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Z U S A M M E N FA S S U N G

In der vorliegenden Dissertation habe ich mich intensiv mit der Berechnung von
Beiträgen zu Wirkungsquerschnitten der semi-inklusiven tiefinelastischen Streu-
ung1 (SIDIS) beschäftigt. Die gewonnenen Ergebnisse können verwendet werden,
um Informationen über die Partonverteilungsfunktionen und Fragmentationsfunk-
tionen aus SIDIS-Daten zu erhalten. Sie tragen somit zur genaueren Bestimmung
der Nukleonenstruktur bei. Insbesondere führen diese Erkenntnisse auch zu Infor-
mationen über die Spinstruktur des Protons.

Im Rahmen der perturbativen Quantenchromodynamik wurden Beiträge zur Stö-
rungsreihe der transversalen Strukturfunktion in SIDIS untersucht, welche in allen
Ordnungen der laufenden starken Kopplung auftreten. Dieses Phänomen, bekannt
als threshold resummation, taucht in der Region des Phasenraums auf, in der loga-
rithmische Beiträge zu einer festen Ordnung divergieren. Das Summieren jener log-
arithmischen Beiträge in allen Ordnungen liefert schließlich endliche Beiträge zur
Strukturfunktion. Das Wissen über den Aufbau solcher Beiträge ermöglicht, sie zu
einer beliebigen festen Ordnung vorherzusagen. Somit ist eine Näherung der Struk-
turfunktion in einer festen Ordnung durch sogenannte threshold-Logarithmen mö-
glich. Ziel der vorliegenden Dissertation ist, es eine Näherung der transversalen
Strukturfunktion in übernächst-führender Ordnung durch threshold-Logarithmen
zu erhalten. Dabei wurden außerdem (führende) Beiträge berücksichtigt, welche in
der threshold-Region des Phasenraums unterdrückt sind.

Im letzten Teil der Dissertation wird das Verhalten der SIDIS Strukturfunktionen
zur Streuung von longitudinal polarisierten Protonen mit unpolarisierten Elektro-
nen bei kleinen Transversalimpulsen untersucht. In diesem Bereich können SIDIS-
Daten besonders gut durch transversalimpulsabhängige Partonverteilungsfunkti-
onen beschrieben werden. Hier wird der Kontakt zu jenen Verteilungsfunktionen
von Seiten der kollinearen Faktorisierung hergestellt und die sogenannte T-odd-
Asymmetrie im Limes kleiner Transversalimpulse betrachtet.

1 Semi-inclusive deep-inelastic scattering.
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1
I N T R O D U C T I O N

1.1 experimental and theoretical discoveries

Here we introduce the unfamiliar reader to the major discoveries which led to
the theory of the strong interaction in order to motivate key concepts used in the
theory. We stress that what follows is a short introduction. The vast field of par-
ticle physics1 entails numerous studies in plenty directions. It is a huge scientific
enterprise on the theoretical part as well as on the experimental side.

At the end of the first half of the 20th century the proton with a positive elec-
tromagnetic charge and the neutron were recognized as the constituents of the
atomic nucleus. Experiments showed that these particles, are bound strongly by
some other force than the electromagnetic force, named strong force. On very small
length scales (∼ 10−15 m or 1 fm (femtometer)) protons which ought to repulse
each other having the same electric charge, seemed very attracted to each other.
Hence, at this scale the strong force had to dominate the electromagnetic one. Fur-
thermore the neutron being bound with protons while having no electromagnetic
charge encouraged Physicists to investigate this new force.

Likewise, the concept of quantum-mechanical spin was established and Physicists
described the observed symmetry between these particles – having roughly the
same mass – as isospin. Both particles, proton and neutron, seemed to be two con-
figurations of the same quantum mechanical system (like the spin of an electron)
which was called a nucleon. This lead to a precursor of the theory of the strong
force. In 1935 Hideki Yukawa proposed a field theoretical approach [4] with parti-
cle interaction by exchange of a particle predicting the existence of a new “heavy
quantum which has the elementary charge [...] and which obeys Bose’s statistics”
under the condition that “the interaction [...] should be far greater than that with
the light particle.” The exchange particle proposed by Yukawa is named pion (writ-
ten as π+, π−, π0). Indeed, after some time of confusion it was definitively identi-
fied by a group around Cecil Frank Powell [5] in 1947 while analyzing emulsion

1 The interested reader is referred to [1, 2], an immensely copious collection of knowledge about
particle physics. Of course, Ref. [3] is a great introduction into the field.
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2 introduction

photographs of cosmic radiation at high altitudes. Cosmic radiation was the only
source of much more energetic particles (order of magnitude: ∼ 1 Giga electronvolt,
GeV) than artificially generated ones by experiments at the time.

The confusion stemmed from another newly detected particle: the muon having a
similar mass as the pion predicted by Yukawa. Powell and collaborators found that
the pions decayed into the muons and the latter into electrons (see top left of Fig. 1
for a sketch of the π-µ-e decay) clarifying the prevailing misunderstanding. Here
is an example for a negatively charged pion decay:

π− −→ µ− + ν̄µ

↪→ e− + ν̄e ,
(1.1)

where each lepton is accompanied with the corresponding anti-neutrino. A similar
process occurs for the π+ decay while the neutral pion π0, a superposition of π+

and π−, is very short lived and primarily decays by the emission of two photons
which can generate a cascade of electron positron pairs and photons.

In a later measurement [6] in 1949 by analyzing electron sensitive plates exposed
to cosmic radiation at the Hochalpine Forschungsstation Jungfraujoch2 Powell’s
group found even more massive charged particles decaying into three pions:

? −→ 2π+ + π− , (1.2)

which were not expected to exist. Similar particles were detected in another experi-
ment. Of course this was not yet known. Meanwhile George Rochester and Clifford
Butler [7] also detected strange particles in cloud chambers induced by the strong
force. They selected a series of events “from five thousand photographs taken in
an effective time of operation of 1500 hours” as they state in their paper. The decay
of these particles or their creation could not be explained by the methods available.
The newly found particles triggered V-shaped tracks indicating reactions with at
least one neutral particle and two charged particles. They identified different kinds
of “forked tracks” where, for example, neutral strange particles decayed into

? −→ π− + p and ? −→ π+ + π− . (1.3)

These particles were not anticipated as opposed to the pion and partially due to
this declared as strange. The isospin symmetry between proton and neutron sug-
gested a unique way to distinguish them so there was no explanation for such
additional, more massive particles. Furthermore it was not clear at all why such
particles interacted strongly and decayed weakly. They appeared rather frequently

2 The astronomical observatory is located on a glacier saddle on the upper snows of the Great Aletsch
Glacier and is also referred to as Sphinx Observatory
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indicating a fast production which is typical for the strong force while generating
very long visible tracks in cloud chambers. Such visible tracks have their origin
in longer decay times compared to the ones expected for strongly interacting par-
ticles. In fact, they fitted with weakly interacting particles. The decay must have
been prevented by some conservation law which was only slightly broken, so that
they could decay eventually.

In 1953 Murray Gell-Mann and later in the same year Kazuhiko Nishijima showed
this violation of conservation and proposed to consider an additional quantum
number to isospin, namely strangeness3. It would always be conserved in strong
interactions but not conserved under the weak force. This would prevent the par-
ticles from decaying at a fast rate but then give rise to a more slow and therefore
visible decay through the weak force. As one can see in both “slow”, i.e. weak de-
cays in (1.3) strangeness is not conserved whereas if two strange particles interact,
strangeness must be conserved which for example is the case in

π− + p −→ Λ0 + K0 . (1.4)

Here Λ0 has strangeness −1 and K0 has strangeness +1. The process is depicted
on the top right side of Fig. 1, where each strange particle after being produced
through strong interactions, decays through the weak force as observed in (1.3). The
inventors of strangeness then postulated a new charge, hypercharge, which connects
strangeness, isospin and electric charge. One needs further classification since it
is not directly obvious how to connect these properties. The particles interacting
strongly are referred to as hadrons and within this group of particles we discern
mesons and baryons. This distinction originates from the fact that baryons tend to
be heavier and mesons tend to be lighter than the proton. We will come back to
this distinction below.

Then, more and more hadrons were detected at Cosmotron (3 GeV) in Brookhaven
and at Bevatron (6 GeV) in Berkeley. This raised the question: what are the funda-
mental ones? Hypercharge was a very successive way of categorizing newly found
particles but it would not describe the structure of theses particles. At least two
fundamental spin 1/2 particles were needed to build all hadrons but how to ac-
count for the strange ones? An additional one being strange should be sufficient. In
1956 Shoichi Sakata proposed proton, neutron and the newly discovered Λ0. Their
masses were – very roughly – the same, hence the idea of an approximate symme-
try. This model could explain the nine lightest mesons correctly and introduced a
mathematical tool to find such combinations of particles starting from fundamental
ones: group theory. Unfortunately this model was not able to correctly predict the
lightest eight baryons.

3 A year earlier this was already anticipated by Abraham Pais.
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Figure 1: Top-Left: π-µ-e decay. Top-Right: strange particle production (red arrows indi-
cate the strong force) and decay (blue arrows indicate the weak force), here the
proton is at rest. Bottom: Ω− production. The sketches have been adapted from
photographs in [8–10].
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A few years later, Yuval Ne’eman and Gell-Mann used the available mathemati-
cal tools as well and proposed the eightfold way [11] where they could effectively
describe the detected mesons and baryons. A huge success for the eightfold way
was the discovery of the Ω− baryon in Brookhaven since it was predicted before
its existence was known. In a letter [12] to the editors of the Physcial Review BNL
physicists pronounced the detection of a negatively charged isospin singlet parti-
cle with strangeness −3. It turned out to be the suggested particle. Several months
later [10] they confirmed its existence from two events captured in the BNL 80′′ hy-
drogen bubble chamber selected from 120 000 photographs. The Ω− production
was found in the interaction of a K− and a proton which could be explained by

K− + p → Ω− + K+ + K0 , (1.5)

where its decay can be seen in Fig. 1. The two previously mentioned strange decays
are part of the Ω− decay. The K+ decay is not indicated since it was not included
within the frame of the photograph. We stress that this was all found without the
knowledge of what kind of fundamental things would build up these measured
particles. As Gell-Mann states in Ref. [13] it was discussed “by abstracting the
properties from a formal field theory model based on fundamental entities from
which baryons and mesons are built up.” From the group theoretical arguments it
was imposed that at least three fundamental blocks were necessary. In this paper he
then proposes to consider a unitary spin 1/2 triplet consisting of an isospin singlet
s with non-integer electric charge −1/3 (in units of the elementary charge e) and an
isospin doublet (u,d) with electric charges 2/3 and −1/3 respectively. He named
these fundamental things “quarks”. Around that time George Zweig had different
thoughts about this topic as well leading to similar conclusions as Gell-Mann. It
was the quark-picture that prevails in the literature to this day. In this picture the
composition of the proton would be: two u quarks and one d quark. In general,
the anti-quarks were denoted by q̄. Furthermore, baryons could be identified as
(qqq) and mesons as (qq̄) compositions. Of course, the s quark would account for
strangeness. We then obtain the following compositions:

π+ : (ud̄) , π− : (ūd) , π0 : (uū − dd̄) ,

K0 : (ds̄) , K+ : (us̄) , K− : (ūs) ,

Λ0 : (uds) , Ω− : (sss) , ∆++ : (uuu) .

(1.6)

The actual detection of these quarks will be explained below. Three other kinds
of quarks have been detected since then: the charm, bottom and top quarks. Their
discovery was a lengthy process over a time span of several decades. Since in this
dissertation we will concentrate more on the first three quarks, also named light
quarks, we refrain from introducing the others properly which however should
not diminish the importance of their discovery. It is also worth mentioning that
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Figure 2: e+e− → hadrons

only after the discovery of the charm quark the whole picture as described here
was accepted in the community of theoretical physics. Each type is named “flavor”
of the considered quark.

The doubly positively charged ∆++ was already known for quite some time. It
was found by a group around Herbert Anderson and Enrico Fermi [14] in 1951
in pion nucleon spectroscopy before strangeness or even quarks were discussed
widely. It could be reasonably explained within the framework of isospin. But
Fermi had pointed out earlier in the 1920s that particles with half-integer spin –
named fermions – obey a certain statistic where the underlying wave function must
be antisymmetric. This could not hold true for a ∆++ since it was symmetric in
flavor with three u type quarks but simultaneously was a spin 3/2 particle with
symmetric spin wave function. Furthermore, it was expected that the system had
vanishing orbital angular momentum. This meant that an additional degree of free-
dom had to be introduced to make the total wave function antisymmetric. The
new charge, named color, can have three values, e.g. red, blue and green. Since all
observed hadrons are neutral with respect to this charge the name seemed conve-
nient.

An example of one of the most prominent strong interacting processes is electron
positron annihilation, also known as e+e− → hadrons. It is an example of an in-
clusive process since it includes every possible product of the collision in the final
state. In other words: no specific final state is observed exclusively. In Fig. 2 one
can see a scheme of the process where a virtual photon created by the annihilation
can induce a complicated final state of multiple color neutral hadrons. The red
blob signifies the strong-interacting part. The first approach to this problem is to
approximate the decay of the virtual photon into a pair of quarks γ∗ → qq̄. This
is achieved by considering the cross section for e+e− → µ+µ−, as described for
example in Ref. [15]

σ(e+e− → µ+µ−) =
4π

3
α2

Q2 , (1.7)

where α is the fine structure constant and Q is the center of mass energy. Replacing
the final state with a quark-antiquark pair we obtain

σ(e+e− → qq̄) = Nc
4π

3
α2

Q2 e2
q , (1.8)
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where the factor Nc comes from the sum over all possible colors of the quark, i.e.
Nc = 3, and eq is the quarks fractional electric charge. The total cross section reads

σ(e+e− → hadrons) =
4π

3
α2

Q2 Nc ∑
q

e2
q

(
1 +

αs

π

)
≡ σtot , (1.9)

where we have included the first correction in αs, the strong coupling which how-
ever is not important here but will be used at a later stage. The ratio of the total
cross sections is then given by

Re+e− =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

N f

∑
q

e2
q , (1.10)

where we neglected the αs contribution and N f is the number of considered flavors
u, d, s, . . . that could be produced as a quark-antiquark pair. For instance, in the
case of a center-of-mass energy

√
s < 2mc we obtain Re+e− = 2 which is confirmed

experimentally (see e.g. [16]).

In the late 1960s Bjorken scaling (at high energies) was experimentally confirmed
at Stanford Linear Accelerator Center (SLAC) indicating that the proton had a
substructure made out of partons, i.e. point-like particles. We will explain Bjorken
scaling in more detail in Sec. 3.3. The experimental tool enabling these findings
was electron proton scattering e−p → e− X. When going to higher energies, i.e.
higher momentum transfer, the elastic scattering becomes inelastic and is therefore
referred to as deep-inelastic scattering (DIS). The scattering process is sketched out
on Fig. 3(d). It was only after the theoretical discovery of asymptotic freedom in
the early 1970s, which is the subject of Sec. 2.2, that the full theory of the strong
force quantum chromodynamics (QCD) was established and partons could safely be
associated with quarks and gluons. The gluon being the exchange particle of the
strong force comparable to the photon in quantum electrodynamics (QED). QCD
as a field theory will be introduced in Sec. 2.1.

As already mentioned we will consider some of the basic concepts of QCD in later
Chapters. During the investigation of the structure of nucleons another striking
principle appears: factorization. Since hadrons are colorless objects, the bounded
state remains hidden to direct observation and therefore the mechanisms that con-
fine partons are not yet understood. In DIS the high energetic electron probes the
Lorentz contracted proton as a system of almost “free” partons since interactions
within the proton are time dilated. Factorization assumes this incoherence and en-
ables the separation of a priori unknown but universal long distance effects and
short distance scattering calculable in perturbation theory. In Sec. 3.3 we will ex-
plain factorization in more detail. The non-perturbative parts of the observables
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in the case of an initial and final hadron are named parton distribution function
(PDF) and fragmentation function (FF), respectively. In this picture the composi-
tions in (1.6) do not seem appropriate over a wide kinematical range. This is the
reason the quarks in these compositions are named “valence” quarks.

1.2 motivation & outline

Extraction of PDFs and FFs from the data needs calculated short distance scatter-
ing input. The method for calculating these contributions is perturbation theory.
Higher order perturbative QCD calculations are very cumbersome and collective
effort of many theoretical physicists lead to remarkable achievements in this field.
Nowadays the goal of global PDF and FF analysis has become to be ruled out at
next-to-next-to leading order (NNLO) accuracy since perturbative calculations of
the short distance scattering are known to that order in the strong coupling. In
this dissertation we focus on these perturbative QCD (pQCD) calculations. Some
of these perturbative contributions are known to all orders in the strong coupling
which will be studied in the framework of threshold resummation. This framework
will be introduced in Sec. 3.4. Our main focus lies upon such all-order contributions
since they may be used to approximate a fixed-order result after expansion in the
strong coupling.

In recent years polarized PDFs elucidating the protons spin structure gained more at-
tention since polarized short distance cross sections and its corresponding data be-
came available. The decomposition of the proton spin into contributions of quarks,
anti-quarks, gluons and orbital motion is an exciting but hard task. The measure-
ment of precise data and perturbative calculations are very involved. In this disser-
tation we consider two types of polarized semi-inlcusive deep-inelastic scattering
(SIDIS) cross sections that can each contribute to better extract polarized PDFs: the
more inclusive cross section depending on two kinematical variables x and z and
the more differential cross section depending on the transverse momentum Ph⊥
of the produced hadron. In the seminal works of the de Florian-Sassot-Stratmann-
Vogelsang (DSSV) group [17, 18] such spin-dependent PDFs have been extracted.
The perturbative input therein was taken at NLO accuracy, where data used in the
analysis came from DIS, SIDIS and proton-proton scattering. SIDIS data plays an
important role within these studies since it enables a separation of different fla-
vor contributions. Appropriate results of unpolarized and polarized cross sections
for SIDIS at NNLO are still missing, while they are available for the remaining
processes. As discussed above, NNLO being the new “standard” of perturbative
accuracy, a new attempt to upgrade the DSSV PDFs to this level is a natural task



1.2 motivation & outline 9

(a) DY: h1 h2 → e+e−X (b) SIDIS: e−h1 → e− h2 X

(c) SIA: e+e− → h X (d) DIS: e−h → e− X

Figure 3: In the left column are processes with a timelike virtual photon, whereas on the
right the involved virtual photon is spacelike. The DY process (a) and SIDIS (b)
are characterized by two identified hadrons during the scattering process, while
in SIA (c) and DIS (d) only one hadron is considered.

to pursue. It becomes even more attractive in light of the Electron-Ion Collider.
Currently under construction it will be able to measure polarized SIDIS data at an
unprecedented energy range and precision.

The major achievement of this dissertation is the derivation of approximate NNLO,
and even N3LO, corrections to unpolarized and polarized SIDIS, enabling a global
analysis of (polarized) PDFs or FFs at NNLO accuracy. The unpolarized approxima-
tion has recently been included in a global analysis of fragmentation functions [19].
We furthermore significantly improved the threshold resummed SIDIS cross sec-
tion from [20, 21] including N3LL corrections. The strategy for the derivation of
these results is based on the application of several all-order resummation meth-
ods to processes that are known to NNLO accuracy. In Figure 3 we show theses
processes. The green and purple blobs represent PDFs and FFs, respectively.

dy · The Drell-Yan process h1 h2 → e+e−X is named after Sidney Drell and
Tung-Mow Yan. It is shown on Fig. 3(a). The O(α2

s ) corrections have been
derived in Ref. [22]. The threshold resummed contribution to this process
bears resemblance with the one for SIDIS.

dis · Deep-inelastic scattering e−h → e− X is sketched out on Fig. 3(d). The O(α2
s )

corrections were calculated in Ref. [23].
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sia · Semi-inclusive electron positron annihilation e+e− → h X is depicted on
Fig. 3(c). The O(α2

s ) corrections were derived in Ref. [24].

sidis · Fig. 3(b) shows semi-inclusive DIS e−h1 → e− h2 X. The main focus of
this dissertation is placed on SIDIS since its O(α2

s ) corrections are not yet
available. The process involves both PDF and FF, an advantage that is used to
separate different flavor contributions to the cross section.

Before we present the Outline of this dissertation we want to explain the content
of Chapter 7, which does not follow the same thread of the remaining Chapters.
Therein we present the single spin asymmetry of unpolarized electrons and polar-
ized protons in SIDIS. At high transverse momentum of the final hadron, i.e. in
standard collinear factorization, the lowest order calculation is presented, which
has been derived in [25]. Being a T-odd observable these findings may be interest-
ing in itself, in Chapter 7 however we extend this work by considering its low trans-
verse momentum behavior. Here we present new results, where we make contact to
the framework of transverse-momentum dependent parton distribution functions
(TMDs). The transition of these two realms is topic of ongoing research and is still
not sufficiently well understood. The “matching” of observables in intermediate
regions of the transverse momentum spectrum are summarized e.g. in [26]. We fill
the missing spots in Table 2 therein.

After a short introduction to perturbative QCD in Chapter 2, we introduce the
SIDIS process in more detail in Chapter 3. The methods used for obtaining ap-
proximate fixed-order results from threshold resummed contributions are outlined
and illustrated in Chapter 4. Chapter 5 is based on publication [i], where we de-
rive approximate NNLO results to SIDIS. Next to that we extend the threshold
formalism for SIDIS in Chapter 6, based on publication [ii], where we perform
threshold resummation at N3LL accuracy. We also give approximate N3LO results
to SIDIS in this Chapter. Finally, we introduce the T-odd proton-helicity asymme-
try in Chapter 7 which is based on publication [iii]. We show the calculation of the
leading order correction to the asymmetry at high transverse momentum based on
Ref. [25] and extend this work to the small transverse momentum limit.



2
P E RT U R B AT I V E Q U A N T U M C H R O M O D Y N A M I C S

2.1 lagrangian

QCD has the structure of a Yang-Mills gauge theory [27]. This implies a specific set
of rules for constructing the theory. We will briefly sketch out the main characteris-
tics of the theory by following Chapter 2 in [28] and Chapter 14 in [3]. The Lagrange
density LQCD of the theory must be invariant under local gauge transformations
(D dimensional continuous group of transformations) such as

ϕ′(x) = U(θA)ϕ(x) (A = 1, 2, . . . , D) (2.1)

with

U(θA) = exp

(
ig

D

∑
A=1

θATA

)
∼ 1 + ig

D

∑
A=1

θATA + . . . (2.2)

Here, the transformation parameters are the quantities θA, where for infinitesimal
values of θA the right hand side is valid. The value g is the coupling of the theory
and TA are the generators of the group1 of transformations defined by (2.1). The
coupling g is often expressed like the fine structure constant in Quantumelectrody-
namics (QED) as

αs ≡
g2

4π
. (2.3)

The free quark fields ψ f are classically described by the following Lagrange density

L0 =

N f

∑
f=1

ψ̄ f
(
i/∂ − m f

)
ψ f (2.4)

N f is the number of different flavours. Similar to the case of QED the Lagrangian
is invariant under global phase transformation of the quark fields. However, local
gauge invariance of the Lagrangian yields to a totally different structure than in
the case of QED. The N f independent quark fields each have three components
ψ f = (ψR

f , ψG
f , ψB

f )
T: red (R), green (G), blue (B) sometimes also numerated 1,2 & 3

1 A great introduction into group theory and its applications in modern physics can be found in [29]
(Section 7.8 therein discusses the SU(3) symmetry)

11
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since the total number of color charges is Nc = 3. We impose not only global gauge
invariance on the Lagrangian in (2.4) but especially invariance under local phase
transformations of the form

ψ f (x) → Uψ f (x) ≡ exp (igθ(x))ψ f (x) = 1 + igθ(x)ψ f (x) +O(θ2(x)) , (2.5)

with

θ(x) ≡
N2

c −1

∑
a=1

θa(x)Ta , (2.6)

where U ∈ SU(Nc) and Ta are the eight (N2
c − 1) hermitian and traceless gener-

ators of the SU(Nc = 3) group. Usually one takes the matrices Ta = λa/2 first
introduced by Gell-Mann [11]. By imposing this internal symmetry we need to ad-
just the derivative in (2.4) since it spoils the invariance of the Lagrange density.
This is done by introducing eight gauge fields

Dµ ≡ ∂µ + igTaGa
µ . (2.7)

At first sight, the gauge fields Ga
µ transform as

Ga
µ → Ga

µ −
1
g

∂µθa (2.8)

in order to compensate the non invariant term from the simple derivative in (2.4)
leading to the following Lagrangian with the covariant derivative

L0 = ψ̄ f
(
i /D − m f

)
ψ f = ψ̄ f

(
i/∂ − m f

)
ψ f − gψ̄ f (γ

µTaGa
µ)ψ f . (2.9)

However, the last term on the right hand side is not invariant

gψ̄ f γµTaψ f → gψ̄ f γµTaψ f − g f abcθb (ψ̄ f γµTcψ f
)

, (2.10)

because of the non-abelian nature of the SU(3) group:

[Ta, Tb] = i f abcTc ̸= 0 . (2.11)

By imposing a further restriction to the transformation of the gauge fields

Ga
µ → Ga

µ −
1
g

∂µαa − θb f abcGc
µ (2.12)

the invariance of the Lagrangian is guaranteed. The non-abelian field strength in its
gauge invariant form is then given by

Fa
µν = ∂µGa

ν − ∂νGa
µ︸ ︷︷ ︸

analog. to QED

− g f abcGb
µGc

ν︸ ︷︷ ︸
SU(3) non-abelian

. (2.13)
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What in QED is sometimes referred to as “kinetic” term now additionally contains
a gluon self-interacting term responsible for the three and four gluon vertex in
the Feynman rules of perturbative QCD. The complete invariant Lagrange density
writes

Linvar = ψ̄ f
(
i /D − m f

)
ψ f −

1
4

Fa
µνFa,µν (2.14)

Quantization leads to “gauge-fixing” terms from which we describe one method:
the covariant gauges

Lgauge = − 1
2ξ

(
∂µGa

µ

)2
(2.15)

the most prominent ones are: ξ = 1 the Feynman gauge and ξ → 0 the Landau gauge.
While using covariant gauges, one needs the introduction of so called ghost fields
which ensure the unitarity of the “physical” S-matrix used in perturbation theory

Lghost = ∂µη̄a ∂µηa + g f abc ∂µη̄a Gb,µηc , (2.16)

where ηa(x) are the Faddeev-Popov ghost fields. In conclusion we obtain the full
Lagrange density

LQCD = Linvar + Lgauge + Lghost

= ψ̄ f
(
i /D − m f

)
ψ f −

1
4

Fa
µνFa,µν − 1

2ξ

(
∂µGa

µ

)2

+ ∂µη̄a ∂µηa + g f abc ∂µη̄a Gb,µηc . (2.17)

This Lagrangian can be used in perturbation theory to derive the Feynman rules
of the theory, a helpful system of rules illustrating the calculation of amplitudes by
simple diagrams in momentum space. They are presented in Appendix A. In (2.4)
we introduced quark masses m f . Throughout this dissertation we will work in
the framework of massless QCD and therefore neglect mass terms in (2.17) in the
following. As a consequence we will only need to renormalize the strong coupling
which is explained in the next Section.

The main conclusion from this Section is to fully appreciate the fact that QCD does
not exclude self interactions as it is the case in QED. This far reaching difference
will be clarified in the next Section as the difference in sign of the beta functions of
these theories.

2.2 renormalization & asymptotic freedom

In the last Section we discussed the non-abelian nature of QCD. In this Section
we focus on another feature of QCD as a gauge field theory, namely that it is
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renormalizable. In calculations of radiative corrections one encounters loop (virtual)
contributions, where the integral over the loop momentum includes, a priori, re-
gions at arbitrary high momenta. As a renormalizable theory QCD ensures these
divergences, called ultraviolet (UV) divergences, to be removed by a renormali-
zation procedure. This program is justified since we do not expect the theory to
accurately predict observables at arbitrary high energies.

Renormalization of the theory implies the assumption that the coupling introduced
in (2.2), appearing in the Lagrangian, is not the physical coupling measured in an
experiment. Eq. (2.3) is interpreted as the bare coupling αb

s without any physical
meaning. The before mentioned UV divergencies are then absorbed into the bare
coupling in order to define the physical coupling.

Following Ref. [30], we first sketch out this procedure with help of a more tradi-
tional method of regularization: the momentum cut-off. We consider the sum of
Born and one-loop contribution in pQCD

= + + . . .

∼ αb
s

{
1 + αb

s b0

∫ Λ2

p2

dk4

(k2)2 + O(αb
s

2
)

}
, (2.18)

where Λ2 is an arbitrary UV scale that serves as a cut-off in the loop integration.
The prefactor b0 is the coefficient of the one-loop amplitude, while p is some exter-
nal momentum depending on the scattering process. We can rewrite the logarithm
of the loop integration by introducing a new scale µ, the renormalization scale, as
follows

∼ αb
s

{
1 + αb

s b0

(
ln

Λ2

µ2 + ln
µ2

p2

)
+ O(αb

s
2
)

}
. (2.19)

The physical coupling αs is then obtained by absorbing the UV divergent term
through a redefinition of the bare coupling so that we end up with a finite and
cut-off independent expression

∼ αs(µ)

{
1 + αs(µ) b0 ln

µ2

p2 + O(α2
s (µ))

}
, (2.20)

where

αs(µ) ≡ αb
s

{
1 + αb

s b0 ln
Λ2

µ2 +O(αb
s

2
)

}
(2.21)

is the finite, scale dependent physical coupling2. It is universal, i.e. cut-off and pro-
cess independent. This procedure can be extended to higher orders of the power

2 The bare coupling in (2.19) is expressed through the physical coupling at the scale µ making the
contribution cut-off independent, i.e. UV finite.
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expansion in αs so that eventually the renormalization can be achieved by redefin-
ing the bare coupling in the Lagrange density. Subtracting only divergent contribu-
tions is referred to as minimal subtraction renormalization scheme which we will use
throughout this dissertation with a slight modification of subtracting an additional
finite factor Sϵ = e−ϵγE(4π)ϵ, named MS scheme3.

Commonly one chooses the method of dimensional regularization instead of a cut-
off, where the 4 space-time dimensions are extended to d = 4 − 2ϵ dimensions.
By using this method the UV divergences appear as poles 1/ϵ that diverge when
taking the limit ϵ → 0, i.e. going back to four dimensions. Such poles also appear
in later Chapters as infrared divergences, another class of divergences that can be
made manifest in dimensional regularization. After introducing d dimensions the
bare coupling is not a dimensionless quantity anymore. In order to stay a bare
quantity a new scale µ, the renormalization scale, must be introduced αb

s = α′bs µ2ϵ.
From now on we work in the framework of dimensional regularization and name
the bare quantity αb

s (not α′bs ).

The scale dependence of the physical coupling αs(µ), also referred to as running
coupling, seems appropriate since in an experiment we measure observables at a
certain scale which we mostly identify with the momentum transfer of the parti-
cle collision. From this perspective we observe that the theory does not make a
prediction of the actual size of the coupling. However, its scale dependence is un-
ambiguously predicted which is reflected by the renormalization group equation

d ln αs

d ln µ2 = β(αs) = αs

(
−b0 − αs b1 − α2

s b2 − α3
s b3 + . . .

)
, (2.22)

where β(αs) is the QCD beta-function with its coefficients bi given in (B.1). Solving
this equation up to O(α4

s ), see e.g. [31, 32], leads to the connection of the coupling
at scale µ with the coupling at another scale µR

αs(µ) =
αs(µR)

X
−
(

αs(µR)

X

)2 b1

b0
ln X

+

(
αs(µR)

X

)3
(

b2
1

b2
0

(
ln2 X − ln X + X − 1

)
− b2

b0
(X − 1)

)

+

(
αs(µR)

X

)4
(

b3
1

b3
0

(
X − 1

2
X2 − ln3 X +

5
2

ln2 X + 2(1 − X) ln X − 1
2

)

+
b1b2

b2
0
(−X(1 − X) + 2X ln X − 3 ln X) +

b3

2b0

(
1 − X2

))
, (2.23)

3 γE is the Euler-Mascheroni constant.
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Figure 4: Collection of measurements of the running strong coupling taken from [35]. Since
the scales in (2.23) always appear as logarithms of the square of scales, it is com-
mon to write αs(µ2) instead of αs(µ).

where

X ≡ 1 + b0αs(µR) ln
µ2

µ2
R

. (2.24)

If we consider the lowest order contribution in (2.23) at a scale Q with a reference
scale µR = MZ ∼ 90 GeV

αs(Q) =
αs(MZ)

1 + b0 αs(MZ) ln Q2

M2
Z

, (2.25)

where b0 =
(
11CA − 2N f

)
/12π with CA = Nc, the coupling decreases at higher

scales Q for positive values of b0. As long as N f , the number of active flavours,
is less than 16 this is fulfilled in QCD4. It is now possible to measure the strong
coupling in an experiment at momentum scale ∼ MZ and predict its value at
other scales. Fig. 4 shows experimental measuring of the running strong coupling
compared to its theoretical scale dependence prediction αs(Q). The phenomenon
of the decreasing running strong coupling at higher energies is called asymptotic
freedom, a central property of QCD. It justifies the use of perturbation theory at
high energies. Asymptotic freedom was derived in [33, 34].

It is worth discussing to which point asymptotic freedom is sensible and hence
the use of perturbation theory is justified to make predictions. A scale with the

4 So far, only N f = 6 has been observed in nature as discussed in Sec. 1.1.
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property µ → µL is called a Landau pole ΛQCD which is experimentally confirmed
by the so called Confinement property of QCD. By Confinement we mean the fact
that quarks and gluons do not appear as free particles but only as bound, colorless
composites. Since ΛQCD < 1 GeV, it is suitable to make perturbative predictions
for Q > 2 GeV which is confirmed by Fig. 4 where the running strong coupling
remains a small parameter with αs(2GeV) ∼ 0.3.

As mentioned above within perturbative calculations of cross sections infrared (IR)
divergent terms appear. In dimensional regularization they are manifested by 1/ϵ

poles. As was shown in [36, 37], it is possible to define observables within pQCD
that are infrared safe. They do not depend on the long distance behavior of the
theory. The cancellation of these divergences is expected in general and known as
Kinoshita-Lee-Nauenberg theorem [38, 39].

2.3 quark form factor

Since Sudakov5 exponentiation or resummation, is one of the main topics in this
dissertation we give an example by introducing the dimensionally regulated elec-
tromagnetic form factor of a massless quark following Ref. [41]

Γµ = i eq ū(p′) γµ u(p) F q(αs, Q2, ϵ), (2.26)

with Q2 = (p′ − p)2. Perturbative QCD corrections to this amplitude have been
studied for a long time and are nowadays known to four loops [42]. The discus-
sion of the quark form factor (QFF) here should not be seen as an introduction to
resummation. We rather want to make contact with a fundamental pQCD ampli-
tude exhibiting contributions that are known to all orders in the strong coupling. A
more suitable introduction to resummation for the purpose of this dissertation will
be given at later stage. Figure 5 shows some Feynman diagrams that contribute to
Γµ. The quark form factor F q is a fundamental quantity in pQCD and has multiple
applications. For example, in inclusive DIS it collects all virtual higher-order cor-
rections of the hard scattering coefficient function. The infrared divergences from
the QFF then cancel in combination with the real emission contributions.

The quark form factor exponentiates as

F q(Q2, ϵ) = exp

{
1
2

∫ Q2

0

dη2

η2

[
K(αs(µ), ϵ) + G

(
η2

µ2 , αs(µ), ϵ

)]}
, (2.27)

5 First introduced by V.V. Sudakov in 1956 [40].
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= + + +

+ + + . . .

1Figure 5: The LO and some higher order diagrams contributing to the γ∗qq/γ∗qq̄ vertex,
also known as electromagnetic quark form factor with spacelike or timelike vir-
tual photon. The NLO to NNLO contributions were calculated in [43–49]. The
three loop contributions were calculated in [50–52]. The explicite coefficients are
given in Chapters 5 & 6.

since it obeys the following evolution equation [41, 53–56]

Q2 ∂

∂Q2 lnF q
(

αs(µ),
Q2

µ2 , ϵ

)
=

1
2

[
K(αs(µ), ϵ) + G

(
Q2

µ2 , αs(µ), ϵ

)]
. (2.28)

The function K contains all infrared singularities manifested by poles in ϵ, whereas
G is infrared finite and includes the scale dependence on Q2, i.e. it summarizes
ultraviolet behavior and has at most a single logarithm in Q2/µ2. Both are pertur-
bative functions. We can find explicit expressions for K and G by using (2.28) and
the QFF to a specific order, e.g. for a spacelike photon (−q2 = Q2) at one loop [45,
57–59]

F q(Q2, ϵ) = 1 +
αs

π

(
Q2

µ2

)−ϵ

CF

{
− 1

2ϵ2 − 3
4ϵ

+
π2

24
− 2

+

(
7ζ(3)

6
+

π2

16
− 4
)

ϵ +O
(

ϵ2
)}

. (2.29)

We can then read of the coefficients

K(1) = CF
1
ϵ

, (2.30)

G(1) = CF

(
µ2

Q2

)ϵ {1
ϵ
+

3
2
+

(
4 − π2

12

)
ϵ

+

(
8 − 7ζ(3)

3
− π2

8

)
ϵ2 +O

(
ϵ3
)}

− CF
1
ϵ

. (2.31)

When taking the limit ϵ → 0, i.e. going back to the ordinary four dimensions, we
find

G
(

Q2

µ2 , αs(µ), ϵ

)
= −αs

π
CF

(
ln

Q2

µ2 − 3
2

)
+O(α2

s ) , (2.32)
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which is known as leading-logarithmic (LL) contribution to the QFF. The expres-
sion fixates the leading behavior of the momentum transfer dependence of the QFF
to all orders of the power expansion in the running strong coupling.

The full solution of (2.28) in dimensional regularization is more involved than what
we have shown so far. In the following we sketch out a solution of (2.28) follow-
ing [56]. First, we notice that the QFF is independent of the renormalization scale:

µ
d

dµ
(K + G) = 0 . (2.33)

We therefore know that G and K each have renormalization group equations
(

µ2 ∂

∂µ2 + β(αs, ϵ)
∂

∂αs

)
G
(

Q2

µ2 , αs, ϵ

)
= Aq(αs) , (2.34)

(
µ2 ∂

∂µ2 + β(αs, ϵ)
∂

∂αs

)
K (αs, ϵ) = −Aq(αs) , (2.35)

where Aq is a perturbative function

Aq(αs) =
αs

π
A(1)

q +
(αs

π

)2
A(2)

q + . . . (2.36)

with

A(1)
q = CF , A(2)

q =
1
2

CF

[
CA

(
67
18

− π2

6

)
− 5

9
N f

]
, (2.37)

where CF = 4/3, CA = 3 and N f is the number of active flavours. Its higher-order
coefficients are given in (B.4). The ϵ dependent β function introduced above is given
by

β(αs, ϵ) =
d ln ᾱs

d ln µ2 = −ϵ + ᾱs (−b0 − ᾱsb1 + . . . ) , (2.38)

which is solved (in the lowest nontrivial order) by

ᾱs (Q, αs, ϵ) = αs(µR)

(
Q2

µ2
R

)−ϵ

1 − b0 αs(µR)

ϵ



(

Q2

µ2
R

)−ϵ

− 1





−1

, (2.39)

where ᾱs(Q = µR) = αs(µR) is the boundary condition and higher order con-
tributions to the running strong coupling in d dimension are given6 in [47]. We
observe that the expression from (2.25) is reproduced in the low ϵ limit. A solution
of Eq. (2.34) is now obtained by [47, 56, 60]

G
(

Q2

µ2 , αs(µ), ϵ

)
= G (1, ᾱs (Q, αs, ϵ) , ϵ) +

∫ µ2

Q2

dλ2

λ2 Aq (ᾱs (λ, αs, ϵ)) . (2.40)

6 Eq.(2.8) in [47] seems to be missing a factor λϵ compared to Eq.(2.7) in [56], where λ = Q2/µ2
R.
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Inserting this into (2.27) yields the exponentiation of the QFF

F q
(

αs(µ),
Q2

µ2 , ϵ

)
= exp

{
1
2

∫ Q2

0

dη2

η2

[
K(αs(µ), ϵ) + G (1, ᾱs (η, αs, ϵ) , ϵ)

+
∫ µ2

η2

dλ2

λ2 Aq (ᾱs (λ, αs, ϵ))

]}
, (2.41)

where the counter term function K can be determined recursively [56]. The compu-
tation of the integrals in (2.41) involves nested sums, and is more involved when
considering higher order contributions to (2.39). We refer the reader to Ref. [47, 56],
where the steps during the integration are explained in more detail. In the one-loop
approximation we presented so far, the QFF is compactly expressed in terms of an
analytic function

lnF q(Q, αs, ϵ) = − 2
4πb0

[
1
ϵ

A(1)
q Li2

(
b0 αs(Q)

b0 αs(Q) + ϵ

)
+ G(1) ln

(
1 +

b0 αs(Q)

ϵ

)]
.

(2.42)

After expansion in the strong coupling and inserting the coefficients for A(1)
q and

G(1), we obtain the first order result from (2.29), where we set Q = µ.

The quark form factor will be an essential ingredient when determining the hard
virtual contributions in SIDIS at NNLO or N3LO. We therefore need Fq up to
α3

s which was found in [47]. There, the QFF was extracted from the third-order
computation of DIS structure functions. Since it is a fundamental quantity and
therefore different renormalzation schemes may be of interst, the QFF is usually
given as a bare quantity expanded in the bare coupling αb

s which is related to αs by

αb
s = Zαs αs . (2.43)

We work in the MS scheme with the renormalization constant

Zαs = 1 − b0

ϵ
αs +

(
b2

0
ϵ2 − b1

2ϵ

)
α2

s −
(

b3
0

ϵ3 − 7
6

b1b0

ϵ2 +
1
3

b2

ϵ

)
α3

s +O(α4
s ) . (2.44)

The bare (unrenormalized) spacelike QFF, where q2 < 0, is then expressed by

F q
b (α

b
s , Q) = 1 +

∞

∑
n=1

(
αb

s
π

)n (
Q2

µ2

)−nϵ

F (n)
q . (2.45)
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The timelike (q2 > 0, both quarks are in the initial or final state) and spacelike (q2 < 0,
one quark in the initial and one quark in the final state) QFFs differ by an imaginary
part from the ϵ expansion of (q2)−ϵ which is gathered in the following factor7

∆(q2) =




(−1 − i0)−ϵ for q2 > 0

1 for q2 < 0
(2.46)

with

(−1 − i0)−ϵ = 1 − iπϵ − π2ϵ2

2
+

1
6

iπ3ϵ3 +
π4ϵ4

24
+O

(
ϵ5
)

(2.47)

for small ϵ. The bare timelike quark form factor, where q2 > 0, is then given by

F q
b (α

b
s , Q) = 1 +

∞

∑
n=1

(
αb

s
π

)n (
Q2

µ2

)−nϵ

∆(q2) F (n)
q . (2.48)

The renormalized coefficients F(i)
q are obtained by [47, 51]

F(1)
q = F (1)

q ∆(q2) ,

F(2)
q = F (2)

q (∆(q2))2 − πb0

ϵ
F (1)

q ∆(q2) ,

F(3)
q = F (3)

q (∆(q2))3 − 2πb0

ϵ
F (2)

q (∆(q2))2 −
(

π2b2
0

ϵ2 − π2b1

2ϵ

)
F (1)

q ∆(q2) . (2.49)

Explicit expressions of the renormalized coefficients can be found in Sec. 5.3 and
Sec. 6.4.

The QFF will be used to determine the hard virtual factor HSIDIS
qq appearing in the

refactorized hard scattering function in Chapters 5 & 6. For this we will subtract all
divergences from Fq by a method that will be explained in Chapter 4. It is therefore
a vital ingredient for the approximate NNLO corrections to SIDIS. Before we use
the QFF, we introduce the SIDIS process in more detail.

7 This factor corresponds to Eq. (4.1) in [47], where it is written in terms of Γ functions.
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S E M I - I N C L U S I V E D E E P - I N E L A S T I C S C AT T E R I N G

3.1 introduction

In this Chapter, we give an introduction to the characteristics of semi-inclusive
deep-inelastic scattering, formerly known as one-particle (or hadron) inclusive lep-
toproduction [61, 62]. As the name suggests it is based on inclusive deep-inelastic
lepton proton scattering (DIS). Since in SIDIS a hadron is detected in the final state,
it is named semi-inclusive. As already mentioned in Chapter 1, it is part of the
QCD sensitive processes and hence gives insights into the structure of nucleons.
In particular, parton distribution and fragmentation functions can be extracted si-
multaneously from SIDIS observables. This is not the case for e+e− annihilation.
So far data used for global analyses of fragmentation functions is largely based
on e+e− annihilation data and hence SIDIS data plays an important role within
these studies being an additional source of information about the fragmentation of
hadrons.

We will consider SIDIS in the so called current fragmentation region, where stan-
dard collinear factorization can be applied. During the particle collisions secondary
hadron fragmentation can occur in the beam or target remnants that do not have
their origin in the hard scattering. We do not include such target fragmentation
and assure current fragmentation by considering a cut on the fragmentation scaling
variable (z > 0.2) which will be defined below. This excludes target fragmentation,
where fracture functions have to be involved.

SIDIS also provides insights into the spin structure of the proton. In the works of
the DSSV group [17, 18] measurements of SIDIS asymmetries have been used in
a global analysis to extract the nucleon’s helicity distribution. The uncertainties in
SIDIS data used there are still large. A new experiment, the Electron-Ion-Collider
currently under construction in the USA, brings the prospect of more precise data
calling for even more precise pQCD calculations which is the main motivation for
higher order studies in SIDIS.

The contents of Chapters 5 & 6 rely on the findings of Refs. [20, 21] which we want
to outline in the present Chapter. The latter can be seen as the preparing work for

23
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the application of the methods developed in Chapter 4 to SIDIS in Chapters 5 & 6,
where we take significant steps further. We not only extend resummation in SIDIS
from NLL to N3LL accuracy but also investigate its all-order structure including the
hard factor in the threshold limit in order to give approximate NNLO or even N3LO
corrections. In the following we introduce the SIDIS cross section in Section 3.2
and its factorization in Section 3.3 from the perspective of Refs. [20, 21]. Section 3.4
addresses NLL resummation in Mellin space.

3.2 cross section

Semi-inclusive deep-inelastic scattering is characterized by

ℓ(k) p(P) → ℓ′(k′) h(Ph) X , (3.1)

where ℓ denotes the beam lepton, p the proton target and h the observed hadron
in the final state. The momenta of these particles are given in parentheses and
are depicted in Fig. 6, where we show the virtual photon as exchange particle for
the electromagnetic interaction between the proton and the lepton. By X we mean
everything else produced in the collision which is not detected. The blobs with
different colors schematically illustrate the separation of the long distance inter-
actions within the initial proton (green) or the detected hadron (purple) and the
short distance interactions (red) which will be addressed in the next Section. Both
the incoming lepton as well as the target proton may be polarized. The final-state
hadron however is, in our case, restricted to be unpolarized, although there have
been studies for polarized Λ Production [63, 64] in SIDIS. That case offers the op-
portunity to study spin transfer reactions as opposed to spinless mesons like pions
and kaons for which usually one studies the SIDIS process. Another “invaluable”
feature of SIDIS, as mentioned in Ref. [64], is flavor separation of fragmentation
functions. In contrast to other processes involving FFs, SIDIS is unique in separat-
ing information of the different flavors present in hadrons.

The electromagnetic interaction between the lepton and the proton is approximated
by the exchange of a virtual photon γ∗ with momentum transfer q = k − k′ and
virtuality Q2 = −q2. The kinematic variables used in SIDIS are defined by

Q2 = −q2 = −(k − k′)2 , x =
Q2

2P · q
,

y =
P · q
P · k

, z =
P · Ph
P · q

, (3.2)
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Figure 6: SIDIS process with labeled momenta

where x is the Bjorken variable known from DIS. The newly introduced variable
z is called fragmentation variable. The unpolarized SIDIS cross section differential
in these variables may be written as [61, 62, 64–67]:

d3σh

dxdydz
=

4 πα2

Q2

[
1 + (1 − y)2

2y
F h

T(x, z, Q2) +
1 − y

y
F h

L(x, z, Q2)

]
, (3.3)

where α is the fine structure constant. F h
T and F h

L are the transverse and the lon-
gitudinal structure functions; they are related to the more customary structure
functions Fh

1 and Fh
L by F h

T ≡ 2Fh
1 and F h

L ≡ Fh
L /x.

As we already saw in the case of electron-positron annihilation in Section 1.1, ex-
perimentally it is common to measure ratios of cross sections. In the case of SIDIS
one usually measures the SIDIS hadron multiplicity

Rh
SIDIS ≡ d3σh/dxdydz

d2σ/dxdy
, (3.4)

where d2σ/dxdy is the cross section for inclusive DIS, ℓp → ℓX, given by

d2σ

dxdy
=

4 πα2

Q2

[
1 + (1 − y)2

2y
FT(x, Q2) +

1 − y
y

FL(x, Q2)

]
, (3.5)

where the structure functions are defined as FT = 2F1 and FL = FL.

The SIDIS structure functions F h
i with i ∈ {T, L}, but in particular the transverse

one, are the central objects of our interest in this work. The pioneering work in [61]
obtained next-to leading order (NLO) corrections to these structure functions. We
show in the next Section how to calculate such theoretical predictions using stan-
dard pQCD techniques. A key principle that enables this calculation is factoriza-
tion.
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3.3 factorization & evolution

The parton model, introduced by Richard Feynman, James Bjorken and Emma-
nuel A. Paschos [68, 69] assumes1 free quarks within the hadron interacting weakly
at high energies Q ≫ 2 GeV, i.e. short distances ∼ 1/Q. It was originally formu-
lated in the framework of DIS, not in SIDIS. The remaining dynamics in the hadron
happen at greater distances and hence lower energies. A natural consequence is to
factorize the long distance and short distance physics

FT ∼ ωT
f ⊗ f , (3.6)

where f is a non-perturbative function and ωT
f is a perturbative function in the

strong coupling, also named hard scattering coefficient function. The parton model
predicts the scaling of the structure function, named Bjorken scaling [70], mean-
ing that at high momentum transfer Q the structure function becomes scale in-
dependent. Its success reinforced the picture of a nucleon containing point-like
constituents, namely partons. This can be understood by the the fact that at higher
energies higher spatial resolution is expected which implies a pointlike structure,
i.e. no structure at all, if the structure function is independent of the resolution
scale. However, Bjorken scaling is approximate and does not hold in general. Its
violation could only be fully understood in the framework of QCD involving quark-
gluon and gluon-gluon interactions as an asymptotically free gauge theory, where
the scale dependence of the non-perturbative function f governed by its evolution
equation is taken into account2. Nevertheless, the parton model, as a precursor to
QCD, and the corresponding experimental findings of Bjorken scaling achieved to
correctly forecast a non trivial substructure of the proton.

In Subsection 3.3.2 the perturbative part of the cross section will exhibit initial and
final state collinear divergences when calculating Feynman diagrams including
higher order pQCD corrections, i.e. gluonic interactions. These collinear singulari-
ties may be interpreted as sensitivity to the factorization of long-distance and short-
distance physics. The question of how to remove that sensitivity then arises. As we
will see below universal factorization of collinear singularities assures to obtain a fi-
nite short distance function. Factorization can also be understood by exploiting the
analogy to renormalization in Sec. 2.2. While absorbing collinear divergences into
the bare parton density one assumes it to be the physical density. This introduces a
new scale µF, called factorization scale.

By universal factorization, as described in [71], we mean the factorization of long
distance effects into universal functions describing the distribution of partons in a

1 Asymptotic freedom was not yet discovered.
2 This is sometimes referred to as the QCD improved parton model.



3.3 factorization & evolution 27

= ⊗ ⊗

Figure 7: Collinear factorization for the SIDIS process, adapted from [62]

hadron or the fragmentation of partons into a hadron. It is sketched out diagram-
matically for SIDIS in Fig. 7. Universality in this context means that the distribution
and fragmentation functions are independent of the high energy process. Thus,
these functions are an intrinsic property of the hadron. Being universal, these func-
tions may be extracted in a number of experiments. The remaining perturbative
short distance function then becomes independent of the hadron structure. In prac-
tice, the densities can be extracted in one experiment at a certain scale, then evolved
to another scale in order to predict the cross section in a different experiment at
that new scale, while using the appropriate short distance function. Combining
a wide range of data from different processes for these distributions leads to, so
called, global analyses.

In this Section we focus on the calculation of the structure functions F h
T and F h

L
using factorization, following Refs. [71, 72]3. They are expressed by the following
factorization formula

F h
i (x, z, Q2) = ∑

f , f ′

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

Dh
f ′

(z
ẑ

, µF

)
ωi

f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
f
(x

x̂
, µF

)
.

(3.7)
for partons f , f ′ = q, q̄, g. and where i ∈ {L, T}. f (ξ, µF) is the distribution of find-
ing parton f with momentum fraction ξ in the nucleon with total momentum P.
The fragmentation function Dh

f ′ (ζ, µF) describes the fragmentation of the parton f ′

into the observed hadron h. The factorization formula (3.7) only considers contri-
butions to the cross section that are not suppressed by higher powers of 1/Q2 or
1/Q. Within this thesis such contributions, also known as power corrections, are
neglected. This is referred to as leading twist.

Once this separation is effected, the hard scattering coefficient function ωi
f ′ f is cal-

culable in pQCD. It describes the interaction of the involved particles in the frame-
work of perturbation theory. It is named “hard” scattering since the typical energies
involved are high compared to the proton mass.

3 Ref. [72] provides a detailed calculation of the NLO contribution to the unpol. SIDIS cross section,
as well as significant steps towards a full NNLO calculation, a major progress since the calculations
in [61].
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In principle, Eq. (3.7) contains all orders in αs if the hard scattering function is
known at each order. Since this is an extremely non-trivial task, theoretical predic-
tions of the structure functions rely on perturbative fixed-order results, where the
hard scattering function is a perturbative series in the strong coupling

ωi
f ′ f = ω

i,(0)
f ′ f +

αs(µR)

π
ω

i,(1)
f ′ f +

(
αs(µR)

π

)2

ω
i,(2)
f ′ f +O(α3

s ) . (3.8)

In the following we are interested in the leading order (LO) contribution and next-
to-leading order (NLO) correction. Nevertheless, as we will see in Sec. 3.4 there are
methods of finding some contributions to the hard scattering function to all orders.

The PDF and FF are independent of the underlying hard process and hence the
hard scattering function is independent of the external state. It can therefore be
obtained by calculating the partonic cross section, assuming external partons in
the initial and final states and using factorization again:

d2σ
γ∗ f→ f ′

k
dx̂dẑ

=
∫ 1

x̂

dx̃
x̃

∫ 1

ẑ

dz̃
z̃

d f ′/i

(
ẑ
z̃

, µF, ϵ

)
ωk

ij

(
x̃, z̃, αs,

µR

Q
,

µF

Q

)
f j/ f

(
x̂
x̃

, µF, ϵ

)
,

(3.9)
where d f ′/i and f j/ f are the corresponding partonic analogues of the distributions
in (3.7). For better readability we name the transverse partonic structure function
as follows

d2σ
γ∗ f→ f ′

k
dx̂dẑ

≡ Gk
f ′ f

(
x̂, ẑ, αs,

µR

Q
,

µF

Q
, ϵ

)
, (3.10)

which is also a perturbative series in αs

Gk
f ′ f = Gk,(0)

f ′ f +
αs(µR)

π
Gk,(1)

f ′ f +O(α2
s ) . (3.11)

Here we introduced the characteristic partonic scaling variables

x̂ =
Q2

2pa · q
and ẑ =

pa · pb
pa · q

, (3.12)

where pa and pb are the momenta of the incoming parton and the fragmenting
parton, respectively. One can now calculate the perturbative contributions of the
partonic cross section to the desired order.

For simplicity we only consider the partonic channel γ∗ q → q. The methods de-
scribed here are, of course, also valid in the case of an initial or final gluon. The
parton-in-parton distributions can be calculated in perturbation theory. After UV
renormalization in the MS scheme we have up to NLO [71]

dq/q(ŷ) = fq/q(ŷ) = δy −
αs

π

1
ϵ

Sϵ P(0)
qq (ŷ) +O(α2

s ) . (3.13)
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with
Sϵ ≡

(
4πe−γE

)ϵ (3.14)

and the leading order q → q splitting function

P(0)
qq (ŷ) = CF

(
1
2
(1 + ŷ2)D0

y +
3
4

δy

)
≡ CF P̄(0)

qq (ŷ) , (3.15)

where we used the following abbreviations:

δy ≡ δ(1 − ŷ) , Di
y ≡

[
lni(1 − ŷ)

1 − ŷ

]

+

, ℓi
y ≡ lni(1 − ŷ) . (3.16)

The singular behavior of the Di
y functions when ŷ → 1 was regularized with help

of the “plus” prescription
∫ 1

0
dy
(

f (y)
)
+

g(y) ≡
∫ 1

0
dy f (y)

(
g(y)− g(1)

)
. (3.17)

Inserting the parton-in-parton distributions from (3.13) into (3.9) and expanding
both sides in αs we get

GT,(0)
qq +

αs

π
GT,(1)

qq +O(α2
s ) = ω

T,(0)
qq +

αs

π
ω

T,(1)
qq − αs

π

1
ϵ

Sϵ
∫ 1

x

dx̂
x̂

ω
T,(0)
qq (x̂) P(0)

qq

(x
x̂

)

− αs

π

1
ϵ

Sϵ
∫ 1

z

dẑ
ẑ

ω
T,(0)
qq (ẑ) P(0)

qq

(z
ẑ

)
+O(α2

s ) . (3.18)

By comparing the coefficients at each order we will obtain finite expressions for
the hard scattering functions at LO and NLO.

3.3.1 Leading order coefficient functions

In LO, the red blob in Fig. 7 corresponds to a QED vertex with no gluon emis-
sion which is shown by the first diagram in Fig. 8. Comparing the LO expressions
in (3.18) we see that at LO the hard coefficient and the partonic contribution coin-
cide

ω
T,(0)
qq (x̂, ẑ) = GT,(0)

qq (x̂, ẑ). (3.19)

Inserting this into (3.7) reproduces the parton model since the LO coefficient func-
tion is given by

ω
T,(0)
qq (x̂, ẑ) = e2

q δ(1 − x̂)δ(1 − ẑ),

ω
L,(0)
qq (x̂, ẑ) = 0, (3.20)
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1
Figure 8: The first diagram from the left is the LO contribution to SIDIS. The diagrams

including gluonic interaction are virtual and real NLO corrections for the partonic
process γ∗q → q.

By parton model we mean the approximation of free quarks in the proton as de-
scribed after (3.6). One can see that the LO contribution to the transverse structure
function leads to flavor separation of fragmentation and parton distribution func-
tion

F h
T(x, z) = ∑

q
e2

q Dh
q (z) q (x) . (3.21)

This is quite a unique feature of SIDIS. It is used in global analyses of PDFs and
FFs. In Eq. (3.21) we observe a similar behavior as Bjorken scaling in DIS, where
PDF and FF are scale independent at LO.

3.3.2 Next-to leading order coefficient functions

Inspecting Eq. (3.18) at NLO we need to subtract the following terms from the
partonic coefficient function to obtain the hard scattering function

ω
T,(1)
qq (x̂, ẑ) = GT,(1)

qq (x̂, ẑ, ϵ) + e2
q

1
ϵ

Sϵ
(

δz P(0)
qq (x̂) + δx P(0)

qq (ẑ)
)

, (3.22)

where we have used the LO coefficients from Eq. (3.20). We want the transverse
part of the structure function which is given by [64, 72]

F h
Σ = F h

T − 1
2
F h

L . (3.23)

This leads to
GT,(1)

qq = GΣ,(1)
qq +

1
2

GL,(1)
qq . (3.24)

The NLO contributions to the partonic cross section from the real and virtual dia-
grams in Fig. 8 can be calculated using the Feynman rules (see Appendix A), they
are given by [72]

GL,(1)
qq, virtual = 0 , (3.25)
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GL,(1)
qq, real = 2e2

q CF x̂ ẑ , (3.26)

GΣ,(1)
qq, virtual = e2

qCF

(
µ2

F
Q2

)ϵ

Sϵ(1 − ϵ) δx δz

[
− 1

ϵ2 − 3
2ϵ

− 4
]

, (3.27)

GΣ,(1)
qq, real = e2

qCF

(
µ2

F
Q2

)ϵ

Sϵ(1 − ϵ)

×
{

1
ϵ2 δx δz − 1

ϵ
δx

1
2
(1 + ẑ2)D0

z −
1
ϵ

δz
1
2
(1 + x̂2)D0

x

+ δx
1
2

[
(1 + ẑ2)D1

z + (1 + ẑ2)ℓ1
z + 1 − ẑ

]

+ δz
1
2

[
(1 + x̂2)D1

x − (1 + x̂2)ℓ1
x + 1 − x̂

]

+ D0
xD0

z −
1
2
(1 + ẑ)D0

x −
1
2
(1 + x̂)D0

z + 1
}

. (3.28)

We observe that the IR-structure from the QFF (up to normalization) in (2.29)
reappears in the virtual contributions. If we now add real and virtual contributions
the double poles cancel. The cancellation of these soft divergences was discussed in
Sec. 2.2, and anticipated by the Kinoshita-Lee-Nauenberg theorem. The initial and
final state collinear divergences, however, remain as we pointed out earlier while
introducing factorization,

GΣ,(1)
qq = e2

qCF

(
µ2

F
Q2

)ϵ

Sϵ(1 − ϵ)

×
{
−4 δx δz − 1

ϵ

(
δx P̄(0)

qq (ẑ) + δz P̄(0)
qq (x̂)

)

+ δx
1
2

[
(1 + ẑ2)D1

z + (1 + ẑ2)ℓ1
z + (1 − ẑ)

]

+ δz
1
2

[
(1 + x̂2)D1

x − (1 + x̂2)ℓ1
x + (1 − x̂)

]

+ D0
xD0

z −
1
2
(1 + ẑ)D0

x −
1
2
(1 + x̂)D0

z + 1
}

, (3.29)
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where we identified the leading order splitting functions from (3.15) (written as
P̄(0)

qq since it was divided by a factor of CF) in the second line of Eq. (3.28). We can
now apply Eq. (3.22) in order to obtain the transverse hard coefficient at NLO

ω
T,(1)
qq (x̂, ẑ) = e2

qCF

{
−4 δx δz +D0

xD0
z −

1
2
(1 + ẑ)D0

x −
1
2
(1 + x̂)D0

z + (1 + x̂ẑ)

+ δx
1
2

[
(1 + ẑ2)D1

z + (1 + ẑ2)ℓ1
z + (1 − ẑ)− 2P̄(0)

qq (ẑ) ln
µ2

F
Q2

]

+ δz
1
2

[
(1 + x̂2)D1

x − (1 + x̂2)ℓ1
x + (1 − x̂)− 2P̄(0)

qq (x̂) ln
µ2

F
Q2

]}
,

(3.30)

which is now free of any divergences. The NLO coefficient function is almost sym-
metrical for x̂ ↔ ẑ except for the different sign in the δxℓ1

z and δzℓ1
x terms. Fur-

thermore it should be noted that contributions like D1
x become large in the limit

x̂, ẑ → 1. This behavior is also present in the splitting function (3.15). The question
of how to deal with these large contributions will be addressed in Sec. 3.4.

3.3.3 Evolution equations

The scale dependence of (polarized) PDFs and FFs is given by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations which we illustrate
in the case of polarized PDFs, i.e. proton spin dependent PDFs. Since in the next
Section we will mainly work in Mellin space, we introduce the double Mellin trans-
form M defined by

M[F ](N, M) =
∫ 1

0
dx xN−1

∫ 1

0
dz zM−1F (x, z) ≡ F̃ (N, M) . (3.31)

It is used to factorize the structure function in (3.7) into three separate integrals
(instead of the rather inconvenient double convolutions). This can be seen by taking
the double Mellin transform of (3.7) (for simplicity we omit the scale dependencies)

F̃i(N, M) = ∑
f , f ′

f̃ (N) · ω̃i
f ′ f (N, M) · D̃ f ′(M) , (3.32)

where we rewrite the integral over x̂ (or ẑ) as

∫ 1

0
dx̂ f

(x
x̂

)
ωi

f ′ f (x̂) =
∫ 1

0
dy
∫ 1

0
dx̂ f (y)ωi

f ′ f (x̂) δ
(

y − x
x̂

)
. (3.33)



3.3 factorization & evolution 33

An example of a simple Mellin transform, i.e. with only one variable, is the trans-
form of the LO splitting function P(0)

qq from (3.15), given by

PN,(0)
qq =

∫ 1

0
dŷ ŷN−1 P(0)

qq (ŷ) = CF

(
−S1(N) +

3
4
− 1

2N(N + 1)

)
, (3.34)

where

S1(N) =
N

∑
k=1

1
k
= ln N̄ +O

(
1
N

)
, (3.35)

where N̄ = NeγE . We will show a more detailed calculation of such a transform in
Sec.3.4. We observe that in Mellin space the singular behavior of the distribution
D1

y for ŷ → 1 corresponds to large values of N. If not stated otherwise we will only
consider terms not suppressed like the inverse power of a Mellin variable indicated
in (3.35).

To explain evolution we introduce the helicity case, although the same reasoning
applies to the unpolarized case. The factorization formula in (3.32) can also be
applied in the case of longitudinally polarized incoming leptons and protons with
helicity parton distribution functions

∆ f̃ (N, µF) ≡ f̃+ (N, µF)− f̃− (N, µF) ( f = u, d, s, ū, d̄, s̄, g) , (3.36)

where f̃+ or f̃− are the the number densities of partons in Mellin space with the
same or opposite helicity with respect to the nucleon’s helicity. The spin-dependent
structure function then takes the form [21]

Gh
1 (N, M, Q2) = ∑

f , f ′
D̃h

f ′ (M, µF)∆ω̃ f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
∆ f̃ (N, µF) , (3.37)

where Gh
1 = 2g1 and ∆ω̃ f ′ f is the spin dependent hard scattering function. A more

detailed description of Gh
1 and its cross section is given in Sec. 5.2. Here we only

want to focus on its general structure which is similar to the unpolarized case. As
discussed in the beginning of this Chapter, the structure function Gh

1 is independent
of the factorization scale µF, and thus

d Gh
1

d ln µ2
F
= 0 . (3.38)

Since (3.37) is valid to all orders in the strong coupling, the µF dependency on the
right hand side must cancel. But at a fixed order this is not the case. The scale
dependence of the PDF is then given by the spin dependent DGLAP evolution [73,
74]

d
d ln µ2

(
∆q̃(N, µ)

∆g̃(N, µ)

)
=


∆PN

qq(αs) ∆PN
qg(αs)

∆PN
gq(αs) ∆PN

gg(αs)




︸ ︷︷ ︸
=∆PN

×
(

∆q̃(N, µ)

∆g̃(N, µ)

)
. (3.39)
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The ∆PN
ij are the entries of the matrix ∆PN containing the spin-dependent splitting

functions [73–77]

∆PN
ij =

αs

π

(
∆PN,(0)

ij +
αs

π
∆PN,(1)

ij + . . .
)

(3.40)

In the calculation of these polarized splitting functions special care has to be taken
in dimensional regularization to the Dirac matrix

γ5 ≡ i
4!

ϵµνρσγµγνγργσ , (3.41)

where ϵµνρσ is the Levi-Civita symbol, which is true in general when perform-
ing helicity dependent calculations. The Levi-Civita symbol is a uniquely four-
dimensional object, it is therefore not clear how to extend it to d dimensions [78].
As pointed out in [76], dimensional regularization so far seems to be the only vi-
able method to regularize spin dependent amplitudes. An algebraically consistent
prescription of treating γ5, appearing in the helicity projectors, in d dimensions
is the HVBM scheme [79, 80]. In the unpolarized case the framework of Refs. [81,
82] is an established way of obtaining splitting functions in PN. This was adopted
in [76, 77] to the polarized case, while using the mentioned HVBM scheme.

We give the LO splitting functions in the large N limit, where the helicity evolution
kernels ∆Pij are (at this order) equivalent to the unpolarized ones from [83]

∆PN,(0)
qq = PN,(0)

qq = CF

(
− ln N̄ +

3
4
− 1

2N

)
, ∆PN,(0)

qg = PN,(0)
qg =

1
4N

, (3.42)

∆PN,(0)
gq = PN,(0)

gq =
CF

2N
, ∆PN,(0)

gg = PN,(0)
gg = −CA ln N̄ − CA

2N
+ πb0 . (3.43)

Three loop contributions to ∆Pij were calculated in [84]. The unpolarized splitting
functions in PN are known up to three loops as well [85, 86]. Steps towards a
four-loop result have recently been made in [87, 88].

As already mentioned, the evolution in the unpolarized case is similar to the evo-
lution above. Furthermore, the fragmentation also has an evolution as the one de-
scribed above but with unpolarized timelike splitting functions which are equiva-
lent to the ones in (3.43) as well when taking the large M limit. As we will explore
in Chapter 5, DGLAP evolution will generate a certain type of threshold enhanced
contributions to the hard scattering function which are suppressed by one Mellin
variable, which is the reason we did not omit the suppressed terms in (3.43). This
leads us to threshold resummation, the main topic of this thesis.
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3.4 resummation

Resummation in SIDIS is known in the literature up to NLL in the unpolarized [20]
and polarized case [21]. The appearance of logarithms that spoil the perturbative
series is known for many different pQCD processes, e.g. DY, SIA,. . . In general, the
threshold region is characterized by the fact that most of the phase space is used
to produce the partonic reaction (x̂, ẑ → 1). The remaining phase space becomes
small leading to arbitrary soft gluon radiation, which is sometimes referred to as an
incomplete cancellation of real and virtual contributions. From [89] we know that
in the case of SIDIS, where we have two scaling variables, the energy of radiated
gluons, with total momentum k̄, becomes completely soft for x̂, ẑ → 1

(1 − x̂) + (1 − ẑ) ≈ 2k̄0

Q
. (3.44)

The perturbative series is spoiled as the gluons become softer and softer. In the
coefficient function this is reflected by the terms ∝ αk

s [ln
n(1− ŷ)/(1− ŷ)]+ (where ŷ

can be x̂ or ẑ), so called threshold logarithms, which in turn have to be summed to all
orders in the strong coupling since they diverge at fixed order. We stress that these
terms are generally not problematic. It is near the phase space boundary where
they diverge and hence need special attention. Exponentiation of eikonal diagrams
in color-singlet processes systematically deals with the all-order resummations of
theses logarithms [90–94]. We will follow the approach given in theses References.
Although being an extremely interesting subject by itself we will not enlarge upon
the foundations of resummation, we rather focus on its consequences and structure
in SIDIS and several other processes. The essential points from these works we rely
upon in the following are: the factorization of the QCD matrix element for n-gluon
emissions into the product of n single soft gluon emissions. Furthermore we require
the phase space to factorize as well which can be done in Mellin space.

At NLO the most singular terms near the phase space boundary are given by
double distributions, i.e. terms containing a plus- and a delta-distribution, e.g. δzD1

x
from (3.16), called leading-logarithms (LL). The NLO coefficient function in (3.30)
receives large corrections when x̂, ẑ → 1, given by the double distribution terms

ω
T,(1)
qq (x̂, ẑ) = e2

qCF

{
δx D1

z + δz D1
x +D0

xD0
z − 4 δx δz

}
, (3.45)

where we set µF = Q for simplicity. In the following we will explain how to obtain
these contributions to all orders in perturbation theory. Before we turn to the actual
resummed cross section, we will treat the NLO coefficient function in Mellin space.
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3.4.1 Next-to leading order coefficient functions in Mellin space

We calculate the Mellin moments of the NLO transverse coefficient function for the
γ∗q → q channel ω

T,(1)
qq (x̂, ẑ, 1) in Eq. (3.30), where we set µF = Q. Let us first

consider double distribution terms, e.g. ∼ δx δz or ∼ δx D1
z . The terms containing

two delta distributions render simple constants in Mellin space. As an example we
calculate the Mellin transform of the second kind using the definitions in (3.16):

M[δx (1 + ẑ2)D1
z ](N, M) =

∫ 1

0
dx̂ x̂N−1δ(1 − x̂)

∫ 1

0
dẑ ẑM−1(1 + ẑ2)

[
ln(1 − ẑ)
(1 − ẑ)

]

+

.

(3.46)

Applying the definition of the + distribution from (3.17) in the ẑ-integration leads
to

−
∫ 1

0
dẑ
(

1 − ẑM−1

1 − ẑ
+

1 − ẑM+1

1 − ẑ

)
ln(1 − ẑ)

= −
∫ 1

0
dẑ

M−2

∑
k=0

ẑk ln(1 − ẑ)−
∫ 1

0
dẑ

M

∑
j=0

ẑj ln(1 − ẑ) , (3.47)

where we identify an integral representation of the n-th harmonic number

∫ 1

0
xk ln(1 − x) dx = − 1

k + 1
Hk+1 , Hn ≡

n

∑
k=1

1
k

. (3.48)

This leads to the following expression in Mellin space

M[δx (1 + ẑ2)D1
z ](N, M) =

M−1

∑
k=1

1
k

Hk +
M+1

∑
j=1

1
j

Hj

= S2
1(M)− S1(M)

M(M + 1)
+ S2(M) +

1
(M + 1)2 , (3.49)

where we have used

n

∑
k=1

1
k

Hk =
1
2

(
S2

1(n) + S2(n)
)

, Sk(n) =
n

∑
j=1

1
jk . (3.50)
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After performing likewise the Mellin transform of the full NLO coefficient function
in (3.30), we obtain the following expression4 in accordance with [20, 95]

ω̃
T,(1)
qq (N, M)

= e2
qCF

1
2

{
−8 − 1

M2 +
2

(M + 1)2 +
1

N2 +
(1 + N + M)2 + 1

M(M + 1)N(N + 1)
+ 3S2(M)− S2(N)

+ (S1(M) + S1(N))

(
S1(M) + S1(N)− 1

M(M + 1)
− 1

N(N + 1)

)

+

(
2(S1(N) + S2(M))− 3 − 1

N(N + 1)
− 1

M(M + 1)

)
ln

µ2
F

Q2

}
. (3.51)

Here we calculated the exact Mellin transform. For the purpose of threshold re-
summation this is not necessary when working in the phase space region for large
values of N and M since most terms are suppressed. However, the exact expression
in (3.51) will serve as a valuable comparison to our approximate results developed
in Chapter 4. Let us now expand this result for large values of N and M. This cor-
responds to the limits x̂ → 1 and ẑ → 1 since the Mellin integrand xN−1 becomes
a step function for large N. Furthermore, we use

S1(N) = ln N̄ +O(1/N) , (3.52)

S2(N) =
π2

6
+O(1/N) , (3.53)

where, as before, N̄ = NeγE and M̄ = MeγE . If we insert these approximations
into (3.51) and neglect suppressed contributions, we obtain

ω̃
T,(1)
qq (N, M) = e2

qCF

{
1
2
(ln M̄ + ln N̄)2 − 4 +

π2

6
+O

(
1
N

,
1
M

)}
. (3.54)

This expression is analogous to (3.45) in the sense that we disregard suppressed
terms. Although the Mellin transform is unique, the approximations in Mellin
or x, z-space, Eqs. (3.54) and (3.45) respectively, are not readily comparable. Spe-
cial care has to be taken to suppressed terms when comparing expressions in the
threshold limit since they need not be the same in both spaces. In other words,
suppressed terms in Mellin space do not correspond single distribution (or non-
distribution) terms in x, z space. It appears that Mellin moments provide a better
approximation of the full NLO coefficient in (3.51). A more detailed picture about
this difference will be given in Sec. 5.6.

It is of considerable interest to find a way to manage the logarithms in Eq. (3.54)
for large values of N and M. In general, the leading logarithms at kth order in
perturbation theory (for xz-space or Mellin space)

αk
s

(
δx D2k−1

z + δz D2k−1
x

)
+ . . . or αk

s(ln M̄ + ln N̄)2k−1 + . . . (3.55)

4 From this point on we use the more compact notation M[ω](N, M) ≡ ω̃(N, M).



38 semi-inclusive deep-inelastic scattering

1 const.

αs L2 L const.

α2
s L4 L3 L2 L const.

...
...

...
...

...
...

αk
s L2k L2k−1 L2k−2 L2k−3 L2k−4 . . .

LL NLL NNLL

Figure 9: All-order threshold logarithmic structure, where L = 1
2 (ln N̄ + ln M̄)

may be obtained in threshold resummation. We will find that such logarithms fol-
low a certain hierarchy which is displayed on Fig. 9, where the left-most column
corresponds to the leading logarithms. The kth row indicates the fixed-order loga-
rithmic structure. We additionally show the NLL and NNLL “towers”. In Chapter 6
we will even find N3LL contributions, i.e. the seven leading towers of logarithms.

3.4.2 Resummation at next-to leading logarithmic accuracy

We follow Refs. [20, 21] to perform NLL resummation in SIDIS. Exponentiation
of the eikonal hard-scattering function [89, 90, 94, 96, 97] leads to the following
structure of the resummed part of the transverse hard scattering function

ln ω̃T,res
qq (N, M, αs(Q)) ∝

∫ Q2

0

dµ2

µ2 Aq (αs(µ))

{ ∫ 1

µ2

Q2

dξ

ξ

[
e
−Nξ−M µ2

ξQ2 − 1

]
+ ln N̄ + ln M̄

}
, (3.56)

which is valid to next-to-leading logarithmic (NLL) accuracy. Here, Aq(αs) is the
perturbative function from Eq. (2.36). Neglecting contributions that are exponen-
tially suppressed we may write the ξ-integration as follows
∫ 1

µ2

Q2

dξ

ξ

[
e
−Nξ−M µ2

ξQ2 − 1

]
+ ln N̄ + ln M̄ ≈ 2

[
K0

(√
NM

2µ

Q

)
+ ln

(
µ

Q

√
N̄M̄

)]
,

(3.57)
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where K0 is a Bessel function. At this point we can make a crucial observation that
will be more developed in Sec. 4.2. The inclusive Drell Yan process is characterized
by one scaling variable instead of two. The analog expression to (3.57) is given
by [89, 94, 97]

∫ 1

µ2

Q2

dξ

ξ

[
e
−N

(
ξ− µ2

ξQ2

)

− 1

]
+ 2 ln N̄ ≈ 2

[
K0

(
N

2µ

Q

)
+ ln

(
µ

Q
N̄
)]

. (3.58)

It is now possible to obtain the SIDIS expression by substituting N̄ →
√

N̄M̄. Fur-
thermore we recognize the all-order subtraction of collinear divergences in the
initial and the final state by ln N̄ and ln M̄ respectively. In Eq. (3.22) we saw that
subtraction at NLO, where the LO splitting functions in Mellin space (3.34) con-
tain these logarithms. In DY two initial partons produce the 2 ln N̄ contribution
resumming collinear divergences in the initial state.

With (3.57), the final resummed coefficient function becomes in the MS scheme:

ω̃T,res
qq (N, M, αs(Q)) ∝

exp

[
2
∫ Q2

0

dµ2

µ2 Aq (αs(µ))

{
K0

(√
NM

2µ

Q

)
+ ln

(
µ

Q

√
N̄M̄

)}]
. (3.59)

At small argument, the Bessel function K0 behaves as

K0(x) = − ln (xeγE /2) +O(x2 ln x) .

We are now ready to expand the exponent to NLL. This is done by integrating over
µ2 using the running coupling (2.23) at O(α2

s ). We find5

∫ Q2

Q2
N̄M̄

dµ2

µ2 Aq (αs(µ)) ln
(

µ2N̄M̄
Q2

)
≈ h(1)q

(
λNM

2

)
λNM

2b0αs(µR)
+ h(2)q

(
λNM

2

)
,

(3.60)
where h(1)q and h(2)q are given by

λNM ≡ b0αs(µR) (ln N̄ + ln M̄) ,

h(1)q (λ) =
A(1)

q

πb0λ
[2λ + (1 − 2λ) ln(1 − 2λ)] ,

h(2)q (λ) = − A(2)
q

π2b2
0
[2λ + ln(1 − 2λ)] +

A(1)
q b1

πb3
0

[
2λ + ln(1 − 2λ) +

1
2

ln2(1 − 2λ)

]
.

(3.61)

5 A more detailed description of this expansion can be found after Eq. (4.17).
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As stated above, these results can be obtain as well by setting λDY → λNM/2 in the
exponent of Ref. [98] for the DY process, where λDY = b0αs(µR) ln N̄. For simplicity
we set µF = µR = Q.

Since the exponent is a function of the strong coupling we can expand it and obtain
the large Mellin moments expression from (3.54)

1
e2

q
ω̃T,res

qq = HSIDIS
qq Ĉqq exp

{∫ Q2

Q2/(N̄M̄)

dµ2

µ2 Aq
(
αs(µ)

)
ln
(

µ2N̄M̄
Q2

)}

= 1 +
αs

π
CF

{
1
2
(ln N̄ + ln M̄)2 − 4 +

π2

6
+O

(
1
N

,
1
M

)}
+O(α2

s ) .

(3.62)

Here we already inserted the constant contributions which are gathered in the
product

HSIDIS
qq · Ĉqq = 1 +

αs

π

(
−4 +

π2

6

)
+O(α2

s ) , (3.63)

where HSIDIS
qq and Ĉqq each are perturbative functions. In Chapter 4 we will develop

a method for systematically finding these constant contributions at higher orders.
For now, we simply read them off the NLO calculation in (3.54).

The main two results from the procedure above are, of course, all-order resumma-
tion of LL and NLL contributions, but we can also approximate the hard scattering
function by expanding the exponent in αs. At NLO this method may seem su-
perfluous, especially since the fixed-order result has been known for a long time.
Nevertheless it will show to serve as a way to approximate NNLO corrections in
Sec. 5.5 that are quite cumbersome to calculate as pointed out in Ref. [72].

3.4.3 Mellin inversion

Although being extremely useful from the perspective of soft gluon resummation,
Mellin space is not used for giving phenomenological predictions. These are com-
monly ruled out in x, z space. The transverse structure function is then given by
the inverse Mellin transforms of (3.32)

F h
T(x, z, Q2) =

∫

CN

dN
2πi

x−N
∫

CM

dM
2πi

z−M F̃ h
T(N, M, Q2) . (3.64)

The contours CN and CM in the complex plane are illustrated on Fig. 10 as red
dashed lines. The complex integrations can be performed if all singularities, except
for the Landau6 singularity, lie to the left of the contours adopting the minimal

6 See the discussion after (2.25).
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Re(N)

Im(N)

ϕN

cN N0

Re(M)

Im(M)

ϕM

cM

Figure 10: Contours for N and M integrations in the Mellin inversion, adapted from [20].

prescription from [98]. In passing we note that in Chapter 5 we give approximate
fixed-order results, where we expand the exponent without resumming to all or-
ders in αs. In that case no special caution has to be exercised to the Landau singu-
larity. It appears if the running coupling diverges for µ → ΛQCD in the exponent
of Eq. (3.59). This is related to the moments by the λNM variable approaching one
in (3.60)

λNM = 1 → N̄M̄ = exp
(

1
αsb0

)
≡ L0 , (3.65)

where N and M are complex numbers parametrized by polar coordinates

N = cN ± ζeiϕN , M = cM ± ξeiϕM , ζ, ξ ∈ (0, ∞) , (3.66)

where ϕN ∼ 3π/4. We will give explicit numbers for the parameters cN and cM

in later Chapters. Here we qualitatively show the approach of the Mellin inversion
following Ref. [20]. From (3.65) we know that the position of the Landau pole in
the complex M plane depends on the position of N along its contour. We therefore
start with the standard contour for the N-integration chosen to be tilted towards the
real axis in order to obtain a negative real part. This leads to a better convergence
of the numerical integration since in (3.64) the prefactor x−N , where x ∈ (0, 1),
suppresses contributions with large real parts exponentially. The same is true for
the M contour. Furthermore the minimal prescription requires cN < N0, where
N0 ≡ L0/cM. For different values of N on its contour, the Landau pole moves
along the blue curve in the M plane

ML0(ζ) = f (ζ) + ig(ζ) , (3.67)

f (ζ) =
L0(

√
2cN − ζ)√

2(ζ2 −
√

2cNζ + c2
N)

, g(ζ) = − L0ζ√
2(ζ2 −

√
2cNζ + c2

N)
, (3.68)
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where some of the positions are shown as blue dots. Now the M contour has to
be chosen in such a way that it does not cross the Landau pole, making the angle
ϕM depend on the position of the Landau pole. The Landau pole moves towards
the real axis if ζ → ±∞ which would induce ϕM → π. As discussed above, these
contributions are exponentially suppressed and we can neglect them.



4
T H R E S H O L D A P P R O X I M AT I O N S

4.1 introduction

In this Chapter we will explore the fact that fixed-order calculations of the hard
scattering functions of the processes SIA, DIS and DY can be approximated by
re-factorized short distance functions of the following form

ωres(N, αs) = H(αs) · ∆(N, αs)

= H(αs) · Ĉ(αs) · ∆̂(N, αs) (4.1)

which generally consist of three ingredients: the hard factor H and the soft-gluon
exponent ∆ which can be split into two parts: one part only containing threshold
logarithms and an additional – rather cosmetic – function Ĉ extracting all Mellin
constant contributions from ∆. This procedure has been studied in [32, 99]. The
hard virtual contributions can be obtained by using the time- or spacelike quark
form factor as described in [100]. We combine the methods of these works and
apply them to the before mentioned processes. We derive approximate NNLO hard
scattering functions containing all threshold enhanced logarithms and all Mellin
constant contributions. Exact calculations of these hard scattering functions exist
in the literature up to NNLO providing powerful checks of our calculations. We
stress, however, that the contributions derived here are known to all orders in the
strong coupling αs.

In Chapter 5 we derive approximate NNLO corrections to SIDIS. Since no full
NNLO calculation in SIDIS exists, the natural question that arises here is: on which
grounds can we give such approximation? The following Chapter stands as the
foundation for our reasoning. In order to give a sensible answer to this question
we will compare the timelike Drell Yan (at measured rapidity) with spacelike SIDIS
which have a very close resummation structure as pointed out in Ref. [89]. In order
to be confident that the crossing of these processes succeeds, we compare timelike
SIA and spacelike DIS, where the resummation is equivalent but the hard factors
disagree. We find that the approximation does work in these cases making an
application to SIDIS possible.

43
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Unfortunatly, the processes described here all have different historical notations
and conventions used when expressing their cross sections. Since we want to intro-
duce all of them we try to be as consistent as possible with the notation used in the
Chapters so far, however respecting traditional notation when a change of it could
lead to confusion.

It is clear that the resummed expressions we use here were initially derived to
improve the perturbative fixed-order prediction near the threshold region of phase
space. However, since we are interested in the expansion at a specific order we
will primarily talk about approximated cross sections in the sense that we take
the threshold limit and expand its resummed exponents to a finite order. It turns
out that these approximations are quite powerful to get sensible estimations of the
hard scattering function (at least up to NNLO).

This Chapter is organized as follows: In Sec. 4.2 we introduce the DY process
and relate two equivalent ways of writing the soft exponents from a traditional
form to a form that is more suitable for our purposes. We furthermore explain
the calculation of the hard virtual factor. In Sec. 4.3 and Sec. 4.4 we apply these
methods to SIA and DIS respectively.

4.2 the drell-yan process

We consider the Drell-Yan process h1h2 → e+e−X with its differential cross section
in the factorized form as in SIDIS (3.7), first calculated to NLO in [57]

dσ

dQ2 =
4πα2

9sQ2 ∑
f , f ′

∫ 1

Q2/s

dξ1

ξ1

∫ 1

Q2/(sξ1)

dξ2

ξ2
ω f f ′

(
z, αs,

µ

Q

)
f (ξ2, µ) f (ξ1, µ) , (4.2)

for partons f , f ′ = q, q̄, g, where Q2 is the square of the lepton pair mass q and
z = Q2/ŝ. The particle collision takes places at a center of mass energy

√
s and

ŝ = ξ1ξ2s is the partonic c.m.s. energy. The leading order contribution to the hard
scattering function is given by ω

(0)
qq̄ = e2

qδ(1 − z). The NLO coefficient function in
z-space is given by

ω̃
(1)
qq̄ = CF

[
2(1 + z2)D1

z −
1 + z2

1 − z
ln z +

(
−4 +

π2

3

)
δz + P̃(0)

qq (ẑ) ln
Q2

µ2

]
, (4.3)

where we used the notation from (3.16) for the distributions. In further Sections we
will refer to these corrections as ωDY,incl

f f ′ (z) depending on a single scaling variable
to differentiate them from the Drell-Yan process at measured rapidity

d2σ

dQ2dy
= ∑

f , f ′

∫ 1

x1

dξ1

∫ 1

x2

dξ2 H f f ′

(
z1, z2, αs,

µ

Q

)
f (ξ2, µ) f (ξ1, µ) , (4.4)
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where zi = xi/ξi and

x1 = ey

√
Q2

s
, x2 = e−y

√
Q2

s
. (4.5)

The rapidity is then defined as

y =
1
2

ln
(

q · P1

q · P2

)
. (4.6)

The momenta of the incoming protons h1 and h2 are P1 and P2, respectively. The
hard scattering function H f f ′ is normalized as follows

H f f ′ =
4πα2

9Q4

(
ω

(0)
f f ′ +

αs

π
ω

(1)
f f ′ +

(αs

π

)2
ω

(2)
f f ′ +O(α3

s )

)
, (4.7)

where ω
(0)
qq̄ = e2

qδ(1 − z1)δ(1 − z2). These hard scattering cofficients are then re-

ferred to as ω
DY,rap
f f ′ (z1, z2), depending on two scaling variables. Naturally, in Mellin

space we write ω̃DY,incl
f f ′ (N) and ω̃

DY,rap
f f ′ (N, M).

The Mellin transform was discussed widely in Chapter 3. The NLO correction to
DY at measured rapidity in the large N, M limit is given by [101]

1
e2

q
ω̃

DY,rap,(1)
qq̄ (N, M) = CF

{
1
2
(ln N̄ + ln M̄)2 − 4 +

2π2

3
+O

(
1
N

,
1
M

)}
.

(4.8)

These corrections, as well as the NNLO corrections from [101], can be reproduced
starting from the inclusive DY and rescaling its Mellin variable as N →

√
NM. This

can readily be seen by performing the substitution in

1
e2

q
ω̃

DY,incl,(1)
qq̄ (N) = CF

{
2 ln2 N̄ − 4 +

2π2

3
+O

(
1
N

)}
. (4.9)

4.2.1 Change of integration order

Traditionally, the soft-gluon resummation of the DY quark coefficient, for qq̄ → γ∗,
is given in the following form (with an explicit Mellin transform) at NLL accu-
racy [96, 102]

∆q(N, αs) = exp

{
2
∫ 1

0
dz

zN − 1
1 − z

∫ (1−z)2Q2

µ2
F

dµ2

µ2 Aq(αs(µ))

}
. (4.10)
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This exponent is usually referred to as collinear soft-gluon radiation off an initial-
state quark. The factor 2 comes from the sum over both incoming quarks in DY.

Our goal in this Section is to rewrite this exponent in a more usable form. As
discussed in Sec. 3.4 we want to make close contact to resummation in SIDIS which
is more convenient when writing the exponent as a single integration as described
in [32, 99]. We now take a closer look at the integration in (4.10). In Ref. [32] the
following all order prescription to handle threshold logarithms in the z variable
with its conjugate Mellin variable N is defined as

zN − 1 = −Γ̃
(

1 − ∂

∂ ln N

)
Θ
(

1 − z − 1
N̄

)
+O

(
1
N

)
(4.11)

with

Γ̃(1 + ϵ) = eγEϵ Γ(1 + ϵ) = exp

(
+∞

∑
n=2

(−1)n ζ(n)
n

ϵn

)
. (4.12)

This means

Γ̃
(

1 − ∂

∂ ln N

)
≈ 1 +

ζ(2)
2

(
∂

∂ ln N

)2

+O
((

∂

∂ ln N

)3
)

, (4.13)

which will be used below. The full prescription in (4.11) is useful when includ-
ing higher logarithmic orders which will be addressed in the following Sections.
When performing threshold resummation up to NLL it is sufficient to use the first
approximation of (4.11)

zN − 1 = −Θ
(

1 − z − 1
N̄

)
. (4.14)

Furthermore we can interchange the integration sequence as follows. First, we split
the µ2-integration into µF dependent and independent parts

∫ 1−1/N̄

0
dz . . .

∫ (1−z)2Q2

µ2
F

dµ2 . . . =
∫ 1−1/N̄

0
dz . . .

∫ Q2

µ2
F

dµ2 . . .

+
∫ 1−1/N̄

0
dz . . .

∫ (1−z)2Q2

Q2
dµ2 . . . (4.15)

and then perform a change of integration order for each term. The first term is
trivial. The change of the second term is sketched in Fig 11. We can then write it as

−
∫ 1−1/N̄

0
dz . . .

∫ Q2

(1−z)2Q2
dµ2 · · · = −

∫ Q2

Q2/N̄2
dµ2 . . .

∫ 1−1/N̄

1−
√

µ2/Q2
dz . . . (4.16)

The z-integration is now reduced to the denominator 1 − z without forgetting the
overall minus sign and leads to

ln ∆q =
∫ Q2

Q2/N̄2

dµ2

µ2 Aq(αs(µ)) ln
(

µ2N̄2

Q2

)
+ 2 ln N̄

∫ µ2
F

Q2

dµ2

µ2 Aq(αs(µ)) (4.17)
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µ2

z

Q2

1

Q2/N̄2

1 − 1/N̄

z

µ2

1

Q2

1 − 1/N̄

Q2/N̄2

Figure 11: Change of integration order. The arrows indicate the direction and the length
of the inner integration for a fixed value of the outer integration variable as in
Eq. (4.16). The colored area is the total integration area.

We can take a closer look at the first integration as an example, while inserting the
lowest order expressions of Eqs. (2.23) and (2.36):

αs(µR)

π
A(1)

q

∫ Q2

Q2/N̄2

dµ2

µ2
ln µ2 + 2 ln N̄ − ln Q2

1 + b0αs(µR) ln(µ2/µ2
R)

. (4.18)

If we substitute y = b0αs ln(µ2/µ2
R) and omit the µR dependency of αs, we obtain

1
b0αs

A(1)
q

b0π

∫ λ̄

λ̄−2λ
dy
(

1 +
2λ − λ̄ − 1

1 + y

)
, (4.19)

where λ̄ ≡ b0αs ln(Q2/µ2
R) and λ is the usual variable λ ≡ αsb0 ln N̄. When expand-

ing this in αs, while keeping λ fixed, this leads to

ln ∆q =
A(1)

q

πb2
0αs

(2λ + (1 − 2λ) ln(1 − 2λ)) +O(α0
s ) . (4.20)

After integration of (4.17) we expand the exponent up to NLL [98]

∆q = exp
{

λ

b0αs
h(1)q (λ) + h(2)q (λ) +O(αs)

}
. (4.21)

This is the same NLL exponent as in SIDIS, see Eq. (3.60) where we only need to
adjust the λ variable. The LL contribution is given by

h(1)q (λ) =
A(1)

q

πb0λ
(2λ + (1 − 2λ) ln(1 − 2λ)) . (4.22)
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Let us now consider corrections beyond NLL accuracy. As mentioned earlier the
approximation in (4.14) is not sufficient. We have to include the derivative term
from (4.13) which is given by the second derivative in λ

ζ(2)
2

(
αsb0

∂

∂λ

)2 λ

αsb0
h(1)q (λ) =

αs

π
2ζ(2) A(1)

q
1

1 − 2λ
. (4.23)

Since we only write terms proportional to logarithms, i.e. λ, within the exponent
we rewrite this result before expanding the exponent in αs

αs

π
2ζ(2) A(1)

q
1

1 − 2λ
=

αs

π
2ζ(2) A(1)

q

(
2λ

1 − 2λ
+ 1
)

. (4.24)

This separates the non-logarithmic from the logarithmic part. The constant term
corresponds to a shift in the hard function (after expansion in αs). The Ĉqq function
gathers all such terms at each order in αs

Ĉqq(αs) = 1 +
αs

π
2ζ(2)A(1)

q +O(α2
s ) . (4.25)

An all-order formula of this function is given in the Appendix B of Ref. [32]. The
higher order coefficients are given in Appendix B.1. The remaining part within the
exponent

αs

π
2ζ(2) A(1)

q
2λ

1 − 2λ
, (4.26)

has the form of a D function term. The D function is a perturbative series as the
A function (2.36). It begins at O(α2

s ), see (B.3), and hence only appears at NNLL
which is the reason we did not write it earlier in the exponent of (4.10). It has
been derived in [103] without attributing it to the αs((1 − z)Q) contribution which
was done in [31]. According to [104], it contains the contributions of soft-gluon
emission at large angle. On that account the full exponent is extended by a new
term as in [31]

∆q = exp

{∫ 1

0
dz

zN − 1
1 − z

(
2
∫ (1−z)2Q2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Dq (αs([1 − z]Q))

)}
.

(4.27)

The remaining contribution from (4.26) can then be obtained by shifting the D
function as

D̂q(αs)− Dq(αs) = −
(αs

π

)2
4ζ(2)πb0 A(1)

q +O(α3
s ) . (4.28)
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The shift at O(α2
s ) can be generalized to all orders, see Appendix B of Ref. [32]. We

will perform this generalization in the next Section in the case of SIA. In total, we
rewrite the exponent (4.27) as in (4.17) with the shifted D function [32, 99]

∆q(N, αs) = Ĉqq(αs) ∆̂q(N, αs)

≡ Ĉqq(αs) exp

{∫ Q2

Q2/N̄2

dµ2

µ2 Aq(αs(µ)) ln
(

µ2N̄2

Q2

)
− 1

2
D̂q (αs(µ))

+2 ln N̄
∫ µ2

F

Q2

dµ2

µ2 Aq(αs(µ))

}
.

(4.29)

4.2.2 The hard factor

So far we only considered the soft-gluon exponent of the cross section. In order
to obtain an approximation of the cross section we still lack the hard virtual coef-
ficients. In other words, we look for the remaining N-independent contributions
(not coming from the resummed exponent). Fortunately, there is a method to ex-
tract precisely such contributions from the timelike quark form factor from Sec. 2.3
in the case of the Drell-Yan process. These coefficients are given by a subtraction
operator Ĩq [100]

HDY
qq̄

(
αs(Q2)

)
=

∣∣∣
[
1 − Ĩq(ϵ, αs(Q2))

]
Ft

q

∣∣∣
2

, (4.30)

removing all poles from the timelike quark form factor Ft
q from Eq. (2.48). It can be

written as [100]

1 − Ĩq(ϵ, αs(Q2)) = exp
{

Rq(ϵ, αs(Q2))− iΦq(ϵ, αs(Q2))
}

, (4.31)

where Φq is the IR divergent Coulomb phase which is not of our interest since it
vanishes when taking the absolute value after the subtraction. The function Rq as-
sures the extraction of all IR finite terms of the quark form factor. It is decomposed
into a soft and collinear part:

Rq(ϵ, αs) = Rsoft
q (ϵ, αs) + Rcoll

q (ϵ, αs) , (4.32)

where

Rsoft
q (ϵ, αs) = CF

(αs

π
Rsoft(1)

q (ϵ) +O(α2
s )
)

(4.33)

Rcoll
q (ϵ, αs) =

αs

π
Rcoll(1)

q (ϵ) +O(α2
s ) . (4.34)
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The all-order form of Eq. (4.31), of course, suggests that higher orders of the sub-
traction operator are known since higher order calculations of the quark form factor
exist. In this Section, however, we only want to motivate the use of this operator
and therefore refrain from showing higher order expressions. They are given in
Chapters 5 & 6 when calculating approximate NNLO and N3LO corrections to
SIDIS. Their first order expressions read

Rsoft(1)
q (ϵ) =

1
2ϵ2 + Rfin(1)

q , (4.35)

Rcoll(1)
q (ϵ) =

3
4ϵ

CF . (4.36)

The IR-finite term Rfin(1)
q = −π2/8 will be useful when distinguishing the hard

factor of the Drell-Yan process from the one of SIA in the next Section. After sub-
traction of the IR-divergences from the timelike quark form factor we end up with
the following hard factor

HDY
qq̄ (αs) = 1 +

αs

π
CF

(
−4 +

π2

3

)
+O(α2

s ) . (4.37)

Equipped with this hard factor, we can estimate the inclusive Drell-Yan cross sec-
tion with the following expression

ω̃DY,res
qq̄ (N, αs) = e2

q HDY
qq̄ (αs) Ĉqq(αs) ∆̂q , (4.38)

where we use Eq. (4.29). After expansion in the strong coupling (up to NLO) we
obtain

1
e2

q
ω̃DY,res

qq̄ (N, αs) = 1 +
αs

π
CF

(
2 ln2 N̄ − 4 +

2π2

3
+O

(
1
N

))
+O(α2

s ) . (4.39)

This corresponds to the large N (or z → 1 in Eq. (4.3)) limit of the exact cross section
from Ref. [22] in Mellin space. This approximation also holds in NNLO when
comparing it with the expression found in [22]. As in the previous Chapter we
obtain an approximation of the full cross section by using threshold resummation
techniques. At NLO the procedure seems rather unintuitive and lengthy. We chose
to not yet go to higher orders for pedagogical reasons which will be done in the
case of SIDIS in Chapters 5 & 6.

This method applies also in the case of SIA and DIS. As we will see in the next
Section only few adaptations have to be made in order to get approximate results
for these processes as well.
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4.3 semi-inclusive e+ e− annihilation

In the last Section we only considered the all-order prescription (4.11) to a finite
order to extract coefficients for Ĉqq and change the exponent in the D function by
hand. In the case of SIA we show the consequences of the all-order prescription at
each order in the strong coupling.

We consider the SIA process e+e− → h X produced via a virtual timelike photon
γ∗(q) at c.m.s. energy

√
S and S = q2 ≡ Q2 which is given by so called hadron

multiplicites, calculated up to NLO in [61, 105]

1
σtot

d2σh

dxEd cos θ
=

πα2

σtotQ2 Nc

(
1 + cos2 θ

2
F̂ h

T(xE, Q2) + sin2 θF̂ h
L(xE, Q2)

)
≡ Rh

e+e− ,

(4.40)
where σtot is the total hadronic cross section for e+e− → hadrons as in Eq. (1.9).
The characteristic scaling variable is defined as xE = 2Ph · q/Q2, where Ph is the
momentum of the produced hadron. The angle between h and the annihilated
e+e− pair is named θ. In the following we are interested in the timelike transverse
structure function

F h,SIA
T (xE, Q2) = ∑

f

∫ 1

xE

dẑ
ẑ

Dh
f

(xE

ẑ
, µ
)

ωSIA
f

(
ẑ, αs(µ),

µ

Q

)
. (4.41)

As before, we sum over partons f = q, q̄, g, while Dh
f is the fragmentation function

of parton f into a hadron h and ωSIA
f is the transverse hard scattering coefficient

function1 calculable in perturbation theory.

4.3.1 Single integration

The resummed SIA hard scattering function in the case of γ∗ → qq̄ can be written
as follows

ω̃SIA,res
q (N, αs) = e2

q HSIA
q (αs) Σq(N, αs) , (4.42)

where HSIA
q is the hard function collecting all constant contributions (in Mellin

space) from the hard virtual diagrams. The usual way of writing the SIA exponent
is [106]

Σq = exp

{∫ 1

0
dz

zN − 1
1 − z

∫ (1−z)Q2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq

(
αs

(√
1 − zQ

))}
, (4.43)

1 We omit the superscript T in the following since we do not discuss longitudinal contributions to
SIA.
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where we have a B function instead of the D function in comparison to (4.27). Equa-
tion (4.43) is often referred to as “jet function”, see [106], responsible for collinear
emissions from the unobserved final-state quark . In the context of resummation this
unobserved particle is the main difference between DY and SIA. Also, the soft scale
has changed which can be seen in the upper integration limit of the µ2-integration
and in the argument of the B function. This is due to a different phase space. In
analogy to Eq.(34) in [32] the exponent in (4.43) may be written as

Σq = ĈB
qq(αs) exp

{
−
∫ 1

1/N̄

dy
y

[∫ yQ2

µ2
F

dµ2

µ2 Aq(αs(µ))− B̂q (αs (
√

yQ))

]}
. (4.44)

We now show the equivalence of both representations following Ref. [32], while
starting from (4.43). Substituting y = 1− z and using the all-order prescription (4.11)

ln Σq(N, αs) = −Γ̃
(

1 − ∂

∂ ln N

) ∫ 1

1/N̄

dy
y

[∫ yQ2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq (αs (
√

yQ))

]
.

(4.45)

The modified Gamma function Γ̃ from (4.12) can also be written as

Γ̃
(

1 − ∂

∂ ln N

)
= 1 − Γ2

(
∂

∂ ln N

)(
∂

∂ ln N

)2

, (4.46)

where
Γ2(ϵ) =

1
ϵ2 (1 − e−γEϵΓ(1 − ϵ)) . (4.47)

After inserting (4.46) into (4.45) we compare Eqs. (4.45) with (4.44) to make the
expressions for Ĉqq and B̂q explicit. The comparison leads to

∫ 1

1/N̄

dy
y

B̂q (αs (
√

yQ))− ln ĈB
qq(αs)

!
=
∫ 1

1/N̄

dy
y

Bq (αs (
√

yQ))

− Γ2

(
∂

∂ ln N

)(
∂

∂ ln N

)2 ∫ 1

1/N̄

dy
y

∫ yQ2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq (αs (
√

yQ)) . (4.48)
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Let us first discuss the derivative of the last term in Eq. (4.48) in more detail

(
∂

∂ ln N

)2 ∫ 1

1/N̄

dy
y

∫ yQ2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq (αs (
√

yQ))

=

(
∂

∂ ln N

)2 ∫ 0

− ln N̄
dt
∫ etQ2

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq

(
αs

(√
etQ
))

=
∂

∂ ln N

[∫ Q2/N̄

µ2
F

dµ2

µ2 Aq(αs(µ)) + Bq

(
αs

(√
Q2/N̄

))]

=
∂

∂ ln N

∫ ln(Q2/N̄)

ln µ2
F

dφAq(αs(eφ/2)) +
∂

∂ ln N
Bq

(
αs

(√
Q2/N̄

))

= −Aq

(
αs

(√
Q2/N̄

))
+

∂

∂ ln N
Bq

(
αs

(√
Q2/N̄

))
, (4.49)

where we have substituted t = ln y and φ = ln µ2. The comparison then reads

∫ 1

1/N̄

dy
y

B̂q (αs (
√

yQ))− ln ĈB
qq(αs) =

∫ 1

1/N̄

dy
y

Bq (αs (
√

yQ))

− Γ2

(
∂

∂ ln N

) [
−Aq

(
αs

(√
Q2/N̄

))
+

∂

∂ ln N
Bq

(
αs

(√
Q2/N̄

))]
. (4.50)

The derivative ∂/∂ ln N of any function f that depends on the strong coupling can
be formulated with help of the QCD β function in (2.22)

∂

∂ ln N
f
(

αs

(√
k/N

))
= −1

2
∂

∂ ln u
f (αs (u))

= −∂ ln αs(u)
∂ ln u2

∂ f (αs (u))
∂ ln αs(u)

= −β(αs) αs
∂

∂αs︸ ︷︷ ︸
≡∂B

αs

f (αs) , (4.51)

where we substituted u =
√

k/N = exp(1
2 ln k − 1

2 ln N). The newly defined deriva-
tive ∂B

αs has a superscript B since it is half of ∂αs defined in [32] where one uses the
D function at a different soft scale. The derivatives in (4.50) can now be replaced
with ∂B

αs and we obtain

∫ 1

1/N̄

dy
y

B̂q (αs (
√

yQ))− ln ĈB
qq(αs) =

∫ 1

1/N̄

dy
y

Bq (αs (
√

yQ))

+ Γ2

(
∂B

αs

) [
Aq

(
αs

(√
Q2/N̄

))
− ∂B

αs Bq

(
αs

(√
Q2/N̄

))]
, (4.52)
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which is valid for arbitrary values of N. In order to obtain an expression for Ĉqq we
choose N̄ → 1

ĈB
qq(αs(Q)) = exp

{
−Γ2

(
∂B

αs

) [
Aq (αs)− ∂B

αs Bq (αs)
]}

. (4.53)

This function collects all N independent contributions of the soft exponent. It is a
perturbative function in the strong coupling

ĈB
qq(αs) = 1 +

αs

π
ĈB,(1)

qq +
(αs

π

)2
ĈB,(2)

qq +O(α3
s ) , (4.54)

with

ĈB,(1)
qq =

π2

12
A(1)

q , (4.55)

ĈB,(2)
qq =

π4

288
(A(1)

q )2 + πb0

(
1
3

A(1)
q ζ(3)− π2

12
B(1)

q

)
+

π2

12
A(2)

q . (4.56)

By differentiating (4.52) with respect to ln N we obtain a relation for the shifted B
function

B̂q

(
αs

(√
Q2/N̄

))
= B̂q

(
αs

(√
Q2/N̄

))

+
∂

∂ ln N

{
Γ2

(
∂B

αs

) [
Aq (αs)− ∂B

αs Bq (αs)
]}

αs=αs

(√
Q2/N̄

) . (4.57)

We use the new derivative ∂B
αs from (4.51) for the ln N̄-derivative in the second line

of (4.57) and the expression becomes

B̂q (αs) = B̂q (αs) + ∂B
αs

{
Γ2

(
∂B

αs

) [
Aq (αs)− ∂B

αs Bq (αs)
]}

. (4.58)

This completes the connection of the representations of Eqs. (4.43) and (4.44) to all
orders in αs and we end up with

Σq = ĈB
qq(αs) Σ̂q

≡ ĈB
qq(αs) exp

{∫ Q2

Q2/N̄

dµ2

µ2 Aq(αs(µ)) ln
(

µ2N̄
Q2

)
− B̂q (αs (µ))

+ ln N̄
∫ µ2

F

Q2

dµ2

µ2 Aq(αs(µ))

}
, (4.59)

where we rewrite the exponent in (4.44) as discussed in Subsec. 4.2.1 with a single
integration. Using Eq. (4.58) we obtain

B̂(1)
q = B(1)

q ,

B̂(2)
q = B(2)

q − πb0

2
ζ(2)A(1)

q , (4.60)

which is in accordance with Ref. [99]. The explicit expressions of the coefficients
are given in (B.7).
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4.3.2 The hard factor

The hard factor in SIA

HSIA
q

(
αs(Q2)

)
=

∣∣∣
[
1 − ĨSIA

q (ϵ, αs(Q2))
]

Ft
q

∣∣∣
2

, (4.61)

can be obtained similarly as in the previous Section with help of a subtraction
operator ĨSIA

q and the timelike quark form factor (2.48). The only difference between
Ĩq and ĨSIA

q lies in the finite contribution of the Rsoft
q function in (4.33). We find the

difference (up to NNLO)

Rfin,SIA(1)
q − Rfin(1)

q =
7
8

, (4.62)

Rfin,SIA(2)
q − Rfin(2)

q = CF

(
−3ζ(3)

16
+

41π4

2880
+

9
256

− 41π2

384

)

+ CA

(
7ζ(3)

12
+

53π2

1728
+

3745
2304

− 37π4

5760

)

+ N f

(
−5ζ(3)

24
− π2

864
− 305

1152

)
. (4.63)

Note, there is an overall prefactor of CF in (4.33). After making these adjustements
we obtain the SIA hard factor

HSIA
q (αs) = 1 +

αs

π
HSIA,(1)

q +
(αs

π

)2
HSIA,(2)

q +O(α3
s ) , (4.64)

with

HSIA,(1)
q = CF

(
−9

4
+

π2

3

)
, (4.65)

HSIA,(2)
q = C2

F

(
−33ζ(3)

8
+

77π4

1440
− 23π2

64
+

331
128

)

+ CFCA

(
35ζ(3)

12
+

215π2

288
− 5465

1152
− 49π4

2880

)

+ CFN f

(
ζ(3)
12

− 19π2

144
+

457
576

)
.

(4.66)

The SIA cross section is then approximated by Eq. (4.42) using (4.59) for the expo-
nent. After expansion in the strong coupling we obtain the coefficient functions up
to NNLO from Ref. [24] in the large N limit.
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4.4 deep-inelastic scattering

We extend this reasoning to the case of DIS. We already introduced the process
in (3.5) and here we consider the transverse spacelike structure function

FT(x, Q2) = ∑
f

∫ 1

x

dx̂
x̂

ωDIS
f

(
x̂, αs(µR),

µR

Q
,

µF

Q

)
f
(x

x̂
, µF

)
, (4.67)

where we sum over partons f and ωDIS
f is the transverse hard scattering function2.

It was pointed out in [106] that the soft gluon radiation exponent is the same as in
SIA and given in Eq. (4.59) since we also integrate over an unobserved final state
quark. The resummed cross section in Mellin space can then be written as

ω̃DIS,res
q (N, αs) = e2

q HDIS
q (αs) ĈB

qq(αs) Σ̂q(N, αs) . (4.68)

The hard factor needs to be adjusted since the quark form factor in

HDIS
q

(
αs(Q2)

)
=

∣∣∣
[
1 − ĨDIS

q (ϵ, αs(Q2))
]

Fq

∣∣∣
2

, (4.69)

is spacelike. We find the same subtraction operator as in SIA:

ĨDIS
q = ĨSIA

q ≡ ĨB (4.70)

with the IR-finite terms

Rfin,DIS(1)
q = Rfin,SIA(1)

q (4.71)

Rfin,DIS(2)
q = Rfin,SIA(2)

q . (4.72)

We then find the following hard factor for DIS

HDIS,(1)
q = CF

(
−9

4
− π2

6

)
, (4.73)

HDIS,(2)
q = C2

F

(
−33ζ(3)

8
+

17π4

1440
+

49π2

64
+

331
128

)

+ CFCA

(
35ζ(3)

12
+

71π4

2880
− 251π2

288
− 5465

1152

)

+ CFN f

(
ζ(3)
12

+
19π2

144
+

457
576

)
.

(4.74)

2 We again omit the superscript T as in (4.41).
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Again, expanding the resummed cross section (4.68) in the strong coupling leads
to fixed-order results in the large N limit which are in agreement with [23] up
to NNLO. Table 1 summarizes the findings of this Chapter, while including the
inferred consequences for SIDIS. The all-order methods described here prove to
be applicable to SIDIS which is done in the following Chapters. The quark form
factor combined with the corresponing soft gluon exponents lead to approximate
fixed-order results. All non-suppressed logarithmic enhanced, as well as all Mellin
constant contributions are found to coincide with fixed-order calculations.

So far we have not yet addressed suppressed contributions by 1/N, which will be
the subject of Sec. 5.4, where evolution-type subleading contributions are derived
in SIDIS. Further improvement of the findings here can be done by including these
suppressed contributions. In particular, when taking the threshold limit of only
one Mellin variable (in the case of two scaling variables as in SIDIS), while keeping
the other one fixed, it is possible to gain even more insights into suppressed contri-
butions. In [107, 108] this has been studied in the case of DY at measured rapidity.
We leave a more advanced study and adaption to SIDIS for future work.
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timelike γ∗ spacelike γ∗

ω̃DY,res
qq̄ (N) = e2

q HDY
qq̄ ∆q(N)

= e2
q

∣∣∣
[
1 − Ĩq

]
Ft

q

∣∣∣
2

Ĉqq∆̂q(N)

ω̃
DY,rap
qq̄ (N, M) = ω̃DY,incl

qq̄ (
√

NM)

ω̃T,res
qq (N, M) = e2

q HSIDIS
qq̄ ∆q(

√
NM)

= e2
q

∣∣∣
[
1 − Ĩq

]
Fq

∣∣∣
2

Ĉqq∆̂q(
√

NM)

ω̃SIA,res
q (N) = e2

q HSIA
q Σq(N)

= e2
q

∣∣∣
[
1 − ĨB

q

]
Ft

q

∣∣∣
2

ĈB
qqΣ̂q(N)

ω̃DIS,res
q (N) = e2

q HDIS
q Σq(N)

= e2
q

∣∣∣
[
1 − ĨB

q

]
Fq

∣∣∣
2

ĈB
qqΣ̂q(N)

Table 1: Resummed cross sections of the DY, SIDIS, SIA and DIS processes in the thresh-
old limit, i.e. for large Mellin variables. In the left column are the processes with
timelike photon qq̄ → γ∗ or γ∗ → qq̄, i.e. timelike QFF (blue), whereas in the right
column we show the processes with a spacelike photon γ∗q → q and spacelike
QFF (green). In SIDIS we use the same soft radiation exponent (red) as in DY at a
rescaled argument, whereas in SIA and DIS we use the exponent containing soft
radiation collinear to an unobserved final state parton (cyan). The subtraction oper-
ators are the same in the case of DY and SIDIS (orange) or DIS and SIA (magenta).
The DY cross section at measured rapidity (dependent on two scaling variables) is
equivalent to the inclusive DY cross section when rescaling it as N →

√
NM. This

is used to obtain resummed corrections to the transverse coefficient functions in
SIDIS. After opening the digital version of this dissertation in the portable docu-
ment format, each colored box is clickable leading to the corresponding equations.
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A P P R O X I M AT E N N L O C O R R E C T I O N S

We determine approximate next-to-next-to-leading order (NNLO) corrections to
unpolarized and polarized semi-inclusive DIS. They are derived using the thresh-
old resummation formalism, which we fully develop to next-to-next-to-leading log-
arithmic (NNLL) accuracy, including the two-loop hard factor. The approximate
NNLO terms are obtained by expansion of the resummed expression. They in-
clude all terms in Mellin space that are logarithmically enhanced at threshold, or
that are constant. In terms of the customary SIDIS variables x and z they include
all double distributions (that is, “plus” distributions and δ-functions) in the par-
tonic variables. We also investigate corrections that are suppressed at threshold
and we determine the dominant terms among these. Our numerical estimates sug-
gest much significance of the approximate NNLO terms, along with a reduction in
scale dependence. This Chapter is based on publication [i].

5.1 introduction

Data taken in the semi-inclusive deep-inelastic scattering (SIDIS) process ℓp → ℓhX
offer powerful insights into QCD and hadronic structure. Among their main uses
are extractions of fragmentation functions [109–113], (polarized) parton distribu-
tions [18, 114], or even combinations thereof [115, 116].

Today, modern “global” analyses of parton distributions are customarily carried
out at next-to-next-to-leading order (NNLO) accuracy of QCD perturbation theory.
Although SIDIS might in principle offer important complementary information on,
for example, the flavor structure of the sea quarks, the analyses usually do not
include information from SIDIS. One reason for this is the fact that the NNLO
partonic hard-scattering functions for SIDIS are not yet available (a few first steps
toward their calculation have been taken in [117–119]), so that computations of the
SIDIS cross section are currently restricted to next-to-leading order (NLO).

The Electron Ion Collider (EIC) is now firmly on its path toward construction [120].
The past few years have seen tremendous progress on the development of the the-
oretical framework for describing reactions relevant at the EIC. Further improve-
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ments will likely occur in the near term. Ideally, by the time the EIC will turn
on, it would be hoped that the precision of theoretical calculations should be on
par with what has by now been achieved for the LHC, with NNLO corrections
available for many observables, and extractions of parton distributions and frag-
mentation functions routinely at NNLO using numerically efficient tools. As part
of this, it is expected that also full calculations of the NNLO corrections to SIDIS
will become available at some point. Until this is the case, it is useful to provide
accurate approximations of the NNLO corrections for SIDIS. This is the main goal
of this paper. The results we obtain may be used to carry out analyses of parton
distributions and/or fragmentation functions using SIDIS data at (approximate)
NNLO already now.

The strategy we will follow to derive approximate NNLO corrections to SIDIS is
to use QCD threshold resummation. The partonic SIDIS process is characterized
by two “scaling” variables, x̂ = −q2/2p · q ≡ Q2/2p · q and ẑ = p · pc/p · q, with
q, p, pc the momenta of the virtual photon, the incoming parton, and the fragment-
ing parton, respectively. When x̂ and ẑ get close to 1, the partonic hard-scattering
functions develop large double-logarithmic terms. These logarithms arise since
large x̂, ẑ corresponds to scattering near a phase space boundary, where real-gluon
emission is suppressed. At the kth order of perturbation theory, the SIDIS quark
hard-scattering function contains terms of the form αk

sδ(1− x̂)
(

lnm(1−ẑ)
1−ẑ

)
+

, αk
sδ(1−

ẑ)
(

lnm(1−x̂)
1−x̂

)
+

, with m ≤ 2k − 1, or “mixed” terms αk
s

(
lnm(1−x̂)

1−x̂

)
+

(
lnn(1−ẑ)

1−ẑ

)
+

with

m + n ≤ 2k − 2. Here the subscript “+” indicates the usual distribution. Threshold
resummation addresses these large logarithmic terms to all orders in the strong
coupling. The resummation for the case of SIDIS was discussed in Refs. [20, 21,
89, 121] to next-to-leading logarithm (NLL), which amounts to the cases m =

2k − 1, 2k − 2, 2k − 3 and m + n = 2k − 2, 2k − 3 above, respectively. To NLO, this re-
produces all double distributions, but only the three leading towers of logarithms
at NNLO and beyond.

In the present paper we take a significant step further and extend the work of [20,
21] to next-to-next-to-leading logarithm (NNLL). The close correspondence of SIDIS
with the Drell-Yan cross section is particularly useful in this context [89], and so
is the close correspondence between the totally inclusive Drell-Yan cross section
and the cross section differential in rapidity [20, 122, 123]. We use results avail-
able in the literature [48, 49, 100, 124] to determine the two-loop hard virtual con-
tribution to the resummed expression for SIDIS. The NNLL results may then be
expanded to fixed order, NNLO. The main important new result of our paper is
that we derive all double distributions in x̂ and ẑ in the NNLO SIDIS quark co-
efficient function. We further improve our results by deriving the dominant part
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of NNLO contributions that are suppressed near threshold. These terms are of the
form lnm(1 − x̂) lnn(1 − ẑ), with m + n = 3. We also show that the NNLO con-
tributions near threshold are the same for the spin-averaged and spin-dependent
cases. This is indeed expected for the terms with + -distributions, since these terms
are associated with emission of soft gluons which does not care about spin, but it
extends even to the threshold-suppressed contributions that we derive.

Our results are readily suited for phenomenology for the SIDIS cross section and
spin asymmetry at (nearly) NNLO. At the very least, they provide important bench-
marks for future full calculations of SIDIS at NNLO.

Our paper is organized as follows: Section 5.2 sets the stage by addressing the per-
turbative SIDIS cross section. In Sec. 5.3 we determine the threshold resummation
for SIDIS to NNLL. Special emphasis is put on the derivation of the hard factor at
two loops. Section 5.4 addresses the dominant threshold-suppressed contributions.
Having determined all ingredients, we finally present the NNLO expansions in
Sec. 5.5. Section 5.6 rounds off the paper by presenting some basic phenomenolog-
ical results at approximate NNLO.

5.2 perturbative sidis cross section

We consider the semi-inclusive deep-inelastic scattering (SIDIS) process ℓ(k) p(P) →
ℓ′(k′) h(Ph) X with the momentum transfer q = k − k′. It is described by the vari-
ables

Q2 = −q2 = −(k − k′)2 ,

x =
Q2

2P · q
,

y =
P · q
P · k

,

z =
P · Ph
P · q

. (5.1)

We have Q2 = xys, with
√

s the center-of-mass (c.m.) energy for the incoming
electron and proton. We may write the spin-averaged SIDIS cross section as (see,
for example [20])

d3σh

dxdydz
=

4πα2

Q2

[
1 + (1 − y)2

2y
F h

T(x, z, Q2) +
1 − y

y
F h

L(x, z, Q2)

]
, (5.2)
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where α is the fine structure constant and F h
T ≡ 2Fh

1 and F h
L ≡ Fh

L /x are the
transverse and longitudinal structure functions. For collisions of longitudinally po-
larized leptons and protons we obtain the helicity-dependent cross section as

1
2

(
d3σh

++

dxdydz
− d3σh

+−
dxdydz

)
=

4πα2

Q2
1 − (1 − y)2

2y
Gh

1 (x, z, Q2)

≡ d3∆σh

dxdydz
, (5.3)

with Gh
1 = 2gh

1 in the more conventional notation of Ref. [64]. The subscripts in the
first expression denote the helicities of the incoming lepton and proton.

Using factorization, the unpolarized structure functions may be written as

F h
i (x, z, Q2) = ∑

f , f ′

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

Dh
f ′

(z
ẑ

, µF

)

× ωi
f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
f
(x

x̂
, µF

)
, (5.4)

for i = T, L. Here f (ξ, µF) is the distribution of parton f = q, q̄, g in the nucleon
at momentum fraction ξ and factorization scale µF, while Dh

f ′ (ζ, µF) is the corre-
sponding fragmentation function for parton f ′ going to the observed hadron1 h.
The functions ωi

f ′ f are the spin-averaged hard-scattering coefficient functions. In
the same way, we have in the spin-dependent case:

Gh
1 (x, z, Q2) = ∑

f , f ′

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

Dh
f ′

(z
ẑ

, µF

)

× ∆ω f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
∆ f
(x

x̂
, µF

)
, (5.5)

with the proton’s spin-dependent parton distribution functions ∆ f , and with spin-
dependent hard-scattering functions ∆ω f ′ f .

The ωi
f ′ f , ∆ω f ′ f can be computed in QCD perturbation theory. Their expansions

read

ωi
f ′ f = ω

i,(0)
f ′ f +

αs(µR)

π
ω

i,(1)
f ′ f +

(
αs(µR)

π

)2

ω
i,(2)
f ′ f +O(α3

s ) , (5.6)

and

∆ω f ′ f = ∆ω
(0)
f ′ f +

αs(µR)

π
∆ω

(1)
f ′ f +

(
αs(µR)

π

)2

∆ω
(2)
f ′ f +O(α3

s ) . (5.7)

1 We always use the same factorization scales in the initial and the final state.
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Here the strong coupling is evaluated at the renormalization scale µR. To lowest
order (LO), only the process γ∗q → q contributes, and we have

ω
T,(0)
qq (x̂, ẑ) = ∆ω

(0)
qq (x̂, ẑ) = e2

q δ(1 − x̂)δ(1 − ẑ),

ω
L,(0)
qq (x̂, ẑ) = 0, (5.8)

with the quark’s fractional charge eq. Beyond LO, also gluons in the initial or final

state contribute. The first-order coefficient functions (∆)ωi,(1)
f ′ f have been known for

a long time [61, 62, 64–67] (see also Ref. [20]).

In the following, it is convenient to take Mellin moments of the SIDIS cross section,
for which the convolutions in Eqs. (6.3),(5.5) turn into ordinary products. We define

F̃ h
i (N, M, Q2) ≡

∫ 1

0
dx xN−1

∫ 1

0
dz zM−1 F h

i (x, z, Q2) , (5.9)

and in the same way for Gh
1 . One readily finds from (6.3)

F̃ h
i (N, M, Q2) = ∑

f , f ′
D̃h

f ′(M, µF) ω̃i
f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
f̃ (N, µF) , (5.10)

where

f̃ (N, µF) ≡
∫ 1

0
dx xN−1 f (x, µF),

D̃h
f ′(M, µF) ≡

∫ 1

0
dz zM−1Dh

f ′(z, µF),

ω̃i
f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)

≡
∫ 1

0
dx̂ x̂N−1

∫ 1

0
dẑ ẑM−1 ωi

f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
. (5.11)

We observe that the Mellin moments of the structure functions are obtained from
the moments of the parton distribution functions and fragmentation functions, and
the double-Mellin moments of the partonic hard-scattering functions. For the spin-
dependent case we have in the same way

G̃h
1 (N, M, Q2) = ∑

f , f ′
D̃h

f ′(M, µF)∆ω̃ f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
∆ f̃ (N, µF) , (5.12)

with the corresponding moments ∆ f̃ (N, µF) and ∆ω̃ f ′ f (N, M, . . .) of the polarized
parton distributions and hard-scattering functions, respectively.



64 approximate nnlo corrections

For the perturbative expansions given in Eqs. (6.4),(5.7), we have at lowest order
according to (6.5)

ω̃
T,(0)
qq (N, M) = ∆ω̃

(0)
qq (N, M) = e2

q,

ω̃
L,(0)
qq (N, M) = 0. (5.13)

The corresponding moments of the next-to-leading order (NLO) terms ω
i,(1)
f ′ f , ∆ω

(1)
f ′ f

may be found in Refs. [20, 95]. In the following, we address higher-order corrections
to the hard-scattering functions that arise at large values of x̂ and ẑ or, equivalently,
at large N and M.

5.3 threshold resummation

5.3.1 Structure of resummation for Drell-Yan and SIDIS

As has been discussed in [20, 21] (and as is familiar from numerous other situations
in perturbative calculations of cross sections), in the “threshold limit” of large N
and M the perturbative QCD corrections for ω̃T

f ′ f and ∆ω̃ f ′ f develop large double-
logarithmic corrections in ln(N) and ln(M). These corrections exponentiate and
may thus be controlled to all orders in the strong coupling, amounting to a resum-
mation of the logarithmic corrections. The exponentiated result may be used to
obtain approximate fixed-order corrections to the SIDIS cross sections.

To achieve the resummation of the threshold logarithms for SIDIS, we will use the
methods developed in Refs. [20, 32, 89, 99]. Technically, the resummation for SIDIS
with its two Mellin variables N and M bears much resemblance with that for the
Drell-Yan or Higgs cross sections at measured rapidity, which are also described
by two separate moments [102, 121–123]. This is in contrast to observables charac-
terized by a single moment variable N, such as the totally inclusive Drell-Yan cross
section. However, as was shown in Ref. [20] to NLL, there is a simple correspon-
dence between the threshold-resummed expressions for the case with two Mellin
moments, and those with only a single moment. To state this correspondence, let
us consider the resummed qq̄ hard-scattering function for the Drell-Yan process
as an example. For the totally inclusive cross section, we denote the function by
ω̃DY,incl

qq̄ (N), where N is the Mellin variable conjugate to z ≡ Q2/ŝ, with Q the
Drell-Yan pair mass and

√
ŝ the partonic c.m. energy. For the rapidity-dependent

cross section, we have instead ω̃
DY,rap
qq̄ (N, M), where N and M are conjugate to√

z e±y, respectively, with y the lepton pair’s rapidity. Near threshold one then has

ω̃
DY,rap
qq̄ (N, M) = ω̃DY,incl

qq̄ (
√

NM) . (5.14)
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This correspondence is a consequence of kinematics in the exponentiation of eikonal
diagrams as discussed in Refs. [20, 89, 94]. It applies to all color-singlet processes
and may therefore also be exploited for the SIDIS process2. As a result, we may ob-
tain resummed expressions for SIDIS by considering those for the inclusive Drell-
Yan process, “rescaling” N to

√
NM appropriately, and “crossing” from timelike

(Drell-Yan) kinematics to spacelike (SIDIS) kinematics. This is the strategy we will
pursue in this paper.

There are various (of course, equivalent) ways of writing the all-order expression
for the resummed inclusive Drell-Yan hard-scattering function near threshold. Here
we will follow the approaches developed in Refs. [32, 99]. We have, in the MS
scheme,

ω̃DY,res
qq̄

(
N, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HDY

qq̄

(
αs
(
µR
)
,

µR

Q
,

µF

Q

)
∆q

(
N, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HDY

qq̄

(
αs
(
µR
)
,

µR

Q
,

µF

Q

)
Ĉqq

(
αs
(
µR
)
,

µR

Q

)

× exp

{∫ Q2

Q2/N̄2

dµ2

µ2

[
Aq
(
αs(µ)

)
ln
(

µ2N̄2

Q2

)
− 1

2
D̂q
(
αs(µ)

)]

+ 2 ln N̄
∫ µ2

F

Q2

dµ2

µ2 Aq
(
αs(µ)

)
}

, (5.15)

where
N̄ = N eγE , (5.16)

with the Euler constant γE. In Eq. (5.15) each of the functions HDY
qq̄ , Ĉqq, Aq, D̂q

is a perturbative series in the strong coupling with expansion coefficients that are
collected in Appendix B.1 to the order required for resummation at next-to-next-
to-leading logarithmic (NNLL) accuracy. The factor ∆q in the first line contains
all soft-gluon radiation near threshold (both collinear and wide-angle), while the
coefficient HDY

qq̄ collects hard virtual corrections to the underlying lowest-order (LO)
process (here, qq̄ → γ∗), which are independent of the moment variable. In the
second line we have followed Refs. [32, 99] to split up the soft-gluon factor ∆q into
the term Ĉqq that is again independent of N, and an exponential that contains all
N-dependence. The latter is in fact entirely a function of ln(N̄) and contains no
further N-independent terms.

2 As discussed in Ref. [89], one may actually define a simplified variant of SIDIS that is characterized
by only a single Mellin variable, conjugate to τSIDIS = xz, with x, z defined in Eq. (6.1).
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The NNLL resummation formula for the SIDIS transverse structure function may
now be written as follows:

ω̃T,res
qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HSIDIS

qq

(
αs
(
µR
)
,

µR

Q
,

µF

Q

)
∆q

(√
NM, αs(µR),

µR

Q
,

µF

Q

)
. (5.17)

As anticipated, we have “rescaled” N to
√

NM in the moment-dependent part of
the expression. The function ∆q is otherwise identical to that for the Drell-Yan case
in Eq. (5.15), including the function Ĉqq. The hard coefficient HSIDIS

qq is, however,
different from HDY

qq̄ , owing to the different kinematics of the two processes. It will
be derived in the next subsection. Inserting ∆q from (5.15) into Eq. (6.9) we obtain

ω̃T,res
qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HSIDIS

qq

(
αs
(
µR
)
,

µR

Q
,

µF

Q

)
Ĉqq

(
αs
(
µR
)
,

µR

Q

)

× exp

{∫ Q2

Q2/(N̄M̄)

dµ2

µ2

[
Aq
(
αs(µ)

)
ln
(

µ2N̄M̄
Q2

)
− 1

2
D̂q
(
αs(µ)

)]

+ ln N̄
∫ µ2

F

Q2

dµ2

µ2 Aq
(
αs(µ)

)
+ ln M̄

∫ µ2
F

Q2

dµ2

µ2 Aq
(
αs(µ)

)
}

, (5.18)

where (see (6.10)) M̄ = MeγE . We note that the same resummation formula applies
to the spin-dependent case:

∆ω̃res
qq = ω̃T,res

qq . (5.19)

5.3.2 The hard factor HSIDIS
qq

As already mentioned, the factor HSIDIS
qq is derived from the finite part of the vir-

tual corrections to the LO process, which for SIDIS is qγ∗ → q. Since we want to
derive the resummed formula to NNLL (and ultimately the near-threshold NNLO
corrections to SIDIS), we need HSIDIS

qq to two loops. The relevant two-loop virtual
corrections are known in terms of the “quark form factor” computed to two and
even three loops in Refs. [48, 49, 51]. In case of the space-like kinematics (q2 < 0)
relevant for SIDIS the renormalized spacelike quark form factor is given to two
loops in dimensional regularization with d = 4 − 2ϵ space-time dimensions as [48,
49]

Fq(q2) = F(0)
q +

αs

π
F(1)

q +
(αs

π

)2
F(2)

q +O(α3
s ) , (5.20)
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where

F(0)
q = 1 ,

F(1)
q = CF

[
− 1

2ϵ2 − 3
4ϵ

+
π2

24
− 2 +

(
7ζ(3)

6
+

π2

16
− 4
)

ϵ

+

(
7ζ(3)

4
+

47π4

2880
+

π2

6
− 8
)

ϵ2 +O
(

ϵ3
)]

,

F(2)
q = C2

F

[
1

8ϵ4 +
3

8ϵ3 +

(
41
32

− π2

48

)
1
ϵ2 +

(
221
64

− 4ζ(3)
3

)
1
ϵ

− 29ζ(3)
8

− 13π4

576
+

17π2

192
+

1151
128

]

+ CFCA

[
11

32ϵ3 +

(
1
9
+

π2

96

)
1
ϵ2 +

(
13ζ(3)

16
− 11π2

192
− 961

1728

)
1
ϵ

+
313ζ(3)

144
+

11π4

720
− 337π2

1728
− 51157

10368

]

+ CFN f

[
− 1

16ϵ3 − 1
36ϵ2 +

(
65

864
+

π2

96

)
1
ϵ

+
ζ(3)
72

+
23π2

864
+

4085
5184

]
+O (ϵ) , (5.21)

with N f the number of flavors and CF = 4/3, CA = 3. In these expressions we have
kept terms of order ϵ and ϵ2 in the one-loop result since these turn out to make
finite contributions in the end.

As shown in Refs. [100, 124], the hard coefficient may be extracted from the form
factor in the following way. Applied to the case of SIDIS we have from [100]

HSIDIS
qq

(
αs(Q)

)
=
∣∣ [1 − Ĩq

(
ϵ, αs(Q)

)]
Fq
∣∣2 , (5.22)

where Ĩq is an operator that removes the poles of the form factor and makes the
necessary soft and collinear adjustments needed to extract the hard coefficient. It
is given in [100] in terms of a convenient all-order form:

1 − Ĩq(ϵ, αs) = exp
{

Rq (ϵ, αs)− iΦq (ϵ, αs)
}

, (5.23)

with functions Rq and Φq that each are perturbative series. The phase Φq does not
contribute in our case since we take the absolute square in Eq. (6.20). The function
Rq effects the cancelation of infrared divergences from the quark form factor. It can
be expressed in terms of a soft and a collinear part:

Rq(ϵ, αs) = R soft
q (ϵ, αs) + R coll

q (ϵ, αs) , (5.24)
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where for NNLL accuracy

R soft
q (ϵ, αs) = CF

(
αs

π
R soft (1)

q (ϵ) +
(αs

π

)2
R soft (2)

q (ϵ) +O(α3
s )

)
,

R coll
q (ϵ, αs) =

αs

π
R coll (1)

q (ϵ) +
(αs

π

)2
R coll (2)

q (ϵ) +O(α3
s ) , (5.25)

with

R soft (1)
q (ϵ) =

1
2ϵ2 − π2

8
,

R soft (2)
q (ϵ) = −3πb0

8ϵ3 +
1

8ϵ2

A(2)
q

CF

− 1
16ϵ

[
CA

(
7ζ(3) +

11π2

36
− 202

27

)
+ N f

(
28
27

− π2

18

)]

+ CA

(
−187ζ(3)

144
+

π4

288
− 469π2

1728
+

607
648

)

+ N f

(
17ζ(3)

72
+

35π2

864
− 41

324

)
,

R coll (1)
q (ϵ) =

3
4ϵ

CF ,

R coll (2)
q (ϵ) = −3πb0

8ϵ2 CF

+
1
8ϵ

[
C2

F

(
6ζ(3)− π2

2
+

3
8

)
+ CFN f

(
− 1

12
− π2

9

)

+CACF

(
−3ζ(3) +

11π2

18
+

17
24

)]
. (5.26)

The coefficient b0 can be found in Appendix B.1. Inserting all terms into Eq. (6.20)
and expanding in αs, all poles in powers of 1/ϵ cancel, and we find for an arbitrary
renormalization scale µR, but for µF = Q:

HSIDIS
qq

(
αs(µR),

µR

Q
, 1
)

= 1 +
αs(µR)

π
HSIDIS,(1)

qq

+

(
αs(µR)

π

)2

HSIDIS,(2)
qq +O(α3

s ) , (5.27)
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with

HSIDIS,(1)
qq = CF

(
−4 − π2

6

)
,

HSIDIS,(2)
qq = CF

(
−4 − π2

6

)
πb0 ln

µ2
R

Q2

+ C2
F

(
−15ζ(3)

4
+

61π2

48
+

511
64

− π4

60

)

+ CFCA

(
7ζ(3)

4
+

3π4

80
− 1535

192
− 403π2

432

)

+ CFN f

(
ζ(3)

2
+

29π2

216
+

127
96

)
. (5.28)

The factorization scale dependence of HSIDIS
qq is trivially determined by the DGLAP

evolution kernels of the parton distributions and fragmentation functions and will
be addressed later.

With all ingredients to NNLL resummation at hand we are now also in the po-
sition to expand the hard-scattering function in (5.18) to NNLO (that is, O(α2

s ))
accuracy. This expansion will be carried out in Sec. 5.5. Before turning to it, we
will discuss another class of corrections near threshold that are suppressed with
respect to the terms addressed by resummation, but that can be significant as well
in phenomenological studies.

5.4 subleading contributions near threshold

All contributions contained in Eq. (5.18) are leading near threshold in the sense
that they carry powers of ln(N) or ln(M), never accompanied by any suppression
by 1/N or 1/M. Such terms are therefore often referred to as leading-power (LP)
contributions. For the NNLL resummed cross section the LP terms contain the five
“towers” αn

s Lm, with m ∈ {2n, . . . , 2n − 4}, where Lm can be any product of (in
total) m logarithms in N or M. The LP terms correspond to distributions (“+”-
distributions and δ-functions) in x̂, ẑ space. In the full cross section there are, of
course, also terms that are suppressed near threshold. The most important among
these are terms still containing logarithms, but suppressed by a single power in
1/N or 1/M. Such terms are known as next-to-leading power (NLP) corrections.
Their structure is αn

s Lm/N or αn
s Lm/M, with m ∈ {2n − 1, . . . , 2n − 3}, correspond-

ing to terms of the form αn
s ℓ

m in x̂, ẑ space, where ℓm is a product of ln(1 − x̂) and
ln(1 − ẑ) with total power m.
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The role of NLP terms in color-singlet hard-scattering cross sections has been
addressed early on in Refs. [32, 125–128]. In recent years, the understanding of
such corrections has further advanced, and numerous studies have been carried
out [107, 129–151] that address the NLP contributions from various angles, such as
corrections to the eikonal approximation, resummations of NLP terms to leading
logarithm and beyond, and generalized factorization theorems at NLP. For espe-
cially simple processes such as the fully inclusive Drell-Yan process, the results
of these studies are quite mature. For processes described by two scaling variables
(or, two Mellin moments), as relevant for SIDIS, comparably fewer studies are avail-
able [107, 147]. In the present study we will derive the dominant NLP contributions
at NNLL which, as described above, are of the form αn

s L2n−1/N or αn
s L2n−1/M. In

terms of the NNLO expansion, these are the terms α2
s L3/N or α2

s L3/M, where
L ∈ {ln3(N), ln2(N) ln(M), ln(N) ln2(M), ln3(M)}.

As discussed in [32, 125, 127], these dominant NLP terms may be incorporated to
all orders via a particular treatment of the evolution of the parton distributions and
fragmentation functions3. To this end, we consider a specific SIDIS quark channel
in the spin-averaged case and include the parton distribution and fragmentation
function. From Eqs. (5.10),(5.18) the corresponding resummed contribution to the
transverse SIDIS structure function in moment space may be written as

q̃(N, µF) D̃h
q(M, µF) ω̃T,res

qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HSIDIS

qq

(
αs(µR),

µR

Q
,

µF

Q

)
exp

{
−2

∫ Q2

µ2
F

dµ2

µ2 Pq,δ
(
αs(µ)

)
}

Ĉqq

(
αs(µR),

µR

Q

)

× exp

{∫ Q2

Q2/(N̄M̄)

dµ2

µ2

[
Aq
(
αs(µ)

)
ln
(

µ2

Q2

)
+ 2Pq,δ

(
αs(µ)

)
− 1

2
D̂q
(
αs(µ)

)]
}

× exp

{∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2

[
− Aq

(
αs(µ)

)
ln N̄ + Pq,δ

(
αs(µ)

)]
}

q̃(N, µF)

× exp

{∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2

[
− Aq

(
αs(µ)

)
ln M̄ + Pq,δ

(
αs(µ)

)]
}

D̃h
q(M, µF) , (5.29)

where the function Pq,δ corresponds to the coefficient of δ(1 − x) in the quark
DGLAP splitting function and is also given in Appendix B.1.

We make the following observations concerning Eq. (5.29). We obviously have sim-
ply added and subtracted the terms involving Pq,δ in the exponent, so that they can-
cel. However, each of the individual terms serves a separate purpose. The Pq,δ term

3 For an alternative, but equivalent, approach in x̂, ẑ space, see Ref. [143].
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in the second line, when combined with HSIDIS
qq

(
αs(µR), µR/Q, µF/Q

)
, removes the

factorization scale dependence of the SIDIS hard function, so that we end up with
HSIDIS

qq
(
αs(µR), µR/Q, 1

)
, precisely as given in Eq. (B.9). Thanks to factorization,

this must hold true to all orders of perturbation theory. The other two Pq,δ terms
in Eq. (5.29) combine with the terms Aq ln N̄ or Aq ln M̄ to reproduce the quark-
to-quark splitting function in the large-N or large-M limit, at leading power. As
a result, the last two exponential factors simply represent the DGLAP evolutions
of the quark parton distribution function and the fragmentation function, respec-
tively, from scale µF to scale Q/

√
N̄M̄. At leading power, this evolution is entirely

diagonal, and evolution of parton distributions (spacelike) and of fragmentation
functions (timelike) is identical. We can therefore carry out this evolution and write
Eq. (5.29) as

q̃(N, µF) D̃h
q(M, µF) ω̃T,res

qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)

= e2
q HSIDIS

qq

(
αs(µR),

µR

Q
, 1
)

Ĉqq

(
αs(µR),

µR

Q

)
q̃
(

N, Q/
√

N̄M̄
)

D̃h
q

(
M, Q/

√
N̄M̄

)

× exp

{∫ Q2

Q2/(N̄M̄)

dµ2

µ2

[
Aq
(
αs(µ)

)
ln
(

µ2

Q2

)
+ 2Pq,δ

(
αs(µ)

)
− 1

2
D̂q
(
αs(µ)

)]
}

. (5.30)

Again, this is correct to all orders. The trick now to obtain the dominant NLP
corrections is to evolve the parton distributions and fragmentation functions from
scale Q/

√
N̄M̄ back to scale µF, but now using the DGLAP evolution including

NLP corrections [32, 125, 127]. The latter are readily obtained from the 1/N or
1/M terms in the spacelike or timelike splitting functions, respectively. As it turns
out, for the dominant NLP terms, only the 1/N (or 1/M) terms in the leading-order
splitting kernels need to be taken into account. The related terms in the higher-
order splitting functions lead to contributions that have fewer logarithms. Let us
for the moment continue to consider only diagonal evolution, corresponding to the
SIDIS quark channel. We write the standard LO quark-to-quark splitting function
at large values of the moment variable as

PN
qq =

αs

π

(
−A(1)

q ln N̄ + P(1)
q,δ +

Q(1)
q

N

)
+O(α2

s )

=
αs

π
CF

(
− ln N̄ +

3
4
− 1

2N

)
+O(α2

s ) . (5.31)

The term proportional to Q(1)
q is the NLP correction. At this order, the spacelike

and timelike quark-to-quark splitting functions are identical so that also their NLP
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corrections are the same. The relation between q̃
(

N, Q/
√

N̄M̄
)

and q̃(N, µF) in-
cluding the dominant NLP correction is now given by

q̃
(

N,
Q√
N̄M̄

)
= exp

{∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2

[
− Aq

(
αs(µ)

)
ln N̄

+ Pq,δ
(
αs(µ)

)
+

αs(µ)

π

Q(1)
q

N

]}
q̃(N, µF) (5.32)

and in the same way for the quark fragmentation functions. As we discussed, only
the LO term with Q(1)

q is relevant for the dominant NLP corrections. The terms
with Aq and Pq,δ remain, of course, the full all-order functions, needed to second
order (NLO) for our purpose of obtaining NNLL/NNLO accuracy. We see from
Eq. (5.32) that the dominant NLP corrections in the quark channel are obtained by
multiplying the full resummed expression in Eq. (5.29) by the two factors

exp

{
−
∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2
αs(µ)

π

CF

2N

}
exp

{
−
∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2
αs(µ)

π

CF

2M

}
, (5.33)

corresponding to the NLP terms related to diagonal evolution of the parton distri-
bution and the fragmentation function.

As is well known, once the NLP terms are included, the evolution of parton distri-
butions and fragmentation functions also involves quark-gluon mixing and hence
is no longer diagonal, taking instead a matrix form. Transitions among quarks of
different flavor turn out to be suppressed as 1/N2 or higher, at least through NLO
in the evolution kernels which is all we need here. Including the dominant NLP
corrections, the full evolution equations for the parton distributions may be cast
into the form

d
d ln µ2


q̃
(

N, µ
)

g̃
(

N, µ
)


 = PN

s
(
αs(µ)

)

q̃
(

N, µ
)

g̃
(

N, µ
)


 (5.34)

to all orders, where PN
s (αs) denotes the NLO matrix of spacelike splitting functions

in moment space, which may be found in [83]. A corresponding equation holds for
the fragmentation functions, with however the timelike splitting functions PM

t [83].

It is interesting to explore the implications of the singlet mixing and to see what
NLP effects it generates beyond the quark-to-quark channel. We will do this as
part of the NNLO expansion to be discussed in the next section. For this expansion
we do not need to fully solve the evolution equation (although this could be done
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using the techniques of Ref. [62]). Instead, it suffices to just solve the equation to
second order in the strong coupling, which may be achieved by iterating the kernel:




q̃
(

N, Q/
√

N̄M̄
)

g̃
(

N, Q/
√

N̄M̄
)
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q̃2 PN
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)
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q̃
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N, µF
)

g̃
(

N, µF
)


 ,

(5.35)

and similarly for the fragmentation functions. This expression may then straightfor-
wardly be expanded further in αs(µR). If we keep just the diagonal (quark-to-quark)
contributions and their LP and lowest-order NLP parts, we recover the NLO and
NNLO terms already contained in Eq. (5.32).

In the spin-dependent case the spacelike matrix in Eq. (5.34) is to be replaced by the
polarized one, ∆PN

s (αs), given to NLO in [75–77]. The helicity evolution kernels
∆PN

s (αs) are identical to the unpolarized ones in the large-N limit at LP. This
equality extends even to the first NLP (1/N) corrections, except for a difference
∝ ln(N)/N in the NLO gq splitting function [84]. This difference, however, does
not affect the dominant NLP corrections for SIDIS at NNLO. We thus conclude
that the approximate NNLO corrections to be presented next apply to both the
spin-averaged and the spin-dependent hard-scattering functions.

5.5 expansion to nnlo

We are now ready to present the NNLO (O(α2
s )) expansion for the SIDIS quark

hard-scattering function near threshold, which is the main result of this paper.
We insert the NLP evolved parton distributions and fragmentation functions of
Eq. (5.32) into Eq. (5.30) and expand. To write our formulas compactly, we intro-
duce

L ≡ 1
2
(ln(N̄) + ln(M̄)) . (5.36)

We then find for the transverse hard-scattering function in the quark channel:

ω̃T
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)
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qq +O(α3

s ) , (5.37)
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where

ω̃
T,(1)
qq
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The last term is the NLP contribution. We have kept “mixed” NLP corrections of
the form ln(N̄)/M and ln(M̄)/N. Equation (5.38) reproduces the dominant part
of the full NLO results given in [20, 95], including the NLP terms. Its LP part is
consistent with the results based on NLL threshold resummation presented in [20].

For the approximate NNLO terms we find

1
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. (5.39)

Again, the last term is the dominant NLP correction. Here, two of the three powers
of L arise from the LP part in the first line of Eq. (5.38), which then multiplies the
NLO expansion of the NLP factor given in Eq. (6.16).

The results for the spin-dependent quark hard-scattering function near threshold
are identical:

∆ω̃
(k)
qq

(
N, M,

µR

Q
,

µF

Q

)
= ω̃

T,(k)
qq

(
N, M,

µR

Q
,

µF

Q

)
, (5.40)
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for k = 0, 1, 2 and including NLP corrections. In fact, this will arguably hold to all
orders of perturbation theory.

So far we have only addressed the q → q channel. As we discussed in the pre-
vious section, the off-diagonal evolution of parton distributions and fragmenta-
tion functions to NLP induces quark-gluon mixing. As a result, once we insert the
NLP singlet evolution in (5.35) into the cross section (5.30), we also obtain terms
with q̃(N, µF)D̃g(M, µF) or g̃(N, µF)D̃q(M, µF). Evidently, these approximate the
quark-to-gluon and gluon-to-quark channel contributions to SIDIS. The terms are
of course suppressed by 1/N or 1/M, but they also carry logarithmic enhancement.
We find, at NLO:

ω̃
T,(1)
gq

(
N, M,

µR

Q
,

µF

Q

)
= −e2

q CF
L
M

,

ω̃
T,(1)
qg

(
N, M,

µR

Q
,

µF

Q

)
= −e2

q TR
L
N

, (5.41)

with TR = 1/2. These expressions reproduce the corresponding full NLO trans-
verse hard-scattering functions of Refs. [20, 95] at large moment variable. Again the
contributions to the respective spin-dependent hard-scattering functions ∆ω̃

(1)
gq , ∆ω̃

(1)
qg

are identical to the ones given in (5.41).

Unfortunately, the evolution method that we have used here to obtain the NLP
corrections fails for the q → g and g → q channels beyond NLO. We have found
this by inspecting related results for the Drell-Yan process at measured rapidity.
Here, evolution gives the approximate result

ω̃
DY,(2)
qg (N, M)

∣∣∣
evol

= −TRL
2M

(
4CFL2 − (CF − CA) ln N̄ ln M̄

)
, (5.42)

whereas the correct result is known to be [22, 101, 152–156]

ω̃
DY,(2)
qg (N, M) = −TRL

2M

(
4CFL2 − (CF − CA) ln N̄ ln M̄

)

+ (CF − CA)
ln3 M̄
48M

. (5.43)

The difference of the two results is

ω̃
DY,(2)
qg (N, M)− ω̃

DY,(2)
qg (N, M)

∣∣∣
evol

= (CF − CA)
ln3(M̄)

48M
. (5.44)

Interestingly, it depends only on one of the two Mellin variables. In the inclusive
case, where N = M, this difference may be understood from Ref. [137] where
the all-order resummation of the leading large-N contributions to the quark-gluon
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contribution to inclusive Drell-Yan was derived. In the light of this, it is clear that
evolution cannot correctly produce the leading NNLO terms for the SIDIS q → g
and g → q channels. When expanding our corresponding results, we obtain

ω̃
T,(2)
gq (N, M)

∣∣∣
evol

= −CFL
2M

(
4CFL2 − (CF − CA) ln(N̄) ln(M̄)

)
,
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T,(2)
qg (N, M)
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evol

= −TRL
2N

(
4CFL2 − (CF − CA) ln(N̄) ln(M̄)

)
.

(5.45)

We note that the 1/N and 1/M terms in the NLO splitting functions contribute
here. As already stated, the results in Eq. (5.45) are not expected to be complete,
although it appears likely that a term identical to the one given in Eq. (5.44) (or
with M → N) would need to be added. It would be highly desirable to extend
the work of [137] to the Drell-Yan process at measured rapidity and to SIDIS. This
is of course beyond the scope of the present work. For now we therefore refrain
from encouraging use of Eq. (5.45) in any phenomenological analysis. Our NNLO
approximations given in this paper therefore only apply to the quark channel.

Appendix B.2 presents our NLO and NNLO near-threshold results as functions of
x̂ and ẑ. These are obtained by a straightforward inverse transform of the above
Mellin-space results.

5.6 phenomenological predictions

We now turn to a few illustrative phenomenological applications of our approxi-
mate NNLO results. Here we only consider the unpolarized transverse structure
function. We reserve a more detailed numerical analysis to the work in Chapter 6,
in which we will also investigate the phenomenology of NNLL resummation.

We first need to go back from Mellin space to x, z space. This is achieved by an
inverse double-Mellin transform. The structure function F h

i (x, z, Q2) can be recov-
ered from its moments F̃ h

i (N, M, Q2) given in Eq. (6.6) in the following way:

F h
i (x, z, Q2) =

∫

CN

dN
2πi

x−N
∫

CM

dM
2πi

z−M F̃ h
i (N, M, Q2) , (5.46)

where CN and CM denote integration contours in the complex plane, one for each
Mellin inverse. They have to be chosen in such a way that all singularities of the
integrand in N lie to the left of CN, and likewise for the poles in M and the con-
tour CM. In the actual calculation, we obtained excellent numerical convergence by
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setting N = cN + ζ eiϕN and M = cM + ξ eiϕM (with ζ, ξ ∈ [0, ∞] as contour param-
eters), where cN = 1.8 and cM = 3.3 and where we tilt each contour by an angle
ϕN = ϕM = 3π/4.

To be consistent with the NNLO approximation of the hard-scattering functions
that we make, we also need to use NNLO parton distribution functions and frag-
mentation functions. For the former, we choose the CT18 NNLO set of Ref. [157],
from which we also adopt the NNLO strong coupling. NNLO analyses of frag-
mentation functions are still scarce [110, 158], partly because only the process
e+e− → h + X is available at NNLO. For the present study we use the set of
Ref. [110]. In order to be able to examine the sizes of the various corrections to the
cross section, we stick to the NNLO sets of parton distributions and fragmentation
functions also when computing LO or NLO results. Unless stated otherwise, we
choose the renormalization and factorization scales as µR = µF = Q. Technically,
in order to obtain Mellin moments of the parton distributions and fragmentation
functions as needed for Eq. (5.10) in (6.28), we perform fits of a functional form
P(x) to them, so that the Mellin moments of P(x) can be taken analytically. We
have checked that our fits are accurate to better than 1% over the kinematic do-
main we are interested in.

We present results appropriate for the COMPASS experiment at CERN with c.m.
energy

√
s = 17.3 GeV, and for the EIC with

√
s = 100 GeV. For both, we consider

the process ℓp → ℓπ+X. We compute the contribution by the transverse structure
function to the SIDIS cross section, using Eq. (6.2) and dropping the longitudinal
part. We focus on the z-dependence of the cross section and integrate over y ∈
[0.1, 0.9] and x ∈ [0.1, 0.8]. Note that we choose both x and z to be rather large so
that we are safely in the threshold regime. Because of the relation Q2 = xys, our
choice of kinematics implies Q2 > 3 GeV2 for COMPASS, and Q2 > 100 GeV2 for
the EIC. We furthermore require W > 7 GeV, where W2 = Q2(1 − x)/x + m2

p.

We note in passing that SIDIS experiments typically quote hadron multiplicities,
which are ratios of the SIDIS cross section over the fully inclusive DIS one, for given
kinematics. For the present paper we are interested in the actual NNLO corrections
to SIDIS, so we do not compute multiplicities here. It would be straightforward to
do this by computing DIS to full NNLO.

We start by examining NLO, where the exact answer is of course known. In the
following we normalize all results by the LO cross section. The top part of Fig. 15
presents results for COMPASS kinematics. The black line shows the ratio of the
full transverse NLO cross section for the q → q channel to the LO one. As one can
see, the NLO corrections show the expected strong increase toward large values
of z. The dashed blue line shows the LP approximation to the NLO cross section,
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x̂ẑ-NLO:LP+NLP

1

1.2

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8

dσ
π
+

T
/

dσ
LO

z

SIDIS at EIC: e− p→ e− π+ X

full NLO
NLO: LP
NLO: LP+NLP
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Figure 12: Left: Ratios of NLO results for the unpolarized ℓp → ℓπ+X transverse cross sec-
tion in the q → q channel to the LO cross section, for COMPASS kinematics with
x ∈ [0.1, 0.8]. The black solid line shows the exact NLO result from Ref. [95], the
dashed blue line the LP approximation in Mellin space, and the solid blue line
the LP+NLP approximation. The red dash-dotted line shows the approximation
obtained by Eq. (B.13) in x̂, ẑ space. Right: Same for EIC kinematics.

based on Eq. (5.38) but without the NLP term in the second line. The result shows
overall good agreement with full NLO, indicating the dominance of the threshold
regime, but has a nearly constant difference to the exact result. The agreement
with full NLO becomes even much better when the dominant NLP corrections in
the second line of Eq. (5.38) are included, as shown by the solid blue line. Clearly
the full NLO is excellently approximated by this near-threshold result over the
whole range in z, and especially so toward large z.

It is interesting to compare the NLO approximations based on the Mellin-space cal-
culation (as shown so far) and on Eq. (B.13) in x̂, ẑ space. The two approximations
differ by terms that are even more suppressed than the NLP terms. Nevertheless,
their numerical difference is quite large, with the Mellin result yielding a far bet-
ter approximation to the exact NLO result than the approximate x̂, ẑ space result.
We thus conclude that Mellin space appears better suited for obtaining accurate
approximations to the full result. Similar conclusions were obtained for other pro-
cesses, such as for Higgs boson production [32].

The bottom part of Fig. 15 shows corresponding results for the EIC. They have
a very similar trend as our COMPASS results, with a slightly reduced size of the
corrections near threshold. This is expected due to the larger Q2 relevant at the EIC.
Again, the NLO corrections are extremely well reproduced by the approximate
ones generated by Mellin-space LP+NLP resummation.
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Figure 13: Left: Ratios of Mellin-space NNLO results for the unpolarized transverse cross
section in the q → q channel to the LO cross section, with NLP corrections
(blue solid) and without NLPs (blue dashed), for ℓp → ℓπ+X at COMPASS.
For comparison we also show the full NLO result again. Right: Same for EIC
kinematics.

The findings in Fig. 15 provide confidence that our Mellin-space NNLO expansions
based on resummation also provide an accurate approximation to the full NNLO
corrections for the q → q channel. Figure 16 presents our NNLO results, again nor-
malized to LO. Here we have included the exact NLO part of the cross section, so
that the approximation only applies to the NNLO terms. The dashed line shows the
result based on the LP terms at NNLO, while for the solid one we have included
the dominant NLP terms as well. We also display again the curves for full NLO
that were already shown in Fig. 15. One can see that the NNLO corrections become
sizable as z → 1, where the threshold logarithms grow in size. As in the NLO case,
there is a rather significant positive contribution to the cross section by the NLP
terms, both for COMPASS and the EIC. Inclusion of the dominant NNLO terms
is expected to reduce the dependence of the cross section on the renormalization
and factorization scales. Figure 14 shows the variation of the LO, full NLO and
the (approximate) NNLO cross sections with scale. Here we vary independently
µF = Q/2, Q, 2Q and µR = Q/2, Q, 2Q. Among the nine combinations this results
in, we discard the two with very disparate values, that is, µF = Q/2, µR = 2Q
and µF = 2Q, µR = Q/2. We then take the envelope of the remaining seven re-
sults. The figure shows the resulting bands. We present them in terms of the ratio(
dσ(µF, µR)− dσ(µF = µR = Q)

)
/dσ(µF = µR = Q), so that the cross section with

µF = µR = Q always produces the zero line in the plot. The result for COMPASS4

(top figure) shows that around z = 0.1 the NNLO scale uncertainty is large, but
does improve significantly toward higher z where it becomes better than the NLO

4 For COMPASS, we now increase the lower cut on Q2 to Q2 > 5 GeV2, so that we can reasonably
use the scale µ = Q/2.
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Figure 14: Left: Scale dependence of the NLO and approximate NNLO cross sections for
COMPASS kinematics. We have varied µF and µR as described in the text. We
have used Q2 > 5 GeV2 here. Right: Same for EIC kinematics.

one. It does, however, remain non-negligible even at large z. The main patterns
are reproduced also for EIC kinematics (bottom part of the figure); however, here
the scale uncertainty is overall very small at NNLO, showing a band that is much
narrower than the NLO one at medium to large z. We note that we have included
the NLO contributions by the qg subprocesses in the results shown in the figure,
whose effects are however relatively small.

We finally note that we do not consider the SIDIS spin asymmetry here. Since
the approximate NNLO corrections are identical for the spin-averaged and spin-
dependent cross sections (even for the dominant NLP terms), the asymmetry is
expected to be affected very little by the corrections. This was indeed already ob-
served in the NLL study [21].

5.7 conclusions and outlook

We have presented approximate next-to-next-to-leading order corrections to semi-
inclusive DIS, ℓp → ℓhX. These corrections apply to the quark channel and are
based on the threshold resummation formalism. We have first determined all ingre-
dients for threshold resummation for SIDIS at next-to-next-to-leading logarithmic
accuracy, extending previous work by one logarithmic order. As SIDIS is character-
ized by two “scaling” variables, x̂ = Q2/2p · q and ẑ = p · pc/P · q, the moment-
space resummation is naturally formulated in terms of two Mellin moments N and
M. Although these are separate variables, the SIDIS resummation formula may be
obtained by that for the inclusive Drell-Yan cross section by a simple rescaling
N →

√
NM, up to differences associated with the fact that the virtual photon in
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SIDIS is spacelike. These differences are accounted for by the hard factor in the
resummed SIDIS cross section, which is related to the spacelike quark form fac-
tor rather than the timelike one contributing to Drell-Yan. We have subsequently
expanded the resummed expressions to O(α2

s ), to obtain the NNLO corrections.

To further improve the accuracy of the near-threshold NNLL and NNLO approx-
imation we have determined also the dominant subleading terms which are sup-
pressed by 1/N or 1/M near threshold, but still enhanced by logarithms. These
“next-to-leading power” terms may be obtained by use of the DGLAP evolution of
the parton distribution functions between scales Q and Q/

√
N̄M̄. We have found

that the approximate NNLO corrections are identical for the spin-averaged (trans-
verse) cross section and the longitudinally polarized one, even including the NLP
corrections. This has important ramifications for phenomenology as it means that
the SIDIS spin asymmetry will be largely unaffected even by NNLO corrections.

We have presented a few basic phenomenological results at approximate NNLO.
These indicate a significant increase of the cross section at large z, as well as a
still sizable contribution of the NLP corrections. Our results are readily suited for
initial studies of SIDIS at NNLO in “global” fitting frameworks for fragmentation
functions and/or parton distributions, especially polarized ones. Furthermore, the
corrections we have derived will provide important benchmarks for future full
NNLO calculations of SIDIS.

There are several avenues for future improvements on our work. Extension to ap-
proximate N3LO near threshold and to N3LL resummation would be quite straight-
forward (see Chapter 6). As already mentioned earlier, it will also be important to
address the quark-gluon channels to SIDIS and to determine their dominant NLP
corrections, following the lines in Ref. [137]. In the same vein, the longitudinal
SIDIS structure function should be addressed at higher orders. For inclusive DIS,
FL receives corrections as large as α2

s ln2(1 − x) at high x, which were derived and
extended to all orders in Ref. [134]. Although these are again NLP corrections,
it will be relevant to investigate the corresponding logarithmic structure of FL in
SIDIS. Finally, we note that the corrections we have derived here are really valid
when both x and z are large. The recent study [107] considers the Drell-Yan cross
section at measured rapidity and derives a factorization theorem that is valid when
only one of the two kinematic variables

√
z e±y is large, while the other can have

an arbitrary value. Extension of such a theorem to the SIDIS case when only x or
z is large would be quite valuable as it would extend the validity of the threshold
approximation for SIDIS.





6
T H R E S H O L D R E S U M M AT I O N AT N 3 L L A C C U R A C Y A N D
A P P R O X I M AT E N 3 L O C O R R E C T I O N S

We advance the threshold resummation formalism for semi-inclusive deep-inelastic
scattering (SIDIS) to next-to-next-to-next-to-leading logarithmic (N3LL) order, in-
cluding the three-loop hard factor. We expand the results in the strong coupling
to obtain approximate next-to-next-to-next-to-leading order (N3LO) corrections for
the SIDIS cross section. In Mellin moment space, these corrections include all terms
that are logarithmically enhanced at threshold, or that are constant. We also con-
sider a set of corrections that are suppressed near threshold. Our numerical esti-
mates show modest changes of the cross section by the approximate N3LO terms,
suggesting a very good perturbative stability of the SIDIS process. This Chapter is
based on publication [ii].

6.1 introduction

The semi-inclusive deep-inelastic scattering (SIDIS) process ℓp → ℓhX has become
a widely used probe of hadronic structure and hadronization phenomena. Its main
uses are extractions of (polarized) parton distribution and fragmentation functions
or combinations thereof [18, 19, 113, 115, 116, 158–162]. In global analyses of these
quantities SIDIS data can add useful information on, for example, the flavor struc-
ture of the sea quarks. The future Electron Ion Collider (EIC) will allow precise
measurements of SIDIS observables over wide kinematic regimes [163].

In Chapter 5, we have studied higher-order QCD corrections to the SIDIS cross
section. Our approach was to use the threshold resummation formalism for SIDIS
and carry out fixed-order expansions of the resummed cross section. Threshold
resummation for SIDIS was originally discussed in Ref. [121] and then further
developed in more general terms in [20] and [21]. These papers formulated the
resummation at next-to-leading logarithmic (NLL) accuracy. In [i] we extended the
resummation to next-to-next-to-leading logarithm (NNLL), which also allowed us
to obtain approximate fixed-order corrections to the hard scattering cross section
for SIDIS at next-to-next-to-leading order (NNLO) level. These results were used

83
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recently to obtain the first NNLO set of fragmentation functions fit “globally” to
SIDIS and electron-positron annihilation data [19].

The purpose of the present paper is to advance our previous study to N3LL and
to again use the resummed cross section to derive approximate fixed-order cor-
rections to the SIDIS cross section, in this case at N3LO. Our main motivation for
this analysis is to further improve the perturbative framework for SIDIS and to
set the stage for precision analyses of SIDIS data from the future EIC in terms of
parton distributions or fragmentation functions at high perturbative order. While
such analyses at N3LO may presently still seem far off, the study of the perturba-
tive stability of the SIDIS cross section and its associated threshold resummation is
in any case valuable. This becomes indeed possible by going to N3LL and N3LO
and carrying out comparisons with lower orders. We also note that in our previous
paper [i] we presented phenomenological results only for the fixed-order (NNLO)
corrections. Here we wish to carry out numerical studies also for the resummed
case, which provides another motivation for this study.

In Sec. 6.2 we give an overview of the kinematics of the process, introducing Mellin
moments. Section 6.3 describes the threshold resummation framework. Section 6.4
is dedicated to the derivation of the three-loop hard factor to be used for obtaining
N3LL or N3LO results. In Sec. 6.5 we carry out the expansion of the resummed
results to N3LO. Finally, Section 6.6 presents some numerical studies in the EIC
kinematical regime.

6.2 perturbative sidis cross section

We consider the semi-inclusive deep-inelastic scattering (SIDIS) process ℓ(k) p(P) →
ℓ′(k′) h(Ph) X with the momentum transfer q = k − k′. It is described by the vari-
ables

Q2 = −q2 = −(k − k′)2 ,

x =
Q2

2P · q
,

y =
P · q
P · k

,

z =
P · Ph
P · q

. (6.1)
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We have Q2 = xys, with
√

s the center-of-mass energy of the incoming electron and
proton. We follow Ref. [20] to write the spin-averaged SIDIS cross section as

d3σh

dxdydz
=

4πα2

Q2

[
1 + (1 − y)2

2y
F h

T(x, z, Q2) +
1 − y

y
F h

L(x, z, Q2)

]
, (6.2)

where α is the fine structure constant and F h
T ≡ 2Fh

1 and F h
L ≡ Fh

L /x are the
transverse and longitudinal structure functions. In what follows we will only treat
the transverse structure function in the q → q or q̄ → q̄ channels, which is the only
channel that appears already at the lowest order (LO) of perturbation theory. We
write all equations for the spin-averaged case, although they will equally apply to
the helicity-dependent one [21], [i].

Using factorization, the unpolarized structure functions may be written as double
convolutions. For example, for the transverse one we have

F h
T(x, z, Q2) = ∑

f , f ′

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

Dh
f ′

(z
ẑ

, µF

)
ωT

f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
f
(x

x̂
, µF

)
.

(6.3)
Here f (ξ, µF) is the distribution of parton f = q, q̄, g in the nucleon at momentum
fraction ξ and factorization scale µF, while Dh

f ′ (ζ, µF) is the corresponding frag-
mentation function for parton f ′ going to the observed hadron h. For simplicity,
the factorization scales are chosen to be equal in the initial and final state. µR is
the renormalization scale entering also the strong coupling αs. The functions ωT

f ′ f
are the transverse spin-averaged hard-scattering coefficient functions which can be
computed in QCD perturbation theory. Their expansions read

ωT
f ′ f = ω

T,(0)
f ′ f +

αs(µR)

π
ω

T,(1)
f ′ f +

(
αs(µR)

π

)2

ω
T,(2)
f ′ f +

(
αs(µR)

π

)3

ω
T,(3)
f ′ f +O(α4

s ) .

(6.4)
At LO we have for the q → q and q̄ → q̄ channels

ω
T,(0)
qq (x̂, ẑ) = e2

q δ(1 − x̂)δ(1 − ẑ) , (6.5)

with the quark’s fractional charge eq. The well known first-order coefficient function

ω
T,(1)
f ′ f is for example available in [20, 64].

In the following, it is convenient to take double Mellin moments of the SIDIS cross
section, for which the convolutions in Eq. (6.3) turn into ordinary products. We
define

F̃ h
T(N, M, Q2) ≡

∫ 1

0
dx xN−1

∫ 1

0
dz zM−1 F h

T(x, z, Q2)

= ∑
f , f ′

D̃h
f ′(M, µF) ω̃T

f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
f̃ (N, µF) , (6.6)
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where

f̃ (N, µF) ≡
∫ 1

0
dx xN−1 f (x, µF),

D̃h
f ′(M, µF) ≡

∫ 1

0
dz zM−1Dh

f ′(z, µF),

ω̃T
f ′ f

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
≡
∫ 1

0
dx̂ x̂N−1

∫ 1

0
dẑ ẑM−1ωT

f ′ f

(
x̂, ẑ, αs(µR),

µR

Q
,

µF

Q

)
.

(6.7)

As a result the structure functions can be obtained from the moments of the par-
ton distribution functions and fragmentation functions, and the double-Mellin mo-
ments of the partonic hard-scattering functions.

For the perturbative expansion given in Eq. (6.4) we have in moment space at lowest
order according to Eq. (6.5)

ω̃
T,(0)
qq (N, M) = e2

q. (6.8)

The corresponding moments of the next-to-leading order (NLO) terms ω
T,(1)
f ′ f may

be found in Refs. [20, 64]. In the following, we consider logarithmic higher-order
corrections to the hard-scattering functions that arise at large values of x̂ and ẑ or,
equivalently, at large N and M.

6.3 threshold resummation at n3 ll accuracy

The resummation of threshold logarithms for SIDIS was extensively studied in
Refs. [20, 89, 121], [i]. The NNLL resummation formula for the unpolarized SIDIS
transverse structure function was discussed in Ref. [i]. The resummed partonic
transverse structure function takes the form

ω̃T,res
qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
= e2

q HSIDIS
qq

(
αs
(
µR
)
,

µR

Q
,

µF

Q

)
Ĉqq

(
αs
(
µR
)
,

µR

Q

)

× exp

{∫ Q2

Q2/(N̄M̄)

dµ2

µ2

[
Aq
(
αs(µ)

)
ln
(

µ2N̄M̄
Q2

)
− 1

2
D̂q
(
αs(µ)

)]

+ ln N̄
∫ µ2

F

Q2

dµ2

µ2 Aq
(
αs(µ)

)
+ ln M̄

∫ µ2
F

Q2

dµ2

µ2 Aq
(
αs(µ)

)
}

, (6.9)

which actually holds to any logarithmic order. As stated earlier, our goal is to set
up the formalism for resummation to N3LL. In Eq. (6.9) we have

N̄ = N eγE and M̄ = M eγE , (6.10)
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with the Euler constant γE. Each of the functions Aq, D̂q, HSIDIS
qq , Ĉqq is a perturbative

series in the strong coupling. We write the corresponding expansions generically
as

Q =
∞

∑
k=0

(
αs(µR)

π

)k

Q(k) , (6.11)

where Q = Aq, D̂q, HSIDIS
qq , Ĉqq. We note that A(0)

q = D̂(0)
q = D̂(1)

q = 0. To achieve
N3LL accuracy, we need Aq to order α4

s and all other functions to order α3
s . The

corresponding coefficients are collected in Appendix B.1. The main new ingredient
not directly known from the literature is the N̄, M̄-independent coefficient HSIDIS,(3)

qq

whose derivation will be presented below in Sec. 6.4. The other prefactor Ĉqq in
Eq. (6.9) collects all moment-independent terms of the resummed exponent; see [32,
99], [i]. The formulas needed for its derivation to order α3

s may be found in Ref. [32].

In order to explicitly obtain the structure function resummed to N3LL we now
expand the exponents in Eq. (6.9) appropriately. The operations are quite standard.
We obtain

ω̃T,res
qq

(
N, M, αs(µR),

µR

Q
,

µF

Q

)
= e2

q HSIDIS
qq

(
αs(µR),

µR

Q
,

µF

Q

)
Ĉqq

(
αs(µR),

µR

Q

)

× exp
{

λNM

2b0αs(µR)
h(1)q

(
λNM

2

)
+ h(2)q

(
λNM

2
,

µR

Q
,

µF

Q

)

+ αs(µR) h(3)q

(
λNM

2
,

µR

Q
,

µF

Q

)
+ α2

s (µR) h(4)q

(
λNM

2
,

µR

Q
,

µF

Q

)}
,

(6.12)

where

λNM ≡ b0 αs(µR)
(

ln N̄ + ln M̄
)

. (6.13)

The functions h(k)q impart resummation to Nk−1LL accuracy. The first three are well
known in the literature:

h(1)q (λ) =
A(1)

q

πb0λ
[2λ + (1 − 2λ) ln(1 − 2λ)] ,

h(2)q (λ) = − A(2)
q

π2b2
0
[2λ + ln(1 − 2λ)]

+
A(1)

q b1

πb3
0

[
2λ + ln(1 − 2λ) +

1
2

ln2(1 − 2λ)

]

+
A(1)

q

πb0
2λ ln

µ2
F

Q2 − A(1)
q

πb0
[2λ + ln(1 − 2λ)] ln

µ2
R

Q2 ,
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h(3)q (λ) = −A(2)
q b1

π2b3
0

1
1 − 2λ

[2λ + ln(1 − 2λ) + 2λ2]

+
A(1)

q b2
1

πb4
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[
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1
2
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]
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q b2

πb3
0
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2λ2
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]
+
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q
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q

π
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R
Q2 − D̂(2)

q

π2b0

λ

1 − 2λ
. (6.14)

The function h(4)q , needed for N3LL resummation, is found to be

h(4)q (λ) =
1

(1 − 2λ)2

(
A(2)

q b2
1

π2b4
0

[
−8

3
λ3 − λ2 + λ +

1
2

ln2(1 − 2λ) +
1
2

ln(1 − 2λ)

]

+
A(2)

q b2

π2b3
0

8
3

λ3 +
A(1)

q b3
1

πb5
0

[
8
3

λ3 + 2λ2 ln(1 − 2λ)− 1
6

ln3(1 − 2λ)

]

+
A(1)

q b1b2

πb4
0

[
−16

3
λ3 + 3λ2 − λ − 4λ2 ln(1 − 2λ) + 2λ ln(1 − 2λ)− 1

2
ln(1 − 2λ)

]

+
A(1)

q b3

πb3
0

[
8
3

λ3 − 3λ2 + λ + 2λ2 ln(1 − 2λ)− 2λ ln(1 − 2λ) +
1
2

ln(1 − 2λ)

]

+
A(3)

q b1

π3b3
0

[
8
3

λ3 − λ2 − λ − 1
2

ln(1 − 2λ)

]
+

A(4)
q

π4b2
0

[
2λ2 − 8

3
λ3
]

+
D̂(2)

q b1

π2b2
0

[
λ − λ2 +

1
2

ln(1 − 2λ)

]
+

D̂(3)
q

π3b0

[
λ2 − λ

])
. (6.15)

This result is in agreement with that given in Ref. [164] for the Drell-Yan process.
For simplicity, we have set the renormalization and factorization scales to Q. The
results presented in Eq. (6.12) may be used to obtain N3LO (that is, O(α3

s )) ex-
pansions of the hard-scattering function ω̃T

qq. This expansion will be carried out in
Sec. 6.5.
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We stress that all terms generated by Eq. (6.12) are either logarithmic or constant
near threshold. The full hard-scattering function in Mellin space will, at any order
in perturbation theory, also contain terms that are suppressed by powers of 1/N
and/or 1/M. Such terms are often referred to as “next-to-leading power (NLP)”
corrections. As discussed in Chapter 5 (see also references therein), one can straight-
forwardly account for the dominant NLP terms by multiplying the resummed cross
section in Eq. (6.9) by the two factors

exp

{
−
∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2
αs(µ)

π

CF

2N

}
exp

{
−
∫ Q2/(N̄M̄)

µ2
F

dµ2

µ2
αs(µ)

π

CF

2M

}
. (6.16)

where the coefficients −CF/(2N) and −CF/(2M) in the exponents correspond to
the NLP terms in the LO diagonal evolution kernels for the quark parton distri-
butions and the quark fragmentation functions, respectively. At N3LO the two ex-
ponential factors, when combined with the resummed exponents in Eq. (6.9), will
generate all terms of the form α3

s lnn(N) lnm(M)(1/N + 1/M), with n + m = 5.

6.4 the hard factor at three loops

The factor HSIDIS
qq is derived from the finite part of the virtual corrections to the

process γ∗q → q. The basic ingredient is the renormalized spacelike form quark
factor, from which one needs to subtract the infrared divergencies via a suitable
method developed in Refs. [100, 124]. For our present purposes, we will need the
renormalized three-loop form factor, which was derived in [50–52]1 and reads in
dimensional regularization with d = 4 − 2ϵ space-time dimensions:

Fq(q2) = F(0)
q +

αs

π
F(1)

q +
(αs

π

)2
F(2)

q +
(αs

π

)3
F(3)

q +O(α4
s ) , (6.17)

where F(0)
q and F(1)

q can be found in (5.21) and

1 We note that recently even the four-loop results were published [42].
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F(3)
q = C3
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+
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(
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+
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+
1
ϵ

(
−ζ(3)

648
+

2417
139968
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− 13ζ(3)
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− 190931
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− 47π4

77760

]

+ CFCAN f

[
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1
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(
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− 47
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)
+

1
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(
53ζ(3)
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− 119π2

7776

)

+
1
ϵ

(
−241ζ(3)

1296
− 8659

139968
+

1297π2

46656
+

11π4
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π2ζ(3)
288
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48
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1700171
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115555π2

279936
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]
+ CFN f ,V
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2CA

)(
7ζ(3)

48
− 5ζ(5)

6

+
5π2

96
+

1
8
− π4

2880

)
+O (ϵ) . (6.18)

Here we have kept terms of higher order in ϵ in the one-loop and two-loop re-
sults since these turn out to make finite contributions in the end. In the above
expressions, ζ(j) is the Riemann zeta function, N f is the number of flavors, and
CF = 4/3, CA = 3. For purely electromagnetic interactions the factor N f ,V=γ be-
comes [51]

N f ,γ =
∑q eq

eq
. (6.19)

As shown in Refs. [100, 124], the hard coefficient may be extracted from the form
factor in the following way. Adapted to the case of SIDIS we have from [100]

HSIDIS
qq

(
αs(Q)

)
=
∣∣ [1 − Ĩq

(
ϵ, αs(Q)

)]
Fq
∣∣2 , (6.20)

where Ĩq is an operator that removes the poles of the form factor and makes the
necessary soft and collinear adjustments needed to extract the hard coefficient. It
is given in [100] in terms of a convenient all-order form:

1 − Ĩq(ϵ, αs) = exp
{

Rq (ϵ, αs)− iΦq (ϵ, αs)
}

, (6.21)

with functions Rq and Φq that each are perturbative series. The phase Φq does not
contribute in our case since we take the absolute square in Eq. (6.20). The function
Rq effects the cancelation of infrared divergences from the quark form factor. It can
be expressed in terms of a soft and a collinear part:

Rq(ϵ, αs) = R soft
q (ϵ, αs) + R coll

q (ϵ, αs) , (6.22)

where for N3LL accuracy

R soft
q (ϵ, αs) = CF

(
αs

π
R soft (1)

q (ϵ) +
(αs

π

)2
R soft (2)

q (ϵ) +
(αs

π

)3
R soft (3)

q (ϵ) +O(α4
s )

)
,
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R coll
q (ϵ, αs) =

αs

π
R coll (1)

q (ϵ) +
(αs

π

)2
R coll (2)

q (ϵ) +
(αs

π

)3
R coll (3)

q (ϵ) +O(α4
s ) ,

(6.23)

with R soft (1)
q , R soft (2)

q , R coll (1)
q and R coll (2)

q in (5.26) and

R soft (3)
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(6.24)

and

R coll (3)
q (ϵ) = CF
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FN f
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The coefficients b0 and b1 can be found in Appendix B.1. Inserting all terms into
Eq. (6.20) and expanding in αs, all poles in powers of 1/ϵ cancel. The final expres-
sion for HSIDIS

qq up to three loops can be found in Appendix B.1.

6.5 expansion to n3 lo

We are now ready to present the N3LO (O(α3
s )) expansion for the SIDIS q → q hard-

scattering function near threshold. To write our formulas compactly we introduce

L ≡ 1
2
(ln(N̄) + ln(M̄)) . (6.26)

The coefficients ω̃
T,(1)
qq and ω̃

T,(2)
qq in Eq. (6.4) were already given in Chapter 5,

Eqs. (5.38) and (5.39). For the approximate N3LO terms we find:
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(6.27)

As before, we have set µR = µF = Q for simplicity. We stress that the correc-
tions given by this expression include all terms that are logarithmically enhanced
at threshold, or that are constant. In physical space these are terms with double
distributions (that is, “plus” distributions and δ-functions) in x̂ and ẑ.

The last term in Eq. (6.27) represents the dominant NLP contributions. Note that
upon expansion beyond NLO the exponential factors in (6.16) will also generate
terms with inverse powers 1/N2, 1/M2 and higher, which we have discarded for
consistency since they are far beyond the approximations we make. We will see
later that these terms are numerically very small.

6.6 phenomenological predictions

We will now present some phenomenological predictions for the transverse SIDIS
cross section at NNLL and N3LL, as well as for the expansion to N3LO. We will
also compare to our previous NNLO results of [i].
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In order to obtain results for the transverse structure function F h
T(x, z, Q2) in phys-

ical x, z space we need to invert its Mellin moments F̃ h
T(N, M, Q2) in Eq. (6.6). This

is achieved by the inverse double-Mellin transform

F h
T(x, z, Q2) =

∫

CN

dN
2πi

x−N
∫

CM

dM
2πi

z−M F̃ h
T(N, M, Q2) , (6.28)

where CN and CM denote integration contours in the complex plane, one for each
Mellin inverse. We adopt the minimal prescription of Ref. [98] to treat the Landau
pole present in the resummed exponents in Eqs. (6.12),(6.14) at λNM = 1, or (see
Eq. (6.13)),

N̄M̄ = e1/(b0 αs(µR)) . (6.29)

According to the minimal prescription, the two contours need to be chosen such
that all singularities in the complex plane lie to their left, except for the Landau
pole. We parameterize the two contours as

N = cN ± ζe±iϕN , M = cM + ξeiϕM , (6.30)

with ζ, ξ ∈ [0, ∞] as contour parameters, where cN = 1.8 and cM = 3.3. The precise
values do not matter as long as cN and cM are chosen to the right of the poles of
the PDFs and FFs, respectively, and their product is below the Landau pole. We
found the values cN = 1.8 and cM = 3.3 (which reflect the slightly steeper behavior
of the FFs compared to the PDFs at low momentum fractions) to be optimal for
good convergence of the numerical integration in our code. We furthermore choose
ϕN = 3π/4; the two signs for the N-contour in (6.30) select the two branches in
the complex plane. As N moves along its contour, the position of the Landau pole
relevant for the M-integral will move as well, mapping out a trajectory in the plane.
This implies that the angle ϕM needs to be chosen as a function of N, so that during
the M integration this trajectory is never crossed. A more detailed description of
the inverse double-Mellin transform can be found in Ref. [20].

We note that we only consider the transverse structure function in (6.2) here. The
longitudinal one is suppressed near threshold, even beyond the dominant NLP
terms we have included for F h

T. While it would be very interesting to also investi-
gate higher-order corrections to F h

L , this is beyond the scope of this work. In what
follows, we also discard the contributions by the q → g and g → q channels to the
structure function. These are fully known only to NLO. We could include the con-
tributions at NLO level in our approximate NNLO, N3LO results to be presented
below, but this would simply amount to a uniform shift of all results by a few per
cent, which is not really relevant for our main goal of analyzing the structure of
higher-order contributions in the q → q channel.

For the parton distribution functions and fragmentation functions we choose the
NNLO sets of Ref. [157] and Ref. [110], respectively. Clearly, in order to present true
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N3LL or N3LO results, we would need PDFs and FFs evolved at those same orders,
which are currently not yet available. We therefore keep the renormalization and
factorization scales at µR = µF = Q and do not investigate the scale dependence of
our results. In this sense we use the NNLO parton distributions and fragmentation
functions as templates for the N3LO ones, which should be adequate for a first
analysis of the beyond-NNLO effects we are interested in. We note that the scale
dependence of the transverse SIDIS cross section was anyway found to be rather
small already at NNLO in Ref. [i]. Note that we “match” all results to NLO, so that
the NLO corrections for the q → q channel are always included exactly.

Our predictions will refer to the unpolarized ℓp → ℓπ+X process appropriate for
the future EIC with

√
s = 100 GeV. We focus on the z-dependence of the cross

section and, unless stated otherwise, integrate over y ∈ [0.1, 0.9] and x ∈ [0.1, 0.8].
We choose x and z to be rather large so that we are safely in the threshold regime.
Because of the relation Q2 = xys, our choice of kinematics implies Q2 > 100 GeV2

for the EIC. We furthermore require W > 7 GeV, where W2 = Q2(1 − x)/x + m2
p,

with mp the proton mass.

We begin by comparing fully resummed results obtained at various different levels
of logarithmic accuracy. The upper left part of Fig. 15 shows the NLL, NNLL, and
N3LL resummed cross sections as functions of z, normalized to the LO one. As
one can see, the NNLL terms show an enhancement over NLL, and the additional
terms arising at N3LL lead to a very modest further increase of the cross section.
This result demonstrates that the resummed SIDIS cross section has excellent per-
turbative stability. We can further investigate the improvements provided by going
to NNLL and N3LL. To this end, we note that even at a given logarithmic order the
resummation formula in Eq. (6.9) may actually be used in various ways that are
all equivalent in terms of their perturbative content, but differ numerically. Let us
refer to the corresponding choices as resummation schemes. We consider three such
schemes:

scheme (a) Here we use Eq. (6.9) as written. That is, we keep the functions HSIDIS
qq

and Ĉqq as separate factors, each its own perturbative series of the form (6.11).
Also, we use the Mellin moments N and M precisely in the form N̄ and M̄ as
defined in (6.10). This scheme has been used for the first plot in Fig. 15.

scheme (b) Here we expand the product HSIDIS
qq × Ĉqq in Eq. (6.9) strictly to the

desired order. That is, suppose we are at NLL where HSIDIS
qq = 1+ αs

π HSIDIS,(1)
qq

and Ĉqq = 1+ αs
π Ĉ(1)

qq , then we use HSIDIS
qq × Ĉqq = 1+ αs

π (HSIDIS,(1)
qq + Ĉ(1)

qq ) and
drop terms of O(α2

s ). We continue to use the variables N̄ and M̄.
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Figure 15: Ratios of resummed results for the unpolarized ℓp → ℓπ+X transverse cross
section in the q → q channel to the LO one, for EIC kinematics with x ∈ [0.1, 0.8].
Upper left: comparison of NLL (black), NNLL (blue), and N3LL (red) resumma-
tion. Upper right and lower panel: Results for resummation schemes (a),(b),(c)
as described in the text at NLL, NNLL, and N3LL.
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scheme (c) Here we first use the expansion of HSIDIS
qq × Ĉqq as for scheme (b). In

addition, we use (6.10),(6.13) to write

λNM = b0 αs(µR)
(

ln N + ln M
)
+ 2γEb0αs(µR) . (6.31)

The terms with the Euler constant lead to modifications of the functions h(k>1)
q

in Eq. (6.14) [32, 164]. They evidently also generate non-logarithmic correc-
tions in the resummed exponent. These may be expanded out perturbatively,
so that they migrate from the exponent to an N, M-independent prefactor.
This prefactor is then expanded along with the factor HSIDIS

qq × Ĉqq into a sin-
gle perturbative function that now multiplies the resummed exponent, the
latter now being a function of N and M rather than of N̄ and M̄.

It is immediately clear that the three resummation schemes are indeed equivalent
for a given logarithmic accuracy. The remaining three plots in Fig. 15 compare the
three schemes at NLL (upper right), NNLL (lower left), and N3LL (lower right). It
is striking to see how the difference among the three schemes is still rather large
at NLL, then strongly decreases at NNLL, and finally becomes extremely small at
N3LL. (We note in passing that this means that the enhancement over NLL seen in
the first plot in Fig. 15 is a feature only present in scheme (a) but does not really
occur in the other two schemes). Of course, one does expect the details of how the
expansions are performed to matter less and less with increasing logarithmic order.
Nevertheless, the level at which the resummed predictions become independent of
the resummation scheme at NNLL and especially at N3LL is truly remarkable.

Encouraged by these observations, we now turn to fixed-order expansions of our
resummed results. Figure 16 (left) shows again the NNLL-resummed result for
scheme (a), along with its expansion to NNLO as given by Eqs. (5.38) and (5.39)
(black solid line) and already obtained in Ref. [i]. All results are again normalized to
the LO cross section. We note that finite-order expansions are independent of the re-
summation scheme chosen. We observe that resummation within scheme (a) leads
to a suppression of the cross section at lower z and to the expected enhancement
at high z where the threshold logarithms become particularly important. In addi-
tion to these two results, we also expand the resummed cross section numerically
to orders α2

s and α3
s . As expected, the result for the O(α2

s ) expansion (dash-dotted
line) is extremely close to the NNLO one. The only difference between these two
results comes from the fact that the formal expansion of the NLP factors in (6.16)
will produce also terms with higher inverse powers of N and M, as noted at the
end of Sec. 6.5. These terms are not included in our explicit NNLO expansions,
but do contribute to the numerical O(α2

s ) expansion of the cross section. As one
can see by comparing the two corresponding curves, they are of very small size.
The dashed line in the left part of Fig. 16 shows the O(α3

s ) expansion of the NNLL
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Figure 16: Left: NNLO and NNLL-resummed results for the unpolarized ℓp → ℓπ+X
transverse cross section in the q → q channel normalized to the LO one, for
EIC kinematics with x ∈ [0.1, 0.8]. We also show numerical expansions of the
NNLL result to O(α2

s ) and O(α3
s ). Right: Same as left, but for N3LL, N3LO and

expansions to O(α3
s ) and O(α4

s ).

resummed cross section. We observe that this result is already very close to the full
NNLL one, indicating that terms of order O(α4

s ) or higher are small.

The right part of Fig. 16 presents the same analysis one order higher. We show the
N3LL-resummed cross section for scheme (a), and now the expansion to N3LO as
given by Eqs. (5.38),(5.39) and (6.27). This time, we numerically expand the N3LL
result to orders α3

s and α4
s . Again the numerical expansion to O(α3

s ) essentially
coincides with the approximate N3LO one, up to tiny corrections suppressed as
1/N2, 1/M2 or higher. The result at O(α3

s ) is almost indistinguishable from the
full N3LL-resummed one, demonstrating again that corrections beyond third order
are all but negligible. We note that the O(α3

s ) expansion obtained from the N3LL-
resummed result is more complete than the O(α3

s ) expansion shown in the left part
of Fig. 16: It contains all seven “towers” of threshold logarithms, that is, terms of
the form α3

s lnn(N) lnm(M) with 0 ≤ n + m ≤ 6, whereas NNLL resummation can
only correctly reproduce the five towers with 2 ≤ n + m ≤ 6.

We also briefly consider the x dependence of the resummed results, integrating
over the region z ∈ [0.2, 0.9]. Figure 17 shows on the left the corresponding results
obtained at NLO and for NLL, NNLL, and N3LL resummation within our scheme
(a). One can observe that, as before for the z dependence, resummation leads to a
strong enhancement of the cross section, especially so at large values of x. Com-
pared to the upper left plot of Fig. 15, the various resummed curves tend to lie
closer to one another. This may in part be due to the fact that larger x kinemati-
cally correspond to larger values of Q2 = xys, where the strong coupling becomes
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Figure 17: Left: NLO, NLL, NNLL and N3LL-resummed results for the unpolarized ℓp →
ℓπ+X transverse cross section in the q → q channel, as functions of x, normal-
ized to LO. Right: same as on the left, N3LL resummed results expanded to
orders O(α3

s ) and O(α2
s ) are shown as well. The plos are for EIC kinematics

with z ∈ [0.2, 0.9].

smaller and hence the threshold variable λNM as well. This effect is not present in
case of the z dependence of the cross sections.

We at last show the N3LL resummed results on the right of Fig. 17, expanded to
different orders in αs. We notice that the fully resummed curve is well approxi-
mated by the O(α3

s ) expansion. Yet higher logarithmic orders in the exponent are
therefore not expected to significantly improve the N3LL resummed prediction.

6.7 conclusions and outlook

We have explored higher-order QCD corrections to the quark-to-quark hard-scatter-
ing cross section relevant for semi-inclusive DIS. We have developed the threshold
resummation framework for SIDIS to N3LL accuracy, hereby extending previous
work carried out at NNLL [i]. Among the main tasks to be completed for achiev-
ing N3LL resummation was the derivation of the three-loop hard factor from the
spacelike form factor. We have used our N3LL results to derive approximate N3LO
corrections for SIDIS. These corrections contain all seven “towers” of threshold log-
arithms that are present at this order. We have also included dominant subleading
logarithmic terms that are suppressed near threshold.

We have presented phenomenological results for resummed and approximate fixed-
order SIDIS cross sections for EIC kinematics. These show an excellent perturbative
stability of the cross section in the sense that the N3LL cross section is only mod-
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estly enhanced over the NNLL one, and that generally corrections beyond O(α3
s )

seem unimportant. A particularly striking result is that the actual treatment of re-
summation, in terms of how the relevant expansions are carried out in practice,
matters less and less when the logarithmic accuracy of resummation increases, so
that the N3LL result is essentially insensitive to the resummation scheme adopted.
Clearly, our results show that the SIDIS cross section may serve as an excellent
testbed for studies of higher orders in perturbation theory. We believe that our re-
sults are a valuable addition to the general “library” of QCD observables that are
known to NNLO and beyond.

Future extensions of this work should also address non-perturbative power correc-
tions to the SIDIS cross section, very little about which is currently known. It would
be an interesting phenomenlogical study to confront experimental data with our
perturbative results at various high orders ranging from NLO to N3LL, ascertain-
ing how the size of phenomenlogically extracted power corrections depends on the
order of perturbation theory that is employed.

We finally note that while we have focused our studies entirely on the spin-aver-
aged SIDIS cross section, all our results equally apply to the helicity-dependent
one. More precisely, the N3LL result and hence its approximate N3LO expansion
are identical in the spin-averaged and the spin-dependent cases. This further cor-
roborates the finding of Ref. [21] that the SIDIS spin asymmetry is insensitive to
higher-order perturbative QCD corrections.





7
T- O D D P R O T O N - H E L I C I T Y A S Y M M E T RY

We compute the single-spin asymmetry AUL in semi-inclusive deep-inelastic scat-
tering of unpolarized leptons and longitudinally polarized protons at large trans-
verse momentum of the produced hadron. Our calculation is performed in collinear
factorization at the lowest order of QCD perturbation theory. For photon exchange
the asymmetry is T-odd and receives contributions from the interference of the tree
level and one-loop absorptive amplitudes. We consider the behavior of the spin
asymmetry at low transverse momentum where contact to the formalism based
on transverse-momentum dependent distribution functions can be made. We also
present some phenomenological results relevant for the COMPASS and HERMES
experiments and the future Electron-Ion Collider. This Chapter is based on publi-
cation [iii].

7.1 introduction

T-odd effects in semi-inclusive deep-inelastic scattering (SIDIS) have been a focus of
numerous theoretical and experimental studies in recent years [165]. These studies
were motivated by the discovery [166–168] that a proton can in fact have intrinsic
T-odd parton distribution functions, associated with the interplay of transverse po-
larization of the proton or its partons with the partonic transverse momenta. Here
the term “T-odd” refers to a “naive” time-reversal operation, which corresponds
to ordinary time reversal without the interchange of initial and final states of the
reaction considered.

T-odd effects can, however, also be generated in perturbation theory. They are ab-
sent at tree level, but the seminal papers [169–174] described how they can arise
from absorptive parts of loop amplitudes at O(α2

s ) in QCD hard scattering, where
αs is the strong coupling. Initially proposed as tests of QCD and its gluon self-
coupling [170, 171, 173], T-odd effects in perturbative QCD have remained a subject
of interest ever since [175–185]. In regards to SIDIS, the early studies [174, 180, 181]
have addressed neutrino scattering as well as scattering of longitudinally polarized
leptons off unpolarized protons [180, 181].

103
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In the present Chapter, we extend the previous work and compute the leading
perturbative T-odd effects for SIDIS with unpolarized leptons colliding with lon-
gitudinally polarized protons via photon exchange [25, 186, 187], which to our
knowledge have not been investigated by other authors. Calculating the relevant ab-
sorptive parts of one-loop amplitudes, and using collinear factorization, we derive
the corresponding azimuthal terms in the spin asymmetry AUL when the proton
beam helicity is flipped. Our calculation is to be seen in the same spirit as other
approaches that aim to obtain the phase required for (in their case, transverse)
single-spin asymmetries through a hard-scattering mechanism [184, 185, 188]. In
particular, Ref. [185] has investigated perturbative T-odd effects for the single- trans-
verse SIDIS spin asymmetry AUT via the structure function gT and, as we shall see,
there are interesting connections of that study to our present work.

There are several aspects of this observable that motivate us to carry out this study.
First, and perhaps foremost, perturbative T-odd effects in QCD have remained elu-
sive so far, and given their unique property of arising from loop effects in QCD,
any observable sensitive to them is valuable. In this context it is also worth men-
tioning that for AUL the effects are sensitive to the proton’s helicity parton distribu-
tions despite the fact that an unpolarized lepton beam is used. This is quite unique
as well, since usually conservation of parity in strong interactions prohibits such
single-longitudinal spin asymmetries.

Second, measurements of the relevant azimuthal terms have been carried out in
various fixed-target experiments by the HERMES [189–192], CLAS [193] and COM-
PASS [194–196] collaborations, albeit in kinematic regions that are not clearly in
the perturbative regime. Nevertheless, it is interesting to see whether the perturba-
tive calculations give results that are roughly consistent with data at the highest
transverse momenta Ph⊥ of the produced hadron accessed so far. Much higher Ph⊥
should become available at the future Electron-Ion Collider (EIC), where SIDIS
studies with exquisite precision will be feasible [163]. It is therefore valuable to
extend the “library” of observables relevant at the EIC.

Finally, as mentioned above, most studies of T-odd effects in QCD have addressed
the non-perturbative regime in terms of parton distributions and fragmentation
functions. For SIDIS, this approach becomes particularly useful when the trans-
verse momentum of the outgoing hadron is relatively low, P2

h⊥ ≪ Q2, with Q2 the
virtuality of the exchanged photon. In this case one can describe SIDIS in terms
of “Transverse Momentum Dependent” (TMD) parton distributions and fragmen-
tation functions [197, 198]. As has been shown [199, 200], TMDs can indeed gener-
ate the SIDIS spin asymmetry AUL, and numerous phenomenological studies have
been performed [201–208]. Having also a perturbative calculation of AUL, for which
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the observed transverse momentum is acquired by the recoil against a hard parton
in the scattering process, one can address the question in how far the TMD formal-
ism is recovered as one takes the limit P2

h⊥ ≪ Q2. General statements about the
high-transverse-momentum tail of TMDs were developed in [26], which also make
predictions for the behavior of AUL that may be directly compared to our results.
In this context also the T-odd beam-spin asymmetry ALU is interesting [180, 181,
209, 210], for which the initial lepton is polarized, and we will briefly discuss this
asymmetry as well. We note that additional insights into the matching of TMDs to
perturbative calculations have become available in recent years [211–220].

This Chapter is organized as follows. In Sec. 7.2 we introduce the kinematic vari-
ables and the main ingredients for the perturbative description of the spin-dependent
SIDIS cross section. In Sec. 7.3, we briefly review the main properties of T-odd
asymmetries and describe the strategy for our calculation. Section 7.4 presents
our perturbative results for the T-odd contributions to the SIDIS spin asymmetry.
Next, in Sec. 7.5, we consider the limit of small transverse momenta and compare
to known results in the TMD regime. Phenomenological results are presented in
Sec. 7.6. Here we consider the spin asymmetry AUL at the EIC and also compare
to the COMPASS [196] and HERMES data [189, 192]. Section 7.7 concludes this
Chapter.

We note that the T-odd asymmetry has already been the subject of Ref. [25], where
we calculated the lowest order pQCD corrections to it. In Sections 7.3, 7.4 & 7.6,
which are based on [25], we review this calculation. In the present Chapter however
we go far beyond that, while taking steps towards the TMD formalism in Sec. 7.5,
which is the new contribution to the T-odd asymmetry within this dissertation.

7.2 perturbative sidis cross section

We consider the SIDIS process

ℓ(k) + p(P, S) → ℓ′(k′) + h(Ph) + X ,

where we have indicated the four-momenta of the participating particles, and
where S is the proton spin vector. We set q ≡ k − k′ and Q2 ≡ −q2 for the ex-
changed virtual gauge boson, for which we will consider only a virtual photon,
thus excluding parity-violating effects. The usual kinematical variables relevant for
SIDIS are defined as

x =
Q2

2P · q
, y =

P · q
P · k

, z =
P · Ph
P · q

. (7.1)
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Figure 18: Left: kinematics of the SIDIS process in the rest frame of the proton. Right: same in the
Breit frame.

In the following, we will consider the transverse momentum Ph⊥ and its azimuthal
angle ϕh with respect to the lepton plane, defined in a suitable reference frame. For
SIDIS phenomenology one usually adopts the proton rest frame. The kinematics
of the process in this frame are depicted on the left side of Fig. 18. The x3 axis is
defined by the direction of the photon three-momentum q⃗. Our actual calculations
will be performed in the Breit frame in which the photon four-momentum has
a vanishing energy component, q = (0, 0, 0, Q), which simplifies the calculations.
This frame is related to the rest frame by a longitudinal boost along the x3 axis so
that all transverse components remain unchanged. The situation in the Breit frame
is shown on the right side of Fig. 18.

As discussed in the Introduction, we consider longitudinal polarization for the pro-
ton. In the proton rest frame, this is defined by choosing the proton’s spin vector
along (or opposite to) the direction of the virtual photon. Here S⃗ ∥ q⃗ will corre-
spond to negative longitudinal polarization of the proton. We note that in actual
experiments one will define longitudinal polarization in the proton rest frame by
choosing the spin parallel or antiparallel to the lepton beam direction rather than
the photon one. The two cases are, of course, related; all details may be found in
Ref. [221] (see also [192]). Specifically, they differ by admixtures related to the corre-
sponding transverse single-spin asymmetry AUT, which can be taken into account
in the experimental analysis. Note that the case with polarization along the lepton
beam direction readily extends to the situation at an ℓp collider, where a longitudi-
nally polarized proton will be in a helicity state. In the following we will therefore
consider protons with either positive or negative helicity.
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For an incoming unpolarized lepton scattering off a longitudinally polarized pro-
ton two independent structure functions contribute to the proton helicity-depen-
dent part of the cross section [26, 200, 222], entering with dependences of the form
sin(ϕh) or sin(2ϕh), respectively. Explicitly, we have

d 5∆σh

dx dy dz dP2
h⊥ dϕh

=
1
2

(
d 5σh

+

dx dy dz dP2
h⊥ dϕh

− d 5σh
−

dx dy dz dP2
h⊥ dϕh

)

=
πα2

xQ2
y

1 − ε

{√
2ε(1 + ε) F sin ϕh

UL sin(ϕh) + ε F sin 2ϕh
UL sin(2ϕh)

}
,

(7.2)

where the subscripts ± denote proton helicities and ε is defined as the ratio of
longitudinal and transverse photon fluxes,

ε ≡ 1 − y
1 − y + y2/2

. (7.3)

The structure functions F sin ϕh
UL , F sin 2ϕh

UL depend on x, z, Q2 and P2
h⊥, which we will

usually not write out. In the following, we will compute them in collinear fac-
torization, where they become double convolutions of helicity parton distribution
functions, fragmentation functions, and perturbative partonic coefficient functions.
We will only consider the lowest order (LO) in perturbation theory, at which the
structure functions may be cast into the forms

F sin ϕh
UL =

(
αs(µ2)

2π

)2 x
Q2z2

× ∑
a,b

= q,q̄,g

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

∆ fa

(x
x̂

, µ2
)

C sin ϕh ,a→b
UL (x̂, ẑ) Dh

b

(z
ẑ

, µ2
)

× δ

(
q2

T
Q2 − (1 − x̂)(1 − ẑ)

x̂ẑ

)
, (7.4)

and likewise for F sin 2ϕh
UL . The factor (αs/(2π))2 x/(Q2z2) has been introduced for

convenience; it explicitly exhibits the leading power of αs of the structure functions
and also makes the coefficient functions C sin ϕh,a→b

UL , C sin 2ϕh,a→b
UL dimensionless func-

tions of only the two partonic variables

x̂ ≡ Q2

2pa · q
, ẑ ≡ pa · pb

pa · q
, (7.5)

which are the partonic counterparts of the hadronic variables in Eq. (7.1). The
coefficient functions are to be derived for each 2 → 2 partonic channel γ∗ + a →
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b + c, where parton b fragments into the observed hadron and parton c remains
unobserved. These processes are γ∗q(q̄) → q(q̄)g, γ∗q(q̄) → gq(q̄), γ∗g → qq̄, and
γ∗g → q̄q.

In Eq. (7.4) ∆ fa(ξ, µ2) is the helicity distribution of parton a = q, q̄, g in the proton
at momentum fraction ξ and factorization scale µ (which, for simplicity, we choose
equal to the renormalization scale µ appearing in the strong coupling constant αs).
Furthermore, Dh

b
(
ζ, µ2) is the corresponding fragmentation function for parton b

going to the observed hadron h, at momentum fraction ζ and, again, at factorization
scale µ. All functions in Eq. (7.4) are tied together by the δ function in the second
line which expresses the fact that at LO the recoiling partonic system consists of a
single massless parton c. For convenience, we have introduced the variable

q2
T ≡ P2

h⊥
z2 . (7.6)

7.3 t-odd single-spin asymmetry at lowest order

The terms proportional to sin(ϕh) and sin(2ϕh) represent correlations of the forms
S⃗ · (⃗k′⊥ × P⃗h⊥) and S⃗ · (⃗k′⊥ × P⃗h⊥)(⃗k′⊥ · P⃗h⊥), respectively, which already suggests
that they are “naively” time-reversal odd. This sets a constraint on the partonic
scattering processes that may contribute to the corresponding asymmetries in per-
turbation theory. To set the stage for our derivations, we briefly review how this
constraint can be exploited to simplify the calculations.

Denoting as S f i the scattering matrix element between an initial state i and a final
state f , a
textitnaive time-reversal transformation corresponds to a time-reversal without in-
terchange of initial and final states. Hence a T-odd observable is characterized
by [174, 223, 224] ∣∣S f i

∣∣2 ̸=
∣∣S f̃ ĩ

∣∣2 , (7.7)

where ĩ( f̃ ) is obtained from i( f ) by reversing momenta and spins. T-odd effects can
also be present in theories which are invariant under
textittrue time-reversal, fulfilling

∣∣S f i
∣∣2 =

∣∣Sĩ f̃

∣∣2 . (7.8)

This is easily understood by considering the reaction matrix T:

S f i ≡ δ f i + i(2π)4δ(4)
(

Pf − Pi
)

Tf i , (7.9)
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Figure 19: Tree-level diagrams for γ∗ + q → q + g and γ∗ + g → q + q̄.

and the unitarity condition for the scattering matrix

Tf i − T∗
i f = i ∑

X
T∗

X f TXiδ
(4) (PX − Pi) ≡ iα f i , (7.10)

where in the last equation we introduced the absorptive part α f i of the reaction am-
plitude. Eq. (7.10) can be rewritten as T∗

i f = Tf i − iα f i. Taking the square modulus
of both sides we find

∣∣Ti f
∣∣2 =

∣∣Tf i
∣∣2 + 2 Im

(
T∗

f iα f i

)
+
∣∣α f i

∣∣2 . (7.11)

True time reversal invariance, Eq. (7.8), implies
∣∣Ti f

∣∣2 =
∣∣∣T f̃ ĩ

∣∣∣
2

(leaving aside the
case i = f ). Thus, if only QED and QCD interactions are present, Eq. (7.11) gives
an expression for T-odd terms:

∣∣T f̃ ĩ

∣∣2 −
∣∣Tf i

∣∣2 = 2 Im
(

T∗
f iα f i

)
+
∣∣α f i

∣∣2 . (7.12)

If we consider the partonic processes underlying semi-inclusive DIS, the LO contri-
butions to Tf i are the tree-level diagrams for γ∗ + q → q + g and γ∗ + g → q + q̄
shown in Fig. 19. The leading terms for the absorptive amplitude α f i arise from loop
corrections already at one-loop order. The one-loop diagrams shown in Fig. 20 for
the initial-quark channel and in Fig. 21 for the initial-gluon channel all have the
property that they have an imaginary part and hence produce a phase relative
to the corresponding tree-level amplitudes. As a result, the term 2 Im( T∗

f iα f i) in
Eq. (7.12) is non-vanishing already due to the interferences of the one-loop and
tree amplitudes. We conclude that LO contributions to T-odd effects in SIDIS come
precisely from these interferences and are of order O(α2

s ) [174].

Let us briefly describe the strategy we have adopted in computing the T-odd inter-
ference contributions. Introducing the amplitudes M±

ab for positive and negative
helicity of parton a in the channel γ∗ + a → b + c, we write the difference of their
squares as

|M+
ab|2 − |M−

ab|2 = Lµν
(

Ŵ+
µν − Ŵ−

µν

)
≡ Lµν∆Ŵµν , (7.13)
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where

Lµν = 2
(

kµk′ν + kνk′µ −
Q2

2
gµν

)
(7.14)

is the leptonic tensor, and

∆Ŵµν ≡ ⟨pa,+|Jµ(0)|pb pc⟩ ⟨pb pc|Jν(0)|pa,+⟩

− ⟨pa,−|Jµ(0)|pb pc⟩ ⟨pb pc|Jν(0)|pa,−⟩ (7.15)

is the partonic tensor for a polarized parton a in the initial state and a fragmenting
parton b in the final state (at LO, the final state is completely fixed by a and b). Since,
as discussed above, only interferences between tree-level and one-loop amplitudes
contribute to the order we are considering, we have

∆Ŵµν =
[
⟨pa,+|Jµ,tree(0)|pb pc⟩ ⟨pb pc|Jν,loop(0)|pa,+⟩

+ ⟨pa,+|Jµ,loop(0)|pb pc⟩ ⟨pb pc|Jν,tree(0)|pa,+⟩
]

−
[
⟨pa,−|Jµ,tree(0)|pb pc⟩ ⟨pb pc|Jν,loop(0)|pa,−⟩

+ ⟨pa,−|Jµ,loop(0)|pb pc⟩ ⟨pb pc|Jν,tree(0)|pa,−⟩
]

.

(7.16)

The phase required for a non-vanishing imaginary part is generated by analytic
continuation of logarithms in the loop integrals, e.g.,

ln
(
− µ2

ŝ + iϵ

)
−→ ln

(
µ2

ŝ

)
+ iπ , (7.17)

where ŝ = (q + p)2 = Q2(1 − x̂)/x̂. As mentioned, such phases only appear in
the s-channel diagrams and the two box-diagrams in Fig. 20, for initial quarks (or
antiquarks). For initial gluons, they appear in the two box diagrams in Fig. 21.

It is quite straightforward to compute the partonic tensor ∆Ŵµν. The only subtlety
is related to the use of the Dirac matrix γ5 and the Levi-Civita tensor εµνρσ in di-
mensional regularization in d = 4− 2ϵ dimensions. Here we have used the scheme
of Refs. [79, 80] which is known to be algebraically consistent. We have used the
Mathematica package Tracer [225] to compute the Dirac traces and contractions
and Package-X [226] for the evaluation of the loop integrals and their imaginary
parts. We note that poles at ϵ = 0 arise at various intermediate stages of the cal-
culation; these all have to cancel in the end since, at the lowest order, the T-odd
part of the hadronic tensor must not have any ultraviolet or infrared or collinear
singularities. This provides a useful check on our calculation. The partonic coeffi-
cient functions are found from the final result for Lµν∆Ŵµν as the coefficients of
the terms ∼ sin(ϕh) and ∼ sin(2ϕh). No other angular dependences appear.
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1
Figure 20: One-loop diagrams for γ∗ + q → q + g that provide a phase relative to the tree-

level amplitude. We note that there are additional one-loop diagrams that do
not produce a phase.

1Figure 21: One-loop diagrams for γ∗ + g → q + q̄ that provide a phase relative to the tree-
level amplitude.
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7.4 analytical results

For the partonic coefficient functions for F sin ϕh
UL we find [25, 187]:

C sin ϕh,q→q
UL (x̂, ẑ) = e2

q CF

(
CA(1 − x̂) + CF(x̂ − 1 − ẑ + 3x̂ẑ)

+ (CA − 2CF)(1 − 2x̂)
ẑ ln ẑ
1 − ẑ

)
Q
qT

,

C sin ϕh,q→g
UL (x̂, ẑ) = −e2

q CF
(1 − ẑ)

ẑ

(
CA(1 − x̂) + CF(−3x̂ẑ + 4x̂ + ẑ − 2)

+ (CA − 2CF)(1 − 2x̂)
(1 − ẑ) ln(1 − ẑ)

ẑ

)
Q
qT

,

C sin ϕh,g→q
UL (x̂, ẑ) = e2

q (CA − 2CF)(1 − x̂)
1

2ẑ2

(
x̂ẑ(1 − 2ẑ)− (1 − x̂) ln(1 − ẑ)

+ (1 − x̂)
ẑ ln(ẑ)
1 − ẑ

)
Q
qT

, (7.18)

while for the coefficients for F sin 2ϕh
UL we have [25, 187]

C sin 2ϕh,q→q
UL (x̂, ẑ) = e2

q CF(1 − x̂)
(
(CA − 2CF)

(1 − 2ẑ) ln ẑ
1 − ẑ

− (CA + (1 − 3ẑ)CF)

)
Q2

q2
T

,

C sin 2ϕh,q→g
UL (x̂, ẑ) = −e2

q CF(1 − x̂)
(1 − ẑ)2

ẑ2

(
(CA − 2CF)

(1 − 2ẑ) ln(1 − ẑ)
ẑ

+ (CA − (2 − 3ẑ)CF)

)
Q2

q2
T

,

C sin 2ϕh,g→q
UL (x̂, ẑ) = e2

q (CA − 2CF)(1 − x̂)2 1
2ẑ3

(
ẑ(2(1 − ẑ)ẑ − 1)− (1 − ẑ) ln(1 − ẑ)

− ẑ2 ln ẑ
1 − ẑ

)
Q2

q2
T

. (7.19)

Note that the ratio qT/Q in the above expressions is fixed by x̂ and ẑ through
the δ-function in (7.4). The q → q and q → g coefficients are related by crossing
symmetry in the following way:

C sin ϕh,q→g
UL (x̂, ẑ) = −C sin ϕh,q→q

UL (x̂, 1 − ẑ) ,

C sin 2ϕh,q→g
UL (x̂, ẑ) = C sin 2ϕh,q→q

UL (x̂, 1 − ẑ) . (7.20)
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Furthermore, because of charge conjugation and parity invariance the results for
the antiquark channels q̄ → q̄ and q̄ → g are identical to those for q → q and q → g,
respectively. In addition, we have

C sin ϕh,g→q̄
UL (x̂, ẑ) = −C sin ϕh,g→q

UL (x̂, 1 − ẑ) ,

C sin 2ϕh,g→q̄
UL (x̂, ẑ) = C sin 2ϕh,g→q

UL (x̂, 1 − ẑ) . (7.21)

In Ref. [186] we have also derived these results via crossing of the corresponding
T-odd asymmetries in e+e− annihilation in [181]. Our results given above correct
the sign of the results in [186]. For the case of quark-initiated processes, an inde-
pendent cross check is provided by the SIDIS beam asymmetries ALU calculated
in Ref. [174]. Indeed, for the charged-current case considered in these papers, the
interaction mediated by W-bosons selects left-handed quarks, so that even if the tar-
get is unpolarized, the partonic matrix elements are the same as in our Eq. (7.16),
albeit with reversed helicity. For instance, by looking at the functions F8 and F9 in
Eqs. (3.14) of [181], in the case of quark-initiated diagrams, one can verify that they
correspond to our C sin ϕh

UL and C sin 2ϕh
UL functions with a reversed sign. Clearly, this

reasoning does not allow comparisons in the case of incoming gluons.

As we mentioned in the Introduction, there are interesting connections of our work
to the recent study [185] on a two-loop perturbative mechanism for the single-
transverse SIDIS spin asymmetry AUT involving the structure function gT. A well-
known feature of gT is that its Wandzura-Wilczek [227] part is proportional to an
integral over the quark and gluon helicity parton distributions. This part of the
calculation of [185] therefore involves hard-scattering cross sections with definite
helicities of the incoming partons. Remarkably, these turn out to be the same as
the ones we have presented above (apart, of course, from normalization which is
necessarily different for AUL and AUT). This feature deserves further investigation
in the future.

7.5 low-qT limit

As discussed in the Introduction, it is interesting to expand the above results for the
structure functions for low values of qT/Q, in order to make contact with results
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predicted by the TMD formalism. When q2
T/Q2 → 0 we can expand the delta

condition in (7.4) as described, for example, in [228–230]:

1
x̂ẑ

δ

(
q2

T
Q2 − (1 − x̂)(1 − ẑ)

x̂ẑ

)
= δ(1 − ẑ)δ(1 − x̂) ln

(
Q2

q2
T

)

+
δ(1 − ẑ)
(1 − x̂)+

+
δ(1 − x̂)
(1 − ẑ)+

+ O
(

q2
T

Q2

)
. (7.22)

Here the “plus” distribution is defined in the usual way upon integration with
a regular function as in (3.17). To simplify notation, we write the double convo-
lution integral as (we omit the scale dependence of the parton distributions and
fragmentation functions here):

(
∆ f ⊗C ⊗ D

)
(x, z) ≡

∫ 1

x

dx̂
x̂

∫ 1

z

dẑ
ẑ

δ

(
q2

T
Q2 − (1 − x̂)(1 − ẑ)

x̂ẑ

)
∆ f
(x

x̂

)
C(x̂, ẑ)D

(z
ẑ

)
.

(7.23)
From the sin(ϕh) terms in (7.18) we then find the following contribution to the
q → q coefficient at low qT/Q:

(
∆ fq ⊗ C sin ϕh,q→q

UL ⊗ Dh
q
)
(x, z)

= e2
q

Q
qT

CA

2

{
−CF

(
2 ln

(
q2

T
Q2

)
+ 3

)
∆ fq (x) Dh

q (z)

+ Dh
q (z)

∫ 1

x
dx̂ δPqq(x̂)∆ fq

(x
x̂

)
+ ∆ fq (x)

∫ 1

z
dẑ δPqq(ẑ) Dh

q

(z
ẑ

)}

− e2
q

Q
qT

CF

CA
∆ fq (x)

∫ 1

z
dẑ

ẑ
1 − ẑ

(
1 +

ln ẑ
1 − ẑ

)
Dh

q

(z
ẑ

)
, (7.24)

where

δPqq(x) ≡ CF

[
2x

(1 − x)+
+

3
2

δ(1 − x)
]

(7.25)

is the LO splitting function for the scale evolution of the transversity distributions.
In the q → g channel we obtain

(
∆ fq ⊗ C sin ϕh,q→g

UL ⊗ Dh
g
)
(x, z)

= e2
q

Q
qT

CF ∆ fq (x)
∫ 1

z
dẑ

1 − ẑ
ẑ2

(
(CA − 2CF) ln(1 − ẑ)− 2CF ẑ

)
Dh

g

(z
ẑ

)
. (7.26)
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For the process γ∗g → qq̄ the coefficient function diverges logarithmically for ẑ → 1.
In addition to the expansion (7.22) we therefore also need

ln(1 − ẑ)
x̂ẑ

δ

(
q2

T
Q2 − (1 − x̂)(1 − ẑ)

x̂ẑ

)
= −1

2
ln2

(
Q2

q2
T

)
δ(1 − x̂)δ(1 − ẑ)

− δ(1 − ẑ)
(1 − x̂)+

ln

(
Q2

q2
T

)
+ δ(1 − x̂)

(
ln(1 − ẑ)

1 − ẑ

)

+

− δ(1 − ẑ)
((

ln (1 − x̂)
1 − x̂

)

+

− ln x̂
1 − x̂

)
. (7.27)

Details of the derivation of this equation are given in Appendix C.1. We then find

(
∆ fg ⊗ C sin ϕh,g→q

UL ⊗ Dh
q
)
(x, z)]

=
e2

q

2
Q
qT

(CA − 2CF)Dh
q (z)

∫ 1

x
dx̂ ∆ fg

(x
x̂

) [
(1 − x̂) ln

(
Q2

q2
T

)

+(1 − x̂) ln
(

1 − x̂
x̂

)
− 1
]

. (7.28)

The results in Eqs. (7.24),(7.26),(7.28) are valid up to terms of order qT/Q. Keeping
in mind the overall factor 1/Q2 in Eq. (7.4), we see that the structure function F sin ϕh

UL
is predicted to have the leading power

F sin ϕh
UL ∝

1
QqT

+ O
(

1
Q2

)
(7.29)

at low qT, modulo logarithms. The behavior found for γ∗q → qg in Eq. (7.24) is
particularly interesting. The term −CF(2 ln(q2

T/Q2) + 3) is the well-known first-
order contribution to the Sudakov form factor. The next two terms both contain
the LO transversity splitting function δPqq, convoluted with either the helicity par-
ton distribution or the fragmentation function. A generic low-qT structure with
the Sudakov form factor and splitting functions is familiar from the spin-averaged
case (see Ref. [230]). However, the appearance of the transversity splitting function
in combination with ∆ fq or Dh

q , and along with an overall factor CA, is quite re-
markable. This feature must be related to the fact that in the TMD framework the
leading part of Asin ϕh

UL receives contributions from the T-even function hL, which
is twist-three and describes the distribution of transversely polarized quarks in a
longitudinally polarized hadron, convoluted with the Collins function probing the
fragmentation of transversely polarized quarks [200]. The last term in (7.24) and the
results in Eqs. (7.26),(7.28) do not appear to have a straightforward structure. An-
other striking feature is the appearance of a logarithm of qT/Q in the result for the
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g → q channel in Eq. (7.28): such logarithms do not usually appear in off-diagonal
contributions at lowest order.

Similarly, we can consider the low-qT/Q limit for the sin(2ϕh) terms. Here we find
for the q → q channel:

(
∆ fq ⊗ C sin 2ϕh,q→q

UL ⊗ Dh
q
)
(x, z)

= −e2
q

3
4

CA

{
−CF

(
2 ln

(
q2

T
Q2

)
+ 3

)
∆ fq (x) Dh

q (z) ln

(
q2

T
Q2

)

+ Dh
q (z)

∫ 1

x
dx̂ δPqq(x̂)∆ fq

(x
x̂

)
+ ∆ fq (x)

∫ 1

z
dẑ δPqq(ẑ)Dh

q

(z
ẑ

)}

+
CF

2CA
∆ fq (x)

∫ 1

z
dẑ

ẑ
(1 − ẑ)2

(
1 − 3ẑ − 2(2ẑ − 1)

ln ẑ
1 − ẑ

)
Dh

q

(z
ẑ

)
. (7.30)

Apart from normalization, the first three terms are identical to the corresponding
ones in Eq. (7.24). We note that, despite first appearances, the integrand of the last
term is regular as ẑ → 1.

In the q → g channel we have
(
∆ fq ⊗ C sin 2ϕh,q→g

UL ⊗ Dh
g
)
(x, z) = −e2

q CF∆ fq (x)

×
∫ 1

z

dẑ
ẑ

(
(CA − 2CF)

(1 − 2ẑ) ln(1 − ẑ)
ẑ

+ (CA − (2 − 3ẑ)CF)

)
Dh

g

(z
ẑ

)
. (7.31)

For the channel γ∗g → qq̄ we again need the expansion (7.27) and obtain

(
∆ fg ⊗ C sin 2ϕh,g→q

UL ⊗ Dh
q
)
(x, z) =

e2
q

2
(CA − 2CF)Dh

q (z)

∫ 1

x
dx̂ ∆ fg

(x
x̂

)
x̂

[
ln

(
Q2

q2
T

)
+ ln

(
1 − x̂

x̂

)
+

3
2

]
.

(7.32)

The results in Eqs. (7.31),(7.32) receive corrections of order q2
T/Q2, so that

F sin 2ϕh
UL ∝

1
Q2 + O

(
q2

T
Q4

)
, (7.33)

again up to logarithms.

Our low-qT expansions fill two of the gaps reported in Table 2 of Ref. [26] provid-
ing the missing perturbative expressions for the ϕh-dependent T-odd cross sections.
From the point of view of TMD factorization, they correspond to the leading part
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of the “high-qT calculation”. As discussed in [26], the TMD framework predicts the
same behavior ∝ 1/(QqT) of the sin(ϕh) terms as we find in Eq. (7.29). In this sense
the TMD calculation matches the collinear one. At this point, however, one cannot
decide whether this matching is really quantitative in the sense that not just the
overall power counting matches, but also the full combination of hard-scattering
coefficients, parton distributions and fragmentation functions. Currently, despite
enormous progress in recent years [211–220], the high-transverse-momentum tails
of TMDs are not understood at a sufficient level to obtain definitive results for AUL,
especially in the case of the fragmentation correlators. Clearly, it will be very inter-
esting to explore this issue more deeply in the future, also in the light of TMD fac-
torization theorems extending beyond leading twist proposed recently [217, 219].

For the sin(2ϕh) terms, we find in Eq. (7.33) that the perturbative structure function
becomes constant at low qT. Including the factors of the strong coupling, F sin 2ϕh

UL
behaves in total as α2

s /Q2. This result is not in accordance with the TMD predic-
tion [26] that the high-qT tail of this structure function should behave as αs/q4

T. In
the TMD framework, F sin 2ϕh

UL is leading twist, being a convolution of the longitu-
dinal worm-gear functions with Collins functions [200]. As one can see, even the
powers of the strong coupling differ between the TMD prediction and our pertur-
bative result.

In the context of this discussion, it is also interesting to recall the corresponding
results for the T-odd beam spin asymmetry ALU [180, 181], for which the initial
lepton is polarized. The relevant results are given in Appendix C.2. Interestingly,
at low qT, the same features as described above for AUL are encountered.

7.6 phenomenological results

We now present some simple phenomenology of the T-odd effects in SIDIS with
longitudinally polarized protons. We will not carry out any full-fledged study;
rather, we wish to explore the overall size of the sin ϕh and sin(2ϕh) modulations.

The quantities of interest in polarization experiments are typically spin asymme-
tries. In the present case, the longitudinal proton helicity single spin asymmetry in
SIDIS is defined as

AUL(ϕh) ≡
dσh

+(ϕh)− dσh
−(ϕh)

dσh
+(ϕh) + dσh

−(ϕh)
, (7.34)

where as in Sec. 7.2 dσh
± represents the (differential) cross section for positive

(negative) proton helicity. The denominator of the asymmetry is just twice the
spin-averaged cross section as a function of the azimuthal angle ϕh. As is well
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known [200, 228], this cross section has a ϕh independent piece as well as terms
proportional to cos(ϕh) and cos(2ϕh). Dividing numerator and denominator by the
ϕh independent term, we may write

AUL(ϕh) =
Asin ϕh

UL sin ϕh + Asin 2ϕh
UL sin 2ϕh

1 + Acos ϕh
UU cos ϕh + Acos 2ϕh

UU cos 2ϕh
. (7.35)

The various angular modulations Asin ϕh
UL etc. are also known as analyzing powers.

The ones of interest to us here, Asin ϕh
UL and Asin 2ϕh

UL , may be extracted from the full
cross section as follows:

Asin nϕh
UL =

∫ 2π
0 dϕh sin(nϕh)

[
dσh

+(ϕh)− dσh
−(ϕh)

]

1
2

∫ 2π
0 dϕh

[
dσh

+(ϕh) + dσh
−(ϕh)

] (n = 1, 2) . (7.36)

In this way, the terms with cos(ϕh) and cos(2ϕh) in the spin-averaged cross sec-
tion do not contribute. Experimental data are commonly reported in terms of the
Asin nϕh

UL , and accordingly these are the quantities that we will consider for our nu-
merical predictions.

As stated earlier, in the present Chapter we restrict ourselves to LO predictions for
the T-odd terms, keeping the leading contribution ∝ α2

s in the numerator. For con-
sistency, we therefore also need to use only the LO term in the denominator, which
is only of order αs and is easily computed [222]. (We note that the NLO corrections
for the spin-averaged cross section in the denominator are available [231–233].) Be-
cause of this mismatch of perturbative orders in the numerator and denominator,
the analyzing powers Asin ϕh

UL , Asin 2ϕh
UL are themselves of order αs, which is in con-

trast to most other spin asymmetries for which the leading power of αs cancels. We
therefore expect Asin ϕh

UL , Asin 2ϕh
UL to be quite sensitive to the choice of scale and to

higher-order corrections.

For our numerical studies we use the DSSV [17, 18] set for the helicity parton
distributions and the DSS14 [160] set of fragmentation functions. We note that
only pion fragmentation is considered in this set. We set the renormalization and
factorization scales equal to Q. For the denominator of the asymmetries we use the
NNPDF31 [234] set of unpolarized parton distributions. We call this set from the
LHAPDF library [235].

We start by presenting estimates for the future Electron-Ion Collider (EIC) with
a center-of-mass energy of 140 GeV. At this fairly high energy, the sin ϕh and
sin(2ϕh) modulations are overall quite strongly suppressed. The reason is that at
high energies rather low momentum fractions in the parton distribution functions
are probed, where the polarized distributions are much smaller than the unpolar-
ized ones. The left part of Fig. 22 shows x-dependence of the analyzing powers
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Figure 22: Left: x-dependence and Right: z-dependence of the analyzing powers for ℓp →
ℓπ+ X at the future EIC. The sin(2ϕh) analyzing power has been multiplied by
(−1). For the left graph, z = 0.4, while for the right graph x = 0.1. In both cases
we use

√
s = 140 GeV, Q2 = 50 GeV2 and Ph⊥ = 2 GeV.

Asin ϕh
UL (blue solid line) and −Asin 2ϕh

UL (red dashed line) for π+ production, at a set
of fixed values of z, Q2 and Ph⊥. These values have been chosen by considering the
“projected EIC data” shown in Ref. [163]. We observe that the asymmetries indeed
rapidly decrease toward low values of x. The right part of the figure shows the
z-dependence of the asymmetries, which is much more moderate through most of
the range considered.

In the following we show results integrated over large bins in z and Q2, but differ-
ential in Ph⊥ and x. To this end, we define

Asin nϕh
UL,int ≡

∫ zmax
zmin

dz
∫ Q2

max
Q2

min
dQ2

∫ 2π
0 dϕh sin(nϕh)

[
dσ+(ϕh)− dσ−(ϕh)

]

1
2

∫ zmax
zmin

dz
∫ Q2

max
Q2

min
dQ2

∫ 2π
0 dϕh

[
dσ+(ϕh) + dσ−(ϕh)

] (n = 1, 2) .

(7.37)
Figure 23 shows Asin ϕh

UL,int and Asin 2ϕh
UL,int as functions of Ph⊥ at the EIC, for fixed values

x = 0.1 (blue solid) and x = 0.01 (red dashed), for production of positive and neg-
ative pions. As expected for an O(αs) effect, and because of the suppression of the
polarized parton distributions already mentioned, the asymmetries are quite small,
especially for x = 0.01. Also, Asin 2ϕh

UL,int is generally smaller than Asin ϕh
UL,int because of its

stronger suppression at low qT/Q discussed in the previous section. We also ob-
serve that the asymmetries for positively and negatively charged pions tend to have
opposite signs, which is due to the dominance of the (positive) up-quark helicity
parton distribution for π+ production, and of the (negative) down-quark helicity
distribution in case of π−. We note that detailed studies of the uncertainties to be
expected for such measurements at the EIC will evidently require a full analysis
that also incorporates efficiencies and detector effects, which is beyond the scope of
this Chapter. A ballpark estimate based on the spin-averaged SIDIS rates expected
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Figure 23: T-odd asymmetries as functions of Ph⊥ for x = 0.1 and x = 0.01 for ℓp →
ℓπ+ X and ℓp → ℓπ− X at the EIC. We have integrated the cross sections over
Q2/(GeV)2 ∈ [10, 100] for x = 0.1 (blue solid) and Q2/(GeV)2 ∈ [2, 10] for
x = 0.01 (red dashed), and in both cases over z ∈ [0.05, 0.8].

at the EIC (as reported in [163]) provides confidence that even asymmetries of the
small size as in Fig. 23 should be resolvable at the EIC.

We proceed by presenting a comparison to data from COMPASS [196] where the
asymmetry AUL has been measured in muon scattering off longitudinally polar-
ized deuterons at

√
s = 17.4 GeV. Such a comparison is of course somewhat pre-

carious as the hadron transverse momenta accessed in the COMPASS SIDIS data
are typically below 1 GeV. Even though Q2 extends to values well in the perturba-
tive regime and qT = Ph⊥/z is typically significantly larger than 1 GeV, it is clear
that the use of perturbation theory is questionable. Arguably a TMD description
would appear to be more appropriate here. Related to this, for a valid perturbative
description, one should address the Sudakov logarithms we have found at low qT

(see Sec. 7.5) and resum them to all orders of perturbation theory. Such an analysis
is presently not possible since the evolution of all TMD functions contributing to
AUL is not yet available. In any case, our main interest here is to explore the rough
size of the perturbative predictions for AUL and to see whether there is broad con-
sistency with the experimental data.
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Figure 24: Comparison of our numerical estimates for Asin ϕh
UL and Asin 2ϕh

UL with data from the
COMPASS collaboration [196] in hadron production off longitudinally polarized
deuterons at

√
s = 17.4 GeV. We show the Ph⊥ distribution of the asymmetry

integrated over x ∈ [0.004, 0.7], z ∈ [0.01, 1] and Q2/(GeV)2 ∈ [1, 100].

We note that COMPASS has considered the production of arbitrary charged ha-
drons. Sets of fragmentation functions for h± are not available in DSS14, so we
continue to use the pion fragmentation functions. Given that pions dominate the
spectrum of produced hadrons and that fragmentation effects cancel to some ex-
tent in the spin asymmetry, this should be more than sufficient for a first compar-
ison. We consider the π+-channel: µd → µ π+ X. As in [196] we integrate over
x ∈ [0.004, 0.7], z ∈ [0.01, 1] and Q2/(GeV)2 ∈ [1, 100] and divide by the value
|PL| = 0.8 of the muon beam polarization. Figure 24 shows the comparisons both
for Asin ϕh

UL and for Asin 2ϕh
UL . We observe reasonable agreement, given the rather large

uncertainties of the data, and keeping in mind that the Ph⊥ values are such that a
TMD description would appear to be more appropriate, as discussed above.

We finally also show a comparison to data from the HERMES experiment [189, 192]
taken for π± production at

√
s = 7.25 GeV. As we discussed in Sec. 7.2, in an actual

experiment the target is polarized along (or opposite to) the lepton beam direction.
This means that the measured asymmetry AUL receives contributions from both the
longitudinal and transverse spin asymmetries with respect to the direction of the
virtual photon [192, 221], so that AUL(l) ̸= AUL(q) (where the arguments l and q
denote target polarization defined relative to the lepton or photon direction, respec-
tively). For HERMES with its relatively modest Q2 values, the difference between
AUL(l) and AUL(q) – which is of subleading twist – is expected to be potentially
more pronounced. Combining with data taken with a transversely polarized target,
HERMES has in fact been able to provide an extraction of AUL(q) [192]. Figure 25
shows both sets of HERMES data, Asin ϕh

UL (l) and Asin ϕh
UL (q), compared to our calcu-

lations of Asin ϕh
UL (q). We show the comparisons as functions of x and z, using the

mean values of x, z, Q2 and Ph⊥ for each point reported in Table 1 of [192]. One
can see that for positively charged pions the differences between Asin ϕh

UL (l) and
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Figure 25: Comparison of our calculations of Asin ϕh
UL with data from the HERMES collabora-

tion [192] in π± production off longitudinally polarized protons, as functions of
x (left) and z (right). Asin ϕh

UL (l) and Asin ϕh
UL (q) represent the asymmetries for tar-

get polarization defined relative to the lepton or photon direction, respectively,
taken from [187].

Asin ϕh
UL (q) are quite large, while they are small for π− production. We also notice

that our calculations reproduce the trend of the data rather well overall, despite
the fact that HERMES accessed only rather small transverse momenta.

HERMES data for the sin 2ϕh asymmetry are available only without correction
for the polarization direction [189]. The right part of Fig. 26 shows the data for
Asin 2ϕh

UL (l) for π+ production, compared to our calculations. Here we have used the
mean values of x and Q2 for each point as given in [189], while adopting ⟨z⟩ and
⟨Ph⊥⟩ from [192]. To facilitate comparison with the sin ϕh asymmetry, we show the
corresponding results for Asin ϕh

UL on the left side of Fig. 26. As before, the sin 2ϕh

asymmetry is smaller. Our calculations are overall in fair agreement with the data
for both asymmetries; in particular, they nicely capture the difference in magni-
tude between the sin ϕh and sin 2ϕh components. The situation thus appears to be
different from that for the cos 2ϕh unpolarized structure function Fcos 2ϕh

UU analyzed
in [236], for which the perturbative O(αs) prediction for HERMES kinematics was
shown to be negligible compared to higher-twist effects. It should be stressed again,
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Figure 26: Numerical results for Asin ϕh
UL and Asin 2ϕh

UL compared to HERMES data [189] for
π+ production off longitudinally polarized protons. The data have not been
corrected for the polarization direction, taken from [187].

however, that the data shown in Fig. 26 have not been corrected for the polariza-
tion direction, and according to Fig. 25 such correction effects are expected to be
particularly important in the case of π+ production.

7.7 conclusions

We have presented a perturbative calculation for the single-spin asymmetry AUL

in semi-inclusive deep-inelastic scattering, which may be measured by scattering
unpolarized leptons off longitudinally polarized nucleons. This asymmetry is in-
teresting because, in the absence of parity violation, it is T-odd and receives pertur-
bative contributions only via QCD loop effects. Also, it is sensitive to the proton’s
helicity parton distributions, despite the fact that it is measured with an unpolar-
ized lepton beam. Our calculation builds on the large body of previous work on
T-odd effects in hard scattering, opening a new avenue for future measurements at
the EIC.

We have provided compact expressions for the T-odd contributions in the various
partonic channels. We have used these to derive the low-transverse-momentum
behavior of the T-odd terms, which shows striking features. Our results add new
information on the relations between TMDs and perturbative hard scattering which
had been missing so far. They may be used for comparisons to detailed quantitative
predictions to be obtained in the future within the TMD formalism.
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Our phenomenological calculations reveal the expected relatively small size of the
T-odd asymmetries. We have made predictions for the asymmetries at the future
electron-ion-collider, where it should be possible to explore them. Our results are
also broadly consistent with available COMPASS and HERMES data, although the
applicability of a purely hard-scattering picture is questionable here. All in all we
hope that this Chapter will contribute to the long-standing quest to establish and
understand T-odd effects in QCD.
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Here we show the QCD Feynman rules in the covariant gauge, [237, 238].

q
a, µ b, ν =

iδab

q2 + iε

(
−gµν + (1 − ξ)

qµqν

q2 + iε

)

p
j i = iδij /p + m

p2 − m2 + iε

p
a b =

iδab

p2 + iε

a, µ

i

j = −igγµ[Ta]ij

k

a, µ

b

c = −g f abckµ

p3

p1

p2

c, λ

a, µ

b, ν

= −g f abc
[

gµν(p1 − p2)
λ + gνλ(p2 − p3)

µ + gλµ(p3 − p1)
ν
]

p1

p3
p2

p4

a, µ

c, ρ

b, ν d, σ = ig2





f eab f ecd (gµρgνσ − gµσgνρ)

+ f eac f edb (gµσgρν − gµνgρσ)

+ f ead f ebc (gµνgσρ − gµρgσν)

1
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b.1 coefficients for resummation

In the expansion of the running strong coupling (2.23) we use the following coeffi-
cients [31, 32]

b0 =
1

12π

(
11CA − 2N f

)
, b1 =

1
24π2

(
17C2

A − 5CAN f − 3CFN f
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,
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1093
729

N3
f

]
, (B.1)

with N f the number of flavors and

CF =
N2

c − 1
2Nc

=
4
3

, CA = Nc = 3 . (B.2)

For the b3 coefficient we have inserted the values of CF, CA; the full expression can
be found in [239].

The functions Aq, D̂ and B̂ appearing in Eqs. (4.29) & (4.59) are perturbative series
in the strong coupling

Aq(αs) =
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π
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The relevant expansion coefficients for Aq in Eq. (6.11) read [31, 85, 240–245]:
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dabcd
F dabcd

A
N2

c − 1
=

Nc(N2
c + 6)

48
,

dabcd
F dabcd

F
N2

c − 1
=

N4
c − 6N2

c + 18
96N2

c
, TF =

1
2

. (B.5)

Furthermore for the expansion of the function D̂q we have [31, 32, 99, 100, 246],
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The coefficients for the B̂q function are given by using B(1)
q and B(2)

q from [106, 164]
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The expansion coefficients for Ĉqq in Eq. (6.9) read [32]
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Finally, for HSIDIS
qq we find for an arbitrary renormalization scale µR, but for µF = Q:
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and, in Sec. 6.4, the three-loop contribution
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b.2 near-threshold results in x , z-space

Performing a double-inverse Mellin transform of the results given in Eqs. (5.38)
and (5.39) we obtain approximate results for the quark-to-quark hard-scattering
function ωT

qq (x̂, ẑ, αs(µR), µR/Q, µF/Q) in Eq. (6.3), valid near threshold. To obtain
compact expressions, we introduce the following abbreviations:

δx ≡ δ(1 − x̂) , δz ≡ δ(1 − ẑ) ,
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The NLO term reads
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Note that we have included the NLP contributions, which are given in the third
line. They show up as terms that carry only a single distribution, in either x̂ or ẑ.

Since the NNLO C2
F contribution is quite lengthy, we split it into its LP and NLP

contributions and write it as

∆(2),CF
qq = ∆(2),CF

qq,LP + ∆(2),CF
qq,NLP . (B.14)
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We then have for the leading-power part:
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while the dominant NLP terms are given by
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The CFCA and CFN f parts do not possess any dominant NLP contributions (see
Eq. (5.39)). They read:
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Q2 . (B.17)

and
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qq =

1
12

(
δx D2

z + δz D2
x + 2D0

x D1
z + 2D0

z D1
x

)

− 5
18

(
D0

x D0
z + δx D1

z + δz D1
x

)

+
(

δx D0
z + δz D0

x

)( 7
27

− π2

36

)

+ δx δz

(
ζ(3)

6
+

19π2

216
+

127
96

)

− 1
12

[
δx D0

z + δz D0
x +

3
2

δx δz

]
ln2 µ2

F
Q2

+

[
5

18

(
δx D0

z + δz D0
x

)
+ δx δz

(
1
24

+
π2

18

)]
ln

µ2
F

Q2 .

(B.18)

We stress that the results in Eqs. (B.15),(B.17),(B.18) collect all double distributions
in x̂ and ẑ that arise at NNLO. We also note that the Mellin-space and the x, z-
space expressions near threshold are not strictly identical, but differ by terms that
are suppressed near threshold. These terms are generically of the form lnm(N̄)/N2

or 1/N (without logarithms) in Mellin space (and likewise with N replaced by M),
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and of the form (1 − x̂) lnm(1 − x̂) or constant (and also with x̂ replaced by ẑ) in
x, z-space.



C
A P P E N D I X

c.1 derivation of eq . (7 .27)

Setting ρ ≡ q2
T/Q2 we consider the expression
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]
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.

(C.1)

In the second equality we have added and subtracted terms in such a way that four
types of contributions arise. The first one with (∆ f (x/x̂)−∆ f (x)) (D(z/ẑ)− D(z))
is easily seen to vanish for qT/Q → 0 since ẑ → 1 in that limit. The second term
becomes, at small ρ:

D(z)
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)

+ O(ρ) , (C.2)
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where the plus distribution is defined as in Eq. (3.17) and where Li2 denotes the
dilogarithm function. For the third term we go back to ẑ as integration variable. We
then find

∆ f (x)
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ẑ

)
− 1

2
ln2(1 − z)∆ f (x) D(z) + O(ρ) . (C.3)

Finally, for the last term in (C.1) we obtain

∆ f (x) D(z)
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+ O(ρ) . (C.4)

Combining all terms in (C.2)–(C.4) and expressing them in terms of distributions,
we directly recover Eq. (7.27). Note that all terms involving logarithms or dilog-
arithms of the lower integration limits x, z cancel in the final answer, as they
should, since we have defined our plus distributions by integrations from 0 to 1
(see Eq. (3.17)).

c.2 perturbative results for the beam-spin asymmetry A LU

The cross section for the beam-spin asymmetry ALU may be written as [200]:

d 5∆σh

dx dy dz dP2
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1
2

(
d 5σh
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1 − ε
F sin ϕh

LU sin(ϕh) . (C.5)

As is well-known, there is no term with sin(2ϕh) for single-photon exchange. Writ-
ing the structure function F sin ϕh

LU as
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we have from Refs. [174, 181]:
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LU (x̂, ẑ) = −e2

q CF

(
CA(1 − x̂)− CF(1 − x̂ + ẑ + x̂ẑ) + (CA − 2CF)
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ẑ
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ẑ

)
Q
qT

,

C sin ϕh,g→q
LU (x̂, ẑ) = −e2
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Carrying out the expansions for low qT/Q we find, up to corrections of order qT/Q:
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(C.8)

where the convolution has been defined in (7.23) and the transversity splitting
function in (7.25).
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