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Summary 

The gut microbiome is a complex microbial community comprising archaea, 

bacteria, viruses, and fungi inhabiting the gastrointestinal tract. Mounting evidence 

implies it plays a causal role in host health and disease, prompting an intensive 

search for key taxa driving these associations. Human metabolic health and a 

healthy BMI are consistently associated with the gut bacterial family 

Christensenellaceae, a highly heritable family within the Firmicutes. Our group, and 

subsequently others, have demonstrated a causal role of Christensenella minuta in 

reducing host adiposity gain. Despite this strong evidence for a central role of C. 

minuta in host health, little is known about its interactions with other microbial 

community members and the host, limiting understanding of its effect on host body 

composition and health. This work aimed to provide insights into the effect of C. 

minuta on both the microbial community and the host in vivo. To accomplish this, I 

adopted two approaches. 

 

First, I examined how C. minuta affected the microbial community in mice. I 

investigated this question in the context of a simplified and complex microbial 

community, the latter obtained by fecal transplants from a human obese donor to 

recipient germfree mice. My findings show an increase in the abundance of 

C. minuta in the presence of other taxa in the murine gut. While C. minuta had only  

minor effects on the composition of a complex microbial community, I observed a 

consistent pattern of lower abundances of taxa belonging to the family 

Lachnospiraceae.  

Further, I assessed the impact of C. minuta amendment on host energy 

expenditure in recipient male and female mice. Strikingly, C. minuta proved to be 

linked with murine physical activity, energy expenditure, and circulating metabolites, 

the latter partly correlated to changes in the microbial community. These effects of 

C. minuta on both the microbiome and the host differed depending on host sex, 

adding another level of complexity to these interactions.  

 

My research sheds light on the interactions of C. minuta with the microbiome 

and the host, uncovering a potential mechanism for the association of 

Christensenellaceae with metabolic health and lean BMI.   
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Zusammenfassung 
Das Darmmikrobiom ist eine komplexe mikrobielle Gemeinschaft aus 

Archaeen, Bakterien, Viren und Pilzen, die den Magen-Darm-Trakt bewohnen. 

Zunehmende Erkenntnisse belegen eine kausale Rolle des Darmmikrobioms für die 

Gesundheit und Krankheit des Wirtes und veranlassten eine intensive Suche nach 

den treibenden Schlüssel-Taxa. Ein gesunder Stoffwechsel und BMI des Menschen 

werden durchweg mit der Darmbakterienfamilie Christensenellaceae in Verbindung 

gebracht. Die Häufigkeit dieser Familie innerhalb der Firmicuten wird stark von den 

Genen des Wirtes bestimmt. Unsere Arbeitsgruppe, gefolgt von anderen, wies eine 

ursächliche Rolle von Christensenella minuta bei der Reduktion der Fettzunahme 

des Wirtes nach. Trotz dieser aussagekräftigen Beweise für eine zentrale Rolle von 

C. minuta für die Gesundheit des Wirts, ist nur wenig über die Interaktionen von 

C. minuta mit anderen Mitgliedern der mikrobiellen Gemeinschaft und dem Wirt 

bekannt, was eine Einschränkung für das Verständnis auf dessen Auswirkungen auf 

die Körperzusammensetzung und Gesundheit des Wirtes darstellt. Ziel dieser 

Dissertation war es, Einblicke in die Wirkung von C. minuta auf die mikrobielle 

Gemeinschaft und den Wirt in vivo zu gewinnen. Um dies zu erreichen, habe ich 

zwei Ansätze verfolgt. 

 

Zunächst untersuchte ich den Einfluss von C. minuta auf die mikrobielle 

Gemeinschaft in Mäusen. Diese Fragestellung betrachtete ich im Zusammenhang 

einer vereinfachten oder komplexen mikrobiellen Gemeinschaft, letztere bezogen 

aus Stuhltransplantation eines fettleibigen menschlichen Spenders auf keimfreie 

Empfänger-Mäuse. Meine Resultate zeigen, dass die Häufigkeit von C. minuta in 

Gegenwart anderer Taxa im Mäusedarm zunimmt. Während C. minuta nur 

geringfügige Auswirkungen auf die Gesamtzusammensetzung einer komplexen 

mikrobiellen Gemeinschaft hatte, stellte ich ein konsistentes Muster geringerer 

Häufigkeiten von Taxa aus der Familie der Lachnospiraceae fest.  

 

Des Weiteren untersuchte ich die Auswirkungen einer Zugabe von C. minuta 

auf den Energieverbrauch männlicher und weiblicher Empfänger-Mäuse. Dabei 

zeigte sich ein Zusammenhang zwischen C. minuta und der physischen Aktivität, 

dem Energieverbrauch und den zirkulierenden Metaboliten von Mäusen. Ein Teil 
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dieser Metaboliten korrelierte mit Veränderungen in der mikrobiellen Gemeinschaft. 

Diese Auswirkungen von C. minuta auf das Mikrobiom und den Wirt variierten je 

nach Geschlecht der Mäuse, was diesen Wechselwirkungen eine weitere 

Komplexitätsebene verlieh.  

 

Meine Forschung liefert neue Erkenntnisse über die Wechselwirkungen von 

C. minuta mit dem Mikrobiom und dem Wirt und deckt einen möglichen 

Mechanismus für die Assoziation von Christensenellaceae mit einem gesunden 

Stoffwechsel und BMI auf.  
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Chapter 1. Background  

The human microbiome can be considered a “microbial organ” [1], with a 

profound influence on our body processes and health [2], including host obesity [3]. 

In 2012 the microbial family of Christensenellaceae was first discovered through the 

isolation of one member, Christensenella minuta [4]. Two years later my research 

group discovered a causal role for C. minuta in reducing host adiposity gain [5] and 

submitted the patent, “Modulation of fat storage in a subject by altering population 

levels of Christensenellaceae in the GI tract” [6]. But open questions remain - what is 

the mechanism behind the adiposity decreasing effect of C. minuta and can it be 

traced back to the interactions of C. minuta with the host or the microbial 

community? 

 

1.1. The human microbiome 

At the cellular level, the human body is only half-human: it consists of as 

many microbial cells as human cells, including bacteria, archaea, viruses, and fungi 

[7]. Collectively, these microbes colonizing our bodies, with their distinct properties, 

functions, and interactions with their environment, are known as the human 

microbiome [8]. The majority of these microbes are harbored by the intestinal tract, 

the largest interface of the human body with its external environment [9]. The dense 

population of 1011 microbes gram-1 in this area and the ease of sampling have led to 

a comprehensive characterization of the gut microbiome [7]. A description of the 

microbiome is provided by two complementary perspectives, one ecological and the 

other physiological. An ecologist defines a microbiome as an ecosystem exposed to 

changes in nutrients [10] or environmental stressors [11], where its members interact 

with each other and with their environment [8]. It is this interaction with the 

environment, the intestinal tract of a living organism, that leads to the physiological 

significance of the gut microbiome. The host can actively influence interactions with 

the microbial community in favor of commensal species [12] while benefiting from 

compounds produced by the microbiome [13] and the protective effects of the 

microbiome against pathogen invasion [14]. It is due to this strong interplay between 



 

 

2 

the host and the intestinal microbes that researchers portray the gut microbiome as a 

microbial organ, a structural unit residing within the body of the host with a 

physiological relevant function [1].  

 

1.2. The interplay between the gut microbiome and obesity 

In recent years, studies have revealed the importance of the gut microbiome 

for human health by discovering its involvement in several diseases beyond the 

gastrointestinal tract, including metabolic syndrome [15,16], autoimmune conditions 

[17], cancer [18], as well as psychological and neurological diseases [19–21]. Fecal 

microbiota transplantation (FMT) studies have demonstrated causal relationships of 

the gut microbiome in several disease phenotypes: disease parameters, including 

accelerated gastrointestinal transit time [22], permeability [23], inflammation [22,23], 

and conditions such as obesity [24,25] can be transferred from the microbiome donor 

to a healthy recipient.  

 

Obesity is a non-communicable disease causing approximately 2.8 million 

deaths each year, and this number is rising at an alarming rate [26]. While obesity 

was previously associated with industrialized, high-income countries, it is now 

spreading to low- and middle-income countries [27]. As a risk factor for a wide range 

of multiple diseases, including type 2 diabetes, cardiovascular disease, coronary 

heart disease, stroke, and various cancers, obesity dramatically impacts quality of 

life and life expectancy [28]. The condition of obesity is the outcome of an 

imbalanced host energy homeostasis, an important mechanism maintaining host 

health and survival. Energy homeostasis consists of two principal factors, energy 

intake and energy expenditure (EE), each of which includes physiological and 

behavioral aspects [29]. Energy intake is primarily driven by the feeling of appetite, 

which is regulated in the hypothalamus and the nucleus of the solitary tract of the 

brain. Here, nervous and endocrine signals related to nutritional status are translated 

into neuropeptides controlling feeding behavior [30]. The four key determinants of EE 

are: (i) the basal metabolic rate, (ii) energy costs of thermoregulation, (iii) the thermic 

effect of food, and (iv) physical activity [31]. The basal metabolic rate refers to the 

obligatory energy cost of self-maintenance at thermoneutrality in an inactive state 
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[32], while thermoregulation ensures body temperature remains between certain 

boundaries regardless of the surrounding temperature [33]. The less well-known 

term “thermic effect of food” describes the increment in energy costs caused by 

absorbing and processing food for storage [34]. Finally, the physical activity 

proportion of EE is equivalent to heat production by muscle movements [35]. 

Although these components are separately defined, they are not independent. For 

example, heat generated by physical activity or feeding can substitute for heat 

production by thermoregulation [31]. The balance between energy intake and EE is 

vital for human health and survival, as imbalances can lead to the development of 

metabolic disorders [36].  

 

Interestingly, the gut microbiome can affect multiple aspects of energy 

homeostasis in the host [30]. In this context, the best-studied effect of the 

microbiome is its contribution to energy harvested from our daily food intake. A major 

proportion of nutritional energy is inaccessible to the human body without the 

additional fermentative metabolic conversions contributed by our gut microbiome 

[24,37]. This is clearly illustrated by a lower adiposity of 42% in germfree mice 

compared to conventionally raised mice, despite their greater food intake [38]. The 

energy harvest capability of the gut microbiome differs dramatically from person to 

person and has been identified as a crucial factor for obesity [24]. Further, our gut 

microbes are vital for metabolic-induced thermogenesis, as demonstrated by the 

higher risk of hypothermia in germfree animals or animals treated with antibiotics 

when exposed to cold stress [39]. More recently, researchers described the 

communication of our microbial gut inhabitants with the brain and vice versa, the 

microbiome-gut-brain axis [20]. Here, studies have identified how microbes influence 

aspects of energy homeostasis controlled by the host brain. Several pre- and 

probiotics were found to modulate concentrations of molecules regulating appetite, 

including the pancreatic polypeptide in the intestine, leptin in adipose tissue, and 

serum ghrelin concentrations [40]. Multiple studies have also shown an influence of 

individual gut microbial species [41,42] on voluntary physical exercise or the whole 

microbial community on exercise capacity and exhaustion [43], implying effects on 

muscle metabolism and behavior.  
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Collectively, these findings highlight the microbiome as a key player in the 

development and maintenance of obesity, indicating that modulating its community 

will aid the treatment or prevention of obesity. We thus need to move beyond pure 

associations and identify causal relationships, including the key taxa [44].  

 

1.3. The connection between Christensenella minuta and 

obesity 

In the context of the microbiome and obesity, the bacterial family 

Christensenellaceae of the Firmicutes phylum is a promising candidate causal agent. 

Earlier work from our lab uncovered an association between Christensenellaceae 

and a healthy body max index (BMI) [5]. Subsequently, studies worldwide reinforced 

this link and discovered associations with further parameters of health (Figure 1.1) 

[5,45–85]. Moreover, researchers connected a reduction in the relative abundance of 

Christensenellaceae to several diseases, such as inflammatory bowel disease [86–

88], irritable bowel syndrome [89,90], and metabolic syndrome [54,78,91]. An 

additional property rendering this family an even more interesting study subject is its 

high heritability across multiple populations worldwide. In other words, the 

abundance of this microbial family in the human gut is partially dictated by the host 

genome [5,92].  

 

This thesis focuses on a specific member of the Christensenellaceae, 

Christensenella minuta DSM 22607. C. minuta was the first representative of this 

bacterial family isolated from the feces of a healthy Japanese male in 2012 [4], with 

its complete genome being published in 2017 [93]. It is a non-sporulating, non-

motile, strictly anaerobic [4], gram-positive [94] gut bacterium, capable of producing 

short-chain fatty acids (SCFAs), acetate, and butyrate [4], as well as hydrogen [95]. 

Interest in this species stems from its causal role in reducing adiposity gain in the 

host: in 2014, my lab performed transplantation studies using germfree mice, 

demonstrating that the addition of live C. minuta to obese human donor stool 

significantly diminished weight and adiposity gains compared to mice receiving the 

same unamended donor stool [5]. In 2021, Mazier et al. reproduced this reduction in 

adiposity gain by amending a different strain of C. minuta to mice on a high-fat diet, 
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suggesting that the causal role of C. minuta in host leanness is not limited to the 

exact mode of obesity induction [96]. Although both studies imply a causal role of 

C. minuta regulating host body composition, the underlying mechanism remains 

unclear.  

 

 
Figure 1.1: Global map of studies associating the gut bacterial family Christensenellaceae with 
healthy body mass index or metabolic health in humans. Sampling locations of 42 studies 

associating the abundance of Christensenellaceae in the gut with a healthy BMI (red) or metabolic 

health (green) in humans to the world map [5,45–85]. Circle size indicates study cohort size.  

 

1.4. Aims and contributions 

In this work, I aim to gain a deeper insight into the adiposity-decreasing 

mechanism of C. minuta in the host by investigating its effect on (i) the microbial 

community in vivo and (ii) the host, with a focus on host energy expenditure. For 

these investigations, I used datasets of murine studies conducted by Dr. Jillian L. 

Waters, a former project leader and my co-supervisor in the lab, and performed my 

own set of murine experiments.  

 

(i) To accomplish my aim, I analyzed simplified or complex microbial 

communities in mice. In the case of the simplified community experiments (Chapter 

2), I quantified C. minuta and Blautia hydrogenotrophica in the murine cecal content 

of a study conducted by Dr. Waters. To overcome the challenge of low microbial 

biomass in the samples, I developed a protocol to accurately quantify the two 
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microbial species by qPCR using species-specific primers. Further, I analyzed how 

the addition of C. minuta modulated a complex microbial community obtained via 

fecal transplants from an obese human donor inoculated into recipient germfree mice 

(Chapters 3 + 4). Here, I analyzed existing datasets of amplicon-sequenced fecal 

microbiomes from murine pilot studies performed by Dr. Waters (Chapter 3) and 

conducted my own murine experiments, including microbial shotgun sequences of 

the murine cecal content (Chapter 4). My results revealed a higher fitness of C. 

minuta in the presence of other microbial taxa in the murine gut (Chapter 2). 

Meanwhile, C. minuta had only minor effects on the complex microbial community 

when focusing on the overall community structure. Switching attention to individual 

taxa, an interesting pattern arose in both studies, with taxa belonging to 

Lachnospiraceae being less abundant in mice with C. minuta than the controls 

(Chapters 3 + 4).  

 

(ii) To investigate how the C. minuta amendment affected host energy 

expenditure, I analyzed murine behavior, activity, and indirect calorimetry data 

collected by a behavioral phenotyping respirometry cage system in my mouse 

experiment (Chapter 4). Here, I uncovered evidence that C. minuta modulates 

behavioral and metabolic aspects of host EE in a sex-dimorphic manner. These 

phenotypes were associated with changes in metabolites involved in the gut-

microbiome-brain axis and were partly traceable to modulations of the microbial 

community and its functional profile.  

 

Overall, my research provides further insights into how C. minuta interacts 

with the microbiome and the host, expanding our understanding of its role in the 

mammalian gut habitat. I revealed a potential mechanism for the association of 

Christensenellaceae with metabolic health and lean BMI, taking an additional step 

toward fully understanding the impact of the microbiome on host health. 
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Chapter 2. Quantitative qPCR of 

Christensenella minuta in samples with low 

microbial biomass 

2.1. Introduction  

C. minuta plays a demonstrably important role in host health, reducing host 

adiposity gain [5,96], However, knowledge of this microbial species is scarce, 

particularly regarding its activities in vivo. The high complexity of the intestinal 

microbiome [97], combined with the influence of host genetics [5,98] and various 

environmental factors [99], complicates efforts to determine functions and 

interactions of individual community members in human and animal studies. To 

obtain a better understanding of specific species of interest, a simplification of the 

whole system is necessary. Such a simplified in vivo approach in microbiome 

research can be achieved through use of a gnotobiotic animal model containing an 

exact number of known microbial species [100–102]. Predominantly, gnotobiotic 

animals are created by colonizing germfree animals with the microbes of interest. 

This technique of studying the microbes in a gnotobiotic model organism in vivo, has 

enabled researchers to reveal multiple microbe-host and microbe-microbe 

interactions, including their molecular pathways [103–108]. Despite the immense 

advantages of gnotobiotic model organisms, completely eradicating microbial 

species in the body has its drawbacks. Germfree animals exhibit deficits in certain 

physiological, anatomical, behavioral, and metabolic attributes compared to 

conventionally raised mice [109]. To avoid such deficits in germfree mice, 

researchers developed a minimal microbial community called the Altered Schaedler 

Flora (ASF). The ASF consists of eight murine gut microbes selected to recapitulate 

the microbiome characteristics of conventional mice in a simplified manner [110], 

and colonizing murine guts with this community bypasses many of the deficits shown 

by germfree mice.  
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Dr. Waters aimed to study C. minuta in gnotobiotic mouse experiments. 

Although C. minuta had been shown to successfully colonize the murine intestine in 

combination with a human microbial community [5], it was uncertain if C. minuta 

could colonize gnotobiotic mice. Considerable alterations of colonization success in 

absence of a complex microbial community can arise due to limited availability of 

microbial products that can facilitate colonization [111,112]. Therefore, Dr. Waters 

investigated C. minuta, capable of producing hydrogen [95], in combination with 

Blautia hydrogenotrophica, an acetogenic microbe that utilizes hydrogen to produce 

acetate [113]. The idea here was that the metabolic intersection between the two 

microbes would lead to interactions aiding the colonization success of one or both 

species. To study both species, Dr. Waters conducted two gnotobiotic mouse 

experiments. In both experiments, she inoculated either germfree mice or mice with 

an ASF background [114] with C. minuta and B. hydrogenotrophica alone or in 

combination. Together we hypothesized that, should successful colonization occur, 

B. hydrogenotrophica would benefit from the hydrogen produced by C. minuta, which 

would be reflected in its higher abundance and increased acetate production.  

 

To assess the colonization success of C. minuta and B. hydrogenotrophica in 

Dr. Waters’ two murine experiments, I needed to optimize the DNA extraction and 

qPCR methods to quantify the microbial genome equivalents (GE) in the murine 

ceca via qPCR. The methods commonly used in our lab failed due to the dual 

challenge of low microbial biomass and limited quantities of the cecal content from 

the gnotobiotic mice. Such challenges are not uncommon in microbiome studies 

[115,116]. To address the challenges presented by my samples, I designed a DNA 

extraction protocol (detailed in the Appendix), yielding a sufficient amount of DNA 

with a purity suitable for qPCR. For the qPCR protocol, I performed typical 

adjustments for each primer, including annealing temperature, annealing time, and 

primer concentrations. To quantify the starting concentrations of each sample, I 

applied the One-Point-Calibration method [117] rather than the widespread standard 

curve method. This calibration method corrected for differences in primer efficiencies 

and variabilities between individual samples, ensuring proper quantification of the 

microbial species in the murine guts. For an analysis of metabolic interactions 

between the microbes, I obtained metabolomics data from Dr. Waters containing 
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information on SCFA concentrations in the murine guts and examined how the 

different colonization scenarios affected the metabolic production of acetate.  

 

My results show that neither C. minuta, nor the ASF community affected the 

abundance of B. hydrogenotrophica. By contrast, fitness of C. minuta increased in 

the presence of either B. hydrogenotrophica or the ASF-community. Acetate was 

highly associated with the microbial biomass in the murine cecal contents, without 

evident effects by the presence of C. minuta. With this study, I provide a protocol for 

exact quantification of microbial species in low biomass samples with a high load of 

qPCR-inhibitors. Moreover, I offer first insights into the microbial interactions of 

C. minuta in vivo, broadening our understanding of this microbial species. 

 

2.2. Material & Methods 

Mouse experiments 

Dr. Waters conducted two gnotobiotic mouse studies with male C57BL/J6 

mice. The first study was performed with germfree mice (GF-study) and the second 

with mice containing the ASF (ASF-study). The mice were inoculated with C. minuta 

and B. hydrogenotrophica alone or in combination. A non-inoculated group of mice 

served as controls. During the experiment, mice were co-housed in groups of three 

to five animals. Further information can be found in Table 2.1. 

 
Table 2.1: Information for murine gnotobiotic experiments  

Experiment Diet age at inoculation Duration Lab performed at 

GF-study NIH 7017 4 weeks 6 weeks Cornell & Tübingen 

ASF-study NC 5001 4 weeks 7 weeks Georgia State University 

ASF = Altered Schaedler Flora; GF = germfree 
 
Nucleic acid extraction and quantification 

Bacterial Standards 

A pelleted 10 mL turbulent culture of C. minuta or B. hydrogenotrophica, 

grown in supplemented brain-heart-infusion media, was used for DNA extraction with 
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the DNeasy PowerSoil kit (Qiagen). The pellets were resuspended in 200 µL 

beating-tube buffer and transferred back into the bead-beating tubes. After 

homogenization of contents using the FastPrep-24 5G-device (MP Biomedicals, 

LLC; Settings= Speed: 7 m/s, Time: 90 s, Cycles: 2, Pause: 30 s), I spun down the 

tube content before adding 20 µL Proteinase K (20 mg/mL) to each sample, followed 

by incubation for 30 min at 60°C. Further extraction steps were carried out according 

to the instructions of the kit manufacturer. DNA was eluted with 80 µL PCR-grade 

H₂O. 

 

Germfree mouse 

I extracted DNA from germfree mouse tails with the DNeasy Blood and Tissue 

kit (Qiagen) according to the manufacturer’s instructions.  

  

Murine cecal contents  

DNA extraction was performed by physical and enzymatic disruption of the 

cecal contents, followed by phenol/chloroform/iso-amyl alcohol DNA extraction and a 

clean-up step. I optimized this protocol for input samples with low DNA quantities. 

The detailed protocol is included in the Appendix (Appendix Chapter 2: Detailed DNA 

extraction protocol). In brief, approximately 30 mg of frozen cecal contents were 

aliquoted into prefilled 0.1 mm Zirconium-bead-tubes. The samples were suspended 

in 915 µL freshly prepared lysis solution (0.04 M sodium acetate (pH 7), 1% SDS, 

and 2 mM EDTA (pH 8)), and incubated at 60 °C for 30 min. Next, samples were 

cooled on ice prior to homogenization in a bead beater (FastPrep-24 5G, MP 

Biomedicals, LLC; Settings = Speed: 7 m/s, Time: 90 s, Cycles: 2, Pause: 30 s). 

After spinning the tube content down, I added 20 µL Proteinase K (20 mg/ml) to each 

tube following incubation of 30 min at 60 °C. After centrifugation, supernatants were 

transferred into 2 mL tubes. DNA was extracted by phenol/chloroform/iso-amyl 

alcohol and chloroform/iso-amyl alcohol, following ethanol precipitation at −20 °C 

overnight [118]. Precipitated DNA was resuspended in 220 µL PCR-grade water. 

Finally, DNA was cleaned up using the DNeasy Blood and Tissue kit (Qiagen) 

according to the manufacturer’s protocol. DNA was eluted in 50 µL PCR-grade H₂O.  
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Quantification  

I quantified DNA using a Qubit® 3.0 Fluorometer (HS Assay kit/ BR Assay kit) 

and checked its purity using a DS-11+ μVolume Nanodrop. 

 

qPCR   

I used the KiCqStart® SYBR® Green qPCR ReadyMix™, optimized the qPCR 

settings by gradient-qPCRs, and estimated the LOD for each primer. Undiluted 

murine samples, including three 10-fold dilutions of each, were pipetted in triplicates 

into the qPCR well plates. Extraction blanks, as well as germ-free murine DNA 

samples, were not diluted. Bacterial DNA from C. minuta and B. hydrogenotrophica 

cultures was diluted to ~ 0.2 ng/µL (C. minuta: 0.19 ng/µL; B. hydrogenotrophica: 0.2 

ng/µL) and used as standards for quantification. The total reaction volume per well 

was 20 µL with a primer concentration of 200 nM, and a DNA volume of 3 µL. While 

the master-mixes and sample dilutions were prepared manually, loading of the 384 

well plates was performed robotically (TECAN 780 ROBOT FLUENT 780 BASE 

UNIT). The qPCR run was performed on a BioRad CFX384 Touch™ Real-Time PCR 

Detection System. The cycling conditions consisted of a 95 °C incubation for 3 min, 

followed by a total of 40 cycles of 95 °C incubations for 10 s, 10 s annealing, and 

incubations at 72 °C for 30 s. Annealing temperature differed between the primers: 

universal 16S = 55 °C; C. minuta = 56.5 °C; B. hydrogenotrophica  = 60 °C. A 

melting curve analysis followed from 55 to 95°C (5 s). After checking the 

amplification, melting curves, and fragment size by gel-electrophoresis, data were 

analyzed with Bio-Rad CFX96 Manager (Version: 3.1.1517.0823) 
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Table 2.2: Primer used for quantification of bacterial GE in murine cecal contents 

Publication Species Direction Sequence 

[119] C. minuta forward TTCGGGAGGAACTGTGGGTAT 

C. minuta reverse GGTTGCTCACGCGTTACTCA 

[113]  B. hydrogenotrophica forward GAACGGAGATTTCGGTTGAA 

B. hydrogenotrophica reverse GTGCAATATTCCCCACTGCT 

[120] bacteria (universal) 16S rRNA 926 - forward AAACTCAAAKGAATTGACGG 

bacteria (universal) 16S rRNA 16S 1062 - reverse CTCACRRCACGAGCTGAC 

 

 
qPCR Quantification 
Calculation of genome equivalents in the reference controls 

Using an online calculator [121], I calculated the copy numbers of the 

reference controls by their genome size and DNA concentration. To obtain the 

genome equivalents, I divided the copy numbers by the 16S rRNA copies in the 

genome.  

 
Table 2.3: GE calculation of the qPCR positive controls  

Species C. minuta B. hydrogenotrophica 

Genome size [bp] 2969292 3565428 

Accession number NZ_CP029256.1 NZ_ACBZ00000000.1 

conc. control (ng) 0.594 0.606 

16S rRNA copies/genome 2 1 

Genome equivalents  9.25*104 1.57*105 

 

 

 

 



 

 

13 

Starting quantity calculation 

For the final quantification, I used only diluted cecal-DNA samples due to 

detectable PCR inhibition in the undiluted samples. The exclusion of individual 

outliers was determined from the standard deviation of the Cq values. I quantified my 

samples using the One-Point-Calibration method [117] with the 0.6 ng standards as 

references. The efficiency of the PCR reaction of each well was calculated with the 

qpcR package [122]. These efficiencies were used to estimate starting quantities of 

each sample, which were normalized by the input amounts. 

  

Statistical analysis 
Differences in abundances were estimated by analysis of variance (ANOVA) 

followed by the TukeyHSD test. The Spearman method was used for the correlation 

analyses. p-values <0.05 were considered statistically significant. 

 

2.3. Results and Discussion 

Fitness of C. minuta increases in the presence of B. hydrogenotrophica or the 
ASF community  

Dr. Waters conducted two gnotobiotic murine studies investigating C. minuta 

and B. hydrogenotrophica in a simplified in vivo environment. She inoculated either 

germfree mice (GF-study) or mice containing the ASF-community (ASF-study) with 

C. minuta and B. hydrogenotrophica alone or in combination. We hypothesized an 

increase of fitness in B. hydrogenotrophica in the presence of C. minuta caused by 

the latter’s hydrogen production. 

 

To test this hypothesis, I assessed microbial abundances in the different in 

vivo colonization conditions (GF, GF + C. minuta, GF + B. hydrogenotrophica, 

GF + C. minuta + B. hydrogenotrophica, ASF, ASF + C. minuta, 

ASF + B. hydrogenotrophica, ASF + C. minuta + B. hydrogenotrophica) with three 

sets of primers via qPCR, universal 16S rRNA primers [120], and specific primers for 

each microbial species of interest [113,119]. As stated above, the commonly used 

extraction method within the lab failed due to the challenge of low microbial biomass. 

To overcome this obstacle, I developed a DNA-extraction protocol optimized for low-



 

 

14 

biomass samples (detailed in the Appendix) and adjusted the qPCR parameters for a 

confident absolute quantification of the two target microbes in the murine cecal 

contents. My results showed the presence of C. minuta had no effect on the 

abundance of B. hydrogenotrophica (Figure 2.1A), leading me to reject the initial 

hypothesis. A weakly significant lower abundance of B. hydrogenotrophica was 

present in the dual association in the GF-study compared to the 

B. hydrogenotrophica-ASF mice (p = 0.045, Figure 2.1A). Aside from this one small 

fluctuation, B. hydrogenotrophica exhibited a consistent abundance independent of 

additional microbial community members. This might be due to its metabolic 

flexibility [113]. Most microbes can use various substrates as energy sources, 

enabling them to switch substrate usage depending on their availability. In the 

absence of hydrogen, B. hydrogenotrophica can generate energy via a hydrogen-

independent pathway by using organic carbon sources provided by the host or their 

diet as substrates. In the presence of C. minuta, it can switch to hydrogen-dependent 

acetogenesis using hydrogen and CO2 [113]. 

 

Meanwhile, C. minuta showed higher abundances in the presence of 

B. hydrogenotrophica (p = 3e-4, Figure 2.1A), in the ASF alone (p = 1e-4, Figure 

2.1A), and in the ASF combined with B. hydrogenotrophica (p = 4e-5, Figure 2.1A) 

compared to the mono-association of C. minuta in the GF-study. In all cases, the 

additional microbial members increased the abundance of C. minuta by the same 

magnitude (Figure 2.1A). The increase in C. minuta's biomass may be a 

consequence of a reduction in the hydrogen partial pressure. A reduction in 

hydrogen partial pressure has been reported to increase the microbial biomass of 

other hydrogen-producing microbes, like Clostridium thermolacticum [123]. An 

alternative explanation is a nutrient-based cross-feeding between C. minuta and the 

other gut microbes, a common phenomenon in microbiomes [124,125].  

 

In the ASF-study, the total microbial biomass is approximately ten times 

higher than the quantities of C. minuta or B. hydrogenotrophica (Figure 2.1A, 

universal primers). Nevertheless, C. minuta and B. hydrogenotrophica show similar 

abundances across both studies (Figure 2.1A, species specific primers). This 

outcome was unexpected, as no other bacteria were present in the GF mice, 

potentially outcompeting these two microbes. These results might imply a host-
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dependent growth limit for those two microbial species, but further investigations are 

needed to test this assumption. 

 

 
Figure 2.1 - Microbial abundances quantified via qPCR. Microbial abundances of 

B. hydrogenotrophica, C. minuta, and all microbes were quantified using species-specific [113,119] 
and universal primers [120] in two murine gnotobiotic experiments. Mice of a germfree- or ASF-

background were inoculated with C. minuta and B. hydrogenotrophica (B. hyd) alone or in 

combination (Dual). (A) Boxplots showing the microbial abundances for each treatment group, for 

each set of primers. The two bottom rows depict total microbial biomass with a zoomed-in section at 

the bottom. (B) Correlation of the abundances of B. hydrogenotrophica and C. minuta in the dual 

associated groups of both studies. The upper plot contains the whole dataset, while the two outliers 

were removed in the lower plot. Statistical analyses were performed using (A) ANOVA corrected by 
TukeyHSD and (B) Spearman correlations. ASF = Altered Schaedler Flora; B. hyd = 

B. hydrogenotrophica; GE = genome equivalents; MB = microbial biomass. 

  

A correlation analysis showed that the abundance of C. minuta and 

B. hydrogenotrophica correlated positively in dual-associated mice of both studies (p 

= 0.011, Figure 2.1B), but this correlation was mainly driven by two outliers. After 

outlier removal, a non-significant trend for a positive correlation remained (p = 0.1, 
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Figure 2.1B). Due to the sparsity of samples, no final conclusions regarding the 

dependence of microbial abundances between both species could be drawn.  

 

In conclusion, my data provided evidence for syntrophic interactions between 

C. minuta and B. hydrogenotrophica or the ASF microbial members, raising the 

abundance of C. minuta.  

 

Correlation between microbial biomass and microbial acetate 
To investigate microbial interaction on a metabolic level, I analyzed acetate 

levels in dependence on microbial biomass. Acetate is the simplest SCFA produced 

by the host and microbes [30]. Here, I observed a significant association between 

acetate and total microbial biomass in the combined dataset of both studies (p = 

2.2e-16, Figure 2.2A) and in each study independently (GF-study: p = 1.9e-5; ASF-

study: p = 0.007; Figure 2.2B). None of the other SCFAs was associated with 

microbial biomass (data not shown). 

 

A closer inspection of the correlation plots shows that the cecal contents of 

GF-B. hydrogenotrophica mice contained three times higher levels of acetate than 

GF-C. minuta mice, an expected pattern according to published in vitro data [4,126]. 

Adding C. minuta to the murine guts of mice colonized with other microbes did not 

alter acetate levels in any constellation tested, implying the absence of metabolic 

syntrophic interactions affecting acetate levels produced by the remaining microbial 

community in the murine guts.  

 

This data demonstrated the dependence of intestinal acetate on microbial 

biomass in mice. No effects beyond the linear range were evident, implying the 

absence of additional syntrophic effects boosting acetate levels.  

 

 

 



 

 

17 

 
Figure 2.2 - Correlation of microbial biomass with cecal acetate concentrations. (A-B) 

Correlation of cecal acetate with total microbial biomass in two gnotobiotic murine studies, (A) 

combined, or (B) separately per study. Color of dots indicate the murine colonization group.  
ASF = Altered Schaedler Flora; B. hyd = B. hydrogenotrophica; GE = genome equivalents. 

 

2.4. Conclusion 

This chapter provided evidence for microbe-microbe interactions resulting in 

increased abundances of C. minuta, with no evidence of a syntrophic boost in 

microbial acetate metabolism in the context of a simplified microbial community in 

vivo. In the next chapter, I proceed to investigate the effect of C. minuta on complex 

microbial compositions in a meta-analysis of murine FMT studies.  
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Chapter 3. Meta-analysis of the gut microbiome in 

murine pilot studies with Christensenella minuta 

3.1. Introduction 

Christensenellaceae are sparsely present in the human gut microbiome, with 

an average abundance of 0.01% [5]. Yet their reported association with a lean 

human BMI is one of the most consistent associations in the human microbiome field 

(Figure 1.1) [5,45–85]. How can microbes with such a low abundance have such 

pronounced associations with human health?  

  

Beyond the abundance of Christensenellaceae, various changes in the 

microbial community structure are associated with obesity and metabolic disease 

[65]. This gives rise to the theory that this family has no direct effect on the host, 

instead exerting an indirect impact by modulating the microbial community. Such a 

change in the microbial community could then mediate the health-promoting 

influence of Christensenellaceae upon the host. The ability of the genus 

Christensenella, and particularly the species C. minuta, to produce hydrogen [95] 

highlights this species as a possible mediator. Hydrogen is an essential compound 

for the gut microbiome with community-shaping properties [124,127]. Lending 

support to this potential community-shaping effect of C. minuta, Goodrich et al. 

showed a distinct clustering of microbial communities in mice receiving an inoculum 

containing live C. minuta compared to controls without such a C. minuta amendment 

in PCoA plots [5]. However, such a pattern might be a product of mere chance rather 

than a direct influence by the microbe of interest. Testing for a consistent change in 

the gut microbiome with an amendment of living C. minuta, I performed a meta-

analysis of several murine pilot studies. Dr. Waters conducted a total of 18 individual 

murine pilot studies with C. minuta, investigating a different question in each study. 

This variation of the issue under investigation leads to variability of experimental 

parameters. Many of these variable parameters, for example diet, sex, genotype, 

and host age, are known to alter the microbial community [5,98,128,129]. Thus, 

these experimental variations may conceal a treatment effect on the microbial 

communities in the available studies. 
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From the 18 studies, I selected seven that I considered similar enough to 

allow for comparison and obtained their amplicon sequences and metadata to 

analyze the dataset using QIIME2 [130]. Reanalyzing the experiment published by 

Goodrich et al. [5], I was able to reproduce their results they obtained using QIIME 

1.7.0 [131]. In the whole data set from the seven studies, batch effects of the 

individual studies were the main driving force shaping β-diversity of the microbial 

communities. These batch effects also influenced the abundance of C. minuta in the 

murine fecal samples. Statistical analyses of β-diversity metrics revealed minor 

differences between murine treatment groups in the microbial community 

composition of the whole data set. Differential abundance analysis (DAA) revealed 

seven significantly differentially abundant taxa, with five of these taxa belonging to 

the family of Lachnospiraceae.  

 

In conclusion, while experimental batch effects dominated the differences in 

the microbial communities, I detected minor, common signals in the microbiome 

composition of mice in response to the amendment of live C. minuta. The 

reproducibility of those changes in the microbial communities and their relevance for 

the host, including host health and body composition, need to be investigated in 

further experiments.  

 

3.2. Materials and Methods 

Data acquiring 
Dr. Waters performed 18 murine pilot studies at the University of Cornell 

between 2014 and 2016, including 16S rRNA (V4) amplicon sequencing on collected 

murine fecal samples. The precise procedures of DNA extraction, library preparation, 

and sequencing are described in detail elsewhere [5]. Dr. Waters provided all 

sequencing data, including experimental metadata.  
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Reanalysis of E1 and meta-analysis 
The 18 studies performed by Dr. Waters included the murine experiment 

published in 2014 by Goodrich et al. [5], here called E1. Examining the experimental 

metadata, I selected six more studies similar to the experimental design of E1 for a 

meta-analysis. Table 3.1 displays information about the parameters of the seven 

included experiments. Manual creation of a merged metadata file was followed by 

meta-analysis of the amplicon sequences with QIIME2 2019.10 [130]. Samples were 

rarefied to 13.000 sequences to calculate α-diversity metrics (Faith PD, observed 

operational taxonomic units (OTUs), Pielou Evenness, Shannon Entropy) and β-

diversity (unweighted and weighted UniFrac distances) using the SILVA v.132 

phylogenetic trees where necessary. Statistical analysis of ß-diversity distances was 

performed using PERMANOVA [132,133]. I used linear mixed models for 

comparisons of C. minuta levels between treatments and MaAsLin2 [134] for DAAs. 

 

3.3. Results and Discussion 

Reanalysis of E1 reproduces the published results 
First, I sought to confirm the reproducibility of C. minuta’s effect on the 

microbial community composition in the experiment published by Goodrich et al. 

(2014) [5], in this thesis referred to as E1. To accomplish this, I compared principal 

coordinate plots of unweighted UniFrac distances generated with QIIME2 2019.10 

[130] (Figure 3.1B, D), with the results in the original publication obtained with QIIME 

1.7.0 [131] (Figure 3.1A, C). Striking differences between my own results and the 

results of the original publication included the inversion of the axes and the higher 

variance, evident from the PC-axes. Further, inoculum samples clustered closer to 

the murine samples from later time points in my analysis compared to the published 

version. Despite these discrepancies, the same treatment effects were observable in 

both sets of results: fecal microbiomes 20 hours post-inoculation clustered distinctly 

from all the other samples on PC1 regardless of treatment group. Meanwhile, later 

time point samples formed a distinct cluster separated by treatment in PC2. 

Analyzing the QIIME2 2019.10 generated unweighted UniFrac distances by 

PERMANOVA, both parameters "day after inoculation" and "treatment" were 
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statistically significant (day: R₂ = 0.43, p = 0.001; treatment: R₂ = 0.05, p = 0.001) 

[132,133].   

 

 
Figure 3.1 - Reproduction of published treatment effects on microbial fecal β-diversity by 
C. minuta with QIIME2. Principal coordinate analyses of unweighted UniFrac distances in fecal 

microbiomes of mice receiving a fecal microbiota transplant from an obese human donor stool alone 

or amended with living C. minuta. Phylogenetic profiling and analyses were performed using (A, C) 

QIIME 1.7.0 [131], published in [5], and (B, D) QIIME2 2019.10 [130]. Each point represents a sample 

and is colored by (A, B) time point or (C, D) treatment. (B, D) Statistical analysis performed with 

PERMANOVA [132,133] shows a significant difference in β-diversity between treatment (R₂ = 0.05, p 

= 0.001) and time post-inoculation (R₂ = 0.43, p = 0.001).  

 

 

In conclusion, E1 showed a separation of the microbial community structure 

by the amendment of live C. minuta independently of the software used for analysis. 
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Strong batch effects in the microbial communities  
Dr. Waters performed a total number of 18 murine studies with C. minuta at 

Cornell University. For the meta-analysis, I selected a subset of those 18 studies 

comprising experiments with comparable designs. I focused on FMT studies using a 

stool sample of an obese human donor amended with no (Minus), heat-killed (HK), 

or living C. minuta (Plus) prior to the inoculation to recipient germfree mice. These 

criteria resulted in the inclusion of seven studies. The selected data set still 

contained variations in experimental parameters between the studies, as evident in 

Table 3.1.  

 
Table 3.1: Experimental parameters of selected studies in meta-analysis data set 

Study Treatment 
groups 

Mouse 
strain 

Donor of 
stool sample 

Mouse 
sex 

Mouse 
diet 

Study duration 
(days) 

E1 
Plus 

Minus 

Swiss 

Webster 
A ♀ NC 21  

E2 

Plus 

Minus 

HK 

Swiss 

Webster 
A ♀ NC 30 

E3 
Plus  

HK 

Swiss 

Webster 
A ♀ NC 21 

E4 
Plus  

HK 

Swiss 

Webster 
A ♀ NC 132 

E5 
Plus  
HK 

Swiss 
Webster 

B ♀ NC 26 

E6 
Plus  

HK 
C57BL/6 A ♂ NC → HF 81 

E7 
Plus 

Minus 
C57BL/6 A ♂ HF 28 

Minus = FMT with pure stool inoculum; HK= FMT with stool amended with heat-killed C. minuta;  

Plus = FMT with stool amended with living C. minuta; NC = normal-chow diet; HF = high-fat diet 
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For comparability, I combined the HK and Minus groups into a new group 

called “no live C. minuta” and renamed the Plus group “live C. minuta”. With this new 

data set, I performed a meta-analysis using QIIME2 2019.10 [130] to investigate the 

effect of living C. minuta amendment to the initial inoculum on the microbial 

community structure in mice. My results showed that microbial communities were 

indistinguishable in terms of α-diversity in all four accessed metrics (Faith PD: p = 

0.86; Observed OTUs: p = 0.88; Pielou evenness: p = 0.44; Shannon entropy: p = 

0.53; Figure 3.2).  

 

 
Figure 3.2 - No differences in α-diversity between treatment groups in meta-analysis. α-diversity 

metrics boxplots of fecal microbiomes of a meta-analysis dataset containing seven murine 

experiments. Mice received a fecal microbiota transplant from an obese human donor stool amended 
with either no or heat-killed C. minuta (no live C. minuta), or living C. minuta. α-diversity was 

calculated using QIIME2 2019.10 [130] and statistical analyses were performed with linear mixed 

models correcting for study effects. n.s. = not significant.  

 

 

Visual inspection of microbial β-diversity using unweighted UniFrac distances 

between the fecal microbiomes revealed a pronounced clustering of the individual 

experiments. This clustering is observable in the analysis of all collected fecal 

samples from each murine experiment (Figure 3.3A) and in the endpoint samples of 
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each experiment (Figure 3.3B). No patterns according to treatment or diet were 

evident (Figure 3.3A-B). The absence of a distinction by diet was surprising as the 

literature reports a strong influence of diet on the microbiome communities in 

humans and mice [10,135]. A distinct clustering by experimental studies is also 

present in the inoculum samples prior to transplantation (Figure 3.2C). These results 

imply that the strong batch effects in the murine samples emerged from the inoculum 

samples. As all inoculum samples, except E5, were prepared from the same donor 

stool sample, it is likely that these differences stemmed from minor variations in the 

preparation of the initial inoculum or the heterogeneity within a stool sample [136].  

 

Statistical analysis of weighted and unweighted UniFrac distances with 

PERMANOVA reinforced the evident patterns in the PCoA plots with the significant 

influence of murine study batch effects on the microbial β-diversity (Table 3.2). 

However, in these analyses, I also uncovered small but significant differences in β-

diversity between murine treatment groups and by murine diet (Table 3.2), which 

were not evident from the PCoA plots in Figure 3.2. These small but significant 

differences by treatment group suggest that C. minuta may, as hypothesized, affect 

the microbial community. Based on the small effect size, explaining only up to 2% of 

the total variance between the microbial communities, I suspect subtle effects on 

individual microbial species. 

 

Taken together, C. minuta exerted a minor effect on the overall microbial 

community, while strong batch effects of the individual studies dominated the 

variance in the data set. 
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Figure 3.3 - Strong batch effects by experimental study in meta-analysis. Principal coordinate 

analysis plots of unweighted UniFrac distances in fecal microbiomes of mice receiving a fecal 

microbiota transplant from an obese human donor stool amended with either no or heat-killed C. 

minuta (no live C. minuta), or living C. minuta. Phylogenetic profiling and analyses were performed 

using QIIME2 2019.10 [130]. Each point represents a (A,B) murine sample or (C) inoculum sample 

prior to transplantation. Points are colored by murine study, treatment group and murine diet. NC = 

normal-chow diet; HF = high-fat diet.  
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Table 3.2: PERMANOVA results of weighted and unweighted UniFrac distances.  

Samples Distance metric Study Treatment Diet 

All mouse 

samples 

uwUF F(6 | 739) = 80.8  

R2 = 0.39  

p = 0.001 

F(1 | 739) = 4.2  

R2 = 0.003  

p = 0.001 

F(1 | 745) = 51.2  

R2 = 0.06  

p = 0.001 

wUF F(6 | 739) = 50.7  
R2 = 0.29  

p = 0.001 

F(1 | 739) = 2.9  
R2 = 0.003 

p = 0.033 

F(1 | 745) = 37.8 
R2 = 0.05  

p = 0.001 

Endpoint samples uwUF F(6 | 127) = 23.6  

R2 = 0.52  

p = 0.001 

F(1 | 127) = 1.6  

R2 = 0.006  

p = 0.097 

F(1 | 133) = 14.1  

R2 = 0.1  

p = 0.001 

wUF F(6 | 127) = 16 

R2 = 0.42  

p = 0.001 

F(1 | 127) = 5.6  

R2 = 0.02  

p = 0.001 

F(1 | 133) = 11.4 

R2 = 0.08  

p = 0.001 

inoculum samples uwUF F(4 | 28) = 10.7  

R2 = 0.54  

p = 0.001 

F(1 | 28) = 5.5 

R2 = 0.07  

p = 0.001 

-  

wUF F(4 | 28) = 12.9 

R2 = 0.46  

p = 0.001 

F(1 | 28) = 28 

R2 = 0.25  

p = 0.001 

- 

uwUF = unweighted UniFrac distances; wUF = weighted UniFrac distances. 

 
Strong batch effects in the abundance of C. minuta 

Given the strong batch effects in the microbial community composition, I 

continued to investigate to what extent the abundance of C. minuta, the protagonist 

of all these studies, was affected. Boxplots of C. minuta’s relative abundance in the 

murine fecal samples revealed dramatic differences between the seven studies 

(Figure 3.4A). As already observed by Goodrich et al., C. minuta was present at 

similar levels in both treatment groups in the majority of the studies (Figure 3.4B). A 

possible explanation is that these bacteria stem from the low levels of C. minuta 

present in the donor stool microbiome (Chapter 4), detectable by metagenomic 

sequencing. Of all seven studies, only E6 depicted a higher abundance of C. minuta 
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in the mice amendment with live C. minuta compared to the controls from the same 

study (q = 1.8e-8, Figure 3.3B).  
 

 
Figure 3.4 - High variation in abundance of C. minuta between studies of the meta-analysis. (A, 

B) C. minuta abundances in fecal microbiomes of the studies comprising the meta-analysis (A) for 

each experiment and (B) for each treatment group within each experiment. Phylogenetic profiling was 

performed with QIIME2 2019.10 [130] and statistical analyses were conducted with linear mixed 

models and corrected for multiple hypothesis testing using the Benjamini-Hochberg Procedure. *** = p 

< 0.001; n.s. = not significant.  

 
Moreover, C. minuta reached the highest abundance in E6 compared to the 

other pilot studies (Figure 3.4B). The driving force behind this effect is unknown. 

Available literature reported that the abundance of C. minuta is modulated by (i) host 

sex [47,61,137], (ii) host genetics [5], and (iii) diet [138–140]. Those reports 

aggregated the expectations of a similar abundance of C. minuta in closely related 

individuals and a higher abundance of C. minuta in females fed a high-fat (HF) diet. 

The depicted data was not in line with those expectations: (i) Despite the reports of 

higher abundances of C. minuta in females, here, the average abundances in female 

mice (E1-E5) were lower compared to the studies with male mice (E6-E7). (ii) Mice 

in E6 and E7 had a highly reduced variability in host genetics, being mice from the 
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C57BL/6 inbred line, whereas mice from E1 to E5 were from an outbred line 

(SwissWebster). Nevertheless, the abundance of C. minuta varied substantially 

between these two studies. (iii) Even though mice in E7 were fed an HF diet over the 

whole study, these mice exhibited abundances of C. minuta comparable to those 

mice in the normal-chow (NC) diet studies (E1-E5). Meanwhile, in E6, mice were fed 

an NC diet for the first 28 days before transitioning to an HF diet. Whether or not this 

transition in the murine diet caused the observed bloom of C. minuta in the live 

C. minuta mice of E6 is unclear though it would not explain why the mice of the no 

live C. minuta group had such a low abundance in comparison. 

 

In summary, the abundances of C. minuta varied considerably between the 

murine studies, reflecting the variation of the total microbial community, discussed in 

the previous paragraph.  

 

C. minuta amendment modulated abundances of individual microbial OTUs  
I revealed strong batch effects  between experiments in my investigations into 

the effects of live C. minuta amendment to the murine inoculum on the overall 

microbial community and the stability of C. minuta’s abundance. Nevertheless, 

statistical analyses of weighted and unweighted UniFrac distances uncovered 

significant differences between the microbial communities of the different treatments. 

To explore whether these significant differences in the microbial communities arose 

from a common change of individual taxa, I performed three sets of DAAs using 

MaAsLin2 [134]. I first used the whole data set, while in my second analysis I only 

included the NC diet studies (E1-E5). The last analysis comprised the remaining HF 

diet studies (E6 & E7).  

 

Using the complete data, I detected two differentially abundant taxa (Figure 

3.5). Using the NC data set, I identified five more differential abundant taxa in 

addition to the two taxa detected in the complete data set (Figure 3.5). The HF data 

set contained no differentially abundant taxa between treatments. Interestingly, the 

significantly differentially-abundant taxa showed lower abundances in the mice 

amended with live C. minuta. The majority of these seven taxa belonged to the 

family of Lachnospiraceae, indicating an increased influence of C. minuta upon 

certain taxonomically-related species compared to others. Unfortunately, it is not 
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possible to determine which variables drove the differences between the NC-diet and 

HF-diet studies due to the multiple parameter differences between these studies 

(Table 3.1). 

 

 
Figure 3.5 - Lower abundance of several OTUs by the amendment of live C. minuta. Bar plot of 
significantly differentially-abundant OTUs between treatments in the meta-analysis of seven murine 

pilot studies. Phylogenetic profiling was performed with QIIME2 2019.10 [130]. Cream-colored bars 

are the significant OTUs using the whole meta-analysis dataset; turquoise-colored bars are the 

significant OTUs using the five normal-chow diet studies in the meta-analysis dataset. Color next to 

the OTU-name in the x-axis indicates the taxonomic family of the OTU. Negative coefficients 

represent taxa with a lower abundance in the live C. minuta treatment group compared to those with 

no live C. minuta. Statistical analyses were performed using MaAsLin2 [134], and results were 

corrected with the Benjamini-Hochberg Procedure. NC = normal-chow.  
 

 

These results, combined with the results from the β-diversity analyses, 

suggest that C. minuta selectively reduced the abundance of specific OTUs, without 

affecting the remaining microbial community. The exact mechanism involved in this 

reduced abundance remains unknown and requires further investigation. 
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3.4. Conclusion 

This chapter presents results suggesting an effect of C. minuta on a small 

subset of the intestinal microbiome in mice using a meta-analysis of seven 

independent murine pilot studies. Only minor changes in the overall microbial 

community composition were observed in response to the amendment of live 

C. minuta. However, DAA revealed that live C. minuta resulted in a lower abundance 

of taxa primarily belonging to the Lachnospiraceae. In the next chapter, I tested the 

reproducibility of these microbial changes due to C. minuta in my murine studies and 

further explored the impact of C. minuta on host energy expenditure.  
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Chapter 4: Sex-dependent effects of the gut 

bacterium Christensenella minuta on physical 

activity in mice 

4.1. Abstract 

The gut bacterial family Christensenellaceae is consistently associated with 

human metabolic health and a healthy BMI. Amendment of Christensenella minuta to 

the gut microbiome in mice is associated with reduced adiposity, but the mechanism 

remains unclear. Here, we assessed the impact of C. minuta amendment to fecal 

transplantation from an obese human donor on the energy expenditure (EE) of 

recipient male and female germfree mice. We observed that mice receiving live 

C. minuta showed a lower feed efficiency without changes in weight gain, adiposity 

gain, or fecal energy content. We hypothesized compensation by higher host EE. In 

support of this, we observed higher physical activity levels in mice with live 

C. minuta: both sexes displayed higher overall activity, with significantly greater 

locomotion in males. Females with live C. minuta had a significantly higher resting 

metabolic rate, with a trend of higher total EE, which correlated with circulating 

markers of glucocorticoid metabolism. In males, we observed an association 

between locomotion and cecal total short-chain fatty acids, of which butyrate was 

lower in males with live C. minuta. Differences between male treatments in the 

microbial community composition and functional profile reflected the lower cecal 

butyrate concentrations. Our results show a link of live C. minuta amendment with 

physical activity and metabolic EE in mice. These results indicate that the metabolic 

health and lean BMI association with Christensenellaceae in the gut microbiome may 

be due to a causal effect on physical activity levels in the host. 
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4.3. Manuscript 

IMPORTANCE 
The human gut microbiome is made of trillions of microbial cells, influencing 

host health. The bacterial family Christensenellaceae correlates with metabolic 

health and a lean body type. Moreover, a causal role of the species 

Christensenella minuta in regulation of host body composition has been shown. How 

this species can affect host body type is an unanswered question. Here, we show 

that C. minuta influences host physical activity and metabolic energy expenditure, 

accompanied by changes in murine metabolism and the gut microbial community in 

a sex-dependent manner. These observations hint to potential mechanisms for its 

causal role in host leanness. 

 

 

INTRODUCTION 
The bacterial family of Christensenellaceae is a highly heritable and prevalent 

family of Firmicutes within the human gut microbiome [1]. The abundance of this 

family has been connected to metabolic health, and in particular to a healthy body 

mass index (BMI), in human metagenomic studies worldwide (Figure 1) [1–42]. 

Previous work from our group has shown a causal role of Christensenellaceae for 

low host BMI: the addition of live Christensenella minuta diminished adiposity gain 

mediated by an obesity-inducing microbiome in mice [1]. Mazier et al. reproduced 

the reduction in adiposity gain by amending C. minuta to mice fed a high-fat diet, 

suggesting that the causal role of C. minuta in host leanness is not limited to the 

exact mode of obesity induction [43].  

 

Furthermore, Mazier et al. reported a decrease in feed efficiency, body weight 

gain per total ingested calories, in the mice receiving the C. minuta inoculum, without 

further elucidations on the causal mechanism [43]. Lower feed efficiency can arise 

from lower energy harvest from consumed food or a higher energy expenditure (EE) 

of the host. Interestingly, the gut microbiome influences both those aspects [44–46]. 

Gut microbes ferment dietary-indigestible components and provide additional energy 

to the host [45]. Moreover, the gut microbiome communicates with the host brain via 

blood-borne microbial products, microbially produced metabolites, as well as 
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afferent-spinal and vagal nerves [46]. This gut-microbiome-brain axis enables the gut 

microbiome to modulate host metabolic energy homeostasis, including host physical 

activity [46–49]. Studies reported the capability of the whole microbial gut community 

[50] or even single microbial species [51,52] to modulate host physical activity. 

Several human studies associated host physical activity with Christensenellaceae. 

Subjects with high fitness levels of various cohorts of different ages worldwide 

showed higher abundances of Christensenellaceae [25,53,54]. Also, rodent studies 

linked physical activity to the abundance of Christensenellaceae. High-capacity 

runner rats had higher levels of Christensenellaceae, and its abundance was 

positively correlated with running distance [55]. In a study of obesity-induced mice, 

mice had higher abundances of Christensenellaceae after eight weeks of daily 

exercise compared to the non-exercised group [56]. Another link between 

Christensenella and physical activity is its production of hydrogen [57], a metabolite 

linked to physical activity and recovery after exercise [58–60]. 

 

 
Figure 1 - Global map of studies associating the gut bacterial family Christensenellaceae with 
healthy body mass index or metabolic health in humans. Sampling locations of 42 studies 

associating the abundance of Christensenellaceae in the gut with a healthy BMI (red) or metabolic 

health (green) in humans to the world map [1–42]. Circle size indicates study cohort size.   
 

Here, we hypothesize that C. minuta modulates host EE, in particular physical 

activity, to regulate host body composition. Instead of the standard approach to 

measure solely host body composition as the outcome of an imbalanced energy 

homeostasis, we assessed individual aspects of energy homeostasis, including food 
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intake, activity, behavior, and EE using a behavioral phenotyping respirometry cage 

system. For this, we conducted a fecal transplant experiment with 184 male and 

female germfree mice receiving feces from an obese human donor amended with 

live or heat-killed C. minuta. We investigated alterations in host metabolism and the 

microbial gut community and how these changes correlated with the observed 

activity and EE phenotypes. Our results show that treatment with live C. minuta 

resulted in lower host feed efficiency, higher host activity and EE, in addition to 

modulated host metabolism and gut microbial community composition. The observed 

phenotypes varied between host sexes, demonstrating a sex-dependent effect of 

C. minuta on the host.  

 

 

RESULTS 
Live C. minuta decreases feed efficiency independently of fecal energy loss 

To investigate the effect of C. minuta on the host and the microbial gut 

community, we conducted a large-scale series of fecal transplant experiments (184 

mice total). Here, we inoculated male and female 5-6 week old germfree 

SwissWebster mice with an anoxic slurry derived from a single stool sample 

obtained from an obese human donor [1]. This donor stool microbiome contained low 

levels of C. minuta (Figure S1A). Prior to inoculation into the germ-free recipient 

mice by gavage, we amended the fecal slurry with either live (Live-CM) or heat-killed 

C. minuta (Killed-CM) (1010 CFUs per dose/mouse). For the first 25 days post-

inoculation, we housed mice singly (males) or in groups of four per cage (females) 

and provided normal polysaccharide-rich chow ad libitum. After 25 days, we 

transferred the mice singly to a behavioral phenotyping respirometry cage system 

(Promethion Sable Line, NV, USA) to collect data on mouse behavior via a light 

beam break system and energy expenditure (EE) using indirect calorimetry. We 

assessed body weight of the mice weekly, as well as body composition at inoculation 

and at day 25 post-inoculation. In each experiment, we used 16 mice of one sex, 8 

for each treatment group. For each sex we replicated the experiment 6 times, 

resulting in a combined sample size of 90 male and 94 female mice (Figure 2A). 

 

To evaluate if live C. minuta amendment to the inoculum resulted in elevated 

levels of C. minuta relative to the Killed-CM control, we quantified its abundance by 
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qPCR using species-specific primers [61] in murine cecal contents at day 28 post-

inoculation. Administration of live C. minuta was associated with higher levels of C. 

minuta abundance (p = 2.2e-4, Figure 2B) compared to heat-killed.  

 

We evaluated how the live C. minuta treatment impacted murine body 

composition, food intake, and feed efficiency. We observed no differences between 

treatments for adiposity (Figure 2C) or weight gain (Figure S1B). However, we 

detected a trend for higher food intake (by 5%) in the Live-CM versus Killed-CM mice 

for both sexes (p = 0.055, Figure 2D, E). Extrapolating these measurements over the 

whole duration of the experiment resulted in a lower feed efficiency (by 8%) of the 

Live-CM vs. Killed-CM treatments (p = 0.045, Figure 2F). To test, if live C. minuta 

affected fecal energy loss, we quantified the energy content of all murine feces 

excreted between day 25 and 28 post-inoculation by bomb calorimetry. No difference 

in the fecal energy content was present between the treatments (p = 0.48, Figure 

2G). 
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Figure 2 - Lower feed efficiency in mice amended with live C. minuta. (A) Experimental 

procedure of FMT- experiment with male and female germfree mice. Inoculums contained a fecal 

sample from an obese human donor amended with living (Live-CM) or heat-killed C. minuta (Killed-

CM). Each experiment consisted of 16 mice of one sex, 8 for each treatment group, and was 

replicated 6 times. During the first 25 days, mice were housed in groups of 4 (females) or alone 

(males). 25 days after inoculation, the mice were transferred to a behavioral phenotyping respirometry 

cage system (Promethion Sable Line, NV, USA). The first 24 hours of the recording were excluded 

from the analysis for acclimatization. (B) Quantification of C. minuta in murine cecal contents on day 

28 post-inoculation via qPCR using species-specific primers [67]. (C) Murine adiposity gain from day 0 

to day 25 post-inoculation. (D-E) Average daily food intake from day 25 to day 28 post-inoculation as 

(D) raw values correlated with murine body weight and (E) residuals adjusted for sex, batch and 
weight. (F) Feed efficiency over the duration of the experiment, calculated using murine weight gain 
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from day 0 to day 28 post-inoculation and (D) measured food intake. (G) Energy content of all murine 

feces from day 25 to day 28 post-inoculation measured via bomb calorimetry. Asterisks indicate 

statistical significance of the linear mixed model correcting for sex, batch and (D-E) mouse weight. * : 

p < 0.1; ** : p < 0.01; *** : p < 0.001. Adj. = adjusted; FI = food intake; GE = genome equivalents; 

Resid. = residuals.  

 

 

C. minuta increases host activity and metabolic energy expenditure in a sex-
dependent manner 

Given that the lower feed efficiency was not linked to elevated fecal energy 

content, we hypothesized energy expenditure (EE), especially physical activity, to be 

higher in the Live-CM compared to the Killed-CM group. We assessed two forms of 

EE, physical activity and indirect calorimetry estimated total EE using behavioral 

phenotyping respirometry cages. A light beam break system in the cage system 

assessed physical activity. Additionally, we measured oxygen consumption and 

carbon dioxide production via indirect calorimetry and calculated EE using the Weir 

equation [62]. While physical activity is a behavior that results in an elevation of 

energy expenditure above resting levels [63], EE measurements by indirect 

calorimetry include all aerobic processes contributing to total EE [64,65]. As none of 

both measurements represent the exact EE, only measurable by direct calorimetry, 

we considered both as complementary. To allow the mice to acclimate to the new 

cage environment, we excluded the first 24h of the measurements collected in the 

behavioral phenotyping respirometry cage system for all following metrics.  

 

To test our hypothesis with the collected murine physical activity data, we 

obtained two activity metrics monitored by the light-beam-break system, overall 

activity (number of beam breaks independent of movement size in the XYZ-axes) 

and locomotion (total distance traveled within the XY-axes in m). We estimated the 

differences between treatments of those metrics, their association with the 

abundance of C. minuta and their correlation to murine feed efficiency. In support of 

our hypothesis, we observed higher overall activity with Live-CM treatment. The 

Live-CM groups of both sexes were associated with a higher overall activity 

compared to the Killed-CM groups (6.8% higher beam breaks, p = 0.009, Figure 3A). 

Overall activity was significantly associated with the abundance of C. minuta in 
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murine cecal contents (p = 0.03, Figure 3B), but not with murine feed efficiency (p = 

0.41, Figure 3C). In contrast, solely Live-CM males showed greater locomotion (total 

distance traveled within the XY-axes in m) by 8.5 % compared to the Killed-CM 

males (p = 0.025, Figure 3D), whereas it was indistinguishable between female 

treatments (p = 0.708, Figure 3D). The abundance of C. minuta was correlated with 

the locomotion of male mice (p = 0.03, Figure 3E), not of females (p = 0.8, Figure 

3E). Further, we observed a negative correlation between feed efficiency and 

locomotion in males (p = 0.04, Figure 3F), and no association in females (p = 0.4, 

Figure 3F). We detected no differences in activity between the treatments during the 

first 24h of acclimatization to the novel cage environment, suggesting that the 

observed behavior changes are not stress-induced (Fig S2A, B).  

 

Further supporting our hypothesis, total EE trended to be 2.2 % higher in the 

Live-CM females compared to the Killed-CM females (p = 0.06, Figure 3G, H), but 

was indistinguishable between the male treatments (p = 0.71, Figure 3G, H). To 

evaluate if physical or metabolic processes mediated the higher EE in females with 

live C. minuta, we examined murine EE collected while the animal was physically at 

rest, an approximation of the resting metabolic rate (RMR). The average RMR of 

both sexes showed no difference between the treatment groups (females: p = 0.51, 

males: p = 0.63, Fig S2C). But an examination of the the RMR in dependence of the 

circadian cycles, revealed a higher RMR in the Live-CM females compared the 

Killed-CM females during the light cycle by 0.02 kcal/h, corresponding to a higher 

RMR by 4.3% (p = 0.042, Figure 3I). We observed no difference between the female 

treatments during the night cycle (p = 0.29, Figure 3I) or in male treatments during 

either light (p = 0.6, Figure 3I) or dark cycle (p = 0.69, Figure 3I).  
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Figure 3 - Higher physical activity and metabolic EE in mice with live C. minuta. (A-D) Activity 

and (G-I) indirect calorimetry measurements of the mice in the metabolic cage system. (A, D) 

Residual activity metrics adjusted for batch- and sex-effects. (A-C) Number of beam breaks (A) per 

treatment group, (B-C) raw values associated with (B) the abundance of C. minuta and (C) murine 

feed efficiency. (D-F) For each sex, total distance traveled (D) per treatment group, (E-F) raw values 

associated with (E) the abundance of C. minuta and (F) feed efficiency. (G-H) Average hourly energy 

expenditure and (I) resting metabolic rate during the dark and light circle calculated using the Weir 

equation [68] as (G) raw values correlated to murine body weight and (H, I) residuals adjusted for 
body weight, sex, and batch effects. Asterisks indicate statistical significance of the linear mixed 

model correcting for sex, batch and (E-G) mouse weight. In correlation analyses, p-values of linear 
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mixed models are stated in the figure. * : p < 0.1; ** : p < 0.01; *** : p < 0.001. Adj. = adjusted; BB = 

beam breaks; EE = energy expenditure; FE = feed efficiency; GE = genome equivalents; Resid. = 

residuals; RMR = resting metabolic rate.  

 

 

Addition of C. minuta resulted in sex-dimorphic metabolomic changes in the 
host associated with physical activity and EE  

To assess the potential for involvement of microbially produced or modified 

metabolites in the described phenotypes, we performed two metabolomics screens 

with samples collected at day 28 post-inoculation: a SCFA screen in murine cecal 

contents, and a combination of targeted and untargeted metabolomics of murine 

sera. 

 

In the murine cecal contents, we measured five SCFAs and three branched 

chain fatty acids (Figure 4A, Figure S3A, B), of which only butyrate was significantly 

lower in the Live-CM males compared to the Killed-CM males (q = 0.008, Figure 4A). 

As butyrate has been associated with murine activity [66] we analyzed if it correlated 

to the murine activity metrics, but found no association (overall activity: p = 0.37; 

locomotion: p = 0.16; Figure S3C, D). Instead, we observed a correlation of total 

SCFAs with murine locomotion (p = 0.001, Figure 4B) and to a weaker extent with 

overall activity (p = 0.02, Figure S3 E). Compared to Killed-CM males, Live-CM 

males showed a trend for lower total SCFAs (p = 0.11, Figure 4C) and a weaker 

trend in the opposite direction in females (p = 0.15, Figure 4C).  

 

Additionally, we targeted 11 compounds, known to be influenced by the gut 

microbiome and capable of affecting host behavior (Table S1), in serum samples by 

liquid-chromatography mass-spectrometry (LC-MS) (Figure 4D, Figure S3E). Of all 

metabolites we assessed, only one showed a trend of being modulated by live 

C. minuta: females showed a trend for lower corticosterone, the main rodent stress 

hormone, in the Live-CM group compared to the Killed-CM group (q = 0.12, Figure 

4D). For the pathway analysis we used the entire peak spectrum of the same LC-MS 

run. Here, we observed associations between female EE and pathways involved in 

glucocorticoid synthesis, including steroid hormone biosynthesis (p = 2e-4, Figure 

4E) and primary bile acid biosynthesis (p = 0.012, Figure 4E). 
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Figure 4 - Changes of metabolism in relation to energy expenditure metrics. (A-C) SCFA 

concentrations in murine cecal contents on day 28 post-inoculation measured via GC-MS with (A) 

butyrate, and (B-C) the sum of all five SCFA measured (B) correlated to murine locomotion and (C) by 
treatment. (D) Serum corticosterone levels at day 28 post-inoculation measured via LC-MS. (E) 

Metabolic pathways significantly associated with female EE, determined by analyzing the entire LC-

MS peak spectrum of murine serum samples with  XCMS (v.2.7.2) [101], MaAsLin2 [99], and 

MetaboAnalyst5.0 (www.metaboanalyst.ca)[102]. Pathways with a combined p-value (GSEA & 

mummichog) < 0.05 were considered significant. (A-D) Asterisks indicate statistical significance of the 

linear mixed model correcting for sex and batch. In correlation analyses, p-values of linear mixed 

models are stated in the figure. ** : p < 0.01. EE = energy expenditure; NES = normalized enrichment 
score; PA = peak area; SCFA = short chain fatty acid.  
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Shifts in the microbial community composition of male treatments reflect cecal 
butyrate levels 

To further investigate the changes in murine activity, EE and metabolism, we 

analyzed the microbial community. First, we performed qPCR using universal 16S 

rRNA primers to quantify the microbial biomass in the murine cecal contents. We 

observed that mice with live C. minuta were associated with a higher microbial 

biomass by 10% (p = 0.008, Figure 5A) compared to the Killed-CM group. We 

normalized the phylogenetic profiled metagenomic cecal sequences by the total 

microbial genome equivalents per mouse determined by qPCR (Figure S4A) and 

used those normalized reads for further analyses. Examining the microbial 

community using four different α-diversity metrics, microbial richness (MR), Shannon 

Entropy (SE), microbial evenness (ME), and phylogenetic diversity (PD), revealed a 

significant lower α-diversity in the Live-CM males compared to Killed-CM males in all 

metrics (MR: p = 0.028, SE: p = 0.009, Figure 5B; ME: p = 2e-4, PD: p = 0.035; 

Figure S4B). Females showed no differences in α-diversity between the treatments 

(Figure 5B, Figure S4B). Similar to α-diversity, statistical β-diversity analyses using 

weighted and unweighted UniFrac (UF) distances revealed small but significant 

changes in the microbial communities between male treatments (weighted UF: 

F(1|81) = 8, R2 = 0.077, p = 0.003; unweighted UF: F(1|81) = 4.3, R2 = 0.032, p = 

0.002). Again, females displayed no differences between the treatments (weighted 

UF: F(1|85) = 0.5, R2 = 0.001, p = 0.55; unweighted UF: F(1|85) = 1.9, R2 = 0.009, p 

= 0.08).  

 

Using differential abundance analyses (DAA), we analyzed the treatment 

effect on the level of individual taxa and the functional profile of the microbial 

community. Further, we estimated the association of these taxa and functional 

profiles to cecal butyrate concentrations, a metabolite mainly produced by the 

microbial community with a significant difference between male treatments (Figure 

4A). We observed 37 differentially-abundant genera between mice with live and 

heat-killed C. minuta in either females or males (Figure 5D). The majority of these 37 

genera belonged to two main phylogenetically related groups, Bacteroidales and 

Lachnospirales. Within the Bacteroidales, all genera showed a lower abundance in 

the Live-CM mice of both sexes. The second and larger cluster incorporated 20 

genera belonging to the Lachnospirales, of which 18 were members of the family 
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Lachnospiraceae. Males with live C. minuta showed a consistently lower abundance 

of Lachnospirales compared to Killed-CM males. In contrast, several genera of 

Lachnospirales showed higher abundances in Live-CM females compared to the 

female heat-killed control. Of the 37 differentially-abundant taxa between treatments, 

16 taxa correlated significantly with cecal butyrate concentration. Especially the 

Lachnospirales, with lower abundance in the male Live-CM mice, showed a strong 

positive association with cecal butyrate concentrations (Figure 5D).  

 

In line with the results of the α- and β-diversity analyses, DAA of microbial 

functional profiles resulted in significant differential abundant pathways between 

treatments exclusively in males or the combined dataset. The significant pathways 

with the highest effect size were involved in fermentation, carbohydrate degradation 

and amino acid biosynthesis (Figure 5E). Most strikingly, the majority of these 

pathways were oppositely associated with cecal butyrate concentration, again solely 

in males or the combined dataset (Figure 5E).  
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Figure 5 - C. minuta amendment resulted in sex-dimorphic effects of microbial community 
composition in recipient mice. (A) Quantification of microbial biomass via qPCR with universal 16S 
rRNA primers. (B-C) α-diversity of phylogenetically-profiled metagenomic cecal sequences. (D-E) 

Differential abundance analysis of (D) microbial taxa and (E) microbial functional profiles using 

MaAsLin2 [99]. Coefficients indicate associations with treatments (red: negative values = higher in 

Killed-CM, blue: positive values = higher in Live-CM) or cecal butyrate concentrations (red: negative 

values = negative association, blue: positive values = positive association). Asterisks indicate 

statistical significance of the linear mixed model correcting for sex and batch. * : p < 0.1; ** : p < 0.01; 

*** : p < 0.001. BA= Butyrate; F= females; GE = genome equivalents; M = males ; Treat = treatment.  
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DISCUSSION 
Here, we studied the effect of C. minuta on the host's EE. Our previous study 

and Mazier et al. showed that treatment with live C. minuta decreased host adiposity 

gain [1,43]. Even though we did not observe such an effect in our current study, we 

detected a lower feed efficiency. Likewise, Mazier et al. reported a lower feed 

efficiency by the amendment of C. minuta, even though our studies differed in many 

parameters, including the strain of C. minuta, the mouse strain, mouse sex, the 

origin of the gut microbial community, and the mode of obesity induction. While 

Mazier et al. measured food intake, body weight and body composition, revealing the 

lower feed efficiency [43], they did not examine the causal mechanism. We designed 

our experiments to get a deeper insight into how C. minuta can influence host energy 

homeostasis by measuring fecal energy loss, physical activity, and metabolic energy 

expenditure, in addition to food intake, body weight and body composition. A lower 

feed efficiency can be achieved by lower energy absorption in the gut or a higher 

host EE [67,68]. We observed the latter in our study in the form of higher voluntary 

physical activity and metabolic EE.  

 

Physical exercise is beneficial for host health and affects the microbial 

community [69]. While several studies associated a higher abundance of C. minuta 

with increased physical activity of the host [25,53–56], we are the first to report that 

C. minuta influences the voluntary physical activity of the host. In our experiment, we 

distinguish between overall activity, counting the number of beam breaks 

independent of movement size in the XYZ-axes, and locomotion, measuring the total 

distance traveled within the XY-axes in m. Despite the high correlation of both 

metrics, we observed differences in how the amendment of C. minuta affected those 

two metrics. Both sexes showed higher overall activity with live C. minuta compared 

to heat-killed. In contrast, we only observed greater locomotion in Live-CM males 

compared to Killed-CM males. These data suggest that the main driver for higher 

activity in males was their greater locomotion and in females a higher amount of fine-

movement patterns, such as scratching and grooming.  

 

A possible mechanism of how C. minuta is able to modulate host physical 

activity is via microbial metabolites. Szentirmai et al. reported lower murine activity 

by intraportal injection of butyrate [66]. In line with this report, we observed greater 
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locomotion and lower concentration of cecal butyrate in Live-CM males compared to 

Killed-CM males. Nonetheless, no correlation between these two parameters was 

present. In contrast, total SCFAs and locomotion showed a significant association. 

SCFAs are microbially produced metabolites, and changes in the microbial 

community composition can lead to changes in the SCFA profile in the host gut. 

Here, males with live C. minuta showed a lower α-diversity and differences in the 

microbial community composition and functional profile compared to the Killed-CM 

males. Butyrate was associated with differentially abundant taxa between male 

treatments and changes in the functional profiles of the male microbiome. According 

to our data, we hypothesize that live C. minuta induced a shift in the microbial 

community of male mice, which resulted in a modulation of microbial-derived SCFA, 

causing changes in host voluntary activity.  

 

We observed a negative correlation between the locomotion of male mice with 

feed efficiency, but not in females, hinting at a causal connection between both 

metrics in male mice and suggesting another mechanism for lowering feed efficiency 

in females. Indeed, our data showed a higher energy expenditure in females with live 

C. minuta compared to heat-killed. While we observed only a trend of higher average 

EE, we observed a significantly higher RMR during the light cycle by 4.3% in Live-

CM females compared to Killed-CM females. These data imply a modulation of 

metabolic EE in females by the amendment with live C. minuta. In search of a 

possible mechanism, we observed a modulation of glucocorticoid metabolism in the 

females between treatments reflected in lower levels of corticosterone in Live-CM 

females compared to the female heat-killed control. Further, female EE was 

associated with glucocorticoid metabolism pathways. A connection between 

glucocorticoid metabolism and metabolic energy expenditure is well described 

[70,71], together with an influence of microbial community upon both [44,72–77]. So 

far, our data indicate that C. minuta is capable of modulating host EE, possibly by 

affecting host glucocorticoid metabolism in females.  

 

In our experiments, we used mice of both sexes. Here, we observed multiple 

sex-dimorphic effects by the addition of C. minuta to the initial inoculum in terms of 

(i) host activity, (ii) metabolic parameters, and (iii) microbial community composition. 

Our observations reflect literature reporting sex-dimorphic phenotypes. (i) In general, 
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females show higher activity levels than male mice [78,79], and reports imply a 

higher susceptibility of male mice to dietary or microbial modulation of locomotor 

activity [80–83]. (ii) Host sex hormones modulate multiple metabolic pathways, 

including SCFAs and glucocorticoid biosynthesis [84–87], and (iii) the gut 

microbiome [88]. For example, the response to dietary [89] or antibiotic [84] 

manipulations of the microbial community depends upon host sex. Though this is the 

first study to report that C. minuta affects the host dependent on sex, we are familiar 

with a sexually dimorphic pattern in the abundance of Christensenellaceae, with 

higher abundances in females [4,18,83]. Even though differences between sexes are 

well known, animal experiments show a sex bias toward using only male animals 

[90]. The use of only one sex, commonly males, simplifies the experimental design 

but impacts their informative value for the other sex, a fact mostly ignored in the 

discussion of study results.  

 

The major strength of this study is a large number of animals of an outbred line, 

including both sexes (182 in total) and experimental replicates (12 in total, 6 per 

sex). This design comes with costs of high batch effects but the advantage of robust 

results and reproducibility. Nevertheless, we only used one donor stool sample in our 

experiments to avoid another level of complexity. Hence, more investigation is 

needed to examine the role of C. minuta in host behavior and energy homeostasis in 

the context of variations in the composition of the microbial community of the donor.  

 

In conclusion, we show that C. minuta increased recipient physical activity and 

metabolic EE, potential mechanisms for its causal role in host leanness and lower 

feed efficiency. So far, our data suggest that C. minuta alters EE in females 

potentially by modulating host glucocorticoid metabolism. In males, C. minuta 

amendment is associated with greater locomotion, possibly connected to the 

changes in the microbial community and their production of SCFAs. These two 

hypotheses and the sex-dependent effects of C. minuta on the host need further 

investigation.  
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MATERIAL AND METHODS 
Mouse experiments 

All animal experimental procedures were reviewed and approved by the 

German RP. We purchased female and male five- to six-week-old germ-free (GF) 

Swiss Webster mice from Taconic Biosciences Inc. (Hudson, NY) or bred them in 

our facility. 

 

Inoculation  

We inoculated all mice with 200 µL resuspended feces, from a healthy obese 

human donor, amended with living or heat-killed C. minuta by oral gavage. To 

prepare the inoculum, we obtained C. minuta (DSM 22607) from the German 

Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany). 

We grew C. minuta in brain heart infusion media BHIS media supplemented with 

yeast extract (5 g/l), reduced with L-cysteine-HCl (0.5 g/l) at 37°C under anaerobic 

conditions without shaking for 3 days. For the control group, the culture was heat-

killed by autoclaving (20 min at 121 °C) just before the preparation of the inoculum. 

In an anoxic glove box, we resuspended 0.3 g of stool in 4 mL of anaerobic PBS that 

contained 2 mM DTT by 5 min of vortexing. 80 mL of each C. minuta culture was 

pelleted by centrifugation and added to half of the resuspended feces. The final 

inoculum contained approximately 1 × 10¹º live or heat-killed C. minuta cells per 

mouse. 

 

Housing and euthanization 

We performed experiments with 16 mice of the same sex, with 8 mice per 

treatment group. For each sex we replicated the experiment 6 times, resulting in a 

combined number of 12 experiments with 192 mice (96 male, 96 female) total. 

Because of sickness or death, we excluded 8 mice. For the first 25 days post-

inoculation, we housed all mice at 22 °C under a 12 h light/dark cycle in Digital 

Ventilated Cages (Tecniplast, Buguggiate, Italy), which recorded murine activity. We 

co-housed female mice from the same treatment group in groups of 4, whereas male 

mice were single-housed. Autoclaved water and polysaccharide-rich chow (Altromin, 

NIH31M) were provided ad libitum. During the weekly cage change, we monitored 

murine body weight. Before inoculation and at day 25 post-inoculation, we measured 

fat mass and lean mass in the mice by quantitative magnetic resonance using an 
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EchoMRI-100 (Echo Medical Systems, LLC., TX, USA). On day 25 post-inoculation, 

we transferred the mice into the behavioral phenotyping respirometry cage system 

(Promethion Sable Line, NV, USA), in which all mice were single-housed at 26 °C 

under a 12 h light/dark cycle. Here, we monitored murine body weight, activity, 

behavior, food and water intake, and EE using indirect calorimetry. On day 28 post-

colonization, the mice were euthanized, half by CO₂ and the other half by 

decapitation. Before euthanization, we fasted the mice for 5h. Tissues were 

immediately collected, flash-frozen, and stored at −80 °C. Blood was directly 

collected after decapitation. All blood samples were coagulated for 20 min at RT, 

centrifuged at 12.000 g for 20 min at 4 °C, after which the supernatant was collected 

and flash-frozen.  

 

Bomb calorimetry 

Gross energy content of fecal samples from mice were analyzed with the 

calorimeter bomb IKA C5003 (IKA-Werke GMBH & co.KG, Staufen, Germany) at the 

Center of PhenoGenomics of the EPFL (Switzerland). Prior to the adiabatic 

measurement, the samples were dried under a PSM class II hood overnight. The 

calibration of the machine was performed with 0.5g of benzoic acid.  

 

Metagenomics and qPCR 
gDNA extraction 

We isolated genomic DNA from frozen mouse cecal contents and aliquots of 

the gavage preparation (inoculum), using the PowerSoil® - htp DNA isolation kit 

(Qiagen, Valencia, CA, USA). We assessed the wet-weight of cecal samples before 

loading to the extraction plate.  

 

Absolute quantification by qPCR 

We quantified genome equivalents from all bacteria and C. minuta in cecal 

genomic DNA by qPCR. We used the the KiCqStart® SYBR® Green qPCR 

ReadyMix™ and universal 16S rRNA primers (515 Forward: 5’-TCG TCG GCA GCG 

TCA GAT GTG TAT AAG AGA CAG GTG CCA GCM GCC GCG GTA A -3’, 806 

Reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGG ACT 

ACH VGG GTW TCT AAT-3’) or primers specific for C. minuta [61] (Forward: 5’-TTC 
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GGG AGG AAC TGT GGG TAT-3’, Reverse: 5’-GGT TGC TCA CGC GTT ACT CA-

3’). For the standard curve we used genomic DNA from Blautia hydrogenotrophica or 

C. minuta extracted from pure cultures quantified with a Qubit® 3.0 Fluorometer 

(high sensitivity assay kit). 

  

The total reaction volume per well was 20 µL with a primer concentration of 200 nM. 

The DNA volume per well was 3 µL, which we diluted priorly 1:10 for the 

quantification of C. minuta and 1:100 for the quantification of all bacteria. We 

prepared the master-mixes and sample-dilutions manually, but loaded the 384 well 

plates robotically (TECAN 780 ROBOT FLUENT 780 BASE UNIT). The qPCR run 

was performed in the BioRad CFX384 Touch™ Real-Time PCR Detection System. 

The cycling conditions consisted of a 3 min incubation at 95 °C, followed by a total of 

40 cycles of 95 °C incubations for 10 s, 10 s annealing at 55 °C, and extension at 72 

°C for 30 s. Annealing temperature differed between the primers: universal 16S 

rRNA = 55 °C; C. minuta = 56.5 °C. After the PCR melting curve analysis was 

performed from 55 to 95°C (5 s). Data were analyzed by Bio-Rad CFX96 Manager 

(Version: 3.1.1517.0823). We normalized the results by the wet weight of cecal 

content used for the DNA extraction.  

 

Shotgun metagenomics 

Shotgun metagenomic sequencing 

We prepared shotgun metagenome libraries with a modified Nextera protocol, 

as described elsewhere [91]. Briefly, 5 ng gDNA were tagmented with Nextera Tn5. 

After purification with Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, 

USA), we normalized and pooled the samples. Fragments in sizes from 400 to 

700 bp were selected by BluePippin (Sage Sciences). We sequenced the barcoded 

pools on an Illumina HiSeq3000 or NextSeq2000 instrument with 2x150 bp paired-

end sequencing. Library preparation and sequencing was performed at the Max 

Planck Institute for Biology Tübingen, Tübingen, Germany. 

 

Sequence quality control  

For the validation of the raw reads we used fqtools v.2.0 [92]. Next, we de-

duplicated the reads with the clumpify module of bbtools v.37.78 

(https://jgi.doe.gov/data-and-tools/bbtools/). Adapter trimming and read quality 
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control were performed with skewer v.0.2.2 [93] and the bbduk module of bbtools. 

We filtered reads mapping to the human or mouse genome out by using the bbmap 

module of bbtools. Finally, fastqc v.0.11.7 (https://github.com/s-andrews/FastQC) 

and multiQC v.1.5a [94] generated QC reports for all reads.  

 

Metagenomic profiling  

Post-QC reads were taxonomically profiled with Kraken v.2.0 [95] and 

Bracken v.2.2 [96] against the custom databases generated using the Struo2 

pipeline [97] based on GTDB release 202 (available at 

http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release202/). We performed 

functional profiling using HUMANn3 v.3.0.0.alpha.3 [98].  

 

Metagenomic analyses  

We rarefied the microbial reads to 460.000 sequences, calculated relative 

frequencies from the rarefied reads, and multiplied them with the genome 

equivalents per g cecal content to obtain an estimation of microbial absolute 

abundance. Normalized unstratified HUMANn3 v.3.0.0.alpha.3 [98] output was used 

for the functional analysis. We used MaAsLin2 [99] to detect differentially abundant 

microbes or microbial pathways between treatments and their association to cecal 

butyrate concentrations. Here, we considered taxa with a median relative abundance 

lower than 0.00001 as absent and set the prevalence threshold for taxa and 

pathways to 0.5. Multiple-hypothesis corrected (Benjamini-Hochberg) p-values < 

0.05 were considered significant.  

 

Serum Metabolomics 
Targeted metabolites 

We measured 11 selected metabolites known to be modulated by the gut 

microbiome and affecting host behavior, in the collected serum samples via LC-MS 

(Table S1). 

 

Serum-metabolites were extracted by mixing pre-chilled methanol containing 

isotopic standards (13C11 L-tryptophan, kynurenic acid ring-D5) with serum at the 

ratio of 2:1 (v:v). The mixture with the final concentration of isotopic standards of 0.5 

µg/mL was cooled for 30 min at -20°C before centrifuging at 11,000 g at 4°C for 15 
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min. The supernatant was filtered through a regenerated carbon filter with a pore 

size of 0.2 μm. LC-MS analysis of metabolites of interest was performed using a 

HPLC system (Dionex UltiMate 3000, Thermo Fisher, USA) coupled with a high-

resolution mass spectrometer with an electrospray ionization source (Impact II, 

Bruker, Germany). Reverse phase chromatography was executed using a C-18 

column (L × inner diameter 250 cm × 4.6 mm, 5 μm particle size, Agilent P/N 

990967-902) held at a constant temperature of 20°C. The mobile phase consisted of 

solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile). 

Gradient elution was applied with following conditions: the chromatographic gradient 

started at 3% B for 3 min, increased linearly to 100% B at 20 min, held at 100% B for 

3 min, decreased linearly to 3% B at 27 min, followed by an equilibrating time of 3 

min. The flow rate was kept constantly at 0.5 mL/min. The injection volume was 40 

μL. Samples were stored in the autosampler at 8°C for a maximum period of 72 h 

prior to injection. A dilution series of standards with a concentration range from 

0.000128 to 10 µg/mL was measured to build the linear regression model. The 

weighting factor of 1, 1/x, or 1/x2 was selected depending on lowest sum percent 

relative error [100]. The operating parameters of the mass spectrometer were as 

follows: the spray needle voltage at 3.5 kV, nitrogen was used as nebulizing gas (1.5 

bar) and drying gas (5 L/min), and the drying temperature was at 200°C. The data 

were acquired in Full-MS mode with a scanning range of 50-1,000 m/z and scanning 

rate of 2 Hz in the positive ion mode. Each measurement included a 30s-segment for 

automated internal calibration using sodium formate 5 mM. Peak integration of Full-

MS data was performed using Skyline (v.21.1). The internal isotopic standards were 

used for quality control and for normalization purposes. 

 

Untargeted pathway analysis 

We analyzed our data with XCMS (v.2.7.2) [101], MaAsLin2 [99], and 

MetaboAnalyst5.0 (www.metaboanalyst.ca)[102]. Briefly, LC-MS raw data files were 

converted into the mzML format using ProteoWizard MS converter (v.3.0) applying 

peak picking on MS1 level [103] and then processed by XCMS software (v.2.7.2), to 

perform peak extraction, baseline calibration, peak alignment, peak identification, 

retention time (RT) correction and integration of peak area. The parameters setting 

was as follows: centWave method setting for feature detection (ppm = 20, peak width 

= 12.8 - 80 s, signal/noise threshold = 10, mzdiff = -0.001, prefilter intensity = 100, 
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and prefilter peaks = 3); Obiwarp method setting for RT correction (ProfStep = 0.5), 

parameters for chromatogram alignment (mzwid = 0.01, minfrac = 1, bw = 1, and 

minsamp = 1). The output data matrix including RTs, m/z values and peak intensity 

was further analyzed with MaAsLin2, correcting for batch effects. The calculated t-

values and multiple hypothesis corrected p-values (Benjamini-Hochberg) for each 

m/z and RT pair were exported and analyzed with the functional analysis in 

MetaboAnalyst5.0. The parameters setting was as follows: ion mode: positive; mass 

tolerance: 5 ppm; algorithms: GSEA and mummichog v.2; p-value cutoff: 0.05; 

adducts: M+, [M+H]+, [M+2H]2+, [M+Na]+, [M+K]+, [M-H2O+H]+, [M+NH4+, 

[2M+H]+; pathway library: Mus musculus [KEGG]. Pathways with a combined p-

value smaller than 0.05 were considered significant. 

 

Cecal Metabolomics  
The samples and SCFA standard mix tubes were treated as reported by 

Furuhashi et al, with few modifications[104]. Briefly, 3-methyl pentanoate was added 

as an internal standard. Then, 125 μL of 20 mM NaOH, 100 μL of pyridine and 80 μL 

of isobutanol was added and the final volume was adjusted to 650 μL with ultrahigh 

quality water. Next, we derivatized the solution with 50 μL of isobutyl-chloroformate 

and kept the lid open for 1 min to release generated gasses. The sample was 

vortexed for 30 s, spun down and 150 μL of hexane was added. We vortexed the 

sample for 10 s and centrifuged it at 21,000 x g for 3 min. Thereafter, we transferred 

the upper hexane phase into an autosampler vial. 1 µL of sample was injected into 

gas chromatography mass spectrometry (GC-MS) in split mode (1:50) with helium as 

a carrier gas at a flow rate of 1 mL/min. Measurements were carried out on a single 

quadrupole mass spectrometer (5977B-MSD;) equipped with 7890B GC and 7693 

autosampler, all from Agilent Technologies, Santa Clara, CA, USA. We set the 

temperature of the GC-MS ion source and the transfer line for the samples to 280 

°C. A VF-5ms column (60 m, 0.25 mm, 0.25 μm; CP8961, Agilent, USA) was used. 

The oven temperature gradient for the samples was as follows: after 5 min at 40 °C, 

the oven was programmed to rise to 300°C at a rate of 10°C/min. We set the 

temperature of the GC-MS ion source to 250°C and the transfer line to 350 °C. The 

scan range was between m/z 30–600. A 70 eV EI mode (Extractor ion source; 

Agilent Technologies Santa Clara, CA, USA) was used and SCFAs were quantified 
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by peak areas estimations in the extracted ion chromatogram (MassHunter; Agilent 

Technologies, Santa Clara, CA, USA). 

 

Statistical analysis 
We applied linear mixed models to analyze the statistical difference using 

lmerTest [105]. Here, we corrected for the batch of the experimental replicates, sex, 

technical variables and in case of EE or food intake additionally for murine weight 

[74].  

 

In case of the targeted metabolites in murine sera and the SCFAs in murine 

cecal contents, we used MaAsLin2 [99] to perform the linear mixed model analysis 

followed by a multiple-hypothesis correction (Benjamini-Hochberg). Metabolites with 

a q < 0.05 were considered significant.  
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SUPPLEMENTARY MATERIAL  

 
Figure S1 - C. minuta in donor stool and murine body weight gain over the duration of the 
experiment. (A) Relative abundance of C. minuta in the donor stool. Values are obtained from two 

independent DNA extractions and metagenomic sequencing runs. (B) Murine weight gain during the 

experiment.   
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Figure S2 - Murine activity during acclimatization and average RMR. (A-B) Residual activity 

metrics, (A) number of beam breaks, (B) adjusted for batch and sex effects. Activity metrics with (A) 

overall activity and (B) total distance traveled, during the first 24 hours in the behavioral phenotyping 

respirometry cage system. (C) Residual average RMR adjusted for weight, sex and batch measured 

by indirect calorimetry during the last 48 hours in the  behavioral phenotyping respirometry cage 

system. Adj. = adjusted; BB = beam breaks; Resid. = residuals; RMR = resting metabolic rate.  
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Table S1: Literature linking target metabolites to the gut-microbiome-brain axis. 

Pathway Compounds Literature  

Hypothalamic– 

pituitary–thyroid 

axis 

T4 (thyroxine) [106] Probiotic administration increases locomotor activity and improves 

thyroid function 
 

[107] Probiotic administration increase levothyroxine availability and 
stabilizes thyroid function 

Hypothalamic– 

pituitary–adrenal 

axis 

Corticosterone [108] Probiotic administration alleviated depressive-like behaviors and 

decreased corticosterone level in mice subjected to restraint stress  
 

[77] Probiotic administration alleviated behavioral changes of germfree 

mice and modulated glucocorticoid pathway genes in the brain and 

serum cortisol concentrations 

Histamine - 

Neurotransmitter 

Histamine [109] Histamine is critical for learning, memory, cognition, and motivation 

 

[110] Various gut microbes can produce histamine 

GABA - 

Neurotransmitter 
 

γ-aminobutyric 

acid (GABA),  

Glutamine, 
Glutamate 

[111] Various probiotics can synthesize GABA, glutamine and glutamate 

in vitro and change GABA levels in murine feces  

 

[112] Fecal transplant experiments from schizophrenic human donors 

resulted in lower GABA levels in the brain and schizophrenia-related 

behaviors in recipient mice compared to controls 

 

[113] Probiotic administration affects GABA receptor expression in the 

brain, reduces stress-induced corticosterone levels and anxiety- and 

depression-related behavior in mice 

 

[114] Colonization of germfree mice normalized anxiety-like behavior and 
brain BDNF levels, associated with an expression of the GluN2A subunit 

(Glutamate-Receptor) 

Tryptophan 

metabolism 

Kynurenine, 

Kynurenic acid, 

Tryptophan, 

Indole lactic 
acid, Serotonin 

[115] High dosage of tryptophan decreased murine activity 

 

[116] Serum serotonin and tryptophan metabolite concentrations depend 

on host colonization status 

 

[117] Probiotic administration improved cognitive and anxiety-like 

behavior and affected central serotonin levels as well as metabolites of 

the kynurenine pathway 
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Figure S3 - Targeted metabolites in murine serum samples and cecal contents. (A-E) SCFA and 

branched-chain fatty acid concentrations in murine cecal contents on day 28 post-inoculation 

measured via GC-MS. (B) Butyrate concentrations correlated to (C) murine overall activity and (D) 

locomotion. (E) Sum of all SCFA correlated to murine overall activity. (F-G) Targeted metabolites in 

murine sera measured via LC-MS. GABA = γ-Aminobutyric acid; Gln = Glutamine; Glu = Glutamic 

acid; ILA = Indole lactic acid; KYN = Kynurenine; KYNA = Kynurenic acid; PA = peak area; T4 = 

Thyroxine.   
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Figure S4 - Microbial composition per mouse and α-diversity. (A,B) Analyses of phylogenetically-

profiled metagenomic cecal sequences normalized by microbial biomass quantified via qPCR. (A) 

Taxa bar plots for each mouse. (B) Comparison of α-diversity metrics, microbial evenness (ME) and 

phylogenetic diversity (PD) between treatment groups. Asterisks indicate statistical significance of the 

linear mixed model correcting for sex and batch. * : p < 0.1; *** : p < 0.001. GE = genome equivalents; 
ME = microbial evenness; PD = phylogenetic diversity.  
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4.4. Conclusion 

This final results chapter incorporated the main project of my doctoral thesis. 

Here, I provided first evidence of C. minuta influencing host physical activity and 

energy expenditure, a possible mechanism for its causal role in decreasing host 

adiposity and its constant associations with host metabolic health. Moreover, I 

identified several sex-dependent effect of C. minuta on the host, a phenomenon not 

reported until now. These results provide a strong foundation for further studies of 

C. minuta’s influence on host health and the underlying mechanism.  
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Chapter 5: Discussion 
Despite global associations of Christensenellaceae with a lean human BMI 

and metabolic health, and the demonstrated causal role of C. minuta in reduced host 

adiposity gain, knowledge of this microbe and its microbial family remains scarce. To 

address this gap, I studied how the addition of C. minuta impacts the microbial 

community (Chapters 2-4) and the host (Chapter 4) using mice with a simplified 

microbial community (Chapter 2) and with a complex community established via 

fecal transplantation from an obese human donor to recipient germfree mice 

(Chapters 3-4). I found that the fitness of C. minuta increases with the presence of 

other microbial species in the murine gut (Chapter 2) but has only a minor effect on 

the overall microbial community composition (Chapters 3-4). Moreover, the addition 

of living C. minuta affected murine physical activity and metabolic energy 

expenditure, a possible explanation for its reported association with host metabolic 

health and BMI (Chapter 4). In this chapter, I evaluate the advantages and 

disadvantages of using the mouse model organism to study the gut microbiome 

based on its adoption across all experiments presented in this dissertation (Chapters 

2-4). Furthermore, I address a common pattern in the effect of C. minuta on certain 

members of the microbial community evident in both my experiments and those 

conducted by Jillian Waters (Chapters 3-4).  

 

5.1. The mouse as a model organism to study microbial 

species of interest 

A major obstacle in gut microbiome research is reproducing the natural 

environment of the gut microbe(s) in a controlled laboratory setting. The natural 

environment of the gut microbiome is the host intestine, with its changing 

environmental conditions such as pH, oxygen concentrations, and the composition 

and thickness of the mucus layer along the length of the intestinal tract [141]. 

Multiple host cell types are present in this environment and interact with the microbial 

community in the intestine, including immune cells [141]. In addition, gut peristalsis 

moves the gut content, rendering it a non-stationary environment [141]. The complex 

combination of these factors is currently not fully reproducible in vitro, although many 
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potentially applicable technologies are advancing rapidly, for example organoids 

[142] and complex bioreactors [143]. Many studies thus use a model organism to 

ensure these complex factors are included when investigating the gut microbiome 

and its interactions with the host. Especially when microbial interactions with the host 

expand to influence host behavior, a research area called the gut-microbiome-brain 

axis, no in-vitro alternatives are applicable [144].  

 

Of all the model organisms used in microbiome research, the mouse is easy 

to handle, cost-effective, and closely related to humans [145,146]. Germ-free mice in 

particular represent a strong model for microbiome research, offering the power to 

control the exact number and types of microbes within the host to study those 

microbes in a simplified scenario in vivo [Chapter 2] [144]. It is also possible to 

“humanize” the murine microbiota to some extent via fecal transplants, giving us the 

opportunity to study the whole complex human microbial community in vivo 

[Chapters 3 & 4] [144]. In humanization experiments described in the literature mice 

mirrored disease phenotypes and conditions from the human fecal donor, revealing a 

causal role of the gut microbiome in diseases and conditions, including cancer 

immunity, autoimmunity, and obesity [147]. Such experimental breakthroughs would 

not have been possible without a suitable in vivo model organism, highlighting the 

suitability of the mouse for microbiome research. Especially in the gut-microbiota-

brain research area the mouse is a widely used model system, with multiple 

protocols to evaluate behavioral modulations [144,148].  

 

However, the mouse as a model organism in microbiome research harbors 

several drawbacks in terms of translating study results to humans. The anatomy of 

the murine and human intestinal tracts differ markedly, e.g. in terms of the 

distribution of specific cell types and the intestinal compartment sizes relative to body 

size [146]. More importantly, not all gut microbes are present in both humans and 

mice, with some not transferable between the two [147,149]. Thus, a complete 

“humanization” of the murine gut microbiome is impossible. Moreover, studies have 

reported developmental deficits in germfree mice, making it possibly unsuitable for a 

number of specific scientific questions, including brain neurogenesis and social 

cognition behaviors [144].  
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In the context of my studies, studying C. minuta in mice expanded our 

knowledge of its growing role in the microbial community in vivo, including (i) a 

potential growth limit in the murine intestines (Chapter 2) and (ii) a substantial 

increase of the total microbial biomass (Chapter 4). (iii) Further, my results suggest a 

possible mechanism of its association with host health via host energy homeostasis, 

including changes in voluntary physical activity and metabolic energy expenditure 

(Chapter 4). (iv) Moreover, I detected that all the effects of C. minuta in vivo depend 

on mouse sex, indicating an interaction with host sex hormones.  

 

All these new findings have raised questions expanding beyond the scope of this 

thesis. In the following, I list possible follow-up experiments exploring these 

questions. (i) To test the growth modulations of C. minuta by microbial and host-

derived products, an initial assay of potential substances in vitro is possible. Adding 

these substances to media containing C. minuta and tracking its growth helps to 

identify several selected candidates. Supplementing drinking water or food with the 

candidate substances can verify the growth-modulating effects in mice mono-

colonized with C. minuta. (ii) To investigate how C. minuta increases total microbial 

biomass, I suggest a top-down approach in vitro. First, mimicking the increase in 

microbial biomass by adding C. minuta to a microbial community is required. Here, I 

would suggest using a simple microbial community in batch cultures. 

Transcriptomics or proteomics data comparisons of cultures amended with C. minuta 

and controls without C. minuta identifies candidate metabolites to test in batch 

experiments (iii) As already stated in this chapter, germfree mice depict a few 

irreversible developmental deficits of the brain, with the possibility of affecting murine 

behavior post-microbial-colonization. Therefore, replication of the experiment in 

Chapter 4, followed by breeding of the inoculated mice within the treatment groups 

and examining murine behaviors in the F2 generation, helps to estimate the validity 

of my results. (iv) Literature reported higher abundances of C. minuta in females 

[47,61,137], giving a first hint of the influence of sex hormones on C. minuta. But it is 

unknown if C. minuta itself can influence host sex hormones. Similar to the 

experiments performed by Lombardi et al. [150], an expanded in vitro assay can test 

the ability of C. minuta to metabolize androgens or estrogens.  
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In summary, the mouse represents a relatively easy-to-handle and cost-

effective organism to study the gut microbiome in vivo and its interactions with the 

host. It improves research due to the inability to model the complex in vivo 

environment in vitro, and the possibility to study its interactions with the host starting 

from the cellular levels and expanding to complex interactions as behavior.  

 

5.2. Selective effect of Christensenella minuta on the microbial 

community composition 

Despite the sparsity of Christensenellaceae in the human gut microbiome [5], 

they are consistently associated with human health [5,45–85]. This opens the 

question of how such low abundant microbes are capable of influencing human 

health. In Chapter 3 I already stated my hypothesis of an indirect effect of C. minuta 

on the host via the microbial community, possibly via the production of hydrogen.  

 

I investigated the effect of C. minuta on complex microbial communities in 

multiple murine pilot studies (Chapter 3) and in experiments conducted by me 

(Chapter 4). Taking these two chapters together, C. minuta had only minor effects on 

the microbial community composition. Instead, a large proportion of the variance in 

both studies was found to be associated with the experimental batches, despite the 

use of the same protocol to prepare the inoculum in all experiments with the same 

stool sample of one donor. An explanation for these batch effects thus remains 

elusive. Although no marked effect on the overall microbial community composition 

was visible between the study groups in both chapters, differential abundance 

analyses revealed significant differentially-abundant taxa between the C. minuta-

related study groups of each study. Most of the taxa belonged to the family of 

Lachnospiraceae, of which most showed lower abundances in the mice with live C. 

minuta compared to the control mice in the corresponding study. Contrary to my 

hypothesis of a community shaping effect of C. minuta via its hydrogen production, 

literature states enrichment of Lachnospiraceae by hydrogen [151,152], not a 

decrease which I observed. 
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My results showed the ability of C. minuta to reduce the abundance of 

multiple Lachnospiraceae in the murine guts. If this reduction in Lachnospiraceae 

contributes to the positive effects associated with C. minuta needs to be 

investigated, including the mechanism driving this influence of C. minuta on specific 

members of the gut microbiome. 

 

5.3. General conclusion 

This thesis aimed at investigating a member of the health-associated 

Christensenellaceae, C. minuta, in vivo examining its interactions with other gut 

microbes and the host. Here I showed that C. minuta benefits from the presence of 

other microbes in the gastrointestinal tract of the host [Chapter 2]. Even though 

C. minuta had only a minor influence on the overall composition of the gut 

microbiome [Chapters 3 & 4], it was capable of influencing host physical activity and 

metabolism [Chapter 4]. My findings broaden the understanding in this particular 

species and reinforce associations of C. minuta with host health. Further, my results 

lay the groundwork for further investigations of C. minuta in context of the gut-

microbiome-brain axis and its effects in dependence of host sex.  
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Appendix Chapter 2: Detailed DNA extraction 

protocol 
This protocol is optimized for input samples with low DNA-amount and contains 

comments to ensure the proper procedure.  

 

 Reagents: 
- freshly prepared (on the day of extraction) lysis solution 

- PCR grade water/Nuclease free water 

- Proteinase K (20 mg/ml) 

- Phenol/Chloroform-Isoamyl Alcohol (PCI) 

- Chloroform-Isoamyl Alcohol (CI) 

- Cold EtOH 75% (molecular grade) 

- (Cold) EtOH 100% (molecular grade) 

- 3M Na Acetate (pH 7) 

- Qiagen Blood and Tissue Kit 
 
Table : 8x Lysis Solution 
Add reagents in the order written in the table 

Total Volume 2.5 mL 1.25 mL 

PCR grade water/Nuclease free water 1150 µL 575 µL 

3M Na Acetate (pH 7) 265 µL 132.5 µL 

20 % SDS 1000 µL 500 µL 

0.5 M EDTA (pH 8) 80 µL 40 µL 
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Procedure: 
Lysis 

1. Prepare lysis solution freshly and heat it up 60 °C  

2. Add 800 µL PCR grade water/Nuclease free water and 115 µL LysSol to each 

bead tube 

3. Incubate for 30 min @ 60 °C 

4. Cool samples on ice  

5. Bead-beating of samples with the parameters:  

7 m/s, 90 s, 2 cycles, 30 s pause in-between 

6. Cool samples on ice 

7. Centrifuge tubes for 30 s @ 10.000 rpm 

8. Add 20 µL of Proteinase K (20 mg/ml) 

9. Incubate for 30 min @ 60 °C 

 

Extraction 

10. Centrifuge tubes for 30 s @ 10.000 rpm 

11. Pipette supernatant into a 2 mL Eppendorf tube – estimate volume (~800 µL) 

Safe stopping point – store tubes at -20 °C. As the lysis buffer crystallizes at 

low temperatures, before continuing with the protocol the tubes need to be 

heated for 1 min at 60 °C to get the buffer back to solution 

12. Add the same volume of PCI to supernatant 

13. Mix on thermomixer gently (300 rpm) for 5 min @ RT 

14. Centrifuge for 15 min with 10.000 rpm @ RT 

15. Carefully remove top (aqueous) phase containing DNA and transfer into a 

new 2 mL tube 

16. Repeat steps 13-16 till no white precipitate is at the interface (2x or more) 

17. Add equal volume CI 

18. Mix on thermomixer gently (300 rpm) for 2 min @ RT 

19. Centrifuge for 1 min with 10.000 rpm @ RT 

20. Carefully remove top (aqueous) phase containing DNA and transfer into new 

2 mL tube 
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Precipitation 

21. Add 2.5 x Volume ice-cold 100% EtOH and 0.1 x Volume 3M Na Acetate (pH 

7) 

22. Mix gently and place overnight in -20 °C 

23. Prepare 75% EtOH and put it on ice 

24. Centrifuge the tubes for 20 min with max speed @ 4 °C 

25. Remove the supernatant, add 1 mL EtOH and invert tubes for 2-3 times 

carefully 

26. Centrifuge the tubes for 10 min with max speed @ 4 °C 

27. Repeat step 26-27 

28. Dry pellet in the flow hood @ RT 

  

Clean up (DNeasy® Blood & Tissue Kit) 

29. Dissolve pellet in 220 µL PCR grade water/Nuclease free water 

After a Phenol/Chloroform purification it is hard to get the DNA back to 

solution -> pipette up and down until the pellet is not visible anymore. Heat the 

solutions in a thermomixer up to 65 °C with 300 rpm for 5 min. Afterward it is 

better to let it sit at RT for a while 

30. Add 200 μL Buffer AL (without added ethanol) to the sample, and mix 

thoroughly by vortexing. 

31. Add 200 µL ethanol (96–100%). Mix thoroughly by vortexing. 

32. Pipette the mixture into a DNeasy Mini spin column placed in a 2 ml collection 

tube. Centrifuge at ≥6000 x g (8000 rpm) for 1 min. Discard the flow-through 

and collection tube. 

33. Place the spin column in a new 2 mL collection tube. Add 500 µL Buffer AW1. 

Centrifuge for 1 min at ≥6000 x g. Discard the flow-through and collection 

tube. 

34. Place the spin column in a new 2 mL collection tube, add 500 µL Buffer AW2 

and centrifuge for 3 min at 20,000 x g (14,000 rpm). Discard the flow-through 

and collection tube. 

It is important to dry the membrane of the DNeasy Mini spin column, since 

residual ethanol may interfere with subsequent reactions. This centrifugation 

step ensures that no residual ethanol will be carried over during the following 

elution. Following the centrifugation step, remove the DNeasy Mini spin 
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column carefully so that the column does not come into contact with the flow-

through since this will result in a carryover of ethanol. If the carryover of 

ethanol occurs, empty the collection tube, then reuse it for another 

centrifugation for 1 min at 20,000 x g (14,000 rpm). 

35. Transfer the spin column to a new 1.5 mL microcentrifuge tube. 

36. Elute the DNA by adding 50 µL PCR grade water/Nuclease free water to the 

center of the spin column membrane. Incubate for 1 min at room temperature 

(15–25°C). Centrifuge for 1 min at ≥6000 x g 

Don’t use Buffer AE when working with qPCR as it contains EDTA, which can 

inhibit the PCR reaction  
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