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Abstract

With the increasing technologization of society, we use machines for more and more
complex tasks, ranging from driving assistance to video conferencing, to exploring planets.
The scene representation, i.e., how sensory data is converted to compact descriptions of
the environment, is a fundamental property for enabling the success but also the safety of
such systems. A promising approach for developing robust, adaptive, and powerful scene
representations are learning-based systems that can adapt themselves from observations.
Indeed, deep learning has revolutionized computer vision in recent years. In particular, better
model architectures, large amounts of training data, and more powerful computing devices
enabled deep learning systems with unprecedented performance, and they now set the
state-of-the-art in many benchmarks, ranging from image classification, to object detection,
to semantic segmentation. Despite these successes, the way these systems operate is still
fundamentally different from human cognition. In particular, most approaches operate
in the 2D domain, while humans understand that images are projections of the three-
dimensional world. In addition, they often do not follow a compositional understanding
of scenes, which is fundamental to human reasoning. In this thesis, our goal is to develop
scene representations that enable autonomous agents to navigate and act robustly and
safely in complex environments while reasoning compositionally in 3D. To this end, we
first propose a novel output representation for deep learning-based 3D reconstruction and
generative modeling. We find that, compared to previous representations, our neural field-
based approach does not require 3D space to be discretized achieving reconstructions at
arbitrary resolution with a constant memory footprint. Next, we develop a differentiable
rendering technique to infer these neural field-based 3D shape and texture representations
from 2D observations and find that this allows us to scale to more complex, real-world
scenarios. Subsequently, we combine our novel 3D shape representation with a spatially
and temporally continuous vector field to model non-rigid shapes in motion. We observe
that our novel 4D representation can be used for various discriminative and generative tasks,
ranging from 4D reconstruction to 4D interpolation, to motion transfer. Finally, we develop
an object-centric generative model that can generate 3D scenes in a compositional manner
and that allows for photorealistic renderings of generated scenes. We find that our model
not only improves image fidelity but also enables more controllable scene generation and
image synthesis than prior work while training only from raw, unposed image collections.
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Kurzfassung

Mit der zunehmenden Technologisierung der Gesellschaft nutzen wir Maschinen fiir immer
komplexere Aufgaben, die sich von Fahrassistenz {iber Videokonferenzen zur Erkundung
neuer Planeten erstrecken. Die Repriésentation einer Szene, i.e., wie Sensordaten in kompak-
te Beschreibungen der Umwelt umgewandelt werden, ist eine grundlegende Eigenschaft fiir
den Erfolg wie auch die Sicherheit solcher Systeme. Ein vielversprechender Ansatz fiir die
Entwicklung robuster, adaptiver und leistungsstarker Reprisentationen sind lern-basierte
Systeme, die sich auf Grundlage von Beobachtungen selbst anpassen konnen. In der Tat hat
Deep Learning den Bereich des maschinellen Sehens in den letzten Jahren revolutioniert. Be-
sonders haben bessere Modellarchitekturen, mehr Trainingsdaten und bessere Rechengerite
lern-basierte Methoden mit noch nie dagewesenen Leistungen erméglicht und sie setzen nun
die neuen Standards in Benchmarks, die von Bildklassifizierung iiber die Objekterkennung
bis zur semantischen Segmentierung reichen. Trotz dieser Erfolge unterscheidet sich die
Funktionsweise dieser Systeme meistens grundlegend von der menschlichen Erkenntnis. Ins-
besondere operieren die meisten Ansitze zweidimensional, wihrend der Mensch Bilder als
Projektionen der dreidimensionalen Welt versteht. Dariiber hinaus folgen sie oft nicht dem
kompositorischen Verstindnis von Szenen, das fiir das menschliche Denken grundlegend ist.
Das Ziel dieser Arbeit ist, Repridsentationen von Szenen zu entwickeln, die es autonomen
Agenten ermoglichen, in komplexen Umgebungen robust und sicher zu navigieren und
zu handeln, wéhrend sie ihre Umwelt in 3D und kompositorisch begreifen konnen. Mit
diesem Ziel entwickeln wir zunéchst eine neuartige 3D Reprisentation fiir Deep Learning-
basierte 3D Rekonstruktion und generative Modellierung. Wir stellen fest, dass unser auf
neuronalen Netzen basierender Ansatz im Vergleich zu vorherigen Reprisentationen keine
Diskretisierung des 3D Raums erfordert und Rekonstruktionen mit beliebiger Auflosung und
konstantem Speicherbedarf ermoglicht. Im Anschluss entwickeln wir ein differenzierbares
Rendering-Verfahren, um diese 3D Geometrie und Texturreprédsentationen von 2D Informa-
tionen zu inferieren. Wir zeigen auf, dass dieser Ansatz eine Skalierung auf komplexere,
reale Szenen ermoglicht. Anschlieend kombinieren wir unsere neuartige 3D Geometrie-
darstellung mit einem rdumlich und zeitlich kontinuierlichen Vektorfeld, um nicht-starre
3D Strukturen in Bewegung zu modellieren. Unsere neuartige 4D Darstellung kann fiir
verschiedene diskriminative und generative Anwendungen verwendet werden, welche von
der 4D Rekonstruktion iiber die 4D Interpolation bis hin zur Bewegungsiibertragung reichen.
Darauf folgend entwickeln wir ein objektzentriertes generatives Modell, das 3D Szenen auf
kompositorische Weise erzeugen kann und zudem fotorealistische Renderings der erzeugten
Szenen ermoglicht. Wir stellen fest, dass unser Modell nicht nur die Bildqualitét verbessert,
sondern auch eine besser kontrollierbare Generierung von Szenen und anschliefende Bild-
synthese dieser Szenen ermoglicht, wihrend nur Datensétze von Bildern ohne Annotationen
fiir das Training benotigt werden.
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Notation and Symbols

General Notation

Scalars Regular (greek) lower case a, b, c, A
Scalar-valued functions Regular (greek) lower case f.8h
Vectors Bold (greek) lower cases a,b,c A
Vector-valued functions Bold (greek) lower cases f,g.h
Matrices Bold upper case A B C X A
Sets Calligraphic upper case A, B, C
Distributions Calligraphic upper case U, N()
Indexing
i First-order index i € {1,...,N}
J First-order index j € {1,...,M}
k First-order index k € {1,...,K}
Spaces
N Natural numbers
NF Natural numbers greater than 0
R Real numbers
Rt Real numbers greater than 0
[a,D] Closed interval subset of R
(a,b) Open interval subset of R
[a,b), (a,b] Half-open interval subset of R
X Input data space
Z Latent space

Analysis and Linear Algebra

Vf Gradient of function f



Notation and Symbols

det(-)

Total derivative of f wrt. ¢

Partial derivative of f wrt. ¢
Determinant

Deep Learning and Deep Generative Modeling

6,9 Learnable network parameters

Go Deep generator model with learnable parameters 0

Dy Deep discriminator model with learnable parameters ¢

Ey Deep encoder model with learnable parameters ¢
Probability

() Probability

log p(+) Log probability

N() Gaussian distribution

U(-) Uniform distribution

KL(-|]-) Kullback-Leibler (KL) divergence

po(z) Prior distribution on Z

pp(X) Data distribution on X

g4 (2[x) Posterior distribution on Z defined via the encoder Ey(x) =z ~ ¢4 (2[x)

Po(x) Generator distribution on X defined via the generator Gg(z) = X ~ pg(x|z)
Neural Fields

f Generic field

foy Generic neural field with learnable parameters 0

fo Occupancy Network with learnable parameters 0

ty Texture Field with learnable parameters 6

Vo Velocity Network with learnable parameters 6

hg Feature Field with learnable parameters 0
Geometry

p 3D Point in R?

n(-) Unit surface normal in R?



y
P
M, EF
Sy
T
Rendering

T
n.rm’ 7'L'St, n.vol
T

Scalar Voxel Grid

Point Cloud

Mesh, mesh edges, mesh faces
Implicit surface defined by function f
Level set value for implicit surfaces

Generic rendering operator

Ray marching, sphere tracing, and volume rendering operator
Neural rendering operator with learnable parameters 6
Camera intrinsics matrix in R3*3

Camera extrinsics matrix (or camera pose) in R3**

ground truth and predicted RGB image

Ray, ray origin, and ray direction

Near and far scene bounds

X1
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1 Introduction

1.1 Motivation

With the rapid progress of science, our everyday lives are more and more interconnected
with technology. Only 20 years ago, the machines people interacted with were mostly
operating independently of their surroundings like an alarm clock that always rings at a
specific time or a vending machine that always gives out the same drink for the same input
pattern. Today, our society has become more complex and the use of technology along with
it, and we now regularly use machines for tasks like video conferences, driving assistance,
exploring new planets, and more.

This development requires our machines to solve more complex problems, act more
autonomously, and have a better understanding of our world. The scene representation,
i.e., the process of converting visual sensory data into compact descriptions [67], is crucial
for the performance and safety of such systems. It defines the ability not only to parse
and reconstruct scenes from input data but also to imagine and generate new, unseen
environments. Both capabilities, i.e., imagining possible scenarios as well as accurately
understanding the surrounding environment, are equally important for building robust
systems that can be employed in the real world.

A promising way to obtain powerful scene representations are learning-based approaches,
i.e., systems that can learn and adapt themselves from observations [246]. The modern era
of deep learning was initiated by the success of Convolutional Neural Networks (CNNs)
applied to the task of image classification [138], and since then, CNNs have achieved
impressive results in many computer vision tasks ranging from image classification to object
detection, to semantic segmentation [143].

While achieving state-of-the-art performance in benchmarks like image classification,
these systems are still not able to parse and understand a scene in the way that humans do.
One key limitation is that they operate on the two-dimensional image plane. In contrast,
humans understand that images are projections of a three-dimensional world. In addition,
these systems are trained to predict predefined class labels, per-pixel semantic labels, or
object bounding boxes for an input image. They are not capable of imagining how the scene
appears from a different viewpoint, what the scene could look like with different lighting
and background, or how the scene changes when individual objects are shifted and rotated.
While these models lead to success in 2D-based computer vision tasks, they do not follow
the compositional understanding of scenes that humans naturally use.

The goal of this thesis is to develop scene representations for learning-based systems
which allow for navigating and acting safely in complex environments while reasoning
similarly to humans and adhering to fundamental properties of our world and natural scenes.
More specifically, we want to use a three-dimensional representation of scenes to be able
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to perform reasoning in 3D. Next, we want to develop learning algorithms that can be
trained from 2D data like single or multi-view images instead of requiring access to accurate
3D ground truth. Further, we want to incorporate an understanding of natural motion that
considers smoothness, locality, and correspondences. Finally, we want a system that can
not only infer representations from input data but also imagine and generate new scenes
in a compositional manner as well as synthesize photorealistic renderings of the generated
scenes.

1.2 Applications

Developing such representations enables many applications ranging from autonomous
driving to virtual reality applications, to faster and more affordable photorealistic computer
graphics. In the following, we discuss these fields of potential applications in greater detail.

Autonomous Driving A key challenge of autonomous driving is handling not only an
infinite number of different scene configurations or weather conditions but also critical
safety issues. One wrong decision of the autonomous agent can result in life-threatening
consequences for the passengers. As a result, such a system should be comprehensible
and perform reasoning similar to humans, in contrast to black-box methods that cannot be
understood nor dissected in case of wrong behavior. We identify a need for understanding
a scene in all three dimensions, and to perform reasoning in 3D as a major component of
enabling such a system. As a result, the scene representations that we develop in this thesis
can be used in autonomous driving agents that reason in 3D. In addition, the generative
model we develop in this thesis can be used as a first step towards a system that allows for
automated and fast data generation of realistic training and testing scenarios, which can in
turn be used to train and benchmark autonomous driving agents.

Virtual Reality Applications Virtual reality applications become more and more popular
across a variety of sectors including entertainment, education, and business areas. However,
the use of current systems is still limited mainly due to high costs, too complex pipelines, or
lacking realism. In this thesis, we develop techniques for inferring 3D representations from
2D data alone, e.g., single or multi-view images. As a result, the developed systems could
be used for reducing the costs and complexity of current applications that might require
additional sensory data as input. Further, we aim to develop a system that can produce
photorealistic renderings of generated scenes. This can not only increase the realism of
current applications but also reduce labor costs as content generation is fully automated.

Photorealistic Computer Graphics The traditional computer graphics pipeline involves
designers that first create 3D assets by hand, then arrange 3D objects in the scene, and
finally define the camera viewpoint, materials, and lighting to render an image of the scene.
This process is labor- and resource-intense, and while potentially achieving photorealistic
renderings, a generated video clip might still lack realism, e.g., due to incorrect appearances
in 3D or unrealistic motion. The systems we develop in this thesis might serve as a first
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approach towards achieving a simpler, more affordable, and more realistic content generation
pipeline. In addition, the 3D representations that we develop in this thesis can be used to
improve individual components of the traditional generation pipeline, e.g., by guiding the
3D asset generation process, helping creators with object arrangements, or speeding up the
rendering time.

1.3 Problem Statement

In this thesis, we are interested in developing representations that allow learning-based
systems to reconstruct and understand scenes from visual sensory data as well as to generate
new, unseen scenes with control over the generative process. Further, we want the system to
learn these representations with as little supervision as possible to enable scalability and
generalization. To this end, we define the following questions that we address in this thesis:

1. How should 3D geometry be represented in learning-based systems?

2. How can these 3D representations be inferred when only 2D supervision, e.g., in the
form of posed single- or multi-view images, is available?

3. How can this representation of 3D geometry be extended to 4D to represent deforming
3D shapes, while considering the smoothness and locality of natural motion?

4. How can we develop an object-centric generative model of 3D representations that al-
lows for controlling the camera viewpoint as well as the location, rotation, appearance
and other properties of individual objects in the scene?

1.4 Contributions
The contributions of this thesis are as follows:

* A novel learning-based 3D reconstruction system that uses a neural field representing
occupancy in 3D space as 3D representation. Experimental evaluation shows that it
compares favorably against previous state-of-the-art methods that use voxel, point
cloud, or mesh-based 3D representations.

* A novel differentiable rendering technique that allows training neural fields that
represent textured 3D objects from single or multi-view images instead of requiring
3D supervision. We observe that we achieve similar performance to methods having
access to 3D supervision and that we outperform other 2D supervised methods.
Our method further enables textured 3D reconstruction from real-world multi-view
imagery.

* A novel 4D neural field-based representation for 3D shapes in motion. We combine a
neural field representing the occupancy in 3D space with a neural temporal-dependent
vector field that describes the motion of the shape over time. We find that our novel
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learning-based system outperforms baselines and allows for a variety of applications
ranging from 4D reconstruction to 4D interpolation, to motion transfer.

* A compositional and 3D-aware generative model that can be trained from raw, un-
posed image collections. Our method allows for generating new scenes with explicit
control over not only the camera viewpoint, but also the shape, size, appearance, posi-
tion, and rotation of individual objects in the scene. Experimental evaluation shows
that we further achieve higher image fidelity than prior state-of-the-art 3D-aware
generative models.

Authorship The above-mentioned contributions are part of four peer-reviewed research
papers [179, 197, 198, 200] published at computer vision conferences. The author of
this thesis additionally made contributions to another nine peer-reviewed and published
projects [199, 201, 203, 204, 219, 221, 255, 256, 341] that are not included in the main
part of the thesis. Please see Appendix A for a credits discussion and Appendix B for a full
publication list and short discussions on specific contribution details.

1.5 Outline

We start by introducing common 3D representations and key concepts of deep generative
modeling in Chapter 2. Next, we review related work on 3D reconstruction and generative
modeling in Chapter 3. In Chapter 4, we introduce the concept of neural fields and discuss
their parameterization and rendering techniques. Subsequently, we investigate how well
neural fields are suited for learning-based 3D reconstruction in Chapter 5. We then develop
a differentiable surface rendering technique for neural fields in Chapter 6. Next, we extend
neural fields to 4D reconstruction in Chapter 7. In Chapter 8, we develop a compositional and
3D-aware deep generative model that can be trained from raw, unposed image collections.
We conclude the thesis and discuss broader future research perspectives in Chapter 9.
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A key property for machines to navigate and act safely in our environments is the capability
of accurate three-dimensional reasoning. As a result, the representation of 3D geometry is a
crucial part of the systems that we develop in this thesis. Therefore, this background chapter
first reviews common 3D representations used in computer vision algorithms in Section 2.1.
Note that our focus lies on the 3D representations themselves rather than data structures
that can be used to store them. Further, we cover core principles of generative modeling
in Section 2.2 as our goal is a model that can not only infer scenes from visual sensory data
but also imagine and generate new scenes.

2.1 3D Representations

Computer vision investigates how machines can infer information and gain a high-level
understanding from images. Hence, imagery data is the most important data type in the field.
A property of images that is often underestimated is that the representation of images is
almost always the same: color images are represented as a grid of H X W x 3 values where
H indicates the height and W the width of the grid. The three-dimensional vector for each
position is called pixel and defines the red, green, and blue components of the color value
at that position. In contrast, the representation of 3D geometry is less obvious, and many
different approaches are used across the field. In the following, we review the most common
3D representations and analyze their key properties (see Figure 2.1 for an overview). Note
that our focus lies on the 3D representations themselves rather than data structures that
can be used to store them. For example, a voxel grid can be used to store any quantity in
discretized cells in R3, but here we focus on how it is used to represent 3D geometry in
common computer vision applications.

2.1.1 Voxel Grids

Definition Voxel grids extend the pixel-based image representation to the 3D world.
Similar to how RGB color values are stored in a grid structure to represent an image,
voxel-based representations store binary or scalar values in a three-dimensional regular grid
to represent 3D geometry. More specifically, we define a generic (scalar) voxel grid V as
the set of H x W x D one-dimensional scalar values:

V={six€Rli=1,...HANj=1,....WAk=1,...,D} (2.1)

where H,W,D € N are positive natural numbers. In many cases, H, W, and D are assumed
to be equal. The positions of the voxel cells are spaced equal-distantly across 3D space in all



2 Background

o Lofolofofofof p.:{.pi}i
° ®
0 0 ) @
0 0 ® ®
0 0 ©
0 0 ° °
0 0 © )
0 0 ° o ®
@ ® ®
0 0
0f0j0f{0f0O]0
(a) Binary Voxel Grid (b) Binary Octree (c) Point Cloud
M={P,E F} fP)=0 o(p)
1.0
.
(d) Mesh (e) Signed Distance Field (f) Volume Density Field

Figure 2.1: Common 3D Representations in Computer Vision. In contrast to image data,
there is no canonical 3D representation adopted in the computer vision community. As
a result, different 3D representations are commonly used ranging from voxels (2.1a), to
octrees (2.1b), to point clouds (2.1c), to meshes (2.1d), to signed distance fields (2.1e), and
to volume density fields (2.1f), all representing a cricle in the examples above.

three directions. As each scalar value s; ;. is associated with one voxel cell, their positions do
not need to be explicitly stored. From Equation 2.1 we can see that the memory consumption
grows cubically with the height, width, and depth dimensions. The most common choices
for the type of stored values s; ;. are binary occupancy values and signed distances. Binary
occupancy grids store a binary value per voxel cell, indicating whether it is empty (zero)
or occupied (one). Grids of signed distances store a floating-point number indicating the
distance of the cell center to the nearest surface of the 3D geometry together with a sign
indicating whether the cell is inside (negative sign) or outside (positive sign) of the 3D
shape.

Discussion A key property of voxel grids is that values, e.g., binary occupancies or signed
distances, are stored in a regular grid. As a result, space is partitioned into equally-sized cells
such that a similar capacity is assigned to each part of space. However, when considering
natural 3D objects and shapes, many consist of areas of low frequency with simple structures
and areas of high frequency with fine details (see Figure 2.2). Hence, different parts of the
3D object would require different capacities but this cannot be modeled with a regular voxel
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(a) 323 (b) 643 (c) 1283 (d) 256°

Figure 2.2: Voxels as 3D Representation. In a binary voxel-based presentation, 3D space
is discretized into a regular grid of voxel cells, and each cell is marked either as occupied
or empty. Voxel-based representations require high grid resolutions to be able to represent
fine shape details. Above we show path-traced renderings of voxelizations at different grid
resolutions for the Armadillo shape from the Standford 3D Scanning Repository [53].

grid.

2.1.2 Octrees

Definition Inspired by the observation that capacity should be spent adaptively instead
of regularly in 3D space, octrees [175] equip regular voxel grids with a mechanism to
spend different capacity at different parts of space. It partitions 3D space by recursively
subdividing cells into 8 octants. The key idea is that the degree of subdividing can be
different for different areas of 3D space. For example, a fine surface area of a 3D shape
requires multiple subdivisions, while empty space can be represented by a large empty cell.
More specifically, an octree is a tree structure in which each node has either no or exactly 8
children. When representing 3D shapes, its generation process can be described as follows:

1. Initialize the root node.

2. Mark current leave nodes as “partially occupied”, “occupied”, or “empty”.
3. Subdivide leave nodes that are marked as partially occupied into 8 cells.
4. Repeat 2. and 3. until all nodes are marked either “occupied” or “empty”.

See Figure 2.3 for an illustration of this process. In practice, a maximum number of
repetitions dm,x € N7 is set which defines the maximum depth of the tree. We can see
that the memory requirements for storing an octree are directly correlated with dpax and
the complexity of the represented shape itself. This is different from voxels where the
memory requirements only depend on the grid resolution. The comparison of Figure 2.1a
and Figure 2.1b shows that, in this example, the octree representation stores a similar
number of values while representing the shape (a circle) more accurately.

Discussion Although octrees allow for spending different capacities in different areas of
3D space, values are still stored in grids. As a result, the resolution of represented geometry
is always bounded by the chosen grid resolution and the maximum depth dpax of the octree.
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Figure 2.3: Illustration of an Octree. An octree in 3D space is initialized with a root node
corresponding to a voxel cell. Next, it is subdivided into 8 cells and each cell is marked
as “partially occupied” (red), , or “empty” (blue). In a subsequent step,
each cell marked as partially occupied is again subdivided into 8 cells. These marking and
subdividing steps are repeated until all cells are either marked as occupied or empty, or
until a fixed number of maximum steps d,.. € N is reached, where d corresponds to the
maximum depth of the tree.

2.1.3 Point Clouds

Definition Another form of discretization is to represent 3D geometry by a finite set of
3D surface points. More specifically, we define a point cloud P as

P={pieR’|i=1,....Np} (2.2)

where the number of surface points Np € N is a positive natural number. The points are
assumed to lie on the represented surface and, depending on the application, the point cloud
is assumed to approximately cover the entire object.

Discussion The coordinates of the surface points are not required to be in a predefined cell
structure and hence capacity can be spent dynamically by design. However, point clouds
also discretize the 3D geometry: The number of surface points needs to be finite. Further,
as point clouds represent 3D geometry in the form of point sets, they do not store any
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information about their relationship or how they are connected. This can be problematic,
e.g., for graphics applications where surface information is required for calculating accurate
light bounces and reflections. Further, trivially rendering a point cloud to the 2D image
plane would result in holes and missing regions in the rendering.

2.1.4 Polygon Meshes

Definition A polygon mesh extends the point cloud surface representation with connectiv-
ity information. More specifically, a triangle mesh M is defined as a set of vertices, edges,
and faces that describe a 3D object

M={P,E,F} (2.3)
where P is a set of surface points as defined in Equation 2.2 and

Ec{(i,j)|lpup; P NjF#k} (2.4)
Fc{(i,jk)|e e e €ENi#jAj#k} (2.5)

where we assume a triangle mesh for simplicity. The definition can naturally be extended to
polygon meshes by allowing for faces spanned over more than three edges.

Discussion Mesh-based representations are widely used across a variety of computer
vision and graphics applications. However, they still require 3D space to be discretized
into a finite number of vertices, edges, and faces. Further, as we will see later in Chapter 5,
meshes are hard to be expressed by neural networks such that most vision applications
require template meshes that are deformed to represent a target shape, leading to topology
restrictions and reduced generalizability.

2.1.5 Implicit Surfaces

Definition The representations discussed so far have in common that they discretize the
3D shape in some way. In contrast, implicit surfaces do not require a discretization step
(see Figure 2.4). More specifically, let

f:RP SR (2.6)

be a differentiable function mapping every point in R? to a scalar value. We define the
implicit surface Sy as

S;={peR’|f(p)=1} whereteR (2.7)

Common choices for 7 are 0, e.g., when f represents signed distances, or 0.5 when f repre-
sents occupancy probabilities. In these cases, the function f is often referred to as a signed
distance field or an occupancy field. As implicit surfaces are described by differentiable
functions, their derivatives often provide additional information about the 3D shape. For
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Figure 2.4: Examples of Implicit Surfaces. We show 2D examples of surfaces defined by
implicit functions. The first function in Figure 2.4a is a signed distance function and the last
function in Figure 2.4c is an occupancy probability function.

example, the surface normal n(p) € R?, i.e., a unit vector perpenticular to the surface at
point p € R3, is given by the normalized gradient when f is a signed distance field

n(p)= @) @8

V£ ()l
In the case of an occupancy field, the normal is given by the negative of the normalized
gradient. Further, the chain rule can be used to differentiate implicit functions via implicit
differentiation. For example, let’s assume our goal is to differentiate the implicit function
f(p) given by an equation g(p, f(p)). Then, we first calculate the roral derivative of g
dg _dg  dg df _

a aptarap " 29

where d¢/ap indicates the total and 9¢/9p the partial derivative. We can then rearrange the

equation and obtain
af dg [(dg\~ :
Ip _Tp‘ (af) 2.10)

As we can see, we obtain the derivative of f by using implicit differentiation without needing
to find an explicit expression for f. Hence, this technique can be used when it is not possible
or very hard to obtain an explicit formula for f. We will see in Chapter 6 that this idea
allows us to derive gradient update rules we need for the optimization of neural networks
that represent implicit surfaces when only 2D images are used as supervision.

Discussion A key difference between implicit surfaces and the previous representations
is that the surface is given implicitly. If an application requires an explicit representation,
e.g., in the form of a surface point cloud or a mesh, additional processing, e.g., in the form
of marching cubes, needs to be performed. Further, all representations including implicit

10
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surfaces assume the existence of solid surfaces, and effects like transparency cannot be
modeled. As a result, they can only represent scenes consisting of non-transparent objects
and are not able to model phenomena like clouds, fog, flames, or dust.

2.1.6 Volume Density Fields

Definition In contrast to previous representations, volume density fields do not assume
that surfaces are perfectly solid and allow for modeling transparent or translucent objects
as well. More specifically, in a volume density field, a density o(p) € [0,<0) is assigned to
each point in 3D space p € R:

6:R>—[0,%), p— o(p) Q.11)

This volume density formulation originates from volume scatting in physics [38]. Since its
introduction in the computer graphics literature [20, 117, 147], it is usually discussed in the
context of volume rendering, i.e., how these volume density-based representations can be
rendered to the image plane. The volume density 6 (p) can be understood as the differential
probability of a ray terminating at location p € R* [183].

Discussion Volume density fields require additional processing in case an explicit shape
representation is needed, similar to implicit surfaces. Further, while the density-based repre-
sentation allows for modeling transparent and translucent effects, it might also introduce
more ambiguity when approximating 3D representations from sparse observations.

2.2 Deep Generative Modeling

Representing 3D shapes and inferring them from input data is one of the capabilities
we require our model to have. However, purely discriminative models that predict one
output or label for an input signal are not our end goal. The tasks our model should
solve, e.g., inferring a 3D scene representation from sparse data, are ill-posed, and there
exist more valid solutions than only one. Further, the ability to generate new data points
would enable powerful applications such as data generation pipelines for other supervised
models or automatic content creation for graphics software. This capability of not only
discriminating between different data points but also generating unseen instances is also
closer to human behaviour [143]. Therefore, generative models are a promising model
class for our desired system, in particular deep generative models as they allow, in contrast
to more classical statistical models, for drawing realistic samples from high-dimensional
data spaces (see Figure 2.5). In the following, we first introduce basic concepts of deep
generative modeling and then review two of the most popular approaches.

11
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Figure 2.5: Samples from a GMM, VAE, and GAN Model. While classical statistical
models like Gaussian Mixture Models (GMMs) have rather limited data generation capa-
bilities in high dimensional spaces, deep generative models like Variational Autoencoders
(VAEs) [129] or Generative Adversarial Networks (GANs) [85] allow for drawing realistic
samples after optimization. Above we show MNIST [142] samples generated by the respec-
tive model with rough optimization times in brackets (implemented in JAX [26]). For the
GMM, we use 10 mixture components, and for the VAE and GAN, we use a 10-dimensional
latent space and fully-connected neural networks with 5 hidden layers of dimension 512
and ReLU [191] activation.

2.2.1 Introduction

We define a (deep) generative model as a function
Gg:Z— X (2.12)

parameterized by a neural network that maps network parameters 0 € R" and a often lower-
dimensional latent vector z € Z to a data point X € X" in some space X (see Figure 2.6). In
computer vision applications, X is usually a high-dimensional space like the space of 2D
images of a specific resolution or the space of 3D shapes. Given a generative model Gy,
we can sample a latent code z ~ pg from a prior distribution pg that is defined on Z and
obtain a new sample Gy(z) € X in the output space. This procedure allows us to define the
generator distribution pg on X

Go(z) =x ~ pa(x|2) (2.13)

Our goal when training a generative model is to optimize for optimal network parameters
6* such that

Pox = Pp (2.14)

where pp is the data distribution. In computer vision applications, pp is usually given by a
set of samples D (e.g., a dataset of 2D images or 3D shapes) that are assumed to be i.i.d.

12
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Z X X

Figure 2.6: Deep Generative Modeling. In deep generative modeling, a generator model
Gy parameterized by a neural network with parameters 0 is optimized to map samples from
a latent space Z equipped with a (simple) prior po(z) to the data space X. The goal is
find parameters 0* such that the distribution pg~ introduced by Gg~ approximiates the data
distribution pp. In most cases, the data distribution is only given approximately in the form
of a finite set of drawn samples (the dataset) that are assumed to be i.i.d.

2.2.2 Variational Autoencoders

In a Variational Autoencoder (VAE) [129], the input space is linked to the latent space via a
stochastic encoder
Ey(x) =2~ q(2]X) (2.15)

where gy (z|x) is the posterior distribution modeled with a second neural network with
parameters ¢. As directly calculating the marginal likelihood py is intractable, the objective
that is maximized in a VAE via stochastic gradient descent is the evidence lower bound
(ELBO):

ELBO(6.¢.x) = E..,, [log pa(x/z) ~ KL(go(z])[| po(z))] < logpe(x)  (216)

Intuitively, the first part of the ELBO log pg (x|z) measures the reconstruction quality on the
autoencoded sample Gg (Ey(x)) and the KL-divergence term measures the closeness of the
posterior gy to the prior distribution py.

For training a VAE model, the parametric forms of py, pg, and g4 have to be specified. In
most cases, they are assumed to be Gaussians:

po=N(0,]) (2.17)
Eo(x) ~ N (2|, (x),diag(64 (x))) (2.18)
Go(z) ~ N (x|ug(z),1) (2.19)

where 0 indicates the zero vector, I the identity matrix, and [, 0y mean and standard
deviation predictions from Ey. The expectation in Equation 2.16 is usually approximated
via a single sample due to computational contraints [129], while higher order Monte Carlo
sampling likely leads to better approxmiation [30]. The assumptions allow for simplifying

13
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the VAE objective to

]EXNPD [_»Crec(ev (P?X) - EKL(¢7X)] (220)

or, when minimizing the objective instead of maximizing it, to

EELBO(ev(p) — ]EXNpD [‘CI‘CC(O)(Z)?X) +£KL(¢7X)] (221)
with

Lrec(6,0,%) = ||Ga(Es (x)) — x| (2.22)

i=1

d
Lxi(9,x) = KL(gy (z[%) || po(2)) = % (IILL¢(X)H§ +d+) 04(x)i—logoy (x),-)
(2.23)

where d indicates the dimension of the latent space Z = R?. Calculating L. requires
stochastic sampling which is non-differentiable. In practice, the reparameterization trick [129]
is used to obtain gradients such that the VAE objective can be minimized using stochastic
gradient descent.

Discussion While the VAE framework possesses desirable properties like stable train-
ing [285] or outlier robustness [54], designing the distributions pg and g4 as Gaussians is
often described as a key limitation [30, 55, 131]. Further, empirically it is observed that
generated samples of a vanilla VAE tend to be unrealistic and blurry [62]. In the following,
we discuss an alternative model class that does not make these Gaussian assumptions by
instead modeling the generator distribution implicitly.

2.2.3 Generative Adversarial Networks

In Generative Adversarial Networks (GANs) [85], the generator distribution pg(x|z) is not
modeled explicitly, e.g., by assuming the parametric form of a Gaussian, but implicitly
instead. More specifically, a discriminator is defined

Dy: X —[0,1]CR (2.24)

which is parameterized as a neural network with network parameters ¢. The discriminator
Dy maps a sample from the input space X’ to a probability indicating whether the sample is
real or fake. By real we mean that the sample is drawn from the data distribution, and by
fake, we mean that the generator Gy synthesized the sample. Both the generator and the
discriminator networks are optimized in a zero-sum game. The objective is defined as

Iginnll)ixV(Gg,D¢) = Erpp[l0gDy (x)] +E, () [log(1 — Dy (Go(2)))] (2.25)
0

and optimized via simultaneous or alternating stochastic gradient descent/ascent.

14
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Discussion The training dynamics of GANs are complex and global convergence crite-
ria are an open research problem [180]. However, it has been shown that regularization
techniques such as gradient penalties [178] enable local convergence under a number and
assumptions and they are widely adopted in practice. While GANs, even when regularized,
can suffer from training instabilities, mode collapse, or poor mode coverage, they are shown
to achieve unprecedented results in terms of image fidelity in 2D as well as 3D-aware
generative modeling [37, 93, 122, 123, 251].
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3 Related Work

After introducing important background concepts, we review related work in this chapter. We
discuss important steps of the development of the fields of 3D reconstruction in Section 3.1
and generative modeling in Section 3.2. This enables us to provide context and highlight
important prior works before we introduce and investigate our proposed systems in the
following chapters.

3.1 3D Reconstruction

3.1.1 Origins and Early 3D Reconstruction

Origins Computer vision originated as building the visual perception component of a
system that could mimic human intelligence and that could be used for robotic applica-
tions requiring intelligent behavior [271]. In contrast to the related field of digital image
processing, recovering the underlying 3D structure of a scene from input images has been
a core problem from the start of computer vision [97, 312, 313]. Initially, recovering the
3D structure was seen as a simple problem that could then in turn be used to solve more
complex problems like higher-level reasoning or planning [21]. From today’s perspective,
we can say that the problem is significantly more complex than initially suggested, and to
this day, researchers work on improving 3D reconstruction methods. We refer the interested
reader to Chapter 1.2 of [271] for a detailed computer vision history overview.

Early 3D Reconstruction Inspired by human biology, correspondence estimation tech-
niques for stereo image pairs are among the first works to estimate the 3D structure of
scenes. For example, in their pioneering work [171], Marr and Poggio investigate the com-
putational structure of the problem of finding correspondences between a stereo image pair
and estimating disparities. At the same time, the structure-from-motion (SfM) problem, i.e.,
the recovery of the 3D structure of the scene while simultaneously estimating the camera
motion of the input images, gained more attention. For example, Ullman [289] proposes to
divide images into groups and test rigid transformation hypotheses to decompose the scene
into rigid objects in motion. Most of these early works are heavily inspired by principles of
stereopsis [310], i.e., the perception of 3D structure through binocular vision, and related
findings from psychology such as the kinematic depth effect [299]. Next to correspondences
between image pairs, other cues such as texture [222], focus [192], or shading [18] have been
investigated for recovering the 3D geometry. These approaches are also called Shape-from-X,
indicating 3D shapes can also be recovered from other cues next to correspondences.
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3.1.2 Multi-View Stereo

In multi-view stereo (MVS) algorithms, the idea of using correspondences as the main cue
for 3D geometry is extended to using more than two images [73] (see Figure 3.1). For
example, in their pioneering work [257], Seitz and Dyer propose a voxel coloring approach
in which the 3D scene space is discretized into voxel cells and a color is assigned to each
cell considering the reprojections into the input images and occlusions. In subsequent
works, reconstruction systems are developed which can be applied to unordered image
collections [252, 263] and complex urban scenes [225]. This allowed researchers to develop
methods that can scale to large image sets in the order of thousands [3] and millions [71,
100, 253, 319] of images. In [254], Schonberger et al. revisits the steps of the structure-from-
motion pipeline and proposes a robust, multi-purpose 3D reconstruction system together
with the implementation named COLMAP that is commonly used to this day.

Learning-based MVS Systems With the advent of large-scale (labeled) datasets [56,
79] and the availability of more computing power, more learning-based 3D reconstruction
systems are developed, especially since the breakthrough of AlexNet [138] being the first
deep neural network-based approach to win the ImageNet [56] recognition challenge. While
first works focus on using, in particular, Convolutional Neural Networks (CNNs) to extract
more robust features for tasks like stereo matching [146, 165, 173, 343], later methods
propose to learn the entire MVS pipeline end-to-end from data [108, 331, 332]. In contrast to
traditional methods, learning-based systems are shown to better handle poorly-textured and
reflective surfaces where photometric consistency is not given. While achieving compelling
results for multi-view image input, these approaches still rely on a form of feature matching
across views or a fusion process to obtain the final 3D shape.

3.1.3 Learning-based 3D Reconstruction

This assumption of being able to match features breaks down for large baselines [163]
or sparse inputs with the most extreme case of a single input view. As a consequence,
another line of work directly learns the mapping from the input image(s) to the output
3D representation without adhering to the traditional MVS pipeline. While these methods
achieve promising results in certain scenarios, their inner mechanisms tend to be harder to be
analyzed and dissected [276]. In the following, we categorize and discuss these approaches
wrt. the output representation they use.

Voxel Voxel-based systems were among the first methods proposed for discriminative
[172,229,264] and generative [47, 83,239, 269, 315, 316] learning-based 3D reconstruction.
First works use 2D convolutional encoder together with 3D convolutional decoder models
operating on voxel grids [47, 286, 315]. For example, 3D-R2N2 [47] uses a 2D convolutional
encoder and a 3D convolutional decoder to predict 32° voxel grids from single or multi-
view images, where multi-view information is fused with an LSTM model [107]. Due to
memory requirements, however, these approaches are limited to relatively small voxel grids.
Follow-up works [317, 318, 347] apply 3D convolutional neural networks to resolutions
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3.1 3D Reconstruction

Figure 3.1: Multi-View Stereo Pipeline. In the traditional multi-view stereo pipeline, the
input images (top left) are first used to estimate camera poses (top right). Next, 3D geometry
is predicted for the posed input images (bottom right) which is then optionally textured
(bottom left) in the last step. The renderings are created with Blender [51] and the Buddha
shape from the Standford 3D Scanning Repository [53], and the figure design is inspired by
Fig. 1.2 from [73].
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up to 1283, but only made possible with shallow architectures and smaller batch sizes,
which in turn leads to slow training. Another recent line of works that overcomes the
memory requirements for high-resolution voxel grids proposes to reconstruct 3D objects in
a multi-resolution fashion [96, 275]. However, the resulting methods are often complicated
to implement and require multiple passes over the input to generate the final 3D model.
Furthermore, they are still limited to comparably small 256 voxel grids, such that most
of the recent works focus on combining voxels with other representations like implicit
functions [187, 258].

Point Representations Point cloud-based systems are widely used both in robotics and
computer graphics. In their seminal work PointNet [230, 231], Qi et al. propose a simple
model architecture that uses point clouds as a representation for discriminative deep learning
tasks. They achieve permutation invariance by applying a fully connected neural network to
each point independently followed by a global pooling operation. Fan et al. [69] introduced
point clouds as an output representation for 3D reconstruction, and subsequent works
propose convolutional-based [90, 148, 280] or transformer-based [338, 340] architectural
improvements. However, unlike the other representations, point cloud-based systems require
additional non-trivial post-processing steps [16, 32, 126, 127] to generate the final 3D mesh
and hence are less-frequently used for the task for learning-based 3D reconstruction.

Mesh Representations Meshes have first been considered for discriminative 3D clas-
sification or segmentation tasks by applying convolutions on the graph spanned by the
mesh’s vertices and edges [28, 94, 302]. More recently, meshes are also used as output
representation for 3D reconstruction [92, 118, 136, 303]. As directly learning a mesh-based
representation with deep neural networks is hard and prone to degenerate solutions, most
works rely on a simple template mesh that is deformed. For example, in Pixel2Mesh [303],
features are extracted from an input image to gradually deform the vertices of an initial
ellipsoidal mesh. Other works assume to have access to a reference template of the same
object class [118, 136, 234]. AtlasNet [92] is in contrast not restricted by the genus of
the template mesh as many 2D patches are merged to obtain the final output mesh. How-
ever, this approach has been shown to suffer from self-intersections and non-watertight
surfaces [179]. As a result, many recent works propose combinations of mesh-based and
other representations such as neural fields [110, 329].

Neural Field To mitigate the above-mentioned problems, neural field representations
were proposed [41, 179, 212] and quickly gained popularity [322]. By describing 3D
geometry implicitly, e.g., as the decision boundary of a binary classifier [41, 179], they
do not discretize space and have a fixed memory footprint. While first works use a single,
global latent code to represent a 3D shape, subsequent works improve reconstruction quality
by combining local and global information [46, 247, 306]. Later approaches [35, 219, 311]
scale from single-object to room- or house-level reconstructions by using distributed latent
codes. The contributions made in this thesis include neural field-based approaches for 3D
and 4D reconstruction.
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3.2 Generative Modeling

3.2 Generative Modeling

In the context of machine learning and computer vision, generative modeling is often
introduced and discussed as a form of unsupervised learning (UL) in distinction to supervised
learning (SL). While in SL, the goal is to approximate a probability distribution p(y|x)
over predefined labels y € ) for data points x € X’ from some input space X, in UL, an
unconditional density model p(x) is learned only from unlabeled data x € X'. While early
deep learning breakthroughs were dominated by SL, UL is often considered ‘“far more
important in the longer term” [143] mostly due to the vast abundance of unlabeled data.

T

I Maximum Likelihood ‘

| Explicit Density ‘ | Implicit Density ‘

|Tractable Density‘ | Approx. Density ‘ IMarkov Chain‘ I Direct ‘

Gaussian Mixture
Model
Probabilistic PCA
Normalizing Flow VAE  Diffusion Models ~ Boltzmann machine

Generative Stochastic GAN

‘ Variational ‘ | Markov Chain ‘ Network

Figure 3.2: Taxonomy of Generative Models. We show a taxonomy of generative models
that either explicitly or implicitly perform maximum likelihood following [86]. The model
types that are marked in grey color are discussed in greater detail in respective subsections.

Origins and Taxonomy of Generative Models Among the first generative models that
are used in computer vision are statistical models that fit (a small amount of) parameters of
predefined distributions to observed data. For example, in Gaussian mixture models (GMMs),
the parameters 0 to define the likelihood pg are the mixture components and means and
scales of isotropic Gaussians and they can be optimized using the Expectation-Maximization
(EM) algorithm [17]. A similar example from statistical analysis for a continuous latent
variable model is Probabilistic Principal Component Analysis (PPCA) [244, 282] whose
parameters can be derived using EM or Singular Value Decomposition. GMMs and PPCA
are examples of generative models that maximize the likelihood of the data by explicitly
modeling a tractable density. This is just one of many classes of generative models that are
used across the fields of machine learning and computer vision. In Figure 3.2 we show a
taxonomy of popular generative model types by classifying them wrt. how they approximate
the likelihood.! In the following, we review relevant related works for selected types of

INot that we restrict our discussion to models that explicitly or implicitly perform maximum likelihood. While
other model types are possible [86], this selection comprises the vast majority of approaches investigated in
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generative models and discuss their relation to neural fields. For an in-depth study of the
latter, we refer the interested reader to [260, 320].

3.2.1 Normalizing Flows

Similar to GMMs or PPCA, normalizing flow-based models also define a tractable density
explicitly. The key idea is to connect the input space X’ with a latent space Z via a nonlinear,
invertible mapping Gg : Z — X with network parameters 6 and then make use of the change

of variable formula:
G-!
det ("X(X)> ‘ (3.1)

Intuitively, the normalizing flow Gg warps its input space Z with a simple prior pg to a
more complex distribution pg on X [135]. Theoretically, it is proven that any distribution
on X can be modeled if Gy can be arbitrarily complex [22, 297]. However, designing and
parameterizing arbitrarily complex functions Gy that are invertible and whose determinant
of the Jacobian is easy to compute is challenging and has been the core area of research in
the last years.

pe(X) = po (G51 (x))

Development Among the first works that were popularized in the machine learning
community is NICE [58] which uses affine coupling layers parameterized by MLPs with
ReLU [191] activation. ReaINVP [59] and Glow [132] are later works that use affine cou-
pling layers in combination with more advanced masking techniques and parameterizations
such as convolutional layers. Since then, many different types of flows have been explored
with popular approaches being autoregressive flows like MAF [209], residual flows like
iResNet [12], and ODE-based flows like FFJORD [88]. For a more in-depth discussion, we
refer the reader to [135, 210].

Relation to Neural Fields Although normalizing flow models do not achieve similar
image fidelity compared to state-of-the-art VAEs or GANSs, their explicit and tractable
density definition has several benefits, especially for other downstream applications. In the
context of neural fields, they have recently been used to improve view synthesis quality for
sparse inputs via an additional data term [201] or to model uncertainty [259].

3.2.2 Variational Autoencoders

Another class of generative models uses an explicit but intractable density, avoiding strict
model design restrictions. Among the most popular instances of this class are Variational
Autoencoders (VAEs) that optimize a lower bound to the likelihood. See Section 2.2 of our
background chapter for details on how VAEs are optimized.

the computer vision literature.
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Development Since its introduction [129], VAEs have been applied to a wide variety
of tasks, including semi-supervised classification [167], image inpainting [220], graph
modeling [133], chemical design [84], dark energy modeling in astronomy [235], and more,
mainly due to its simple design and easy optimization. However, in contrast to other genera-
tive model classes, empirically it was found that generated images tend to be unrealistic
and blurry which has been attributed to the MSE reconstruction loss [62], but also the
limited approximation of the true posterior [346]. To overcome this limitation, incorporating
adversarial losses [168], ELBO improvements [30] and reweightings [106], different regular-
izations [285], as well as more complex, hierarchical priors [293] are proposed. Regularized
autoencoders instead use deterministic autoencoders with regularization on the latent space,
and more complex priors can subsequently be fitted [82]. VQ-VAEs [207] use a discrete
latent space with gradient approximation, which has been scaled to larger image resolutions
via hierarchies of latent codes [236] as well as adversarial training [68].

Relation to Neural Fields Due to their simplicity, VAEs were among the first generative
models used in the context of neural fields. They are used to develop generative models of
neural fields representing 3D shapes [179], 3D texture [203], 4D shapes in motion [197], as
well as radiance field-based scene representations [137].

3.2.3 Generative Adversarial Networks

In contrast to previously discussed approaches, Generative Adversarial Networks (GANs)
do not require an explicit definition of the density. Instead, they only model it implicitly
through the ability to sample from it. In contrast to generative stochastic networks [14],
samples are efficiently computed via a single forward pass similar to VAEs. For details on
how GANSs are optimized, we refer the reader to Section 2.2 of our background chapter.

Development Soon after its introduction in [85], conditional variants of GANs such as
cGAN [184], approaches to structure the latent space such as InfoGAN [39], as well as
convolutional models like DCGAN [232] were proposed which significantly improved per-
formance. The conditional generative models pix2pix [111] and CycleGAN [352] propose a
UNet [243] GAN architecture and remove the need for paired training data, respectively,
achieving impressive results and enabling a wide range of applications. Progressively grow-
ing the model during training [121] as well as employing larger models [29] enabled scaling
to higher image resolution and fidelity for unconditional models. By improving model
architectures and carefully analyzing training dynamics, StyleGAN [122] and follow-up
works [123, 124, 251] achieve unprecedented photorealistic image quality at megapixel
resolutions and set the state-of-the-art in several benchmarks.

Relation to Neural Fields First works use 3D supervision and combine trained neural
field decoders with adversarial training in the latent space [43] or train GANs directly with
processed 3D shapes [134]. With the arrival of more powerful differentiable rendering
techniques for neural fields, GRAF [255] is the first GAN with a radiance field-based 3D
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representation that is trained from unposed 2D images only. In contrast to 2D-based GANSs,
3D-aware models like GRAF synthesize images by rendering a generated 3D scene allowing
for explicit control over the camera viewpoint at test time. While a series of follow-up
works like 7-GAN [36] achieve higher image fidelity with improved training strategies
and parameterizations, in GIRAFFE [200], which is one of the core contributions of this
thesis, a compositional 3D scene representation and a combination of volume and neural
rendering is proposed. Several subsequent works like StyleNeRF [93] or EG3D [37] adopt
this combination of neural and volume rendering and investigate more sophisticated model
architectures, bridging the gap to state-of-the-art 2D GANS in terms of image fidelity.
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4 Neural Fields

After introducing important background concepts and reviewing related works, we now
discuss a key concept of the scene representations we use: neural fields. We first introduce
the concept of fields in Section 4.1 and then discuss the parameterization of neural fields
in Section 4.2. Subsequently, we discuss different rendering techniques for neural fields
in Section 4.3 before we study their use for various applications in the following chapters of
the thesis.

4.1 Introduction

Name Field Unit Input Space  Output Space
2D RGB Image RGB intensity [0,1?cR* 0,1 CcR?
2D Semantic Map class probabilities [0,1?CcR*> [0,1]* C R¥
3D Signed Distance Field signed distance R3 R

3D Occupancy Field occupancy probability R3 0,1]CcR
3D Vector Field motion vector R3 R3
Time-Varying 3D Vector Field time-varying motion vector R* R?

3D Light Field RGB intensity R> [0,1]> C R?

Table 4.1: Examples of Fields in Computer Vision. We show examples of fields that are
commonly used in the computer vision literature [322]. We observe that many quantities
which are of interest for computer vision applications can be expressed as fields.

Following physics [70, 174] and recent computer vision conventions [322], we define a
field as a varying physical quantity of spatial and temporal coordinates. More specifically, a
field is a differentiable function

f:R"— R" 4.1)

where n and m are positive natural numbers. For example, a signed distance function in
3D space (see Section 2.1.5) is a scalar field with n = 3 and m = 1. In Table 4.1 we show
examples of fields commonly used in computer vision. We observe that many quantities of
interest, ranging from 2D semantic maps to 3D light fields, can be expressed as fields.

4.2 Parameterization

In classical physics, fields are often assumed to possess an underlying parametric form. The
coefficients can then be derived from experiments. For example, according to Newton’s law,
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Figure 4.1: Illustration of a Neural Field. A neural field is a multi-layer perceptron (MLP)
fo : R” — R™ with network parameters 6 € R¥ that parameterizes the field f : R* — R™. The
neural field maps input coordinates p € R" to an output quantity y € R™. By optimizing the
network parameters 0 using stochastic gradient descent, the neural field can approximate
any field from data. In the illustration above, input and output layers are shown with white
circles and hidden layers with dark grey circles.

the gravitational field f : R3 — R3 for a single particle of mass M has the form

—GMp
f(p) =
)= —1p

4.2)

where G is a constant and p is the unit vector in radial direction from the particle to p.

In contrast, in computer vision, the field of interest is usually not assumed to have an
analytic form. Instead, learning-based systems are deployed, and the fields are approximated
from observations. But how should fields be parameterized such that they can be learned
from data? In this thesis, we parameterize the fields of interest as multi-layer perceptrons
(MLPs). MLPs consist of a series of linear, fully-connected layers with non-linear activation
functions, e.g., ReLU [191]. The universal approximation theorem [128] shows that MLPs
can approximate any differentiable function. By optimizing the network parameters using
stochastic gradient descent, the field of interest can be approximated from data.

We follow [322] and define a neural field as a field that is parameterized fully or in part
by an MLP:

fo :R" - R" 4.3)

where 0 € R are the network parameters and k the number of parameters (see Figure 4.1).
MLPs have several properties which make them a promising candidate for parameterizing
fields:

* Simplicity and universality: MLPs are simple conceptually and implementation-wise,
and no assumption about the data modality or the input/output space needs to be
made.

* Differentiability: MLPs are continuous and differentiable by construction.
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* Adaptiveness: MLPs are adaptive by construction [322].

» Spectral Bias: MLPs tend to learn lower frequencies first before higher frequencies
are fitted [274] due to the spectral bias [8, 233].

Adaptiveness Arguably the most common alternative to MLPs for parameterizing fields is
to discretize the input space and store the quantity of interest in a regular grid. For example,
3D space can be discretized into 3D voxels and signed distances can be stored per cell. While
this representation is fast to query, it requires large memory such that grid and cell sizes need
to be carefully designed. Further, the same capacity is spent everywhere. In contrast, the
complexity of MLPs scales with their number of network parameters. As a result, capacity
can be spent adaptively where needed, and the mechanism of how to choose where to spend
capacity does not need to be predefined. Further, the memory requirements are defined
by the number of network parameters, not the dimension of the input space. In contrast,
voxel grids are only feasible for low dimensional input spaces as the required memory
grows exponentially with the dimensionality of the input space (also called “ the curse of
discretization” [180]). In summary, MLPs are adaptive by design and scale independently
of the field they represent.

Spectral Bias In nature, most phenomena that are perceivable to humans are continuous
and smooth, e.g., temperature, motion, and gravitation. When constructing scene repre-
sentations of our environments, these principles should be incorporated into the system.
Indeed, MLPs have been shown to possess a spectral or frequency bias. Over the progress
of optimization, they tend to first learn low frequencies before high frequencies are fitted [8,
233]. This property makes them more robust to input noise and it is hypothesized to be one
reason for good generalization capabilities despite overparameterization [233]. However,
depending on the application, this bias can also be a drawback, e.g., overly smooth predic-
tions for the task of novel-view synthesis [183]. In practice, MLPs can be adapted to fit high
frequencies by converting the input coordinates to Fourier features (also called “positional
encoding”) before passing them to the MLP [183, 274, 350].

Discussion Parameterizing fields with MLPs also has drawbacks compared to more
traditional parameterizations like voxel grids: (i) They are slower to optimize and query
compared to values stored in regular grids, (ii) they cannot directly be used in standard
graphics software applications compared to other 3D representations like meshes, (iii) they
are harder to dissect as they represent 3D information in the weights of a neural network.
To overcome some of the limitations, hybrid methods are proposed for various tasks, e.g.,
feature grids in combination with smaller MLPs for improved 3D reconstruction [35, 46,
115, 219] or faster view synthesis [77, 99, 337]. In summary, we believe that there is not a
single parameterization that performs best in every regard, and in many cases (in particular,
if efficiency is a priority), hybrid solutions potentially lead to the best results.
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4.3 Rendering

4.3.1 Overview

World Coord. System

“,Rendering operator 7

World to Camera Transformation

Neural Field f,

via K

Figure 4.2: Rendering of Neural Fields. A key concept for learning neural field-based 3D
representations from 2D imagery data is the rendering process, i.e., how the neural field is
rendered to the image plane. To render an image 1 from the neural field £9, we need camera
extrinsics & = [R|t] and intrinsics K, where the first describes the world (blue) to camera
(green) coordinate transformation and the latter the camera (green) to view (red) coordinate
transformation. The rendering operator T maps the ray r, that is cast from the camera
origin vy through pixel u on the image plane to the RGB color value 1,, of that pixel u.

Our goal is to infer scene representations from sensory image data. While direct supervi-
sion, e.g., in the form of pairs of input images and the corresponding 3D geometry when
performing 3D reconstruction, is acceptable for constraint settings and proofs-of-concept,
our end goal is to supervise only with 2D imagery data to increase generalization and
scalability. A key concept for achieving this is the rendering process of our 3D scene
representations to the image plane (see Figure 4.2).

More specifically, let K € R3*3 be the camera intrinsics, & = [R|t] € R?>*# the camera
extrinsics or camera pose, fg the neural field representing the scene, and u the pixel we
want to render. A pinhole camera model is commonly assumed such that the intrinsic matrix
K describes the focal length, skew parameters, and the principal point of the camera. The
extrinsics define the camera rotation R € SO(3) and translation t € R? in the scene. We cast
aray r, from the camera center ry through pixel u on the image plane with normalized
direction d into the scene. For given K, &, and fy, a rendering operator 7 maps ray r, to the
RGB color I,, of pixel u

mir,—1,e€[0,1? (4.4)

The predicted RGB image is obtained by repeating this for all pixels on the image plane:
{m(r,) 1" =1e [0, (4.5)

where H and W indicate the height and width of the output RGB image. Note that while we
discuss the rendering process only for RGB color values, other quantities of interest, e.g.,
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4.3 Rendering
surface normals, depth, or semantic classes, can be rendered similarly.

4.3.2 Rendering Techniques

In the following, we discuss three of the most important rendering operators that are used
for neural fields: the ray marching operator ™, the sphere tracing operator 7, and the
volume rendering operator 7%, The first two are surface rendering techniques where we
assume that our neural field represents solid surfaces. Common choices for representing
solid 3D shapes with neural fields are occupancy and signed distance fields (see Section 2.1).
In contrast, for volume rendering, surfaces are not assumed to be solid and it hence can
be used to render neural fields that use density-based representations. Note that in this
chapter, we provide a concise overview and focus on the forward pass of techniques for
rendering neural fields, not discussing their differentiability or how they can be implemented
in learning-based systems. Later in Chapter 6, we will introduce and analyze our proposed
differentiable ray marching algorithm for neural fields in greater detail.

Shape

Ray origin r( Near scene bound ¢,

o » o o s o—0

Far scene bound ¢
—>— t
Ray direction d

Figure 4.3: Illustration of Ray Marching. Ray marching is a common surface rendering
technique for neural fields where the ray is first sampled equidistantly between near and
far scene bounds, and the neural field is evaluated at these sample locations. Once the first
interval [p;,pi+1] is found that contains the surface, the surface point prediction can be
further refined using the secant method. We illustrate three secant steps {p‘}; in red, where
the final point pj is the predicted surface point.

Ray Marching For the ray marching operator 7™, the ray r, is sampled equidistantly
within predefined near and far scene bounds #,,#; € RT, and the neural field is evaluated
at these sampling locations (see Figure 4.3). More specifically, the sampling locations are
defined as

i—1

{pi:ro+d(tn+ & (rftn)> |i:1,...,NS} (4.6)
N

where Ny € NT is the number of samples along the ray. Once an interval [p;, p;+1] is found

in which the surface lies, the evaluation along the ray is stopped. If a surface is found,

its prediction can be further refined, e.g., by applying the bisection or secant method to

the found interval (see the red sample points p; in Figure 4.3). Note that this optimization
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Shape
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Figure 4.4: Illustration of Sphere Tracing. Neural fields that represent signed distances
can be rendered via sphere tracing. The signed distance § is evaluated for the first point
along the ray that lies within the scene bounds. Next, a step of size v-§ is taken along the ray
where the hyperparameter y € (0, 1] accounts for prediction inaccuracies. The algorithm
is converged and the surface point, here shown in red, is found once |§| < € where € € R
indicates the convergence threshold.

problem is one-dimensional as the surface point is constrained to lie on the ray. Ray marching
may not converge and no surface point will be found if the surface area is thinner than the
sample distance. If a surface point is found, it can then be used to evaluate a quantity of
interest, e.g., predicted RGB color ¢ or surface normal n, at that 3D location given by the
neural field. This evaluation is then used as the 2D rendering of the quantity of interest for
the respective pixel u.

Sphere Tracing If the neural field predicts signed distances, this additional distance
information can be used to speed up the rendering process. For the sphere tracing operator
7%, the first point along the ray which lies within the predefined scene bounds is evaluated
and the predicted signed distance § € R is stored. Next, a step is taken along the ray to
obtain the next point p; for which the signed distance needs to be evaluated:

pi=pi-1+(y:9)-d 4.7

where - § is the step size and y € (0, 1] is a hyperparameter that can be used to account
for potential prediction inaccuracies. This sequence of evaluating a ray point and taking a
step along the ray is repeated until |§| < &€ where € € R™ is a small positive value indicating
the convergence threshold. Note that in case of no ray-surface intersection or prediction
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Volume
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Figure 4.5: Illustration of Volume Rendering. Volume rendering can be used to render
density-based 3D representations. In classic volume rendering, a ray is cast through the
scene, points are sampled within near and far scene bounds along the ray, and the neural
field is evaluated at these sampling locations. These evaluations of predicted density together
with estimated values of a quantity of interest, e.g., RGB color values, can be used to obtain
the pixel’s final rendering via a form of alpha composition with T;; as the weights (see text

for details).

inaccuracies, the algorithm may not converge which in practice is handled by defining a
maximum number of evaluations. Figure 4.4 shows an illustration of the algorithm. Similar
to ray marching, the estimated surface point is then used to evaluate the quantity of interest
at that 3D location which serves as the 2D rendering of the quantity of interest for the
respective pixel.

Volume Rendering Volume rendering is a technique that can be used to render neural
fields that represent densities instead of solid surfaces. We adhere to the volume rendering
technique for neural fields proposed in [183] that builds on classical physics-inspired volume
rendering [117]. For 7¥°!, the ray is divided into equally-sized bins, and a uniform sample ;
is drawn from each bin

i—1 i

tr—1t,).1
N, (U intnt

ti~U (tn—l— (tf—t,,)> 4.8)

where U (+,-) indicates the uniform distribution and N; € N the number of samples along
the ray. Figure 4.5 shows an illustration of the process. Next, we evaluate the neural field at
the resulting sampling locations p; and define

i1
T; = exp ( Z Gj5j> o; =1—exp(—0;6) 4.9
=1

where o; is the predicted density at sample point p; and 6; = t;;1 — f; is the distance
between adjacent samples. 7; and ¢; are often referred to as transmittance and alpha values,
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respectively. We obtain the final 2D rendering of RGB color I, for pixel u as
. N
L=) Tac (4.10)
i=1

where ¢; is the predicted RGB color in 3D space. Note that other quantities of interest like
predicted normals can be similarly rendered to the image plane. Equation 4.10 illustrates
that this volume rendering technique can be seen as a form of alpha composition with
weights T; ;.

Dicussion A key difference between the discussed volume rendering technique and the sur-
face rendering algorithms is that the rendered quantity of interest is a sum of all evaluations
along the ray (see Equation 4.10). In contrast, if ray marching or sphere tracing is performed,
a single surface point is found and the quantity of interest is evaluated at that 3D location to
obtain the rendered pixel value. For learning-based systems, both types of approaches have
benefits and drawbacks. While surface rendering can be implemented memory-efficiently
where only the evaluation at the surface point needs to be stored (see Chapter 6), it does not
provide gradient information to all ray sampling locations. In contrast, volume rendering
requires storing all ray evaluations for calculating the backward pass but provides a gradient
signal along the entire ray. Empirically it is shown that surface rendering approaches lead to
better surfaces but are prone to get stuck in local minima. Volume rendering-based systems
achieve better view synthesis results and possess more stable optimization that is more
robust to local minima. A recent line of works [205, 307, 334] aims at combining the two
approaches, leading to improved results (see also the limitation and future work discussion
in Section 6.4.1).
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5.1 Introduction

In this chapter, we study if neural fields can be used as 3D representation in learning-based
systems. More specifically, we analyze how well neural fields are suited for representing
and recovering 3D geometry in discriminative as well as generative 3D reconstruction tasks.
This chapter lays the foundation for developing more complex representations and learning
algorithms which will be the goal of subsequent chapters of the thesis.

Prior Work Learning-based approaches for 3D reconstruction have recently gained
popularity [27, 47, 83, 239, 315, 316]. In contrast to traditional multi-view stereo algorithms,
learning-based models are able to encode rich prior information about the space of 3D
shapes which helps to resolve ambiguities in the input. At the same time, generative models
have recently achieved remarkable successes in generating realistic high-resolution images
[121, 178, 304]. This success has not yet been replicated in the 3D domain as, in contrast
to the 2D domain, the community has not yet agreed on a 3D output representation that is
both, memory efficient and that can be efficiently inferred from data.

Existing representations in prior works can be broadly categorized into three categories:
voxel-based representations [27, 74, 150, 239, 269, 292, 316] , point-based representations [2,
69], and mesh representations [119, 234, 303] (see Figure 5.1). Voxel representations are a
straightforward generalization of pixels to the 3D case. Unfortunately, however, the memory
footprint of voxel representations grows cubically with the resolution, hence limiting naive
implementations to 323 or 643 voxels. While it is possible to reduce the memory footprint
by using data-adaptive representations such as octrees [241, 275], this approach leads to
complex implementations and existing data-adaptive algorithms are still limited to relatively
small 2563 voxel grids. Point clouds [2, 69] and meshes [119, 234, 303] have been introduced
as alternative representations for deep learning, using appropriate loss functions. However,
point clouds lack the connectivity structure of the underlying mesh and hence require
additional post-processing steps to extract 3D geometry from the model. Existing mesh
representations are typically based on deforming a template mesh and hence do not allow
arbitrary topologies. Moreover, both approaches are limited in the number of points/vertices
which can be reliably predicted using a standard feed-forward network.

Contribution In this chapter, we propose a novel approach to 3D reconstruction based on
directly learning the continuous 3D occupancy function (Figure 5.1d). Instead of predicting
a voxelized representation at a fixed resolution, we predict the complete occupancy function
with a neural network fg which can be evaluated at arbitrary resolution. This drastically
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Figure 5.1: 3D Reconstruction with Neural Fields. Existing 3D representations discretize
the output space differently: (a) spatially in voxel representations, (b) in terms of predicted
points, and (c) in terms of vertices for mesh representations. In contrast, (d) we propose to
consider the continuous decision boundary of a classifier fg (e.g., a deep neural network)
as a 3D surface that allows extracting 3D meshes at any resolution.

reduces the memory footprint during training. At inference time, we extract the mesh from
the learned model using a simple multi-resolution isosurface extraction algorithm which
trivially parallelizes over 3D locations. We experimentally validate that our approach is
able to generate high-quality meshes and demonstrate that it compares favorably to the
state-of-the-art.

5.2 Method

In this section, we first introduce Occupancy Networks as a representation of 3D geometry.
We then describe how we can learn a model that infers this representation from various
forms of input such as point clouds, single images, and low-resolution voxel representations.
Lastly, we describe a technique for extracting high-quality 3D meshes from our model at
test time.

5.2.1 Occupancy Networks

Ideally, we would like to reason about the occupancy not only at fixed discrete 3D locations
(as in voxel representations) but at every possible 3D point p € R>. We call the resulting
function

0:R>—{0,1} (5.1)
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the occupancy function of the 3D object. Our key insight is that we can approximate this
3D function with a neural network that assigns to every location p € R® an occupancy
probability between 0 and 1. Note that this network is equivalent to a neural network for
binary classification, except that we are interested in the decision boundary which implicitly
represents the object’s surface.

Input Conditioning When using such a network for 3D reconstruction of an object based
on observations of that object (e.g., image, point cloud, etc.), we must condition it on the
input. Fortunately, we can make use of the following simple functional equivalence: a
function that takes an observation z € Z as input and has a function from p € R? to R as
output can be equivalently described by a function that takes a pair (p,z) € R? x Z as input
and outputs a real number. The latter representation can be simply parameterized by a neural
network fp that takes a pair (p,z) as input and outputs a real number that represents the
probability of occupancy:

fo:R3x Z —=10,1] (5.2)

We call this network the Occupancy Network.

5.2.2 Training

To learn the parameters 6 of the neural network fy(p,z), we randomly sample points in
the 3D bounding volume of the object under consideration: for the i-th sample in a training
batch we sample K points p;; € R3, j=1,...,K. We then evaluate the mini-batch loss £z

at those locations:
IB] K

ZZE f9 Pij;Zi 01]) (5.3)
|B| i=1j=

Here, z; is the i’th observation of batch B, 0;; = o(p;;) denotes the true occupancy at point

pij> and L(-,-) is a cross-entropy classification loss.

Point Sampling The performance of our method depends on the sampling scheme that we
employ for drawing the locations p;; that is used for training. In Section 5.3.6 we perform a
detailed ablation study comparing different sampling schemes. In practice, we found that
sampling uniformly inside the bounding box of the object with additional small padding
yields the best results.

Generative Modeling Our 3D representation can also be used for learning probabilistic
latent variable models. Towards this goal, we introduce an encoder network E(-) that
takes locations p;; and occupancies o;; as input and predicts mean 14 and standard de-
viation 0 of a Gaussian distribution g (z|(p;j,0;;) j=1:x) on latent z € R" as output. We
optimize a lower bound [76, 129, 238] to the negative log-likelihood of the generative model

35



5 3D Reconstruction with Neural Fields

N times
& > ]L ©
L/LJ L/-\ U
-+ oo—pH—0—>
(@ Z
< <
mark voxels subdivide voxels evaluate network
|
v
i ; )
«— «—
44
refine using gradients simplify mesh marching cubes

Figure 5.2: Illustration of the MISE Algorithm. In Multiresolution IsoSurface Extraction
(MISE), We first mark all points at a given resolution that have already been evaluated as
either occupied (red circles) or unoccupied (cyan diamonds). We then determine all voxels
that have both occupied and unoccupied corners and mark them as active (light red) and
subdivide them into 8 subvoxels each. Next, we evaluate all new grid points (empty circles)
that have been introduced by the subdivision. The previous two steps are repeated until the
desired output resolution is reached. Finally, we extract the mesh using the marching cubes
algorithm [162], simplify and refine the output mesh using first and second-order gradient
information.

p((0ij) j=1:x|(Pij) j=1:5):

IB] - K
LE"(6,0) = ﬁm;[;ﬁ(fe(pijazi)aoij) + KL (Q¢(Z|(pij>0ij)j:1:K)HPO(Z))} (5.4)
i=1"j=

where KL denotes the KL-divergence, po(z) is a prior distribution on the latent variable z;
(typically Gaussian) and z; is sampled according to g4 (z;|(pij,0ij) j=1:K)-

5.2.3 Inference

For extracting the isosurface corresponding to a new observation given a trained Occupancy
Network, we introduce Multiresolution IsoSurface Extraction (MISE), a hierarchical iso-
surface extraction algorithm (Figure 5.2). By incrementally building an octree [112, 175,
272, 314], MISE enables us to extract high-resolution meshes from the Occupancy Network
without densely evaluating all points of a high-dimensional occupancy grid.
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MISE We first discretize the volumetric space at an initial resolution and evaluate the
Occupancy Network fy(p,z) for all p in this grid. We mark all grid points p as occupied for
which fg(p,z) is bigger or equal to some threshold' 7. Next, we mark all voxels as active
for which at least two adjacent grid points have differing occupancy predictions. These are
the voxels that would intersect the mesh if we applied the marching cubes algorithm at the
current resolution. We subdivide all active voxels into 8 subvoxels and evaluate all new
grid points which are introduced to the occupancy grid through this subdivision. We repeat
these steps until the desired final resolution is reached. At this final resolution, we apply the
Marching Cubes algorithm [162] to extract an approximate isosurface

S, ={peR’| fo(p,z) =7} (5.5)

Our algorithm converges to the correct mesh if the occupancy grid at the initial resolution
contains points from every connected component of both the interior and the exterior of the
mesh. It is hence important to take an initial resolution that is high enough to satisfy this
condition. In practice, we found that an initial resolution of 32 was sufficient in almost all
cases.

Mesh Refinement The initial mesh extracted by the Marching Cubes algorithm can be
further refined. First, we simplify the mesh using the Fast-Quadric-Mesh-Simplification
algorithm [78]. Next, we refine the output mesh using first and second-order (i.e., gradient)
information. Towards this goal, we sample random points p; from each face of the output
mesh and minimize the loss

2

pf@ )

Z, fo(px,2) HM)H—U(PU (5.6)

where n(py) denotes the surface normal vector of the mesh at py. In practice, we set A = 0.01.
Minimization of the second term in Equation 5.6 uses second-order gradient information
and can be efficiently implemented using Double-Backpropagation [64].

Note that this last step removes the discretization artifacts of the Marching Cubes approx-
imation and would not be possible if we had directly predicted a voxel-based representation.
In addition, our approach also allows for efficiently extracting normals for all vertices of
our output mesh by simply backpropagating through the Occupancy Network. In total, our
inference algorithm requires 3s per mesh.

5.2.4 Implementation Details

We implemented our Occupancy Network using a fully-connected neural network with 5
ResNet blocks [98] and condition it on the input using conditional batch normalization [66,
298] (see Figure 5.3). We exploit different encoder architectures depending on the type of
input. For single view 3D reconstruction, we use a ResNet18 architecture [98]. For point

I'The threshold 7 is the only hyperparameter of our Occupancy Network. It determines the “thickness” of the
extracted 3D surface. In our experiments, we cross-validate this threshold on a validation set.
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Figure 5.3: Occupancy Network Model Architecture. We first compute an embedding z of
the input. We then feed the input points through multiple fully-connected ResNet blocks. In
these blocks, we use Conditional Batch-Normalization (CBN) to condition the network on 1.
Finally, we project the output of our network to one dimension using a fully-connected layer
and apply the sigmoid function to obtain occupancy probabilities.

clouds, we use the PointNet encoder [230]. For voxelized inputs, we use a 3D convolutional
neural network [172]. For unconditional mesh generation, we use a PointNet [230] for the
encoder network Ej.

5.3 Experiments

We conduct three types of experiments to validate the proposed Occupancy Networks. First,
we analyze the representation power of Occupancy Networks by examining how well
the network can reconstruct complex 3D shapes from a learned latent embedding. This
gives us an upper bound on the results we can achieve when conditioning our representation
on additional input. Second, we condition our Occupancy Networks on images, noisy
point clouds and low-resolution voxel representations, and compare the performance of our
method to several state-of-the-art baselines. Finally, we examine the generative capabilities
of Occupancy Networks by adding an encoder to our model and generating unconditional
samples from this model.

Baselines For the single-image 3D reconstruction task, we compare our approach against
several state-of-the-art baselines which leverage various 3D representations: we evaluate
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against 3D-R2N2 [47] as a voxel-based method, Point Set Generating Networks (PSGN)
[69] as a point-based technique, and Pixel2Mesh [303] as well as AtlasNet [92] as mesh-
based approaches. For point cloud inputs, we adapted 3D-R2N2 and PSGN by changing the
encoder. As a mesh-based baseline, we use Deep Marching Cubes (DMC) [150] which has
recently reported state-of-the-art results on this task. For the voxel super-resolution task, we
assess the improvements wrt. the input.

Dataset For all of our experiments, we use the ShapeNet [34] subset of Choy et al. [47].
We also use the same voxelization, image renderings and train/test split as Choy et al.
Moreover, we subdivide the training set into a training and a validation set on which we
track the loss of our method and the baselines to determine when to stop training.

In order to generate watertight meshes and to determine if a point lies in the interior
of a mesh (e.g., for measuring loU) we use the code provided by Stutz et al. [269]. For a
fair comparison, we sample points from the surface of the watertight mesh instead of the
original model as ground truth for PSGN [69], Pixel2Mesh [303] and DMC [150]. All of
our evaluations are conducted wrt. these watertight meshes.

Metrics For evaluation, we use the volumetric IoU, the Chamfer-L; distance and a normal
consistency score. In the following, let M4 and Mgt be the set of all points that are
inside or on the predicted and ground truth mesh, respectively. The volumetric IoU is defined
as the quotient of the volume of the two meshes’ intersection and the volume of their union:

. ‘Mpred N MGT‘

pre

(5.7

We obtain unbiased estimates of these volumes by randomly sampling 100k points from
the bounding volume and determining if the points lie inside or outside Mpeq and Mg,
respectively.
We define the Chamfer-L; distance between the two meshes as
1

Chamfer-L, (./\/lpred, Magr) = Wpred’ oM qe%l/\i}llm p—ql2dp
pred

1
+— min —qll»d
20 Mar] Jorier perin I —all2dg

(5.8)

where d Mpreq and d Mgt denote the surfaces of the two meshes. Moreover, we define an
accuracy and completeness score of Meq wrt. Mgr:

1
A Mpred| Mart) == 50— i —q|2d
CcuraCY( pred‘ GT) |aMpred| IMpred qeglfl\fllm‘ Hp q”2 P (5 9)
1 , '
Completeness (M pred| MaT) i= min [|p—q|>dq

[IMar| JoMar pEIMpea

Note that this definition implies that lower accuracy and completeness scores are better.
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Moreover, note that the Chamfer-L; distance is just the mean of the accuracy and the
completeness score.
Similarly, we define the normal consistency score as
1

Normal-Consistency (M pred, Mar) = 210 Mol Jorn |(n(p),n(proj,(p)))|dp
pre pred

1
_‘_7
2|0 Mar| Jamer

(5.10)
|(n(proj; (q)),n(q))|dq

where (-, -) indicates the inner product, n(p) and n(q) the (unit) normal vectors on mesh
surface d Mpreq and d Mgr respectively and proj, (p) and proj, (q) denote the projections
of p and q onto d Mgt and d M preq respectively. As a result, a higher normal consistency
score is better.

We estimate all four quantities efficiently by sampling 100k points from the surface of
both meshes and employing a KD-tree to determine the corresponding nearest neighbors
from the other mesh.

5.3.1 Representation Power

643 1283 ours

163

Figure 5.4: Discrete vs. Continuous. Qualitative comparison of our continuous represen-
tation (right) to voxelizations at various resolutions (left). Note how our representation
encodes details that are lost in voxel-based representations.

In our first experiment, we investigate how well Occupancy Networks represent 3D geom-
etry, independent of the inaccuracies of the input encoding. The question we try to answer
in this experiment is whether our network can learn a memory-efficient representation
of 3D shapes while at the same time preserving as many details as possible. This gives
us an estimate of the representational capacity of our model and an upper bound on the
performance we may expect when conditioning our model on additional input. Similarly
to [275], we embed each training sample in a 512-dimensional latent space and train our
neural network to reconstruct the 3D shape from this embedding.

We apply our method to the training split of the “chair” category of the ShapeNet dataset.
This subset is challenging to represent as it is highly varied and many models contain
high-frequency details. Since we are only interested in reconstructing the training data, we
do not use separate validation and test sets for this experiment. For evaluation, we measure
the volumetric IoU to the ground truth mesh.
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Figure 5.5: IoU vs. Resolution. This plot shows the loU of a voxelization to the ground truth
mesh (solid blue line) in comparison to our continuous representation (solid orange line) as
well as the number of parameters per model needed for the two representations (dashed
lines). Note how our representation leads to larger IoU wrt. the ground truth mesh compared
to a low-resolution voxel representation. At the same time, the number of parameters of a
voxel representation grows cubically with the resolution, whereas the number of parameters
of Occupancy Networks is independent of the resolution.

Results Quantitative results and a comparison to voxel representations at various reso-
lutions are shown in Figure 5.5. We see that the Occupancy Network (ONet) is able to
faithfully represent the entire dataset with a high mean IoU of 0.89 while a low-resolution
voxel representation is not able to represent the meshes accurately. At the same time, the
Occupancy Network is able to encode all 4746 training samples with as little as 6M pa-
rameters, independently of the resolution. In contrast, the memory requirements of a voxel
representation grow cubically with resolution. Qualitative results are shown in Figure 5.4.
We observe that the Occupancy Network enables us to represent details of the 3D geometry
which are lost in a low-resolution voxelization.

5.3.2 Single-Image 3D Reconstruction

In our second experiment, we condition the Occupancy Network on an additional view of
the object from a random camera location. The goal of this experiment is to evaluate how
well occupancy functions can be inferred from complex input. While we train and test our
method on the ShapeNet dataset, we also present qualitative results for the KITTI [80] and
the Online Products dataset [206].

ShapeNet In this experiment, we use a ResNet-18 image encoder, which was pretrained
on the ImageNet dataset. For a fair comparison, we use the same image encoder for both
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ToU Chamfer-L; Normal Consistency)

3D-R2N2 PSGN Pix2Mesh AtlasNet ONet | 3D-R2N2 PSGN Pix2Mesh AtlasNet ONet | 3D-R2N2 PSGN Pix2Mesh AtlasNet ONet
category
airplane 0.426 - 0.420 - 0.571 0.227 0.137 0.187 0.104 0.147 0.629 - 0.759 0.836 0.840
bench 0.373 - 0.323 - 0.485 0.194 0.181 0.201 0.138 0.155 0.678 - 0.732 0.779 0.813
cabinet 0.667 - 0.664 - 0.733 0.217 0.215 0.196 0.175 0.167 0.782 - 0.834 0.850 0.879
car 0.661 - 0.552 - 0.737 0.213 0.169 0.180 0.141 0.159 0.714 - 0.756 0.836 0.852
chair 0.439 - 0.396 - 0.501 0.270 0.247 0.265 0.209 0.228 0.663 - 0.746 0.791 0.823
display 0.440 - 0.490 - 0.471 0.314 0.284 0.239 0.198 0.278 0.720 - 0.830 0.858 0.854
lamp 0.281 - 0.323 - 0.371 0.778 0.314 0.308 0.305 0.479 0.560 - 0.666 0.694 0.731
loudspeaker 0.611 - 0.599 - 0.647 0.318 0.316 0.285 0.245 0.300 0.711 - 0.782 0.825 0.832
rifle 0.375 - 0.402 - 0.474 0.183 0.134 0.164 0.115 0.141 0.670 - 0.718 0.725 0.766
sofa 0.626 - 0.613 - 0.680 0.229 0.224 0.212 0.177 0.194 0.731 - 0.820 0.840 0.863
table 0.420 - 0.395 - 0.506 0.239 0.222 0.218 0.190 0.189 0.732 - 0.784 0.832 0.858
telephone 0.611 - 0.661 - 0.720 0.195 0.161 0.149 0.128 0.140 0.817 - 0.907 0.923 0.935
vessel 0.482 - 0.397 - 0.530 0.238 0.188 0.212 0.151 0.218 0.629 - 0.699 0.756 0.794
mean 7 0.493 - 0.480 - 0.571 7 0.278 0.215 0.216 0.175 0.215 7 0.695 - 0.772 0.811 0.834

Table 5.1: Single-Image 3D Reconstruction. This table shows a numerical comparison of our approach and the baselines for single-image
3D reconstruction on the ShapeNet dataset. We measure the loU, Chamfer-L; distance and Normal Consistency for various methods wrt.
the ground truth mesh. Note that in contrast to prior work, we compute the loU wrt. the high-resolution mesh and not a coarse voxel
representation. All methods apart from AtlasNet [92] are evaluated on the test split by Choy et al. [47]. Since AtlasNet uses a pretrained
model, we evaluate it on the intersection of the test splits from [47] and [92].
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Figure 5.6: Single-View 3D Reconstruction. The input image is shown in the first column,
the other columns show the results for our method compared to various baselines.
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3D-R2N2 and PSGN. For PSGN we use a fully connected decoder with 4 layers and 512
hidden units in each layer. The last layer projects the hidden representation to a 3072-
dimensional vector which we reshape into 1024 3D points. As we use only a single input
view, we remove the recurrent network in 3D-R2N2. We reimplemented the method of
[303] in PyTorch, closely following the Tensorflow implementation provided by the authors.
For the method of [92], we use the code and pretrained model from the authors.

For all methods, we track the loss and other metrics on the validation set and stop training
as soon as the target metric reaches its optimum. For 3D-R2N2 and our method, we use the
IoU to the ground truth mesh as the target metric, for PSGN and Pixel2Mesh we use the
Chamfer distance to the ground truth mesh as the target metric. To extract the final mesh, we
use a threshold of 0.4 for 3D-R2N2 as suggested in the original publication [47]. To choose
the threshold parameter 7 for our method, we performed grid search on the validation set
and found that 7 = 0.2 yields a good trade-off between accuracy and completeness.

Qualitative results from our model and the baselines are shown in Figure 5.6. We observe
that all methods are able to capture the 3D geometry of the input image. However, 3D-R2N2
produces a very coarse representation and hence lacks details. In contrast, PSGN produces a
high-fidelity output but lacks connectivity. As a result, PSGN requires additional lossy post-
processing steps to produce a final mesh. Pixel2Mesh is able to create compelling meshes,
but often misses holes in the presence of more complicated topologies. Such topologies
are frequent, for example, for the “chairs* category in the ShapeNet dataset. Similarly,
AtlasNet captures the geometry well but produces artifacts in form of self-intersections and
overlapping patches.

In contrast, our method captures complex topologies, produces closed meshes, and
preserves most of the details.

Quantitative results are shown in Table 5.1. We observe that our method achieves the
highest IoU and normal consistency to the ground truth mesh. Surprisingly, while not trained
wrt. Chamfer distance as PSGN, Pixel2Mesh or AtlasNet, our method also achieves good
results for this metric. Note that it is not possible to evaluate the IoU for PSGN or AtlasNet,
as they do not yield watertight meshes.

Real Data To test how well our model generalizes to real data, we apply our network to
the KITTI [80] and Online Products datasets [206]. To capture the variety in viewpoints
of KITTT and Online Products, we rerendered all ShapeNet objects with random camera
locations and retrained our network for this task.

For the KITTI dataset, we additionally use the instance masks provided in [4] to mask
and crop car regions. We then feed these images into our neural network to predict the
occupancy function. Some selected qualitative results are shown in Figure 5.7a. Despite
only trained on synthetic data, we observe that our method is also able to generate realistic
reconstructions in this challenging setting.

For the Online Products dataset, we apply the same pretrained model. Several qualitative
results are shown in Figure 5.7b. Again, we observe that our method generalizes reasonably
well to real images despite being trained solely on synthetic data.
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Figure 5.7: Qualitative Results for Real Data. We applied our trained model to the KITTI
and Online Products datasets. Despite only being trained on synthetic data, our model
generalizes reasonably well to real data.

45



5 3D Reconstruction with Neural Fields

IoU Chamfer-L; Normal Consistency
3D-R2N2 0.565 0.169 0.719
PSGN - 0.144 -
DMC 0.674 0.117 0.848
ONet 0.778 0.079 0.895

Table 5.2: 3D Reconstruction from Point Clouds. This table shows a numerical comparison
of our approach wrt. the baselines for 3D reconstruction from point clouds on the ShapeNet
dataset. We measure loU, Chamfer-L| distance and Normal Consistency wrt. the ground
truth mesh.

IoU Chamfer-L, Normal Consistency
Input 0.631 0.136 0.810
ONet 0.703 0.109 0.879

Table 5.3: Voxel Super-Resolution. This table shows a numerical comparison of the output
of our approach in comparison to the input on the ShapeNet dataset.

5.3.3 Point Cloud Completion

As a second conditional task, we apply our method to the problem of reconstructing the
mesh from noisy point clouds. Towards this goal, we subsample 300 points from the surface
of each of the (watertight) ShapeNet models and apply noise using a Gaussian distribution
with zero mean and standard deviation 0.05 to the point clouds.

Again, we measure both the IoU and Chamfer-L; distance wrt. the ground truth mesh.
The results are shown in Table 5.2. We observe that our method achieves the highest IoU
and normal consistency as well as the lowest Chamfer-L; distance. Note that all numbers are
significantly better than for the single-image 3D reconstruction task. This can be explained
by the fact that this task is much easier for the recognition model, as there is less ambiguity
and the model only has to fill in the gaps.

5.3.4 Voxel Super-Resolution

As a final conditional task, we apply Occupancy Networks to 3D super-resolution [262].
Here, the task is to reconstruct a high-resolution mesh from a coarse 323 voxelization of
this mesh.

The results are shown in Table 5.3. We observe that our model considerably improves
IoU, Chamfer-L; distance and normal consistency compared to the coarse input mesh.

5.3.5 Unconditional Mesh Generation

Finally, we apply our Occupancy Network to unconditional mesh generation, training it
separately on four categories of the ShapeNet dataset in an unsupervised fashion. Our goal
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Figure 5.8: Unconditional 3D Samples. Random samples of our unsupervised models
trained on the categories “car”, “airplane”, “sofa‘ and “chair* of the ShapeNet dataset.
We see that our models are able to capture the distribution of 3D objects and produce

compelling new samples.

is to explore how well our model can represent the latent space of 3D models. Some samples
are shown in Figure 5.8. Indeed, we find that our model can generate compelling new
models.

5.3.6 Ablation Study

In this section, we test how the various components of our model affect its performance on
the single-image 3D-reconstruction task.

Effect of sampling strategy First, we examine how the sampling strategy affects the
performance of our final model. We try three different sampling strategies: (i) sampling
2048 points uniformly in the bounding volume of the ground truth mesh (uniform sampling),
(ii) sampling 1024 points inside and 1024 points outside mesh (equal sampling) and (iii)
sampling 1024 points uniformly and 1024 points on the surface of the mesh plus some
Gaussian noise with a standard deviation of 0.1 (surface sampling). We also examine the
effect of the number of sampling points by decreasing this number from 2048 to 64.

The results are shown in Table 5.4a. To our surprise, we find that uniform, the simplest
sampling strategy, works best. We explain this by the fact that other sampling strategies
introduce bias to the model: for example, when sampling an equal number of points inside
and outside the mesh, we implicitly tell the model that every object has a volume of 0.5.
Indeed, when using this sampling strategy, we observe thickening artifacts in the model’s
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IoU Chamfer-L, Normal Consistency
Uniform 0.571 0.215 0.834
Uniform (64) 0.554 0.256 0.829
Equal 0.475 0.291 0.835
Surface 0.536 0.254 0.822

(a) Influence of Sampling Strategy

IoU Chamfer-L NC
Full model 0.571 0.215 0.834
No ResNet 0.559 0.243 0.831
No CBN 0.522 0.301 0.806

(b) Influence of Occupancy Network Architecture

Table 5.4: Ablation Study. When we vary the sampling strategy, we observe that uniform
sampling in the bounding volume performs best. Similarly, when we vary the architecture,
we find that our ResNet architecture with conditional batch normalization yields the best
results.

output. Moreover, we find that reducing the number of sampling points from 2048 to 64
still leads to good performance, although the model does not perform as well as a model
trained with 2048 sampling points.

Effect of architecture To test the effect of the various components of our architecture,
we test two variations: (i) we remove the conditional batch normalization and replace it
with a linear layer at the beginning of the network that projects the encoding of the input
to the required hidden dimension and (ii) we remove all ResNet blocks in the decoder and
replace them with linear blocks. The results are presented in Table 5.4b. We find that both
components are helpful to achieve good performance.

5.4 Conclusion

In this chapter, we introduced Occupancy Networks, a novel neural field-based represen-
tation for 3D geometry. In contrast to existing representations, Occupancy Networks are
not constrained by the discretization of the 3D space and can hence be used to represent
realistic high-resolution meshes. Our experiments demonstrate that Occupancy Networks
are expressive and can be used effectively for both supervised and unsupervised learning of
3D shapes.
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Figure 5.9: Failure Cases. Occupancy Networks struggle with reconstructing thin details
as well as objects that are very different from the training data. Positional encoding and
better encoding schemes can further improve reconstruction quality (see text for details).

5.4.1 Limitations and Future Work

Expressiveness Due to the inherent smoothness bias of multi-layer perceptrons, recon-
structions are smooth. This can be an advantage when considering simple shapes where
extrapolated areas, e.g., from sparse or single input views, often appear realistic. But for
more complex topologies, the predictions tend to be overly smooth not containing high-
frequency details (see Figure 5.9). To overcome this, the use of positional encoding in neural
fields is proposed in [183] and analyzed to greater detail in [274]. The key idea is to map the
three-dimensional coordinate to a higher-dimensional space before feeding it to the neural
network. This allows the model to represent higher-frequency details. A related approach is
investigated in [261] where ReLLU activations are replaced with sinusoids. Together with
a high-frequency multiplier in the first layer, it acts similarly to positional encoding and
allows for higher-frequency details. Another line of research [169, 186, 273] combines
multiple-level feature grids with locally-conditioned MLPs to achieve higher-quality recon-
structions at the cost of larger memory requirements. We identify investigating efficient
and differentiable approaches for representing low and high frequencies adaptively, i.e.,
depending on the shape’s local structure, as promising future work.

Global Feature Encoding The Occupancy Network reconstructs a 3D shape from a single
latent code representing the input image. As a result, the latent code needs to summarize
the entire shape acting as a global descriptor which can lead to reconstructions that miss
details (see Figure 5.9). In [247], Saito et al. use locally-pooled features for inferring
reconstructions of human bodies from single views. In [324] different feature pooling
strategies are compared showing that a combination of global and local features leads to
the best results. Another line of work [35, 115, 219] partitions space into sub-spaces, e.g.,
voxel cells, and the network only needs to reconstruct the sub-space from local and global
encodings. This leads to more expressive models that can reconstruct large-scale scenes like
indoor rooms or houses in contrast to simple single-object scenes.
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6 Differentiable Surface Rendering of
Neural Fields

6.1 Introduction

We showed that neural fields are a promising representation of 3D geometry. However, we
assumed that 3D ground truth data is available for training. This is a problem when scaling
to more complex, real-world scenes where access to labeled data is limited. In this chapter,
we analyze how neural fields that represent 3D surfaces can be differentiably rendered
to the image plane. This is one key component for building models that can infer scene
representations in the real world from sparse input data.

Prior Work Learning-based 3D reconstruction approaches have achieved impressive
results [41, 47, 69, 92, 150, 179, 181, 212, 241, 305]. By using rich prior knowledge
obtained during the training process, they are able to infer a 3D model from as little as
a single image. However, most learning-based methods are restricted to synthetic data,
mainly because they require accurate 3D ground truth models as supervision for training
and reconstruction quality drops for a data domain shift at test time.

To overcome this barrier, several works have investigated approaches that require only
2D and 2.5D supervision in the form of multi-view images or depth maps. Most existing
approaches achieve this by modifying the rendering process to make it differentiable [10,
42,57, 81, 125, 139, 154, 155, 160, 194, 215, 223, 240, 278, 279, 286, 354]. While yielding
compelling results, they are restricted to specific 3D representations (e.g., voxels or meshes)
that suffer from discretization artifacts and the computational cost limits them to small
resolutions or deforming a fixed template mesh. At the same time, neural field-based
representations for shape [41, 179, 212] and texture [203, 247] have been proposed which
do not require discretization during training and have a constant memory footprint. However,
existing approaches using neural field representations require 3D ground truth for training
and it remains unclear how to learn neural field representations from image data alone.

Contribution In this chapter, we introduce Differentiable Volumetric Rendering (DVR).
Our key insight is that we can derive analytic gradients for the predicted depth map wrt.
the network parameters of the neural field-based shape and texture representation (see Fig-
ure 6.1). This insight enables us to design a differentiable renderer for neural field-based
shape and texture representations and allows us to learn these representations solely from
multi-view images and object masks. Since our method does not have to store volumetric
data in the forward pass, its memory footprint is independent of the sampling accuracy of
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od _ <8fe(f>) ,W>‘1 810 (p)
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Camera
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Figure 6.1: Differentiable Surface Rendering of Neural Fields. We show that volumetric
rendering is inherently differentiable for neural field-based shape and texture represen-
tations. Using an analytic expression for the gradient of the depth ‘3—‘; wrt. the network
parameters 0, we learn neural field-based 3D representations fg from 2D images.

the depth prediction step. We show that our formulation can be used for various tasks such
as single- and multi-view reconstruction, and works with synthetic and real data. In contrast
to [203], we do not need to condition the texture representation on the geometry but learn a
single model with shared parameters that represents both, geometry and texture.

6.2 Method

In this section, we describe our Differentiable Volumetric Rendering (DVR) approach. We
first define the implicit neural representation which we use for representing 3D shape and
texture. Next, we provide a formal description of DVR and all relevant implementation
details. An overview of our approach is provided in Figure 6.2.

6.2.1 Shape and Texture Representation

Shape In contrast to discrete voxel- and point-based representations, we represent the
3D shape of an object implicitly using the Occupancy Network introduced in the previous
chapter:

fo:R¥xZ—=10,1] (6.1)

The Occupancy Network fg(p,z) assigns a probability of occupancy to every point p € R?
in 3D space. For the task of single-view reconstruction, we process the input image with
an encoder network Eg(-) and use the output z € Z to condition fy. The 3D surface of an
object is implicitly determined by the level set Sy, = {p € R?|fy(p) = 7} for a threshold
parameter T € [0, 1] and can be extracted at arbitrary resolution using isosurface extraction
techniques (see Section 5.2.3).
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Texture tg(

o

Figure 6.3: Notation. To render an object from the Occupancy Network fg and Texture Field
tg, we cast a ray with direction d = ﬁ through a pixel u and determine the intersection
point p with the isosurface fo(p) = T. Afterward, we evaluate the Texture Field tg at P to
obtain the color prediction 1, at .

Texture Similarly, we can describe the texture of a 3D object using a Texture Field [203]
tg:R3x 2 — 10,1 (6.2)

which regresses an RGB color value ¢ € [0, 1]° for every point p € R3 in 3D space. Again,
tg can be conditioned on a latent embedding z of the object. The texture of an object is
given by the values of ty on the object’s surface (fy = 7). In this work, we implement fy
and ty as a single neural network with two shallow heads.

Supervision Recent works [41, 179, 203, 212, 247] have shown that it is possible to learn
fo and tg with 3D supervision (i.e., ground truth 3D models). However, ground truth 3D
data is often very expensive or even impossible to obtain for real-world datasets. In the next
section, we introduce DVR, an alternative approach that enables us to learn both fy and tg
from 2D images alone. For clarity, we drop the condition variable z in the following.

6.2.2 Differentiable Volumetric Rendering

Our goal is to learn fg and ty from 2D image observations. Consider a single image
observation. We define a photometric reconstruction loss

LAD =Y |fu— L (6.3)

which we aim to optimize. Here, I denotes the observed image and Iisthe image rendered
by our implicit model.! Moreover, I, denotes the RGB value of the observation I at pixel

Note that the rendered image i depends on 6 through fy and tg. We have dropped this dependency here to
avoid clutter in the notation.
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6.2 Method

u and || -|| is a (robust) photo-consistency measure such as the ¢;-norm. To minimize the
reconstruction loss £ wrt. the network parameters 6 using gradient-based optimization
techniques, we must be able to (i) render i given fy and tg and (ii) compute gradients
of £ wrt. the network parameters 6. Our core contribution is to provide solutions to both
problems, leading to an efficient algorithm for learning implicit 3D representations from 2D
images.

Rendering We adopt the ray marching rendering operator 7™ in DVR (see Section 4.3).
More specifically, for a camera located at ry we can predict the color I, at pixel u by casting
a ray from ry through u and determining the first point of intersection p with the isosurface
Spy = {p € R%|fo(p) = t} as illustrated in Figure 6.3. The color value I, is then given by

I, =te(P).

Gradients To obtain gradients of £ with respect to 0, we first use the multivariate chain
rule:

oL oL ol
a0 91, J6
Here, % denotes the Jacobian matrix for a vector-valued function f with vector-valued
argument x and - indicates matrix multiplication. By exploiting I, = tg (p), we obtain

ol,  dte(p)  Ite(p) Ip

906 90 ' ap a6 6.5

since both tg as well as p depend on 6. Because p is defined implicitly, calculating g—g is

non-trivial. We first exploit that p lies on the ray from ry through u. For any pixel u, this
ray can be described by r(d) = rp +dw where w is the vector connecting ro and u (see
Figure 6.3).% Since p must lie on r, there exists a depth value d, such that p = r(d). We call
d the surface depth. This enables us to rewrite g—g as

op or(d) ad
96~ 06 a6 (00

For computing the gradient of the surface depth d with respect to 8 we exploit implicit
differentiation [7, 245]. Differentiating f(P) = T on both sides wrt. 6, we obtain:

dfo(P) n dfe(p) Ib _
20 " op a6 o
dfe(P)  dfe(p) od '
= 20 + 9 'W% =0

ZNote that to ensure generality, we do not assume w to be normalized, and the relation to the in Section 4.3
introduced normalized ray direction is d = m It follows that w = d if ||w]||, = L.
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Rearranging Equation 6.7, we arrive at the following closed-form expression for the gradient
of the surface depth d:

od <8fe () ,w>‘1 9/o(p) (6.8)

00 ap 26
We remark that calculating the gradient of the surface depth d wrt. the network parameters
0 only involves calculating the gradient of fy at p wrt. the network parameters 6 and the
surface point p. Thus, in contrast to voxel-based approaches [215, 286], we do not have to
store intermediate results (e.g., volumetric data) for computing the gradient of the loss wrt.
the parameters, resulting in a memory-efficient algorithm. In the next section, we describe
our implementation of DVR which makes use of reverse-mode automatic differentiation to
compute the full gradient Equation 6.4.

6.2.3 Implementation

To use automatic differentiation, we have to implement the forward and backward pass for
the surface depth prediction step 6 — d. In the following, we describe how both passes are
implemented.

Forward Pass We implement the forward pass as ray marching. As visualized in Fig-
ure 6.3, we can determine d by finding the first occupancy change on the ray r. To detect an
occupancy change, we evaluate the Occupancy Network fy(-) at n equally-spaced samples
on the ray {p;ay 1. Using a step size of As, we can express the coordinates of these points
in world-coordinates as

p;.ay =r(jAs+sp) (6.9)

where sg determines the closest possible surface point. We first find the smallest j for which
fo changes from free space (fp < 7T) to occupied space (fg > 7):

j=argmin (fo(B},) > 7> folp})) (6.10)
J

We obtain an approximation to the surface depth d by applying the iterative secant method to
the interval [jAs + so, (j + 1)As + so]. In practice, we compute the surface depth for a batch
of N, points in parallel. It is important to note that we do not need to unroll the forward
pass or store any intermediate results as we exploit implicit differentiation to directly obtain
the gradient of d wrt. 6.

Backward Pass The input to the backward pass is the gradient A = % of the loss wrt.
a single surface depth prediction. The output of the backward pass is lg—‘g, which can
be computed using Equation 6.8. In practice, however, we would like to implement the

backward pass not only for a single surface depth d but for a whole batch of depth values.
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ad
d

We can implement this efficiently by rewriting A 55 as
dfe(B) . afe®) \'
th =— : A 6.11

Importantly, the left term in Equation 6.11 corresponds to a normal backward operation
applied to the neural network fy and the right term in Equation 6.11 is just an (element-wise)
scalar multiplication for all elements in the batch. We can hence conveniently compute the
backward pass of the operator 8 — d by first multiplying the incoming gradient A element-
wise with a factor and then backpropagating the result through the operator 6 — fu(P).
Both operations can be efficiently parallelized in common deep-learning frameworks.

6.2.4 Training

During training, we assume that we are given N images {Ik}i\’: | together with corresponding
camera intrinsics, extrinsics, and object masks {Mk}g: |- As our experiments show, our
method works with as little as one image per object. In addition, our method can also
incorporate depth information {D}Y_,, if available.

For training fg and tg, we randomly sample an image I; and N, points u on the image
plane. We distinguish the following three cases: First, let Py denote the set of points u
that lie inside the object mask M, and for which the Occupancy Network predicts a finite
surface depth d as described in Section 6.2.3. For these points, we can define a loss L:op(0)
directly on the predicted image ;. Moreover, let P; denote the points u which lie outside
the object mask M. While we cannot define a photometric loss for these points, we can
define a loss ,Cfreespace(e) that encourages the network to remove spurious geometry on the
corresponding rays. Finally, let P, denote the set of points u which lie inside the object mask
M, but for which the Occupancy Network does not predict a finite surface depth d. Again,
we cannot use a photometric loss for these points, but we can define a loss Lmupmcy(e)
that encourages the network to produce a finite surface depth.

RGB Loss For each point in P, we detect the predicted surface depth d as described
in Section 6.2.3. We define a photo-consistency loss for the points as

Lip(8)= Y 1E@u—E D] (6.12)

uePy

where & () computes image features and || - || defines a robust error metric. In practice, we
use RGB values and (optionally) image gradients as features and an ¢;-loss for || - ||.

Depth Loss When the depth is also given, we can directly incorporate an ¢; loss on the
predicted surface depth as
Lacpn(0) =Y |d—d|, (6.13)

uePy
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where d indicates the ground truth depth value of the sampled image point u and d denotes
the predicted surface depth for pixel u.

Freespace Loss If a point u lies outside the object mask but the predicted surface depth d
is finite, the network falsely predicts surface point p = r(ds. Therefore, we penalize this
occupancy with

Efreespace(e) = Z BCE(fG (ﬁu)ao) (614)
ueP;
where BCE is the binary cross entropy. When no surface depth is predicted, we apply the
freespace loss to a randomly sampled point on the ray.

Occupancy Loss If a point u lies inside the object mask but the predicted surface depth d
is infinite, the network falsely predicts no surface points on ray r. To encourage predicting
occupied space on this ray, we uniformly sample depth values dyyndom and define

£occupancy(9) = Z BCE(fG (ru (drandom))a 1) (615)

ueP,

In the single-view reconstruction experiments, we instead use the first point on the ray
which lies inside all object masks (depth of the visual hull). If we have additional depth
supervision, we use the ground truth depth for the occupancy loss. Intuitively, Loccupancy
encourages the network to occupy space along the respective rays which can then be used
by L, in Equation 6.12 and Lgep in Equation 6.13 to refine the initial occupancy.

Normal Loss Optionally, our representation allows us to incorporate a smoothness prior
by regularizing surface normals. This is useful, especially for real-world data as training
with 2D or 2.5D supervision includes unconstrained areas where this prior enforces more
natural shapes. We define this loss as

Luormal (8) = Z |In(p) —n(qu)ll (6.16)

ucPy

where n(-) denotes the normal vector, p, the predicted surface point and q, a randomly
sampled neighbor of p,,.

6.2.5 Implementation Details

We implement the combined network with 5 fully-connected ResNet [98] blocks and ReLU
activation. The output dimension of the last layer is 4, with one dimension for the occupancy
probability and three dimensions for the texture. For the single-view reconstruction experi-
ments, we encode the input image with a ResNet-18 [98] encoder network Ey which outputs
a 256-dimensional latent code z. To facilitate training, we start with a ray sampling accuracy
of n = 16 which we iteratively increase to n = 128 by doubling »n after 50, 150, and 250
thousand iterations. We choose the sampling interval [sg,nAs + so| such that it covers the
volume of interest for each object. We set 7 = 0.5 for all experiments. We train on a single
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NVIDIA V100 GPU with a batch size of 64 images with 1024 random pixels each. We use
the Adam optimizer [130] with a learning rate of 10~* which we decrease by a factor of 5
after 750 and 1000 epochs, respectively.

6.3 Experiments

We conduct two different types of experiments to validate our approach. First, we investigate
how well our approach reconstructs 3D shape and texture from a single RGB image when
trained on a large collection of RGB or RGB-D images. Here, we consider both the case
where we have access to multi-view supervision and the case where we use only a single
RGB-D image per object during training. Next, we apply our approach to the challenging
task of multi-view reconstruction, where the goal is to reconstruct complex 3D objects
from real-world multi-view imagery.

6.3.1 Single-View Reconstruction

First, we investigate to which degree our method can infer a 3D shape and texture represen-
tation from single views. We train a single model jointly on all categories.

Datasets To adhere to community standards [47, 179, 305], we use the Choy et al. [47]
subset (13 classes) of the ShapeNet dataset [34] for 2.5D and 3D supervised methods
with training, validation, and test split from [179]. While we use the renderings from
Choy et al. [47] as input, we additionally render 24 images of resolution 256> with depth
maps and object masks per object which we use for supervision. We randomly sample
the viewpoint on the northern hemisphere as well as the distance of the camera to the
object to get diverse supervision data. For 2D supervised methods, we adhere to community
standards [125, 155, 327] and use the renderings and splits from [125]. Similar to [47, 125,
179], we train with objects in the canonical pose.

Baselines We compare against the following methods which all produce watertight meshes
as output: 3D-R2N2 [47] (voxel-based), Pixel2Mesh [305] (mesh-based), and ONet [179]
(implicit representation). We further compare against both the 2D and the 2.5D supervised
version of Differentiable Ray Consistency (DRC) [286] (voxel-based) and the 2D supervised
Soft Rasterizer (SoftRas) [155] (mesh-bapresed). For 3D-R2N2, we use the pretrained model
from [179] which was shown to produce better results than the original model from [47].
For the other baselines, we use the pretrained models® from the authors.

Multi-View Supervision We first consider the case where we have access to multi-view
supervision with N = 24 images and corresponding object masks. In addition, we also
investigate the case when ground truth depth maps are given.

3Unfortunately, we cannot show texture results for DRC and SoftRas as texture prediction is not part of the
official code repositories.
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Input SoftRas  Ours (Lrgp) Pixel2Mesh Ours (Lpepin)
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Figure 6.4: Single-View Reconstruction. We show the input renderings from [47] and
the output of our 2D supervised (Lrgp) and 2.5D supervised (Lpepm) model, Soft Raster-
izer [155] and Pixel2Mesh [305]. For 2D supervised methods, we use a corresponding view
from [125] as input.

We evaluate the results using the Chamfer-L; distance from [179]. In contrast to previous
works [47, 155, 179, 286], we compare directly wrt. to the ground truth shape models, not
the voxelized or watertight versions.

In Table 6.1 and Figure 6.4 we show quantitative and qualitative results for our method
and various baselines. We can see that our method is able to infer accurate 3D shape and
texture representations from single-view images when only trained on multi-view images
and object masks as the supervision signal. Quantitatively (Table 6.1), our method performs
best among the approaches with 2D supervision and rivals the quality of methods with full
3D supervision. When trained with depth, our method performs comparably to the methods
which use full 3D information. Qualitatively (Figure 6.4), we see that in contrast to the
mesh-based approaches, our method is not restricted to certain topologies. When trained
with the photo-consistency loss Lrgp, We see that our approach is able to predict accurate
texture information in addition to the 3D shape.

Single-View Supervision The previous experiment indicates that our model is able to
infer accurate shape and texture information without 3D supervision. A natural question
to ask is how many images are required during training. To this end, we investigate the
case when only a single image with depth and camera information is available. Since we
represent the 3D shape in a canonical object coordinate system, the hypothesis is that the
model can aggregate the information over multiple training instances, although it sees every
object only from one perspective. As the same image is used both as input and supervision
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Input Prediction Input Prediction

Figure 6.5: Single-View Reconstruction with Single-View Supervision. While only trained
with a single view per object, our model predicts accurate 3D geometry and texture.

(a) Shape (b) Normals (c) Texture

Figure 6.6: Multi-View Stereo. We show the shape, normals, and the textured shape for our
method trained with 2D images and sparse depth maps for scan 106 of the DTU dataset [1].

signal, we now condition on our renderings instead of the ones provided by Choy et al. [47].

Surprisingly, Figure 6.5 shows that our method can infer appropriate 3D shape and texture
when only a single view is available per object, confirming our hypothesis. Quantitatively,
the Chamfer distance of the model trained with Lrgp and Lpepn With only a single view
(0.410) is comparable to the model trained with Lpepm With 24 views (0.383). The reason
for the numbers being worse than in Section 6.3.1 is that for our renderings, we do not only
sample the viewpoint but also the distance to the object resulting in a much harder task (see
Figure 6.5).

6.3.2 Multi-View Reconstruction

Finally, we investigate if our method is also applicable to multi-view reconstruction in real-
world scenarios. We investigate two cases: First, when multi-view images and object masks
are given. Second, when additional sparse depth maps are given which can be obtained from
classic multi-view stereo algorithms [254]. For this experiment, we do not condition our
model and train one model per object.

Dataset We conduct this experiment on scans 65, 106, and 118 from the challenging
real-world DTU dataset [1]. The dataset contains 49 or 65 images with camera information
for each object and baseline and structured light ground truth data. The presented objects
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(a) Visual Hull [141] (b) Ours (Lrca) (c¢) Ground Truth

Figure 6.7: Comparison against Visual Hull. We show the visual hull, the shape prediction
of our model trained with Lrgp, and the ground truth for scan 118 of the DTU dataset. Our
method uses RGB cues to improve over the visual hull and predicts parts that are missing in
the ground truth.

are challenging as their appearance changes in different viewpoints due to specularities. Our
sampling-based approach allows us to train on the full image resolution of 1200 x 1600. We
label the object masks ourselves and always remove the same images with profound changes
in lighting conditions, e.g., caused by the appearance of scanner parts in the background.

Baselines We compare against classical approaches that have 3D meshes as output. To
this end, we run screened Poisson surface reconstruction (SPSR) [127] on the output of the
classical MVS algorithms Campbell et al. [33], Furukawa et al. [72], Tola et al. [284], and
Colmap [254]. We find that the results on the DTU benchmark for the baselines are highly
sensitive to the trim parameter of sSPSR and therefore report results for the trim parameters
0 (watertight output), 5 (good qualitative results) and 7 (good quantitative results). For a
fair comparison, we use the object masks to remove all points which lie outside the visual
hull from the predictions of the baselines before running sPSR. We use the official DTU
evaluation script in “surface mode”.

Results We show qualitative and quantitative results in Figure 6.6 and Table 6.2. Qual-
itatively, we find that our method can be used for multi-view 3D reconstruction, directly
resulting in watertight meshes. The ability to accurately model cavities of the objects shows
that our model uses texture information to improve over the visual hull (Figure 6.7). Quan-
titatively, Table 6.2 shows that our approach rivals the results from highly tuned MVS
algorithms. We note that the DTU ground truth is itself sparse (Figure 6.7c) and methods
are therefore rewarded for trading off completeness for accuracy, which explains the better
quantitative performance of the baselines for higher trim parameters (Figure 6.8).
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Trim Param. Accuracy Completeness ~ Chamfer-L;
Tola [284] + sPSR 0 2.409 1.242 1.826
Furu [72] + sPSR 0 2.146 0.888 1.517
Colmap [254] + sPSR 0 1.881 0.726 1.303
Camp [33] + sPSR 0 2.213 0.670 1.441
Tola [284] + sPSR 5 1.531 1.267 1.399
Furu [72] + sPSR 5 1.733 0.888 1.311
Colmap [254] + sPSR 5 1.400 0.782 1.091
Camp [33] + sPSR 5 1.991 0.670 1.331
Tola [284] + sPSR 7 0.396 1.424 0.910
Furu [72] + sPSR 7 0.723 0.955 0.839
Colmap [254] + sPSR 7 0.446 1.020 0.733
Camp [33] + sPSR 7 1.466 0.719 1.092
Ours (LrGB) - 1.054 0.760 0.907
Ours (LrGB + Lpepth) - 0.789 0.775 0.782

Table 6.2: Multi-View Stereo. We show quantitative results for scans 65, 106, and 118 on
the DTU dataset. For the baselines, we perform screened Poisson surface reconstruction
(sPSR) [127] with trim parameters 0, 5, and 7 to obtain the final output. It shows that our
generic method achieves results comparable to the highly optimized MVS methods.

(a) Colmap 5 (b) Colmap 7 (c) Ours

Figure 6.8: Effect of Trim Parameter. We show screened Poisson surface reconstruc-
tions [127] with trim parameters 5 and 7 for Colmap [254] and the prediction of our model
trained with Lrp + Lpepm for scan 106 of the DTU dataset.
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6.4 Conclusion

This chapter presented Differentiable Volumetric Rendering (DVR). Observing that volu-
metric surface rendering is inherently differentiable for neural fields allows us to formulate
an analytic expression for the gradients of the depth with respect to the network parameters.
Our experiments showed that DVR enables us to learn neural field-based 3D shape and
texture representations from multi-view imagery without 3D supervision, rivaling models
that are learned with full 3D supervision. Moreover, we found that our model can also be
used for multi-view 3D reconstruction.

6.4.1 Limitations and Future Work

Colmap IDR IDR- render

Figure 6.9: Failure Cases. Our proposed DVR system cannot model view-dependent lighting
effects which results in cavity-like artifacts in the reconstructions of scenes with specularities.
This has been addressed in follow-up works like IDR [333] where the color prediction is
conditioned on the viewing direction leading to better results.

View Dependency The proposed method does not model view-dependent effects like
specular highlights or reflections. This leads to inconsistent 3D geometry predictions like
small cavities allowing the model to predict specular highlights (see Figure 6.9). In the
follow-up work IDR [333], Yariv et al. addressed this by adding the viewing direction as
input to the model for the color prediction. This leads to improved results and more accurate
geometry predictions.

Mask Supervision We derived analytic formulations for the gradient of the depth wrt. the
network parameters. For this formula to hold, we assume that a surface point is found along
each ray, and we add additional losses for supervising which ray should be occupied or
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empty (see Section 6.2.4). In contrast, Mildenhall et al. [183] replace the single-surface rep-
resentation with a density-based volume representation which is differentiable everywhere
and hence does not require mask supervision. Recent works [205, 307, 334] combine both
approaches to achieve 3D reconstruction methods which can be trained from multi-view
images without masks.

Camera Poses We train our DVR model from either multi-view or single-view supervision
with the respective camera poses. In most works, the camera poses are assumed to be given
as either synthetic data is used or well-engineered SfM algorithms like COLMAP [254] can
be employed as a preprocessing step to obtain camera poses. However, for more realistic
scenarios like single images of different real-world scenes or sparse coverages of individual
scenes, the feature matching of classical StM methods breaks down leading to non-reliable
pose estimation. To overcome this limitation, works are proposed that optimize a 3D scene
representation and camera poses simultaneously from multi-view images [113, 152, 308].
While these approaches perform well for a restricted pose range (e.g., forward-facing
cameras) or if initial poses are well selected, they are prone to get stuck in local minima due
to the joint optimization via gradient descent. In contrast, GAN-based approaches have been
used to learn 3D representations from unposed images of one [177] or many scenes [36, 200,
255], including scenes with 360° pose ranges. The system that we will discuss in Chapter 8
is a GAN-based generative model that does not require poses as input and that can be trained
from raw, unposed image collections.
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7 4D Reconstruction with Neural Fields

7.1 Introduction

In Chapter 5, we established that neural fields are well suited as 3D representation in
learning-based systems and developed a method for inferring them from 2D supervision via
differentiable surface rendering in Chapter 6. The models we discussed so far are only able
to recover a static scene. Our goal is, however, to develop systems that can be employed
in the real world where objects are not static, but in motion. As a result, in this chapter,
we develop a neural field-based 3D shape and motion representation that allows for 4D
reconstruction, 4D sequence interpolation, and 4D generative tasks.

Prior Work Most traditional works in the area of 4D reconstruction are restricted to a
fixed domain by utilizing a template model [6, 15, 52, 109, 120, 287, 349], requiring a multi-
view setup [145, 188, 189, 193, 208, 267, 290], or making strong assumptions about the
motion ,e.g., rigidity or linearity [11, 176, 218, 291, 300]. For example, Mustafa et al. [188,
189] perform 4D reconstruction of dynamic scenes by utilizing multiple views. However, the
method requires a sufficient number of wide-baseline views to cover the scene and is limited
by ambiguities in these views. Wand et al. [300] present a carefully engineered technique
to reconstruct deforming 3D geometry from point clouds. While producing compelling
results, their method is restricted to spatiotemporal smooth and small movements, assumes
temporally dense sampling of the point clouds, and is computationally costly. Another
successful line of work utilizes template models to guide the reconstruction process [6, 60,
109, 120, 287, 349]. While providing a valuable framework for classical and learning-based
models, by definition those results are restricted by the quality and availability of a template
model and are extremely domain-specific. In addition, obtaining an adequate template is
very costly, so most existing efforts focus on particular shape categories such as human
bodies, hands, or faces [19, 161, 216, 224, 242].

More recently, learning-based approaches for recovering the 3D geometry from various
forms of input have shown promising results [43, 47, 69, 92, 150, 179, 212, 241, 303]. In
contrast to traditional methods, they leverage prior knowledge obtained during the training
process to resolve ambiguities. In particular, recent neural field-based representations [43,
179, 212] achieve impressive results at limited memory costs. However, it remains unclear
how to extend these approaches to the task of 4D reconstruction, i.e., reconstructing 3D
shapes over time. Naively discretizing the temporal domain would lead to high memory
cost and slow inference. Furthermore, it would neither provide implicit correspondences
nor a physical description of the temporal evolution. While not only unsatisfactory from
a scientific viewpoint, these problems also limit the use of existing 4D reconstruction
techniques in applications where fast inference and reliable correspondences are desirable.

67



7 4D Reconstruction with Neural Fields

Time

Figure 7.1: 4D Reconstruction with Neural Fields. In Occupancy Flow, we represent time-
varying 3D geometry by a temporally and spatially continuous vector field which assigns a
motion vector to every point in space and time, thus implicitly capturing correspondences.
We demonstrate that our representation can be used for 4D reconstruction from point cloud
and image sequences as well as interpolation, shape matching, and generative tasks.

Contribution In this chapter, we propose a novel continuous 4D representation (Fig-
ure 7.1) that implicitly models correspondences. More specifically, we parameterize a vector
field with a neural network that assigns a 3D vector of motion to every 4D point in space and
time. We combine this model with the previously discussed Occupancy Network (ONet) that
represents shape continuously as the decision boundary of a binary classifier in 3D space.
As every point in space is assigned an occupancy value as well as a continuous trajectory
over time, we term our new representation Occupancy Flow (OFlow). Our representation is
not only spatially and temporally continuous, but also implicitly provides correspondences
at every point in space so that OFlow can be seen as the continuous generalization of scene
flow [294, 295]. As a result, OFlow is not only suitable for reconstruction tasks, but also for a
broader range of applications such as learning shape interpolations, finding correspondences
between shapes, or learning probabilistic latent variable models. Furthermore, by modeling
the temporal evolution of 3D shapes using continuum mechanics, our representation has a
principled physical interpretation.

7.2 Method

In this section, we introduce our novel time-varying representation of 3D geometry which
we term Occupancy Flow (OFlow). We start by formally introducing our model. Next, we
explain how this representation can be learned from various types of input such as sequences
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7 4D Reconstruction with Neural Fields

of point clouds or images. Finally, the inference procedure, as well as implementation
details, are provided. Figure 7.2 contains an overview of our method.

7.2.1 Occupancy Flow

We consider the challenging problem of estimating non-rigid 3D geometry jointly over space
and time. More specifically, we are interested in inferring the evolution of a continuous 3D
shape representation that implicitly and densely captures correspondences across time.

Velocity Field Lets: [0, Tehq] — R3 define the continuous 3D trajectory of a point over
the time interval [0, Tepq] such that s(0) € R3 and s(Tenq) € R? denote the start and end
locations of the trajectory. Let further v : R3 x [0, Tena] — R3 denote the continuous velocity
field which describes the 3D velocity at every point in space and time. The relationship
between s(-) and v(-,-) is governed by the following differential equation

as(t)
ot

= v(s(t),1) (7.1)

with 7 € [0, Teng).

Forward Flow When solving this ordinary differential equation (ODE) [277] for every
initial condition s(0) = p with p € R? we obtain the forward flow ® : R? x [0, Tonq] — R?
(Figure 7.2a) satisfying:

oD
;(p,t)ZV(CP(p,t),t) st. ®(p,0)=p (7.2)

Intuitively, the flow ®(p,#) describes the location of initial point p at time # when following
the vector field v(-,-). In order to propagate spatial information (e.g., volumetric occupancy
or mesh vertices) forward in time, we can reformulate Equation 7.2 as follows

¢
O(p.0)=p+ [ V(@)1 (13)

where { € [0, Teng] denotes an arbitrary point in time and p a spatial location in R?. This
equation can be solved with standard numerical solvers such as Runge-Kutta [277]. We can
also regard ®(-, {) as a coordinate transformation that transforms a coordinate system at
time 7 = 0 to a coordinate system at time r = {. In the field of continuum mechanics [9],
these coordinate systems are often referred to as “material coordinate system” and “spatial
coordinate system”, respectively.

Backward Flow We define the backward flow ¥ : R? x [0, Tenq] — R (Figure 7.2b) as
the inverse transformation of ®. This inverse transformation can be computed by solving

the reverse ODE
ar(t)

=—v(r(t),t) st r()=p (7.4)
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for every (p, ) € R3 x [0, Tunq] and setting ¥(p, ) = r(0). As correspondences across time
are implicitly captured, it is sufficient to represent the 3D shape in the coordinate system
at time ¢t = 0. The 3D shape at other points in time can then be obtained by propagation
using Equation 7.3.

Shape Representation For representing the 3D shape at time # = 0 we choose the pre-
viously discussed occupancy function f : R? — {0,1} representation which assigns an
occupancy value to every 3D point. In contrast to mesh- or point-based representations,
occupancy functions allow for representing smooth shapes at arbitrary resolution and with
arbitrary topology.

Parameterization We parameterize both the occupancy function f(-) as well as the
velocity field v(-, -) using neural networks

fo @ RPxZ—[0,1] (7.5)
Ve RPx[0,Tend] x 2 - R? (7.6)

where 6 and ¢ denote the network parameters, and Z the latent space for conditioning the
networks on some latent code. In the following, we will refer to fg(-,-) as the Occupancy
Network and vy (-, -, ) as the Velocity Network. We will now describe how the parameters of
Equation 7.5 and Equation 7.6 can be learned from data.

7.2.2 Training

Our goal is to learn the parameters 6 and ¢ of fy(-,-) and v, (-,-,) using samples drawn
from the 4D occupancy space-time volume, i.e., each sample represents the occupancy
state at a particular point in space and time. Since we have chosen ¢ = 0 as the reference
coordinate system for representing the shape, each sample with ¢ > 0 must be mapped back
to its location at t = 0 in order to train the Occupancy and the Velocity Network. Towards
this goal we use the backward flow ¥ : R3 x [0, Tenq] — R? described above (Figure 7.2b).
The predicted occupancy dg 4 (p,?,z) of 3D point p at time ¢ for some latent code z is given
by

66.6(p,1,2) == fo (¥ (p,t,2),2) (7.7)

where we used the notation ¥y to indicate that the inverse transformation depends on the
parameters of the Velocity Network vy (-,-,-).

Reconstruction Loss The model can be trained by minimizing the binary cross-entropy
error (BCE) between the predicted occupancy ¢ and the observed occupancy o of 3D point

p at time &:
1 .
»Crecon (Ga (P) = @ Z BCE(OG,(I) (pa Caz)vo) (78)
(p,§,z,0)eB

Here, B denotes a mini-batch that comprises samples from multiple sequences and at
multiple time instances .
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Correspondence Loss It is important to note that training our model does nof require any
correspondences across time. However, if available, additional correspondence information
can be incorporated (Figure 7.2a) by propagating 3D points p from time ¢t = 0 to time
t = { using the forward flow ®(p, {) in Equation 7.3. The correspondence loss function
minimizes the ¢, distance between the predicted location ®,(s(0),{,z) and the observed
location s({) at time ¢ for latent code z as follows

Ecorr(q)) = L Z ||¢¢(S(0),C,Z)—S(C)H2 (7.9)

’ ‘ (s,8,2)eB

where s denotes the ground truth trajectory of a 3D point.

Gradient Computation The gradients of Equation 7.8 and Equation 7.9 can be efficiently
obtained using the adjoint sensitivity method [40, 226] by solving a second augmented ODE
backward in time. This way, the memory footprint can be kept constant with the tradeoff of
longer computing time. For adaptive ODE solvers, relative and absolute error tolerances
can be chosen to balance time and accuracy. For details, we refer the reader to [40].

7.2.3 Inference

Mesh Extraction For a new observation z, we predict the time-varying 3D shape by first
reconstructing the shape in the reference coordinate system at ¢ = 0, followed by propagating
the reconstruction into the future ¢ € (0, Tinq]. While various shape representations could be
employed with our method, we utilize the previously discussed Multiresolution IsoSurface
Extraction (MISE) to extract a mesh My = (P, Fo) from the prediction of the Occupancy
Network fy at time r = 0. Here, Py and Fy denote the vertices and the faces of mesh M,
respectively.

Mesh Propagation For later time steps 7, we use the trained Velocity Network vy in order
to obtain the forward transformation @ (p;,?,z) for all vertices p; in Py by solving Equa-
tion 7.3. The mesh at time ¢ is given as:

M, = ({®4(pi,t,2)|p; € Po}, Fo) (7.10)

Note that the mesh has to be extracted only once during inference. Therefore, inference for
a large number of time steps is significantly faster compared to the naive solution which
extracts a mesh independently at every time step. Moreover, we implicitly obtain temporal
correspondences (i.e., the mesh vertices correspond across time) even when using only the
reconstruction loss Equation 7.8 during training.

7.2.4 Implementation Details

For both the Occupancy Network and the Velocity Network we use a fully-connected ResNet-
based [98] architecture shown in Figure 7.3. For conditioning the Occupancy Network fp
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Figure 7.3: Velocity Network Architecture. Green color indicates input, cyan fully con-
nected layers, and gray other operations. The Occupancy Network architecture is similar
except that the input point dimension is 3 (no temporal axis), the outputs are occupancy
probabilities of dimension 1, and conditional batch normalization [66, 298] is used instead
of the adding operation for conditioning on input z.

and the Velocity Network vy on a sequence of observations z = (zi)i=1,..n, With length
Ny, we use two separate encoder networks Eg(z1) and Ej (z), where the spatial encoder
Eg(21) is only applied to the first observation z and the temporal encoder Ey(z) is applied
to the whole sequence of N, observations z. The input z could for example be a sequence
of images where z; indicates the i-th image of this sequence. While we use the output of
the spatial encoder to condition the Occupancy Network fg on z, we use the output of the
temporal encoder to condition the Velocity Network vy on z. Depending on whether we use
a sequence of point clouds or a sequence of images as input, we use a PointNet [230] or a
Resnet-18 [98] for the spatial encoder Ej. For the temporal encoder Eé,, we use an adjusted
PointNet architecture with input dimension 3 x L and a 3D convolutional network for point
cloud and image input, respectively. We use the Adam optimizer [129] with a learning rate
of 10~* and train with batch size 16.

7.3 Experiments

We conduct four different types of experiments to investigate the effectiveness of our ap-
proach. First, we evaluate the representation power of our vector field-based representation
by training it to reproduce complex 3D motions. We further investigate the reconstruction
capacity of our representation by conditioning the network on a sequence of images or
noisy point clouds. We then investigate the quality of the learned interpolations and cor-
respondences between two meshes or point clouds, respectively. Finally, we examine its
generative capabilities by training a variational autoencoder [129] and investigating the
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quality of the latent representation.

Baselines A natural baseline for 4D reconstruction from image sequences or point clouds
is to extend Occupancy Networks (ONet) to the temporal domain by sampling points in 4D
space. Similar to our method, this ONet 4D is continuous in time and space and can hence
represent complex motions of 3D objects with arbitrary topology. However, in contrast
to our representation, extracting meshes from this ONet 4D is time-consuming (as mesh
extraction is done at every frame) and does not yield correspondences across time. As
an additional baseline, we implement a 4D extension of Point Set Generation Network
(PSGN) [69] by predicting a set of trajectories instead of single points. For a fair comparison,
we train this PSGN 4D both with and without temporal correspondences. For the former
case, we evaluate the Chamfer-loss independently per time step. For the latter case, we
introduce a generalization of the Chamfer-loss which considers entire trajectories of points
instead of independent 3D locations at each point in time. In the shape matching and
interpolation experiment, we compare against nearest neighbor matching, Coherent Point
Drift (CPD) [190], and 3D-Coded [91], a state-of-the-art method for finding correspondences
between human shapes.

Datasets We use the Dynamic FAUST (D-FAUST) [24] dataset which contains scans
and meshes for 129 sequences of 10 real humans performing various motions such as
“punching”, “chicken wings”, or “jumping jacks”. D-FAUST is very challenging not only
due to the fine structure of the human body, but also its non-rigid complex movements
which include soft-tissue motion. As each sequence is relatively long (up to 1.2k steps)
and to increase the size of the dataset, we subsample each sequence into smaller clips of
17 to 50 time steps, depending on the experiment. We randomly divide all sequences into
training (105), validation (6), and test (9) sequences so that the models are evaluated on
combinations of individuals and motions not seen during training. In addition, we withhold
one individual (12 sequences) to test generalization capabilities across individuals.

Due to the lack of publicly available datasets of time-varying non-rigid 3D geometry,
we further introduce Warping Cars, a synthetic dataset of large-scale deformations of cars.
It allows examining how well our method performs on other types of deforming objects
than humans. To this end, we utilize the ShapeNet [34] “car” category and apply random
displacement fields to obtain a continuous warping motion.

Metrics We use volumetric IoU and Chamfer distance for evaluating the reconstruction at
each time step. We refer to [179] for an in-depth description of these metrics. For evaluating
the quality of the estimated correspondences, we introduce a correspondence distance
as follows: The K points p*)(0), k € {1,...,K}, of the output at r = 0 are assigned to
the nearest neighbor p(éf%(O) on the ground truth mesh. We then find the point p(Gk}(C )
corresponding to pg%(O) on the ground truth mesh at 7 = {. Similarly, we find the point
p (&) corresponding to p*)(0) in the output of the method. The correspondence £,-distance
at time 7 = { is then defined as the average ¢,-distance between the points p(k)(C ) and

pg}(é ). Note that this distance can only be computed for methods like ours that yield
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£,

Time

(a) Occupancy Flow

. 8 bt T v
Time }
(b) 4D Occupancy Network
IoU Chamfer Time (s) Time w/o MC (s)
ONet 4D 94.6 % 0.028 15.509 5.802
OFlow 93.4 % 0.031 0.716 0.520

(¢) Reconstruction Accuracy and Runtime

Figure 7.4: Representation Power. Correspondences are shown with the same color. While
both, ONet 4D and OFlow, successfully learn to represent the complex 3D motion, only
OFlow yields correspondences over time which also results in faster inference. We show
inference times for all 50 time steps with and without marching cubes (MC).

correspondences across time, but not ONet 4D. Similar to [69, 179] we use 1/10 times the
length of the maximal edge length of the object’s bounding box as unit 1.

7.3.1 Representation Power

In this experiment, we investigate how well our Occupancy Flow model can represent 3D
shapes in motion. In particular, we would like to disentangle the influence of the spatial and
temporal encoders Ep and E(’p from the representation power of the Occupancy Flow model.
Towards this goal, we train our networks to reconstruct complex 3D motions without any
external input x. For training, we select 3 sequences of length 50 from the training split of
the D-FAUST dataset on which we (separately) train our networks only using the L;.con
loss in Equation 7.8. We compare against ONet 4D.

Results The results of this experiment are shown in Figure 7.4. We see that our method
learns an accurate representation of the deforming 3D geometry, yielding similar IOU and
Chamfer values as ONet 4D. However, in contrast to ONet 4D, we only have to extract
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IoU Chamfer Correspond.
PSGN 4D - 0.108 3.234
PSGN 4D (w/ cor.) - 0.101 0.102
ONet 4D 77.9 % 0.084 -
OFlow 79.9 % 0.073 0.122
OFlow (w/ cor.) 81.5 % 0.065 0.094

(a) Seen individuals

IoU Chamfer Correspond.
PSGN 4D - 0.127 3.041
PSGN 4D (w/ cor.) - 0.119 0.131
ONet 4D 66.6 % 0.140 -
OFlow 69.6 % 0.095 0.149
OFlow (w/ cor.) 72.3 % 0.084 0.117

(b) Unseen individual

Table 7.1: 4D Point Cloud Completion (D-FAUST). These tables show quantitative results
for the 4D point cloud completion experiment on the D-FAUST dataset. We report volumetric
IoU (higher is better), Chamfer distance (lower is better) and the correspondence (-
distance (lower is better) for both individuals seen during training and the unseen individual.

IoU Chamfer Correspond.
PSGN 4D - 0.157 3.886
ONet 4D 69.7 % 0.190 -
OFlow 70.7 % 0.169 0.283

Table 7.2: 4D Point Cloud Completion (Warping Cars). This table shows quantitative
results for the 4D point cloud completion experiment on the warping cars dataset.

a mesh once for t = 0 whose vertices we then propagate forward in time by solving a
time-dependent ODE, leading to much faster inference. Moreover, while both ONet 4D and
our approach successfully learn to represent the complex 3D motion, only our approach
yields correspondences over time.

7.3.2 4D Point Cloud Completion

In this first reconstruction experiment, the input for the network is 300 discrete point
trajectories, each consisting of Ny = 17 time steps. We perturb the point clouds with Gaussian
noise with a standard deviation of 0.01. A real-world scenario for this would for example
be (noisy) motion capture data from a set of markers.

We train our method using the reconstruction 1oss L;..,, in Equation 7.8, which does not
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OFlow  ONet 4D PSGN 4D

Figure 7.5: 4D Point Cloud Completion. We show three equally spaced time steps between
0 and 1 for the input and the output of OFlow (w/ correspond.), ONet 4D, and PSGN 4D (w/
correspond.). The color coding for the first method illustrates correspondences across time.

Time

Y

utilize any correspondences. Moreover, we also investigate the performance of our method
when trained with both the reconstruction loss L,..., and the correspondence-based loss
Lcorr in Equation 7.9.

We compare against ONet 4D and PSGN 4D. For a fair comparison, we train all methods
with the same ResNet-based [98] PointNet [230] temporal encoder from Section 7.2.4. We
do not use an additional spatial encoder for ONet 4D and PSGN 4D as both methods do not
represent shape and motion disentangled.

Results The quantitative and qualitative results for the D-FAUST dataset are summarized
in Table 7.1 and Figure 7.5. We observe that OFlow outperforms ONet 4D in terms of IOU
and achieves the lowest Chamfer distance compared to both PSGN variants and ONet 4D.
This is surprising, as PSGN was explicitly trained on the Chamfer distance whereas OFlow
was not. OFlow trained with both losses achieves the lowest correspondence ¢;-distance.
Interestingly, OFlow trained only with the reconstruction loss achieves an only slightly
worse correspondence loss even though it did not use any correspondences during training.
In contrast, the PSGN variant that does not use any correspondences during training does not
learn meaningful correspondences. This shows that our vector field representation is helpful
for learning correspondences over time. Qualitatively (Figure 7.5), we observe that OFlow
learns a realistic 3D motion while ONet 4D does not. PSGN is also able to reconstruct the
3D motion but lacks spatial connectivity. Quantitative results for the Warping Cars dataset
are shown in Table 7.2. We see that OFlow also works well in a very different domain and
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IoU Chamfer Correspond.
PSGN 4D - 0.258 2.576
PSGN 4D (w/ cor.) - 0.265 2.580
ONet 4D 44.0 % 0.348 -
OFlow 56.6 % 0.193 0.292
OFlow (w/ cor.) 59.6 % 0.166 0.226
(a) D-FAUST
IoU Chamfer Correspond.
PSGN 4D - 0.251 3.949
ONet 4D 55.6 % 0.319 -
OFlow 58.2 % 0.277 0.491
OFlow (w/ cor.) 58.0 % 0.263 0.487

(b) Warping cars

Table 7.3: Image-based 4D Reconstruction. The two tables summarize the quantitative
results for 4D reconstruction from image sequences.

achieves the best IoU and correspondence #,-distance.

7.3.3 Reconstruction from Image Sequences

In this experiment, we consider 4D reconstruction from a sequence of single-view images
as observation Xx. For all methods, we use the temporal encoder architecture described in
Section 7.2.4.

Results In Table 7.3 and Figure 7.6 we provide a summary of the quantitative and
qualitative results. Similar to [179] and others, we observe that reconstruction from single-
view image sequences is a harder task than 4D point cloud completion. We suspect the
global image encoding as well as occlusions to be the main challenge as the viewpoint is
sampled randomly for the clips which sometimes causes the motion to be invisible in the
images. The quantitative performance differences are similar to the point cloud experiment.
The qualitative results in Figure 7.6 show that while OFlow can reconstruct the complicated
3D motion from the provided sequence reasonably well, the other methods struggle to do
so. It suggests that the disentangled shape and motion representation of OFlow results in
better reconstructions and biases the network towards a physically plausible motion.

7.3.4 Interpolation and Mesh Correspondence

The goal of the next two experiments is to investigate to which degree our method can
be used for shape matching and interpolation. In both experiments, the task is to find a
continuous transformation between the underlying surfaces of two randomly sampled point
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Input OFlow ONet 4D PSGN 4D

Time

Figure 7.6: Image-based 4D Reconstruction. We show three time steps between 0 and 1 for
input as well as the output of OFlow, ONet 4D and PSGN 4D. Similar to Figure 7.5, the
color coding illustrates the correspondences.

Correspond Time (s)
Baseline NN 0.374 0.004
Coherent Point Drift [190] 0.189 343.621
OFlow 0.167 0.608
3D-Coded [91] 0.096 199.368

Table 7.4: Shape Matching. This table shows results for shape matching from point clouds
on the D-FAUST dataset.

clouds. We train our model only using the correspondence loss Equation 7.9 as recovering
the 3D shape is not required in this setting.

We first evaluate the quality of the correspondences learned by our method. We use
the same splits on the D-FAUST dataset as before. We compare against nearest neighbor
matching, non-rigid Coherent Point Drift [190] (CPD), and the specialized state-of-the-art
learning-based method 3D-Coded [91]. While the first two find nearest neighbors or an
optimal fit of GMM centroids in the second point cloud, the latter learns mappings to a
human template model. For nearest neighbor matching, OFlow and 3D-Coded [91], we use
two randomly sampled point clouds of size 10,000 as input. As Coherent Point Drift [190]
directly matches the point sets, we did not obtain competitive results for this method by
using random point clouds so that we used the full set of vertices in this case. To adhere to
community standards [23] we project predicted points that do not lie on the surface onto the
final mesh for evaluation.

Results Our results are shown in Table 7.4. Even though our method is primarily con-
cerned with 4D reconstruction, we find that it also estimates high-quality correspondences,
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(b) Qualitative Results.

Figure 7.7: Interpolation. The figure shows a quantitative and qualitative comparison of
Occupancy Flow and the linear interpolation baseline. Occupancy Flow is able to better
capture the non-linear motion of non-rigid 3D shapes.

outperforming both the nearest neighbor as well as the CPD baselines. While it performs
worse than 3D-Coded, OFlow requires only a fraction of its inference time. Moreover, we
remark that 3D-Coded is a highly specialized matching method including costly fine-tuning
for every registration whereas our approach is a general-purpose 4D reconstruction method
that estimates correspondences implicitly.

To evaluate the interpolation capabilities of OFlow, we increase the sequence length L
from 17 to 30 and compare against the linear interpolation baseline. For OFlow, we predict
the forward and backward motion and average the results. For both methods, we evaluate
the correspondence ¢,-distance for all 30 time steps.

Quantitative and qualitative results are shown in Figure 7.7. We observe that OFlow
improves over the linear interpolation baseline as it is able to capture non-linear motion.
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R A A
A AR

Shape Interpolation
Motion Interpolation

(a) Shape Interpolation with Fixed Motion. (b) Motion Interpolation with Fixed Shape.

Figure 7.8: Latent Space Interpolations. In Figure 7.8a we show three equally spaced steps
of a latent shape interpolation with fixed motion. Similarly, in Figure 7.8b we show three
equally spaced steps of a latent motion interpolation with a fixed shape. The figures show
that OFlow is able to learn a meaningful latent representation of both the shape and the
motion.

7.3.5 Generative Modeling

We further conducted experiments investigating the generative capabilities of our repre-
sentation. For this, we adjust the spatial and temporal encoders Ej and E; for 4D point
cloud completion to predict means and log standard deviations (u,,log o) and (u,,logo;)
of Gaussian distributions gj(z[x) and g; (z|x) instead of latent codes z; and z,, similar
to Chapter 5. We then obtain the spatial and temporal latent codes for conditioning the
Occupancy and Velocity Networks by sampling from the resulting distributions g and qzb.
In contrast to having only one latent space, this decoupling of shape and motion allows us
to sample spatial and temporal latent codes individually. As discussed in Section 2.2, we
combine the reconstruction loss with the KL-divergence between the predicted and prior
distributions to optimize the ELBO.

Results In Figure 7.8 and 7.9, we show results for two example tasks of our generative
model: latent space interpolations and motion transfer. For the latter, we encode the shape
and motion of a sequence into latent codes, and can then apply the encoded motion to a
given shape. The results show that OFlow is able to learn a smooth and meaningful latent
space representation. The decoupling of shape and motion allows us to encode and sample
the two components individually. This flexibility enables OFlow to be used in various tasks
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Figure 7.9: Motion Transfer. We show three examples of the motion transfer experiment.
We take a start shape (first column) and encode the motion from another sequence (second
column) to transfer this motion to the shape (third column). We see that OFlow is able to
transfer the motion to another shape reasonably well despite changes in topology and pose.

ranging from shape or motion interpolation to motion transfer.

7.4 Conclusion

In this chapter, we introduced Occupancy Flow, a novel neural field-based 4D representation
of time-changing 3D geometry. In contrast to existing 4D representations, it does not
utilize a template model, is continuous in space and time, and yields implicit temporal
correspondences. Our experiments validate that it can be used effectively for shape matching
and interpolation, 4D reconstruction, and generative tasks.

7.4.1 Limitations and Future Work

Supervision Data Similar to how we identified requiring 3D supervision data as a key
limitation of Occupancy Networks in Chapter 5 and developed a differentiable surface
rendering technique to overcome this in Chapter 6, the same limitations exist for Occupancy
Flow. As a result, follow-up works proposed methods that allow for inferring neural field-
based 4D representations from multi-view images [65, 75, 149, 213, 214, 220, 228] where
most methods adapt our approach to split the task into 3D scene reconstruction and motion
reconstruction. However, many works fit network weights to single dynamic scenes and
require long optimization times. As a result, we identify developing systems that can
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infer 4D representations from sparse inputs with acceptable memory, computing, and time
complexity as a promising research direction.

Disentangled Representations We represent dynamic scenes as static scenes together
with their motion. However, most real-world scenes consist of static and dynamic ele-
ments, and the natural decomposition of a scene would be to divide it into its individual
elements. This has been addressed in [342], where a self-supervised method is proposed
to discover static and dynamic components of the scene automatically. While the model
proposed in [342] can only handle rigid motion, NeRFPlayer [265] automatically decom-
poses the scene into static, dynamic, and new content leading to improved view synthesis
and composition results.

Modeling Articulated Objects While our proposed OFlow system is a generic 4D
representation that does not make strong assumptions about the represented shape or motion
type, improvements in controllability and reconstruction quality can be expected if the shape
or motion space is restricted to specific classes. In particular representing articulated objects,
i.e., objects that are composed of multiple rigid parts connected by joints that allow for
rotation or translation [288], yields more controllability. As a result, models are proposed
that combine neural field-based shape representations and articulated human [114, 182, 202,
248,270, 283, 309], animal [330], or general shape models [185]. For articulated human
shape modeling, in particular works that represent motion using linear blend skinning
weights [45, 61, 182, 248] based on the SMPL body model [161] achieve high-quality
results.
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8 Compositional 3D-Aware Generative
Modeling with Neural Fields

8.1 Introduction

In previous chapters, we investigated how neural fields can be used to represent 3D geometry,
3D texture, and 4D shapes in motion. For training the developed systems, we used either 3D
supervision or posed 2D images. In this chapter, we go one step further to truly unsupervised
learning: training from raw, unposed image collections only. More specifically, we develop
a generative system of 3D scenes that can be trained from collections of images without any
annotation such as camera pose, object masks, etc. Further, we incorporate compositionality
into the model such that at test time, not only new 3D scenes can be generated and rendered
from different viewpoints, but also individual objects can be controlled wrt. their shape,
position, and appearance.

Prior Work The computer vision community has made great strides towards highly-
realistic image generation. In particular, Generative Adversarial Networks (GANSs) [85]
emerged as a powerful class of generative models. They are able to synthesize photorealistic
images at resolutions of 10242 pixels and beyond [29, 48, 49, 122, 123]. Despite these
successes, synthesizing realistic 2D images is not the only aspect required in applications
of generative models. The generation process should also be controllable in a simple and
consistent manner. To this end, many works [39, 87, 122, 140, 144, 157, 159, 217, 237,
348, 351] investigate how disentangled representations can be learned from data without
explicit supervision. Definitions of disentanglement vary [13, 158], but commonly refer
to being able to control an attribute of interest, e.g., object shape, size, or pose, without
changing other attributes. Most approaches, however, do not consider the compositional
nature of scenes and operate in the 2D domain, ignoring that our world is three-dimensional.
This often leads to entangled representations (see Figure 8.1) and control mechanisms are
not built-in, but need to be discovered in the latent space a posteriori. These properties,
however, are crucial for successful applications, e.g., a movie production where complex
object trajectories need to be generated in a consistent manner.

As a result, several works investigate how 3D representations can be incorporated as
inductive bias into generative models [74, 101, 102, 103, 104, 151, 164, 195, 196, 239,
255]. While many approaches use additional supervision [5, 44, 301, 316, 353], we focus on
works that are trained on raw image collections like our approach. Henzler et al. [102] learn
voxel-based representations using differentiable rendering. The results are 3D controllable
but show artifacts due to the limited voxel resolutions caused by their cubic memory growth.
Nguyen-Phuoc et al. [195, 196] propose voxelized feature-grid representations which are
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(a) Translation of Left Object (2D-based Method [217])

(b) Translation of Left Object (Ours)

(c) Circular Translation (Ours) (d) Add Objects (Ours)

Figure 8.1: Controllable Image Generation. While most generative models operate in 2D,
we incorporate a compositional 3D scene representation into the generative model. This
leads to more consistent image synthesis results, e.g., note how, in contrast to our method,
translating one object might change the other when operating in 2D (Fig. 8.1a and 8.1b). It
further allows us to perform complex operations like circular translations (Figure 8.1c) or
adding more objects at test time (Figure 8.1d). Both methods are trained unsupervised on
raw unposed image collections of two-object scenes.

rendered to 2D via a reshaping operation. While achieving impressive results, training
becomes less stable and results less consistent for higher resolutions. Liao et al. [151] use ab-
stract features in combination with primitives and differentiable rendering. While handling
multi-object scenes, they require additional supervision in the form of pure background
images which are hard to obtain for real-world scenes. Schwarz et al. [255] propose Genera-
tive Neural Radiances Fields (GRAF). While achieving controllable image synthesis at high
resolutions, this representation is restricted to single-object scenes and results degrade on
more complex, real-world imagery.

Contribution In this chapter, we introduce GIRAFFE, a novel method for generating
scenes in a controllable and photorealistic manner while training from raw unstructured
image collections. Our key insight is twofold: First, incorporating a compositional 3D scene
representation directly into the generative model leads to more controllable image synthesis.
Second, combining this explicit 3D representation with a neural rendering pipeline results in
faster inference and more realistic images. To this end, we represent scenes as Compositional
Generative Neural Feature Fields (Figure 8.2). We volume render the scene to a feature
image of relatively low resolution to save time and computation. A neural renderer processes
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Figure 8.2: Compositional and 3D-Aware Generative Modeling with Neural Fields. We
represent scenes as Compositional Generative Neural Feature Fields (GIRAFFE). For
a randomly sampled camera, we volume render a feature image of the scene based on
individual Feature Fields. A 2D neural rendering network converts the feature image into
an RGB image. While training only on raw image collections, at test time we are able to
control the image formation process wrt. camera pose, object poses, as well as the objects’
shapes and appearances. Further, our model generalizes beyond the training data, e.g., we
can synthesize scenes with more objects than were present in the training images. Note that
for clarity we visualize volumes in color instead of features.

these feature images and outputs the final renderings. This way, our approach achieves
high-quality images and scales to real-world scenes. We find that our method allows for
controllable image synthesis of single-object as well as multi-object scenes when trained on
raw unstructured image collections.

8.2 Method

Our goal is a controllable image synthesis pipeline that can be trained from raw image
collections without additional supervision. In the following, we discuss the main components
of our method. First, we model individual objects as neural Feature Fields (Section 8.2.1).
Next, we exploit the additive property of Feature Fields to composite scenes from multiple
individual objects (Section 8.2.2). For rendering, we explore an efficient combination of
volume and neural rendering techniques (Section 8.2.3). Finally, we discuss how we train
our model from raw image collections (Section 8.2.4). Figure 8.3 contains an overview of
our method.

87



8 Compositional 3D-Aware Generative Modeling with Neural Fields

025 ~N(0.1), Ty ~ pr

22a ~N(0,1), T2 ~ pr

N%,N%Z\/\.Ackvh‘zzﬁﬂ

Sample N Latent Codes -
and Transformations

——(d)) 1_
2 2 42 1 ? neural 2
€~ pe—| [cita] =B} @30t - o) | = E 1 |~ [@5] 117 ——| Dy |~ c0.0)
s e C b asting A v\‘ B Composition Volume Rendering Neural Rendering D —>
ample Camera Pose —>Pij >y ﬁd. L N - Operator
3D Point VE AQW\, Q&v
N Generative Discriminator
Neural Feature Fields Ny )
ma\ x Wy
| J

Generator (i

Figure 8.3: GIRAFFE. Our generator Gg takes a camera pose & and N shape and appearance codes z.,7., and affine transformations T;
as input and synthesizes an image of the generated scene which consists of N — 1 objects and a background. The discriminator Dy takes
the generated image 1 and the real image 1 as input and our full model is trained with an adversarial loss. At test time, we can control the
camera pose, the shape and appearance codes of the objects, and the objects’ poses in the scene. Orange indicates learnable and blue
non-learnable operations.
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8.2.1 Objects as Neural Feature Fields

Neural Radiance Fields A radiance field is a continuous function which maps a 3D point
p € R? and a viewing direction d € S? to a volume density o € [0,o0) and an RGB color
value ¢ € [0, 1]°. A key observation in [183, 274] is that the low dimensional input p and d
need to be mapped to higher-dimensional features to be able to represent complex signals
when f is parameterized with a neural network. More specifically, a predefined positional
encoding is applied element-wise to each component of p and d:

y(t,L) = (sin(2%x),cos(2%m),...,sin(2l 1), cos (2L 7)) (8.1)

where ¢ is a scalar input, e.g., a component of p or d, and L the number of frequency octaves.
In the context of generative models, we observe an additional benefit of this representation:
It introduces an inductive bias to learn 3D shape representations in canonical orientations
which otherwise would be arbitrary (see Figure 8.11).

Mildenhall et al. [183] propose to learn Neural Radiance Fields (NeRFs) by parameteriz-
ing them with multi-layer perceptrons (MLPs):

fo : Rlv x RE — [0,00] x [0, 1]
(7(p), 7(d)) — (0,¢)

where 6 indicates the network parameters and Lj,,Lq the output dimensionalities of the
positional encodings.

8.2)

Generative Neural Feature Fields While [183] fits 0 to multiple posed images of a
single scene, Schwarz et al. [255] propose a generative model for Neural Radiance Fields
(GRAF) that is trained from unposed image collections. To learn a latent space of NeRFs,
they condition the MLP on shape and appearance codes z;,z, ~ N(0,1):

gg : REr x RE4 5 R 5 RMa — [0, 00] x [0, 1]

(7(p), y(d), 2y, 2,) — (0,¢) (8.3)

where M, M, are the dimensionalities of the latent codes.

In this work, we explore a more efficient combination of volume and neural rendering. We
replace GRAF’s formulation for the three-dimensional color output ¢ with a more generic
M ¢-dimensional feature f! and represent objects as Generative Neural Feature Fields:

hg : R x RE x RMs 5 RMe 5 [0, 0] x RM7 8.4)
(Y(p), ¥(d).2,,2) > (0,8) '

Object Representation A key limitation of NeRF and GRAF is that the entire scene is
represented by a single model. As we are interested in disentangling different entities in
the scene, we need control over the pose, shape and appearance of individual objects (we

INote that f indicates a feature vector, not having any relation to the in Chapter 4 introduced generic field f.
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consider the background as an object as well). We, therefore, represent each object using a
separate Feature Field in combination with an affine transformation

T = {s,t,R} (8.5)

where s,t € R? indicate scale and translation parameters, and R € SO(3) a rotation matrix.
Using this representation, we transform points from object to scene space as follows:

k(p) =R- 5 p+t (8.6)

In practice, we volume render in scene space and evaluate the Feature Field in its canoni-
cal object space (see Figure 8.2):

(0,8) =he(v(k™'(p)), v(k™'(d)),2,,2,) (8.7)

This allows us to arrange multiple objects in a scene. All object Feature Fields share their
weights and 7 is sampled from a dataset-dependent distribution (see Section 8.2.4).

8.2.2 Scene Compositions

As discussed above, we describe scenes as compositions of N entities where the first N — 1
are the objects in the scene and the last represents the background. We consider two cases:
First, N is fixed across the dataset such that the images always contain N — 1 objects
plus the background. Second, N is varied across the dataset. In practice, we use the same
representation for the background as for objects except that we fix the scale and translation
parameters Sy, ty to span the entire scene, and to be centered at the scene space origin.

Composition Operator To define the composition operator C, let’s recall that a Feature
Field of a single entity hie,« predicts a density 0; € R* and a feature vector f, € RMs for
a given point p and viewing direction d. When combining non-solid objects, a natural
choice [63] for the overall density at p is to sum up the individual densities and to use the
density-weighted mean to combine all features at (p,d):

i=1

1 N R N
C ad = y ifi 5 h == i 8.8
(p,d) (G G;G ) where © ZG (8.8)

While being simple and intuitive, this choice for C has an additional benefit: We ensure
gradient flow to all entities with a density greater than 0.

8.2.3 Scene Rendering

3D Volume Rendering While previous works [156, 170, 183, 255] volume render an
RGB color value, we extend this formulation to rendering an M ¢-dimensional feature vector
f.
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Figure 8.4: Neural Rendering Operator. The feature image Iy is processed by n blocks of
nearest neighbor upsampling and 3 x 3 convolutions with leaky ReLU activations. At every
resolution, we map the feature image to an RGB image with a 3 x 3 convolution and add
it to the previous output via bilinear upsampling. We apply a sigmoid activation to obtain
the final image 1. Gray color indicates outputs, orange learnable, and blue non-learnable
operations.

For given camera extrinsics &, let {p j}l;’;] be sample points along the camera ray with
direction d for a given pixel, and (o;,f;) = C(p;,d) the corresponding densities and feature
vectors of the field. The volume rendering operator 7¥°' [117] maps these evaluations to

the pixel’s final feature vector f (see Section 4.3 for details). Using numerical integration as
in [183], f is obtained as

Nv ./71
t=Y Tt T=T[0-%) oj=1-¢9% (8.9)
j=1 k=1
where 7} is the transmittance, ¢; the alpha value for p;, and 0; = | ‘p i1 — P j‘ ‘2 the distance

between neighboring sample points. The entire feature image is obtained by evaluating
n¥°! at every pixel. For efficiency, we render feature images at a resolution of 16> which is
lower than the output resolution of 642 or 2567 pixels. We then upsample the low-resolution
feature maps to higher-resolution RGB images using 2D neural rendering. As evidenced by
our experiments, this has two advantages: increased rendering speed and improved image
quality.
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2D Neural Rendering The neural rendering operator
n.réeural . RHvXWvXMf N [O7 1]H><W><3 (810)

with weights @ maps the feature image Iy € R#>Wv>M; (o the final synthesized image
I € [0, 1]7">3, We parameterize "™ as a 2D convolutional neural network (CNN) with
leaky ReLLU [166, 323] activation (Figure 8.4) and combine nearest neighbor upsampling
with 3 x 3 convolutions to increase the spatial resolution. We choose small kernel sizes and
no intermediate layers to only allow for spatially small refinements to avoid entangling
global scene properties during image synthesis while at the same time allowing for increased
output resolutions. Inspired by [123], we map the feature image to an RGB image at every
spatial resolution and add the previous output to the next via bilinear upsampling. These
skip connections ensure a strong gradient flow to the Feature Fields. We obtain our final
image prediction 1 by applying a sigmoid activation to the last RGB layer. We validate our
design choices in an ablation study (Table 8.4).

8.2.4 Training
Generator We denote the full generative process formally as
Go({z,2,, THL1 &) = a5 (Iy)  where Ty = {m*(r) ;2™ (8.11)

and N is the number of entities in the scene, and ry is the k-th ray of the feature image Iy .

Discriminator We parameterize the discriminator Dy as a CNN [232] with leaky ReLLU ac-
tivation.

Name Number Object Camera Horizontal Depth Object
of Images Rotation Elevation  Translation Translation  Scale
Chairs [211] 152,680 360° 90° - - -
Cats [345] 9407 70° 10° - - -
CelebA [153] 202,599 70° 10° - - -
CompCars [326] 136,726 360° 10° [-0.12,0.12] [-0.22,0.22] [0.8,1]
Churches [336] 126,227 360° 0° [-0.15,0.15] [-0.15,0.15] [0.8,1]
CelebA-HQ [121] 30,000 90° 10° - - -
FFHQ [122] 70,000 70° 10° - - -
Clevr-2 [116] 54,336 0° 0° [—0.7,0.7] [—0.7,0.7] -

Table 8.1: Dataset Parameters. We report relevant camera and object transformation

parameters for all datasets. We use the same dataset-specific parameters for experiments at
642 and 2567 pixels.

Training During training, we sample the number of entities in the scene N ~ py, the latent
codes z.,z}, ~ N(0,1), as well as a camera pose & ~ pe and object-level transformations
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Ti ~ pr. In practice, we define pg and pr as uniform distributions over dataset-dependent
camera elevation angles and valid object transformations, respectively (see Table 8.1). The
motivation for this choice is that in most real-world scenes, objects are arbitrarily rotated,
but not tilted due to gravity. The observer (the camera in our case), in contrast, can freely
change its elevation angle wrt. the scene.

We train our model with the non-saturating GAN objective [85] and R gradient penalty [178]

V(6,9) =By 4ion &ps.cTimpy [f(Do(Go({2,2,, Ti}1,6))]

5 (8.12)
+Erpp | £(=D(D) = 2[VDs(1)|]

where f(t) = —log(1+exp(—t)), A = 10, and pp indicates the data distribution.

8.2.5 Implementation Details

All object Feature Fields {h’éi f/: _11 share their weights and we parametrize them as MLPs
with ReLL.U activations. We use 8 layers with a hidden dimension of 128 and a density
and a feature head of dimensionality 1 and My = 128, respectively. For the background
Feature Field hIgN, we use half the layers and hidden dimension. We use L, =2-3-10 and
Lq = 2-3 -4 for the positional encodings. We sample M, = 64 points along each ray and
render the feature image Iy at 162 pixels. We use an exponential moving average [335]
with decay 0.999 for the weights of the generator. We use the RMSprop optimizer [281]
with a batch size of 32 and learning rates of 1 x 10~* and 5 x 10~ for the discriminator
and generator, respectively. For experiments at 256 pixels, we set M '+ =256 and halve the
generator learning rate to 2.5 x 1074,

8.3 Experiments

Datasets We report results on commonly-used single-object datasets Chairs [204],
Cats [344], CelebA [153], and CelebA-HQ [121]. The first consists of synthetic renderings
of Photoshape chairs [211], and the others are image collections of cat and human faces,
respectively. The data complexity is limited as the background is purely white or only takes
up a small part of the image. We further report results on the more challenging single-object,
real-world datasets CompCars [326], LSUN Churches [336], and FFHQ [122]. For Com-
pCars, we randomly crop the images to achieve more variety of the object’s position in
the image.? For these datasets, disentangling objects is more complex as the object is not
always in the center and the background is more cluttered and takes up a larger part of the
image. To test our model on multi-object scenes, we use the script from [116] to render
scenes with 2, 3, 4, or 5 random primitives (Clevr-N). To test our model on scenes with a
varying number of objects, we also run our model on the union of them (Clevr-2345).

Baselines We compare against voxel-based PlatonicGAN [102], BlockGAN [196], and
HoloGAN [195], and radiance field-based GRAF [255]. We further compare against Holo-

2We do not apply random cropping for [102, 255] as they can only handle scenes with centered objects.
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8 Compositional 3D-Aware Generative Modeling with Neural Fields

GAN w/o 3D Conv, a variant of [195] proposed in [255] for higher resolutions. We addi-
tionally report a ResNet-based [98] 2D GAN [178] for reference.

Metrics We report the Frechet Inception Distance (FID) score [105] to quantify image
quality. We use 20,000 real and fake samples to calculate the FID score.

8.3.1 Controllable Scene Generation

Chairs  CelebA  Churches Cars Clevr-5 Clevr-2345

Figure 8.5: Scene Disentanglement. From top to bottom, we show only backgrounds, only
objects, color-coded object alpha maps, and the final synthesized images at 64% pixel
resolution. Disentanglement emerges without supervision, and the model learns to generate
plausible backgrounds although the training data only contains images with objects.

Figure 8.6: Training Progression. We show renderings of our model on Clevr-2345 at
2562 pixels after 0, 1, 2, 3, 10, and 100-thousand iterations. Unsupervised disentanglement
emerges already at the very beginning of training.

Disentangled Scene Generation We first analyze to which degree our model learns to
generate disentangled scene representations. In particular, we are interested if objects are
disentangled from the background. Towards this goal, we exploit the fact that our compo-
sition operator is a simple addition operation (Eq. 8.8) and render individual components
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(b) Camera Elevation

-

(c) Object Appearance
ﬁﬁﬁﬁﬁ -

(d) Depth Translation (e) Horizontal Translation

(f) Circular Translation of One Object Around Another Object

Figure 8.7: Controllable Scene Generation at 256> Pixel Resolution. Controlling the
generated scenes during image synthesis: Here we rotate or translate objects, change their
appearances, and perform complex operations like circular translations.

and object alpha maps (Eq. 8.9). Note that while we always render the feature image at 162
during training, we can choose arbitrary resolutions at test time.

Figure 8.5 suggests that our method disentangles objects from the background. Note that
this disentanglement emerges without any supervision, and the model learns to generate
plausible backgrounds without ever having seen a pure background image, implicitly solving
an inpainting task. We further observe that our model correctly disentangles individual
objects when trained on multi-object scenes with fixed or a varying number of objects. We
further find that unsupervised disentanglement is a property of our model which emerges
already at the very beginning of training (Figure 8.6). Note how our model synthesizes
individual objects before spending capacity on representing the background.

Controllable Scene Generation As individual components of the scene are correctly dis-
entangled, we analyze how well they can be controlled. More specifically, we are interested
if individual objects can be rotated and translated, but also how well shape and appearance
can be controlled. In Figure 8.7, we show examples in which we control the scene during
image synthesis. We rotate individual objects, translate them in 3D space, or change the
camera elevation. By modeling the shape and appearance of each entity with a different
latent code, we are further able to change the objects’ appearances without altering their
shape.

Generalization Beyond Training Data The learned compositional scene representations
allow us to generalize outside the training distribution. For example, we can increase the
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(b) Increase Horizontal Translation

(c) Add Additional Objects (Trained on Two-Object Scenes)

(d) Add Additional Objects (Trained on Single-Object Scenes)

Figure 8.8: Generalization Beyond Training Data. As individual objects are correctly
disentangled, our model allows for generating out-of-distribution samples at test time. For
example, we can increase the translation ranges or add more objects than there were present
in the training data.

translation ranges of objects or add more objects than there were present in the training data
(see Figure 8.8).
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8.3.2 Comparison to Baseline Methods

e« L i i 2 P S
uu-mn-.ﬁ-.a--.m_n_m

(a) 360° Object Rotation for HoloGAN [195]

iigﬁ&ﬁﬁWa

(c) 360° Object Rotation for Our Method

Figure 8.9: Qualitative Comparison. Compared to baseline methods, we achieve more
consistent image synthesis for complex scenes with cluttered backgrounds at 64> (top rows)
and 256 (bottom rows) pixel resolutions. Note that we disentangle the object from the
background and are able to rotate only the object while keeping the background fixed.

Compared to baseline methods, our method achieves similar or better FID scores at both
64? and 256> pixel resolutions (see Table 8.2). Qualitatively, we observe that while all
approaches allow for controllable image synthesis on datasets of limited complexity, results
are less consistent for the baseline methods on more complex scenes with cluttered back-
grounds. Further, our model disentangles the object from the background, such that we are
able to control the object independent of the background (Figure 8.9).

We further note that our model achieves similar or better FID scores than the ResNet-
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Cats CelebA Cars Chairs Churches
2D GAN [178] 18 15 16 59 19
Plat. GAN [102] 318 321 299 199 242
BlockGAN [196] 47 69 41 41 28
HoloGAN [195] 27 25 17 59 31
GRAF [255] 26 25 39 34 38
Ours 8 6 16 20 17
(a) 64 x 64 Pixels
CelebA-HQ FFHQ Cars Churches Clevr-2

HoloGAN [195] 61 192 34 58 241

w/o 3D Conv 33 70 49 66 273
GRAF [255] 49 59 95 87 106
Ours 21 32 26 30 31

(b) 256 x 256 Pixels

Table 8.2: Quantitative Comparison. We report FID (| ) for baselines and our method.

2D GAN Plat. GAN BlockGAN HoloGAN GRAF Ours
1.69 381.56 4.44 7.80 0.68 0.41

Table 8.3: Network Parameter Comparison. We report the number of generator network
parameters in million.

based 2D GAN [178] despite fewer network parameters (0.41m compared to 1.69m). This
confirms our initial hypothesis that using a 3D representation as inductive bias results in
better outputs. Note that for a fair comparison, we only report methods that are similar wrt.
network size and training time (see Table 8.3).

8.3.3 Ablation Studies

Full | -Skip -Act. +NN. RGB Up.  +Bi. Feat. Up.
16.16 | 16.66 21.61 17.28 20.68

Table 8.4: Ablation Study. We report FID () on CompCars without RGB skip connections
(-Skip), without final activation (-Act.), with nearest neighbor instead of bilinear image
upsampling (+ NN. RGB Up.), and with bilinear instead of nearest neighbor feature
upsampling (+ Bi. Feat. Up.).
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Figure 8.10: Neural Renderer. We change the background while keeping the foreground ob-
ject fixed for our method at 256 pixel resolution. Note how the neural renderer realistically
adapts the objects’ appearances to the background.

i 8 &8 B8 5 R 1R

(a) 0° Rotation for Axis-Aligned Positional Encoding [183]

N B

(b) 0° Rotation for Random Fourier Features [274]

Figure 8.11: Canonical Pose. In contrast to random Fourier features [274], axis-aligned
positional encoding Equation 8.1 encourages the model to learn objects in a canonical
pose.

Importance of Individual Components The ablation study in Table 8.4 shows that our
design choices of RGB skip connections, final activation function, and selected upsampling
types improve results and lead to higher FID scores.

Effect of Neural Renderer A key difference to [255] is that we combine volume with
neural rendering. The quantitative (Table 8.2) and qualitative comparisons (Figure 8.9)
indicate that our approach leads to better results, in particular for complex, real-world data.
Our model is more expressive and can better handle the complexity of real scenes, e.g.,
note how the neural renderer realistically adapts object appearances to the background
(Figure 8.10). Further, we observe a rendering speed up: compared to [255], total rendering
time is reduced from 110.1ms to 4.8ms, and from 1595.0ms to 5.9ms for 642 and 2562
pixels, respectively.

Positional Encoding We use axis-aligned positional encoding for the input point and
viewing direction (Eq. 8.1). Surprisingly, this encourages the model to learn canonical
representations as it introduces a bias to align the object axes with highest symmetry with
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the canonical axes which allows the model to exploit object symmetry (Figure 8.11).

8.4 Conclusion

In this chapter, we presented GIRAFFE, a novel method for controllable image synthesis.
Our key idea is to incorporate a compositional 3D scene representation into the generative
model. By representing scenes as Compositional Generative Neural Feature Fields, we disen-
tangle individual objects from the background as well as their shape and appearance without
explicit supervision. Combining this with a neural renderer yields fast and controllable
image synthesis.

8.4.1 Limitations and Future Work

Figure 8.12: Dataset Bias. Eye and hair rotation are examples of dataset biases: They
primarily face the camera, and our model tends to entangle them with the object rotation.

Dataset Bias Our method struggles to disentangle factors of variation if there is an
inherent bias in the data. We show an example in Figure 8.12: In the celebA-HQ dataset,
the eye and hair orientation is predominantly pointing towards the camera, regardless of the
face rotation. When rotating the object, the eyes and hair in our generated images do not
stay fixed but are adjusted to meet the dataset bias. Recent works try to address this with
different generator pose conditioning strategies [37, 256], dual discrimination [37], or path
length regularization [93]. From a broader perspective, adding flexibility to the model to
overcome dataset biases while ensuring 3D consistency is an active research area.

Object Transformation Distributions We sometimes observe disentanglement failures,
e.g. for Churches where the background contains a church, or for CompCars where the
foreground contains background elements. A recent follow-up work [325] addresses this
by additional regularization, e.g., in the form of bounding box, mask coverage, and mask
binarization losses, achieving better disentanglement results.
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Image Fidelity and Resolution While outperforming relevant baselines, the image fi-
delity, e.g., measured in FID, still lacks behind state-of-the-art 2D GAN methods like
StyleGAN 2 [123]. The same holds for the final image output resolution: While our method
allows for renderings up to 256 x 256 pixels, recent 2D-based generative models scale to
megapixel resolutions and beyond. Several follow-up works are proposed that improve
both of these aspects. Notably, StyleNeRF [93] combines bigger models, larger feature
images, and an improved neural renderer to achieve 3D-aware image synthesis at megapixel
resolutions. Similarly, EG3D [37] improves in terms of image fidelity by improving the
latent code conditioning using multi-plane feature grids. Very recently, GRAM HD [321],
EpiGRAF [321], and VoxGRAF [256] achieve an increase in image fidelity and output
resolution (first two) without the use of a neural renderer via a manifold reparameterization,
well-engineered patch-wise training, and sparse voxel grids, respectively.

Scene Complexity Our method achieves promising results on single-object scenes as
well as multi-object scenes consisting of geometric primitives. However, the complexity of
these scenes is still limited considering the number of objects in the scene, the fore- and
background disentanglement, as well as camera pose distributions. The latter is addressed
in a recent follow-up work [199] that shows that more complex, non-uniform camera
distributions can be learned jointly with the 3D-aware generator. In [25], incorporating
additional supervision in the form of segmentation masks is investigated in the context
of learning compositional 3D representations of human faces. We identify scaling our
model to scenes with more objects in the scene, more cluttered background, and more
complex camera pose distributions, potentially by incorporating more supervision data, as a
promising future research direction.
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9 Conclusion

In this thesis, we have first investigated how 3D geometry should be represented in learning-
based systems. We have focused in particular on how voxel, point cloud, and mesh-based
representations require discretizing 3D space to achieve acceptable memory and computa-
tional complexity. We have found that the proposed neural field-based 3D representation
Occupancy Networks (i) can represent 3D geometry without discretization while having
a constant memory footprint, (ii) can be used in learning-based systems for end-to-end
single-view 3D reconstruction, (iii) allows for learning a meaningful latent space of 3D
shapes facilitating generative tasks. Next, we have observed that the requirement of 3D
supervision during training is a key limitation for scaling to real-world scenes. To overcome
this limitation, we have investigated how neural fields can be inferred from 2D supervi-
sion only. We have found that the proposed differentiable surface rendering technique
Differentiable Volumetric Rendering (i) allows for inferring neural field-based shape and
texture representations from posed multi- or single-view image supervision, (ii) exhibits
a low memory footprint due to the use of implicit differentiation at the surface point, (iii)
enables neural-field based 3D reconstruction for real-world data. Subsequently, we have
discussed how applications in real-world environments require representations of not only
3D geometry but also motion. As a result, we have investigated how 3D shapes in motion
can be represented in learning-based systems. We have observed that the proposed repre-
sentation Occupancy Flow (i) combines Occupancy Networks with a neural field-based
velocity field to represent continuous and smooth 4D data, (ii) enables 4D reconstruction
with implicitly-captured correspondences, (iii) achieves a disentangled representation of
shape and motion enabling a variety of discriminative and generative tasks ranging from 4D
reconstruction to latent interpolations, to motion transfer. Next, we have found that while the
proposed systems allow for efficiently representing 3D and 4D data, a key concept of natural
scenes is not yet incorporated into the models: compositionality. As a consequence, we
have developed GIRAFFE, a 3D-aware generative model that (i) incorporates the concept of
compositionality into the generator architecture enabling controllability of the size, position,
shape, and appearance of individual objects in the 3D scene, (ii) allows for efficient and
high-quality image synthesis with full control over the camera viewpoint, (iii) scales to
real-world scenarios like Internet photo collections as it can be trained from raw, unposed
image collections.

9.1 Limitations and Future Perspectives

In the following, we provide a broader view and longer-term perspectives for research
on neural scene representations for 3D reconstruction and generative modeling. For more
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specific discussions on limitations and future directions wrt. the individual contributions,
we refer the reader to the conclusion sections of the respective chapters.

9.1.1 Compositional Scene Representations

Learning object-centric representations from low-level image sensory data is a promising
direction to solve tasks in the real world that involve higher-level reasoning or planning. In
fact, the object-based compositional understanding of natural environments is considered
a cornerstone of human understanding and reasoning [249, 266]. As a result, a series of
unsupervised object discovery methods are proposed. While first works operate in the
2D domain [31, 89, 159], more recent approaches perform the reasoning in 3D [200,
249, 268, 339] including our proposed GIRAFFE model (see Chapter 8), achieving better
decomposition and allowing to scale to visually more complex scenes. However, all of these
works are still limited to (i) comparably simple object categories, (ii) synthetic or well-
curated image data, (iii) comparably simple object compositions and simple backgrounds.
Further, they often require large amounts of training data. We identify developing robust
systems that can infer or generate object-centric compositional representations of real-world
scenes from sparse and potentially noisy input data as a longer-term research direction.
Promising directions might include:

Building Bottom-Up Hierarchies The key idea is to build and train robust representations
for individual object categories. In a subsequent step, they can be used to infer more complex
scene representations that are composed of these individual object-level representations [95,
328]. Key challenges for this approach include how to handle out-of-distribution scenar-
ios (e.g., an unseen object class) and how to model inter-object relationships (e.g., light
reflections or shadows cast onto other objects).

Combining Different Forms of Supervision While obtaining accurate supervision data is
not feasible for real-world applications, fully-unsupervised methods might not directly lead
to the desired scene representations. A combination in the form of large-scale unsupervised
pretraining and a shorter, smaller-scale fine-tuning stage with access to fully or weakly
labeled data could combine the benefits of both training strategies and utilize all available
data [250]. Key challenges for this approach are estimating the required coverage and
amount of the labeled part of the data and obtaining high-quality, potentially 3D, labels.

Exploring Pseudo Ground Truth and Multi-Modal Data In contrast to state-of-the-art
3D reconstruction methods and 3D-aware generative models, 2D-based vision models,
as well as deep language models, have been scaled to massive amounts of data already,
achieving unprecedented prediction and generation capabilities. In 3D modeling, not only
predictions but also intermediate representations of such large-scale models can be used as
an additional source of supervision or guidance to obtain high-quality 3D scene representa-
tions [227].
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9.1.2 Generalization

Similar to other fields of machine learning, our proposed systems are also still limited
wrt. their generalization capabilities. For example, our 3D reconstruction system might
perform poorly for an unseen object category or the quality of inferred 3D shape and
texture representations from multiple views drops when the input images are sparse or
only cover a small part of the scene. However, being able to generalize is one key property
needed for robust systems that can be employed in the real world. To improve generalization
capabilities, we identify the following research directions as interesting:

Incorporating Powerful Inductive Biases While incorporating inductive biases, e.g.,
modeling scenes in 3D and not in 2D, has already been shown to improve the systems’
generalization capabilities, more design choices can be explored. We identify in particu-
lar physically-inspired inductive biases such as modeling the light transport more accu-
rately [296] or incorporating the laws of physics as constraints in dynamical systems [50] as
promising future research.

Finding a Balance of Global and Local Information Flow While breaking one global
problem into multiple local problems can make the system more generalizable in the
presence of high-quality input data, the system can also become less robust to noise and
sparse inputs [341]. We identify developing a good balance of global and local information
flow as a promising research direction. Key challenges for this approach can include how to
avoid task and input data dependence, i.e., how to find a good balance independent of the
task to which the model is applied and independent of the input data.

Gaining a Better Understanding of Neural Networks While a series of works try to gain
a better theoretical understanding of neural networks, it is still limited and most architectural
improvements, e.g., the use of positional encoding in the context of neural fields, are
discovered empirically [183, 274]. A better understanding of these models, in particular,
their generalization capabilities despite overparameterization could enable architectural
as well as optimization strategy improvements. Key challenges include finding a good
balance between a well-founded analysis and an experimental setup that is not prohibitively
restrictive and that is close to real-world setups.

9.1.3 Gap to Robotics

Our end goal is to develop systems that are employed in the real world. Despite this,
models developed in the computer vision community including our proposed systems are
often analyzed mainly wrt. computer vision and graphics interests, e.g., image quality,
reconstruction quality, or rendering times. For employment in the real world, other, more
robotics-focused aspects such as eligibility of feature representations for downstream tasks,
robustness to noise, or efficiency of the proposed system might be similar or even more
important, depending on the application. We identify the following approaches as promising
to bring the computer vision and robotics community more closely together:
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Developing Well-Engineered Implementations While large machine learning software
packages reduced the entry barrier and enabled faster experimental cycles, resulting imple-
mentations can often be made more efficient with more appropriate data structures or custom
implementations [186]. This could enable more widespread use of respective algorithms in
robotics applications. Further, reducing the required hardware resources could also improve
the imbalance of competition between small and large research labs.

Building Interdisciplinary Benchmarks While benchmarks are a common way of com-
paring different models, they often only focus on individual aspects such as classification,
detection, or semantic labeling scores. Developing a benchmark that measures different
qualities of a model that are related to both computer vision and robotics applications might
help to bridge the two disciplines.

Incentivising Ideas over Performance in the Review Process In many cases, not top
performance, but other properties such as simplicity, efficiency, or beauty are reasons
why some approaches are more widely adopted than others. However, the current review
system still tends to overweight performance. We identify adopting this, e.g., by respective
tutorials or classes for students and other reviewers, as a promising direction to change this
imbalance.



A Credits

In the following, we discuss the contributions and credits of individual authors for the four
research projects that are part of this thesis. Overall, results presented in this thesis are often
outcomes of collaborative projects [179, 197, 198, 200] such that assigning contributions to
individuals can only be done approximately. Further, all authors of the projects contributed
significantly to the individual publications which would not have been possible otherwise.

3D Reconstruction with Neural Fields (Chapter 5) The initial idea to represent 3D
geometry as the decision boundary of a binary classifier was initially suggested to Lars
Mescheder (LM) by Michael Oechsle (MO) and Andreas Geiger (AG) (see also [180]). LM
was the project lead being involved in every part of the project. AG was further mainly
involved in manuscript writing and proofreading, figure creation, and project direction
discussions. The author of this thesis Michael Niemeyer (MN) and MO were further
involved in parts of the experimental evaluation of the approach, baseline implementations
and evaluations, figure creation, proofreading of the manuscript, and project direction
discussions.

Differentiable Surface Rendering of Neural Fields (Chapter 6) The initial idea of
the implicit differentiation and its implementation for implicit surfaces was brainstormed
by MN, LM, MO, and AG, while specific design choices were mostly developed by MN
and LM. MN was further involved in every part of the project as the project lead. LM was
further involved in the baseline implementation, figure creation, manuscript writing and
proofreading, and project direction discussions. AG was further involved in manuscript
writing and proofreading, figure creation, and project direction discussions. MO was further
involved in figure creation, baseline implementation and evaluations, rendering, and project
direction discussions.

4D Reconstruction with Neural Fields (Chapter 7) The initial idea to represent 4D
shapes in motion as an Occupancy Network and a parameterized vector field was mainly
brainstormed by MN, LM, MO, and AG. The structure of the method section (see Sec-
tion 7.2) was developed jointly by MN, LM, and AG. MN was further involved in every
part of the project as the project lead. LM was further involved in specific code design and
baseline selection choices, manuscript writing and proofreading, figure creation, and project
direction discussions. MO was further involved in manuscript proofreading and project
direction discussions. AG was further involved in manuscript writing and proofreading,
figure creation, and project direction discussions.
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Compositional 3D-Aware Generative Modeling with Neural Fields (Chapter 8) Next
to AG, Katja Schwarz and Yiyi Liao were part of early discussions and brainstorming
meetings providing valuable comments on early results, potential baselines, and interesting
project directions. MN was further involved in every part of the project as the project lead.
AG was further involved in manuscript writing and proofreading, figure creation, and project
direction discussions.
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B Publications

In the following, we list all publications that the author of this thesis Michael Niemeyer
(MN) was involved in during his Ph.D. and shortly discuss MN’s contributions to the
non-first-author projects.

Publications part of this thesis

* L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. “Occupancy
Networks: Learning 3D Reconstruction in Function Space”. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2019

— Contribution: MN was involved in the code development and evaluation of
baselines, evaluation of the approach, figure creation, manuscript proofreading,
and project direction discussions.

* M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. “Differentiable Volumetric
Rendering: Learning Implicit 3D Representations without 3D Supervision”. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2020

* M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. “Occupancy Flow: 4D
Reconstruction by Learning Particle Dynamics”. In: Proc. of the IEEE International
Conf. on Computer Vision (ICCV). 2019

¢ M. Niemeyer and A. Geiger. “GIRAFFE: Representing Scenes as Compositional
Generative Neural Feature Fields”. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2021

Publications not part of this thesis

e M. Oechsle, L. Mescheder, M. Niemeyer, T. Strauss, and A. Geiger. “Texture
Fields: Learning Texture Representations in Function Space”. In: Proc. of the IEEE
International Conf. on Computer Vision (ICCV). 2019

— Contribution: MN was involved in the main idea development, manuscript

proofreading, and project direction discussions.

* S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. “Convolutional
Occupancy Networks”. In: Proc. of the European Conf. on Computer Vision (ECCV).
2020

— Contribution: MN was involved in the main idea development, dataset genera-
tion, specific code design choices, figure creation, and manuscript proofreading.
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M. Oechsle, M. Niemeyer, C. Reiser, L. Mescheder, T. Strauss, and A. Geiger.
“Learning Implicit Surface Light Fields”. In: Proc. of the International Conf. on 3D
Vision (3DV). 2020

— Contribution: MN was involved in the main idea development, figure creation,
dataset preparation, execution of experiments, manuscript proofreading, and
project direction discussions.

K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. “GRAF: Generative Radiance
Fields for 3D-Aware Image Synthesis”. In: Advances in Neural Information Process-
ing Systems (NeurIPS). 2020

— Contribution: MN was involved in the main idea development, specific model
design choices, code development, evaluation of baselines, manuscript proof-
reading, and project direction discussions.

M. Niemeyer and A. Geiger. “CAMPARI: Camera-Aware Decomposed Generative
Neural Radiance Fields”. In: Proc. of the International Conf. on 3D Vision (3DV).
2021

S. Peng, C. M. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger. “Shape
As Points: A Differentiable Poisson Solver”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2021

— Contribution: MN was involved in the dataset preparation, manuscript proof-
reading, and project direction discussions.

M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and N.
Radwan. “RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2022

Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger. “MonoSDF: Exploring
Monocular Geometric Cues for Neural Implicit Surface Reconstruction”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2022

— Contribution: MN was involved in the project organization and management,
project direction choices, and manuscript text and figure creation.

K. Schwarz, A. Sauer, M. Niemeyer, Y. Liao, and A. Geiger. “VoxGRAF: Fast 3D-
Aware Image Synthesis with Sparse Voxel Grids”. In: Advances in Neural Information
Processing Systems (NeurlPS). 2022

— Contribution: MN was involved in the project organization and management,
project direction choices, and manuscript text and figure creation.
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