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Abstract

Since the beginning of this millenium, the advent of high-throughput methods in
numerous fields of the life sciences led to a shift in paradigms. A broad variety of
technologies emerged that allow comprehensive quantification of molecules involved in
biological processes. Simultaneously, a major increase in data volume has been recorded
with these techniques through enhanced instrumentation and other technical advances.
By supplying computational methods that automatically process raw data to obtain
biological information, the field of bioinformatics plays an increasingly important role
in the analysis of the ever-growing mass of data. Computational mass spectrometry
in particular, is a bioinformatics field of research which provides means to gather,
analyze and visualize data from high-throughput mass spectrometric experiments.
For the study of the entirety of proteins in a cell or an environmental sample, even
current techniques reach limitations that need to be circumvented by simplifying the
samples subjected to the mass spectrometer. These pre-digested (so-called bottom-up)
proteomics experiments then pose an even bigger computational burden during analysis
since complex ambiguities need to be resolved during protein inference, grouping and
quantification.

In this thesis we present several developments in the pursuit of our goal to provide
means for a fully automated analysis of complex and large-scale bottom-up proteomics
experiments.

Firstly, due to prohibitive computational complexities in state-of-the-art Bayesian
protein inference techniques, a refined, more stable technique for performing inference
on sums of random variables was developed to enable a variation of standard Bayesian
inference for the problem.

Based upon the integration of this technique into a co-developed inference library,
an implementation of an OpenMS tool for Bayesian protein inference is then presented.
It performs efficient inference on discrete Bayesian networks through loopy belief prop-
agation. Despite handling the protein inference problem in a rigorously probabilistic
manner and therefore achieving excellent sensitivity on ground-truth data, it outper-
forms most of the state-of-the-art techniques in computational efficiency. The tool’s
interface provides unique features for in- and output and options for regularization of
proteins in groups to tweak calibration.
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Lastly, a complete, easy-to-use, and scalable workflow for protein inference and
quantification was built around the new tool. The pipeline is implemented in nextflow
and part of a set of standardized, well-tested, and community-maintained workflows by
the nf-core collective. Our workflow runs on large scale data with complex experimental
designs and allows a one-command analysis of local and publicly available data sets
with state-of-the-art accuracy on various high-performance computing environments
or the cloud.
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Kurzfassung

In den letzten Jahrzehnten kam es zu einem signifikanten Anstiegs des Einsatzes von
Hochdurchsatzmethoden in verschiedensten Bereichen der Naturwissenschaften, wel-
che zu einem regelrechten Paradigmenwechsel führte. Eine große Anzahl an neuen
Technologien wurde entwickelt um die Quantifizierung von Molekülen, die in ver-
schiedenste biologische Prozesse involviert sind, voranzutreiben und zu beschleunigen.
Damit einhergehend konnte eine beträchtliche Steigerung an Daten festgestellt werden,
die durch diese verbesserten Methoden generiert wurden. Durch die Bereitstellung von
computergestützten Verfahren zur Analyse eben dieser Masse an Rohdaten, spielt der
Forschungsbereich der Bioinformatik eine immer größere Rolle bei der Extraktion bio-
logischer Erkenntnisse. Im Speziellen hilft die computergestützte Massenspektrometrie
bei der Prozessierung, Analyse und Visualisierung von Daten aus massenspektrometri-
schen Hochdursatzexperimenten. Bei der Erforschung der Gesamtheit aller Proteine
einer Zelle oder einer anderweitigen Probe biologischen Materials, kommen selbst
neueste Methoden an ihre Grenzen. Deswegen greifen viele Labore zu einer, dem Mas-
senspektrometer vorgeschalteten, Verdauung der Probe um die Komplexität der zu mes-
senden Moleküle zu verringern. Diese sogenannten „Bottom-up“-Proteomikexperimente
mit Massenspektrometern führen allerdings zu einer erhöhten Schwierigkeit bei der
anschließenden computergestützen Analyse. Durch die Verdauung von Proteinen zu
Peptiden müssen komplexe Mehrdeutigkeiten während Proteininferenz, Proteingrup-
pierung und Proteinquantifizierung berücksichtigt und/oder aufgelöst werden.

Im Rahmen dieser Dissertation stellen wir mehrere Entwicklungen vor, die dabei
helfen sollen eine effiziente und vollständig automatisierte Analyse von komplexen
und umfangreichen „Bottom-up“-Proteomikexperimenten zu ermöglichen.

Um die hinderliche Komplexität diskreter, Bayes’scher Proteininferenzmethoden
zu verringern, wird neuerdings von sogenannten Faltungsbäumen (engl. „convolution
trees“) Gebrauch gemacht. Diese bieten bis jetzt jedoch keine genaue und gleichzeitig
numerisch stabile Möglichkeit um „max-product“-Inferenz zu betreiben. Deswegen
wird in dieser Dissertation zunächst eine neue Methode beschrieben die das mithilfe
eines stückweisen bzw. extrapolierendem Verfahren ermöglicht.

Basierend auf der Integration dieser Methode in eine mitentwickelte Bibliothek
für Bayes’sche Inferenz, wird dann ein OpenMS-Tool für Proteininferenz präsentiert.
Dieses Tool ermöglicht effiziente Proteininferenz auf Basis eines diskreten Bayes’schen
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Netzwerks mithilfe eines „loopy belief propagation“ Algorithmus’. Trotz der streng
probabilistischen Formulierung des Problems übertrifft unser Verfahren die meisten
etablierten Methoden in Recheneffizienz. Das Interface des Algorithmus’ bietet au-
ßerdem einzigartige Eingabe- und Ausgabeoptionen, wie z.B. das Regularisieren der
Anzahl von Proteinen in einer Gruppe, proteinspezifische „Priors“, oder rekalibrierte
„Posteriors“ der Peptide.

Schließlich zeigt diese Arbeit einen kompletten, einfach zu benutzenden, aber
trotzdem skalierenden Workflow für Proteininferenz und -quantifizierung, welcher
um das neue Tool entwickelt wurde. Die Pipeline wurde in nextflow implementiert
und ist Teil einer Gruppe von standardisierten, regelmäßig getesteten und von einer
Community gepflegten Standardworkflows gebündelt unter dem Projekt nf-core. Unser
Workflow ist in der Lage selbst große Datensätze mit komplizierten experimentellen
Designs zu prozessieren. Mit einem einzigen Befehl erlaubt er eine (Re-)Analyse von
lokalen oder öffentlich verfügbaren Datensätzen mit kompetetiver Genauigkeit und
ausgezeichneter Performance auf verschiedensten Hochleistungsrechenumgebungen
oder der Cloud.
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Chapter 1

Introduction

1.1 Motivation

For the investigation of certain diseases, elucidation of the proteins present in a cell
has become a crucial part in many biological and medical studies nowadays. Unlike
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), the entirety of proteins
present in a cell or a compartment thereof can provide a more immediate view on
currently active processes. An established method to measure the abundance of proteins
and their proteoforms in a sample is mass spectrometry (MS). Due to limitations in the
experimental process however, usually an indirect approach is used, where proteins are
digested into peptides first (also known as bottom-up proteomics experiments). This
leads to ambiguities in the reverse process of mapping the peptides back to their proteins
of origin—the so-called protein inference problem108. The problem is aggravated by
the fact that the identification process of peptides from mass spectra carries uncertainty
from the imperfections of both experimental and analytical procedures.
Ideally, a protein inference algorithm therefore fulfills the following properties:

• it recognizes and reports on uncertainty on the protein level,

• it is able to use as much information as possible (including information from
ambiguous peptides),

• it neither under- nor over-counts evidence from ambiguous peptides, and

• it allows for grouping of proteins into ambiguity groups whenever the present
information is not enough to make a clear distinction.

All these requirements are fulfilled by probabilistic inference on generative models
that allow for an arbitrary level of accuracy in modeling the underlying experimental
processes. Generative models in the form of Bayesian networks (BNs) were already
shown to work well on this specific problem163, however the tools performing inference
on the current, still relatively simple models face two yet unsolved problems:

• They are prohibitively slow for large datasets with the applied techniques, and
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1. Introduction

• their models and the chosen type of inference are usually too optimistic for
proteins without unique evidence160.

Additionally, a tool that implements an efficient inference method is a requirement
for a coherent, feature-complete proteomics pipeline for the analysis of large-scale MS
data on high-performance computing (HPC) environment or the cloud. However, full
quantitative proteomics pipelines are often either wrapped into one-tool-solutions that
do not benefit from distributed hardware or are developed separately by different labs
specifically for a certain computing infrastructure. The deployment and configuration of
such a pipeline can be a non-negligible obstacle for other users due to the large amount
of software to be installed and the often simultaneously required domain knowledge
in both high-performance computing and proteomics at the same time. Lab-internal
workflows are sometimes hard to get support for or lack robustness on types of data
not (yet) used by the developers. Another drawback of one-tool-solutions on the other
hand is that it is hard for users to exchange parts of the internal pipeline with the latest
improvements from the proteomics community or to extend its functionality (with for
example custom quality control tools based on intermediate results).

1.2 Outline of this thesis

Succeeding the introduction, Chapter 2 aims at familiarizing the reader with the
relevant technical, biological and algorithmic background. Towards the end of the
background we also review current approaches for the protein inference problem
including their insufficiencies in either accuracy or efficiency. Chapters 3-5 of this
thesis, then cover three advancements to the field of computational MS that help
overcome these unsatisfactory properties.

1. In Chapter 3, we develop and compare several more accurate mathematical
methods for efficient max-product inference on Bayesian networks with additive
dependencies to overcome the limitations of current approaches with probabilistic
models commonly used for protein inference. The methods extend a previously
described method139 that makes use of the fact that max-convolution involves
calculating maxima of vectors, which is equivalent to an infinity norm. The
infinity or Chebyshev norm can in turn be approximated by a high enough fixed
p-norm. We show how to choose one or multiple values for p to gain the most
accurate results without numeric instabilities and how to even further increase
accuracy by affine corrections and extrapolation via a null space projection.
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2. Chapter 4 describes the development of EPIFANY119, a ready-to-use tool in the
Open Mass Spectrometry (OpenMS) framework for the protein inference prob-
lem, using the results of chapter 3 together with efficient approximate loopy
belief propagation inference and an improved probabilistic model that is able to
distribute evidence from peptides unevenly to proteins in a rigorous Bayesian
framework. We show on a complex protein standard that it is faster than all other
tested probabilistic methods with comparable or better accuracy. It also scales
better and even outperforms heuristic approaches on larger data. EPIFANY also
offers more flexibility in input and output options, such as user-defined protein
priors or output peptide posteriors.

3. In Chapter 5, we present a user-friendly pipeline that uses EPIFANY among a
plethora of other tools for end-to-end analysis of label-free bottom-up proteomics
MS data, ready to be used on large datasets through execution in the cloud or
HPC systems. Generalizability across HPC environments and clouds is ensured—
mostly hidden from the user—by its implementation in the nextflow32 workflow
framework. It is furthermore a community-driven effort, part of nf-core42, that
adheres to established guidelines regarding pipeline structure, software packaging
(e.g., into containers and bioconda50) and continuous testing. Lastly, on an
elaborate benchmarking dataset we ensured that accuracy is on par with the state-
of-the-art one-tool-solution MaxQuant27 at a better efficiency and with higher
inherent scalability.

In the concluding Chapter 6, we summarize our contributions and discuss to which
degree the motivating problems could be solved or where additions or improvements
could still be made.
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Chapter 2

Background

2.1 Protein biosynthesis

Protein biosynthesis starts with the information contained in the unwound parts of the
genome encoded as DNA in the nucleus of a cell. During transcription protein coding
parts of the double-stranded DNA are temporarily separated and transcribed by a
group of enzymes into messenger RNA (RNA)). The resulting single-stranded sequence
of ribonucleotides is either co-transcriptionally or immediately after transcription
processed further by the spliceosome (in a process called splicing). During splicing,
introns (non-coding regions) are removed and exons (coding regions) are joined
together. Note that exon skipping events might occur in which the spliceosome cuts
at the beginning of one and at the end of another downstream intron such that the
resulting splice form is shorter than the unspliced (i.e., constituent) form. The final
translation into proteins takes place outside the nucleus. Triplets of ribonucleotides
are consecutively recognized by the ribosome, which synthesizes the resulting protein
by initiating and elongating its polypeptide sequence of amino acids with the help of
transfer RNA (RNA). Important events that occur during or after translation include
proteolysis (which removes N-terminal, C-terminal or internal amino acid residues
or peptides from the polypeptide) as well as post-translational modification (during
which the termini and side-chains of the polypeptide are enzymatically modified).

2.2 Proteomics

Proteomics is defined as the large-scale study of the proteome, the entirety of proteins
that is produced or modified by an organism or system. As opposed to genomics
and even transcriptomics, proteomics provides a direct measure of the identities and
quantities of proteins present in the studied entity. Post-transcriptional regulation can
have a significant impact on protein concentrations in a cell (especially on absolute
concentrations outside of a steady-state)63,87. The study of proteins therefore grants
researchers a direct measure of the level of translation when examining cellular pro-
cesses and allows for determination of post-translational functional modifications, as
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well as protein isoforms. Nowadays, a common method to investigate the proteome on
a large scale is mass spectrometry.

2.3 Mass spectrometry-based proteomics

Most setups for mass spectrometry-based proteomics experiments consist of at least
the following sequence of steps: firstly, biological samples are extracted and prepared.
Then, to reduce sample complexity, a separation of the analytes is performed. Lastly,
the analytes are subjected to the mass spectrometer where they are ionized. The
instrument then measures mass and abundance of the ions and outputs mass spectra.

Subsequent analysis of the contained abundance and mass of measured ions using
computational methods allows for identification and quantification of the original
analytes.

2.3.1 Sample preparation

During sample preparation, cells need to be lysed first to release their content. To
trigger an immediate stop of the current cellular processes, active enzymes are arti-
ficially inhibited. The resulting sample content is split into proteins of interest and
remaining components by centrifugation and depletion. In some cases (e.g., when
studying certain post-translational modifications like phosphorylations) an additional
enrichment step is used to increase the concentration of proteins of specific types in the
sample. Furthermore, the three-dimensional structure of proteins has to be unfolded in
a denaturation step for optimal results in downstream digestion. This is done by adding
chaotropic reagents as well as by reducing disulfide bonds and subsequently alkylating
the resulting sulfhydryl groups. To clean the pre-processed lysate from undesirable
molecules (like salts, detergents, chaotropic reagents, glycerol or buffer) dialysis and
desalting techniques are applied. Since large macromolecules with potentially many
charged side-chains introduce difficulties during downstream experimental and compu-
tational analysis23,162, the resulting linearized proteins are often subjected to digestion
via endoproteases (in so-called “bottom-up” or “shotgun” proteomics experiments).
Digestion can be done in-solution or in-gel if a pre-fractionation is preferred (e.g., in
the case of highly complex samples). Bottom-up experiments and the challenges during
their analysis, will be the focus of this manuscript.
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2.3.2 Separation techniques

As mentioned before, samples can be pre-fractionated using techniques such as one-
or two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS
PAGE)76 during or before denaturation and digestion. After electrophoresis, protein
bands or spots are visualized and extracted from the gel matrix and prepared for MS
analysis.

Another separation technique, high-performance liquid chromatography (HPLC), is
usually coupled directly to the mass spectrometer (then called LC-MS). It is realized
by directing the liquified sample through a thin column comprised of a mobile and
stationary phase before it reaches the mass spectrometer. During their flow through
the mobile phase of the column, peptides are slowed down by interactions with the
stationary phase depending on their physicochemical properties (e.g., hydrophobicity
for reversed-phase LC96). Their retention time, the time from injection to elution,
separates peptides in an additional dimension.

2.3.3 Mass spectrometry

A typical mass spectrometer consists of three principal components (Figure 2.1):

1. The ion source: the component that ionizes the analyte molecules—often realized
through soft, i.e., non-degrading electrospray ionization (ESI)55,

2. an analyzer that sorts and filters the resulting ions according to their mass-to-
charge ratio (m/z), and

3. a detector that records the ions that were selected by the analyzer. The current
generated by the stimulating ions in proximity or in contact with the detector is
proportional to the number of ions.

Each measurement cycle at a specific retention time produces a so-called mass
spectrum that comprises all pairs of detected m/z ratios and their associated ion
intensity (a digitized value of the measured current). The reported intensities are
proportional to the number of ions that excited the detector at this m/z value. Common
mass analyzers use the behavior of an ion in an electric or magnetic field to calculate
its m/z ratio. Mass-determining characteristics are for example:

• their time-of-flight in a vacuum tube (see Campana 15 for a historical overview)

• the shape and frequency of their orbit between electrodes (as with quadrupole56 or
Orbitrap89 instruments) or around a superconducting magnet (Fourier-transform
ion cyclotron resonance (FTICR)-MS22)
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Mass spectra can be stacked along the retention time dimension to create a two-
dimensional representation of the resulting data, often called “peak maps” (Figure 2.2).
Modern instruments are able to record dozens of spectra per second, therefore the size
of a spectrum file on a computer can easily reach gigabytes.

2.3.4 Tandem mass spectrometry

Since the m/z ratio of an ion does not distinguish between isobaric peptides (i.e.,
peptides with the same mass), a second stage of measurements is needed in the mass
spectrometer for the identification of peptide sequences. To discriminate between
different amino acid sequences, peptides need to be fragmented into overlapping
sequence fragments, as this allows to reconstruct the sequence based on the mass
differences between them.

An ideal fragmentation technique yields complete “ion ladders” of both prefix and
suffix ions through fragmentation of the peptide once around each peptide bond. Com-
mon fragmentation methods that yield more or less complete ion ladders of different
types, include electron-transfer dissociation (ETD155), collision-induced dissociation
(CID169), higher-energy collisional dissociation (HCD109) or hybrid techniques such as
EthcD44.

For fragmentation, analytes in a small isolation window around an interesting
(usually a local high-intensity) “precursor” peak are trapped in a collision cell and
(depending on the applied method) subjected to collision with an inert gas which
breaks the sequence at covalent bonds between the α-carbon of consecutive amino
acids (i.e., the peptide bond or one of its adjacent bonds). The frequencies at which
exact bond the collision causes a break, depends on the used fragmentation technique.

Although multiple fragment scans can be recorded between two consecutive sur-
vey scans, precursors are chosen carefully based on predefined or real-time adapted
inclusion/exclusion lists such that ideally, a single analyte is only measured once at
the beginning of its elution and once at its apex (see Figure 2.2 for a typical precursor
selection).

The resulting fragment ions are collected again in an analyzer and intensities for
different m/z values are measured a second time. These second stage measurements
then yield so-called fragment, tandem MS, MS2, or as used in this thesis: MS/MS scans,
that can now be used for identification of peptides through computational approaches
(Figure 2.3).
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Figure 2.1: Components of a mass spectrometer conceptualized. The sample is depicted
as four types of molecules, distinguished by different shapes and colors (top left). Their
relative positions along the connecting arrows represents their time of arrival in the
next component. Through the inlet system, parts of the sample are continuously—e.g.,
when an HPLC is coupled to it—or manually injected over time into the inlet of the mass
spectrometer (parts in blue boxes). The ion source then generates charged particles from
the arriving molecules if they are ionizable (here e.g., orange molecules are not ionizable).
It then introduces them into the high-vacuum system of the mass spectrometer where the
mass analyzer(s) are located. In the case of tandem MS, mass analysis is further split into:
a first analyzer conducting survey/precursor scans and filtering for interesting mass ranges,
a collision cell in which selected ions are being trapped for subsequent fragmentation, and
a second mass analyzer (MA) generating fragment scans. In this example, ions of the red
and green type reach MA1 at the same time but only red is selected for fragmentation due
to the devised higher intensity of its type. The ion detector measures the ions from both
analyzers and generates an electric current proportional to the number of ions measured
at a certain m/z ratio. Note, that depending on the type of analyzer, detection may take
place in the same compartment. The generated current is finally digitized in the data
system and processed to be displayed as MS1 (for analyzer 1) and MS/MS spectra (for
analyzer 2).
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Figure 2.2: Peak Map exported from TOPPView152 of a low-complexity sample displaying
hundreds of mass spectra, stacked along the x-axis according to retention time. A few
thousand peaks are plotted as small rectangles. While gray peaks mostly originate from
noisy measurements, multiple analytes can be visually detected as areas of darker colors
which signify a larger number of ions recorded. Little diamonds show triggered MS/MS
scans for identification.
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2.4 Computational mass spectrometry

Due to the rapid evolution of mass spectrometry instruments and experimental tech-
niques, computational mass spectrometry has expanded to an independent scientific
field with a variety of distinct methods and tools. Solely concepts and algorithms with
immediate relevance to the contributions described in this thesis are introduced in this
section. Those include computational techniques for peptide identification, protein
inference, and quantification.

2.4.1 Quantification

A common goal is to quantify the measured molecules in a sample. While determin-
ing absolute concentrations is difficult without internal standards (due to different
ionization efficiencies), relative quantification can be performed by simply comparing
intensities of the same analytes across samples and is sufficient for a wide range of e.g.,
clinical studies. Firstly, the spread-out signals of analytes (and their isotopes) need to
be detected in the peak maps (Figure 2.2). One possible algorithm starts at seeds in
high intensity regions or at precursors of confidently identified fragment scans (see also
Subsection 2.4.2) and iteratively updates and validates the shape of a three-dimensional
model there. The shape is determined by the roughly Gaussian-shaped elution profile51

along the retention time axis in the case of HPLC-MS and the expected isotope pattern
along the m/z axis. The isotope pattern arises from the different relative abundances
of isotopes in natural molecules. For peptides of unknown composition but known
mass, a peptide composed of solely “averagine” amino acids can be assumed134.

Since repeated HPLC-MS runs, even in temporal proximity on the same LC col-
umn, may suffer from potential retention time shifts, relative quantification requires
the alignment of the located features across samples (e.g., through pose clustering
approaches77).

Finally, after finding best matches across runs, the intensities of all peaks in a feature
can be summarized and compared based on for example user-defined contrasts.

2.4.2 Peptide identification

To elucidate what was quantified, a separate identification step is necessary in a
proteomics processing pipeline. It is needed to assign a peptide sequence to the
features that were discovered during quantification. This is achieved indirectly based

11



2. Background

on the assignment of a peptide sequence to the MS/MS scans that were triggered inside
a feature25.

Scoring peptide-spectrum matches

The analysis of mass spectra to identify peptide sequences involves scoring an MS/MS
scan based on several known or predictable characteristics (e.g., the precursor m/z,
specific peaks in the MS/MS spectrum, or retention time). While precursor mass and
retention time information is mainly used to roughly pre-filter candidates, scoring algo-
rithms for the spectral composition were the main focus of research in computational
mass spectrometry for many years106. In an abstract point of view, a scoring algorithm
consists of two components:

• A reference in the form of a potential alphabet of amino acids and modifications
(for so-called de novo identification), a database of possible sequences, or a
database of previously identified spectra,

• and a scoring function to compare the recorded spectra to the reference. The type
of scoring function certainly depends on the reference. For de novo methods60,
graph-based scoring to find the best explanation (i.e., the highest scoring path)
of mass differences in an ion ladder is a common approach18. In the case of
sequence database searches, scoring is based on the comparison of an in silico
generated theoretical spectrum and the experimentally observed spectrum. The
same spectrum similarity measures can also be applied to spectra from spectral
libraries.

In the rest of this manuscript we will focus on the still most commonly used type of
reference: the reference sequence database, which is summarized in Figure 2.3.

Scoring functions for peptide-spectrum matchs (PSMs) to evaluate the similarity
of theoretical and experimental spectra can range from simple and fast dot product
scores testing the absence or presence of certain masses28,39,40,72, to more elaborate
scores calculating likelihoods according to a probabilistic model7,53,176. While simple
dot product measures require setting up a tolerance or binning the spectrum to account
for the limited mass accuracy of instruments, some probabilistic approaches can model
the mass-error as just another continuous variable. Most methods also report or even
score auxiliary information like the number of consecutively matched ions of the same
fragment types, i.e. the size of so-called ion ladders (Figure 2.4).

Similarly, several choices exist for the generation of theoretical spectra. Research in
that area revolves around how likely certain fragmentation events are and therefore
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Figure 2.3: Database search as a schematic representation. Every experimental fragment
spectrum (top right), is scored against a set of theoretical fragment spectra (bottom right).
Experimental spectra are generated from those candidate sequences of an in silico digested
protein database that passed a filter based on the proximity of their theoretical m/z to the
experimental precursor m/z, which triggered the MS/MS scan. Both precursor filtering
and peak matching usually allow for tolerances that account for different resolutions across
instruments. Height and number of matched peaks have a high impact on the resulting
score which is used to rank the final candidates (see the exemplary list on the far left).

which fragments to include and how to model their relative intensities. Existing
algorithms can be divided into fast binary or ion-type weighted generators with strong
independence assumptions included in classical search engines28,39,40,72 and slower,
highly parameterized machine learning algorithms that can model more complex
dependency structures between fragment ions of different types but require lots of data
for training30,47,130,156. Since scoring—especially with many potential modifications—is
a combinatorial problem and computationally expensive, the amount of peptides to
be scored can be reduced by hybrid methods using sequence tags (i.e., partial high-
confidence de novo sequence matches) in conjuction with fast database lookup158 or
precomputed indices of theoretical fragments75.
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However, all database search methods are affected by two fundamental problems:

• By relying on a database of possible proteins and usually a set of possible mod-
ifications it can in the perfect case only identify the best peptide match in this
predefined collection,

• and even with complete databases, due to noisy or incomplete spectra and imper-
fect scoring schemes, wrong peptide hypotheses may score better than correct
ones.

Two mostly complementary ways emerged to decrease and/or quantify the resulting
uncertainty in peptide-spectrum matches. Through PSM re-scoring, additional infor-
mation (e.g., properties not related to the fragment spectrum or features orthogonal
to the scoring process) is used to better discriminate between correct and incorrect
identifications. This re-scoring can additionally be done in a way that the resulting new
scores represent a probability of a single PSM belonging to either of the two classes,
thereby quantifying uncertainty locally.

A different method tries to collect auxiliary information about the incorrect class and
to estimate the rate of false discoveries among a set of PSMs. This is done by introducing
so-called “decoy” peptides which are known to be absent from an experiment but
otherwise resemble the actually considered (“target”) peptides in many features. Their
scores can be used to guide the aforementioned re-scoring methods in a semi-supervised
learning scenario, while the number of decoys in a resulting set of potentially identified
PSMs helps in estimating the number of errors made among targets.
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PSM re-scoring

In addition to the raw matching score from a database search engine, differences in
peptide matching quality may be judged by many possible features, which can be
roughly grouped into three categories: First, it is possible to score peptide matches
based on the similarity between the predicted retention time of the peptide and the
true retention time of the peptide65,73. Second, the proximity of the theoretical peptide
mass to the measured precursor (i.e., in-tact, unfragmented) mass provides additional
information. Third, orthogonal scores from the peptide spectrum matching process
can be used to help in distinction. Such scores can be scores from other search
engines with different scoring schemes101, or an aggregate of information about the
distribution of scores for every peptide candidate that was evaluated for a certain
spectrum (hyperscores28, e-values72, relative score difference between top matches40).

Together, these statistics provide a rich collection of information about the probabil-
ity of peptide identifications being correct or not. The qualitative statistical reasoning
behind this is that one feature may match well just by chance while an increasing
number of independent features raises the likelihood of a correct match.

It is important to note that the discriminative capability of the different features
depends on many factors, such as the chosen database or the used mass spectrometer.
With higher accuracy mass estimates from FT-MS21 or Orbitrap instruments58, it is
possible to distinguish nearly identical masses (of precursors and/or fragments)34

and thereby increasing the discriminative capability of features depending on mass
accuracy.

Instead of empirically weighing those features, state-of-the-art techniques are learn-
ing weights or parameters from the data. Using the fact that it is a binary classification
problem and that the features have a direction in which the likelihood of belonging
to either of the classes steadily increases/decreases, allows an application of simple,
unsupervised approaches71,149. Those try to fit two distributions (one for “bad” scores
and one for “good” scores) to the mixed distribution (with hidden/unknown mixing
proportions and parameters) of each feature (or a linear combination of a few). The
posterior probability of belonging to the distribution of correct identifications given the
values of its features can then be used for quantifying uncertainty of a specific identifi-
cation under the given experimental and analytical settings. Although this approach
was extended to use decoy information for the negative class19, partial knowledge
about class labels also allows the usage of other machine learning algorithms. The
Percolator algorithm67 for example uses a linear support vector machine to find the
best separating hyperplane in the joint multidimensional feature space. Since labels
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have to be specified a priori for this algorithm, the tool uses decoy identifications to
model the class of incorrect PSMs, while top scoring PSMs provide data for the correct
class in an iterative manner. A logit transformation of the distance to the separating
hyperplane for each PSM may then be interpreted as a (pseudo) posterior probability
for belonging to a certain class. Its hyperparameters can be optimized with nested
cross-validation. The PSMs can be sorted by the resulting posterior probabilities and
the top n identifications used as a maximum a posteriori estimate for the subset of
correct identifications when ≤ n PSMs are allowed to be true.

2.4.3 Quantifying uncertainty with the FDR

The goal behind target-decoy approaches is to estimate a statistical measure that
quantifies the error in a (sub-)set of hypotheses, called the false discovery rate (false
discovery rate (FDR)).

The FDR exists and is well-defined

The false discovery rate shows the proportion of false positives among all significant
hypotheses, i.e., the percent of PSMs that were considered as reliably identified that
are incorrect9. It is one of the most popular error measures for multiple hypothesis
testing because it has an easily understood interpretation, is less conservative than the
family-wise error rate (which controls having made a single false hypothesis) computed
by the Bonferroni correction35, and because the FDR can be viewed through a Bayesian
lens for a specific hypothesis via the local “q-value”151 (the minimum FDR at which a
hypothesis would be considered as significant).

If every PSM is viewed as a hypothesis for a correct identification, some of them
will be true and others will be false. As shown in Figure 2.5, a collection of hypotheses
are considered for a particular problem, and a subset of that collection is selected as
“significant”, e.g., showing high enough matching scores. Then it can be seen that the
FDR of this example is the proportion of the false hypotheses (H4, H6 and H8) among
the eight significant hypotheses. Thus, by specifying that we believe that the state (i.e.,
true or false) of those hypotheses has been fixed in advance, there should exist only
one exact FDR for each considered problem.

The target-decoy FDR estimate

Unfortunately, the state (i.e., true or false) of the hypotheses is generally unknown,
and so an important question arises: How can we compute the FDR in practice without
knowing which hypotheses are true and which hypotheses are false? One approach is
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(b) The target-decoy FDR estimate, one traditional esti-
mate of the FDR.

Figure 2.5: The FDR and its target-decoy estimate. (a) For an arbitrary problem, a
selected set of hypotheses (inside the dashed circle, which may have been identified or se-
lected as “significant” by some previously executed procedure) is considered and evaluated.
Target hypotheses are the actual questions of interest (labeled H1, H2, . . .), whereas decoy
hypotheses are questions that represent negative controls (labeled D1, D2, . . .). Target hy-
potheses can be partitioned into two categories (which, in practice, are usually unknown):
here, true target hypotheses are labeled in blue (H1, H2, H3, H5, H7) while false target
hypotheses are labeled in red (H4, H6, H8). The exact FDR of the selected hypotheses is
the proportion of false hypotheses among all the eight significant target hypotheses. (b)
When the state of the target hypotheses is unknown, the decoy hypotheses can be used
as an approximation for the behavior of false targets, and used to estimate the FDR (i.e.,
the target-decoy estimate): When the rate of decoy identifications is roughly the same as
the rate of false positive target identifications (as is shown here), the number of decoys
is an estimate of the number of false target identifications. Of the eight selected target
hypotheses, three are estimated to be false positives (because three decoys were selected),
yielding an FDR estimate of 3

8 , which in this example, is equal to the true FDR.
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to rely on known, external evidence to infer an estimate of the FDR. Just as hunters set
decoy animals to mimic their prey, the false positives can also be captured by using
decoy hypotheses, which are known to be false and thus mimic the unknown false
hypotheses and their score distribution in our problem. In this method, commonly
called the target-decoy approach or strategy97, the term target refers to a potentially
true hypothesis of interest and decoy refers to these artificial, false hypotheses that are
included solely for the purpose of statistical evaluation. If we assume that the chance
for a false identification to be a false-positive (i.e., identified but absent) target peptide
is roughly the same as being a false-positive decoy hit (Equal Chance Assumption), we
can estimate the FDR37 as follows:

F DR=
false target identifications
total target identifications

≈
decoy identifications

total target identifications
.

This idea is shown in Figure 2.5.

Decoy hypotheses can be generated in many ways but ideally they must resemble
the false target hypotheses and must also be necessarily false (thus they cannot overlap
with any true target hypotheses). For peptide database search a few methods became
established that allow robust estimates. For example, a decoy peptide database can be
generated by randomizing, reversing or shuffling the digested target peptide sequences
or by reversing or shuffling the target protein database and then digesting those reversed
or shuffled proteins in silico69. Others proposed using databases from other species as
decoys while considering the evolutionary distance between the decoy species and the
target species of interest166.

Regarding the estimation procedure itself, there are also multiple strategies: Some
work suggests to search target and decoy databases separately66, while others suggest
performing both searches simultaneously by searching a concatenated target-decoy
database37. The latter case is sometimes called “target-decoy competition”, because
the search process produces competition between target peptide candidates and decoy
peptide candidates for every spectrum searched. Therefore, the reported identifications
contain a mixture of target and decoy PSMs which allows estimating the number of
false positives by twice the number of decoys. A subsequent protocol for the target-
decoy FDR estimate was proposed by Keich, Kertesz-Farkas, and Noble, who considered
estimating false positives coming from native (generated by a peptide present in
the target database) and foreign (e.g., decoy peptides or peptides with unexpected
post-translational modifications) spectra separately using a mix-max procedure.69

Lastly, FDR estimation can be performed on different levels, e.g., spectrum level,
peptide level, and protein level. To avoid inflation of the estimated FDR due to
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aggregational biases (i.e., from multiple PSMs per peptide or multiple peptides per
protein) the estimation should be (re-)done on the level used to make conclusions
about the data and not be carried over from other levels (without significant corrections,
as for example described by Reiter et al. 125). On a similar note, targets and decoys
from multiple replicates or even samples should be merged before estimation to avoid
hidden accumulation of false positives from multiple testing, when conclusions about
aggregates of samples (e.g., whole tissues) are made142.

2.4.4 Evaluating calibration of scores and FDR estimates

With target-decoy approaches one might be tempted to prefer scoring procedures solely
based on their ability to separate target from decoy hypotheses. Besides the fact that
targets consist of a mixture of correct and incorrect hypotheses, target-decoy methods
are imperfect estimation procedures with potential biases and their power of estimating
the null distribution is limited to the number of sampled decoys. Therefore, calibration
should be performed on multiple levels to avoid wrong or biased estimates which are
hard to detect without a ground truth.

Firstly, the input scores to target-decoy and re-scoring methods should be calibrated
in a way that the meaning of a good score is independent of attributes of the tested
hypothesis (e.g., the number of peaks in the spectrum, the precursor charge or the
number of peptides tested against this spectrum). Here, miscalibration can be reduced
by calculating p- or E-values for a PSM based on the score distribution from candidates
for the same spectrum (e.g., via dynamic programming72,74), which ensures that the
assumptions for most confidence estimation methods are met. Input scores can also be
re-calibrated with a computationally expensive bootstrapping procedure70.

Secondly, calibration can be measured for combinations of (re-)scoring functions
and target-decoy methods depending on how well they approximate the true FDR at
different quantiles. Besides simulations and ground truth samples of known content,
this can be estimated by including a set of unlabeled decoys (often called entrapment
decoys) which would reveal biases/overfitting to the current known set of decoys.

Lastly, if inference is done probabilistically (i.e., if the scores that are reported are
well-defined (PPs) or (PEPs)), then the FDR can be seen through a Bayesian lens, and
can thus be estimated from the probabilities. Since probabilities are a local measure of
a specific hypothesis being true, the FDR can be estimated by the expected proportion
of false positives in a set. If the hypotheses are roughly independent, this is computed
as the sum of posterior error probabilities divided by the cardinality of the set. For
example, if H1 has posterior probability 0.7 and H2 has a posterior probability of 0.1,
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then identifying H1 yields an expected fractional 0.3 false positives and identifying H2

yields an expected fractional 0.9 false positives, meaning that in total 1.2 false positives
are expected. This yields an FDR of 1.2

2 = 0.6. The calibration can then be thought of
as the similarity between this probability-based false positive estimate and the ground
truth false positive count. Probabilistic methods therefore provide complementary
means to estimate the FDR (in place of target-decoy search).

2.4.5 Protein inference

Certain technical and analytical obstacles in the identification of intact proteins23,162

made pre-MS protein digestion a common approach in proteomics experiments. An
important side effect of digestion is the introduction of an additional step to the
analytical process in the common case where researchers are interested in conclusions
about the composition of intact proteins in the investigated sample: a step to map
the putatively identified peptides back to the most plausible set of source proteins,
the protein inference problem107,145,163. Aforementioned, relevant experimental and
analytical steps leading to the protein inference problem are depicted in Figure 2.6.
The constructed example in Figure 2.6 also shows analytical challenges and ambiguities
that may arise in shotgun proteomics experiment.

More details and an important representation of the problem are described in the
following part of this introductory subsection which was moved from the manuscript
in Chapter 4 to provide early background information (see that Chapter for the contri-
bution table):

EPIFANY - A method for efficient high-confidence protein inference
J. Pfeuffer, T. Sachsenberg, T. M. Dijkstra, O. Serang, K. Reinert, and O. Kohlbacher

Journal of Proteome Research p. 734327, (2019), Copyright 2019 American Chemical Society.

High dynamic range of protein abundance, limitations in digestion, separation, and
mass spectrometry result in incomplete coverage of the source proteins by identifiable
peptides. Reconstructing the source proteins originally present in the sample should
thus rely on as much of the experimental evidence (i.e., peptide identifications) as pos-
sible. This includes degenerate, non-unique peptides shared between multiple source
proteins. Starting from scores or probabilities ranking peptides by their likelihood
of presence, we want to infer the presence or absence of the proteins these peptides
originated from. Due to the common presence of ambiguous peptides arising from one
or more proteins sharing parts of their amino acid sequence this is not a trivial task.107
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Figure 2.6: Experimental (left; solid arrows) and analytical (right; dashed arrows)
steps leading to the protein inference problem (top right; bold) in shotgun experi-
ments. After enzymatic digestion of the proteins, if enough copies of a peptide are ionized,
it is selected for MS/MS and one or more fragment spectra are generated from it. In the
first analytical step, they are mapped to peptides from a theoretical digest of a candidate
protein database and are scored (yielding scored PSMs). Note, that due to an incomplete
database or imperfect scoring, peptides might be identified incorrectly (not underlined).
If two proteins share a theoretical peptide and this peptide is matched to an experimental
spectrum, ambiguities arise (bold gray). Some theoretical peptides (here marked as scored
out) might not be matched at all, e.g., due to incomplete digest or insufficient ionization.
Protein inference uses scored PSMs and their associations to parent proteins, to rank and
score the proteins according to their likelihood of presence.
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The formulation of protein inference algorithms naturally leads to a representation
of the relation between peptides and proteins as a bipartite graph of nodes (proteins
and peptides) that are connected with an edge if a peptide is part of the theoretical
digest of the (parent) protein (Figure 2.7). Figure 2.7 also shows that the ambiguity of
peptides across proteins may lead to proteins without unique evidence (e.g., protein
E) and in an extreme case to experimentally indistinguishable protein groups (e.g.,
one comprising proteins F and G, which share all their observed peptides). Reasons
for ambiguous peptides are manifold in biology and include among others homology,
alternative splicing or somatic recombination. Depending on the degree of ambiguity
between the peptides of different proteins they are often clustered into various types
of so-called protein ambiguity groups.107 It should be noted that those groups can
either be defined solely based on the experimentally observed peptides or based on all
theoretically possible peptides.147 Preliminary grouping (especially of indistinguishable
proteins) is often used automatically by inference algorithms to solve a less ambiguous
problem. While this is enough for studies that only need to confirm presence of any
protein in a group (using group level inference probabilities), other studies look for
the effects of a certain isoform on a disease and need to know how likely it is that this
specific isoform was expressed (therefore interested in single protein level results).
To compare results of inference methods on the same level (wherever possible) is an
important consideration during benchmarking.

As of today, a multitude of methods exist to tackle the protein inference problem, which
are categorized and shortly explained in the following paragraphs.

Rule-based methods

Because of their simplicity, rule-based methods were among the first methods to be
used to solve the protein inference problem16. Their outcome is pure binary. When
a specific value or quantity associated with a protein exceeds a certain threshold it
is said to be present, otherwise it is reported absent. Rule-based methods come in
different flavors. They mainly differ in the variable on which the rule(s) are applied.
The simplest form only looks on the number of identified peptides (independent of how
this is decided) that may stem from the digestion of the protein to evaluate. Although
this group of methods is easy to implement, has transparent criteria and is fast in
execution, it faces one particular problem: Thresholding all proteins according to the
same rule, possibly over different datasets is an overly simplified view on the actual
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Figure 2.7: Example of a bipartite protein-peptide graph. Nodes with letters represent
potential proteins from the input database. Colored nodes are the peptides from in silico
digest with the given enzyme (trypsin). Arrows are drawn when a protein may theoretically
generate a peptide. Dashed circles represent experimentally unobserved entities due to
missing (“NA”) peptide-spectrum matches. Red peaks in the sketched hypothetical tandem
mass spectra were matched to a theoretical ion of the peptide that matched best to this
spectrum. Probability scores roughly follow a dot-product based score but were invented
for the sake of this example. Bold scores highlight the chosen match probability for this
peptide (i.e., the maximum probability). The left side shows the used protein database
with their tryptic peptides (upper-case bold underlined substrings) following the same
color and number scheme as the nodes in the graph. Proteins in the same shaded curved
rectangle comprise an experimentally indistinguishable (ambiguity) group. The arrows on
the bottom show the general directions of the two processes: causality in the course of the
experiment and inference based on the observed data.
This figure and its in-text description were part of the publication in Chapter 4. They were
moved to provide early background information.
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process and prone to overcount evidence from shared peptides. In a sample with a
large protein, producing many peptides (e.g., titin), if we accepted every protein that
is connected to one of the identified peptides, we would count the peptides that are
already explained by the presence of titin multiple times and falsely identify a lot of
hitchhiking proteins124. Especially if the protein does not have other unique peptides
(i.e., “one-hit wonders” or subset proteins in general). To avoid this, one could use
the two-peptide-rule and require that a protein has at least two identified peptides as
neighbors. This will reduce the amount of false identifications that come from sharing
peptides with titin—though not necessarily eliminate all of them. However, it also
prevents correct identification of (primarily short) proteins for which only one of its
peptides was found, therefore making false negative decisions52. One can see that
one should not aim to find one general rule for every protein. For example, we know
a priori that for a longer protein with more theoretical peptides, it is more likely to
observe at least one peptide from them (compared to shorter ones). Also, the choice of
the best rule will differ from dataset to dataset. For example, given a dataset, where
not a single observed peptide is shared, a one-peptide-rule will probably yield the
best results (dependent on the performance of the preceding peptide identification
process). Although the uncertainty about the peptide-spectrum matching can be taken
into account, for example by weighting the number of peptides observed for a given
protein by their estimated probability of being correct, a better handling of shared
evidence is necessary to approach the problem in a more rigorous way.

Parsimony and optimization-based approaches

One way to avoid overcounting evidence and accepting too many (supposedly false
positive) subset proteins is to follow the parsimony principle – sometimes titled Occam’s
razor33 – and pick the least complex of all hypothetical solutions.

In the context of protein inference, using the parsimony principle means picking
the smallest set of proteins (in the input database) that explains all observed peptides.
From a combinatorics perspective, computing the parsimonious set of proteins is
equivalent to solving the minimal set cover problem by introducing one subset for
every protein, consisting of the peptides it explains, and trying to cover the full set of
observed peptides with as few subsets as possible. It is often relaxed to the related
partial set-cover problem, where only a fixed percentage of the peptides have to be
explained (since some peptides might have been falsely identified by noisy spectra).
Both problems can then be formulated as an integer linear program (ILP). A general
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form is depicted in the following equation:

minimize
m
∑

i=1

ri

subject to
∑

j:r j∈NB(pk)

r j ≥ 1, 1≤ k ≤ n

ri ∈ {0, 1} , 1≤ i ≤ m

Here we look for the minimum number of proteins that have to be present (ri = 1)
such that at least one of the neighboring proteins (x j ∈ NB(pk)) for every peptide pk

is present (e.g., sum greater than 1). Value m denotes the number of proteins and n
denotes the number of peptides.

One issue with methods modeling the problem in this way is that algorithms
solving them generally are in the same class as other very hard problems in computer
science, the class of NP-complete problems, for which exact fast solutions are generally
believed to be impossible68; however, the first methods acknowledging the parsimony
principle88,174 were able to approximate the result by using a greedy heuristic that
iteratively picks the protein that covers most of the remaining peptides and adds
them to the set of present proteins. This is repeated until every peptide is explained.
Although the results of greedy methods can be shown not to be worse than a factor
smaller than log(#peptides)150, in comparison to the best possible solution, they often
seem very unintuitive in the cases where this suboptimality occurs. Other approaches
therefore try to relax the problem by allowing non-integer solutions (i.e., scores) for
the proteins, thereby creating a (non-integer) linear program (LP) which can be solved
much faster103 than its binary version.

Linear and quadratic programming

Both greedy and LP methods have been used to compute solutions for the protein
inference problem on peptide mass fingerprinting results and database search results
or combinations thereof54. There are also programs that do not use the set-cover
formulation explicitly but try to minimize a norm of the protein presence vector (i.e.,
reminiscent of regularization procedures) setting as many values for proteins to 0
as possible. Based on the ideas of Noble and Weston, this was performed using the
Euclidean norm (also called L2-norm), which then represents a quadratic program
(QP) that could be solved efficiently with a method by Serang 138.
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Shortly after that, others reformulated the problem as an optimization problem on
the adjacency matrix of the bipartite graph. That means columns represent proteins,
rows represent peptides. The formulation of the LP is then created in a way that it
maximizes the number of zero-only columns (absent proteins) in that matrix such that
the observed peptide probabilities are always close to be preserved as the sums of
rows59.

Generally, once an LP or QP is formulated, it is relatively easy to use it as input
together with different input data, given that one of many user-friendly solvers using
well-proven algorithms102,103,138 is available.

Although the concept of parsimony seems to be reasonable to avoid false positive
proteins, it might be overly restrictive to base the model on the assumption that each
peptide was only generated by at most one protein. Once explained, these methods
are basically forbidding other proteins that could generate the same peptide. As an
example, it does not allow any coexistence of proteins that share exactly the same set
or a subset of observed peptides (“indistinguishable proteins” or “subset proteins” as
defined by Nesvizhskii and Aebersold104) and simply chooses a random representative
of the proteins that cover most peptides. One solution is to additionally include
unobserved peptides and peptide detectabilities45,90,157 like in the minimum missed
peptide formulation described by Alves et al.4. A more general approach however, is to
accept the uncertainty about the association of proteins to peptides by modeling it in a
probabilistic manner.

Probabilistically motivated heuristics

After recognizing the uncertainty inherent in the peptide identification process as well
as in the generation process (from proteins to peptides), an answer about the presence
of a protein should also be not a simple yes or no. This can be addressed by treating
every protein and peptide as a random variable for which we can define and infer
probability distributions, in the simplest case a single probability of being present. We
are especially interested in the conditional probability of the presence of each protein
given the observed evidence for the peptides or PSMs. This probability, after including
evidence, is the so-called posterior probability. Again, there are many options to model
the details of a probabilistic approach and an equally hard decision has to be made on
the algorithm used to solve it.
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ProteinProphet

One of the first probabilistically motivated inference methods that were developed was
ProteinProphet105 which is still widely used in the field of computational proteomics.
It bridges the gap between methods based on the parsimony principle and fully prob-
abilistic models. For the sake of lower computational complexity the authors make
a simplifying assumption that they later correct through incorporating substitutional
variables which are estimated in iterative, expectation-maximizing procedures.

The assumption that is made by ProteinProphet, is that peptides are generated
completely independent of each other. This is however not true for peptides coming
from the same protein: If we observed one of its peptides, it is now more probable
that the other peptides of this protein are also present. This is then corrected by
re-weighting the peptide probabilities according to the number of sibling peptides they
have for a given protein, which is the sum of probabilities of all other peptides that
come from this protein. The method uses this to increase the probability of peptides
in multi-hit proteins and decrease the probability of peptides in single-hit proteins,
which are assumed to be less likely to be correct identifications. This clustering of
correct peptides to fewer correct proteins is also the reason for the increase of FDR
from peptide level to protein level as discussed in Section 2.4.3.

Another undesirable effect of the independence assumption of peptides is that
proteins are implicitly assumed not to affect each other despite having a shared peptide,
which is not true in reality, where in such a case, the presence of one protein “explains
away” the presence of another protein, essentially fighting about the evidence from the
shared peptide. Again, acknowledging this flawed assumption, the authors incorporate
a notion of sharedness of peptides by introducing weights for every protein-peptide
association. These weights sum up to one for every peptide and are updated in every
round of the algorithm to converge to a reasonable partitioning of this peptide’s
evidence to the proteins it might stem from. This also guarantees that the evidence
from a peptide is (in total) only taken into account once and therefore resembles
parsimony-driven methods.

However, despite these elaborate ways to cope with the heuristic nature of the model
and its usually good performance in practice, there are limitations to this approach.
One of them is its lack of robustness in certain situations. Known examples are bad
handling of subset proteins and a tendency to extreme probabilities of proteins that
are close to be indistinguishable. Li and Radivojac 81 describe these situations in
greater detail on an example. Other probabilistically motivated heuristics similar to
ProteinProphet, such as EBP121, try to overcome such limitations by including additional
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steps in the iterative estimation procedure (e.g., estimating the most likely protein from
a homology group), increasing the number of parameters in some steps (e.g., estimating
parameters for proteins of different abundances separately) and using more complex
parameterized conditional distributions (e.g., Poisson distribution for correct matches
between proteins and peptides); however, although the aforementioned undesirable
effects of these issues might be reduced with certain settings, tweaks or postprocessing,
it might still be favorable to get down to the root of the problem and remove overly
simplistic assumptions (like fully independent peptides).

Generative models

Modeling these dependencies is possible with generative models. They inherently
make use of the information from the bipartite graph (Figure 2.7) that we can create
from our prior, expert knowledge about the generation process of the data while still
incorporating uncertainty in the predictions. This is done by modeling every quantity
involved in the process as a random variable and specifying dependencies between
them. This can be visualized as a graph where nodes represent random variables and
edges denote dependencies. By using directed edges we can additionally introduce a
notion of causality between variables. These directed acyclic graphs (DAGs) are often
called Bayesian networks (BNs). Bayesian networks are both mathematically rigorous
and intuitively understandable. They permit an efficient, factorized representation of
the joint probability distribution over the set of random variables given their known
dependencies. They also allow structured computational inference procedures to be
used that outperform brute-force enumeration113. The goal in protein inference is to
infer posterior marginal probabilities for the proteins given the observed data, which
is usually the likelihood of peptides being present (computed from PeptideProphet
probabilities or similar, see Section 2.4.2).

Tree-based approximations

Still, there are different levels of detail one can use when constructing such a network.
An improvement on the fully independent peptides assumption in many early models
was made in the work of Li, MacCoss, and Stephens 80. They correctly assumed that, if at
all, the probabilities of peptides stemming from the same protein are only independent
given that we know something about the presence/absence of their common parent
protein (i.e., are conditionally independent). Because in that case, knowing that one
peptide has a high probability of being present does not change anything in our beliefs
on another peptide from the same protein. If the protein was absent, then they were
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identified from different proteins or noise. If it was present, then we know from
the presence of the parent protein that both peptides were quite likely to occur, and
knowing that one was present for sure, does not raise our beliefs (anymore) that
other peptides are present. However, they still assume that proteins are independent
given information about the peptides by introducing a separate copy of every peptide
to every protein in the graph it came from, which makes the graph a tree and is
again a simplification. Apart from improvements in the assumptions, they proposed
parametric formulas for the number of peptides that are identified given information
about protein length and presence, as well as for the PSM scores for peptides given
their presence/absence (similar to PeptideProphet but in a combined fashion). The
parameters are learned via an expectation-maximization (EM) algorithm, which then
enables the computation of posteriors for proteins and peptides.

The hierarchical statistical model (HSM) by Shen et al. also uses an EM algorithm
to learn parameters but introduces different conditional distributions and is among
the few methods acknowledging the dependence of proteins in the same connected
component through shared peptides148. They again take into account the number of
peptides observed for a protein and model the scores on PSM level as a mixture of
correct and incorrect distributions but also consider properties of protein cleavage and
introduce another layer to allow for misassignment of PSMs.

General graphical models

However, there are even more general models of this class (e.g., the ones from Fido135,
MSBayesPro82,83) that use minimal assumptions regarding shape of the conditional
distributions. Complicated, highly parameterized distribution shapes (e.g., distributions
with multiple modes of different heights) are often well justified by empirical research
but lacking extensive theoretical justification.

Other than the dependencies implied by the bipartite graph, these Bayesian networks
need a parameter to be set for the prior probability of the proteins (like the HSM does).
The conditional distributions of the peptides given their associated proteins are modeled
in way that can be seen as a form of the probabilistic- or noisy-“OR” function. A peptide
can only be present if at least one of its parent proteins is present but there is only a
certain probability α for every edge (e.g., protein-peptide combination) with which a
present protein “triggers” the presence of the peptide (i.e., generates that peptide). A
good approximation that MSBayesPro uses for this generation probability is the peptide
detectability of the peptide in a protein; however, estimating this detectability from
empirical data is another machine learning problem45,90,133,167 that relies on certain
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assumptions and requires additional runtime. Fido makes a simpler approximation,
using one fixed value for all combinations and adds a “leak” node that allows a peptide
to be generated by noise (with an own probability β). Both methods are able to
make use of unobserved peptides to facilitate the distinction between proteins with the
same set of observed peptides. The authors also took different paths when it gets to
inference on these models. While Fido tries exact brute force enumeration and resorts
to pruning the graph only when the algorithm becomes infeasible, MSBayes relies
on a stochastic method called Gibbs sampling where the degree of approximation is
inversely proportional to the number of iterations it ran.

A similar approach called MIPGEM46 differs from the aforementioned two by mod-
eling the conditional distribution of peptides given all proteins are absent as uniform in
the range of all observed (logit-transformed) peptide probabilities, given that at least
one protein is present as a piecewise linear density with one free parameter. However,
to speed up inference, the authors added a Markovian assumption where only neigh-
boring proteins are thought to affect the conditional distributions of a peptide (which
again limits the ability to “fight about pieces of evidence” among a chain of proteins).
Besides that, inference is done by brute-force enumeration but falls back to sampling,
when the number of possible proteins sharing a peptide exceeds ten. All three methods
make use of the fact that different connected components in the graph can be solved
independently.

On a gold standard dataset it was shown by The et al. 160 that fully probabilistic
models perform among the best in terms of the pure identification task but in general,
the fact that these models work on discrete probability tables, results in a combinatorial
explosion of possible explanations for a peptide, in cases where it is shared by many
proteins. This is the reason for pruning and sampling currently being the last resort for
inference in Bayesian networks on complex eukaryotic samples.

Intractability of inference in Bayesian networks

Although representing the protein inference problem as a Bayesian network became a
successful approach to tackle the protein inference problem, it is still far from being a
perfect solution. The generalizability of Bayesian methods is probably their biggest
weakness as well as their biggest strength at the same time. This certainly has to
do with the rapidly increasing complexity of inference for every additional detail
introduced. With brute force enumeration, even the simplest models (still recognizing
all dependencies in the bipartite graph) are hard to solve. This is probably one of the
reasons for the recent lack of emergence of more detailed (Bayesian) models for the
protein inference problem.
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Figure 2.8: Intuitive reason why converging dependencies (i.e., multiple arrows going
into a node) are hard. Blank nodes (left layers) represent input factors, the nodes with a
multiplication sign “×” (right layers) visualize the resulting product. Numbers indicate
a known value, whereas variables indicate an unknown value. (a) In easy problems,
where all factors are given, we can simply proceed in a left-to-right manner with simple
multiplication (e.g., z = 71× 109= 7739). (b) In nearly identical problems, the products
are given and a single factor is divided out compute the results in a right-to-left manner.
(c) In these extremely difficult problems, the product x × y is given, and we are tasked
with finding integers x and y that achieve that product. For these problems (even when
only two variables are considered, as shown) there is no known general solution that is
substantially more efficient than trying all possible pairs x , y, which becomes roughly
exponentially difficult in the number of digits given; however, such problems (which are
said to be in the complexity class “NP”) can be easily verified given the correct solution
x = 157, y = 311, we can easily verify that x × y = 48827.

In graphical models, special computational difficulties arise when we encounter a
large set of converging connections (i.e., many nodes pointing onto one, as shown in
Figure 2.8), which converge to produce a known result. Such graphical problems can
easily be seen to be at least as difficult as prime factorization used in many modern
encryption algorithms127). Thus, we can see that when arrows converge, and we are
expected to perform inference right-to-left (i.e., in the opposite direction to the causal
flow of information), the problems can easily be quite difficult.

Intuitively the task of picking the most likely set of proteins that generates a set
of peptides with observed probabilities is of similar difficulty, with the clusters of
converging edges corresponding to a single shared peptide and its neighboring proteins.
It could even be fully proven that Bayesian inference in general is NP-hard24 by showing
that it can be used to decide on the satisfiability of a quite general form of logical
formulas (3-SAT problem).

Current solutions for protein inference on discrete Bayesian networks

Although there are already methods that nonetheless allow us to draw conclusions from
Bayesian networks based on the bipartite graph, they either add simplifying assumptions
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(e.g., graph pruning in Fido) or may take arbitrarily long to reach a reasonable result
close to the exact solution (Gibbs sampling in MSBayesPro). One upcoming family of
approaches with the goal of reducing the computational complexity of graphical models
are “variational methods”, which attempt to model the ideal posterior distributions
as the optimum (i.e., the distributions which achieve the minimum free energy) for
a given graphical model and corresponding data61; however, the benefits of these
approaches are rather problem-specific.

A more general strategy to circumvent brute-force enumeration of all states is to
apply a tree-decomposition on the Bayesian network to generate a so-called clique or
junction tree146 to avoid redundant computations. On trees, efficient message passing
algorithms62,78,112 exist that can calculate exact posteriors for all variables with two
linear passes from a root to the leaves (and back). A smart tree-decomposition basically
tries to combine random variables into higher-dimensional clique nodes and to balance
the cost of inference on the graph as a whole versus the complexity of marginalization
inside each of the combined clique nodes.

Tree-decomposition

Junction trees can be constructed by applying the following steps on a Bayesian network:
moralization (connecting parents of a shared child and removing edge directions),
triangulation (to ensure that if a variable appears in two cliques, it appears in each node
on the path between the cliques; the running intersection property) and clique finding.
The complexity of inference on the resulting junction tree with standard probability
table representations is then exponential in its treewidth (i.e., the cardinality of the
largest resulting clique). Finding an optimal tree-decomposition with a triangulation
that produces the smallest maximal clique is NP-hard on its own5, such that one usually
resorts to heuristics like min-weight, min-fill or max. cardinality search (reviewed
in Musliu 100). However, applied to the Bayesian network of the protein inference
problem, subgraphs corresponding to one degenerate peptide and all of its proteins
will always form a clique after moralization (Figure 2.9). With standard table-based
representations (e.g., named tensors) of the involved random variables, the storage of
their probabilities (or in unnormalized form, the so-called potentials) and the number
of computations for updating and marginalization are therefore exponential in the size
of the domain of the clique (i.e., the number of random variables on the clique, in our
case the number of proteins sharing a peptide plus one). The variables shared between
neighboring cliques about which the cliques need to exchange information in a belief
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propagation algorithm are often called separators and also play a role in complexity
considerations during belief propagation.

Belief propagation algorithm(s)

Belief propagation on junction trees can be performed with different architectures78. We
will sketch the HUGIN algorithm62 in the following. Other architectures have the same
core idea but make trade-offs between runtime and memory usage by caching/storing
less or different potentials (e.g., current temporary potentials versus initial potentials
only). The HUGIN algorithm for example requires storing current potentials both on
cliques and on separators (essentially forming a hypergraph). At first, each initial prior
or conditional probability table is associated to the smallest clique containing all of
table’s variables in the clique’s domain. Then, cliques are initialized with the product
of the potentials of all variables associated to it. The initial potentials of the probability
tables are defined through the parameterization of the Bayesian network. If evidence is
present for a variable, it has to be incorporated in the initial potential as well. Products
of potentials are defined by named tensor multiplication (i.e., tensor multiplication of
the dimensions of the intersecting variables). Potentials on separators are initialized
uniformly with ones (the identity potential). To start the algorithm, we choose an
arbitrary node as a root. Each node in the tree then follows the following rules:

• We say that a node is ready to send a message to a certain neighbor, if it received
messages from all its other neighbors. This implies that propagation starts in the
leaves.

• To make sure the propagation needs two passes only, the root holds back sending
messages to its neighbors until it has received messages from all of them.

• Once a node is considered ready for a chosen neighbor (see first item), it calculates
the message by marginalizing its current potential to the intersecting subset of
variables with this neighbor. It then proceeds by sending the message to the
separator on the edge between it and the neighbor. Marginalization of potentials
stored as tensors to a subset of variables is done by performing a summation or
maximization for every state of the subset domain over all states of the whole
domain that are compatible with the subset state.

• As soon as a separator receives a new message from any of the two nodes it
connects, it has to divide the message by its current potential and passes the
result to the opposite node. After that, it substitutes its now outdated potential
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with the received message. Division of potentials is analogous to multiplication
with the exception that for any pair of values to be divided 0/0 is defined as 0.

• Nodes which receive a message, multiply their current potential and the incoming
message and subsequently replace their old potential with the resulting product.
Re-normalization is advised to prevent numerical underflow.

After the two passes, each clique and each separator holds the joint posterior probability
of all variables included in it. Therefore, to query the posterior of a specific single
variable, one needs to find the separator or clique with the fewest variables containing
it and perform a last marginalization if the node is multidimensional (i.e., more than
just the requested variable is represented by that node). For rigorous mathematical
formulations of each rule please see for example Lepar and Shenoy 78.

Reducing complexity with convolution trees

As we saw, the largest improvements are to be achieved by reducing complexity on large
cliques where storage and marginalization is very costly. Breaking up complexity in large
cliques in general requires recognizing symmetry in the joint probability distributions
for each clique employed. One such method exploits previously unrecognized symmetry
in cliques from shared peptides141. As long as the conditional probability for a peptide
is dependent on an additive function of the presence (or quantity) of its neighboring
proteins— as in the noisy-“OR” model of the tool Fido with fixed or protein dependent
parameters— inference can be sped up by performing fast Fourier transformation (FFT)-
based convolutions along a binary tree. The method generalizes to local (discrete)
conditional probability distributions of arbitrary dimensionality whenever the output
depends on additive or cardinal operators. This approach can be used with both binary
and quantitative distributions (as long as the discrete distributions are regularly spaced,
which is required to enable fast convolution via FFT). This reduces the runtime on a
single subproblem significantly, since only a small number (logarithmic in the number
of proteins) of fast convolutions have to be performed. The number of operations
then reduces to “O(k log(k)2) and the space to O(k log(k)) where k is the number of
variables joined by an additive or cardinal operator”141 (here, the number of proteins).

Partial incompatibility of junction tree inference and convolution trees

Ideally, one would try to combine convolution trees with aforementioned, usually
faster junction tree inference to avoid expensive marginalization in potentially large
resulting cliques. However, there is the following problem: dependent on the network
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structure, the required tree decomposition may create cliques that overlap in many
variables in the case of multiple shared peptides. During belief propagation this leads
to high-dimensional messages about the state of these variables for these separator
potentials. These messages need an exponential amount of space to be stored and
their incorporation/passing is equally complex. An example for such a case can be
seen in Figure 2.9. Additionally, although convolution trees can be used to efficiently
represent the internal structure of cliques when all variables in the clique are solely
connected due to an additive dependency, it is currently unclear if there is an efficient
tree decomposition algorithm with reasonable resulting treewidth that can guarantee
this internal structure for every clique even in more complex networks.

Loopy belief propagation

The missing link between solving those hard subproblems on cliques generated by
a shared peptide with convolution trees and propagation of their information for
general inference on the full graph is a method that allows the exchange of information
between those cliques on a lower-dimensional level (preferably on the single protein
level). Since proteins commonly are part of several such converging patterns and
their inferred probabilities in each of them do not necessarily agree, an iterative
method is needed here. In other words, such a method needs to handle the cyclic
dependencies that remain in the graph because of waiving the completeness of the
tree decomposition and its running intersection property. A method that is capable of
doing this, which shows good results in similar hierarchical “pyramid” networks2,98 and
became famous in message decoding94 is loopy belief propagation. The method does
not require the—in general NP-complete—creation of junction trees and may be applied
on a slightly modified version of the original Bayesian network (the factor graph, see
Chapter 4). Under the reasonable assumption98 that in a problem of difficulty n, at
most n iterations of loopy belief propagation are needed for the results of different
clusters (in a connected component) to converge, we show on the bipartite graph of
the lung data from one of the human proteome drafts by Wilhelm et al. that this leads
to a compelling shift to lower complexity problems (Figure 4.6)170. Additionally, this
inference procedure combined with convolution trees allows to explore the advantages
of a second type of inference (max-product inference136), if the numerical stability of
this method can be improved (see Chapter 3). Max-product inference would be less
prone to produce smoothed posterior probabilities due to the central limit theorem,
with only minor drawbacks in runtime and accuracy.
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Figure 2.9: Tree decomposition and junction tree inference with message-passing Tree
decomposition for the left Bayesian network yields the junction tree on the right. Boxes
denote cliques with their domain variables written on their top-left corner. Applying belief
propagation on the tree (e.g., with the HUGIN algorithm), requires passing of messages
of sizes equal to the product of the cardinalities of each variable on a clique-connecting
edge (so-called separators). When all variables inside a clique stem from an additive
dependency structure in the original network, convolution trees can be used to reduce the
complexity of marginalization and memory consumption of their representation inside the
cliques.
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2.4.6 The OpenMS framework

To be able to analyze a shotgun proteomics experiment from the raw spectra to quanti-
ties and identification probabilities of proteins usually means choosing a set of specific
tools for the various steps mentioned above. Due to the high variability of instruments,
experimental setups, research questions and available hardware it is beneficial to
resort to frameworks that bundle all tools for a complete workflow in an integrative
environment to ensure compatibility and ease-of-use.

One such framework is the BSD3-licensed mass spectrometry software package
OpenMS. In addition to the provided tools it also allows for easy modification of
the existing functionality and development of efficient new algorithms through its
underlying C++ library.

The OpenMS core library

The core library is based upon flexible data structures for spectra, maps, PSMs, peptides,
and proteins. Additionally, it provides algorithms and functions ranging from basic
math and statistics to more advanced applied algorithms that build the basis of its tools.
A core part comprises the efficient handling of open mass spectrometry file formats
that empowers the integration with community tools outside the framework. It makes
use of many features of the C++ 17 standard and the associated algorithms in the C++
standard library plus some extensions from Boost and Qt 5 (e.g., for user interfaces). Its
modular CMake-based build system allows the inclusion of other externally developed
libraries, for example if provided and maintained by a third party or if preferred to be
distributed as a separate module. The source code is hosted publicly on GitHub and is
well-tested for code style, coverage and functionality through automated continuous
integration combined with manual code reviews.

The OpenMS tools

A full OpenMS distribution also ships over 180 ready-made tools, including a complete
set of command line utilities to perform protein identification and quantification of a
shotgun proteomics experiment starting from the raw spectra (as outlined in previous
sections). While most of the tools are based solely on the OpenMS library and can
be executed standalone, others require bundled third-party software (such as raw-file
converters, Percolator or spectrum search engines). Apart from that, the toolset allows
for basic signal processing of mass spectra, file conversion, and the analysis of other
types of mass spectrometry data e.g., from SWATH, metabolomics, cross-linking or
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top-down proteomics experiments. The tools are available through installers for all
major operating systems, bioconda50 and the Dockerhub container registry.

Integration into Workflow Systems

With the existence of this large variety of tools of targeted functionality, a platform to
easily chain those building blocks into comprehensive workflows is essential. OpenMS
provides means of integration into several workflow systems. Through the auto-
descriptive capabilities of OpenMS’ command line module used in all tools, it facilitates
automated generation of wrappers for graphical user interface (GUI)-based (KNIME,
Galaxy1, gUSE64) workflow systems and integrates seamlessly into script-based work-
flow frameworks (e.g., nextflow32). This allows quick modification and prototyping
of tools to update and extend existing workflows e.g., through daily updates of the
wrapped tools based on the dynamic GitHub-hosted code base.

Role of OpenMS in this Thesis

As a Ph.D. student in the lab of the original authors of OpenMS, the author has been
an OpenMS core developer and was responsible for maintenance, developer and user
support, administration of development efforts as well as release management. The
EPIFANY and ProteomicsLFQ TOPP tools introduced in this thesis, along with numerous
bug fixes, data structures and a new external inference engine co-developed in an earlier
version, have been contributed by the author and were incorporated into OpenMS.
Figure 2.10 provides an overview on the structure of OpenMS and highlights relevant
parts for this thesis.
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Chapter 3

Efficient max-product inference for sums

of random variables

Exact inference on discrete Bayesian networks in general is NP-hard (see Section 2.4.5).
For networks used in protein inference, this intractability mostly comes from the po-
tentially large number of parent proteins sharing a peptide. With certain model
assumptions and parameterizations, each of those large converging subnetworks can
be split into a random variable for the sum of present proteins and another linearly
growing conditional probability table on the probability of a peptide given the sum of
present proteins. Since sums of random variables can be calculated as convolutions, it
can be efficiently solved through convolution trees for both sum-product141 and ap-
proximate max-product inference137. However, current methods used for max-product
inference on sums of random variables (equivalent to max-convolution) suffer from
numerical instabilities137. Therefore, a revised method was designed and implemented
as described in this chapter.

The remaining content of this chapter and corresponding Appendix A is part of the
manuscript:

A Bounded p-norm Approximation of Max-Convolution for Sub-Quadratic Bayesian
Inference on Additive Factors

Julianus Pfeuffer, Oliver Serang

Journal of Machine Learning Research 17, 1–39 (2016)

Author
Author
position

Scientific
ideas %

Data
generation %

Analysis &
interpretation %

Paper
writing %

J. Pfeuffer 1 30 50 60 60
O. Serang 2 70 50 40 40

Status: published
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3.1 Introduction

Max-convolution occurs frequently in signal processing and Bayesian inference: it is
used in image analysis126, in network calculus12, in economic equilibrium analysis154,
and in a probabilistic variant of combinatoric generating functions, wherein information
on a sum of values into their most probable constituent parts (e.g., identifying proteins
from mass spectrometry141,143). Max-convolution operates on the semi-ring (max,×),
meaning that it behaves identically to a standard convolution, except it employs a
max operation in lieu of the + operation in standard convolution (max-convolution is
also equivalent to min-convolution, also called infimal convolution, which operates
on the tropical semi-ring (min,+)). Due to the importance and ubiquity of max-
convolution, substantial effort has been invested into highly optimized implementations
(e.g., implementations of the quadratic method on GPUs173).

Max-convolution can be defined using vectors (or discrete random variables, whose
probability mass functions are analogous to nonnegative vectors) with the relationship
M = L + R. Given the target sum M = m, the max-convolution finds the largest value
L[ℓ]× R[r] for which m= ℓ+ r.

M[m] = max
ℓ,r: m=ℓ+r

L[ℓ]R[r]

= max
ℓ

L[ℓ]R[m− ℓ]

= (L ∗max R) [m]

where ∗max denotes the max-convolution operator. In probabilistic terms, this is equiv-
alent to finding the highest probability of the joint events Pr(L = ℓ, R= r) that would
produce each possible value of the sum M = L+R (note that in the probabilistic version,
the vector M would subsequently need to be normalized so that its sum is 1).

Although applications of max-convolution are numerous, only a small number of
methods exist for solving it137. These methods fall into two main categories, each with
their own drawbacks: The first category consists of very accurate methods that are
have worst-case runtimes either quadratic14 or slightly more efficient than quadratic
in the worst-case13. Conversely, the second type of method computes a numerical
approximation to the desired result, but in O(k log2(k)) steps; however, no bound for
the numerical accuracy of this method has been derived137.
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While the two approaches from the first category of methods for solving max-
convolution do so by either using complicated sorting routines or by creating a bijection
to an optimization problem, the numerical approach solves max-convolution by showing
an equivalence between ∗max and the process of first generating a vector u(m) for each
index m of the result (where u(m)[ℓ] = L[ℓ]R[m− ℓ] for all in-bounds indices) and
subsequently computing the maximum M[m] = maxℓ u(m)[ℓ]. When L and R are
nonnegative, the maximization over the vector u(m) can be computed exactly via the
Chebyshev norm

M[m] = max
ℓ

u(m)[ℓ]

= lim
p→∞

∥u(m)∥p

but requires O(k2) steps (where k is the length of vectors L and R). However, once a
fixed p∗-norm is chosen, the approximation corresponding to that p∗ can be computed
by expanding the p∗-norm to yield

lim
p→∞

∥u(m)∥p = lim
p→∞

�

∑

ℓ

�

u(m)[ℓ]
�p

�
1
p

≈

�

∑

ℓ

�

u(m)[ℓ]
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�

1
p∗

=

�

∑

ℓ

L[ℓ]p
∗

R[m− ℓ]p
∗

�
1
p∗

=

�

∑

ℓ

�

Lp∗
�

[ℓ]
�

Rp∗
�

[m− ℓ]

�
1
p∗

=
�

Lp∗ ∗ Rp∗
�

1
p∗ [m]

where Lp∗ = 〈 (L[0])p
∗
, (L[1])p

∗
, . . . , (L[k− 1])p

∗
〉 and ∗ denotes standard convo-

lution. The standard convolution can be done via fast Fourier transform (FFT) in
O(k log2(k)) steps, which is substantially more efficient than the O(k2) required by the
naive method (Algorithm 1).

To date, the numerical method has demonstrated the best speed-accuracy trade-
off on Bayesian inference tasks, and can be generalized to multiple dimensions (i.e.,
tensors). In particular, they have been used with probabilistic convolution trees141 to ef-
ficiently compute the most probable values of discrete random variables X0, X1, . . . Xn−1
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for which the sum is known X0 + X1 + . . . Xn−1 = y. The one-dimensional variant of
this problem (i.e., where each X i is a one-dimensional vector) solves the probabilistic
generalization of the subset sum problem, while the two-dimensional variant (i.e.,
where each X i is a one-dimensional matrix) solves the generalization of the knapsack
problem (note that these problems are not NP-hard in this specific case, because we
assume an evenly-spaced discretization of the possible values of the random variables).

However, despite the practical performance that has been demonstrated by the
numerical method, only cursory analysis has been performed to formalize the influence
of the value of p∗ on the accuracy of the result and to bound the error of the p∗-norm
approximation. Optimizing the choice of p∗ is non-trivial: Larger values of p∗ more
closely resemble a true maximization under the p∗-norm, but result in underflow (note
that in Algorithm 1, the maximum values of both L and R can be divided out and then
multiplied back in after max-convolution so that overflow is not an issue). Conversely,
smaller values of p∗ suffer less underflow, but compute a norm with less resemblance
to maximization. Here we perform an in-depth analysis of the influence of p∗ on the
accuracy of numerical max-convolution, and from that analysis we construct a modified
piecewise algorithm, on which we demonstrate bounds on the worst-case absolute error.
This modified algorithm, which runs in O(k log(k) log(log(k))) steps, is demonstrated
using a hidden Markov model describing the relationship between U.S. unemployment
and the S&P 500 stock index.

We then extend the modified algorithm and introduce a second modified algorithm,
which not only uses a single p-norm as a means of approximating the Chebyshev norm,
but instead uses a sequence of p-norms and assembles them using a projection as a
means to approximate the Chebyshev norm. Using numerical simulations as evidence,
we make a conjecture regarding the relative error of the null space projection method.
In practice, this null space projection algorithm is shown to have similar runtime and
higher accuracy when compared with the piecewise algorithm.

3.2 Methods

We begin by outlining and comparing three numerical methods for max-convolution.
By analyzing the benefits and deficits of each of these methods, we create improved
variants. All of these methods will make use of the basic numerical max-convolution
idea summarized in the introduction, and as such we first declare a method for com-
puting the numerical max-convolution estimate for a given p∗. We call the algorithm
numericalMaxConvolveGivenPStar (Algorithm 1).
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Algorithm 1 Numerical max-convolution given a fixed p∗, a numerical method to estimate
the max-convolution of two PMFs or nonnegative vectors. The parameters are two nonnegative
vectors L′ and R′ (both scaled so that they have maximal element 1) and the numerical value
p∗ used for computation. The return value is a numerical estimate of the max-convolution
L′ ∗max R′.

1: procedure NUMERICALMAXCONVOLVEGIVENPSTAR(L′, R′, p∗)
2: ∀ℓ, vL[ℓ]← L[ℓ]p

∗

3: ∀r, vR[r]← R[r]p
∗

4: vM ← vL ∗ vR ▷ Standard FFT convolution is used here
5: ∀m, M ′[m]← vM[m]

1
p∗

6: return M ′

7: end procedure

3.2.1 Fixed low-value p∗ method

With a low p∗ (e.g., 8) the effects of underflow will be minimal (as it is not very far
from standard FFT convolution, an operation with high numerical stability), but it
can still be imprecise due to numerical “bleed-in” (i.e., error due to contributions
from non-maximal terms for a given u(m) because the p∗-norm is not identical to the
Chebyshev norm). Overall, this will perform well on indices where the exact value of
the result is small, but perform poorly when the exact value of the result is large.

3.2.2 Fixed high-value p∗ method

In contrast to the method above, a fixed high p∗ will offer the converse pros and cons:
numerical artifacts due to bleed-in will be smaller (thus achieving greater performance
on indices where the exact values of the result are larger), but underflow may be
significant (and therefore, indices where the exact results of the max-convolution are
small will be inaccurate).

3.2.3 Higher-order piecewise method

The higher-order piecewise method formalizes the empirical cutoff values found by
Serang 137; previously, numerical stability boundaries were found for each p∗ by com-
puting both the exact max-convolution (via the naive O(k2) method) and via the
numerical method using the ascribed value of p∗, and finding the value below which
the numerical values experienced a high increase in relative absolute error.

Those previously observed empirical numerical stability boundaries can be formal-
ized by using the fact that the employed numpy implementation of FFT convolution
has high accuracy on indices where the result has a value ≥ τ relative to the maximum
value; therefore, if the arguments L and R are both normalized so that each has a
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maximum value of 1, the fast max-convolution approximation is numerically stable for
any index m where the result of the FFT convolution, i.e., vM[m], is ≥ τ. The numpy
documentation defines a conservative numeric tolerance for underflow τ = 10−12,
which is a conservative estimate of the numerical stability boundary demonstrated
in Figure 3.1 (those boundary points occur very close to the true machine precision
ε≈ 10−15).

Because Cooley-Tukey implementations of FFT-based convolution (e.g., the numpy
implementation) are widely applied to large problems with extremely small error, we
will make a simplification and assume that, when constraining the FFT result to reach
a value higher than machine epsilon (+ tolerance threshold), the error from the FFT
is negligible in comparison to the error introduced by the p∗-norm approximation.
This is firstly because the only source of numerical error during FFT (assuming an
FFT implementation with numerically precise twiddle factors) on vectors in [0, 1]k

will be the result of underflow from repeated addition and subtraction (neglecting the
non-influencing multiplication with twiddle factors, which each have magnitude 1).
The numerically imprecise routines are thus limited to (x + y)− x; when x >> y (i.e.,
y
x < ε≈ 10−15, the machine precision), then (x + y)− x will return 0 instead of y . To
recover at least one bit of the significand, the intermediate results of the FFT must
surpass machine precision ε (since the worst case addition initially happens with the
maximum x = 1.0).

The maximum sum of any values from a list of k such elements can never exceed
k; for this reason, a conservative estimate of the numerical tolerance (with regard to
underflow) of a DFT (discrete Fourier transform) will be the smallest value of y for
which y

k > ε; thus, y > εk. This yields a conservative estimate of the minimum value in
one index at the result of an DFT convolution: when the result at some index m is > εk,
then the result should be numerically stable. We emphasize on the very conservative
nature of this estimate for a minimum stable value that is derived under the assumption
of a simple, naive implementation of a DFT. In general however, FFT (a special case
of DFT algorithms) implementations (especially well-proven implementations of the
Cooley-Tukey algorithm) tend to follow error bounds logarithmic in k132, due to their
divide-and-conquer strategies, which perform fewer arithmetic operations. In practice,
even for longer vectors (e.g., k = 1024 as shown in Figure 3.1), it is empirically
demonstrated that the influence of the length on the τ threshold is negligible. By using
a numerical tolerance τ= 10−12, we ensure that the vast majority of numerical errors
for the numerical max-convolution algorithm is due to the p∗-norm approximation (i.e.,
employing ∥u(m)∥p∗ instead of ∥u(m)∥∞) and not due to the long-used and numerically
performant FFT result. Furthermore, in practice the mean squared error due to FFT will
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Figure 3.1: Empirical estimate of τ to construct a piecewise method. For each
k ∈ {128, 256, 512, 1024}, 32 replicate max-convolutions (on vectors filled with uniform
values) are performed. Error from two sources can be seen: error due to underflow is
depicted in the sharp left mode, whereas error due to imperfect approximation, where
∥ · ∥p∗ > ∥ · ∥∞ can be seen in the gradual mode on the right. Error due to p∗-norm
approximation is significantly smaller when p∗ is larger (thereby flattening the right
mode), but larger p∗ values are more susceptible to underflow, pushing more indices into

the left mode. Regardless of the value of k, error due to underflow occurs when
�

∥ · ∥p∗
�p∗

goes below ≈ 10−15; this is approximately the numerical tolerance for τ described by the
numpy documentation. Therefore, at each index m we can construct a piecewise method
that uses the largest value of p∗ for which the FFT convolution result is not close to the
machine precision (i.e., (∥u(m)∥p∗)p

∗
≥ τ for some τ > 10−15).
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be much smaller than the conservative worst-case outlined here, because it is difficult
for the largest intermediate summed value (in this case x) to be consistently large
when many such very small values (in this case y) are encountered in the same list.
Although τ could be chosen specifically for a problem of size k, note that this simple
derivation is very conservative and thus it would be better to use a tighter bound for
choosing τ. Regardless, for an FFT implementation that is not as performant (e.g.,
because it uses float types instead of double), increasing τ slightly would suffice.

Therefore, from this point forward we consider that the dominant cause of error to
come from the max-convolution approximation. Using larger p∗ values will provide
a closer approximation; however, using a larger value of p∗ may also drive values to
zero (because the inputs L and R will be normalized within Algorithm 1 so that the
maximum of each is 1 when convolved via FFT), limiting the applicability of large p∗

to indices m for which vM[m]≥ τ.
Through this lens, the choice of p∗ can be characterized by two opposing sources of

error: higher p∗ values better approximate ∥u(m)∥p∗ but will be numerically unstable
for many indices; lower p∗ values provide worse approximations of ∥u(m)∥p∗ but will
be numerically unstable for only few indices. These opposing sources of error pose a
natural method for improving the accuracy of this max-convolution approximation. By
considering a small collection of p∗ values, we can compute the full numerical estimate
(at all indices) with each p∗ using Algorithm 1; computing the full result at a given p∗

is ∈ O(k log2(k)), so doing so on some small number c of p∗ values considered, then
the overall runtime will be ∈ O(ck log2(k)). Then, a final estimate is computed at each
index by using the largest p∗ that is stable (with respect to underflow) at that index.
Choosing the largest p∗ (of those that are stable with respect to underflow) corresponds
to minimizing the bleed-in error, because the larger p∗ becomes, the more muted the
non-maximal terms in the norm become (and thus the closer the p∗-norm becomes to
the true maximum).

Here we introduce this piecewise method and compare it to the simpler low-value
p∗ = 8 and high-value p∗ = 64 methods and analyze the worst-case error of the
piecewise method.
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Algorithm 2 Piecewise numerical max-convolution , a numerical method to estimate the
max-convolution of nonnegative vectors (revised to reduce bleed-in error). This procedure
uses a p∗ close to the largest possible stable value at each result index. The return value is a
numerical estimate of the max-convolution L ∗max R. The runtime is in O(k log2(k) log2(p

∗
max)).

1: procedure NUMERICALMAXCONVOLVEPIECEWISE(L, R, p∗max)
2: ℓmax← argmaxℓ L[ℓ]
3: rmax← argmaxr R[r]
4: L′← L

L[ℓmax]

5: R′← R
R[rmax]

▷ Scale to a proportional problem on L′, R′

6: allPStar← [20, 21, . . . , 2
�

log2(p
∗
max)
�

]
7: for i ∈ {0, 1, . . .len(allPStar)} do
8: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStar[i])
9: end for

10: for m ∈ {0,1, . . .len(L) + len(R)− 1} do
11: maxStablePStarIndex[m]←max{i : (resForAllPStar[i][m])allPStar[i] ≥ τ)}
12: end for
13: for m ∈ {0,1, . . .len(L) + len(R)− 1} do
14: i← maxStablePStarIndex[m]
15: result[m]← resForAllPStar[i][m]
16: end for
17: return L[ℓmax]× R[rmax]× result ▷ Undo previous scaling
18: end procedure
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3.2.4 Availability

Code for exact max-convolution and the fast numerical methods (which includes
piecewise, piecewise-corrected and null space projection methods) is implemented in
Python and available at
https://bitbucket.org/orserang/fast-numerical-max-convolution.
All included code works for numpy arrays of any dimension, i.e., tensors.

3.3 Results

This section derives theoretical error bounds as well as a practical comparison on an
example for the standard piecewise method. Furthermore, the development of an
improvement with affine scaling is shown. Eventually, an evaluation of the latter is
performed on a larger problem in which applied our technique to compute the Viterbi
path for a hidden Markov model (HMM) to assess runtime and the level of error
propagation.

3.3.1 Error and runtime analysis of the piecewise Method

We first analyze the error for a particular underflow-stable p∗ and then use that to
generalize to the piecewise method, which seeks to use the highest underflow-stable
p∗.

Error analysis for a fixed underflow-stable p∗

We first scale L and R into L′ and R′ respectively, where the maximum elements of both
L′ and R′ are 1; the absolute error can be found by unscaling the absolute error of the
scaled problem:

|exact(L, R)[m]− numeric(L′, R′)[m]|

=max
ℓ

L[ℓ] max
r

R[r] |exact(L′, R′)[m]− numeric(L′, R′)[m]|.

We first derive an error bound for the scaled problem on L′, R′ (any mention of a vector
u(m) refers to the scaled problem), and then reverse the scaling to demonstrate the
error bound on the original problem on L, R.

For any particular “underflow-stable” p∗ (i.e., any value of p∗ for which
�

∥u(m)∥p∗
�p∗
≥

τ), the absolute error for the numerical method for fast max-convolution can be bound
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fairly easily by factoring out the maximum element of u(m) (this maximum element is
equivalent to the Chebyshev norm) from the p∗-norm:

|exact(L′, R′)[m]− numeric(L′, R′)[m]|

= |∥u(m)∥p∗ − ∥u(m)∥∞|

= ∥u(m)∥p∗ − ∥u(m)∥∞

= ∥u(m)∥∞

�

∥u(m)∥p∗

∥u(m)∥∞
− 1

�

= ∥u(m)∥∞

�

∥
u(m)

∥u(m)∥∞
∥p∗ − 1

�

= ∥u(m)∥∞
�

∥v(m)∥p∗ − 1
�

where v(m) is a nonnegative vector of the same length as u(m) (this length is denoted
km) where v(m) contains one element equal to 1 (because the maximum element of u(m)

must, by definition, be contained within u(m)) and where no element of v(m) is greater
than 1 (also provided by the definition of the maximum). These observations result in
the equation

∥v(m)∥p∗ ≤ ∥(1, 1, . . . 1)∥p∗

=

� km
∑

i

1p∗

�

1
p∗

= km

1
p∗ .

Thus, since ∥v(m)∥p∗ ≥ 1, the error is bounded:

|exact(L′, R′)[m]− numeric(L′, R′)[m]|

= ∥u(m)∥∞
�

∥v(m)∥p∗ − 1
�

≤ ∥v(m)∥p∗ − 1

≤ k
1
p∗
m − 1,

because ∀m, ∥u(m)∥∞ ≤ 1 for a scaled problem on L′, R′.
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Error analysis of piecewise method

However, the bounds derived above are only applicable for p∗ where ∥u(m)∥p∗

p∗ ≥ τ. The
piecewise method is slightly more complicated, and can be partitioned into two cases:
In the first case, the top contour is used (i.e., when p∗max is underflow-stable). Conversely,
in the second case, a middle contour is used (i.e., when p∗max is not underflow-stable).
In this context, in general a contour comprises of a set of indices m with the same
maximum stable p∗.

In the first case, when we use the top contour p∗ = p∗max, we know that p∗max must
be underflow-stable, and thus we can reuse the bound given an underflow-stable p∗.

In the second case, because the p∗ used is < p∗max, it follows that the next higher
contour (using 2p∗) must not be underflow-stable (because the highest underflow-
stable p∗ is used and because the p∗ are searched in log-space). The bound derived
above that demonstrated

∥u(m)∥p∗ ≤ ∥u(m)∥∞k
1
p∗
m

can be combined with the property that ∥ · ∥p∗ ≥ ∥ · ∥∞ for any p∗ ≥ 1 to show that

∥u(m)∥∞ ∈





∥u(m)∥p∗

k
1
p∗
m

,∥u(m)∥p∗



 .

Thus the absolute error can also be shown to be bounded using the fact that we are in
a middle contour:

= ∥u(m)∥p∗ − ∥u(m)∥∞

= ∥u(m)∥p∗

�

1−
∥u(m)∥∞
∥u(m)∥p∗

�

≤ ∥u(m)∥p∗

�

1− k
−1
p∗
m

�

< τ
1

2p∗

�

1− k
−1
p∗
m

�

.

The absolute error from middle contours will be quite small when p∗ = 1 is the
maximum underflow-stable value of p∗ at index m, because τ

1
2p∗ , the first factor in the

error bound, will become
p
τ≈ 10−6, and 1− k

−1
p∗
m < 1 (qualitatively, this indicates that

a small p∗ is only used when the result is very close to zero, leaving little room for

absolute error). Likewise, when a very large p∗ is used, then 1− k
−1
p∗
m becomes very
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small, while τ
1

2p∗ < 1 (qualitatively, this indicates that when a large p∗ is used, the
∥ · ∥p∗ ≈ ∥ · ∥∞, and thus there is little absolute error). Thus, for the extreme values of
p∗, middle contours will produce fairly small absolute errors. The unique mode p∗mode

can be found by finding the value that solves

∂

∂ p∗mode

�

τ
1

2p∗mode

�

1− k
−1

p∗mode
m

��

= 0,

which yields

p∗mode =
log2(km)

log2(−
2 log2(k)−log2(τ)

log2(τ)
)
.

An appropriate choice of p∗max should be > p∗mode so that the error for any contour
(both middle contours and the top contour) is smaller than the error achieved at p∗mode,
allowing us to use a single bound for both. Choosing p∗max = p∗mode would guarantee
that all contours are no worse than the middle-contour error at p∗mode; however, using
p∗max = p∗mode is still quite liberal, because it would mean that for indices in the highest
contour (there must be a nonempty set of such indices, because the scaling on L′ and
R′ guarantees that the maximum index will have an exact value of 1, meaning that the
approximation endures no underflow and is underflow-stable for every p∗), a better
error could be achieved by increasing p∗max. For this reason, we choose p∗max so that the
top-contour error produced at p∗max is not substantially larger than all errors produced
for p∗ before the mode (i.e., for p∗ < p∗mode).

Choosing any value of p∗max > p∗mode guarantees the worst-case absolute error bound
derived here; however, increasing p∗max further over p∗mode may possibly improve the
mean squared error in practice (because it is possible that many indices in the result
would be numerically stable with p∗ values substantially larger than p∗mode). However,
increasing p∗max >> p∗mode will produce diminishing returns and generally benefit only
a very small number of indices in the result, which have exact values very close to
1. In order to balance these two aims (increasing p∗max enough over p∗mode but not
excessively so), we make a qualitative assumption that a non-trivial number of indices
require us to use a p∗ below p∗mode; therefore, increasing p∗max to produce an error
significantly smaller than the lowest worst-case error for contours below the mode (i.e.,
p∗ < p∗mode) will increase the runtime without significantly decreasing the mean squared
error (which will become dominated by the errors from indices that use p∗ < p∗mode).
The lowest worst-case error contour below the mode is p∗ = 1 (because the absolute
error function is unimodal, and thus must be increasing until p∗mode and decreasing
afterward); therefore, we heuristically specify that p∗max should produce a worst-case
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error on a similar order of magnitude to the worst-case error produced with p∗ = 1. In
practice, specifying the errors at p∗max and p∗ = 1 should be equal is very conservative
(it produces very large estimates of p∗max, which sometimes benefit only one or two
indices in the result); for this reason, we heuristically choose that the worst-case error
at p∗max should be no worse than square root of the worst case error at p∗ = 1 (this
makes the choice of p∗max less conservative because the errors at p∗ = 1 are very close
to zero, and thus their square root is larger). The square root was chosen because it
produced, for the applications described in this paper, the smallest value of p∗max for
which the mean squared error was significantly lower than using p∗max = p∗mode (the
lowest value of p∗max guaranteed to produce the absolute error bound). This heuristic
does satisfy the worst-case bound outlined here (because, again, p∗max > p∗mode), but it
could be substantially improved if an expected distribution of magnitudes in the result
vector were known ahead of time: prior knowledge regarding the number of points
stable at each p∗ considered would enable a well-motivated choice of p∗max that truly
optimizes the expected mean squared error.

From this heuristic choice of p∗max, solving

√

√p
τ

�

1−
1
k

�

= k
1

p∗max − 1

(with the square root of the worst-case at p∗ = 1 on the left and the worst-case error at
p∗max on the right) yields

p∗max =
log2(k)

log2(1+
qp

τ
�

1− 1
k

�

)

≈
log2(k)

log2(1+
pp

τ)

for any non-trivial problem (i.e., when k >> 1), and thus

p∗max ≈ log
1+τ

1
4
(k),

indicating that the absolute error at the top contour will be roughly equal to the fourth
root of τ.
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Worst-case absolute error

By setting p∗max in this manner, we guarantee that the absolute error at any index of
any unscaled problem on L, R is less than

max
ℓ

L[ℓ] max
r

R[r] τ
1

2p∗mode

�

1− k
−1

p∗mode
m

�

where p∗mode is defined above. The full formula for the middle-contour error at this
value of p∗mode does not simplify and is therefore quite large; for this reason, it is not
reported here, but this gives a numeric bound of the worst case middle-contour error
that is bound in terms of the variable k (and with no other free variables).

Runtime analysis

The piecewise method clearly performs log2(p
∗
max) FFTs (each requiring O(k log2(k))

steps); therefore, since p∗max is chosen to be log
1+τ

1
4
(k) (to achieve the desired error

bound), the total runtime is thus

O(k log2(k) log2(log
1+τ

1
4
(k)).

For any practically sized problem, the log2(log
1+τ

1
4
(k)) factor is essentially a constant;

even when k is chosen to be the number of particles in the observable universe (≈
2270;36), the log2(log

1+τ
1
4
(k)) is ≈ 18, meaning that for any problem of practical size,

the full piecewise method is no more expensive than computing between 1 and 18
FFTs.

3.3.2 Comparison of low-value p∗ = 8, high-value p∗ = 64, and piecewise method

We first use an example max-convolution problem to compare the results from the
low-value p∗ = 8, the high-value p∗ = 64 and piecewise methods. At every index, these
various approximation results are compared to the exact values, as computed by the
naive quadratic method (Figure 3.2a).

3.3.3 Improved affine piecewise method

Figure 3.2b depicts a scatter plot of the exact result vs. the piecewise approximation
at every index (using the same problem from Figure 3.2a). It shows a clear banding
pattern: the exact and approximate results are clearly correlated, but each contour (i.e.,
each collection of indices that use a specific p∗) has a different average slope between
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Figure 3.2: The accuracy of numerical fast max-convolution methods. (a) Different
approximations for a sample max-convolution problem. The low-p∗ method is underflow-
stable, but overestimates the result. The high-p∗ method is accurate when underflow-
stable, but experiences underflow at many indices. The piecewise method stitches together
approximations from different p∗ to maintain underflow-stability. (b) Exact vs. piecewise
approximation at various indices of the same problem. A clear banding pattern is observed
with one tight, elliptical cluster for each contour. The slope of the clusters deviates more
for the contours using lower p∗ values.

the exact and approximate values, with higher p∗ contours showing a generally larger
slope and smaller p∗ contours showing greater spread and lower slopes. This intuitively

makes sense, because the bounds on ∥u(m)∥∞ ∈ [∥u(m)∥p∗k
−1
p∗
m ,∥u(m)∥p∗] derived above

constrain the scatter plot points inside a quadrilateral envelope (Figure 3.3).

The correlations within each contour can be exploited to correct biases that emerge
for smaller p∗ values. In order to do this, ∥u(m)∥∞ must be computed for at least
two points m1 and m2 within the contour, so that a mapping ∥u(m)∥p∗ ≈ f (∥u(m)∥p∗) =
a∥u(m)∥p∗+b can be constructed. Fortunately, a single ∥u(m)∥∞ can be computed exactly
in O(k) (by actually computing a single u(m) and computing its max, which is equivalent
to computing a single index result via the naive quadratic method). As long as the
exact value ∥u(m)∥∞ is computed for only a small number of indices, the order of the
runtime will not change (each contour already costs O(k log2(k)), so adding a small
number of O(k) steps for each contour will not change the asymptotic runtime).

If the two indices chosen are

mmin = argmin
m∈contour(p∗)

∥u(m)∥p∗

and
mmax = argmax

m∈contour(p∗)
∥u(m)∥p∗ ,
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Figure 3.3: A single contour from the piecewise approximation. The cluster of points
(one point for each index in the previous figure) is bounded by the exact value (ideal ap-
proximation) and the approximation upper-bound for p∗ = 8 (worst-case approximation).
The points are well described by an affine function fit using the left-most and right-most
points.
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Figure 3.4: Piecewise method with affine contour fitting. The approximate values at
each index of the max-convolution problem are almost identical to the exact result at the
same index.

then we are guaranteed that the affine function f can be written as a convex combina-
tion of the exact values at those extreme points (using barycentric coordinates):

f (∥u(m)∥p∗) = λm∥u(mmax)∥∞ + (1−λm)∥u(mmin)∥∞

λm =
∥u(m)∥p∗ − ∥u(mmin)∥p∗

∥u(mmax)∥p∗ − ∥u(mmin)∥p∗
∈ [0,1]

Thus, by computing ∥u(mmin)∥∞ and ∥u(mmax)∥∞ (each in O(k) steps), we can compute
an affine function f to correct contour-specific trends (Algorithm 3).

Error analysis of improved affine piecewise method

By exploiting the convex combination used to define f , the absolute error of the affine
piecewise method can also be bound. Qualitatively, this is because, by fitting on the
extrema in the contour, we are now interpolating. If the two points used to determine
the parameters of the affine function were not chosen in this manner to fit the affine
function, then it would be possible to choose two points with very close x-values (i.e.,
similar approximate values) and disparate y-values (i.e., different exact values), and
extrapolating to other points could propagate a large slope over a large distance; using
the extreme points forces the affine function to be a convex combination of the extrema,
thereby avoiding this problem.
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Algorithm 3 Improved affine piecewise numerical max-convolution, a numerical method
to estimate the max-convolution nonnegative vectors (further revised to reduce numerical
error). This procedure uses a p∗ close to the largest possible stable value at each result index.
The return value is a numerical estimate of the max-convolution L ∗max R. The runtime is in
O(k log2(k) log2(p

∗
max)).

1: procedure NUMERICALMAXCONVOLVEPIECEWISEAFFINE(L, R, p∗max)
2: ℓmax← argmaxℓ L[ℓ]
3: rmax← argmaxr R[r]
4: L′← L

L[ℓmax]

5: R′← R
R[rmax]

▷ Scale to a proportional problem on L′, R′

6: allPStar← [20, 21, . . . , 2
�

log2(p
∗
max)
�

]
7: for i ∈ {0, 1, . . . ,len(allPStar)} do
8: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStar[i])
9: end for

10: for m ∈ {0,1, . . . ,len(L)+len(R)− 1} do
11: maxStablePStarIndex[m]←max{i : (resForAllPStar[i][m])allPStar[i] ≥ τ)}
12: end for
13: result← affineCorrect(resForAllPStar, maxStablePStarIndex)
14: return L[ℓmax]× R[rmax]× result ▷ Undo previous scaling
15: end procedure

Algorithm 4 Subroutine for correcting errors in a contour, with an affine transformation
based on exact boundary points. It needs the results of the evaluation of the different p-norms
as well as the (index of the) maximum stable values of p∗ at every index.

1: procedure AFFINECORRECT(resForAllPStar, maxStablePStarIndex)
2: ∀i, slope[i]← 1
3: ∀i, bias[i]← 0
4: usedPStar← set(maxStablePStarIndex)
5: for i ∈ usedPStar do
6: contour← {m : maxStablePStarIndex[m] = i}
7: mMin← argminm∈contour resForAllPStar[i][m]
8: mMax← argmaxm∈contour resForAllPStar[i][m]
9: xMin← resForAllPStar[i][mMin]

10: xMax← resForAllPStar[i][mMax]
11: yMin← maxConvolutionAtIndex(mMin)
12: yMax← maxConvolutionAtIndex(mMax)
13: if xMax > xMin then
14: slope[i]← yMax−yMin

xMax−xMin
15: bias[i]← yMin - slope[i]× xMin
16: else
17: slope[i]← yMax

xMax
18: end if
19: end for
20: for m ∈ {0,1, . . . ,len(L) + len(R)− 1} do
21: i← maxStablePStarIndex[m]
22: result[m]← resForAllPStar[i][m] × slope[i] + bias[i]
23: end for
24: return result
25: end procedure
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f (∥u(m)∥p∗)

= λm∥u(mmax)∥∞ + (1−λm)∥u(mmin)∥∞
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�

The worst-case absolute error of the scaled problem on L′, R′ can be defined as

max
m
| f (∥u(m)∥p∗)− ∥u(m)∥∞ |.

Because the function f (∥u(m)∥p∗)− ∥u(m)∥∞ is affine, it’s derivative can never be zero,
and thus Lagrangian theory states that the maximum must occur at a boundary point.
Therefore, the worst-case absolute error is

≤ max{∥u(m)∥p∗ − ∥u(m)∥∞,∥u(m)∥∞ − ∥u(m)∥p∗k
−1
p∗ }

= ∥u(m)∥p∗ − ∥u(m)∥∞,

which is identical to the worst-case error bound before applying the affine transforma-
tion f . Thus applying the affine transformation can dramatically improve error, but
will not make it worse than the original worst-case.

3.3.4 An improved approximation of the Chebyshev norm

In order to improve the error of the piecewise numerical method, we consider the
worst-case, when u(m)

∥u(m)∥∞
= (1, 1, . . . 1). In this case, computing any two norms of u(m)
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(at p∗1 and p∗2) would be sufficient to solve exactly for ∥u(m)∥∞, because

∥u(m)∥p∗1
p∗1
∝ ∥u(m)∥p∗1

∞

∥u(m)∥p∗2
p∗2
∝ ∥u(m)∥p∗2

∞,

where the proportionality constant is km = len(u(m)).

Thus we see that although the p∗-norm approximation of the Chebyshev norm
is a good approximation, the curve of the norms (at various different p∗) values
holds far more information than a simple point estimate would. Therefore, we derive
an improved algorithm by proceeding as follows: First, we note that, rather than
computing the p∗-norm of a vector u(m) by summing all elements of u(m) taken to the
power p∗, it is possible to equivalently sum over only the unique values of u(m) (here
denoted in β1,β2, . . .) taken to the p∗ where each term in the sum is weighted by the
number of occurrences of each (denoted h1, h2, . . ., respectively). For this reason, we
can then use a sequence of norms to compute a (potentially smaller) collection of
approximate unique values α1,α2, . . .αr , where once again, the p∗-norm is equal to the
sum over those unique values to the p∗, where each term in the sum is weighted by
numbers of occurrences n1, n2, . . . nr . Therefore, given 2r different norms of u(m), it is
possible to project and estimate r unique αi values. The maximum of those α1,α2, . . .αr

values, (the α1,α2, . . .αr values can be thought of as projections of the true unique
values β1,β2, . . .) can then be used as an estimate of the true maximum element in
u(m), which we will now demonstrate.

Specifically, where km is the length of u(m) and where there are em ≤ km unique
values (βi) in u(m), we can model the norms perfectly with

∥u(m)∥p∗

p∗ =
em
∑

i

hiβ
p∗

i

where hi is an integer that indicates the number of times βi occurs in u(m) (and where
∑

i hi = km = len(u(m))). This multi-set view of the vector u(m) can be used to project
it down to a dimension r:
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By solving the above system of equations for all αi, the maximum α̂=maxi αi can be
used to approximate the true maximum maxi βi = ∥u(m)∥∞. This projection can be
thought of as querying distinct moments of the distribution pmfU (m) that corresponds to
some unknown vector u(m), and then assembling the moments into a model in order to
predict the unknown maximum value in u(m). Of course, when r, the number of terms
in our model, is sufficiently large, then computing r norms of u(m) will result in an
exact result, but it could result in O(km) execution time, meaning that our numerical
max-convolution algorithm becomes quadratic; therefore, we must consider that a
small number of distinct moments are queried in order to estimate the maximum value
in u(m). Regardless, the system of equations above is quite difficult to solve directly via
elimination for even very small values of r, because the symbolic expressions become
quite large and because symbolic polynomial roots cannot be reliably computed when
the degree of the polynomial is > 5. Even in cases when it can be solved directly, it
will be far too inefficient.

For this reason, we solve for the αi values using an exact, alternative approach:
If we define a polynomial

γ(x) =
�

x −αp∗

1

��

x −αp∗

2

�

· · ·
�

x −αp∗

r

�

,

then
x ∈ {αp∗

1 ,αp∗

2 , . . . ,αp∗

r }⇔ γ(x) = 0.

We can expand γ(x) = γ0 + γ1 x + γ2 x2 + · · ·+ γr x r , and then write
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which indicates that
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= 0.

Furthermore, γ(x) = 0, x ̸= 0⇔ x iγ(x) = 0, i ∈ N; therefore we can write
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must be linearly independent when α1,α2, . . . are distinct (which is the case by the
definition of our multiset formulation of the norm), then r = ℓ

2 will determine a unique
solution; thus the null space above is computed from a matrix with r + 1 columns and
r rows, yielding a single vector for (γ0,γ1, . . . ,γr). This vector can then be used to
compute the roots of the polynomial γ0+γ1 x +γ2 x2+ · · ·+γr x r , which will determine
the values {αp∗

1 ,αp∗

2 , . . . ,αp∗
r }, which can each be taken to the 1

p∗ power to compute
{α1,α2, . . . ,αr}; the largest of those αi values is used as the estimate of the maximum
element in u(m). When u(m) contains at least r distinct values (i.e., em ≥ r), then the
problem will be well-defined; thus, if the roots of the null space spanning vector are
not well-defined, then a smaller r can be used (and should be able to compute an exact
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estimate of the maximum, since u(m) can be projected exactly when r is the precise
number of unique elements found in u(m)).

To summarize, the null space projection method is performed as follows: First,
standard FFT-based convolution is used for each p∗ to compute the different norms
at every index m. Then those norms are used to populate and compute the null
space of a matrix. Finally the roots of the polynomial whose coefficients are given
by the null space vector are computed to estimate the different α1,α2, . . .. Note
that this projection method is valid for any sequence of norms with even spacing:
∥u(m)∥p∗0+p∗

p0+p∗ ,∥u
(m)∥p0+2p∗

p0+2p∗ ,∥u
(m)∥p0+3p∗

p0+3p∗ , . . .∥u(m)∥p0+ℓp∗

p0+ℓp∗
.

The null space projection method can therefore be computed for an arbitrary r
(i.e., it can be used to project to an arbitrary number of unique elements in u(m))
by using linear algebra to compute the null space and to compute the roots of the
polynomial (for instance, using the numpy.roots command in Python). For greater
efficiency, setting r to a small constant allows us to precompute closed-form solutions
of both the null space and the polynomial roots. For instance, using r = 2 (which
is equivalent to projecting each vector u(m) to two unique values) results in a R3×2

null space computation and computing roots of a quadratic polynomial, both of which
can be done in closed form Algorithm 5. Details of this r = 2 case can be found in
Appendix A. In this case, it is possible to construct a series of powers of two with
interleaved points, which guarantees that 4 evenly spaced p∗ values exist (when the
highest numerically stable p∗ is higher than 2), meaning that the number of FFT calls
is only twice what would be used by the original piecewise method (rather than four
times the calls, which would be necessary if four evenly spaced points were placed at
each considered p∗ in a naive scheme). From algebraic and empirical evidence, we
conjecture that the relative error of this r = 2 null space projection is bounded above
by 1− 0.7

4
p∗ , where p∗ is the highest numerically stable p∗ value.

This relative error is superior to the worst-case relative error when using a single
p∗-norm estimate of the maximum. The relative error using the null space projection
decreases rapidly as p∗ is increased, meaning that the same procedure can be used to
achieve an absolute error bound:

α̂− ∥u(m)∥∞ < τ
1

2p∗
�

1− 0.7
4
p∗
�

,

which achieves a unique maximum at

p∗mode =
1.4267 ∗ log(τ)− 4.07094

(log(τ)− 2.8534)
�

log(1− 2.8534
log(τ) )

� ≈ 14.52.
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Algorithm 5 Piecewise numerical max-convolution with projection, a numerical method
to estimate the max-convolution of two PMFs or nonnegative vectors. This method uses a
nullspace projection to achieve a closer estimate of the true maximum. Depending on the
number of stable estimates, linear or quadratic projection is used. The parameters are two
nonnegative vectors L′ and R′ (both scaled so that they have maximal element 1). The return
value is a numerical estimate of the max-convolution L′ ∗max R′.

1: procedure NUMERICALMAXCONVOLVEPIECEWISEPROJECTIONAFFINE(L′, R′, p∗)
2: ℓmax← argmaxℓ L[ℓ]
3: rmax← argmaxr R[r]
4: L′← L

L[ℓmax]

5: R′← R
R[rmax]

▷ Scale to a proportional problem on L′, R′

6: allPStar← [2−1, 20, 21, . . . , 2+ 2
�

log2(p
∗
max)
�

]
7: for h ∈ {0,1, . . . ,len(allPStar)} do
8: allPStarInterleaved[2i]← allPStar[i]
9: allPStarInterleaved[2i + 1]← 0.5× (allPStar[i] + allPStar[i + 1])

10: end for
11: for i ∈ {0,1, . . . ,len(allPStar)} do
12: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStarInterleaved[i])
13: end for
14: for m ∈ {0, 1, . . . ,len(L) + len(R)− 1} do
15: maxStablePStarIndex[m]←max{i : (resForAllPStar[i][m])allPStarInterleaved[i] ≥ τ)}
16: end for
17: for o ∈ {0,1, . . . ,len(maxStablePStarIndex)} do
18: maxStablePStarIndex[o] −=maxStablePStarIndex[o]% 2 ▷ Restrict to powers of 2
19: end for
20: for p ∈ {0,1, . . . ,len(maxStablePStarIndex)} do
21: maxP← allPStarInterleaved[maxStablePStarIndex[p]]
22: spacing← 0.25×maxP
23: est4← resForAllPStar[maxStablePStarIndex[p]]
24: est3← resForAllPStar[maxStablePStarIndex[p]− 1]
25: if maxStablePStarIndex[p]< 5 then ▷ Need five p∗ in sequence to get four evenly spaced
26: resForAllPStar[p]← maxLin(est3, est4)
27: else
28: est2← resForAllPStar[maxStablePStarIndex[p]− 2]
29: est1← resForAllPStar[maxStablePStarIndex[p]− 4] ▷ Index - 4 is the next evenly spaced

point
30: resForAllPStar[p]← maxQuad(est1, est2, est3, est4, spacing)
31: end if
32: end for
33: result← affineCorrect(resForAllPStar, maxStablePStarIndex)
34: return L[ℓmax]× R[rmax]× result ▷ Undo previous scaling
35: end procedure
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As before, the worst-case absolute error of the unscaled problem will be found by
simply scaling the absolute error at p∗mode:

max
ℓ

L[ℓ] max
r

R[r] τ
1

2p∗mode

�

1− 0.7
4

p∗mode

�

.

Because p∗mode (the value of p∗ producing the worst-case absolute error) for the null
space projection method it is invariant to the length of the list k (enabling us to compute
a numeric value), and because its numeric value is so small, even a fairly small choice
of p∗max will suffice (now p∗max ∈ O(1) rather than in O(log(k)) as it was with the original
piecewise method).

The one caveat of this worst-case absolute error bound is that it presumes at least
four evenly spaced, stable p∗ can be found (which may not be the case by choosing p∗

from the sequence 2i in cases when ∥u(m)∥∞ ≈ 0); however, assuming standard fast
convolution can be performed (a reasonable assumption given it is one of the essential
numeric algorithms), then four evenly spaced p∗ values could be chosen very close to
1; therefore, these values of p∗ could be added to the sequence so that the algorithm is
slightly slower, but essentially always yield this worst-case absolute error bound.

In practice, we can demonstrate that the null space projection method is very
accurate. First we show the impact of using the quadratic (i.e., r = 2) projection
method on unscaled single u(m) vectors. The projection method was tested on vectors
of different lengths drawn from different types of Beta distributions and are compared
with the results of the p-norms with the highest stable p (Figure 3.5). The relative
errors between the original piecewise method and the null space projection method
are compared using a max-convolution on two randomly created input PMFs of length
1024 (Figure 3.6). Note that the null space projection can also be paired with affine
scaling on the back end, just as the original piecewise method can be. In practice, the
null space projection increases the accuracy demonstrably on a variety of different
problems, although the original piecewise method also performs well.

Although the worst-case runtime of the null space projection method is roughly
twice that of the original piecewise method, the error bound no longer depends on the
length of the result k. Thus, for a given relative error bound on the top contour (i.e.,
the equivalent of the derivation of p∗max in the original piecewise algorithm), the value
of p∗max is fixed and no longer in O(log(k)). For example, achieving a 0.5% relative
error in the top contour would require

1− 0.7
4

p∗max ≤ 0.005→ p∗max ≥ 4
log(0.7)

log(0.995)
≈ 284.62,
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Figure 3.5: Relative errors on random vectors with and without null space projection.
For the two approximation methods (using the highest stable p∗-norm with the heuristically
chosen p∗max or using the null space projection with p∗max = 64), vectors of different lengths
are sampled (212 repetitions) from a variety of Beta distributions. The settings for the
parameters (α,β) of the Beta distribution that were used, as well as the lengths of the
generated vectors are shown in the titles of the subplots: α= 0.5,β = 0.5 (bimodal with
modes near zero and one); α = 0.1,β = 0.1 (uniform distribution); α = 10,β = 0.25 (with
a strong mode near one). The red area depicts the frequencies (y-axis) of the different
magnitudes of (relative) error (x-axis) when using the highest stable p∗-norm is used as
an approximation of the Chebyshev norm (p =∞). The blue area shows the errors with
the method that performs a projection (either quadratic or linear depending on how many
numerically stable p∗ are available) to estimate the Chebyshev norm.

meaning that choosing p∗max = 512 would achieve a very high accuracy, but while
only performing 2× 9 FFTs. For very large vectors, this will not be substantially more
expensive than the original piecewise algorithm, which uses a higher value of p∗max (in
this case, p∗max = log1.005(k), which continues to grow as k does) to keep the error lower
in practice. As a result, the runtime of the null space projection approximation is in
O(k log(k)) rather than O(k log(k) log(log(k))), despite the similar runtime in practice
to the original piecewise method (the null space projection method uses twice as many
FFTs performed per p∗ value, but requires slightly fewer p∗ values).
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Figure 3.6: Relative errors on large max-convolution with and without null space
projection. Max-convolution between two randomly generated vectors (both uniform
vectors convolved with narrow Gaussians with uniform noise added afterward), performed
with the highest stable p∗-norm (using the heuristic choice of p∗max for problems of this
size) and with null space projection (using p∗max = 64). The left y-axis shows the relative
error at index m. Associated with that, you can see the red and blue curve depicting the
errors from the two different methods: Red describes the max-norm estimation using only
the highest stable p∗ while purple was generated using quadratic projection at the four
highest stable p∗ values (when at least four evenly spaced values are numerically stable)
and linear projection at the two highest stable p∗ values (when only two p∗ are numerically
stable). The results of both approaches are corrected with the affine transformation method
proposed in this manuscript. In the background the gray shaded curve shows the exact
result of the max-convolution at every index (to be used with the second y-axis on the
right).
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k 26 27 28 29 210 211 212

Naive 0.0142 0.0530 0.192 0.767 3.03 12.1 48.2
Naive (vectorized) 0.0175 0.0381 0.0908 0.251 0.790 2.75 10.1

FILL1 (14) 0.0866 1.09 7.21 19.4 457 — —
Max. stable p∗, affine corr. 0.0277 0.0353 0.0533 0.0848 0.149 0.274 0.537

Projection, affine corr. 0.0236 0.0307 0.0467 0.0760 0.137 0.258 0.520

Table 3.1: Runtimes of different methods for max-convolution on uniform vectors
of length k. The runtimes were gathered using the timeit package in Python. They
include all preprocessing steps necessary for the algorithm (e.g., sorting prior to the FILL1
approach). The values are total runtimes (in seconds) to run 5 repetitions on different,
randomly generated vectors. FILL1 was not run on larger problems, because it ran
substantially longer than the non-vectorized naive approach. On the two approximation
methods presented in this manuscript, the highest stable p∗-norm approximation was run
with the heuristically chosen p∗max for problems of the appropriate size and the null space
projection was run with p∗max = 64.

3.3.5 Practical runtime comparison

To compare the actual runtimes of the final algorithm developed in this manuscript
with a naive max-convolution and a previously proposed method from Bussieck et al. 14,
all methods were run on vectors of different random (uniform in [0, 1]) composition
and length (k). The first and second input vector were generated seperately but are
always of same length. Table 3.1 shows the result of this experiment. All methods
were implemented in Python, using numpy where applicable (e.g., to vectorize). A
non-vectorized version of naive max-convolution was included to estimate the effects of
vectorization. The approach from Bussieck et al. ran as a reimplementation based on the
pseudocode in their manuscript. From their variants of proposed methods, FILL1 was
chosen because of its use in their corresponding benchmark and its recommendation by
the authors for having a lower runtime constant in practice compared to other methods
they proposed. The method is based on sorting the input vectors and traversing the
(implicitly) resulting partially ordered matrix of products in a way that not all entries
need to be evaluated, while only keeping track of the so-called cover of maximal
elements. FILL1 already includes some more sophisticated checks to keep the cover
small and thereby reducing the overhead per iteration. Unfortunately, although we
observed that the FILL1 method requires between O(n log(n)) and O(n2) iterations in
practice, this per-iteration overhead results in a worst-case cost of log(n) per iteration,
yielding an overall runtime in practice between O(n log(n) log(n)) and O(n2 log(n)).
As the authors state, this overhead is due to the expense of storing the cover, which
can be implemented e.g., using a binary heap (recommended by the authors and used

70



Results

in this reimplementation). Additionally, due to the fairly sophisticated datastructures
needed for this algorithm it had a higher runtime constant than the other methods
presented here, and furthermore we saw no means to vectorize it to improve the
efficiency. For this reason, it is not truly fair to compare the raw runtimes to the other
vectorized algorithms (and it is not likely that this Python reimplementation is as
efficient as the original version, which14 implemented in ANSI-C); however, comparing
a non-vectorized implementation of the naive O(n2) approach with its vectorized
counterpart gives an estimated ≈ 5× speedup from vectorization, suggesting that it
is not substantially faster than the naive approach on these problems (it should be
noted that whereas the methods presented here have tight runtime bounds but produce
approximate results, the FILL1 algorithm is exact, but its runtime depends on the
data processed). During investigation of these runtimes, we found that on the given
problems, the proposed average case of O(n log(n)) iterations was rarely reached. A
reason might be an unrecognized violation of the assumptions of the theory behind
this theoretical average runtime in how the input vectors were generated.

In contrast to the exact method from Bussieck et al. 14, the herein proposed approx-
imate procedure are faster whenever the input vectors are at least 128 elements long
(shorter vectors are most efficiently processed with the naive approach). The null space
projection method is the fastest method presented here (because it can use a lower
p∗max), although the higher density of p∗ values it uses (and thus, additional FFTs) make
the runtimes nearly identical for both approximation methods.

3.3.6 Demonstration on hidden Markov model with Toeplitz transition matrix

One example that profits from fast max-convolution of non-negative vectors is comput-
ing the Viterbi path using a hidden Markov model (HMM) (i.e., the maximum a posteriori
states) with an additive transition function satisfying Pr(X i+1 = a|X i = b)∝ δ(a−b) for
some arbitrary function δ (δ can be represented as a table, because we are considering
all possible discrete functions). This additivity constraint is equivalent to the transition
matrix being a “Toeplitz matrix”: the transition matrix Ta,b = Pr(X i+1 = a|X i = b)
is a Toeplitz matrix when all cells diagonal from each other (to the upper left and
lower right) have identical values (i.e., ∀a,∀b, Ta,b = Ta+1,b+1). Because of the Markov
property of the chain, we only need to max-marginalize out the latent variable at time i
to compute the distribution for the next latent variable X i+1 and all observed values of
the data variables D0 . . . Di+1. This procedure, called the Viterbi algorithm, is continued
inductively:
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max
x0,x1,...x i−1

Pr(D0, D1, . . . Di−1, X0 = x0, X1 = x1, . . . , X i = x i) =

max
x i−1

max
x0,x1,...x i−2

Pr(D0, D1, . . . Di−2, X0 = x0, X1 = x1, . . . , X i−1 = x i−1)

Pr(Di−1|X i−1 = x i−1)Pr(X i = x i|X i−1 = x i−1)

and continuing by exploiting the self-similarity on a smaller problem to proceed in-
ductively with the vector variable “fromLeft”, revealing a max-convolution (for this
specialized HMM with additive transitions):

max
x0,x1,...x i−1

Pr(D0, D1, . . . Di−1, X0 = x0, X1 = x1, . . . , X i = x i) =

max
x i−1

fromLeft[i − 1]Pr(Di−1|X i−1 = x i−1)δ[x i − x i−1] =

(fromLeft[i − 1] likelihood[Di−1]) ∗max δ[x i − x i−1].

After computing this left-to-right pass (which consisted of n− 1 max-convolutions
and vector multiplications), we can find the maximum a posteriori configuration of the
latent variables X0, . . . Xn−1 = x∗0, . . . x∗n−1 backtracking right-to-left, which can be done
by finding the variable value x i that maximizes fromLeft[i][x i]× δ[x∗i+1 − x i] (thus
defining x∗i and enabling induction on the right-to-left pass). The right-to-left pass
thus requires O(nk) steps (Algorithm 6). Note that the full max-marginal distributions
on each latent variable X i can be computed via a small modification, which would
perform a more complex right-to-left pass that is nearly identical to the left-to-right
pass, but which performs subtraction instead of addition (i.e., by reversing the vector
representation of the PMF of the subtracted argument before it is max-convolved;141).

We apply this HMM with additive transition probabilities to a data analysis problem
from economics. It is known for example, that the current figures of unemployment
in a country have (among others) impact on prices of commodities like oil. If one
could predict unemployment figures before the usual weekly or monthly release by the
responsible government bureaus, this would lead to an information advantage and an
opportunity for short-term arbitrage. The close relation of economic indicators like
market prices and stock market indices (especially of indices combining several stocks
of different industries) to unemployment statistics can be used to tackle this problem.

In the following demonstration of our method, we create a simple HMM with addi-
tive transitions and use it to infer the maximum a posteriori unemployment statistics
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Algorithm 6 Viterbi for models with additive transitions, which accepts the length k vector
prior, a list of n binned observations data, a a× k matrix of likelihoods (where a is the number
of bins used to discretize the data) likelihoods, and a length 2k− 1 vector δ that describes the
transition probabilities. The algorithm returns a Viterbi path of length n, where each element
in the path is a valid state ∈ {0, 1, . . . k− 1}.
1: procedure VITERBIFORADDITIVETRANSITIONS(prior, data, likelihood, δ)
2: fromLeft[0]← prior
3: for i = 0 to n− 2 do
4: fromLeft[i]← fromLeft[i]× likelihood[data[i]]
5: fromLeft[i + 1]← fromLeft[i] ∗max δ
6: end for
7: fromLeft[n]← fromLeft[n]× likelihood[data[i]][n]]
8:
9: path[n− 1]← argmax j fromLeft[n− 1][ j]

10: for i = n− 2 to 0 do
11: maxProdPosterior←−1
12: argmaxProdPosterior←−1
13: for l = k to 1 do
14: currProdPosterior← fromLeft[i]×δ[l − path[i + 1]]
15: if currProdPosterior > maxProdPosterior then
16: maxProdPosterior← currProdPosterior
17: argmaxProdPosterior← l
18: end if
19: end for
20: path[i]← argmaxProdPosterior
21: end for
22: return path
23: end procedure
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given past history (i.e., how often unemployment is low and high, as well as how often
unemployment goes down or up in a short amount of time) and current stock market
prices (the observed data). We discretized random variables for the observed data (S&P
500, adjusted closing prices ; retrieved from YAHOO! historical stock prices: http:
//data.bls.gov/cgi-bin/surveymost?blsseriesCUUR0000SA0), and "latent"
variables (unemployment insurance claims, seasonally adjusted, were retrieved from
the U.S. Department of Labor: https://www.oui.doleta.gov/unemploy/claims.
asp). Stock prices were additionally inflation adjusted by (i.e., divided by) the con-
sumer price index (CPI) (retrieved from the U.S. Bureau of Labor Statistics:
https://finance.yahoo.com/q?s=^GSPC). The intersection of both "latent" and
observed data was available weekly from week 4 in 1967 to week 52 in 2014, resulting
in 2500 data points for each type of variable.

To investigate the influence of overfitting, we partition the data in two parts, before
June 2005 and after June 2005, so that we are effectively training on 2000×100

2500 = 80% of
the data points, and then demonstrate the Viterbi path on the entirety of the data (both
the 80% training data and the 20% of the data withheld from empirical parameter
estimation). Unemployment insurance claims were discretized into 512 and stock prices
were discretized into 128 bins. Simple empirical models of the prior distribution for
unemployment, the likelihood of unemployment given stock prices, and the transition
probability of unemployment were built as follows: The initial or prior distribution
for unemployment claims at i = 0 was calculated by marginalizing the time series
of training data for the claims (i.e., counting the number of times any particular
unemployment value was reached over all possible bins). Our transition function
(the conditional probability Pr(X i+1|X i)) similarly counts the number of times each
possible change X i+1 − X i ∈ {−511,−510, . . . 511} occurred over all available time
points. Interestingly, the resulting transition distribution roughly resembles a Gaussian
(but is not an exact Gaussian). This underscores a great quality of working with
discrete distributions: while continuous distributions may have closed-forms for max-
convolution (which can be computed quickly), discrete distributions have the distinct
advantage that they can accurately approximate any smooth distribution. Lastly, the
likelihoods of observing a stock price given the unemployment at the same time were
trained using an empirical discrete joint distribution based on the historical data.

We compute the Viterbi path two times: First we use naive, exact max-convolution,
which requires a total of O(nk2) steps. Second, we use fast numerical max-convolution,
which requires O(n k log(k) log(log(k)) steps. Despite the simplicity of the model, the
exact Viterbi path (computed via exact max-convolution) is highly informative for
predicting the value of unemployment, even for the 20% of the data that were not
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Figure 3.7: Viterbi analysis of employment given stock index values. The Viterbi path
corresponding to the maximum a posteriori prediction of the number of new unemployment
insurance claims is produced for a model where the state transition probabilities are
additive. The exact Viterbi estimate tracks well with the true unemployment values.
Training parameters were taken from only the true unemployment data to the left of
the vertical dotted line; however, the Viterbi paths to the right of the dotted line (where
unemployment data were withheld from the likelihood, prior, and transition parameters)
also track well with the true unemployment statistics. The Viterbi path computed with
fast numerical max-convolution (via the null space projection piecewise approach) is
nearly identical to the result computed with the slower exact approach. Note that for this
problem, the original, simpler piecewise approach also produces very similar results.

used to estimate the empirical prior, likelihood, and transition distributions. Also, the
numerical max-convolution method is nearly identical to the exact max-convolution
method at every index (Figure 3.7). Even with a fairly rough discretization (i.e.,
k = 512), the fast numerical method (via the original, simpler piecewise algorithm
with p∗max = 8192) used 141.4 seconds compared to the 292.3 seconds required by
the naive approach. The higher-precision projection algorithm (which uses a smaller
p∗max, but calls FFT twice for each power of two p∗) computes nearly identical result
using p∗max = 64 for this problem in 136.6 seconds. The speedup of both fast numerical
algorithms relative to the naive quadratic max-convolution algorithm will increase
dramatically as k is increased.
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3. Efficient max-product inference for sums of random variables

3.4 Discussion

Both piecewise numerical max-convolution methods are highly accurate in practice
and achieve a substantial speedup over both the naive approach and the approach
proposed by Bussieck et al. 14. This is particularly true for large problems: For the
original piecewise method presented here, the log2(log

1+τ
1
4
(k)) multiplier may never

be small, but it grows so slowly with k that it will be < 18 even when k is on the same
order of magnitude as the number of particles in the observable universe. This means
that, for all practical purposes, the method behaves asymptotically as a slightly slower
O(k log2(k)) method, which means the speedup relative to the naive method becomes
more pronounced as k becomes large. For the second method presented (the null space
projection), the runtime for a given relative error bound will be in O(k log2(k)). In
practice, both methods have similar runtime on moderate or large problems.

The basic motivation of the first approach described—i.e., the idea of approximating
the Chebyshev norm with the largest p∗-norm that can be computed accurately, and
then convolving according to this norm using FFT—also suggests further possible
avenues of research. For instance, it may be possible to compute a single FFT (rather
than an FFT at each of several contours) on a more precise implementation of complex
numbers. Such an implementation of complex values could store not only the real and
imaginary components, but also other much smaller real and imaginary components
that have been accumulated through + operations, even those which have small enough
magnitudes that they are dwarfed by other summands. With such an approach it would
be possible to numerically approximate the max-convolution result in the same overall
runtime as long as only a bounded “history” of such summands was recorded (i.e., if the
top few magnitude summands—whether that be the top 7 or the top log2(log

1+τ
1
4
(k))—

was stored and operated on). In a similar vein, it would be interesting to investigate the
utility of complex values that use rational numbers (rather than fixed-precision floating
point values), which will be highly precise, but will increase in precision (and therefore,
computational complexity of each arithmetic operation) as the dynamic range between
the smallest and largest nonzero values in L and R increases (because taking L′ to a
large power p∗ may produce a very small value). Other simpler improvements could
include optimizing the error vs. runtime trade-off between the log-base of the contour
search: the method currently searches log2(p

∗
max) contours, but a smaller or larger

log-base could be used in order to optimize the trade-off between error and runtime.

It is likely that the best trade-off will occur by performing the fast p∗-norm convolu-
tion with a number type that sums values over vast dynamic ranges by appending them
in a short (i.e., bounded or constant size) list or tree and sums values within the same
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dynamic range by querying the list or tree and then summing in at the appropriate
magnitude. This is reminiscent of the fast multipole algorithm128. This would permit
the method to use a single large p∗ rather than a piecewise approach, by moving the
complexity into operations on a single number rather than by performing multiple
FFTs with simple floating-point numbers.

The basic motivation of the second approach described—i.e., using the sequence of
p∗-norms (each computed via FFT) to estimate the maximum value—generalizes the p∗-
norm fast convolution numerical approach into an interesting theoretical problem in its
own right: given an oracle that delivers a small number of norms (the number of norms
retrieved must be c ∈ o(k) to significantly outperform the naive quadratic approach)
about each vector u(m), amalgamate these norms in an efficient manner to estimate
the maximum value in each u(m). This method may be applicable to other problems,
such as databases where the maximum values of some combinatorial operation (in
this case the maximum a posteriori distribution of the sum of two random variables
X + Y ) is desired but where caching all possible queries and their maxima would be
time or space prohibitive. In a manner reminiscent of how we employ FFT, it may be
possible to retrieve moments of the result of some combinatoric combination between
distributions on the fly, and then use these moments to approximate true maximum
(or, in general, other sought quantities describing the distribution of interest).

In practice, the worst-case relative error of our quadratic approximation is quite low.
For example, when p∗ = 8 is stable, then the relative error is less than 2.3%, regardless
of the lengths of the vectors being max-convolved. In contrast, the worst-case relative
error using the original piecewise method would be ≤ k

1
16 − 1, where k is the length of

the max-convolution result (when n = 1024, the relative error of the original piecewise
method would be ≈ 54%).

Of course, the use of the null space projection method is predicated on the existence
of at least four sequential p∗ points, but it would be possible to use finer spacing
between p∗ values (e.g., p∗ ∈ (1, 1.01, 1.02, 1.03) to guarantee that this will essentially
be the case as long as FFT (i.e., p∗ = 1) is stable. But more generally, the problem of
estimating extrema from p∗-norms (or, equivalently, from the p∗-th roots of the p∗-th
moments of a distribution with bounded support), will undoubtedly permit many more
possible approaches that we have not yet considered. One that would be compelling is
to relate the Fourier transform of the sequential moments to the maximum value in
the distribution; such an approach could permit all stable p∗ at any index m to be used
to efficiently approximate the maximum value (by computing the FFT of the sequence
of norms). Such new adaptations of the method could permit low worst-case error
without any noticable runtime increase.
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3.4.1 Multidimensional numerical max-convolution

The fast numerical piecewise method for max-convolution (and the affine piecewise
modification) are both applicable to matrices as well as vectors (and, most generally,
to tensors of any dimension). This is because the p∗-norm (as well as the derived error
bounds as an approximation of the Chebyshev norm) can likewise approximate the
maximum element in the tensor u(m1,m2,...) generated to find the max-convolution result
at index m1, m2, . . . of a multidimensional problem, because the sum

∑

i1,i2,...

�

u(m1,m2,...)
i1,i2,...

�p∗

computed by convolution corresponds to the Frobenius norm (i.e., the “entrywise
norm”) of the tensor, and after taking the result of the sum to the power 1

p∗ , will
converge to the maximum value in the tensor (if p∗ is large enough).

This means that the fast numerical approximation, including the affine piecewise
modification, can be used without modification by invoking standard multidimensional
convolution (i.e., ∗). Matrix (and, in general, tensor) convolution is likewise possible
for any dimension via the row-column algorithm, which transforms the FFT of a
matrix into sequential FFTs on each row and column. The accompanying Python code
demonstrates the fast numerical max-convolution method on matrices, and the code
can be run on tensors of any dimension (without requiring any modification).

The speedup of FFT tensor convolution (relative to naive convolution) becomes
considerably higher as the dimension of the tensors increases; for this reason, the
speedup of fast numerical max-convolution becomes even more pronounced as the
dimension increases. For a tensor of dimension d and width k (i.e., where the index
bounds of every dimension are ∈ {0, 1, . . . k−1}), the cost of naive max-convolution will
be in O(k2d), whereas the cost of numerical max-convolution is O(kd log2(k)) (ignoring
the log2(log

1+τ
1
4
(k)) ≤ 18 multiplier), meaning that there is an O( kd

d log2(k)
) speedup

from the numerical approach. Examples of such tensor problems include graph theory,
where adjacency matrix representation can be used to describe respective distances
between nodes in a network.

As a concrete example, the Python demo code computes the max-convolution
between two 256× 256 matrices. The naive method required 494 seconds, but the
numerical result with the original piecewise method was computed in 3.18 seconds
(yielding a maximum absolute error of 0.0173 and a maximum relative error of 0.0511)
and the numerical result with the null space projection method was computed in 3.99
seconds (using p∗max = 512, which corresponds to a relative error of < 0.1% in the
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top contour, yielding a maximum absolute error of 0.0141 and a maximum relative
error of 0.0227) and in 3.05 seconds (using p∗max = 64, which corresponds to a relative
error of < 2.5% in the top contour, yielding a maximum absolute error of 0.0667
and a maximum relative error of 0.067). Not only does the speedup of the proposed
methods relative to naive max-convolution increase significantly as the dimension of
the tensor is increased, no other faster-than-naive algorithms exist for max-convolution
of matrices or tensors.

Multidimensional max-convolution can likewise be applied to hidden Markov mod-
els with additive transitions over multidimensional variables (e.g., allowing the latent
variable to be a two-dimensional joint distribution of American and German unemploy-
ment with a two-dimensional joint transition probability).

3.4.2 Max-deconvolution

The same p∗-norm approximation can also be applied to the max-deconvolution problem
(i.e., solving M = L ∗max R for R when given M and L). This can be accomplished by
computing the ratio of FFT(M p∗) to FFT(Lp∗) (assuming L has already been properly
zero-padded), and then computing the inverse FFT of the result to approximate Rp∗;
however, it should be noted that deconvolution methods are typically less stable than
the corresponding convolution methods, computing a ratio is less stable than computing
a product (particularly when the denominator is close to zero).
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Chapter 4

Protein inference with loopy belief prop-

agation on Bayesian networks

This chapter revolves around the combination of the algorithmic improvements from
the last chapter with an approximate inference method that can utilize convolution trees
efficiently to answer queries on a refined state-of-the-art model for protein inference
into a ready-to-use tool working on OpenMS’ data structures. It shows results from
benchmarks for accuracy on a ground truth data set and efficiency on a large-scale
human sample measured on a long gradient.

4.1 Introduction

Although the benefits of probabilistically dividing evidence from shared peptides are
long known108, the high complexity of current Bayesian inference methods82,83,135 for
accurate posteriors on the full protein-peptide graph makes a rigorous probabilistic han-
dling unsuitable for large data sets (as described in detail in Background Section 2.4.5).
In our new approach EPIFANY (Efficient Protein InFerence for ANY protein-peptide
network) we use a fast approximate inference algorithm called loopy belief propaga-
tion (LBP) which has already been shown to perform well on solving other types of
probabilistic graphical models (e.g., models used in important information theoretic
algorithms like the error-correcting turbo codes10 as well as on quick medical reference
(QMR) disease diagnosis networks99). Using LBP we can achieve drastically improved
runtimes than other Bayesian approaches without any approximations on the under-
lying graph itself. Additionally, we improved the calibration of the resulting FDRs by
introducing an optional regularized model with max-product inference and a greedy
protein group resolution based on the reported protein probabilities.
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Partly reprinted and adapted to fit the style and flow of this thesis with permission
from:

EPIFANY - A method for efficient high-confidence protein inference
J. Pfeuffer, T. Sachsenberg, T. M. Dijkstra, O. Serang, K. Reinert, and O. Kohlbacher

Journal of Proteome Research p. 734327, (2019), Copyright 2019 American Chemical Society.

Author
Author
position

Scientific
ideas %

Data
generation %

Analysis &
interpretation %

Paper
writing %

J. Pfeuffer 1 40 95 80 90
T. Sachsenberg 2 5 5 5 5
T. Dijkstra 3 5 0 5 1
O. Serang 4 25 0 0 1
K. Reinert 5 10 0 5 1
O. Kohlbacher 6 15 0 5 2

Status: published

4.2 Methods

In the following section we define the underlying probabilistic graphical model used
to describe the protein inference problem including all its conditional dependencies.
Then we present the inference algorithm, which allows to efficiently calculate posterior
probabilities for peptides, proteins and protein groups. In addition, we provide infor-
mation on the pre- and post-processing of the data used to present the results later
on.

4.2.1 Model

The model we chose for protein inference is based on a Bayesian network (BN) represen-
tation. The protein-peptide graph (Figure 2.7) encodes the conditional dependencies
of proteins and their peptides. The advantages of this specification of conditional
(in-)dependencies is the resulting factorization of the high-dimensional joint distribu-
tion into smaller distributions, namely prior distributions for the proteins and condi-
tional probability distributions (CPDs) for the peptides given their parents. In case of
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the binary representation for every peptide and protein, these distributions are discrete
and correspond to conditional probability tables (CPTs).

Additionally, the Bayesian network needs to be parameterized. Although the fac-
torization into smaller distributions decreases the number of parameters, each CPT
still needs 2p parameters, where p is the number of parent nodes, to be set or learned.
By recognizing the fact that in the generative process from proteins to peptides the
presence of any of the parent proteins is enough to potentially produce a peptide,
we can reduce the number of parameters further when specifying the conditional
probability according to a noisy-OR model113. In its original form, the network using
the noisy-OR model requires the following parameters:

• γρ prior for protein with index ρ

• αρ,ϵ noisy-OR emission probability of a protein ρ generating peptide ϵ

• βϵ noisy-OR leak probability for a peptide ϵ being generated by chance

For now, we employ the same simplification used in the Fido144 algorithm by assuming
equality among all α and the presence of only one β . Additionally, a constant prior
γ for all proteins prevents biases on protein level when no further information is
available. The parameters α,β ,γ either have to be specified manually, or are by default
selected from a grid of initial values based on target-decoy classification performance
and probability calibration (see Subsection 4.2.3 for implementation details).

One addition to the original model is an option to add prior probabilities for the
random variables that model the number of proteins which might produce a certain
shared peptide. These priors were designed empirically to decrease with a rising number
of present parents. In the course of inference, this results in a form of regularization
on the number of parent proteins and a more uneven distribution of the evidence from
shared peptides starting at the most likely producing proteins (based on their beliefs
from the rest of the network), especially in conjunction with so-called max-product
inference. For a more detailed description of the parameterization including equations
and an example please refer to the Appendix B.1.1 and B.1.2.

4.2.2 Algorithm

Once the protein inference problem is modeled as a (factorized) probability distribution,
probabilities can be inferred on random variables of interest. Usually, probabilities of
interest are the marginal probabilities of proteins, protein groups or peptides, given
the evidence on the PSM level, the so-called posterior probabilities.
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As peptide level evidence, the algorithm first reads the PSM probabilities and the
associations to their parent proteins from spectra searched with a peptide search engine.
It then aggregates PSM probabilities on the peptide level by picking the maximum PSM
probability per unmodified peptide sequence and filters out peptides with extremely
small probabilities (e.g., below 0.001).

A naive approach to inference in a Bayesian network would be to create a large
joint probability table for each connected component of the network and marginalize
for each protein by aggregating the probabilities of all possible configurations leading
to the same state of the current protein of interest. To make this approach viable for at
least small to medium-sized problems, previous tools resorted to (Gibbs) sampling84

or sped up calculations by caching results and making use of symmetries arising
due to the chosen model144. A possible symmetry to be exploited is the dependence
of the peptide probability only on the number of parent proteins (not their exact
combination). This symmetry consideration reduces the number of different input
configurations in the presence of indistinguishable groups. Although this procedure has
been implemented efficiently in tools like Fido, the worst-case runtime is exponential in
the number of proteins in a connected component. Reducing the size of the connected
components by splitting them at low-probability peptides is a reasonable approximation
only if the probability cutoff is not too high. Using the looping version99 of Pearl’s
belief propagation algorithm112, even non-tree structured graphs with cycles (such
as all but the simplest protein-peptide networks) can be processed efficiently while
keeping flexibility in which types of factors (probability table-based factors, function-
like factors, convolution-tree-based adder factors, etc.) on which sets of random
variables are used. Convolution trees141 (CTs) leverage fast Fourier transformation to
calculate the convolution of probability distributions. Additionally, convolutions are
performed in a hierarchical procedure to keep the sizes of intermediate tables as small
as possible. EPIFANY uses CTs to propagate probabilities between peptide and protein
(group) level efficiently even at peptides with many parents (see Appendix B.1.2 for
details). To apply loopy belief propagation to our problem we create a factor graph
(see Figure 4.1 and Subsection 4.2.3) from our model and initialize messages on all
edges in both directions uniformly. In the following we will use the term “belief” for the
current marginal probabilities of a set of variables in a factor. All beliefs on a factor are
initialized according to their priors, evidence and/or the likelihoods calculated based on
the parameterization (i.e., noisy-“OR” parameters and regularization). Lastly, starting
from factors that carry initial information, the algorithm iteratively queues, updates
and passes messages between the factors (to update their beliefs) until messages do not
change anymore (i.e., convergence is reached in terms of their mean-squared error).
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By default, messages with the highest residuals compared to the last message, gain
highest priority for the next iteration38. Beliefs are updated by incoming messages
following the HUGIN algorithm, which means that for example additional beliefs on
the so-called separator variables are cached on the graph’s edges62. Details about the
algorithm can be found in the Appendix on an applied example (Appendix B.1.2),
or in a more general setting in the Background (Section 2.4.5). Since loopy belief
propagation is an approximate algorithm on non-tree structured parts of the network
and convergence is an important concern, messages can additionally be dampened
(by a “momentum”) in a way that the updated message is a convex combination of
old and new messages99. The idea of damping for solving the problem of oscillating
messages is further discussed in the Limitations Section 4.3.5 and on an example in
the Appendix B.1.3.

4.2.3 Implementation

EPIFANY starts with the output from probabilistic rescoring tools applied to peptide
search engine results. It writes the PSM probabilities and associations from PSMs to pro-
teins into OpenMS’ datastructures. After aggregating PSM probabilities on the peptide
level and creating the bipartite graph from the peptides mapping to potential protein
candidates as described in the previous section, the resulting protein-peptide graph is
split into connected components by a depth-first search. Then—using the OpenMP 2.0
API110 in a dynamic scheduling mode—the processing of the connected components is
distributed on as many CPU threads as allowed by a user-specified parameter. For each
connected component in the graph a factor graph is built, equivalent to the Bayesian
network specified in Section 4.2.1 about the model. The Bayesian network represented
by the bipartite graph is converted to a factor graph as follows (example shown in
Figure 4.1): First, to allow querying posteriors for indistinguishable protein groups, an
additive factor is introduced for all sets of proteins that share the same set of peptides.
Then, to reduce loops, save computations, and avoid oscillations later on, we also
create peptide cluster factors that calculate and hold the current beliefs for the number
of parent proteins for sets of peptides that share the same parent proteins or parent
protein groups. Both of these factor types use convolution trees for an efficient adding
of discrete random variables141. It is worth noting that this hierarchy could also include
more intermediate factors but since no sub-quadratic algorithm is known to us to
create an optimal hierarchy for the parent protein (sub-)sets the algorithm only uses
two levels of aggregation. Also, this aggregation is only performed if the number of
contributing proteins or protein groups is greater than one (e.g., peptide E6 in the
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Figure 4.1: The factor graph created for the loopy belief propagation algorithm based
on the example in Figure 2.7 (same color and letters). Each node represents one factor.
Annotations on the factors describe the set of random variables (RVs) comprising the
dimensions of its initial potential and in later stages its updated beliefs. Circles are table-
based factors, diamonds convolution-tree (CT) based probabilistic adders. The set of RVs
on CT-based adders are implicitly defined by the union of variables from neighbors on the
left side of the graph (indicated by a plus sign) and an output variable. Although edges
are displayed unidirectional to represent the causality, messages will be passed in both
directions.
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example). Finally, for each peptide a factor is added to the graph, that holds the CPT
for the probability of a peptide being present given the number of parent proteins. The
factor nodes on the very left and very right are just singleton factors to keep track of
the beliefs on proteins and peptides. They are initialized with priors (parameter γ
for proteins) and evidence probabilities (for peptides, e.g., from Percolator) and after
convergence of the algorithm hold the final posteriors to be queried. This allows the
simultaneous reporting of protein, protein group and updated peptide level posteriors
as outcome of the inference on this unified model.

An additional outer loop evaluates the model for (by default 42) points on a three-
dimensional grid over the three parameters α, β and γ based on a convex combination
of partial AUC (for target-decoy classification) and posterior probability calibration
(i.e., comparing posterior based and target-decoy based FDRs). Details on parameter
optimization can be found in Appendix B.1.4.

As an optional post-processing, a greedy protein group resolution can be performed.
It implements a probabilistic maximum parsimony model, where protein groups are
ordered by their posterior probability and starting from the best group, each greedily
claims all peptides that it potentially generates until all peptides have been claimed.
Proteins or protein groups without any remaining evidence are then deleted or if
preferred, implicitly assigned a probability of 0.

4.2.4 Data and data pre-processing

To benchmark the main advancements of EPIFANY and to show the different strengths
of the tool we focused on three distinct datasets.

Accuracy and calibration can best be measured on a dataset like the iPRG2016
benchmark data with a set of known ground truth Protein Epitope Signature Tags
(PrESTs)160. Two sets (labelled A and B) of known PrESTs were designed to share a large
number of peptides, spiked-into an Escherichia coli lysate background in three different
experiments, then measured in triplicates: one experiment each exclusively containing
one of the spike-in sets (A, B) and a third containing both sets of PrESTs (A+B). For all
sets, we evaluated the performance on identifying the PrESTs of A/B/A+B while having
the full database of spike-ins (from A+B), entrapment proteins (i.e., intentionally
absent PrESTs) and background proteins as potential candidates. All experiments
contained an equimolar concentration of each PrEST. To avoid confusion, we will
simply use the term “protein” instead of PrEST in the rest of the manuscript.
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A small Universal Proteomics Standard 2 dataset was additionally analyzed with
the same pipeline as for the iPRG data to better evaluate pros and cons of methods in
detail.

With the goal to measure scalability of the new tool a third, larger scale dataset
was analyzed. It is part of an unpublished study and consists of two measurements of
human immune cells on a long gradient at two different time points in duplicates.

iPRG2016 data set

Raw files from the corresponding PRIDE115 project PXD008425 were converted and
centroided with msConvert17 on all levels. The fasta database provided together
with the study was used to generate a decoy database through homology-aware (i.e.,
peptide-based) shuffling of amino acids with OpenMS’ DecoyDatabase129,153 tool. Then
spectra were searched using Comet (2016.01 rev. 3)40 allowing a 10 ppm precursor
mass tolerance and one missed cleavage for fully tryptic peptides. As fixed modification
we required Carbamidomethylation (C). Variable modification was set to Oxidation
(M). After merging the results over replicates (by creating the union of proteins and
concatenating PSMs) we added target-decoy annotations on protein- and PSM-level. To
obtain better discrimination through Percolator 3.02, we extracted additional features
specific for the Comet search-engine (see Appendix B.1) before running Percolator with
standard settings for the PSM score re-calibration and basic protein inference activated.
For all other methods tested we used the PSM-level posterior error probabilities reported
by Percolator as input after filtering them at different levels of PSM confidence. Once,
slightly by removing PSMs with error probabilities higher or equal to 0.999 (to be
consistent with the defaults in Fido and EPIFANY), once at 5% FDR and once at 1%
FDR. For comparability with Percolator which only supports group-level reports, Fido
and EPIFANY were run with group-level inference as well, thereby querying posteriors
on the (indistinguishable) protein group level (i.e., reporting the probability of at
least one member being present). ProteinProphet and EPIFANY then report both,
group-level and single protein-level probabilities. PIA’s recommended default inference
procedure “spectrum extractor” also reports groups. Its “report all” option without any
parsimonious steps during inference was additionally tested for completeness.

UPS2 standard

Raw data for the UPS2 standard in solution was downloaded from http://data.
marcottelab.org/MSdata/Data_13/. The highest concentrated sample (30 µl)
was chosen to potentially yield the most discoverable proteins. The converted mzML
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was re-uploaded for reproducibility117. A database with the 48 known proteins in
various concentrations and six differently shuffled decoys for each protein was used as
provided by the lab. Decoys were inflated to obtain a more stable FDR estimate for
this small dataset later on. One set of decoys was masked before the Comet search
such that full ground truth information is at no point available for any of the methods.
Comet settings were the same as for the iPRG data. The different FDR cutoffs (1% and
5%) at which PSMs were filtered were corrected for the factor of additional protein
decoys present. During evaluation of protein FDRs we included the knowledge about
both decoys and entrapment proteins again by counting false positives with a factor of
1
6 . The correction is done, to correct for the higher prior probabilities of encountering
decoys due to their inflation by incorporating multiple decoys per target (i.e., because
of invalidating the equal chance assumption).

Large-scale data

After searching the spectra of four runs with MSGF+72 (unspecified number of missed
cleavages, 10 ppm precursor mass tolerance, fully specific Trypsin/P as enzyme, fixed
Methylthio (C) modification, variable Oxidation (M)) against the whole human part of
the UniProt database (SWISS-PROT + TrEMBL)8 (release 2017_06, 70,939 proteins
plus peptide-level pseudo-reversed decoys appended) and merging the samples the
dataset can be summarized by the following numbers:

• 119,921 proteins (matched by at least one PSM)

• 533,218 different peptide sequences

• 807,663 PSMs (including tied matches due to isoleucine/leucine ambiguities or
modification locations)

• 734,522 spectra

Again, PSMs were re-scored and probabilities extracted via Percolator 3.02 by training
its support vector machine on a subset of 250,000 PSMs for speed and memory efficiency.
Since there is currently no way to run protein inference in Percolator separately, the
corresponding options were set to be activated as well. The identifications with
MSGF scores as well as Percolator scores and features were made available publicly
for reproducibility116. To evaluate the computationally most demanding task for the
Bayesian approaches, Fido was run in single protein level mode (no groups to exploit
symmetries). Fido was run with the only available standalone versioni adapted to

ihttps://noble.gs.washington.edu/proj/fido/
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Microsoft compilers that is shipped with OpenMS 2.6ii. EPIFANY calculates both levels
simultaneously by default. Other parameters were left with their defaults in all tools,
except for filtering out PSMs under 0.001 probability in ProteinProphet and PIA (to be
comparable with the defaults in Fido and EPIFANY). Times and peak memory usage
were measured with the Unix utility time on a two-socket Intel Xeon X5570 machine
(i.e., 16 possible threads) with 64GB of RAM.

Benchmarked tools and tool-specific adaptions

The tools tested represent a diverse set of algorithms. PIA 1.3.10 was chosen as spectrum
level parsimony approach considering shared peptides. Percolator 3.02 represents
aggregation-based approaches on unique peptides only. ProteinProphet (compiled
from TPP 5.1) was included as a commonly used iterative and pseudo-probabilistic
heuristic which considers shared peptides as well. Lastly, Fido (in the version shipped
with OpenMS) is the representative of Bayesian methods with a very similar model
to EPIFANY’s but with a different inference procedure. The selection is also based on
other recent evaluations of protein inference methods6,160.

Since PIA accepts OpenMS’ idXML format by default, the only change that was done
was a renaming of the PSM score type name resulting from Percolator to OpenMS’
posterior error probability type so that PIA accepts the scores and interprets them
as error probabilities. Inference was performed with and without PIA’s own FDR
estimation. Shown in the main manuscript are the results directly on Percolators’ PEPs
as they yield a fairer comparison.

For ProteinProphet OpenMS’ IDFileConverter was used to write the error proba-
bilities from Percolator into a pepXML file that is compatible with ProteinProphet to
make sure that all tools start from the same set of scores. The protein FDR estimation
procedures of the tools were used whenever possible. For ProteinProphet we used
the same FDR estimation procedure as for EPIFANY with a concatenated target-decoy
database and the equation ÔFDR =

(Ndecoy+1)
Ntarget

79. Groups are counted as decoy if they
consist of only decoy proteins. Reported are always q-values unless stated otherwise.

4.2.5 Availability

EPIFANY runs on all major platforms (Windows, Linux, OSX). It is available un-
der an open-source license (BSD three-clause) at https://openms.org/epifany.
This website also contains demo data, a manual, binary installers for all platforms

iihttps://github.com/hendrikweisser/Fido
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and links to the source code repository. EPIFANY relies on the Evergreen infer-
ence library released by O. Serang under an MIT license which can be found under
https://bitbucket.org/orserang/evergreenforest140

4.3 Results and discussion

4.3.1 EPIFANY shows improved identification performance

Identification performance of protein inference was benchmarked using the iPRG2016
dataset which was specifically designed to include almost 200 ground truth proteins
and a database with additional entrapment sequences. This allowed a comparison of
tools at specific known entrapment protein FDRs with different cutoffs at the PSM and
protein level. Further, a more detailed investigation of the impact of unfiltered PSMs
on a UPS2 dataset with varying concentrations of known proteins was performed.

Unpooled samples A/B with PSMs filtered at 0.001 posterior probability

Results on the loosely filtered, unpooled experiments of the iPRG2016 study show that
EPIFANY (with greedy group resolution enabled) yields the highest count of known true
positive proteins among the tested methods (Figure 4.2, top). On sample B, EPIFANY
identifies 9.14% more true positives at 5% FDR than the second-best method for this
measure, PIA. Considering the low number of missing true positives to be identified, this
increase is of even greater importance. On both samples, PIA and ProteinProphet do
not perform well on just mildly filtered sets of PSMs. Additionally, a special case occurs
for sample B, where ProteinProphet’s reported proteins are first found at entrapment
q-values higher than 5% and therefore an empty bar is shown. The performance of
ProteinProphet might be explained by the different pipeline31 usually used to create its
input. Furthermore, ProteinProphet performs a different and more aggressive protein
grouping by not only aggregating indistinguishable groups but also by subsuming
groups into more general protein ambiguity groups.

However, since this dataset is limited in the number of known proteins that can be
found (191 in sample B, 192 in A), looking at the number of identifications at a certain
cutoff does not show the full strength of our new method. Not only does it identify
more known spike-ins, it also finds them at overall lower entrapment FDRs than most
other methods, and thus at a threshold where it is reporting fewer false positives. This
is evident in the quickly rising curve of the receiver operating characteristic (ROC). On
sample B, EPIFANY is covering the largest partial area under the curve of all tested
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tools (truncated at nine false positives equaling the maximum number to reach a
5% entrapment FDR; abbreviated pAUC). On the other sample (A) Percolator slightly
outperforms EPIFANY in this regard. This pAUC measure is summarized in the lower
part of Figure 4.2.

Together with Fido, EPIFANY is also the only tool reporting all correct proteins of
sample B after all—though Fido finds all 191 present proteins at an entrapment FDR
of 47% (beyond the cutoff in the figures). The other tools tested on loosely filtered
sample B (even without any protein FDR cutoff) completely ignore or filter some true
positives, most likely due to missing/insufficient evidence, e.g., missing unique peptides
in Percolator (which reaches 187 true proteins on B at its maximum FDR of 56%). On
sample A, no method is able to identify all true positives at any protein-level cutoff.

When applied to data without stringent PSM FDR filtering, PIA achieves only
consistently moderate pAUCs (around 70-75%). Therefore we performed the evaluation
for all tools again with the often suggested pre-cutoff of 0.01 PSM FDR164.

Unpooled samples A/B with PSMs filtered at 1% FDR

Different methods are affected by pre-filtering on the PSM level in various degrees.
While Fido struggles to perform well on 1% cutoffs on both unpooled samples, PIA now
slightly outperforms EPIFANY (Figure 4.2) on the pAUC measure of sample B. EPIFANY
still finds all known true positives at the lowest entrapment FDR (0.035 vs. 0.04 in
PIA) and achieves the best agreement between reported FDR and entrapment FDR
(Appendix B.9). The online Supplementary Material of our original paper suggests that
EPIFANY’s parameter optimization actually missed configurations with almost perfect
pAUCs (due to balancing calibration and not having information about the labels of
entrapment proteins).

On sample A with a strict 1% PSM FDR cutoff however, it is again EPIFANY (almost
tied with Percolator) that shows the overall steepest ROC curve. PIA’s performance is
first recovering at around 2% entrapment FDR and finds together with EPIFANY most
(181) of the 192 known true positives at 5% protein entrapment FDR (Figure 4.2).
Percolator behaves robust to additional data from low-scoring PSMs but misses out
on several true positives on sample B in both strictly and loosely filtered test cases.
Although ProteinProphet’s number of identified true positives (TPs) benefits significantly
from pre-filtering, its pAUC does not.
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Figure 4.2: Summary statistics on the identification performance of different inference
methods at a 5% protein entrapment FDR on the iPRG2016 dataset, samples “A” and “B”.
PSMs were filtered at two distinct levels (at 0.001 posterior probability and a stricter 0.01
PSM FDR). Upper: Number of true positive proteins found. The maximum number of
true positives according to the ground truth database given is 191 for “B” and 192 for “A”
as indicated by a dashed horizontal line. Lower: The percentage of the maximum area
under the partial receiver operating curve (%pAUC) as a measure of how quickly methods
accumulate true positives at increasing FDR levels until the chosen cutoff at 5% protein
entrapment FDR.
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Identification performance at 1% protein entrapment FDR

Since a cutoff of 1% FDR on the protein level is often suggested for reporting, we
compared performance at this stricter protein-level cutoff as well. However, we want
to emphasize that due to the small number of known true positives an evaluation
on 1% entrapment FDR is now defined based on the ranking of the first two false
positive entrapment proteins only. This results in both performance measures (pAUC
and number of TP) being very similar and overall less robust (Appendix B.20).

The general trend that can be seen at a 5% protein entrapment FDR is also valid
at this stricter FDR: PIA (180 TP on sample B; 1% PSM FDR) and Percolator (175 TP
on sample A; both PSM-level cutoffs) can reach top identification performance but
also can fall behind significantly as can be seen on some of the tested configurations
(e.g., max. 126 TP for PIA on A and max. 75 TP for Percolator on B). Fido is robust
across samples without strict PSM cutoff (min. 150 TP) but does not perform well at
strict PSM-level filtering. Even more pronounced is now the reduced performance of
ProteinProphet (max. 55 TP in any combination). EPIFANY shows robust performance
across all tested combinations of sample and PSM-level filtering and identifies 147 true
positive proteins on sample B and 164 on sample A (independent of any tested PSM
filtering), but its full strength here is better reflected in the pAUCs at higher, more
stable cutoffs which implicitly include lower ones (Figure 4.2, bottom) or in the full
ROC curves shown in Appendix B.4.

Potential advantages of unfiltered PSM input for protein inference

While a filtering on PSM-level before inference indeed seems beneficial to identification
performance for at least PIA and ProteinProphet on the subset of known proteins,
we argue that in general with Bayesian methods (as with most machine learning
approaches), inference on as much data as possible may have several advantages as
well.

However, specific examples can be shown more easily on smaller ground truth
datasets such as the universal proteomics standard 2 (UPS2) where it can be observed
that with full information available, EPIFANY is able to improve the ranking of low
concentrated true proteins (e.g., Lysozyme C) compared to some decoys (Figure 4.3).
With milder filtering on the PSM level, inference methods can rely on additional data
from low-scoring PSMs. Decoys that acquired one or few high-scoring PSMs can then
more easily be penalized based on the number of bad PSMs that are simultaneously
matching to them. EPIFANY on unfiltered PSMs therefore achieves the highest true
positive count at almost all protein FDRs across all analyzed cutoffs and methods
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(Figure 4.3). With strict FDR cutoffs on the PSM level, even medium scoring peptides
of the true proteins are often not considered since their PSMs do not pass the threshold.
Therefore, with stricter cutoffs, a lot of each method’s performance depends solely on
the ordering among the top scoring peptides of each protein as established by the PSM
re-scoring procedures (here Percolator). It becomes harder to misscore the ranking
among the best proteins but it simultaneously becomes harder to recover proteins in
lower ranks that now resemble decoys even more closely.

Another advantage of less strict cutoffs is that previously indistinguishable proteins
(above the desired protein FDR threshold) may become distinguishable. On iPRG2016
sample B for example, EPIFANY on loosely filtered PSMs is able to resolve three
additional indistinguishable protein groups (of previously 16 on filtered data).

In any case, good performance on both strictly filtered and almost unfiltered data
shows the increased robustness of our method. Figures B.18 and B.19 in the Appendix
also suggest that additional PSMs from other sources (in this example wider precursor
search windows and additional variable modifications) can be more easily tolerated or
even used advantageously in a Bayesian setting (see the curves of Fido and EPIFANY).
With those settings, PIA struggles in the very low FDR ranges even with strict cutoffs.

4.3.2 FDR estimates of EPIFANY are more realistic than other estimates

Before introduction of a regularized model and greedy resolution as implemented in
EPIFANY, Bayesian methods were shown to report overly optimistic FDRs in the case of
datasets like the one tested here160. This is due to the fact that on iPRG2016 samples A
and B although only a few proteins are known to be present in the sample the spectra
were searched against an additional equal number of absent proteins designed to share
peptides with the present ones plus an even bigger number of 1,000 absent random
entrapment proteins. Unregularized models using standard (sum-product) inference
like Fido then would conservatively assign probabilities far from 0 to proteins with
similar or no unique evidence which share one or more peptides with truly present
proteins. Regularized max-product inference in EPIFANY now makes the assumption
that it is less likely for peptides to be generated by many proteins and preferentially
distributes the evidence among proteins with the highest unique evidence. Greedy
resolution additionally makes a definite, unprobabilistic choice among those proteins
based on their posterior probability. By postponing this decision until the end of an
identification pipeline, however, reliable uncertainty estimates are available up to
the very last step. Even compared to conservative methods ignoring shared peptides
for FDR estimation (e.g., Percolator), FDRs reported by EPIFANY are often closer to
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Figure 4.3: Number of true positive UPS2 proteins (max. 48) plotted against the FDR on
protein level. No protein groups were present. The subplots from left to right show the
results of protein inference on PSMs filtered at increasingly strict cutoffs. Left: PSMs were
filtered at 0.05 PSM target-decoy FDR. Right: PSMs were filtered at 0.01 PSM target-decoy
FDR. The results from a run of EPIFANY on completely unfiltered data was overlaid as a
dashed line over both of the subplots. Note that the y-axis was cut at the minimal number
of true positives observed.
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the known entrapment FDRs (also across different PSM cutoffs on A and B). The
differences between reported FDR and observed entrapment FDR can be seen e.g., for
barely filtered sample B in Figure 4.4 which shows them up to a 15% cutoff (since
higher cutoffs are usually not of interest). The cutoff was set this high to generate
more robust measures of calibration (by being able to include more point estimates for
each method). For sample A, the increase in calibration compared to Percolator shows
mainly in higher FDRs but it calibrates as well or better than PIA with simultaneously
improved identification performance. Additional pseudo-ROC curves and calibration
plots for unpooled samples A and B, different cutoffs and the full FDR ranges can be
found in Figures B.14-B.10 in the Appendix.

Additionally, with the optional greedy post-processing step turned off, regularized
inference in EPIFANY on its own offers a balance between better calibration (at least
in low entrapment FDR ranges up to almost 2%) on the one extreme (A or B) and
identification performance on the other (A+B), where it recovers remaining known
true proteins between entrapment FDR ranges of 3 to 8% (comparing Figures B.9-
B.14 vs.B.15-B.17 in the Appendix). This is due to the fact that proteins, which were
identified through shared peptides alone are then assigned a lower probability than
the proteins with additional unique evidence but still outscore many of the decoy or
false entrapment proteins. Heuristic approaches like greedy, parsimonious and “unique
peptide” methods can not model the actually present sharedness in such datasets.
“Report all” methods (e.g., through the corresponding option in PIA) perform well on
that extreme but are not an alternative for datasets deviating from this very optimistic
assumption.

4.3.3 Scalable algorithms allow application to large-scale datasets with vastly
disparate discoveries

A common challenge with inference on generative Bayesian models was their scalability
due to the speed of the method, which is inherently tied to the complexity of the
underlying model. The efficiency of EPIFANY enables full Bayesian inference on
problem sizes that were previously intractable given the used model. On the loosely
filtered human dataset searched based on the full UniProt database even non-Bayesian
approaches struggle with the high connectivity in the resulting protein-peptide graph.
This is evident in Figure 4.5 which shows the runtimes and memory consumption of the
different tools. Fido took longer than a day of runtime (33.5 hours), ProteinProphet
did not finish after a week and also PIA required more than two days of processing
(without considering compilation of the intermediate graph format used by PIA). While
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Figure 4.4: Absolute deviations from reported FDR from different tools to the true
entrapment FDR (on the subset of proteins with known presence/absence) on the iPRG2016
dataset (experiment “B” with a 0.001 probability cutoff on PSM level). The boxplots
aggregate data points for each method until a 15% entrapment FDR. Lower deviations
imply better calibration with perfect calibration being indicated by the dashed horizontal
line. Data above the horizontal line signify conservative estimates while data below the
line signify overly optimistic estimates.
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multi-threaded EPIFANY (16 min) is even faster than (subset-trained) Percolator (33
min), it should be noted that most of Percolator’s runtime consists of peptide rescoring
and internal training of a support vector machine model. The same argument holds
for memory usage. Although running Percolator just for protein inference is to our
knowledge currently not possible it is likely that the actual runtime on that dataset
will be in the single-digit minutes. EPIFANY and Fido were both run with parameter
optimization enabled. Runtimes for EPIFANY are roughly linear in the number of
parameter sets tested although there are sets that lead to more oscillation and therefore
may take longer than others. Concerning multi-threading, none of the methods except
for EPIFANY has the option to pass the number of threads to be used. However, it seems
from the log that PIA automatically distributes work across all of them. Percolator
supports automatic multi-threading across three threads. EPIFANY was once run with
one thread and once with all 16 threads enabled. A full 16-fold speed-up is yet far
from being achieved due to the different sizes in connected components processed
by each thread and the required synchronization during parameter evaluation. For
completeness, Fido on the easier problem of “group inference only” took 5.5 hours less
(28 hours).

Lower theoretical complexity than exact Bayesian inference methods

To show the theoretical complexity advantage of loopy belief propagation over exact
methods like junction tree inference or brute-force enumeration, we investigated the
connectivity of the bipartite graph in a very comprehensive dataset of identified peptides
in human lung tissue that was downloaded from entry PRDB000042 of ProteomicsDB
and is part of the recently published draft of the human proteome, which is one of the
largest data sets analyzed to date170. It consists of 32,500 putatively identified peptides
(1% PSM-level FDR filtering) from 16,773 possible proteins. Assembling the bipartite
graph on the data set resulted in 117,994 edges corresponding to a peptide shared by
around 3.63 proteins on average. However, the largest group of proteins sharing the
same peptide consists of 124 proteins (for the fairly large peptide YLENGKETLQR). It is
therefore shown in Figure 4.6 that even if we could avoid brute force enumeration of
the complete connected component by building a junction tree that creates more but
smaller subproblems, the largest subproblem we would have to solve still requires a
number of computations that is in the order of 2125 (Figure 4.6). That is the reason
why all currently published Bayesian methods need to resort to approximations like
pruning, grouping or sampling (at least when encountering a certain complexity limit
in a component) and why most models stick to the simple bipartite graph inferring
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Figure 4.5: Memory usage in megabytes (upper) and runtimes in minutes (lower) on
the large-scale human dataset filtered at 0.001 PSM probability. ProteinProphet did not
terminate within a week of runtime and was thus not included in the figure. EPIFANY
uses one thread by default. Another bar represents EPIFANY with multi-threading on 16
threads enabled via the threads parameter (“EPIFANY (16 threads)”.)
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absence and presence of proteins with only peptide probabilities as input. Under
the reasonable assumption98 that in a problem of difficulty n, at most n iterations of
loopy belief propagation are needed for the results of different clusters (in a connected
component) to converge, we show that with our method this leads to a compelling
shift to lower complexity problems (green series of bars; Figure 4.6). The hardest
component requires approximately 222 operations, as opposed to 2125 (with exact
junction tree inference without convolution trees; red series) and 2379 (with brute force
enumeration; black series).

The increasing scale of data sets, as well as the trend toward aggregating seemingly
unrelated data sets published by different labs92 to construct reference proteome maps
makes computational efficiency of any Bayesian method absolutely paramount. Loopy
belief propagation provides this scalability by passing low-dimensional messages only
and performing efficient marginalization via convolution trees.

Scalability in practice: runtime linearly increasing with graph size

Except for the lower theoretical complexity of the algorithm compared to methods like
Fido with a similar model, it is hard to make absolute statements about the scalability
of its runtime due to its dependency on multiple factors (e.g., the size of connected
components, their connectivity and convergence; Appendix Figure B.21).

In general, it starts with a bigger overhead than all the other methods due to the
allocation of the tables and messages for every parameter set. Even very small compo-
nents where posteriors could be quickly calculated naively are currently processed with
the general LBP algorithm. This leads to disadvantages on small and/or low complexity
datasets (e.g., on filtered iPRG2016 A+B EPIFANY needed 86 seconds instead of 2.5-36
seconds like the other methods on a MacBook Pro 2014; Table B.4 in the Appendix).
EPIFANY starts to gain from the theoretical advancements on medium complex data
as in the case of loosely filtered PSMs from the A+B sample. Therefore, it already is
faster (183 seconds) than PIA (302 seconds) and ProteinProphet (498 seconds). Fido
still benefits from the very efficient implementation on small connected components
and completes in 80 seconds. For comparison, the full Percolator run on all spectra
including inference took 312 seconds (see also Table B.3 in the Appendix). Figure 4.7
additionally shows the scalability of our method based on different posterior probability
filter thresholds on the large scale dataset. A linear trend is observed here but cannot
be guaranteed in general as explained above.

It is expected that in data sets with more spectra than our human dataset, the com-
plexity and size of separate connected components will at some point reach saturation
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inference algorithms: Brute force enumeration (green), junction tree inference (red) and
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(on the same protein database) such that the growth in runtime of inference methods
decreases. More and more PSMs will start hitting the same peptides and form less new
paths between previously independent proteins until all peptides are observed.

The efficiency of EPIFANY should allow an application of Bayesian methods also on
databases with a higher amount of ambiguities such as proteogenomics or metapro-
teomics databases as well as in the context of post-translationally modified proteoforms.

We also emphasize, that an application of a Bayesian method incorporating results
from shared peptides may lead to different discoveries compared to methods currently
used on big datasets that ignore this complication131,161. On the largest of the tested
datasets for example, Percolator considers only 26,182 of the 51,576 potential target
proteins (with at least one PSM above the 0.001 probability cutoff as used in EPIFANY).

4.3.4 Implementation grants flexibility in input and output information

In addition to overall increased performance, EPIFANY’s general Bayesian framework
also permits the inclusion of auxiliary information (besides PSM data) in a convenient
manner. The new implementation allows the usage of arbitrary protein priors for
any protein which allows integration of information from complementary RNA-seq
experiments, which has been shown to improve protein identification122. Due to its
modular graph structure it is also easy to add additional probabilistic evidence on the
peptide level in the future. Since the factor graph includes both single proteins and
indistinguishable protein groups, both results can be output simultaneously. Single
protein-level probabilities of proteins in indistinguishable groups are e.g., not possible
to be reported in neither PIA—its “report all” option allows that but skips parsimonious
inference altogether—nor Percolator. Another novelty is the reporting of updated
peptide-level posteriors that can be used to re-score and improve FDR on peptide-level,
yielding increased target-decoy classification performance by up to 6% (measured on
the full target-decoy based AUC). This effect comes from the fact that the information
from sibling peptides108 in the graph was now propagated and incorporated into every
peptide posterior.

4.3.5 Limitations

Since the algorithm’s grid search explores multiple parametrizations of the model,
there might be settings in which at some point during LBP contradicting messages are
generated that have disagreeing beliefs about the probability of a protein or peptide
(e.g., from evidence of different parts of the graph). This can often be solved by a
step-wise increase in damping in later iterations (see also Appendix B.1.3). In extreme
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cases, however, it can lead to interruptions in the inference on that part of the graph
(since for example zero probabilities cannot be recovered). In the latter case we
evaluate the (failing) parameter set by using the prior probabilities of the affected
proteins (assuming no knowledge could be gained for those proteins). In the case of
non-convergence due to too many iterations the current beliefs for a protein are used.
However, those cases are rare and usually seen in very large components caused by
extreme parameter sets and evidences only.

Also, due to the fact that the parameter estimation is based on target-decoy anno-
tations, our method is affected by the composition of the decoy database. However,
as shown in Figure B.8 in the Appendix different random shuffles of the iPRG2016
database resulted in comparable identification performances with a median partial
AUC of 92% and a median absolute deviation of one percent point.

Furthermore, group-level inference is still based on experimentally indistinguishable
proteins which hinders reproducibility of the specific groupings across multiple runs.147

If other types of groupings should be performed this has to be reflected in the input
before running inference (e.g., by merging protein IDs beforehand).

4.4 Conclusion and Outlook

With EPIFANY we present a new approach to efficient Bayesian protein inference in
proteomics that combines excellent inference quality with good runtimes. We also
showed that inference on unfiltered data can yield improved identification rates at
widely accepted protein FDR thresholds. The underlying method certainly can be
improved upon. As mentioned in the Limitations Section 4.3.5, the results depend on
the convergence of the algorithm. Convergence is generally affected by the current
parametrization of the model as well as the connectivity and evidence in the graph. To
which degree still has to be investigated. In case of sub-optimal results on a connected
component the algorithm could in the future try different message scheduling types
or resort to heuristics. Additionally, the currently experimental options of peptide re-
scoring and user-defined priors are worth further research. Incorporation of additional
evidence especially from MS1-level, replicates or multiple PSMs is a viable extension,
too, however, initial tests with precursor mass and retention time deviations yielded
noisy, generally disappointing results so far. Regularization of protein groups could
be improved by facilitating user-defined protein groups (e.g., by gene or theoretical
digest). Together with a re-introduction of proteotypicity with discretized α parameters
per peptide instead of a single α per dataset it could help in the discrimination of
otherwise indistinguishable proteins. In general, parameter estimation via grid-search
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is a very time-consuming part of the algorithm and although different parameter sets
can be distributed across machines on even larger-scale data, learning speed might be
improved by learning on a subset of the graph or completely circumvented by including
the parameters as hyperparameters into the probabilistic model. Concerning the impact
on quantification, it should be noted that optionally, greedily assigned shared peptides
could now be used in quantifying tools as well. While this procedure boosts the number
of peptides to be used for quantification it should be handled with care since those
quantities might be distorted due to actual contributions from the greedily removed
proteins. It is then even more important to use quantification approaches that filter
peptides with heavily disagreeing profiles175. Another promising approach would be
to incorporate peptide quantities into the model e.g., in a way that they influence the
degree of regularization for each peptide. After correction for their response factors,
shared peptides that show significantly higher intensities than the unique peptides
of a protein are more likely to have been produced by multiple parent proteins. This
might also help to estimate when a complete greedy approach on a dataset is too
conservative.
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Chapter 5

Automated workflows for large-scale

protein inference and quantification

5.1 Introduction

To make the most out of advanced algorithms for protein identification and quantifi-
cation, it is important to choose compatible tools (including their parameters), chain
them in the correct order and to apply statistically sound error control on various levels.
Although the OpenMS Pipeline (TOPP)—in which the developments of this and the
previous chapters were integrated—provides all necessary means to do that, the toolset
was designed with a strong focus on flexibility. This means it interfaces with many
external tools and each TOPP tool has a specific narrowly scoped function. With a given
number of (equally compatible) alternatives at each step in a pipeline, the number of
possible pipelines to build rises exponentially with pipeline length. Additionally, possi-
ble variations of parameters in a tool often require changes in the parameters or even
affect the compatibility of downstream tools. Therefore, it becomes more and more
difficult and error-prone especially for novice users to perform a start-to-end analysis
of their proteomics data.93 Although the advent of GUI-based workflow systems (such
as the Konstanz Information Miner (KNIME) and Galaxy1) lowered the barrier for new
users to construct analysis pipelines and improved the time needed for construction in
general, their support in choosing compatible tools and parameters is still limited111.
This can lead to a variety of similar, sparsely documented pipelines whose results are
hard to compare and can easily be misconfigured or misused when requirements are
not met.

5.1.1 The one-tool-solution

An extreme approach to solve these problems are so-called one-tool-solutions26,120

that try to cover the functionality of one or often multiple pipelines in a single mono-
lithic application. While this allows for coherent parameters, inherently compatible
algorithms and efficient passing of data, there is a limit of complexity where a single
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tool with several tabs of parameters is beneficial to the ease of use compared with a
well-designed compact workflow. For example, the graph representation of a workflow
adds an advantage in documentation and transparency since it provides a first overview
on the steps involved. Further, unless specifically implemented, the work performed in
single tools cannot be distributed on compute nodes of for example a high-performance
computing infrastructure and therefore often lacks scalability for the ever-growing size
of datasets.

5.1.2 Compact standardized workflows with meta-tools

This chapter presents an alternative approach that is now pursued in OpenMS and was
developed as part of this thesis. The goal was to find a balance between scalability and
flexibility versus usability and robustness. This was achieved by introducing another
layer of abstraction among the provided set of tools. This layer comprises a subset of
“meta-tools” which are agglomerations of single tools to perform core parts of larger
workflows. Those self-contained mini-workflow tools can increase the robustness and
usability of the replaced part by allowing frequent internal data consistency checks,
auto-resolving dependent parameters and hiding the complicated data flow internally
as code. While this hinders simple distribution of computations to remote machines
for parallelizable tasks, data can now be shared in memory and file input/output (IO)
from/to disk is reduced to a minimum. With those trade-offs in mind, such meta-
tools can be created for specific parts of a workflow, where robustness is an issue
and the speed-up from parallel remote executions is marginal or outweighed by the
increased stability. Together with the original fine-grained tools this allows for adjusting
the robustness and flexibility of workflows in more detail to tailor them to specific
applications or user bases.

5.1.3 Automation and scalability

To allow for automation and usage on headless hardware, two additional requirements
have to be met. It is important that besides a GUI, an easy-to-use command-line
interface (CLI) preferably with support for pre-defined profiles or configurations is
available. Additionally, the software executing the workflow needs to be able to connect
to the various different schedulers that are orchestrating the distribution of jobs on
HPC clusters or the cloud. One such flexible workflow executor is provided with the
nextflow framework32 for pipelines written in their domain-specific language (DSL)
for workflows. Although Galaxy and KNIME servers could also be set up to distribute
tasks across multiple compute workers, they are (a) difficult to integrate with existing
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scheduling solutions and (b) require more complex installation and configuration
routines as well as regular maintenance which might be unreasonable for single-user
setups or small labs.

5.1.4 A curated and continuously benchmarked workflow for the community

As so often in the broad field of bioinformatics, there are numerous combinations
of parameters and tools (plus their order) to analyze the same dataset for the same
research question. Benchmarking those workflows usually involves evaluating them on
not one but many performance criteria. While some combinations may achieve subpar
results (e.g., due to misconfiguration or misuse), others will form a pareto front of
workflows that perform similarly well overall but outperform in specific performance
measures or on certain datasets. Picking a workflow among them becomes subjective
to the weights that one implicitly assigns to the different criteria. While accuracy of
the results for the limited number of ground truth datasets and hardware requirements
are comparably easy to measure95,165, robustness across many datasets, ease of use,
and long-term maintenance quality3 are much harder to evaluate due to difficulties
establishing objective metrics and the effort of measuring them (potentially over longer
periods of time). Nonetheless, these are important factors for a user’s decision on a
workflow and an essential part of sustainable bioinformatics software.86 The ten rules
for usable software in computational biology as defined by List, Ebert, and Albrecht 86

therefore were valued highly during the development of the workflow that is described
in this chapter.

With the rapidly evolving landscape of proteomics tools and protocols, it is crucial
that a workflow is adaptable. By opening up the development of a pipeline to the
community, this adaptability can be increased in the sense that missing features can be
contributed by anyone and—after review and automated testing—included in the same
pipeline or a fork of it. A high number of community contributors further improves
long-term maintenance and support. However, such efforts need to be coordinated by
enforcing strict contributing and versioning guidelines (of both, tools and workflow),
continuous testing and benchmarking as well as curation by a core team. A project
that enables this for nextflow pipelines and enforces versioning as well as continuous
testing is nf-core42. Less constrained and mostly unsupervised alternatives for other
workflow systems are centralized repositories for community workflows like KNIME
Hubi and myExperiment48.

ihttps://hub.knime.com
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5.2 Methods

To create a robust, but flexible pipeline that includes the algorithms presented in earlier
chapters and scales well for large datasets, several changes and additions had to be
made to the OpenMS framework first. This section describes those developments
and then gives a detailed view on the pipeline. Lastly, it presents how a continuous
quality of code and results are maintained in the future across changes in the pipeline,
OpenMS, or its external dependencies.

5.2.1 ProteomicsLFQ meta-tool

One of the issues of current TOPP-based proteomics workflows is their quickly ris-
ing complexity with increasingly complex experimental designs. To encapsulate the
complex logic of which files to align and link based on their quantifiable features and
to reduce the number of tools used in a workflow, the ProteomicsLFQ meta-tool was
implemented.

Structural and algorithmic extensions to OpenMS

The implementation of the meta-tool included refactoring the algorithms of the involved
tools from the source files of their executables into fully fledged algorithm classes to be
used from the OpenMS library. This way, they can now be used in multiple different tools
and their function wrapped for usage in other languages (e.g., Python via pyOpenMS
or C# via loading of the DLL).

Another large change to the library was the introduction of support for protein
groups throughout all currently used algorithms and data structures. This allows for
the quantification on group-level as well as the calculation of (picked) protein group
FDRs and filtering thereby.

For an efficient handling of larger datasets especially during inference with EPIFANY
(see Chapter 4), a lightweight graph-based wrapper around the internal identification
data structures was implemented that besides the inference task it was designed for,
also allows for quick grouping and traversal through the different layers. The wrapper
is based on the Boost graph library and represents a k-partite graph, whose layers
comprise proteins, indistinguishable protein groups, peptide clusters, (unmodified)
peptide sequences, peptidoforms and finally PSMs. A division into peptidoforms is
optional. If used, the following layers are added to the graph: peptidoforms of different
replicates, their different charge states and lastly divided by their set of modifications.
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To benchmark different inference methods and to provide an even faster alternative
to EPIFANY, a simplistic aggregation-based inference method was added that com-
bines the PSM scores (e.g., PEPs) across peptides by carrying over the best score and
finally aggregates across proteins with one of the following methods: multiplication,
summation or best (default).

Optimizations in speed and memory have been made throughout the algorithms
used in the pipeline to facilitate large-scale datasets. Those include batch processing
during feature finding, multithreaded scoring of extracted isotope traces and on-the-fly
conversion and pre-processing to improve interfacing with third-party search engines.

Similarly, the robustness of other algorithms had to be increased to handle the
large variety of data encountered during testing. First, additional data sanitization
steps were introduced (for example by removing outliers when fitting distributions
for posterior probabilities) but also the usage of exceptions was decreased by better
handling unknown modifications or enzymes.

A second similarity-based, tree-guided feature alignment order was implemented
and feature linking was extended to ignore unannotated feature outliers based on
sliding window statistics of high-confidence identified feature matches.

In general, special care was taken to preserve origins and identifiers of files and
spectra to allow unambiguous lookup during and after the execution of the pipeline.
The same holds for parameter settings used in the different stages, especially the search
engines. Tracking them allows downstream tools to auto-determine their parameters
and write more detailed output in the end.

Experimental design support

Before the introduction of support for experimental designs in core tools (e.g., for
map alignment or quantification), different designs required different workflows, to
assure that fraction n was aligned to fraction n across samples and the union of
all fractions from one run was used for quantification against another run. To be
able to include the required logic in a tool instead of the workflow, a format for
the specification of the meaning of spectrum files—and their labelled channels if
present—was designed. It requires only the most basic information needed for correct
processing but can be extended with information for downstream tools (like MSstats) to
produce a compatible output. The design is also similar enough to the more extensive
PRoteomics IDEntifications database (PRIDE) sample-to-data relation format (SDRF)114

such that the relevant information can easily be extracted with our provided official
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SDRF converteri. This is the basis for a complete re-analysis of an annotated dataset
from PRIDE, resulting in a ready-to-(re-)upload mzTab49 for a “complete submission”
which again contains a basic version of the design.

5.2.2 Nextflow pipeline

To retain robustness also during installation and usage of the pipeline we chose the
lightweight workflow executor nextflow that abstracts the complexity of the work-
flow and its—potentially distributed—execution by providing a simple command line
interface. Nextflow’s support for a config file, both for workflow- and execution backend-
specific parameters allows a one-line execution of the complete pipeline. An additional
benefit is the ability to choose between local installations, conda environments or
containers of various types to use/deploy the required tools on the target executor(s).

Workflow overview

A graphical summary of the workflow can be seen in Figure 5.1 and is described in
detail in the following section.

As input, the workflow needs access to the mass spectra from the experiment,
the protein database to be searched as reference and the experimental design in the
aforementioned newly developed format. Mass spectra need to be available in either
Thermo RAW or the open mzML file format91. The protein database is read from a
FASTA file. Paths to inputs may contain wildcards and can be local or remote uniform
resource identifiers (URIs) (e.g., from a public file transfer protocol (FTP) server) that
will be staged to the workspace of the tasks in which they are needed. Input can be
specified in two mutually exclusive ways: either by simply giving the paths to the
spectrum files and the experimental design separately or by supplying an SDRF file
which already contains paths or URIs to the spectra plus information about potential
modifications, instrument type, and appropriate tolerances. The versions of the tools
described in the remainder of this section are fixed for every release of the pipeline
and are bundled in a versioned docker container for reproducibility.

The first step is a check and a potential conversion of all spectra to centroided
spectra in indexed mzML format. Another pre-processing step will add— per default
peptide-reversed—decoys to the protein database if requested. After that, the spectra
are searched against the database with one or more peptide search engines. In the case
of an SDRF file as input, many search parameters are read from it and take preference.
Parameters for database search undergo consolidation to match the different definitions

ihttps://github.com/bigbio/sdrf-pipelines
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Figure 5.1: Graphical summary of the ProteomicsLFQ pipeline. Dashed boxes are
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synonymous with appendment while “merge” combines files based on an identifier (here
the name of the original input file of the identifications).
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in the search engines (e.g., different hard-coded enzyme cutting rules, fragment vs.
fragment bin tolerances, etc.). To ensure complete and equal mappings from peptides
to potential parent proteins across the different search engines, it employs an additional
peptide indexing step with OpenMS’ internal PeptideIndexer. Subsequently, peptides are
re-scored with either Percolator or OpenMS’ distribution-fitting approach for multiple
purposes:

• It is required to have a probability as input to Bayesian protein inference.

• If multiple search engines were chosen, a probability is additionally needed to
bring scores on a comparable scale to combine them with ConsensusID.

• Especially with Percolator, the usage of additional features and a semi-labeled
training usually achieves a more discriminative score.

It should be noted that ConsensusID does not introduce a waiting point in the pipeline.
As soon as all the search engines and their post-processing are done for a specific
input file, ConsensusID and all downstream processes for this file may be scheduled for
execution immediately. As a first filtering step, only peptides up to a certain user-defined
PSM-level false discovery rate are retained. This is done to speed-up the following steps
that depend on the number of peptide identifications (e.g., modification localization,
protein inference or targeted feature extraction). It also makes the alignment of
related experiments based on identified features less susceptible to noise from wrong
identifications. When using Percolator, its own reported q-values are used and also
peptide-level cutoffs can be applied. Without it, basic target-decoy FDRs are calculated
from the main score of the underlying search engine according to the ÔFDR=

(Ndecoy+1)
Ntarget

formula79 and converted to q-values. With multiple search engines, FDR/q-value
calculation and filtering is done based on the consensus probabilities from the combined
search. Optionally, the workflow can then continue with LucXor/LuciPHOr243 for the
calculation of localization probabilities for a given subset of the variable modifications
(e.g., for phosphoproteomics studies). Up to this point, the pipeline is able to distribute
the tasks for each input file in parallel. Care was taken to optimize the requested
resources of each tool in the pipeline based on its ability to benefit from multi-core
support and its expected consumption of physical memory.

At the heart of the workflow is the new ProteomicsLFQ tool that uses the post-
processed and filtered results of the peptide search engines and the original centroided
spectra to infer and quantify proteins under consideration of the given experimental
design. The tool starts with some sanity checks on the incoming data (e.g., checks for
centroidedness of spectra or the availability of certain scores and decoy information of
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the IDs) and maps both ID files and mzMLs to the experimental design. It continues
with an optional precursor mass correction and calibration and estimates the median
full width at half maximum (FWHM) of the most intense retention time profiles for
downstream parameters. The next step is a loop over fractions consisting of

• optional untargeted feature finding (with FeatureFinderMultiplex),

• refined, targeted feature finding at confident IDs and the (untargeted) seeds
(with FeatureFinderIdentification168),

• map alignment to the reference with most IDs (star alignment) or along a guide
tree based on confident IDs as anchors,

• grouping of features to be compared, based on an ID- and sample-aware quality
threshold clustering approach with a window-based retention time (RT) outlier
filtering.

When transfer of IDs is requested, another round of targeted feature finding and chro-
matogram extraction is applied to potentially fill missing values, where feature linking
could not connect any feature to the consensus of the rest of the runs. Seeds for missing
features are created at the mean m/z and RT of the apexes of incompletely linked fea-
tures (which are however found in a minimum percentage of the runs; per default 50%).
Since the tool’s feature-based quantification only quantifies using basic aggregation of
intensities from the most abundant peptides (e.g., top-3 average) and does not provide
statistical testing, the pipeline offers a statistical post-processing step with MSstats20.
MSstats allows for elaborate normalization, a more robust aggregation from peptides
to proteins (including outlier removal) and the usage of advanced statistical models
to calculate controlled measures of the significance of differences between specified
contrasts (of conditions in the experimental design). As an alternative, raw intensities
can be returned in a format compatible with the Python-based tool Triqler159 that uses
a single probabilistic graphical model which combines ID probabilities, summarization
of quantities and statistics for differential expression.

Reporting

A side product from the standard MSstats script included in the pipeline are small
quantification reports with single-contrast volcano plots, heatmaps and per-protein box
plots. Another type of report can be created by activating the quality control step of
the pipeline. This enables the usage of the package PTXQC11 to create a detailed and
customizable HTML report with important quality control metrics based on the final
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mzTab from the ProteomicsLFQ tool. This mzTab is also feature-complete in the sense
that it contains all relevant sections and metadata, ready to be uploaded to PRIDE as
a comprehensive (re-)analysis result for a dataset. Inherently, any pipeline executed
with nextflow also has extensive monitoring capabilities resulting in a comprehensive
pipeline execution report. The report consists of an execution timeline, a resource
usage overview of each step (of RAM, I/O and CPU; see an excerpt in Figure 5.7),
a graph representation of the pipeline as well as multiple log files. It can also be
monitored in real-time with nf-toweri.

5.2.3 Testing and community infrastructure developments

The pipeline is hosted publicly on GitHub for transparent, collaborative development
and to benefit from other open-source efforts like nf-core42 and bioconda50.

Continuous integration and deployment of TOPP tools

An agile development of such a workflow with actively developed tools requires a
sophisticated pipeline for continuous testing in the background. For OpenMS and its
TOPP tools this was set up on a private Jenkins server as well as with free resources from
open continuous integration (CI)/continuous deployment (CD) pipelines like Travis CI
and GitHub Actions to balance load and diversify testing environments. The functional-
ity of the library (including their Python bindings) and the built-upon tools (including
their wrappers for workflow engines) are tested for every contribution. Installers, pypi
packages and containers on DockerHub are additionally deployed every night after
successful testing. Bioconda packages (including the resulting biocontainers29) are
created for every release, to have a stable reference in every release of the pipeline.
This consistent and semantic versioning guarantees reproducibility of results for every
version. The own Anaconda cloud channel of OpenMS for its latest nightly development
versions is registered in the development branch of the ProteomicsLFQ pipeline for
seamless integration of the newest features and early discovery of bugs.

Incorporation into nf-core

To make sure, that the pipeline under all its changes—let it be additions or updates of
the underlying tools, parameter tweaks, or modifications of the data flow—functions
as intended, community reviews and continuous testing is also needed on the pipeline
level. Therefore, the pipeline was fully developed under nf-core standards and added to
their list of community-curated pipelines. Development then profits from standardized

ihttps://tower.nf
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templates and executors for continuous testing of small datasets on GitHub actions and
large datasets on Amazon Web Services (AWS). Our ProteomicsLFQ pipeline specifically,
is tested against a small in-silico fractionated bovine serum albumine (BSA) sample
for general functionality and a larger ground truth dilution series of Sigma-Aldrich’s
standard mixture of 48 proteins with fractions and replicates for its performance and
accuracy123. New developers and users benefit from the knowledgeable bioinformatics
community in nf-core, which also helps in keeping the pipeline up-to-date with newest
developments in nextflow and the nf-core-specific tools.

5.3 Results

The main advancements of the workflow described in this chapter include its lean,
easy-to-use interface, its applicability and scalability to a wide range of datasets and
hardware setups as well as its tight interoperability with PRIDE datasets. All this is
provided with state-of-the-art quantification accuracy and performance.

5.3.1 Excellent performance in identifying spike-in proteins based on different
concentrations in a public protein standard

To show state-of-the-art performance of the pipeline, it is regularly evaluated on an
available ground truth dataset from PRIDE. The dataset PXD001819 is a dilution series
of equally concentrated universal protein standard (UPS)1 proteins spiked into a yeast
background123. The spike-in proteins were injected in nine different concentrations
and all samples measured in triplicates to benchmark tools and workflows for label-free
quantification such as ProteomicsLFQ.

This section shows the results of this automated evaluation for the current release
of the pipeline (1.0.0). The pipeline was run with a cutoff of 0.01 FDR (on both PSM
and protein level). To boost the number of quantifiable proteins untargeted feature
finding and its implied matching of IDs between runs (“--targeted_only false"
parameter) was enabled as well. The remaining parameters were solely configured
through the input SDRF file hosted on PRIDE or by using default parameter values.

Heatmaps, profile plots and volcano plots from MSstats for all pairwise contrasts are
generated by the pipeline per default. Figure 5.2 shows an example of a volcano plot
comparing 12500 amol and 5000 amol. The labels were edited manually to cleanly
display the proteins for which a ground truth fold change is known. This specific
contrast was chosen for display because 5000 amol is the lowest concentration where
most of the spike-in proteins can be reliably identified by MS2 spectra and the next
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higher measured concentration poses the most difficult quantification due to low fold
changes.

In this contrast our pipeline reports 46—of 48 possible—quantified UPS proteins
(with 36 marked significantly deregulated at p-value cutoff 0.05). The accuracy of the
UPS protein fold changes was measured as a root-mean squared deviation (RMSD) of
0.556 around the expected fold change of −1.32, dominated by one outlier as shown
in Figure 5.2. To put the raw (relative) quantification accuracy in relation to existing
tools, we will compare it to a state-of-the-art software package in the next subsection
using all contrasts.

We further evaluated the classification performance of correctly identifying signifi-
cantly deregulated proteins. For this, we created a receiver operating characteristic
(ROC) curve based on the (multiple testing) adjusted p-value as cutoff value (Fig-
ure 5.3). The area under the curve (AUC) of 0.948 reveals an excellent performance,
regardless of the chosen cutoff (0.01 and 0.05 are indicated on the plot). This means,
on the tested contrast our workflow always yields a good trade-off between sensitivity
and specificity.

This performance also generalizes to most of the other levels of spike-in concentra-
tions on the benchmark dataset (Figure 5.4). Only at 2500 amol the results worsen due
to the increasing difficulty of quantifying peptides around the limit of detection. How-
ever, this is a common issue of feature-based quantification and also other established
software are struggling at those concentrations as shown in the next subsection.

5.3.2 State-of-the-art raw quantification accuracy at favorable computational
costs

To measure the raw quantification accuracy and to compare it to other popular tools for
label-free quantification, the same dataset was analysed using MaxQuant27 1.6.10.43
(the latest version from bioconda at the time of benchmarking). The same parameters
were used whenever possible by utilizing the SDRF-to-MaxQuant converter i together
with manually set parameters. For comparison with the implicit matching between runs
with active untargeted feature finding in the ProteomicsLFQ pipeline, the corresponding
option was activated as well in MaxQuant. The full parameter file is available in the
benchmarking repository ii. A comparison between the results of the ProteomicsLFQ
pipeline and the median MaxLFQ intensities across replicates (Figure 5.5) reveals that
for spike-in concentrations of 2500 amol or higher, both methods perform similarly
in fold change accuracy, except that ProteomicsLFQ is able to compare increasingly

ihttps://github.com/bigbio/sdrf-pipelines
iihttps://github.com/wombat-p/MaxQuant-Workflow/tree/dev/Results/dev-20210530-JU_DE
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line) and the relevant UPS spike-in proteins (labeled “ups” and triangle shaped). At an
adjusted p-value cutoff of 0.05 (horizontal dot-dashed line), 36 of the 48 UPS proteins
were correctly found to be significantly downregulated. 54 proteins were determined
significantly deregulated in total (depicted as colored shapes).
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Figure 5.4: Mean AUCs for classifying significantly deregulated proteins based on adjusted
p-values as reported by our ProteomicsLFQ workflow. The means were calculated on groups
of contrasts that share the same highest concentration (e.g., 25000 contains contrasts 50
vs. 25000, 125 vs. 25000, . . . , 5000 vs. 2500). As ground-truth, all background proteins
were considered as truly unregulated, while spike-in UPS proteins should be found as
deregulated.

more of the UPS proteins without missing values. MaxQuant loses quantifiable proteins
quickly at lower concentrations—note that the smaller the reference concentration,
the more comparisons this concentration is part of. However, at 500 amol and below,
MaxQuant is more specific in the sense that although it reports finite fold changes for
only 4 to 8 proteins per single comparison, it is able to uncover the true fold change
for a few of them. In contrast to that, ProteomicsLFQ consistently quantifies more
proteins (as with higher concentrations) but underestimates the true fold changes, up
to a level where UPS proteins are reported to be unregulated (i.e., without any fold
change). This might indicate that during matching between runs, ProteomicsLFQ is
too liberal in picking up potential quantitative features in low intensity regions close
to noise. This happens either by falsely interpreting the actual presence of a feature or
by extending true mass traces too far into noise peaks.

At the same time, ProteomicsLFQ requires less computational resources than
MaxQuant, both in terms of compute time and peak RAM usage (Figure 5.6). On our
setup—a private cluster on the de.NBI cloud with six worker nodes—ProteomicsLFQ
completed in 1h 23m 25s, while MaxQuant needed 3h 31m 12s. The peak memory
usage (i.e., how much RAM the largest node in a cluster would need to have) was
5.027 GB for ProteomicsLFQ and 61.390 GB for MaxQuant. Figure 5.6 shows the distri-
bution of the needed resources per step. Note that MaxQuant basically consists of one
monolithic step with some minor preprocessing (the generation of the parameter file
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Figure 5.6: Runtimes and memory usage (physical + virtual) of the ProteomicsLFQ
workflow and MaxQuant on the 27 samples of the UPS1 dataset. Resource consumption
is plotted by process. While MaxQuant only consists of the monolithic “run_maxquant”
process plus some minor pre- and post-processing, the ProteomicsLFQ pipeline consists
of 12 steps of which some are executed once per input file and therefore their values are
represented with error bars for their standard deviation.

from SDRF) and postprocessing (intensity normalization). Contrasting, ProteomicsLFQ
could—with enough compute nodes or a computer powerful enough to spin up multi-
ple containers or processes—parallelize the processing of the steps revolving around
peptide identification and scoring results even further, up to a maximum of one process
per input file. The runtime would then be bounded by the central “proteomicslfq” step,
as we will show in the next section on a larger dataset. Even if all processes were run
sequentially, the total runtime is around 3h 17m and therefore 15 minutes faster than
MaxQuant.
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5.3.3 Scalability and robustness shown through large scale re-analysis of PRIDE
datasets

To perform a one-command re-analysis of an annotated label-free PRIDE dataset, the
only two required parameters are a URI to the SDRF file and a URI to a matching
protein database (potentially provided by the original uploader as well). URIs can be
local or remote and support protocols like file://, http://, ftp://, s3://. For
the majority of smaller datasets, the supplied SDRF can be used as-is. datasets with
experimental designs including several instruments, different enrichment protocols
and/or fractionation setups, for which a direct comparison of feature quantities does
not make sense, should be split by the user into smaller tables of comparable runs
(e.g., by using the splitting option in the SDRF-to-OpenMS converteri. This comfortable
usage allowed us to easily re-analyse dozens of datasets on PRIDE with different sizes
and designs.

Scalability

The scalability of the workflow was evaluated based on the PRIDE dataset with identi-
fier PXD00872285. The dataset consists of 252 raw files from human heart samples
of seven individuals measured on the same instrument. Samples come from three
different regions of the heart (left/right ventricle and left atrium) and were equally
pre-fractionated into twelve fractions. For the size of the dataset in combination with
PRIDE’s local LSF cluster, the pipeline’s default configuration for different process
types (e.g., small, medium, long-running) was adapted to accommodate the higher
requirements for each submitted job. Other than that, to potentially increase the yield
of confidently identified spectra, both currently supported search engines (Comet and
MSGF+) were enabled to be combined with ConsensusID. At the same time, untargeted
feature finding was activated to allow for transfer of identifications to unidentified
features between runs during quantification.

The full pipeline finished after 34h 6min 44s, with the ProteomicsLFQ meta-tool
clearly dominating runtime (31 hours) and memory usage (52.5 GB) as a single process
(Figure 5.7). This is mainly due to the fact that identification-based feature detection,
alignment and matching between runs with subsequent inference needs information
from the union of all identifications as well as alignable subsets of the peak maps
to run. However, when comparing against the cumulative requirements of e.g., the
252 single MSGF+ search engine processes (median: runtime 15 minutes and 8 GB
of RAM), we argue that the consumption of the combining meta-tool is justifiable

ihttps://github.com/bigbio/sdrf-pipelines
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Figure 5.7: RAM usage in gigabytes of the different processes in the proteomicslfq pipeline
for dataset PXD008722, consisting of 252 raw files. For steps that are run multiple times,
ranges are depicted by whiskers around the plotted boxes.

and difficult to avoid with efficient in-memory processing. In general, peptide search,
rescoring, modification localization as well as confidence estimation and filtering can
be parallelized easily and scale well with multiple compute nodes or containers. In
that part of the pipeline, linearity in scaling with number of available compute nodes
or max. number of parallel containers is achieved up to the number of input files,
considering file sizes and number of identifications are roughly equal between each of
them. The ProteomicsLFQ step is per default assigned to a higher resource class and
will request a high-memory node with a higher number of processors to make use of
the parallelization of the program on the in-memory datastructures.

Robustness

As a first benchmark of its robustness for large-scale re-analyses of different datasets,
we collaborated on the curation of currently over 200 SDRF annotations of public
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datasetsi on PRIDE. The selected studies include proteogenomics applications, phospho-
proteomics studies and “standard” proteomics experiments with various experimental
designs. As of today, as much as 57 datasets have been successfully re-analyzed. A
table of successfully re-analyzed identifiers can be found in Appendix C.1.

5.3.4 Simple usage due to user-friendly launching interfaces, auxiliary supervi-
sion tools and QC reports

After installation of nextflow and preferably a containerization software, an additional
installation of the nf-core tools is recommended for easiest use. After that, the pipeline
can be downloaded, configured and launched with a single command:

nf-core launch proteomicslfq

Parameterization then takes place category by category, either on a guided command-
line (Figure 5.8) or on a (offline) web-interface with detailed help texts (Figure 5.9).
Configuration of the connection to a high-performance computing backend is done
via specifying a profile, either from a set of profiles for nextflow’s supported executors
that are provided by the nf-core community or one that the users provide themselves.
A large collection of profiles for public clouds as well as cluster systems of research
institutions is already available in the nf-core repositoryi. The pipeline was successfully
tested on in the following environments:

• locally on a MacBook Pro 2014,

• in conjunction with a SLURM172 cluster of virtualized nodes on the de.NBI cloud,

• a single high-performance server with a simple unorchestrated docker daemon,

• a single virtual machine with a simple docker daemon,

• PRIDE’s large LSF cluster,

• as well as on Amazon’s cloud on instances of nf-core’s AWS subscription.

ihttps://github.com/bigbio/proteomics-metadata-standard/tree/master/
annotated-projects

ihttps://github.com/nf-core/configs
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Figure 5.8: Guided command-line interface for the configuration and execution of the
proteomicslfq pipeline through the nf-core launch console command.
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Figure 5.9: Web interface for the configuration of the proteomicslfq pipeline through the
“web-based interface” option of the nf-core launch console command or directly via
the online resource nf-co.re/launch/proteomicslfq. When using the command
line, generated parameter configurations can be run immediately after configuration. Via
the website, it can be either forwarded to the web-based nf-tower (account required) to be
run on a registered compute environment or a token can be copied for manual triggering
through the command line on a computer with a nextflow installation.
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Alternatively, if remote access to the nextflow-enabled HPC environment is con-
figured and registered in a user’s nf-tower account, the workflow can be completely
launched, configured and monitored from a browser. Parameterization takes place via
a simple json file that is automatically transferred to nf-tower after filling out the online
version of the configuration dialog on nf-co.re/launch and choosing “Launch using
Nextflow Tower”. nf-tower additionally provides a CLI and offers capabilities for basic
data management and workflow chaining.

Part of the output of the pipeline are also quality control reports (as HTML or PDF)
of important metrics such as the distribution of precursor mass errors, fragment spectra
identification rates, heatmaps of peptide intensities, and upset plots of identified
proteins. We are leveraging the strengths of both, the established PTXQC11 and a
self-developed plugin for the nf-core-native multiQC41 called pMultiQC.

5.4 Conclusion and Outlook

With the nf-core ProteomicsLFQ pipeline, we created a robust and easy-to-use workflow
for a large variety of label-free proteomics datasets and compute environments. The
pipeline features some of the latest algorithms for peptide identification, peptide re-
scoring, confidence estimation, consensus scoring, PTM localization, protein inference,
and protein quantification. Additionally, it provides convenient reports and state-of-
the-art algorithms for quality control and statistical evaluation.

The pipeline is especially well-suited for the one-command re-analysis of datasets
from the largest proteomics database PRIDE through its support of PRIDE’s experiment
description format and automatic staging mechanisms. With this, we plan to extend
our current efforts to re-analyze a large part of PRIDE’s compatible datasets for easy
exploration and summarization of this immense data volume.

Taking advantage of the pipeline’s open-source nature and its membership in nf-core,
it will be well-maintained and regularly tested through efforts of both the OpenMS
developers and the nf-core community (as well as hopefully other future contributors).

Although the current focus was a nextflow implementation due its advantages in
large-scale distributed analyses and continuous testing, versions of the pipeline can also
be found for KNIME i (with extended interactive downstream visualization capabilities)
and Galaxy (with its guided tutorials and its easily accessible public server).

Potential algorithmic improvements that can already be identified today would
mainly revolve around the handling of the large input data in the identification-based

ihttps://hub.knime.com/openms-team/spaces/Blog%20workflows/latest/Protein%
20label-free%20quantification~Q8TgAl_OAuerfhES
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quantification. We envision that querying identifications and potentially also spectra
from indexed out-of-memory databases will allow for a more fine-grained control over
which data is needed at which point in the algorithm and thereby significantly reduce
the memory footprint.

Regarding the accuracy of the results, although the pipeline offers different param-
eters to balance the sensitivity and specificity trade-off, it would benefit from recently
emerging target-decoy approaches for quantified features (in particular unidentified
ones only included through matching between runs). For some quantities in the low
concentrations of the UPS dataset it is not clear if a feature from a different entity
was picked or if the traces in the feature were so close to noise that trace fitting led to
longer than needed feature boundaries and additional noise peaks were summed in-
and outside of the actual elution range. Both would explain the underestimation of
the true fold changes for spike-ins between concentrations under 2500 amol.

Additions could be made through providing alternatives to existing steps (e.g.,
adding other supported search engines or PTM localization tools). Also, new steps
could be introduced to support analysis techniques like a cascaded search or open
modification searches. We are also hoping for future contributions in regard to quality
control metrics and their visualization. While PTXQC provides a set of metrics based on
the final mzTab it would be beneficial to report on the quality of intermediate steps as
well since not all the information is propagated. An integration of more metrics into the
nf-core quasi-native multiQC tool41, called pmultiQC is currently under development.

We are confident that future pipelines will benefit from the developments and the
general skeleton of ProteomicsLFQ. For example, a workflow for protein quantification
with isobaric labels is already in development, with the long-term goal of providing a
unified quantification pipeline for the most commonly used quantification strategies in
proteomics.

Lastly, more rigorous benchmarking against other pipelines and tools is currently
performed in an ELIXIR community effort.
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Chapter 6

Conclusion

In recent years, the scale of proteomics experiments increased significantly. Single ex-
periments get larger (meta-proteomics, cite one experiment) and multiple experiments
are more often combined to create an overview of the complete protein landscape of
an organism171. Simultaneously, the number of datasets in public proteomics databases
has increased rapidly. It became evident that automated analysis pipelines with scalable
algorithms are needed to keep up with the growth of data. It would not only enable
quick analysis of large sample cohorts in core facilities but also allows a quality control
and uniform summarization of the information in public datasets to be used for open
(e.g., web-based) exploration or the generation of machine learning training data.

Hence, we evaluated OpenMS, a well-known and commonly used framework for
computational mass spectrometry data analysis for its capabilities to perform the
abovementioned task. Firstly, it was found that it lacked data structures and an efficient
algorithm for large-scale protein inference. Therefore, after surveying the landscape
of inference algorithms163, a Bayesian approach was chosen to be pursued. In this
thesis we therefore refined a state-of-the-art max-product inference procedure for large
converging connections as they are found in the protein inference problem. A more
stable approximate max-convolution method was developed that leverages curvature
information to extrapolate the infinite norm of vectors while still retaining invertibility.
Advances in basic research like this did not only allow the stable usage of convolution
trees141 for approximate max-product inference in Bayesian protein inference tasks but
a large range of other problems of similar structure (e.g., inference in hidden Markov
models in finance118) or even seemingly unrelated but fundamental problems (e.g.,
all-pairs-shortest-path problems or efficiently sorting all pairs of sums x i + y j based on
the input vectors x⃗ and y⃗139).

As a second contribution, based on this fast max-convolution method and related
advances in inference on discrete Bayesian networks141, an inference library was co-
developed and a follow-up, stable version integrated into OpenMS. It features an
approximate inference algorithm called “loopy belief propagation”99, that allows us to
efficiently apply our previously researched algorithms on Bayesian networks with cycles
as in all but the most simple bipartite protein-peptide networks. All developments were
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integrated into the command line tool EPIFANY that apart from the largely improved
scalability compared to most existing methods, also offers some novelties in modeling
the problem for increased calibration (e.g., through penalizing multiple parent proteins)
as well as more input and output options (such as user-defined protein priors and
posterior probabilities for peptides). Lastly, since the quality of inference results
depends heavily on the correct error estimation of peptide search engine results and
since the ultimate goal is often the quantification of proteins in complex experimental
designs, we constructed an easy-to-use but scalable pipeline for automated quantitative
analyses of label-free shotgun proteomics experiments, called ProteomicsLFQ119. It
builds on the developments of protein-level algorithms and data structures in OpenMS,
that were introduced with EPIFANY but also integrates improvements and additions for
pre-processing, database search, error estimation, and discovery of quantifiable features.
Inference is now tightly coupled to quantification in a single tool that handles the logic
for complex experimental designs, such that the structure of the overall workflow can
be reused for the vast majority of label-free experiments. The experimental design,
that can be read from SDRF114 files for one-command re-analyses of PRIDE datasets,
now enables a 100% validated mzTab49 file as output, ready to be (re-)uploaded to
PRIDE. We showed on ground truth and large-scale datasets, that both the accuracy
and scalability of the pipeline is state-of-the-art and simple configurations for many
HPC compute infrastructures makes it a viable candidate for core facilities in mass
spectrometry research. A large-scale re-analysis of recently annotated PRIDE datasets
is ongoing. ProteomicsLFQ is planned to be a basis for new services in PRIDE to query
expression values of proteins across the whole database. Also, slim web-based user-
interfaces and automated reports for both quality control and statistical analysis enables
a wide use for smaller labs without bioinformaticians. All tools used in the pipeline
are frozen in their version and packaged in containers such that results generated with
the pipeline are completely reproducible. Open-source development on GitHub with
multiple contributors and the continuous testing of the OpenMS tools as well as the
complete pipeline will additionally ensure long-term stability and maintenance through
updates and additions.

In the ever-changing field of mass spectrometry-based proteomics it is important
for researchers to be able to rely on flexible, robust and sustainable software for the
analysis of the growing amount of data. In this thesis we not only contributed such
software but also created a start-to-end workflow that fulfills these requirements. We
are confident that the outcome of our endeavors will help shape the future of large-scale
automated analysis of bottom-up proteomics datasets of various designs and sizes to
yield valuable insights for numerous fields of life sciences.
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Appendix A: Approximate max-product inference

A.1 Details on the Projection Method

This appendix establishes a closed-form equation for finding the maximum via the
projection method as it is used in the implementation of the algorithm and proves/-
conjectures an upper/lower bound of its relative error.

A.1.1 Closed-Form Projection Method for r = 2

In general, the computation of both the null space spanning vector (γ0,γ1, . . .γr) and
of machine-precision approximations for the roots of the polynomial γ0 + γ1 x + γ2 x2 +
· · ·+γr x r (which can be approximated by constructing a matrix with that characteristic
polynomial and performing eigendecomposition; [57]) are both in O(r3) for each
index m in the result; however, by using a small r = 2, we can compute a closed form
solution of both the null space spanning vector and of the resulting quadratic roots.
This enables faster exploitation of the curve of norms for estimating the maximum
value of u(m) (although it doesn’t achieve the high accuracy possible with a much
larger r ≈ e). This is equivalent to approximating ∥u(m)∥p∗

p∗ ≈ h1α
p∗

1 + h2α
p∗

2 , where
h1 + h2 = km = len(u(m)).

In this case, the single spanning vector of the null space of

�

∥u(m)∥p∗

p∗ ∥u(m)∥2p∗

2p∗ ∥u
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and thus α̂ ≈ ∥u(m)∥∞ can be computed by using the quadratic formula to solve
γ0 + γ1 x + γ2 x2 = 0 for x , and computing α̂ using the maximum of those zeros:
α̂ = xmax

1
p∗ . When the quadratic is not well defined, then this indicates that the

number of unique elements in u(m) is less than 2, and thus cannot be projected uniquely
(i.e., em < r); in this case, the closed-form linear solution can be used rather than a
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closed-form quadratic solution:

α̂=

 

∥u(m)∥4p∗

4p∗

∥u(m)∥3p∗

3p∗

!
1
p∗

.

When the closed-form linear solution is not numerically stable (due to division by a
value close to zero), then the p∗-norm approximation can likewise be used.

A.1.2 Adapted Piecewise Algorithm Using Interleaved p∗ Points

Because the norms must have evenly spaced p∗ values in order to use the projection
method described above, the exponential sequence of p∗ values used in the original
piecewise algorithm will not contain four evenly spaced points (which are necessary to
solve the quadratic formulation,i.e., r = 2). One possible solution would be to take the
maximal stable value of p∗ for any index (which will be a power of two found using the
original piecewise method), and then also computing norms (via the FFT, as before) for
p∗−3δ, p∗−2δ, p∗−δ, p∗; however, this will result in a 4× slowdown in the algorithm,
because for every p∗-norm computed via FFT before, now four must be computed. An
alternative approach reuses existing values in the 2i sequence of p∗: for p∗ sufficiently
large, then the exponential sequence is guaranteed to include these stable p∗ values:
p∗

4 , p∗

2 , p∗. By considering 3p∗

4 in p∗ candidates, then we can be guaranteed to have four
evenly spaced and stable p∗ values. This can be achieved easily by noting that

3p∗

4
=

p∗

2 + p∗

2
,

meaning that we can insert all possible necessary p∗ values for evenly spaced se-
quences of length four by first computing the exponential sequence of p∗ values and
then inserting the averages between every pair of adjacent powers of two (and in-
serting them in a way that maintains the sorted order): 1,2,4,8,16, . . . becomes
1,1.5,2,3,4,6,8,12,16, . . .. Thus, if (for some index m) 16 is the highest stable p∗

that is a power of two (i.e., the p∗ value that would be used by the original piecewise
algorithm), then we are guaranteed to use the evenly spaced sequence 4, 8, 12, 16. By
interleaving the powers of two with the averages from the following powers of two,
we reduce the number of FFTs to 2× that used by the original piecewise algorithm.
For small values of r (such as the r = 2 used here), the estimation of the maximum
from each sequence of four norms is in O(4k), meaning the total time will still be
k log(k) log(log(k)+4k ∈ O(k log(k) log(log(k))), which is the same as before. Because
the spacing in this formulation is p∗

4 , and given the maximal root of the quadratic
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polynomial γ(xmax) = 0, then α̂ = x
4
p∗
max (taking the maximal root xmax to the power

4
p∗ instead of 1

p∗ , which had been the spacing used in the description of the projection
method). The null space projection method is shown in Algorithm 5.

Algorithm 7 Linear projection of the maximum, using previously computed values est3, est4
for two p∗ with a difference of spacing (estimates given in ascending order of their corresponding

p’s used). The naming of the variables follows the scheme esti = ∥u(m)∥
i
4 maxP
i
4 maxP

. To prevent

numeric instabilities, the algorithm checks for division by zero within a tolerance τDiv = 10−10

(again, a conservative estimate of the machine precision). The return value is a new estimate
of the real maximum.
1: procedure MAXLIN(est3, est4, spacing)
2: if |est3|> τDiv then
3: result← est4

est3

4: else
5: result← est4
6: end if
7: return result(1.0/spacing)

8: end procedure

Algorithm 8 Quadratic projection of the maximum, using previously computed estimates
est1, est2, est3, est4 for four equally spaced p in steps of spacing (estimates given in ascending
order of their corresponding p’s used). The naming of the variables follows the scheme

esti = ∥u(m)∥
i
4 maxP
i
4 maxP

. To prevent numeric instabilities, the algorithm checks for division by zero

within a tolerance τDiv = 10−10. The return value is a new estimate of the real maximum.

1: procedure MAXQUAD(est1, est2, est3, est4, spacing)
2: γ2← est1 ∗ est3 − est2

2
3: γ1← est2 ∗ est3 − est1 ∗ est4
4: γ0← est2 ∗ est4 − est2

3
5: preRootValue← γ2

1 − 4 ∗ γ2 ∗ γ0
6: stableQuadratic← (γ0 > τDiv) & (preRootValue>= 0.0)
7: if stableQuadratic then
8: result← (−γ1 +

p

preRootValue/(2 ∗ γ2)
9: else ▷ Resort to linear projection

10: result← maxLin(est3, est4)
11: end if
12: return result(1.0/spacing)

13: end procedure

A.1.3 Accuracy of the r = 2 Projection-Based Method

The full closed-form of the quadratic roots used above (which solve the projection
when r = 2) will be
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α̂= max
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where p∗ = maxP
4 in the pseudocode (i.e., the maximum numerically stable p∗ used by

the piecewise algorithm at that index). Note that ∥u(m)∥p∗
∞ can be factored out because

the exponents in every term in the numerator will be 5p∗ (i.e., 10p∗ in the square
root). Similarly the terms in the denominator each contain ∥u(m)∥4p∗

∞ . Factoring out the
maximum value is then the same as operating on scaled vectors v (instead of u) with
the maximum entry being 1, and at least one element of value 1.

Furthermore, the denominator 2γ2 ≥ 0; even though the terms summed to compute
γ2 are not exclusively nonnegative, symmetry can be used to demonstrate that every

158



Approximate max-product inference

negative term is outweighed by a unique corresponding term:
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Thus, for well-defined problems (i.e., when γ2 ≠ 0), the denominator 2γ2 > 0, and
therefore, the maximum root of the quadratic polynomial will correspond to the term
that adds (rather than subtracts) the square root term:
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The relative absolute error is defined as | α̂−∥u
(m)∥∞

∥u(m)∥∞
|= | α̂

∥u(m)∥∞
− 1|; therefore, a bound

on the relative error of the projection method can be established by bounding
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where the length of the u(m) (respectively v(m)) is km. Using this reformulation, s = 1
indicates a zero-error approximation. This can be rewritten to bound its value before
taking to the power 1

p∗ :

s(p∗, km) = t(p∗, km)
1
p∗

where
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The extreme values of t(p∗, km) can be found by minimizing and maximizing over
the possible values of v(m) ∈ V = {v : [0, 1]km : ∃i, vi = 1,∃ j, v j ∈ (0,1)}. The final
constraint on v j in (0,1) is because any v containing only one unique value (which
must be 1 in this case since dividing by the maximum element in u(m) to compute
v(m) has divided the value at that index by itself (∃i, vi = 1) will lead to instabilities.
When values in v are identical to one another, using r = 1 yields an exact solution,
and thus solving with r = 2 is not well-defined because γ2 = 0. Because all elements
v(m)

p∗ ∈ [0, 1] and p∗ ≥ 1, we can perform a change of variables v(m)i = v(m)
p∗

i , thereby
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km 3 4 5 6 7

Minimum 0.935537 0.902161 0.895671 0.880487 0.85343
Maximum 1 1 1 1 1

Table A.1: Exact bounds of t(km) for short vectors of length km. This table shows the
results of numerical minimization techniques performed on the symbolic closed-form of
t(km) in Mathematica (using NMinimize). All km − 1 entries (excluding the first that
was set to 1.0) were left symbolic and constrained to [0,1], with restriction that the
denominator of t(km) was nonzero.

eliminating references to p∗:
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For small vector lengths, the exact bounds of t(km) are shown in Table A.1. Notice
that the upper bound is fixed, but the lower bound grows monotonically smaller as km,
the length of the vector considered, increases. For larger vectors, Mathematica does
not find optima in a matter of hours, and for arbitrary-length vectors, the Karush-Kuhn-
Tucker criteria do not easily yield minima or maxima; however, we do observe that all
maxima are achieved by vectors that are permutations (order does not influence the
result) of v = (1, 1, . . . 1, b, b, . . . b) (again, when only two unique values are found in
v, the approximation is exact and thus α̂

∥u(m)∥∞
= 1). Likewise, the minima are achieved

by permutations of v = (1, a, b, b, . . . b). For this reason, we perform further empirical
estimation of the bound by randomly sampling vectors of the form (1, v2, v3, . . . vkm

)with
km−1 degrees of freedom (d.o.f.) and sampling vectors of the form v = (1, a, b, b, . . . b)
(with 2 d.o.f.), whose extrema are shown in Table A.2.
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km 4 64 1024

Minimum (km − 1 d.o.f.) 0.90221268 0.74942834 0.81858283
Maximum (km − 1 d.o.f.) 0.99999986 0.92482416 0.86795636

Minimum (form (1, a, b, . . . b), 2 d.o.f.) 0.90216688 0.75455478 0.71695386
Maximum (form (1, a, b, . . . b), 2 d.o.f.) 1.00000000 1.0000000 1.00000000

Table A.2: Bounds via random sampling for vectors different in size and type. This
table shows the minimal and maximal values resulting from the evaluation of t(km) on 105

randomly generated vectors (uniform distribution in [0, 1]). The first part shows the result
for vectors of potentially unconstrained composition, besides one (w.l.o.g. the first) being
set to 1.0. The values in the second half were obtained based on vectors of (supposedly)
worst-case composition (i.e., of form (1, a, b, . . . b)).

At length 64, we see that due to an extreme value scenario, an unconstrained vector
scores slightly lower than a vector holding the worst-case pattern (1, a, b, . . . b), because
both forms of sampling approach the true lower bound, but one of the unconstrained
km − 2 d.o.f. is slightly closer.

From these results, we conjecture that t is bounded above ≤ 1 (this is achievable
at any length km by letting v contain exactly two distinct values). In this manner, we
achieve our predicted upper bound of 1 regardless of the length km. Likewise, we
conjecture that at any km (not simply the lengths investigated, where this principle is
true), the lower bound is given by vectors of the form (1, a, b, b, . . . b). Qualitatively,
this conjecture stems from the fact that since the estimate is perfect when v contains
exactly two distinct elements, then the worst-case lower bound when v contains three
distinct values will concentrate the points at some value far from the other two distinct
values. When four distinct values are permitted, then we conjecture that the optimal
choice (for minimizing t) of the fourth value will equal the choice for the third distinct
value, since that was already determined to be the best point for deceiving the quadratic
approximation. From this conjecture, we can then use the fact that the bounds should
only grow more extreme as km increases, since R1 ⊂ R2 ⊂ · · · (i.e., lower-dimensional
solutions can always be reached in a higher dimension by setting some values to 0).
Thus, the minimum for any possible vector should be conservatively bounded below
on vectors of the form (1, a, b, b, . . . b) and is achieved by letting km approach∞:

lim
km→∞

t(km) =

a4 b− a3 b2 − a2 b3 +
Æ

b2 (−a4 + 3a3 b− 3a2 b2 + ab3 + (b− 1)3)2 + ab4 + b4 − b3 − b2 + b
2b (a3 − 2a2 b+ ab2 + (b− 1)2)

.

The minimum value of this expression over all a ∈ [0, 1], b ∈ [0, 1] is 0.704 (computed
again with Mathematica). Overall, assuming our conjecture regarding the forms of the
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vectors achieving the minima and maxima, then it follows that t ∈ (0.7,1], and the
worst-case relative error at the p∗max contour will be bounded by

|t
1

p∗max − 1|< 1− 0.7
4

p∗max .
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Appendix B: EPIFANY

B.1 Supplementary methods

B.1.1 Detailed description of the generative Bayesian model

As mentioned in the main manuscript, the parameterization of the probability tables for
the binary protein factors Ri (i = 1 . . . l with l being the number of potential proteins
in a dataset) is determined solely by the input/grid parameter γ for the protein priors:

P(Ri = 1) = γ (B.1)

P(Ri = 0) = 1− γ. (B.2)

Evidence in form of e.g., Percolator probabilities p j (with j ranging from 1 to k, the
number of peptides passing filtering) on the peptide-level is incorporated on the
peptide factors E j during initialization by setting P(Ei = 1) = p j. By default, they
are multiplied and re-normalized by a low prior (default 0.1) to focus more on high-
scoring peptides. Following the assumptions described in the Model section of the
main manuscript, the noisy-OR model suggests Equations B.4 and B.5 below for the
conditional probability table of a specific peptide ϵ given the presence of its parent
proteins. The binary random variable Eϵ denotes the presence of peptide ϵ while the
binary random variables Rϵ,1, . . . , Rϵ,p represent the presence of the parent proteins of
peptide ϵ. Nϵ is a random variable for the total number of present parent proteins of a
peptide.

Nϵ =
p
∑

i=1

Rϵ,i (B.3)

P(Eϵ = 0|Rϵ,1, . . . , Rϵ,p) = P(Eϵ = 0|Nϵ = n) = (1−α)n · (1− β) (B.4)

P(Eϵ = 1|Nϵ = n) = 1− P(Eϵ = 0|Nϵ = n) (B.5)

Here, n denotes an instantiation of the random variable Nϵ and can take values from
0 to p, the total number of parents of the current peptide ϵ. Note that Equation B.4
is (compared to the original noisy-OR model) additionally exploiting the symmetry
arising due to an equal α for all proteins of a peptide.

The optional regularizing priors for the random variable Nϵ (the number of proteins
that may produce a certain peptide ϵ) take the following unnormalized form:
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P(Nϵ = n) =

�

1, for n= 0
1
n , n> 0

(B.6)

These priors re-weight the conditional probabilities described in Equation B.5 to
model a harmonic decay in probabilities based on the number of proteins that might
generate a certain peptide. This results in a more uneven distribution of the evidence
from peptide ϵ starting at the most likely producing proteins (based on their beliefs
from the rest of the network), especially in conjunction with max-product inference.
B.1.2 Simple message-passing example on a small acyclic protein-peptide graph

For a simple example we assume that for the three proteins R1, R2 and R3, the following
peptides E1,E2,E3 were identified with a PSM passing any potential pre-filtering:

• R1: E1, E2

• R2: E2

• R3: E2, E3

This graph consists of a single connected component to be processed. Although
peptide E2 is a shared peptide, no indistinguishable group is present in this example.
After re-scoring the PSMs with a tool that estimates posterior (error) probabilities
and converting them to posterior probabilities if necessary the following values are
obtained for the peptides:

• E1: 0.9

• E2: 0.7

• E3: 0.8

Based on the description in the Algorithm section of the main manuscript, a factor
graph is built and filled according to the evidence and a certain parameterization with
Equations (B.4), (B.5) and (B.6). For simplicity, we assume the following parameteri-
zation:

• α = 0.7

• β = 0.0

• γ = 0.5
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Figure B.1: Factor graph after initialization for the example described in the Supplementary
Methods. Random variables of the factors are shown above/besides the corresponding
dimensions of the tables holding the initial potentials and later the so-called beliefs. The
center inlay for the convolution tree zooms in to an additive factor on the set of random
variables [R1, R2, R3, N] to calculate beliefs on the number of parents of peptide E2.

• p-norm = 1

• Regularization: off

• Damping: off

The resulting graph and initial matrices can be seen in Figure B.1. Under the hood,
auxiliary singleton “factors” might be added by the algorithm but are not necessary for
the understanding of the general procedure on this example and are therefore omitted.
The convolution tree (CT)141 that mimics an additive factor over [R1, R2, R3, N] is
initialized uniformly (shown unnormalized by 1⃗ vectors). Inside the CT, vectors on the
left denote beliefs on the number of proteins based on information that is not shared
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with other participating proteins. Vectors on the right are the likelihoods given the
information from shared evidence and the current beliefs of the other participating
proteins (shown separated by a double boundary). Due to the graph being acyclic, one
pass of messages per direction per edge (plus another one to confirm convergence)
suffices to incorporate information across the whole graph. Belief propagation does
not need to loop here and will provably result in exact posterior probabilities for the
given model112. Figures B.2-B.5 will present the steps until posteriors of the proteins
have been calculated. The factor beliefs ψ are represented as matrices and have the
meaning of their dimensions (each corresponding to one random variable) marked
on top. Messages φ are passed with information about the intersecting variables
between two factors. Messages on top of an edge are passed from left to right and
messages below from right to left. The algorithm has to start at factors that carry
prior information (e.g. peptides and proteins; the pure R and E factors), depicted in
Figure B.2.

Beliefs ψ of a neighboring factor are updated by incoming messages φ following
the HUGIN algorithm62 according to the equation below for a message from a factor
with random variables (RVs) V to a factor with RVs W whose intersection is S:

φnew
V→W = p-marginalize

V\S
(ψV ) (B.7)

ψnew
W =

φnew
V→W

φold
V→W

·ψold
W (B.8)

p-marginalization is a generalized form of marginalization where instead of summing
over the elements from the removed dimensions/variables (equivalent to p = 1) the
p-norm is computed (denoted ∥ · ∥p). This is done for each set of elements x that share
the same indices in the remaining dimensions:

∥x∥p :=

�

n
∑

i=1

|x i|p
�1/p

(B.9)

Note that a p =∞ will result in the maximum over this set and therefore corresponds
to max-marginalization as used in max-product message passing algorithms. Currently,
for a chosen p all factors perform the same p-norm marginalization to generate a lower-
dimensional message out of the higher-dimensional beliefs. Since the first messages
(highlighted in red in Figure B.2) pass information only about a single variable that is
equal to the one of the factor it originates from, no calculations need to be performed for
marginalization and the message equals the prior/evidence. Now incorporation takes
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Figure B.2: First (trivial) messages (in red) on the factor graph, according to a manually
chosen schedule.
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place in the receiving factor by multiplication on the correct dimension (Figure B.3,
blue factors) and subsequent re-normalization.

In the same figure, the result of the here used (sum-)marginalization is depicted in
form of the outgoing messages (in green) from the recently updated beliefs in [R1, E1],
[R3, E3] and [N , E2]. As the path to the convolution tree through R1 and R2 consists
of uniformly initialized tables only (protein prior was 0.5), those trivial steps were
combined in this example (see additional green tables). The next step (Figure B.4)
covers the calculations in the convolution tree which now has enough information
to pass outgoing messages (purple tables). Beliefs on the proteins (left vectors) are
hierarchically convolved (via fast Fourier transform) to generate beliefs on factor N .
Information from the right side is incorporated by convolving the reverse of one “prior”
vector (left sides) to generate the “likelihood” (right side) of the other sibling (essentially
performing a calculation equivalent to the subtraction of two random variables). The
outgoing message (above the edge) on the right side of the CT then consists of the
aggregated information from the left side while the messages to each protein on the
left side have incorporated information from the right side (the shared peptide E2) as
well as from every other protein and their unique peptides. Note that p-convolution
can be used to model p-marginalization across the CT. Higher values of p result in
messages that focus on the information from high-probability configurations (i.e., here
the proteins with the highest unique evidence). Even max-product inference (p =∞)
is available at low additional computational costs118. A higher p is recommended
together with the regularized model to have a positive effect on calibration when the
degree of ambiguity in the database is suspected to be much higher than in the actual
sample.

In the last step (Figure B.5) the messages from the CT need to be incorporated in
the protein factors to reach the final protein posteriors, now depicted in gray. Passing
this information to the remaining parts of the graph (peptides E1 and E3) is not shown
for brevity.
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Figure B.3: Incorporation of the first messages through multiplication of probability tables
(blue) and subsequent generation of new outgoing messages by (sum-)marginalization
(green). It includes the trivial passing of those messages until the convolution tree (also
green).
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Figure B.4: Calculations on the convolution tree including its outgoing messages (pur-
ple). No messages are needed inside. Convolutions (for adding and subtracting random
variables) can be performed efficiently by utilizing fast Fourier transforms (“FFT conv.”).
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Figure B.5: After incorporation of the messages from the convolution tree (which contained
information from E2 as well as all other proteins) the beliefs for the proteins will not
change anymore since no new information will arrive. R1, R2 and R3 now contain the
converged posteriors.
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Figure B.6: A cycle closed by a dashed arc (representing a path across potentially many
other proteins and peptides) that due to parameterization and observed evidence leads to
infinite oscillation of messages to and from the shown protein R. The first message (#1)
will be the same as the third (#3) and the fifth etc. while the second (#2) will be the
same as the fourth and sixth etc. due to the highly deterministic path.

B.1.3 Cycles, damping and convergence

There are cases, where a series of proteins sharing at least one peptide between each
pair of them create a cycle such that a protein affects itself according to its current
belief. This is often not a problem since after multiple iterations of message passing
through the cycle, messages come to an agreement (i.e., the deviation of the values
between old and new messages become close to 0). However, there maybe cycles that
form messages in such a deterministic way that the beliefs about a protein oscillate
indefinitely (Figure B.6).

Assuming that the initial information about a protein results in a message (#1) that
holds a high probability for the presence of that protein (0.9) but after the traversal
through the cycle it receives a message that states almost the opposite (#2). Then in
the second pass through the cycle with the updated information, the old configuration
appears again (#3). Intuitively, this may happen in an example like in Figure B.7, where
there are three proteins forming a cycle (in a yet untransformed Bayesian network;
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Figure B.7: Three proteins R1-R3 that with the observed evidence (P(Ei = 1) = 1,∀i in
this component) on the peptide level and the present cycle in the resulting (undirected)
factor graph, will lead to oscillations at certain parameterizations.

which is sufficient to show the problem). All peptides were observed with certainty.
If the algorithm starts at the lowest peptide, protein R3 and R2 will receive a high
probability for being present. Now since R3 has a high probability, R1 will be unlikely
to be present since its evidence is explained-away. However, a low probability of R1
makes R2 much more likely which in turn results (at the end of the cycle) in a low
probability for R3. If the beliefs about R3 now enter the cycle again, we will observe
the opposite and oscillation will arise.

This disadvantage is due to the partial locality of the algorithm. If it considered
all the random variables at the same time, an optimal solution would emerge (but
requires exponentially sized tables or at least the calculation thereof). Fortunately,
we can perturb the system from time to time and try to force it to another fix-point.
That means, to reach convergence faster (or sometimes, as above, to reach it at all),
messages can be dampened (by a “momentum” λ) in a way that the updated message
is a convex combination of old (if present) and new messages99. This is done by
point-wise application of the following equation on each element enew

i of message φnew
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and eold
i of message φold:

enewDamp
i = enew

i ·λ+ eold
i · (1−λ) (B.10)

including subsequent normalization. Damping can also be performed step-wise in a
way reminiscent of simulated annealing, where in the beginning big differences in
messages are allowed but later on they are forced to smaller differences by a higher
amount of damping. Lastly, whenever a new message would result in a negligible
change compared to the last message passed along that edge (i.e., when the point-wise
mean-squared error falls under a certain threshold) the algorithm assumes that beliefs
converged in this part of the graph and does not queue the new message anymore.
Note that messages can be woken up again, if new information arrives from other
incoming edges. Global convergence is reached only when the queue of messages is
empty.
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B.1.4 Parameter optimization

By default, the model parameters α,β ,γ are evaluated based on a grid of 42 possible
points in the three-dimensional parameter space. Some extreme parameter ranges
(close to 0 or 1) were excluded empirically from EPIFANY’s defaults due to usually bad
classification performance and convergence properties. The rest of the parameter space
(except for high values of β which increasingly limit the effect of α) is then covered in
multiple steps over each range. The current sets to be combined are:

• γ : 0.2, 0.5, 0.7

• β : 0.01, 0.2, 0.4

• α : 0.1, 0.25, 0.5, 0.65, 0.8

where combinations with β = 0.4 and α= 0.1 are skipped. While the skeleton of the
factor graph is kept over multiple sets of parameters, its internals (e.g., the probability
tables) are re-initialized for every combination. Based on the converged posteriors of
the proteins, the following two measures lead to a decision about the best parameter
set:

• pAUC100, the partial target-decoy AUC up to the first 100 decoys.

• ∆T D,Est , the difference between target-decoy FDRs and the FDRs estimated based
on the posteriors, measured by the non-overlapping areas of the curves based on
trapezoidal integration. The estimated FDR on posteriors for a protein with rank r
is defined on the descendingly sorted list of posteriors (p1, . . . , pn) as:

∑

i=1,...,r (1−pi)
r .

To create a single objective, the two normalized measures are combined to a convex
combination of both: λ · pAUC100 + (1−λ) ·∆T D,Est . By default, λ= 0.3.

B.2 Percolator features extracted from search engine results

Tables B.1 and B.2 of the Appendix contain the additionally extracted scores from
OpenMS’ PSMFeatureExtractor for use in Percolator. PSMFeatureExtractor follows
roughly the original extraction scripts (for the different search engines) from the
Percolator sources and the implementation was co-developed with one of its authors.
Those features were used in addition to basic features like precursor mass deviation
and charge.
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Score name Short description

COMET:deltCn recalculated deltCn = (current_XCorr−2nd_best_XCorr)
max(current_XCorr, 1)

COMET:deltLCn recalculated deltLCn = (current_XCorr - worst_XCorr)
max(current_XCorr, 1)

COMET:lnExpect log(E-value)
MS:1002252 XCorr score
MS:1002255 Sp score = number of candidate peptides
COMET:lnNumSP log(Sp) = log (number of candidate peptides)
COMET:lnRankSP log(rank based on Sp score)
COMET:IonFrac matched ion fraction = matched_ions / total_ions

Table B.1: PSM features extracted from Comet results for use in Percolator. The score
name shows the name of the score internally used in OpenMS. Names starting with MS
follow the PSI-MS ontology.

Score name Short description

MS:1002049 reported MSGFPlus RawScore
MS:1002050 reported MSGFPlus DeNovoScore
MSGF:ScoreRatio RawScore / DeNovoScore
MSGF:Energy DeNovoScore - RawScore
MSGF:lnEValue -log(E-Value)
IsotopeError reported IsotopeError (-1/0/+1)

MSGF:lnExplainedIonCurrentRatio
logarithm of ratio of intensities of
matched ions vs. total ion current

MSGF:lnNTermIonCurrentRatio as above for NTerm ions
MSGF:lnCTermIonCurrentRatio as above for CTerm ions
MSGF:lnMS2IonCurrent logarithm of total ion current

MSGF:MeanErrorTop7
mean m/z deviation of the seven
most intense fragment ions

MSGF:sqMeanErrorTop7 as above, with squared errors
MSGF:StdevErrorTop7 standard deviation of the above errors

Table B.2: PSM features extracted from MSGFPlus results for use in Percolator. The score
name shows the name of the score internally used in OpenMS. Names starting with MS
follow the PSI-MS ontology.
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B.3 Robustness of the parameter estimation

The robustness of the chose method for parameter estimation can be inferred by the
comparable performance on repeated runs of EPIFANY on the iPRG2016 sample B with
differently shuffled decoy databases (Figure B.8).

Figure B.8: Different runs of EPIFANY (with greedy resolution) on the iPRG2016 sample
B with differently shuffled decoy databases (i.e., different random seeds).

B.4 Supplementary Results

B.4.1 Detailed evaluation plots on iPRG2016

This subsection shows the results on the merged replicates of each sample from the
official iPRG2016 evaluation script (adapted to show multiple methods). The log-log
calibration subfigure was removed in favor of a legend. In the corresponding Figures
B.9-B.19 “RegMaxProd” means a regularized model with max product inference was
used. “Greedy” in the label shows that greedy group resolution based on posteriors
was enabled. Methods with “OldFDR” use a different equation to estimate FDRs based
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on target-decoy estimation [D/(T+D) instead of the more conservative (D+1)/T].
Partial AUCs up to a 5% protein target-decoy FDR are noted in parentheses next to the
entries in the legend. Note that the Performance subplot shows a somewhat version
of the ROC curve since the x-axis represents the (entrapment) FDR. Sample B was
the initial choice for evaluation, therefore it contains more tested combinations than
follow-up analyses on the other samples. For example, the more conservative FDR
approach of EPIFANY was chosen for its better calibration at low FDRs. ProteinProphet
was in some plots discarded due to its bad performance hinting at incompatibilities
with our pipeline and/or problems during conversion. Initially, several configurations
for PIA were tested as well (direct Percolator PEPs, Percolator PEPs with PIA’s PSM
FDR, Percolator PEPs with Percolator’s PSM FDR, Percolator PEPs with OpenMS’ FDR,
PIA’s “report all” option). However, both with OpenMS’ FDR and with the “report all”
option it completely underperformed and the remaining configuration performed very
similar. We received many infinite values when running on OpenMS’ FDR as input
(maybe due to possible values of 0) and we think the missing parsimony approach
in “report all” is detrimental to performance as well and not recommended by the
authors anyway. Therefore, we only tested “PIA” with its own PSM FDR and “PIA_PEP”
directly on Percolator’s PEPs together with the other methods. Due to passing PEPs
directly being the fairest comparison, this was chosen for the Figures in the main
manuscript. Concerning grouping, since the evaluation script allows groups and counts
them favorably when mixed true positive and false positive groups occur, it is only fair to
run all methods with grouping (also due to the fact that most methods group by default).
This means for Fido, EPIFANY and ProteinProphet, grouped results are the default,
if not suffixed otherwise in the figures. All samples were evaluated with the same
concatenated target-decoy database as described in the main manuscript (including
all A,B and random entrapment proteins plus background). Except for sample B with
extended Comet search space, all database searches use the same settings as well. In
general, the following properties of the different methods can be described:

• Fido: It shows good performance on most levels for both A/B and A+B but lacks
calibration in A/B. However, it seems to sometimes struggle with strictly filtered
data.

• PIA: Both good performance and calibration on A/B (more so on B) and A+B but
struggles with noise (e.g. through extended search spaces or unfiltered PSMs).
Also, it does not identify as many proteins as non-greedy Bayesian methods on
A+B. Its “report all” mode fails almost completely on B but performs at least as
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well as non-greedy methods on A+B. There is often little difference between PIA
used directly on PEPs (PIA_PEP) and PIA including its own FDR.

• Percolator: Always well-calibrated and robust to filtering but is very conservative
in the amount of proteins it identifies (especially on A+B). It sometimes also
underperforms (e.g. on B and B extended) more pronounced.

• EPIFANY: Very robust on all datasets and levels. With its greedy resolution
activated it shares many features with PIA except that is more robust to extended
search spaces and loose filtering, although it is sometimes slightly outperformed
by PIA in the low FDR ranges on highly filtered PSMs as well.
Without greedy resolution and regularization it behaves very much like Fido
due to the then equal models. However, it is more robust at strict cutoffs and
performance therefore never drops significantly on the datasets.
EPIFANY also offers regularization with max-product inference without greedy
resolution (labeled “regMaxProd” in the figures) which acts as a trade-off between
calibration on datasets where a lot of false proteins can potentially be identified
by shared peptides and performance on datasets where most of the proteins
are actually present. However—as evident in the results on this dataset—on
extreme datasets where either all or only one of the parents are present (A+B
and A/B respectively) it achieves the goals not yet fully (i.e. loses calibration
at intermediate FDRs on A/B and recovers the last proteins in A+B only at
intermediate FDRs as well.)

Sample B

In sample B of the iPRG2016 dataset only proteins from B are known to be present
but also proteins from A which share many peptides with B by design were considered
during database search. Greedy (EPIFANY with greedy resolution), parsimonious (PIA)
and “unique peptide” (Percolator) methods show the best calibration here. Nonetheless,
also our regularized version without a greedy resolution ranks most of the true positives
higher than most entrapment proteins such that they can be identified at moderate
entrapment FDRs while the output target-decoy FDRs are still as calibrated as greedy
methods up to a 2% entrapment FDR. While Fido struggles on strict cutoffs, PIA does so
on unfiltered data. We also can not recommend PIA’s “report all” mode on this sample
(only shown for a cutoff at 5% FDR).
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Figure B.9: Results on iPRG2016 sample B (PSM cutoff at 0.01 FDR)
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Figure B.10: Results on iPRG2016 sample B (PSM cutoff at 0.05 FDR)
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Figure B.11: Results on iPRG2016 sample B (PSM cutoff at 0.001 posterior probability)
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Figure B.12: Results on iPRG2016 sample A (PSM cutoff at 0.01 FDR)

Sample A

Results on sample A roughly confirm the results from sample B except that PIA performs
slightly worse on all levels at low FDRs.

Sample AB

When for many shared peptides, multiple or all parent proteins are present, results
are different. All approaches yield a rather conservative estimate of the FDR when
compared to the entrapment FDR and except for Fido and (non-greedy) EPIFANY the
methods are usually not able to identify all true positives at reasonable entrapment FDRs.
Non-greedy regularized EPIFANY provides a trade-off here and identifies additional
true proteins at intermediate FDRs. PIA’s “report all” mode works also well on this
sample with the used evaluation metric. However, this sample is an extreme case,
where overcounting of shared evidence is beneficial and pushes proteins from the true
part of the entrapment database to the top of the results.
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Figure B.13: Results on iPRG2016 sample A (PSM cutoff at 0.05 FDR)
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Figure B.14: Results on iPRG2016 sample A (PSM cutoff at 0.001 posterior probability)
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Figure B.15: Results on iPRG2016 sample AB (PSM cutoff at 0.01 FDR)
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Figure B.16: Results on iPRG2016 sample AB (PSM cutoff at 0.05 FDR)
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Figure B.17: Results on iPRG2016 sample AB (PSM cutoff at 0.001 posterior probability)
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Figure B.18: Results on iPRG2016 sample B with an extended search space set in Comet
(PSM cutoff at 0.01 FDR)

Sample B with extended Comet search space

When opening up the search space for Comet’s database search (by allowing 50 ppm
precursor tolerances, 4 missed cleavages and phosphorylations on S,T,Y), PIA starts to
include some false entrapment proteins in the beginning of the ranking while other
methods seem to gain slightly in performance.

B.4.2 Robustness of parameter estimation for different decoy databases

The robustness was tested again on the results on the “B” sample from the iPRG2016
dataset (Appendix Figure B.8). Combined PSMs of the three replicates were filtered to
include only PSMs with≥ 0.001 Percolator probability. Different runs of the Comet, Per-
colator, EPIFANY pipeline were carried out with differently seeded, randomly shuffled
decoy databases to show the robustness of the parameter estimation based on protein
target-decoy FDRs. Different best parameters were estimated in the repeated runs but
spanned a narrow subspace of the considered grid. Larger difference in the calibration
can be explained by the relatively large impacts of the ranks of few false positives on
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Figure B.19: Results on iPRG2016 sample B with an extended search space set in Comet
(PSM cutoff at 0.05 FDR)
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such a small set of true positives. The randomly chosen run labeled “greedy_used”
used the same decoy database as in Figures B.9-B.19 and is evaluated together with
the other methods in the main manuscript.
B.4.3 Additional summary results on iPRG2016 A/B at 1% protein entrapment

FDR

Appendix Figure B.20 shows the same results as in the main text for the stricter cutoff
of 1% protein group FDR.
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Figure B.20: Summary statistics on the identification performance of different inference methods
at a 1% protein entrapment FDR on the iPRG2016 dataset, samples “A” and “B”. PSMs were filtered
at two distinct levels (at 0.001 posterior probability and a stricter 0.01 PSM FDR). Upper: Number
of true positive proteins found. The maximum number of true positives according to the ground
truth database given is 191 for “B” and 192 for “A” as indicated by a dashed horizontal line. Lower:
The percentage of the maximum area under the partial receiver operating curve (%pAUC) as a
measure of how quickly methods accumulate true positives at increasing FDR levels until the chosen
cutoff at 1% protein entrapment FDR.
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B.5 Additional information on runtimes

Method Runtime (m:ss)

ProteinProphet 8:18
PIA
(incl. graph compilation)

5:02

EPIFANY 3:03
Fido 1:20
Percolator
(incl. PSM SVM)

6:20

Table B.3: Runtimes in m:ss format for the different methods on the almost unfiltered
(0.001 posterior PSM) iPRG2016 sample A+B. The best value (= lowest) is highlighted in
bold. Times were measured on a MacBook Pro, 2.4 GHz Intel Core i5 (2 cores), 8GB RAM.
The dataset consists of 75226 spectra, which after filtering map to 8024 peptides (7384
unique) and 3701 proteins.

Method Runtime (s)

ProteinProphet 3
PIA
(incl. graph compilation)

36

EPIFANY 86
Fido 5
Percolator
(incl. PSM SVM)

21

Table B.4: Runtimes in seconds for the different methods on the strictly filtered (0.01
PSM FDR) iPRG2016 sample A+B. The best value (= lowest) is highlighted in bold. Times
were measured on a MacBook Pro, 2.4 GHz Intel Core i5 (2 cores), 8GB RAM. The dataset
consists of 12682 spectra, 4506 peptides (4056 unique) and 1303 proteins.
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Figure B.21: Runtime of the LBP algorithm per connected component on the large human
dataset. The runtimes in milliseconds are plotted against the number of edges in the
connected component (after introducing intermediate factors). Colors follow a continuous
scale from blue to red to show the number of edges per node as a simplified measure of
complexity. Note the logarithmically scaled axes.

196



Appendix C: ProteomicsLFQ

C.1 List of identifiers of successfully re-analyzed datasets with

ProteomicsLFQ

MSV000085230 PXD006439 PXD010012 PXD013615 PXD018301 PXD023272
PXD000279 PXD007595 PXD012431 PXD013743 PXD018891 PXD023505
PXD002137 PXD007740 PXD012453 PXD014391 PXD019103 PXD023508
PXD002381 PXD007962 PXD012467 PXD014415 PXD019123 PXD023734
PXD002395 PXD008383 PXD012636 PXD014458 PXD019347 PXD024800
PXD003351 PXD008440 PXD012755 PXD015270 PXD020248 PXD025864
PXD004682 PXD008722 PXD012923 PXD015289 PXD020426 PXD027125
PXD005355 PXD008934 PXD012953 PXD015744 PXD020557
PXD005571 PXD009597 PXD012998 PXD016183 PXD021865
PXD005733 PXD009630 PXD013150 PXD018230 PXD022915
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