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1 Introduction

1.1 General Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique

that uses electromagnetic induction to stimulate the cerebral cortex. TMS has been

utilized in medicine for at least 30 years since the late 1980s. Initially, it was used to

map brain functions anatomically by disrupting brain activity of small brain regions

and to observe behavioral changes. TMS has since accrued various applications,

mainly in the field of neurology and psychiatry, with both diagnostic and therapeutic

uses. It can be utilized to test the functional integrity of corticospinal pathways or

determine the excitability of different brain areas. For example, TMS is a valuable

component in the diagnosis of multiple sclerosis (MS) and motor neuron diseases.

For the therapeutic uses of TMS, an assembly of TMS specialists across the world

summarized recommendations in a guideline [Lefaucheur et al., 2020]. Definitive

effects for TMS treatment could be demonstrated for depression, chronic pain and

stroke, as well as probable effects for Parkinson’s disease, fibromyalgia, MS and

post-traumatic stress disorder (PTSD) [Lefaucheur et al., 2020]. As an example,

for depression, the current protocol of high-frequency repetitive TMS targets the

left dorsolateral prefrontal cortex (dlPFC) [Deutsche Gesellschaft Für Psychiatrie,

Psychotherapie Und Nervenheilkunde (DGPPN) et al., 2017]. For this protocol, current

response rates are at 20-30 % [Avery et al., 2008; George, Lisanby, et al., 2010;
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1 Introduction

O’Reardon et al., 2007]. Although the possibility of promoting significant clinical

improvement for patients with refractory depression is a considerable benefit of TMS,

there is still potential for further improvement in response rates.

Over the last few years, different strategies have been identified to potentially optimize

the efficacy of TMS treatment in depression, such as bilateral stimulation, treatment

duration, or stimulation intensity [Cole, A. L. Phillips, et al., 2022; Cole, Stimpson,

et al., 2020; Daskalakis et al., 2008]. The stimulation of cortical targets other than the

dlPFC has also been considered, such as the dorsomedial prefrontal cortex (dmPFC)

[Downar et al., 2013]. Another aspect contributing to low response rates is the high

inter-individual variability of non-invasive brain stimulation [Hamada et al., 2012; Lopez-

Alonso et al., 2014].

Some studies have found different effects of repetitive transcranial magnetic stimulation

(rTMS) depending on the impact of different drugs, more specifically, effects on motor

excitability due to drug intake [Ziemann, Reis, et al., 2015]. Other studies have found

different effects of rTMS when the stimulation was done during the execution of tasks

compared to ensuing tasks [Hill et al., 2016].

Another aspect leading to differences in the effectiveness of TMS by indicating changes

in cortical excitability is the state of the ongoing local oscillations [Ridding et al., 2010].

Studies on animals and animal preparations suggest a link between ongoing brain

oscillations and the evoked responses in brain activity [Arieli et al., 1996; Huerta et al.,

1995; Huerta et al., 1993]. These studies demonstrate that depending on the phase of

the ongoing oscillation, a stimulation may cause different or even opposite changes in

excitability.

It is, however, challenging to exactly time a non-invasive stimulation to oscillatory

brain activity in real-time. It requires signal processing in real-time within milliseconds.

Additionally, the stimulation technique must be capable of applying pulses within mi-

croseconds and without latency while also being spatially precise. Non-invasively, this
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1.2 Working Memory

is only possible with TMS [Hallett, 2000; Müller-Dahlhaus et al., 2013].

This thesis presents a method to face these challenges. A real-time electroencephalog-

raphy (EEG)-triggered TMS design, with millisecond resolution, was used to stimulate

the dmPFC. In this approach, the stimulation is synchronized to the phase of the

theta oscillation originating from the dmPFC. The experiments resulted in different

modulations of a cognitive function that depends on the dmPFC as a function of the

targeted phase.

The following will clarify what working memory is, its relevance in behavior and disease,

how to assess it, the physiological mechanisms behind working memory, and how TMS

can be applied to modulate it. Subsequently, there will be details on TMS, including its

mechanisms of action and the relevance of phase-specific stimulation. The chapter

closes with an explanation of the aim of our experiment.

1.2 Working Memory

Working memory is a cognitive psychology concept that involves a memory system

responsible for temporarily storing information while simultaneously processing and

altering it. This makes working memory a critical concept for higher cognitive func-

tions, also called executive functions, including problem-solving, interference-control,

planning, and logical reasoning [Diamond, 2013; Grafman, 1995]. While several mod-

els of how working memory operates as a system exist, the most established one

is described by Baddeley et al. [Baddeley, 2000]. It consists of a control system,

the central executive, with three subordinate systems: the “phonological loop”, the

“visuospatial sketchpad”, and the “episodic buffer”. The “phonological loop” can be

compared to an audiotape for verbal and acoustic information, running on repeat

and, consequently, temporarily storing auditory information and processing it. The

“visuospatial sketchpad” is a device for the maintenance, processing, and modifying of
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1 Introduction

visual and spatial information. The “episodic buffer” acts as a storage for sequences

containing information from different systems, such as the long-term memory, as well

as from the other subordinate systems of the working memory.

Recently, different so-called state-based models have increasingly gained significance

[D’Esposito et al., 2015]. The most well-known of these models contains two separate

states of short-term memory [Cowan, 1998]. The authors describe a “focus of atten-

tion” state that is capacity-limited and an “activated long-term memory”, with a more

extensive capacity. In the “focus of attention” state, four items of information can be

held in the working memory. When shifting the attention to different items, the previous

ones convert transiently into the “activated long-term memory”, which is not limited in

capacity but disintegrates over time.

Working memory functions, especially executive functions, have long been recognized

as functions of the prefrontal cortex (PFC) [Bauer et al., 1976; Courtney et al., 1997;

M. H. Miller et al., 1972]. The PFC is the front part of the brain’s frontal lobe and can

be subdivided into different regions. Most commonly it is divided by functionality into

Figure 1.1: Anatomy of the PFC and its subregions.
[Image source: Carlén, 2017]
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1.2 Working Memory

the dorsolateral prefrontal cortex (dlPFC), the dorsomedial prefrontal cortex (dmPFC),

the ventrolateral prefrontal cortex (vlPFC), the ventromedial prefrontal cortex (vmPFC),

and the orbitofrontal cortex (OfC) [Carlén, 2017].

The dmPFC is located in the frontal midline of the dorsal PFC. It has a variety of func-

tions, as it is considered to be involved in emotional regulation, attention, goal-oriented

behaviors, working memory, and decision-making, among others [E. K. Miller et al.,

2001; M. L. Phillips et al., 2008; Venkatraman et al., 2009]. Due to the relevance of

working memory in cognitive functions, its impairment can lead to significant limitations

in functionality and quality of life. Indeed, depression and various other neurolog-

ical and psychiatric disorders, like anxiety, obsessive compulsive disorder (OCD),

schizophrenia, Huntington’s disease, Parkinson’s disease, bipolar disorder, and PTSD

are associated with working memory impairment, which leads to a substantial impact

on a patients’ livability [Barch et al., 2003; Lawrence, 1998; McLoughlin et al., 2022;

Reppermund et al., 2008; Wu et al., 2008]. Therefore, working memory improvement

is a widely used parameter for research regarding non-invasive brain stimulation as a

treatment for depression. Treatments that lead to working memory improvement may

also lead to significant clinical improvement and benefit the quality of life.

1.2.1 Testing Working Memory

Various working memory tests can be subdivided into groups depending on which

component of working memory is to be tested. There is semantic working memory and

visual/spatial working memory. These components can be tested in their function of

retention, i.e., memorizing and retrieving information after a retention period, or in their

function of processing capability, i.e., analyzing or altering received information [Dehn,

2015].
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1 Introduction

Semantic Memory Retention

Semantic memory retention can be tested, for example, with letters, words,

or numbers that are presented auditorily and have to be memorized. After a

retention period, participants are asked to retrieve the items or are quizzed

whether the list of items included a particular one [Penney, 1989].

Semantic Memory Processing

Tasks designed for testing semantic processing capability are, for example, tasks

that require the categorization of auditorily presented items or verbal fluency

tasks, where the participant has to name words with a selected initial [Costafreda

et al., 2006].

Visual/Spatial Retention

Visual or spatial retention can be tested by the memorization of multiple images.

It could involve recalling the locations of stimuli presented on a screen or a string

of letters or numbers like, for example, in the Sternberg task [Sternberg, 1966;

Sternberg, 1969]. For further details on the Sternberg task, see Section 2.3.5

Visual/Spatial Processing

Testing visual processing can require categorizing information, sorting it, for

example, alphabetically, or detecting incongruities between pictures [Ganis et al.,

2003]. A task for spatial processing could be, for example, a maze task.

Working-memory tasks can test one of these components separately or multiple

components combined. The widely used n-back task [Kane et al., 2007] is an example

of a task that tests multiple components. It combines testing visual retention and

executive function. For this task, participants must memorize letters or numbers in

sequential order and respond if a probe is the same as the letter or number n items

before. This probe then has to be added to the sequence and is followed by the next
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1.2 Working Memory

probe. While this task focuses on the retention of information, it also includes the

necessity for participants to constantly update the contents of their working memory

and switch their focal attention.

1.2.2 Neurophysiology of Working Memory

Our brain contains a massive network of neurons, electrically excitable cells, that

communicate via synapses. The conduction of excitation along neurons works through

electrical stimuli, so-called action potentials, while excitation transmission between

neurons occurs via chemical substances through synapses. The chemical substances,

also called neurotransmitters, can either excite or inhibit the postsynaptic neuron

by opening different ion channels. Thereby, the resting membrane potential either

becomes positive (depolarization) or more negative (hyperpolarization) temporarily and

thereby either resulting in an excitatory postsynaptic potential (EPSP) or an inhibitory

postsynaptic potential (IPSP). Once the depolarization reaches a certain threshold,

an action potential is triggered, which is then passed on through the axon to other

connected neurons. If the threshold is not reached, the neuron stays depolarized,

resulting in higher excitability for some time. A hyperpolarization, however, results in

lower neuron excitability for further stimuli.

Neurons do not work as single units. They are organized in networks and create

rhythmic patterns of activity, the neural oscillations. When multiple neurons of a region

act synchronously, they create an electric current by fluctuations of ion concentrations

in the extracellular compartment due to their cellular activity, resulting in extracellular

field potentials.

Different brain regions are hypothesized to communicate by synchronizing their os-

cillations, thereby participating in different functional networks. These networks are

constantly being reorganized and, thereby adapt to changing cognitive demands
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[Buzsáki et al., 2004; Fell, Klaver, et al., 2001]. Through synchronized activity between

a selected presynaptic neuronal group and a postsynaptic group, it is also possible

to achieve selective communication, which is critical for neuronal processing [Fries,

2015].

Oscillations can be recorded with scalp EEG. Here, electrodes placed on the scalp

measure local changes in voltage. The recorded oscillations are classically divided

into different frequencies and are segmented into frequency bands: delta (1-4 Hz),

theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-80 Hz). The multiple

frequency bands are believed to be related to particular brain regions and functions.

Due to its relevance in working memory, we focused our study on the theta oscillation.

Therefore, it will be discussed in more detail in the following, including its relevance to

working memory.

Theta Oscillation

There are several types of theta rhythms in the brain originating from specific regions

and associated with distinct behavior.

The theta oscillation was first and most extensively described in the hippocampus. The

hippocampus is a structure responsible for long-term memory formation located in the

medial temporal lobes. The hippocampal theta rhythm is related explicitly to spatial

navigation, attention, working memory, and, by influencing synaptic plasticity, long-term

memory. Different phases of hippocampal theta oscillation seem to be associated with

different states of excitability, with neuronal spiking concentrating on selected phases

of the theta oscillation [Benchenane et al., 2010; Fujisawa et al., 2011]. Furthermore,

Rutishauser et al. could demonstrate that spikes of neuronal activity coordinated

with hippocampal theta oscillation determines the effectiveness of memory formation

[Rutishauser et al., 2010].
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1.2 Working Memory

Additionally, the hippocampus cooperates with different brain regions, for example, the

PFC. It has been shown that neurons of the medial PFC phase-lock to the hippocampal

theta oscillation [Siapas et al., 2005]. This mechanism is believed to contribute to

cognitive tasks, such as working memory, by coordinating interactions between the

dmPFC and the hippocampus [Colgin, 2011].

This work focuses on a different type of theta oscillation, the frontal midline theta

(FM-theta) rhythm, which is generated by the medial PFC [Ishii et al., 1999]. It

has been widely reported to occur during working memory tasks and seems to be

active in memory maintenance with increased power for higher working memory loads

[Gevins, 1997; Hsieh and Ranganath, 2014; Jensen and Tesche, 2002; Onton et al.,

2005; Sarnthein et al., 1998; Schacter, 1977]. Therefore, the FM-theta is believed

to be essential for working memory retention, among other functions. Additionally,

it is associated with episodic memory encoding and retrieval as well as cognitive

control [Cavanagh, M. X. Cohen, et al., 2009; Cavanagh and Frank, 2014; Klimesch,

Doppelmayr, et al., 1996; Klimesch, Hanslmayr, et al., 2005]. Moreover, McLoughlin

et al. investigated how different oscillatory dynamics of theta differ in patients with

psychiatric conditions linked to an impairment in cognitive control [McLoughlin et al.,

2021].

Furthermore, there is a physiological mechanism associated with theta oscillations in

general, through which the functions mentioned above are realized. Theta oscillations

are essential in organizing brain activity and learning processes by utilizing phase-

locking mechanisms to induce synaptic plasticity [Siapas et al., 2005].
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Synaptic Plasticity

An essential foundation of learning processes is synaptic plasticity. It is postulated

that memories are stored by an alteration of synaptic connections and changes in the

number of synapses [Cajal, 1894; Konorski, 1948].

Synaptic plasticity describes the capability of the brain to rewire itself by remodeling

synaptic connections between neurons. For example, the synaptic connections can

transform by the alteration of ion channels. Additionally, synaptic plasticity can be

achieved through the different mechanisms of long-term potentiation (LTP) and long-

term depression (LTD). Synapses typically respond to high-frequency activation with

LTP by sustaining an increased excitability for further activation [Bliss and Collingridge,

1993; Bliss and Lomo, 1973]. To a prolonged low-frequency stimulation, synapses

typically respond with LTD and, thereby, are less excitable [Mulkey et al., 1992].

LTP and LTD can also be achieved by synchronizing oscillations [Axmacher et al.,

2006; Jutras et al., 2010]. This coupling of oscillations occurs naturally in the brain

either as phase-amplitude or phase-phase coupling. It could be observed persistently

during information maintenance for working memory tasks and information encoding

[Payne et al., 2009; Sato et al., 2007].

Cross-frequency phase-amplitude coupling is a mechanism by which the phase of

slower oscillations affects a faster oscillation’s amplitude, as visualized in Figure 1.2.

It results in rhythmic bursts of the higher frequency oscillation adjusted to the phase

of the lower frequency oscillation. Especially the phase-amplitude coupling between

theta and gamma oscillations could be observed during working memory tasks and

processing and retrieval of information [Fell and Axmacher, 2011]. It is argued that the

mechanics of this theta-gamma phase-amplitude coupling can explain the limitations of

working memory storage. According to this model, each gamma cycle encodes a single

working memory item. Given the limited number of gamma cycles that can be nested
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1.2 Working Memory

Figure 1.2: Schematic illustration of the phase-amplitude coupling mechanisms. The
lower frequency oscillation at the top of the diagram shows a phase-
amplitude coupling with the higher frequency oscillation.

Figure 1.3: Schematic illustration of the phase-phase coupling mechanisms. The
high-frequency oscillation at the bottom shows a phase-phase coupling
with the lower frequency oscillation.

within a theta cycle, a quantitative limit of items one can store in working memory is

dictated [Jensen and Lisman, 2005]. Ultimately, this model ties the neurophysiological

observation of theta-gamma coupling to behavioral functioning.

Oscillations of different frequencies can also be synchronized in their phases, which

is called cross-frequency phase-phase coupling, see Figure 1.3. Here, one phase of

the cycle of the higher frequency oscillation can be synchronized to specific phases

of the lower frequency oscillation. For example, the eight cycles of gamma oscillation
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1 Introduction

that fit temporally within one cycle of theta oscillation synchronize their peak to eight

different phases of one theta cycle (for further explanation, see [Fell and Axmacher,

2011]). This mechanism could also be observed during working memory maintenance

with theta-alpha coupling and theta-gamma coupling [Sauseng et al., 2009; Schack

et al., 2005].

1.3 Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a non-invasive technique to stimulate the

brain through the intact scalp. There are two general options for non-invasive induction

of current in the brain. On the one hand, there is the method of applying direct

current through the scalp, which includes modalities such as transcranial direct current

stimulation, transcranial alternating current stimulation, and electroconvulsive therapy,

among others. On the other hand, there is the method of inducing current via a

magnetic field with TMS.

In the case of magnetic stimulation, the electric potential difference is induced via a

magnetic field according to Maxwell-Faraday’s law of induction. An electric current

flowing through a wire generates an orthogonal magnetic field. If now the current

flow of the coil is changed over time, the magnetic flow also changes over time. This

creates an electric field and subsequent flow of current in conductive tissues.

The magnetic coils used for stimulation consist of multiple loops of wire. There are

different types of coils with specific characteristics. Initially, circular coils were used,

which have a broad action radius with a ring-shaped stimulation area. This makes

precise stimulation of smaller areas difficult. Figure-of-eight coils are used for a more

focal application due to their small stimulation zone. The focality of the stimulation is

achieved by having two connected circular coils that work in opposite directions. The

two induced electric fields add up at their point of contact.
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1.3 Transcranial Magnetic Stimulation

The magnetic coil is placed tangential to the scalp for the stimulation, generating a

magnetic field perpendicular to the scalp. Consequently, an electric field is created

that is oriented horizontally to the scalp. The generated current flow in the tissue runs

parallel to the current flow in the coil but in the opposite direction.

In order to achieve activation of neurons, the stimulation has to shift the resting

membrane potential in the form of a supra-threshold depolarization, through which an

action potential is triggered. The decisive factor for this is a high spatial gradient of the

electric field in relation to the course of the axon. A spatial gradient is a rate of change

of the field strength along a spatial direction. A high spatial gradient can be achieved

in different ways. One possibility is that the axon is straight and runs parallel to the

field. Here the highest gradient is located where the intensity of the field changes as a

function of distance.

Another possibility would be that the axon bends at some point, which also results in

a high electric gradient at this point. This electric gradient causes a transmembrane

current flow, whereby an inwardly directed flow of sodium ions occurs through sodium

ion channels into the cell, leading to depolarization, as desired. If this depolarization

surpasses a certain threshold, voltage-dependent sodium ion channels open with

the result of an action potential, which is then conducted through the axon. Through

the connections of the activated neurons, the induced excitation can consequently

modulate the excitability of the stimulated brain area, leading to an increased or

decreased excitability while also influencing connected brain areas. Whether the

stimulation facilitates or inhibits brain excitability depends on the stimulation frequency

[Fregni et al., 2007; George and Aston-Jones, 2009; Hallett, 2007].

The stimulation intensity is a further technical aspect of TMS. Since the intensity

needed to evoke an action potential varies between patients, coils, and stimulation

devices, it should be determined individually, using the parameter of the resting motor

threshold (RMT). How its value is determined is explained in Section 2.3.3.
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Using the phenomenon of magnetic induction has advantages as opposed to directly

creating an electric field via electrodes. For achieving a depolarization in cortical

neurons, TMS is virtually pain-free, unlike direct current stimulation. While brain tissue

and skull represent a significant electric resistance, requiring a higher voltage when

applied to the scalp directly, a magnetic field is nearly undiminished when passing

through the skull or other non-conductive tissue. Additionally, the electrodes for an

electric stimulation directly activate pain receptors by generating high current densities

at the site of skin contact. However, the magnetic field and, therefore, the electric

field decreases rapidly with the distance from the coil. This limits the depth range of

magnetic stimulation to a few centimeters depending on the utilized coil type.

In order to have a lasting therapeutic use, the stimulation needs to be able to induce

changes that outlast the stimulation itself. This is possible through the induction of

synaptic plasticity.

1.3.1 Plasticity Effects of TMS

When TMS is applied with trains of pulses at a defined pattern, it is also called repetitive

transcranial magnetic stimulation (rTMS). Experimental findings suggest that rTMS

can induce lasting effects through LTP-like mechanisms [Ziemann, Paulus, et al.,

2008]. The mechanism behind this has been investigated at a cellular level on in vitro

models of entorhino-hippocampal slice cultures from mice [Vlachos et al., 2012]. Here,

repetitive magnetic stimulation resulted in long-lasting increased synaptic strength by

accumulating a specific type of glutamate receptors.

Another method targeting to improve the induced plasticity is the theta-burst stimulation

(TBS) [Huang et al., 2005]. This is a stimulation protocol of rTMS, where bursts

of triple-pulses with a frequency of 50 Hz are delivered repetitively at 5 Hz, which

is within the theta frequency band of 4-8 Hz, with or without pauses as continuous
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1.3 Transcranial Magnetic Stimulation

or intermittent TBS. This patterned protocol was designed because of the distinct

role of the theta oscillation in plasticity, as mentioned before, mimicking the theta-

gamma coupling phenomenon, which is associated with increased neuroplastic effects.

The method was verified to be superior in inducing LTP compared to other forms of

stimulation [Larson et al., 2015]. Regardless, TBS protocols could not demonstrate

a significant benefit in their behavioral outcome compared to the standard rTMS

method [Blumberger et al., 2018]. One possibility is that although it simulates the

physiological theta-gamma coupling phenomenon, it does not consider the ongoing

cortical oscillation and current brain state.

1.3.2 Phase-Dependent Stimulation

The concept of a phase-dependent stimulation is visualized in Figure 1.4. The current

brain state is measured by the EEG. The measured data are consecutively filtered

and analyzed by an algorithm to estimate the ongoing phase of a selected oscillation.

With the estimated phase, stimulation can be triggered to occur at a specific phase.

Through the applied stimulation, the current brain state can, in turn, be modulated.
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Figure 1.4: Illustration of the concept of phase-dependent stimulation with its different
components. [Figure inspired by Bergmann et al., 2016]

For our experiment, the different steps necessary for the developed method of a theta

phase-dependent stimulation are the following:

1. Recording of resting-state EEG and other measurements of brain state/excitability

and behavior (with the Sternberg task) before stimulation

2. Filtering of resting-state EEG signal (individual spatial filters to extract the dmPFC

’s theta oscillation)

3. Phase estimation of the filtered signal

4. Triggering of TMS pulses dependent on the ongoing estimated phase (with some

restrictions)

5. Measurements of modulations in brain state/excitability and behavior after stimu-

lation
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1.3 Transcranial Magnetic Stimulation

Research investigating the relevance of timing of applied stimulation, dependent on

the current brain state, concludes that the phase of ongoing oscillations corresponds

to high or low excitability and determines the direction of synaptic plasticity. Zrenner

et al. used TMS on the motor cortex, phase-locked to sensorimotor 𝜇-alpha rhythm,

to induce plasticity effects [Zrenner, Belardinelli, et al., 2017a; Zrenner, Belardinelli,

et al., 2017b]. They showed that bursts of high-frequency (100 Hz) stimulation applied

to the 𝜇-alpha rhythm, i.e., the dominating rhythm in sensorimotor cortex, resulted in

increased motor cortical excitability for up to 30 minutes after the intervention. Concern-

ing theta phase-specific stimulation, a study on in-vitro hippocampal slices of rats could

demonstrate either LTP or LTD ensuing a theta phase-specific stimulation [Huerta

et al., 1995; Huerta et al., 1993]. In anesthetized rats, Pavlides et al. demonstrated

that stimulation applied at the peak of an induced theta rhythm generated LTP while

stimulation at the trough decreased excitability [Pavlides et al., 1988]. In conclusion, the

mentioned research suggests that different phases of ongoing theta or alpha rhythms

correspond to different excitability states of neuronal units.

Moreover, Berger et al. could show on healthy human subjects that a stimulation per-

formed simultaneously to a working memory task resulted in differences in accuracy in

the task depending on the stimulated phase [Berger et al., 2019]. However, the phases

were not explicitly targeted but analyzed post hoc and assigned to the trials performed

during the stimulation. Nevertheless, this research provides a solid foundation upon

which our experiment can build by demonstrating that the reported observations are

not sole correlations but can be directly produced or causally manipulated.
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1.4 Aim of the Study

The objective of this study was to determine whether a phase-specific stimulation, either

targeting the trough or peak instead of a random phase, of the ongoing theta rhythm in

the dmPFC results in differential modulation of working memory performance. Using a

phase-locked stimulation, we attempt to imitate the mechanism of phase-amplitude

coupling. Specifically, we use high-frequency triple bursts of stimulation synchronized

to a selected phase of theta, thus, practically generating an artificial theta-gamma

phase-amplitude coupling. We hypothesize that this specifically targeted stimulation is

closer to the actual naturally occurring processes in the brain and, therefore, superior

to random stimulation, which has previously been used to influence working memory.

We investigated whether stimulation applied to either the positive peak or the trough of

the endogenous theta oscillation of the dmPFC is superior to random stimulation in

affecting working memory performance.

Based on the mentioned previous research, we hypothesize that phase-specific TMS

applied to either the positive peak or the trough of the endogenous theta oscillation of

the dmPFC has different effects on working memory performance and is superior to

random phase stimulation.
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2 Material and Methods

2.1 Experimental Procedure

The experiment consisted of four sessions for each participant. Figure 2.1 illustrates

the procedure for the first session, while Figure 2.2 presents an overview of the design

for the three remaining sessions. The first session was performed to collect different

measurements. Among other measurements, the RMT was determined in this session,

as well as the calculation of each subject’s spatial filter. The purpose and methods

involved in this spatial filter will be discussed below in Section 2.3.4. Additionally, a

second resting-state EEG was recorded for an analysis of the accuracy of the phase

estimation, which will be discussed in Section 2.4.2.

Regarding the remaining three sessions, each session contained a phase-dependent

triple-pulse intervention. Measurements were recorded both before and after this

intervention. Each session started with the recording of eight minutes of resting-state

EEG, followed by stimulation with both a sham, i.e., a “fake” stimulation, and a real TMS

coil, with single pulses at 120% of the RMT. This was done to assess the excitability

of the dmPFC,by measuring changes in the EEG ensuing TMS pulses. As for the

measurements before the intervention, stimulation with the sham coil was executed

first. The measurement block after the intervention was the other way around. The last

element of the measurements was the Sternberg task with 100 trials.

After completing the first block of measurements, the intervention was conducted. It
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Excitability Session (Session 1)
Measurements:

Resting state EEG

Resting state EEG for collecting markers

Determination of RMT and generation of 

spatial filter

DMPFC Excitability (phase dependent):


• 480 single TMS pulses (120% RMT)


  With each stimulation randomly at one of the

  three different conditions:


theta-peak / theta-trough / random phase

(160 pulses each)


• 480 single Sham pulses (120% RMT)

  With each stimulation randomly at one of the 

  three different conditions:


theta-peak / theta-trough / random phase

(160 pulses each)

Figure 2.1: Overview of the first session for each participant.

consisted of 400 triple pulses of a phase-dependent stimulation with the TMS coil at

100% of the RMT. The triple pulses were applied with a frequency of 100 Hz. For each

of the three sessions of the experiment, the targeted stimulation phase was either

at the theta oscillation peak, its trough, or a random phase for control. The order of

these sessions was randomized and, therefore, unknown to the subjects. Following

the intervention, the same measurements were recorded as before.

This thesis focuses on the measurements of the working-memory task. The analysis

of the excitability of the dmPFC was the topic of a different hypothesis and is, therefore,

not included in this work. Consequently, an explanation of how the sham stimulation
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Plasticity Sessions (Sessions 2-4)
Measurements before intervention:

Resting state EEG

DMPFC Excitability (not phase dependent):

• 160 single Sham pulses (120% RMT)

• 160 single TMS pulses (120% RMT)

Sternberg working-memory task: 100 trials

Intervention (phase dependent):

400 triple TMS pulses (100% RMT)

Stimulation either at:


theta-peak / theta-trough / random phase

Measurements after intervention:

Resting state EEG

DMPFC Excitability (not phase dependent):

• 160 single TMS pulses (120% RMT)

• 160 single Sham pulses (120% RMT)

Sternberg working-memory task: 100 trials

Figure 2.2: Overview of the experimental procedure for the remaining three sessions.
Each subject participated in three of these sessions, during which the
phase-dependent stimulation occurred at a different phase of the theta
activity coming from the dmPFC. The sequence of these sessions was
randomized and unknown to the subjects.

was conducted is also not included. However, for more details on the methods and

results of the measured TMS evoked potentials, see [Gordon, Belardinelli, et al.,

2022].
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In the following, the composition and selection of our participant group will be described,

succeeded by an explanation of the different elements and methods required for the

realization of our experiment. Finally, a description of the performed data analysis is

presented.

2.2 Subjects

Right-handed (≥ 75% on the Edinburgh Handedness Inventory [Oldfield, 1971]) sub-

jects aged between 18 and 50 years in good physical and mental health were included

in the study. Female Participants were required to use a hormonal method of contra-

ception.

Exclusion criteria included a history of neurological or psychiatric disorders. The intake

of drugs or excessive caffeine consumption was also considered as exclusion criteria,

as well as working night shifts. Participants with a condition precluding the execution

of an MRI or ones refusing to be informed in case of accidental pathological findings

on MRI were excluded. Subjects were excluded if there was any concern by the

investigator regarding the safe participation of a subject in the study or for any other

reason the investigator considered the subject inappropriate for participation in the

study. Before the first study visit, subjects could not participate in another study for two

weeks and throughout the study.

While 20 subjects participated in the experiment, only 16 were able to complete the

whole experiment successfully. Two participants had to be excluded due to sleepiness

during study sessions, and two additional participants were excluded because of

excessive eye movements and muscle contractions during the experiment.

A total of 16 healthy individuals, ten females and six males completed our study. The

mean age of all subjects was 23.4 years (± 3.3 standard deviation (SD))
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None of the subjects reported any side effects or discomfort during or after stimula-

tion.

Prior to participating, all subjects supplied written consent to participate voluntarily in

the trials and confirmed to have been informed about possible risks of the study. For

their expenses, participants were financially compensated. The study was approved

by the local ethics committee of the medical faculty of the Eberhard Karls University

of Tübingen (Project number: 716/2014BO2) and complies with the Declaration of

Helsinki.

2.3 Experimental Setup and Preparation

Sessions of the experiment took place in an enclosed, quiet room. Participants of the

study were seated on an upholstered, reclined chair for the entire duration of each

session with a computer screen in front of them at a distance of one meter. They were

asked to stay awake and keep their eyes open for each measurement and stimulation.

A vacuum cushion was offered to help keep their head in the same position during

stimulation episodes.

The setting is illustrated in Figure 2.3. Figure 2.3a shows a participant performing the

working memory task. The screen displays ten consonants that need to be memorized

for the ongoing trial of the task. For further explanations concerning the task, see

Section 2.3.5. The subject is holding a device with four buttons for answering at a later

time when the cue is displayed. For ergonomics, there are two buttons respectively

for answering “yes”, i.e., the displayed set included the cue or “no”, i.e., the cue was

not included, arranged with different spacing on the remote. The TMS coil with its

corresponding marker is also on display here, but it is not attached to the participant’s

head as it is not used during the working memory task.
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(a) Display of a participant performing the
Sternberg task. The TMS coil in the im-
age is not active during the task.

(b) Illustration of a participant during the inter-
vention period of a session while stimula-
tion takes place.

Figure 2.3: Demonstration of the experiment setting. A participant is sitting in a reclin-
ing chair for the experiment in front of a screen and with a vacuum cushion
used to stabilize the head in a fixed position during the stimulations.

Figure 2.3b illustrates a participant during the phase-dependent stimulation. Here the

TMS coil is attached to target the dmPFC during stimulation. On top of the screen in

front of the subject, a camera is visible. This camera tracks the subject’s head as well

as the coil for the neuronavigation. The screen displays a fixation cross to help the

participants fix their eyes, thereby reducing artifacts due to eye movements.

To minimize auditory evoked potentials caused by the TMS triggering noise, a masking

noise was used. During stimulation, either with the sham coil or the TMS coil, subjects

were wearing in-ear headphones delivering a masking noise (white noise). The volume

was adjusted either to a level where the TMS triggering noise was no longer audible to

subjects or the highest volume tolerable.
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2.3.1 Localization of the Stimulation Target

Before the first session, magnetic resonance imaging (MRI)-scans (T1- and T2-

weighted anatomical sequences) were obtained for each subject by a 3T Siemens

PRISMA scanner. Having these individual MR images is a requirement for using

MRI-guided neuronavigation. As a neuronavigation system, we used the system from

Localite GmbH, Sankt Augustin, Germany.

To precisely stimulate the selected anatomical target, neuronavigation is an essential

component for TMS. To locate certain brain regions from the outside, one has to

navigate toward the exact spot where the stimulation coil needs to be placed. This

process relies on individual MRI, a stereoscopic infrared camera system, and a refer-

ence marker of reflective spheres firmly attached to the subject’s head. After specific

markers are defined, the program can assign the individual MRI to the participant’s

physical head. Because the coil carries its own marker, it is recognized by the navi-

gation system, and its location in relation to the position of the subject’s head can be

estimated. Thus, it is possible to place the coil precisely on the right spot and check its

location throughout the stimulation. Thereby, the position of the coil can be corrected

accordingly if a subject’s head shifts slightly.

For source estimation of the measured signals, it was also necessary to register the

position of every electrode of the EEG cap. These data were required to design the

individual’s spatial filter, which will be explained further in Section 2.3.4.

2.3.2 EEG

An EEG cap containing 126 electrodes was used to record high-density EEG signal, as

recommended for source estimation (EasyCap GmbH, Germany). The electrodes were

TMS compatible sintered ring electrodes made of silver and silver chloride. They were
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arranged according to the international 10-5 EEG system (illustrated in Figure 2.5a

[Oostenveld et al., 2001]. The correct size of the cap was determined by measuring

the circumference of each subject’s head.

Prior to each session, the EEG cap had to be placed on the participant’s head and

prepared. After ensuring that the cap was centered correctly, the scalp beneath each

electrode was scrubbed with an abrasive paste and filled with contact gel to minimize

the electrical resistance. FCz was used as a reference electrode, and AFz as a

grounding electrode.

To amplify the EEG signals, a 24-bit biosignal amplifier was used (NeurOne Tesla

with Digital Out Option, Bittium Biosignals Ltd. Finland). Data were recorded in DC

mode with a sampling rate of 5 kHz, meaning the signal of the EEG cap was sampled

and captured 5000 times per second. To put this into context, one phase of the theta

oscillation was sampled approximately 1000 times. The data were simultaneously sent

to a real-time processor through user datagram protocol (UDP) at a packet rate of 5

kHz (one sample per channel).

For a continuous recording of the EEG signal, the software Vision-Recorder (Brain

Products GmbH (Gilching, Deutschland)) was used. In order to ensure clear signals,

the software was also utilized to check and improve the impedance of all electrodes

to be below 20 kΩ and for frontal electrodes below 10 kΩ. For this study, the focus

was on frontal electrodes because they were essential for a precise generation of the

spatial filter, as it concentrates on filtering a signal originating from the frontal part of

the brain.
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2.3.3 Specifics of Stimulation

For the magnetic stimulation, biphasic pulses were delivered using a figure-of-eight coil

(Cool-B65, inner coil winding diameter 35 mm) to achieve focused stimulation at the

predetermined area. The coil was connected to a MagPro XP Stimulator (MagVenture

A/S, Denmark). To reduce possible artifacts due to direct contact of the coil to the

EEG-electrodes, a plastic spacer of 11 mm thickness was placed between the EEG-

cap while surrounding the electrodes and the coil whenever the coil was positioned for

stimulation.

The stimulation intensity was determined by the individual RMT of every subject at the

beginning of the experiments. For the measurement of the RMT, electromyography

(EMG) was recorded through bipolar EMG adhesive hydrogel electrodes. EMG-

electrodes were placed over the abductor pollicis brevis (APB) and the first dorsal

interosseus (FDI), each with a grounding electrode placed over the bone of the finger.

The EMG, like the EEG, was amplified using a 24-bit biosignal amplifier (NeurOne

Tesla with Digital Out Option, Bittium Biosignals Ltd. Finland) and sampled at a rate

of 5 kHz. The acquired signal was band-pass filtered at 0.16 Hz - 1.2 kHz, meaning

only frequencies included in this range were regarded. The TMS-coil was positioned

over the left primary motor cortex (M1) hand area to generate motor evoked potential

(MEP)s, i.e., muscle activity detected by the EMG.

There are several different methods to determine the RMT. We used a standard method

by Groppa et al. [Groppa et al., 2012]. This method is based on measuring the lowest

intensity for which at least 5 out of 10 MEP exceeded a peak-to-peak amplitude of 50

𝜇V.

The steps described in this section were required to establish the stimulation intensity,

which was 100% of the individual’s RMT for the intervention.
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2.3.4 EEG-Triggered TMS

To make theta-phase-dependent stimulation possible, an instantaneous phase esti-

mation was needed. For this, it was necessary to isolate the theta oscillation of the

dmPFC with a spatial filter.

Spatial Filter

In order to extract the brain activity of the left dmPFC, the individual MRIs needed to

be segmented into cortex, scalp, and skull. The softwares used for this segmentation

were SimNIBS [Windhoff et al., 2011], FreeSurfer [Fischl, 2012], and FSL [Jenkinson

et al., 2012]. The anatomical location of the left dmPFC was identified by using MNI

(Montreal Neurological Institute) coordinates (-4, 52, 36) and marked on each subject’s

cortical mesh.

For source estimation from EEG signals, spatial filters were used. The calculation

of these spatial filters was based on linear constrained minimum variance (LCMV)

beamforming [Veen et al., 1997] and included signals of all electrodes except the

ones of the outer rim (electrodes labeled 9 and 10 in the International 10-5 EEG

system). The filter was calculated using the signal covariance matrix on eight minutes

of resting-state EEG and the lead-field matrix containing the signal topographies (for

further details on the comparison of the matrices, refer to [Gordon, Dörre, et al., 2021;

Veen et al., 1997]). The topographical distribution of the recorded prefrontal theta

oscillation is presented in Figure 2.4a. This signal was analyzed to estimate the source

of the theta oscillation via beamforming, which is visualized in Figure 2.4b. The location

of interest for the beamforming was specified as dipoles within a one-centimeter radius

of the left dmPFC.
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(a) (b)

Figure 2.4: Illustration of the process of creating the spatial filter via beamforming:
(a) Distribution of the spectral power of prefrontal theta oscillation illustrated
over a 126-electrode EEG. The measurements were averaged from resting-
state EEG of 18 subjects.
(b) Source modeling of theta oscillation and distribution of its spectral
power over a cortical mesh, calculated using LCMV beamformer.
[Image source: Gordon, Dörre, et al., 2021]

The spatial filters were attuned for each subject and recalculated at every session, as

they rely on the exact position of the EEG electrodes with respect to the brain and the

acquired signal of the resting-state EEG.

Figure 2.5a features the proportions at which different EEG channels are considered

for the spatial filter of one individual subject as an example. Figure 2.5b illustrates the

distribution of the same individual’s filter’s sensitivity on an averaged cortical plot. The

power spectrum of the filtered resting-state EEG is presented in 2.5c with a distinct

peak at around 5-8 Hz, in addition to different oscillation signals at around 15-20 Hz

that are located outside of the targeted frequency range.

Phase estimation

A customized digital biosignal processor based on Simulink Real-Time was used to

analyze a copy of the EEG data in real-time and trigger TMS pulses depending on the

phase of the theta oscillation originating from the left dmPFC. The EEG signal was

analyzed in sliding windows of data with 1024 ms length (down-sampled to 250 Hz:
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(a) (b) (c)

Figure 2.5: Specifics of the spatial filter of one individual subject as an example.
(a) Respective weights of different EEG channels of the spatial filter.
(b) Sensitivity profile of the spatial filter presented on an averaged cortical
plot.
(c) Power spectrum of the resting-state EEG acquired through the spatial
filter.
[Image source: Gordon, Dörre, et al., 2021]

256 samples). This means that the data that are being continuously analyzed have

a predefined length and change over time as new samples of data are acquired. To

achieve a real-time analysis, the sliding windows always consider the latest samples

acquired. For each new sample, the oldest one gets replaced. Analysis of these sliding

windows was performed by utilizing the following steps:

1. Band-pass filter:

The signal is filtered at 5-8 Hz (the frequency of theta) to enable phase estimation.

2. Removal of 50 samples:

Samples at the edges need to be removed to reduce filtering edge effects

because these effects would considerably distort the signal and would preclude

accurate phase estimation.
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3. Autoregressive forward prediction:

Due to ongoing time and the removal of the 50 most current samples, the phase

at the time point of interest is unknown and needs to be reconstructed. This

is done using an autoregressive forward model to predict the missing signal

distribution.

4. Hilbert transformation:

The resulting signal, including the actual recorded signal and the forward pre-

diction reconstructed signal, is then converted into an analytic signal via the

Hilbert transformation. The resulting phase-angles then correspond to the instant

phases of the theta oscillation.

Ranges were defined where the oscillation was considered to have a positive or

negative peak. They were defined at 0° ±6° and 180° ±6° radians, respectively. A

TMS pulse was triggered whenever the estimated phase was within this preset range

for the targeted phase. However, in certain situations, the phase estimation could

be inaccurate. Therefore, the algorithm was prevented from triggering a pulse under

certain conditions.

Precautions against Incorrect Triggering

There are two kinds of artifacts potentially misleading to proper phase estimation:

Artifacts due to eye movement and muscle artifacts. For artifacts due to eye movement,

TMS triggers were blocked for 700 ms whenever the combined signal from electrodes

Fp1, Fp2, and two additional electrodes, placed between the zygomatic prominence

and the lower eyelid, exceeded a certain threshold. For muscle artifacts, there was a

threshold for every electrode that, if surpassed, blocked TMS triggers for the currently

analyzed sliding window.
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Another difficulty for phase detection is phase resetting. The endogenous theta

oscillation occurs in distinct episodes with phase resetting in between and fluctuating

amplitudes [Kahana et al., 1999]. Therefore, the algorithm only triggered if no phase

reset was detectable for the last 500 ms to ensure a stable oscillation before initiating

a stimulation. In addition, an amplitude threshold was implemented in case there was

no theta oscillation present to be reliably detected.

2.3.5 Working Memory Task

A modified Sternberg task [Sternberg, 1966] was used as a working memory test both

before and after the intervention. It is a classic verbal working memory retention task

and consists of a memorization period, a retention period, and a query.

During the memorization period, a set of ten consonants (white letters on a black

background) was presented for two seconds. This number of consonants was chosen

as it provided an appropriate level of difficulty, which will be explained further in the next

chapter. After a retention period of three seconds, with a black screen, a probe was

displayed in the form of a single consonant. Participants were given two seconds to

press either “yes” or “no”, to answer whether the memorized set contained the probed

L K R T C
P W M S B

2 seconds 3 seconds 2.5 seconds

Fixation cross Retention periodItems to memorize Probe

Repeated for 100 trials

+ H

0.5 seconds

Figure 2.6: Sequence of the Sternberg task and its appearance for participants.
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letter. The time it took participants to respond was measured as well as whether

the given response was correct. Whenever no response was detected, the trial was

counted as false without taking the reaction time into account for the analysis. After a

one-second break, the next set of consonants was shown.

The task was repeated for 100 trials. For reference on how the trials looked like for

participants, see Figure 2.6.

2.4 Data Analysis and Statistics

2.4.1 Power Analysis

When devising the experiment, a power analysis was conducted in order to estimate

the presumably needed sample size. The result of this analysis was a sample size of 23

participants to receive significant results while assuming an effect size of 0.5 and using

mean values of the mean differences and standard deviations of previous studies on

TMS and working memory performance [Dedoncker et al., 2016]. The sample size (n)

was calculated by using the software G*power [Faul, Erdfelder, Buchner, et al., 2009;

Faul, Erdfelder, Lang, et al., 2007]. Because of the complex and time-consuming nature

of the experiment, we decided to perform the study on only 16 subjects. Therefore, the

study was planned as a pilot study to investigate the effects of the phase-dependent

stimulation in a smaller experiment before conducting an expanded experiment.

2.4.2 Analysis of the Accuracy of the Phase Detection

In order to determine the accuracy of our phase-detection algorithm and, therefore,

know how reliable the results are, a resting-state EEG was recorded, where the

algorithm needed to predict the phase and set markers, but without triggering a TMS
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pulse. This allowed the analysis of the accuracy of phase-detection because the

separately recorded EEG data were not disrupted by an artifact created by the TMS

pulse. This analysis of accuracy was conducted by determining the phase of the

markers collected in each of the EEG recordings and comparing it to the estimated

phase of the algorithm.

2.4.3 Analysis of the Sternberg Task

The statistical analysis of the Sternberg task was conducted using Matlab (Mathworks).

The accuracy of subjects’ responses was calculated by forming the fraction of correct

responses from all responses.

In order to determine the general significance of the data, linear mixed-effects (lme)

models were used. They are extensions of linear regression models for data organized

in groups. Lme models are also similar to repeated measures analysis of variance

(ANOVA), which is a variance analysis for data collected on the same subject at

different time states. Unlike the repeated measures ANOVA, these models can include

every observation without over-fitting the data and while taking into account different

effect variables [Polti et al., 2018]. The inter-individual variability was included as a

random effect variable. The phase of the condition that was stimulated during the

intervention was included as a fixed effect variable.

A variance analysis, in the form of an ANOVA, was conducted on the results of the lme

models for reaction times and accuracies.

A one-sample Kolmogorov-Smirnov test was applied to determine if the data were

normally distributed, revealing non-normally distributed data. Therefore, for the data

that showed significant interactions (ANOVA with p-value < 0.05), a Wilcoxon signed-

rank test, a test for paired differences in non-normally distributed data, was performed to

identify stimulation conditions that were significantly different from random stimulation.
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The Wilcoxon test was also applied to determine the stimulation conditions that showed

a significant improvement in working memory performance due to the intervention.

For these tests, mean values of each session were used to avoid over-fitting the data if

counting each of the 100 trials per session individually. On the other hand, using only

the means could have led to a potentially underestimated effect size. For comparing

stimulation conditions, the mean values were subtracted from each other (the before

value was subtracted from the after value).

The strength of the effect was determined by calculating Hedge’s 𝑔 with the following

formula:

𝑔 =
𝑥1 − 𝑥2√︄

(𝑛1 − 1) · 𝑠𝑑2
1 − (𝑛2 − 1) · 𝑠𝑑2

2
(𝑛1 + 𝑛2) − 2

· 𝑛 − 3
𝑛 − 2, 25

·
√︂

𝑛 − 2
𝑛

(2.1)

x = means of samples
n = sample size
sd = standard deviation of samples

Hedge’s 𝑔 is better suited than Cohen’s 𝑑 when dealing with sample sizes smaller

than 20. However, both can over-estimate samples smaller than 50. This can be

counteracted by using a correction factor, which is included above [Ellis, 2010; Hedges,

1981]. It reduces the effect size of smaller samples by a small fraction.

The values of effect size can be interpreted in the following way [J. Cohen, 1988]:

• Values around 0.2 represent a small effect size.

• Values around 0.5 signify a medium effect size.

• Values around and above 0.8 describe a large effect size.
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2.5 Own Contributions

The study was designed in collaboration with Dr. Pedro Gordon (postdoc) and Dr.

Christoph Zrenner (postdoc). The development of the applied method of EEG-triggered

stimulation was done by Pedro Gordon and Christoph Zrenner. The selection and

configuration of the working memory task were done by me. The experiments were

conducted by me in collaboration with Pedro Gordon, Dragana Galevska (research as-

sistant), and Anna Kempf (research assistant). The statistical analysis was performed

independently by me, except for the analysis of the accuracy of the phase-detection

algorithm, which was conducted by Pedro Gordon.
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3 Results

3.1 Accuracy of Phase Detection

One key point for the reliability of our results is the preciseness of the stimulation

time and, therefore, the accuracy of the phase detection algorithm. This accuracy is

visualized in Figure 3.1, which includes mean value and SD with 0° corresponding to

the positive peak and 180° to the negative peak (trough). The mean positive peak, as

determined by the algorithm, was at −5° ±63°, and for the negative peak, it was at 173°

±42°. It shows the distributions of the post-hoc identified phase of the theta oscillation

at the time when the algorithm predicted the phase and would trigger stimulation to

either hit the positive or the negative peak of the theta oscillation.
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3 Results

Figure 3.1: Illustration of the accuracy of our phase estimation algorithm. With 0° being
the top of the positive peak and 180° or respectively 𝜋 being the top of the
negative peak. The inner ring indicates 10% of all phase estimations.
[Image source: Gordon, Dörre, et al., 2021]

3.2 Sternberg Task

For generating Figures 3.2 and 3.3, and for analysis of the reaction time, only correct

responses were included. Considering that the goal is a working memory improvement,

it is more relevant for subjects to be faster when giving correct responses rather than

having a reaction time improvement for incorrect responses. In addition, an analysis

with the values of reaction times from all responses is included as well.

As indicated in Table 3.1, the mean reaction time decreased after stimulation both for

the stimulation at the negative peak (by 0.06𝑠) and for the stimulation at the positive

peak (by 0.01𝑠). For the random stimulation, the mean reaction time increased by 0.01𝑠.

The mean accuracy remained almost consistent for the stimulation at the negative and

the positive peak. For the random stimulation, the accuracy increased by 1% after the

intervention. These results are illustrated in Figure 3.2 and 3.3.

The results of a linear mixed models analysis were checked by an ANOVA for significant

interactions. As shown in Table 3.2, the reaction times for correct and for all responses

were significantly different between conditions, time states, and the interaction of
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3.2 Sternberg Task

Table 3.1: Mean and SD of reaction times (correct responses only) and accuracies at
each condition and time state.

Time state (relative
to intervention)

Conditions mean and SD

Negative peak Positive peak Random

Reaction time Before 1.08 ± 0.14 1.06 ± 0.18 1.07 ± 0.15
(in seconds) After 1.02 ± 0.12 1.05 ± 0.17 1.08 ± 0.18
Accuracy Before 76.6 ± 7 76.7 ± 7 75.4 ± 6
(in percent) After 76.6 ± 6 76.2 ± 6 76.8 ± 7

Table 3.2: P-values of the performed ANOVA on the linear mixed models of the reaction
time and the accuracy of responses. P-values < 0.05 are marked by *

ANOVA on linear mixed effects
Conditions Time states Conditions/states

Reaction time - only
correct responses

𝑝 = 0.0003* 𝑝 = 0.0001* 𝑝 = 0.002*

Reaction time - all
responses

𝑝 = 0.002* 𝑝 = 0.0000* 𝑝 = 0.003*

Accuracy 𝑝 = 0.92 𝑝 = 1 𝑝 = 0.64

conditions and time states, with a p-value < 0.05. An analysis of the combined effects

of stimulation conditions and time states also showed that reaction times before and

after stimulation were significantly different.

The accuracy of responses did not vary significantly in every aspect.

3.2.1 Reaction Time

After revealing non-normally distributed data by a one-sample Kolmogorov-Smirnov

test (𝑝 < 0.001), a dependent Wilcoxon signed-rank test was used to further analyze

any data that were significant in the above-mentioned ANOVA. We analyzed which

of the stimulation conditions was significantly different (𝑝 < 0.05) from the other

stimulation conditions, respectively, with the results presented in Table 3.3. For the
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3 Results

Table 3.3: P-values of a dependent Wilcoxon signed rank test comparing the means of
the change in reaction time (post- vs. pre-intervention) of each stimulation
condition to another stimulation condition. The significant p-values (< 0.05)
are marked by *

Wilcoxon on conditions
Negative peak vs.
random

Positive peak vs.
random

Negative vs. posi-
tive peak

Reaction time - only
correct responses

𝑝 = 0.02* 𝑝 = 0.26 𝑝 = 0.44

Reaction time - all
responses

𝑝 = 0.16 𝑝 = 0.80 𝑝 = 0.33

Table 3.4: P-values of a dependent Wilcoxon signed rank test comparing the means
of the reaction time of each session’s responses before versus after stimu-
lation, respectively. The significant p-values (< 0.05) are marked by *

Wilcoxon on time state
Negative peak Positive peak Random

Reaction time - only
correct responses

𝑝 = 0.01* 𝑝 = 0.68 𝑝 = 0.50

Reaction time - all
responses

𝑝 = 0.02* 𝑝 = 0.80 𝑝 = 0.61

negative peak condition compared to random stimulation, the analysis demonstrates a

significant difference in reaction times for correct responses (𝑝 = 0.02). The positive

peak stimulation was not significantly different from the random stimulation (𝑝 = 0.26).

Another analysis compared differences in reaction times before intervention with the

reaction times after for each stimulation condition separately, with the results shown

in Table 3.4. Only stimulation at the negative peak of the theta phase resulted in

significant differences for before versus after stimulation with this analysis.

Figure 3.2 shows reaction times of the Sternberg task in a grouped whisker plot. The

center bar indicates the median, and the edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers contain values of 1.5 of the interquartile

range. Outliers outside the range of the whiskers are marked by +. Green diamonds
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3.2 Sternberg Task

symbolize mean values. In the graphic the trend of the reduction of reaction times for

the negative peak condition is visible and highlighted by a connecting line in blue. A

modest reduction of reaction times can be distinguished for the positive peak condition,

which is visualized by a red line. Concerning the random condition, the trend is featured

by a grey line and demonstrates a modest tendency toward an increase in reaction

times.

The strength of effect was calculated using Equation 2.1, with the result of a medium

effect strength with 𝑔 = 0.497 (see Section 2.4.3).

3.2.2 Accuracy

The results of subjects’ accuracy in the Sternberg task are visualized in Figure 3.3.

As mentioned above, there were no significant changes in the accuracy of subjects’

responses. However, the results can also be used to determine if the level of difficulty

of the working memory task was sufficient, as mentioned earlier. For all sessions, the

accuracy was well above chance level but also low enough to have the potential for

improvement, thus avoiding a ceiling or floor effect. The lowest accuracy achieved was

at 60%, and the highest value was 90%, with the median values distant from extreme

values.
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Figure 3.2: Distribution of subjects’ reaction times of correctly answered trials in a
grouped whisker plot. The data are grouped depending on measurements
collected before or after intervention and split into the different stimulation
conditions, i.e., negative peak, positive peak, or random stimulation with
connecting lines to visualize the respective trends in blue, red, and grey.
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Figure 3.3: Display of the accuracy of subject’s responses in percent in a grouped
whisker plot. The data are grouped depending on measurements collected
before or after intervention and split into the different stimulation conditions,
i.e., negative peak, positive peak, or random stimulation with connecting
lines to visualize the respective trends in blue, red, and grey.
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4 Discussion

4.1 Related Work

This chapter starts with an evaluation of our results in the context of current literature,

followed by a discussion of the stimulation and task aspects of the experiment. The

chapter ends with a conclusion and a perspective for the future.

The results presented in the previous chapter strongly suggest that synchronizing TMS

with the negative peak of the ongoing FM-theta oscillation has a significant impact on

repetitive stimulation, resulting in different behavioral effects as a consequence of a

repetitive TMS protocol. Stimulation at the trough phase of theta resulted in shorter

reaction times in the Sternberg task compared to a random stimulation, with a medium

effect size of 0.497 (for classification of ranges, see Section 2.4.3). In comparison,

non-phase-triggered non-invasive brain stimulation of the dlPFC shows mixed results

in improving working memory function, with either a slight improvement or none at

all [Berryhill et al., 2012; Boggio et al., 2006; Guse et al., 2013]. Of note, the latter

method is currently applied in the therapy of depression. By combining existing non-

invasive brain stimulation studies into a meta-analysis, Brunoni et al. could show an

improvement in reaction times with a small effect size of 0.22 [Brunoni et al., 2014]. The

studies included in this meta-analysis had a similar number of participants compared to

our study, making a reliable comparison possible. The effect size of this meta-analysis
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is noticeably smaller than the effect size obtained by our method. This could either be

due to the different stimulation target, the phase-dependent stimulation approach we

used, or both.

4.2 Stimulation Aspects

When aiming to stimulate a specific phase, it is crucial to know how precisely the phase

is actually targeted. The accuracy of our phase detection algorithm is comparable

to similar algorithms published before [Siegle et al., 2014; Zrenner, Desideri, et al.,

2018] despite facing challenges such as working with an inconsistent oscillation and

a low signal-to-noise ratio. For example, Zrenner et al. achieved an accuracy of 0°

±53° (positive peak) and 181° ±55° (negative peak) for phase-dependent stimulation

of sensorimotor 𝜇-rhythm. Unfortunately, there are very little data available on the

subject because of the as of yet limited amount of studies performing an EEG-phase-

locked stimulation in the first place and the even more limited amount of these studies

reporting the accuracy of their phase estimation.

One limitation of an EEG stimulation that is phase-locked to the theta rhythm compared

to the sensorimotor 𝜇-rhythm is that there are no single trial markers of excitability. In

contrast, in the motor system, the amplitude of the muscle contraction in each trial can

be measured as motor evoked potential.

Another limitation of working with the theta rhythm is that an inconsistent oscillation

like the FM-theta complicates a phase estimation considerably. Phase predictions

calculated from more extended periods of the oscillations are more likely to be accurate

compared to estimations calculated from a shorter period as there are more data to

extrapolate from. However, in the case of FM-theta, a more prolonged period of the

oscillation is more likely to contain phase resets, which occur approximately at least
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4.2 Stimulation Aspects

every two seconds [Kahana et al., 1999]. Consequently, the algorithm must verify if

the current signal corresponds to a stable oscillation and that the utilized period does

not contain phase resets. This was managed by incorporating specific limitations into

the algorithm.

Additionally, the lower signal-to-noise ratio of the FM-theta leads to a higher sensitivity

of the extracted signal to be distorted by other oscillations. This results in a decreased

accuracy of the phase detection algorithm [Zrenner, Galevska, et al., 2020]. By using

individual filters for extracting the oscillation, we argue that a clearer signal could be

attained compared to standardized filters [Gordon, Dörre, et al., 2021]. However, it

is unclear how close the extracted signal is to the actual endogenously occurring

signal, raising the possibility that the signal is still tainted slightly by other oscillations.

This might result in lower accuracy of the phase estimation than suggested by our

analysis.

As mentioned in the first chapter, our stimulation method considers endogenous

mechanisms of the brain, such as phase-amplitude coupling. This mechanism seems

essential for learning processes by inducing synaptic plasticity and being utilized for

storing information currently held in working memory. Thus, on the one hand, imitating

this mechanism should foster synaptic plasticity to achieve effects that outlast the

stimulation itself. This is an essential issue because the stimulation in our experiment

was temporally separate from the working memory task. Therefore, any observed

changes in brain activity due to stimulation would have to persist for a certain period

after the intervention. Besides, any intervention used as a treatment in medicine should

ideally induce long-lasting effects to make the treatment only necessary for a couple of

sessions. Effects on the motor cortical excitability could already be demonstrated by

Zrenner et al. after applying high-frequency bursts of stimulation phase-locked to the

sensorimotor 𝜇-alpha-oscillation [Zrenner, Desideri, et al., 2018].
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On the other hand, the question is whether by imitating these mechanisms, the brain is

being trained in some way to use its activity more effectively in working memory activity.

However, it is uncertain whether this stimulation might train the brain to synchronize its

oscillations more effectively.

4.3 Task Aspects

Two possible factors influencing the results of the working memory task are a learning

effect and a higher degree of exhaustion during the trials after the intervention. A

learning effect for the task could make a working memory improvement seem more

significant than it actually is by improving only the post-intervention parameters. It may

also result in differences between sessions if they are not adequately separated in time.

However, the individual sessions for a subject were always at least one week apart,

thus making a learning effect across sessions quite unlikely. Furthermore, a learning

effect across sessions would affect both pre- and post-intervention parameters, thus

not influencing the difference between the two parameters, i.e., memory improvement.

Moreover, a learning effect within one session would affect each of the sessions equally,

including the random session, making it harder to spot differences between the different

conditions. Therefore, a possible learning effect would only result in a less significant

difference between a phase-dependent and a random stimulation, leading to a smaller

effect size. Additionally, with each session of the experiment lasting about four hours,

including preparation time, it is also possible for participants to be increasingly tired

and thus be less attentive for the final step of each session, the working memory task.

This could decrease working memory performance and negate the possible learning

effect, making it more challenging to determine memory improvements. In conclusion,
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in a fictional scenario where learning effects and tiredness do not exist, we expect to

detect a more considerable improvement in working memory compared to what we

reported here.

While the analysis could demonstrate significant differences between the stimulation

conditions for reaction times in the Sternberg task, it is worth mentioning that the

results for changes in accuracy in the task show no different effects at all. Comparing

the accuracies of the different stimulation conditions, they are noticeably similar. Since

the accuracies are almost identical, it is not to be expected to attain significant results,

even increasing the sample size by a considerable amount.

Apart from this, the suitability of the Sternberg task for our experiment needs to be

discussed. When initially selecting the working memory task, the planned stimulation

target of the experiment was different from what it ended up being. The intended

primary stimulation target was the left dlPFC as it is the main region currently targeted

for stimulation to achieve working memory improvement and treatment of depression.

This is due to its contribution to working memory functions and an association between

hypoactivity in this brain region and depression [Barbey et al., 2013; George, Ketter, et

al., 1994]. For this reason, our original research to find a suitable working memory task

was based on working memory improvement through non-invasive brain stimulation of

the dlPFC [Brunoni et al., 2014; Dedoncker et al., 2016]. Looking for well-established

working memory tasks in this niche, we found that studies using either the n-back

task or the Sternberg task showed the most promising working memory improvement

effects.

One difference between the tests that was crucial to us is that in the n-back task,

trials are not independent units but are connected, while in the Sternberg task, each

trial is separate from the rest. The Sternberg task has the additional advantage of

temporal separation of stimulus, retention, and query. This is important because it
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creates the possibility to also correlate neurophysiological and behavioral outcomes,

besides analyzing working memory improvement for a further analysis not included in

this thesis.

However, as mentioned above, we selected the dmPFC as the stimulation target

instead of the dlPFC. For our method of phase-dependent stimulation, it is essential

to acquire a high signal-to-noise-ratio oscillation signal. Therefore, it is essential to

target a specific oscillation instead of an anatomical target to improve working memory.

Accordingly, the selection of the dmPFC as stimulation target was decided to achieve

a reliable phase estimation for the phase-specific stimulation because testing of the

spatial filter resulted in a signal-to-noise ratio of the theta oscillation in favor of the

dmPFC.

Nevertheless, the Sternberg task as a classic verbal working memory retention task is

also well suited to assess changes in medial PFC activity or rather FM-theta activity as

this theta oscillation seems to be responsible for working memory retention [Jensen

and Tesche, 2002]. Besides, the primary conditions of the experiment did not change

with the objective of achieving working memory improvement remaining unaffected,

and only the method through which it would be reached changed slightly. Moreover, the

considerations above are supported by the fact that the task could detect a significant

working memory improvement in our experiment.

While the dlPFC is more widely associated with working memory than the dmPFC,

there is another possible explanation for the more considerable improvement in reaction

times we obtained, compared to other recent studies mentioned before [Funahashi

et al., 1994]. One cognitive function associated with the dmPFC is decision-making

under uncertainty [Nachev et al., 2005; Ullsperger et al., 2001]. As our experiment

resulted only in a shorter reaction time without improvement of accuracy, it is possible

that the stimulation did not actually improve working memory’s accuracy but instead

improved decision-making for trials where participants were unsure of the correct
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response. If, however, the results were achieved solely by improving the decision-

making function rather than the working memory function, this would influence both

correct and incorrect responses equally. This is unlikely because we analyzed both

the reaction times with only the correct responses included and all reaction times

separately. Here, only the analysis with just the correct responses yielded significant

results.

Since the dmPFC is more often associated with emotional control, cognitive control,

and decision making than with working memory, it could be argued that a different

objective could be more suitable for stimulation of the dmPFC [E. K. Miller et al., 2001;

M. L. Phillips et al., 2008; Venkatraman et al., 2009]. However, this would make the

method more difficult to compare to recent studies and, therefore, more challenging to

apply to treatments of non-healthy subjects. On the one hand, the above-mentioned

cognitive functions could be good markers for treatment for depression, for example, on

the other hand, they are not commonly used to evaluate the efficacy of TMS treatment.

As new treatments need to be evaluated compared to existing treatments, this would

make the admission of the method more challenging.

4.4 Conclusion and Future Perspective

To conclude this chapter, our algorithm detected the ongoing phase of theta with an

accuracy comparable to other phase detection algorithms, despite facing difficulties

targeting the theta oscillation. In addition, possible influencing factors such as a

learning effect of the task or an exhaustion effect at the end of sessions were adequately

controlled for in the study design. Also, they would lead to a lower chance of achieving

significant results instead of making them seem more significant than they actually are.

Besides, the Sternberg task was sufficient to demonstrate the stimulation’s behavioral

changes in working memory performance.
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Nevertheless, it might be interesting to conduct an experiment in which our method of

stimulation to the dmPFC is evaluated by the performance in a decision-making task

instead of a working memory task because of its relevance for dmPFC function as

mentioned previously.

Besides this, there are different possibilities to improve the aspect of the accuracy of the

phase-dependent stimulation. One possibility would be to create a better environment

for the prediction with a more distinct and consistent theta oscillation by influencing

the brain’s current state. Moreover, better accuracy for the stimulation could also

be achieved by inducing a more pronounced signal for the algorithm, meaning an

oscillation with higher amplitudes and thereby achieving an improved signal-to-noise

ratio [Zrenner, Galevska, et al., 2020]. For the FM-theta oscillation specifically, this

could be achieved through tasks of sustained internally-directed cognition attention

[Hsieh, Ekstrom, et al., 2011; Raghavachari et al., 2001; Tsujimoto et al., 2010].

Therefore, a retention or continuous visuospatial task without external stimuli could

be employed during the stimulation period to create an improved signal-to-noise ratio,

possibly resulting in a higher accuracy [Kahana et al., 1999].

To possibly achieve a greater effect with the stimulation, one could try to target a

different phase of theta aside from peak or trough. This aspect could be analyzed in a

follow-up experiment.

Additionally, as the conducted experiment was planned as a pilot study for testing a

new method on a smaller scale on healthy subjects, an ensuing study on a larger

scale with participants with a psychiatric disorder associated with working memory

deficits should be conducted. This has the potential to lead to the establishment of an

improved protocol for TMS treatments.

62



5 Summary

The experimental results presented in this thesis indicate that theta phase-specific

stimulation of the dmPFC leads to an improved reaction time in the Sternberg working

memory task when targeting the trough of the FM-theta oscillation.

To achieve a phase-dependent stimulation we use real-time phase estimation by

creating spatial filters for EEG data to isolate the ongoing oscillation of the dmPFC. The

isolated oscillation is filtered and analyzed in multiple steps to attain an instantaneous

phase estimation. With this estimation of the theta phase, TMS pulses can be triggered

depending on the current phase. Participants perform a Sternberg working memory

task before and after the intervention with this phase-dependent stimulation. Each

session is randomized regarding the targeted phase that was stimulated, which is

either a random phase, the peak, or the trough of the FM-theta oscillation.

Employing an ANOVA, this work shows that significant differences exist between

the three stimulation conditions in terms of the effect on the working memory task

performance. A Wilcoxon test confirms these differences for the stimulation at the

trough of the theta rhythm compared to stimulation at a random time point in the theta

phase. For this, the analysis shows shortened response times in the Sternberg task

after trough stimulation with an effect size of 0.497. However, the proportion of correct

responses does not change significantly due to the different simulation conditions.
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Comparing our results to current literature, the effect size of the reaction time improve-

ment in the working memory task is greater than the effect sizes of experiments that

used a non-phase-triggered stimulation. In addition, it is shown that the accuracy of

the phase-dependent stimulation corresponds to the current standard.

Moreover, various factors potentially influencing working memory performance aside

from the TMS are discussed in this work with the conclusion that they would instead

lead to a possible underestimation rather than an overestimation of our results’ sig-

nificance. Furthermore, the Sternberg task proves to be sufficient in demonstrating

improved working memory performance as an effect of the stimulation. Our results

on healthy subjects indicate that our designed method could help refine current TMS

therapy protocols and, thereby, improve response rates of TMS therapy.
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6 Zusammenfassung

Diese Arbeit zeigt, dass die phasenspezifische transkranielle Magnetstimulation (TMS)

in Abhängigkeit des Thetarhythmus des dmPFC zu einer signifikanten Verbesserung

der Reaktionszeit bei einer Arbeitsgedächtnisaufgabe führt.

Die phasenspezifische Stimulation basiert auf einer Echtzeitprognose der aktuellen

Phase des Thetarhythmus. Hierzu wird ein Filter erstellt, der die EEG-Daten nach

einer räumlichen Quelle filtert, um die derzeitige Oszillation des dmPFC zu isolieren.

Die extrahierte Oszillation wird in mehreren Schritten analysiert, um eine Echtzeit-

Phasenschätzung zu erhalten. Mit dieser Prognose der Theta-Phase werden TMS

Pulse in Abhängigkeit von der aktuellen Phase ausgelöst. Die Teilnehmer führen vor

und nach der Intervention mit dieser phasenabhängigen Stimulation jeweils Sternberg-

Aufgaben zur Testung des Arbeitsgedächtnisses durch. Die einzelnen Sitzungen

werden hinsichtlich der ausgewählten Phase, die stimuliert werden soll, randomisiert,

wobei die Stimulation entweder am Höhepunkt, am Tiefpunkt oder an einem zufälligen

Zeitpunkt in der Phase der frontalen Thetaschwingung stattfindet.

Diese Arbeit zeigt mittels einer ANOVA, dass signifikante Unterschiede in der Reaktion-

szeit zwischen den drei Stimulationsbedingungen in der Sternberg-Aufgabe bestehen.

Ein Wilcoxon-Test bestätigt diese Unterschiede für die Stimulation des Tiefpunkts des

Thetarhythmus im Vergleich zu einer Stimulation an einem zufälligen Zeitpunkt der

Thetaphase. Hier zeigt die Analyse kürzere Reaktionszeiten in der Sternberg-Aufgabe
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nach der Stimulation des Tiefpunktes mit einer Effektgröße von 0, 497. Der Anteil der

korrekten Antworten ändert sich dabei allerdings nicht signifikant in Abhängigkeit der

unterschiedlichen Simulationsbedingungen.

Vergleicht man unsere Ergebnisse mit der aktuellen Literatur, so ist die Effektgröße

der Reaktionszeitverbesserung in der Arbeitsgedächtnisaufgabe größer als die Effekt-

größen von Experimenten, die eine nicht-phasenspizifische Stimulation durchführten.

Zusätzlich ist die Genauigkeit der Phasenbestimmung vergleichbar mit ähnlichen

Experimenten.

Zusätzlich wird in dieser Arbeit aufgezeigt, dass mögliche Einflussfaktoren auf die Ar-

beitsgedächtnisleistung, abgesehen von der TMS, eher dazu führen würden, dass die

Signifikanz unserer Ergebnisse unter- anstatt überschätzt wird. Darüber hinaus erwies

sich die Sternberg-Aufgabe als geeignet, um eine verbesserte Arbeitsgedächtnisleis-

tung als Effekt der Stimulation zu demonstrieren. Unsere Ergebnisse an gesunden

Probanden deuten darauf hin, dass die von uns entwickelte Methode nützlich sein

könnte, um die derzeitigen TMS-Therapieprotokolle zu optimieren und dadurch die

Ansprechraten und somit auch die Wirksamkeit der TMS-Therapie zu verbessern.
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