
Leveraging Metadata for Computer Vision on
Unmanned Aerial Vehicles

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Benjamin Kiefer

aus Denzlingen

Tübingen

2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 07.11.2023

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Andreas Zell

2. Berichterstatter/-in: Prof. Dr. Andreas Schilling

Dedicated to the person reading this. Good choice! Only a

few more pages.

Abstract

The integration of computer vision technology into Unmanned Aerial Vehicles (UAVs)

has become increasingly crucial in various aerial vision-based applications. Despite

the great significant success of generic computer vision methods, a considerable per-

formance drop is observed when applied to the UAV domain. This is due to large vari-

ations in imaging conditions, such as varying altitudes, dynamically changing viewing

angles, and varying capture times resulting in vast changes in lighting conditions. Fur-

thermore, the need for real-time algorithms and the hardware constraints pose specific

problems that require special attention in the development of computer vision algorithms

for UAVs.

In this dissertation, we demonstrate that domain knowledge in the form of meta data is

a valuable source of information and thus propose domain-aware computer vision meth-

ods by using freely accessible sensor data. The pipeline for computer vision systems on

UAVs is discussed, from data mission planning, data acquisition, labeling and curation,

to the construction of publicly available benchmarks and leaderboards and the establish-

ment of a wide range of baseline algorithms. Throughout, the focus is on a holistic view

of the problems and opportunities in UAV-based computer vision, and the aim is to bridge

the gap between purely software-based computer vision algorithms and environmentally

aware robotic platforms.

The results demonstrate that incorporating meta data obtained from onboard sensors,

such as GPS, barometers, and inertial measurement units, can significantly improve the

robustness and interpretability of computer vision models in the UAV domain. This

leads to more trustworthy models that can overcome challenges such as domain bias,

altitude variance, synthetic data inefficiency, and enhance perception through environ-

mental awareness in temporal scenarios, such as video object detection, tracking and

video anomaly detection.

The proposed methods and benchmarks provide a foundation for future research in

this area, and the results suggest promising directions for developing environmentally

aware robotic platforms. Overall, this work highlights the potential of combining com-

puter vision and robotics to tackle real-world challenges and opens up new avenues for

interdisciplinary research.

vii

Kurzfassung

FÈur die weitreichende Verbreitung und Nutzung von Drohnen sind Algorithmen fÈur Ma-

schinelles Sehen unabdingbar. Viele der Fortschritte zu Algorithmen zum Maschinellen

Sehen lassen sich nicht direkt auf den Drohnen-Bereich Èubertragen, da dieser besondere

Herausforderungen in den zugehÈorigen Bilddaten darstellt, wie zum Beispiel eine groûe

HÈohenvarianz und die daraus resultierenden unterschiedlich aufgelÈosten Bilder mit Ob-

jekten verschiedener GrÈoûe, dynamische VerÈanderungen in den Aufnahmewinkeln und

verschiedene Aufnahmezeiten, welche dynamischen LichtverÈanderungen zur Folge ha-

ben. Desweiteren sind Hardware-BeschrÈankungen und Echtzeit-Anforderungen weitere

groûe Herausforderungen.

In dieser Dissertation zeigen wir, dass Wissen Èuber den Kontext in Form von Metada-

ten eine wertvolle Informationsquelle ist und schlagen Methodes des Machinelles Sehens

vor, welche den Kontext berÈucksichtigen, indem sie auf frei zugÈangliche Sensordaten zu-

greifen. Dahingehend beschreiben wir viele Aspekte von Pipelines fÈur Computer-Vision-

Systeme auf UAVs, von der Datenmissionsplanung, Datenerfassung, -annotierung und

-kuration bis hin zur Konstruktion von Èoffentlich verfÈugbaren Benchmarks und Leader-

boards und dem Aufbau einer breiten Palette an Basis-Algorithmen. Dabei steht stets ein

holistischer Blick auf die Probleme und Chancen der UAV-basierten Computer-Vision im

Fokus und das Ziel ist es, die LÈucke zwischen rein softwarebasierten Computer-Vision-

Algorithmen und kontext-bewussten Roboter-Plattformen zu schlieûen.

Die Ergebnisse zeigen, dass die Einbeziehung von Metadaten von Sensoren, wie z.B.

GPS, Barometern und Inertial-Messsystemen die Robustheit und Interpretierbarkeit von

Computer-Vision-Modellen im UAV-Bereich erheblich verbessern kann. Dies fÈuhrt zu

zuverlÈassigeren Modellen, welche die Herausforderungen wie DomÈanen-Bias, HÈohen-

variation und (In-)effizienz synthetischer Daten Èuberwinden und ein besseres VerstÈandnis

von ihrer Umwelt bekommen.

Zusammenfassend zeigt diese Dissertation die Bedeutung des Nutzens von DomÈanen-

wissen in Form von Metadaten in UAV-basiertes Maschinelles Sehen auf und schlÈagt

Methoden vor, die Sensordaten nutzen, um die Wahrnehmung zu verbessern und Heraus-

forderungen wie DomÈanenbias und HÈohenvarianz zu Èuberwinden. Die vorgeschlagenen

Methoden und Benchmarks bilden eine Grundlage fÈur zukÈunftige Forschung in diesem

Bereich, und die Ergebnisse deuten auf vielversprechende AnsÈatze zur Entwicklung von

intelligenten Robotik-Plattformen hin. Insgesamt verdeutlicht diese Arbeit das Potenzial

der Kombination von Maschinellem Sehen und Robotik zur BewÈaltigung realer Heraus-

forderungen und erÈoffnet neue MÈoglichkeiten fÈur interdisziplinÈare Forschung.

ix

Acknowledgments

I would first like to thank my thesis advisor Prof. Dr. Zell for giving me the opportu-

nity to write this thesis in the Cognitive Systems Group and the continuous support he

provided. Furthermore, I would like to thank the Cognitive Systems Group for the wel-

coming atmosphere and the diverse and helpful discussions and conversations throughout

the entire time. In particular, I would like to thank Martin Meûmer for the engaging dis-

cussions, Timon HÈofer for the helpful feedback and Leon Varga for his critical opinions.

xi

Contents

1 Introduction 1

1.1 General Computer Vision . 2

1.2 Specific UAV challenges . 3

1.3 Potential of Metadata . 4

1.4 Contribution and Outline . 5

2 Generating Image Data and Metadata 7

2.1 What is Metadata? . 7

2.1.1 Altitudes . 8

2.1.2 Angular velocities . 9

2.1.3 Geographic Coordinates . 9

2.2 Labeled Data Sets Captured from UAVs 10

2.2.1 Multi-Modal Data Sets Captured from UAVs 10

2.3 People On Grass (POG) . 13

2.3.1 Object Detection . 13

2.3.2 Video Object Detection . 14

2.4 SeaDronesSee . 14

2.4.1 Labeled Data Sets in Maritime Environments 16

2.4.2 Data Set Generation . 16

2.4.3 Metadata Collection . 18

2.4.4 Annotation Method . 19

2.4.5 Data Set Split . 19

2.5 Data Set Tasks . 20

2.5.1 Object Detection . 21

2.5.2 Single-Object Tracking . 22

2.5.3 Multi-Object Tracking . 22

2.5.4 Multi-Spectral Footage . 23

2.6 SeaDronesSee Webserver Benchmark 23

2.6.1 Design and Technical Background 23

2.6.2 Uploading Feature and Comparison of Methods 25

2.6.3 Statistics . 25

3 Establishing State-of-the-Art Baselines 27

3.1 Baselines for SeaDronesSee Object Detection 27

3.2 Baselines for SeaDronesSee Single-Object Tracking 30

xiii

Contents

3.3 Baselines for SeaDronesSee Multi-Object Tracking 31

3.4 MaCVi Workshop . 31

3.4.1 Challenge Participation Protocol 32

3.4.2 SeaDronesSee Object Detection v2 Challenge 33

3.4.3 SeaDronesSee Multi-Object Tracking Challenge 41

3.5 Conclusion . 46

4 Diminishing Domain Bias 47

4.1 Related Work . 49

4.2 Analyzing Domain Imbalances . 50

4.2.1 Domain Imbalances in the Training Set 50

4.2.2 Domain Imbalances in the Testing Set 52

4.3 Multi-Domain Learning Approach . 53

4.3.1 Toy Example . 53

4.3.2 Multi-Head Architecture . 56

4.3.3 Simplified Training Realization 56

4.4 Experimental Results and Ablations 57

4.4.1 VisDrone . 58

4.4.2 UAVDT . 61

4.4.3 POG: Baseline and Expert Results 62

4.4.4 SeaDronesSee: Expert Results 63

4.5 Conclusion and Limitations . 64

5 Gaining Scale Invariance 65

5.1 Related work . 67

5.2 Method . 68

5.2.1 Building a Detector for Embedded Deployment 70

5.3 Experiments . 71

5.3.1 Results on Bird’s Eye View Portions 72

5.3.2 Effects of Cutting FPN . 73

5.3.3 Results on Complete UAVDT Data Set 74

5.3.4 Timing Benchmarks . 76

5.3.5 Height Transfer . 76

5.4 Conclusion and Outlook . 77

6 Obtaining Efficient Synthetic Data 79

6.1 Related Synthetic Data Generation Engines 81

6.2 Related Data Sets Taken on UAVs . 81

6.3 Methods Narrowing the Sim-to-Real Domain Gap 82

6.4 DeepGTA-UAV: Tool Description and Improvements 83

6.5 Data Set Generation . 84

6.6 Models and Training setup . 85

xiv

Contents

6.7 Experimental Evaluation . 86

6.7.1 General Benefit of Synthetic Data in UAV Object Detection . . 87

6.7.2 Effect of Data Set Sizes . 88

6.7.3 Effect of using pre-trained weights 89

6.7.4 Effect of Good/Bad graphics settings 90

6.7.5 Aligning Domain Distributions 91

6.8 Limitations and Conclusions . 92

7 Tackling Weakly Supervised Data 93

7.1 Related Work: Maritime Computer Vision 95

7.2 Related Work: UAV-based Detection 95

7.3 Related Work: Region proposal networks 95

7.4 Autoencoder for Video Anomaly Detection 96

7.5 Data Set Generation and Webserver 99

7.5.1 Anomaly Detection Performance 100

7.6 Experiments . 100

7.6.1 Obtaining Fewer Bounding Boxes 103

7.6.2 Running Times . 104

7.7 Conclusion and Outlook . 104

8 Building Memory Maps 105

8.1 Related Work . 106

8.2 Deriving Formulas for 3D Geometry 106

8.2.1 Relative Coordinates . 106

8.2.2 Absolute Coordinates . 108

8.3 Method: Temporal Memory . 108

8.3.1 Map Representation . 109

8.3.2 Video Object Detection . 109

8.3.3 Extension to Object Tracking and Reidentification 112

8.3.4 Extension to Video Anomaly Detection 112

8.4 Results and Analysis . 113

8.4.1 Video Object Detection . 113

8.4.2 Object Tracking . 114

8.4.3 Video Anomaly Detection . 116

8.4.4 Cooperative Detection via Multiple UAVs 116

8.5 Conclusion and Discussion . 118

9 Conclusions & Outlook 119

Abbreviations 121

Bibliography 123

xv

Chapter 1

Introduction

The vast field of artificial intelligence has improved drastically over the last few years.

Continuously improving hardware along with major scientific advancements contributed

to the fast development and use of artificial intelligent methods. In particular, the field of

data-driven models, i.e. machine learning models, has seen a great ascent.

The development in hardware and scientific advancements has greatly benefited com-

puter vision methods. Early algorithms relied on manual construction of feature kernels

for most tasks in machine vision applications (Zhou et al. (2009)), but today’s methods

predominantly rely on data-driven neural networks or related machine learning mod-

els (Voulodimos et al. (2018)). However, most computer vision research has focused

on standard benchmarks in generic scenarios, such as the ILSVRC image classification

benchmark, ImageNet (Russakovsky et al. (2015)), and the object detection benchmark

Common Objects in Context (COCO) (Lin et al. (2014)). While there has been signifi-

cant transfer from the generic to the aerial domain, the latter is significantly different due

to various reasons, such as different viewpoints with typically smaller objects, the need

for embedded algorithms, and real-time methods, which require special considerations

to develop robust models.

The UAV-based domain poses many challenges, but it also presents the concept of

an intelligent agent perceiving the world through its onboard sensors. By treating the

problem of UAV-based computer vision holistically, the aerial agent (i.e., the UAV) can

achieve a more sophisticated understanding of its surrounding environment. Inspiration

for this approach can be drawn from the way humans understand their surroundings. For

instance, when searching for people from a helicopter, humans unconsciously impose a

prior on many aspects, such as object size, visual appearance, and motion type. This

internal prior enables efficient and accurate searches.

Taking inspiration from human environmental awareness, this work seeks to enhance

UAV-based computer vision methods with a notion of environmental intelligence. This

intelligence is obtained through onboard sensors such as GPS sensors, barometers, and

inertial measurement units. By analyzing this data, we demonstrate how intelligent com-

puter vision methods can be developed for various applications and tasks. Chapter 1

provides a brief overview of general and UAV-based computer vision and explains the

importance of metadata. The chapter concludes with an outline of the entire work.

1

Chapter 1 Introduction

1.1 General Computer Vision

The field of computer vision is a branch of artificial intelligence that is concerned with

the development of algorithms and sensors to enable computers to interpret and under-

stand visual data captured from the environment. This technology has a broad range of

applications, including object detection and recognition, image processing, and robotics,

and it has the potential to greatly increase the efficiency and intelligence of various sys-

tems.

As an ever-evolving field, computer vision continues to grow and develop, with new

advancements and applications constantly emerging. Its transformative potential is far-

reaching, and it has already made significant strides in domains such as healthcare, trans-

portation, surveillance and retail (O’Mahony et al. (2020)).

Computer Vision has a long history, dating back as far as 1957 with Gilbert Hobrough

demonstrating an analog implementation of stereo image correlation (Blikharskyy et al.

(2022)) 1. Today, computer vision continues to be an active area of research and devel-

opment, with new advancements and applications being developed constantly. Some of

the most recent driving forces for the advancement in computer vision include:

• The development of convolutional neural networks, which are a type of machine

learning algorithm that has proven effective for many computer vision tasks, such

as image classification and object detection.

• The development of deep learning, which is a subset of machine learning that

involves the use of multiple layers of interconnected neurons to analyze data and

make predictions.

• The availability of large amounts of data and powerful computing resources, which

have enabled the development of more sophisticated and accurate computer vision

algorithms.

• The development of new sensors, such as lidars, which can provide more detailed

and accurate data about the environment for computer vision algorithms to analyze.

• The widespread adoption of computer vision technology in many industries, such

as healthcare, transportation, and retail, which has led to the development of many

new applications and use cases.

• The emergence of new fields, such as augmented reality and robotics, which have

driven significant advancements in computer vision research and development.

1For a comprehensive computer vision history please see Ikeuchi (2021)

2

1.2 Specific UAV challenges

1.2 Specific UAV challenges

Unmanned Aerial Vehicles (UAVs) employ Computer Vision methods for perceiving

and comprehending their environment through advanced sensors and algorithms. This

allows UAVs to accomplish various tasks, such as object detection, tracking, and image

recognition.

Computer vision on UAVs involves the use of cameras and lidars, among other sen-

sors, to capture images and data about the surrounding environment. These data are then

analyzed by algorithms, such as convolutional neural networks, to identify relevant ob-

jects and information. The visual data is processed either through embedded devices or

by streaming to a ground station.

Applications of computer vision on UAVs include navigation, surveillance, delivery

services, and search and rescue operations, among others (Cazzato et al. (2020)). By

enabling UAVs to ºseeº and understand their environment, computer vision technology

can enhance the autonomy and effectiveness of drones in various scenarios.

However, there are several challenges associated with using computer vision on UAVs,

including:

• Limited computing power: UAVs are typically small and lightweight, which means

they have limited space and power available for computing equipment. This can

make it difficult to run complex computer vision algorithms in real-time.

• Variable lighting and weather conditions: The lighting and weather conditions in

a UAV’s environment can vary significantly, which can make it difficult for algo-

rithms to accurately identify objects.

• Small object sizes: In many applications, the UAV flies high so that perceived

objects are small and hard to distinguish from background.

• Variable altitudes and viewing angles: UAVs fly in diverse altitudes and, in modern

UAVs, gimbal-based cameras allow for a multitude of different camera tilts and

rolls on top of the UAV-induced principle axes changes.

• Moving objects: UAVs are often used in situations where objects are moving, such

as in surveillance or delivery applications. This can make it difficult for algorithms

to track objects accurately.

These challenges continue to make deployment of generic computer vision algorithms

to the UAV domain difficult. However, the UAV-based domain also allowed for casting

many problems in a more holistic setting: By incorporating additional information from

the UAVs’ onboard sensors, we may tackle these problems in a way that allows for more

robust, interpretable and trustworthy models.

3

Chapter 1 Introduction

Figure 1.1: Examples of wrong detections by metadata-agnostic object detectors and

trackers. The object detectors confidently predict a large swimmer (top left), a tiny person

(top center) and a small bus (top right). A tracker fails to track three swimmers from one

frame (bottom left) to the next (bottom right) due to a camera heading movement. This

could easily be avoided by considering the metadata information onboard the UAV.

1.3 Potential of Metadata

A modern UAV is equipped with a multitude of sensors, such as IMUs, GPS sensors, al-

titude and heading reference systems, barometers, clocks and more. While these sensors

are primarily used for stable control and autopilot of the UAV, they tell us much about

the environment, which can be valuable in downstream vision applications. For example,

the altitude information tells us about the size of objects. The camera tilt angle allows

us to reason about the size distribution for different areas in the image space. Generally,

the underlying 3D geometry in conjunction with the camera intrinsics and extrinsics al-

low for detailed priors on object sizes and appearances. Moreover, by accounting for the

movement of the UAV and its camera, we may create a 3D world representation of our

environment, which we may leverage in 2D image space to reason about object locations.

In recent years, there has been a growing trend towards self-sufficient models, which

require minimal external information (Belmonte et al. (2019)). However, we would like

to challenge this trend. The domain-agnostic techniques often fail to differentiate be-

tween certain types of errors and may exhibit overconfidence in rare or previously unseen

circumstances, e.g. see Figure 1.1. Metadata can help ensure certain prediction quality

guarantees, resulting in more robust and trustworthy models.

Subsequent chapters show how to include such metadata to help data-driven models

attain more robust representations and prediction systems make fewer errors.

4

1.4 Contribution and Outline

1.4 Contribution and Outline

This dissertation provides a comprehensive overview of the topic of UAV-based computer

vision using metadata, based on seven first-author publications at high-ranked computer

vision and robotics conferences, listed in order of coverage (º*º contributed equally):

1. Leon Varga*, Benjamin Kiefer*, Martin Meûmer*, Andreas Zell. ºSeaDronesSee:

A Maritime Benchmark for Detecting Humans in Open Water.º In Proceed-

ings of the IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV) 2022.

2. Benjamin Kiefer et al. º1st Workshop on Maritime Computer Vision (MaCVi)

2023: Challenge Resultsº. In Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision (WACV) Workshops 2023.

3. Benjamin Kiefer*, Martin Meûmer*, Andreas Zell. ºDiminishing Domain Bias

by Leveraging Domain Labels in Object Detection on UAVs.º In Proceedings

of the IEEE 20th International Conference on Advanced Robotics (ICAR) 2021.

4. Martin Meûmer*, Benjamin Kiefer*, Andreas Zell. ºGaining Scale Invariance in

UAV Bird’s Eye View Object Detection by Adaptive Resizing.º In Proceedings

of the IEEE 26th International Conference on Pattern Recognition (ICPR) 2022.

5. Benjamin Kiefer, David Ott, Andreas Zell. ºLeveraging Synthetic Data in Ob-

ject Detection on Unmanned Aerial Vehicles.º In Proceedings of the IEEE 26th

International Conference on Pattern Recognition (ICPR) 2022.

6. Benjamin Kiefer, Andreas Zell. ºFast Region of Interest Proposals on Maritime

UAVsº. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA) 2023.

7. Benjamin Kiefer, Yitong Quan, Andreas Zell. ºMemory Maps for Video Object

Detection and Tracking on UAVsº. Under review for the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) 2023.

Further, there are two works, which were done during the doctorate program, but will

not be covered in this dissertation as they are thematically less relevant.

1. Timon HÈofer, Benjamin Kiefer and Andreas Zell. ºHyperPosePDF: Prediciting

the Probability Distribution on SO(3).º In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV) 2023.

2. Pablo Ruiz-Ponce, David Ortiz-Perez, Jose Garcia-Rodriguez and Benjamin Kiefer.

ºPOSEIDON: A Data Augmentation Tool for Small Object Detection Datasets

in Maritime Environments.º Accepted for Sensors Journal in issue ºSensor-Based

Object Detection and Recognition in Intelligent Surveillance Systemsº (2023).

5

Chapter 1 Introduction

This work is structured as follows:

Chapter 2 First, the acquisition and generation of metadata with corresponding imagery data

is discussed. We describe the data generation process from the acquisition cam-

paign planning to the pre- and post-processing and annotation phase. In particular,

we discuss the collection of PeopleOnGrass and SeaDronesSee. Lastly, we de-

scribe a benchmark webserver that is open for researchers.

Chapter 3 Here, we lay the foundation of multiple baseline methods and discuss metadata-

agnostic state-of-the-art methods. Furthermore, we summarize the SeaDronesSee

Object Detection v2 and Multi-Object Tracking Challenge Results as part of the

1st Workshop on Maritime Computer Vision. These aimed at establishing and

advancing the state-of-the art on this newly captured benchmark.

Chapter 4 The subsequent chapters are a collection of metadata-aware methods, each dis-

cussing techniques to construct environmentally aware computer vision algorithms.

In particular, this chapter discusses a method to leverage metadata by tackling the

problem of domain bias. We construct domain-aware expert models to enhance

the performance on individual domains and across all domains.

Chapter 5 Here, we present the specific challenge of large altitude variances in object detec-

tion on UAVs. We propose a method to introduce scale invariance in bird’s eye

view imagery.

Chapter 6 This chapter is devoted to synthetic data. We modify and improve a synthetic data

capturing engine built on the popular video game GTAV. We demonstrate how to

use synthetic data for object detection on UAV and, importantly, show how the use

of metadata improves the data efficiency of synthetically generated data.

Chapter 7 Here, we discuss how metadata helps in constructing a weakly supervised anomaly

detector for maritime search and rescue applications. We analyze its use in embed-

ded scenarios and show how metadata can help in efficiently training and deploying

this model.

Chapter 8 Finally, here we take a closer look at the temporal domain and discusses how we

can use metadata to obtain more robust predictions by aggregating information in

3D space. We show that we can improve video object detection and video anomaly

detection by considering the underlying 3D geometry.

Chapter 9 We provide a conclusion, discussion and outlook, reviewing the techniques for

constructing meta-data aware methods and how to proceed from the current state.

Next, we will discuss the acquisition and generation of multi-modal datasets featuring

metadata.

6

Chapter 2

Generating Image Data and Metadata

Looking at the literature, most of the methods tackling computer vision applications

on UAVs ignore metadata (Kanellakis and Nikolakopoulos (2017)), which may be due to

them aiming at proposing domain-agnostic methods that do not have to rely on such data.

However, it may very well also be due to the lack of benchmarks to test their methods

on. Common large-scale benchmarks for computer vision on UAVs solely provide the

imagery, but do not capture the environmental capturing conditions as measured by other

onboard sensors. While there are benchmarks that capture some of the metadata, they

only focus on certain aspects of environmental conditions or only provide a very coarse

categorization into certain capturing domains.

Therefore, this chapter discusses the generation and acquisition of data that is accom-

panied with the environmental capturing condition. Depending on the context, we use

the terms metadata, domain data, capturing conditions and environmental data inter-

changeably.

Importantly, metadata would be useless if it was not accompanied by meaningful im-

age data. Therefore, large parts of this chapter are also concerned with the image content

and semantics and not just the metadata.

This chapter is divided into two sub-chapters, each discussing the acquisition, gener-

ation and labeling of a dataset in a different environment: A simple grass-environment

(PeopleOnGrass) and a maritime environment (SeaDronesSee). Before going into the

generation of these datasets, we review the literature regarding datasets featuring meta-

data and, last but not least, define the term metadata.

2.1 What is Metadata?

Metadata is information that describes other data. In the context of computer vision on

UAVs, metadata might include information about the location and orientation of the UAV

when an image was captured, the type of camera that was used, and any other relevant

information that can help interpret the images. This metadata can be used to help identify

and analyze objects in the images, as well as to help understand the context in which the

images were captured.

7

Chapter 2 Generating Image Data and Metadata

Desired variables Sensor Units Accuracy

Altitudes Barometer meters 1−5m

Angular velocities & acceleration IMU degrees/second 0.1−1◦

Camera tilt angles Gimbal IMU degrees 0.1−1◦

Geographic coordinates GNSS receiver degrees 0.01−5m

Time GNSS receiver ms 0−30ns

Table 2.1: Overview of used sensors on UAVs and their properties. Please note that these

values only apply for our experiments and depending on the used sensors, they may vary.

In this work, we will consider several types of metadata coming from various sensors.

In the following, we will shortly review the metadata we consider and the underlying

sensors that are used to acquire this data. As this work focuses on the computer vision

aspect, we would like to note that the discussion around the physical aspects of these

sensors is limited and we refer to other works that discuss physical properties and their

implications (e.g. Balestrieri et al. (2021)). In the following, we will shortly discuss the

different sensors. Please also see Table 2.1 for a concise overview. Lastly, note that for

our data acquisition, we always calibrated the sensors via the manufactures’ calibration

protocols. This included the IMU, compass and gimbal sensors.

2.1.1 Altitudes

Altitude is a measure of the vertical distance of an object or a point in reference to

a specific reference point, usually the sea level or the ground level. In the context of

UAVs, altitude is an important factor that determines the performance and capabilities of

the UAV.

Altitude can be measured using various methods and instruments, such as barometers,

altimeters, or GPS systems. Barometers measure the air pressure at a given altitude,

while altimeters use this information to determine the altitude of the UAV, which is why

we equate these sensors in our discussion. GPS systems, on the other hand, use satellite

signals to calculate the altitude of the UAV with respect to the sea level.

Altimeters are typically smaller, lighter, and less expensive than GPS systems, and

they do not require a clear view of the sky to function properly. They can be affected by

factors such as air temperature and humidity. GPS systems on the other hand are larger,

heavier, and more expensive than altimeters, and they can be affected by factors such as

satellite availability and signal interference.

The altitude measurement is a very informative indicator as it tells use about the sizes

of objects. We will see in subsequent chapters that this can help significantly in down-

stream object detection.

8

2.1 What is Metadata?

Figure 2.1: GNSS and IMU module (left) and barometer (right) of one of the UAVs we

used for our experiments (DJI Mavic 2 Pro (left) and DJI Mini (right)).

2.1.2 Angular velocities

Angular velocity is a measure of the rate of change of an object’s orientation in space.

It is typically measured in units of degrees per second (deg/s) or radians per second

(rad/s), and is represented by a vector quantity with a magnitude and direction. In the

context of UAVs, angular velocity is an important parameter that is used to determine the

orientation and stability of the vehicle. UAVs typically have sensors, such as gyroscopes

or accelerometers, that can measure the angular velocity of the vehicle in real time. This

information is then used by the UAV’s control system to maintain a stable flight attitude

and respond to changes in the vehicle’s orientation. Angular velocity is also an important

parameter for UAVs that are equipped with gimbal-mounted cameras, as it allows the

gimbal to maintain a stable orientation and capture smooth, stable footage.

In our context, we make use of the gimbal angle to know the viewing angle of the

scene. However, the other measurements are also important to subtract out these move-

ments in the corresponding footage, e.g. to compute the position and orientation of the

horizon in the image plane.

2.1.3 Geographic Coordinates

Geographic coordinates, also known as latitude and longitude, are used to precisely iden-

tify a location on the Earth’s surface. These coordinates are used in navigation systems

used by UAVs to determine the position of the UAV in relation to the Earth’s surface.

Latitude is a measure of the angle between a specific point on the Earth’s surface and the

equatorial plane, while longitude is a measure of the angle between a specific point on

the Earth’s surface and the Prime Meridian. Together, these two coordinates can be used

to uniquely identify any location on the Earth’s surface. UAVs typically use GPS or other

satellite-based navigation systems (GNSS) to determine their geographical coordinates,

9

Chapter 2 Generating Image Data and Metadata

which can then be used for navigation and mapping purposes. There are many different

GNSS receivers, with newer models being as precise as below a centimeter. However,

current commonly used models rather have an accuracy of up to five meters. Further-

more, this depends on many other factors, including the number and position of satellites

in the sky, atmospheric conditions, and interference from objects such as tall buildings

or mountains. Depending on the sensor and the software, the measurements are accom-

panied with uncertainties, i.e. measurement about variances, allowing for downstream

justifications based on these inaccuracies.

GNSS measurements also contain time stamps that yield accurate timestamp, which

may be used to determine lighting conditions or for a reliable variable to use for aligning

all kinds of measurements. We note that we shortly discuss the altitude measurements in

a subsection below.

For our purposes, we use geographic coordinates to obtain an understanding of where

we perceived objects which helps in building 3D representations of scenes as will be seen

later.

2.2 Labeled Data Sets Captured from UAVs

Over the last few years, quite a few data sets captured from UAVs have been published.

The most prominent are these that depict traffic situations, such as VisDrone (Zhu et al.

(2018b)) and UAVDT (Du et al. (2018)). Both data sets focus on object detection and

object tracking in unconstrained environments.Pei et al. (2019) collect videos (Stanford

Drone Dataset) showing traffic participants on campuses (mostly people) for human tra-

jectory prediction usable for object detection. UAV123 (Mueller et al. (2016)) is a single-

object tracking data set consisting of 123 video sequences with corresponding labels. The

clips mainly show traffic scenarios and common objects. Both, Hsieh et al. (2017) and

Mundhenk et al. (2016) capture a data set showing parking lots for car counting tasks and

constrained object detection. Li and Yeung (2017) provide a single-object tracking data

set showing traffic, wild life and sports scenarios. Krajewski et al. (2018) show vehicles

on freeways.

Another active area of research focuses on drone-based wildlife detection. van Gemert

et al. (2014) release a data set for the tasks of low-altitude detection and counting of

cattle. Ofli et al. (2016) release the African Savanna data set as part of their crowd-

sourced disaster response project.

2.2.1 Multi-Modal Data Sets Captured from UAVs

UAVDT (Du et al. (2018)) provides coarse metadata for their object detection and track-

ing data: every frame is labeled with altitude information (low, medium, high), angle of

view (front-view, side-view, bird-view) and light conditions (day, night, foggy). Wu et al.

(2019) manually label VisDrone after its release with the same annotation information

10

2.3 People On Grass (POG)

Figure 2.2: Sample images of PeopleOnGrass (POG). Altitudes and viewing angles from

top left to bottom right: 50m, 45◦; 100m, 85◦, 60m, 90◦; 40m, 40◦.

for the object detection track. Mid-Air (Fonder and Droogenbroeck (2019)) is a syn-

thetic multi-modal data set with images in nature containing precise altitude, GPS, time,

and velocity data but without annotated objects. Blackbird (Antonini et al. (2018)) is a

real-data indoor data set for agile perception also featuring these meta information. In

Majdik et al. (2017), street-view images with the same metadata are captured to bench-

mark appearance-based localization. Bozcan and Kayacan (2020) release a low-altitude

(< 30 m) object detection data set containing images showing a traffic circle and pro-

vide metadata such as altitude, GPS, and velocity but exclude the import camera angle

information.

Tracking data sets often provide metadata (or attribute information) for the clips. How-

ever, in many cases these do not refer to the environmental state in which the image

was captured. Instead, they abstractly describe the way in which a clip was captured:

UAV123 (Mueller et al. (2016)) label their clips with information such as aspect ratio

change, background clutter, and fast motion, but do not provide frame-by-frame meta-

data. The same observation can be made for the tracking track of VisDrone (Fan et al.

(2020b)). See Table 2.2 for an overview of annotated aerial data sets.

11

Chapter 2 Generating Image Data and Metadata

OD Env. Plat. widths Alt. Range Ang. Range O.

DOTA cities sat. 20,000 ± ± ✕ 90◦ ✕

UAVDT traffic UAV 1,024 ✕ 5-200 m* ✕ 0−90◦* ✕

VisDrone traffic UAV 2,000 ✕ 5-200 m* ✕ 0−90◦* ✕

Airbus Ship marine sat. 768 ± ± ✕ 90◦ ✕

AU-AIR traffic UAV 1,920 ✓ 5-30 m ✕ 45−90◦ ✓

POG grass UAV 3,840 ✓ 5-120 m ✓ 0−90◦ ✓

SeaDronesSee marine UAV 5,456 ✓ 5-260 m ✓ 0−90◦ ✓

SOT Env. #Vids widths Alt. Range Ang. Range O.

UAV123 traffic 123 1,280 ✕ 5-50 m* ✕ 0−90◦* ✓

DTB70 sports 70 1,280 ✕ 0-10 m* ✕ 0−90◦* ✕

UAVDT-SOT traffic 50 1,024 ✕ 5-200 m* ✕ 0−90◦* ✓

VisDrone traffic 167 2,000 ✕ 5-200 m* ✕ 0−90◦* ✓

POG grass 59 3,840 ✓ 5-120 m ✓ 0−90◦ ✓

SeaDronesSee marine 208 3,840 ✓ 5-150 m ✓ 0−90◦ ✓

MOT Env. #F. widths Alt. Range Ang. Range O.

UAVDT-MOT traffic 40.7 k 1,024 ✕ 5-200 m* ✕ 0−90◦* ✓

VisDrone traffic 40 k 2,000 ✕ 5-200 m* ✕ 0−90◦* ✓

POG grass 37 k 3,840 ✓ 5-150 m ✓ 0−90◦ ✓

SeaDronesSee marine 54 k 3,840 ✓ 5-150 m ✓ 0−90◦ ✓

Table 2.2: Comparison with the most prominent annotated aerial data sets in Object De-

tection (OD), Single-Object Tracking (SOT) and Multi-Object Tracking (MOT). Altitude

(Alt.) and angle (Ang.) indicate whether or not there are precise altitude and angle view

information available. Other (O.) refers to time stamps, GPS, and IMU data and in the

case of object tracking can also mean attribute information about the sequences. The

environment (Env.) and platform (plat.) is indicated as well. The values with stars have

been estimated based on ground truth bounding box sizes and corresponding real world

object sizes (for altitude) and qualitative estimation of sample images (for angle). For

DOTA and Airbus Ship the range of altitudes is not available because these are satellite-

based data sets.

12

2.3 People On Grass (POG)

Figure 2.3: DJI Matrice 100 with Zenmuse X5 used for capturing the POG data.

2.3 People On Grass (POG)

First, we record the data set PeopleOnGrass (POG) depicting people walking on grass.

We use a DJI Matrice 100 equipped with a Zenmuse X5 for capturing the data. The

metadata is obtained through DJI’s onboard software developing kit and by using Airdata

(App-Airdata (2022)). We flew the UAV manually, trying to capture as many people as

possible. Accompanied with every frame there is a meta stamp, that is logged at 10

hertz. To align the video data (30 fps) and the time stamps, a nearest neighbor method

was performed. The following data is logged and provided for every image/frame read

from the onboard clock, barometer, IMU and GPS sensor, respectively:

• current date and time of capture

• latitude, longitude and altitude of the UAV

• camera pitch, roll and yaw angle (viewing angle)

• speed along the x-, y and z-axes

We capture an object detection and video object detection dataset, respectively.

2.3.1 Object Detection

The object detection dataset contains 2,9k images (3840x2160 pixels resolution), show-

ing people from various angles and altitudes varying from 0◦ (horizontally facing) to

90◦ (top-down) and 4m to 103m, respectively, each labeled with the precise altitude and

angle it was captured at. See Figure 2.4 for a distribution of objects. Further metadata,

such as GPS location, UAV speed and rotation, timestamps and others are also included.

13

Chapter 2 Generating Image Data and Metadata

20 40 60 80 100

Altitude[m]

0

25

50

75

A
ng
le
[d
eg
re
es
]

0

100

200

300

400

500

Figure 2.4: Distribution of objects in PeopleOnGrass (POG) across different levels of

altitude and camera pitch angles. For visualization purposes only a 4x10 grid is shown.

See Figure 4.1 for example images. We manually and carefully annotate 13,713 peo-

ple. We note that this is a simple real-world data set, suffering from fewer confounders

than large data sets which is ideal for testing out the efficacy of multi-modal methods.

2.3.2 Video Object Detection

Also for this dataset, we used a Zenmuse X5 camera mounted on a DJI Matrice 100 for

collection. We collected 10,633 frames in 30 fps videos with 3840x2160 resolution. We

annotated 48,802 instances of people using DarkLabel (Darkpgmr (2022)). We made

sure to have a large variance w.r.t. to altitude (h = 10m-100m) and gimbal pitch angle

(β = 17◦-90◦).

2.4 SeaDronesSee

Unmanned Aerial Vehicles (UAVs) equipped with cameras have grown to an important

asset in a wide range of fields, such as agriculture, delivery, surveillance, and search and

rescue (SaR) missions (Adão et al. (2017); San et al. (2018); Geraldes et al. (2019)). In

particular, UAVs are capable of assisting in SaR missions due to their fast and versatile

applicability while providing an overview over the scene (Mishra et al. (2020); Karaca

et al. (2018); Albanese et al. (2020)). Especially in maritime scenarios, where wide

areas need to be quickly overseen and searched, the efficient use of autonomous UAVs

is crucial (Yeong et al. (2015)). Among the most challenging issues in this application

scenario is the detection, localization, and tracking of people in open water (Gallego

et al. (2019); Nasr et al. (2019)). The small size of people relative to search radii and the

variability in viewing angles and altitudes require robust vision-based systems.

Currently, these systems are implemented via data-driven methods such as deep neural

networks. These methods depend on large-scale data sets portraying real-case scenarios

to obtain realistic imagery statistics. However, there is a lack of large-scale data sets

in maritime environments. Most data sets captured from UAVs are land-based, often

14

2.4 SeaDronesSee

Figure 2.5: Typical image examples with varying altitudes and angles of view: (a) 250 m,

90◦; (b) 20 m, 90◦; (d) 50 m, 30◦; (e) 10 m, 0◦. Furthermore, there are examples of the

Red Edge (717 nm) (c) and Near Infrared (842 nm) (f) light spectra of an image captured

by the MicaSense RedEdge-MX. Note the glowing appearance of the swimmers.

focusing on traffic environments, such as VisDrone (Zhu et al. (2018b)) and UAVDT (Du

et al. (2018)). Many of the few data sets that are captured in maritime environments fall in

the category of remote sensing, often leveraging satellite-based synthetic aperture radar

(Crisp (2004)). All of these are only valuable for ship detection Corbane et al. (2010)

as they don’t provide the resolution needed for SaR missions. Furthermore, satellite-

based imagery is susceptible to clouds and only provides top-down views. Finally, many

current approaches in the maritime setting rely on classical machine learning methods,

incapable of dealing with the large number of influencing variables and calling for more

elaborate models (Prasad et al. (2019)).

This benchmarks also aims to close the gap between large-scale land-based data sets

captured from UAVs to maritime-based data sets. We introduce a large-scale data set of

people in open water, called SeaDronesSee. We captured videos and images of swim-

ming probands in open water with various UAVs and cameras. As it is especially crit-

ical in SaR missions to detect and track objects from a large distance, we captured the

RGB footage with 3840×2160 px to 5456×3632 px resolution. We carefully anno-

tated ground-truth bounding box labels for objects of interest including swimmer, floater

(swimmer with life jacket), life jacket, swimmer² (person on boat not wearing a life

jacket), floater² (person on boat wearing a life jacket), and boat.

Moreover, we note that current data sets captured from UAVs only provide very coarse

or no meta information at all. We argue that this is a major impediment in the develop-

ment of multi-modal systems, which take these additional information into account to

improve accuracy or speed. Recently, methods that rely on these metadata were pro-

posed. However, they note the lack of large-scaled publicly available data set in that

regime (see e.g. Wu et al. (2019)). Therefore, we provide precise meta information for

15

Chapter 2 Generating Image Data and Metadata

every frame and image including altitude, camera angle, speed, time, and others.

In maritime settings, the use of multi-spectral cameras with Near Infrared channels to

detect humans can be advantageous (Gallego et al. (2019)). For that reason, we also cap-

tured multi-spectral images using a MicaSense RedEdge. This enables the development

of detectors taking into account the non-visible light spectra Near Infrared (842 nm) and

Red Edge (717 nm).

Finally, we provide detailed statistics of the data set and conduct extensive experi-

ments using state-of-the-art models and hereby establish baseline models. These serve

as a starting point for our SeaDronesSee benchmark. We release the training and valida-

tion sets with complete bounding box ground truth but only the test set’s videos/images.

The ground truth of the test set is used by the benchmark server to calculate the general-

ization power of the models. We set up an evaluation web page, where researchers can

upload their predictions and opt to publish their results on a central leader board such

that transparent comparisons are possible. The benchmark focuses on three tasks: (i)

object detection, (ii) single-object tracking and (iii) multi-object tracking, which will be

explained in more detail in the subsequent sections.

2.4.1 Labeled Data Sets in Maritime Environments

Many data sets in maritime environments are captured from satellite-based synthetic

aperture radar and therefore fall into the remote sensing category. In this category, the

airbus ship data set (Airbus (2022)) is prominent, featuring 40k images from synthetic

aperture radars with instance segmentation labels. Li et al. (2018b) provide a data set of

ships with images mainly taken from Google Earth, but also a few UAV-based images.

Xia et al. (2018) provide satellite-based images from natural scenes, mainly land-based

but also harbors. The most similar to our work is from Lygouras et al. (2019). They

also consider the problem of human detection in open water. However, their data mostly

contains images close to shores and of swimming pools. Furthermore, it is not publicly

available.

2.4.2 Data Set Generation

As this data acquisition mission is more complex, it requires a more thorough planning.

Figure 2.6 shows the location of data acquisition at Lake Constance.

We gathered the footage on several days to obtain variance in light conditions. Taking

into account safety and environmental regulations, we asked over 20 student volunteers

to be recorded in open water. Boats transported the subjects to the area of interest, where

quadcopters were launched at a safe distance from the swimmers. At the same time,

the fixed-wing UAV Trinity F90+ was launched from the shore. We used waypoints to

ensure a strict flight schedule to maximize data collection efficiency. Care was taken to

maintain a strict vertical separation at all times. Subjects were free to wear life jackets,

of which we provided several differently colored pieces (see also Figure 2.7).

16

2.4 SeaDronesSee

Figure 2.6: (a): Location of data acquisition: Lake Constance, 2km off Hagnau; (b):

Launch location of fixed-wing UAV Trinity F90+ (c); (d)+(e): Boat, from which quad-

copters were launched; (f): student volunteers from boat viewpoint. (g): Unpredictable

currents; (h): flight plans of quadcopters inside the 3rd party app Litchi; (i): actual flight

paths from manual control.

17

Chapter 2 Generating Image Data and Metadata

UAV Camera Resolution Video

DJI Mavic 2 Pro Hasselblad L1D-20c 3,840×2,160 30 fps

Trinity F90+/ DJI Matrice 210 MicaSense RedEdge-MX 1,280× 960 ✕

Trinity F90+ Sony UMC-R10C 5,456×3,632 ✕

DJI Matrice 100 Zenmuse X5 3,840×2,160 30 fps

DJI Matrice 210 Zenmuse XT2 3,840×2,160 30 fps

Table 2.3: Overview of used UAVs and cameras.

To diminish the effect of camera biases within the data set, we used multiple cameras,

as listed in Table 2.3, mounted on the following drones: DJI Matrice 100, DJI Matrice

210, DJI Mavic 2 Pro, and a Quantum Systems Trinity F90+.

With the video cameras, we captured videos at 30 fps. For the object detection task,

we extract at most three frames per second of these videos to avoid having redundant

occurrences of frames. See Section 2.5 for information on the distribution of images

with respect to different cameras.

Lastly, we captured top-down looking multi-spectral imagery at 1 fps. We used a Mi-

caSense RedEdge-MX, which records five wavelengths (475 nm, 560 nm, 668 nm, 717

nm, 842 nm). Therefore, in addition to the RGB channels, the recordings also contain a

RedEdge and a Near Infrared channel. The camera was referenced with a white reference

before each flight. As the RedEdge-MX captures every band individually, we merge the

bands using the development kit provided by MicaSense.

2.4.3 Metadata Collection

Accompanied with every frame there is a meta stamp, that is logged at 10 hertz. To

align the video data (30 fps) and the time stamps, a nearest neighbor method was per-

formed. The data in Table 2.4 is logged and provided for every image/frame read from

the onboard clock, barometer, IMU and GPS sensor, and the gimbal, respectively.

Note that 90◦ corresponds to a top-down view, and 0◦ to a horizontally facing camera.

The date format is given in the extended form of ISO 8601. Furthermore, note that the

UAV roll/pitch/yaw-angles are of minor importance for meta-data-aware vision-based

methods as the onboard gimbal filters out movement by the drone such that the camera

pitch angle is roughly constant if it is not intentionally changed (Jedrasiak et al. (2013)).

Note that the gimbal yaw angle is not included, as we fix it to coincide with the UAV’s

yaw angle.

18

2.4 SeaDronesSee

Data Unit Min. value Max.value

Time since start ms 0 ∞

Date and Time ISO 8601 ± ±

Latitude degrees −90 +90

Longitude degrees −180 +180

Altitude meters 0 ∞

Gimbal pitch degrees 0 90

UAV roll degrees −90 +90

UAV pitch degrees −90 +90

UAV yaw degrees −180 +180

x-axis speed m/s 0 ∞

y-axis speed m/s 0 ∞

z-axis speed m/s 0 ∞

Table 2.4: Metadata that comes with every image/frame.

2.4.4 Annotation Method

Using the non-commercial labeling tool DarkLabel (Darkpgmr (2022)), we manually

and carefully annotated all provided images and frames with the categories swimmer

(person in water without life jacket), floater (person in water with life jacket), life jacket,

swimmer² (person on boat without life jacket), floater² (person on boat with life jacket),

and boats. We note that it is not sufficient to infer the class floater by the location from

swimmer and life jacket as this can be highly ambiguous. Subsequently, all annotations

were checked by experts in aerial vision. We choose these classes as they are the hardest

and most critical to detect in SaR missions. Furthermore, we annotated regions with

other objects as ignored regions, such as boats on land. Moreover, the data set also

covers unlabeled objects, which may not be of interest, like driftwood, birds or the coast

such that detectors can be robust to distinguish from those objects. Our guidelines for

the annotation are described in the appendix. See Figure 2.7 for examples of objects.

2.4.5 Data Set Split

Object Detection

To ensure that the training, validation, and testing set have similar statistics, we roughly

balance them such that the respective subsets have similar distributions with respect to

altitude and angle of view, two of the most important factors of appearance changes. Of

the individual images, we randomly select 4/7 and add it to the training set, add 1/7 to the

validation set and another 2/7 to the testing set. In addition to the individual images, we

19

Chapter 2 Generating Image Data and Metadata

Floater Floater Life vest Floater²

Swimmer Swimmer Swimmer Swimmers²

Figure 2.7: Examples of objects. Note that these examples are crops from high-resolution

images. However, as the objects are small and the images taken from high altitudes, they

appear blurry. Altitude and viewing angle from top left to bottom right: 50m, 70◦; 40m,

80◦; 20m, 30◦; 40m, 40◦; 110m, 90◦; 60m, 50◦; 70m, 40◦; 40m, 50◦.

randomly cut every video into three parts of length 4/7, 1/7, and 2/7 of the original length

and add every 10-th frame of the respective parts to the training, validation, and testing

set. This is done to avoid having subsequent frames in the training and testing set such

that a realistic evaluation is possible. We release the training and validation set with all

annotations and the testing set’s images, but withhold its annotations. Evaluation will be

available via an evaluation server, where the predictions on the test set can be uploaded.

Object Tracking

Similarly, we take 4/7 of our recorded clips as the training clips, 1/7 as the validation clips

and 2/7 as the testing clips. As for the object detection task, we withhold the annotations

for the testing set and provide an evaluation server.

2.5 Data Set Tasks

There are many works on UAV-based maritime SaR missions, focusing on unified frame-

works describing the process of how to search and rescue people (Mishra et al. (2020);

Gallego et al. (2019); Lvsouras and Gasteratos (2020); Lygouras et al. (2019); Quer-

alta et al. (2020); Roberts et al. (2016); Ghazali et al. (2016)). These works answer

questions corresponding to path planning, autonomous navigation and efficient signal

transmission. Most of them rely on RGB sensors and detection and tracking algorithms

to actually find people of interest. This commonality motivates us to extract the specific

20

2.5 Data Set Tasks

tasks of object detection and tracking, which pose some of the most challenging issues

in this application scenario.

Maritime environments from a UAV’s perspective are difficult for a variety of rea-

sons: Reflective regions and shadows resulting from different cardinal points (such as

in Fig. 2.5) that could lead to false positives or negatives; people may be hardly visible

or occluded by waves or sea foam (see Supplementary material); typically large areas

are overseen such that objects are particularly small (Mishra et al. (2020)). We note that

these factors are on top of general UAV-related detection difficulties.

Now, we proceed to describe the specific tasks.

2.5.1 Object Detection

Given an image, the task of object detection is to predict rectangular, axis-aligned bound-

ing box pixel locations of a pre-defined set of categories. To effectively learn this task, it

is inevitable to have a large number of images and instances of each class.

There are 5,630 images (training: 2,975; validation: 859; testing: 1,796). See Figure

2.8 for the distribution of images/frames with respect to cameras and the class distribu-

tion. We recorded most of the images with the L1D-20c and UMC-R10C, having the

highest resolution. Having the lowest resolution, we recorded only 432 images with

the RedEdge-MX. Note, for the Object Detection Task only the RGB-channels of the

multi-spectral images are used to support a uniform data structure.

Furthermore, the class distribution is slightly skewed towards the class ’boat’, since

safety precautions require boats to be nearby. We emphasize that this bias can easily be

diminished by blackening the respective regions, as is common for areas which are not

of interest or undesired (such as boats here; see e.g. Du et al. (2018)). Right after that,

swimmers with life jacket are the most common objects. We argue that this scenario is

very often encountered in SaR missions. This type of class often is easier to detect than

just swimmer as life jackets mostly are of contrasting color, such as red or orange (see

Fig. 2.7 and Table 3.1). However, as it is also a likely scenario to search for swimmers

without life jacket, we included a considerable amount. There are also several different

manifestations/visual appearances of that class which is why we recorded and annotated

swimmers with and without adequate swimwear (such as wet suit). To be able to dis-

criminate between humans in water and humans on boats, we also annotated humans on

boats (with and without life jackets). Lastly, we annotated a small amount of life jackets

only. However, we note that the discrimination between life jackets and humans in life

jackets can become visually ambiguous, especially in higher altitudes. See also Fig. 2.7.

Figure 2.8 shows the distribution of images with respect to the altitude and viewing

angle they were captured at. Roughly 50% of the images were recorded below 50 m

because lower altitudes allow for the whole range of available viewing angles (0−90◦).

That is, to cover all viewing angles, more images at these altitudes had to be taken. On

the other hand, there are many images facing downwards (90◦), because images taken at

greater altitudes tend to face downwards since acute angles yield image areas with tiny

21

Chapter 2 Generating Image Data and Metadata

Figure 2.8: Distribution of training images over camera types (left), gimbal pitch angles

and altitudes (middle), and distribution of objects over classes (right).

pixel density, which is unsuitable for object detection. Nevertheless, every altitude and

angle interval is sufficiently represented.

2.5.2 Single-Object Tracking

The task of single-object tracking is to track a single object, whose initial pixel location

is given, throughout the entire video clip. Boxes for each frame are axis-aligned and we

can further distinguis between short-term and long-term tracking. Short-term tracking

means that we only track an object for as long as it is visible in the video. Once it leaves,

we may forget about it. Long-term tracking on the other hand requires to track an object

even if it is not existent in some of the frames.

We provide 208 short clips (>4 seconds) with a total of 393,295 frames (counting

the duplicates), including all available objects labeled. We randomly split the sequences

into 58 training, 70 validation and 80 testing sequences. We do not support long-term

tracking. The altitude and angle distributions are similar to these in the object detection

section since the origin of the images of the object detection task is the same.

2.5.3 Multi-Object Tracking

In Multi-Object Tracking, we are not given inital locations of objects and we must detect

and track all objects ourselves. We can also distinguish between short-term and long-

term tracking. Here, we only consider short-term tracking.

We provide 22 clips with a total of 54,105 frames and 403,192 annotated instances,

the average consists of 2,460 frames. We differentiate between two use-cases. In the

first task, only the persons in water (floaters and swimmers) are tracked, it is called

22

2.6 SeaDronesSee Webserver Benchmark

MOT-Swimmer. In the second task, all objects in water are tracked (also the boats, but

not people on boats), called MOT-All-Objects-In-Water. In both tasks, all objects are

grouped into one class. The data set split is performed as described in Section 2.4.5.

2.5.4 Multi-Spectral Footage

Along with the data for the three tasks, we provide multi-spectral images. We sup-

ply bounding box annotations for all channels of these recordings, but only the RGB-

channels are currently part of the Object Detection Task. There are 432 images with

1,901 instances. See Figure 2.5 for an example of the individual bands.

2.6 SeaDronesSee Webserver Benchmark

As mentioned earlier, we created a webserver as a resource for researchers and profes-

sionals in the field to access and evaluate datasets and methods for various maritime

computer vision tasks.

One of the main motivations for creating this webserver was to make these datasets

publicly available, as they can be difficult to come by or require specific permissions

to access. By hosting the datasets on this webserver, we hope to make it easier for

researchers to obtain and use them in their own work.

Another important reason for creating this webserver was to allow for fair comparisons

of submitted methods. By providing a centralized platform for evaluating and comparing

methods, we aim to facilitate the development and advancement of maritime computer

vision methods.

We will shortly discuss the technical details of the webpage and the features it sup-

ports.

2.6.1 Design and Technical Background

This webserver has been built using JavaScript and Node.js, with a MariaDB database for

storing user information and data. The design of the website was created using scratch/-

moqups in a wireframe style, and the Bootstrap framework was used for its responsive

and easy-to-personalize features. The corporate design of UniversitÈat TÈubingen has been

incorporated throughout the website.

The webserver includes a database of users, with registration, authentication, and login

functionality (using encrypted passwords). Logged-in users are able to upload data to the

server, and the webserver is also able to execute Python code as needed.

23

Chapter 2 Generating Image Data and Metadata

Figure 2.9: Webserver example page: Leaderboard for one of the tracks (SeaDronesSee

Object Detection).

24

2.6 SeaDronesSee Webserver Benchmark

2.6.2 Uploading Feature and Comparison of Methods

One of the main features of this webserver is the ability for users to upload their pre-

dictions for each of the challenge subtracks and have them evaluated against the ground

truth data, which is not publicly available. This feature is an important resource for re-

searchers and professionals working in the field of maritime computer vision, as it allows

them to quickly and easily evaluate their methods on a variety of datasets and tasks with-

out the risk of overfitting. The latter point is ensured by restricting users to only upload

a three times per day.

Figure 2.10: Upload window

asking the user to provide infor-

mation about their method.

In addition to this, the webserver also includes

leaderboards for each of the subtracks. These leader-

boards allow users to compare their methods to those

of other researchers in the community and see how

their approaches stack up. This is a useful tool for

identifying areas for improvement and staying up to

date with the latest developments in the field.

Upon uploading, users are asked to provide exhaus-

tive information on their methods, as illustrated in

Figure 2.10. In view of the focus on metadata, it re-

quires the flag whether metadata was used in the up-

loaded submission The leadboard for the Object De-

tection subtrack is depicted in Figure 2.9.

Other features of the webserver are the possibility

to explore the datasets, acquire information on dataset

acquisition and implemention details, which are not

contained in any of the publications.

2.6.3 Statistics

As of the time of writing this work, the webserver

hosts several datasets, such as

• SeaDronesSee Object Detection,

• SeaDronesSee Object Detection v2,

• SeaDronesSee Single-Object Tracking,

• SeaDronesSee Multi-Object Tracking,

• SeaDronesSee Video Anomaly Detection,

• Boat-MNIST.

• MODS - Obstacle Detection,

• Seagull - Sea Monitoring (no leaderboard),

• Synthetic SeaDronesSee (no leaderboard),

25

Chapter 2 Generating Image Data and Metadata

• SeaDronesSee Multi-Spectral Detection (no leader-

board),

The reader will learn more about some of the other benchmarks in subsequent chap-

ters. The MODS and Seagull Benchmarks are hosted here as part of a collaboration.

In total, there are over 540 uploads, 160 users and the datasets were downloaded over

5500 times. Much of the sparked interest came from the organized workshop, which will

be shortly described in the following chapter.

26

Chapter 3

Establishing State-of-the-Art Baselines

In this chapter, we will first evaluate current state-of-the-art object detectors and tracks on

SeaDronesSee. All experiments can be reproduced by using our provided code available

on the evaluation server. Then, we will dicuss the challenges as part of the 1st Workshop

on Maritime Computer Vision. These will further establish state-of-the-art models.

3.1 Baselines for SeaDronesSee Object Detection

The used detectors can be split into two groups. The first group consists of two-stage

detectors, which are mainly built on Faster R-CNN (Girshick (2015a)) and its improve-

ments. Built for optimal accuracy, these models often lack the inference speed needed for

real-time employment, especially on embedded hardware, which can be a vital use-case

in UAV-based SaR missions. For that reason, we also evaluate on one-stage detectors. In

particular, we perform experiments with the best performing single-model (no ensemble)

from the workshop report of Zhu et al. (2018a): a Faster R-CNN with a ResNeXt-101

64-4d (Xie et al. (2017)) backbone with P6 removed. For large one-stage detectors,

we take the recent CenterNet (Zhou et al. (2019b)). To further test an object detector

in real-time scenarios, we choose the current best model family on the COCO test-dev

according to PapersWithCode (2022a), i.e. EfficientDet (Tan et al. (2020a)), and take

the smallest model, D0, which can run in real-time on embedded hardware, such as the

Nvidia Xavier (Kiefer et al. (2021)). We refer the reader to the appendix for the exact

parameter configurations and training configurations of the individual models.

Similar to the VisDrone benchmark (Zhu et al. (2018b)), we evaluate detectors ac-

cording to the COCO json-format (Lin et al. (2014)), i.e. average precision at certain

intersection-over-union-thresholds. More specifically, we use

AP := APIoU=0.5:0.05:0.95, AP50 := APIoU=0.5 and AP75 := APIoU=0.75.

Furthermore, we evaluate the maximum recalls for at most 1 and 10 given detections,

respectively, denoted

AR1 := ARmax=1 and AR10 := ARmax=10.

27

Chapter 3 Establishing State-of-the-Art Baselines

Model AP AP50 AP75 AR1 AR10 FPS

Faster R-CNN ResNeXt-101-FPN 30.4 54.7 29.7 18.6 42.6 2

Faster R-CNN ResNet-50-FPN 14.2 30.1 7.2 6.4 17.7 14

CenterNet-Hourglass104 25.6 50.3 22.2 17.7 40.1 6

CenterNet-ResNet101 15.1 36.4 10.8 9.6 21.4 22

CenterNet-ResNet18 9.9 21.8 9.0 7.2 19.7 78

EfficientDet±D0 20.8 37.1 20.6 11.5 29.1 26

Model S F S² F² B LJ

Faster R-CNN ResNeXt-101-FPN 78.1 82.4 25.9 44.3 96.7 0.6

Faster R-CNN ResNet-50-FPN 24.6 54.1 4.9 7.5 89.2 0.3

CenterNet-Hourglass104 65.1 73.6 19.1 48.1 95.8 0.3

CenterNet-ResNet101 16.8 39.8 0.8 1.7 74.3 0

CenterNet-ResNet18 20.9 21.9 2.6 3.3 81.9 0.4

EfficientDet±D0 65.3 55.1 3.1 3.3 95.5 0.1

Table 3.1: Average precision results for several baseline models. The bottom part con-

tains AP50±values for each class individually. All reported FPS numbers are obtained

on a single Nvidia RTX 2080 Ti. The abbreviation ’F.’ stands for Faster R-CNN. For

visualization purposes, the classes are abbreviated as swimmer(²)→ S(²), floater(²)→
F(²), boat→ B, life jacket→ LJ.

All these metrics are averaged over all categories (except for ºignored regionº). We

furthermore provide the class-wise average precisions. Moreover, similar to Kiefer et al.

(2021), we report AP50-results on different equidistant levels of altitudes:

Low (L) Low-Medium (LM) Medium (M) Medium-High (MH) High (H)

5-56 m 55-106 m 106-157 m 157-208 m 208-259 m

To measure the universal cross-domain performance, we report the average over these

domains, denoted AP
avg
50 . Similarly, we report AP50-results for different angles of view:

Acute (A) Acute-Medium (AM) Medium (M) Medium-Right (MR) Right (R)

7-23◦ 23-40◦ 40-56◦ 56-73◦ 73-90◦

Ultimately, it is the goal to have robust detectors across all domains uniformly, which

is better measured by the latter metrics.

Table 3.1 shows the results for all object detection models. As expected, the large

Faster R-CNN with ResNeXt-101 64-4d backbone performs best, closely followed by

CenterNet-Hourglass104. Medium-sized networks, such as the ResNet-50-FPN, and

28

3.1 Baselines for SeaDronesSee Object Detection

Model L LM M MH H AP
avg
50

Faster R-CNN ResNeXt-101-FPN 56.8 54.6 49.2 65 78.3 60.8

Faster R-CNN ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1

CenterNet-Hourglass104 50.6 52.0 47.5 64.9 73.2 57.6

CenterNet-ResNet101 20.2 30.4 24.1 35.1 38.0 29.6

CenterNet-ResNet18 23.8 20.3 19.2 29.3 31.9 24.9

Efficient-Det D0 39.6 38.0 30.4 42.5 54.5 41.0

Table 3.2: Results on different altitude-domains. E.g. ResNeXt’s AP50 performance in

low-medium (LM) altitudes is 54.6 AP50.

Model A AM M MR R AP
avg
50

Faster R-CNN ResNeXt101-FPN 68.3 55.1 45.2 63.6 51.5 56.7

Faster R-CNN ResNet50-FPN 32.8 35.5 32.7 35.7 27.6 32.9

CenterNet-Hourglass104 66.4 42.1 49.7 58.7 46.9 52.76

CenterNet-ResNet101 7.4 35.8 20.5 33.6 21.7 23.8

CenterNet-ResNet18 9.6 29.5 26.3 27.9 22.1 23.1

Efficient-Det D0 26.9 47.0 40.5 40.3 36.8 38.3

Table 3.3: Results on different angle-domains. For example, ResNeXt’s AP50 perfor-

mance in medium-right (MR) angles (57-73◦) is 63.6 AP50.

fast networks, such as CenterNet-ResNet18 and EfficientDet-D0, expectedly perform

worse. However, the latter can run in real-time on an Nvidia Xavier (Kiefer et al. (2021)).

Swimmers are detected significantly worse than floaters by most detectors. Notably, life

jackets are very hard to detect since from a far distance these are easily confused with

swimmers² (see Fig. 2.7). Since there is a heavy class imbalance with many fewer life

jackets, detectors are biased towards floaters.

Table 3.2 and 3.3 show the performances for different altitudes and angles, respec-

tively. These evaluations help assess the strength and weaknesses of individual models.

For example, although ResNeXt-101-FPN performs overall better than Hourglass104

in AP50 (54.7 vs. 50.3), the latter is better in the domain of medium angles (45.2 vs.

49.7). Furthermore, the great performance discrepancy between CenterNet-ResNet101

and CenterNet-ResNet18 in AP50 (36.4 vs. 21.8) vanishes when averaged over angle do-

mains (23.8 vs. 23.1 AP
avg
50) possibly indicating ResNet101’s bias towards specific angle

domains.

29

Chapter 3 Establishing State-of-the-Art Baselines

Model MOTA IDF1 MOTP FP FN Rec. Prcn ID Frag

FairMOT-D34 39.0 44.8 23.6 3,604 9,445 57.2 77.8 307 1,687

FairMOT-R34 15.2 27.6 33.7 2,502 12,592 30.1 68.4 181 807

Tracktor++ 55.0 69.6 25.6 7,271 3,550 85.5 74.2 165 347

Table 3.4: Multi-Object Tracking evaluation results for the Swimmer task.

Model MOTA IDF1 MOTP FP FN Rec. Prcn ID Frag

FairMOT-D34 36.5 43.8 20.9 3,788 20,867 47.2 83.1 447 1,599

FairMOT-R34 30.5 40.8 27.3 4,401 28,999 40.2 81.6 285 1,588

Tracktor++ 71.9 80.5 20.1 7,741 5,496 88.5 84.5 192 438

Table 3.5: Multi-Object Tracking evaluation results for the All-Objects-In-Water task.

3.2 Baselines for SeaDronesSee Single-Object Tracking

Like VisDrone (Zhu et al. (2020a)), we provide the success and precision curves for

single-object tracking and compare models based on a single number, the success score.

As comparison trackers, we choose the DiMP family (DiMP50, DiMP18, PrDiMP50,

PrDiMP18) (Bhat et al. (2019); Danelljan et al. (2020)) and Atom (Danelljan et al.

(2019)) because they were the foundation of many of the submitted trackers to the last

VisDrone workshop (Fan et al. (2020b)).

Figure 3.1 shows that the PrDiMP- and DiMP-family expectedly outperform the older

Atom tracker in both, success and precision. Surprisingly, PrDiMP50 slightly trails the

accuracy of its predecessor DiMP50. Furthermore, all trackers’ performances on SeaD-

ronesSee are similar or worse than on UAV123 (e.g. Atom with 65.0 success) (Bhat et al.

(2019); Danelljan et al. (2020, 2019)), for which they were heavily optimized. We argue

that in SeaDronesSee there is still room for improvement, especially considering that the

clips feature precise meta information that may be helpful for tracking. Furthermore, in

our experiments, the faster trackers DiMP18 and Atom run at approximately 27.1 fps

on an Nvidia RTX 2080 Ti. However, we note that they are not capable of running in

real-time on embedded hardware, a use-case especially important for UAV-based SaR

missions.

30

3.3 Baselines for SeaDronesSee Multi-Object Tracking

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

20

40

60

80

100

O
ve

rla
p

Pr
ec

is
io

n
[%

]

DiMP50 [67.3]
PrDiMP50 [67.0]
PrDiMP18 [65.9]
DiMP18 [64.6]
Atom [63.8]

0 10 20 30 40 50
Location error threshold [pixels]

0

20

40

60

80

100

D
is

ta
nc

e
Pr

ec
is

io
n

[%
]

DiMP50 [86.8]
PrDiMP50 [84.9]
PrDiMP18 [83.5]
DiMP18 [82.7]
Atom [82.3]

Figure 3.1: Success and precision plots for single-object tracking task.

3.3 Baselines for SeaDronesSee Multi-Object Tracking

We use a similar evaluation protocol as the MOT benchmark (Milan et al. (2016a)). That

is, we report results for Multiple Object Tracking Accuracy (MOTA), Identification F1

Score (IDF1), Multiple Object Tracking Precision (MOTP), number of false positives

(FP), number of false negatives (FN), recall (R), precision (P), ID switches (ID sw.),

fragmentation occurrences (Frag). We refer the reader to (Ristani et al. (2016)) for a

thorough description of the metrics.

We train and evaluate FairMOT (Zhang et al. (2020b)), a popular tracker, which is the

base of many trackers submitted to the challenge (Fan et al. (2020a)). FairMOT-D34

employs a DLA34 (Yu et al. (2018)) as its backbone while FairMOT-R34 makes use of

a ResNet34. Another SOTA tracker is Tracktor++ (Bergmann et al. (2019)), which we

also use for our experiments. It performed well on the MOT20 (Dendorfer et al. (2020))

challenge and is conceptually simple.

Surprisingly, Tracktor++ was better than FairMOT in both tasks. One reason for this may

be the used detector. Tracktor++ utilizes a Faster-R-CNN with a ResNet50 backbone.

In contrast, FairMOT is using a CenterNet with a DLA34 and a ResNet34 backbone,

respectively.

3.4 MaCVi Workshop

Partially responding to the sparked interested in the UAV-based maritime domain, we

hosted the 1st Workshop on Maritime Computer Vision (MaCVi) 2023 as part of IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV). While this workshop

31

Chapter 3 Establishing State-of-the-Art Baselines

has a broader scope, it is relevant for this work as we hosted two challenges directly

tied to the SeaDronesSee benchmark introduced earlier: SeaDronesSee Object Detec-

tion v2 and SeaDronesSee Multi-Object Tracking. The latter is the same benchmark we

described earlier, while the former is an extension of the SeaDronesSee Object Detection

benchmark. These challenges help establish baselines for these two benchmarks and we

will refer to some of the baselines in later methods. In this section, we will shortly review

the workshop challenges following Kiefer et al. (2023).

The 1st Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime

computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle

(USV), and organized several subchallenges in this domain: (i) UAV-based Maritime

Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime

Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchal-

lenges were based on the SeaDronesSee and MODS benchmarks. This section summa-

rizes the main findings of (i) and (ii). We introduce a further benchmark, called SeaD-

ronesSee Object Detection v2, which extends the previous benchmark by including more

classes and footage. We provide statistical and qualitative analyses, and assess trends in

the best-performing methodologies of over 130 submissions. The methods are summa-

rized in the appendix. The datasets, evaluation code and the leaderboard are also publicly

available on the workshop homepage1.

3.4.1 Challenge Participation Protocol

The challenge tracks were announced on the 20th of August 2022 and ran until the 25th of

October 2022. At the announcement date, participants could download the datasets and

evaluation and visualization toolkits from the workshop homepage. Participants could

experiment with their methods on this data before they could upload their predictions on

the individual tracks’ test sets on the webserver from the 14th of September onwards.

The predictions were compared with the corresponding ground truth annotations on the

server-side. Lastly, participants could choose to show their result on the leaderboard or

to delete the submission.

At the start of the uploading phase, participants were allowed to upload predictions

three times per day independent of the challenge track. The submitted predictions were

said to be subject to further inspection on our side regarding the exact performances and

participants were required to provide information on their used methods, and in the USV-

based tracks, participants were required to submit their code as well. The respective

metrics for the individual challenge tracks decided whether the submission reached a

top-3 position. Furthermore, we required every participant to submit information on the

speed of their method measured in frames per second wall clock time and their hardware.

Lastly, participants needed to indicate which data sets (also for pretraining) they used

during training.

1https://seadronessee.cs.uni-tuebingen.de/macvi

32

https://seadronessee.cs.uni-tuebingen.de/macvi

3.4 MaCVi Workshop

Figure 3.2: Top: Data mission location at North Sea close to Norderney. Bottom: Both,

the Trinity-F90+ (black) and the quadcopters (yellow) were controller from the shore.

Additionally, the teams that reached a performance above our least performing base-

line were asked to submit a short technical report, describing their methods and training

configurations. Please see Kiefer et al. (2023) for more information.

3.4.2 SeaDronesSee Object Detection v2 Challenge

The goal of this challenge was to detect humans, boats and other objects in open water.

The task of object detection in maritime SaR is far from solved. For example, the best

performing model of the SeaDronesSee object detection track currently achieves 36%

mAP, as opposed to the COCO benchmark with the best performer achieving over 60%

mAP. SeaDronesSee is more challenging due to lighting conditions and sun reflections,

different appearances coming from various altitudes and viewing angles. While the spar-

sity of object locations often results in false positives, the small sizes of objects along

partial occlusion due to water lead to false negatives.

For the challenge of the workshop, we made a few changes from the original SeaD-

ronesSee object detection benchmark. In addition to the already publicly available data,

33

Chapter 3 Establishing State-of-the-Art Baselines

Figure 3.3: Example images of newly generated images in the SDS ODv2 dataset. The

black rectangle denotes an ignored region.

Figure 3.4: Altitude and gimbal pitch angle distribution (left two), and camera and class

distribution (right two) of images in SDS OD v2.

we collected further training data, which is included at the start of the challenge. In

particular, we extend the object detection track of SeaDronesSee by roughly 9k newly

captured images depicting the sea surface from the viewpoint of a UAV. See Figure 3.3

for examples images. The ground-truth bounding boxes are available and the evaluation

protocol is based on the standard mean average precision. Owing to the application sce-

nario, we also evaluate the class-agnostic performances, which resembles the use-case of

detecting anything that is not water.

Dataset

Similar to the SeaDronesSee Object Detection dataset, we capture this dataset as part of

a data acquisition mission at North Sea.

The SeaDronesSee-Object Detection v2 (S-ODv2) dataset contains 14,227 RGB im-

34

3.4 MaCVi Workshop

Figure 3.5: Left: Class instances in SDS ODv2. From top to bottom: swimmer, buoy, life

vest/life belt, jetski, boat. Right: Altitude-angle distribution of images in SDS ODv2.

ages (training: 8,930; validation: 1,547; testing: 3,750). The images are captured from

various altitudes and viewing angles ranging from 5 to 260 meters and 0 to 90° de-

grees (gimbal pitch angle) while providing the respective meta information for altitude,

viewing angle and other metadata for almost all frames. See Figure 3.4 for the altitude

and viewing angle distribution. Most images come with additional metadata as depicted

in Table 2.4. Note that there are 2,830 images without any metadata labels and 686

images with only gimbal pitch angle labels. The images were captured with six dif-

ferent cameras as depicted in Figure 3.4. Note that we only used the RGB channels

if more channels were available. Each image is annotated with labels for the classes

• swimmer

• boat

• jetski

• buoy

• life saving appliance

(life vest/belt).

See sample instances of these classes in Figure 3.5. Additionally, there is an ignore class.

This region contains difficult to label or ambiguous objects. We blackened out these re-

gions in the images already. Figure 3.4 shows the class distribution and the heavy class

imbalance in the dataset. Although the bounding box annotations for the test set are

withheld, the metadata labels for the test set were provided.

Evaluation Protocol

We evaluate the predictions on the commonly used AP, AP50, AP75, AR1 and AR10

from the COCO evaluation protocol (Lin et al. (2014)). We provided the full evaluation

protocol as part of our evaluation kits available online (Kiefer et al. (2022)). For the

35

Chapter 3 Establishing State-of-the-Art Baselines

Model name Data Type Backbone Module

Maritime-VSA C, S-Ot Transf. DB-Swin-S Casc. R-CNN

DetectoRS C, S-Oall 2-stg.-CNN ResNet-50 Casc. R-CNN

YOLOv7-Sea C, S-Ot 1-stg.-CNN E-ELAN SimAM

DyHead C,S-Ot Transf. Swin-L Dynamic Head

YOLOv7-X C, S-Ot 1-stg.-CNN YOLOv7-X

YOLO-CNS C, S-Ot Transf./CNN Swin Transf. CBAM, NAM

YOLOv7-W6 C, S-Ot 1-stg.CNN YOLOv7-W6

M10 S-Ot 1-stg.CNN ResNeXt-101 VarifocalNet

YOLOv7-NYU C, S-Ot 1-stg.CNN E-ELAN Super-Res.

YOLOv7-FIT C, S-Ot 1-stg.CNN YOLOv7-E6

DurObj VD, S-Ot 1-stg.CNN ResNet-101 TOOD

APX C, S-Ot 1-stg.CNN Yolov7 APX

YOLOv7-TILE C, S-Ot 1-stg.CNN YOLOv7

Table 3.6: Object Detection v2 submissions overview. For brevity, we denoted

S=SeaDronesSee, O=Object Detection v2, all=(t)rain and (v)al set, VD=VisDrone,

C=COCO. For a list of used augmentations, please refer to Kiefer et al. (2023).

first subtrack, we average the AP results over all classes. We further analyze the models

using other metrics, such as TIDE (Bolya et al. (2020)) and by leveraging the available

metadata. The determining metric for winning will be AP. In case of a draw, AP50

counts.

Submissions, Analysis and Trends

We received 77 submissions from 18 different teams. We also provided two additional

baselines, a YOLOv7 and a Faster R-CNN with ResNet-18 backbone. In our analysis,

we will focus on the top 13 models that outperformed both these baselines. None of the

methods employed ensembles or were trained on any uncommon dataset. Only some

submissions used the SDS ODv2 validation set for training.

Three of the submitted models were transformer-based, which originally were espe-

cially hard to tune for small object detection, but was recently found popular also in the

aerial object detection domain (Cao et al. (2021)). More precisely, the winner of this

challenge, Maritime-VSA, the 4th place, DyHead, and the 6th place rely either entirely

or partly on transformer-based blocks. Maritime-VSA showcase their recently published

varied-size window attention, which is suitable for processing large image resolutions

compared to more traditional transformer architectures. In conjunction with the popu-

lar Cascade R-CNN as a detection head and test-time augmentations, they obtained a

significant lead. DyHead leverage the recent so-called dynamic heads to unify the ob-

ject detection heads for localization and classification via attention mechanisms (Dai

36

3.4 MaCVi Workshop

Model name FPS Hardware AP AP50 AP75 AR1 AR10 BinAP

Maritime-VSA 1 A100 0.62 0.91 0.68 0.48 0.70 0.56

DetectoRS 1 Tesla V100 0.60 0.90 0.66 0.47 0.67 0.54

YOLOv7-Sea 1 Tesla V100 0.59 0.91 0.64 0.46 0.68 0.54

DyHead 1 A100 0.57 0.89 0.62 0.45 0.68 0.52

YOLOv7-X 15 RTX 3090 0.54 0.85 0.57 0.44 0.61 0.50

Yolo-CNS 60 TeslaP6 0.53 0.83 0.56 0.44 0.62 0.49

YOLOv7-W6 10 RTX 3090 0.53 0.84 0.56 0.44 0.62 0.49

M10 1 RTX3090 0.53 0.84 0.55 0.43 0.60 0.47

YOLOv7-NYU -1 2080 0.52 0.86 0.54 0.43 0.60 0.46

YOLOv7-FIT 6 RTX3090 0.52 0.80 0.55 0.42 0.58 0.49

DurObj 4 TITAN XP 0.50 0.79 0.51 0.42 0.58 0.47

APX 60 RTX 3050 0.50 0.83 0.50 0.41 0.58 0.45

YOLOv7-TILE 3 Nvidia Titan 0.42 0.71 0.44 0.36 0.50 0.44

YOLOv7-BL 66 RTX 3080 0.42 0.72 0.42 0.36 0.49 0.41

FRCNN-RN-BL 29 GTX 1080 Ti 0.24 0.52 0.20 0.24 0.32 0.21

Table 3.7: Final leaderboard for SeaDronesSee Object Detection v2. Bin.=Binary. º-1º

denotes unknown.

et al. (2021)). Test-time augmentations and large image resolutions were employed. The

method rightfully mentions the problems with annotation errors, which will be analyzed

below.

The remaining models are different types of CNNs. The 2nd place, DetectoRS, base

their submission on Cascade R-CNN (Cai and Vasconcelos (2018)), which is well known

for its performance in small object detection (see e.g. performance on VisDrone work-

shop (Cao et al. (2021)). A likely significant addition is that they employed large res-

olutions and multi-scale testing. Several other methods are based on a YOLO-variant,

most prominently the current YOLOv7 (Wang et al. (2022)) architecture. In fact, the 3rd

(Zhao et al. (2023)), 5th, 7th, 9th, 10th, 12th and 13th places all base their submissions

on YOLOv7. Many YOLOv7 submissions either adapted the architecture to include an

attention module or tuned hyperparameters, such as considerably increasing the image

size, or included augmentations, such as random cropping, mosaicing or color changes

just to name a few.

The remaining methods use more specific architectures, such as VarifocalNet (Zhang

et al. (2021a)), a single-stage object detector, which itself is based on FCOS (Tian et al.

(2019)). Further augmentations, such as tiling (also multi-scale) improved the perfor-

mance significantly. See Table 3.6 for an overview of the submitted methods.

Table 3.7 shows the final standing of this challenge track. Notably, the performance of

the top models is above 90 AP50. Owing to the aerial nature and potentially sub-optimal

37

Chapter 3 Establishing State-of-the-Art Baselines

Figure 3.6: Example predictions from Maritime-VSA (leftr) and DetectoRS (right). Note

that we did not filter based on the confidence score, which is why the first method has

many predictions for each object. The confidence score for most of them is very low,

which is why the AP won’t suffer from these.

label accuracy (e.g. shifted labels), the averaged AP is far lower, which is also reflected

in the lower AR1 and AR10 scores. The binary AP, which measures the foreground vs.

background performance, is slightly worse for almost all models which is likely caused

by the class imbalance with the majority of the instances being swimmers, which is

generally a hard class to predict (Kiefer et al. (2023)).

Generally, the classes swimmers and life saving appliances are believed to be the hard-

est classes as their appearance vary the most and they are the smallest (and thus hardest

to predict) objects (see also Figure 3.5). Furthermore, these two classes are harder to

distinguish and there are only few instances of life saving appliances. Furthermore, the

methods’ ranks in performance across different precision levels are consistent as can be

seen from Figure 3.8, i.e. every model is more or less better or worse than any other

model for all precision scores consistently.

A closer analysis on the type of error can be seen from the TIDE plots in Figure 3.8.

There, we plot the different error types of the two best performing submissions, Maritme-

VSA and DetectoRS. Both models behave similarly in their error type influence distribu-

tion, e.g. most of the errors come from localization errors (roughly 50%). Background

errors (falsely predicting background to be any class instance) are a similarly often cause

of errors as missing to detect objects in the case of Maritime-VSA. However, DetectoRS

takes a different trade-off and mostly only misses objects as opposed to detecting back-

ground as foreground objects. Note, however, that the overall magnitude of errors is

lower for Maritime-VSA for both types of errors (bottom bar charts). The less common

duplicate detections errors only play a role in Maritime-VSA, which aligns with the qual-

itative prediction example in Figure 3.6. Note, however, that these duplicate predictions

have low confidence and hence do not matter too much in the overall AP calculation.

Table 3.8 shows the AP values broken down by different metadata configuration inter-

vals. Again, the models perform mostly consistently across different domains. Generally

significantly visible, the performance for acute angles is low across all models. While

38

3.4 MaCVi Workshop

Figure 3.7: Label errors revealed after another iteration of manual annotation. Left:

Displaced labels, Right: missing labels (red font: old, black font: new).

Figure 3.8: Left: Precision (x-axis)-recall (y-axis)-curve, for submitted methods. TIDE

evaluations for Maritime-VSA (middle) and DetectoRS (right).

this may simply be the cause of having fewer images in that domain (compare to Fig.

3.4), these images often contain very small objects in the distant horizon. Furthermore,

in the case of swimmers, these are hardly visible as only their body parts above the water

are visible (see e.g. the first swimmer of Figure 3.5 compared to the third one). Sur-

prisingly, the performance on high altitudes is the highest. This could be the cause of

consistent viewpoints, as images from high altitude exhibit viewpoints almost always of

close to 90◦ (looking downwards; see Figure 3.5. The performances broken down by

different cameras is not conclusive. The performance for the M210 UAV is very low,

which can only be hypothesized to be partly attributed to the M210 UAV carrying the

lower resolution Zenmuse Z30 camera, although there exist many images (compare to

Fig. 3.4). The high performance for the trinity drone is again believed to be caused by

the consistent 90◦ facing downwards viewpoint as this UAV only has facing downwards

cameras.

The dataset contains a fair amount of label errors, which we found upon reiterating

a whole manual annotation pass over the dataset. We found 678 missing boxes and

39

Chapter 3 Establishing State-of-the-Art Baselines

Model name APL APM APH APA APAR APR APMav APM APTri

Maritime-VSA 0.62 0.57 0.68 0.23 0.65 0.64 0.61 0.18 0.71

DetectoRS 0.61 0.55 0.70 0.22 0.63 0.63 0.59 0.17 0.69

YOLOv7-Sea 0.61 0.53 0.67 0.21 0.63 0.62 0.59 0.16 0.66

DyHead 0.59 0.49 0.63 0.18 0.62 0.60 0.57 0.17 0.64

YOLOv7-X 0.56 0.48 0.56 0.18 0.59 0.55 0.54 0.16 0.59

Yolo-CNS 0.56 0.42 0.64 0.18 0.58 0.55 0.53 0.13 0.61

YOLOv7-W6 0.55 0.47 0.62 0.17 0.58 0.58 0.53 0.12 0.62

M10 0.55 0.41 0.67 0.14 0.57 0.60 0.52 0.13 0.61

YOLOv7-NYU 0.53 0.49 0.63 0.13 0.57 0.61 0.51 0.14 0.55

YOLOv7-FIT 0.53 0.42 0.67 0.17 0.56 0.58 0.51 0.13 0.63

DurObj 0.52 0.40 0.64 0.13 0.56 0.56 0.49 0.14 0.58

APX 0.54 0.39 0.54 0.13 0.56 0.53 0.50 0.11 0.54

YOLOv7-TILE 0.45 0.36 0.30 0.13 0.49 0.35 0.43 0.10 0.47

YOLOv7-BL 0.44 0.34 0.42 0.06 0.50 0.45 0.42 0.12 0.43

FRCNN-RN-BL 0.26 0.23 0.26 0.00 0.33 0.27 0.25 0.03 0.21

Table 3.8: AP results for subsets, divided by altitude ((L)ow, (M)edium, H(igh)), gimbal

pitch ((A)cute, (A)cute to (R)ight, (R)ight), and camera ((Mav)ic, (M)210 and (Tri)nity.

We divide the ’Altitudes’ and ’Angles’ into three equidistant intervals.

615 displaced boxes. See examples of label errors in Figure 3.7. Displaced label er-

rors come from the used annotation tool Darklabel’s tracking functionality (Darkpgmr

(2022)), which causes a drag in the bounding box labels in scenes where there is a lot

of camera or UAV movement. Missing labels mostly occur in static images where there

was no underlying video that aided the human annotators in finding objects to label. Re-

running the predictions on this corrected dataset shows that the performances indeed im-

prove across all models but the overall order stays almost the same (Kiefer et al. (2023)).

Discussion and Challenge Winners

The challenge results have shown that transformer architectures start to gain traction

in the aerial domain as well, while CNN architectures are still the standard choice for

such tasks. The easy-to-use and yet strong one-stage detector YOLOv7 is a very pop-

ular choice. As is common for these kind of challenges (compare to Aiskyeye (2022)),

test-time augmentations are applied and significantly boost the performance at the cost

of slower run times. Furthermore, using large resolutions is one of the keys to obtain-

ing high accuracies, be it by means of architecturally supporting large resolutions or by

targeted augmentations, such as cropping.

The observation above is exemplified by the winner trio: The first place from The

University of Sydney, Maritime-VSA, employed transformers, the second place from

40

3.4 MaCVi Workshop

Fraunhofer IOSB, DetectoRS, leveraged the popular two-stage detector Cascade R-CNN,

and the third place from Beijing University of Posts and Telecommunications, YOLOv7-

Sea, built upon the current YOLOv7 detector.

Furthermore, most submitted object detectors run far from real-time. Moreover, spe-

cial consideration should be given to the used hardware in that case since in this chal-

lenge, participants mostly relied on high-end GPUs, such as V100s.

Therefore, research in this domain needs to consider runtime constraints imposed in

real applications of these detectors. In future iterations of MaCVi, this would need to be

a focus.

3.4.3 SeaDronesSee Multi-Object Tracking Challenge

Part of the SeaDronesSee benchmark was the Multi-Object Tracking track. This track

focuses on tracking objects in water which are of interest in SaR scenarios, while it

could also be leveraged for surveillance. In SaR scenarios, it might be of interest to

track the detection and position of people or boats over time, so that the found subjects

are easily distinguishable. However, tracking small, partly occluded subjects, which

change their appearance based on their movement and occlusion level due to water, is

non-trivial. Gimbal movement and altitude change cause objects to move quickly within

the video frames. For these reasons, we hosted the first SeaDronesSee-MOT challenge

track, which will be discussed in the following.

Dataset

The SeaDronesSee-MOT dataset consists of 21 clips in the train set, 17 clips in the

validation set and 19 clips in the test set with a total of 54,105 frames and 403,192

annotated instances. Every frame is annotated with the ground-truth bounding boxes

along unique ids for the following classes:

• swimmer

• floater

• life jacket

• swimmer on boat

• floater on boat

• boat

Floater denotes a swimmer wearing a life jacket. Following the original definition, for

the SeaDronesSee-MOT challenge track, we restrict the task as follows. We only require

the objects boats, swimmer and floater to be tracked in a one-class setting, where we do

not distinguish between different classes. We note that this is a short-term tracking task

(Kristan et al. (2016)), i.e. objects that disappear from the scene need not be tracked

anymore. Each frame comes with precise metadata labels regarding altitude, angles of

the UAV and the gimbal, GPS, and more.

41

Chapter 3 Establishing State-of-the-Art Baselines

Model name Data Detector Modules FPS C/GPU

MoveSORT
COCO,

S-MOT
YOLOv7

ECC ,

NSA K.

10

(d+t)
T4

byteTracker
COCO,

S-MOT
YOLOX

6

(d+t)
A100

StrongerSORT
S-MOT

M1501

pub. det.

(YOLOv7)
PCB

10

(t)
M1

MOT
COCO,

S-Oall

Casc. R-CNN

ResNet-50,

1

(d+t)
V100

OCSORT
S-Oall,

S-MOTall YOLOX-XL
20

(d+t)
V100

Tracktor

Baseline

COCO,

S-MOT

F. R-CNN,

ResNet-50
ECC

10

(d+t)

RTX

3080

Table 3.9: Multi-Object Tracking submissions overview. For brevity, we denoted

d=detector, t=tracker, S=SeaDronesSee, O=Object Detection v2, M1501=Market1501,

all=train and val set.

Evaluation Protocol

We evaluate the submissions by using the following metrics: HOTA, MOTA, IDF1,

MOTP, MT, ML, FP, FN, Recall, Precision, ID Switches, Frag (Luiten et al. (2021);

Leal-TaixÂe et al. (2015)). The determining metric for winning is HOTA. In case of a tie,

MOTA is the tiebreaker.

Furthermore, we require every participant to submit information on the computational

runtime of their method measured in frames per second wall-clock time along their used

hardware.

Submissions, Analysis and Trends

We received 18 submissions from 7 different institutions. Additionally, we provided

a baseline, i.e. a Tracktor-based tracker using ECC with a Faster R-CNN ResNet-50

detector. We used the mmtracking implementation (Chen et al. (2019a)) with default

hyperparameters. We also provided public detections so that participants do not need to

train their own detectors. These are from a YOLOv7 model pretrained on COCO and

trained on SeaDronesSee-MOT train set for 8 epochs yielding an AP of roughly 0.5. For

reference, the same model (except for the number of class outputs) has an AP of 0.4181

on Object Detection v2, which is not optimal (compare to best models).

All of the 18 submitted trackers outperformed the baseline. See an overview of the

42

3.4 MaCVi Workshop

Model name HOTA MOTA IDF1 MOTP Re Pr IDs Frag

MoveSORT 0.67 0.80 0.77 0.19 0.89 0.91 44 805

byteTracker 0.65 0.77 0.77 0.21 0.88 0.89 68 841

StrongerSORT 0.63 0.74 0.75 0.20 0.86 0.88 243 1396

MOT 0.62 0.76 0.71 0.19 0.89 0.88 445 672

OCSORT 0.61 0.72 0.69 0.19 0.81 0.91 106 671

Tracktor Baseline 0.46 0.48 0.50 0.21 0.62 0.83 1435 2522

Table 3.10: Multi-Object Tracking results on the SeaDronesSee-MOT test set. The sub-

missions are ranked based on HOTA. The last row indicates the baseline. Gold, silver

and bronze denote the first, second and third place, respectively. For MT, ML, FP and

FN, refer to Kiefer et al. (2023).

submitted methods in Table 3.9. Table 3.10 shows the results of the best submissions of

the best five teams. All submissions followed the tracking-by-detection paradigm. Since

it was allowed to train on any data, most submissions did so and incorporated stronger

detectors as the provided public detection baseline.

MoveSORT performed best in terms of HOTA, MOTA and IDF1 metrics although they

only trained on SeaDronesSee-MOT. Being the best model in these metrics suggests that

it is a very robust model w.r.t. detection and association accuracy. However, they relied

on the recent YOLOv7 Wang et al. (2022) detector, which may yield good detection

results to work with. Notably, it only made 44 ID switches, which may the cause of

the underlying DeepSORT implementation, which focuses specifically on decreasing the

number of ID switches. However, also note all models have rather low id switch num-

bers, which is due to the sparse nature of the dataset where objects are not too cluttered

(see e.g. Fig. 3.9). MoveSORT further claims to improve on DeepSORT by using the

enhanced correlation coefficient maximization module (ECC) to estimate the global rota-

tion and translation between adjacent frames. Indeed, association between frames for fast

moving camera movements is a problem in certain video clips of SeaDronesSee-MOT

as exemplified qualitatively in Figure 3.9. Furthermore, they added the NSA Kalman

filter module Du et al. (2021) from the second place tracker of the VisDrone 2021 MOT

challenge Chen et al. (2021a).

The method byteTracker placed second basing their submission on the recent Byte-

Track implementation (Zhang et al. (2022a)). They adapted the tracker’s focus on the

MOT17 challenge (Milan et al. (2016b)) to the maritime setting by removing the ver-

tical bounding box restriction and by changing hyperparameters, such as increasing the

non-max-suppression threshold to remove potential false associations and to decrease the

number of ID switches. The underlying detector was a large YOLOX-x model, which

might explain some of the good performance.

StrongerSORT placed third, mostly owing to its ability to reliably associate tracklets as

43

Chapter 3 Establishing State-of-the-Art Baselines

Figure 3.9: Three common types of error causes. Predicted tracks from MoveSORT. Top:

Panning by changing the heading angle cause the tracker to lose the three swimmer in the

second frame. Middle: Tilting the camera has the same effect. Bottom: Fast movements

of the UAV cause a duplicate detection.

indicated by its high IDF1 score and few lost tracklets (ML). They removed the newly in-

troduced GSI and AFLink and added the part-based re-identification model PCB, which

is pretrained on Market1501. This submission relied on the sub-optimal provided public

detections. Moreover, in a second submission, STI-StrongSORT, they hypothesized that

spatio-temporal information is more important than appearance-based information from

a re-identification model. They based this hypothesis on the observation that objects have

a very similar appearance and because occlusions are rare. With their proposed changes

they manage to increase the speed from 10fps to 30fps. With a competitive HOTA score,

they managed to decrease the number of ID switches fivefold.

MOT placed fourth as measured in HOTA, but placed third as measured in MOTA

and IDF1. They based their submission also on DeepSORT. However, they trained their

detector on the whole SeaDronesSee ODv2 dataset (train+val), which has a larger do-

main/appearance variance, but fewer (yet less correlated) images. Furthermore, their

backbone is a ResNet-50 (∼23M parameters), which is small compared to, e.g., a YOLOX-

x with almost 100M parameters. They adapted to the aerial domain by setting appropriate

scale parameters for the anchors and employed several train and test augmentation strate-

gies while tuning respective hyperparameters. Similar to others, they set hyperparame-

ters so as to ignore occlusion cases They set the detection score for updating tracks to 0,

which may come from a similar motivation to that of ByteTrack (Zhang et al. (2022b)).

44

3.4 MaCVi Workshop

0 1000 2000 3000 4000

20
40

60
80

10
0

3

4

6

9

15

16

17

18

19

21

Altitude

0 1000 2000 3000 4000
0.
00

15
0.
00

20
0.
00

25
0.
00

30
0.
00

35

+4.767e1

3

4

6

9

15

16

17

18

19

21

Latitude

0 1000 2000 3000 4000

9.
26

80
9.
26

85
9.
26

90
9.
26

95
9.
27

00
9.
27

05
9.
27

10

3
4

6

9

15

16

17

18

19

21

Longitude

0 1000 2000 3000 4000

0
20

40
60

80

3

4

6

9

15

16

17

1819

21

Gimbal Pitch Angle

0 1000 2000 3000 4000

0
50

10
01

50
20

02
50

30
03

50

3

4

6
9

15

16

17

18
19

21

Heading Angle

Figure 3.10: Metadata visualization of video clips with lengths longer than 300 frames.

For shorter videos refer to Kiefer et al. (2023).

OCSORT placed fifth as measured in HOTA, while having the smallest amount of

fragmentations and the highest precision. They also employ the large YOLOX-x detector

and train on all of SeaDronesSee ODv2 and MOT.

Interestingly, there is no clear best model on the majority of the clips (Kiefer et al.

(2023)). In the following, we try to explain some of the results on the clips, ordered from

easiest to hardest clip.

In clip 19, only a single boat needs to be tracked which explains the high performances

of all trackers. Similarly, clip 17 also shows only three boats which have to be tracked in

a near static scene (compare to Figure 3.10). Clips 2 and 12 are also static scenes (Kiefer

et al. (2023)). While clip 5 is also static (small altitude increase), the high altitude causes

many trackers to not detect and track the small swimmers. Clip 15 also only features

boats although some of them are further away in the horizon and the movement and

heading rotation of the drone in addition to the camera pitch angle change cause some

trackers to fail to reliably track. See also Figure 3.9 for examples of these errors. Clip

4 is the most dynamic one with camera and UAV panning and tilting and movement

of the UAV in x,y and z directions. However, these movements are rather gently such

that successful tracking can still be done by most of the trackers. Clip 21 features many

swimmers and three boats. Furthermore, there are quick pitch angle changes along with

a UAV movement and rotation. Clip 11 only shows a boat and a swimmer while the

UAV is rotating around itself, although the swimmer is quite far away and hardly visible.

Missing detections are punished relatively hard since the clip is short with few objects.

While clip 0 is at very low altitude, there are many swimmer with a fast moving and

rotating drone. Clip 16 shows many swimmers and boats and inherits a high dynamic

range w.r.t. camera panning and tilting and movement of the UAV. Clip 13 shows a 90◦

scene where the UAV is moving at quite high altitude at constant speed. The swimmers

45

Chapter 3 Establishing State-of-the-Art Baselines

are close to boats which is why it is hard to detect and track them. Clip 9 shows many

swimmers with sudden changes in camera pitch and heading angle, resulting in many

fragments and id switches. Clip 10 shows a few swimmers and several boats with a

slow minimal camera pan. However, the acute angle lets swimmers appear very small

and hard to detect. Similarly, clip 1 shows a scene with slowly rotating UAV and acute

pitch angle, which results in many very far away swimmers that are quite small and are

failed to detect robustly by most trackers. The hardest clip, 6, shows several boats and

swimmers with a great amount of movement and dynamic camera panning and tilting.

Furthermore, objects are hardly visible due to sun reflections.

Discussion

The submitted methods are already very strong. Many of the errors are still caused by

very hard detections. However, the nature of UAV camera movements also cause several

errors. Both, the detection and tracking errors could potentially be mitigated by using

the available metadata.

The winner method from Beijing University, MoveSORT, leveraged a recent YOLOv7

detectors but included several modules to enhance the performance. The second place

from National University of Defense Technology, byteTracker also employed the recent

ByteTrack framework. The third place from EPFL, StrongerSORT, use the sub-optimal

provided public detections to achieve the third place.

Further analysis would be necessary to discriminate based on classes and having real-

time capable trackers with potentially worse but faster detection backbones. The neces-

sity of certain tracking modules is also questionable in this setting, such as the reidentifi-

cation module. Also, it is not clear how good the ECC module can really perform in the

case of feature-poor maritime sceneries.

3.5 Conclusion

We discussed state-of-the-art baseline methods for multiple datasets and computer vision

tasks. These serve as baselines throughout subsequent chapters. While the performances

were quite well in some aspects, we will see that we can significantly improve on these

results by considering metadata. From here on, the chapters discuss techniques to in-

corporate metadata to obtain more robust and domain-aware models. In fact, domain

imbalance is a major problem, which we are able to tackle using metadata as follows.

46

Chapter 4

Diminishing Domain Bias

Figure 4.1: Example images of the dataset POG, showing the same scenery taken from

different perspectives (top: 10m, 10◦, bottom: 100m, 90◦).

While generic object detection has improved drastically lately (Zhao et al. (2019b)),

object detection on images captured from UAVs still poses great challenges (Zhu et al.

(2020a)). Among these, the variation across domains is particularly challenging.

For example, an object detector encounters images taken from varying altitudes. There-

fore, the scales of objects vary enormously, often ranging from 10 pixels to over 300. In

lower altitudes, objects are captured with more detail while in higher altitudes, more

objects appear, but blurrier. Furthermore, modern UAVs are equipped with so-called

gimbal cameras (Rajesh and Kavitha (2015)). These allow for capturing objects with

47

Chapter 4 Diminishing Domain Bias

various viewing angles (pitch axis). Moreover, a UAV’s roll axis introduces yet more

variation. As a result, objects are captured with diverse aspect ratios and orientations. In

particular, top-down views often result in ambiguous object appearances, such as distin-

guishing between a car or a van.

Many more factors influence objects’ appearances. These include but are not limited

to: variations in weather and time, both affecting the illumination of objects; GPS loca-

tion; camera sensor. Examples for the individual factors might be: images during rain

vs. at sunny weathers; at day vs. at night; different backgrounds resulting from images

taken in cities vs. rural areas; lens distortions from different cameras.

These variations become more critical when the interplay with different domains is

considered. For example, in Fig. 4.1 the very same scenery is shown from altitudes 10m

and 100m, respectively, and from viewing angles 10◦ (nearly horizontally facing) and

90◦ (top-down), respectively.

In contrast, many traditional data sets in other applications consist of less restricted-

view data, such as COCO (Lin et al. (2014)) for everyday objects, KITTI (Geiger et al.

(2013)) for autonomous driving and DOTA (Xia et al. (2018)) for remote sensing. There-

fore, models trained on these data sets do not have to take the aforementioned domain

variations into account.

Ultimately, the goal of object detection from UAVs is to detect objects in all of the con-

sidered domains. However, data sets are commonly unbalanced with respect to different

domains (see Figure 4.2). Therefore, trained models are biased towards over-represented

domains while failing to perform well in under-represented domains. As a result, even

state-of-the-art models are underoptimized in the latter domains, as will become clear in

Section 5.3.

In part, this is a consequence of using the commonly used metric average precision.

This domain-agnostic metric favors models, which perform well in over-represented do-

mains but may fail in others.

Motivated by these observations, we propose to leverage domain labels to alleviate

this bias. While domain information is implicitly encoded in the captured images, it

is also explicitly available from the UAVs’ sensors: the altitude of the aircraft can be

retrieved from the onboard GPS or barometer, the viewing angle from the gimbal pitch

angle of the camera, and the time from an onboard clock. We propose to use these

domain labels to train so-called expert models. These experts adapt to their respective

domains to capture the domain-specific features. This multi-domain learning approach

is in contrast to domain adaptation, which aims to eliminate these recognized types of

domain. It is furthermore different from multi-task learning as we try to solve the same

task across all domains. We show that these experts prove highly effective and efficient

across various models, data sets and metrics.

In this chapter, we discuss the following:

• We analyze domain imbalance in three UAV object detection data sets and their

effects on the overall model performance. We also propose a simple domain-

48

4.1 Related Work

sensitive metric to capture domain specific particularities.

• We propose a simple method, which leverages domain knowledge, to alleviate

domain bias. We show that using this method we can significantly outperform

domain-agnostic models without sacrificing speed. Further, we analyze the method

on two established UAV object detection data sets and on our datasets.

4.1 Related Work

Deep learning-based object detection can roughly be divided into two categories: accu-

rate two-stage detectors, like Fast R-CNN or Faster R-CNN (Ren et al. (2016)), and the

much faster, but less accurate one-stage detectors such as YOLO (Redmon and Farhadi

(2018)) or EfficientDet (Tan et al. (2020a)). While there is a large amount of research to-

wards improving these object detectors, much of the research community focuses mainly

on popular benchmarks, such as MS COCO (Lin et al. (2014)).

While research fields such as remote sensing used geo-spatial image data sets (e.g.

satellite data), they are not that useful for object detection from UAVs since they employ

very low pixel per centimeter resolutions and vary very little in their altitude and angle

information (Li et al. (2018b)). Furthermore, a common practice in object detection from

UAVs is still to use off-the-shelf detectors (Zhu et al. (2018a)).

With the release of the UAVDT (Du et al. (2018)) and VisDrone (Zhu et al. (2018a))

data sets, several works develop models specifically aimed at object detection from UAVs

(Ševo and AvramoviÂc (2016); Sommer et al. (2017); Ding et al. (2018)). Many works

focus on detecting small or clustered objects (Hong et al. (2019); Yang et al. (2019a)).

With (Bashmal et al. (2018)), the concept of domains enters the field of object detec-

tion from UAVs, where a Siamese-GAN is introduced to learn invariant feature represen-

tations for labeled and unlabeled aerial images from two different domains. However,

such a domain adaptation method’s focus is to adapt the model from a fixed source do-

main to a fixed target domain. Fine-grained domains are utilized by (Wu et al. (2019)),

where adversarial losses are employed to disentangle domain-specific nuisances. How-

ever, the training is slow and unstable, and domain labels are ignored at test time. Expert

models are proposed in (Lee et al. (2019)) to account for objects with particular shapes

(horizontally/vertically elongated, square-like). Since no domain labels are used in this

work, they are formulated as a model ensemble too expensive to employ in multiple do-

mains. A multi-domain learning approach for object detection is investigated in (Wang

et al. (2019a)), where the focus is on learning from multiple distinct data sets. Transfer

learning (Zhuang et al. (2020)) is different in that it generally aims to learn invariant

representations, whereas multi-domain learning preserves the domain-specific represen-

tations.

As opposed to the aforementioned works, we aim to leverage freely available environ-

mental data from the drones’ sensors. We try to leverage these so far overlooked domain

49

Chapter 4 Diminishing Domain Bias

Domain type Domain name Estimated ranges

Altitude

high (H)

medium (M)

low (L)

80-100m

30-80m

0-30m

Angle
bird-view (B)

acute angle (A)

70-90◦

0-70◦

Time
day (D)

night (N)

6am-10pm

10pm-6am

Table 4.1: Available domain labels in the data sets VisDrone and UAVDT and its ranges.

Note that the ranges have been estimated by visual inspection since they have not been

reported.

labels at training and runtime to reduce the domain bias induced by highly imbalanced

data sets.

4.2 Analyzing Domain Imbalances

In the following two subsections, we analyze domain imbalances and their consequences

in two of the most popular UAV object detection data sets. First, we consider imbalances

in the training set and then in the testing set.

4.2.1 Domain Imbalances in the Training Set

Imbalance problems in data-driven object detection have been known for a long time.

However, most of the literature focuses on class, scale, spatial and objective imbalances

(Oksuz et al. (2020)). In contrast to many other applications areas, data in object detec-

tion from UAVs is versatile with respect to environmental domains.

So far, we loosely used the term ’domain’ to depict a particular environmental state

a UAV is in at the time of image capture. Some of these states give rise to some of

the imbalances mentioned above: Altitude imbalances give rise to scale imbalances as

object sizes directly correlate with the altitude an image is captured at. Also, foreground-

background imbalances are affected by the altitude. Viewing angle imbalances give rise

to spatial and aspect ratio imbalances. However, there might be many other domain im-

balances that may not directly relate to the aforementioned imbalances, such as lighting

imbalances caused by the time or weather.

However, it is not clear what separates one domain from another. In fact, many envi-

ronmental factors are continuous, such as the altitude or angle an image is captured at.

50

4.2 Analyzing Domain Imbalances

Bird Acute

Low

Medium

High

100 16 84

= day = night

41 1 0 33 7

38 5 1 28 4

21 8 1 12 2

Bird Acute

Low

Medium

High

100 37 63

= day = night

33 4 0 27 2

66 24 9 25 8

1 0 0 1 0

Figure 4.2: Distribution of objects across domains in the VisDrone (left) and UAVDT

(right) training set. The lower left circle represents the size of the whole data set (100%),

the other circles the relative size to it (rounded to the closest integer). The domains

are high, medium, low, bird view, acute viewing angle, day and night and combination

thereof.

Nevertheless, in current UAV object detection data sets, only coarse domain labels are

reported. Two of the most established data sets, UAVDT and VisDrone, feature domain

labels with coarse information about altitude, viewing angle and time as depicted in Ta-

ble 4.1. Although these divisions seem arbitrary, they already help distinguish features

in different domains, as will be seen in Section 5.3.

The large amount of varying domains causes data sets to be highly unbalanced with

respect to these domains. Figure 4.2 shows the number of labeled objects in every domain

for the UAVDT and VisDrone training sets. Note that a domain is a combination of one

or more influencing variables. For example, the domain+ ’high’ (H) + ’bird view’ (B) +

’night’ (N) in VisDrone contains 4,120 objects. Furthermore note, that we deliberately

compared the number of objects and not the number of images because common object

detection losses are back-propagated for every object instance ± as opposed to every

image.

In both data sets, many domain imbalances exist. For example, in both data sets,

there are fewer labeled objects at night than at day. Both data sets show most objects

from a horizontal viewing angle as opposed to from bird-view. These imbalances can

be quite large. For example, in VisDrone, the domain H+B+N contains roughly only

1% (≈ 4,120/343,205) of objects, whereas the domain L+A+D contains roughly 33%

(≈ 114,504/343,205). Even more extremely, in UAVDT, there are no objects in H+B.

These domain imbalances result in models being biased towards the over-represented

domains. In turn, this may hamper models to predict objects in every domain accurately.

In Section 5.2, we aim to propose a simple model family to diminish these biases.

51

Chapter 4 Diminishing Domain Bias

4.2.2 Domain Imbalances in the Testing Set

While domain imbalances in the training set cause a trained model to be biased towards

the over-represented domains, domain imbalances in the testing set cause a trained model

to be rewarded for that behavior. If we want to faithfully measure the performance of an

object detector across domains equally, we ought to include this in the corresponding

metric. However, the conventional metric ’mean average precision’ (mAP) does not

capture the concept of a domain. Indeed, it is designed to be a general-purpose metric

that weighs precision and recall. It is the area under the precision-recall curve averaged

over all classes c ∈ {1, . . . ,C} defined as follows:

mAP :=
1

C

C

∑
c=1

AP(c) :=
1

C

C

∑
c=1

∫ 1

0
pc(r)dr, (4.1)

where pc(r) denotes the precision for class c for a recall value r. True positives are

determined by measuring the intersection-over-union (IoU) of the predicted bounding

box and the ground truth. The threshold varies across data sets. Without any subscript,

the value denotes the average value over thresholds from 0.5 to 0.95 in steps of 0.05 (Lin

et al. (2014)). Because there are only finitely many predictions, the integral simplifies to

a sum over the ordered object predictions.

To illustrate the severeness of mAP being domain agnostic, consider the following toy

example: Suppose we have two distinct domains d1 and d2 in our UAV object detection

data set. Let mAPd1
and mAPd2

be the mAP scores of a model trained on all data but

evaluated only on d1 and d2, respectively. Denote by s∈ [0,1] the size of d1 relative to the

size of the whole data set d1∪d2. In Figure 4.3, we plot the mAP on d1∪d2 as a function

of s for certain fixed values of mAPd1
and mAPd2

. Note that these curves depend on the

distribution of true/false positives, true/false negatives and scores of the predictions and

are therefore not unique.

From that hypothetical example, it is evident that small domains contribute very little

to the overall mAP score. For example, consider the blue curve. In this case, mAPd1
=

0.1 and mAPd2
= 1. If the size of d1 is less than 1/4 of the whole data set size, the overall

mAP still is above 80%. This leads to overestimating models that just perform well

on over-represented domains and underestimating models that perform well on under-

represented domains.

Ideally, a UAV object detection data set is roughly balanced with respect to domains.

However, as we saw in the subsection before, this condition often is violated. Therefore,

the only way to obtain models that are robust across domains is to incorporate this domain

performance into the metric. We propose to use the simple domain-averaged metric

mAPavg :=
1

D

D

∑
j=1

mAPd j
, (4.2)

52

4.3 Multi-Domain Learning Approach

0.0 0.2 0.4 0.6 0.8 1.0

Size of d1 relative to d1 ∪ d2

0.2

0.4

0.6

0.8

1.0

m
A
P
[%

]

mAPd1: 1.0 mAPd2: 0.1

mAPd1: 0.1 mAPd2: 1.0

mAPd1: 0.4 mAPd2: 0.7

mAPd1: 0.7 mAPd2: 0.4

mAPavg

Figure 4.3: Hypothetical mAP values for a two-domain UAV object detection data set.

mAPavg is the average mAP over both domains as defined in equation 4.2.

where mAPd denotes the mAP on domain d ∈ {d1, . . . ,dD}. To obtain well-calibrated

models, we evaluate on both, mAP and mAPavg. Note that it is a user question of how to

weigh each domain. Non-uniform weightings of domains are possible as well. However,

we argue that a priori all domains should be weighted equally to allow for cross-domain

robust models. In the example from before, the dashed purple curve depicts mAPavg,

which is independent of the the sizes of each domain.

4.3 Multi-Domain Learning Approach

For a fixed model architecture, learning from multiple domains is inherently a trade-

off. Large domains cause the model to be biased towards these domains. Our goal

is to diminish this bias by leveraging freely available domain labels in a multi-domain

learning setting.

In multi-domain learning, image samples {x j} with corresponding bounding box an-

notations {y j} are accompanied by a discrete domain indicator dx ∈ {d1, . . . ,dD} (which

also is available at test time), such that a training sample is (x j,dx j
,y j) and a test sample

is (x j,dx j
). In particular, that means, we can leverage this domain information dx at test

time, which is the key to our expert models.

4.3.1 Toy Example

To illustrate the method, we fall back to a hypothetical one-dimensional example with

two domains. Consider the true one-dimensional function f to be approximated as fol-

lows:

53

Chapter 4 Diminishing Domain Bias

Figure 4.4: Left: True underlying function to be approximated. Right: Unevenly dis-

tributed data points sampled from the true function with noise where only a few data

points in the left domain are sampled (x < 0 and many in the right domain (x > 0).

f (x) =

{

x+ sin(x), if x > 0

−x+ sin(x), otherwise.
(4.3)

Naturally, in practical settings we only have access to individual data points. There-

fore, suppose they are sampled around the true function via a Gaussian distribution with

variance σ2 = 0.5. Furthermore, to simulate a domain imbalance, suppose the data points

are sampled very unevenly, such that we obtain the data points as shown in Figure 4.4.

Finally, assume your feature functions to be restricted to f1(x) = x and f2(x) = sin(x),
so that our hypothesis space can restore the true underlying function. Later, we will

replace our hypothesis space with the space of all neural networks induced by specific

architecture, on which we will experiment. For large neural networks, the assumption of

having a powerful hypothesis space therefore seems to be justified. With that formula-

tion, the question arises, how can we best learn the true function?

For that, we consider the following three learning strategies:

1. Learn on all data points globally, i.e. share all features across all domains;

2. Learn on each domain individually, i.e. share no feature across any domain;

3. Share sin feature across all domains and leave x other domain-specific.

Figure 4.5 shows the learned functions for the different training strategies, all fitted

via gradient descent and the L2 loss function. These are as follows:

54

4.3 Multi-Domain Learning Approach

Figure 4.5: Left: Different training strategies on toy example. Yellow: Learn on all data

points (dots in blue) globally (Strategy 1), Green: Learn on each domain individually

(Strategy 2), Red: Share precisely one feature (Strategy 3). Right: The same experiment

with balanced but very few data points.

Strategy 1: 0.9x+1.6sin(x) (4.4)

Strategy 2:

{

−1.1x−0.4sin(x), if x < 0

x+1.1sin(x), otherwise.
(4.5)

Strategy 3: |x|+1.6sin(x) (4.6)

We can observe that the capacity of the hypothesis space is too low in the case of

the global training (Strategy 1). The learned function only fits the right domain since

this accounts for most of the loss. While training strategy 2 almost succeeds in learning

the true function on the right domain, it overfits to the data points on the left domain.

Because of the lack of data samples, the model becomes overconfident on these points.

The multi-domain learning approach successfully captures the sine-dynamic across both

domains, while fitting the x-component correctly on the individual domains.

We would like to note that this problem can remain in balanced settings. For example,

Figure 4.5 (right) shows the learned functions in the case of balanced, but very few data

points. The global function still cannot fit this function due to a small hypothesis space,

while strategy 2 overfit on the individual domains. Again, the multi-domain learning

approach can leverage all data points for its sin-feature, resulting in a globally more

exact solution.

55

Chapter 4 Diminishing Domain Bias

4.3.2 Multi-Head Architecture

Motivated by Caruana (1997), we propose a multi-head architecture. Given a general

object detector model, we share earlier layers across all domains and leave later layers

domain-specific. This approach follows the empirical observations that earlier layers ex-

tract lower-level features, which are present across all domains, while later layers extract

higher-level features, which may differ substantially across domains (such as the people

in Fig. 4.1). Empirically, this is backed up by Wang et al. (2019a), which shows that

activations in later layers differ vastly.

This approach effectively allows the heads corresponding to smaller domains to learn

domain-specific features without suffering from the domain bias induced by the domain

imbalances that are favoring larger domains. Note that earlier layers may still be biased

towards larger domains. However, as in earlier layers more general-purpose features are

extracted Yosinski et al. (2014), this bias is less severe than in later layers.

From preliminary experiments, we found that it is best to split models not based on

individual layers, but on groups of layers, which are known as stages or blocks Wang

et al. (2019a). These stages are model-dependent. For example, a Faster-RCNN with a

ResNet-101 backbone consists of 5 stages prior to the region-of-interest pooling layer.

That means, we share all stages across all domains until a certain stage is reached. From

here on, we split the model into so-called experts. For simplicity, these experts are

copies of the original model. Therefore, this approach does not need a reorganization of

the model architecture and can be applied to many object detectors as will be seen from

Section 5.3.

For illustrative purposes, see Figure 4.6. Here, a Faster-RCNN with ResNet-101 back-

bone is taken as an example. The first three stages are shared across all domains. Based

on the domain label - in this case day or night - the corresponding expert branch is cho-

sen. We denote such a model as Time@3 because the available domains are based on the

attribute ’time’ and the model is shared until the third stage.

A priori, it is not clear, how many stages should be shared. We explore empirically

which stages are to be shared in Section 5.3.

While the number of parameters scales linearly with the number of domains, the in-

ference speed stays constant as only a single expert is evaluated at a time. Therefore, the

experts effectively increase a model’s capacity without hampering the inference speed.

Furthermore, the experts’ sizes are still small enough such that they all fit even in em-

bedded GPUs’ memory, as will be seen in section 5.3.

4.3.3 Simplified Training Realization

So far, the proposed approach may seem as if an adaptation to the model architecture was

necessary. However, in the following, we want to demonstrate that the expert approach

can be implemented in every architecture. Furthermore, it introduces only very little

training overhead.

56

4.4 Experimental Results and Ablations

Classification

Regression

Classification

Regression

Object Detection
Branch

Object Detection
Branch

Figure 4.6: Illustration of a Time@3 model with day and night experts. The time is split

into two domains, day (red) versus night (blue), where green outputs represent the shared

stages (first, second, third). Every image is passed through the shared green stages. Then

it is checked whether it is a day or night image and consequently passed through the red

or blue stages, respectively.

Given an object detector and training pipeline, we train it until an early stopping cri-

terion is met. That means, training it further would increase the validation error. Then,

similarly to what is done in transfer learning (Zhuang et al. (2020)), we freeze the shared

stages in order to transfer knowledge between domains and such that weights will not be

biased towards the over-represented domains (Oksuz et al. (2020)). This is particularly

beneficial for data sets with great domain imbalances, such as UAVDT and VisDrone.

We only train the domain-specific stages further on each respective domain. We split a

subset from the training set for that particular domain and use it as the validation set. We

train until the validation error increases again. Finally, we take the weights correspond-

ing to the lowest validation loss as our final weights for that expert. Even though the

number of trainable parameters shrinks, we want to emphasize that having a validation

set is especially critical in this case to avoid overfitting on the small domains.

Post-training the domain-specific layers on their corresponding domains introduces

little overhead to the overall pipeline. This is because only a small number of layers

needs to be trained which decreases the time for the backward pass because only parts of

the weights need to be back-propagated and the freed GPU memory space can be used

to increase the batch size. Furthermore, training for different domains can be done in

parallel. We report actual training times for various experiments in Section 5.3.

4.4 Experimental Results and Ablations

In the first two sets of experiments, we show how leveraging domain labels on UAVDT

and VisDrone improves multiple model architectures’ performances. Furthermore, we

investigate the effect of different splitting strategies and ablations. Lastly, we show that

57

Chapter 4 Diminishing Domain Bias

L M H mAP50 mAP mAP
avg
50 T

DE-FPN (Zhu et al. (2018a)) 49.1 49.7 36.0 48.6 26.1 44.9 ±

Altitude@0 49.4 49.6 35.5 48.3 25.9 44.8 12

Altitude@1 49.5 49.7 35.7 48.5 25.9 45.0 11

Altitude@2 49.5 49.9 36.1 48.7 26.1 45.2 11

Altitude@3 50.2 50.2 36.8 49.2 26.6 45.7 10

Altitude@4 50.7 50.2 37.5 49.9 27.4 46.1 8

Altitude@5 50.5 50.0 37.5 49.7 27.0 46.0 7

B A

DE-FPN (Zhu et al. (2018a)) 38.0 49.0 48.6 26.1 43.5 ±

Angle@4 39.6 49.8 49.4 27.0 44.7 6

D N

DE-FPN (Zhu et al. (2018a)) 48.5 52.0 48.6 26.1 50.2 ±

Time@4 49.0 52.6 49.0 26.6 50.8 7

Table 4.2: Several domain expert results for various freezing strategies on VisDrone.

Altitude@x means that all stages until the xth. stage are shared.

finer domain splitting is possible in the case of the data set POG.

4.4.1 VisDrone

We evaluate our models using the official evaluation protocols, i.e. AP70 for UAVDT

and mAP and mAP50 for VisDrone, respectively. Furthermore, we report results on

individual domains and the domain-averaged metric from Section 4.2.2, i.e. AP
avg
70 and

mAP
avg
50 over all respective domains to measure the universal cross-domain performance.

The subscript 50 and 70 denote the intersection-over-union (IoU) a prediction needs to

have with a ground truth bounding box in order to be counted as a true positive. Note

that we leave out the ’m’ in ’mAP’ for UAVDT since it contains only one class.

Furthermore, we report the additional training times T in percent (rounded to integers)

to train a model longer than its baseline, i.e. T = 10 would mean that it takes additional

10% to train a model further than its baseline.

The object detection track from VisDrone consists of around 10k images with 10 cate-

gories. All frames are annotated with domain labels regarding altitude (low (L), medium

(M), high (H)), viewing angle (front, side, bird (B)) and light condition (day (D), night

(N)) (Wu et al. (2019)). Note that we fuse the two domains ºfrontº and ºsideº into a

single domain ºacute angle (A)º, as, at test time, we can only distinguish between bird

58

4.4 Experimental Results and Ablations

↓ +→ L M H mAP50 mAP mAP
avg
50 T

DE-FPN
B

A

84.6

49.1

42.5

50.0

35.6

41.2
48.6 26.1 50.5 ±

Alt.-ang.@4
B

A

87.4

49.7

44.8

50.1

39.6

42.2
49.0 26.3 52.3 10

DE-FPN

B+D

A+D

A+N

84.6

49.0

52.8

42.5

50.2

51.6

35.6

41.2

±

48.6 26.1 50.9 ±

Alt.-ang.-

time@4

B+D

A+D

A+N

87.5

50.1

54.4

44.8

50.6

56.5

39.6

42.2

±

49.6 26.8 52.9 11

Table 4.3: Results on specific domains for multi-dimension experts on VisDrone. For

example, the Altitude-angle-time@4-expert achieves 54.4 mAP50 on the domain L+A+N

(low altitude, acute viewing angle, and at night).

view and not bird view based on the camera angle. We reimplement the best performing

single-model (no ensemble) from the workshop report, DE-FPN (Zhu et al. (2018a)),

i.e. a Faster R-CNN with a ResNeXt-101 64-4d (Xie et al. (2017)) backbone (removing

P6), which was trained using color jitter and random image cropping achieving 48.7%

mAP50 on the test set. To compare with (Wu et al. (2019)), we evaluate our models on

the unseen validation set, on which our implementation yields 48.6% mAP50.

From Table 4.2, we can make four observations: First, the altitude-experts improve

over the baseline DE-FPN on the whole validation set and on all domains individually

if more than up until the second stage is shared. The performance drop of Altitude@0

and Altitude@1 is likely caused by overfitting on the small domain H, on which the per-

formance drop is -0.5 mAP50. Note that Altitude@0 essentially has a separate model

for each domain. Second, there seems to be an upward trend in performance, peaking

at the fourth stage and dropping at the fifth stage. Third, improvements are seen for all

experts: +1.3, +0.8 and +0.4 mAP50 for the Altitude-, Angle- and Time-experts, respec-

tively. Furthermore, the performance improvements are also seen in the domain-sensitive

metric mAP
avg
50 , yielding +1.2, +1.2 and +0.6 points for the respective experts. Lastly, the

additional training time is low, with 8%, 6% and 7% for the most accurate domain ex-

perts. As it yielded the best results, we always freeze until the 4th stage for VisDrone

from here on.

Table 4.3 shows that sharing along two and three domain dimensions is advantageous.

The Altitude-angle@4-experts and the Altitude-angle-time@4-experts improve DE-FPN

on all domains individually and overall. In particular, we obtain a +1.8 and +2 mAP
avg
50

increase, respectively. The standard metrics mAP and mAP50 show an improvement

59

Chapter 4 Diminishing Domain Bias

mAP50 mAP mAP
avg
50 T

DE-FPN (Zhu et al. (2018a)) 48.6 26.1 49.7 ±

Altitude-time@4 49.1 26.3 51.5 11

DE-FPN (Zhu et al. (2018a)) 48.6 26.1 50.1 ±

Angle-time@4 49.2 26.4 51.9 13

Table 4.4: Altitude-time@4 and Angle-time@4 experts on the VisDrone validation set.

B A mAP50 mAP
avg
50

EfficientDet-D0 21.5 24.9 26.3 23.2

Angle@backbone 22.1 26.2 27.6 24.2

Table 4.5: EfficientDet-D0 Angle experts on VisDrone validation set

as well, albeit a lower one which is attributed to the failure of these metrics to capture

domain imbalances in the validation set (see Figure 4.2).

This contrast is, furthermore, seen in underrepresented domains being improved the

most, suggesting the diminished domain bias. For example, the Altitude-angle-time@4-

experts improve the performance on the domains M+A+N and H+B+D, which only con-

tain roughly 4% and 8% of all objects (see Figure 4.2), from 51.6 mAP50 to 56.5 mAP50

and 35.6 mAP50 to 39.6 mAP50, respectively.

Similar observations can be made from Table 4.4, where the Altitude-time@4- and

Angle-time@4-experts both improve by +1.8 mAP
avg
50 .

To further test our approach in real-time scenarios, we choose the current best model

family on the COCO test-dev according to (PapersWithCode (2022a)), i.e. EfficientDet

(Tan et al. (2020a)), and take the smallest model D0 as our baseline model. We employ it

on the NVIDIA Jetson AGX Xavier suitable for on-board processing Ditty et al. (2018).

For that, we convert the trained model to half-precision using JetPack and TensorRT

(Vanholder (2016)) and set the performance mode to MAX-N. The inference speed is

reported in frames per second (fps) averaged over the validation set. Similar to (Ring-

wald et al. (2019)), the fps values do not include the non-maximum suppression stage as

TensorRT does not supported it yet. Keeping the image ratio, the employed longer image

side is 1408 pixels for training and testing.

We freeze the whole backbone and only leave the box-prediction net (Tan et al. (2020a))

domain-specific. As shown in Table 4.5, sharing the backbone yields an improvement of

1.3 point mAP50 and 1 point mAP
avg
50 for the angle experts. Both models run at 21.8fps,

suitable for live on-board processing. With all pre- and post-processing steps, we obtain

a wall-clock time of 18.1fps.

60

4.4 Experimental Results and Ablations

L M H AP70 AP
avg
70 T

ResNet-101-FPN (Wu et al. (2019)) 61.9 58.1 24.1 49.4 48.0 ±

Altitude@2 62.5 60.5 24.1 49.4 49.0 10

B A

ResNet-101-FPN (Wu et al. (2019)) 28.9 59.1 49.4 44.0 ±

Angle@2 33.6 60.4 50.4 47.0 9

D N

ResNet-101-FPN (Wu et al. (2019)) 51.4 50.6 49.4 51 ±

Time@2 53.4 54.1 50.1 53.8 10

Table 4.6: Domain experts on the UAVDT testing set.

B A AP70 AP
avg
70

ResNet-101 (Wu et al. (2019)) 27.1 54.4 45.6 40.1

NDFT (Wu et al. (2019)) 28.8 56.0 47.9 43.4

Angle@2 31.6 58.6 48.6 45.1

Table 4.7: Results for ResNet-101 backbone on UAVDT

4.4.2 UAVDT

UAVDT contains around 41k annotated frames with cars, busses and trucks. Similar to

(Wu et al. (2019)), we fuse all classes into a single vehicle class. All frames are domain-

annotated like VisDrone. To compare our experts, we trained a Faster R-CNN with

ResNet-101-FPN similar to (Wu et al. (2019)), which report 49.1 AP70 on the testing

set. We obtain 49.4 AP70 on the testing set and we compare with that value.

As Table VI shows, the Angle@2- and Time@2-experts improve performance over

the baseline on both metrics. In particular, the Angle@2-expert improves the baseline

by +3 points AP
avg
70 . Furthermore note, that there is not a accuracy increase in domain H,

since there are almost no training images available (≈ 1%).

We also demonstrate that the performance gain using expert models does not vanish

as we switch to another backbone, e.g. ResNet-101. As shown in Table VII, the angle

experts yield an increase in +3 AP70 and +5 AP
avg
70 and even outperform NDFT (Wu et al.

(2019)), an approach using adversarial losses on domain labels. See Figure TODO

Finally, we also test a real-time detector on UAVDT. Similar as for VisDrone, Table

VIII shows how the altitude experts with shared backbone can regain precision that has

61

Chapter 4 Diminishing Domain Bias

Figure 4.7: Example prediction of the altitude-expert model on a newly captured images.

AP70 FPS AP
avg
70

EfficientDet-D0 17.1 21.8 16.7

UAV-Net (Ringwald et al. (2019)) 26.2 18.3 ±

Altitude@backbone 38.1 21.8 37.0

Table 4.8: Altitude experts results on UAVDT test set

been sacrificed to the high speed of the D0 model. The large improvement of +21.0 AP70

is likely caused by the domain bias induced by the heavy altitude imbalance of UAVDT

(see Table 4.2), which the experts are successful to mitigate.

In particular, we set a new state-of-the-art performance for real-time detectors on em-

bedded hardware by improving upon (Ringwald et al. (2019)) by +11.9 AP70 while being

3.5fps faster. Note that they tested on different embedded hardware.

4.4.3 POG: Baseline and Expert Results

We test the expert approach on our own captured data set POG. For future reference, we

establish an EfficientDet-D0 baseline which can run in real-time on embedded hardware

such as the Xavier board. Finally, we employ altitude experts with shared backbone to

showcase the effectiveness of a multi-domain learning approach on finer domains.

We split the altitude range (4m ± 103m) into three and six equidistant domains, re-

AP50 AP AP
avg
50

EfficientDet-D0 82.0 36.4 82.9

3xAltitude@backbone 86.2 40.3 86.0

6xAltitude@backbone 87.9 40.8 88.1

Table 4.9: (Finer) Altitude experts results on POG test set

62

4.4 Experimental Results and Ablations

Figure 4.8: Example prediction of the altitude-expert model on a newly captured images.

spectively. That is, our domains are

1. d1 = (4,37), d2 = [37,70), d3 = [70,103)

2. d1 = (4,20.5), d2 = [20.5,37), d3 = [37,53.5),
d4 = [53.5,70), d5 = [70,86.5), d6 = [86.5,103),

respectively. We denote the corresponding experts as 3xAltitude (1.) and 6xAlti-

tude (2.), respectively. As before, we freeze the backbone and report results for the fast

EfficientDet-D0.

Table IX shows that the baseline achieves 82.0 AP50, which the experts improve by

+4.2 and +5.9 AP50, respectively, showing that experts further benefit from finer do-

main splits (6xAltitude +1.7 AP50 compared to 3xAltitude). See Figure 4.8 for a visual

demonstration of the expert model.

4.4.4 SeaDronesSee: Expert Results

For completeness, we also show that the expert models can improve the performance

on SeaDronesSee. We evaluate the performances of 5×Altitude@3- and 5×Angle@3-

experts, which are constructed on top of a Faster R-CNN with ResNet-50-FPN, respec-

tively. Essentially, these experts make use of meta-data by allowing the features to adapt

to their responsible specific environmental domains.

As Table 4.10 shows, metadata can enhance the accuracy considerably. For example,

5×Angle@3 outperforms its ResNet-50-FPN baseline by 3.1 AP
avg
50 while running at the

same inference speed. The improvements are especially significant for underrepresented

63

Chapter 4 Diminishing Domain Bias

Model L LM M MH H AP
avg
50

Faster R-CNN ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1

5×Altitude@3 32.8 29.9 26.2 41.5 48.9 35.9

Model A AM M MR R AP
avg
50

Faster R-CNN ResNet-50-FPN 32.8 35.5 32.7 35.7 27.6 32.9

5×Angle@3 42.0 35.5 39.3 35.7 27.7 36.0

Table 4.10: SeaDronesSee results on different altitude- and angle-domains.

domains, such as +9.2 and +6.4 AP
avg
50 for the acute angle (A) and the medium angle

(M), respectively, which are underrepresented (compare to dataset statistics in Chapter

2).

4.5 Conclusion and Limitations

We successfully apply a multi-domain learning method to object detection from UAVs.

We propose and analyze expert models, leveraging domain data at test time. Although

these expert models are conceptually simple, they achieve domain awareness and con-

sistently improve several, heavily optimized state-of-the-art models on multiple data sets

and metrics. In particular, our EfficientDet-D0 altitude expert yields 38.1% AP70 on

UAVDT, making it the new state-of-the-art real-time detector on embedded hardware.

However, we believe that domain labels in UAV object detection can be exploited even

more. In particular, the assumption that domains are regarded as equally discrete may

be overly strict. In future work, it would be worth investigating how domains interact

with each other on a deeper level. In this matter, incorporating softer boundaries between

domains could be a promising direction. Furthermore, different sampling strategies, such

as oversampling small domains, could be investigated.

Lastly, one key observation is that altitude variances have a great influence on the

performances of an object detector. Therefore, in the next chapter, we will discuss the

specific case of obtaining scale invariance.

64

Chapter 5

Gaining Scale Invariance

While the previous chapter discussed the case of reducing the domain bias, it was for-

mulated to apply for any general domain. However, we saw that altitude plays a critical

role in the performance of an object detector. Therefore, in this chapter, we focus on the

specific case of obtaining scale invariance to alleviate the performance degradation due

to altitude changes.

UAVs with mounted cameras are used in versatile application areas, which lead to vast

differences in the altitude above the ground of the UAV at the time of capture (capture-

altitude). For example, in traffic surveillance applications, the altitudes can vary from

5 to 100 meters (Zhu et al. (2018a)), while in search and rescue tasks, the span may be

as large as 5 to 260 meters (Varga et al. (2021)). This variance in altitudes results in a

variance in objects’ sizes. While humans are believed to have a scale-invariant perception

and internal representation of objects (Han et al. (2020)), current object detectors do not.

In fact, scale variation is a major cause for poor detection (Singh and Davis (2018)).

While there is a corpus of works addressing this issue for generic object detection Singh

and Davis (2018); Huang et al. (2019); Kokkinos and Yuille (2008); Liu et al. (2019)), it

remains a complicated problem to solve.

On the other hand, in UAV bird’s eye view object detection, objects’ sizes mainly

depend on the UAV’s altitude. In turn, the altitude information is freely available via

the UAV’s onboard barometer and GPS sensor. Current object detectors ignore this in-

formation entirely. We argue that it is vital to include this information as it tells us

about the objects’ sizes and how closely we have to look for objects. Analogous to hu-

mans’ intrinsic understanding of their environment (Epstein and Baker (2019)), we can

incorporate that environmental information in the object detection pipeline to achieve a

scale-invariant understanding of the scene.

Furthermore, ignoring the scale information of objects leads to models learning differ-

ent representations of the very same objects if they are perceived at sufficiently different

altitudes (and thus scales). In turn, this results in potential redundancy among the learned

features. However, as onboard computation capabilities of UAVs are usually smaller than

those of high-end consumer graphics cards, highly condensed models (with lower capac-

ity) are needed.

Lastly, for higher altitudes, it is inevitable to provide large image resolutions to detect

65

Chapter 5 Gaining Scale Invariance

Figure 5.1: Example of the resizing process. Top images are captured at 10m flight

altitude, the bottom ones at 60m. On the right, we resized both images according to

their respective height. Note how the bounding box of the silver car at the center of each

respective picture is equal in size after resizing.

smaller objects (Varga and Zell (2021)). However, these large resolutions may be redun-

dant in lower altitudes. Thus, an altitude-aware method benefits the inference time even

further.

In this chapter, we tackle these problems by introducing a method we call Adaptive

Resizer. At its core, this is a preprocessing technique designed to ensure that two arbi-

trary instances of the same class are of the same size throughout the entire data set. We

do this by adaptively resizing each image depending on the altitude it has been captured

in a principled way before passing it to an object detector.

This achieves two things: first, the object detector itself does not need to be scale-

invariant. Second, the inference is much quicker because images taken at low altitudes

are downscaled by a significant factor because they feature the largest objects.

Our approach works for the special case of bird’s eye view (BEV) images, i.e. images

facing directly downwards, which form the most challenging subset (Wu et. al. (2019)).

However, we also show the usefulness in general UAV object detection. To summarize,

our key contributions are as follows:

• We propose a novel height-adaptive image preprocessing method, which improves

66

5.1 Related work

UAV bird’s eye view object detection performances in both accuracy and inference

speed and is applicable to all state-of-the-art object detectors.

• We construct a fast object detector for embedded applications that builds upon this

method.

5.1 Related work

Object detectors can broadly be divided into two categories; one-stage and two-stage de-

tectors. Two-stage detectors (Ren (2016); Girshick (2015b)) are generally more accurate

and therefore occupy the first places on established leader boards (Du et. al. (2019)).

However, their inference speed is generally a lot lower than that of one-stage detectors

(Redmon et. al. (2016); Zhou et al. (2019b); Tian et. al. (2019); Lin et. al. (2017b)),

which makes the latter more suitable for onboard object detection scenarios. Most re-

cently, there are also transformer-based object detectors performing very well in generic

object detection (Liu et al. (2021); Zhu et al. (2020b); Carion et al. (2020)). They have,

however, not proven to be useful for UAV or BEV object detection so far.

The closest method to ours is (Kim et. al. (2020)). There, images are also resized in

accordance with the height. However, the authors resize every image to the same resolu-

tion (an average over the data set) while we calculate an individual size for each image.

Furthermore, they merely test their method on class agnostic detection tasks.

While the authors in (Singh and Davis (2018)) analyze the problem of scale invariance

in CNN’s in great depth, their solution employs an image pyramid, which is not viable

for real-time detection. Another approach is presented in (Yang et. al. (2019)), where the

authors try to detect clusters of potential targets and then predict the scale offset before

regressing the objects in each cluster more accurately. A drawback is the need for ground

truth labels of clusters. Furthermore, the sequential use of multiple different networks

is computationally expensive, while our approach estimates scales for the whole image

deterministically.

Most papers tackling real-time object detection in general (Redmon et. al. (2016); Red-

mon and Farhadi (2018)) or on mobile platforms (Ringwald et. al. (2019)) design a

whole network architecture. On the other hand, we introduces a method applicable to

most modern object detectors, improving their speed and detection performance.

Wu et. al. (2019) propose to apply adversarial learning techniques to the meta-data of

UAV imagery. While they achieve good results, they only use the meta-data during train-

ing and not during validation. Also using it at test time can improve performance even

further, as we show.

One recent work exhaustively examines how feature pyramid networks work and how

object detectors (don’t) benefit from them (Chen et al. (2021b)). However, compared to

their approach we can choose a rather simple method to cut the feature pyramid network

and therefore save on computational cost. That is, because the approach in (Chen et al.

67

Chapter 5 Gaining Scale Invariance

(2021b)) aims at generic object detection while we go for the special case of BEV object

detection.

5.2 Method

The Adaptive Resizer is a preprocessing strategy designed to address bird’s eye view

(BEV) object detection, i.e. object detection from UAVs where the angle of view is

pointing downwards in a right angle. The Adaptive Resizer rescales every image in a

principled manner to diminish the scale variance problem in BEV object detection.

One problem in BEV object detection is that object instances of the same class appear

in vastly different sizes; see, for example, the left two images in Figure 5.1. This scale

variance is primarily attributed to the altitude an image is captured at (capture-altitude).

A vanilla object detector is not aware of the fact, that it observes instances of the same

class (or even the same object) but at different scales (Lin et. al. (2017a)). Therefore,

it learns different representations for different scales of the same object. That means

some of the capacity of the detector is wasted on learning these different representations.

One could either make use of this capacity in a different way or use a smaller object

detector to increase inference speed. Furthermore, an object detector that can make use

of differently scaled training samples of the same objects makes more efficient use of the

training samples.

However, the advantage of UAV object detection is the availability of freely available

meta-data generated by the UAV during flight. That includes data like the camera’s angle,

capture-altitude, or time-stamp. The necessary meta-data for the Adaptive Resizer is the

capture-altitude. Unique to BEV object detection is that all instances of the same class

are roughly equal in size on any single image, because all objects are about the same

distance from the camera.

Building on that, the Adaptive Resizer achieves its goal (making every object of one

class of same size over full data set) by resizing each image according to its height. For

this, the relevant determinant is the

Ground Sample Distance (GSD)

To define the GSD of an image, let p be its centre pixel. The definition of the GSD is the

side length of the area on the ground that p depicts. For the calculation of the GSD we

assume a fixed camera setup on the UAV. We can readily deduce the following formula

from fundamental properties of the camera geometry (see Figure 5.2):

GSD :=
g

s
=

h

f
, (5.1)

where s refers to the image side length in pixels, h denotes the height of the UAV, f

refers to the camera’s focal length in pixels, and g denotes the ground length in meters

68

5.2 Method

Figure 5.2: Illustration of the ground sample distance.

that is covered. With a fixed camera setup, the only varying factors in Equation (5.1) are

the distance above ground h and the image size s. Therefore, if we ensure that the ratio
h/s =: C is constant over the data set, the GSD is also constant across the entire data set.

Ensuring that the GSD is constant over the data set is just a reformulation of the Adaptive

Resizer’s objective to alleviate the scale variance problem within each class.

Furthermore, we need to fix a reference class from the data set to determine the desired

GSD, e.g. ’car’. Also, we fix a reference area, which is the goal size for all objects of

the reference class after resizing. Ideally, we know how large the standard representative

of this reference class is. For example, if we fixed ’car’ and know that the average car in

the data set is 4m×2m while our reference area is 32 px×32 px, we obtain the desired

GSD as follows:

1. First, we compute the reference area with the same aspect ratio as the average car.

Here, this is roughly 45.25 px×22.63 px. Then the desired GSD is

4

45.25
m/px.

2. Inserting this into Equation (5.1), we obtain the image size to resize to by solving

for s.

If we do not know the size of the average car in our data set a priori, we may estimate

it by averaging the areas of the bounding boxes of our reference class for a given image

from the data set. Then, we resize the image for this average to match our reference

bounding box size. So, if s̃ is the size of the image, m is the mean over the bounding box

areas, and r is the reference area, the image size to resize to is computed by

s =
r

m
· s̃. (5.2)

However, the first method is more desirable as it filters annotation mistakes. Also, the

second method does not work for images without instances of the reference class.

69

Chapter 5 Gaining Scale Invariance

For an illustration of the whole process, see Figure 5.1. This method works together with

any modern deep learning-based object detector since our approach is a preprocessing

step.

If there is a heavy lens distortion, we first undistort the image using the camera in-

trinsics. We refer to Ojanen (1999) for an elaborate description. In our experiments, we

disregard effects of lens distortion and perspective projection as these are minor com-

pared to the general relation of altitude to object size.

5.2.1 Building a Detector for Embedded Deployment

In this section, we will leverage the new features the Adaptive Resizer brings to an object

detector to build a fast detector for BEV imagery meant for embedded use. We start with

an EfficientDet±D0 (Tan et al. (2020a)) in order to have a fast state-of-the-art detector and

then omit the parts that we argue are not necessary in combination with adaptive resiz-

ing. EfficientDet is a family of models which are building onto EfficientNet-backbones

(Tan et al. (2020b)) and are therefore scalable in parameters, ranging up to EfficientDet±

D7. Here, a higher number means that the model is larger and more accurate, while a

lower number means that it is faster. We choose this detector because it is the smallest

representative of its family, which in turn is the current AP50-state-of-the-art on COCO

(PapersWithCode (2022a)).

EfficientDet±D0 employs a Feature Pyramid Network (FPN) (Lin et. al. (2017a)),

as is standard for modern object detectors. The FPN aims at making the detector per-

form well on multiple different levels of scale, because Convolutional Neural Networks

(CNNs) are not inherently scale-invariant (Singh and Davis (2018)). An FPN extracts

feature representations from the backbone network at different levels of depth, see Fig-

ure (5.4). Deeper ones are responsible for detecting larger objects because of their bigger

field view (FOV), while earlier ones are being used to detect smaller objects. This is usu-

ally realized by distributing a vast number of prior boxes, called anchor-boxes, each

corresponding to one feature map from the FPN. An anchor-box corresponding to a fea-

ture level of the FPN means, that the head from this feature level is used to classify and

regress this anchor-box. In the case of EfficientDet, the FPN employs five different fea-

ture levels. These levels are responsible for detecting objects at exponentially increasing

sizes; EfficientDet uses (32,64,128,256,512).
While this is an appropriate choice for data sets featuring everyday objects like COCO

Lin et. al. (2014) or Pascal VOC Everingham et al. (2015), in BEV object detection, four

out of these five feature levels are almost unused for each given image, see Table 5.4.

This is due to the object sizes the respective feature maps are looking for and because in

one given image from the BEV portion of a UAV data set all objects of a given class are

(roughly) equal in size.

However, the network itself does not need to be scale-invariant, if all the objects in the

data set are of the same size. For BEV images, all instances of any given class on one

single image are a priori roughly equal in size, because all of them are about the same

70

5.3 Experiments

Figure 5.3: Distribution of image sizes after applying Adaptive Resizer on the UAVDT

data set and the resulting inference time. The x-axis denotes the longer respective edge

of the image, aspect ratios are kept during this process. The y-axis denotes the quantity

in blue and the inference time in red.

distance from the camera. Consequently, the only remaining problem is the objects’

difference in scale between different images, precisely what the Adaptive Resizer aims

at.

Consequently, we eliminate the feature pyramid network (FPN) from our model and

only use the earliest feature map of those extracted from the backbone network. For

an EfficientDet±D0, this reduces the number of parameters from around 4m to roughly

0.5m. This also leads to a large boost in inference speed, see Section 5.3.

5.3 Experiments

We employ Faster R-CNN (Ren (2016)), CenterNet (Zhou et al. (2019b)), and EfficientDet±

D0 (Tan et al. (2020b)) to test our approach. We chose these three to have experiments

with representatives of multiple major classes of object detectors. The first is a well

known two-stage detector which is highly adjustable, for example with different ResNet-

71

Chapter 5 Gaining Scale Invariance

or ResNeXt-backbones (He et al. (2016); Xie et al. (2017)). The latter two are well-

known one-stage detectors. EfficientDet is an anchor-based object detector while Cen-

terNet is an anchor-free object detector (Zhang et al. (2020a)).

In the following, we will always report AP50 values, as is usual for UAV data sets,

except where explicitly stated otherwise.

5.3.1 Results on Bird’s Eye View Portions

We conduct our experiments on two well-known UAV data sets, VisDrone (Zhu et al.

(2018a)) and UAVDT (Yu et al. (2020)), and on POG. The two former consist of around

7k and 40k images, respectively, and were both captured in major Asian cities. The latter

contains roughly 2.8k images, mostly showing people on a grass background. Of these

datasets, only POG features precise altitude annotations. We estimate the altitudes of the

other two datasets as discussed below.

We conduct our experiments on each data set’s BEV portion. These subsets con-

tain roughly 1.4k, 9.4k, and 1k images, respectively. Following the original authors of

UAVDT, we combine all classes of their bounding box annotations into the single class

‘car‘ for our experiments due to heavy class imbalances. Because the existing altitude

annotations are too coarse for our purposes (3 levels of altitude, see Chapter 4), we gen-

erate finer height data artificially for UAVDT and VisDrone. We do so using the second

method from Section 5.2. More precisely, we generate the image sizes by Equation (5.2).

The data set contains images in between 10m and 110m.

For the experiments on one-stage detectors, we employ EfficientDet±D0 and Cen-

terNet as described in their respective original papers (Tan et al. (2020b); Zhou et al.

(2019b)). In the case of EfficientDet, we fine-tuned hyper parameters like image size

and anchor parameters (scales and ratios) to each data set. For CenterNet, we did the

same, except that it is anchor-free and therefore does not have anchor parameters. To

test our approach, we also do experiments with both networks employing the Adaptive

Resizer. We report the results of these experiments in Table 5.1 and 5.3. For both mod-

els, we observe that employing Adaptive Resizer improves inference speed by a factor

of two to three, see also Section 5.3.4. In the case of EfficientDet (Table 5.1), we can

see that employing adaptive resizing achieves roughly an improvement of 3 points AP50

for VisDrone and POG. For UAVDT it even boosts performance by around 25 points

AP50. See below for a discussion of this large gap in performance increase. For Center-

Net (Table 5.3), the models employing Adaptive Resizer consistently outperform their

baseline counterparts. On UAVDT in the most extreme case even by 28 points AP50. On

VisDrone, however, the Adaptive Resizer only performs competitively to the baseline.

We also include results for the Adaptive Resizer on two-stage detectors to see the

potential of adaptive resizing on larger models. For UAVDT, we employ the baseline

from (Wu et. al. (2019)) to compare with their approach, as they are also using meta-

information like capture-altitude. It is a Faster R-CNN network with Resnet-101-FPN

backbone (He et al. (2016)). For VisDrone, we reimplemented DE±FPN, which is the

72

5.3 Experiments

best-performing single model of the VisDrone Detection Challenge (Zhu et al. (2018a)).

We achieved 49.0 AP50 on the full validation set compared to their 49.1 AP50 on the full

test set. To compare it to our model, we train and test it on the BEV portion, then employ

this as the baseline (in both cases). Table 5.2 shows that employing the Adaptive Resizer

improves detection results for both data sets. While we improve by 5 AP50 points on

VisDrone, we even achieve an improvement of over 13 AP70 on UAVDT compared to

our baseline. We use the AP70 metric to compare our approach to (Wu et. al. (2019)) and

observe that our model outperforms theirs by around 4 points.

Summarizing all experiments, we observe that the Adaptive Resizer increases detec-

tion performance in general. However, the gain in performance is most prominent on

UAVDT. We argue that this is due to the bad distribution of capture-altitudes in this data

set (compare to Chapter 4). We observed that capture-altitudes are on average consid-

erably lower in the training set of UAVDT than in its test set (which is not the case for

VisDrone and POG). These are conditions the Adaptive Resizer can cope with very well,

while generic object detectors suffer greatly, see Section 5.3.5. Additionally, employing

adaptive resizing speeds up inference by a factor of two to three.

VisDrone UAVDT POG FPS

D0 @ 2048 13.1 34.1 80.3 12

D0 @ 1792 17.7 30.0 74.3 15

D0+Adaptive 20.6 58.8 83.0 32

Table 5.1: AP50 results on the bev portions of the data sets. EfficientDet±D0@x is a

baseline model trained and evaluated such that the longer edge of each image is equal to

x. All FPS values are benchmarked on UAVDT and an RTX 2080 Ti GPU.

UAVDT VisDrone

Faster R±CNN 23.0 41.0
NDFT (Wu et. al. (2019)) 32.9 ±

Adaptive 36.8 46.0

Table 5.2: AP70 results on the bev portions of UAVDT and AP50 on VisDrone. We use

the AP70 metric to compare our approach with (Wu et. al. (2019)).

5.3.2 Effects of Cutting FPN

In this section, we compare the detector from Section 5.2.1, meant for fast inference

and deployment to an embedded GPU, to a full-fledged EfficientDet±D0 model with

Adaptive Resizer. The model from Section 5.2.1 has no feature pyramid network and

73

Chapter 5 Gaining Scale Invariance

UAVDT VisDrone FPS

CN±RN18 Baseline 33.7 23.7 20

CN±RN18 Adaptive 56.8 22.1 55

CN±RN50 Baseline 35.4 28.5 8

CN±RN50 Adaptive 63.4 26.3 23

CN±RN101 Baseline 37.6 26.3 5

CN±RN101 Adaptive 60.8 26.5 6

Table 5.3: AP50 results and frames per second (fps) of different CenterNet-models (Zhou

et al. (2019b)). They differ in their respective backbone, for example ’CN±RN101’ is a

CenterNet with a ResNet101 (He et al. (2016)) backbone.

therefore only uses one feature map. Table 5.4 provides empirical evidence for that mea-

sure. There, we can see the mean percentage of objects per image, that are detected by

each feature map. Being detected by a certain feature map means, that the anchor which

is selected to classify and regress the object in question (see description in Section 5.2.1

and Figure 5.4) is corresponding to this specific feature map. We discriminate between

the detection percentage by feature map before and after applying non-maximum sup-

pression (NMS). The values before NMS give an upper bound view of which feature

maps would in principle be able to detect an object. The numbers after NMS, however,

are more relevant to the application in practice, because only here does the detector filter

predictions with poor scores; these are usually the ones which also regress the object

worse than others. Table 5.4 shows that after applying non-maximum suppression, on

average less than two percent of all object per image are not detected by the first feature

map.

1 2 3 4 5

pre NMS 92.03 % 7.95 % 0.03 % 0.00 % 0.00 %

post NMS 98.01 % 1.97 % 0.02 % 0.00 0.00 %

Table 5.4: Average number of objects that are detected by each feature map before and

after applying non-maximum suppresion (NMS). The average is taken over UAVDT. The

investigated model is an EfficientDet±D0 with FPN and Adaptive Resizer.

5.3.3 Results on Complete UAVDT Data Set

To also introduce a model that works on a full UAV data set, we use a multi-domain ap-

proach following (Kiefer et al. (2021)). More explicitly, we use the meta-data supplied

74

5.3 Experiments

UAVDT VisDrone POG FPS

D0±noFPN 49.3 23.6 79.2 56

D0±FPN 58.8 20.6 83.0 32

Table 5.5: AP50 results on UAVDT, VisDrone, and POG. The compared models are

EfficientDet±D0 with Adaptive Resizer. D0±noFPN is a model without FPN like de-

scribed in Section 5.2.1, D0±FPN is the standard model with Adaptive Resizer, including

fpn.

Figure 5.4: Adapted original illustration of an EfficientDet±D0 (Tan et al. (2020a)). Start-

ing from the image, the backbone-network extracts feature maps P1,P2,P3 (left part of

blue box). Then these are input to the feature pyramid network P4−P7 (red) and after-

wards handed to the heads (yellow). These perform classification and regression. The

object detector without FPN from Section 5.2.1 is encircled with the dashed line. The

bulk from the red box is for dealing with scale variance in general settings. We can

remove this using adaptive resizer.

by the UAV to distinguish between bird’s eye view images and non-bird’s eye view. Dur-

ing inference, we use the Adaptive Resizer model on the BEV images and a baseline

model on all other images. Both are loaded before inference and available in GPU mem-

ory, so there is a slight overhead added and no drop in inference time for each of the

models. To achieve the results reported in Table 5.6 on UAVDT, we use the models from

Table 5.2 for the two-stage detector experiments. For the experiments with EfficientDet±

D0 we use the model without FPN from Section 5.2.1 and the baseline from Table 5.1.

We observe that both models improve by circa 3 AP points. Note that we are en

par with Perreault et. al. (2020), also achieving 52.8 AP70. They give, to the best of

our knowledge, the state-of-the-art detector on UAVDT. However, they employ a vastly

more complicated method which needs short video sequences to perform well.

75

Chapter 5 Gaining Scale Invariance

Faster R±CNN D0

Baseline 49.4 34.6
SpotNet (Perreault et. al. (2020)) 52.8 ±

Adaptive 52.8 37.7

Table 5.6: Results on the full UAVDT data set. We use the AP70 metric to compare our

approach with the reported numbers in Perreault et. al. (2020).

5.3.4 Timing Benchmarks

Tables 5.1 and 5.3 show that the Adaptive Resizer makes a model two to three times

faster than its respective baseline. The reported number is the average of the inference

times over the UAVDT BEV data set. We take the mean because the inference time for

an Adaptive Resizer model is not constant; like for every object detector the inference

time is dependant on the image size, which in turn is dependant on the capture-altitude.

We chose UAVDT to average over because it is the largest of the data sets we tested on,

being the least prone to statistical outliers during the benchmark test. Table 5.1 and 5.5

show, where the speed improvement of the EfficientDet±D0+Adaptive Resizer without

FPN comes from. Cutting the FPN from the model brings an improvement of 24 FPS,

which is larger than expected. We argue that this is due to the convolutional layers in

the FPN, especially in later layers, having higher channel-dimensions than earlier layers

(Tan et al. (2020b)). Because convolutional networks are fully-connected in the channel-

dimension, cutting these brings the largest speed improvement.

Figure 5.3 explains the speed improvement when using Adaptive Resizer without any

other alterations. All images captured at low altitudes are resized to comparably small

image sizes, speeding the network up a lot, while the baseline runs at constant speed.

One could argue that the speed comparison is not fair because the baseline is employing

a larger image size. However, this is necessary; otherwise, the baseline’s AP deteriorates

(as we saw in experiments) because of the small objects in UAV data sets (Singh and

Davis (2018); Varga and Zell (2021); Unel et. al. (2019)).

We also benchmarked our EfficientDet±D0 with Adaptive Resizer and without FPN on

a Jetson AGX Xavier development board optimized with TensorRT and half-precision

FP16. There, our model achieved roughly 16 FPS averaged over UAVDT. Meanwhile,

the baseline achieved 7 and 5 FPS when resizing the image’s longer respective side to

1792 and 2048 px, respectively, as in Table 5.1. Therefore, on embedded hardware,

Adaptive Resizer improves inference speed by a factor of two to three.

5.3.5 Height Transfer

Without Adaptive Resizing, a model learns different representations for object instances

with varying scales, as discussed in Section 5.2. Therefore the model learns separate

76

5.4 Conclusion and Outlook

representations for objects belonging to the same class but appearing on images from

different altitudes. In simple terms: the objects on which the model without Adaptive

Resizer did not train can not be recognized during testing.

On the other hand, a network endowed with the Adaptive Resizer learns representa-

tions for every class at one specific scale. Therefore, the capture-altitude affects detection

performance very little as long as every image is resized in the discussed fashion. Essen-

tially, the Adaptive Resizer allows for transferring knowledge in between altitudes. An

example: our network can learn from images taken between 0m and 50m above ground,

and then perform well on images captured between 50m and 100m.

To prove these claims, we consider four different data set splits for our experiments

on height transfer. The construction of these splits is as follows: starting from the above

described BEV subsets, we order the images in the data set by their respective capture-

altitude. We then use the 25 % images with the highest capture-altitude from the training

set of the BEV portion as the training set for this task. For the validation set, we use

all of the validation images from the BEV subset. Together we call this ABOVE75. Re-

peating this procedure for the bottom 25 %, bottom and top 50 % of the training images

yields BELOW25, BELOW50, and ABOVE50, respectively. Note that the validation set

for each of these splits is the entire validation set of the BEV portion, including all

capture-altitudes.

Constructing the data set split this way makes this experiment fit to verify the above

claims; if a model performs well on one of the above data set splits, it means that it can

generalize from the images it trained on to images with capture-altitudes it never saw

before.

Table 5.7 shows that the Adaptive Resizer models consistently outperform their re-

spective baseline counterparts in these experiments. The reported numbers on VisDrone

are generally relatively low, as expected, due to the size of the training sets, e.g. BE-

LOW25 and BELOW75 contain ≈ 300 training images. Still, in the best case, Adaptive

Resizer is three times as good as its baseline (4.9 vs 14.2 AP50).

To explain the large improvement in the case of UAVDT, we assume that the baseline’s

improvement compared to Table 5.1 comes from UAVDT’s gap in between training and

validation images we already discussed. We perceive many more images captured at very

high altitudes in its validation set, which do not appear in the training set. The Adaptive

Resizer can handle this gap being basically en par with its performance on the whole

BEV split of UAVDT, e.g. 47.9 versus 49.3AP50 (see Table 5.5).

5.4 Conclusion and Outlook

In this work, we proposed a novel preprocessing step. It adjusts the image size according

to the height in which the image was captured, solving the scale variance problem in

BEV imagery. This method significantly improves detection performance over multiple

data sets and object detectors while also improving inference speed, making it applicable

77

Chapter 5 Gaining Scale Invariance

VisDrone UAVDT

D0 D0+Adapt. D0 D0+Adapt.

BELOW25 5.0 7.2 9.7 47.9
BELOW50 7.0 12.0 26.1 45.5
ABOVE50 4.9 14.2 32.1 45.4
ABOVE75 8.0 11.2 18.7 44.5

Table 5.7: Empirical results for height transfer on VisDrone and UAVDT. Each cell re-

ports the AP50 result of either the baseline or adaptive resizer of an EfficientDet±D0.

Figure 5.5: Possible extension of adaptive resizing to apply on non-BEV imagery.

to near real-time object detection on mobile platforms.

We also showed that this method enables object detectors to generalize well to images

captured in heights they have never seen before. Furthermore, we used a multi-task

fashioned approach to capitalize on our method on generic UAV imagery.

An immediate follow-up question would be whether we can loosen the BEV restriction

and apply adaptive resizing to acute viewing angles. E.g., we could apply the bird’s eye

view transformation on any image with acute viewing angle as illustrated in Figure 5.5.

However, several apparent problems arise: Objects become skewed, so that objects that

are far away make up large parts of the resulting image. The corresponding bounding

box hence is much larger, breaking the assumption that objects of the same class should

have roughly the same size. It remains to be shown by future works whether this can be

alleviated. We discuss more on the underlying 3D geometry in Chapter 8.

The BEV assumption also revealed that there is a great lack of large-scaled UAV object

detection datasets. Hence, in the next section, we discuss how we can leverage synthetic

data and, again, show how metadata helps to construct higher quality datasets.

78

Chapter 6

Obtaining Efficient Synthetic Data

Although object detection on natural images taken from hand-held or car-mounted cam-

eras has been studied intensively, object detection from UAVs trails behind in perfor-

mance (Zhu et al. (2018a)). This is partly due to the limited amount of annotated publicly

available data sets. In turn, this is partly caused by the highly complex data generating

missions, which are subject to permissions, UAV flying restrictions and environmental

factors (Varga et al. (2022)). Furthermore, there are more degrees of freedom in the

UAV domain (camera angles, position), which account for objects from unnatural per-

spectives, e.g. small objects from above. These difficulties are on top of other common

obstacles, such as high and enduring labeling costs.

With more publicly available data sets, object detection on UAVs could be improved.

However, data collection and labeling are expensive and time-consuming. Furthermore,

data set collection raises serious privacy (e.g. GDPR (GDPR (2022), ExposingAI (2022))

and security concerns because specific locations demand a long and complicated ap-

proval procedure.

Moreover, currently published data sets suffer from large class and domain imbal-

ances (Du et al. (2018); Zhu et al. (2018a); Messmer et al. (2021)). Both problems are

inherently caused by a problematic capturing procedure, where many variables cannot be

controlled. For example, in UAVDT, the classes ºtruckº and ºbusº make up only approx.

5% of all objects, and only 8% of all images are captured from high altitudes (Du et al.

(2018)). Other data sets also suffer from these imbalances (Zhu et al. (2018a); Varga

et al. (2022)).

On the other hand, synthetically generated data for computer vision problems can help

train data-demanding visual perception systems because it is comparably fast and inex-

pensive to acquire. It also allows access to ground truth annotation data. Furthermore,

this data can easily be tailored to specific requirements. Several works address synthetic

data generation in computer vision. However, most of them focus on driving, simulat-

ing constrained traffic situations (Kar et al. (2019); Srivastava et al. (2019); Hurl et al.

(2019)). Few works consider the generation of synthetic data captured from UAVs. How-

ever, these only focus on the capturing process of the sensors and are lacking in world,

object and physics details, or do not feature them at all (Kar et al. (2019); Fonder and

Droogenbroeck (2019)).

79

Chapter 6 Obtaining Efficient Synthetic Data

Figure 6.1: Real (top) and synthetic (bottom) image samples in different applications

scenarios with ground truth annotations. Representative objects are magnified.

While the use of synthetic data in the context of autonomous driving has been investi-

gated thoroughly, it is not clear whether these findings can be applied in the UAV setting.

As mentioned in the beginning, the problems for general UAV object detection also apply

to synthetic data generation. Most simulation engines focus on autonomous driving, and

therefore rendering is aimed at looking realistic for these scenarios. Even if these simula-

tion engines could technically be adapted to the UAV setting, light conditions, shadows,

visibility range, rendered resolution, and more may significantly affect the quality of the

rendered footage. In turn, the generated data may be less valuable for transfer to the real

world.

In this chapter, we consider the video game Grand Theft Auto V (GTAV) (Games

(2022)) as a simulation platform. It offers numerous detailed object models that interact

in a large world with realistic graphics and physics simulations. Building on previous

works (Johnson-Roberson et al. (2016); Angus et al. (2018); Yue et al. (2018); Hurl et al.

(2019)), we extend the DeepGTAV data extraction tool to work for airborne scenarios by

extending its functionalities regarding in-game agent and camera position and rotation,

environment manipulation, object spawning and metadata extraction.

Using this simulation engine, we create three large-scale high-resolution (4K) syn-

thetic object detection data sets in different application scenarios. Using these, we eval-

uate different training strategies and their transfer performances on three corresponding

real-world data sets. We provide analytical insights and actionable advice on which set-

tings to choose by doing extensive experiments and ablations.

In this chapter, we discuss the following contributions:

• We modify and extend the DeepGTAV tool, in particular, to allow the production

of airborne data. We discuss the specific improvements in Section 6.4.

80

6.1 Related Synthetic Data Generation Engines

• We provide three large-scale high-resolution metadata annotated data sets in dif-

ferent UAV application scenarios and make them publicly available.

• We evaluate the applicability of these data sets to improve real-world object detec-

tion and analyze the from-scratch performance.

• We analyze the influence of different parameters of the data generation, e.g. the

graphics quality and the alignment of metadata.

6.1 Related Synthetic Data Generation Engines

Many data generation engines focus on autonomous driving. AirSim (Shah et al. (2018))

and Carla (Dosovitskiy et al. (2017)) leverage the Unreal Engine (Qiu and Yuille (2016))

to create a simulation engine suitable for autonomous driving scenarios. While Air-

Sim also provides support for UAV scenarios, it lacks a world to simulate objects and

its physics implementation, which must be created and modeled first. Instead of la-

boriously creating simulation engines, some researchers use the computer game GTAV

(Games (2022)) to generate data. With DeepGTAV (Johnson-Roberson et al. (2016)),

researchers leverage GTAV to gather data for autonomous driving. PreSIL (Hurl et al.

(2019)) builds upon this approach to refine the data acquisition process with their tool

DeepGTAV-PreSIL. However, both systems lack the feature to modify the in-game agent

and camera position and rotation, essentially limiting it to a single autonomous driving

scenario. Further manipulations, such as spawning objects, manipulating the environ-

ment and extracting the metadata, are not possible either. The work at hand builds upon

these two works, improving and extending them to open it for UAV research.

There are many more synthetic, simulated environments. Please see Nikolenko et al.

(2019) for an overview.

6.2 Related Data Sets Taken on UAVs

The first large-scale real-world object detection data sets taken on UAVs were VisDrone

(Fan et al. (2020b)) and UAVDT (Du et al. (2018)). Other data sets for object detection

and tracking emerged with many different foci (Pei et al. (2019); Mueller et al. (2016);

Hsieh et al. (2017); Mundhenk et al. (2016); Li and Yeung (2017); Krajewski et al.

(2018); van Gemert et al. (2014); Ofli et al. (2016); Varga et al. (2022); Bozcan and

Kayacan (2020)).

The need for data sets caused many researchers to focus on synthetic data. Mid-

Air (Fonder and Droogenbroeck (2019)) presents a synthetic data set for unstructured

environments captured with the Unreal Engine (Qiu and Yuille (2016)) in combination

with AirSim (Shah et al. (2018)). They laboriously built a world with landscape and

streets for drone navigation. However, their world is lifeless and does not feature any

81

Chapter 6 Obtaining Efficient Synthetic Data

Data Set Domain Type #Images Widths Alt. Ang. O.

VisDrone traffic real 10,209 2,000 ✕ ✕ ✕

AU-AIR traffic real 32,823 1,920 ✓ ✓ ✓

PreSIL traffic synth. 40,000 1,920 ± ± ✕

DGTA-VisDrone traffic synth. 50,000 3840 ✓ ✓ ✓

Airbus Ship marine real 40,000 768 ± ± ✕

SeaDronesSee marine real 5,630 3,840 ✓ ✓ ✓

DGTA-SeaDronesSee marine synth. 100,000 3,840 ✓ ✓ ✓

Cattle agriculture real 670 4,000 ✕ ✕ ✕

DGTA-Cattle agriculture synth. 50,000 3,840 ✓ ✓ ✓

Table 6.1: Comparison with the most prominent annotated aerial object detection data

sets in three domains.

objects of interest. The Synthinel-1 (Kong et al. (2020)) data set features synthetic data

showing building footprints with segmentation masks.

An overview comparing the most important data sets is shown in Table 6.1.

6.3 Methods Narrowing the Sim-to-Real Domain Gap

On the model level, many approaches apply synthetic-to-real domain adaptation (Hoff-

man et al. (2018); French et al. (2017); Li et al. (2018a); Zou et al. (2018); Chen et al.

(2018); Prakash et al. (2019); Tobin et al. (2017); Tsai et al. (2018)). By disentangling

the features, these techniques aim to learn domain invariant features that lead to better

transfer capabilities. A subset of these methods performs image stylization to make the

synthetic images look more similar to their real-world counterparts (Richter et al. (2021);

Zhu et al. (2017a)), referred to as narrowing the appearance gap. Another domain gap

arises from differences in content, called content gap (Kar et al. (2019)). It depicts the

layout and types of objects featured in the synthetic world instead of the real world.

Orthogonal to these gaps, we focus on another gap called meta gap. Meta gap depicts

the imaging conditions at the time of capture, such as altitude, viewing angle and time. It

can be seen as a useful abstraction of the content gap. These metadata are freely available

in the synthetic engine and on an actual UAV. We leverage these metadata to align the

distributions of the synthetic and real-world data set, leading to better performance and

data efficiency.

82

6.4 DeepGTA-UAV: Tool Description and Improvements

6.4 DeepGTA-UAV: Tool Description and Improvements

The DeepGTAV framework as used in this work builds upon the DeepGTAV-PreSIL

framework (Hurl et al. (2019); Hurl (2022)), built upon the DeepGTAV framework (Ru-

ano (2022a)).

Originally, DeepGTAV was built as a reinforcement learning environment for self-

driving cars, providing functionality to interact with GTAV through a TCP-server and

building upon the functionality of SkriptHookV (Blade (2022)).

The Python library VPilot (Ruano (2022b)) interacts with DeepGTAV, which runs in

GTAV.

DeepGTA-PreSIL integrates DeepGTAV and GTAVisionExport (Barto (2022)),

the technique presented in (Johnson-Roberson et al. (2016)), to extract depth and sten-

cil buffers from the rendering pipeline. With those and the world coordinates of objects

extracted in GTAV, pixel-wise object segmentation data can be extracted. From those,

object bounding boxes can be calculated. The DeepGTAV framework also allows ex-

tracting voxel-wise LiDAR segmentation data, which was not used in this work. The

most notable improvements made in this work include:

1. Increasing the ease of use and the multitude of scenarios of which synthetic data

can be generated by improving the VPilot interface of DeepGTAV. In particular,

it is now possible to freely modify the in-game position, camera position and ro-

tation, manipulate the environment (time of day, weather), spawn objects (e.g.

pedestrians, cars) and specify their animations.

2. Improving the speed and reliability of the DeepGTAV framework (to obtain almost

no overhead, compared to running GTAV natively).

3. Allowing the extraction of metadata of the generated data (like time of day, height,

camera angle and others).

4. Providing multiple easily comprehensible and modifiable data generation scripts

for several airborne scenarios and different strategies of metadata distribution.

5. Modifications to capture 4k image data (although we did not analyze the influence

of high resolution data).

In this work, those adaptations were used to capture object detection data from a UAV

perspective (in comparison to an autonomous car scenario in previous works (Johnson-

Roberson et al. (2016); Hurl et al. (2019))).

For optimal use as a simulation environment, some modifications were made to the

GTAV game files by installing the modifications Simple Increase Traffic (and Pedestrian)

(Dorahamu (2022)), No chromatic aberration lens distortion (VenJam1n (2022)) and

Heap Limit Adjuster (Division (2022)). Additionally, the automatic spawning of objects

was modified to match the class distribution in VisDrone.

83

Chapter 6 Obtaining Efficient Synthetic Data

Figure 6.2: Left: Map used in GTAV and areas where datasets were taken (Red: Vis-

Drone, Yellow: Cattle, Purple: SeaDronesSee). Right: Example in-game assets; 3 out of

approx. 1000 people; 3 out of over 150k animations; 5 out of approx. 800 vehicles; 3

out of 32 animals. Each object has various manifestations (different colors, clothing,...).

Furthermore, the bounding box quality was improved by setting the game resolution

to 7680x4320DSR in NVIDIA GeForce Experience (Nvidia (2022a)). This results in an

upscaling of the rendering buffers to 4k, which is needed to obtain pixel-perfect object

segmentation data for 4k images.

6.5 Data Set Generation

To assess the usefulness of synthetic data as training data for real-world scenarios, par-

ticularly to assess the usefulness of DeepGTAV and its adaptability in this context, we

examined three different object detection scenarios.

In choosing those three scenarios, we are bound to existing real-world data sets to as-

sess the real-world performance. We find that the data sets VisDrone (Zhu et al. (2018b)),

SeaDronesSee (Varga et al. (2022)) and Cattle (Shao et al. (2020)) are very popular in

their respective application domain and therefore choose these. VisDrone aims for traf-

fic surveillance in Asian cities with very crowded scenes. SeaDronesSee’s application

domain is search and rescue in open water featuring swimmers and boats, with the main

challenges being reflective regions, shadows and waves or seafoam. Finally, Cattle aims

to bring autonomous vision systems to agriculture (cattle detection).

Using the DeepGTAV framework, we generate synthetic training data for these scenar-

ios by specifying VPilot data generation scripts for each scenario. In the following, we

briefly describe the different capturing procedures employed in the VPilot scripts used to

generate the synthetic data sets.

84

6.6 Models and Training setup

DGTA-Cattle DGTA-SeaDronesSee DGTA-VisDrone

GPS ×103 [0,17]× [13,22] [−28,−18]× [−25,−13] [−12,14]× [−22,13]

Spawn 4×cow@2s 4×ppl@2s, 4×boat@2 3×bike@8, 1×motor@8

Altitude 10-80m 0-80m 0-40m

Cam Pitch 20-90° 20-90° 20-90°

Spawn y 50-250m 50-250m 50-150m

Spawn x −160-160m −160-160m 50-150m

Table 6.2: Data set generation settings. ºSpawnº refers to spawning in addition to the

in-game spawning.

For the generation of all synthetic data sets, the game world of GTAV is systematically

traversed. New images are captured with one frame per second to obtain mainly distinct

images. We export the 4k images but discard the segmentation and depth maps to focus

on pure object detection. Along with every frame, we export the corresponding ground

truth bounding boxes and the meta labels, i.e. altitude, principal axes (yaw, pitch, roll of

camera rotation), time of the day and weather state.

For the random traversals of the game world, the camera height and angles were varied.

Additional in-game objects were spawned (e.g. vehicles, pedestrians). See Table 6.2 for

details. For example, in Cattle, every two seconds, four cows are spawned 50-250m in

front of the camera with a left-right offset of −160-160m. The objects were spawned in

the in-game traffic and pathfinding and were despawned after 200 seconds. Additionally,

a new random travel location in this area was chosen every 60 seconds to prevent the

in-game navigation from getting stuck. Finally, see Figure 6.2 for an overview of the

map and example in-game assets that were used for the creation of these datasets.

Concise descriptions of the data sets are given in Tables 6.1 and 6.4.

6.6 Models and Training setup

As object detection models, we take two one-stage real-time detectors, EfficientDet-D0

(E.-D0) (Tan et al. (2020a)) and Yolov5 (Redmon et al. (2016); Redmon and Farhadi

(2017, 2018); Bochkovskiy et al. (2020); Jocher et al. (2020)), both being on the forefront

of real-time object detectors as measured by their performances on the COCO test set

(Lin et al. (2014); PapersWithCode (2022b)). In particular, EfficientDet-D0 is the state-

of-the-art model for real-time detectors on the large-scale UAVDT traffic surveillance

data set (Du et al. (2018)). For that, we use the implementation from GmbH (2020) with

an image size of 2176px width and anchor scales of (0.3 0.5 0.7).

Yolov5 (Jocher et al. (2020)) is a state of the art implementation of the Yolo object

detection model implemented with multiple improvements to the Yolo framework that

85

Chapter 6 Obtaining Efficient Synthetic Data

Figure 6.3: Example predictions on VisDrone of a YOLO model purely trained on syn-

thetic DGTA-VisDrone (pretrained on COCO).

have been found in recent years. In this work, we used the unmodified YOLOv5m6

implementation of Yolov5 in release v5.0 (Jocher et al. (2020)) with an image size of

1280x1280px and a batchsize of 48. Unless otherwise specified, we used the provided

weights pre-trained on COCO (Lin et al. (2014)).

Furthermore, as a two-stage detector we take the best performing single-model (no

ensemble) on VisDrone from the workshop report (Zhu et al. (2018a)) (DE-FPN), i.e. a

Faster R-CNN (F.R.) with a ResNeXt-101 64-4d (Xie et al. (2017)) backbone (removing

P6), which is trained using color jitter and random image cropping. The anchor sizes and

strides are decreased to (16, 32, 64, 128, 256) and (4, 8, 16, 32, 64).

We measure the models’ performances on the popular mean average precision metric

with overlap 0.5, i.e. mAP@0.5 (Lin et al. (2014)). As we are interested in real-world

performance, we test on the test set of the real-world data set unless indicated otherwise.

6.7 Experimental Evaluation

First, we conducted different experiments to show that synthetic training data could yield

good real-world performance or improve the performance of a real-world object detec-

tor. Then we conducted further ablation studies to examine different factors that could

influence or modulate the positive effect of synthetic training data.

On a general level, we wanted to obtain actionable advice for an engineer using syn-

thetic data to train an object detector, which factors should be examined with emphasis

and which factors could be ignored. Such factors could be the graphics quality of the

simulation environment or the alignment of synthetic and real height distributions.

In the following, those experimental conditions and their results will be described. For

better clarity, we discuss the design of each ablation study and its result individually.

86

6.7 Experimental Evaluation

Data set Synthetic Real SyntheticToReal

E
.-

D
0 Cattle 29.2 78.4 85.8

SeaDronesSee 10.3 36.3 38.8

VisDrone 1.2 24.6 27.2
F
.R

. Cattle 38.8 90.5 91.5

SeaDronesSee 14.6 54.7 59.0

VisDrone 2.4 48.6 51.2

Y
O

L
O Cattle 64.2 88.8 86.9

SeaDronesSee 10.5 55.8 60.3

VisDrone 10.2 43.9 45.0

Table 6.3: Performance of object detectors for different training strategies given by

mAP@50.

6.7.1 General Benefit of Synthetic Data in UAV Object Detection

The main goal of this work is to examine the usefulness of synthetic training data to train

object detectors from scratch or improve the performance of object detectors trained with

real-world data.

From this goal, there naturally arise three conditions which we want to compare. First,

as a baseline, we observe the performance of the object detector on the real-world data

set. Second, we observe the performance of the object detector trained only on an en-

tirely synthetically generated data set. Finally, we observe the performance of an object

detector which is first pre-trained on a synthetic data set and then transfer-trained on the

real-world data set. From preliminary experiments, we found these strategies to be su-

perior to alternative strategies, such as combined training, similar to previous literature

(Varol et al. (2017)).

For all three application scenarios, the corresponding real-world training set was split

into a training, validation and test set. For fully synthetic training and synthetic pre-

training the data set was split into a training and a validation set, as no testing is con-

ducted on the synthetic data. See the sizes of the different complete sets in Table 6.4.

Table 6.3 shows that purely training on synthetic data can already provide minimal

working solutions. While all object detectors perform well on the simple data set Cattle

(29.2-64.2 mAP@50), the accuracies on VisDrone and SeaDronesSee are far lower. This

is partly due to missing classes in the corresponding synthetic data sets ((awning-)tricycle

in VisDrone and life jacket in SeaDronesSee). However, another apparent factor is the

difference in the appearance of certain classes from the synthetic to the real data set. For

example, see Figure 8.1 to compare the same classes in the synthetic and real data set.

The default appearances of classes vary in some cases significantly. This appearance gap

may be narrowed by manually editing the appearance of classes to resemble real-world

objects. Despite these challenges, synthetic pre-training with subsequent transfer training

87

Chapter 6 Obtaining Efficient Synthetic Data

Number of Images

Data Set Train Val Test Classes

VisDrone 6471 548 1610
people, bike, car, truck, van

motor, tricycle, awning-tricycle, bus

SeaDronesSee 2975 859 1796
swimmer, floater, boat

swimmer², floater², LJ

Cattle 402 134 134 Cow

DGTA-

VisDrone
40000 10000 ±

people, bike, truck

car, motor, bus, van

DGTA-Sea-

DronesSee
90000 10000 ±

swimmer,floater,boat

swimmer²,floater²

DGTA-

Cattle
40000 10000 ± Cow

Table 6.4: Number of images and classes. Note that (awning-)tricycle is abbreviated as

(a.-)tri., life jacket as LF and people as ppl.

boosts performance on VisDrone and SeaDronesSee significantly across all models. On

the SeaDronesSee evaluation benchmark (Kiefer et al. (2022)), we can even achieve

state-of-the-art performance by surpassing the best model by +5.6 mAP@50. While the

performance improvement is not as apparent on Cattle, pre-training on synthetic data

helps for EfficientDet-D0 and Faster R-CNN.

These experiments show that although synthetic data sets cannot replace correspond-

ing real-world data sets, they enhance the detection performance. Even the models from

Varga et al. (2022) can be beaten just by synthetic pre-training. See Figure 6.3 for exam-

ple predictions on VisDrone.

6.7.2 Effect of Data Set Sizes

We wanted to test the influence that the data set sizes had on the performance in this

context. The intuitive hypothesis was that we would observe a curve of diminishing

returns for larger data sets, which is typical in machine learning. We hypothesized that

we would observe such diminishing returns for the size of the real-world data set, as

well as for the size of the synthetic (pre-training) data set. Furthermore, we hypothesized

that the effect of synthetic pre-training would be more emphasized when using a smaller

real-world data set.

To conduct this ablation, we varied the size of the real-world data set and of the syn-

thetic data set for VisDrone and SeaDronesSee training.

88

6.7 Experimental Evaluation

1k 2k 4k 6471

25

30

35

40

45
m

AP
@

50
VisDrone

Synth. D.S.
40k
10k
0

1k 2k 2975

48

50

52

54

56

58

60

SeaDronesSee

Synth. D.S.
90k
50k
10k
0

Real Dataset Size

Figure 6.4: The effect of the real and synthetic data set size on the model performance

for VisDrone and SeaDronesSee. The color shading specifies the size of the synthetic

data set that was used for pre-training.

Figure 6.4 shows the effect of different data set sizes in synthetic pre-training. As

hypothesized, we observe an improved mAP@50 with an increase of the real-world data

set size, and an increase of the synthetic pre-training data set size with a diminishing

return for larger data sets. Furthermore, we observe the hypothesized interactive effect,

such that the improvement from using synthetic pre-training data is disproportionally

larger for smaller real-world data sets.

Our found effects are consistent with the numbers of those reported in Hurl et al.

(2019), that is, improvements of about +1.0 to +5.0 mAP@50 by using additional syn-

thetic training data. We note that in Hurl et al. (2019), a 3D LiDAR object detection task

was examined instead of a 2D object detection task. Compared to Hurl et al. (2019),

in our work, those improvements are not only on one class but over the whole 10 and 6

classes of VisDrone and SeaDronesSee, respectively.

6.7.3 Effect of using pre-trained weights

The use of initial weights pre-trained on large scale image data sets like ImageNet or

COCO has become a standard for many vision machine learning tasks in recent years. We

hypothesized that there could be an interaction between using such pre-trained weights

and synthetic (pre-)training. For example, such pre-trained weights could encode in-

variance to image noise, which is prominent in real world images, but may be missing

89

Chapter 6 Obtaining Efficient Synthetic Data

Random initial weights Pre-trained on COCO

Real 43.1 43.9

Synthetic 7.5 10.2

SyntheticToReal 44.7 45.0

Table 6.5: Effect of COCO pre-trained weights on performance given by mAP@50 eval-

uated on VisDrone.

in synthetically generated images. The use of pre-trained initial weights would thereby

allow a purely synthetically trained model to obtain the information it could not obtain

from the synthetic data, thereby introducing an interactive effect. If this hypothesis was

true, using pre-trained weights would improve the performance of a purely syntheti-

cally trained model disproportionally more than it improves the performance of a model

trained on real world data.

Table 6.5 shows the effect of using COCO pre-trained weights as initial weights for

the training. Due to the small effect sizes, we would argue that our results are inconclu-

sive at this time. We observe a more significant absolute improvement of the mAP@50

when using COCO pre-trained weights on pure DGTA-VisDrone training than on pure

VisDrone training, which would speak for the hypothesized interactive effect. However,

when observing the absolute obtained mAP@50 of those different conditions, this ob-

served difference in improvements would also be consistent with an effect of diminishing

returns of improvements for a larger mAP@50. This effect would be that starting from a

weaker performance baseline, the same improvement (using COCO pre-trained weights)

would yield a larger improvement than when starting from a more robust baseline.

So we conclude that there is at least no strong effect where using pre-trained weights

trained on real-world imagery would disproportionally improve the performance of syn-

thetic training. However, note that there might be other factors to consider, such as

training time and stability.

6.7.4 Effect of Good/Bad graphics settings

One of the parameters that one would intuitively look at when observing synthetic train-

ing data or when trying to improve the use of synthetic training data is the realism of this

training data. This could be framed as closing the Sim-To-Real gap as discussed above.

A similar but not fully congruent perspective on this coming from game development

is trying to improve the realism of games by improving their graphics quality. In many

cases, those improvements of graphics quality come with high computational demands

(higher polygon models, higher resolution textures, demanding physics simulations like

particle effects and lighting) and high amounts of labor, e.g. from graphics artists.

Therefore, from an engineering perspective, this raises the question, how well spent

90

6.7 Experimental Evaluation

Real Synthetic SyntheticToReal

Real data Baseline 43.9 - -

Low Quality - 8.4 45.1

High Quality - 10.2 45.0

Table 6.6: Performance between low quality and high quality in-game settings (given by

mAP@50). We compare the performance for only Real training on VisDrone against the

performance with synthetic data as DGTA-VisDrone.

this effort is to obtain the final goal of increasing the synthetically trained model’s per-

formance.

To answer this question, we conducted experiments comparing the effects of synthetic

training data obtained from GTAV either set to the highest or lowest possible graphics

settings.

Table 6.6 shows the obtained model performance using synthetic data obtained from

GTAV on the lowest and highest graphics settings, respectively. We observe that for

purely synthetic training, the model trained with higher graphics setting images outper-

forms the one trained on lower graphics quality images. This effect, however, is small.

There is no observable effect in the synthetic pre-training condition with transfer train-

ing on the real-world data set.

6.7.5 Aligning Domain Distributions

Modifying the DeepGTAV tools to extract metadata allows us to automate parts of the

data generation process by aligning the metadata distributions of the real and synthetic

data sets. Instead of laboriously setting the correct metadata settings in the synthetic data

generation process, one could fall back to the corresponding real data set to adapt the

parameters automatically. Aligning the distributions may result in higher synthetic data

quality or efficiency.

For instance, in SeaDronesSee, every image is annotated with the capture time stamp.

By bootstrap sampling from the time distribution, we sample a new data set of 100k

synthetic images with the correct time distribution. As before, we train a Yolov5 model

and test it on the SeaDronesSee test set (Synthetic Only), and we transfer-train it on

SeaDronesSee (Synthetic-To-Real).

Table 6.7 shows that aligning the time helps in synthetic only training and synthetic

pre-training by increasing the performance over the unaligned baseline by +4.1 and +0.2

mAP@50, respectively. The performance increase is mainly due to SeaDronesSee only

featuring day-time images, such that sampling synthetic night images deteriorates the

performance.

Similarly, we can also automatically adjust the camera angle. The images in the Cattle

data set have been taken from a downward-facing camera where a gimbal corrects for

91

Chapter 6 Obtaining Efficient Synthetic Data

Table 6.7: Effect of time and angle alignment on performance (given as mAP@50).

SeaDronesSee Synthetic SyntheticToReal

Only real training - 55.8

Unaligned Synthetic Pre-training 10.5 60.3

Time Aligned 14.6 60.5

Cattle

Only real training - 78.4

Unaligned Synthetic Pre-training 29.2 85.8

Angle Aligned (Subset) 36.6 85.8

UAV angular movement. We sample from DGTA-Cattle only these images that fall into

the range of these angles (with an error threshold of at most 20 degrees). This reduces the

original 40k images to only approx. 10% of the images (3,954). We train an EfficientDet-

D0 on this subset.

Interestingly, the performance of the synthetic only training improves over the more

extensive unaligned DGTA-Cattle training. This is likely due to the limited capacity

of an EfficientDet-D0 model, resulting in the model distributing its performance across

many other angular viewpoints, which are unnecessary for the performance in this use-

case. This experiment illustrates that less but more targeted data may be sufficient to

reach the same performance while reducing the need to filter the data by only aligning

the metadata distributions manually.

6.8 Limitations and Conclusions

We demonstrated that synthetic data can be leveraged for object detection on UAVs.

We can improve the performance over only real training by synthetic pre-training on

multiple application scenarios. Synthetic-only training yields satisfactory results, but

performances are not yet competitive to real training.

From our ablations, we conclude that the use of more synthetic training data improves

the performance. The use of weights pre-trained on large scale image data sets constantly

improves the performance, although we find no interactive effect with synthetic training.

The graphics quality of the simulation engine appears to be important for purely synthetic

training but not for synthetic pre-training. In general, metadata alignment is vital for the

usefulness and data efficiency of synthetic training data.

We hope that the adaptation of the DeepGTAV tools helps cast light on object detec-

tion on UAVs via synthetically generated footage. In future works, the capabilities of

the DeepGTAV framework to produce object segmentation data, LiDAR data and video

could be leveraged.

92

Chapter 7

Tackling Weakly Supervised Data

Autonomous vision aboard UAVs has grown to an important research area (Zhu et al.

(2018a); Menouar et al. (2017); Lygouras et al. (2019); Mishra et al. (2020)). Next to

traffic surveillance (Fan et al. (2020b); Du et al. (2018)) and agriculture (Tsouros et al.

(2019)), also the field of search and rescue (SaR) has been tackled (Varga et al. (2021);

Mishra et al. (2020)). However, while several works focus on path-planning and mission

implementation (Bevacqua et al. (2015); Hayat et al. (2020); Mayer et al. (2019)), few

works address the actual vision part, necessary for autonomously searching certain areas.

Finding interesting regions on the sea is a hard problem, since objects of interest are

often not known a priori or have a vast variety of different appearances which is why

supervised methods often fail in these scenarios. Even if object categories are known

beforehand, current methods focus on object detection, which is not viable for large

image resolutions and real-time (for rigor defined here to be >25FPS) performance on

embedded hardware. Both constraints occur in reliable SaR missions.

Furthermore, labeled data sets in these environments are scarce as the data acquisition

is complicated, requiring strict safety regulations for all subjects, and is expensive (Kiefer

(2022)). Instead, it is considerably easier and cheaper to obtain raw data of sea surfaces.

What is more, often a low bandwidth, possibly due to large distances or suboptimal

weather conditions, does not allow for the whole footage being transmitted to a ground

station. This becomes especially severe in maritime scenarios, where the drone is far

away from any ground station (Avalon (2022); Dortmund (2022)). While compression

can be done on-board, it is often not sufficient and furthermore results in image quality

loss across the whole image, i.e. also possibly quality loss in regions of the image that

need to be analyzed more thoroughly to exclude false positives or negatives.

Recently, special purpose video codecs that allow few regions of an image to be coded

with near constant picture quality have been proposed to tackle this problem (Steinert

and Stabernack (2022)). The high quality regions that are transmitted can subsequently

be combined with an actual classical object detection system on a ground station with

much more hardware resources.

This methodology separates the problem into two stages: generating few high-recall

regions of interest of a high dimensional image in real-time in a low resource environ-

ment and classifying these regions into known classes on a ground station with more

93

Chapter 7 Tackling Weakly Supervised Data

Figure 7.1: Future frame prediction autoencoder pipeline. The frames F1, . . . ,Fn are con-

catenated and input into the autoencoder, which learns to predict Fn+1 via F̂n+1 and the

L1 loss. The error frame (absolute difference between the two), Dn+1, is concatenated to

the last D j, . . . ,Dn. Then ,frame momentum and local noise reducer are applied until a

final grid is put on the resulting error frame to yield final regions of interests.

resources. Motivated by these observations, in this work, we formulate and formalize

the former problem and propose an autoencoder-based future frame prediction model

that generates meaningful regions of interest on sea surfaces which can run in real-time

on an embedded GPU. Owing to the nature of maritime environments, we show that

classical methods perform poorly due to dynamic backgrounds, wave movements, sun

reflections and others while modern methods are too slow. As this method is a type of

anomaly detection method, it does not require bounding box annotations. We introduce a

metric that measures the recall at a given amount of footage being transmitted and show

that this method outperforms classical methods on multiple benchmarks and metrics.

To train the proposed model, we capture over 60 minutes of 4K video footage with

several cameras depicting the sea surface from different angles and altitudes at different

days and waters. We also capture video footage of objects and manually label it.

In this chapter, we formulate a novel problem of obtaining high-recall regions of in-

terest in a high-resolution and real-time scenario and propose a future frame prediction

autoencoder to detect these regions in real-time on an embedded GPU. To this end, we

describe a new benchmark, consisting of 60 minutes of video footage of the sea surface

in various conditions as training set for our method. This so-called Maritime Anomaly

Detection Benchmark is hosted on the web server. Finally, we analyze the proposed

method and compare it to traditional and modern methods on two large-scale public data

sets.

94

7.1 Related Work: Maritime Computer Vision

7.1 Related Work: Maritime Computer Vision

Airborne maritime data sets are scarce and mostly focus on synthetic aperture radar satel-

lite imagery and ships (Airbus (2022); Chen et al. (2020); Wang et al. (2019b); Zhang

et al. (2021b)). Marques et al. (2015); Varga et al. (2021); Lygouras et al. (2019) pro-

vide UAV-based maritime detection data sets. While the data set in Lygouras et al. (2019)

features only stock photos scraped from the internet, the Seagull data set (Marques et al.

(2015)) and SeaDronesSee (Varga et al. (2021)) provide video material with objects of

interest. Of these data sets, only Seagull provides frames that do not contain objects.

However, the videos suffer from heavy lens distortion and distortion caused by a rolling

shutter. We collect 60 minutes of video footage (>100000 frames) depicting the sea sur-

face in various altitudes at different angles and days with multiple cameras. We weakly

annotate the footage such that no objects of interest are visible in any of the frames.

7.2 Related Work: UAV-based Detection

Rudimentary vision methods in SaR scenarios aboard a UAV are done in Scherer et al.

(2015), using color, text or shape cues using OpenCV (Bradski (2000)) to detect objects

of interest. Similarly, Rudol and Doherty (2008) use Haar features to detect objects of in-

terest in SaR missions. Among the learning-based methods, Ferreira and Silveira (2020)

consider the application of ship detection, classifying images into positives (containing

ships) and negatives. While it is also an unsupervised method, they ignore the localiza-

tion. Lygouras et al. (2019) describe a complete SaR system from path planning over

detection to action. However, their detection system is a basic YOLO variant unsuitable

for large resolutions and real-time. Furthermore, it is restricted to the objects it is trained

on. Generally, all literature regarding supervised UAV object detection can be considered

related (Fan et al. (2020b); Zhu et al. (2018a); Du et al. (2018); Varga et al. (2021); Xia

et al. (2018); Kiefer et al. (2021); Price et al. (2018)), albeit not viable, since they do not

work in real-time large-resolution scenarios on embedded hardware.

7.3 Related Work: Region proposal networks

Selective search (Uijlings et al. (2013); Van de Sande et al. (2011)) generates many

thousand little informative boxes for use of an object detector at a later stage, which

makes it inapplicable in embedded environments. Common region proposal networks

(Zhong et al. (2019)) are used in two-stage object detectors, such as Faster R-CNN (Ren

et al. (2015)), but require bounding box supervision to be learned. Methods for weakly

supervised object detection often employ region proposal networks (Tang et al. (2018)),

but require image-level annotations.

Background subtraction methods (Benezeth et al. (2010)) are used to separate the

95

Chapter 7 Tackling Weakly Supervised Data

background from the foreground, which is defined by the scene captured by a static

camera. Most of the methods are not suitable for dynamically changing scenes caused

by camera and background movement. Furthermore, these methods do not focus on

obtaining meaningful bounding box locations but only on the obtained segmentations.

(Video) Anomaly detection methods (Deecke et al. (2018); Sultani et al. (2018); Nguyen

and Meunier (2019)) learn on normal samples and detect anything previously not seen as

anomalies. In images, this is often done for industrial parts (Staar et al. (2019); Roth et al.

(2021)), and in static videos for surveillance in traffic and crowded scenes (Saligrama and

Chen (2012); Zhao et al. (2017); Zhou et al. (2019a); Liu et al. (2018)). Earlier meth-

ods only focus on classifying images or frames (Ferreira and Silveira (2020); Liu et al.

(2018)), while newer methods also consider localizing anomalies (Li et al. (2021); Szy-

manowicz et al. (2022a)). However, these methods either ignore the temporal dimension

or are not suitable for real-time use. Furthermore, video anomaly methods are designed

for static scenes. Our work focuses on dynamic scenes and requires models running in

real-time on embedded hardware. Furthermore, the focus is on generating high recall

meaningful bounding box regions that potentially contain objects of interest.

7.4 Autoencoder for Video Anomaly Detection

We are given a high resolution (e.g. 4K) video stream depicting the sea surface. Fur-

thermore, we have an embedded GPU (e.g. Nvidia Xavier AGX). The task is to select

regions of interest in every frame which are to be transmitted down (e.g. via a streaming

FPGA (Steinert and Stabernack (2022))). Each region is defined via four bounding box

locations, describing the corners of the region in pixels (similar to classical object detec-

tion). Depending on the exact use case, the remaining regions are either also transmitted

with lower quality or completely omitted.

We propose an autoencoder-based future frame prediction architecture to detect anoma-

lies (See Fig. 7.1). We train a shallow autoencoder on sequences of normal images

F1, . . . ,Fn depicting the sea surface such that the model learns to predict the next normal

frame. Subsequently, the predicted frame F̂n+1 is subtracted from the original next frame

Fn+1. The hypothesis is that the autoencoder fails to reconstruct objects that differ from

the sea surface in their colors, shapes and textures. Furthermore, by incorporating the

last few frames, the autoencoder learns temporal correlations of water movements.

Common future frame prediction networks employ large networks, such as UNet (Liu

et al. (2018); Szymanowicz et al. (2022b)) or even larger models (Yu et al. (2020)).

They operate on small video resolutions and are not suitable for employment on em-

bedded hardware. Applying models in real-time on embedded hardware and for high

resolutions requires us to fall back to shallow autoencoder architectures. We follow the

basic principle of an encoder-decoder architecture, but only employ small channel di-

mensions for the filters as these make up for a large computational overhead. We refrain

from using depth-wise separable convolutions (Howard et al. (2017)) or more advanced

96

7.4 Autoencoder for Video Anomaly Detection

(a) Raw (b) no momentum (c) momentum

(d) Raw cut-out (e) no LNR (f) LNR

Figure 7.2: Qualitative errors on Seagull (top) and SeaDronesSee (bottom). Note that the

random noise at the bottom left of (c) almost vanished.

methods (Lebedev et al. (2014)), since they are not optimized for embedded GPUs. For

the first layer, we concatenate the past n frames along the channel dimension and apply

a regular 2D convolution with filter dimension n×4, kernel size 3×3 and stride 2. We

perform the same convolution six times, while halving the channel dimension each time

due to performance. The decoder performs the symmetric operations via deconvolutions.

We hypothesize that reconstruction errors due to wave patterns and sun reflections

are more temporally unstable than actual anomalies. Thus, we propose to include an

error frame momentum term, which averages over the past n error frames D1, ...,Dn.

This assumes that the camera movement is not too quick as then, the actual anomalies

also move quickly in the image plane, eliminating the error frame momentum effect.

However, for frame rates of roughly 30, this is negligible. Figure 7.2 (c) and Section 7.6

show the advantage of using this component.

To counteract the local noise induced by an imperfect reconstruction coming from

sun reflections and wave patterns, we introduce a local noise remover (LNR). Channel-

wise, we multiply each pixel of the error frame by its immediate vertical and horizontal

surrounding neighbour. We repeat this procedure three times. This ensures that only

regions of larger error areas are detected as anomalies (as opposed to noisy areas) in

subsequent steps. This can be seen as a morphological operation, however also different,

since we do not use a structuring element (Zhuang and Haralick (1986)). See how the

waves are eliminated in Fig. 7.2 (f), while the boat is amplified.

Importantly, this method is sensitive to regions above the horizon. Therefore, we

leverage metadata from the UAV’s on-board sensors to determine the horizon line in

open water. This allows us to ignore this region in the autoencoder training and inference

phase which, in turn, results in more robust anomaly detection performance and faster

97

Chapter 7 Tackling Weakly Supervised Data

Figure 7.3: Illustration of the horizon cutter (top) and predictions (bottom). The curvature

is just for visualization purpose to show the tangentiality (ignored for computation).

inference times. Notably, this computation has virtually no overhead. The horizon line

can be computed using the UAV’s height, camera gimbal pitch and roll angle, and the

camera intrinsics. Ignoring the effect of atmospheric refraction, we can estimate the

distance to the horizon as a function of the height of the observer as d = 3.57h1/2. This

approximation is fairly accurate for heights that are typical for SaR-UAVs (far below

1000m) (Bohren and Fraser (1986)). We furthermore ignore the curvature of the earth,

which is also negligible for these heights. We compute the angle α to the horizon via

α = arcsin(h/d). Using the focal length f (in pixels) and the camera gimbal pitch β , we

can then compute the camera perspective projection on the image plane, which yields the

height offset o in pixels to the horizontal center line of the image plane as o = tan(|α−
β |) · f · sgn(α − β). Naturally, we truncate o to be within the range of the number of

horizontal pixels. To account for the roll angle γ of the UAV (or camera gimbal), we can

simply add a roll angle induced offset at the left and subtract at the right of the image

given as or = tan(γ) · pw/2, where pw is the pixel width of the video. While the horizontal

pixel location o is an approximation, it is quite robust to errors in the altitude h. Since

an exact error analysis is not in the scope of this work, we just report values for altitudes

that are common in the data set SeaDronesSee. For β = 0−20◦,h < 300m it holds that

10m in altitude error results in approx. 1px offset change in a 4K image. However, o is

very sensitive to errors in the gimbal angle β . For example, for h = 130m,β = 16◦, 1◦ in

angle error results in approx. 40px offset change. Therefore, it is essential to have a well-

calibrated gimbal and UAV IMU. The latter can be accurate up to 0.1◦ when configured

98

7.5 Data Set Generation and Webserver

Errors of γ o o/2160

horizon visible (5%) 0.8◦ 71px 3.3%

horizon not visible (95%) ± 2px 0.1%

total ± 5.45px 0.3%

Table 7.1: Error to the ground truth horizon as measured by roll angle γ and pixel offset

o in a 4K image.

properly (Suzuki et al. (2016)). See Figure 7.3 for an illustration. Empirically, we show

that the horizon cutter performs well despite the occurrence of nearby land. We manually

annotate the horizon line for a subset of the SeaDronesSee-Tracking validation set and

compute the pixel offset error and the roll angle γ error. Table 7.1 shows that despite

some land mass blocking the horizon (also see Fig. 7.3), the error is negligible.

Lastly, we apply a grid of size m1×m2 on the error frame and for every grid window

we average over the error frame pixels contained in it. We select the maximum number

of boxes outputted given a certain bandwidth, which we simply break down in p% of the

area of the whole frame.

7.5 Data Set Generation and Webserver

To test our approach, we gathered 60 minutes of 4K video footage on open water at

three different days with three different cameras. We made sure to include altitudes and

viewing angles from 5−120m and 0−90◦. We manually filtered out the sequences that

contained objects considered anomalous, such as humans, boats, life jackets and buoys.

Each frame is annotated with its corresponding metadata information, such as altitude,

all angles of the UAV principal axes, camera gimbal pitch angle, time, GPS and others.

This data, called OpenWater, comes along with over 20 minutes of bounding box an-

notated footage in open water where we annotated the same classes as in SeaDronesSee,

serving as anomalies. Everything but the test annotations will be uploaded to avoid re-

searchers from overfitting. Researchers may upload their predictions to the web server,

which will be evaluated and published on the server side for fair comparisons.

For our experiments, we choose a grid size of 48×27, predict the fifth frame from the

past four, and use an error frame momentum of two. Influences of the components are

discussed in further sections.

As we operate on high resolution videos and in real-time scenarios, we compare to

three methods commonly used for background subtraction and anomaly detection: Mean

filter (MF) (Zhang and Ding (2012)), frame differencing (FD) (Mohamed et al. (2010))

and Gaussian mixture model (GMM) (Zivkovic (2004)). For GMM we use three Gaus-

sians. We extend every method with the grid component and employ the horizon cutter.

99

Chapter 7 Tackling Weakly Supervised Data

We evaluate on the following datasets (see also Fig. 7.4):

• We use our Open Water data set as the training set for SeaDronesSee as the latter

does not consist of frames without objects. It consists of > 100000 frames of open

water without any objects,captured on multiple days with three different 4K video

cameras. Analogously to SeaDronesSee, it comes with precise meta annotations

for all frames.

• We test on SeaDronesSee-MOT. It depicts humans, boats and other objects in open

water (incl. bboxes) serving as our anomalies.

• The Seagull data set features video data showing boats, ships, life rafts and other

objects from a fixed wing UAV. It also features video clips containing no objects.

The latter serve as our training set for the Seagull test set. The videos are of Full

HD resolution and have a heavy lens distortion and distortion caused by a rolling

shutter. See Figure 7.4 for examples.

We measure the recall given a certain bandwidth (percentage of the video frame trans-

mitted averaged over all frames). Therefore, we consider as evaluation metric Rp%,

which is the recall over all frames, given that at most p% of the image may be trans-

mitted. Each region to be transmitted must be encoded by a rectangular bounding box.

We consider an object to be correctly detected if there is an overlap with the predicted

region of at least 50%, which is common for aerial object detection (Zhu et al. (2018b);

Varga et al. (2021); Du et al. (2018)). Furthermore, we report the average recall (AR)

averaged over 10 equidistant percentages p from p = 0.05 to p = 0.95, denoted AR.

7.5.1 Anomaly Detection Performance

7.6 Experiments

Fig. 7.5 shows AR and the recall values for all the methods for the 10 transmission per-

centages p, while we interpolate in between. The autoencoder consistently outperforms

the baselines for all values of p and for AR. However, the difference is especially visible

for low values of p, which is the primary use case in this application scenario (Stein-

ert and Stabernack (2022)). For example, for p = 5% the autoencoder achieves 70.1%

and 40.0% recall for SeaDronesSee and Seagull, respectively, which is over 15 resp. 32

percent points more than the best baseline. Subsequently, we focus on the case of low p.

We report the average reconstruction errors errb (average L1 reconstruction error within

ground truth boxes), errr (average L1 reconstruction error rest) and their differences ∆r

in Table 7.2. The autoencoder yields higher ∆r, which shows its ability to discriminate

better between normal and anomalous regions. Notably, the values for SeaDronesSee are

generally much higher than for Seagull due to Seagull’s lower image quality and higher

blurriness (see Figure 7.4).

100

7.6 Experiments

Im
ag

e
M

F
b
o
x

F
D

b
o
x

G
M

M
b
o
x

A
u
to

er
r

A
u
to

b
o
x

R
ec

o
n

Figure 7.4: Qualitative results for mean filter (MF), frame differencing (FD), Gaussian

mixture model (GMM) and the autoencoder (Auto) on SeaDronesSee (left two columns)

and Seagull (right two columns). For Auto, we plot the error heat map and the recon-

structed image (Recon).

101

Chapter 7 Tackling Weakly Supervised Data

Figure 7.5: Area recall curves for SeaDronesSee and Seagull.

SeaDronesSee Seagull

errb errr ∆r errb errr ∆r

MF 78.3 0.3 78.0 0.37 0.3 0.07

FD 34.7 2.5 32.2 1.7 0.3 1.4

GMM 4.3 0.2 4.1 0.3 0.2 0.1

Auto 79.5 0.2 79.3 2.2 0.2 2.0

Table 7.2: Average L1 recon. error within boxes and outside for p = 5%.

Future Frames ± ✓ ✓ ✓

Local Noise Remover ± ± ✓ ✓

Frame Momentum ± ± ± ✓

Rp=5% 60.3 66.2 68.6 70.1

Table 7.3: Autoencoder ablation experiment on SeaDronesSee.

102

7.6 Experiments

Table 7.3 analyzes the influence of different components. When using future frames,

we take the past four frames to predict the fifth. For frame momentum, we use the past

two frames. It shows that using future frames yields the greatest benefits. All components

improve the performance.

We analyze the influence of the horizon cutter on the performance of the autoencoder.

As only SeaDronesSee incorporates metadata, we perform experiments on this data set.

Only 5% of all frames actually show the horizon. Therefore, we restrict the influence

of the horizon cutter to only that portion, as it does not have any on the other part.

Remarkably, the autoencoder with horizon cutter achieves 86.3% recall whereas it only

achieves 47.0% without. As the autoencoder only is trained on frames of open water, the

different image statistics of the sky skew the image reconstruction error on these parts

which expectedly results in a loss in performance. Both experiments used p = 5%.

So far, we considered the case where we only have access to normal frames as training

data. However, often we are given some labeled training data. Thus, we propose to

use an adversarial training objective where we maximize the prediction penalty of the

autoencoder within ground truth boxes and minimize it everywhere else. That way, the

model is punished for learning to reconstruct actual anomalies. We evaluate this strategy

by comparing it to its naive counterpart, i.e. not backpropagating the loss within boxes.

We compare these two approaches by training on the SeaDronesSee tracking train set

and testing on the SeaDronesSee tracking test set. For p= 5%,the ignoring yields a recall

of 65.7% in contrast to 67.2% with adversarial loss.

7.6.1 Obtaining Fewer Bounding Boxes

Aside from the restriction of choosing at most p% of the frames, which may be imposed

due to a potentially low bandwidth, another restriction may come from common video

codecs’ inability to process a large number of regions of interest. Therefore, another type

of restriction on a region proposer may be the number of regions it yields.

Thus, we propose to merge regions of interest touching each other at corners using

Suzuki’s border following method (Suzuki et al. (1985)). As this may yield a larger than

allowed area to be transmitted, each resulting box is ranked based on its reconstruction

error. This leads to fewer and larger bounding boxes at the expense of a lower recall.

Table 7.4 shows the number of boxes and the recall for the standard and the merging

method for p = 5%. Note that without merging we have the same number of bounding

boxes for all the methods since we allow 5% of the area of the image to be transmitted.

We can substantially decrease the number of bounding boxes at the cost of a slightly

lower recall. We note that this also highly depends on the anomaly distribution since for

clustered anomalies it is easier to merge bounding boxes (see Fig. 7.4).

103

Chapter 7 Tackling Weakly Supervised Data

Not Merging Merging

Method #B Rp=5% #B Rp=5%

MF Zhang and Ding (2012) 65 54.8 7 49.6

FD Mohamed et al. (2010) 65 55.0 8 53.2

GMM Zivkovic (2004) 65 0.2 5 0.1

Auto 65 70.1 6 64.3

Table 7.4: Fewer bounding boxes via reduced recall on SeaDronesSee.

MF FD GMM U-NET CFLOW Auto

1K 64 70 35 8 12 48

4K 50 62 17 1 3 27

Table 7.5: Running times in FPS. Bold values depict real-time methods.

7.6.2 Running Times

Finally, we consider the running times of the individual methods on embedded hardware.

We deploy them on an NVIDIA Xavier (Nvidia (2022b)) mounted on a DJI Matrice 100.

We transform all methods into optimized engines using TensorRT (Vanholder (2016))

and set the Xavier to MAX-N mode and report the running times averaged over 1000

frames. Table 7.5 shows the speed comparison between traditional and modern (U-NET

(Liu et al. (2018)), CFLOW (Gudovskiy et al. (2022))) methods. The much simpler

baselines run in real-time, while the modern methods are slow.

For completeness, we replaced our architecture with the popular UNet architecture

and trained it on SeaDronesSee using halved resolution and filter dimensions (more did

not fit into a 3090Ti w/ 24GB). Interestingly, the performance trailed the performance of

our method (78.1 AR). This led us to the conjecture that the high resolution is crucial in

this application, which makes sense if we consider that many objects are of ≈ 20px size.

7.7 Conclusion and Outlook

We formulated the novel problem in maritime SaR of finding relevant regions of interest

in a low-resource real-time and high-resolution scenario. We show that an autoencoder-

based future frame prediction model is a promising direction even in a resource con-

strained setting. We make the benchmark publicly available and hope that the field of

maritime SaR will be advanced by means of fast neural networks in the future.

104

Chapter 8

Building Memory Maps

When we make predictions about the presence and location of objects, we have an in-

ternal understanding of our surrounding world: implicitly, we know where we are in

relation to the object and we know about the topology of a given scene. This internal

understanding of the surrounding geometry allows us to reason robustly about the exis-

tence and location of objects. Furthermore, while we make detection errors when shown

ambiguous static scenes, over time, we are able to strengthen our belief about our predic-

tions. This is due to slight changes in appearance caused by different view points, slight

movement of objects or just by integrating our predictions over a certain period of time.

We argue that this awareness of our surrounding is particularly important in aerial

scenarios, where we need to reason about our environment in the presence of many un-

certainties, caused by the smallness of objects. Motivated and inspired by this human-

based analogy, in this work, we aim to improve several computer vision tasks for object

detection and tracking on UAVs.

Conventional techniques for object detection and tracking from UAV perspectives ig-

nore the intrinsic geometry and topology present in UAV-generated imagery, frequently

relying on off-the-shelf methods designed for COCO-like scenarios or with slight modi-

fications, see e.g. Mittal et al. (2020). This makes it difficult for these methods to aggre-

gate uncertain predictions over time, since movements in image space cannot correctly

be tracked and, hence, features are hard to be associated temporally.

We argue that this shortcoming can easily be mitigated by leveraging freely available

sensors onboard the UAV. GPS alongside compass and IMU measurements allow us to

reason about our and the objects’ locations in 3D coordinates. In turn, this allows us to

create a temporal memory map of previous predictions, so that we can aggregate infor-

mation over time in a geometrically sensible way, resulting in more robust predictions.

In this chapter, we show how correctly considering the 3D geometry allows us to

propose a temporal memory map that results in more robust predictions. In particular,

we derive mathematical formulas detailing the 3D geometry around a UAV. Then, we

propose a memory map to robustify several temporal computer vision tasks. Lastly, We

show in multiple experiments on diverse benchmarks the utility of our method.

105

Chapter 8 Building Memory Maps

8.1 Related Work

Although video object detection (VOD) on UAVs has become more relevant, with many

applications emerging and many network architectures becoming fast enough to deploy

on embedded devices, there is still no consensus on which VOD approach seems to be

the most promising. Broadly speaking, there are optical flow-based networks, memory

networks and tracking-based networks (Wu et al. (2021)). While memory networks, such

as STDnet-ST (Bosquet et al. (2021)), achieve high accuracies, their heavy architectures

prohibit their deployment on embedded devices. Optical flow-based networks are faster,

but their benefit over single-frame object detectors is limited (Corsel et al. (2023)). Most

tracking-based networks first do single-frame object detection and use the association for

the detection reciprocally (Luo et al. (2019)). In fact, the best two VOD models of the

last VisDrone-VID challenge were single-frame methods, entirely ignoring the temporal

domain (Zhu et al. (2019)).

Furthermore, all common video object detectors on UAVs ignore the underlying 3D

geometry of the scene and only operate in image space (Wu et al. (2021)). While there

is much research focusing on geolocation, it is only focused on obtaining world coordi-

nates of objects for downstream tasks, such as following a target (Zhao et al. (2019a)).

Similarly, occupancy networks and other mapping approaches aim at obtaining a map

for mapping or scene understanding (Wei et al. (2022)).

As opposed to these works, we aim to leverage metadata to build a memory map in

GPS space that improves the video object detection performance. Since we only rely on

freely available metadata onboard the UAV, this approach is viable for small UAVs with a

standard RGB camera in low-cost settings (compare to active geolocation via laser (Yang

et al. (2019b))).

8.2 Deriving Formulas for 3D Geometry

Figure 8.1 illustrates that we would like to know the GPS position of the swimmer as

indicated by the orange cross. How do we obtain that? First, we discuss how to obtain

relative coordinates to the UAV, then how to use these to obtain actual world coordinates

via passive geolocation.

8.2.1 Relative Coordinates

We consider a mathematical perspective projection camera model since this resembles

the common use-case for cameras on UAVs. We consider our camera to have a focal

length f given in pixels. For simplicity, we assume our image to be of 4K (3840x2160)

resolution. Other resolutions follow an analogous derivation. Our camera is looking

down at an angle of β , which is the variable gimbal angle. The gimbal also balances a

potential UAV roll angle, so that we assume there to be a zero camera roll angle.

106

8.2 Deriving Formulas for 3D Geometry

Figure 8.1: Top left: Illustration of predictions and the corresponding 3D geometry/-

topology. We aggregate information over time, taking the correct 3D geometry into

account. Top right: Here, we have that h = 20m and β = 15◦ resulting in y = 110m

and x = 25m. This means, that the swimmer is 110m in front and 25m to the right of the

UAV as measured on the ground. Note that we also estimate the horizon line as indicated

by the blue line. Bottom: Illustration of variables and formulas to estimate the vertical

distance y (red lines) and the horizontal distance x (yellow lines, illustrated on bottom

left) from the UAV to the swimmer (orange cross).

First, we estimate the on-ground distance from the UAV to the red line, which we

denote as y (see Figure 8.1). We assume the ground to be flat, i.e. we ignore elevation

change and the curvature of the earth. The latter is a reasonable assumption for heights

that are typical for UAV missions (Bohren and Fraser (1986)), while the first may make

a difference in very dynamic terrains.

Using the focal length f and the y-axis pixel position offset v from the horizontal

center pixel line of the image, we compute y by computing the angle α via

α = arctan

(

v

f

)

. (8.1)

This allows us to compute y via

y = tan(90◦− (β −α))h. (8.2)

Having the vertical ground-distance to the object of interest, we compute the hor-

izontal ground-distance x by looking from the top as indicated on the bottom left of

Figure 8.1. For that, we need the variables d and w, which both are easily computed via

Pythagoras’ theorem, which then yield x:

107

Chapter 8 Building Memory Maps

d =
√

h2 + y2, w =
√

f 2 + v2, x =
u

w
d. (8.3)

For simplicity, we ignored the sign of x, which indicated whether we are on the left

or on the right of the vertical center line. Naturally, in the actual implementation, we

incorporate that. Likewise for the special cases when an object of interest is behind the

UAV, which happens for gimbal angles close to 90◦.

Furthermore, we compute the horizon line in image space as outlined in the previous

chapter.

8.2.2 Absolute Coordinates

Using the relative coordinates of an object (x- and y- ground-distances to UAV), we

compute its GPS coordinates based on the UAV’s GPS coordinates as follows. Given the

camera heading angle θ , we compute the rotation matrix and rotate the relative coordi-

nates of an object to obtain

xr

yr

1

=

cos(θ) sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

x

y

1

 . (8.4)

Finally, we map the relative coordinates to GPS coordinates via

laob ject = la+
yr

r

180

π
, (8.5)

loob ject = lo+
xr

r

180

π

1

cos(lat π/180)
. (8.6)

We note that we compute the earth radius based on the latitude to account for the

slight ellipsoid nature of the earth. Lastly, note that we can reverse the computation to

map from 3D to 2D, i.e. the image space.

8.3 Method: Temporal Memory

Classical grid maps in robotics, such as occupancy grid maps, divide the environment

into single grid cells and estimate the occupancy probability for each cell (Nuss et al.

(2018)). We also aim to build temporary memory maps but in the context of modeling

dynamic objects of interest. While there are several works extending occupancy grid

maps to account for dynamic objects, e.g. Chung and Huang (2010), our focus is on

leveraging maps to improve the downstream performance of computer vision detection

and tracking algorithms over time. Hence, we propose a simple class of what we denote

temporal memory maps.

108

8.3 Method: Temporal Memory

Figure 8.2: Distance (x-axis) to size (y-axis) relation for all swimmers in SeaDronesSee

object detection train set (orange dots). The blue area denotes the accepted area of sizes.

8.3.1 Map Representation

We consider a UAV-centric map with a fixed size context window, i.e., given the latitude

lat and longitude lot of the UAV at discrete time step t, the memory map is defined to be

Mt =

{(

x

y

)∣

∣

∣

∣

x ∈ {lat−
c
2
+ j

n
| j ∈ 0, ...,n(lat +

c
2
)}

y ∈ {lot−
c
2
+ j

n
| j ∈ 0, ...,n(lot +

c
2
)}

}

, (8.7)

which denotes a quadratic, north-oriented map around lat and lot of edge size c with

n2 equidistantly spaced elements. Note that c and n should be problem-dependent rea-

sonable quantities. This treatment makes sure that the surrounding environment of the

UAV can be considered at all times. Note that c should be large enough to account for

the relevant field of view of the UAV and n should be large enough to have sufficient

resolution. Furthermore, the map will forget information that is outside of the context

window, which needs to be considered in downstream applications.

From here, the exact procedure of how to update and leverage the map differs between

the computer vision tasks. Broadly speaking, all methods define a memory map on Mt ,

indicating likelihoods of object locations.

8.3.2 Video Object Detection

After analyzing single-image object detectors, we found that most trained object de-

tectors can detect almost all objects before the non-maximum suppression (NMS) stage,

which in our case is doing both, removing duplicate boxes and low-confidence ones. Per-

haps unsurprisingly, this is due to object detectors distributing many anchors across the

image, from which potential objects are regressed. However, detections tend to cluster

around actual objects, thereby achieving theoretical recall values of close to one.

An immediate observation yields that we can filter out predictions based on their sizes.

Common object detectors employ multiple stages, responsible for multiple scales. Often,

the detectors output predictions, whose sizes are far off from any reasonable quantities.

By looking at the distance d and the class indicator of any predicted object, we establish

109

Chapter 8 Building Memory Maps

Figure 8.3: Left: Blue boxes are true positive detections, the red box is a false positive

swimmer detection that was successfully filtered out by analyzing the distance-size re-

lation. Right: Before NMS, there are many low-confidence detections, but they cluster

around actual objects. Ignoring the confidence, these detections would yield a recall

value of one. For visualization, only one-colored boxes.

Model name #B Rem.FP Rem.TP %

Maritime-VSA (Kiefer et al. (2023)) 674K 8,087 24 1.2

DetectoRS (Kiefer et al. (2023)) 838K 6,705 67 0.8

YOLOv7-Sea (Kiefer et al. (2023)) 378K 4,926 54 1.3

Table 8.1: Numbers of removed (Rem.) boxes (B) for best three models trained and

tested on SeaDronesSee Object Detection v2.

a distance-to-size (size measured by diameter of the box) relation and analyze it on the

SeaDronesSee object detection train set (see Figure 8.3). For each class separately, we

perform a Gaussian process regression on these data points. This yields a mean function

m(x) and a covariance function cov(x). We scale the covariance function by a factor

dependent on the distance from the maximal to the minimal bounding box size in a small

interval around x. Finally, we check whether a new prediction is inside the resulting

accepted area, and if not, we discard that prediction (see Figure 8.2). Applying this

procedure on the three best models of the SeaDronesSee Object Detection v2 challenge,

Table 8.1 shows that we can already remove a small amount of FPs.

Nevertheless, there needs to be a suppression stage because the high recall still comes

at the cost of many false positive bounding boxes. We argue that robust detection can

be achieved by temporally and geometrically sensible aggregation of many of the low-

confidence detections that cluster around actual objects. Since we do this aggregation

in actual GPS space, we can cumulate likelihoods from different viewpoints, hence this

treatment is theoretically invariant to camera movements, which often cause traditional

methods, tracking features across frames, to fail (e.g. compare to Chapter 3).

To provide evidence for the initial claim about the high recall before NMS, we train a

110

8.3 Method: Temporal Memory

Faster R-CNN ResNet-18 and a YOLOv7 (configs from Kiefer et al. (2023)) on SeaD-

ronesSee v2 (Kiefer et al. (2023)). For evaluation, we remove the NMS stage and obtain

recall values of 97.4 % and 98.8%, resp. Compare that to the recall after NMS stage:

86.4% resp. 87.6%. See also Figure 8.3 for a sample image showing pre-NMS detec-

tions.

This leads us to hypothesize that a large part of missing detections can be obtained (and

also false detections can be suppressed) if the confidence scores are modified such that

low-confidence detections in GPS areas, where there have been detections for several

consecutive time steps, are boosted, and, simultaneously, (semi-)confident false positive

detections are suppressed if they only appear in certain frames (randomly).

Memory Map Construction:

Therefore, we propose to map all detections before NMS to GPS space as follows.

For every box detection bi = [xi
1,x

i
2,y

i
1,y

i
2], i = 1, . . . ,m, we take its bounding box cen-

ter [(xi
2 + xi

1)/2,(yi
2 + yi

1)/2] and compute its GPS coordinates gbi = [labi , lobi] via the

formulas in Section 8.2. We compute the closest grid window to gbi via

wbi = argmin
m∈Mt

||gbi−m||. (8.8)

Ideally, this is the actual GPS position of that prediction. However, to account for

imprecision in the sensor data and deviations from taking the center of the bounding box

(which may not be the GPS center of the object), we assign weight to the neighbouring

space as well, albeit less, since wbi is our best single-point prediction1. Hence, we con-

struct a memory map likelihood over Mt as follows: We add a truncated Gaussian density

with radius r at wbi , i.e.,

p̃t(x)← p̃t(x)+ se−x2

for x ∈ [wbi− r,wbi + r]⊂Mt , (8.9)

where we slightly abuse the notation by mixing scalars and vectors (computation to be

understood component-wise). Note that we hid the other parameters (constants and vari-

ance) in the scaling factor s, which we will additionally make dependent on the confi-

dences ci belonging to bi.

After every time step, we truncate p̃, such that the memory map values are ≤ 1 at all

times:

pt(x) = min(p̃t(x),1). (8.10)

Furthermore, we introduce a forgetting factor φ , by which the memory map pt is rescaled

after each update step so that the memory map will not be overloaded over time.:

pt(x)← φ pt(x). (8.11)

1Naively applying this method on all boxes before filtering of incorrectly sized boxes leads to too large

or small bounding boxes becoming boosted.

111

Chapter 8 Building Memory Maps

Note that we explicitely did not model pt as a probability distribution over Mt as this

would introduce a competition of weights among the objects leading to deteriorated re-

sults when the number of objects and their prediction certainty vary (similar to a discrete

Bayes filter (Fox et al. (2003)), although here, we do not have a control update).

Adjusting the Detector Confidences According to pt:

At time t, each bounding box bi has a confidence ci ∈ [0,1], which we will update

based on pt−1 via

ĉi = ci + pt−1(w
bi). (8.12)

Note that we do not update the map based on the updated confidence ĉi but on the original

ci. Lastly, note that we perform this procedure class-wise, so we keep a map for each

class separately. After the procedure, we proceed with standard NMS.

8.3.3 Extension to Object Tracking and Reidentification

Similarly as for VOD, a temporal memory map helps in tracking scenarios. We apply the

memory map to object tracking via a simple extension.

For frame t, we use the GPS location of each tracked object in frame t−1. We take the

boosted predictions of frame t closest to the old GPS location with a confidence above

a threshold as the new location (in image and GPS space) of the object to be tracked.

We will see that this simple formulation of a tracker helps to track objects over time in

presence of camera movements, as Chapter 3 showed. Even if a fast camera movement

yielding blurry frames results in the object detector missing the object temporally - if an

object will be redetected in subsequent frames - the object can be assigned the correct ID

again.

While there is benefit in using memory maps for short-term tracking tasks, they are

especially beneficial in long-term tracking, where ground truth objects may leave the

frame entirely. The task of reidentification in classical scenarios is solved by feature-

based comparison of objects across time. In UAV-based domains, this often fails for

small objects as features look similar across different objects. However, the treatment in

GPS space allows us to remember where an object was, allowing us to reidentify it in

subsequent frames over a pre-defined time horizon.

8.3.4 Extension to Video Anomaly Detection

The goal of video anomaly detection is to output regions of the frames that are considered

anomalous, either spatially (from appearance) or temporally (unseen movements). As

discussed previously, may assume anomalies to be temporally stable, i.e. they exist over

a considerable period of time. This makes it ideal to aggregate information at certain

GPS positions over a sequence of frames. Since it is hard to explicitly define regions

that are anomalous, most methods output an anomaly heatmap, indicating areas of likely

anomalies. Therefore, we propose to map the entire image plane to GPS space and

112

8.4 Results and Analysis

aggregate anomalous regions over time in a geometrically reasonable way. We note that

this requires an efficient vectorized implementation to still achieve real-time inference.

Section 8.4.3 discusses this shortly.

For the correct mapping of pixels to GPS coordinates, we need to make sure that the

projection is well-defined. Therefore, we apply the previously introduced horizon cutter,

which first computes the horizon and only maps the pixels below it to GPS space. We

ignore pixels too far in the horizon as this results in too much noise.

We replace the 2D difference heat map from previous chapter with our memory map,

which will be added to the previous memory map. After each step, we also apply a

forgetting factor φ . Afterwards, we apply the same post-processing steps as indicated

there.

8.4 Results and Analysis

We test on SeaDronesSee-MOT and PeopleOnGrass-Video. Note that we focus on the

detection of people in both benchmarks only, since this is the hardest class to detect, as

Chapter 3 revealed. For that, we fuse the classes swimmers, swimmers with life jacket and

life jacket into a single people class in SeaDronesSee-V (SeaDronesSee-MOT without

instance IDs).

For short-term tracking, we also employ SeaDronesSee-MOT. It currently only sup-

ports short-term tracking, i.e. objects that left the scene and reappear do not have the

same id. Therefore, we relabel a video clip of SeaDronesSee-MOT, such that it also sup-

ports long-term tracking, which we need to assess the performance of long-term tracking

(reidentification).

For Video Anomaly Detection, we fall back to the OpenWater data set of the Maritime

Anomaly Detection Benchmark as dicussed in previous chapter, since it is the only one

featuring metadata.

Finally, we perform additional experiments to evaluate an extension to multiple UAVs

in a collaborative scenario.

8.4.1 Video Object Detection

We apply the proposed memory map on the output of a YOLOv7-Tiny (Wang et al.

(2022)) trained and tested on SeaDronesSee-V and POG-V, respectively. We choose a

grid with 0.5m resolution and a size of 300m. We truncate the Gaussian updates with a

radius of 6m.

As baselines, we take the well-known Video Object Detectors Deep Feature Flow

(DFF) (Zhu et al. (2017b)), Flow-guided Feature Aggregation (FGFA) (Zhu et al. (2017c))

and the recent Temporal RoI Align (T.R.A.) (Gong et al. (2021)) as implemented in Chen

et al. (2019b) with their default configuration.

113

Chapter 8 Building Memory Maps

SeaDronesSee-VOD POG-V

Model name AP50 AR AP50 AR FPS

DFF (Zhu et al. (2017b)) 53.7 34.2 30.3 18.8 3.4

FGFA (Zhu et al. (2017c)) 53.9 34.1 34.7 24.8 1.6

T.R.A. (Gong et al. (2021)) 60.6 42.9 29.9 19.3 2.4

YOLOv7-Tiny (Wang et al. (2022)) 68.2 41.1 81.3 36.2 25.1

YOLOv7-Tiny + Mem. Map 72.8 44.0 84.4 38.8 25.1

Table 8.2: Video Object Detection accuracy for Swimmers and People on SeaDronesSee-

Video and POG-Video, respectively. The last column denotes running times (wall-clock

time in frames per second) benchmarked on an Nvidia Xavier AGX.

Table 8.2 shows that incorporating our memory maps leads to increased AP50 and AR

(average recall with averaged IoU levels 0.5:0.05:0.95 and at most 100 detections) values

by successfully boosting the confidence scores. In particular, we achieve a +4.6 and +3.1

AP50 increase over the single-image YOLOv7-Tiny object detector on SeaDronesSee-

V and POG-V, respectively. Interestingly, popular video object detectors lack behind

in performance because they are not targeted to aerial VOD. Moreover, the increased

AR values shows that our method detects more objects, which is the main challenge in

UAV-based detection.

Figure 8.4 visualizes the temporal memory map, projected to the image space. It shows

the heatmap values of likely object locations, which were aggregated from the previous

frames. The red areas cluster around actual objects. This results in pre-NMS boxes

becoming boosted, as Figure 8.4 shows. While the baseline YOLOv7-Tiny originally

did not detect a single swimmer, now we detect eight.

Furthermore, the standard video object detectors are not suitable for deployment on

embedded devices. Our method only adds a negligible time to a standard YOLOv7-Tiny,

which can run in real-time on an Nvidia Xavier AGX.

8.4.2 Object Tracking

Applying our method on SeaDronesSee-MOT yields an increase in HOTA and MOTA

and a decrease of ID switches and fragmentations over the DeepSORT short-term tracker

(see Table 8.3).

To test the reidentification capability, we run our method on top of a DeepSORT with

reidentification module on the relabeled video as described earlier. We can successfully

reassign the same id to all the objects in the video whereas the baseline fails to do so (4

people are reassigned new IDs.)

114

8.4 Results and Analysis

Figure 8.4: Left: Heatmap illustration of memory map on a SeaDronesSee-V test frame.

We project actual GPS latitude and longitude lines to image space. We also project

the memory map from GPS space to image space and visualize it as a heatmap. The

right image part shows that the memory map successfully puts weight around actual

swimmers’ locations. Right: Before NMS, many swimmers are predicted (black boxes),

several of which are automatically removed due to incorrect sizes (red boxes). Only

the confidences of the green boxes are boosted. Applying a confidence threshold of 0.5

yields that 8 swimmers are detected as opposed to none for the baseline (YOLOv7-Tiny).

Model name HOTA↑ MOTA↑ IDs↓ Frag↓

ByteTracker (Kiefer et al. (2023)) 65.0 76.9 68 841

DeepSORT (Kiefer et al. (2023)) 66.6 80.0 44 805

DeepSORT +Memory Map 67.2 80.8 35 721

Table 8.3: MOT accuracy on SeaDronesSee-MOT. We used the output of DeepSORT and

built on top a mem. map resulting in fewer id switches and fragmentations.

115

Chapter 8 Building Memory Maps

Figure 8.5: Difference anomaly map aggregated in 3D space over several frames (left)

and resulting regions of interested (right).

Model name AR↑ Rp=5% ↑ FPS

Gaussian Mixture Model (Kiefer et al. (2023)) 45.9 2.6 17

Mean Filter (Kiefer et al. (2023)) 73.9 54.3 50

Frame Differencing (Kiefer et al. (2023)) 76.1 54.8 62

Autoencoder (Kiefer et al. (2023)) 79.8 71.0 27

Autoencoder + Memory Map 82.8 74.8 27

Table 8.4: Video Anomaly Detection accuracy on SeaDronesSee-MOT. We built our

memory maps on top of the Autoencoder from previous chapter.

8.4.3 Video Anomaly Detection

Table 8.4 shows that adding the module to the anomaly detector from previous chapter

yields an increase of +3 AR to 82.8 (average recall over multiple levels of broadcasting

rate; measured differently than average recall from object detection, please see previous

chapter). This performance increase is also reflected in the recall at broadcasting rate of

5%, i.e. there is a +3.8 Rp=5% improvement over the Autoencoder.

Figure 8.5 shows the resulting difference anomaly map aggregated over the last frames

and the resulting regions of interest that are returned.

The speed does not increase considerably over the Autoencoder, still achieving real-

time inference benchmarked on an Nvidia Xavier AGX as Table 8.4 shows.

8.4.4 Cooperative Detection via Multiple UAVs

The GPS memory map allows for a joint representation of objects’ locations. In this

section, we demonstrate that it can be leveraged in a collaborative setting with multiple

UAVs. This allows for cross-UAV knowledge transfer and leads to more robust predic-

tions. Furthermore, it allows for detections of (partially) occluded objects. For example,

Figure 8.6 shows the same scenery captured from different locations at the same time

116

8.4 Results and Analysis

Figure 8.6: Two UAVs inspect the same scenery from different locations at the same

time. The red camera (left) has a good view on both objects and the goal (G), while

the blue camera (right) is underexposed (brightened for visualization) and one person is

partially occluded by a tree. We aggregate both memory maps together to obtain more

robust detections. Without considering the underlying geometry, this is not possible with

standard video object detectors.

117

Chapter 8 Building Memory Maps

with two people are walking on the grass.

Having a joint location likelihood representation allows the UAVs to share informa-

tion. We apply the same memory map from before on both UAVs’ object detectors’

output, but this time, we average their memory maps in the overlapping region. For that,

we take an EfficientDet-D0 trained on POG as in Chapter 4 and test it on the following

data. We capture four minutes of footage in a similar environment as POG from the

viewpoint of two UAVs, a DJI Matrice 210 and a DJI Mavic 2 Pro, denoted 2AVs. We

varied variables, such as altitude, pitch and heading viewing angle and GPS location. We

annotated the people visible in both video streams and compare the performance of the

single-frame object detector with the memory map from before. We obtain an AP50 of

61.3 for the single-frame object detector compared to an AP50 of 68.9 for the memory

map.

To shot the utility of a joint memory map for tracking, we compare a fast single-object

tracker, PrDiMP18 (Danelljan et al. (2020)), to a simple tracker based on the memory

map. For that, we apply an EfficientDet-D0 on a consecutive subset of 2AVs that contains

partial occlusions of a person in one video stream (blue camera in Fig. 8.6). While the

baseline tracker cannot handle the occlusion and fails to track the person behind the tree

entirely (4.3 AP50) for the blue camera, our method leverages the joint memory map that

transfers knowledge from the red UAV to the blue (86.3 AP50).

The joint memory map also allows for reidentification in long-term tracking tasks

while the object is moving. To test this, we take a standard DeepSORT trained on POG

with the default Reid model within mmtracking (Chen et al. (2019b)) as baseline. We

take a subset of 2AVs where one camera leaves the scenery entirely, while the other is

tracking the object throughout. When reappearing, it immediately uses the track id in-

formation from the other camera, while DeepSORT failed to reidentify the object, which

we believe to be attributed to the object size.

8.5 Conclusion and Discussion

While not using meta-data remains the standard in computer vision on UAVs, using

metadata to boost the performance shows promising results without inducing a large

computational overhead. We showed that we can improve standard methods by consid-

ering the underlying 3D geometry. Reasoning about detections, tracklets and anomalies

in an interpretable and robust way allows for more trustworthy methods.

Although in our experiments on POD-Video we did not encounter any problems with

terrain elevation change, future work remains to show how strict the assumption of even-

level terrain is on other benchmarks. For that, it is inevitable to collect larger and more

diverse benchmarks.

In future works, it will be interesting to see how a symbiosis of metadata and other

computer vision tasks looks like. Lastly, it seems relevant to dive into the topic of uncer-

tainty quantification methods to account for the errors in metadata values.

118

Chapter 9

Conclusions & Outlook

In this work, we discussed computer vision on UAVs from a holistic standpoint. Instead

of ignoring the environment around the UAV and thereby treating the computer vision

problems domain-agnostic, we explicitly take it into account. We analyzed several prob-

lems in the context of computer vision on UAVs and provided techniques and methods to

overcome or alleviate these. Furthermore, we presented multiple computer vision meth-

ods that are capable of running in real-time on a consumer UAV. We also looked at data

acquisition and the actual deployment on embedded hardware, hoping to progress the

field from theoretical-only benefits to actual practical utility.

In particular, in Chapter 2, we outlined the full pipeline for data acquisition and la-

beling, which is major shortcoming in current research for computer vision on UAV. We

released a major benchmark for UAV-based maritime computer vision supporting several

tasks, such as object detection, single-object- and multi-object-tracking. We discussed

the intricacies when planning missions and also how to efficiently capture corresponding

metadata. The latter is not featured in current benchmarks and our works were the first to

release a large-scaled benchmark to include this data. The release of these benchmarks

opened the door for research on multi-modal holistic computer vision on UAVs.

Using these captured benchmarks, we analyzed the state-of-the art in Chapter 3. We

compared various object detectors and trackers with respect to their robustness and speed.

In particular, we organized the 1st Workshop on Maritime Computer Vision to progress

the research in this field and to obtain a better understanding of current limitations.

These baselines models helped us in the subsequent chapters to measure the advance-

ments we can make using metadata. Chapter 4 discussed a major challenge in object

detection on UAVs: domain imbalance and the resulting domain bias. We analyzed this

unexplored phenomenon that occurs in most UAV-based benchmarks and showed how

we can mitigate it by means of using metadata. By introducing expert heads, we show

that we can design models much more robust without increasing the inference time.

In Chapter 5, we go one step further and concentrate on the prominently occurring

scale variance problem. Scale variance is challenge that is very particular to UAV-based

data sets, where objects’ sizes may vary immensely. Models that do not consider this

issue may overfit to certain altitudes or sizes which often is the case in imbalanced data

sets. Therefore, we introduced a pre-processing technique applicable to bird’s eye view

119

Chapter 9 Conclusions & Outlook

imagery that essentially yields scale invariant object detectors. As models only ever see

same-sized objects, the generalization performance is increased drastically. Furthermore,

it results in faster detectors and altitude knowledge transfer.

However, the previous chapter once more illustrated that the lack of data in the UAV

domain makes it hard to develop and compare methods. For this reason, in Chapter 6,

we introduced a new synthetic data generation tool based on the video game GTAV. We

demonstrated how we can leverage it to obtain high-resolution UAV-based imagery of

high fidelity, with many realistically looking objects in a diverse range of environments.

Importantly, we showcase how we obtain pixel-perfect ground truth annotation of all

dynamic objects in the world. These image-level annotations come together with meta-

data-level annotations, such as altitude, viewing angle, IMU information and more. We

demonstrated that this synthetic data may be used to train models that can be deployed

in the real-world. FOr optimal performance, we showed that we can obtain best model

performance by consecutively training on synthetic and real data. Last but not least, we

showed how metadata allows us to obtain more efficient synthetic data by constraining

the image data on relevant footage.

Chapter 7 took the first step in the direction of weakly supervised and temporal data.

For the particular task of video anomaly detection in the maritime domain, we show that

classical methods fail to detect anomalies reliably. We designed an efficient end-to-end

video anomaly detection architecture and described how we use metadata to train and run

it efficiently. Considering the metadata allowed us to compute the horizon line efficiently

so that the autoencoder architecture could effectively learn the appearance and dynamics

of water. This allowed it to detect unseen objects and movement downstream.

Lastly, Chapter 8 went the final step towards considering the surrounding 3D geom-

etry. Taking into account the metadata across time allowed us to create memory maps

of our surrounding. These memory maps helped in understanding our surrounding en-

vironment which we leverage to obtain more robust video object detection models. We

showed that a environmentally-aware detector is much more robust towards uncertain ap-

pearances by aggregating predictions over time in 3D space as opposed to image space.

Furthermore, we showed that a correct treatment of the surrounding lead to more robust

video anomaly detectors and in a collaborative scenarios.

From the current state of research, many avenues can be explored. Hopefully, with

more emerging benchmarks, which do include metadata, we may analyze which com-

puter vision methods can be improved by means of this data. It seems in many ways that

the robotics and the computer vision communities are research separately. However, we

argue that a joint development is inevitable for robust and intelligent agents. In partic-

ular, mapping methods, which are primarily a robotics topic, and detection of dynamic

objects, seem to be treated separately even though there is a great overlap. We hope

that our methods helped to bridge some of the gap between domain-agnostic and holistic

methods.

120

Abbreviations

A Acute

AP Average Precision

AR Average Recall

AUto Autoencoder

FD Frame Differencing

FPS Frames per second

GMM Gaussian Mixture Model

H High

L Low

mAP Mean Average Precision

M Medium

MAV Micro Aerial Vehicle

MF Mean Filter

MOT Multi-Object Tracking

OD Object Detection

POG PeopleOnGrass

R Right

SaR Search and Rescue

SOT Single-Object Tracking

UAV Unmanned Aerial Vehicle

VOD Video Object Detection

WACV Winter Conference on Applications of Computer Vision

121

Bibliography

Adão, T., Hruška, J., PÂadua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J. J. (2017).

Hyperspectral imaging: A review on uav-based sensors, data processing and applica-

tions for agriculture and forestry. Remote Sensing, 9(11), 1110.

Airbus (2022). Airbus Ship Detection Challenge. https://www.kaggle.com/c/

airbus-ship-detection. Accessed: 2022-07-05.

Aiskyeye (2022). VisDrone. Vision Meets Drones: A Challenge. http://

aiskyeye.com/. Accessed: 2022-07-05.

Albanese, A., Sciancalepore, V., and Costa-PÂerez, X. (2020). Sardo: An automated

search-and-rescue drone-based solution for victims localization. arXiv preprint

arXiv:2003.05819.

Angus, M., ElBalkini, M., Khan, S., Harakeh, A., Andrienko, O., Reading, C., Waslan-

der, S., and Czarnecki, K. (2018). Unlimited road-scene synthetic annotation (ursa)

dataset. In 2018 21st International Conference on Intelligent Transportation Systems

(ITSC), pages 985±992. IEEE.

Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., and Karaman, S. (2018). The

blackbird dataset: A large-scale dataset for uav perception in aggressive flight. In

International Symposium on Experimental Robotics, pages 130±139. Springer.

App-Airdata (2022). Airdata for UAV. https://app.airdata.com/. Accessed:

2021-03-01.

Avalon (2022). Avalon Project. https://seadronessee.cs.

uni-tuebingen.de/avalon. Accessed: 2022-07-05.

Balestrieri, E., Daponte, P., De Vito, L., Picariello, F., and Tudosa, I. (2021). Sensors

and measurements for uav safety: An overview. Sensors, 21(24), 8253.

Barto, C. (2022). Gta vision export. https://github.com/umautobots/

GTAVisionExport. Accessed: 2022-08-01.

Bashmal, L., Bazi, Y., AlHichri, H., AlRahhal, M. M., Ammour, N., and Alajlan, N.

(2018). Siamese-gan: Learning invariant representations for aerial vehicle image cat-

egorization. Remote Sensing, 10(2), 351.

123

https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection
http://aiskyeye.com/
http://aiskyeye.com/
https://app.airdata.com/
https://seadronessee.cs.uni-tuebingen.de/avalon
https://seadronessee.cs.uni-tuebingen.de/avalon
https://github.com/umautobots/GTAVisionExport
https://github.com/umautobots/GTAVisionExport

Bibliography

Belmonte, L. M., Morales, R., and FernÂandez-Caballero, A. (2019). Computer vision

in autonomous unmanned aerial vehiclesÐa systematic mapping study. Applied Sci-

ences, 9(15), 3196.

Benezeth, Y., Jodoin, P.-M., Emile, B., Laurent, H., and Rosenberger, C. (2010). Com-

parative study of background subtraction algorithms. Journal of Electronic Imaging,

19(3), 033003.

Bergmann, P., Meinhardt, T., and Leal-TaixÂe, L. (2019). Tracking without bells and

whistles. In The IEEE International Conference on Computer Vision (ICCV).

Bevacqua, G., Cacace, J., Finzi, A., and Lippiello, V. (2015). Mixed-initiative planning

and execution for multiple drones in search and rescue missions. In Proceedings of the

International Conference on Automated Planning and Scheduling, volume 25, pages

315±323.

Bhat, G., Danelljan, M., Gool, L. V., and Timofte, R. (2019). Learning discriminative

model prediction for tracking. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 6182±6191.

Blade, A. (2022). Script Hook V. http://www.dev-c.com/gtav/

scripthookv/. Accessed: 2022-08-01.

Blikharskyy, Y., Kopiika, N., Khmil, R., Selejdak, J., and Blikharskyy, Z. (2022). Review

of development and application of digital image correlation method for study of stress±

strain state of rc structures. Applied Sciences, 12(19), 10157.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and

accuracy of object detection. arXiv preprint arXiv:2004.10934.

Bohren, C. F. and Fraser, A. B. (1986). At what altitude does the horizon cease to be

visible? American Journal of Physics, 54(3), 222±227.

Bolya, D., Foley, S., Hays, J., and Hoffman, J. (2020). Tide: A general toolbox for iden-

tifying object detection errors. In European Conference on Computer Vision, pages

558±573. Springer.

Bosquet, B., Mucientes, M., and Brea, V. M. (2021). Stdnet-st: Spatio-temporal convnet

for small object detection. Pattern Recognition, 116, 107929.

Bozcan, I. and Kayacan, E. (2020). Au-air: A multi-modal unmanned aerial vehicle

dataset for low altitude traffic surveillance. In 2020 IEEE International Conference on

Robotics and Automation (ICRA), pages 8504±8510. IEEE.

Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal: Software Tools for the

Professional Programmer, 25(11), 120±123.

124

http://www.dev-c.com/gtav/scripthookv/
http://www.dev-c.com/gtav/scripthookv/

Bibliography

Cai, Z. and Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object

detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 6154±6162.

Cao, Y., He, Z., Wang, L., Wang, W., Yuan, Y., Zhang, D., Zhang, J., Zhu, P., Van Gool,

L., Han, J., et al. (2021). Visdrone-det2021: The vision meets drone object detec-

tion challenge results. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 2847±2854.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).

End-to-end object detection with transformers. In European conference on computer

vision, pages 213±229. Springer.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41±75.

Cazzato, D., Cimarelli, C., Sanchez-Lopez, J. L., Voos, H., and Leo, M. (2020). A survey

of computer vision methods for 2d object detection from unmanned aerial vehicles.

Journal of Imaging, 6(8), 78.

Chen, G., Wang, W., He, Z., Wang, L., Yuan, Y., Zhang, D., Zhang, J., Zhu, P., Van Gool,

L., Han, J., et al. (2021a). Visdrone-mot2021: The vision meets drone multiple object

tracking challenge results. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 2839±2846.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J.,

et al. (2019a). Mmdetection: Open mmlab detection toolbox and benchmark. arXiv

preprint arXiv:1906.07155.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu,

J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y.,

Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019b). MMDetection:

Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155.

Chen, K., Wu, M., Liu, J., and Zhang, C. (2020). Fgsd: A dataset for fine-grained ship

detection in high resolution satellite images. arXiv preprint arXiv:2003.06832.

Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., and Sun, J. (2021b). You only look

one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 13039±13048.

Chen, Y., Li, W., Sakaridis, C., Dai, D., and Van Gool, L. (2018). Domain adaptive

faster r-cnn for object detection in the wild. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3339±3348.

Chung, S.-Y. and Huang, H.-P. (2010). Slammot-sp: simultaneous slammot and scene

prediction. Advanced Robotics, 24(7), 979±1002.

125

Bibliography

Corbane, C., Najman, L., Pecoul, E., Demagistri, L., and Petit, M. (2010). A complete

processing chain for ship detection using optical satellite imagery. International Jour-

nal of Remote Sensing, 31(22), 5837±5854.

Corsel, C. W., van Lier, M., Kampmeijer, L., Boehrer, N., and Bakker, E. M. (2023).

Exploiting temporal context for tiny object detection. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pages 79±89.

Crisp, D. J. (2004). The state-of-the-art in ship detection in synthetic aperture radar

imagery. Technical report, Defence Science And Technology Organisation Salisbury

(Australia) Info

Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., and Zhang, L. (2021). Dy-

namic head: Unifying object detection heads with attentions. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 7373±7382.

Danelljan, M., Bhat, G., Khan, F. S., and Felsberg, M. (2019). Atom: Accurate tracking

by overlap maximization. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4660±4669.

Danelljan, M., Gool, L. V., and Timofte, R. (2020). Probabilistic regression for visual

tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 7183±7192.

Darkpgmr (2022). DarkLabel Annotation Tool, Github. https://github.com/

darkpgmr/DarkLabel. Accessed: 2022-07-05.

Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., and Kloft, M. (2018). Image anomaly

detection with generative adversarial networks. In Joint european conference on ma-

chine learning and knowledge discovery in databases, pages 3±17. Springer.

Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S.,

Schindler, K., and Leal-TaixÂe, L. (2020). Mot20: A benchmark for multi object track-

ing in crowded scenes. arXiv preprint arXiv:2003.09003.

Ding, J., Xue, N., Long, Y., Xia, G.-S., and Lu, Q. (2018). Learning roi transformer for

detecting oriented objects in aerial images. arXiv preprint arXiv:1812.00155.

Ditty, M., Karandikar, A., and Reed, D. (2018). Nvidia’s xavier soc. In Hot chips: a

symposium on high performance chips.

Division, F. S. (2022). Gtav mod - heap limit adjuster. https://de.gta5-

mods.com/tools/heap-limit-adjuster-600-mb-of-heap. Accessed: 2022-08-01.

Dorahamu (2022). Gtav mod - simple increase traffic and pedestrians. https://de.gta5-

mods.com/misc/simple-increase-traffic-and-pedestrian. Accessed: 2022-08-01.

126

https://github.com/darkpgmr/DarkLabel
https://github.com/darkpgmr/DarkLabel

Bibliography

Dortmund, T. (2022). Larus Project. http://larus.kn.e-technik.

tu-dortmund.de/. Accessed: 2022-07-05.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). Carla: An

open urban driving simulator. In Conference on robot learning, pages 1±16. PMLR.

Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., and Tian,

Q. (2018). The unmanned aerial vehicle benchmark: Object detection and tracking.

In Proceedings of the European Conference on Computer Vision (ECCV), pages 370±

386.

Du, Y., Wan, J., Zhao, Y., Zhang, B., Tong, Z., and Dong, J. (2021). Giaotracker: A

comprehensive framework for mcmot with global information and optimizing strate-

gies in visdrone 2021. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 2809±2819.

Du et. al., D. (2019). VisDrone-DET2019: The vision meets drone object detection in

image challenge results. In Proceedings - 2019 International Conference on Computer

Vision Workshop, ICCVW 2019, pages 213±226. Institute of Electrical and Electronics

Engineers Inc.

Epstein, R. A. and Baker, C. I. (2019). Scene perception in the human brain. Annual

review of vision science, 5, 373±397.

Everingham et al., M. (2015). The pascal visual object classes challenge: A retrospective.

International journal of computer vision, 111(1), 98±136.

ExposingAI (2022). Ms-celeb-1m privacy infringment. https://exposing.ai/msceleb/.

Accessed: 2022-08-01.

Fan, H., Du, D., Wen, L., Zhu, P., Hu, Q., Ling, H., Shah, M., Pan, J., Schumann, A.,

Dong, B., et al. (2020a). Visdrone-mot2020: The vision meets drone multiple object

tracking challenge results. In European Conference on Computer Vision, pages 713±

727. Springer.

Fan, H., Wen, L., Du, D., Zhu, P., Hu, Q., Ling, H., Shah, M., Wang, B., Dong, B.,

Yuan, D., et al. (2020b). Visdrone-sot2020: The vision meets drone single object

tracking challenge results. In European Conference on Computer Vision, pages 728±

749. Springer.

Ferreira, N. and Silveira, M. (2020). Ship detection in sar images using convolutional

variational autoencoders. In IGARSS 2020-2020 IEEE International Geoscience and

Remote Sensing Symposium, pages 2503±2506. IEEE.

127

http://larus.kn.e-technik.tu-dortmund.de/
http://larus.kn.e-technik.tu-dortmund.de/

Bibliography

Fonder, M. and Droogenbroeck, M. V. (2019). Mid-air: A multi-modal dataset for ex-

tremely low altitude drone flights. In Conference on Computer Vision and Pattern

Recognition Workshop (CVPRW).

Fox, V., Hightower, J., Liao, L., Schulz, D., and Borriello, G. (2003). Bayesian filtering

for location estimation. IEEE pervasive computing, 2(3), 24±33.

French, G., Mackiewicz, M., and Fisher, M. (2017). Self-ensembling for visual domain

adaptation. arXiv preprint arXiv:1706.05208.

Gallego, A.-J., Pertusa, A., Gil, P., and Fisher, R. B. (2019). Detection of bodies in mar-

itime rescue operations using unmanned aerial vehicles with multispectral cameras.

Journal of Field Robotics, 36(4), 782±796.

Games, R. (2022). Grand theft auto v. https://www.rockstargames.com/de/

games/V. Accessed: 2022-08-01.

GDPR (2022). General data protection regulation. https://gdpr.eu/. Accessed: 2022-08-

01.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti

dataset. The International Journal of Robotics Research, 32(11), 1231±1237.

Geraldes, R., Goncalves, A., Lai, T., Villerabel, M., Deng, W., Salta, A., Nakayama, K.,

Matsuo, Y., and Prendinger, H. (2019). Uav-based situational awareness system using

deep learning. IEEE Access, 7, 122583±122594.

Ghazali, S. N. A. M., Anuar, H. A., Zakaria, S. N. A. S., and Yusoff, Z. (2016). De-

termining position of target subjects in maritime search and rescue (msar) operations

using rotary wing unmanned aerial vehicles (uavs). In 2016 International Conference

on Information and Communication Technology (ICICTM), pages 1±4. IEEE.

Girshick, R. (2015a). Fast r-cnn. In Proceedings of the IEEE international conference

on computer vision, pages 1440±1448.

Girshick, R. (2015b). Fast r-cnn. In Proceedings of the IEEE international conference

on computer vision, pages 1440±1448.

GmbH, S. (2020). A pytorch implementation of efficientdet object detection. https:

//github.com/signatrix/efficientdet.

Gong, T., Chen, K., Wang, X., Chu, Q., Zhu, F., Lin, D., Yu, N., and Feng, H. (2021).

Temporal roi align for video object recognition. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 35, pages 1442±1450.

128

https://www.rockstargames.com/de/games/V
https://www.rockstargames.com/de/games/V
https://github.com/signatrix/efficientdet
https://github.com/signatrix/efficientdet

Bibliography

Gudovskiy, D., Ishizaka, S., and Kozuka, K. (2022). Cflow-ad: Real-time unsupervised

anomaly detection with localization via conditional normalizing flows. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 98±

107.

Han, Y., Roig, G., Geiger, G., and Poggio, T. (2020). Scale and translation-invariance

for novel objects in human vision. Scientific reports, 10(1), 1±13.

Hayat, S., Yanmaz, E., Bettstetter, C., and Brown, T. X. (2020). Multi-objective drone

path planning for search and rescue with quality-of-service requirements. Autonomous

Robots, 44(7), 1183±1198.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 770±778.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell,

T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In International

conference on machine learning, pages 1989±1998. PMLR.

Hong, S., Kang, S., and Cho, D. (2019). Patch-level augmentation for object detection in

aerial images. In Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops, pages 0±0.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,

M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861.

Hsieh, M.-R., Lin, Y.-L., and Hsu, W. H. (2017). Drone-based object counting by spa-

tially regularized regional proposal network. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4145±4153.

Huang, H., Huo, C., Wei, F., and Pan, C. (2019). Rotation and scale-invariant object

detector for high resolution optical remote sensing images. In IGARSS 2019-2019

IEEE International Geoscience and Remote Sensing Symposium, pages 1386±1389.

IEEE.

Hurl, B. (2022). DeepGTAV-PreSIL Code. https://github.com/bradenhurl/

DeepGTAV-PreSIL. Accessed: 2022-08-01.

Hurl, B., Czarnecki, K., and Waslander, S. (2019). Precise synthetic image and lidar

(presil) dataset for autonomous vehicle perception. In 2019 IEEE Intelligent Vehicles

Symposium (IV), pages 2522±2529. IEEE.

Ikeuchi, K. (2021). Computer vision: A reference guide. Springer.

129

https://github.com/bradenhurl/DeepGTAV-PreSIL
https://github.com/bradenhurl/DeepGTAV-PreSIL

Bibliography

Jedrasiak, K., Bereska, D., and Nawrat, A. (2013). The prototype of gyro-stabilized uav

gimbal for day-night surveillance. In Advanced technologies for intelligent systems of

national border security, pages 107±115. Springer.

Jocher, G., Changyu, L., Hogan, A., Yu, L., changyu98, Rai, P., and Sullivan, T. (2020).

ultralytics/yolov5: Initial Release. Github Pages.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., Rosaen, K., and Vasude-

van, R. (2016). Driving in the matrix: Can virtual worlds replace human-generated

annotations for real world tasks? arXiv preprint arXiv:1610.01983.

Kanellakis, C. and Nikolakopoulos, G. (2017). Survey on computer vision for uavs:

Current developments and trends. Journal of Intelligent & Robotic Systems, 87, 141±

168.

Kar, A., Prakash, A., Liu, M.-Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D.,

Torralba, A., and Fidler, S. (2019). Meta-sim: Learning to generate synthetic datasets.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

4551±4560.

Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser, M. F., and Turedi, S. (2018).

The potential use of unmanned aircraft systems (drones) in mountain search and rescue

operations. The American journal of emergency medicine, 36(4), 583±588.

Kiefer, B. (2022). SeaDronesSee Benchmark data acquisition. https://

seadronessee.cs.uni-tuebingen.de/dataacquisition. Accessed:

2022-07-05.

Kiefer, B., Ott, D., and Zell, A. (2021). Leveraging synthetic data in object detection on

unmanned aerial vehicles. arXiv preprint arXiv:2112.12252.

Kiefer, B., Messmer, M., and Varga, L. (2022). SeaDronesSee Benchmark. https:

//seadronessee.cs.uni-tuebingen.de/. Accessed: 2022-07-05.

Kiefer, B., Kristan, M., Perš, J., Žust, L., Poiesi, F., Andrade, F., Bernardino, A.,

Dawkins, M., Raitoharju, J., Quan, Y., et al. (2023). 1st workshop on maritime com-

puter vision (macvi) 2023: Challenge results. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, pages 265±302.

Kim et. al., S. (2020). Height-adaptive vehicle detection in aerial imagery using metadata

of eo sensor. In Automatic Target Recognition XXX, volume 11394, page 1139404.

International Society for Optics and Photonics.

Kokkinos, I. and Yuille, A. (2008). Scale invariance without scale selection. In 2008

IEEE Conference on Computer Vision and Pattern Recognition, pages 1±8. IEEE.

130

https://seadronessee.cs.uni-tuebingen.de/dataacquisition
https://seadronessee.cs.uni-tuebingen.de/dataacquisition
https://seadronessee.cs.uni-tuebingen.de/
https://seadronessee.cs.uni-tuebingen.de/

Bibliography

Kong, F., Huang, B., Bradbury, K., and Malof, J. (2020). The synthinel-1 dataset: a

collection of high resolution synthetic overhead imagery for building segmentation. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,

pages 1814±1823.

Krajewski, R., Bock, J., Kloeker, L., and Eckstein, L. (2018). The highd dataset: A

drone dataset of naturalistic vehicle trajectories on german highways for validation of

highly automated driving systems. In 2018 21st International Conference on Intelli-

gent Transportation Systems (ITSC), pages 2118±2125. IEEE.

Kristan, M., Matas, J., Leonardis, A., VojÂır̃, T., Pflugfelder, R., FernÂandez, G., Nebehay,

G., Porikli, F., and Čehovin, L. (2016). A novel performance evaluation methodol-

ogy for single-target trackers. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38(11), 2137±2155.

Leal-TaixÂe, L., Milan, A., Reid, I., Roth, S., and Schindler, K. (2015). Motchal-

lenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint

arXiv:1504.01942.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V. (2014). Speeding-

up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553.

Lee, H., Eum, S., and Kwon, H. (2019). ME r-cnn: Multi-expert r-cnn for object detec-

tion. IEEE Transactions on Image Processing, 29, 1030±1044.

Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. (2021). Cutpaste: Self-supervised learning

for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9664±9674.

Li, P., Liang, X., Jia, D., and Xing, E. P. (2018a). Semantic-aware grad-gan for virtual-

to-real urban scene adaption. arXiv preprint arXiv:1801.01726.

Li, Q., Mou, L., Liu, Q., Wang, Y., and Zhu, X. X. (2018b). Hsf-net: Multiscale deep

feature embedding for ship detection in optical remote sensing imagery. IEEE Trans-

actions on Geoscience and Remote Sensing, 56(12), 7147±7161.

Li, S. and Yeung, D.-Y. (2017). Visual object tracking for unmanned aerial vehicles:

A benchmark and new motion models. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 31.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., DollÂar, P., and

Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European

conference on computer vision.

131

Bibliography

Lin et. al., T.-Y. (2014). Microsoft coco: Common objects in context. In European

conference on computer vision, pages 740±755. Springer.

Lin et. al., T.-Y. (2017a). Feature pyramid networks for object detection. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2117±2125.

Lin et. al., T.-Y. (2017b). Focal loss for dense object detection. In Proceedings of the

IEEE international conference on computer vision, pages 2980±2988.

Liu, S., Huang, D., and Wang, Y. (2019). Learning spatial fusion for single-shot object

detection. arXiv preprint arXiv:1911.09516.

Liu, W., Luo, W., Lian, D., and Gao, S. (2018). Future frame prediction for anomaly

detection±a new baseline. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 6536±6545.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin

transformer: Hierarchical vision transformer using shifted windows. arXiv preprint

arXiv:2103.14030.

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-TaixÂe, L., and Leibe, B.

(2021). Hota: A higher order metric for evaluating multi-object tracking. International

journal of computer vision, 129(2), 548±578.

Luo, H., Xie, W., Wang, X., and Zeng, W. (2019). Detect or track: Towards cost-effective

video object detection/tracking. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 8803±8810.

Lvsouras, E. and Gasteratos, A. (2020). A new method to combine detection and tracking

algorithms for fast and accurate human localization in uav-based sar operations. In

2020 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1688±

1696. IEEE.

Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., and Gaster-

atos, A. (2019). Unsupervised human detection with an embedded vision system on a

fully autonomous uav for search and rescue operations. Sensors, 19(16), 3542.

Majdik, A. L., Till, C., and Scaramuzza, D. (2017). The zurich urban micro aerial vehicle

dataset. The International Journal of Robotics Research, 36(3), 269±273.

Marques, M. M., Dias, P., Santos, N. P., Lobo, V., Batista, R., Salgueiro, D., Aguiar, A.,

Costa, M., da Silva, J. E., Ferreira, A. S., et al. (2015). Unmanned aircraft systems

in maritime operations: Challenges addressed in the scope of the seagull project. In

OCEANS 2015-Genova, pages 1±6. IEEE.

132

Bibliography

Mayer, S., Lischke, L., and WoÂzniak, P. W. (2019). Drones for search and rescue. In 1st

International Workshop on Human-Drone Interaction.

Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., and Tuncer, A. (2017).

Uav-enabled intelligent transportation systems for the smart city: Applications and

challenges. IEEE Communications Magazine, 55(3), 22±28.

Messmer, M., Kiefer, B., and Zell, A. (2021). Gaining scale invariance in uav bird’s eye

view object detection by adaptive resizing. arXiv preprint arXiv:2101.12694.

Milan, A., Leal-TaixÂe, L., Reid, I., Roth, S., and Schindler, K. (2016a). Mot16: A

benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831.

Milan, A., Leal-TaixÂe, L., Reid, I., Roth, S., and Schindler, K. (2016b). MOT16: A

benchmark for multi-object tracking. arXiv:1603.00831 [cs]. arXiv: 1603.00831.

Mishra, B., Garg, D., Narang, P., and Mishra, V. (2020). Drone-surveillance for search

and rescue in natural disaster. Computer Communications, 156, 1±10.

Mittal, P., Singh, R., and Sharma, A. (2020). Deep learning-based object detection in

low-altitude uav datasets: A survey. Image and Vision computing, 104, 104046.

Mohamed, S. S., Tahir, N. M., and Adnan, R. (2010). Background modelling and back-

ground subtraction performance for object detection. In 2010 6th International Collo-

quium on Signal Processing & its Applications, pages 1±6. IEEE.

Mueller, M., Smith, N., and Ghanem, B. (2016). A benchmark and simulator for uav

tracking. In European conference on computer vision, pages 445±461. Springer.

Mundhenk, T. N., Konjevod, G., Sakla, W. A., and Boakye, K. (2016). A large contex-

tual dataset for classification, detection and counting of cars with deep learning. In

European Conference on Computer Vision, pages 785±800. Springer.

Nasr, I., Chekir, M., and Besbes, H. (2019). Shipwrecked victims localization and track-

ing using uavs. In 2019 15th International Wireless Communications & Mobile Com-

puting Conference (IWCMC), pages 1344±1348. IEEE.

Nguyen, T.-N. and Meunier, J. (2019). Anomaly detection in video sequence with

appearance-motion correspondence. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 1273±1283.

Nikolenko, S. I. et al. (2019). Synthetic data for deep learning. arXiv preprint

arXiv:1909.11512, 3.

Nuss, D., Reuter, S., Thom, M., Yuan, T., Krehl, G., Maile, M., Gern, A., and Dietmayer,

K. (2018). A random finite set approach for dynamic occupancy grid maps with real-

time application. The International Journal of Robotics Research, 37(8), 841±866.

133

Bibliography

Nvidia (2022a). Nvidia geforce experience. https://www.nvidia.com/de-

de/geforce/geforce-experience/. Accessed: 2022-08-01.

Nvidia (2022b). Nvidia Xavier. https://www.nvidia.com/de-de/

autonomous-machines/embedded-systems/jetson-agx-xavier/.

Accessed: 2022-07-05.

Ofli, F., Meier, P., Imran, M., Castillo, C., Tuia, D., Rey, N., Briant, J., Millet, P., Rein-

hard, F., Parkan, M., et al. (2016). Combining human computing and machine learning

to make sense of big (aerial) data for disaster response. Big data, 4(1), 47±59.

Ojanen, H. (1999). Automatic correction of lens distortion by using digital image pro-

cessing. Rutgers University, Dept. of Mathematics technical report.

Oksuz, K., Cam, B. C., Kalkan, S., and Akbas, E. (2020). Imbalance problems in object

detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Kr-

palkova, L., Riordan, D., and Walsh, J. (2020). Deep learning vs. traditional computer

vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision

Conference (CVC), Volume 1 1, pages 128±144. Springer.

PapersWithCode (2022a). Object Detection on COCO test-dev. https://

paperswithcode.com/sota/object-detection-on-coco. Accessed:

2021-03-01.

PapersWithCode (2022b). Object detection on coco test-dev. https://

paperswithcode.com/sota/. Accessed: 2022-08-01.

Pei, Z., Qi, X., Zhang, Y., Ma, M., and Yang, Y.-H. (2019). Human trajectory prediction

in crowded scene using social-affinity long short-term memory. Pattern Recognition,

93, 273±282.

Perreault et. al., H. (2020). SpotNet: Self-Attention Multi-Task Network for Object

Detection. Proceedings - 2020 17th Conference on Computer and Robot Vision, CRV

2020, pages 230±237.

Prakash, A., Boochoon, S., Brophy, M., Acuna, D., Cameracci, E., State, G., Shapira,

O., and Birchfield, S. (2019). Structured domain randomization: Bridging the reality

gap by context-aware synthetic data. In 2019 International Conference on Robotics

and Automation (ICRA), pages 7249±7255. IEEE.

Prasad, D. K., Dong, H., Rajan, D., and Quek, C. (2019). Are object detection assess-

ment criteria ready for maritime computer vision? IEEE Transactions on Intelligent

Transportation Systems, 21(12), 5295±5304.

134

https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/
https://paperswithcode.com/sota/

Bibliography

Price, E., Lawless, G., Ludwig, R., Martinovic, I., BÈulthoff, H. H., Black, M. J., and

Ahmad, A. (2018). Deep neural network-based cooperative visual tracking through

multiple micro aerial vehicles. IEEE Robotics and Automation Letters, 3(4), 3193±

3200.

Qiu, W. and Yuille, A. (2016). Unrealcv: Connecting computer vision to unreal engine.

In European Conference on Computer Vision, pages 909±916. Springer.

Queralta, J. P., Raitoharju, J., Gia, T. N., Passalis, N., and Westerlund, T. (2020).

Autosos: Towards multi-uav systems supporting maritime search and rescue with

lightweight ai and edge computing. arXiv preprint arXiv:2005.03409.

Rajesh, R. and Kavitha, P. (2015). Camera gimbal stabilization using conventional pid

controller and evolutionary algorithms. In 2015 International Conference on Com-

puter, Communication and Control (IC4), pages 1±6. IEEE.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 7263±7271.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Uni-

fied, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779±788.

Redmon et. al., J. (2016). You only look once: Unified, real-time object detection. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

779±788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. Advances in neural information processing

systems, 28.

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object

detection with region proposal networks. IEEE transactions on pattern analysis and

machine intelligence, 39(6), 1137±1149.

Ren, S. e. a. (2016). Faster r-cnn: Towards real-time object detection with region pro-

posal networks. IEEE transactions on pattern analysis and machine intelligence,

39(6), 1137±1149.

Richter, S. R., AlHaija, H. A., and Koltun, V. (2021). Enhancing photorealism enhance-

ment. arXiv preprint arXiv:2105.04619.

135

Bibliography

Ringwald, T., Sommer, L., Schumann, A., Beyerer, J., and Stiefelhagen, R. (2019). UAV-

net: A fast aerial vehicle detector for mobile platforms. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, pages 0±0.

Ringwald et. al., T. (2019). UAV-Net: A Fast Aerial Vehicle Detector for Mobile Plat-

forms. In IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 544±552. IEEE Computer Society.

Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi, C. (2016). Performance mea-

sures and a data set for multi-target, multi-camera tracking. In European conference

on computer vision, pages 17±35. Springer.

Roberts, W., Griendling, K., Gray, A., and Mavris, D. (2016). Unmanned vehicle col-

laboration research environment for maritime search and rescue. In 30th Congress of

the International Council of the Aeronautical Sciences. International Council of the

Aeronautical Sciences (ICAS) Bonn, Germany.

Roth, K., Pemula, L., Zepeda, J., SchÈolkopf, B., Brox, T., and Gehler, P. (2021). Towards

total recall in industrial anomaly detection. arXiv preprint arXiv:2106.08265.

Ruano, A. (2022a). DeepGTAV Code. https://github.com/aitorzip/

DeepGTAV. Accessed: 2022-08-01.

Ruano, A. (2022b). Deepgtav-vpilot code. https://github.com/aitorzip/VPilot. Accessed:

2022-08-01.

Rudol, P. and Doherty, P. (2008). Human body detection and geolocalization for uav

search and rescue missions using color and thermal imagery. In 2008 IEEE aerospace

conference, pages 1±8. Ieee.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition

challenge. International journal of computer vision, 115(3), 211±252.

Saligrama, V. and Chen, Z. (2012). Video anomaly detection based on local statistical

aggregates. In 2012 IEEE conference on computer vision and pattern recognition,

pages 2112±2119. IEEE.

San, K. T., Mun, S. J., Choe, Y. H., and Chang, Y. S. (2018). Uav delivery monitoring

system. In MATEC Web of Conferences, volume 151, page 04011. EDP Sciences.

Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre, T., Khan, A., Vukadinovic,

V., Bettstetter, C., Hellwagner, H., and Rinner, B. (2015). An autonomous multi-uav

system for search and rescue. In Proceedings of the First Workshop on Micro Aerial

Vehicle Networks, Systems, and Applications for Civilian Use, pages 33±38.

136

https://github.com/aitorzip/DeepGTAV
https://github.com/aitorzip/DeepGTAV

Bibliography

Ševo, I. and AvramoviÂc, A. (2016). Convolutional neural network based automatic object

detection on aerial images. IEEE geoscience and remote sensing letters, 13(5), 740±

744.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018). Airsim: High-fidelity visual and

physical simulation for autonomous vehicles. In Field and service robotics, pages

621±635. Springer.

Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., and Naemura, T. (2020).

Cattle detection and counting in uav images based on convolutional neural networks.

International Journal of Remote Sensing, 41(1), 31±52.

Singh, B. and Davis, L. S. (2018). An Analysis of Scale Invariance in Object Detection

- SNIP. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3578±3587. IEEE Computer Society.

Sommer, L. W., Schuchert, T., and Beyerer, J. (2017). Fast deep vehicle detection in

aerial images. In 2017 IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 311±319. IEEE.

Srivastava, K., Singh, A. K., and Hegde, G. M. (2019). Multi modal semantic segmenta-

tion using synthetic data. arXiv preprint arXiv:1910.13676.

Staar, B., LÈutjen, M., and Freitag, M. (2019). Anomaly detection with convolutional

neural networks for industrial surface inspection. Procedia CIRP, 79, 484±489.

Steinert, F. and Stabernack, B. (2022). Architecture of a low latency h. 264/avc video

codec for robust ml based image classification. Journal of Signal Processing Systems,

pages 1±16.

Sultani, W., Chen, C., and Shah, M. (2018). Real-world anomaly detection in surveil-

lance videos. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 6479±6488.

Suzuki, S. et al. (1985). Topological structural analysis of digitized binary images by

border following. Computer vision, graphics, and image processing, 30(1), 32±46.

Suzuki, T., Takahashi, Y., and Amano, Y. (2016). Precise uav position and attitude

estimation by multiple gnss receivers for 3d mapping. In Proceedings of the 29th

International Technical Meeting of the Satellite Division of The Institute of Navigation

(ION GNSS+ 2016), pages 1455±1464.

Szymanowicz, S., Charles, J., and Cipolla, R. (2022a). Discrete neural representations

for explainable anomaly detection. In Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision (WACV), pages 148±156.

137

Bibliography

Szymanowicz, S., Charles, J., and Cipolla, R. (2022b). Discrete neural representations

for explainable anomaly detection. In Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision, pages 148±156.

Tan, M., Pang, R., and Le, Q. V. (2020a). Efficientdet: Scalable and efficient object

detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 10781±10790.

Tan, M., Pang, R., and Le, Q. V. (2020b). EfficientDet: Scalable and efficient object

detection. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 10778±10787.

Tang, P., Wang, X., Wang, A., Yan, Y., Liu, W., Huang, J., and Yuille, A. (2018). Weakly

supervised region proposal network and object detection. In Proceedings of the Euro-

pean conference on computer vision (ECCV), pages 352±368.

Tian, Z., Shen, C., Chen, H., and He, T. (2019). Fcos: Fully convolutional one-stage ob-

ject detection. In Proceedings of the IEEE/CVF international conference on computer

vision, pages 9627±9636.

Tian et. al., Z. (2019). FCOS: Fully convolutional one-stage object detection. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 9626±9635.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain

randomization for transferring deep neural networks from simulation to the real world.

In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS),

pages 23±30. IEEE.

Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., and Chandraker, M.

(2018). Learning to adapt structured output space for semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

7472±7481.

Tsouros, D. C., Bibi, S., and Sarigiannidis, P. G. (2019). A review on uav-based appli-

cations for precision agriculture. Information, 10(11), 349.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W. (2013). Selective

search for object recognition. International journal of computer vision, 104(2), 154±

171.

Unel et. al., O. (2019). The power of tiling for small object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

Van de Sande, K. E., Uijlings, J. R., Gevers, T., and Smeulders, A. W. (2011). Segmen-

tation as selective search for object recognition. In 2011 international conference on

computer vision, pages 1879±1886. IEEE.

138

Bibliography

van Gemert, J. C., Verschoor, C. R., Mettes, P., Epema, K., Koh, L. P., and Wich, S.

(2014). Nature conservation drones for automatic localization and counting of ani-

mals. In European Conference on Computer Vision, pages 255±270. Springer.

Vanholder, H. (2016). Efficient inference with tensorrt. In GPU Technology Conference,

volume 1, page 2.

Varga, L. A. and Zell, A. (2021). Tackling the background bias in sparse object detection

via cropped windows. arXiv preprint arXiv:2106.02288.

Varga, L. A., Kiefer, B., Messmer, M., and Zell, A. (2021). Seadronessee: A maritime

benchmark for detecting humans in open water. arXiv preprint arXiv:2105.01922.

Varga, L. A., Kiefer, B., Messmer, M., and Zell, A. (2022). Seadronessee: A maritime

benchmark for detecting humans in open water. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV), pages 2260±2270.

Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., and Schmid,

C. (2017). Learning from synthetic humans. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 109±117.

VenJam1n (2022). Gtav mod - no chromatric aberration and lens distortion.

https://de.gta5-mods.com/misc/no-chromatic-aberration-lens-distortion-1-41. Ac-

cessed: 2022-08-01.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al. (2018). Deep

learning for computer vision: A brief review. Computational intelligence and neuro-

science, 2018.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-

of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint

arXiv:2207.02696.

Wang, X., Cai, Z., Gao, D., and Vasconcelos, N. (2019a). Towards universal object

detection by domain attention. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7289±7298.

Wang, Y., Wang, C., Zhang, H., Dong, Y., and Wei, S. (2019b). A sar dataset of ship

detection for deep learning under complex backgrounds. remote sensing, 11(7), 765.

Wei, Z., Yao, R., Kang, J., Chen, X., and Wu, H. (2022). Three-dimensional spectrum

occupancy measurement using uav: Performance analysis and algorithm design. IEEE

Sensors Journal, 22(9), 9146±9157.

139

Bibliography

Wu, X., Li, W., Hong, D., Tao, R., and Du, Q. (2021). Deep learning for unmanned aerial

vehicle-based object detection and tracking: A survey. IEEE Geoscience and Remote

Sensing Magazine, 10(1), 91±124.

Wu, Z., Suresh, K., Narayanan, P., Xu, H., Kwon, H., and Wang, Z. (2019). Delving

into robust object detection from unmanned aerial vehicles: A deep nuisance disen-

tanglement approach. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 1201±1210.

Wu et. al., Z. (2019). Delving into robust object detection from unmanned aerial vehicles:

A deep nuisance disentanglement approach. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1201±1210.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and

Zhang, L. (2018). Dota: A large-scale dataset for object detection in aerial images.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3974±3983.

Xie, S., Girshick, R., DollÂar, P., Tu, Z., and He, K. (2017). Aggregated residual transfor-

mations for deep neural networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1492±1500.

Yang, F., Fan, H., Chu, P., Blasch, E., and Ling, H. (2019a). Clustered object detection

in aerial images. In Proceedings of the IEEE International Conference on Computer

Vision, pages 8311±8320.

Yang, X., Lin, D., Zhang, F., Song, T., and Jiang, T. (2019b). High accuracy active stand-

off target geolocation using uav platform. In 2019 IEEE International Conference on

Signal, Information and Data Processing (ICSIDP), pages 1±4. IEEE.

Yang et. al., F. (2019). Clustered Object Detection in Aerial Images. In Proceedings of

the IEEE International Conference on Computer Vision, pages 8310±8319. Institute

of Electrical and Electronics Engineers Inc.

Yeong, S., King, L., and Dol, S. (2015). A review on marine search and rescue operations

using unmanned aerial vehicles. International Journal of Marine and Environmental

Sciences, 9(2), 396±399.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features

in deep neural networks? arXiv preprint arXiv:1411.1792.

Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2018). Deep layer aggregation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

2403±2412.

140

Bibliography

Yu, W., Lu, Y., Easterbrook, S., and Fidler, S. (2020). Efficient and information-

preserving future frame prediction and beyond. arXiv preprint arXiv:1704.04899.

Yu et al., H. (2020). The Unmanned Aerial Vehicle Benchmark: Object Detection, Track-

ing and Baseline. International Journal of Computer Vision, 128(5), 1141±1159.

Yue, X., Wu, B., Seshia, S. A., Keutzer, K., and Sangiovanni-Vincentelli, A. L. (2018). A

lidar point cloud generator: from a virtual world to autonomous driving. In Proceed-

ings of the 2018 ACM on International Conference on Multimedia Retrieval, pages

458±464.

Zhang, H., Wang, Y., Dayoub, F., and Sunderhauf, N. (2021a). Varifocalnet: An iou-

aware dense object detector. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 8514±8523.

Zhang, R. and Ding, J. (2012). Object tracking and detecting based on adaptive back-

ground subtraction. Procedia Engineering, 29, 1351±1355.

Zhang, S., Chi, C., Yao, Y., Lei, Z., and Li, S. Z. (2020a). Bridging the gap between

anchor-based and anchor-free detection via adaptive training sample selection. In Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 9756±9765.

Zhang, T., Zhang, X., Li, J., Xu, X., Wang, B., Zhan, X., Xu, Y., Ke, X., Zeng, T., Su, H.,

et al. (2021b). Sar ship detection dataset (ssdd): Official release and comprehensive

data analysis. Remote Sensing, 13(18), 3690.

Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2020b). Fairmot: On the fairness

of detection and re-identification in multiple object tracking. arXiv e-prints, pages

arXiv±2004.

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang,

X. (2022a). ByteTrack Github Repository. https://github.com/ifzhang/

ByteTrack. Accessed: 2022-11-09.

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang,

X. (2022b). Bytetrack: Multi-object tracking by associating every detection box. In

European Conference on Computer Vision, pages 1±21. Springer.

Zhao, H., Zhang, H., and Zhao, Y. (2023). Yolov7-sea: Object detection of maritime uav

images based on improved yolov7. In Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision (WACV) Workshops.

Zhao, X., Pu, F., Wang, Z., Chen, H., and Xu, Z. (2019a). Detection, tracking, and

geolocation of moving vehicle from uav using monocular camera. IEEE Access, 7,

101160±101170.

141

https://github.com/ifzhang/ByteTrack
https://github.com/ifzhang/ByteTrack

Bibliography

Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., and Hua, X.-S. (2017). Spatio-temporal au-

toencoder for video anomaly detection. In Proceedings of the 25th ACM international

conference on Multimedia, pages 1933±1941.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019b). Object detection with deep

learning: A review. IEEE transactions on neural networks and learning systems,

30(11), 3212±3232.

Zhong, Z., Sun, L., and Huo, Q. (2019). An anchor-free region proposal network for

faster r-cnn-based text detection approaches. International Journal on Document

Analysis and Recognition (IJDAR), 22(3), 315±327.

Zhou, H., Yuan, Y., and Shi, C. (2009). Object tracking using sift features and mean

shift. Computer vision and image understanding, 113(3), 345±352.

Zhou, J. T., Du, J., Zhu, H., Peng, X., Liu, Y., and Goh, R. S. M. (2019a). Anoma-

lynet: An anomaly detection network for video surveillance. IEEE Transactions on

Information Forensics and Security, 14(10), 2537±2550.

Zhou, X., Wang, D., and KrÈahenbÈuhl, P. (2019b). Objects as points. arXiv preprint

arXiv:1904.07850.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017a). Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2223±2232.

Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Nie, Q., Cheng, H., Liu, C., Liu, X.,

et al. (2018a). Visdrone-det2018: The vision meets drone object detection in image

challenge results. In Proceedings of the European Conference on Computer Vision

(ECCV) Workshops, pages 0±0.

Zhu, P., Wen, L., Bian, X., Ling, H., and Hu, Q. (2018b). Vision meets drones: A

challenge. arXiv preprint arXiv:1804.07437.

Zhu, P., Du, D., Wen, L., Bian, X., Ling, H., Hu, Q., Peng, T., Zheng, J., Wang, X.,

Zhang, Y., et al. (2019). Visdrone-vid2019: The vision meets drone object detection

in video challenge results. In Proceedings of the IEEE/CVF International Conference

on Computer Vision Workshops, pages 0±0.

Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., and Ling, H. (2020a). Vision meets drones:

Past, present and future. arXiv preprint arXiv:2001.06303.

Zhu, X., Xiong, Y., Dai, J., Yuan, L., and Wei, Y. (2017b). Deep feature flow for video

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2349±2358.

142

Bibliography

Zhu, X., Wang, Y., Dai, J., Yuan, L., and Wei, Y. (2017c). Flow-guided feature aggrega-

tion for video object detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 408±417.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2020b). Deformable

detr: Deformable transformers for end-to-end object detection. arXiv preprint

arXiv:2010.04159.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2020). A

comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43±76.

Zhuang, X. and Haralick, R. M. (1986). Morphological structuring element decomposi-

tion. Computer vision, graphics, and image processing, 35(3), 370±382.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background sub-

traction. In Proceedings of the 17th International Conference on Pattern Recognition,

2004. ICPR 2004., volume 2, pages 28±31. IEEE.

Zou, Y., Yu, Z., Kumar, B., and Wang, J. (2018). Unsupervised domain adaptation for se-

mantic segmentation via class-balanced self-training. In Proceedings of the European

conference on computer vision (ECCV), pages 289±305.

143

