the embedded
graph should fall somewhere between the shortcuts from the other two models.

However, we found that both models, the non-metric labeled graph and its Eu-
clidean metric embedding, were able to predict the data equally well. Because the
embedded graph is a valid Euclidean map, it is better suited for shortcut genera-
tion and especially cue integration than the non-metric alternative. We therefore
refute the claim by Warren et al. (2017) that their findings cannot be explained by
a Euclidean metric map and argue for the embedded graph as a better alternative
explanation.

A4.2 Materials and methods

A4.2.1 Data acquisition

The data used here are figures, measurements, and results from Warren et al. (2017).
The anonymized per-subject measurements are available as supplementary material
online in the Brown University Digital Repository (http://dx.doi.org/10.7301/
Z0JS9NC5, retrieved in November 2022). The relevant datasets contain measure-
ments of the direction of individual shortcuts between object pairs in the wormhole
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Figure A4.2: Maze and shortcut data. (a) Layout of the wormhole maze, redrawn
from Warren et al. (2017). The yellow arrows show wormhole position and magnitude.
Touching one end of the arrow instantly and seamlessly teleported subjects to the
other end. (b, c) Example directional estimates for object pairs from the “Route-
finding and shortcuts” dataset (Experiment 1 in Warren et al. (2017)) and the
“Rips and folds” dataset (Experiment 2 in Warren et al. (2017)). The thin arrows
show the Euclidean ground truth direction between objects, the short dotted lines
the corresponding subject estimates, and the thick solid line the average subject
estimate. The length of the estimates has been normalized and does not reflect
walked distance. In (c), the colors indicate different goals.

maze, given as angular difference between the estimate and the straight-line direc-
tion in Euclidean ground truth coordinates. We estimated these coordinates from
pixel positions in Fig. 2B in Warren et al. (2017) (Fig. A4.3A) and transformed
the subject estimates into global angles (i.e., increasing counterclockwise from the
positive x-axis or east). The layout of the maze and example subject estimates are
shown in Fig. A4.2.

Warren et al. (2017) measured direction estimates in two separate experiments,
one to investigate shortcuts (Dataset “Route-finding and shortcuts”, see Fig. A4.2B)
and one to investigate the ordinal reversal of landmark positions (Dataset “Rips
and folds”, see Fig. A4.2C). “Route-finding and shortcuts” contains directional es-
timates of 10 subjects (5M, 5F) for four pairs of objects for a total of 10 × 4 ×
2 (bidirectional) = 80 measurements. “Rips and folds” contains directional estimates
of 11 subjects (9M, 2F) for eight starting locations and three targets each for a total
of 11×8×3 = 264 measurements. For the purpose of this study, both datasets were
treated the same but were evaluated separately; this was done for direct comparison
and to avoid bias because some subjects may have participated in both studies. For
further information about the participants, hardware, and experimental setup please
refer to Warren et al. (2017).
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Figure A4.3: Graph creation. (a) Vertex positions in the maze. Their pixel coor-
dinates were considered the Euclidean ground truth for the model. The maze was
partitioned into straight segments and corners, and one vertex was placed per cor-
ner. Two vertices, 12 and 35, were only used in a control graph without wormholes.
(b) The corresponding topological graph with edges through wormholes (red dot-
ted lines). The graph was then labeled with local distance and angle measurements
based on the ground truth, except for the wormhole edges, which were manually
adjusted to reflect the locally distorted topology instead. Note that the distance
along the wormhole edges is shortened but not zero.

A4.2.2 Graph and map setup

Plausible Euclidean embeddings were found in two steps: First, a topological graph of
the maze was created and labeled with the veridical distances and angles. This graph
was also used to derive predictions for the non-metric labeled graph hypothesis, i.e.,
vector addition of the labels along the shortest paths. Next, the graph was embedded
into 2D Euclidean coordinates by iterative minimization of a stress function (Hübner
and Mallot, 2007; Mallot, 2024) describing the difference between the coordinates
and the local labels.

In general, the creation of the topological graph is a non-trivial problem with
a possibly infinite set of solutions consisting of any number of vertices, edges and
measurements along the maze. Therefore, good solutions have to be guessed. Be-
cause the wormhole maze consisted of well-defined straight segments and corners,
we created the graph by placing one vertex per corner and one edge per straight seg-
ment (Fig. A4.3B). Formally, we define the graph G = {V,E} as a set of n vertices
V = {v1, ..., vn} corresponding to places in the maze and edges E = {eij, ejk, ...}
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describing maze arms connecting the places vi to vj and vj to vk.
The algorithm for metric embedding is based on local distance and turning in-

formation only, without the assumption of a global reference direction (e.g., north).
It is therefore based on triplets of neighboring places T = {(i, j, k)}, i.e., places
that can be visited in sequence. For each triplet, the distances dij, djk and the turn-
ing angle αijk were measured and added as labels to the topological graph. dij and
djk describe the distances between places i, j and j, k and αijk the heading change
at j when moving from i to k. All labels were taken from the required egomotion
steps such that labels around wormholes differed from the Euclidean ones. The same
labeled graph was used for datasets from all subjects.

From the graph, a 2D Euclidean embedding X = {(x1, ..., xn)} of the n vertices
was derived by minimizing the following stress function: The algorithm considers
all measured triplets of neighboring places T = {(i, j, k)} and their related distance
and angle measurements (dij, djk, αijk). Each place may appear many times as part
of different triplets, and forward-backward movements of the form (i, j, i) are also
considered (with αijk = 180◦). The stress function can then be written as

f(x1, ..., xn) =∑
(i,j,k)∈T

λ1[((xj − xi) · (xj − xk))− dijdjkcosαijk]
2+

λ2[((xj − xi)⊗ (xj − xk))− dijdjksinαijk]
2.

(A4.1)

here, (·) denotes the dot product and (⊗) the third component of the cross product,
(a ⊗ b) := a1b2 − a2b1, which is twice the area of the triangle (i, j, k). The constants
λ1, λ2 can be used to weigh the components based on their variances (Mallot, 2024);
we chose λ1 = λ2 = 1.

Finding an embedding that minimizes this stress function is a nonlinear optimiza-
tion problem. Solutions may, for example, be found with iterative numerical approx-
imations like Newton’s method. We used the quasi-Newton method Sequential Least
Squares Programming (SLSQP), as implemented in the SciPy 1.10 optimize Python
library (Virtanen et al., 2020), credited to (Kraft, 1988).

The resulting embedding will be a Euclidean metric map of the graph’s vertices
with an arbitrary global orientation, but it is not a complete distorted map of the
wormhole maze in the sense that it only assigns coordinates to the vertices but not to
other places. The distorted position of other places may be found by adding them as
additional vertices to the graph before embedding or by interpolation. Nevertheless,
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the embedding is sufficient to derive directional predictions.

A4.2.3 Model comparison and data analysis

Next, the non-metric labeled graph and its Euclidean embedding were used to de-
rive predictions about shortcut directions between object pairs. For the non-metric
labeled graph, predictions were obtained by finding the shortest path between start
and target object using Dijkstra’s algorithm, as implemented in the NetworkX 3.0
Python library (Hagberg et al., 2008). Along the path, the angles and distances
were summed up to a vector, and the global direction of the resultant vector rela-
tive to the ground truth coordinates was considered the final shortcut prediction. In
the embedded graph, shortcuts were simply the straight lines from start to target
objects.

The predictions of the two graph models were compared to the subject data and
the prediction error was measured. Because the embedded graph has no defined ref-
erence direction, subject estimates had to be considered relative to a local reference.
We used the respective local angle between the starting arm and measurement or
prediction, which is independent of the reference direction.

For each model, the mean prediction errors and between-subject angular deviation
were calculated for the group, and the within-subject angular deviation separately for
each participant. The errors were compared with the two-sample Watson-Williams
F-test for circular data (Batschelet, 1981), as implemented in the PyCircStat Python
library (Berens and Sinz, 2022). The null hypothesis assumes that the samples come
from underlying distributions with the same mean (Batschelet, 1981), i.e., that the
models explain the subject data equally well; note that this does not mean that the
models make the same prediction. Cohen’s d was used as a measure for effect size.
All statistical tests were two-tailed with α = 0.05.

A4.3 Results

A4.3.1 Embeddings

The numerical optimization method may find different local minima. Which solution
is found depends on the starting point in the solution space, i.e., the initial vertex
positions X = {(x1, ..., xn)}. We restarted the optimization procedure 1000 times
with random initial vertex positions X ∼ U2(0, 20) and found two local minima with
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Figure A4.4: Embedded graph. (a, b) References for comparison. The unembedded
graph (as in Fig. A4.3) and an another embedding which was also found by the
optimization method. The second embedding performed worse on the subject data
and was not further used. (b) The embedded graph, i.e., the labeled graph with the
vertices at coordinates that minimize the difference between map and labels. The
orientation of the embeddings is arbitrary; here, they were rotated so that the edge
(2, 3) is horizontal. The red dotted lines show the edges that pass through wormholes.
(d) Sketch of the distorted wormhole maze according to the embedding in (c). Edges
that cross each other in the embedded graph could, for example, be realized through
multi-level paths.
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stress values f(X1) = 450.68 (Fig. A4.4c) and f(X2) = 367.36 (Fig. A4.4b). In the
following, we report results from the first embedding, which resulted in better fits
to the subject data.

A4.3.2 Dataset 1: Route-finding and shortcuts

We derived shortcut predictions from the non-metric labeled and embedded graph
models and compared the predictions to human shortcut estimates from Warren
et al. (2017), dataset “Route-finding and shortcuts” (Fig. A4.5A-C). The resulting
angular prediction error was measured. Rayleigh tests on error direction revealed
non-uniform distributions, z(10) = 9.59, p < .001 for the non-metric labeled graph
and z(10) = 9.57, p < .001 for the embedding.

The non-metric labeled graph model showed an average angular error of −12.4◦

with an angular deviation (AD) of 11.76◦ and the embedding an average error of
−15.26◦, AD = 11.98◦. This difference was not significant (F (1, 18) = 0.2, p = .63)

with a small effect size (d = .22). I.e., the shortcut directions derived from the graph
model were not significantly closer to the subject data than the shortcut directions
derived from the embedding or vice versa.

The within-subject angular deviation of the errors was fairly high but also similar
for both models, with an average of 29.75◦ for the graph model and 32.15◦ for the
embedding. Statistical comparison (F (1, 18) = 0.6, p = .42, d = .51) again revealed
no significant difference.

A4.3.3 Dataset 2: Rips and folds

For the purpose of this study, the “Rips and folds” dataset was treated the same
as the “Route-finding and shortcuts” dataset, with the only difference being the
number of participants (11 vs. 10 in dataset 1) and estimates per participant (24 vs.
8 in dataset 1). The datasets were analyzed separately for the sake of comparison.

We again compared prediction errors of the non-metric labeled graph model and
its Euclidean embedding (Fig. A4.5D–F). Rayleigh test on error direction revealed
non-uniform distributions, z(11) = 10.78, p < .001 for the non-metric labeled graph
and z(11) = 10.77, p < .001 for the embedded graph. The non-metric labeled graph
showed an average angular error of 5.68◦, AD = 8.12◦, and the embedded graph
an error of 2.37◦, AD = 9.35◦. This difference was again not significant (F (1, 20) =

0.72, p = .41) with a small effect size (d = .39). Within-subject angular deviation
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Figure A4.5: Results. (a-c): Dataset “route-finding and shortcuts”, (d-f): Dataset
“rips and folds”. (a) Shortcut predictions of the non-metric labeled graph (dotted
lines) and average subject estimates (solid lines), plotted on ground truth coordi-
nates. The gray vertices show how the graph would continue on routes through
wormholes. (b) Shortcut predictions of the embedded graph, lines as in (a). The
subject estimates were rotated to match the local orientation of the originating
maze arm. (c) Distribution of the prediction error. The difference between the mod-
els is not significant, i.e., they predict the data equally well. (d) Example shortcut
predictions (dotted lines) and subject estimates (solid lines) for three of the 24 ob-
ject pairs in the “rips and folds” dataset. (e) Shortcut predictions of the embedded
graph for the same object pairs as in (d). (f) Distribution of the prediction error.
The difference between the models is also not significant on this dataset.
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of the errors was also high, with an average of 42.36◦ for the non-metric labeled
graph model and 33.77◦ for the embedding. This difference was trending towards
significance (F (1, 20) = 4.07, p = .057) with a large effect (d = .85).

Although dataset 2 contained many more measurements than dataset 1, there
was still no significant difference between the prediction errors, i.e., the models
again predicted the data equally well, with the embedding possibly capturing the
within-subject variation better.

A4.4 Discussion

Using subject data from Warren et al. (2017), we compared two cognitive map
models, the non-metric labeled graph and the embedded graph. We found both
models predicted the data equally well, i.e., both models made prediction errors with
a similar magnitude and distribution. The embedding may possibly be somewhat
better at predicting the within-subject angular deviation in the rips and folds dataset,
but the results did not pass the selected significance threshold at α = .05. Given the
data, we therefore found insufficient evidence to reject the null hypothesis.

Due to the non-Euclidean property of the environment, a perfect Euclidean embed-
ding does not exist and a difference between the models must remain. It is therefore
surprising that it did not lead to significantly different prediction errors.

In the original study, subjects explored the environment by walking continuous
paths and thereby obtained information not only about the place-to-place distances
and turns but also about the overall connectivity of the network. The conclusions
drawn in Warren et al. (2017) imply that this network information is not used for
the shortcut task, which is thought to be solved by vector addition along the direct
path only. Here, we showed that the behavioral data are also consistent with the idea
of consolidating both distance and network information in a metrically embedded
graph. We thus refute the conclusion in Warren et al. (2017): it is not necessary to
discard Euclidean metric properties and to reduce the representation to a non-metric
framework in order to explain the observed behavior.

The main difference between the vector navigation in the labeled graph and the
embedded graph suggested here lies in the treatment of repeated distance and angle
measurements during prolonged navigation. Repeated measurements might simply
be used to improve the estimates of distances and angles for individual labels with-
out exploiting the constraints that these measurements impose on adjacent labels
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and indeed on the entire graph. Metric embedding, in contrast, allows to make use
of these constraints such that improved estimates of one edge will lead to better dis-
tance and angle estimates everywhere. In this view, the main advantage of having
a metrically embedded representation of space is not so much its resemblance to a
geographic map, but the possibility to integrate local and repeated measurements
into a consolidated structure. The result is still a graph, but with metrically embed-
ded vertices from which directions can be derived directly without the “mental path
integration” procedure suggested by Warren et al. (2017).

Note that even an optimal metric embedding is not necessarily equivalent to the
Euclidean ground truth; cognitive space is not natural space, and the internal rep-
resentation may still be systematically distorted, even under normal Euclidean cir-
cumstances. This might explain poor navigational performance even after prolonged
exposure to the environment (e.g., Ishikawa and Montello (2006)).

Non-metric topological and metrically embedded information may also coexist.
Combined models have previously been proposed, for example, for different levels of
spatial hierarchy (Couclelis et al., 1987; Meilinger, 2008), where the local Euclidean
structure of individual places or regions is known but higher-level relations between
different regions are encoded as a graph. For example, a local plaza may be well-
represented by a Euclidean metric map, but directions to other places within the
city may only be memorized as a sequence of turns. In the context of this present
study, this relates to the problem of what constitutes a vertex of the graph. In
our simulation, we placed vertices at all corners of the maze, but other choices
are possible. A neural network model assuming metric representations within small
regions and categorical knowledge of these regions themselves has been presented
by Baumann and Mallot (2023a).

Topological and metric information may also be used under different environmen-
tal constraints or at different stages of exploration and familiarization (Peer et al.,
2021). Initially, the environment may be encoded in terms of adjacency relations
and individual routes, which then over time is consolidated in an encompassing map
as the amount of information increases. This scenario is supported by reports that
grid cell firing fields are initially anchored by the walls of individual compartments,
but with experience extend across boundaries to encompass a larger space (Carpen-
ter et al., 2015; Wernle et al., 2018). The embedding algorithm presented here may
also be considered a support, because it describes a transformation of local position
information under topological constraints into a Euclidean metric map.
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